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Preface

Between September 23-26, 2010, The Second International Conference
on Numerical Analysis and Approximation Theory (NAAT 2010) was held
in Cluj-Napoca, Romania. It was organized by the Applied Mathematics
Department of Faculty of Mathematics and Computer Science, Babeş-Bolyai
University. The first edition took place in 2006.

Promoting interactions between specialists, young researchers and PhD
students, the meeting was devoted to some significant aspects of mathemati-
cal areas on functions approximation, integral and differential operators, nu-
merical analysis and stability methods, positive operators, splines, wavelets,
stochastic processes, approximation of linear functionals.

A special word of thanks goes to the invited speakers: Francesco Al-
tomare (Bari, Italy), Carsten Carstensen (Berlin, Germany), Sorin Gal
(Oradea, Romania), Heiner Gonska (Duisburg, Germany), Kurt Helmes
(Berlin, Germany), Willi Jäger (Heidelberg, Germany), Gradimir Milovanović
(Beograd, Serbia), Paul Sablonniere (INSA Rennes, France).

In the frame of the Conference, a symposium was dedicated to Professor
Dr. h.c. Willi Jäger on the occasion of his 70th birthday.

The Conference was attended by over 80 mathematicians coming from
13 countries: Czech Republic, France, Georgia, Germany, Hungary, Israel,
Italy, Norway, Romania, Serbia, Spain, Syria and Turkey. Besides the ple-
nary lecturers the programme included 71 research talks. The participants
appreciated the diversity of topics covered and the quality level of the talks.
They showed enjoyment over the opportunity of sharing their ideas with each
other.

In this volume we collect a selection of 37 refereed papers corresponding
to some presented talks.

Finally, we would like to express our gratitude to all participants who
transformed NAAT 2010 into a successful event by creating a warm and
cordial atmosphere impregnated with a high degree of professionalism.

The courtain fell on this meeting. Since every end is a new beginning,
see you in 2014.

Octavian Agratini,
On behalf of the Organizing Committee
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Asymptotic expansions for Favard operators
and their left quasi-interpolants

Ulrich Abel

Abstract. In 1944 Favard [5, pp. 229, 239] introduced a discretely de-
fined operator which is a discrete analogue of the familiar Gauss-
Weierstrass singular convolution integral. In the present paper we con-
sider a slight generalization Fn,σn of the Favard operator and its Dur-

rmeyer variant F̃n,σn and study the local rate of convergence when
applied to locally smooth functions. The main result consists of the
complete asymptotic expansions for the sequences (Fn,σnf) (x) and(
F̃n,σnf

)
(x) as n tends to infinity. Furthermore, these asymptotic ex-

pansions are valid also with respect to simultaneous approximation. Fi-
nally, we define left quasi-interpolants for the Favard operator and its
Durrmeyer variant in the sense of Sablonniere.

Mathematics Subject Classification (2010): 41A36, 41A60, 41A28.

Keywords: Approximation by positive operators, asymptotic expansions,
simultaneous approximation.

1. Introduction

In 1944 J. Favard [5, pp. 229, 239] introduced the operator

(Fnf) (x) =
1√
πn

∞∑
ν=−∞

f
(ν

n

)
exp

(
−n
(ν

n
− x
)2
)

(1.1)

which is a discrete analogue of the familiar Gauss-Weierstrass singular con-
volution integral

(Wnf) (x) =
√

n

π

∞∫
−∞

f (t) exp
(
−n (t− x)2

)
dt.
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Basic properties such as saturation in weighted spaces can be found in [3]
and [2]. For a sequence of positive reals σn, the generalization

(Fn,σn
f) (x) =

∞∑
ν=−∞

pn,ν,σn
(x) f

(ν

n

)
, (1.2)

where

pn,ν,σn (x) =
1√

2πnσn

exp
(
− 1

2σ2
n

(ν

n
− x
)2
)

,

was introduced and studied by Gawronski and Stadtmüller [7]. The partic-
ular case σ2

n = γ/ (2n) with a constant γ > 0 reduces to Favard’s classical
operators (1.1). The operators can be applied to functions f defined on R
satisfying the growth condition

f (t) = O
(
eKt2

)
as |t| → ∞, (1.3)

for a constant K > 0.
In 2007 Nowak and Sikorska-Nowak [11] considered a Kantorovich vari-

ant [11, Eq. (1.5)]

(
F̂n,σn

f
)

(x) = n
∞∑

ν=−∞
pn,ν,σn

(x)

(ν+1)/n∫
ν/n

pn,ν,σn
(t) f (t) dt

and a Durrmeyer variant [11, Eq. (1.6)](
F̃n,σnf

)
(x) = n

∞∑
ν=−∞

pn,ν,σn (x)

∞∫
−∞

pn,ν,σn (t) f (t) dt (1.4)

of Favard operators. Further related papers are [12] and [13].
The main result of this paper consists of the complete asymptotic ex-

pansions

Fn,σn
f ∼ f+

∞∑
k=0

ck (f) σk
n and F̃n,σn

f ∼ f+
∞∑

k=0

c̃k (f) σk
n (n →∞) ,

for f sufficiently smooth. The coefficients ck and c̃k, which depend on f but
are independent of n, are explicitly determined. It turns out that ck (f) = 0,
for all odd integers k > 0. Moreover, we deal with simultaneous approxima-
tion by the operators (1.2).

Finally, we define left quasi-interpolants for the Favard operator and its
Durrmeyer variant in the sense of Sablonniere.

2. Complete asymptotic expansions

Throughout the paper, we assume that

σn > 0, σn → 0, σ−1
n = O

(
n1−η

)
(n →∞) (2.1)
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with (an arbitrarily small) constant η > 0. Note that the latter condition
implies that nσn →∞ as n →∞.

Under these conditions, the operators possess the basic property that
(Fnf) (x) converges to f (x) in each continuity point x of f . Among other re-
sults, Gawronski and Stadtmüller [7, Eq. (0.6)] established the Voronovskaja-
type theorem

lim
n→∞

1
σ2

n

[(Fn,σn
f) (x)− f (x)] =

1
2
f ′′ (x) (2.2)

uniformly on proper compact subsets of [a, b], for f ∈ C2 [a, b] (a, b ∈ R)
and σn → 0 as n → ∞, provided that certain conditions on the first three
moments of Fn,σn

are satisfied. Actually, Eq. (2.2) was proved for a truncated
variant of (1.2) which possesses the same asymptotic properties as (1.2) [7,
cf. Theorem 1 (iii) and Remark (i), p. 393]. For a Voronovskaja-type theorem
in the particular case σ2

n = γ/ (2n) cf. [3, Theorem 4.3]. Abel and Butzer
extended Formula (2.2) by deriving a complete asymptotic expansion of the
form

Fn,σn
f ∼ f +

∞∑
k=0

ck (f)σk
n (n →∞) ,

for f sufficiently smooth. The latter formula means that, for all positive
integers q, there holds pointwise on R

Fn,σn
f = f +

q∑
k=1

ck (f) σk
n + o (σq

n) (n →∞) .

The following theorem presents the main result of this paper, the com-
plete asymptotic expansion for the sequence

(
F̃n,σn

)
(x) as n → ∞. For

r ∈ N and x ∈ R let W [r;x] be the class of functions on R satisfying growth
condition (1.3), which admit a derivative of order r at the point x.

Theorem 2.1. Let q ∈ N and x ∈ R. Suppose that the real sequence (σn)
satisfies the conditions (2.1). For each function f ∈ W [2q;x], the Favard-
Durrmeyer operators (1.4) possess the complete asymptotic expansions

(Fn,σnf) (x) = f (x) +
q∑

k=1

f (2k) (x)
(2k)!!

σ2k
n + o

(
σ2q

n

)
(2.3)

and (
F̃n,σn

f
)

(x) = f (x) +
q∑

k=1

f (2k) (x)
k!

σ2k
n + o

(
σ2q

n

)
(2.4)

as n →∞.

Here m!! denote the double factorial numbers defined by 0!! = 1!! = 1
and m!! = m× (m− 2)!! for integers m ≥ 2. It turns out that the asymptotic
expansions contain only terms with even order derivatives of the function f .

As an immediate consequence we obtain the following Voronosvkaja-
type theorems.
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Corollary 2.2. Let x ∈ R. Suppose that the real sequence (σn) satisfies the
conditions (2.1). For each function f ∈ W [2;x], there hold the asymptotic
relations

lim
n→∞

σ−2
n ((Fn,σn

f) (x)− f (x)) =
1
2
f ′′ (x)

and

lim
n→∞

σ−2
n

((
F̃n,σn

f
)

(x)− f (x)
)

= f ′′ (x) .

Concerning simultaneous approximation, it turns out that the complete
asymptotic expansion (2.3) can be differentiated term-by-term. Indeed, there
holds

Theorem 2.3. Let ` ∈ N0, q ∈ N and x ∈ R. Suppose that the real sequence
(σn) satisfies condition (2.1). For each function f ∈ W [2 (` + q) ; x], the fol-
lowing complete asymptotic expansions are valid as n →∞:

(Fn,σn
f)(`) (x) = f (x) +

q∑
k=1

f (2k+`) (x)
(2k)!!

σ2k
n + o

(
σ2q

n

)
(2.5)

and (
F̃n,σn

f
)(`)

(x) = f (`) (x) +
q∑

k=1

f (2k+`) (x)
k!

σ2k
n + o

(
σ2q

n

)
. (2.6)

Remark 2.4. The latter formulas can be written in the equivalent form

lim
n→∞

σ−2q
n

(
(Fn,σn

f)(`) (x)− f (`) (x)−
q∑

k=1

f (2k+`) (x)
(2k)!!

σ2k
n

)
= 0,

lim
n→∞

σ−2q
n

((
F̃n,σnf

)(`)

(x)− f (`) (x)−
q∑

k=1

f (2k+`) (x)
k!

σ2k
n

)
= 0.

Assuming smoothness of f on intervals I = (a, b), a, b ∈ R, it can be
shown that the above expansions hold uniformly on compact subsets of I.

The proofs are based on localization theorems which are interesting in
themselves. We quote only the result for the ordinary Favard operator (1.2).

Proposition 2.5. Fix x ∈ R and let δ > 0. Assume that the function f : R → R
vanishes in (x− δ, x + δ) and satisfies, for positive constants Mx,Kx, the
growth condition

|f (t)| ≤ MxeKx(t−x)2 (t ∈ R) . (2.7)

Then, for positive σ < 1/
√

2Kx, there holds the estimate

|(Fn,σf) (x)| ≤
√

2
π

Mxσ/δ

1− 2Kxσ2
exp

(
−1− 2Kxσ2

2

(
δ

σ

)2
)

.
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Consequently, under the general assumption (2.1) a positive constant
A (independent of δ) exists such that the sequence ((Fn,σnf) (x)) can be
estimated by

(Fn,σn
f) (x) = o

(
exp

(
−A

δ2

σ2
n

))
(n →∞) .

Remark 2.6. Note that a function f : R → R satisfies condition (2.1) if
and only if condition (2.7) is valid. The elementary inequality (t− x)2 ≤
2
(
t2 + x2

)
implies that

MxeKx(t−x)2 ≤ MeKt2 (t, x ∈ R)

with constants M = Mxe2Kx2
and K = 2Kx.

3. Quasi-interpolants

The results of the preceding section show that the optimal degree of approxi-
mation cannot be improved in general by higher smoothness properties of the
function f . In order to obtain much faster convergence quasi-interpolants were
considered. Let us shortly recall the definition of the quasi-interpolants in the
sense of Sablonniere [14]. For another method to construct quasi-interpolants
see [8] and [9].

If the operators Bn let invariant the space of algebraic polynomials Πj

of each order j = 0, 1, 2, . . . (the most approximation operators possess this
property), i.e.,

Bn (Πj) ⊆ Πj (0 ≤ j ≤ n) ,

Bn : Πn → Πn is an isomorphism which can be represented by linear differ-
ential operators

Bn =
n∑

k=0

βn,kDk

with polynomial coefficients βn,k and Df = f ′, D0 =id. The inverse operator
B−1

n ≡ A : Πn → Πn satisfies

A =
n∑

k=0

αn,kDk

with polynomial coefficients αn,k. Sablonniere defined new families of inter-
mediate operators obtained by composition of Bn and its truncated inverses

A(r)
n =

r∑
k=0

αn,kDk.

In this way he obtained a family of left quasi-interpolants (LQI) defined by

B(r)
n = A(r)

n ◦ Bn, 0 ≤ r ≤ n,

and a family of right quasi-interpolants (RQI) defined by

B[r]
n = Bn ◦ A(r)

n , 0 ≤ r ≤ n.
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Obviously, there holds B(0)
n = B[0]

n = Bn, and B(n)
n = B[n]

n = I when acting
on Πn. In the following we consider only the family of LQI. The definition
reveals that B(r)

n f is a linear combination of derivatives of Bnf . Furthermore,
B(r)

n (0 ≤ r ≤ n) has the nice property to preserve polynomials of degree up
to r, because, for p ∈ Πr, we have

B(r)
n p =

(
A(r)

n ◦ Bn

)
p =

r∑
k=0

αn,kDk(Bnp)︸ ︷︷ ︸
∈Πr

=
n∑

k=0

αn,kDk (Bnp)

=
(
A−1

n ◦ Bn

)
p = p.

In many instances there holds L
(r)
n f − f = O

(
n−br/2+1c) as n →∞.

Unfortunately, the Favard operator as well as its Durrmeyer variant
doesn’t let invariant the spaces Πj , for 0 ≤ j ≤ n. However, under appropriate
assumptions on the sequence (σn) they do it asymptotically up to a remainder
which decays exponentially fast as n tends to infinity. Writing ' for this
“asymptotic equality” we obtain, for fixed n ∈ N,

Fn,σn
pk ' ek

with pk = k!
bk/2c∑
j=0

(−1)j σ2j
n

2jj! (k − 2j)!
ek−2j ,

where em denote the monomials em (t) = tm (m = 0, 1, 2, . . .). Hence, for the
inverse,

(Fn,σn)−1
ek ' pk =

bk/2c∑
j=0

(−1)j σ2j
n

2jj!︸ ︷︷ ︸
=αn,2j

D2jek

Note that βn,2k+1 = αn,2k+1 = 0 (k = 0, 1, 2, . . .) and that neither βn,k

nor αn,k depend on the variable x. The analogous results for the Favard-
Durrmeyer operators are similar. Proceeding in this way we define the fol-
lowing operators:

Definition 3.1 (Favard quasi-interpolants). The left quasi-interpolants F
(r)
n,σn

and F̃
(r)
n,σn (r = 0, 1, 2, . . .) of the Favard and Favard-Durrmeyer operators,

respectively, are given by

F (r)
n,σn

=
r∑

k=0

αn,kDkFn,σn :=
br/2c∑
k=0

(−1)k σ2k
n

2kk!
D2kFn,σn

and

F̃ (r)
n,σn

=
r∑

k=0

α̃n,kDk
n,σn

F̃n,σn
:=

br/2c∑
k=0

(−1)k σ2k
n

k!
D2kF̃n,σn

.

Remark 3.2. Note that F
(2r)
n,σn = F

(2r+1)
n,σn and F̃

(2r)
n,σn = F̃

(2r+1)
n,σn (r = 0, 1, 2, . . .).

The local rate of convergence is given by the next theorem.
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Theorem 3.3. Let ` ∈ N0, q ∈ N and x ∈ R. Suppose that the real sequence
(σn) satisfies condition (2.1). For each function f ∈ W [2 (` + q) ; x], the fol-
lowing complete asymptotic expansions are valid as n →∞:(

F (2r)
n,σn

f
)(`)

(x) ∼ f (`) (x) + (−1)r
∞∑

k=r+1

(
k − 1

r

)
f (2k+`) (x)

(2k)!!
σ2k

n

and(
F̃ (2r)

n,σn
f
)(`)

(x) = f (`) (x) + (−1)r
q∑

k=1

(
k − 1

r

)
f (2k+`) (x)

k!
σ2k

n + o
(
σ2q

n

)
.

Remark 3.4. An immediate consequence are the asymptotic relations(
F (2r)

n,σn
f
)

(x)− f (x) = O
(
σ2(r+1)

n

)
and (

F̃ (2r)
n,σn

f
)

(x)− f (x) = O
(
σ2(r+1)

n

)
as n →∞.

Acknowledgment. The author would like to thank the anonymous referee
for the very careful reading of the manuscript. The valuable comments and
suggestions led to several improvements in the paper.
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Applying the Backus-Gilbert theory
to function approximation

Flavian Abramovici

Abstract. In this paper are given new results within the project I started
some years ago, of using inverse problems methods for recovering the
values at points x0 of a continuous function f with compact support E ⊆
Rm, when N of its values are given at the nodes xi. After showing in [1]
how to obtain Shepard’s formula with two different versions of the well
known Backus-Gilbert process, building averaging kernels that resemble
δ - ”functions” centered at the nodes and consist in linear combinations
of the data representers. In the present paper I am showing how to
attach a spread to the Shepard formula itself, leading to a convergence
theorem concerning the recovery of the considered function.

Mathematics Subject Classification (2010): 41A30.

Keywords: Backus-Gilbert theory, Shepard’s formula, deltaness, inverse
problems, moving least-squares.

1. Introduction

In order to use the classical Backus-Gilbert process, the data should consist
in a set of bounded functionals. Not having such functionals, I tried to use
the internal products ∫

Rm

f(x)G(λ)
i (x)dV (1.1)

between the given function f and the elements of a Dirac sequence ([9]), which
for high enough λ could approximate such functionals, e.g. the elements of
the Dirac sequence used in [1]

G(λ)(x) =

 λm for x ∈ S

0 otherwise
, (1.2)

where S is the reqular hypercube having the center at the origin and
edges of length 1

λ , with λ a positive real parameter. The Backus-Gilbert
classical theory is looking for the optimal linear combination of the form
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N∑
i=1

a
(λ)
i (x0)G

(λ)
i (x) with G

(λ)
i (x) = G(λ)(x− xi), that gives the best approx-

imation of the value of the function f at x0

f̃ (λ)(x0) =
N∑

i=1

∫
Rm

a
(λ)
i (x0)f(x)G(λ)

i (x)dV

=
N∑

i=1

∫
Rm

a
(λ)
i (x0)f(x)G(λ)(x− xi)dV , (1.3)

with dV the volume element dx1, . . . , dxm. Taking the limit of the result for
λ → ∞ in order to compensate for the errors involved in using only finite
values of λ, I obtained the well-known Shepard’s formula [7],[12],[13]:

lim
λ→∞

f̃ (λ)(x0) =
N∑

k=1

1

||xk − x0||2
N∑

i=1

1
||xi − x0||2

. (1.4)

This result surprised some people working in seismology and others work-
ing in numerical analysis, as the Backus-Gilbert theory [2],[3],[4] was known
mainly to geophysicists, while Shepard’s formula was familar to mathemati-
cians working in numerical analysis. In order to make sure that my results
were correct, I looked for another approximation of f(x0) having all the in-
gredients of the Backus-Gilbert theory including a spread. What I actually
did was to discretize the integrals involved, obtaining the discrete version of
the Backus-Gilbert theory. Following closely the way the classical theory was
built, I applied the Backus-Gilbert linear representation theorem marked be-
low as Theorem 2.1, finding that necessarily the average given by my discrete
version had to be of the form obtained by discretization. After finishing the
preliminary report, I passed copies to people who showed a special interest
in my results and with whom I had many discussions, among them Prof. Kes
Salkauskas from the University of Calgary in Canada and Prof. David Levin
from the Hebrew University in Jerusalem. They extended my findings ob-
taining new results, e.g. making the same steps I did including taking a limit,
Bos and Salkoskas obtained in [5] the moving least-squares approximation [8],
a generalisation of Shepard’s formula. For this purpose they defined a spe-
cial type of Dirac sequences called regular, in order to handle the quadratic
integrals needed for the optimal solutions. On the other hand David Levin
using not only my results but also those of Bos and Salkauskas, presented an
elegant way to obtain the moving least squares process using block matrices
and applied with great success in [10] my discrete Backus-Gilbert process to
scattered interpolation, smoothing and numerical differentition and, in [11],
to numerical integration.

Once I obtained the Shepard formula using two independent Backus-
Gilbert theories and being further stimulated by the results obtained by Bos,
Salkauskas and Levin, I decided to try to settle an important question that
was still open: is it possible to attach to the Shepard approximation also
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a sort of spread, which would lead to further properties? Although both
Backus-Gilbert theories led to Shepard’s formula, only within the discrete
one I could define a spread, as for λ → ∞ the process was divergent, the
spread tending to infinity. The solution came to me while reading the paper
by Bos and Salkauskas, as I realized that the simple Dirac sequence I used
was regular and therefore what I had to do was ”only” to modify a little
the classical Backus-Gilbert spread by normalizing its integrand. As a result,
the integral representing the spread for every λ became convergent, the limit
having all the characteristic properties of a spread. It was therefore justified
to define this limit as being the Backus-Gilbert spread of Shepard’s formula.
Moreover, it turned out that the limit obtained as described coincides with the
spread attached to the Shepard formula within the discrete theory directly,
not in combination with taking a limit and with its own justification. For
the benefit of those not familiar with the classical Backus-Gilbert theory, a
short description is given in Section 2. In Section 3 is shown how the Shepard
formula is obtained and in the last Section is described the discrete Backus-
Gilbert version.

2. The classical Backus-Gilbert theory

Clearly, if we have only a finite number of data, it is not possible to determine
exactly the properties of the Earth at every location, but it may be possible
to get averages of the so called ”Earth models”, functions f belonging to the
Hilbert space H = L2(E) with E the closed, connected and bounded support
of f in Rm representing the properties of the Earth. Hence, the most we may
hope to achieve using the data described in Section 1 is to find significant
quantities that characterize the entire family of models, e.g. the average fav

at every point x0 of E, corresponding to an averaging kernel A(x0,x):

fav(x0) =
∫

E
A(x0,x)f(x)dV ' f(x0) . (2.1)

Backus and Gilbert proved in [3] the following general result.

Theorem 2.1. Let f ∈ H be a function for which N linearly independent
bounded linear functionals γi on H are known. If it is possible to obtain a
linear average Lav(f) of f at a point x0 using only the given N functionals,
then the average Lav(f) is necessarily a linear combination of these function-
als:

Lav(f) =
N∑

i=1

aiLi(f) (2.2)

with coefficients ai that depend upon x0.

Using this result taking as Li(f) the values Gi(x), we find that

Lav(f) =
N∑

i=1

ai

∫
E

Gi(x)f(x)dV =
∫

E

[
N∑

i=1

aiGi(x)

]
f(x)dV , (2.3)
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i.e. the averaging kernels are indeed linear combination of the representers
Gi(x):

A(x0,x) =
N∑

i=1

ai(x0), Gi(x) . (2.4)

Consequently, Backus and Gilbert looked for an optimal unimodular averag-
ing kernel A(x0,x) i.e satisfying the condition∫

E
A(x0,x)dV = 1 (2.5)

and having the highest deltaness, that is the highest likeness to the Dirac
δ-function centered at x0, condition checked by using the ”spread” of the
average kernel defined, by Backus and Gilbert as follows.

Definition 2.2. For every averaging kernel A(x0,x) on a compact set E ⊆ Rm,
the function

s0 = s(x0) =
12
m

∫
E

J(x0,x)A2(x0,x)dV (2.6)

with J(x0,x) a ”sink” function i.e. a non-negative function that vanishes for
x = x0 and grows rapidly away from this point, is called a spread of A at
x0. A typical ”sink” function is J(x0,x) = ||x − x0||2, with ||x − x0|| the
Euclidean norm.

Thus, the Backus-Gilbert process solves the following variational prob-
lem: find the coefficients ai(x0) for which the averaging kernel has the highest
δ-ness, i.e. the smallest spread.

Using a Lagrange multiplier, Backus and Gilbert solved this classical
variational problem, obtaining the following relation giving the coefficients of
the averaging kernel:

a(x0) =
1

uT [Z(x0)]−1 u
[Z(x0)]−1 u (2.7)

with Z(x0) a Gram matrix [6] of components

Zik(x0) =
12
m

∫
E

J(x0,x)Gi(x)Gk(x)dV , (2.8)

the corresponding spread s(x0) being given by

s0 = a(x0)T Z(x0)a(x0) , (2.9)

Consider now the functions f ∈ H for which the following integrals∫
E

|f(x)− f(x0)|
||x− x0||

dV and
∫
E

|f(x)− f(x0)|2

||x− x0||2
dV (2.10)

are finite. Defining the square root of the second integral as being the ”x0-
norm” ||f(x)||x0 of a function f that belongs to H and is either identically
zero or not constant, Backus and Gilbert proved the following result:
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Theorem 2.3. Under the conditions described above. if the averaging kernel
A(x0,x) given by (2.4) is unimodular, the error functional

E(f(x0)) =
∫
E

A(x0,x) [f(x)− f(x0)] dV (2.11)

is bounded, its x0-norm being given by

||E||x0 =
√

m

12
s(x0) , (2.12)

with s(x0) the considered spread.

Corollary 2.4. (The boundedness inequality for a given λ) (For every λ > 0
the following inequality takes place:

|E(f(x0))| ≤ ||E||x0 ||f ||x0 (2.13)

Corollary 2.5. (A convergence theorem) Let A(λ)(x0,x) =
N∑

i=1

a
(λ)
i (x0)G

(λ)
i (x)

be a family of unimodular averaging kernels. The average f (λ)(x0) tends to
f(x0) when λ → µ, if and only if lim

λ→µ
s(λ)(x0) = 0, in particular f (λ)(x0)

tends to f(x0) when λ →∞ if and only if s(λ)(x0) → 0 when λ →∞.

Remark 2.6. This theorem is important as a general result but in many cases
the computer time needed to reach the wanted precision is very large. This is
why it is important to have an efficient method, giving an effective growth of
accuracy at every step, which is precisely why the Backus-Gilbert process is
preferable to other methods, as one may see on the examples given by David
Levin in the articles mentioned above.

3. Approximating a function with given values using the
classical Backus-Gilbert theory

Using the general relations (2.7) - (2.8), we prove the following result:

Theorem 3.1. Let f be a unimodular Earth model satisfying the conditions of
Theorem 2.1. For every set of data of the form

f̃ (λ)(xi) =
∫

Ei

G̃
(λ)
i (x)f(x)dV , (3.1)

the coefficients that minimize the spread of the averaging kernel are

ã(λ)(x0) =
1[

ũ(λ)
]T [

Z̃(λ)(x0)
]−1

ũ(λ)

[
Z̃(λ)(x0)

]−1

ũ(λ) . (3.2)

with ũ(λ) = 1 for every λ and

Z̃(λ)
ik (x0) =

∫
Rm

J(x0,x)G̃(λ)
i (x)G̃(λ)

k (x)dV . (3.3)
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As for λ > 0 large enough, the matrix Z̃(λ)(x0) is diagonal with diagonal
elements λ2X̃

(λ)
k (x0) where

X̃
(λ)
k (x0) = ||xk − x0||2 +

1
λ2

. (3.4)

Making λ tend to infinity, we find that

ǎ(x0) = lim
λ→∞

ã(λ)(x0) =
1

N∑
i=1

1
||xi − x0||2


1

||x1 − x0||2
...
1

||xN − x0||2

 , (3.5)

i.e. we arrive to the following result:

Corollary 3.2. The considerate Earth model is approximated by Shepard’s
formula

f̃(x0) =
1

N∑
i=1

1
||xi − x0||2

N∑
k=1

f(xk)
||xk − x0||2

. (3.6)

Having obtained the Shepard formula using the Backus-Gilbert theory,
it is only natural to try to attach to it a Backus-Gilbert spread for charac-
terizing the way Shepard’s formula approximates the function f . In order to
do so, we calculate the spread of the optimal averaging kernel for a given λ:

s̃(λ)(x0) =
12
m

N∑
k=1

[
ã
(λ)
k (x0)

]2 ∫
Ek

J(x0,x)
[
G

(λ)
k (x)

]2
dV

+
12
m

N∑
k,l=1

ã
(λ)
k (x0)ã

(λ)
` (x0)

∫
Ek

⋂
E`

J(x0,x)G̃(λ)
k (x0)G̃

(λ)
` (x0)dV .

(3.7)

and see if it tends to a finite limit when λ tends to infinity. For λ large enough
the intersection Ek

⋂
E` is empty, so that the double sum in the second term

of the right hand side is equal to zero as it is easy to see and therefore we are
left with

s̃(λ)(x0) =
12
m

N∑
k=1

[
ã
(λ)
k (x0)

]2 ∫
Ek

J(x0,x)
[
G

(λ)
k (x)

]2
dV , (3.8)

a divergent integral ! However, as already explained, the simple Dirac se-
quence G(λ)(x) is regular, according to the following definition.

Definition 3.3. A Dirac sequence G(λ)(x) is called regular if the following
conditions hold:

1. G(λ) ∈ L2(Rm).
2. For every bounded and continuous function f ∈ L2(Rm)

lim
λ→∞

∫
Rm

G(λ)(x− a)G(λ)(x− b)

κ
(λ)
m

f(x)dV =
{

0 if b 6= a
f(a) if b = a (3.9)
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with

κ(λ)
m =

∫
Rm

[
G(λ)(x)

]2
dV . (3.10)

Dividing both sides of relation (38) by κ̃
(λ)
m and knowing that the ratio

s̃(λ)(x0)
κ̃

(λ)
m

is convergent for λ →∞, we find that the right hand side is conver-

gent and therefore the left hand side is also convergent to š(x0) that may be
called the normalized spread of Shepard’s formula:

š(x0) =
12
m

N∑
k=1

lim
λ→∞

[
ã
(λ)
k (x0)

]2
lim

λ→∞

∫
Ek

J(x0,x)

[
G̃

(λ)
k (x)

]2
κ̃

(λ)
m

dV .

=
12
m

N∑
k=1

ǎ2
k(x0)J(x0,xk) . (3.11)

Moreover, we may attach to Shepard’s formula a boudedness inequality lead-
ing to a convergence property. Indeed, consider the boundedness inequality
(2.13) for a the minimal solution for any λ

|Ẽ(λ)(f̃ (λ))| ≤ ||Ẽ(λ)||x0 ||f̃ (λ)||x0 , (3.12)

the error functional Ẽ(λ)(f (λ)) being defined by

Ẽ(λ)(f (λ)) = f̃ (λ)(x0)− f(x0) =
N∑

i=1

ã
(λ)
i (x0)f̃

(λ)
i − f(x0) , (3.13)

with f̃
(λ)
i =

∫
E

G̃
(λ)
i (x)f(x)dV . Using the expression of the averaging kernel

(2.4) and its unimodularity, we find that

lim
λ→∞

Ẽ(λ)(f) = lim
λ→∞

∫
E

Ã(λ)(x0,x)[f(x)− f(x0)]dV = Ě(f) . (3.14)

As to the right hand side, the first factor is equal to
√

m
12 s̃(λ)(x0) and there-

fore tends to infinity when λ does, due to the presence of the spread according
to (2.12). Dividing by κm the first factor of the right hand side becomes con-
vergent but in this case we have to multiply the second factor also by κm,
bringing the inequality to the following form:

|Ẽ(λ)(f̃ (λ))| ≤

√
m

12
s̃(λ)(x0)

κ̃
(λ)
m

√
κ̃

(λ)
m ||f̃ (λ)||x0 . (3.15)

In order to prove that the right hand side is convergent and that its limit is
also a ”discrete” quantity, consider the ”shrinking” function

F (x) =

 f(x) if x = x0 or x ∈ Ei

for i = 1, . . . , N and
0 otherwise

(3.16)
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and its approximation F̃ (λ)(x0) =
N∑

i=1

ã
(λ)
i (x0)

∫
Ei

G̃
(λ)
i (y)F (y)dV . For λ

large enough this approximation also satisfies the boundedness inequality,
in fact F̃ (λ)(x0) is equal to f̃ (λ)(x0) for every x0 different from any node xi

for i = 1, . . . N , so that the error functionals and the x0-norms coincide. Tak-
ing into account that f̃ (λ) is sectionally continuous we find, using the mean
value theorem, that there exists at least one point ξ

(λ)
i ∈ Ei that depends

upon λ, such that

∫
Ei

∣∣∣f̃ (λ)(x)− f̃ (λ)(x0)
∣∣∣2

(x− x0)2
dx =

∣∣∣f̃ (λ)(ξ(λ)
i )− f̃ (λ)(x0)

∣∣∣2
(ξ(λ)

i − x0)2
ε (3.17)

and therefore

√
κ̃

(λ)
1 ||F̃ (λ)||x0 =

√√√√√ N∑
i=1

∣∣∣f̃ (λ)(ξ|(λ)
i )− f̃ (λ)(x0)

∣∣∣2
(ξ(λ)

i − x0)2
, (3.18)

as λε = 1. Using this relation we get from (3.15) the inequality

|Ẽ(λ)(f̃ (λ))| ≤
√

ms̃(λ)(x0)

12κ̃
(λ)
1

√√√√√ N∑
i=1

∣∣∣f̃ (λ)(ξ(λ)
i )− f̃ (λ)(x0)

∣∣∣2
(ξ(λ)

i − x0)2
, (3.19)

with the first factor of the right hand side tending to the ”discrete” quantity√
m
12 š(x0). On the other hand when λ tends to infinity, ε tends to zero so

that ξ
(λ)
i tends to the center xi of Ei and f̃ (λ) is continuous at xi. Therefore,

lim
λ→∞

f̃ (λ)(ξ) = f̃ (λ)(xi) implying that

lim
λ→∞

√√√√√ N∑
i=1

∣∣∣f̃ (λ)(ξ(λ)
i )− f̃ (λ)(x0)

∣∣∣2
(ξ(λ)

i − x0)2
=

√√√√ N∑
i=1

|f(xi)− f(x0)|2

(xi − x0)2
. (3.20)

As a result, we get using (3.13) the following boundedness inequality for the
discrete error functional:

|Ě(f)| ≤
√

š(x0)
12

√√√√ N∑
i=1

|f(xi)− f(x0)|2

(xi − x0)2
. (3.21)

making possible to define the following discrete quantity.

Definition 3.4. The discrete x0-norm of a function f(x) corresponding to the
points x1, . . . , xN ∈ E is

‖f‖x0 =

√√√√ N∑
k=1

|f(xk)− f(x0)|2

(xk − x0)2
. (3.22)
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As a result, the discrete boundedness inequality (3.21) becomes

|Ě(f)| ≤
√

š(x0)
12

‖f‖x0 (3.23)

leading to the following conclusion:

Corollary 3.5. The continuous boundedness inequality (3.12) written in the
form

|Ẽ(λ)(f̃ (λ))| ≤
√

š(x0)
12

||f̃ (λ)||x0 (3.24)

tends to the discrete boundedness inequality (3.23) when λ →∞, i.e. the left
hand side of (3.24) tends to the left hand side of (3.23) and similarly for the
right hand sides.

Corollary 3.6. The discrete error functional tends to zero if the discrete spread
tends to zero.

4. A discrete Backus-Gilbert theory

In this Section are presented formally without going into all the proofs, the
main definitions and properties of my version of the Backus-Gilbert discrete
process, built by similarity with the classical process: similar discrete spread,
discrete x0-norm and discrete boundedness inequality with similar proper-
ties. As already explained, my initial intention was just to check the results
obtained applying the classical theory combined with taking the limit for λ
tending to infinity, but it turned out from my own results as well as from
those of other people, that the discrete theory is very effective and gives very
good numerical results in many cases. Moreover, I found that the way to
write the corresponding approximation is dictated by Theorem 1.2 like in the
continuous case, the difference being, of course the different data set. As a
result, one finds that the form one writes usually a discrete average

fav(x0) =
N∑

i=1

ai(x0)f(xi) . (4.1)

is the only possible one under the adopted assumptions.

Definition 4.1. Let A = A(x0) be a set of real non-negative numbers ai

A = {ai(x0)}N
i=1 , (4.2)

used as coefficients of the average value of a function f ∈ H at a point
x0 ∈ E ⊂ Rm. The set A is called a discrete averaging kernel of f at x0 and
the Euclidean norm of the vector a having as components the coefficients ai

is called the norm ||A|| = ||A(x0)|| of the averaging kernel A.

It is not difficult to prove the following property.

Theorem 4.2. The x0-norm (3.22) of any sectionally continuous function f
which is either zero identically or non-constant on E, is indeed a norm.
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Definition 4.3. For every discrete averaging kernel A at x0, one may define
its discrete spread at x0

s0 = s(x0,A) =
12
m

N∑
i=1

Jia
2
i (x0) , (4.3)

the factors Ji = J(xi,x0) = ||xi − x0||2 called the spread’s coefficients, mea-
suring the ”location separation” between the nodes xi and the target point
x0.

Remark 4.4. Like with the ”deltaness” property in the classical Backus-
Gilbert theory, these coefficients depend upon the distances between the
nodes xi and the current point x0 through a ”sink” function.

Definition 4.5. A discrete averaging kernel A = {ai(x0)}N
i=1 is called unimod-

ular if
N∑

i=1

ai(x0) = 1.

Theorem 4.6. For every unimodular averaging kernel and every function f
belonging to CE or to L2, the error functional

E(f,x0) = fav(x0)− f(x0) (4.4)

with fav given by (4.1) is bounded, satisfies the inequality

|E(f,x0)|x0 ≤ ||E||x0 ||f ||x0 , (4.5)

and its x0-norm is given by

||E||x0 =
√

m

12
s(x0,A) . (4.6)

Proof. Using (4.1) and the unimodularity of the averaging kernel, we may
write

E(f,x0) =
N∑

i=1

ai(x0)[f(xi)− f(x0)] =
N∑

i=1

uivi (4.7)

with

ui =
√

Jiai(x0) and vi =
f(xi)− f(x0)√

Ji

, (4.8)

so that applying the Cauchy-Schwarz inequality we get

|E(f,x0)| ≤

√√√√ N∑
i=1

Jia2
i (x0)

√√√√ N∑
i=1

|f(xi)− f(x0)|2
Ji

. (4.9)

However, the first factor on the right is the discrete spread and the second
one is the x0-norm of f so that

|E(f,x0)| ≤
√

m

12
s (x0,A) ||f ||x0 , (4.10)

Hence, the linear functional E(f,x0) is bounded, its norm ||E||x0 being
not larger than any of its upper bounds, in particular not larger than
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√
m
12s (x0,A), which proves inequality (4.5). As to (4.6), consider the func-

tion p(x) = ||x − x0||2q(x) with q(x) continuous in E and satisfying the
condition q(xi) = ai(x0) for i = 1, . . . , N . It turns out that the inequality
(4.10) is actually an equality for f(x) = p(x):

|E(p,x0)| =
√

m

12
s (x0,A) ||p||x0 . (4.11)

Indeed, the error functional (4.4) corresponding to f(x) = p(x) is equal just
to fav(x0) as p(x0) = 0, so that in this case we get using (4.1) E(p,x0) =∑N

i=1 aip(xi). However, p(xi) = ||xi − x0||2q(xi) and ||xi − x0||2 = Ji while
q(xi) = ai(x0), so that p(xi) = Jiai(x0) and therefore

E(p,x0) =
N∑

i=1

a2
i (x0)Ji =

√√√√ N∑
i=1

a2
i (x0)Ji

√√√√ N∑
i=1

a2
i (x0)Ji . (4.12)

On the other hand, using the definition of the x0-norm we find that

||p||x0 =

√√√√ N∑
i=1

|p(xi)− p(x0)|2
Ji

=

√√√√ N∑
i=1

|p(xi)|2
Ji

=

√√√√ N∑
i=1

a2
i (x0)J1 , (4.13)

enabling us to replace one of the square roots in (4.12) by the x0-norm
||p||x0 , whereas using the definition (4.3) of the discrete spread,, we find
that we may replace the second square root in the right hand side of (4.12)
by
√

m
12s(x0,A), obtaining precisely (4.11). �

Based on this result, we arrive to the following easy to prove pointwise
convergence theorem.

Theorem 4.7. For any sequence A(ν) (ν = 1, 2, . . .) of x0− restricted uni-
modular discrete averaging kernels, the sequence f

(ν)
av (x0) tends to the exact

value f(x0) for every x0, if and only if lim
n→∞

s
(ν)
0 = lim

ν→∞
s
(
x0,A(ν)

)
= 0 .

In order to obtain the optimal average one solve here also a variational
problem using also a Lagrange multiplier, the coefficients and the multiplier
satisfying the same system of equations

∂τ

∂ak
= 0 for k = 1, . . . , N and

∂τ

∂η
= 0 . (4.14)

Hence, the solution of this equation is

ak =
mη

24||x0 − xk||2
(k = 1, . . . , N) . (4.15)

with

η =
24
m

(
N∑

i=1

1
||x0 − xi||2

)−1

. (4.16)

Substituting the obtained value of η into the expression of ak, we obtain
precisely the components of ǎ(x0) given by (3.5), where the components of
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this vector are denoted using i as index instead of k. Hence we get again
Shepard formula.
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Abstract. In this paper we deepen the study of a sequence of positive
linear operators acting on L1([0, 1]N ), N ≥ 1, that have been introduced
in [3] and that generalize the multidimensional Kantorovich operators
(see [15]). We show that particular iterates of these operators converge
on C ([0, 1]N ) to a Markov semigroup and on Lp([0, 1]N ), 1 ≤ p < +∞, to
a positive contractive C0-semigroup (that is an extension of the previous
one). The generators of these C0-semigroups are the closures of some
partial differential operators that belong to the class of Fleming-Viot
operators arising in population genetics.
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1. Introduction

In the paper [3] we introduced and studied a sequence (Cn)n≥1 of positive
linear operators on L1([0, 1]N ), N ≥ 1, that are a generalization of the mul-
tidimensional Kantorovich operators, first introduced in [15], and that also
extend to a multidimensional setting another sequence of positive linear op-
erators on L1([0, 1]) studied in [5] and [6].

The operators Cn, n ≥ 1, offer the advantage to reconstruct any
Lebesgue-integrable function on [0, 1]N by means of its mean values on a
finite numbers of sub-cells of [0, 1]N that do not constitute a subdivision of
[0, 1]N .

Both in [6] and in [11] particular iterates of the (generalized) Kan-
torovich operators have been also investigated in connection with the exis-
tence of related C0-semigroups of operators on C ([0, 1]) and on L1([0, 1]).
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Then, it seemed quite natural to tackle similar problems in a multidimen-
sional setting and for the operators Cn, n ≥ 1.

By using different methods from those employed in [6] and [11], in fact
we first show that there exists a Markov semigroup (T (t))t≥0 on C ([0, 1]N )
such that

T (t)(f) = lim
n→∞

Cρn
n (f) in C ([0, 1]N ) (1.1)

for any f ∈ C ([0, 1]N ), t ≥ 0 and for any sequence (ρn)n≥1 of positive integers
such that ρn/n→ t as n→∞.

The generator (A,D(A)) of the Markov semigroup is determined on a
core of D(A), namely on C 2([0, 1]N ), where it coincides with the second-order
elliptic differential operator

Vl(u)(x) :=
1
2

N∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x) +
N∑

i=1

(
l

2
− xi

)
∂u

∂xi
(x)

(u ∈ C 2([0, 1]N ), x = (xi)1≤i≤N ∈ [0, 1]N ), where l ∈ [0, 2].
Accordingly, formula (1.1) provides a constructive approximation of the

solutions to the abstract Cauchy problem
∂u

∂t
(x, t) = A(u(·, t))(x) x ∈ [0, 1]N , t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(A), x ∈ [0, 1]N ,

that, as it is well-known, are given by u(x, t) = T (t)(u0)(x) (x ∈ [0, 1]N , t ≥
0).

The differential operator Vl falls in a class of Fleming-Viot operators
arising in population genetics (see [2], [7], [10] for some additional references).

In addition, we also show that the subspace of all polynomials with a
given degree and the subspace of all Hölder continuous functions on [0, 1]N are
invariant under (T (t))t≥0. In some particular cases we finally show that the
semigroup (T (t))t≥0 can be extended to a positive contractive C0-semigroup
on Lp([0, 1]N ) for every 1 ≤ p < +∞ and this semigroup can be equally
approximated in the Lp-norm by iterates of the operators Cn, as in formula
(1.1).

2. Preliminary results

Throughout this paper [0, 1]N denotes the canonical hypercube in RN ,N ≥ 1,
i.e.,

[0, 1]N := {(xi)1≤i≤N ∈ RN | 0 ≤ xi ≤ 1 for every i = 1, . . . , N}.

As usual we denote by C ([0, 1]N ) the space of all real valued continuous
functions on [0, 1]N and by C 2([0, 1]N ) the space of all real valued continuous
functions on [0, 1]N which are twice continuously differentiable in the interior
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of [0, 1]N and whose partial derivatives up to the order two can be contin-
uously extended on [0, 1]N . The space C ([0, 1]N ), endowed with the natural
(pointwise) ordering and the sup-norm ‖ · ‖∞, is a Banach lattice.

We also denote by 1 the constant function of constant value 1 on [0, 1]N .
For a given i ∈ {1, . . . , N}, the symbol pri stands for the ith coordinate
function on [0, 1]N , i.e., pri(x) := xi (x = (xi)1≤i≤N ∈ [0, 1]N ). Moreover,
fixed x ∈ [0, 1]N , we denote by Ψx the function defined as Ψx(y) = y − x
for every y ∈ [0, 1]N (whenever N = 1 we use the symbol ψx) and by dx the
function defined by

dx(y) := ‖y − x‖2 (y ∈ [0, 1]N ), (2.1)

where ‖ · ‖2 stands for the Euclidean norm on RN , i.e., ‖x‖2 :=
(

N∑
i=1

x2
i

)1/2

(x = (xi)1≤i≤N ∈ RN ).
We note that, given x = (xi)1≤i≤N ∈ [0, 1]N and i ∈ {1, . . . , N},

pri ◦Ψx = pri − xi1, (2.2)

and hence

(pri ◦Ψx)2 = pr2i − 2xipri + x2
i 1. (2.3)

Moreover,

d2
x =

N∑
i=1

(pri ◦Ψx)2 (2.4)

and

d4
x =

N∑
i=1

(pri ◦Ψx)4 + 2
∑

1≤i<j≤N

(pri ◦Ψx)2(prj ◦Ψx)2. (2.5)

Given 1 ≤ p < +∞, the symbol Lp([0, 1]N ) stands for the spaces of all
(equivalence classes of) Borel measurable functions f defined on [0, 1]N such
that

‖f‖p :=

(∫
[0,1]N

|f |p dx

)1/p

< +∞.

In [3] we introduced and studied a new sequence of positive linear op-
erators acting on L1([0, 1]N ), that will be also the object of interest of this
paper.

More precisely, let (an)n≥1 and (bn)n≥1 be two sequences of real num-
bers such that 0 ≤ an < bn ≤ 1 for every n ≥ 1.

If n ≥ 1 and h = (hi)1≤i≤N ∈ {0, . . . , n}N , set

Qan,bn

n,h :=
N∏

i=1

[
hi + an

n+ 1
,
hi + bn
n+ 1

]
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and consider the positive linear operator Cn :L1([0, 1]N ) −→ C ([0, 1]N ) de-
fined by setting, for any f ∈ L1([0, 1]N ) and x = (xi)1≤i≤N ∈ [0, 1]N ,

Cn(f)(x) =
∑

h∈{0,...,n}N

Pn,h(x)
(

n+ 1
bn − an

)N ∫
Qan,bn

n,h

f(t) dt

=
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(

n+ 1
bn − an

)N∫ h1+bn
n+1

h1+an
n+1

· · ·
∫ hN +bn

n+1

hN +an
n+1

f(t1, . . . , tN ) dt1 · · · dtN ,

(2.6)

where

Pn,h(x) :=
N∏

i=1

pn,hi(xi) =
N∏

i=1

(
n

hi

)
xhi

i (1− xi)n−hi (2.7)

for every x = (xi)1≤i≤N ∈ [0, 1]N and h = (hi)1≤i≤N ∈ {0, . . . , n}N .
Note that Cn is positive and continuous and that, as an operator from

C ([0, 1]N ) into itself, its norm is ||Cn|| = 1, since Cn(1) = 1 for any n ≥ 1.
We point out that the sequence (Cn)n≥1 represents a generalization of

Kantorovich operators on [0, 1]N , that were introduced and studied by Zhou
in [15] and that can be obtained from (2.6) by setting, for any n ≥ 1, an = 0
and bn = 1.

On the other hand, the Cn’s generalize to the multidimensional case a
class of operators first studied in [5, Examples 1.2, 1] and defined by

Kn(f)(x) =
n∑

h=0

pn,h(x)
n+ 1
bn − an

∫ h+bn
n+1

h+an
n+1

f(t) dt (2.8)

for every n ≥ 1, f ∈ L1([0, 1]) and x ∈ [0, 1], where, as above, pn,h(x) :=(
n
h

)
xh(1− x)n−h.

A possible interest in the study of the sequence (Cn)n≥1 lies in the fact
that it allows to reconstruct a Lebesgue-integrable function by means of its
mean values on the sets Qan,bn

n,h which are smaller than the corresponding
ones considered in [15]. In fact, the following result holds (see [3, Theorems
2.2 and 2.5]).

Proposition 2.1. For every f ∈ C ([0, 1]N ),

lim
n→∞

Cn(f) = f uniformly on [0, 1]N . (2.9)

Moreover, for every n ≥ 1 and p ∈ [1,+∞[, the operator Cn is contin-
uous from Lp([0, 1]N ) into itself and

‖Cn‖Lp,Lp ≤ 1
(bn − an)N/p

. (2.10)

Finally, if sup
n≥1

1/(bn − an) < +∞, then, for every f ∈ Lp([0, 1]N ),

lim
n→∞

Cn(f) = f in Lp([0, 1]N ). (2.11)
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In [3, Propositions 2.4, 2.6 and 2.7] estimates of the rate of convergence
in the previous approximation formulae are also given.

The main aim of this paper is to show that suitable iterates of the oper-
ators Cn converge to a positive C0-semigroup of operators both in C ([0, 1]N )
and in Lp([0, 1]N ), p ≥ 1.

To this end, first of all we recall some properties of the operators Kn

defined in (2.8), that will be useful in the sequel (for a proof see [6, Section
2]).

Lemma 2.2. For every n ≥ 1, let Kn be the positive linear operator defined
by (2.8) and, for every 0 ≤ x ≤ 1, consider the functions ψx(y) = y − x
(y ∈ [0, 1]). Then

(i) lim
n→∞

Kn(ψ2
x)(x) = 0 uniformly on [0, 1];

(ii) lim
n→∞

nKn(ψ2
x)(x) = x(1− x) uniformly on [0, 1];

(iii) lim
n→∞

nKn(ψ4
x)(x) = 0 uniformly on [0, 1].

As regards the operators Cn, we have the following result (see [3, Lemma
2.1]).

Lemma 2.3. Given n ≥ 1 and i ∈ {1, . . . , N}, then

Cn(1) = 1, (2.12)

Cn(pri) =
n

n+ 1
pri +

an + bn
2(n+ 1)

1 (2.13)

and

Cn(pr2i ) =
1

(n+ 1)2
{
n2pr2i + npri(1− pri) + n(an + bn)pri

+
1
3
(a2

n + anbn + b2n)1
}
.

(2.14)

Further, the following equalities will be useful (see [3, Lemma 2.1]).

Proposition 2.4. For every x = (xi)1≤i≤N ∈ [0, 1]N and n ≥ 1,

Cn(pri ◦Ψx)(x) = − 1
n+ 1

xi +
an + bn
2(n+ 1)

, (2.15)

Cn((pri ◦Ψx)2)(x) =
1

(n+ 1)2
{
x2

i + nxi(1− xi)− (an + bn)xi

+
a2

n + anbn + b2n
3

}
,

(2.16)

Cn(d2
x)(x) =

1
(n+ 1)2

{
(1− n)‖x‖2

2 + (n− an − bn)
N∑

i=1

xi

+N
a2

n + anbn + b2n
3

} (2.17)
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and

Cn(d4
x)(x) =

N∑
i=1

Kn(ψ4
xi

)(xi) + 2
∑

1≤i<j≤N

Kn(ψ2
xi

)(xi)Kn(ψ2
xj

)(xj), (2.18)

where, for any n ≥ 1, the operator Kn is defined by (2.8) and, for a given
i ∈ {1, . . . , N}, ψxi

(ti) = ti − xi (t = (ti)1≤i≤N ∈ [0, 1]N ).

Proof. Formulae (2.15)-(2.17) are a direct consequence of Lemma 2.3 and
formulas (2.2)-(2.4). Taking both definition (2.6) of Cn’s and formulae (2.2)
and (2.5) into account, we obtain

Cn(d4
x)(x) =

∑
h∈{0,...,n}N

Pn,h(x)
(

n+ 1
bn − an

)N ∫
Qan,bn

n,h

d4
x(t) dt

=
∑

h∈{0,...,n}N

Pn,h(x)
(

n+ 1
bn − an

)N ∫
Qan,bn

n,h

N∑
i=1

(ti − xi)4(t) dt

+
∑

h∈{0,...,n}N

Pn,h(x)
(

n+ 1
bn − an

)N ∫
Qan,bn

n,h

2
∑

1≤i<j≤N

(ti − xi)2(tj − xj)2 dt

=
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(

n+ 1
bn − an

)N ∫ h1+bn
n+1

h1+an
n+1

· · ·
∫ hN +bn

n+1

hN +an
n+1

N∑
i=1

ψ4
xi

(ti) dt1 · · · dtN

+2
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(
n+ 1
bn − an

)N∫ h1+bn
n+1

h1+an
n+1

· · ·
∫ hN +bn

n+1

hN +an
n+1

∑
1≤i<j≤N

ψ2
xi

(ti)ψ2
xj

(tj)dt1· · ·dtN

=
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(

n+ 1
bn − an

) N∑
i=1

∫ hi+bn
n+1

hi+an
n+1

ψ4
xi

(ti) dti

+ 2
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(

n+ 1
bn − an

)2 ∑
1≤i<j≤N

∫ hi+bn
n+1

hi+an
n+1

∫ hj+bn

n+1

hj+an

n+1

ψ2
xi

(ti)ψ2
xj

(tj) dti dtj .

Now keeping (2.7) in mind and using the identities

n∑
hk=0

pn,hk
(xk) = 1 for every k ∈ {1, . . . , N},
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we have

Cn(d4
x)(x) =

N∑
i=1

n∑
hi=0

pn,hi
(xi)

(
n+ 1
bn − an

)∫ hi+bn
n+1

hi+an
n+1

ψ4
xi

(ti) dti

+ 2
∑

1≤i<j≤N

n∑
hi=0

pn,hi(xi)
(

n+ 1
bn − an

)∫ hi+bn
n+1

hi+an
n+1

ψ2
xi

(ti) dti

×
n∑

hj=0

pn,hj
(xj)

(
n+ 1
bn − an

)∫ hj+bn

n+1

hj+an

n+1

ψ2
xj

(tj) dtj ,

and hence formula (2.18) follows. �

Remark 2.5. A more explicit expression of (2.18) can be obtained using some
computations contained in the proof of [6, Theorem 2.2].

Another useful result is shown below.

Proposition 2.6. Under each of the following sets of conditions:

(a) an = 0 and bn = 1 for every n ≥ 1,

or

(b) (i) 0 < bn − an < 1 for every n ≥ 1;
(ii) there exist lim

n→∞
an = 0 and lim

n→∞
bn = 1;

(iii) M1 := supn≥1 n(1− (bn − an)) < +∞,

for every p ≥ 1 there exists ωp ≥ 0 such that, for every k ≥ 1 and n ≥ 1,

‖Ck
n‖Lp,Lp ≤ e

k
n ωp , (2.19)

where Ck
n denotes the iterate of Cn of order k.

Proof. Fix p ≥ 1. Under assumption (a), on account of (2.10), the result
obviously follows with ωp = 0.

Assume that conditions (i), (ii) and (iii) of (b) hold true; since

lim
n→∞

log(bn − an)
1− (bn − an)

= −1,

there exists

M2 := sup
n≥1

− log(bn − an)
1− (bn − an)

> 0. (2.20)

By means of (2.10), we then get

‖Ck
n‖Lp,Lp ≤ 1

(bn − an)kN/p
= e−

kN
p log(bn−an)

= e
k
n (−N

p n(1−(bn−an))
log(bn−an)
1−(bn−an) ) ≤ e

k
n ωp ,

where ωp := NM1M2/p, and this completes the proof of (2.19). �
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We also point out that, as in the one-dimensional case (see [5, formula
(4.2)]), the operators Cn are closely related to the Bernstein operators on
[0, 1]N that are defined by

Bn(f)(x) :=
∑

h=(hi)1≤i≤N
hi∈{0,...,N}

Pn,h(x)f
(
h1

n
, . . . ,

hN

n

)
(2.21)

(f ∈ C ([0, 1]N ), x = (xi)1≤i≤N ∈ [0, 1]N , n ≥ 1), Pn,h(x) being defined by
(2.7).

More precisely, for every f ∈ L1([0, 1]N ), considering the function

Fn(f)(x) :=
(

n+ 1
bn − an

)N ∫ nx1+bn
n+1

nx1+an
n+1

dt1 · · ·
∫ nxN +bn

n+1

nxN +an
n+1

f(t1, . . . , tN ) dtN

=
∫ 1

0

dt1 · · ·
∫ 1

0

f

(
(bn − an)t1 + an+nx1

n+ 1
, . . . ,

(bn − an)tN +an+ nxN

n+ 1

)
dtN

(2.22)

(x = (xi)1≤i≤N ∈ [0, 1]N ), n ≥ 1), it turns out that

Cn(f)(x) = Bn(Fn(f))(x) (2.23)

(f ∈ L1([0, 1]N ), x = (xi)1≤i≤N ∈ [0, 1]N , n ≥ 1).
Formula (2.23) allows us to easily determine some subsets of C ([0, 1]N )

that are invariant under the operators Cn, n ≥ 1.
Given any m ∈ N, we shall denote by Pm the linear subspace of the

(restrictions to [0, 1]N of the) polynomials of degree no greater than m.
Finally, given M ≥ 0 and 0 < α ≤ 1, the symbol Lip1

Mα stands for the
subset of all functions f ∈ C ([0, 1]N ) such that, for every x, y ∈ [0, 1]N ,

|f(x)− f(y)| ≤M‖x− y‖α
1 ,

where ‖ · ‖1 denotes the l1-norm on RN , i.e., ‖z‖1 :=
N∑

i=1

|zi| for every z =

(zi)1≤i≤N ∈ RN .

Proposition 2.7. The subsets Pm, m ≥ 1, and Lip1
Mα are invariant under the

operators Cn, n ≥ 1, i.e.,
Cn(Pm) ⊂ Pm (2.24)

and
Cn(Lip1

Mα) ⊂ Lip1
Mα. (2.25)

Proof. Both the subsets Pm and Lip1
Mα are invariant under the operators

Bn, n ≥ 1 (see, respectively, [1, Section 6.3.12, condition (6.2.18) and the
proof of Theorem 6.2.6, p. 441] and [1, Corollary 6.1.22 and Section 6.3.12,
p. 476]).

Therefore, on account of (2.23), it suffices to show that Fn(f) ∈ Pm

(resp., Fn(f) ∈ Lip1
Mα) provided that f ∈ Pm or f ∈ Lip1

Mα, respectively,
and this can be easily verified by virtue of (2.22). �
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3. The C0-semigroups associated with the operators Cn

In this section we shall prove that suitable iterates of the operators Cn con-
verge on C ([0, 1]N ) to a Markov semigroup and on Lp([0, 1]N ), 1 ≤ p < +∞,
to a positive contractive C0-semigroup (that is an extension of the previous
one).

From now on we assume that there exists

l := lim
n→∞

(an + bn) ∈ R. (3.1)

Clearly, 0 ≤ l ≤ 2.
Under this assumption we shall prove that the sequence (Cn)n≥1 satisfies

an asymptotic formula with respect to the elliptic second order differential
operator Vl : C 2([0, 1]N ) −→ C ([0, 1]N ) defined by setting

Vl(u)(x) :=
1
2

N∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x) +
N∑

i=1

(
l

2
− xi

)
∂u

∂xi
(x), (3.2)

for every u ∈ C 2([0, 1]N ) and x = (xi)1≤i≤N ∈ [0, 1]N .

Theorem 3.1. Under assumption (3.1), for every u ∈ C 2([0, 1]N ),

lim
n→∞

n(Cn(u)− u) = Vl(u) (3.3)

uniformly on [0, 1]N and hence in Lp([0, 1]N ).

Proof. According to [4, Theorem 3.5], the claim will be proved after showing
that, for every i ∈ {1, . . . , N},

(a) lim
n→∞

[nCn(pri ◦Ψx)(x)− (l/2− xi)] = 0 uniformly on [0, 1]N ,

(b) lim
n→∞

[nCn((pri ◦Ψx)2)(x)− xi(1− xi)] = 0 uniformly on [0, 1]N ,

(c) sup
n≥1

x∈[0,1]N

nCn(d2
x)(x) < +∞

and

(d) lim
n→∞

nCn(d4
x)(x) = 0 uniformly on [0, 1]N ,

where dx is defined by (2.1).
We proceed to verify (a). According to formula (2.15) we get that, for

every i = 1, . . . , N,∣∣∣∣nCn(pri ◦Ψx)(x)−
(
l

2
− xi

)∣∣∣∣ ≤ 1
n+ 1

|xi|+
∣∣∣∣ n

n+ 1
an + bn

2
− l

2

∣∣∣∣
≤ 1
n+ 1

+
∣∣∣∣ n

n+ 1
an + bn

2
− l

2

∣∣∣∣ ;
hence the required assertion follows from (3.1).
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To prove statement (b) we preliminary notice that, by virtue of formula
(2.16), for every i = 1, . . . , N,

nCn((pri ◦Ψx)2)(x)− xi(1− xi)

=
[

n2

(n+ 1)2
− 1
]
xi(1− xi)+

n

(n+ 1)2

{
x2

i −(an+bn)xi +
a2

n+anbn+b2n
3

}
;

therefore

|nCn((pri ◦Ψx)2)(x)− xi(1− xi)|

≤
∣∣∣∣ n2

(n+ 1)2
− 1
∣∣∣∣xi(1− xi)+

n

(n+ 1)2

(
x2

i +(an+bn)xi+
a2

n + anbn + b2n
3

)
≤ 2n+ 1

4
1

(n+ 1)2
+

4n
(n+ 1)2

and this completes the proof of (b).
As regards conditions (c) and (d), from (2.17) we achieve that, for every

x ∈ [0, 1]N ,

Cn(d2
x)(x) ≤ N

n+ 1
,

and hence condition (c) follows. Finally, condition (d) is a consequence of
(2.18) and Lemma 2.2. �

We recall that a Markov semigroup on C ([0, 1]N ) is a C0-semigroup
(T (t))t≥0 of positive linear operators on C ([0, 1]N ) such that T (t)(1) = 1 for
every t ≥ 0 (for more details on the theory of C0-semigroups of operators we
refer, e.g., to [8], [9] and [12]). In particular, we refer to [8, Section 13.6] for
some remarkable aspects concerning Markov semigroups (see also [1, Section
1.6]).

We also recall that, given a Banach space (E, ‖ · ‖), a core for a linear
operator A : D(A) −→ E, defined on a linear subspace D(A) of E, is a linear
subspace D0 of E that is dense in D(A) with respect to the graph norm
‖u‖A := ‖u‖+ ‖A(u)‖ (u ∈ D(A)).

If (A,D(A)) is the generator of a C0-semigroup (T (t))t≥0 of operators
on E, then a dense (in E) linear subspace D0 of D(A) that is invariant under
(T (t))t≥0, i.e., T (t)(D0) ⊂ D0 for every t ≥ 0, is a core for (A,D(A)) (see,
e.g., [9, Chapter II, Proposition 1.7]). Moreover, if D0 is a core for (A,D(A)),
then (A,D(A)) is the closure of (A,D0) as well.

As in Section 2, given any m ∈ N, we denote by Pm the linear sub-
space of the (restrictions to [0, 1]N of the) polynomials on RN of degree no

greater than m. Thus P :=
+∞⋃
m=0

Pm is the subalgebra of all the (restrictions

to [0, 1]N of the) polynomials on RN and it is dense in C ([0, 1]N ) by the
Stone-Weierstrass theorem.

Fix 0 ≤ l ≤ 2 and consider the differential operator Vl : C 2([0, 1]N ) −→
C ([0, 1]N ) defined by (3.2). This operator falls in the class of Fleming-Viot op-
erators arising in population genetics, that are usually studied in the setting
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of the multidimensional simplex. However, in the framework of hypercubes
they have been investigated in [2], [7], [10].

Theorem 3.2. There exists a Markov semigroup (Tl(t))t≥0 on C ([0, 1]N ) sat-
isfying the following properties:
(1) If (an)n≥1 and (bn)n≥1 are two sequences of real numbers satisfying

0 ≤ an < bn ≤ 1 for every n ≥ 1 and lim
n→∞

(an + bn) = l, then for

every t ≥ 0 and for every sequence (ρn)n≥1 of positive integers such
that lim

n→∞
ρn/n = t

lim
n→∞

Cρn
n (f) = Tl(t)(f) uniformly on [0, 1]N (3.4)

for every f ∈ C ([0, 1]N ), where each Cρn
n denotes the iterate of Cn of

order ρn. In particular,

lim
n→∞

C [nt]
n (f) = Tl(t)(f) uniformly on [0, 1]N (3.5)

for every f ∈ C ([0, 1]N ), where [nt] stands for the integer part of nt.
(2) Denoted by (Al, D(Al)) the generator of the semigroup (Tl(t))t≥0, then

C 2([0, 1]N ) is a core for (Al, D(Al)), so that (Al, D(Al)) is the closure
of (Vl,C 2([0, 1]N )).

(3) The subalgebra P is a core for (Al, D(Al)) and Tl(t)(Pm) ⊂ Pm for every
t ≥ 0 and m ≥ 0.

(4) Tl(t)(Lip1
Mα) ⊂ Lip1

Mα for every t ≥ 0, M ≥ 0 and 0 < α ≤ 1.

Proof. The proof is similar in spirit to the one of Theorem 4.1 of [2]. Consider
two sequences (an)n≥1 and (bn)n≥1 of real numbers satisfying 0 ≤ an < bn ≤
1 for every n ≥ 1 and lim

n→∞
(an + bn) = l, and denote by (Cn)n≥1 the relevant

operators defined by (2.6).
Moreover, consider the linear operator B : D(B) −→ C ([0, 1]N ) defined

by
B(u) := lim

n→∞
n(Cn(u)− u) (u ∈ D(B)),

where

D(B) :=
{
u ∈ C ([0, 1]N ) | there exists lim

n→∞
n(Cn(u)− u) in C ([0, 1]N )

}
.

By Theorem 3.1, C 2([0, 1]N ) ⊂ D(B) and B = Vl on C 2([0, 1]N ). In
particular, each Pm is contained in D(B), it is finite dimensional and in-
variant under the operators Cn by virtue of Proposition 2.7. By a result of
Schnabl ([14]; see also [13] or [1, Theorem 1.6.8]) the operator (B,D(B)) is
then closable in C ([0, 1]N ) and its closure, that we denote by (Al, D(Al)), is
the generator of a positive C0-semigroup (Tl(t))t≥0 of linear contractions of
C ([0, 1]N ), satisfying (3.4) and (3.5).

Since Cn(1) = 1 for any n ≥ 1, from (3.5) it follows that Tl(t)(1) = 1
for every t ≥ 0. Moreover, each Pm is closed in C ([0, 1]N ) and it is invariant
under the Cn’s. Therefore, iterating and passing to the limit, we obtain that
Tl(t)(Pm) ⊂ Pm for every t ≥ 0.
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Accordingly, we get that Tl(t)(P) ⊂ P for any t ≥ 0 and hence P is a
core for (Al, D(Al)). In particular, C 2([0, 1]N ) is a core for (Al, D(Al)) as
well and Al = B = Vl on C 2([0, 1]N ), which implies that (Al, D(Al)) is the
closure of (Vl,C 2([0, 1]N )), too.

This last statement shows, indeed, that the generator (Al, D(Al)) is
independent on the sequence (Cn)n≥1 and hence on the sequences (an)n≥1

and (bn)n≥1. On the other hand, the generator (Al, D(Al)) determines the
generated semigroup uniquely (see [9, Chapter II, Theorem 1.4]) and so the
semigroup (Tl(t))t≥0 does not depend on the particular sequences (an)n≥1

and (bn)n≥1, as well.
Finally, statement (4) follows from formula (2.25) of Proposition 2.7 and

from the fact that Lip1
Mα is closed under the pointwise (and hence under the

uniform) convergence on [0, 1]N . �

Remarks 3.3.

1. Let us now consider the abstract Cauchy problem associated with
(Al, D(Al)), i.e.,

∂u

∂t
(x, t) = Al(u(·, t))(x) x ∈ [0, 1]N , t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(Al), x ∈ [0, 1]N .

Since (Al, D(Al)) generates a C0-semigroup, the above Cauchy prob-
lem admits a unique solution u : [0, 1]N × [0,+∞[→ R given by u(x, t) =
Tl(t)(u0)(x) for every x ∈ [0, 1]N and t ≥ 0 (see, e.g., [12, Chapter A-II]).
Hence, by Theorem 3.2, it is possible to approximate such solutions by means
of iterates of the Cn’s, i.e.,

u(x, t) = Tl(t)(u0)(x) = lim
n→∞

C [nt]
n (u0)(x),

the limit being uniform with respect to x ∈ [0, 1]N .
Moreover, since Al coincides with the elliptic second-order differential

operator Vl defined by (3.2) on Pm, m ≥ 1, if u0 ∈ Pm, then u(x, t) is the
unique solution to the Cauchy problem

∂u

∂t
(x, t) =

1
2

N∑
i=1

xi(1− xi)
∂2u(x, t)
∂x2

i

+
N∑

i=1

(
l

2
− xi

)
∂u(x, t)
∂xi

x ∈ [0, 1]N ,

t ≥ 0,

u(x, 0) = u0(x) x ∈ [0, 1]N

and u(·, t) ∈ Pm for every t ≥ 0 (see statement (3) of Theorem 3.2).
Finally, according to statement (4) of Theorem 3.2, if u0 ∈ D(Al) ∩

Lip1
Mα (M ≥ 0, 0 < α ≤ 1), then u(·, t) ∈ Lip1

Mα for every t ≥ 0.
2. Theorem 3.2 extends Theorem 3.3 of [6] from the one-dimensional
case to a multidimensional context. However, there an explicit description of
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the generator (Al, D(Al)) is given, namely

D(Al) :=

{
u ∈ C ([0, 1]) | u ∈ C 2(]0, 1[) and lim

x→0+
x→1−

Al(u)(x) ∈ R

}
(3.6)

and

Al(u)(x) :=


x(1− x)

2
u′′(x) +

(
l

2
− x

)
u′(x) if 0 < x < 1,

lim
t→x

Al(u)(t) if x = 0, 1

(3.7)

(u ∈ D(Al), 0 ≤ x ≤ 1).
An analogous description of (Al, D(Al)) in multidimensional setting

seems to be a difficult but very interesting problem.
3. Statement (2) of Theorem 3.2 has been also obtained in [7, Theorem
2.1] with a different approach.

Next, we shall show that, in some particular cases, the Markov semi-
group considered in Theorem 3.2 extends to a positive contractive C0-
semigroup on Lp([0, 1]N ), 1 ≤ p < +∞.

In fact, in these cases the limit (3.1) is l = 1, that leads to consider the
differential operator

V (u)(x) := V1(u)(x) =
1
2

N∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x) +
N∑

i=1

(
1
2
− xi

)
∂u

∂xi
(x)

=
N∑

i=1

∂

∂xi

(
xi(1− xi)

2
∂u

∂xi

)
(x)

(3.8)

(u ∈ C 2([0, 1]N ) and x = (xi)1≤i≤N ∈ [0, 1]N ).
Similarly, we shall simply denote by (T (t))t≥0 and by (A,D(A)) the

semigroup (T1(t))t≥0 and its generator (A1, D(A1)).

Theorem 3.4. The Markov semigroup (T (t))t≥0 extends to a positive contrac-
tive C0-semigroup (T̃ (t))t≥0 on Lp([0, 1]N ) for each p ∈ [1,+∞[.

Moreover, C 2([0, 1]N ) is a core for the generator (Ã,D(Ã)) of (T̃ (t))t≥0,
so that (Ã,D(Ã)) is the closure of (V,C 2([0, 1]N )) in Lp([0, 1]N ).

Finally, if (an)n≥1 and (bn)n≥1 are two sequences of real numbers such
that 0 ≤ an < bn ≤ 1 and if, in addition, they satisfy one of the following
sets of conditions:
(a) an = 0 and bn = 1 for every n ≥ 1,

or
(b) (i) 0 < bn − an < 1 for every n ≥ 1;

(ii) there exist lim
n→∞

an = 0 and lim
n→∞

bn = 1;

(iii) M1 := sup
n≥1

n(1− (bn − an)) < +∞,
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then for every t ≥ 0, for every sequence (ρn)n≥1 of positive integers such that
lim

n→∞
ρn/n = t and for every f ∈ Lp([0, 1]N ),

lim
n→∞

Cρn
n (f) = T̃ (t)(f) in Lp([0, 1]N ). (3.9)

In particular, for every f ∈ Lp([0, 1]N ),

lim
n→∞

C [nt]
n (f) = T̃ (t)(f) in Lp([0, 1]N ). (3.10)

Here, again, the operators Cn, n ≥ 1, are defined by (2.6).

Proof. Fix t ≥ 0 and consider an arbitrary sequence (ρn)n≥1 of positive
integers such that ρn/n → t. Furthermore, consider the sequence (Cn)n≥1

associated with an = 0 and bn = 1, n ≥ 1. From (2.10) it follows that
‖Cn‖Lp,Lp ≤ 1 and hence, on account of (3.4)

‖T (t)f‖p = lim
n→∞

‖Cρn
n (f)‖p ≤ ‖f‖p

for every f ∈ C ([0, 1]N ).
Therefore, there exists a unique linear continuous extension T̃ (t) :

Lp([0, 1]N ) −→ Lp([0, 1]N ) of T (t). Moreover, ‖T̃ (t)‖Lp,Lp ≤ 1 for every
t ≥ 0.

It is not difficult to show that T̃ (t) is positive because if f ∈ Lp([0, 1]N ),
f ≥ 0, then there exists a sequence (fn)n≥1 in C ([0, 1]N ) such that lim

n→∞
fn =

f in Lp([0, 1]N ). We may assume that fn ≥ 0 for every n ≥ 1 (if not, we
replace fn with its positive part f+

n ). Therefore,

T̃ (t)(f) = lim
n→∞

T̃ (t)(fn) = lim
n→∞

T (t)(fn) ≥ 0.

The family (T̃ (t))t≥0 is obviously a semigroup and, in addition, it is
strongly continuous; this easily follows, for instance, from ([9, Chapter I,
Proposition 5.3]) thanks to the fact that, for every t ∈ [0, 1] and for every
f ∈ C ([0, 1]N ),

lim
t→0+

T̃ (t)(f) = lim
t→0+

T (t)(f) = f

in C ([0, 1]N ) and hence in Lp([0, 1]N ), because (T (t))t≥0 is a C0-semigroup
on C ([0, 1]N ).

Let (Ã,D(Ã)) be the generator of (T̃ (t))t≥0. Then, from the definition
of domain of generators, it follows that D(A) ⊂ D(Ã) and Ã = A on D(A).
Moreover, D(A) is a core for (Ã,D(Ã)), since T̃ (t)(D(A)) = T (t)(D(A)) ⊂
D(A) for every t ≥ 0.

In order to show that C 2([0, 1]N ) is a core for (Ã,D(Ã)), fix u ∈ D(Ã)
and ε > 0; then there exists v ∈ D(A) such that

‖u− v‖p ≤
ε

2
and ‖Ã(u)−A(v)‖p ≤

ε

2
. (3.11)
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On the other hand, by Theorem 3.2, C 2([0, 1]N ) is a core for (A,D(A))
and hence there exists w ∈ C 2([0, 1]N ) such that

‖v − w‖∞ ≤ ε

2
and ‖A(v)−A(w)‖∞ ≤ ε

2
. (3.12)

From (3.11) and (3.12) it follows that

‖u− w‖p ≤ ‖u− v‖p + ‖v − w‖p ≤ ‖u− v‖p + ‖v − w‖∞ ≤ ε

and, analogously,
‖Ã(u)−A(w)‖p ≤ ε.

In order to prove (3.9), fix t ≥ 0 and consider a sequence (ρn)n≥1 of
positive integers such that lim

n→∞
ρn/n = t; formula (3.4) implies that, for

every f ∈ C ([0, 1]N ),
lim

n→∞
Cρn

n (f) = T̃ (t)(f)

in Lp([0, 1]N ). Since ‖Cρn
n ‖Lp,Lp ≤ 1 for every n ≥ 1, then (3.9) and (3.10)

follow.
Finally, consider two sequences (an)n≥1 and (bn)n≥1 satisfying assump-

tion (b) and denote by (Cn)n≥1 the relevant operators. Given t ≥ 0 and a
sequence (ρn)n≥1 of positive integers such that ρn/n→ t, from (3.4) it follows
that

T̃ (t)(f) = lim
n→∞

Cρn
n (f) in Lp([0, 1]N )

for every f ∈ C ([0, 1]N ). Moreover, (2.19) implies that

‖Cρn
n ‖Lp,Lp ≤ exp

(
ωp
ρn

n

)
≤ exp(ρ ωp),

where ρ := sup
n≥1

ρn/n and ωp = NM1M2/p, M2 being defined by formula

(2.20) in the proof of Proposition 2.6. Consequently, (Cρn
n )n≥1 is equibounded

in Lp([0, 1]N ) and hence the above limit relationship extends from C ([0, 1]N )
to Lp([0, 1]N ). �

Remarks 3.5.
1. Examples of sequences satisfying assumptions (b) in Theorem 3.4
can be easily furnished. For instance, fix α ≥ 1 and, for every n ≥ 1, set

an :=
1
2

(
1 +

1
2nα

− nα

nα + 1

)
and bn :=

1
2

(
1 +

1
2nα

+
nα

nα + 1

)
.

2. Theorem 3.4 seems to be new even in the one-dimensional case where,
according to Remark 3.3, 2, the generator (A,D(A)) is described by (3.6)
and (3.7). However, for N = 1 and for an = 0 and bn = 1, n ≥ 1, a similar
result has been already proved in [11, Theorem 1] with a completely different
method. Moreover, in the same paper a representation of the semigroup in
terms of the Legendre polynomials is also given.
3. The differential operator (Vl,C 2([0, 1]N )) falls within a more general
class of second order differential operators that have been investigated in
[2] (see, in particular, Section 4, formula (4.1) and Examples 2.2, 2). From
Theorem 4.1 of that paper it already follows that (Vl,C 2([0, 1]N )) is closable
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and its closure is the generator of a Markov semigroup on C ([0, 1]N ) that
can be approximated, as in (3.4), by iterates of modified Bernstein-Schnabl
operators. However, in general, these approximating operators are not defined
on Lp([0, 1]N ), so that formulae (3.9) and (3.10) cannot be available for them.
4. The generation property of the operator (V,C 2([0, 1]N )) in the space
Lp([0, 1]N ) has been also investigated in [10, Theorem 2.5]. Moreover, in this
paper it is shown that the semigroup (T̃ (t))t≥0 is analytic and a description
of the domain D(Ã) in terms of weighted Sobolev spaces is given.
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Stud. Univ. Babeş-Bolyai Math. 56(2011), No. 2, 237–245

Blending surfaces on ellipse generated using
the Bernstein operators

Marius Birou

Abstract. In this paper we present some blending surfaces using uni-
variate Bernstein operators. The surfaces stay on a ellipse which is the
border of the domain and they have a fixed height in the point (0, 0).
Some results about monotonicity, concavity and type of surfaces are
given.

Mathematics Subject Classification (2010): 65D17, 41A36, 41A63.

Keywords: Bernstein polynomial, surfaces, monotonicity, concavity.

1. Introduction

The blending surfaces were introduced by Coons in [4] and they have the prop-
erty of fitting some given curves. In papers [2],[3] and references therein, some
blending surfaces on rectangular and triangular domain were constructed.
These surfaces can be used in civil engineering as roof surfaces for building.
In [1], using the univariate Bernstein operators we constructed blending sur-
faces which stay on the border of a domain bounded by a simple and closed
curve and having fixed weight in the point (0, 0) from the domain. In this
paper we present some examples in the case in which the curve is a ellipse.
Some results about monotonicity and concavity of the surfaces are given. We
study the type of the obtained surfaces.

2. Preliminaries

The univariate Bernstein polynomial of a function f : [0, 1] → R is given by

(Bnf)(t) =

n∑

j=0

bjn(t)f

(
j

n

)
, (2.1)
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where the functions bjn are given by formula

bjn(t) =

(
n

j

)
tj(1 − t)n−j

for j = 0, ..., n. It has the interpolation properties

(Bnf)(0) = f(0), (Bnf)(1) = f(1)

More about the Bernstein polynomials can be found in the book [9].
Next we give some definitions and remarks about the monotonicity and

convexity of the bivariate functions (see [7], [8], [5]).

Definition 2.1. The bivariate function G : A → R, A ⊆ R
2 is increasing

(decreasing) in the direction d = (d1, d2) ∈ R
2 if and only if

G(x + λd1, y + λd2) ≥ (≤)G(x, y),

for every (x, y) ∈ A and λ > 0 such that (x + λd1, y + λd2) ∈ D.

Remark 2.2. If G is a C1 function on the set A we have that the function G
is increasing (decreasing) in the direction d = (d1, d2) if

DdG ≥ (≥ 0)

on A, where DdG is the first order directional derivative in the direction
d = (d1, d2) of the function G, i.e.

DdG = d1Gx + d2Gy.

Definition 2.3. The bivariate function G : A → R, A ⊆ R
2 is convex (concave)

on the convex set A if and only if

G(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) ≤ (≥)λG(x1, y1) + (1 − λ)G(x2, y2)

for every (x1, y1), (x2, y2) ∈ A and every λ ∈ [0, 1].

Remark 2.4. If G is a C2 function on the convex set A we have that the
function G is convex (concave) if

D2
dG ≥ (≤)0 (2.2)

on A for every (d1, d2) ∈ R
2, where D2

dG is the second order directional
derivative in the direction d = (d1, d2) of the function G

D2
dG = d2

1Gxx + 2d1d2Gxy + d2
2Gyy.

The conditions (2.2) hold if and only if

Gxx ≥ (≤)0, Gyy ≥ (≤)0, GxxGyy − G2
xy ≥ 0.

Definition 2.5. Let G a C2 function on the set A ⊆ R2. The point (x, y) ∈ A
of the surface z = G(x, y) is parabolic point if

PG(x, y) = 0,

where

PG(x, y) = Gxx(x, y)Gyy(x, y) − (Gxy(x, y))2. (2.3)
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If we have PG(x, y) < 0 (> 0) then the point (x, y) is called hyperbolic point
(elliptic point). The surface G is called of parabolic (hyperbolic, elliptic) type
if all the points of the surface are parabolic (hyperbolic, elliptic).

We note
∆1hj = hj+1 − hj , j = 0, ..., n − 1,

∆2hj = hj+2 − 2hj+1 + hj , j = 0, ..., n − 2.

3. The first family of surfaces

Let n ∈ N, n ≥ 2 and hi, h ∈ R, i = 1, ..., n − 1 such that

0 = hn < ... < h1 < h0 = h (3.1)

and let f : [0, 1] → R be a function with the properties

f(0) = h,

f( j
n
) = hj , j = 1, ..., n − 1,

f(1) = 0.
(3.2)

From (2.1) and (3.2), we obtain the Bernstein function

(Bnf)(t) = b0n(t)h +

n−1∑

j=1

bjn(t)hj . (3.3)

The function in (3.3) has the properties

(Bnf)(0) = h, (Bnf)(1) = 0.

Let

D = {(x, y) ∈ R
2 : 0 ≤

x2

a2
+

y2

b2
≤ 1}.

Let u a bivariate positive function such that the curve C : u(x, y) = 1 is the

ellipse x2

a2 + y2

b2
= 1. We assume that the curve u(x, y) = 0 is reduced to the

point (0, 0).
If we make the substitution

y = u(x, y)

in (3.3), we obtain the bivariate function

F (x, y) = (Bnf)(u(x, y)) = (3.4)

= b0n(u(x, y))h +

n−1∑

j=1

bjn(u(x, y))hj , (x, y) ∈ D.

The function F from (3.4) has the properties

F |∂D = 0,

F (0, 0) = h.

It follows that the surfaces z = F (x, y) match the ellipse x2

a2 + y2

b2
= 1, z = 0

(the surfaces stay on the border of domain D), and the height of the surfaces
in the point (0, 0) of domain is h.
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From [1] we have the following results about the monotonicity and con-
cavity of the function F .

Theorem 3.1. If the function u is increasing (decreasing) in the direction
(d1, d2) then the function F is decreasing (increasing) in the same direction.

Theorem 3.2. If ∆2hj ≤ 0, j = 0, ..., n− 2 and the function u is convex then
the function F is concave.

The following theorem gives the expression of the function PF from
(2.3) corresponding the surfaces F .

Theorem 3.3. We have

PF (x, y) = A(x, y)B(x, y)P (x, y) + (A(x, y))2Q(x, y)

with

A(x, y) = n

n−1∑

i=0

bi,n−1(u(x, y))∆1hj ,

B(x, y) = n(n − 1)

n−2∑

i=0

bi,n−2(u(x, y))∆2hj,

P (x, y) = u2
x(x, y)uyy(x, y) + u2

y(x, y)uxx(x, y) − 2ux(x, y)uy(x, y)uxy(x, y),

Q(x, y) = uxx(x, y)uyy(x, y) − u2
xy(x, y).

Proof. Using some relations from [6], the second order partial derivative of
the function F are given by

Fxx(x, y) = A(x, y)u2
x(x, y) + B(x, y)uxx(x, y),

Fxy(x, y) = A(x, y)ux(x, y)uy(x, y) + B(x, y)uxy(x, y),

Fyy(x, y) = A(x, y)u2
y(x, y) + B(x, y)uyy(x, y).

Taking into account (2.3) we get the expression of PF (x, y). �

We take the function u in the form

u(x, y) = ϕ

(
x2

a2
+

y2

b2

)
(3.5)

with ϕ ∈ C2(0, 1) and ϕ(0) = 0, ϕ(1) = 1.
Let

D1 = {(x, y) ∈ D : x ≥ 0, y ≥ 0},

D2 = {(x, y) ∈ D : x ≤ 0, y ≥ 0},

D3 = {(x, y) ∈ D : x ≤ 0, y ≤ 0},

D4 = {(x, y) ∈ D : x ≥ 0, y ≤ 0}.

Theorem 3.4. We have

i) If ϕ′ ≥ 0 on (0, 1) and (d1, d2) ≥ 0(≤ 0) then the function F is decreas-
ing (increasing) on D1.

ii) If ϕ′ ≥ 0 on (0, 1) and (−d1, d2) ≥ 0(≤ 0) then the function F is
decreasing (increasing) on D2.
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iii) If ϕ′ ≥ 0 on (0, 1) and (d1, d2) ≤ 0(≥ 0) then the function F is decreas-
ing (increasing) on D3.

iv) If ϕ′ ≥ 0 on (0, 1) and (d1,−d2) ≥ 0(≤ 0) then the function F is
decreasing (increasing) on D4.

Proof. The first order directional derivative of the function u is

Ddu = 2

(
xd1

a2
+

yd2

b2

)
ϕ′

(
x2

a2
+

y2

b2

)

Using Theorem 3.1 and Remark 2.2 it follows the conclusion. �

Theorem 3.5. If ∆2hj ≤ 0, j = 0, ..., n − 2 and ϕ′, ϕ′′ ≥ 0 on (0, 1) the
surfaces F are concave and of elliptic type.

Proof. The second order partial derivatives of the function u are given by

uxx(x, y) =
2

a2
ϕ′

(
x2

a2
+

y2

b2

)
+

4x2

a4
ϕ′′

(
x2

a2
+

y2

b2

)
,

uyy(x, y) =
2

b2
ϕ′

(
x2

a2
+

y2

b2

)
+

4y2

b4
ϕ′′

(
x2

a2
+

y2

b2

)
,

uxy(x, y) =
4xy

a2b2
ϕ′′

(
x2

a2
+

y2

b2

)
.

It follows that
uxx(x, y) ≥ 0, uyy(x, y) ≥ 0

and

P (x, y) =
8

a2b2

(
x2

a2
+

y2

b2

)
ϕ′3

(
x2

a2
+

y2

b2

)
,

Q(x, y) =
4

a2b2
ϕ′

(
x2

a2
+

y2

b2

)
×

×

(
ϕ′

(
x2

a2
+

y2

b2

)
+ 2

(
x2

a2
+

y2

b2

)
ϕ′′

(
x2

a2
+

y2

b2

))
≥ 0.

Using Theorems 3.2, Theorem 3.3 and Remark 2.4 it follows the con-
clusion. �

We give some examples of functions which satisfy the conditions of The-
orem 3.4 and Theorem 3.5:

ϕ1(t) = tα, α ∈ {1} ∪ [2,∞),

ϕ2(t) =
eαt − 1

eα − 1
, α > 0,

ϕ3(t) =
cosαt − 1

cosα − 1
, α ∈

[
0,

π

2

)
.

In Figure 1 we plot the surfaces F using the functions ϕ1, ϕ2, ϕ3 and
different values of α. We take n = 3 a = 2, b = 3 and h0 = 4, h1 = 3,
h2 = 1.7, h3 = 0 (i.e. ∆2hj < 0, i = 0, 1).
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(a) α = 1, ϕ = ϕ1 (b) α = 2, ϕ = ϕ1 (c) α = 1, ϕ = ϕ2
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(d) α = 3, ϕ = ϕ2 (e) α = 1, ϕ = ϕ3 (f) α = π/2, ϕ = ϕ3

Figure 1. The surface z = F (x, y)

If we take take the function

ϕ4(t) = tα, α ∈ (0, 1) ∪ (1, 2)

we get the surfaces

F (x, y) = b0n

((
x2

a2
+

y2

b2

)α)
h +

n−1∑

j=1

bjn

((
x2

a2
+

y2

b2

)α)
hj , (x, y) ∈ D.

If α < 1 the point (0, 0) is singular point for the first order partial
derivatives of the function F . If α > 1 the point (0, 0) is singular point for
the second order partial derivatives of the function F .

Let D0 = {(x, y) ∈ D : (x, y) 6= (0, 0)}.
If α > 1/2 and ∆2hj ≤ 0, j = 0, ..., n − 2 the points of the surface F

from D0 are of elliptic type.
If α = 1/2 and ∆2hj = 0, j = 0, ..., n − 2 the points of the surface F

from D0 are of parabolic type.
If α < 1/2 and ∆2hj ≥ 0, j = 0, ..., n − 2 the points of the surface F

from D0 are of hyperbolic type.
In Figure 2.a we plot the surface F for n = 3, a = 2, b = 3, α = 1/3

and h0 = 4, h1 = 3, h2 = 1.7, h3 = 0 (i.e. ∆2hj < 0, i = 0, 1).
In Figure 2.b we plot the surface F for n = 3, a = 2, b = 3, α = 1/2

and h0 = 4, h1 = 8/3, h2 = 4/3, h3 = 0 (i.e. ∆2hj = 0, i = 0, 1).
In Figure 2.c we plot the surface F for a = 2, b = 3, n = 3, α = 2/3

and h0 = 4, h1 = 2.5, h2 = 1.2, h3 = 0 (i.e. ∆2hj > 0, i = 0, 1).

4. The second family of surfaces

Let n ∈ N, n ≥ 2 and h̃i, h̃ ∈ R, i = 1, ..., n − 1 such that

0 = h̃0 < h̃1 < ...h̃n−1 < h̃n = h (4.1)
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(a) α = 1/3 (b) α = 1/2 (c) α = 2/3

Figure 2. The surface z = F (x, y)

and let f̃ : [0, 1] → R be a function with the properties

f̃(0) = 0,

f̃( j
n
) = h̃j , j = 1, ..., n − 1,

f̃(1) = h.

(4.2)

We obtain

(Bnf̃)(y) =

n−1∑

j=1

bjn(y)h̃j + bn,n(y)h. (4.3)

The function in (4.3) has the properties

(Bnf̃)(0) = 0, (Bnf̃)(1) = h.

Let ũ a bivariate positive function such that the curve C̃ : ũ(x, y) = 0

is the ellipse x2

a2 + y2

b2
= 1. We assume that the curve ũ(x, y) = 1 is reduced

to the point (0, 0).
We obtain the bivariate function

F̃ (x, y) = (Bnf̃)(ũ(x, y)) = (4.4)

=

n−1∑

j=1

bjn(ũ(x, y))h̃j + bnn(ũ(x, y))h, (x, y) ∈ D.

The function F̃ from (4.4) has the properties

F̃ |∂D = 0,

F̃ (0, 0) = h.

It follows that the surfaces z = F̃ (x, y) match the curve x2

a2 + y2

b2
= 1, z = 0

(the surfaces stay on the border of domain D), and the height of the surfaces
in the point (0, 0) of domain is h.

From [1] we have the following results about the monotonicity and con-

cavity of the function F̃ .

Theorem 4.1. If the function ũ is increasing (decreasing) in direction (d1, d2)

then the function F̃ is increasing (decreasing) in the same direction.

Theorem 4.2. If ∆2h̃j ≤ 0, j = 0, ..., n−2 and the function ũ is concave then

the function F̃ is concave.
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The expression of function PF̃ is given in Theorem 3.3, with ũ instead
of the function u.

Next we assume that the function ũ is in the form

ũ(x, y) = ϕ̃

(
x2

a2
+

y2

b2

)
(4.5)

with ϕ̃ ∈ C2(0, 1) and ϕ̃(0) = 1, ϕ̃(1) = 0.

Theorem 4.3. We have

i) If ϕ̃′ ≤ 0 on (0, 1) and (d1, d2) ≥ 0(≤ 0) then the function F is decreas-
ing (increasing) on D1

ii) If ϕ̃′ ≤ 0 on (0, 1) and (−d1, d2) ≥ 0(≤ 0) then the function F is
decreasing (increasing) on D2

iii) If ϕ̃′ ≤ 0 on (0, 1) and (d1, d2) ≤ 0(≥ 0) then the function F is decreas-
ing (increasing) on D3

iv) If ϕ̃′ ≤ 0 on (0, 1) and (d1,−d2) ≥ 0(≤ 0) then the function F is
decreasing (increasing) on D4

Theorem 4.4. If ∆2hj ≤ 0, j = 0, ..., n − 2 and ϕ̃′, ϕ̃′′ ≤ 0 on (0, 1) the
surface is concave and of elliptic type.

The proofs of Theorem 4.3 and Theorem 4.4 are analogous with the
proofs of Theorem 3.4 and Theorem 3.5 respectively.

We give some examples of functions which satisfy the conditions of The-
orem 4.3 and Theorem 4.4:

ϕ̃1(t) = (1 − t)α, α ∈ (0, 1],

ϕ̃2(t) =
eα(1−t) − 1

eα − 1
, α < 0,

ϕ̃3(t) =
sinα(1 − t)

sin α
, α ∈

(
0,

π

2

]
.

The surfaces F̃ obtained using the function ϕ̃1 have singular points on
the border of the domain for the first order partial derivatives of the function

F̃ .
In Figure 3 we plot the surfaces F̃ using the functions ϕ̃1, ϕ̃2, ϕ̃3 and

different values of α. We take a = 2, b = 3, n = 3 and h0 = 4, h1 = 3,
h2 = 1.7, h3 = 0 (i.e. ∆2hj < 0, i = 0, 1).
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Approximation of fuzzy numbers by
trapezoidal fuzzy numbers preserving
the core and the expected value

Adriana Brândaş

Abstract. In this paper, we have suggested a new trapezoidal approxi-
mation of a fuzzy number, preserving the core and the expected value
of fuzzy numbers. We have proved that the trapezoidal approximation
of fuzzy numbers preserving the core and the expected value is always a
fuzzy number. We have discussed the properties of this approximation.

Mathematics Subject Classification (2010): 03E72, 47S40.

Keywords: Fuzzy numbers, trapezoidal fuzzy numbers, trapezoidal ap-
proximation.

1. Introduction

Many recent papers process and transform imprecise information using the
fuzzy theory. For a more efficient handling of information there is a natural
need to approximate the fuzzy numbers by trapezoidal fuzzy numbers with
or without additional conditions [2], [10], [8], [11], [14]. In [7] the trapezoidal
approximation is a reasonable compromise between two opposite tendencies:
to lose to much information and to introduce too sophisticated form of ap-
proximation from the point of view of computation.

In this paper we have proposed the trapezoidal approximation preserv-
ing the core and the expected value of a fuzzy number. Important properties
(translation invariance, scale invariance, etc.) of this new trapezoidal approx-
imation are studied in Section 4.
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2. Preliminaries

We consider the following well-known description of a fuzzy number A:

A(x) =


lA(x), if a1 ≤ x ≤ a2,

1 if a2 ≤ x ≤ a3,
rA(x), if a3 ≤ x ≤ a4,

0, otherwise,

where a1, a2, a3, a4, ∈ R, lA : [a1, a2] −→ [0, 1] is a nondecreasing upper
semicontinuous function, lA(a1) = 0, lA(a2) = 1, called the left side of the
fuzzy number and rA : [a3, a4] −→ [0, 1] is a nonincreasing upper semicon-
tinuous function, rA(a3) = 1, rA(a4) = 0, called the right side of the fuzzy
number. The α−cut, α ∈ (0, 1], of a fuzzy number A is a crisp set defined as
Aα = {x ∈ R : A(x) ≥ α}.

Every α−cut α ∈ [0, 1], of a fuzzy number is a closed interval Aα =
[AL(α), AU (α)] where

AL(α) = inf{x ∈ R : A(x) ≥ α}, AU (α) = sup{x ∈ R : A(x) ≥ α}
for any α ∈ (0, 1]. If the sides of the fuzzy number A are strictly monotone
then one can easily see that AL and AU are inverse functions of lA and rA,
respectively.

The core or 1−cut of a fuzzy number is defined as core(A) = [a2, a3] .
We denote by F ( R) the set of all fuzzy numbers.
Let A,B ∈ F (R) , Aα = [AL (α) , AU (α)] , Bα = [BL (α) , BU (α)] , α ∈

[0, 1] and λ ∈ R. We consider the sum A + B and the scalar multiplication
λ ·A by (see [5]) (A + B)α = Aα +Bα = [AL (α) + BL (α) , AU (α) + BU (α)]

and (λ ·A)α = λAα =
{

[λAL (α) , λAU (α)] , if λ ≥ 0,
[λAU (α) , λAL (α)] , if λ < 0,

respectively, for

every α ∈ [0, 1].
A metric on the set of fuzzy numbers, which is and extension of the Eu-

clidean distance, is defined by (see [9]) D2(A,B) =
∫ 1

0
(AL(α)−BL(α))2dα+∫ 1

0
(AU (α)−BU (α))2dα.

Fuzzy numbers with simple membership functions are preferred in prac-
tice. The most used such fuzzy numbers are so-called trapezoidal fuzzy num-
bers, given by

T (x) =


x−t1
t2−t1

, if t1 ≤ x ≤ t2,

1, if t2 ≤ x ≤ t3,
t4−x
t4−t3

, if t3 ≤ x ≤ t4,

0, otherwise.
We denote T = (t1, t2, t3, t4) a trapezoidal fuzzy number as above. It is

easy to prove that TL(α) = t1 + (t2 − t1)α and TU (α) = t4 − (t4 − t3)α for
every α ∈ [0, 1].

We denote by FT (R) the set of all trapezoidal fuzzy numbers.
The ambiguity Amb of A ∈ F (R) is defined by (see [4])

Amb(A) =
∫ 1

0

α (AU (α)−AL(α)) dα
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and the value V al of A ∈ F (R) is defined by (see [4])

V al(A) =
∫ 1

0

α (AU (α) + AL(α)) dα.

The expected interval EI(A) of a fuzzy number A,

Aα = [AL (α) , AU (α)]

is defined by (see [6], [12])

EI(A) = [E∗(A), E∗(A)] =
[∫ 1

0

AL (α) dα,

∫ 1

0

AU (α) dα

]
,

expected value is given by (see [12]): EV (A) = E∗(A)+E∗(A)
2 , core of A is given

by (see [1]): core (A) = [AL (1) , AU (1)] . The expected value for a trapezoidal
fuzzy number T = (t1, t2, t3, t4) is EV (T ) = t1+t2+t3+t4

4 .
Another kind of fuzzy number was introduced in [3] as follows:

A (x) =



(
x−a
b−a

)n

, x ∈ [a, b]
1, x ∈ [b, c](

d−x
d−c

)n

, x ∈ [c, d]
0, otherwise,

where n > 0, A = (a, b, c, d)n with the parametric representation:

AL(α) = (b− a) n
√

α + a, AU (α) = d− (d− c) n
√

α, α ∈ [0, 1] .

3. Trapezoidal approximation of fuzzy numbers

The below version of the well-known Karush-Kuhn-Tucker theorem is useful
in the solving of the proposed problem.

Theorem 3.1. (Rockafellar, [13]) Let f, g1, g2, ..., gm : Rn → R be convex and
differentiable function. Then

−
x solves the convex programming problem

min f (x)
s.t. gi (x) ≤ bi i ∈ {1, 2, 3, ...,m}
if and only if exists µi, i ∈ {1, 2, 3, ...,m}, such that

(i) ∇f
(
−
x
)

+
m∑

i=1

µi∇gi

(
−
x
)

= 0;

(ii) gi

(
−
x
)
− bi ≤ 0;

(iii) µi ≥ 0;
(iv) µi

(
bi − gi

(
−
x
))

= 0.

Given a fuzzy number A, Aα = [AL (α) , AU (α)] , α ∈ [0, 1] , the problem
is to find a trapezoidal fuzzy number T (A) = (t1, t2, t3, t4) which is the nearest
to A with respect to metric D and preserves the expected value and the core
of A, that is:

EV (A) = EV (T (A)) , core (A) = core (T (A)) .
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The problem is reduced to minimize the distance between the fuzzy number
A and the trapezoidal fuzzy number T (A)

F (t1, t2, t3, t4) =
∫ 1

0

[AL (α)− (t1 + (t2 − t1) α)]2 dα +

+
∫ 1

0

[AU (α)− (t4 + (t3 − t4) α)]2 dα

s.t.
t2 = AL (1) , (3.1)

t3 = AU (1) , (3.2)

so

2
∫ 1

0

[AL (α) + AU (α)] dα = t1 + t2 + t3 + t4. (3.3)

The conditions for T (A) = (t1, t2, t3, t4) to be a trapezoidal fuzzy number are

t1 ≤ t2 (3.4)

t2 ≤ t3 (3.5)

and
t3 ≤ t4. (3.6)

Taking into account the relations (3.1)− (3.3) , t4 becomes:

t4 = 2
∫ 1

0

(AL (α) + AU (α)) dα− t1 −AL (1)−AU (1) ,

so F (t1, t2, t3, t4) becomes g (t1)

g (t1) = 2t21
3 + 2t1

∫ 1

0
(AL (α)− E (α)) (α− 1) dα + t1

3 AL (1)+
+

∫ 1

0
(E (α))2 dα +

∫ 1

0
(AL (α)−AL (1)α)2 dα,

(3.7)

where
E (α) = AU (α)

+2 (α− 1)
∫ 1

0

(AL (α) + AU (α)) dα−AL (1) (α− 1)−AU (1) (2α− 1) ,

so conditions (3.4)− (3.6) are:

t1 ≤ AL (1) (3.8)

AL (1) ≤ AU (1) (3.9)

and

t1 ≤ 2
∫ 1

0

AL (α) dα + 2
∫ 1

0

AU (α) dα−AL (1)− 2AU (1) . (3.10)

For any fuzzy number the relation (3.9) is always true.



Trapezoidal operator preserving core and EV 251

Theorem 3.2. If A, Aα = [AL (α) , AU (α)] is a fuzzy number and T (A) =
(t1, t2, t3, t4) denotes the nearest (with respect to metric D) trapezoidal fuzzy
number A preserving the expected value and the core, then

(i) If∫ 1

0

[(2− 6α) AU (α) + (6α− 10) AL (α)] dα + 7AL (1) + AU (1) < 0 (3.11)

and ∫ 1

0

[AL (α) + AU (α)] dα ≥ AL (1) + AU (1) , (3.12)

then
t1 = t2 = AL (1) ; t3 = AU (1) ;

t4 = 2
∫ 1

0

AL (α) dα + 2
∫ 1

0

AU (α) dα− 2AL (1)−AU (1) .

(ii) If∫ 1

0

[(2− 6α) AL (α) + (6α− 10)AU (α)] dα + AL (1) + 7AU (1) > 0 (3.13)

and ∫ 1

0

[AL (α) + AU (α)] dα ≤ AL (1) + AU (1) , (3.14)

then

t1 = 2
∫ 1

0

AL (α) dα + 2
∫ 1

0

AU (α) dα−AL (1)− 2AU (1) ;

t2 = AL (1) ; t3 = t4 = AU (1) .

(iii) If∫ 1

0

[(2− 6α) AU (α) + (6α− 10)AL (α)] dα + 7AL (1) + AU (1) ≥ 0 (3.15)

and∫ 1

0

[(2− 6α) AL (α) + (6α− 10)AU (α)] dα + AL (1) + 7AU (1) ≤ 0 (3.16)

then

t1 = −3
2

∫ 1

0

α (AL (α)−AU (α)) dα− 3
4
AL (1)

+
1
2

∫ 1

0

(5AL (α)−AU (α)) dα− 1
4
AU (1) ;

t2 = AL (1) ; t3 = AU (1) ;

t4 =
3
2

∫ 1

0

α (AL (α)−AU (α)) dα− 1
4
AL (1)

−1
2

∫ 1

0

(AL (α)− 5AU (α)) dα− 3
4
AU (1) .
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Proof. Let us remark that the hypothesis of convexity and differentiability
in the Karush-Kuhn-Tucker theorem are satisfied for the function g given by
(3.7) under conditions (3.8) − (3.10). After some calculations we can write
the conditions of Karush-Kuhn-Tucker theorem to minimize the function g,
in the following way:

4t1
3

+ 2
∫ 1

0

α [AL (α)−AU (α)] dα +
2
3

∫ 1

0

(AU (α)− 5AL (α)) dα+

+AL (1) +
AU (1)

3
+ µ1 + µ2 = 0 (3.17)

µ1 (t1 −AL (1)) = 0 (3.18)

µ2

(
t1 − 2

∫ 1

0

AL (α) dα− 2
∫ 1

0

AU (α) dα + AL (1) + 2AU (1)
)

= 0 (3.19)

µ1 ≥ 0 (3.20)

µ2 ≥ 0 (3.21)

t1 −AL (1) ≤ 0 (3.22)

t1 − 2
∫ 1

0

AL (α) dα− 2
∫ 1

0

AU (α) dα + AL (1) + 2AU (1) ≤ 0 (3.23)

If µ1 6= 0 and µ2 6= 0, then the solution is: t1 = AL (1) and

t1 = 2
∫ 1

0

AL (α) dα + 2
∫ 1

0

AU (α) dα−AL (1)− 2AU (1) ,

so

t4 = 2
∫ 1

0

AL (α) dα + 2
∫ 1

0

AU (α) dα− 2AL (1)−AU (1)

or t4 = AU (1) , from (3.17) we obtain that

µ1 + µ2 = −2
∫ 1

0

α [AL (α)−AU (α)] dα

−2
3

∫ 1

0

(AU (α)− 5AL (α)) dα−AL (1)− AU (1)
3

(3.24)

but µ1 6= 0 and µ2 6= 0, so∫ 1

0

AL (α) dα +
∫ 1

0

AU (α) dα = AL (1) + AU (1) ,

by (3.24) , we have

µ1 + µ2 =
∫ 1

0

(1− 2α) AL (α) dα +
∫ 1

0

(2α− 3) AU (α) dα + 2AU (1)

so

µ1 + µ2 =
∫ 1

0

(1− 2α) AL (α) dα +
∫ 1

0

(2α− 1) AU (α) dα

+2
(

AU (1)−
∫ 1

0

AU (α) dα

)
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taking into account Lemma 1 from [2] results that µ1 + µ2 ≤ 0. In fact,
because µ1 6= 0 and µ2 6= 0 we obtain that µ1 + µ2 < 0, so Karush-Kuhn-
Tucker conditions can not be verified, which means that we have no solution
in this case.

(i) If µ1 6= 0 and µ2 = 0, then from (3.17) and (3.18) we obtain that:

t1 = AL (1)

and

µ1 = 2
∫ 1

0

α [AU (α)−AL (α)] dα

−2
3

∫ 1

0

(AU (α)− 5AL (α)) dα− AU (1)
3

− 7AL (1)
3

, µ2 = 0

and from (3.1), (3.2) and (3.3) we obtain that

t4 = 2
∫ 1

0

AL (α) dα + 2
∫ 1

0

AU (α) dα− 2AL (1)−AU (1) .

(ii) If µ1 = 0 and µ2 6= 0, then from (3.17) and (3.19) we obtain that

t1 = 2
∫ 1

0

AL (α) dα + 2
∫ 1

0

AU (α) dα−AL (1)− 2AU (1) and µ1 = 0,

µ2 =
1
3

∫ 1

0

[(2− 6α)AL (α) + (6α− 10)AU (α)] dα +
1
3

(AL (1) + 7AU (1))

and t4 = AU (1) .
(iii) If µ1 = 0 and µ2 = 0, then from (3.17) , (3.22) and (3.23) we obtain

that

t1 = −3
2

∫ 1

0

α (AL (α)−AU (α)) dα +
1
2

∫ 1

0

(5AL (α)−AU (α)) dα

−3
4
AL (1)− 1

4
AU (1)

and

t4 =
3
2

∫ 1

0

α (AL (α)−AU (α)) dα− 1
2

∫ 1

0

(AL (α)− 5AU (α)) dα

−1
4
AL (1)− 3

4
AU (1) .

�

Remark 3.3. Any fuzzy number can apply one and only case of the Theorem
3.2.

Proof. Let us denote

Γ1 = {A : A ∈ F (R) and the case (i) is applicable to A} ,

Γ2 = {A : A ∈ F (R) and the case (ii) is applicable to A}
and

Γ3 = {A : A ∈ F (R) and the case (iii) is applicable to A} .
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It is obvious that Γ3 = (Γ1 ∪ Γ2)
c
, so, the three cases of Theorem 3.2 cover

the set of all fuzzy numbers. On the other hand Γ1 ∩ Γ3 = ∅ because the
relation (3.11) is complementary with the relation (3.15) . Γ2∩Γ3 = ∅ because
the relation (3.13) is complementary with the relation (3.16) . �

Example 3.4. Let A be a fuzzy number Aα = [1 + 99
√

α, 200− 95
√

α] then
the trapezoidal approximation preserving the core and the expected value is
T (A) = (t1, t2, t3, t4) and can be calculated with case (iii) of Theorem 3.2 as
follows: t1 = 923

30 ; t2 = 100; t3 = 105; t4 = 5147
30 .

Theorem 3.5. Let A = (a, b, c, d)n be a fuzzy number and T (A) =
(t1, t2, t3, t4) the nearest (with respect to metric D) trapezoidal fuzzy num-
ber A preserving the expected value and the core

(i) If (n− 1) (d− c) + (17n + 7) (b− a) < 0 and a− b− c + d ≥ 0, then

t1 = t2 = b; t3 = c; t4 =
2a− 2b− c + 2d + cn

n + 1
.

(ii) If (b− a) (1− n)− (17n + 7) (d− c) > 0 and a− b− c + d ≤ 0, then

t1 =
2a− b− 2c + 2d + bn

n + 1
; t2 = b; t3 = t4 = c.

(iii) If (b− a) (1− n)− (17n + 7) (d− c) ≤ 0 and

(n− 1) (d− c) + (17n + 7) (b− a) ≥ 0

then

t1 =
7a− 3b− c + d + 8bn2 + 17an− 5bn + cn− dn

4 (n + 1) (2n + 1)
; t2 = b; t3 = c;

t4 = a−b−3c+7d+8cn2−an+bn−5cn+17dn
4(n+1)(2n+1) .

Proof. Let A = (a, b, c, d)n be a fuzzy number, then AL (1) = b, AU (1) = c
and ∫ 1

0

AL (α) dα =
a + bn

n + 1
;

∫ 1

0

AU (α) dα =
cn + d

n + 1
;∫ 1

0

αAL (α) dα =
a + 2bn

4n + 2
;

∫ 1

0

αAU (α) dα =
2cn + d

4n + 2
.

Applying Theorem 3.2 the result is immediately. �

Example 3.6. For a fuzzy number A = (2, 3, 4, 40) 1
2

applying the case (i) of
Theorem 3.5 we obtain the trapezoidal approximation which preserves the
expected value and the core of A: T (A) =

(
3, 3, 4, 152

3

)
.

Example 3.7. For a fuzzy number A = (−200, 0, 10, 20) 1
5

applying the case
(ii) of Theorem 3.5 we obtain the trapezoidal approximation which preserves
the expected value and the core of A: T (A) =

(
− 950

3 , 0, 10, 10
)
.

Example 3.8. For a fuzzy number A = (1, 2, 3, 100)2 applying the case (iii)
of Theorem 3.5 we obtain the trapezoidal approximation which preserves the
expected value and the core of A: T (A) =

(
− 3

10 , 2, 3, 693
10

)
.
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4. Properties

In fuzzy theory are many approximate methods of fuzzy numbers and an
infinite number of approximation operators. For the present approximation
operator we study some properties proposed by Grzgorzewski and Mrowka
in paper [7].

Theorem 4.1. The trapezoidal approximation preserving the core and the ex-
pected value given in Theorem 3.2:

(i) is invariant to translation;
(ii) is scale invariant;
(iii) fulfills the nearness criterion;
(iv) fulfills the identity criterion.

Proof. (i) If A ∈ Γ1 then the conditions (3.11− 3.12) are verified, so∫ 1

0

[(2− 6α) (A + z)U (α) + (6α− 10) (A + z)L (α)] dα

+7 (A + z)L (1) + (A + z)U (1)

=
∫ 1

0

[(2− 6α) AU (α) + 2z + (6α− 10) AL (α)− 10z] dα

+7AL (1) + AU (1) + 8z

=
∫ 1

0

[(2− 6α) AU (α) + (6α− 10)AL (α)] dα + 7AL (1) + AU (1) < 0,

and ∫ 1

0

[(A + z)L (α) + (A + z)U (α)] dα− (A + z)L (1)− (A + z)U (1)

=
∫ 1

0

[AL (α) + AU (α)] dα−AL (1)−AU (1) ≥ 0,

so A + z ∈ Γ1.
We obtain that

t1 (A + z) = (A + z)L (1) = AL (1) + z = t1 (A) + z,

t2 (A + z) = (A + z)L (1) = AL (1) + z = t2 (A) + z,

t3 (A + z) = (A + z)U (1) = AU (1) + z = t3 (A) + z,

and

t4 (A + z) = 2
∫ 1

0

[(A + z)L (α) + (A + z)U (α)] dα

−2 (A + z)L (1)− (A + z)U (1)

= 2
∫ 1

0

AL (α) dα+2
∫ 1

0

AU (α) dα−2AL (1)−AU (1)+4z−2z−z = t4 (A)+z,

so T (A + z) = T (A) + z, A ∈ Γ1.
It is obviously that for A ∈ Γ2 we obtain that A + z ∈ Γ2 and for

A ∈ Γ3 we obtain that A + z ∈ Γ3 so T (A + z) = T (A) + z, for every
A ∈ Γi, i ∈ {1, 2, 3} .
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(ii) For λ > 0 the proof is immediate because (λA)L (α) = λAL (α) and
(λA)U (α) = λAU (α), α ∈ [0, 1] so T (λ ·A) = λ · T (A) , A ∈ Γi, i ∈ {1, 2, 3}
and from A ∈ Γi results that λ ·A ∈ Γi, i ∈ {1, 2, 3} .

In case λ < 0 we have (λA)L (α) = λAU (α) and (λA)U (α) = λAL (α) ,
for every α ∈ [0, 1] .

If A ∈ Γ1 then the conditions (3.11− 3.12) are verified

λ

∫ 1

0

[(2− 6α) AU (α) + (6α− 10)AL (α)] dα + 7λAL (1) + λAU (1) > 0,

so∫ 1

0

[(2− 6α) λAU (α) + (6α− 10)λAL (α)] dα + 7λAL (1) + λAU (1) > 0

and is equivalent to∫ 1

0

[(2− 6α) (λA)L (α) + (6α− 10) (λA)U (α)] dα

+7 (λA)U (1) + (λA)L (1) > 0

and

λ

∫ 1

0

[AL (α) + AU (α)] dα ≤ λAL (1) + λAU (1)

so ∫ 1

0

[λAL (α) + λAU (α)] dα ≤ λAL (1) + λAU (1)

and is equivalent to∫ 1

0

[(λA)U (α) + (λA)L (α)] dα ≤ (λA)U (1) + (λA)L (1) ,

we obtain that λ ·A ∈ Γ2, so

T (λ ·A) =
(

2
∫ 1

0

(λ ·A)L (α) dα + 2
∫ 1

0

(λ ·A)U (α) dα− 2 (λ ·A)L (1)−

− (λ ·A)U (1) , (λ ·A)L (1) , (λ ·A)U (1) , (λ ·A)U (1))

= (λ ·AL (1) , λ ·AL (1) , λ ·AU (1) ,

2
∫ 1

0

λ ·AL (α) dα + 2
∫ 1

0

λ ·AU (α) dα− 2λ ·AU (1)− λ ·AL (1)
)

= λ · T (A)

then T (λ ·A) ∈ Γ1. λ ·A is in case (ii) of Theorem 3.2 if and only if A is in
case (i) of Theorem 3.2.

For A ∈ Γ2 we obtain that λ ·A ∈ Γ2, so λ ·A is in case (i) of Theorem
3.2 if and only if A is in case (ii) of Theorem 3.2.

Similarly it can be shown that λ · A is in case (iii) of Theorem 3.2 if
and only if A is in case (iii) of Theorem 3.2.

(iii) By the construction of the operator under study.
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(iv) If A = (a1, a2, a3, a4) , Aα = [a1 + α (a2 − a1) , a4 − α (a4 − a3)] ,
then ∫ 1

0

[(2− 6α) AU (α) + (6α− 10)AL (α)] dα + 7AL (1) + AU (1)

= 4 (a2 − a1) ≥ 0
and ∫ 1

0

[(2− 6α) AL (α) + (6α− 10) AU (α)] dα + AL (1) + 7AU (1)

= 4 (a3 − a4) ≤ 0
so (3.15) and (3.16) are verified and the case (iii) of Theorem 3.2 is applicable
to A. We obtain that

t1 = −3
2

∫ 1

0

α ((a1 + α (a2 − a1))− (a4 − α (a4 − a3))) dα

−1
4

(a4 − (a4 − a3)) +
1
2

∫ 1

0

(5 (a1 + α (a2 − a1))− (a4 − α (a4 − a3))) dα

−3
4

(a1 + (a2 − a1)) = a1,

t2 = AL (1) = a2; t3 = AU (1) = a3

and

t4 =
3
2

∫ 1

0

α ((a1 + α (a2 − a1))− (a4 − α (a4 − a3))) dα

−3
4

(a4 − (a4 − a3))−
1
2

∫ 1

0

((a1 + α (a2 − a1))− 5 (a4 − α (a4 − a3))) dα

−1
4

(a1 + (a2 − a1)) = a4,

so T (A) = A,∀A ∈ FT (R) . �

Remark 4.2. Let A be a trapezoidal fuzzy number, the trapezoidal ap-
proximation preserving the core and the expected value does not preserve
the ambiguity and the value of a fuzzy number: Amb(A) 6= Amb(T (A)),
V al(A) 6= V al(T (A)), for any A ∈ F (R) .

Example 4.3. Let A be a fuzzy number A = (0, 1, 2, 3)2 , AL (α) =
√

α,
AU (α) = 3 −

√
α . The trapezoidal approximation which preserves the ex-

pected value and core is T (A) =
(

3
10 , 1, 2, 27

10

)
.The ambiguity of the fuzzy

number A is: Amb (A) = 7
10 and the ambiguity of the trapezoidal approxi-

mation is: Amb (T (A)) = 11
15 , so Amb(A) 6= Amb(T (A)).

Example 4.4. For a fuzzy number A = [
√

α + 1, 30− 27
√

α] the value of the
fuzzy number is V al(A) = 51

10 , the trapezoidal approximation which preserves
the expected value and the core is T (A) =

(
13
15 , 2, 3, 322

15

)
so it’s value is:

V al (T (A)) = 97
18 , then V al(A) 6= V al(T (A)).
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The following example studies the continuity of the trapezoidal operator
which preserves the core and the expected value.

Example 4.5. The trapezoidal operator introduced by Theorem 3.2 is not
continuous, with respect to the distance D. Indeed, if A ∈ F (R) , An ∈
F (R) , n ∈ N such that AL (α) =

√
α, AU (α) = 3 −

√
α and (An)L =√

α + αn, (An)U = 3 −
√

α, α ∈ [0, 1] , then the trapezoidal fuzzy numbers
which preserve the expected value and the core of A and An are:

T (A) =
(

3
10

, 1, 2,
27
10

)
,

T (An) =
(
− 7n + 9n2 − 52

20 (n + 2) (n + 1)
, 2, 2,

27
10

)
, n ∈ N

and

lim
n→∞

D (T (An) , T (A)) =
√

39
12

and

lim
n→∞

D (An, A) = lim
n→∞

√
1

2n + 1
= 0,

so lim
n→∞

D (T (An) , T (A)) =
√

39
12 6= 0 = lim

n→∞
D (An, A) .

5. Conclusion

In the present paper a new trapezoidal approximation of a fuzzy number
was added to trapezoidal approximations already introduced in [1], [2], [7],
[8], [14]. It has multiple advantages: can be easy calculated, has some im-
portant properties: scale invariance, identity, translation invariance, nearness
criterion.
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Abstract. We study some quantitative estimates of the convergence of
the iterates of some Rogosinski type operators to their associated cosine
functions. We also consider a general cosine counterpart of the quantita-
tive version of Trotter’s theorem on the approximation of C0-semigroups.
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1. Introduction and preliminary results

The convergence of iterates of trigonometric polynomials to suitable cosine
functions in the setting of spaces of continuous periodical functions has been
considered in [7, 8] from a qualitative point of view; these results extend
to cosine function the possibility of using iterates of positive operators in
the approximation of C0-semigroups (see [2, Chapter 6] for more details).
Recently, some quantitative versions of the classical Trotter’s theorem [17]
on the approximation of C0-semigroups have been obtained in [14, 15] and
[9, 10]. Here, we consider the possibility of obtaining quantitative estimates
of the convergence to suitable cosine functions. We study in particular the
Rogosinski type operators introduced in [7, 8] and establish some quantitative
estimates of the convergence of their iterates to a cosine function generated
by the square of a first order differential operator. Our discussion is based
on the following general quantitative cosine version of Trotter’s approxima-
tion theorem [17, Theorem 5.3], which provides a quantitative estimate of
the convergence and, besides the Rogosinski type operators, can be applied
also to other sequences of operators, such as Fejér operators and the general
sequences of averages of trigonometric interpolating operators considered in
[6]. A partial result on the generation of cosine functions has been obtained
in [8, Theorem 1.2] without quantitative estimates.
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Theorem 1.1. Let E be a Banach space, let (Ln)n≥1 and (Mn)n≥1 be two
sequences of bounded linear operators from E into itself and assume that
there exist M ≥ 1 and ω ≥ 0 such that

‖Lk
n‖ ≤ M eω k/n , ‖Mk

n‖ ≤ Meω k/n , n , k ≥ 1. (1.1)

Suppose also that D is a dense subspace of E and A : D → E is a linear
operator such that

lim
n→+∞

n(Lnu− u) = Au , lim
n→+∞

n(Mnu− u) = −Au

and (λ−A)(D) is dense in E for some λ > ω.
Then the closure of (A,D) generates a C0−group (G(t))t∈R in E and

then the square A2 of the closure of (A,D) generates a cosine function
(C(t))t∈R in E and, for every t ≥ 0,

C(t) =
1
2

lim
n→∞

(
Lk(n)

n + Mk(n)
n

)
, (1.2)

where (k(n)n)n∈N is a sequence of positive integers such that

lim
n→+∞

k(n)/n = t

(in particular, we can take k(n) = [n t]). Consequently, for every t ∈ R, we
have ‖C(t)‖ ≤ M eω |t|.

Moreover, for every t ≥ 0 and for every increasing sequence (k(n))n≥1 of
positive integers and u ∈ {v ∈ D|G(s)v, G(−s)v ∈ D for every 0 ≤ s ≤ t},
we have∥∥∥∥C(t)u− 1

2

(
Lk(n)

n u + Mk(n)
n u

)∥∥∥∥ (1.3)

≤ M

2
exp(ω eω/n t)

∫ t

0

exp(−ωeω/ns) (‖(n(Ln − I)−A)G(s)u‖

+‖(n(Mn − I) + A)G(−s)u‖) ds

+
M

2

(
exp(ω eω/n tn) |k(n)− nt|+

√
2k(n)

π
eω k(n)/n

+
ωk(n)

n
exp

(
ω eω/n k(n)

n

))
(‖Lnu− u‖+ ‖Mnu− u‖)

where tn := sup{t, k(n)/n}.

Proof. From the classical Trotter’s theorem [17, Theorem 5.3] it follows that
the closure of the operators A and −A generate a C0-semigroup (T+(t))t≥0

and respectively (T−(t))t≥0 in E. Consequently, the closure of A generates a
C0-group (G(t))t∈R in E and, for every t ≥ 0,

G(t) = T+(t) , G(−t) = T−(t) .

Moreover, again from [17, Theorem 5.3], we obtain the representation of the
group (G(t))t∈R in terms of iterates of the operators Ln and Mn; indeed, for
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every t ≥ 0 and for every sequence (k(n)n)n∈N of positive integers such that
limn→+∞ k(n)/n = t, we have

G(t) = lim
n→+∞

Lk(n)
n , G(−t) = lim

n→+∞
Mk(n)

n .

Consequently, it follows that the square of the closure of (A,D) generates
a cosine function (C(t))t∈R in E (see [4, Example 3.14.15, p. 217]) and, for
every t ∈ R, C(t) = (G(t)+G(−t))/2. Hence the representation of the cosine
function is a consequence of the representation of (G(t))t∈R and the estimate
‖C(|t|)‖ ≤ M eω t follows from (1.1) and (1.2).

Finally, we prove (1.3).
Let t ≥ 0, (k(n))n≥1 an increasing sequence of positive integers and u ∈ {v ∈
D|G(s)v, G(−s)v ∈ D for every 0 ≤ s ≤ t}.
From [9, Theorem 1.2] and our assumptions we get∥∥∥T+(t)u− Lk(n)

n u
∥∥∥

≤ M exp(ω eω/n t)
∫ t

0

exp(−ωeω/ns)‖(n(Ln − I)−A)T+(s)u‖ds

+ M

(
exp(ω eω/n tn) |k(n)− nt|+

√
2k(n)

π
eω k(n)/n

+
ωk(n)

n
exp

(
ω eω/n k(n)

n

))
‖Lnu− u‖

and ∥∥∥T−(t)u−Mk(n)
n u

∥∥∥
≤ M exp(ω eω/n t)

∫ t

0

exp(−ωeω/ns)‖(n(Mn − I) + A)T−(s)u‖ds

+ M

(
exp(ω eω/n tn) |k(n)− nt|+

√
2k(n)

π
eω k(n)/n

+
ωk(n)

n
exp

(
ω eω/n k(n)

n

))
‖Mnu− u‖ .

Taking into account that∥∥∥∥C(t)u− 1
2

(
Lk(n)

n u + Mk(n)
n u

)∥∥∥∥
=

1
2

∥∥∥T+(t)u + T−(t)u− Lk(n)
n u−Mk(n)

n u
∥∥∥

≤ 1
2

(∥∥∥T+(t)u− Lk(n)
n u

∥∥∥+
∥∥∥T−(t)u−Mk(n)

n u
∥∥∥)

the proof follows from the preceding inequalities. �

Remark 1.2. In many applications it is natural to consider the sequence
k(n) = [nt] for which tn = t and |[nt]/n − t| = nt/n − [nt]/n ≤ 1/n. Hence
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estimate (1.3) yields∥∥∥∥C(t)u− 1
2

(
L[nt]

n u + M [nt]
n u

)∥∥∥∥ (1.4)

≤ M

2
exp(ω eω/n t)

∫ t

0

exp(−ωeω/ns)×

× (‖(n(Ln − I)−A)G(s)u‖+ ‖(n(Mn − I) + A)G(−s)u‖)ds

+
M

2

(
exp(ω eω/n t) +

√
2nt

π
eω t + ω t exp

(
ω eω/n t

))
×

× (‖Lnu− u‖+ ‖Mnu− u‖) .

From the classical theory of the cosine functions (see [16] and [13, Chap-
ter II] for more details) we have that the unique solution of the following
second-order Cauchy problem

∂2

∂t2
u(t, x) = A2u(t, x) , t ∈ R ;

u(0, x) = u0(x) , x ∈ R ;
∂

∂t
u(t, x)|t=0 = u1(x) , x ∈ R ,

(1.5)

with u0, u1 ∈ D, is given by

u(t, x) = C(t)u0(x) +
∫ t

0

C(v)u1(x) dv (1.6)

=
1
2

lim
n→∞

(
L[n t]

n u0 + M [n t]
n u0 +

∫ t

0

(
L[n v]

n u1 + M [n v]
n u1

)
dv

)
,

for every t ∈ R and x ∈ R. We explicitly observe that the sequences
(L[n v]

n u1)n≥1 and (M [n v]
n u1)n≥1 are equibounded with respect to v ∈ [0, t]

and this allows us to apply the Lebesgue dominated convergence theorem.

2. Rogosinski type operators

Denote by C2π the space of all 2π-periodic continuous real functions on R
and put Π := {π + 2kπ | k ∈ Z}. Moreover, let a ∈ C2π ∩ C1(R \ Π) be
such that a 6= 0 in ] − π, π[ and consider the first-order differential operator
(A,D(A)) defined by

Au := au′, u ∈ D(A) :=
{
u ∈ C2π ∩ C1(R \Π) | Au ∈ C2π

}
.

In order to consider the generation of cosine functions, we also consider
the operator A2 on the following domain

D(A2) :=
{
u ∈ C2π ∩ C2(]− π, π[) | a(au′)′ ∈ C2π

}
.

It is well-known (see e.g. [8, Theorem 1.1]) that (A2, D(A2)) generates
a cosine functions (C(t))t∈R in C2π if and only if

1
a
∈ L1(−π, 0) ,

1
a
∈ L1(0, π) . (2.1)
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Now, we consider the Rogosinski kernel defined by setting, for every
n ∈ N and x ∈ R,

rn(x) := 1 + 2
n∑

k=1

cos
(

kπ

2n + 1

)
cos(kx) ,

and the corresponding n-th Rogosinski operator Rn : C2π → C2π given by

Rnf(x) =
1
2π

∫ π

−π

f(x− v)rn(v) dv , f ∈ C2π , x ∈ R .

The n-th generalized Rogosinski operator Ra,n : C2π → C2π introduced
in [8] is defined by putting

Ra,nf(x) = Rnf

(
x +

2π

2n + 1
a(x)

)
, f ∈ C2π , x ∈ R .

From [8, Theorem 2.1] the sequence (‖Ra,n‖)n∈N is equibounded and
moreover ‖Rk

a,n‖ ≤ 2π for every n, k ≥ 1. Further, there exists a positive
constant C > 0 such that

‖Ra,nf − f‖ ≤ C ω

(
f ;

1
n

)
, f ∈ C2π . (2.2)

In order to apply Theorem 1.1, our next aim is to establish a quantitative
estimate of the Voronovskaja-type formula associated with these operators.

Lemma 2.1. Let 0 < α ≤ 1. Then, for every f ∈ C1,α
2π ,∥∥∥∥2n + 1

2π
(Ra,nf − f)−Af

∥∥∥∥
∞
≤ 49(‖a‖∞ + 1)

(
2π

2n + 1

)α

Lf ′ ,

where Lf ′ is the constant of α-hölderianity of f ′.

Proof. For every f ∈ C1,α
2π we have∥∥∥∥2n + 1

2π
(Ra,nf − f)−Af

∥∥∥∥
∞
≤
∥∥∥∥2n + 1

2π
(Ra,nf −Rnf)−Af

∥∥∥∥
∞

+
∥∥∥∥2n + 1

2π
(Rnf − f)

∥∥∥∥
∞

. (2.3)

As regards to the first term at the right-hand side of (2.3), from Lagrange’s
theorem we can write

f(y + t)− f(y) = f ′(y)t + (f ′(ξ)− f ′(y)) t , y, t ∈ R
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where ξ lies between y and y + t. For every x ∈ R and n ∈ N we have

2n + 1
2π

(Ra,nf(x)−Rnf(x))− a(x)f ′(x)

=
2n + 1

2π

1
2π

∫ π

−π

(
f

(
x− v +

2π

2n + 1
a(x)

)
− f(x− v)

)
rn(v) dv

− a(x)f ′(x)

=
2n + 1

2π

1
2π

∫ π

−π

f ′(x− v)
2π

2n + 1
a(x) rn(v)dv − a(x)f ′(x)

+
2n + 1

2π

1
2π

∫ π

−π

(f ′(ξ)− f ′(x− v))
2π

2n + 1
a(x) rn(v) dv

= a(x)(Rnf ′(x)− f ′(x)) + a(x)
1
2π

∫ π

−π

(f ′(ξ)− f ′(x− v)) rn(v) dv ,

where ξ ∈]x− v, x− v + 2πa(x)/(2n + 1)[.
We recall that (see e.g. [5, Theorem 2.4.8, p. 106 ])

‖Rng − g‖∞ ≤ (2π + 1)En(g) + 4 ω

(
g;

1
n

)
, g ∈ C2π ,

where En(g) is the best approximation of the function g by trigonometric
polynomials of degree n and hence, from the classical Jackson’s theorem,

‖Rng − g‖∞ ≤ 6(2π + 1) ω

(
g;

1
n

)
+ 4 ω

(
g;

1
n

)
≤ (12π + 10)ω

(
g;

1
n

)
.

Applying the above inequality to f ′ and f we get∣∣∣∣2n + 1
2π

(Ra,nf(x)−Rnf(x))− a(x)f ′(x)
∣∣∣∣

≤ ‖a‖∞
(

(12π + 10)ω
(

f ′;
1
n

)
+ ω

(
f ′;

2π

2n + 1

))
≤ ‖a‖∞(12π + 11)ω

(
f ′;

2π

2n + 1

)
,

and consequently∥∥∥∥2n + 1
2π

(Ra,nf − f)−Af

∥∥∥∥
∞
≤‖a‖∞(12π + 11)ω

(
f ′;

2π

2n + 1

)
+

2n + 1
2π

(12π + 10)ω
(

f ;
1
n

)
.
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Since f ∈ C1,α
2π we have ω(f, δ) ≤ Lf′

2 δα+1 and ω(f ′, δ) ≤ Lf ′δ
α. Thus we

conclude that∥∥∥∥2n + 1
2π

(Ra,nf − f)−Af

∥∥∥∥
∞

≤ ‖a‖∞(12π + 11)
(

2π

2n + 1

)α

Lf ′ + (12π + 10)
2n + 1
4nπ

1
nα

Lf ′

≤ (12π + 11)(‖a‖∞ + 1)
(

2π

2n + 1

)α

Lf ′ .

�

From [8, Theorem 1.1] we already know that if a ∈ C0,1
2π ∩ C1(R \

Π) satisfies condition (2.1), then the operator (A,D(A)) generates a C0-
semigroup (T (t))t≥0 of positive contractions on C2π. In the next lemma we
state a more precise quantitative estimate of Voronovskaja’s formula.

Lemma 2.2. Let a ∈ C3
2π satisfy condition (2.1) and let (T (t))t≥0 be the

C0-semigroup on C2π generated by (A,D(A)).
Then, for every t ≥ 0 and f ∈ C1,α

2π ,∥∥∥∥(2n + 1
2π

(Ra,n − I)−A

)
T (t)f

∥∥∥∥
∞

(2.4)

≤ 49(‖a‖∞ + 1)
(

2π

2n + 1

)α

(C1 + t)‖a′′‖∞eC2‖a‖C2 t‖f‖C1,α ,

where K = C2‖a‖C2 and the constants C, C1 and C2 are independent of t
and n.

Proof. Let us consider the flow φ : R×R → R as the unique solution of this
problem 

∂φ(t, x)
∂t

= a(φ(t, x)) , for every t, x ∈ R

φ(0, x) = x , for every x ∈ R .

Now consider the C0-semigroup (T (t))t≥0 defined by

T (t)f(x) := f(φ(t, x)) for all t ≥ 0, x ∈ R , f ∈ C2π . (2.5)

Notice that the operator (A,D(A)) is the generator of the semigroup defined
in (2.5).

Since a ∈ C3
2π, then φ ∈ C3

2π (see [3, Theorem 10.3]), and hence for all
f ∈ Cm

2π, we have that T (t)f = f(φ(t, ·)) ∈ Cm
2π, m = 0, 1, 2, 3.

Let us consider the following Cauchy problem
∂u

∂t
= Au in (0,∞)× R ,

u(0, x) = f(x) in R ,
(2.6)

with f ∈ C3
2π. Let u(t, x) = T (t)f(x) be the solution of the previous problem,

we have ‖u(t, ·)‖∞ = ‖T (t)f‖∞ ≤ ‖f‖∞ for every t ≥ 0; moreover u ∈ C3
2π

since f ∈ C3
2π.
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Consider also the problem
∂v

∂t
= Av + Bv in (0,∞)× R ,

v(0, ·) = f ′ in R ,
(2.7)

where Bv := a′v for every v ∈ D(A). Since ‖B‖ = ‖a′‖∞, then the operator
A + B on D(A) is a bounded perturbation of the operator (A,D(A)) and it
generates a semigroup (S(t))t≥0 on C2π such that

‖S(t)‖ ≤ e‖a
′‖∞t , t ≥ 0

see [12, Chapter 3].
Let us notice that u′ solves (2.7) on [0,∞)× R, indeed

(Au)′ = a′u′ + au′′ = Bu′ + Au′ ;

then u′(t, x) = S(t)f ′(x) for every t ≥ 0, x ∈ R and

‖T (t)‖L(C1;C1) ≤ 1 + e‖a
′‖∞t , t ≥ 0 .

Now let us consider the problem
∂w(t, x)

∂t
= Aw + Cw + a′′u′(t, 0) in (0,∞)× R ,

w(0, ·) = f ′′ in R ,
(2.8)

where Cw := a′′
∫ x

0

(
w(y)− 1

2π

∫ 2π

0
w
)

dy + 2a′w for every w ∈ D(A). Then
A + C is a bounded perturbation of (A,D(A)) and hence (A + C,D(A))
generates the C0-semigroup

(
S̃(t)

)
t≥0

on C2π. Since ‖C‖ ≤ 2π‖a′′‖∞ +

2‖a′‖∞ ≤ 2π‖a‖C2 , we have (see [12, Chapter 3])

‖S̃(t)‖ ≤ e2π‖a‖C2 t , t ≥ 0 .

Therefore

w(t, x) = S̃(t)f ′′ +
∫ t

0

S̃(t− s) (a′′u′(t, 0)) ds

is a mild solution of (2.8) in C2π; moreover

‖w(t, ·)‖∞ ≤ ‖S̃(t)f ′′‖∞ +
∫ t

0

‖S̃(t− s) (a′′u′(s, 0)) ‖ds

≤ e2π‖a‖C2 t‖f ′′‖∞ +
∫ t

0

‖S̃(t− s) (a′′(T (s)f)′(0)) ‖ds

≤ e2π‖a‖C2 t‖f ′′‖∞ +
∫ t

0

e2π‖a‖C2 (t−s)‖a′′(T (s)f)′(0)‖ds

≤ e2π‖a‖C2 t‖f ′′‖∞ +
∫ t

0

e2π‖a‖C2 (t−s)‖a′′‖∞‖f ′‖∞e‖a
′‖∞sds

≤ e2π‖a‖C2 t‖f ′′‖∞ + t‖a′′‖∞‖f ′‖∞e2π‖a‖C2 t .
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Since (Au)′′ = a′′u′ + 2a′u′′ + Au′′, we have

∂

∂t
u′′(t, x) = Au′′(t, x) + a′′(x)u′′(t, x) + 2a′(x)u′′(x)

= Au′′(t, x) + a′′(x)
(∫ x

0

u′(t, y)dy + u′(t, 0)
)

+ 2a′(x)u′′(x)

= Au′′(t, x) + Cu′′(t, x) + a′′(x)u′(t, 0) ,

then u′′(t, x) is a solution of (2.8) and u(t, ·) = w(t, ·). So we can apply the
previous estimate to u′′(t, ·) and we get, for every t ≥ 0,

‖(T (t)f)′′‖∞ = ‖u′′(t, ·)‖∞ ≤ e2π‖a‖C2 t‖f ′′‖∞ + t‖a′′‖∞‖f ′‖∞e2π‖a‖C2 t .

Therefore

‖T (t)‖L(C2;C2) ≤ 1 + e‖a
′‖∞t + e2π‖a‖C2 t + t‖a′′‖∞e2π‖a‖C2 t , t ≥ 0 .

Finally, since C1,α
2π is an intermediate space between C1

2π and C2
2π, then

we get

‖T (t)‖L(C1,α;C1,α) ≤ C‖T (t)‖1−α
L(C1;C1)‖T (t)‖α

L(C2;C2)

≤ (C1 + t)‖a′′‖∞eC2‖a‖C2 t for all t ≥ 0 , (2.9)

where C1 and C2 are positive constant independent of t.
Finally from Lemma 2.1 and taking into account (2.9), we get∥∥∥∥(2n + 1

2π
(Ra,n − I)−A

)
T (t)f

∥∥∥∥
∞

(2.10)

≤ 49(‖a‖∞ + 1)
(

2π

2n + 1

)α

L(T (t)f)′

≤ 49(‖a‖∞ + 1)
(

2π

2n + 1

)α

‖T (t)f‖C1,α

≤ 49(‖a‖∞ + 1)
(

2π

2n + 1

)α

‖T (t)‖L(C1,α;C1,α)‖f‖C1,α

≤ 49(‖a‖∞ + 1)
(

2π

2n + 1

)α

(C1 + t)‖a′′‖∞eC2‖a‖C2 t‖f‖C1,α ,

for all t ≥ 0. �

In [8, Theorem 2.7] Campiti and Ruggeri established that besides the
generation of the cosine function (C(t))t∈R, condition (2.1) also ensures that
C1

2π ∩D(A2) is a core for (A2, D(A2)) and further, for every t > 0,

C(t) =
1
2

lim
n→∞

(
Rk(n)

a,n u + R
k(n)
−a,nu

)
, (2.11)

where (k(n))n≥1 is a sequence of positive integers such that

lim
n→+∞

2πk(n)
2n + 1

= t.
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From (2.2) it follows that there exits a constant C > 0 such that

‖Ra,nf − f‖∞ ≤ C

nα+1
Lf ′

for all f ∈ C1,α
2π and the same estimate also holds for R−a,n. We obtain the

following quantitative version of (2.11).

Theorem 2.3. Let a ∈ C3
2π satisfy (2.1). Then for every t ≥ 0 and u ∈

C1,α ∩D(A2)∥∥∥∥C(t)u− 1
2

(
Rk(n)

a,n u + R
k(n)
−a,nu

)∥∥∥∥
∞

(2.12)

≤ 2π C

(
2π

2n + 1

)α(
‖a′′‖∞ (‖a‖∞ + 1)

[
eKt − 1

K

(
C1 +

1
K

)
+ t

eKt

K

]
(2.13)

+
∣∣∣∣2πk(n)
2n + 1

− t

∣∣∣∣+
√

2
n

√
2k(n)
2n + 1

)
‖u‖C1,α ,

where K = C2‖a‖C2 , (k(n))n≥1 is a sequence of positive integers such that

lim
n→+∞

2πk(n)
2n + 1

= t

and C, C1 and C2 are positive constants independent of n ∈ N and t ≥ 0.

Proof. Consider u ∈ C1,α ∩D(A2), taking into account (2.4) we have∫ t

0

∥∥∥∥(2n + 1
2π

(Ra,n − I)−A

)
T (s)u

∥∥∥∥
∞

ds (2.14)

≤ 49‖a′′‖∞(‖a‖∞ + 1)
(

2π

2n + 1

)α

‖u‖C1,α

[
eKt − 1

K

(
C1 +

1
K

)
+ t

eKt

K

]
,

where K = C2‖a‖C2 . The same estimate also holds for the sequences of
operators (R−a,n)n≥1 and the differential operator −A. Then from (1.3) we
have∥∥∥∥C(t)u− 1

2

(
Rk(n)

a,n u + R
k(n)
−a,nu

)∥∥∥∥
∞

(2.15)

≤ 2πC‖a′′‖∞ (‖a‖∞ + 1)
(

2π

2n + 1

)α [
eKt − 1

K

(
C1 +

1
K

)
+ t

eKt

K

]
‖u‖C1,α

+ 2π

(∣∣∣∣k(n)− 2n + 1
2π

t

∣∣∣∣+
√

2k(n)
2π

)
C

(
1
n

)α+1

‖u‖C1,α .

�

Finally, we observe that arguing as in [11] we can also establish a quan-
titative estimate of the resolvent operators.

Exactly the same procedure can be also applied to other sequences of
trigonometric polynomials such as Fejér operators and more general averages
of trigonometric interpolating operator considered in [8, 6]. Since in these
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cases the cosine function is the same, we limit ourselves to observe that (2.12)
remains still valid when considering these other sequences of trigonometric
interpolating operators too.
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Remarks on the state of the art of
a posteriori error control of elliptic
PDEs in energy norms in practise

Carsten Carstensen and Christian Merdon

Abstract. Five classes of up to 9 a posteriori error estimators compete
in three second-order model problems, namely the conforming and non-
conforming first-order approximation of the Poisson-Problem plus some
conforming obstacle problem. Our numerical results provide sufficient
evidence that guaranteed error control in the energy norm is indeed
possible with efficiency indices between one and three. The five classes
of error estimator consist of the standard residual-based error estima-
tors, averaging error estimators, equilibration error estimators, e.g. the
ones of Braess or Luce and Wohlmuth, least-square error estimators and
the localisation error estimator of Carstensen and Funken. For the error
control for obstacle problems, Braess considers Lagrange multipliers and
some resulting auxiliary equation to view the a posteriori error control
of the error in the obstacle problem as computable terms plus errors and
residuals in the auxiliary equation. Hence all the former a posteriori er-
ror estimators apply to this benchmark as well and lead to surprisingly
accurate guaranteed upper error bounds. This approach allows an exten-
sion to more general boundary conditions and a discussion of efficiency
for the affine benchmark examples. The Luce-Wohlmuth and the least-
square error estimators win the competition in several computational
benchmark problems. Novel equilibration of nonconsistency residuals
and novel conforming averaging error estimators win the competition
for Crouzeix-Raviart nonconforming finite element methods. Further-
more, accurate error control is slightly more expensive but pays off in
all applications under consideration while adaptive mesh-refinement is
sufficiently pleasant as accurate when based on explicit residual-based
error estimates.
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1. Introduction

A posteriori finite element error control for second-order elliptic boundary
value problems involves the computation of guaranteed upper bounds of some
residual Res in the dual H−1(Ω) of H1

0 (Ω) with respect to the dual norm.
The majority of applications in computational PDEs [19, 20] applies to the
residual

Res(v) =
∫

Ω

(fv − σh ·Dv) dx

with some given Lebesgue integrable functions f and σh. Traditional equili-
bration techniques compute some q ∈ H(div,Ω) such that (via an integration
by parts) the residual becomes

Res(v) =
∫

Ω

(f + div q)v dx+
∫

Ω

(q − σh) ·Dv dx

and leads to the error estimate

|||Res|||? := sup
v∈H1

0 (Ω)

Res(v)/|||v||| ≤ η(q) := |||f + div q|||? + ‖q − σh‖L2(Ω).

This paper concentrates on three model problems to support the obver-
vation of published and ongoing error estimator competitions [11, 22, 24, 23]
that accurate error control is possible with efficiency between 1 and 2. Sec-
tion 2 introduces the setting for the Poisson model problem and Section 3
recalls the five classes of error estimators from Table 1 to control |||Res|||? .

Table 1. Classes of a posteriori error estimators used in this paper.

No Classes of error estimators Class representatives
1 explicit residual-based ηR

2 averaging ηMP1, ηA1

3 equilibration ηB, ηMFEM, ηLW, ηEQL

4 least-square ηLS

5 localisation ηCF

Subsection 4.1 explains our adaptive mesh-refinement algorithm. In this
paper the adaptive mesh-refinement is driven by local error estimator con-
tributions from any estimator from Table 1 to observe that mesh refinement
with the standard residual-based error estimator ηR is suitable and does not
need to be replaced by any other marking strategy.

Section 5 deals with nonconforming Crouzeix-Raviart approximations
uCR for the Poisson model problem. The Helmholtz decomposition allows a
split of the error in the broken energy norm into

|||e|||2NC ≤ η2 + |||ResNC|||2? .

The first term η on the right-hand side involves contributions of the right-
hand side f and is directly computable (up to quadrature errors). The second
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term in the upper error bound is the dual norm of some residual ResNC that
enjoys Galerkin orthogonality properties,

|||ResNC|||? = min
v∈H1(Ω)

v=uD on ∂Ω

‖∇NCuCR −∇v‖L2(Ω).

Upper bounds of |||ResNC|||? are computed by the error estimators of Table 1
or by the design of some v ∈ H1(Ω) with Dirichlet data v = uD along ∂Ω.

Section 6 extends applications to obstacle problems with affine obstacles
by introduction of some auxiliary Poisson problem after [12].

2. Model Poisson problem

This section specifies the setting in the Poisson model problem.

2.1. Discrete problem

Given a bounded Lipschitz domain Ω and right-hand side f ∈ L2(Ω), the
Poisson model problem seeks the exact solution u ∈ H1(Ω) with u = 0 along
∂Ω and

−∆u = f in Ω.

Given a regular triangulation T of Ω ⊆ R2 into triangles with edges E , nodes
N , and free nodes K, let Pk(T ) denote the polynomials of degree ≤ k on
T ∈ T and

Pk(T ) := {vh ∈ L2(Ω) | ∀T ∈ T , vh|T ∈ Pk(T )}.
The first-order Courant finite element method computes the discrete solution
uh ∈ V (T ) := P1(T ) ∩ C0(Ω) with gradient σh := ∇uh as∫

Ω

∇uh · ∇vh dx =
∫

Ω

fvh dx for all vh ∈ V (T ). (2.1)

2.2. Residual

The related residual Res ∈ V ? is a linear and bounded functional

Res(v) :=
∫

Ω

fv dx−
∫

Ω

σh · ∇v dx

for the Sobolev functions v in the Hilbert space V := H1
0 (Ω) endowed with

the (semi-) norm |||·||| := ‖∇·‖L2(Ω). It is clear from the Riesz representation
theorem that the energy norm |||e||| of the error e := u− uh equals the norm
of |||Res|||? of the residual Res (cf., e.g., [15, Section 5.1.2, p. 86] and [20,
Section 3.3]). A posteriori equilibration error estimators derive computable
upper bounds of |||Res|||? through the introduction of some equilibrated q ∈
H(div,Ω). An integration by parts shows

Res(v) =
∫

Ω

(f + div q)v dx+
∫

Ω

(q − σh) · ∇v dx

and therefore leads to

|||Res|||? ≤ |||f + div q|||? + ‖q − σh‖L2(Ω).
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The equilibration error estimator of Braess [13, 26] is one modern example
for a proper choice of q in RT0(T ) ⊆ H(div,Ω),

RT0(T ) :=
{

q(x) = aT x +
(
bT , cT

)
∈ H(div,Ω) | aT , bT , cT ∈ P0(T )

}
.

Earlier examples of Ladeveze [29, 3] and [21] also provide a source of a
posteriori error estimators compared in [11, 22]. If the local problems therein
are solved exactly, they also yield guaranteed upper bounds. It is unrealistic
to assume an exact solve of those local problems in practise and so the dis-
played numbers in [21, 11, 22] are only lower bounds for the guaranteed upper
bounds. This fundamental difficulty is circumvented by modern equilibration
error estimators, like the ones of Braess and Luce-Wohlmuth.

2.3. Inhomogenous Dirichlet boundary conditions

In case of inhomogenous boundary conditions u = uD along the boundary
edges E(∂Ω) := {E ∈ E | E ⊂ ∂Ω}, the discrete solution uh satisfies uh =
IuD :=

∑
z∈N uD(z)ϕz. Since e = u−uh = uD−IuD /∈ H1

0 (Ω), the equation
|||e||| = |||Res|||? does not hold.

Theorem 2.1. Assume that uD ∈ H1(Ω) ∩ C(Ω) satisfies uD ∈ H2(E) for
all E ∈ E(∂Ω). Let ∂2

EuD/∂s2 denote the edgewise second partial derivative
of uD along ∂Ω. Then there exists wD ∈ H1(Ω) and some constant Cγ . 1
(which depends only on the interior angles of T ) with

wD|∂Ω = uD|∂Ω − IuD|∂Ω,

supp(wD) ⊂
⋃
{T ∈ T | T ∩ ∂Ω 6= ∅},

‖wD‖L∞(Ω) = ‖uD − IuD‖L∞(∂Ω),

|||wD||| ≤ Cγ‖h3/2
E ∂2

EuD/∂s2‖L2(∂Ω).

Furthermore it holds

|||e|||2 ≤ |||Res|||2? + |||wD|||2.

Proof. For the proof of the existence of wD see [9]. For the proof of the last
equation, assume the optimal w ∈ H1(Ω) with w|∂Ω = u|∂Ω − Iu|∂Ω and
div∇w ≡ 0. Then, it holds the orthogonality from [9],

|||e|||2 = |||e− w|||2 + |||w|||2 ≤ |||Res|||2? + |||w|||2 ≤ |||Res|||2? + |||wD|||2.
This concludes the proof. �

Remark 2.2. More explicit calculations in [24] show Cγ ≤ 0.7043 for trian-
gulations with right isosceles triangles. However, for the numerical examples
in this paper, we use Cγ = 1.

3. Five types of a posteriori error estimators

This section recalls some representatives of the five classes of error estimators
from Table 1.
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3.1. Notation

Consider a regular triangulation T of Ω ⊆ R2 into triangles with nodes N ,
free nodes K := N \∂Ω, edges E , Dirichlet boundary edges E(∂Ω) := {E ∈
E | E ⊆ ∂Ω}. Each node z in N is associated with its nodal basis functions
ϕz and node patch ωz := {ϕz > 0} with diameter hz := diam(ωz). Each
triangle T ∈ T is the closed convex hull of the set N (T ) of its vertices and
associated to its element patch ωT :=

⋃
z∈N (T ) ωz. The set E(T ) denotes the

edges of T in T and the set E(z) denotes all edges connected to z ∈ N .

3.2. Standard residual error estimator

The standard residual error estimator

ηR := ‖hT f‖L2(Ω) +

(∑
E∈E

hE‖[σh · νE ]E‖
2
L2(E)

)1/2

is a guaranteed upper bound of |||u− uh|||. In all our examples, T consists of
right isosceles triangles and then the generic reliability constant is even 1, i.e.
|||u− uh||| ≤ ηR [21]. Here, [σh · νE ]E denotes the jump of [σh · νE ]E across
E ∈ E , which is set to zero along any Dirichlet edge E ∈ E(∂Ω).

3.3. Minimal P1(T ; R2) averaging

The error estimator

ηMP1 := min
q∈P1(T ;R2)∩C(Ω;R2)

‖σh − q‖L2(Ω)

shows very accurate results for the Laplace equation, but only yields an upper
bound for |||u− uh||| up to some reliability constant Crel [18], which is not
displayed and expected to be too large to be competitive. Simple averagings
qA ∈ P1(T ; R2) compute approximations of ηMP1, e.g.

ηA1 := ‖σh − qA1‖L2(Ω) with qA1(z) =
∫

ωz

σh dx /|ωz| for all z ∈ N .

3.4. Least-square error estimator

An integration by parts yields, for any q ∈ H(div,Ω) and with elementwise
integral mean fT ∈ P0(T ), that∫

Ω

(∇u− σh) · ∇v dx

=
∫

Ω

(f − fT )v dx+
∫

Ω

(fT + div q)v dx+
∫

Ω

(σh − q) · ∇v dx .

After [33, 35, 22], this results in the error estimator

ηLS := min
q∈RT0(T )

CF ‖fT + div q‖L2(Ω) + ‖σh − q‖L2(Ω) + osc(f, T )/π

with Friedrichs’ constant CF := supv∈V \{0}‖v‖L2(Ω)/|||v|||, and oscillations

osc(f, T ) := ‖hT (f − fT )‖L2(Ω).
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Our interpretation of Repin’s variant (without the oscillation split) reads

ηREPIN := min
q∈RT0(T )

CF ‖f + div q‖L2(Ω) + ‖σh − q‖L2(Ω).

This paper studies the least-square variant ηLS rather than Repin’s majorant
ηREPIN for reasons discussed in [22, Subsection 4.2]. Supercloseness results
from [14] show that asymptotically the minimiser qLS equals the gradient
qMFEM of the mixed finite element method with lowest-order Raviart-Thomas
finite elements RT0(T ). In practise ηLS is approximated by a series of least-
square problems as in [37].

3.5. Luce-Wohlmuth error estimator

Luce and Wohlmuth [30] suggest to solve local problems around each node on
the dual triangulation T ? of T and compute some equilibrated quantity qLW.
The dual triangulation T ? connects each triangle center mid(T ), T ∈ T , with
the edge midpoints mid(E(T )) and nodes N (T ) and so divides each triangle
T ∈ T into 6 subtriangles of area |T |/6.

Consider some node z ∈ N (T ) and its nodal basis function ϕ?
z with the

fine patch ω?
z := {ϕ?

z > 0} of the dual triangulation T ? and its neighbouring
triangles T ?(z) := {T ? ∈ T ? | z ∈ N ?(T )}. Since σh ∈ P0(T ) is continuous
along ∂ω?

z ∩ T for any T ∈ T , q · ν = σh · ν ∈ P0(E?(∂ω?
z)) is well-defined on

the boundary edges E?(∂ω?
z) of ω?

z . With fT,z := −
∫

T
fϕz dx /|T ?| and the

local spaces

Q(T ?(z)) :=
{
τh ∈ RT0(T ?(z)) | div τh|T ? + fT,z = 0 on T ? ∈ T ? with

N ?(T ?) ∩N (T ) = {z} and q · ν = σh · ν along ∂ω?
z \ ∂Ω

}
,

the mixed finite element method solves

q|ω?
z

:= argmin
τh∈Q(T ?(z))

‖qh − τh‖L2(ω?
z ).

This choice of the divergence [25] differs from the original one of [30]
for an improved bound for |||f + div qLW|||? with explicitly known constants,
namely

|||f + div qLW|||? ≤ ‖hT (f + div qLW)‖L2(Ω)/π.

For details cf. [25]. The remaining degrees of freedom permit proper boundary
fluxes and∫

Ω

qLW · Curlϕ?
z dx =

∫
Ω

σh · Curlϕ?
z dx for all z ∈ N .

Here, Curl denotes the rotated gradient Curlv := (−∂v/∂x2, ∂v/∂x1). Then,
the Luce-Wohlmuth error estimator reads

ηLW := ‖σh − qLW‖L2(Ω) + ‖hT (f + div qLW)‖L2(Ω)/π.



State of the art of PDE error control 279

Figure 1. Triangulation T (thick lines), fine triangulation
T ? (thin lines) and ω?

z (lightgray) around the reentering cor-
ner of the L-shaped domain for the Luce-Wohlmuth error
estimator.

3.6. Equilibration error estimator by Braess

Braess [13, 26] designs patchwise broken Raviart-Thomas functions rz ∈
RT−1(T (z)) that satisfy

div rz|T = −
∫

T

fϕz dx /|T | for T ∈ T (z)

[rz · νE ]E = −[σh · νE ]E/2 on E ∈ E(z) ∩ E(∂Ω)

rz · ν = 0 along ∂ωz \ E(∂Ω).

The solution rz of these problems is unique up to multiplicatives of Curlϕz

and may be chosen such that ‖rz‖L2(ωz) is minimal. Eventually, the quantity
qB := σh +

∑
z∈N rz ∈ RT0(T ) satisfies

div qB|T = −
∫

T

f dx /|T |.

and allows the dual norm estimate

|||f + div qB|||? ≤ osc(f, T )/π.

The estimator reads

ηB := ‖σh − qB‖L2(Ω) + osc(f, T )/π.

3.7. Equilibration error estimator by Ladeveze

The fluxes qL designed by Ladeveze-Leguillon [29] act as Neumann boundary
conditions for local problems on each triangle, cf. also [3] for details. Given
the local function space

H1
D(T ) =

{
H1(T )/R if |T ∩ ΓD| = 0 and else
{v ∈ H1(T ) | v = 0 on ∂T ∩ ΓD},
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seek φT ∈ H1
D(T ) such that, for all v ∈ H1

D(T ),∫
T

φT · ∇v dx =
∫

T

fv dx−
∫

T

σh · ∇v dx+
∫

∂T

qL · νT v ds .

Then the error estimate reads

|||u− uh||| ≤ ηEQL :=

(∑
T∈T

‖∇φT ‖2L2(T )

)1/2

.

3.8. Carstensen-Funken error estimator

The partition of unity property of the nodal basis functions (ϕz | z ∈ N )
leads in [21] to the solution of local problems on node patches ωz: Seek
wz ∈ Wz := {v ∈ H1

loc(ωz) | ‖ϕ1/2
z ∇v‖L2(ωz) < ∞, v = 0 on ∂Ω ∩ ∂ωz} if

z ∈ N (∂Ω), or wz ∈ Wz := {v ∈ H1
loc(ωz) | ‖ϕ1/2

z ∇v‖L2(ωz) < ∞}/R if
z ∈ N (Ω), such that∫

ωz

ϕz∇wz · ∇v dx =
∫

ωz

ϕzfv dx−
∫

ωz

σh · ∇(ϕzv) dx for all v ∈ Wz.

Then the error estimator reads

|||u− uh||| ≤ ηCF :=

(∑
z∈N

‖ϕ1/2
z ∇wz‖2L2(ωz)

)1/2

.

In the computations for ηCF and ηEQL, all the local problems are solved with
fourth-order polynomials for simplicity. The computed values are regarded as
very good approximations. However, strictly speaking the values displayed for
ηEQL or ηCF are lower bounds of the guaranteed upper bounds.

4. Conforming finite element method

4.1. Uniform and adaptive mesh refinement

Automatic mesh refinement generates a sequence of meshes T 0, T 1, T 2... by
successive mesh refining using local refinement indicators derived from some
ηxyz from Section 3.

Algorithm 4.1. INPUT coarse mesh T 0. For any level ` = 0, 1, 2, . . . do
COMPUTE discrete solution u` on T ` with ndof := |N `(Ω)| degrees of free-
dom, error estimator ηxyz, efficiency indices EI := ηxyz(k)/|||e|||, and refine-
ment indicators

η`(T )2 = ηxyz(T )2 + ‖h3/2
E ∂2

EuD/∂s2‖2L2(∂T∩∂Ω).

MARK minimal set (for adaptive mesh-refinement) M` ⊆ T ` of elements
such that

1/2
∑

T∈T `

η`(T )2 ≤
∑

T∈M`

η`(T )2.
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(For uniform mesh-refinement set M` = T `.)
REFINE T ` by red -refinement of elements in M` and red-green-blue-
refinement of further elements to avoid hanging nodes and compute T `+1.
od

4.2. Numerical example on L-shaped domain

The first benchmark problem employs f ≡ 0 and inhomogenous Dirichlet
data uD of the exact solution

u(r, ϕ) = r2/3 sin(2ϕ/3)

on the L-shaped domain Ω = (−1, 1)2\([0, 1]× [−1, 0]). The problem involves
a typical corner singularity and shows an empirical convergence rate of 1/3
for uniform mesh refinement. This can be improved by adaptive refinement
as shown in Figure 4. All error estimators induce meshes with the optimal
empirical convergence rate 0.5.
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Figure 2. History of efficiency indices ηxyz/|||e||| of various
a posteriori error estimators ηxyz labelled xyz in the figure
as functions of the number of unknowns on uniform meshes
in Subsection 4.2.

Figures 2 and 3 display the efficiency indices for uniform and adaptive
mesh refinement. The optimal averaging ηMP1 turns out to be asymptotic
exact, but ηMP1 as well as ηA1 yield no guaranteed upper bound as the other
estimators. While ηR takes efficiency indices of almost 4, all other error esti-
mators arrive at efficiency indices below 1.7. The localisation error estimator
ηCF is very accurate with values about 1.35 and is only beaten by ηLW for
adaptive mesh refinement.
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Figure 3. History of efficiency indices ηxyz/|||e||| of various
a posteriori error estimators ηxyz labelled xyz in the figure
as functions of the number of unknowns on adaptive meshes
in Subsection 4.2.
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Figure 4. Convergence history of the energy errpr
|||e|||(ηxyz) for uniform and adaptive mesh refinement driven
by various a posteriori error estimators ηxyz as functions of
the number of unknowns in Subsection 4.2.

5. Nonconforming finite element method

This section deals with error control for noncoforming approximation for the
Poisson model problem.
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5.1. Discrete problem and notation

With the elementwise first-order polynomials P1(T ), the nonconforming
Crouzeix-Raviart finite element spaces read

CR1(T ) := {v ∈ P1(T ) | v is continuous at mid(E)},
CR1

0(T ) := {v ∈ CR1(T ) | ∀E ∈ E(∂Ω), v(mid(E)) = 0.}

The Crouzeix-Raviart finite elements form a subspaces of the broken
Sobolev functions H1(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ H1(T )} with
piecewise gradient (∇NCv)|T = ∇v|T for v ∈ H1(T ) and T ∈ T .

5.2. Error control via nonconforming residual

The error control dervied in [24] consists of two contributions. The first com-
ponent contains the right-hand side f and its elementwise oscillations,

osc(f, T ) := ‖hT (f − fT )‖L2(Ω),

with the piecewise integral mean fT and the piecewise constant mesh-size
hT , hT |T := hT for T ∈ T . It reads

η := ‖fT /2 (• −mid(T ))‖L2(Ω) + 1/π osc(f, T ). (5.1)

The second component derives from the residual defined, for any test function
v ∈ H1(Ω), by

ResNC(v) :=
∫

∂Ω

v ∂uD/∂s ds−
∫

Ω

∇NCuCR · Curl v dx .

Its dual norm reads

|||ResNC|||? := sup
v∈H1(Ω)
Curl v 6≡0

ResNC(v)/‖Curl v‖L2(Ω).

The Helmholtz decomposition allows a split of the error in the broken energy
norm

|||e|||2NC ≤ η2 + |||ResNC|||2? .

The dual norm |||ResNC|||? can be estimated with the error estimators from
Section 3 with the data f := 0 and σh := CurluCR and Neumann boundary
data g := ∂uD/∂s. On the other hand, there exists an alternative character-
isation of |||ResNC|||? ,

|||ResNC|||? = min
v∈H1(Ω)

v=uD on ∂Ω

|||uCR − v|||NC.

Any conforming interpolation v ∈ H1(Ω) with v = uD on ∂Ω gives an upper
bound for |||ResNC|||? .
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5.3. Interpolation after Ainsworth

This subsection introduces the interpolation operator after Ainsworth [1] that
designs some piecewise linear IAuCR ∈ H1

0 (Ω) with respect to the original
triangulation T .

(IAv) (z) :=

{
uD(z) if z ∈ N \K,∑

T∈T (z) uCR|T (z)/|T (z)| if z ∈ K .

The error estimator reads

µA := ‖∇NCuCR −∇(IAuCR)‖L2(Ω).

5.4. Modified interpolation operator

This subsection introduces an improved interpolation operator that designs
some piecewise linear IREDuCR ∈ H1

0 (Ω) with respect to the red refined
triangulation red(T ). The nodes of red(T ) consists of the nodes N and the
edge midpoints mid(E) of T . At the boundary the interpolation equals the
nodal interpolation of uD and on all edge midpoints it equals uCR.

(IREDv) (z) :=


uCR(z) for z ∈ mid(E) \mid(E(∂Ω)),
uD(z) for z ∈ (N ∪mid(E)) ∩ ∂Ω,

vz for z ∈ K .

z

P1 = P6

P2

P3P4

P5

Q1

Q2

Q3
Q4

Q5

T1

T2

T3

T4

T5

ω̂z

Figure 5. Interior patch

In this way, the interpolation equals uCR on all central subtriangles
like T4 in Figure 6 and it remains to determine the values vz at free nodes
z ∈ K. They may be chosen as in the design of IA, but we suggest to choose
them locally optimal as follows. Consider the node patch ω̂z with respect to
the red-refined triangulation as in Figure 5. Then minimise the contribution
‖∇NCuCR − ∇v)‖L2(ω̂z) under the side condition of the fixed values at the
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edge midpoints Qj of the adjacent edges. The value vz at z remains the only
degree of freedom in this local problem. The complete error estimator reads

P1

T1

T2

T4

T3

P2

T1

T2

T4

T3

P3

T1

T2

T4

T3 Q1

T1

T2

T4

T3

Q2

T1

T2

T4

T3

Q3

T1

T2

T4

T3

Figure 6. Central subtriangle T4 = conv{mid(E(T ))} in
red(T ) for T ∈ T .

µRED := ‖∇NCuCR −∇(IREDuCR)‖L2(Ω).

We distinguish between the optimal version µPMRED, where vz is chosen
patchwise minimal (PM) as described above, and µMARED with the subopti-
mal choice vz as in Subsection 5.3. This can be seen as a modification of IA

at the edge midpoints.

5.5. Optimal choices

The optimal v ∈ P1(T )∩C(Ω) is attained at the solution uC of the conform-
ing formulation of the Poisson problem, since the nodal basis functions are
included in CR1(T ) and hence∫

Ω

fv dx =
∫

Ω

∇NCuCR · ∇vC dx

=
∫

Ω

∇uC · ∇vC dx for all vC ∈ P1(T ) ∩H1
0 (Ω).

For comparison, we also compute the optimal vMP1RED ∈ P1(red(T ))∩C(Ω)
on the red-refined triangulation red(T ) and the optimal piecewise quadratic
vMP2 ∈ P2(T ) ∩ C(Ω). Note that they don’t have to equal the coresspond-
ing conforming solutions. To reduce the computational costs of vMP1RED one
might use IMAREDuCR as an initial guess for some iterative solver to draw
near the optimal value. We use a preconditioned conjugate gradients algo-
rithm and stop at the third iterate vMP1RED(3). For the preconditioner we
use the diagonal of the system matrix also known as Jacobi preconditioner.

5.6. Numerical example on L-shaped domain

Recall the data from the L-shaped problem from Section 4.2. Figures 7 and
8 show the efficiency indices of all estimators for uniform and adaptive mesh
refinement, respectively. They vary between 1.1 for ηMP2 and about 1.55 for
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ηA or ηB. The improved estimators ηMARED and ηPMRED perform signifi-
cantly better. Their overestimation decreases under 35 percent which is even
better than ηMP1 or ηLS. The estimator ηLW performs similar but slightly
worse compared to ηMARED. Figure 9 shows the convergence history of the
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the number of unknowns in Subsection 5.6.

energy error for the adaptive meshes. The quality of the adaptive meshes is
comparable for all error estimators.

6. Conforming obstacle problems

The unique exact weak solution u ∈ K of the obstacle problem inside the
closed and convex set of admissable functions,

K := {v ∈ H1(Ω) | v = 0 on ΓD and χ ≤ v a.e. in Ω} 6= ∅

satisfies ∫
Ω

∇u · ∇(u− v) dx ≤
∫

Ω

f(u− v) dx for all v ∈ K. (6.1)

6.1. Error control via auxiliary residual

After [12] and for a particular choice of Λh [23], the discrete solution of the
obstacle problem uh in

K(T ) := {vh ∈ P1(T ) ∩ C(Ω) | vh = 0 on ΓD and Iχ ≤ vh in Ω}

solves also the discrete version of the Poisson problem for w ∈ V with∫
Ω

∇w · ∇v dx =
∫

Ω

(f − Λh)v dx for all v ∈ V. (6.2)

The associated residual reads, for any v ∈ H1
0 (Ω),

ResAUX(v) :=
∫

Ω

(f − Λh)v dx−
∫

Ω

∇uh · ∇v dx .
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The energy norm difference |||w − uh||| = |||ResAUX|||? between uh and the
exact solution w of the Poisson problem (6.2) can be estimated by any a
posteriori error estimator from Section 3. In the conforming case χ ≤ Iχ, [23]
leads, for any a posteriori estimator η for |||w − uh|||, to the reliable global
upper bound (GUB) in the strict sense of

|||e||| ≤ GUB(η) := (η + |||Λh − JΛh|||?) /2

+

√∫
Ω

(χ− uh)JΛh dx+(η + |||Λh − JΛh|||?)2.

The patchwise oscillations

osc(Λh,N ) :=

(∑
z∈N

h2
z min

fz∈R
‖Λh − fz‖2L2(ωz)

)1/2

are a computable bound for

|||Λh − JΛh|||? := sup
v∈V \{0}

∫
Ω

(Λh − JΛh)v dx/|||v||| . osc(Λh,N ).

The competition in [23] compares five classes of error estimators from Sec-
tion 3.

6.2. Numerical example with constant obstacle on L-shaped domain

This benchmark example from [8] mimics a typical corner singularity on
the L-shaped domain Ω = (−2, 2)2\([0, 2] × [−2, 0]) with constant obstacle
χ = Iχ ≡ 0 and homogeneous Dirichlet data uD ≡ 0 along ∂Ω, with the
right-hand side

f(r, ϕ) := −r2/3 sin(2ϕ/3)
(
7/3 (∂g/∂r)(r)/r + (∂2g/∂r2)(r)

)
−H(r − 5/4),

g(r) := max{0,min{1,−6s5 + 15s4 − 10s3 + 1}}

for s := 2(r − 1/4) and the Heaviside function H. The exact solution reads

u(r, ϕ) := r2/3g(r) sin(2ϕ/3).

The experimental convergence rate for uniform refinement is about 0.4
and adaptive refinement improves it to the optimal value 0.5 as depicted
in Figure 12. Figures 10 and 11 monitor the efficiency of the upper bounds
GUB(ηxyz). The efficiency of the bound associated to the standard residual-
based error estimator GUB(ηR) is between 7 and 9, while all other error
estimators allow efficiency indices below 2. As observed in a posteriori error
estimation for Poisson Problems in Section 4.2, the upper bound GUB(ηMP1)
almost arrives at effiency index 1.

7. Conclusions

The theoretical and practical results of this paper support the following ob-
servations.
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Figure 10. History of efficiency indices GUB(ηxyz)/|||e||| of
various a posteriori error estimators ηxyz labelled xyz in the
figure as functions of the number of unknowns on uniform
meshes in Subsection 6.2.
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7.1. Explicit error estimators sufficient for effective mesh design

Adaptive mesh refinement may be steered by simple ηR-based refinement
rules. It does not appear to be favourable to spend more computational time
for more laborious refinement rules if the data are (relatively) smooth.



290 Carsten Carstensen and Christian Merdon

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

0.44

1

0.5

1
 

 

(uniform)

R

MP1

A1

B

LW

MFEM

LS

CF

EQL

Figure 12. Convergence history of the energy errpr |||e|||
for uniform and adaptive mesh refinement driven by various
a posteriori error estimators ηxyz as functions of the number
of unknowns in Subsection 6.2.

7.2. Approximation of local problems

We found that fourth-order polynomials are sufficient enough to provide ac-
curate approximations of the guaranteed upper bounds. However, for full
reliability, this approximation error has to be controlled further. The nu-
merical experiments in this paper leave this out and therefore are not fully
reliable. This fundamental difficulty is circumvented by modern equilibration
error estimators like ηB and ηLW. This suffices to conclude, that the novel
techniques are superior to ηEQL or ηCF.

7.3. Robust error control via ηCF, ηLS, ηMFEM or ηLW

The estimators ηCF, ηLS or ηMFEM and ηLW seem to be the most robust esti-
mators and are recommended as a termination criterion for guaranteed error
control. The residual-based estimator ηR is too coarse and not appropriate
as termination criterion for guaranteed error control.

7.4. Accurate error control pays off

Averaging error estimators might be an very good exact error guess but they
do not guarantee to be an upper bound for the exact error to justify termina-
tion. On the other hand, relying only on cheap error estimators like ηR causes
overkill refinements and might be more expensive than the computation of
more laborious but sharper error estimators like the ones from Section 7.3.
That is why it is is favorable to have a variety of error estimators [11].

7.5. Recomandation in practise

In the end a combination of several error estimators is recommended, e.g., ηR

for generating refinement indicators and a simple averaging error estimator
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for the decision eighter to refine or to employ a fine error estimator to justify
termination or the need for further refinement.
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[40] Vohraĺık, M., Guaranteed and fully robust a posteriori error estimates for con-
forming discretizations of diffusion problems with discontinuous coefficients,
2009.

[41] Volker, J., A posteriori L2-error estimates for the nonconforming P1/P0-
finite element discretization of the Stokes equations, J. Comput. Appl. Math.,
96(1998), no. 2, 99-116.

Carsten Carstensen and Christian Merdon
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany

and

Department of Computational Science and Engineering
Yonsei University
120-749 Seoul, Korea
e-mail: cc@mathematik.hu-berlin.de
merdon@mathematik.hu-berlin.de
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On a quaternion valued Gaussian random
variables

George Chelidze and Nicholas Vakhania

Abstract. In the present note we show that Polya’s type characterization
theorem of Gaussian distributions does not hold. This happens because
in the linear form, constituted by the independent copies of quaternion
random variables, a part of the quaternion coefficients is written on the
right hand side and another part on the left side. This gives a negative
answer to the question posed in [1].

Mathematics Subject Classification (2010): 60B15.

Keywords: Quaternion random variables, Polya’s characterization theo-
rem.

The present note is a natural extension of paper [1] where the formula-
tion and proof of Polya’s theorem on the characterization of Gaussian random
variables with values in quaternion algebra is considered. We mean the fol-
lowing well-known theorem of Polya:
Theorem 1.1. Let ξ1, ξ2, ..., ξn, n ≥ 2 be i.i.d. random variables and
(a1, a2, ..., an) be nonzero reals that satisfy the condition

∑n
h=1 a2

h = 1. If
the sum

∑n
h=1 ahξh has the same distribution as ξ1, then ξ1 is a Gaussian

random variable.

If the random variable takes values in the quaternion algebra then three
types of Gaussian random variables are considered: real, complex and quater-
nion Gaussian random variables. Let us recall the definition of complex and
quaternion Gaussian random variables. The usual motivation for these defi-
nitions comes from the form of characteristic function of a centered Gaussian
random variable, see e.g. [2]. For the real case this is given as

exp{−1
2
t2Eξ2}, ∀t ∈ R.

The authors was supported by grant GNSF/ST09 99 3-104.
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For the complex (quaternion) case we would analogously expect the charac-
teristic function to be

exp{−c|q|2E|ξ|2|},∀q ∈ C, (∀q ∈ Q), c > 0. (1.1)

The characteristic function of a complex (quaternion) random variables
ξ is defined as

χξ(q) = E exp(iRe(ξq))

and if we want the characteristic function of centered complex (quater-
nion) Gaussian random variable to have the form (1.1), then the covari-
ance matrix of real two dimensional vector (ξ

′
, ξ

′′
) (four dimensional vector

(ξ
′
, ξ

′′
, ξ

′′′
, ξIV )) should be proportional to the identity matrix. Thus the co-

variance matrices of complex (quaternion) Gaussian random variables have
a quite specific form: they are proportional to unit matrices in R2 (in R4).
Therefore the coordinates of corresponding two dimension (four dimension)
random vector (ξ

′
, ξ

′′
), ((ξ

′
, ξ

′′
, ξ

′′′
, ξIV )) are mutually independent and have

the same variances.

In [3] there is formulated Polya’s theorem for the case of complex ran-
dom variables.

Theorem 1.2. Let ξ be a complex random variable, ξ1, ξ2, ..., ξn, n ≥ 2 be inde-
pendent copies of ξ and (a1, a2, ..., an) be nonzero complex numbers such that∑n

h=1 |ah|2 = 1 and at least one of them is not a real number. If
∑n

h=1 ahξh

has the same distribution as ξ, then ξ is a complex Gaussian random variable.

As we see in the complex case there is an additional condition on the
complex coefficients (a1, a2, ..., an), for the Theorem 1.2 to be true, namely
one of these coefficients should be essentially complex number. In [1] there is
shown that in the quaternion case, such additional condition on the quater-
nions (a1, a2, ..., an), plays condition which we call jointly quaternion system,
i.e. the following theorem is true.

Theorem 1.3. Let ξ be a quaternion random variable, ξ1, ξ2, ..., ξn, n ≥ 2, be
independent copies of ξ, and (a1, a2, ..., an) be nonzero quaternions that form
jointly quaternion system and satisfy the condition

∑n
h=1 |ah|2 = 1. Then,

if the sum η =
∑n

h=1 ahξh has the same distribution as ξ, ξ is quaternion
Gaussian random variable.

Now let us recall the definition of jointly quaternion system.

Definition 1.4. We say that a collection of n quaternions (a1, a2, ..., an), n ≥ 2,
constitutes a jointly quaternion system (JQS) if there does not exist imaginary
number ĩ = αi+βj +γk, with real α, β, γ, such that the following expressions
holds: a1 = a

′

1 + a
′′

1 ĩ, a2 = a
′

2 + a
′′

2 ĩ,..., an = a
′

n + a
′′

nĩ, a
′

i, a
′′

i ∈ R, 1 ≤ i ≤ n.

This definition has also another interpretation: let A ≡ (a1, a2, . . . , an),
n ≥ 2, be the collection of quaternions not necessarily different to each
other. Denote by A′′ ≡ (a′′1 , a′′2 , . . . , a′′n), A′′′ ≡ (a′′′1 , a′′′2 , . . . , a′′′n ), AIV ≡
(aIV

1 , aIV
2 , . . . , aIV

n ). We say that the collection A is JQS if at least one of the
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three pairs (A′′, A′′′), (A′′, AIV ) and (A′′′, AIV ) is a pair of non-collinear vec-
tors in Rn or, in other words, if the vectors A′′, A′′′ and AIV do not belong to
an one dimensional subspace of Rn. This name is motivated by the following
observation: Any (one) quaternion a = a′ + ia′′ + ja′′′ + kaIV can be written
as a complex number with respect to some imaginary unit ĩ, defined by the
following equality

ĩ =
ia′′ + ja′′′ + kaIV

(a′′2 + a′′′2 + aIV 2)1/2
.

Indeed, we have, ĩ2 = −1 and a = a′+ ĩ ã′′, where ã′′ = (a′′2+a′′′
2+aIV 2)1/2.

However, the collection of quaternions A ≡ (a1, a2, . . . , an), n ≥ 2, not always
can be expressed as complex numbers with the common imaginary unit. This
can be done if and only if A is not a JQS.

Since the multiplication of quaternions is not commutative, the following
natural question was posed at the end of [1]: is the Theorem 1.3 true if in
the linear form η =

∑n
h=1 ahξh, a part of the coefficients ah, 1 ≤ h ≤ n, are

written on the left side of ξh, 1 ≤ h ≤ n and other part on the right? The
following example shows that the answer of this question is negative, i.e. it
may happen that a1ξ1 + ξ2a2 has the same distribution as ξ, (a1, a2) form
the jointly quaternion system, but ξ is not a quaternion Gaussian random
variable.

Example 1.5. Let ξ = ξ
′
+ iξ

′′
+ jξ

′′ − kξ
′
, where ξ

′
and ξ

′′
are independent

standard Gaussian random variables. It is clear that the covariance matrix
of the random vector (ξ

′
, ξ

′′
, ξ

′′
,−ξ

′
) has the form

1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1


Hence, ξ is not a quaternion Gaussian random variable, however using
technique of characteristic functions it is not hard to show that ξ and
η = i√

2
ξ1 + ξ2

j√
2

are equally distributed, and ( i√
2
, j√

2
) is the jointly quater-

nion system.
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SLAD method for cancer registration

Ioana Chiorean, Liana Lupşa and Luciana Neamţiu

Abstract. The Logical Analysis of Data (LAD) is a method extensively
used in Medicine for data classification. The present paper contains
a slightly modified approach of this method, called Successive Logical
Analysis of Data (SLAD), more appropriate to the data registration in
oncology. The corresponding algorithm is also presented.
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1. Introduction

Cancer registration is a continuous and systematic process of collecting data
concerning the occurrence and characteristics of reportable neoplasm. The
tumors may be classified according to the International Classification of Dis-
eases for Oncology (ICD-O) and each of them has a corresponding code made
by six digits. The first four digits represent the specific histological term, the
fifth is the behavior code and the sixth is the grade of differentiation. The
book ICD-O contains also a dictionary of codes, where to every numerical
code corresponds a group-of-words-in-natural-language. For instance:

Code Description

8500/3 Infiltrating duct carcinoma

Infiltrating duct adeno carcinoma

Duct adeno carcinoma

Duct carcinoma

Duct cell carcinoma

Duct carcinoma

8480/3 Mucinous adeno carcinoma

Gelatinous adeno carcinoma

Mucous carcinoma

Colloidal carcinoma
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2. The data and the problem

The data

When a patient has a tumor, several investigations have to be done in order
to determine its nature. The information is written in a medical record, in
a ”free” language, which contains, medical terms and other terms (which we
call ”noisy” terms).

2.1. The problem

In order to process the medical information, for establishing the correspond-
ing code, firstly the information has to be cleaned of ”noisy” words, and so
the medical terms will be emphasized. Then, if the described tumor is malign,
the patient has to be introduced in the cancer register with the morpholog-
ical and topographical code for the tumor given according to the rules from
ICD-O. Due to the fact that the medical terms may be consider ”patterns”,
being recognized in the dictionary of codes, the method that we use in our
paper to determine the final code for a tumor is based on Logical Analysis of
Data (LAD), which is a new methodology used for detecting structural in-
formation about datasets. A specific characteristic of LAD is the detection of
logical patterns which determine and predict out of a group, a class satisfying
specific requirements (see [1], [2]).

Due to the fact that most of the observations in which we have to detect
some code, do not contain exactly the group of words which are coded in the
dictionary, but others, with the same meaning, we have to construct our own
patterns. For this purpose, as in [3], we use our own method, called Successive
LAD Method (SLAD), because we have to decide what code we have to give
to an observation which contains groups of words belonging to different codes.

3. Constructing the patterns sets

In what follows, we denote by
PG: the set of all expressions corresponding to all codes (all patterns)
WE: the set of all words which appear in the expressions from second column
of the dictionary.

The main idea of SLAD method consists in applying the classical LAD
method successively, introducing patterns of different levels. They are the
following:

1. The patterns of level 0- ”does the tumor exist”?
In order to answer to this question, we construct the sets:
PL + 0 = {exists, has, etc.},
PL− 0 = {does not exists, has not, etc.}.
2. The patterns of level 1, denoted by PL1, contains 1 key word from the

dictionary, and determine the fifth position in the morphological code (e.g.
metastatic, carcinoma, limphoma, etc.).

3. The patterns of level 2, level 3, etc., using SLAD.
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They define the four digits of the morphological code. For every pattern
p from PL1 we consider the set PL2(p) made by those patterns w�PG with
the property that the concatenated patterns pw or wp are to be found in the
dictionary.
Example. p = carcinoma from PL1;

w = duct from PG;
Then pw = duct carcinoma and has the code 8500/3 in the dictionary.

Therefore,
duct�PL2(carcinoma).

4. The algorithms

In [3], the algorithms for the following situations are given:
a) All the key words in the record appear exactly in the order given in

the pattern.
Example. Let’s consider the registration ”Invasive duct carcinoma with ex-
tensive papillary component”.
Step 1. Transform this observation in patterns (key words):

”Invasive duct carcinoma”
Step 2. Apply algorithm Pattern:

- looking in the dictionary for the existing patterns, we get:
8500/3, for duct carcinoma and,
8503/3, for intraductal papillary adeno carcinoma with invasion

Step 3. Computing the final code, as the maximum:
Code = max8500/3, 8503/3 = 8503/3.

Conclusion: Our registration ”Invasive duct carcinoma with extensive papil-
lary component” will have the code 8503/3.

b) The words from the record are the same with those in the patterns,
but their order differs
Example. Let us consider the registration: myxofibrosarcoma, which is not in
PG, but pattern fibromyxosarcoma is, to which corresponds the code 8811/3.
Then, the myxofibrosarcoma record will receive the code 8811/3.

In the present paper we present another approach, when:
c) The record contains key words which are not in the dictionary

Example. Let’s consider the record ”intrusive duct malignant with pap.
comp.”

The following key words are not in the dictionary: intrusive, ma-
lignant, pap., comp. Also, we have some shortenings: pap.=papillary;
comp.=component.

In order to solve the problem, we propose the following steps:
1. Generate lexicographic dictionary (SINO), which contains all the synonyms
2. Give weights, w(i) to every key word r(i) in the record, where w(i) ∈
{0, 0.1, . . . , 0.9, 1}, for i = 1 to n, according with how close is the word to a
pattern from the ICD-O dictionary
3. Compute WI = (w(1) + . . . + w(n))/n
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4. If WI >= 0.80, then the record enters in the dictionary, as another pattern,
and receives the corresponding morphological code; if not (i.e. WI < 0.80),
it has to go back to the physician. He will give the corresponding code and
the record, together with this code, will be memorized in the dictionary

Algorithm NewPattern;
Begin

Generate SINO;
For i = 1 to p do {take a record}

For j = 1 to n do {take a key word}
Lookfor in SINO;
Give Weight(w(j));

Endfor;
WI = (w(1) + . . . + w(n))/n;
If WI >= 0.80 then Memo in ICD-O;

Give code
else Return to Physician

Endif;
Endfor;

End.

Example. Let’s consider the registration ”intrusive duct malignant with pap.
comp.”

Key words: intrusive, duct, malignant, pap., comp. so n = 5
- suppose SINO is created, then we have:
Synonyms: intrusive = invasive;w(1) = 1
malignant = carcinoma;w(3) = 1
- comp. and pap. get w(4) = 0.3, w(5) = 0.7
- Compute WI = (1 + 1 + 1 + 0.3 + 0.7)/5 = 0.8
- Write in the ICD-O dictionary the new pattern
- Give the record the code 8503/3.
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On the Szasz-Inverse Beta operators

Cristina S. Cismaşiu

Abstract. In this paper, we consider a probabilitistic representation
of the Szasz-Inverse Beta operators, which are an mixed summation-
integral type operators, and we study some approximation properties
using probabilistic methods.
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1. Probabilistic representation of the Szasz-Inverse Beta
operators

In this paper we consider a probabilistic representation of the Szasz-Inverse
Beta operators and study some approximation properties, using probabilistic
methods. These operators were defined by (1.1)-(1.5) and were investigated
by Gupta V., Noor M. A., [11] and some iterative constructions of these
operators were studied recently by Finta Z., Govil N. K., Gupta V. [10]:

Lt(f ;x) = e−txf(0) +
∞∑

k=1

st,k(x)

∞∫
0

bt,k(u)f(u)du (1.1)

=

∞∫
0

Jt(u;x)f(u)du, x ≥ 0

with

st,k(x) = e−tx (tx)k

k!
, t > 0, x ≥ 0, k ∈ N ∪ {0} (1.2)

bt,k(u) =
1

B(k, t + 1)
· uk−1

(1 + u)t+k+1
, t > 0, u > 0, (1.3)
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B(k, t + 1) =

∞∫
0

uk−1

(1 + u)t+k+1
du (1.4)

being Inverse-Beta function

Jt(u;x) = e−txδ(u) +
∞∑

k=1

st,k(x)bt,k(u), (1.5)

δ(u) being the Dirac’s delta function, for which
∞∫
0

δ(u)f(u)du = f(0).

Using same ideea as Adell J. A., De la Cal J., [2], these operators can

be represented as the mean value of the random variable f

(
UN(tx)

Vt+1

)
which

has the probability density function Jt (·;x):

Lt(f ;x) = E [f (Ztx)] = E

[
f

(
UN(tx)

Vt+1

)]
, t > 0, x ≥ 0, (1.6)

with {N(t) : t ≥ 0} a standard Poisson process and {Ut : t ≥ 0}, {Vt : t ≥ 0}
two mutually independent Gamma processes defined all on the same proba-
bility space.

Note that, the Poisson process is a stochastic process starting at the
origin, having stationary independent increments with probability

P (N(t) = k) =
e−ttk

k!
, t ≥ 0, k ∈ N ∪ {0} (1.7)

and the Gamma process is a stochastic process starting at the origin
(U0 = 0, V0 = 0), having stationary independent increments and such that
for t > 0, Ut, Vt have the Gamma probability density function

ρt(u) =


ut−1e−u

Γ(t)
, t > 0, u > 0,

0 , u = 0
(1.8)

and without loss of generality [17] it can be assumed that {Ut : t ≥ 0},
{Vt : t ≥ 0} for each t > 0 has a.s. no decreasing right-continuous paths.

Indeed, in our paper [4] we showed that

E

[
f

(
UN(tx)

Vt+1

)]
=

∞∫
0

f(u)

 ∞∫
0

yρUN(tx)(yu)ρVt+1(y)dy

 du

=

∞∫
0

f(u)

 ∞∫
0

y
∞∑

k=0

e−tx(tx)k

k!
ρUk

(yu)ρVt+1(y)dy

 du

= e−txf(0) +

+
∞∑

k=1

st,k(x)

∞∫
0

f(u)

 ∞∫
0

yk+t

Γ(k)
· uk−1

Γ(t + 1)
e−y(u+1)dy

 du
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= e−txf(0) +

+
∞∑

k=1

st,k(x)

∞∫
0

f(u)


∞∫
0

(
v

u + 1

)k+t

Γ(k)
· uk−1

Γ(t + 1)
e−v dv

u + 1

 du

= e−txf(0) +

+
∞∑

k=1

st,k(x)

∞∫
0

f(u)
bt,k(u)

Γ(k + t + 1)

 ∞∫
0

vk+te−vdv

 du

= e−txf(0) +
∞∑

k=1

st,k(x)

∞∫
0

f(u)bt,k(u)du = Lt(f ;x).

On the other hand, the Szasz-Inverse Beta operators (1.1)-(1.5) can
be represented as the composition between Szasz-Mirakjan operators and
Inverse-Beta operators:

Lt(f ;x) = (St ◦ Tt) (f ;x) = St (Tt) (f ;x), t > 0, x ≥ 0 (1.9)

with the Szasz-Mirakjian operators

St(f ;x) = E

[
f

(
Ntx

t

)]
=

∞∑
k=0

st,k(x)f
(

k

t

)
with (1.2) (1.10)

and the Inverse-Beta operators or the Stancu operators of second kind [19]:

Tt(f ;x) = E [f (Wtx,t+1)]

=
1

B(tx, t + 1)

∞∫
0

utx−1

(1 + u)tx+t+1
f(u)du

=
∞∫
0

f(u)btx,t+1(u)du, t > 0, x > 0,

Tt(f ; 0) = f(0),

(1.11)

with Wtx,t+1 a random variable having the Inverse-Beta distribution with
probability density function as

btx,t+1(u) =
1

B(tx, t + 1)
· utx−1

(1 + u)tx+t+1
, t > 0, x > 0, u > 0 (1.12)

and B(tx, t + 1) =
∞∫
0

utx−1

(1 + u)tx+t+1
du, t > 0, x > 0.

It is known [ 16. IV.10.(3) ] that, if we consider two independent ran-
dom variables Utx, Vt+1 having Gamma distribution with probability density
function (1.8) for t := tx respectively t := t + 1, then the probability density

function of the ratio
Utx

Vt+1
is btx,t+1(u) =

∞∫
0

yρUtx
(uy)ρVt+1(y)dy a Inverse-

Beta probability density function as (1.12).
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Remark 1.1. The Inverse-Beta probability density function can be repre-
sented with a negative binomial probability for t > 0 and with convention(

t
k

)
= t(t−1)(t−2)···(t−k+1)

k! , t > 0, k ∈ N, we have

pt,k−1(u) =
(

t + k

k − 1

) (
u

1 + u

)k−1 (
1

1 + u

)t+2

(1.13)

=
(

t + k

k − 1

)
· uk−1

(1 + u)t+k+1
,

t > 0, u > 0, k ∈ N, for which
∞∫
0

pt,k−1(u)du =
1

t + 1
and so

bt,k(u) =
1

B(k, t + 1)
· uk−1

(1 + u)t+k+1
(1.14)

= (t + 1)pt,k−1(u) =
pt,k−1(u)

∞∫
0

pt,k−1(u)du

.

The probability density function (1.5) becomes the kernel:

Jt(u;x) = e−txδ(u) +
∞∑

k=1

st,k(x)bt,k(u)

= e−txδ(u) + (t + 1)
∞∑

k=1

st,k(x)pt,k−1(u)

and the operators (1.1) have a Durrmeyer-type construction

Lt(f ;x) = e−txf(0) +
∞∑

k=1

st,k(x)

∞∫
0

pt,k−1(u)f(u)du

∞∫
0

pt,k−1(u)du

(1.15)

= e−txf(0) + (t + 1)
∞∑

k=1

st,k(x)

∞∫
0

pt,k−1(u)f(u)du.

Using the representation (1.9) and the images of the test functions
ei(x) = xi, i = 0, 1, 2, x ≥ 0 with these operators (1.10) and (1.11)-(1.12), it
is easy to prove that

Lt (ei;x) = ei(x), i = 0, 1, x ≥ 0; (1.16)

Lt (e2;x) =
t

t− 1
x2 +

2
t− 1

x, t > 1, x ≥ 0;

Lt

(
e2 − x2;x

)
= Lt

(
(e1 − x)2 ;x

)
= D2

[
UN(tx)

Vt+1

]
= E

[(
UN(tx)

Vt+1
− x

)2
]

=
x(2 + x)

t− 1
, t > 1, x ≥ 0.
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2. Approximation properties of Szasz-Inverse Beta operators

In view of (1.9) because a part of the properties of Szasz-Inverse Beta opera-
tors depends on the same properties of Szasz-Mirakjan operators (1.10) and
of the Inverse-Beta operators (1.11)-(1.12), next time, using a probabilistic
method which was presented in [1], we studied [4] the monotonic convergence
under convexity for the Szasz-Inverse Beta operators (1.1)-(1.5):

Theorem 2.1. Let t > 1 be fixed. For the Szasz-Inverse Beta operators (1.1)-
(1.5) following:

1. Lt (ei;x) = ei(x), i = 0, 1;

2. Lt (e2;x) =
t

t− 1
x2 +

2
t− 1

x;

3. If f is a convex function on (0,+∞) then Ltf is convex too and in
addition, f is nondecreasing then for 1 < r < s, Lrf ≥ Lsf ≥ f ;

4. If f ∈ Lip(0,+∞)(C,α), α ∈ (0, 1] then Ltf ∈ Lip(0,+∞)(C,α), α ∈
(0, 1].

The proof is immediately [4] using the following two lemmas:

Lemma 2.2. If (Utx)t>0, x≥0, (Vt+1)t>0 are two independent Gamma processes
defined on the same probability space, then for all 1 < r ≤ s and x > 0 we
have

E

(
Urx

Vr+1
| Usx

Vs+1

)
=

Usx

Vs+1
a. s.

Lemma 2.3. Let t > 1 be fixed. For the Inverse-Beta operators (1.11)-(1.12)
following:

1. If f is a real convex function on (0,+∞) then Ttf is convex too.
2. If f is a nondecreasing and convex function on (0,+∞)and 1 < r < s

then Trf ≥ Tsf ≥ f .
3. If f ∈ Lip(0,+∞)(C,α), α ∈ (0, 1] then Ttf ∈ Lip(0,+∞)(C,α), α ∈ (0, 1]

Theorem 2.4. For any function f ∈ CB [0,+∞) and for any compact set
K ⊂ [0,+∞) we have lim

t→∞
Lt(f) = f uniform on K.

Proof. It follows from the Bohmann-Korovkin’s theorem and from Theorem
2.1. �

In the next theorem we give in 1 and 2 an approximation using the
modulus of continuity of f and of derivative f ′ and in 3 an asymptotic ap-
proximation of Voronovskaja type.

Theorem 2.5. 1. If f ∈ CB [0,+∞), then for every x ∈ [0,+∞)

|Lt(f ;x)− f(x)| ≤
(
1 +

√
x(2 + x)

)
ω

(
f ;

1√
t− 1

)
, t > 1.
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2. If f ′ ∈ CB [0,+∞), then for every x ∈ [0,+∞)

|Lt(f ;x)− f(x)| ≤

≤
√

x(2 + x)
t− 1

(
1 +

√
x(2 + x)

)
ω

(
f ′;

1√
t− 1

)
, t > 1.

3. If f is bounded on [0,+∞), differentiable in some neighborhood of x and
has second derivative f” for some x ∈ [0,+∞), then for t > 1

lim
t→∞

(t− 1) [Lt(f ;x)− f(x)] =
x(2 + x)

2
f ′′(x).

If f ∈ C2 [0,+∞), then the convergence is uniform on any compact
K ⊂ [0,+∞).

Proof. For 1 and 2 see (1.16) and a result of Shisha O., Mond B., [18] and
for 3 see Cismaşiu C. [3]. �

Remark 2.6. An interesting result which was obtained by De la Cal J., Car-
camo J., [7] for the operators of Bernstein-type which preserves the affine
functions, namely centered Bernstein-type operators, can be used for Szasz-
Inverse Beta operators (1.1)-(1.5) :

Theorem 2.7 (De la Cal J., Carcamo J., [7]). If L1 = L2 ◦ L3, where
L1, L2, L3 are centered Bernstein-type operators (Lf(x) = E [f (Yx)] , x ∈
I ⊂ R, L1(x) = E [Yx] = x) over the same interval I and if Lcx is
the set of all convex functions in the domain of the three operators, then
L1f ≥ L2f, f ∈ Lcx.

If, in addition L3 preserves convexity, then L1f ≥ L2f ∨ L3f, f ∈ Lcx

where f ∨ g denotes the maximum of f and g.

In view of this result and using the representation (1.9) for Szasz-
Inverse-Beta operators, we have Ltf ≥ Stf, f ∈ Lcx [0,+∞) and Ltf ≥
Stf∨Ttf, f ∈ Lcx [0,+∞), where St are the Szasz-Mirakjan operators (1.10),
Tt are the Inverse-Beta operators (1.11)-(1.12) and Lt are the Szasz-Inverse
Beta operators (1.1)-(1.5).

An estimate of the difference |Lt(f ;x)− St(f, x)| was given by us in [6]:

Theorem 2.8. If f ∈ CB [0,+∞) ∩ Lcx [0,+∞) then for every x ∈ [0,+∞)
and t > 1

|Lt(f ;x)− St(f, x)| ≤
(

1 + δ−2

(
x(x + 1)

t− 1
+

x

t(t− 1)

))
ω (f, δ)

with ω (f, δ) = sup {|f(x)− f(y)| : x, y ≥ 0, |x− y| ≤ δ} the modulus of con-
tinuity of f .

Using the probabilistic representation of these operators, result for t > 1,
δ > 0 ∣∣∣∣E [

f

(
UN(tx)

Vt+1

)]
− E

[
f

(
N(tx)

t

)]∣∣∣∣ ≤
≤

(
1 + δ−2

(
D2

(
Utx

Vt+1

)
+

1
t− 1

D2

(
N(tx)

t

)))
ω (f, δ)
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3. Approximating Phillips operators by modified Szasz-Inverse
Beta operators

Using the same ideea as De la Cal J. , Luquin F. [8] or as Adell J. A., De
la Cal J. [2] , we consider a new operator defined as the aid of Szasz-Inverse
Beta operator (1.1)-(1.5) for r > 0, t > 0, x ≥ 0:

Θr,t(f ;x) = Lrt

(
f(tu);

x

t

)
=

∞∫
0

1
t
Jrt

(u

t
;
x

t

)
f(u)du (3.1)

=

∞∫
0

1
t

[
e−rxδ

(u

t

)
+

∞∑
k=1

srt,k

(x

t

)
brt,k

(u

t

)]
f(u)du

= e−rxf(0) +
∞∑

k=1

sr,k(x)

∞∫
0

1
t
brt,k

(u

t

)
f(u)du

where f is any real function defined on [0,∞) such that Θr,t(|f |);x) < ∞.
We obtain for the operators (3.1) a Durrmeyer-type construction in a

similar way as for representation (1.15) with (1.14) for the Szasz-Inverse Beta
operators (1.1)-(1.5):

Θr,t(f ;x) = Lrt

(
f(tu);

x

t

)
=

∞∫
0

1
t
Jrt

(u

t
;
x

t

)
f(u)du (3.2)

=

∞∫
0

1
t

[
e−rxδ

(u

t

)
+

∞∑
k=1

srt,k

(x

t

)
brt,k

(u

t

)]
f(u)du

= e−rxf(0) +

+
(

r +
1
t

) ∞∑
k=1

sr,k(x)

∞∫
0

prt,k−1

(u

t

)
f(u)du.

and a probabilistic representation

Θr,t(f ;x) = Lrt

(
f(tu);

x

t

)
= E

[
f

(
t
UN(rx)

Vrt+1

)]
(3.3)

These operators Θr,t(f ; ·) approximate the Phillips’ operators [14] defined as

Pr(f ;x) = E

[
f

(
UN(rx)

r

)]
(3.4)

= e−rxf(0) + r
∞∑

k=1

sr,k(x)

∞∫
0

sr,k−1(u)f(u)du

=

∞∫
0

Hr(u;x)f(u)du, r > 0, x ≥ 0,
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with sr,k(x) as (1.2) ,

Hr(u;x) = e−rxδ(u) + r
∞∑

k=1

sr,k(x)sr,k−1(u) (3.5)

x ≥ 0, k ∈ N∪{0}, r > 0, δ the Dirac’s Delta function and for f : [0,∞) −→ R
any integrabile function, such that Pr(|f |;x) < ∞.

The Phillips operators (3.4)-(3.5) were studied by several authors (see
[9],[12], [13], [14]) and are considered “the genuine Durrmeyer-Szasz-Mirakjan
operators”. A generalization of these operators, using two continuous param-
eters was obtained by Păltănea R. [15].

Theorem 3.1. Let x ≥ 0, r, t, u > 0 be. If, f is a real bounded function on
[0,∞) then

|Θr,t(f ;x)− Pr(f ;x)| = |Lrt

(
f(tu);

x

t

)
− Pr(f ;x)|

≤ ‖f‖ · r2x2 + 4rx + 2
rt + 1

and we have uniform convergence as t → ∞ on every bounded interval
[0, a], a > 0.

Proof. We presented in detail the proof in [5] and we gave a bound
for the total variation distance between the probability distributions

of the random variables t
UN(rx)

Vrt+1
and

UN(rx)

r
, respectively between∣∣∣∣1t brt,k

(u

t

)
− rsr,k−1(u)

∣∣∣∣. �
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Approximation by max-product Lagrange
interpolation operators

Lucian Coroianu and Sorin G. Gal

Abstract. The aim of this note is to associate to the Lagrange interpola-
tory polynomials on various systems of nodes (including the equidistant
and the Jacobi nodes), continuous piecewise rational interpolatory op-
erators of the so-called max-product kind, uniformly convergent to the
function f , with Jackson-type rates of approximation.

Mathematics Subject Classification (2010): 41A05, 41A25, 41A35.

Keywords: Nonlinear Lagrange interpolation operators of max-product
kind, equidistant nodes, Jacobi nodes, degree of approximation.

1. Introduction

Based on the Open Problem 5.5.4, pp. 324-326 in [12], in a series of recent
papers we have introduced and studied the so-called max-product operators
attached to the Bernstein polynomials and to other linear Bernstein-type op-
erators, like those of Favard-Szász-Mirakjan operators (truncated and non-
truncated case), see [3], Baskakov operators (truncated and nontruncated
case), Meyer-König and Zeller operators, see [4] and Bleimann-Butzer-Hahn
operators, see [5].

For example, in the two recent papers [1], [2], starting from the linear
Bernstein operators

Bn(f)(x) =
n∑

k=0

bn,k(x)f(k/n),

where bn,k(x) =
(
n
k

)
xk(1− x)n−k, written in the equivalent form

Bn(f)(x) =
∑n

k=0 bn,k(x)f(k/n)∑n
k=0 bn,k(x)
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and then replacing the sum operator Σ by the maximum operator
∨

, one
obtains the nonlinear Bernstein operator of max-product kind

B(M)
n (f)(x) =

n∨
k=0

bn,k(x)f
(

k
n

)
n∨

k=0

bn,k(x)

,

where the notation
∨n

k=0 bn,k(x) means max{bn,k(x); k ∈ {0, ..., n}} and sim-
ilarly for the numerator.

For this max-product operator nice approximation and shape preserving
properties were found in e.g. [2].

In other two recent papers [9] and [10], this idea is applied to the La-
grange interpolation based on the Chebyshev nodes of second kind plus the
endpoints, and to the Hermite-Fejér interpolation based on the Chebyshev
nodes of first kind respectively, obtaining max-product interpolation opera-
tors which, in general, (for example, in the class of positive Lipschitz func-
tions) approximates essentially better than the corresponding Lagrange and
Hermite-Fejér interpolation polynomials.

The aim of the present paper is to use the same idea (but slightly modi-
fied to simplify the calculation) in the case of the linear interpolation polyno-
mials of Lagrange type on general nodes. Applications to Lagrange interpola-
tion based on equidistant knots and on the roots of orthogonal polynomials,
including the Jacobi roots, are obtained.

Thus, let I ⊂ R be a bounded or unbounded interval, f : I → R,
xn,k ∈ I, k ∈ {0, ..., n}, xn,0 < xn,1 < ... < xn,n, and consider the La-
grange interpolation polynomial of degree ≤ n attached to f and to the
nodes (xn,k)k,

Pn(f)(x) =
n∑

k=0

pn,k(x)f(xn,k),

with

pn,k(x) =
(x− xn,0)...(x− xn,k−1)(x− xn,k+1)...(x− xn,n)

(xn,k − xn,0)...(xn,k − xn,k−1)(xn,k − xn,k+1)...(xn,k − xn,n)
.

It is well known that
∑n

k=0 pn,k(x) = 1, for all x ∈ R, which allows us to
write

Pn(f)(x) =
∑n

k=0 pn,k(x)f(xn,k)∑n
k=0 pn,k(x)

, for all x ∈ I.

Therefore, its corresponding max-product interpolation operator will be ob-
tained by replacing the sum operator Σ, by the maximum operator

∨
, that

is

P (M)
n (f)(x) =

n∨
k=0

pn,k(x)f (xn,k)

n∨
k=0

pn,k(x)

, x ∈ I.
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By the property pn,k(xn,j) = 1 if k = j and pn,k(xn,j) = 0 if k 6= j, we
immediately obtain that P

(M)
n (f)(xn,j) = f(xn,j), for all j ∈ {0, ..., n}.

But because this max-product operator seems to present some difficul-
ties in calculations, in this paper we deal with a simplified max-product op-
erator with good approximation properties and which keeps the interpolation
properties, given by

L(M)
n (f)(x) =

n∨
k=0

ln,k(x)f (xn,k)

n∨
k=0

ln,k(x)

, x ∈ I,

where

ln,k(x) = cn,k · pn,k(x) = (−1)n−kΠn
i=0(x− xn,i)/(x− xn,k) (1.1)

and

cn,k = (xn,k − xn,0)...(xn,k − xn,k−1)(xn,k+1 − xn,k)...(xn,n − xn,k) > 0.

The plan of the paper goes as follows. In Section 2 we present some
auxiliary results while in Section 3 we prove the approximation results for
the max-product Lagrange interpolation operators on equidistant and Jacobi
nodes.

2. Auxiliary results

Let us define the space

CB+(I) = {f : I → R+; f is continuous and bounded on I}.

Remark. Firstly, it is clear that L
(M)
n (f)(x) is a well-defined function for

all x ∈ R and it is continuous on R. Indeed, by
∑n

k=0 pn,k(x) = 1, for all
x ∈ R, for any x there exists an index k ∈ {0, ..., n} such that pn,k(x) > 0
(which implies that

∨n
k=0 pn,k(x) > 0), because contrariwise would follow

that pn,k(x) ≤ 0 for all k and therefore we would obtain the contradiction∑n
k=0 pn,k(x) ≤ 0. Therefore, as ln,k(x) = cn,k ·pn,k(x) with cn,k > 0, for this

k we also have
∨n

k=0 ln,k(x) > 0.
Also, by the obvious property ln,k(xn,j) = cn,j > 0 if k = j and

ln,k(xn,j) = 0 if k 6= j, we immediately obtain that L
(M)
n (f)(xn,j) = f(xn,j),

for all j ∈ {0, ..., n}. In addition, clearly we have L
(M)
n (e0)(x) = 1, where

e0(x) = 1, for all x ∈ I.
In what follows we will see that for f ∈ CB+[a, b], the L

(M)
n (f) operator

fulfils similar properties with those of the B
(M)
n (f) operator in [1].

Lemma 2.1. Let I ⊂ R be a bounded or unbounded interval.
(i) Then L

(M)
n : CB+(I) → CB+(I), for all n ∈ N :

(ii) If f, g ∈ CB+(I) satisfy f ≤ g then L
(M)
n (f) ≤ L

(M)
n (g) for all

n ∈ N ;
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(iii) L
(M)
n (f + g) ≤ L

(M)
n (f) + L

(M)
n (g) for all f, g ∈ CB+(I) ;

(iv) For all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|L(M)
n (f)(x)− L(M)

n (g)(x)| ≤ L(M)
n (|f − g|)(x);

(v) L
(M)
n is positive homogenous, that is L

(M)
n (λf) = λL

(M)
n (f) for all

λ ≥ 0 and f ∈ CB+(I).

Proof. (i) The continuity of L
(M)
n (f)(x) on I follows from the previous Re-

mark. Also, by the formula of definition for L
(M)
n (f)(x), if f is bounded on

I, then it easily follows that L
(M)
n is bounded on I. It remains to prove the

positivity of L
(M)
n (f). So let f : I → R+ and fix x ∈ I. Reasoning exactly

as in the above Remark, there exists k ∈ {0, 1, ..., n} such that ln,k(x) > 0.
Therefore, denoting I+

n (x) = {k ∈ {0, 1, ..., n}; ln,k(x) > 0}, clearly I+
n (x) is

nonempty and for f ∈ CB+(I) we get that

L(M)
n (f)(x) =

∨
k∈I+

n (x) ln,k(x)f(xn,k)∨
k∈I+

n (x) ln,k(x)
≥ 0. (2.1)

(ii) Let f, g ∈ CB+(I) be with f ≤ g and fix x ∈ I. Since I+
n (x)

is independent of f and g, by (2.1) we immediately obtain L
(M)
n (f)(x) ≤

L
(M)
n (g)(x).

(iii) By (2.1) and by the sublinearity of
∨

, it is immediate.
(iv) Let f, g ∈ CB+(I). We have f = f − g + g ≤ |f − g|+ g, which by

(i) − (iii) successively implies L
(M)
n (f)(x) ≤ L

(M)
n (|f − g|)(x) + L

(M)
n (g)(x),

that is L
(M)
n (f)(x)− L

(M)
n (g)(x) ≤ L

(M)
n (|f − g|)(x).

Writing now g = g−f+f ≤ |f−g|+f and applying the above reasonings,
it follows L

(M)
n (g)(x)−L

(M)
n (f)(x) ≤ L

(M)
n (|f − g|)(x), which combined with

the above inequality gives |L(M)
n (f)(x)− L

(M)
n (g)(x)| ≤ L

(M)
n (|f − g|)(x).

(v) By (2.1) it is immediate. �

Remark. By (2.1) it is easy to see that instead of (ii), L
(M)
n satisfies the

stronger condition

Ln(f ∨ g)(x) = Ln(f)(x) ∨ Ln(g)(x), f, g ∈ CB+(I).

Corollary 2.2. For all f ∈ CB+(I), n ∈ N and x ∈ I we have

|f(x)− L(M)
n (f)(x)| ≤

[
1
δ
L(M)

n (ϕx)(x) + 1
]

ω1(f ; δ)I ,

where δ > 0, ϕx(t) = |t−x| for all t ∈ I, x ∈ I and ω1(f ; δ)I = max{|f(x)−
f(y)|;x, y ∈ I, |x− y| ≤ δ}.

Proof. Indeed, denoting e0(x) = 1, from the identity

L(M)
n (f)(x)−f(x) = [L(M)

n (f)(x)−f(x)·L(M)
n (e0)(x)]+f(x)[L(M)

n (e0)(x)−1],

by Lemma 2.1 it easily follows

|f(x)− L(M)
n (f)(x)| ≤
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|L(M)
n (f(x))(x)− L(M)

n (f(t))(x)|+ |f(x)| · |L(M)
n (e0)(x)− 1| ≤

L(M)
n (|f(t)− f(x)|)(x) + |f(x)| · |L(M)

n (e0)(x)− 1|.
Now, since for all t, x ∈ I we have

|f(t)− f(x)| ≤ ω1(f ; |t− x|)I ≤
[
1
δ
|t− x|+ 1

]
ω1(f ; δ)I ,

replacing above and taking into account that L
(M)
n (e0) = 1, for all x ∈ I, we

immediately obtain the estimate in the statement. �

Remark. The results in Lemma 2.1 and Corollary 2.2 remain valid if we
replace the space CB+(I) by the space

C+(I) = {f : I → R+; f is continuous on I}.

3. Approximation results for max-product Lagrange
interpolation

In this section we study the approximation properties of the max-product
operators L

(M)
n .

It is clear that for the approximation purpose, in the case of the operator
L

(M)
n , from Corollary 2.2 it is enough to obtain a good estimate for the

expression

En(x) := L(M)
n (ϕx)(x) =

n∨
k=0

ln,k(x) |xn,k − x|

n∨
k=0

ln,k(x)

=

∨
k∈I+

n (x) ln,k(x)|xn,k − x|∨
k∈I+

n (x) ln,k(x)
.

We present the first main approximation result.

Theorem 3.1. Given the nodes −∞ < a ≤ xn,0 < xn,1 < ... < xn,n ≤ b < ∞,
f ∈ C+([a, b]) and denoting

dn = max{xn,0 − a,max{xn,k+1 − xn,k; k = 0, 1, ..., n− 1}, b− xn,n},
we have

|L(M)
n (f)(x)− f(x)| ≤ 2ω1(f ; dn)[a,b], for all x ∈ [a, b],

where ω1(f ; δ)[a,b] = sup{|f(x)− f(y)|;x, y ∈ [a, b], |x− y| ≤ δ}.

Proof. Firstly, because L
(M)
n (f)(xn,j) = f(xn,j), for all j ∈ {0, 1, ..., n}, in

all calculations and estimations we may suppose that x 6= xn,j , for all j ∈
{0, 1, ..., n}.

Denote Ωn(x) = Πn
i=0(x− xn,i). It is easy to see that for any x ∈ [a, b],

with x 6= xn,j , j ∈ {0, 1, ..., n}, we can write

En(x) =

∨
k∈I+

n (x) ln,k(x)|xn,k − x|∨
k∈I+

n (x) ln,k(x)
=

|Ωn(x)|∨
k∈I+

n (x) ln,k(x)
=

1∨
k∈I+

n (x)
1

|x−xn,k|
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= min{|x− xn,k|; k ∈ I+
n (x)}.

Denote xn,−1 := a and xn,n+1 := b and fix j ∈ {−1, 0, ..., n, n + 1}.
We have three possibilities : 1) j = −1 ; 2) 0 ≤ j ≤ n − 1 ; 3) j = n. Let
x ∈ (xn,j , xn,j+1).

Case 1). We may suppose that a < xn,0. We have ln,0(x) > 0 for all
x ∈ [a, xn,0). Indeed, by using (1.1) we easily get that for x ∈ [a, xn,0), we have
sign[ln,0(x)] = (−1)n · (−1)n = +1. Therefore 0 ∈ I+

n (x), for all x ∈ [a, xn,0).
We also get |x− xn,0| ≤ |x− xn,k|, for all k ∈ I+

n (x) and x ∈ [a, xn,0), which
implies En(x) = |x− xn,0| = xn,0 − x ≤ xn,0 − a ≤ dn, for all x ∈ [a, xn,0).

Case 2). We have ln,j(x) > 0 and ln,j+1(x) > 0 for all x ∈ (xn,j , xn,j+1).
Indeed, by using (1.1) we easily get that for x ∈ (xn,j , xn,j+1), we have
sign[ln,j(x)] = (−1)n−j · (−1)n−j = +1 and sign[ln,j+1(x)] = (−1)n−j−1 ·
(−1)n−j−1 = +1. Therefore j, j + 1 ∈ I+

n (x), for all x ∈ (xn,j , xn,j+1).
We also get |x − xn,j | ≤ |x − xn,k| for all k ∈ {0.1, ..., j} and |x −

xn,j+1| ≤ |x − xn,k| for all k ∈ {j + 1, j + 2, ..., n}, which implies En(x) =
min{|x− xn,j |, |x− xn,j+1|} ≤ dn

2 , for all x ∈ (xn,j , xn,j+1).
Case 3). We may suppose that xn,n < b. We have ln,n(x) > 0 for all

x ∈ (xn,n, b]. Indeed, by using (1.1) we easily get that for x ∈ (xn,n, b], we have
sign[ln,n(x)] = (−1)0 · (−1)0 = +1. Therefore n ∈ I+

n (x), for all x ∈ (xn,0, b].
We also get |x− xn,n| ≤ |x− xn,k|, for all k ∈ I+

n (x) and x ∈ (xn,n, b], which
implies En(x) = |x− xn,n| = x− xn,n ≤ b− xn,n ≤ dn, for all x ∈ (xn,n, b].

Collecting all the above estimates and applying Corollary 2.2, the the-
orem is proved. �

Remark. The order of approximation in terms of ω1(f ; dn)[a,b] in Theorem
3.1 cannot be improved, in the sense that it easily follows from the proof of
Theorem 3.1, that the estimate En(x) ≤ O(dn) cannot be improved.

As applications we obtain the following two results.

Corollary 3.2. (i) Let I = [a, b], f ∈ C+([a, b]) and the equidistant knots in
I = [a, b], xn,k = a + kh, k ∈ {0, ..., n}, with h = (b− a)/n. Then we have

|L(M)
n (f)(x)− f(x)| ≤ 2ω1

(
f ;

b− a

n

)
[a,b]

, for all x ∈ [a, b].

(ii) Let w(x) be a weight function on the finite interval I = [a, b], sat-
isfying w(x) ≥ ν > 0, for all x ∈ [a, b]. If a < xn,0 < xn,1 < ... < xn,n < b
are the the zeros of the associated orthonormal polynomial pn+1(x) of degree
≤ n + 1, then for any f ∈ C+([a, b]) we have

|L(M)
n (f)(x)− f(x)| ≤ Cω1

(
f ;

ln(n + 1)
n + 1

)
[a,b]

, for all x ∈ [a, b],

where C > 0 is a constant depending only on ν, a and b.
(iii) Let w(x) be a weight function on the interval I = [−1, 1], satisfying

A ≤
√

1− x2w(x) ≤ B, for all x ∈ [−1, 1], where A,B > 0 are constants.
If −1 < xn,0 < xn,1 < ... < xn,n < 1 are the the zeros of the associated or-
thonormal polynomial pn+1(x) of degree ≤ n+1, then for any f ∈ C+([−1, 1])
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we have

|L(M)
n (f)(x)− f(x)| ≤ Cω1

(
f ;

1
n + 1

)
[−1,1]

, for all x ∈ [−1, 1],

where C > 0 is a constant depending only on A and B.
(iv) If − 1

2 ≤ α ≤ + 1
2 , − 1

2 ≤ β ≤ + 1
2 and −1 < xn,0 < xn,1 < ... <

xn,n < 1 are the the zeros of the associated orthonormal Jacobi polynomial
Jn+1(x) of degree ≤ n + 1, associated to the weight w(x) = (1− x)α(1 + x)β,
then for any f ∈ C+([−1, 1]) we have

|L(M)
n (f)(x)− f(x)| ≤ Cω1

(
f ;

1
n + 1

)
[−1,1]

, for all x ∈ [−1, 1],

where C > 0 is a constant depending only on α and β.

Proof. (i) It is immediate from Theorem 3.1 for dn = b−a
n .

(ii) It follows from Theorem 3.1, taking into account that by Theorem
6.11.1, pp. 112-113 in [18], we have dn ≤ c ln(n+1)

n+1 , with c > 0 depending on
ν, a and b only.

(iii) It follows from Theorem 3.1, taking into account that by Theorem
6.11.2, p. 114 in [18], we have dn ≤ c 1

n+1 , with c > 0 depending on A and B
only.

(iv) It follows from Theorem 3.1, taking into account that by Theorem
6.3.1, p. 125 in [18], we have dn ≤ c 1

n+1 , with c > 0 depending on α and β
only. �

It is of interest to have a more explicit form for the operator Ln(f)(x)
in Theorem 3.1. In this sense we present the following.

Theorem 3.3. Given f ∈ C+([a, b]) and the nodes −∞ < a ≤ xn,0 < xn,1 <

... < xn,n ≤ b < ∞, the max-product operator L
(M)
n (f)(x) is continuous on

[a, b], L
(M)
n (f)(xn,j) = f(xn,j) for all j ∈ {0, 1, ..., n} and we can write :

L(M)
n (f)(x) =

n∨
k=0

(−1)k x− xn,0

x− xn,k
f(xn,k), for x ∈ [a, xn,0),

L(M)
n (f)(x)

=
n∨

k=0

(−1)j−k x− xn,j

x− xn,k
f(xn,k), x ∈ (xn,j , (xn,j + xn,j+1)/2], j = 0 ,n − 1 ,

L(M)
n (f)(x)

=
n∨

k=0

(−1)j+1−k x− xn,j+1

x− xn,k
f(xn,k), x ∈ [(xn,j + xn,j+1)/2, xn,j+1),

j = 0 ,n − 1 ,
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L(M)
n (f)(x) =

n∨
k=0

(−1)n−k x− xn,n

x− xn,k
f(xn,k), for x ∈ (xn,n, b].

Proof. The continuity and the interpolation properties were already estab-
lished by the Remark from the beginning of Section 2. In order to get the rest
of the statement in the theorem, it suffices to prove the following formulas :∨

k∈I+
n (x)

ln,k(x) = ln,0(x), for x ∈ [a, xn,0),

∨
k∈I+

n (x)

ln,k(x) = ln,j(x), for x ∈ (xn,j , (xn,j + xn,j+1)/2], j = 0, n− 1,

∨
k∈I+

n (x)

ln,k(x) = ln,j+1(x), for x ∈ [(xn,j + xn,j+1)/2, xn,j+1), j = 0, n− 1,

∨
k∈I+

n (x)

ln,k(x) = ln,n(x), for x ∈ (xn,n, b].

We have three cases : 1) x ∈ [a, xn,0) ; 2) x ∈ (xn,j , xn,j+1), j ∈ {0, 1, ..., n−1}
; 3) x ∈ (xn,n, b].

Case 1). By the proof of Theorem 3.1, Case 1), we have ln,0(x) > 0, for
x ∈ [a, xn,0). Also, for any k ∈ I+

n (x), we have

ln,0(x)
ln,k(x)

=
xn,k − x

xn,0 − x
≥ 1.

Case 2). Let j ∈ {0, 1, ..., n− 1} be fixed. By the proof of Theorem 3.1,
Case 2), we have ln,j(x) > 0 and ln,j+1(x) > 0, for x ∈ (xn,j , xn,j+1). We
have

ln,j(x)
ln,j+1(x)

=
xn,j+1 − x

x− xn,j
.

Therefore, for any x ∈ (xn,j , (xn,j + xn,j+1)/2] we have ln,j(x) ≥ ln,j+1(x)
and for any x ∈ [(xn,j + xn,j+1)/2, xn,j+1) we have ln,j+1(x) ≥ ln,j(x).

Let k ∈ I+
n (x). If k ≤ j then

ln,j(x)
ln,k(x)

=
x− xn,k

x− xn,j
≥ 1

and if k ≥ j + 1 then

ln,j+1(x)
ln,k(x)

=
xn,k − x

xn,j+1 − x
≥ 1.

Case 3). By the proof of Theorem 3.1, Case 3), we have ln,n(x) > 0, for
x ∈ (xn,n, b]. Also, in this case, for any k ∈ I+

n (x), we have

ln,n(x)
ln,k(x)

=
x− xn,k

x− xn,n
≥ 1

and the theorem is proved. �



Approximation by max-product Lagrange interpolation operators 323

In what follows, would be of interest to compare the approximation re-
sults for the max-product Lagrange interpolation operators, with their linear
counterparts. Thus, in the case of Lagrange interpolatory polynomials, it is
well-known the fact that the divergence phenomenon is very pronounced.

In this sense, let us briefly recall some results (for details, see e.g.
Chapter 4 in the book Szabados-Vértesi [17]). Thus, Bernstein [6] proved
that for f(x) = |x|, the Lagrange interpolatory polynomials attached to
the system of equidistant nodes in [−1, 1] does not converge to f(x), for
any x ∈ (−1, 1) \ {0}. Grümwald [13] and independently Marcinkiewicz [15],
proved that when the system of interpolation nodes consists in the Cheby-
shev nodes of the first kind, there exists a function f ∈ C([−1, 1]) such
that for the attached Lagrange interpolatory polynomials Ln(f)(x), we have
lim supn→∞ |Ln(f)(x)| = +∞, for all x ∈ [−1, 1]. More general, a similar
result holds for the system of Jacobi nodes in [−1, 1] (see the book Szabados-
Vértesi [17], relationship (4.1), p. 126). For an arbitrary system of interpo-
lation nodes in [−1, 1], in Erdös-Vértesi [11] it is proved that there exists
a function f ∈ C([−1, 1]), such that for the attached Lagrange interpola-
tory polynomials we have lim supn→∞ |Ln(f)(x)| = +∞, almost everywhere
x ∈ [−1, 1]. By using the condensation singularities principle in Functional
Analysis, Muntean [16], Cobzas-Muntean [8] proved that for any system of
nodes in [0, 1], there exists a superdense subset X0 ⊂ C([0, 1]), such that for
any f ∈ X0, the subset of divergence points in [0, 1] for the attached Lagrange
interpolatory polynomials Ln(f)(x), is superdense in [0, 1] (a countable inter-
section of open subsets which, in addition, is infinite, uncountable and dense
subset, is called superdense).

In contrast with these results, the results in Theorem 3.1 and Corollary
3.2 show that for the max-product interpolatory operator L

(M)
n (f)(x), the

situation is essentially better, having uniform convergence with good rates of
convergence for some of the most important systems of interpolation nodes.

Let us note that on the other hand, in Hermann-Vértesi [14], starting
from a Lagrange interpolatory process (convergent or not)

Pn(f)(x) =
n∑

k=0

pn,k(x)f(xn,k),

with

pn,k(x) =
(x− xn,0)...(x− xn,k−1)(x− xn,k+1)...(x− xn,n)

(xn,k − xn,0)...(xn,k − xn,k−1)(xn,k − xn,k+1)...(xn,k − xn,n)
,

new linear interpolatory rational operators are constructed, of the form

Rn(f)(x) =
∑n

k=0 f(xn,k)|pn,k(x)|r∑n
k=0 f(xn,k)|pn,k(x)|r

,

are constructed, for which in the case when r > 2 and xn,k are some Jacobi
knots, the Jackson-type order of approximation

‖Rn(f)− f‖ ≤ Cω1(f ; 1/n),
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is obtained (see Theorem 3.2 in Hermann-Vértesi [14]).
In other words, for the linear rational construction Rn(f)(x), we get the

same order of approximation as for the interpolatory rational max-product
operator in Theorem 3.1 of the form

L(M)
n (f)(x) =

n∨
k=0

pn,k(x)f (xn,k)

n∨
k=0

pn,k(x)

.

Clearly that with respect to Rn(f)(x), the max-product rational operator
L

(M)
n (f)(x) present the advantage that it provides an estimate in terms of

ω1(f ; 1/n) for any kind of interpolatory systems of points, with the properties
that the distance between two consecutive nodes converges to zero as n →∞.

But still it is an interesting open problem, a comparison from computa-
tional point of view, between a rational max-product type product like that
given by Theorem 3.1 (that is of the form L

(M)
n (f)(x)) and the linear rational

one like Rn(f)(x) mentioned above.

References

[1] Bede, B., Gal, S.G., Approximation by nonlinear Bernstein and Favard-Szász-
Mirakjan operators of max-product kind, Journal of Concrete and Applicable
Mathematics, 8(2010), no. 2, 193–207.

[2] Bede, B., Coroianu, L., Gal, S.G., Approximation and shape preserving proper-
ties of the Bernstein operator of max-product kind, Intern. J. Math. Math. Sci.,
vol. 2009, Article ID 590589, 26 pages, 2009. doi:10.1155/2009/590589.

[3] Bede, B., Coroianu, L., Gal, S.G., Approximation by truncated Favard-Szasz-
Mirakjan operator of max-product kind, Demonstratio Mathematica (accepted
for publication).

[4] Bede, B., Coroianu, L., Gal, S.G., Approximation and shape preserving prop-
erties of the nonlinear Bleimann-Butzer-Hahn operators of max-product kind,
Comment. Math. Univ. Carol., 51(2010), no. 3, 397–415.

[5] Bede, B., Coroianu, L., Gal, S.G., Approximation and shape preserving prop-
erties of the nonlinear Meyer-Konig and Zeller operator of max-product kind,
Numerical Functional Analysis and Optimization, 31(2010), no. 3, 232–253.

[6] Bernstein, S., Quelques remarques sur l’interpolation, Math. Ann., 79(1918),
no. 1-2, 1–12.

[7] Borel, E., Sur l’interpolation, C.R. Acad. Sci. Paris, 124(1897), 673–676.

[8] Cobzas, S., Muntean, I., Condensation of singularities and divergence results
in approximation theory, J. Approx. Theory, 31(1980), no. 2, 138–153.

[9] Coroianu, L., Gal, S.G., Approximation by nonlinear Lagrange interpolation
operators of max-product kind on Chebyshev knots of second kind, J. Comp.
Anal. Appl., 2011 (accepted for publication).



Approximation by max-product Lagrange interpolation operators 325

[10] Coroianu, L., Gal, S.G., Approximation by nonlinear Hermite-Fejér interpola-
tion operators of max-product kind on Chebyshev nodes, Revue d’Anal. Numér.
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Almost greedy uniformly bounded
orthonormal bases in rearrangement
invariant Banach function spaces

Ana Danelia and Ekaterine Kapanadze

Abstract. We construct uniformly bounded orthogonal almost greedy
bases in rearrangement invariant Banach spaces.

Mathematics Subject Classification (2010): 41A17, 42C40.

Keywords: Greedy algorithm, non-linear approximation.

1. Introduction

Let {xn}n∈N be a semi-normalized basis in a Banach space X. This
means that {xn}n∈N is a Schauder basis and is semi-normalized i.e. 0 <
infn∈N ‖xn‖ ≤ supn∈N ‖xn‖ < ∞. For an element x ∈ X we define the error
of the best m−term approximation as follows

σm(x) = inf{‖x−
∑
n∈A

αnxn‖},

where the inf is taken over all subsets A ⊂ N of cardinality at most m and
all possible scalars αn. The main question in approximation theory concerns
the construction of efficient algorithms for m-term approximation. A com-
putationally efficient method to produce m-term approximations, which has
been widely investigated in recent years, is the so called greedy algorithm.
We define the greedy approximation of x =

∑
n anxn ∈ X as

Gm(x) =
∑
n∈A

anxn,

where A ⊂ N is any set of the cardinality m in such a way that |an| ≥ |al|
whenever n ∈ A and l∈A. We say that a semi-normalized basis {xn}n∈N is

The authors was supported by grant GNSF/ST08/3-393.
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greedy if there exists a constant C such that for all m = 1, 2, ... and all x ∈ X
we have

‖x− Gm(x)‖ ≤ Cσm(x).

This notion evolved in theory of non-linear approximation (see e.g.[1],[2]). A
result of Konyagin and Temlyakov [3] characterizes greedy bases in a Banach
spacesX as those which are unconditional and democratic, the latter meaning
that for some constant C > 0∥∥∥∥∥∑

α∈A

xα

‖xα‖

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
α∈A′

xα

‖xα‖

∥∥∥∥∥
holds for all finite sets of indices A, A′ ⊂ N with the same cardinality.

Wavelet systems are well known examples of greedy bases for many
function and distribution spaces. Indeed, Temlyakov showed in [1] that the
Haar system is greedy in the Lebesgye spaces Lp(Rn) for 1 < p <∞. When
wavelets have sufficient smoothness and decay, they are also greedy bases for
the more general Sobolev and Tribel-Lizorkin classes (see e.g.[4-5]).

A bounded Schauder basis for a Banach space X is called quasi-greedy
if there exists a constant C such that for x ∈ X ‖Gm(x)‖ ≤ C‖x‖ for m ≥ 1.

Wojtaszczyk [2] proved the following result which gives a more intuitive
interpretation of quasi-greedy bases.

Theorem 1.1. A bounded Schauder basis for a Banach space X is quasi-greedy
if and only if limm→∞ ‖x− Gm(x)‖X = 0 for every element x ∈ X.

A bounded Schauder basis for a Banach spaceX is almost greedy if there
exists a constant C such that for x ∈ X, ‖x−Gm(x)‖ ≤ C inf{‖x−

∑
n∈A <

x, xn > xn‖ : A ⊂ N, |A| = m}.
It was proved in [6] that a basis is almost greedy if and only if it is

quasi-greedy and democratic.
A Banach function space on [0, 1] is said to be a rearrangement invariant

(r.i) space provided f∗(t) ≤ g∗(t) for every t ∈ [0, 1] and g ∈ X imply f ∈ X
and ‖f‖X ≤ ‖g‖X , where f∗(t) denotes the decreasing rearrangement of |f |.

An r.i. space X with a norm ‖ · ‖X has the Fatou property if for any
increasing positive sequence fn in X with supn ‖fn‖X < ∞ we have that
supn fn ∈ X and ‖ supn fn‖X = supn ‖fn‖X . We will assume that the r.i.
space X has the Fatou property.

Given s > 0, the dilation operator σs given by

σsf(t) = f(t/s)χ[0,1](t/s), t ∈ [0, 1]

(χA denotes the characteristic function of a measurable set A ⊂ [0, 1]) is well
defined in every r.i. space X. The classical Boyd indices of X are defined by

pX = lim
s→∞

ln s
ln ‖σs‖X→X

, qX = lim
s→0+

ln s
ln ‖σs‖X→X

.

In general, 1 ≤ pX ≤ qX ≤ ∞.
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Any r.i. function space X on [0, 1] satisfies L∞([0, 1]) ⊂ X ⊂ L1([0, 1]).
If we have information on the Boyd indices of X then a stronger assertion is
valid. Indeed for every 1 ≤ p < pX and qX < q <∞, we have

Lq([0, 1]) ⊂ X ⊂ Lp([0, 1]) (1.1)

with the inclusion maps being continuous. LetX ′ denote the associate Banach
function space of X. Then X ′ is a r.i. Banach function space whose Boyd
indices are defined as 1/pX + 1/qX′ = 1 and 1/qX + 1/pX′ = 1 (see [7]).

M. Nielsen in [8] proved that there exists a uniformly bounded orthonor-
mal almost greedy basis in Lp([0, 1]), 1 < p < ∞, that shows that it is
not possible to extend Orlicz’s theorem, stating that there are no uniformly
bounded orthonormal unconditional bases for Lp([0, 1]), p 6= 2, to the class
of almost greedy bases.

The purpose of this paper is to study these problems in the r.i. function
spaces. Namely, the following theorem is obtained.

Theorem 1.2. Let X be a separable r.i. Banach function space on [0, 1] and
1 < pX ≤ qX < 2 or 2 < pX ≤ qX < ∞. Then there exists a uniformly
bounded orthogonal almost greedy basis in X.

2. Proof of theorem

Let us construct some system in the following way. For k = 1, 2, ..., we define
the 2k × 2k Olevskii matrix Ak = (a(k)

ij )2
k

i,j=1 by the following formulas

ak
i1 = 2−

k
2 for i = 1, 2, ..., 2k,

and for j = 2s + ν, with 1 ≤ ν ≤ 2s and s = 0, 1, ..., k − 1, we let

a
(k)
ij =


2

s−k
2 for (ν − 1)2k−s < i ≤ (2ν − 1)2k−s−1

−2
s−k
2 for (2ν − 1)2k−s−1 < i ≤ ν2k−s

0 otherwise.

It is known [16] that Ak are orthogonal matrices and there exists a finite
constant C such that for all i, k we have

2k∑
j=1

|a(k)
i,j | ≤ C.

Put Nk = 210k

and define Fk such that F0 = 0, F1 = N1 − 1 and
Fk − Fk−1 = Nk − 1, k = 1, 2, .... We consider the Walsh system W =
{Wn}∞n=0 on [0, 1]. We split W into two subsystems. The first subsystem
W1 = {rk}∞k=1 is Rademacher functions with their natural ordering. The
second subsystem W2 = {φk}∞k=1 is the collection of Walsh functions not in
W1 with the ordering from W. We now impose the ordering

φ1, r1, r2, ..., rF1 , φ2, rF1+1, ..., rF2 , φ3, rF2+1, ..., rF3 , φ4, ...
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The block Bk := {φk, rFk−1+1, ..., rFk
} has length Nk and we apply A10k

to
Bk to obtain a new orthonormal system {ψ(k)

i }Nk
i=1 given by

ψ
(k)
i =

φk√
Nk

+
Nk∑
j=2

a
(10k)
ij rFk−1+j−1.

The system ordered ψ
(1)
1 , ..., ψ

(1)
N1
, ψ

(2)
1 , ..., ψ

(2)
N2
, ... will be denoted by B =

{ψk}∞k=1. It is easy to verify that B is an orthonormal basis for L2 since each
matrix A10k

is orthogonal and it is uniformly bounded also.

Lemma 2.1. Let X be a r.i. Banach function space on [0, 1] and 1 < pX ≤
qX <∞. The system B = {ψk}∞k=1 is democratic in X with

‖
∑
k∈A

ψk‖X � |A| 12 .

Proof. Taking into account that fact that B‖ · ‖pX
≤ ‖ · ‖X ≤ C‖ · ‖qX

and
the estimate (see [8])

‖
∑
k∈A

ψk‖p � |A| 12 for any 1 < p <∞

we obtain our result. �

Lemma 2.2. (Khintchine’s inequality )Suppose that X is a r.i. Banach func-
tion space on [0, 1], 1 < pX ≤ qX <∞,and rk(t), k ≥ 1, are the Rademacher
functions. Then there exist A,B such that for any sequence {ak}k≥1,

A(
∑

k

|ak|2)
1
2 ≤ ‖

∑
k

akrk(t)‖X ≤ B(
∑

k

|ak|2)
1
2 .

Proof. It is known that (see [10]) for 1 ≤ p <∞ there exist Ap, Bp such that
for any sequence {ak}k≥1,

Ap(
∑

k

|ak|2)
1
2 ≤ ‖

∑
k

akrk(t)‖p ≤ Bp(
∑

k

|ak|2)
1
2 .

Taking into account that fact that B‖ · ‖qX
≤ ‖ · ‖X ≤ C‖ · ‖pX

and the
above inequality we obtain Lemma 2.2. �

Lemma 2.3. Suppose that X is a r.i. Banach function space on [0, 1], 1 <
pX ≤ qX < ∞, and rk(t), k ≥ 1, are the Rademacher functions. Then for
f ∈ X we have

(
∞∑

k=1

| < f, rk > |2) 1
2 ≤ C‖f‖X .

Proof. For any n ≥ 1 by the Hölder inequality and Khintchine’s inequality
we obtain∑n

k=1 | < f, rk > |2 =
∫ 1

0
f(x)(

∑n
k=1 rk(x) < f, rk >)dx ≤

2‖
∑n

k=1 < f, rk > rk‖X′‖f‖X ≤ C(
∑n

k=1 | < f, rk > |2)1/2‖f‖X .
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This implies

(
n∑

k=1

| < f, rk > |2) 1
2 ≤ B‖f‖X .

Now taking the limit when n→∞ we obtain our result. �

Lemma 2.4. Let X be a separable r.i. Banach function space on [0, 1] and
1 < pX ≤ qX <∞. Then the system B = {ψk}∞k=1 is a Schauder basis for X.

Proof. Notice that span(B) = span(W) by construction, so span(B) is dense
in X, since W is a Schauder basis for X (see [11]).

Let Sn(f) =
∑n

k=1 < f, ψk > ψk be the partial sum operator. We need
to prove that the family of operators {Sn}∞n=1 is uniformly bounded on X.
Let f ∈ L∞([0, 1]) ⊂ L2([0, 1]). For n ∈ N we can find L ≥ 1 and 1 ≤ m ≤ NL

such that

Sn(f) =
n∑

k=1

< f, ψk > ψk =
L−1∑
k=1

Nk∑
j=1

< f, ψ
(k)
j > ψ

(k)
j +

m∑
k=1

< f, ψ
(L)
k > ψ

(L)
k

:= T1 + T2.

Let us estimate T1. If L = 1 then T1 = 0, so we may assume L > 1. The
construction of B shows that T1 is the orthogonal projection of f onto

span
(
∪L−1

k=1 ∪
Nk
j=1 ψ

(k)
k

)
= span{{W0,W1, ...,WL−2} ∪ {rl0 , rl0+1, ..., rFL−1}},

with l0 = [log2(L)]. It follows that we can rewrite T1 as

T1 =
L−2∑
k=0

< f,Wk > Wk + PR(f),

where PR(f) is the orthogonal projection of f onto span{rl0 , rl0+1, ..., rFL−1}.
Thus, using the fact thatW is a Schauder basis forX, Khintchine’s inequality
and Lemma 2.3, we will have

‖T1‖X ≤ C‖f‖X .

Let us now estimate T2.

T2 =
m∑

k=1

< f, ψ
(L)
k > ψ

(L)
k

=
m∑

k=1

< f,
φL√
NL

+
NL∑
j=2

a
(10L)
kj rFL−1+j−1 >= (

φL√
NL

φL +
NL∑
t=2

a
(10L)
kt rFL−1+t−1)

=
m

NL
< f, φL > +

φL√
NL

NL∑
j=2

(
m∑

k=1

a
(10L)
kj ) < f, rFL−1+j−1 >

+ < f,
φL√
NL

>

NL∑
j=2

(
m∑

k=1

a
(10L)
kj )rFL−1+j−1
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+
m∑

k=1

[
NL∑
j=2

a
(10L)
kj < f, rFL−1+j−1 >][

NL∑
t=2

a
(10L)
kt rFL−1+t−1]

= G1 +G2 +G3 +G4.

Using that fact that 1 ≤ m ≤ NL and Hölder inequality we obtain
‖G1‖X ≤ C‖f‖X . Using the Hölder and Khintchine’s inequality, the fact that
matrices Ak are orthonormal and Lemma 2.3 we obtain ‖Gi‖X ≤ C‖f‖X i =
2, 3, 4 for some constant C independent of f ∈ L∞([0, 1]). Consequently for
some constant C independent on f ∈ L∞([0, 1]) we have ‖Snf‖X ≤ C‖f‖X .
Since L∞([0, 1]) is dense inX we deduce that {Sn}∞n=1 is a uniformly bounded
family of linear operators on X and the system B is a Schauder basis for X. �

Lemma 1.1 and Lemma 2.4 give the following

Theorem 2.5. Let X be a separable r.i. Banach function space on [0, 1] and
1 < pX ≤ qX < ∞. Then there exists a uniformly bounded orthonormal
democratic basis in X.

Lemma 2.6. Let X be a separable r.i. Banach function space on [0, 1] and
1 < pX ≤ qX < 2 or 2 < pX ≤ qX < ∞. Then the system B = {ψk}∞k=1 is a
quasi-greedy basis for X.

Proof. First we consider 2 < pX ≤ qX <∞ case. Let f ∈ X ⊂ L2. We have

f =
∞∑

i=1

< f, ψi > ψi,

with ‖{< f,ψi >}‖l2 ≤ ‖f‖2 ≤ C‖f‖X . We must prove that Gm(f) is con-
vergent in X.

Let us formally write

f =
∞∑

k=1

Nk∑
j=1

< f, ψ
(k)
j > ψ

(k)
j

=
∞∑

k=1

Nk∑
j=1

< f, ψ
(k)
j >

φk√
Nk

+
∞∑

k=1

Nk∑
i=1

< f, ψ
(k)
i >

Nk∑
j=2

a
(10k)
ij rFk−1+j−1

= S1 + S2.

Consider εk
i ⊂ {0, 1}. By Kchintchine’s inequality and the fact that

each A10k

is orthogonal we conclude that S2 converges unconditionally in X.
Indeed ∥∥∥∥∥∥

∞∑
k=1

Nk∑
j=2

(
Nk∑
i=1

εk
i < f, ψ

(k)
i > a

(10k)
ij

)
rFk−1+j−1

∥∥∥∥∥∥
X

≤ C

(∑
k

Nk∑
i=1

εk
i | < f, ψ

(k)
i > |2

)1/2

.
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The series defining S2 converges unconditionally, so it suffices to prove
that the series defining S1 converges in X when the coefficients < f,ψ> are
arranged in decreasing order. Let us consider the sets

Λ1
k =

{
j :

1
Nk

< | < f, ψ
(k)
j > | < 1

N
1/10
k

}

Λ2
k =

{
j : | < f, ψ

(k)
j > | ≤ 1

Nk

}
Λ3

k =

{
j : | < f, ψ

(k)
j > | ≥ 1

N
1/10
k

}
.

Then

S1 =
∞∑

k=1

∑
j∈Λ1

k

< f, ψ
(k)
j >

φk√
Nk

+
∞∑

k=1

∑
j∈Λ2

k

< f, ψ
(k)
j >

φk√
Nk

+

∞∑
k=1

∑
j∈Λ3

k

< f, ψ
(k)
j >

φk√
Nk

= T1 + T2 + T3.

By the construction of sets Λi
k we can conclude that the series defining

T2 and T3 converges absolutely in X.
From the definition of Λ1

k we get

| < f, ψ
(k)
i > | > 1

Nk
≥ 1

N
1/10
k+1

≥ | < f, ψ
(k+1)
j > |,

i ∈ Λ1
k, j ∈ Λ1

k+1, k = 1, 2, ... so when we arrange T1 by decreasing order the
rearrangement can only take place inside the blocks. From the estimate

∑
j∈Λ1

k

∥∥∥∥< f, ψ
(k)
j >

φk√
Nk

∥∥∥∥
X

≤

∑
j∈Λ1

k

| < f, ψ
(k)
j > |2

1/2

|Λ1
k|1\2√
Nk

, k ≥ 1

we obtain that the rearrangements inside blocks are well-behaved, and∑
j∈Λ1

k

∥∥∥∥< f, ψ
(k)
j >

φk√
Nk

∥∥∥∥
X

→ 0, k →∞.

We can conclude that Gm(f) is convergent in X.
Using Theorem 1.1 we conclude that B is a quasi-greedy basis and con-

sequently almost greedy in X.
Let 1 < pX ≤ qX < 2. By the results proved above it follows that the

system B is almost greedy in X. From [6, Theorem 5.4] we conclude that B is
quasi-greedy basis and consequently almost greedy in X This completes the
proof. �
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ness.

Mathematics Subject Classification (2010): 41A10, 41A25, 41A36.

Keywords: Voronovskaja theorem, q-integers, q-Bernstein operators, K-
functional, first order Ditzian-Totik modulus of smoothness.

1. Introduction

Let q > 0 and n be a non-negative integer. Then the q-integers [n]q and the
q-factorials [n]q! are defined by

[n]q =

 1 + q + . . . + qn−1, if n ≥ 1

0, if n = 0

and

[n]q! =

 [1]q[2]q . . . [n]q, if n ≥ 1

1, if n = 0.

For integers 0 ≤ k ≤ n, the q-binomial coefficients are defined by[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
.

The so-called q-Bernstein operators were introduced by G.M. Phillips
[3] and they are defined by Bn,q : C[0, 1] → C[0, 1],

(Bn,qf)(x) ≡ Bn,q(f, x) =
n∑

k=0

f

(
[k]q
[n]q

)
pn,k(q, x),
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where

pn,k(q, x) =
[

n
k

]
q

xk(1− x)(1− qx) . . . (1− qn−k−1x), x ∈ [0, 1],

and an empty product denotes 1. Note that for q = 1, we recover the classical
Bernstein operators. It is well-known that Voronovskaja’s theorem [5] deals
with the asymptotic behaviour of Bernstein operators. Then naturally raises
the following question: can we state a similar Voronovskaja theorem for the
q-Bernstein operators? The positive answer was given in [3] as follows.

Theorem 1.1. Let q = qn satisfy 0 < qn < 1 and let qn → 1 as n → ∞.
If f is bounded on [0, 1], differentiable in some neighborhood of x and has
second derivative f ′′(x) for some x ∈ [0, 1], then the rate of convergence of
the sequence {(Bn,qnf)(x)} is governed by

lim
n→∞

[n]qn
{(Bn,qn

f)(x)− f(x)} =
1
2
x(1− x)f ′′(x). (1.1)

In [4], the convergence (1.1) was given in quantitative form as follows.

Theorem 1.2. Let q = qn satisfy 0 < qn < 1 and let qn → 1 as n →∞. Then
for any f ∈ C2[0, 1] the following inequality holds∣∣∣ [n]qn {(Bn,qnf)(x)− f(x)} − 1

2
x(1− x)f ′′(x)

∣∣∣≤ c x(1− x)ω
(
f ′′, [n]−1/2

qn

)
,

where c is an absolute positive constant, x ∈ [0, 1], n = 1, 2, . . . and ω is the
first order modulus of continuity.

The goal of this note is to obtain new quantitative Voronovskaja type
theorems for the q-Bernstein operators. Our results will be formulated with
the aid of the first order Ditzian-Totik modulus of smoothness (see [1]), which
is given for f ∈ C[0, 1] by

ω1
ϕ(f, δ) = sup

0<h≤δ
‖∆1

hϕ(·)f(·)‖, (1.2)

where ϕ(x) =
√

x(1− x), x ∈ [0, 1], ‖ · ‖ is the uniform norm and

∆1
hϕ(x)f(x)=

f
(
x + 1

2hϕ(x)
)
− f

(
x− 1

2hϕ(x)
)
, if x± 1

2hϕ(x) ∈ [0, 1]

0, otherwise.

Further, the corresponding K−functional to (1.2) is defined by

K1,ϕ(f, δ) = inf{‖f − g‖+ δ‖ϕg′‖ : g ∈ W 1(ϕ)},

where W 1(ϕ) is the set of all g ∈ C[0, 1] such that g is absolutely continuous
on every interval [a, b] ⊂ [0, 1] and ‖ϕg′‖ < +∞. Then, in view of [1, p.11],
there exists C > 0 such that

K1,ϕ(f, δ) ≤ Cω1
ϕ(f, δ). (1.3)

Here we mention that throughout this paper C denotes a positive constant
independent of n and x, but it is not necessarily the same in different cases.
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2. Main result

Our result is the following.

Theorem 2.1. Let {qn} be a sequence such that 0 < qn < 1 and qn → 1 as
n →∞. Then for every f ∈ C2[0, 1] the following inequalities hold∣∣∣ [n]qn

{(Bn,qn
f)(x)− f(x)} − 1

2
x(1− x)f ′′(x)

∣∣∣
≤ C ω1

ϕ

(
f ′′,

√
[n]−1

qn x(1− x)
)

, (2.1)

∣∣∣ [n]qn
{(Bn,qn

f)(x)− f(x)} − 1
2
x(1− x)f ′′(x)

∣∣∣
≤ C

√
x(1− x)ω1

ϕ

(
f ′′,

√
[n]−1

qn

)
, (2.2)

where x ∈ [0, 1] and n = 1, 2, . . .

Proof. We recall some properties of the q-Bernstein operators (see [3]):

Bn,qn
(1, x) = 1, Bn,qn

(t, x) = x, Bn,qn
(t2, x) = x2 + [n]−1

qn
x(1− x) (2.3)

and Bn,qn are positive.
Let f ∈ C2[0, 1] be given and t, x ∈ [0, 1]. Then, by Taylor’s formula,

f(t) = f(x) + f ′(x)(t− x) +
∫ t

x
f ′′(u)(t− u) du. Hence

f(t)− f(x)− f ′(x)(t− x)− 1
2
f ′′(x)(t− x)2

=
∫ t

x

f ′′(u)(t− u) du−
∫ t

x

f ′′(x)(t− u) du

=
∫ t

x

[f ′′(u)− f ′′(x)](t− u) du.

In view of (2.3), we obtain∣∣∣ Bn,qn
(f, x)− f(x)− 1

2
[n]−1

qn
x(1− x)f ′′(x)

∣∣∣
=

∣∣∣ Bn,qn

(∫ t

x

[f ′′(u)− f ′′(x)] (t− u) du, x

) ∣∣∣
≤ Bn,qn

(∣∣∣ ∫ t

x

|f ′′(u)− f ′′(x)| |t− u| du
∣∣∣, x)

. (2.4)

In what follows we estimate
∣∣∣ ∫ t

x

|f ′′(u) − f ′′(x)| |t − u| du
∣∣∣ . For g ∈

W 1(ϕ), we have
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∣∣∣ ∫ t

x

|f ′′(u)− f ′′(x)| |t− u| du
∣∣∣

≤
∣∣∣ ∫ t

x

|f ′′(u)− g(u)| |t− u| du
∣∣∣ +

∣∣∣ ∫ t

x

|g(u)− g(x)| |t− u| du
∣∣∣

+
∣∣∣ ∫ t

x

|g(x)− f ′′(x)| |t− u| du
∣∣∣

≤ 2‖f ′′ − g‖(t− x)2+

∣∣∣∣∣
∫ t

x

∣∣∣ ∫ u

x

|g′(v)| dv
∣∣∣ |t− u| du

∣∣∣∣∣
≤ 2‖f ′′ − g‖(t− x)2 + ‖ϕg′‖

∣∣∣∣∣
∫ t

x

∣∣∣ ∫ u

x

dv

ϕ(v)

∣∣∣ |t− u| du

∣∣∣∣∣
≤ 2‖f ′′ − g‖(t− x)2

+ ‖ϕg′‖

∣∣∣∣∣
∫ t

x

∣∣∣ ∫ u

x

|u− x|1/2

ϕ(x)
dv

|u− v|1/2

∣∣∣ |t− u| du

∣∣∣∣∣
= 2‖f ′′ − g‖(t− x)2 + 2‖ϕg′‖ϕ−1(x)

∣∣∣∣∣
∫ t

x

|u− x| |t− u| du

∣∣∣∣∣
≤ 2‖f ′′ − g‖(t− x)2 + 2‖ϕg′‖ϕ−1(x)|t− x|3, (2.5)

where we have used the inequality
|u− v|
ϕ2(v)

≤ |u− x|
ϕ2(x)

, v is between u and x

(see [1, p. 141]).
On the other hand, by [2, p. 440], we have the following property: for

any m = 1, 2, . . . and 0 < q < 1, there exists a constant C(m) > 0 such that

|Bn,q((t− x)m, x)| ≤ C(m)
ϕ2(x)

[n]b(m+1)/2c
q

, (2.6)

where ϕ(x) =
√

x(1− x), x ∈ [0, 1] and bac is the integer part of a ≥ 0 (see
also [4, (4.2) and (5.6)]).

Now combining (2.4), (2.5), (2.6) and the Cauchy-Schwarz inequality,
we find that∣∣∣ (Bn,qn

f)(x)− f(x)− 1
2
[n]−1

qn
x(1− x)f ′′(x)

∣∣∣
≤ 2‖f ′′ − g‖Bn,qn

((t− x)2, x) + 2‖ϕg′‖ϕ−1(x) Bn,qn
(|t− x|3, x)

≤ 2‖f ′′ − g‖Bn,qn
((t− x)2, x)

+ 2‖ϕg′‖ϕ−1(x)(Bn,qn((t− x)2, x))1/2(Bn,qn((t− x)4, x))1/2

≤ C

{
‖f ′′ − g‖ 1

[n]qn

ϕ2(x) + ‖ϕg′‖ϕ−1(x)
ϕ(x)

[n]1/2
qn

ϕ(x)
[n]qn

}

=
C

[n]qn

{
‖f ′′ − g‖ϕ2(x) + ‖ϕg′‖ ϕ(x)

[n]1/2
qn

}
. (2.7)
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Because ϕ2(x) ≤ ϕ(x) ≤ 1, x ∈ [0, 1], we obtain, in view of (2.7),∣∣∣ [n]qn {(Bn,qnf)(x)− f(x)} − 1
2
x(1− x)f ′′(x)

∣∣∣
≤ C

{
‖f ′′ − g‖+

ϕ(x)

[n]1/2
qn

‖ϕg′‖

}
(2.8)

and ∣∣∣ [n]qn {(Bn,qnf)(x)− f(x)} − 1
2
x(1− x)f ′′(x)

∣∣∣
≤ C ϕ(x)

{
‖f ′′ − g‖+

1

[n]1/2
qn

‖ϕg′‖

}
, (2.9)

respectively. Taking the infimum on the right hand side of (2.8) and (2.9)
over all g ∈ W 1(ϕ), we obtain

∣∣∣ [n]qn
{(Bn,qn

f)(x)− f(x)}−1
2
x(1−x)f ′′(x)

∣∣∣≤


C K1,ϕ(f ′′, ϕ(x)[n]−1/2
qn )

C ϕ(x)K1,ϕ(f ′′, [n]−1/2
qn ).

Hence, by (1.3), we find the estimates (2.1) and (2.2). Thus the theorem is
proved. �
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Approximation by max-product type
nonlinear operators

Sorin G. Gal

Abstract. The purpose of this survey is to present some approximation
and shape preserving properties of the so-called nonlinear (more exactly
sublinear) and positive, max-product operators, constructed by starting
from any discrete linear approximation operators, obtained in a series
of recent papers jointly written with B. Bede and L. Coroianu. We will
present the main results for the max-product operators of: Bernstein-
type, Favard-Szász-Mirakjan-type, truncated Favard-Szász-Mirakjan-
type, Baskakov-type, truncated Baskakov-type, Meyer-König and Zeller-
type, Bleimann-Butzer-Hahn-type, Hermite-Fejér interpolation-type on
Chebyshev nodes of first kind, Lagrange interpolation-type on Cheby-
shev knots of second kind, Lagrange interpolation-type on arbitrary
knots, generalized sampling-type, sampling sinc-type, Cardaliaguet-
Euvrard neural network-type.

Mathematics Subject Classification (2010): 41A30, 41A25, 41A29, 41A20,
41A35, 41A05, 94A20, 94A12, 92B20.

Keywords: Degree of approximation, shape preserving properties, non-
linear max-product operators of: Berstein-type, Hermite-Fejér and
Lagrange interpolation-type (on Chebyshev, Jacobi and equidis-
tant nodes), Whittaker (sinc)-type, sampling-type, neural network
Cardaliaguet-Euvrard-type.

1. Introduction

The idea of construction of these operators goes back to a paper of Bede,
B., Nobuhara, H., Fodor, J. and Hirota K. [11], where it is applied to the
rational approximation operators of Shepard. How could be applied to any
linear and discrete Bernstein-type operator I have shown in my book Gal [18],
pp. 324-326, Open Problem 5.5.4, where also a general form for the estimate
in terms of the modulus of continuity is obtained.

The construction is based on a simple idea, exemplified for the case of
Bernstein polynomials, as follows.
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Let Bn(f)(x) =
∑n

k=0 pn,k(x)f(k/n) be with pn,k(x) =
(
n
k

)
xk(1−x)n−k

and f : [0, 1] → R. If in the obvious formula

Bn(f)(x) =
∑n

k=0 pn,k(x)f(k/n)∑n
k=0 pn,k(x)

, x ∈ [0, 1],

we replace the
∑

operator with the max operator denoted by
∨

, then we
obtain the so-called max-product Bernstein nonlinear (sublinear), piecewise
rational operator by (Gal [18], p. 325)

B(M)
n (f)(x) =

∨n
k=0 pn,k(x)f(k/n)∨n

k=0 pn,k(x)
, x ∈ [0, 1],

where recall
n∨

k=0

pn,k(x)f(k/n) := max
0≤k≤n

{pn,k(x)f(k/n)}.

The same idea of construction can be applied to any discrete linear
Bernstein-type operator or to any discrete linear interpolation operator, ob-
taining thus the corresponding nonlinear max-product operators (well-defined
because the denominators of these new operators always are strictly positive).

Surprisingly, the max-product operators do not lose the approximation
properties of the corresponding linear operators to which they are attached.
Moreover, for large classes of functions, they improve the order of approx-
imation to the Jackson-type order. The most important improvement is in
the case of interpolation (on any arbitrary system of nodes), when for the
whole class of continuous functions the Jackson order ω1(f ; 1/n) is achieved.
Also, the max-product Bernstein-type operators preserve the monotonicity
and the quasi-convexity of the functions.

In this survey we will present the main results for the max-product
operators of: Bernstein-type, Favard-Szász-Mirakjan-type, truncated Favard-
Szász-Mirakjan-type, Baskakov-type, truncated Baskakov-type, Meyer-König
and Zeller-type, Bleimann-Butzer-Hahn-type, Hermite-Fejér interpolation-
type on Chebyshev nodes of first kind, Lagrange interpolation-type on Cheby-
shev knots of second kind, Lagrange interpolation-type on arbitrary knots,
generalized sampling-type, sampling sinc-type, Cardaliaguet-Euvrard neural
network-type.

2. Approximation by max-product operators of Bernstein-type

Denote

C+[0, 1] = {f : [0, 1] → R+; f is continuous on [0, 1]}.

This section contains the approximation and shape preserving properties for
a series of important max-product Bernstein-type operators.
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Theorem 2.1. For f ∈ C+[0, 1], define the max-product Bernstein operator by
(Gal [18], p. 325)

B(M)
n (f)(x) =

∨n
k=0 pn,k(x)f(k/n)∨n

k=0 pn,k(x)
, x ∈ [0, 1].

(i) (Bede-Coroianu-Gal [4]) For any j ∈ {0, 1, ..., n} and x ∈ [ j
n+1 , j+1

n+1 ]
we have

B(M)
n (f)(x) =

n∨
k=0

fk,n,j(x).

where fk,n,j(x) = (n
k)

(n
j)

(
x

1−x

)k−j

f
(

k
n

)
. This form suggested the denomination

of ”max-product” operator for B
(M)
n (that is the maximum of the product of

the values of f on nodes with some rational functions).
(ii) (Bede-Coroianu-Gal [4]) B

(M)
n (f)(x) is a continuous, piecewise con-

vex and piecewise rational function on [0, 1].
(iii) (Bede-Coroianu-Gal [4]) For all x ∈ [0, 1], n ∈ N we have

|B(M)
n (f)(x)− f(x)| ≤ 12ω1

(
f ;

1√
n + 1

)
,

where
ω1(f ; δ) = sup{|f(x)− f(y)|;x, y ∈ [0, 1], |x− y| ≤ δ}.

(iv) (Coroianu-Gal [15]) There exists f ∈ C+[0, 1] such that the order
in (iii) is exactly 1/

√
n + 1, that is on the whole class C+[0, 1], the order in

(iii) cannot be improved.
(v) (Coroianu-Gal [15]) If f ∈ C+[0, 1] is strictly positive on [0, 1] then

‖B(M)
n (f)− f‖ ≤ Cf

{
n

[
ω1

(
f ;

1
n

)]2
+ ω1

(
f ;

1
n

)}
.

(vi) (Coroianu-Gal [15]) If f ∈ Lip1 then by (v)

‖B(M)
n (f)− f‖ ≤ Cf

n
, n ∈ N.

(vii) (Coroianu-Gal [15]) If f ∈ Lip α, then (v) gives the approximation
order 1/n2α−1, which for α ∈ (2/3, 1] is essentially better than the general
approximation order O[ω1(f ; 1/

√
n)] = O[1/nα/2] given by (iii).

(viii) (Bede-Coroianu-Gal [4]) If f : [0, 1] → R+ is a concave function
then we have the Jackson-type estimate∥∥∥B(M)

n (f)(x)− f(x)
∥∥∥ ≤ 2ω1

(
f ;

1
n

)
, n ∈ N.

(ix) (Coroianu-Gal [15]) If f ∈ C+[0, 1] is strictly positive then the
pointwise estimate holds

|B(M)
n (f)(x)− f(x)| ≤ 24ω1

(
f,

√
x(1− x)

n

)
,
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for all x ∈ [0, 1/(n + 1)] ∪ [n/(n + 1), 1], and∣∣∣B(M)
n (f)(x)− f(x)

∣∣∣ ≤ (nω1(f, 1
n )

mf
+ 4
)

ω1(f,
1
n

),

for all x ∈ [1/(n + 1), n/(n + 1)].
(x) (Bede-Coroianu-Gal [4]) f : [0, 1] → R is called quasi-convex (quasi-

concave) on [0, 1] if it satisfies the inequality (for all x, y, λ ∈ [0, 1])

f(λx + (1− λ)y) ≤ (≥) max{f(x), f(y)}.

B
(M)
n (f), n ∈ N, preserve the quasi-convexity, quasi-concavity and mono-

tonicity of f .
Remarks. 1) Comparing with the approximation by the Bernstein polynomi-
als, clearly for large classes of functions, B

(M)
n gives essentially better esti-

mates.
2) The problem of finding the saturation class for B

(M)
n is still open.

Clearly it is different from the saturation class of the Bernstein polynomials.
For f ∈ C+[0,∞) we define the Bleimann-Butzer-Hahn max-product

operators by (Gal [18], p. 326)

H(M)
n (f)(x) =

n∨
k=0

(
n
k

)
xkf

(
k

n+1−k

)
n∨

k=0

(
n
k

)
xk

.

Theorem 2.2. (Bede-Coroianu-Gal [8]) (i) If f : [0,∞) → R+ is continuous,
then for any n + 1 ≥ max{1 + 2x, 16x(1 + x)} we have

|H(M)
n (f)(x)− f(x)| ≤ 5ω1

(
f,

(1 + x)
3
2
√

x√
n + 1

)
, x ∈ [0,∞),

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ}.

(ii) If f : [0,∞) → R+ is a nondecreasing concave function, then for
x ∈ [0,∞), n ≥ 2x,∣∣∣H(M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1

(
f ;

(1 + x)2

n

)
.

(iii) H
(M)
n (f), n ∈ N, preserve the monotonicity and the quasi-convexity

of f .
For f ∈ C+[0, 1) we define the Meyer-König and Zeller max-product

operators by (Gal [18], p. 326)

Z(M)
n (f)(x) =

∨∞
k=0

(
n+k

k

)
xkf(k/(n + k))∨∞

k=0

(
n+k

k

)
xk

, x ∈ [0, 1), n ∈ N.



Approximation by max-product type nonlinear operators 345

Theorem 2.3. (Bede-Coroianu-Gal [5]) (i) If f : [0, 1] → R+ is continuous on
[0, 1], then for n ≥ 4 we have

|Z(M)
n (f)(x)− f(x)| ≤ 18ω1

(
f,

(1− x)
√

x√
n

)
, x ∈ [0, 1],

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0, 1], |x− y| ≤ δ}.

(ii) If f : [0, 1] → R+ is a continuous, nondecreasing concave function,
then ∣∣∣Z(M)

n (f)(x)− f(x)
∣∣∣ ≤ ω1

(
f ;

1
n

)
, x ∈ [0, 1], n ∈ N.

(iii) Z
(M)
n (f), n ∈ N, preserve the monotonicity and the quasi-convexity

of f .
For f ∈ C+[0,∞) and f ∈ C+[0, 1], we define the Favard-Szász-Mirakjan

max-product (Gal [18], p. 326) and the truncated Favard-Szász-Mirakjan
max-product operators (Bede-Coroianu-Gal [7]) by

F (M)
n (f)(x) =

∞∨
k=0

(nx)k

k! f
(

k
n

)
∞∨

k=0

(nx)k

k!

, x ∈ [0,∞), n ∈ N

and

T (M)
n (f)(x) =

n∨
k=0

(nx)k

k! f
(

k
n

)
n∨

k=0

(nx)k

k!

, x ∈ [0, 1], n ∈ N,

respectively.
Theorem 2.4. (Bede-Coroianu-Gal [10], [7]) (i)

|F (M)
n (f)(x)− f(x)| ≤ 8ω1

(
f,

√
x√
n

)
, n ∈ N, x ∈ [0,∞),

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ},

and

|T (M)
n (f)(x)− f(x)| ≤ 6ω1

(
f,

1√
n

)
, n ∈ N, x ∈ [0, 1].

(ii) If f : [0,∞) → R+ is a nondecreasing concave function on [0,∞),
then ∣∣∣F (M)

n (f)(x)− f(x)
∣∣∣ ≤ ω1

(
f ;

1
n

)
, x ∈ [0,∞), n ∈ N.

(iii) If f : [0, 1] → R+ is a nondecreasing concave function on [0, 1],
then

|T (M)
n (f)(x)− f(x)| ≤ 6ω1

(
f,

1
n

)
, n ∈ N, x ∈ [0, 1].
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(iv) F
(M)
n (f) and T

(M)
n (f), n ∈ N, preserve the monotonicity and the

quasi-convexity of f on the corresponding intervals.
For f ∈ C+[0,∞) and f ∈ C+[0, 1], we define Baskakov max-product

(Gal [18], p. 326) and the truncated Baskakov max-product operators (Bede-
Coroianu-Gal [9]) by, respectively

V (M)
n (f)(x) =

∞∨
k=0

bn,k(x)f
(

k
n

)
∞∨

k=0

bn,k(x)
,

and

U (M)
n (f)(x) =

n∨
k=0

bn,k(x)f
(

k
n

)
n∨

k=0

bn,k(x)
, x ∈ [0, 1], n ∈ N, n ≥ 1,

where bn,k(x) =
(
n+k−1

k

)
xk/(1 + x)n+k.

Theorem 2.5. (Bede-Coroianu-Gal [6], [9]) (i) For n ≥ 3 and x ∈ [0,∞) we
have

|V (M)
n (f)(x)− f(x)| ≤ 12ω1

(
f,

√
x(x + 1)
n− 1

)
,

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ}.

Also, for n ∈ N, n ≥ 2, x ∈ [0, 1] we have

|U (M)
n (f)(x)− f(x)| ≤ 24ω1

(
f,

1√
n + 1

)
,

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0, 1], |x− y| ≤ δ}.

(ii) If f : [0,∞) → [0,∞) is a nondecreasing concave function on [0,∞),
then for n ≥ 3, x ∈ [0,∞),∣∣∣V (M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1

(
f ;

x + 1
n− 1

)
.

(iii) If f : [0, 1] → [0,∞) is a nondecreasing concave function on [0, 1],
then ∣∣∣U (M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1

(
f ;

1
n

)
, x ∈ [0, 1], n ∈ N.

(iv) V
(M)
n (f) and U

(M)
n (f), n ∈ N, preserve the monotonicity and the

quasi-convexity of f on the corresponding intervals.
Remark. The estimates in Theorems 2.1, (iii), and Theorems 2.2-2.5, (i), were
obtained by using the following general result:
Theorem 2.6. (Gal [18], p. 326, Bede-Gal [3]) Let I ⊂ R be a bounded or
unbounded interval,

CB+(I) = {f : I → R+; f continuous and bounded on I},
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and Ln : CB+(I) → CB+(I), n ∈ N be a sequence of positive homogenous
operators, satisfying in addition the following properties:

(i) (Monotonicity) if f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g)
for all n ∈ N ;

(ii) (Sublinearity) Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
Then for all f ∈ CB+(I), n ∈ N and x ∈ I we have

|f(x)− Ln(f)(x)| ≤[
1
δ
Ln(ϕx)(x) + Ln(e0)(x)

]
ω1(f ; δ)I + f(x) · |Ln(e0)(x)− 1|,

where δ > 0, e0(t) = 1 for all t ∈ I, ϕx(t) = |t− x|.
Remarks. 1) The above Theorem 2.6 is a generalization of the classical one for
Positive Linear Operators, because the Positivity + Linearity imply the

Positivity + Sublinearity + Positivehomogeneity

+Monotonicity,

but the converse implication does not hold, taking into account that the max
product operators are counterexamples.

2) The Jackson-type estimates (for subclasses of functions) in Theorems
2.1-2.5, were obtained by direct reasonings.

3) The saturation results for the above max-product Bernstein-type
operators are interesting open questions.

3. Approximation by interpolation max-product operators

In this section we present the approximation properties of a series of max-
product interpolation operators.

Consider the Hermite-Fejér interpolation polynomial of degree ≤ 2n+1
attached to f : [−1, 1] → R and to the Chebyshev knots of first kind, xn,k =

cos
(

2(n−k)+1
2(n+1) π

)
,

H2n+1(f)(x) =
n∑

k=0

hn,k(x)f(xn,k),

with

hn,k(x) = (1− xxn,k) ·
(

Tn+1(x)
(n + 1)(x− xn,k)

)2

,

Tn+1(x) = cos[(n + 1)arccos(x)]-Chebyshev polynomials. Because

H2n+1(f)(x) =
∑n

k=0 hn,k(x)f(xn,k)∑n
k=0 hn,k(x)

,
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by the max-product method the corresponding max-product Hermite-Fejér
interpolation operator is

H
(M)
2n+1(f)(x) =

n∨
k=0

hn,k(x)f (xn,k)

n∨
k=0

hn,k(x)

.

Remark. We have H
(M)
2n+1(f)(xn,j) = f(xn,j), for all j ∈ {0, ..., n}.

Theorem 3.1. (Coroianu-Gal [14]) If f : [−1, 1] → R+ is continuous on [−1, 1]
then for all x ∈ [−1, 1] and n ∈ N

‖H(M)
2n+1(f)− f‖ ≤ 14ω1

(
f,

1
n + 1

)
.

Remark. For f ∈ Lip1[−1, 1], we have ‖H(M)
2n+1(f) − f‖ ≤ c

n+1 , while it is

well-known that ‖H2n+1(f)− f‖ ∼ ln(n+1)
n+1 .

Let now xn,k ∈ [−1, 1], k ∈ {1, ..., n}, be arbitrary and consider the
Lagrange interpolation polynomial of degree ≤ n − 1 attached to f and to
the nodes (xn,k)k,

Ln(f)(x) =
n∑

k=1

ln,k(x)f(xn,k),

with
ln,k(x) =

(x− xn,1)...(x− xn,k−1)(x− xn,k+1)...(x− xn,n)
(xn,k − xn,1)...(xn,k − xn,k−1)(xn,k − xn,k+1)...(xn,k − xn,n)

.

Because
∑n

k=1 ln,k(x) = 1, for all x ∈ R, we can write

Ln(f)(x) =
∑n

k=1 ln,k(x)f(xn,k)∑n
k=1 ln,k(x)

, for all x ∈ I.

Therefore, its corresponding max-product interpolation operator will be given
by

L(M)
n (f)(x) =

n∨
k=1

ln,k(x)f (xn,k)

n∨
k=1

ln,k(x)

, x ∈ I.

Remark. We have L
(M)
n (f)(xn,k) = f(xn,k), k = 1, ..., n.

Theorem 3.2. (Coroianu-Gal [12]) If xn,k = cos
(

n−k
n−1π

)
, k = 1, ..., n and

f : [−1, 1] → R+ then

‖L(M)
n (f)− f‖ ≤ 28ω1

(
f,

1
n− 1

)
, n ≥ 3.
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Remarks. 1) For the linear Lagrange polynomials we have the worst estimate

‖Ln(f)− f‖ ≤ Cω1

(
f ;

1
n

)
ln(n), n ∈ N.

2) The case of other kind of nodes (e.g. equidistant, or roots of orthog-
onal polynomials, etc) can be found in the joint paper [17] with L. Coroianu
published in this proceedings.

Now, consider the truncated Whittaker (sinc) series defined by

Wn(f)(x) =
n∑

k=0

sin(nx− kπ)
nx− kπ

· f
(

kπ

n

)
, x ∈ [0, π],

and the truncated max-product Whittaker operator given by

W (M)
n (f)(x) =

∨n
k=0

sin(nx−kπ)
nx−kπ · f

(
kπ
n

)∨n
k=0

sin(nx−kπ)
nx−kπ

, x ∈ [0, π]

Remark. Clearly, W
(M)
n (f)(jπ/n) = f(jπ/n), for all j ∈ {0, ..., n}.

Theorem 3.3. (Coroianu-Gal [16]) If f : [0, π] → R+ is continuous then

|W (M)
n (f)(x)− f(x)| ≤ 4ω1

(
f ;

1
n

)
[0,π]

, n ∈ N, x ∈ [0, π].

Remark. If limn→∞ ω1(f ; 1/n) ln(n) = 0 then Wn(f)(x) → f(x) uniformly
inside of (0, π) and pointwise in [0, π], while it is known that ‖Wn(1)− 1‖ ≥
1
3π , for all n ≥ 2.

4. Approximation by sampling and neural networks max-prod
operators

This section contains approximation results for some max-product sampling
operators and for some max-product neural networks operators.
Definition 4.1. (Bardaro-Butzer-Stens-Vinti [2]) A function ϕ ∈ C(R) is called
a time-limited kernel (for a sampling operator), if:

(i) There exist T0, T1 ∈ R, T0 < T1, such that ϕ(t) = 0 for all t 6∈ [T0, T1];
(ii)

∑∞
k=−∞ ϕ(u− k) = 1, for all u ∈ R.

If ϕ is a time-limited kernel and W > 0, then

SW,ϕ(f)(t) =
∞∑

k=−∞

f

(
k

W

)
ϕ(Wt− k), t ∈ R,

will be called a generalized sampling operator.
Taking into account Definition 4.1, (ii), we can write

SW,ϕ(f)(t) =
∑∞

k=−∞ f
(

k
W

)
ϕ(Wt− k)∑∞

k=−∞ ϕ(Wt− k)
, t ∈ R.

Remark. If e.g. ϕ(t) = sinc(t) = sin(πt)
πt , then SW,ϕ(f)(t) becomes the Whit-

taker cardinal (sinc) series.
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Therefore, applying the max-product method, the corresponding max-
product Whittaker operator will be given by

S
(M)
W,ϕ(f)(t) =

∞∨
k=−∞

ϕ(Wt− k)f
(

k
W

)
∞∨

k=−∞

ϕ(Wt− k)

, t ∈ R.

Theorem 4.2. (Coroianu-Gal [13]) If ϕ(t) = sinc(t) = sin(πt)
πt and f : R → R+

is bounded and continuous on R, then

|S(M)
W,ϕ(f)(t)− f(t)| ≤ 2ω1

(
f ;

1
W

)
R

, for all t ∈ R,

where ω1(f ; δ)R = sup{|f(u)− f(v)|;u, v ∈ R, |u− v| ≤ δ}.
Remarks. 1) If f ∈ Lipα, α ∈ (0, 1], then in Theorem 4.2 we get ‖S(M)

W,ϕ(f)−
f‖ = O

(
1

W α

)
, while it is well-known that for the usual Whitaker cardinal

series, we have the worst estimate

‖SW,ϕ(f)− f‖ = O

(
log(W )

Wα

)
.

2) We get similar results for other kernels ϕ(t) too.
The Cardaliaguet-Euvrard neural network is defined by

Cn,α(f)(x) =
n2∑

k=−n2

f(k/n)
I · n1−α

· b
(

n1−α

(
x− k

n

))
,

where 0 < α < 1, n ∈ N and f : R → R is continuous and bounded or
uniformly continuous on R.

The corresponding max-product Cardaliaguet-Euvrard network opera-
tor is formally given by

C(M)
n,α (f)(x) =

n2∨
k=−n2

b
[
n1−α

(
x− k

n

)]
f
(

k
n

)
n2∨

k=−n2

b
[
n1−α

(
x− k

n

)] , x ∈ R.

Theorem 4.3. (Anastassiou-Coroianu-Gal [1]) Let b(x) be a centered bell-
shaped function, continuous and with compact support [−T, T ], T > 0 and
0 < α < 1. In addition, suppose that the following requirements are fulfilled:

(i) There exist 0 < m1 ≤ M1 < ∞ such that m1(T − x) ≤ b(x) ≤
M1(T − x) for all x ∈ [0, T ];

(ii) There exist 0 < m2 ≤ M2 < ∞ such that m2(x + T ) ≤ b(x) ≤
M2(x + T ) for all x ∈ [−T, 0].
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Then for all f ∈ CB+(R), x ∈ R and for all n ∈ N satisfying n >
max{T + |x| , (2/T )1/α}, we have the estimate

|f(x)− C(M)
n,α (f)(x)| ≤ cω1

(
f ;nα−1

)
R ,

where

c = 2
(

max
{

TM2

2m2
,
TM1

2m1

}
+ 1
)

.

Remark. Let f ∈ Lipα. For 1
2 ≤ α < 1, we get the same order of approx-

imation O
(

1
n1−α

)
for both operators Cn,α(f)(x) and C

(M)
n,α (f)(x), while for

0 < α < 1
2 , the approximation order obtained by the max-product operator

C
(M)
n,α (f)(x) is essentially better than that obtained by the linear operator

Cn,α(f)(x).
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Rigid body time-stepping schemes in
a quasi-static setting

Bogdan Gavrea

Abstract. We discuss how linear complementary problems (LCPs) can
be used to simulate rigid-body systems in a quasi-static setting. LCP-
based time-stepping schemes were successfully used in [1] in order to
plan and control meso-scale manipulation tasks.

Mathematics Subject Classification (2010): 65K10, 90C33.
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1. Introduction

In [1] we considered the canonical problem of assembling a peg into a hole.
Simulation of this quasi-static system was used in order to select the con-
trol parameters. The integration step in the simulator was formulated as a
mixed linear complementarity problem (MLCP). MLCPs should be thought
of as linear complementarity problems(LCPs) coupled with additional linear
equality constraints. A brief description of the linear complementarity prob-
lem and results concerning LCPs with copositive matrices are given in the
following subsections. For a detailed analysis of these problems we refer the
reader to the excellent manuscript [2].

1.1. Linear complementarity problems

In this section we present the definitions for the linear complementarity prob-
lem (LCP) and the mixed linear complementarity problem(MLCP).

Definition 1.1. The problem of finding z ∈ Rn such that

z ≥ 0, Mz + b ≥ 0, and zT (Mz + b) = 0, (1.1)

where b ∈ Rn and M ∈ Rn×n is called a linear complementarity problem.
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In the above definition the inequality z ≥ 0, z ∈ Rn is to be understood com-
ponentwise, i.e., zi ≥ 0, i = 1, n. The non-negativity and complementarity
conditions (1.1) can be also written in the more compact form:

0 ≤ z ⊥ w := Mz + b ≥ 0.

We denote the problem (1.1) by LCP (b, M). If in addition to the comple-
mentarity constraints we add some equality constraints we obtain a mixed
linear complementarity problem (MLCP). To be more precise, we follow the
definition in [2] and consider the matrices A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m

and D ∈ Rm×n. Let a ∈ Rn and b ∈ Rm be given.

Definition 1.2. The mixed linear complementarity problem is the problem of
finding vectors u ∈ Rn and v ∈ Rm such that

a + Au + Cv = 0
b + Du + Bv ≥ 0
v ≥ 0
vT (b + Du + Bv) = 0

(1.2)

We note that if the matrix A in (1.2) is invertible we can write u in terms of
v and use this form to reduce the problem to a standard LCP formulation.

1.2. LCPs with copositive matrices

The matrix of the underlying LCP used in the time-stepping schemes such
as the one used in [1] is a copositive matrix.

Definition 1.3. A matrix M ∈ Rn×n is said to be copositive if

xT Mx ≥ 0 for all x ∈ Rn, x ≥ 0.

In general a linear complementarity problem with a copositive matrix is not
guaranteed to possess a solution. Solvability of such LCPs is discussed in the
following Theorem.

Theorem 1.4 ([2], Th. 3.8.6). Let M ∈ Rn×n be a copositive matrix and let
b ∈ Rn be given. If the implication[

v ≥ 0, Mv ≥ 0, vT Mv = 0
]
⇒

[
vT b ≥ 0

]
holds, then LCP (b, M) has a solution. Lemke’s algorithm with precautions
taken against cycling will always find a solution of LCP (b, M).

Lemke’s algorithm is a pivoting method similar to the simplex method of
linear programming. Cycling here refers to the possibility of using the same
basis twice.
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2. The quasi-static model

The continuous-time model under the rigid body assumption is given by the
following differential complementarity problem (DCP):

q̇(t) = v(t), (2.1)
Ev(t)−Wn(q, u, t)λn(t)−Wt(q, u, t)λt(t) = 0, (2.2)

0 ≤ Ψn(q, u, t) ⊥ λn(t) ≥ 0, (2.3)

ṡ+
tk(t)− ṡ−tk(t) = (Wtk(q, u, t))T

v(t) +
∂Ψtk

∂t
(q, u, t), k = 1, ..., nc, (2.4)

0 ≤ ṡ+
tk(t) ⊥ µkλnk(t) + λtk(t) ≥ 0, k = 1, ..., nc, (2.5)

0 ≤ ṡ−tk(t) ⊥ µkλnk(t)− λtk(t) ≥ 0, k = 1, ..., nc. (2.6)

Here q denotes the generalized system position and v the generalized system
velocity. The control parameters are encoded in the vector u. The quasi-
static assumption is reflected by the equilibrium equation (2.2), where E is
a damping matrix, assumed to be symmetric positive definite. The vectors
λn(t) ∈ Rnc and λt(t) ∈ Rnc represent all normal and tangential forces,
while Wn(q, u, t) and Wt(q, u, t) are the normal and tangential wrench matri-
ces. More precisely, the k-th column of Wn(q, u, t) (Wt(q, u, t)) is the normal
(tangential) wrench vector Wnk(q, u, t) (Wtk(q, u, t)) corresponding to con-
tact k, k = 1, nc, with nc denoting the number of active contacts. The vector
Ψn(q, u, t) contains the normal displacements for configuration q, controls
u and time t. More precisely, Ψn(q, u, t) = [Ψn1(q, u, t), ...,Ψnnc

(q, u, t)]T ,
where Ψnk(q, u, t) represents the normal displacement function corresponding
to contact k. In a similar way, one defines the vector of tangential displace-
ments, Ψt(q, u, t) = [Ψt1(q, u, t), ...,Ψtnc

(q, u, t)]T . Equation (2.3) represents
the contact and non-penetration constraints; that is whenever the normal
separation at contact k is strictly positive (Ψnk(q, u, t) > 0), the correspond-
ing normal force is 0 (λnk = 0), while whenever contact k is established
(Ψnk(q, u, t) = 0), the corresponding normal force is nonnegative (λnk ≥ 0).

Equation (2.4) defines the positive, ṡ+
tk(t), and negative, ṡ−tk(t), sliding

velocities at contact k. The right-hand side of (2.4) represents the (overall)

sliding velocity ṡtk(t) := Ψ̇tk(q, u, t) = (Wtk(q, u, t))T
v(t) +

∂Ψtk

∂t
(q, u, t)

at contact k. The last two equations, namely (2.5) and (2.6), represent
Coulomb’s friction law at contact k, with µk ∈ [0, 1] being the friction coef-
ficients.

3. The time-stepping scheme

Let tl denote the time at which one has a solution configuration ql and let
tl+1 = tl + h denote the time at which one would want an estimate of the
solution. We approximate the new configuration ql+1 using a backward Euler
formula, as follows

ql+1 = ql + hvl+1,
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where vl+1 is an estimate for the new velocity and will be found by solving
a mixed linear complementarity problem. At each integration step the un-
knowns

(
hvl+1, hλl+1

n , hλl+1
f , hσl+1

)
may be obtained as the solution of the

following MLCP:

0

ρl+1
n

ρl+1
f

sl+1


=



E −W l
n −W l

f 0

(W l
n)T 0 0 0

(W l
f )T 0 0 Ef

0 Uf −ET
f 0





hvl+1

hλl+1
n

hλl+1
f

hσl+1


+



0

Ψl
n + h∂Ψn

∂t

l

h
∂Ψf

∂t

l

0


(3.1)

with 0 ≤
[
ρl+1

n , ρl+1
f , sl+1

]
⊥

[
hλl+1

n , hλl+1
f , hσl+1

]
≥ 0. Here Uf ∈

Rnc×nc , Ef ∈ R2nc×nc with Uf a diagonal matrix with elements on its diag-
onal equal to µk, k = 1, ..., nc and Ef a block diagonal matrix, with diagonal
blocks given by the vector e (e is a two-dimensional vector of all ones). That
is,

Uf =

 µ1 ... 0
...

...
0 ... µnc

 , Ef =


1 ... 0
1 ... 0
...

...
0 ... 1
0 ... 1

 .

The superscript l used in the MLCP (3.1) indicates that all the corresponding
quantities are calculated with q := ql and t := tl. For each contact k we define
the 3 × 2 matrix Wfk(q, u, t) by joining the column vectors Wtk(q, u, t) and
−Wtk(q, u, t). That is,

Wfk(q, u, t) = [Wtk(q, u, t) −Wtk(q, u, t)] .

If we put all the active contacts together we obtain the ”frictional” wrench
matrix Wf (q, u, t) appearing in formulation (3.1). In a similar way, we get
the vector Ψf (q, u, t).

Solvability and the Friction Cone. For an active contact k, we define the
friction cone corresponding to that contact by

FCk(q, u, t)=
{
z= Wnkλnk + Wfkλfk | λnk ≥ 0, λfk ≥ 0, eT λfk ≤ µkλnk

}
,

(3.2)
where Wnk := Wn,k(q, u, t), Wfk := Wfk(q, u, t) and e = [1, 1]T . The total
friction cone, FC(q, u, t), which accounts for all active contacts is defined by

FC(q, u, t) =
nc∑

k=1

FCk(q, u, t).
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Using the fact that the matrix E in the MLCP (3.1) is positive definite, we
can eliminate the variables hvl+1 and reduce the MLCP to a standard LCP
with a copositive matrix. It can be shown that the resulting LCP, is solvable
whenever the total friction cone FC(ql, u, tl) is pointed. We recall that a cone
is pointed if it doesn’t contain any proper subspace. The lack of pointedness
for the friction cone results in jammed configurations (see [3]) and therefore
this regularity assumption is very realistic and can be successfully used in
devising randomized plans (see [1]).

4. Conclusions

We have discussed an LCP-based time-stepping scheme that can be used
to simulate rigid body systems in a quasi-static setting. The scheme was
introduced and successfully used for a particular case in [1]. Solvability of
the integration step is guaranteed by the pointedness of the friction cone, an
assumption that is common in dynamic settings as well (see [3] and [4] for
example).
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On some quadrature formulas on the real
line with the higher degree of accuracy and
its applications

Ioan Gavrea

Abstract. In this paper we study quadrature formulas with the higher
degree of accuracy. We study the quasi-orthogonality of orthogonal poly-
nomials and we give some results on the location of their zeros.
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1. Introduction

Let Pn be a polynomial of degree n such that∫ b

a

xkPn(x)w(x)dx = 0, k = 0, 1, . . . , n− 1,

where w is a positive weight function on the finite or infinite interval [a, b].
Pn is the polynomial of degree n belonging to the family of orthogonal poly-
nomials on [a, b] with respect to the weight function w. It is well known that
the zeros of Pn are all real and distinct and lie in (a, b).

Definition 1.1. Let Rn be a polynomial of exact degree n, n ≥ r, r being a
fixed natural number. If Rn satisfies the conditions∫ b

a

xkPn(x)w(x)dx =
{

0, for k = 0, 1, . . . , n− r − 1
6= 0, for k = n− r

(1.1)

where w is a positive weight function on [a, b], then Rn is a quasi-orthogonal
polynomial of order r on [a, b] with respect to w.

Remark 1.2. The quasi-orthogonal polynomials Rn are only defined for n ≥ r.

If r = 0 then Rn = λPn where λ is a real constant.
The following result can be found in [1].
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Theorem 1.3. Let {Pn} be the family of orthogonal polynomials on [a, b] with
respect to a positive weight function w. A necessary and sufficient condition
for a polynomial Rn of degree n to be quasi-orthogonal of order r on [a, b]
with respect to w is that

Rn(x) = c0Pn(x) + c1Pn−1(x) + . . . + crPn−r(x) (1.2)

where ci’s are numbers which can depend on n and c0cr 6= 0.

If Rn is quasi-orthogonal of order r on [a, b], then at least n− r distinct
zeros of Rn lie in the interval (a, b).

In [1] C. Brezinski, K. A. Driver, M. Redino-Zaglia consider quasi-
orthogonal polynomials of degree n− 1, n− 2:

Rn(x) = Pn(x) + anPn−1(x), an 6= 0 (1.3)

and
Rn(x) = Pn(x) + anPn−1(x) + bnPn−2(x), bn 6= 0 (1.4)

and make a study of its zeros.
The following result is well known.

Theorem 1.4. The quadrature formula∫ b

a

f(x)w(x)dx =
n∑

i=1

Ai,nf(xi,n) + R(f) (1.5)

has the degree of exactness n + k if and only if it is of interpolatory type and
the nodal polynomial

Πn(x) =
n∏

i=1

(x− xi,n)

is quasi-orthogonal of order n− k − 1 in [a, b] with respect to w.

A. Bultheel, R. Cruz-Barroso and Marc Van Borel ([2]) consider an n
point quadrature formula of Gauss-Radon type:∫ b

a

f(x)w(x)dx = Aαf(α) +
n−1∑
k=1

Ak,nf(xk,n) + R(f) (1.6)

where α ∈ [a, b] is a fixed point and the degree of exactness is 2n− 2.

Remark 1.5. If Pn(α) = 0 then (1.6) is actually a Gaussian quadrature for-
mula.

Remark 1.6. The coefficients of the quadrature formula (1.6) are positive.

In [2] the authors studied also Gauss-Lobatto-type quadrature formulas
with two arbitrary prefixed nodes, α and β:∫ b

a

f(x)w(x)dx = Aαf(α) + Aβf(β) +
n−2∑
k=1

Ak,nf(xk,n) + Rn(f) (1.7)

the degree of exactness being 2n− 3.
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From Theorem 1.3, the nodes of such a rule will be the zeros of

Rn(x) = Pn(x) + anPn−1(x) + bnPn−2(x).

2. Pn,k-polynomials and its properties

Let w be a positive weight function on [a, b] (a > −∞), n ∈ N∗, k ∈ N such
that k ≤ n.

We denote by Pn,k the polynomial of degree n which satisfies the fol-
lowing conditions:∫ b

a

(x− a)iPn,k(x)w(x)dx = δk,i, i = 0, 1, . . . , n. (2.1)

In the following, without loss of generality, we will consider a = 0.

Remark 2.1. By (2.1) it follows that Pn,k is a quasi-orthogonal polynomial
of order n− k with respect to the weight function w.

Theorem 2.2. The zeros of Pn,k are all real, distinct and lie in (0, b).

Proof. Let us denote by 0 < x1 < . . . < xi < b the zeros of Pn,k where it
changes the sign. Obviously i ≥ k. Suppose i < n. We have∫ b

0

(x− x1) . . . (x− xi)Pn,k(x)w(x)dx > 0. (2.2)

Using the definition of Pn,k, from (2.2) we obtain

(−1)i−kσi−k > 0, (2.3)

where (−1)i−kσi−k is the coefficient of xk of the polynomial

(x− x1) . . . (x− xi), σi−k > 0.

On the other hand we have:∫ b

0

x(x− x1) . . . (x− xi)Pn,k(x)w(x)dx > 0

or
(−1)i−k−1σi−k+1 > 0. (2.4)

The relations (2.3) and (2.4) are contradictory. �

It is easy to see that the set {Pn,k}n
k=0 forms a base in Πn and for every

P ∈ Πn we have:

P =
n∑

k=0

〈ek, P 〉Pn,k

=
n∑

k=0

ek〈Pn,kP 〉,
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where ek : R → R, ek(x) = xk, and

〈f, g〉 =
∫ b

a

f(x)g(x)w(x)dx.

We denote by Kn(x, y) the Christoffel-Darboux kernel

Kn(x, y) =
n∑

k=0

pk(x)pk(y)

where the set {pk}n
k=0 is an orthonormal set∫ b

0

pk(x)pi(x)w(x)dx = δk,i, k, i ∈ {0, 1, . . . , n}.

The result from the following Theorem is easily verified.

Theorem 2.3. The following relations hold:

Kn(x, y) =
n∑

k=0

xkPn,k(y) (2.5)

=
n∑

k=0

ykPn,k(x)

=
1

an+1,n+1
· Pn+1,n+1(x)Pn,n(y)− Pn,n(x)Pn+1,n+1(y)

x− y

where an+1,n+1 is the coefficient of xn+1 from Pn+1,n+1.

3. Main results

Let P be a polynomial of degree n and let mk be the moment of order k with
respect to the weight function w,

mk = 〈ek, P 〉 =
∫ b

0

xkP (x)w(x)dx, k = 0, 1, . . . , n.

Then P can be written as

P (x) =
n∑

k=0

mkPn,k(x).

Theorem 3.1. If
(−1)kmk ≥ 0, k = 0, 1, 2, . . . , n (3.1)

then the zeros of P are all real, distinct and lie in (0, b).

Proof. By (3.1) it follows that there exist at least a point x1 where P changes
the sign.

Let x1, . . . , xp be all the zeros where P changes its sign in the interval
(0, b) and suppose that p < n.

So, the polynomial (x− x1) . . . (x− xp)P (x) doesn’t change the sign.
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Suppose that
(x− x1) . . . (x− xp)P (x) ≥ 0. (3.2)

From (3.2) we get:∫ b

0

(x− x1) . . . (x− xp)P (x)w(x)dx > 0 (3.3)

∫ b

0

(x− x1) . . . (x− xp)P (x)w(x)dx = (−1)p

p∑
i=0

(−1)p−imp−iσi (3.4)

where σi are Vieta’s sum of order i of the numbers x1, . . . , xp.
On the other hand we have:∫ b

0

x(x− x1) . . . (x− xp)P (x)w(x)dx > 0 (3.5)

∫ b

0

x(x− x1) . . . (x− xp)P (x)w(x)dx = (−1)p+1

p∑
i=0

(−1)p−i+1mp−i+1σi.

(3.6)
From (3.4) and (3.6) it follows that the inequalities (3.3) and (3.4) are

contradictory and so p = n. �

Corollary 3.2. Let Rn be a quasi-orthogonal polynomial of order 1,

Rn(x) = Pn,n−1(x)− anPn,n(x).

If an > 0 then the zeros of Rn are all real and distinct and lie in (0, b).

Remark 3.3. The condition an > 0 is only sufficient.
A necessary and sufficient condition is given by

(−1)n(Pn,n−1(0)− anPn,n(0))(Pn,n−1(b)− anPn,n(b)) > 0.

Let α ∈ [0, b] be a fixed point and let us consider the quadrature formula∫ b

0

f(x)w(x)x = Aαf(α) +
n−1∑
k=1

Ak,nf(xk,n) + R(f) (3.7)

having the degree of exactness 2n− 2.
This means that α is a root of polynomial Rn which is of the form

Rn(x) = Pn,n−1(x) + aPn,n(x).

The coefficients Aα, Ak,n, k = 1, 2, . . . , n− 1 are positive and are given
by

Ak,n =

∫ b

0

(x− α)2l2k(x)w(x)dx

(xk,n − α)2
, Aα =

∫ b

0

l2(x)w(x)dx

l2(α)
where

l(x) =
n−1∏
k=1

(x− xk,n), lk(x) =
l(x)

(x− xk,n)l′(xk,n)
.
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Theorem 3.4. The coefficients Ak,n, k = 1, . . . , n− 1 and Aα are given by

Ak,n =
1

Kn−1(xk,n, xk,n)
, k = 1, 2, . . . , n− 1

Aα =
1

Kn−1(α, α)
.

Proof. Let us denote by:

Mi =
∫ b

0

xi(x− α)lk(x)w(x)dx.

We have
M1 = xk,nM0

M2 = x2
k,nM0

. . .

Mn−1 = xn−1
k,n M0.

(3.8)

From (3.8) we get

(x− α)lk(x) = M0

n−1∑
i=0

xi
k,nPn−1,i(x). (3.9)

By (3.9) we obtain

M0 =
xk,n − α

Kn−1(xk,n, xk,n)
and so

Ak,n =
1

Kn−1(xk,n, xk,n)
, k = 1, n− 1.

Similarly we get

Aα =
1

Kn−1(α, α)
.

The proof of the theorem is finished. �

Corollary 3.5. Let P ∈ Π2n−2, P (x) > 0, ∀ x ∈ R. Then∫ b

0

P (x)w(x)dx ≥ 1
Kn−1(α, α)

P (α), ∀ α ∈ R.

Theorem 3.6. Let Rn be a quasi-orthogonal polynomial of order 1 with the
weight function w having all its zeros lie in [0, b). Suppose that

Rn(x) = anxn + . . .

Then for every continuous function f , f : [a, b] → R, the following equality
holds:∫ b

0

w(x)f(x)dx−
n∑

k=1

Akf(xk) =
1
an

[x1, x2, . . . , xn; [x, x1, . . . , xn; f ]] (3.10)
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+
1
a2

n

∫ b

0

[x, x1, x2, . . . , xn; [·, x1, . . . , xn; f ]]R2
n(x)w(x)dx

where xk, k = 1, 2, . . . , n, are the zeros of Rn and Ak =
1

Kn−1(xk, xk)
.

Proof. The quadrature formula∫ b

0

w(x)f(x)dx =
n∑

k=1

Akf(xk) + R(f) (3.11)

having degree of exactness 2n − 2 is a quadrature formula of interpolatory
type, coefficients Ak, k = 1, 2, . . . , n being given by

Ak =
∫ b

0

lk(x)w(x)dx

=
1

Kn−1(xk, xk)
.

We have

f(x)− Ln−1(f ;x1, . . . , xn)(x) =
1
an

Rn(x)[x, x1, . . . , xn; f ] (3.12)

where Ln−1(f ;x1, . . . , xn) is Lagrange’s polynomial of degree n − 1 which
interpolates the function f at the points xk, k = 1, n.

Rn is of the form:

Rn = Pn,n−1 + αPn,n, α ∈ R.

From (3.12) we obtain∫ b

0

f(x)Rn(x)w(x)dx− [x1, x2, . . . , xn; f ] (3.13)

=
1
an

∫ b

0

R2
n(x)[x, x1, x2, . . . , xn; f ]w(x)dx

and∫ b

0

f(x)w(x)dx−
n∑

k=1

Akf(xk) =
1
an

∫ b

0

Rn(x)[x, x1, . . . , xn; f ]w(x)dx

(3.14)
From (3.13) and (3.14) we get (3.10). �

Corollary 3.7. Let f ∈ C1[0, b]. Then there exists θ ∈ [0, b] such that R(f)
from (3.11) can be written in the following form

R(f) =
1
an

[x1, x2, . . . , xn; [x, x1, . . . , xn; f ]] (3.15)

+
kn

a2
n

[θ, x1, . . . , xn; [x, x1, . . . , xn; f ]]

where

kn =
∫ b

0

R2
n(x)w(x)dx.
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Proof. Equation (3.15) follows from (3.13) if we put instead of f the divided
difference [x, x1, . . . , xn; f ]. �

Theorem 3.8. Let xk, k = 1, 2, . . . , n be the zeros of Pn,0 and w a positive
weight such that ∫ b

0

w(x)dx = 1.

Then, for every P ∈ Πn−1 we have:∫ b

0

P (x)w(x)dx =
n∑

k=1

P (xk)
Kn(xk, xk)

− 1
an

[
x1, . . . , xn;

P (x)
x

]
where an is the coefficient of xn from Pn,0.

Proof. Let us consider the quadrature formula∫ b

0

f(x)w(x)dx =
n∑

k=1

Akf(xk) + R(f). (3.16)

The quadrature formula (3.16) has the degree of exactness n − 1 and Ak,
k = 1, 2, . . . , n are given by

Ak =
∫ b

0

Pn,0(x)w(x)
(x− xk)P ′

n,0(xk)
dx.

Let us denote by Mi the moment of order i, i = 0, 1, . . . , n of the polynomial
Pn,0(x)

(x− xk)P ′
n,0(xk)

.

We get

M1 − xkM0 =
1

P ′
n,0(xk)

(3.17)

Mi = xi−1
k M1, i = 2, 3, . . . , n.

So
Pn,0(x)

(x− xk)P ′
n,0(x)

= M0Pn,0(x) + M1Pn,1(x) (3.18)

+
M1

xk
(Kn(x, xk)− Pn,0(x)− xkPn,1(x)).

For x = xk we get

1 =
M1

xk
Kn(xk, xk). (3.19)

From (3.17) and (3.19) we obtain

M0 =
1

Kn(xk, xk)
− 1

xkP ′
n,0(xk)

.

On the other hand M0 = Ak and the quadrature formula (3.16) becomes:∫ b

0

f(x)w(x)dx =
n∑

k=1

f(xk)
Kn(xk, xk)

− 1
an

[
x1, . . . , xn;

f(x)
x

]
+ R(f).
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If f ∈ Πn−1, R(f) = 0 and the theorem is proved. �

Corollary 3.9. If P (0) = 0 and P ∈ Πn−1 then∫ b

0

P (x)w(x)dx =
n∑

k=1

P (xk)
Kn(xk, xk)

.
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A Q-fractional version of Itô’s formula

Wilfried Grecksch and Christian Roth

Abstract. In this paper we consider a white noise calculus for fractional
Brownian motion with values in a separable Hilbert space, whereby
the covariance operator Q is a kernel operator (Q-fractional Brownian
motion). We prove a Q-fractional version of the Itô’s formula.
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1. Introduction

Extending white noise analysis [9], Biagini and Øksendal [2] introduce frac-
tional white noise calculus. They give the corresponding definition of stochas-
tic integrals, a fractional Itô formula and Itô isometry, fractional differentia-
tion and a fractional Malliavin calculus, using the results of Elliott and van
der Hoek [4].

In [1] Grecksch, Roth and Anh introduce the Q-fractional Brownian
motion, i.e., a Hilbert space-valued fractional Brownian motion defined by a
kernel operator Q, and develop the Q-fractional Brownian motion framework
for 1

2 < h < 1 as it was done in [9] for the standard Brownian motion
case and in [2] for the fractional Brownian motion case in finite dimensions.
Grecksch, Roth and Anh introduce Q-fractional test functions spaces and
distribution spaces analogous to the way Hida [7] did and develop the Q-
fractional chaos expansion. The corresponding stochastic integral and the
Hilbert space-valued Wick scalar product are introduced. Furthermore they
proved Q-fractional versions of Girsanov’s theorem and of Clark-Haussmann-
Ocone theorem.

In this paper we give a short overview of the most important notions
and definitions for Q-fractional Brownian motion, see [1]. In Section 3 we
prove a Q-fractional version of Itô’s formula (see Theorem 3.1).
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2. Q-fractional Brownian motion setup

Let S(IR1) denote the Schwartz space of rapidly decreasing smooth func-
tions on IR1 and let S ′(IR1) be its dual, usually called the space of tempered
distributions.

Let K and H be two separable Hilbert spaces with scalar product
(·, ·)K and (·, ·)H , and (Ω,F , P ) a complete probability space. We denote
by L (K,H) the set of all linear bounded operators from K to H. Let
Q ∈ L(K,K) be a self-adjoint, non-negative operator on K. We call Q a
kernel operator in K if

(i) there exists a sequence (λn)n∈N ⊂ R1
+ = {x ∈ R1 : x ≥ 0} with λn → 0

as n→∞;
(ii) there exists a complete orthonormal system (en)n∈N ∈ K such that

Q(x) :=
∞∑

n=1

λn(x, en)en (2.1)

for all x ∈ K and
∑∞

n=1 λn <∞.

Definition 2.1. A K-valued continuous Gaussian process Bh(t)t∈[0,T ] with
Hurst parameter h ∈ (0, 1) is called a Q-fractional Brownian motion, if there
exists a kernel operator Q in K such that

1. ∀x, y ∈ K, s, t ∈ [0, T ],

E
((
Bh(t), x

)
K

(
Bh(s), y

)
K

)
=

1
2
(Q(x), y)K

(
t2h + s2h − |t− s|2h

)
; (2.2)

2. ∀x ∈ K,
E
(
Bh(t), x

)
K

= 0. (2.3)

Remark 2.2. (i) In view of (2.2) we say that Bh has the covariance operator
1
2Q
(
t2h + s2h − |t− s|2h

)
.

(ii) Eq. (2.3) is equivalent to EBh(t) = 0, i.e., it is the zero element of K.
(iii) The case of long-range dependence, i.e. 1

2 < h < 1, is given by

E
((
Bh(t), x

)
K

(
Bh(s), y

)
K

)
= (Q(x), y)K

∫ t

0

∫ s

0

ϕ(u, v) du dv,

where ϕ(u, v) := h(2h− 1)|u− v|2h−2.
(iv) The Hilbert space valued Wiener process is obtained for h = 1

2 .

Theorem 2.3. Let
(i) (en)n∈N be a complete orthonormal system in K;
(ii) (λn)n∈N ⊂ R1

+,
∑∞

n=1 λn <∞;
(iii) (βh

n(t))t∈[0,T ], n = 1, 2, ... be independent real fractional Brownian mo-
tions with

E
(
βh

n(t)βh
k (s)

)
=

1
2
δnk

(
t2h + s2h − |t− s|2h

)
,

where δnk is the Kronecker delta function.
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Then
(
Bh(t)

)
t∈[0,T ]

is a Q-fractional Brownian motion if and only if

Bh(t) =
∞∑

n=1

√
λnβ

h
n(t)en =

∞∑
n=1

Q1/2(en)βh
n(t). (2.4)

Proof. See Grecksch and Anh [6], or Duncan, Maslowski and Pasic-Duncan
[3].

We write Bh
n(t) =

√
λnβ

h
n(t).

In the following we will discuss (a two-sided) Q-fractional Brownian
motion with help of fractional white noise calculus. Therefore we assume
that the underlying probability spaces for the independent real fractional
Brownian motions Bh

1 (·), Bh
2 (·), ... are Ω1 = S ′(IR1), Ω2 = S ′(IR1), ..., that

is Bh(·) is defined on Ω =
∏∞

i=1 Ωi.
We now introduce the fundamental operator Mh(t) according to Elliott

and van der Hoek [4].
For 0 < h < 1

2 and f ∈ S(IR1),

Mhf(x) :=
(

2Γ
(
h− 1

2

)
cos
(
π

2

(
h− 1

2

)))−1 ∫
IR1

f(x− t)− f(x)
|t| 32−h

dt.(2.5)

For 1
2 < h < 1 and f ∈ S(IR1),

Mhf(x) :=
(

2Γ
(
h− 1

2

)
cos
(
π

2

(
h− 1

2

)))−1 ∫
IR1

f(t)
|t− x| 32−h

dt. (2.6)

For h = 1
2 we put Mhf(x) = f(x), the identity map.

When f(x) = I(0, t)(x) we write

Mhf(x) = Mh(0, t)(x). (2.7)

Now we want to characterize the Hilbert space valued fractional Brow-
nian motion with white noise calculus. We define

B̃h(t, ω) =
∞∑

n=1

√
λn < Mh(0, t), ωn > en, (2.8)

with < Mh(0, t), ωn >=
∫
IR1 Mh(0, t)(s) dβn(s) and βn are independent real

Brownian motions.
Again, B̃h(t) is a Gaussian random variable with

E
[(
B̃h(t), x

)
K

]
= 0 (2.9)

and for s < t, we get using the independence of ωi

E
[(
B̃h(t), x

)
K

(
B̃h(s), y

)
K

]
= E

[ ∞∑
i=1

√
λi < Mh(0, t), ωi > (x, ei)K

∞∑
k=1

√
λk < Mh(0, s), ωk > (y, ek)K

]
= Ch

(
|t|2h + |s|2h − |t− s|2h

)
(Qx, y). (2.10)

The process B̃h(t) has a continuous version in K, which we denote by Bh(t).
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We extend the definition of Mh to Hilbert space valued functions f :
IR1 → K. Then Mh is defined by

Mhf(x) :=
∞∑

n=1

enMh (f, en)K (x) (2.11)

for all x ∈ IR1 and all

f ∈ L2
h(IR1,K) :={
f : IR → K,Mhf =

∞∑
i=1

Mh ((f, ei)K) ei ∈ L2(IR1,K)

}
, (2.12)

where Mh (f, ei)K is defined by applying (2.5) and (2.6) to the real functions
(f(·), ei)K .

The Hermite functions {ξn}∞n=1, i.e.

ξn = π−
1
4 ((n− 1)!)−

1
2hn−1(

√
2x)e

x2
2 , (2.13)

where hn(x) = (−1)ne
x2
2 dn

dxn

(
e
−x2

2

)
form a basis of L2(IR1, IR1). Define

ηn(x) = M−1
h ξn(x); n = 1, 2... (2.14)

Then it follows from [4]

(f(x), en) =
∞∑

j=1

cjnηj(x) (2.15)

that ηj is an orthonormal basis of L2
h(IR1, IR1). Consequently ηj(x)en, (j =

1, 2, ..., n = 1, 2...) defines an orthonormal basis of L2
h(IR1,K).

Let Hr, r = 1, 2, ..., be the Hermite polynomials of order r. Evidently
we have

H1(
〈
Bh, ηjen

〉
) =

1
2
〈
Bh, ηjen

〉
=

1
2
〈
Bh

n, ηj

〉
=

1
2
〈√

λnβ
h
n, ηj

〉
.

Furthermore we define

Hα

(
Bh

n

)
:= Hα1

(
Bh

n (η1)
)
· ... · Hαj

(
Bh

n (ηj)
)
,

and α is a multi-index, that is, α = (α1, ..., αj) , αi ∈ N. In particular ε(n)

denotes the multi-index with 1 at the place n and 0 else.

Remark 2.4. In view of the representation Theorem 2.3, Eq. (2.4) for Q-
fractional Brownian motions, we have for a deterministic function F with
values in L2[0, T ]∫ T

0

F (s) dBh(s) =
∞∑

n=1

∫ T

0

√
λnF (s)en dβ

h
n(s) (2.16)

in mean square in H.
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We can write the expansion of Bh(t) as

Bh(t) =
∞∑

n=1

√
λnβ

h
n(t)en =

∞∑
j=1

∞∑
n=1

∫ t

0

ηj(s) dsHε(j)(Bh
n)en. (2.17)

We introduce the notation

Bh(ηjen) :=
〈
Bh, ηjen

〉
en =

∫
IR1

ηj(x) dBh
n(x)en. (2.18)

Furthermore
∫ T

0
ηj(t) dBh

n(t)en is defined by
∫
IR1 I[0,T ](t)ηj(t) dBh

n(t)en.
Therefore we have

E
(
Bh(ηjen)

)2
=

∫
IR1

λn|Mh (ηj(t)) |2 dt = λn. (2.19)

Remark 2.5. (i) Let F (s) be a deterministic operator function. Then we
get∫ T

0

(F (s)en, hk)K dBh
n(s) =

∞∑
j=1

cknj

√
λnH(βh

n(I[0,T ]ηj)). (2.20)

(ii) Especially, if H = IR1 and F (s) = γ(s) ∈ L2
h([0, T ],K) and ‖γ(s)‖ ≤ C

∀ s ∈ [0, T ]. Then∫ T

0

(
γ(s), dBh(s)

)
K

=
∞∑

n=1

∞∑
j=1

cnjH1(Bh
n(I[0,T ]ηj)). (2.21)

(iii) Using the properties of Hermite polynomials the expansion of Exp{bjηj}
(bj ∈ IR1) is given by

Exp {bjηj} = exp

{
bj

∫
IR1

√
λnηj(t) dβh

n(t)−
b2jλn

2
‖Mhηj‖2L2(IR)

}

=
∞∑

l=1

blj
l!
Hl(Bh

n(ηj)) =
∞∑

l=1

blj
l!
Hl(Bh

n(ηj))), (2.22)

(see [7], [8] or [10]).

Example 2.6. Now let us consider the expansion of Exp{γ} for γ ∈
LQ

(
R1,K

)
with respect to enηj(t), j = 1, 2..., n = 1, 2, ... see (2.21). We

can write the exponential of γ as

Exp {γ} = exp
{∫

IR1

(
γ(t), dBh(t)

)
− 1

2
‖Mhγ‖2L2

Q(IR1,K)

}

= exp


∞∑

n=1

∞∑
j=1

√
λncnjH1(βh

n(ηj))−
1
2

∞∑
n=1

∞∑
j=1

λnc
2
nj‖Mhηj‖2L2(IR)


=:

∑
α∈I

∞∏
n,j=1

cαnjHα

(
Bh

n(ηj)
)
, (2.23)
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where Hα(Bh
n) := Hα1(B

h
n(ηj)) · ... · Hαj

(Bh
n(ηj)) and

cαnj :=
∞∏

l=1

(cnj)
αl

αl!
, α = (α1, ..., αj) .

Here, I denotes the set of all multi-indices α, I = {(α1, ..., αn) : α1, ..., αn ∈
IN0, n ∈ IN}.

We obtain for Exp{γ(t)}

Exp {γ(t)} =
∑
α∈I

∞∏
n,j=1

cαnjHα

(
Bh

n(I[0,T ]ηj)
)
. (2.24)

Now we want to develop a fractional white noise integration theory for
h ∈ (0, 1). Grecksch, Roth and Anh [1] define the Q-fractional version of
the Hida test function space and the Hida distribution space for h ∈ ( 1

2 , 1).
Inspired by (2.23) we make the definitions as follows:

Let V be a separable Hilbert space with a complete orthonormal system
(vk) ⊆ V .

Definition 2.7. The Q-fractional test function space Sh
Q(V ) is the space of all

V -valued random functions with expansion

Ψ(ω) =
∞∑

k=1

∑
α∈I

∞∏
n,j=1

c
(k)
αnjHα(Bh

n)

 vk,

for which

‖Ψ‖h,r :=
∞∑

k=1

∑
α∈I

∞∏
n,j=1

α!(c(j)αnj)
2(2IN)rα <∞, ∀r ∈ IN,

and (2IN)α :=
∏∞

j=1(2j)
αj if α = (α1, ..., αm).

Definition 2.8. The Q-fractional distribution space (Sh
Q(V ))∗ is the space of

all V -valued random functions with expansion

G(ω) =
∞∑

k=1

∑
β∈I

∞∏
n,j=1

b
(k)
βnjHβ(Bh

n)

 vk,

for which

‖G‖h,−q :=
∞∑

k=1

∑
β∈I

∞∏
n,j=1

β!(b(k)
βnj)

2(2IN)−qβ <∞ for some q ∈ IN.

Remark 2.9. If V = IR1, then Ψ(ω) ∈ Sh
Q(V ) (or Ψ(ω) ∈ (Sh

Q(V ))∗) has the
following representation

Ψ(ω) =
∑
α∈I

∞∏
n,j=1

cαnjHα(Bh
n).
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Furthermore if the fractional noise is only one-dimensional, we find the well-
known representation

Ψ(ω) =
∑
α∈I

cαHα(Bh).

Consider the following duality relation between Sh
Q(V ) and (Sh

Q(V ))∗.
For G ∈ (Sh

Q(V ))∗ and ψ ∈ Sh
Q(V ) ⊂ L2

V (Ω) we define

〈〈
G,ψ

〉〉
:=

∞∑
k=1

∑
α∈I

∞∏
n,j=1

α!c(k)
αnjb

(k)
αnj . (2.25)

Example 2.10. If G ∈ L2
V (Ω) and ψ ∈ Sh

Q(V ) ⊂ L2
V (Ω), then we have〈〈

G,ψ
〉〉

= E(G,ψ)V = (G,ψ)L2
V (Ω). (2.26)

Definition 2.11. Let Z : [0, T ] → (Sh
Q(V ))∗ with∫ T

0

|
〈〈
Z(t), ψ

〉〉
| dt <∞, ∀ψ ∈ Sh

Q(V ).

Then
∫ T

0
Z(t) dt ∈ (Sh

Q(V ))∗ is uniquely determined by the relation

〈〈 ∫ T

0

Z(t) dt, ψ
〉〉

=
∫ T

0

〈〈
Z(t), ψ

〉〉
dt.

We say that Z is (Sh
Q(V ))∗-integrable.

Definition 2.12. (Wick scalar product)
Let F, G ∈ (Sh

Q(K))∗ with

F (ω) = F (Bh) =
∞∑

k=1

∑
α∈I

∞∏
n,j=1

a
(k)
αnjHα(Bh

n)

 vk,

G(ω) = G(Bh) =
∞∑

k=1

∑
β∈I

∞∏
l,m=1

b
(k)
βlmHβ(Bh

l )

 vk, .

We define

(F,G)�V :=
∞∑

k=1

∑
α,β∈I

∞∏
n,j=1

a
(k)
αnjb

(k)
βnjHα+β(Bh

n)

=
∞∑

k=1

∑
γ∈I

∑
α+β=γ

∞∏
n,j=1

a
(k)
αnjb

(k)
βnjHα+β(Bh

n)

 . (2.27)

Remark 2.13. If V = R1 then (·, ·)�V is the usual Wick product.

Now we introduce a fractional stochastic integral with stochastic inte-
grands.
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Definition 2.14. Y : [0, T ] → (Sh
Q(V ))∗ is (dBh−)integrable if

(Y (t),Wh(t))�V =
∞∑

n=1

√
λn (Y (t), en)V �Wh

n (t)

is integrable with respect to t in the sense of Definition 2.11. We define∫ T

0

(
Y (t), dBh(t)

)
:=
∫ T

0

(Y (t),Wh(t))�V dt.

3. A Q-fractional version of Itô’s formula

In this section we prove aQ-fractional version of Itô’s formula the way Biagini,
Øksendal and al. presented it for a usual fractional Brownian motion, see [2].

C1,2([0, T ]×K, IR1) denotes the space of all functions f : [0, T ]×K →
IR1, such that the first Fréchet derivative ∇sf(s, x) with respect to s ∈ [0, T ]
and the first and second Fréchet derivatives ∇xf(s, x) and ∇xxf(s, x) exist
continuously.

Theorem 3.1. Let f(s, x) : [0, T ] × K → IR belong to C1,2([0, T ] × K, IR1).
Furthermore assume that there are constants C ≥ 0 and 0 < λ < 1

4T 2h such
that for all (t, x) ∈ [0, T ]×K

max
{
|f(t, x)|, |∇tf(t, x)|, ‖∇xf(t, x)‖K ,

‖∇xxf(t, x)‖L(K,K)

}
≤ Ceλx2

. (3.1)

Then

f(t, Bh(t)) = f(0, 0) +
∫ t

0

∇sf(s,Bh(s)) ds

+
∫ t

0

(
∇xf(s,Bh(s)), dBh(s)

)
K

+h
∞∑

i=1

∫ t

0

(
∇xxf(s,Bh(s))ei, ei

)
K
λis

2h−1 ds, (3.2)

whereby

∇sf(s,Bh(s)) = ∇uf(u,Bh(s))
∣∣
u=s

,

∇xf(s, x) = ∇xf(s, x)
∣∣
x=Bh(s)

,

∇xxf(s, x) = ∇xxf(s, x)
∣∣
x=Bh(s)

.

Proof. Define

g(t, x) = exp {(a, x)K + β(t)} , (3.3)

whereby a ∈ K is a constant, β ∈ C1([0, T ], IR1) is a deterministic function,
and put

Y (t) = g(t, Bh(t)), i.e. x = Bh(t). (3.4)
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With

(a,Bh(s))K =
∞∑

i=1

√
λi(a, ei)βh

i (t)

we can rewrite

Y (t) = exp

{ ∞∑
i=1

√
λi(a, ei)Kβ

h
i (t)

}
exp {β(t)}

= exp�
{ ∞∑

i=1

√
λi(a, ei)Kβ

h
i (t) +

1
2

∞∑
i=1

λi(a, ei)2Kt
2h

}
exp {β(t)} . (3.5)

Therefore, by applying Wick calculus, we have

d

dt
Y (t)

= exp�
{ ∞∑

i=1

√
λi(a, ei)Kβ

h
i (t) +

1
2

∞∑
i=1

λi(a, ei)2Kt
2h

}
exp {β(t)}

�

[
(a,Wh(t))K + h

∞∑
i=1

λi(a, ei)2Kt
2h−1

]

+exp�
{ ∞∑

i=1

√
λi(a, ei)Kβ

h
i (t) +

1
2

∞∑
i=1

λi(a, ei)2Kt
2h

}
exp {β(t)}β′(t)

= Y (t) · β′(t) + Y (t) � (a,Wh(t))K + Y (t) · h
∞∑

i=1

λi(a, ei)2Kt
2h−1. (3.6)

Hence we have found the following representation

Y (t) = Y (0) +
∫ t

0

Y (s) · β′(s) ds+ h

∫ t

0

Y (s) ·
∞∑

i=1

λi(a, ei)2Ks
2h−1 ds

+
∫ t

0

Y (s) � (a,Wh(s))K ds. (3.7)

Remembering (3.3) this can be written as

g(t, Bh(t)) = g(0, 0) +
∫ t

0

∇sg(s,Bh(s)) ds+
∫ t

0

(
∇xg(s,Bh(s)), dBh(s)

)
K

+ h
∞∑

i=1

∫ t

0

(
∇xxg(s,Bh(s))ei, ei

)
K
λis

2h−1 ds, (3.8)

which is (3.2).
Now let f(t, x) be as demanded above. Every function

f ∈ C1,2
(
[0, T ]×K, IR1

)
can be approximated by a sequence of linear com-

binations of type (3.3), hence we can find a sequence of linear combinations
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fn(t, x) of functions g(t, x) of the form (3.3) such that

fn(t, x) → f(t, x), ∇tfn(t, x) → ∇tf(t, x), ∇xfn(t, x) → ∇xf(t, x),
∇xxfn(t, x) → ∇xxf(t, x)

pointwise dominatedly as n→∞. By (3.8) we have for all n

fn(t, Bh(t)) = fn(0, 0) +
∫ t

0

(
∇xfn(s,Bh(s)), dBh(s)

)
K

+h
∞∑

i=1

∫ t

0

(
∇xxfn(s,Bh(s))ei, ei

)
k
λis

2h−1 ds+
∫ t

0

∇sfn(s,Bh(s)) ds (3.9)

Taking the limit of (3.9) in L2
Q(K, IR1) (and therefore also in (Sh

Q(IR1))∗) we
get

f(t, Bh(t)) = f(0, 0) + lim
n→∞

∫ t

0

(
∇xfn(s,Bh(s)), dBh(s)

)
K

+h
∞∑

i=1

∫ t

0

(
∇xxf(s,Bh(s))ei, ei

)
K
λis

2h−1 ds+
∫ t

0

∇sf(s,Bh(s)) ds.(3.10)

Since the mapping s→ ∇xf(s,Bh(s)) is continuous in (Sh
Q(IR1))∗ we get

∫ t

0

(
∇xfn(s,Bh(s)), dBh(s)

)
K

=
∫ t

0

(
∇xfn(s,Bh(s)),Wh(s)

)
K
ds

→
∫ t

0

(
∇xf(s,Bh(s)),Wh(s)

)
K
ds

for n→∞ in (Sh
Q(IR1)∗). The last relation and (3.10) show (3.2). �

Example 3.2. Now let f(s, x) : [0, T ]×K → IR be defined as follows:

f(t, x) := exp (t+ x) ,

then we have

∇tf(t, x) = ∇xf(t, x) = ∇xxf(t, x) = exp (t+ x) ,
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and therefore we have by (3.2)

f(t, Bh(t)) = 1 +
∫ t

0

exp(s+Bh(s)) ds

+
∫ t

0

(
exp(s+Bh(s)), dBh(s)

)
K

+h
∞∑

i=1

∫ t

0

(
exp(s+Bh(s))ei, ei

)
K
λis

2h−1 ds

= 1 +
∫ t

0

exp(s+Bh(s)) ds

+
∫ t

0

(
exp(s+Bh(s)),Wh(s)

)
�K ds

+h
∞∑

i=1

∫ t

0

(
exp(s+Bh(s))ei, ei

)
K
λis

2h−1 ds.

Example 3.3. Now let f(s, x) : [0, T ]×K → IR be defined as follows:

f(t, x) := ln
(
1 + x2

)
,

then we have

∇tf(t, x) = 0, ∇xf(t, x) =
2x

1 + x2
and ∇xxf(t, x) =

2− 2x2

(1 + x2)2
,

and therefore we have by (3.2)

f(t, Bh(t)) = 0 +
∫ t

0

(
2Bh(s)

1 + (Bh(s))2
,Wh(s)

)
�K

ds

+h
∞∑

i=1

∫ t

0

 2− 2
(
Bh(s)

)2(
1 + (Bh(s))2

)2 ei, ei


K

λis
2h−1 ds.
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Stochastic Schrödinger equation driven by
cylindrical Wiener process and fractional
Brownian motion

Wilfried Grecksch and Hannelore Lisei

Abstract. In this paper we study the properties of the solution of a sto-
chastic nonlinear equation of Schrödinger type, which is perturbed by a
cylindrical Wiener process and an additive cylindrical fractional Brow-
nian motion with Hurst parameter in the interval ( 1

2
, 1). The existence

of the solution and the existence of the Malliavin derivative are proved.

Mathematics Subject Classification (2010): 60H15, 60H07, 35Q41.

Keywords: Nonlinear stochastic Schrödinger equations, cylindrical
Wiener process, cylindrical fractional Brownian motion, Malliavin de-
rivative.

1. Introduction

In physics, specifically in quantum mechanics, the Schrödinger equation is an
equation that describes how the quantum state of a physical system changes
in time.

We describe the Schrödinger equation for a harmonic oscillator subject
to a periodic electric field: a particle of mass m, electric charge Q, is displaced
along the x-axis (x ∈ R) and subject to a force −mω2

0x (for all t > 0) and to
an electric field E sin(ωt) directed along the x-axis

i~
∂

∂t
X(x, t) =

(
− ~2

2m
∇2 +

1
2
mω2

0x2 + QEx sin(ωt)
)
X(x, t), x ∈ R, t > 0,

X(·, 0) = X0

where i is the imaginary unit, − ~2

2m
∇2 is the kinetic energy operator, ~ is

Planck’s constant, the complex valued function X is the wave function at
position x at time t, X0 is the initial condition (see [8], p. 639).
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Many authors investigated stochastic equations of Schrödinger type:
The case of additive noise is considered in [11], [13], while the case of multi-
plicative noise is discussed in [2], [9], [10], [16]. In these papers the existence
of a mild solution is investigated. Different approaches to linear and nonlinear
stochastic Schrödinger equations perturbed by cylindrical Brownian motions
are given in [14] and [15].

In this paper we study the properties of the solution of a stochastic
nonlinear equation of Schrödinger type, which is perturbed by a cylindrical
Wiener process and an additive cylindrical fractional Brownian motion. Con-
sequently, this model respects as well fluctations of a Brownian motion as
additive disturbances with long range dependence. This paper completes the
results about stochastic equations of Schrödinger type given in [5] by consid-
ering also a cylindrical fractional Brownian motion with Hurst parameter in
the interval (1

2 , 1). We use the framework of stochastic evolution equations
driven by fractional noise developed by T.E. Duncan, B. Pasik-Duncan, B.
Maslowski [12] and M. Röckner and Y. Wang [17]. The existence results are
derived by using the properties of Schrödinger type equations developed in
[5]. Smoothness properties such as the existence of the Malliavin derivative
are also proved. The Malliavin derivatives can be used to calculate condi-
tional expectations or chaos decompositions of stochastic processes (see [3],
[7]).

This paper has the following structure: In Section 2 we introduce the
list of assumptions and give the definition of the solution. In Section 3 we
briefly present the two stochastic integrals that appear in the equation which
is investigated. The existence of the solution is derived in Section 4. Section
5 contains results about infinite dimensional Malliavin derivatives and the
existence of the Malliavin derivative of the solution is proved.

2. Assumptions and formulation of the problem

We consider (Ω,F , (Ft)t≥0, P ) to be a filtered complete probability space.
Let (V, (·, ·)V ) and (H, (·, ·)) be separable complex Hilbert spaces, such that
(V,H, V ∗) forms a triplet of rigged Hilbert spaces. Let K be a separable real
Hilbert space. We consider

(
W (t)

)
t≥0

to be a K-valued cylindrical Wiener

process adapted to the filtration (Ft)t≥0 and (Bh(t))t≥0 to be a K-valued
cylindrical fractional Brownian motion with Hurst index h ∈ ( 1

2 , 1) adapted
to the filtration (Ft)t≥0.

We study the properties of the variational solution X of the following
stochastic nonlinear evolution equation of Schrödinger type

(X(t), v) = (X0, v)− i

∫ t

0

〈AX(s), v〉ds + i

∫ t

0

(f(s,X(s)), v)ds (2.1)

+ i(
∫ t

0

g(s,X(s))dW (s), v) + i(
∫ t

0

b(s)dBh(s), v)
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for a.e. ω ∈ Ω and all t ∈ [0, T ], v ∈ V .
We assume that:

[I] X0 is F0-measurable, X0 ∈ L2(Ω; V );
[A] A : V → V ∗ has the following properties:
• A is linear and continuous ‖Au‖V ∗ ≤ cA‖u‖V for all u ∈ V ;
• 〈Au, v〉 = 〈Av, u〉 for all u, v ∈ V ;
• there exists constants α1 ∈ R and α2 > 0, such that for all v ∈ V it holds

〈A(v), v〉 ≥ α1‖v‖2 + α2‖v‖2
V .

• Let (hn)n ⊂ H be the eigenvectors of the operator A, for which we assume
that Ahn ∈ H for all n ∈ N and (hn)n is a complete orthonormal system in
H.
[f ] f : Ω× [0, T ]×H → H is a measurable function, which is Ft-adapted for
each t ∈ [0, T ]:
(1) there exists a constant cf > 0 such that for a.e. ω ∈ Ω it holds

‖f(t, u)− f(t, v)‖2 ≤ cf‖u− v‖2 for all t ∈ [0, T ], u, v ∈ H;

(2) for a.e. ω ∈ Ω and all t ∈ [0, T ], u ∈ V we have f(t, u) ∈ V and there
exists kf > 0 such that

‖f(t, u)‖2
V ≤ kf (1 + ‖u‖2

V );

[g] g : Ω × [0, T ] × H → L2(K, H) is a measurable function, which is Ft-
adapted for each t ∈ [0, T ]:
(1) there exists a constant cg > 0 such that for a.e. ω ∈ Ω it holds

‖g(t, u)− g(t, v)‖2
L2(K,H) ≤ cg‖u− v‖2 for all t ∈ [0, T ], u, v ∈ H;

(2) for a.e. ω ∈ Ω and all t ∈ [0, T ], u ∈ V we have g(t, u) ∈ L2(K, V ) and
there exists kg > 0 such that

‖g(t, u)‖2
L2(K,V ) ≤ kg(1 + ‖u‖2

V );

[b] b : [0, T ] → L2(K, V ) and for each u ∈ K we have b(·)u ∈ Lp([0, T ];V ) for
some p > 1

h and it holds

T∫
0

T∫
0

‖b(r)‖L2(K,V )‖b(s)‖L2(K,V )|r − s|2h−2drds < ∞.

3. The stochastic integrals

In this section we briefly present the definitions of the stochastic integrals we
considered in (2.1). Let (en)n be an orthonormal basis in K.

For the K-valued cylindrical Wiener process (W (t))t≥0 and for g :
Ω × [0, T ] × H → L2(K, H) satisfying [g]-(1) the stochastic integral
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T∫
0

g(s, v)dW (s) (v ∈ H fixed) is defined as a zero mean H-valued Gauss-

ian random variable given by
T∫

0

g(s, v)dW (s) :=
∞∑

n=1

T∫
0

g(s, v)endwn(s),

where the series above converges in L2(Ω;H) and ((wn(t))t≥0)n is a sequence
of mutually independent real-valued Brownian motions. One can prove that

E
∥∥∥ T∫

0

g(s, v)dW (s)
∥∥∥2

=
∞∑

n=1

E
∥∥∥ T∫

0

g(s, v)endwn(s)
∥∥∥2

=
∞∑

n=1

E

T∫
0

‖g(s, v)en‖2ds = E

T∫
0

‖g(s, v)‖2
L2(K,H)ds < ∞.

For 0 < r < 1/(2 − 2h) the function φ : [0, T ] → R defined by φ(u) =
h(2h− 1)|u|2h−2 belongs to the space Lr([0, T ]; R).

If p > 1/h, then by Theorem 3.9.4 in [4], there exists CT > 0 such that
for any function η, ϕ ∈ Lp([0, T ]; R) it holds

T∫
0

T∫
0

|η(u)ϕ(v)φ(u− v)|dudv ≤ CT ‖ϕ‖Lp([0,T ];R)‖η‖Lp([0,T ];R).

If (βh(t))t≥0 is a real-valued fractional Brownian motion with Hurst
index h ∈ ( 1

2 , 1), and ϕ ∈ Lp([0, T ]; R), then the stochastic integral
T∫

0

ϕ(s)dβh(s) ∈ L2(Ω; R) is defined as a zero mean real-valued Gaussian

random variable, such that

E

 T∫
0

ϕ(s)dβh(s)

T∫
0

ϕ(s)dβh(s)

 = E

T∫
0

T∫
0

ϕ(u)ϕ(v)φ(u− v)dudv.

If ϕ ∈ Lp([0, T ]; R) with p > 1
h , then the process

( t∫
0

ϕ(s)dβh(s)
)

t≥0

has P -a.s. continuous sample paths (see [18] Lemma 2.0.17).
Let (kn)n be an orthonormal basis in K.
For the K-valued cylindrical fractional Brownian motion (Bh(t))t≥0 and

for b : [0, T ] → L2(K, V ) satisfying assumption [b] the stochastic integral
T∫

0

b(s)dBh(s) is defined as a zero mean V -valued Gaussian random variable
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given by
T∫

0

b(s)dBh(s) :=
∞∑

n=1

T∫
0

b(s)kndβh
n(s),

where the series above converges in L2(Ω;V ) and
(
(βh

n(t))t≥0

)
n

is a sequence
of mutually independent real-valued fractional Brownian motions each with
Hurst parameter h. One can prove that

E
∥∥∥ T∫

0

b(s)dBh(s)
∥∥∥2

V
=

∞∑
n=1

E
∥∥∥ T∫

0

b(s)kndβh
n(s)

∥∥∥2

V

=
∞∑

n=1

T∫
0

T∫
0

(b(r)kn, b(s)kn)V φ(r, s)drds

≤
T∫

0

T∫
0

‖b(r)‖L2(K,V )‖b(s)‖L2(K,V )φ(r, s)drds < ∞.

For more details see for example [12],[18].
For a.e. ω ∈ Ω and for each t ∈ [0, T ] we denote by

Z(t) :=
∫ t

0

b(s)dBh(s),

which is obviously a V -valued process adapted to (Ft)t≥0.

Proposition 3.1. [18, Corollary 2.0.16, Lemma 2.0.17] The process
(Z(t))t∈[0,T ] has a continuous version in V and in H and

E

∫ T

0

‖Z(s)‖2
V ds < ∞.

Remark 3.2. The stochastic integral Z(t) can also be represented by a sto-
chastic integral with respect to the cylindrical Wiener process W (see [3], [6]).
For f : R → C and 1

2 < h < 1 we introduce the operator

(Mhf)(x) = ch

∫
R

f(t)
|t− x|3/2−h

dt,

where ch = [2Γ(h−1/2) cos(1/2π(h−1/2))]−1(Γ(2h+1) sin(πh))1/2 and f is
chosen in such a manner that (Mhf) ∈ L2(R). If f is concentrated on [0, T ],
then we consider [0, T ] instead of R. If

∞∑
n=1

∞∑
j=1

∫ T

0

((
Mh (b(·)kn, hj)

)
(s)
)2

ds < ∞,

then ∫ t

0

b(s)dBh(s) =
∞∑

j=1

∞∑
n=1

∫ t

0

(
Mh (b(·)kn, hj)

)
(s)dwn(s)hj .
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4. Existence of the solution

Theorem 4.1. Assume that [I], [A], [f], [g], [b] are satisfied. Equation (2.1)
admits a unique solution X ∈ L2(Ω× [0, T ];V ) ∩ L2(Ω;C([0, T ];H)).

In order to prove the existence of the solution of (2.1), we first transform
it equivalently into an equation of Schrödinger type studied in [5]. For a.e.
ω ∈ Ω and for each t ∈ [0, T ], v ∈ H we denote by

• U(t) := X(t)− iZ(t).
• F (ω, t, v) := f(ω, t, v + iZ(ω, t)),
• G(ω, t, v) := g(ω, t, v + iZ(ω, t)).

Observe that for a.e. ω ∈ Ω and all t ∈ [0, T ], u, v ∈ H it holds

‖F (t, u)− F (t, v)‖2 ≤ cf‖u− v‖2

‖G(t, u)−G(t, v)‖2
L2(K,H) ≤ cg‖u− v‖2

and for all u ∈ V

‖F (t, u)‖2
V ≤ 2kf (1 + ‖u‖2

V + ‖Z(t)‖2
V );

‖G(t, u)‖2
L2(K,V ) ≤ 2kg(1 + ‖u‖2

V + ‖Z(t)‖2
V ).

We rewrite (2.1) equivalently as

(U(t), v) = (X0, v)− i

∫ t

0

〈AU(s), v〉ds + i

∫ t

0

(F (s, U(s)), v)ds (4.1)

+i(
∫ t

0

G(s, U(s))dW (s), v) + i

∫ t

0

〈AZ(s), v〉ds for all v ∈ V.

(2.1) admits a unique solution X ∈ L2(Ω × [0, T ];V ) ∩ L2(Ω; C([0, T ];H))
if and only if (4.1) admits a unique solution U ∈ L2(Ω × [0, T ];V ) ∩
L2(Ω; C([0, T ];H)).

The proof of the existence of a unique solution U for (4.1) is similar
to the proof of Theorem 1 in [5]. For this reason one introduces Galerkin
approximations: For each n ∈ N we consider the finite dimensional spaces
Hn := sp{h1, h2, . . . , hn} (equipped with the norm induced from H) and
Kn := sp{e1, e2, . . . , en} (equipped with the norm induced from K). We
define πn : H → Hn the orthogonal projection of H on Hn by πnh :=

n∑
j=1

(h, hj)hj . Let An : Hn → Hn, Fn : Ω× [0, T ]×Hn → Hn, Gn : Ω× [0, T ]×

Hn → L(Kn,Hn) be defined respectively by

Anu =
n∑

j=1

〈Au, hj〉hj , Fn(t, u) =
n∑

j=1

(F (t, u), hj)hj ,

Gn(t, u)v =
n∑

j=1

(G(t, u)v, hj)hi for v ∈ Kn

Zn(t) =
n∑

j=1

(Z(t), hj)hj
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and we denote X0n = πnX0 and Wn(t) =
n∑

j=1

ejwj(t) ∈ Kn. For a.e. ω ∈ Ω

and all t ∈ [0, T ] and all j = 1, n we consider the finite dimensional equations
corresponding to (4.1)

(Un(t), hj) = (X0n, hj)− i

∫ t

0

(AnUn(s), hj)ds (4.2)

+i

∫ t

0

(Fn(s, Un(s)), hj)ds + i(
∫ t

0

Gn(s, Un(s))dWn(s), hj)

+i

∫ t

0

(An(s)Zn(s), hj)ds.

One can show similar as in the proof of Theorem 1 in [5] (see also
Remark 3 in [5]) that for all t ∈ [0, T ] it holds

lim
n→∞

E‖Un(t)− U(t)‖2 = 0

and

lim
n→∞

E

∫ t

0

‖Un(s)− U(s)‖2ds = 0.

5. The existence of Malliavin derivative of the solution

We briefly present some results about infinite dimensional Malliavin deriva-
tives: We consider the random variable Y with values in a complex Hilbert
space H. Y with E‖Y ‖2 < ∞ is called a smooth random variable and we
denote Y ∈ S, if

Y =
n∑

j=1

fj

(∫ T

0

(γ1,j(s), dW (s))K , . . . ,

∫ T

0

(
γnj ,j(s), dW (s)

)
K

)
hj ,

where γ1,j , . . . , γnj ,j ∈ L2([0, T ];K) for j = 1, . . . n, hj ∈ H, fj ∈ C∞(Rnj )
and fj and all its derivatives have polynomial growth for j = 1, . . . , n.

The Malliavin derivative DtY , (t ∈ [0, T ]) of Y ∈ S is a random variable
with values in L2(K, H) defined by

DtY =
n∑

j=1

nj∑
k=1

∂fj

∂xk

(∫ T

0

(γ1,j(s), dW (s))K , . . . ,

∫ T

0

(
γnj ,j(s), dW (s)

)
K

)
·

·hj ⊗ γk,j(t).

The Malliavin derivative Dt as defined for H-valued smooth random variables
is closable on L2(Ω; L2(K, H)) (see Proposition 5.1 in [7]).

Consequently, if Y is the L2(Ω; H) limit of a sequence (Yn)n ⊂ S so
that the sequence (DtYn)n convergences in L2(Ω;L2(K, H)), we can define
DtY as

DtY = lim
n→∞

DtYn.



388 Wilfried Grecksch and Hannelore Lisei

We use the notation H(K) for the subspace of L2(Ω;H), where the derivative
Dt can be defined. This subspace is a separable Hilbert space equipped with
the graph norm

‖Y ‖2
H(K) = E‖Y ‖2 + E‖DtY ‖2

L2(K,H).

The following result is known (see Lemma 5.2 in [7]):

Lemma 5.1. Let Yn → Y in L2(Ω;H) and suppose that there is a constant
C > 0 such that for all n we have

E‖DtY ‖2
L2(K,H) < C.

Then, the random variable Y is in the domain H(K) of the Malliavin deriv-
ative Dt.

By using Proposition 5.2 in [7] the following chain rule holds:

Proposition 5.2. Let M be a further separable Hilbert space. Given a random
variable Y ∈ H(K) and a Fréchet differentiable function η : H → M . Then,

Dtη(Y ) = ∇ηDtY.

We will use the following well-known properties of Dt (see, for example
[7], [3]):

Proposition 5.3. (1) If Y is Fs-measurable and Y ∈ H(K), then DtY = 0
a.e. ω ∈ Ω and for all t > s.

(2) Let a(s), s ∈ [0, T ] an Fs-adapted L2(K, H)-valued process which fulfills
the assumptions of the Skorochod integral definition in [7]. Then, for all
r > t it holds

Dt

∫ r

0

a(s)dW (s) = a(t) +
∫ r

t

Dta(s)dW (s).

Further in this section we assume:
1. The assumption in Remark 3.2 is valid for the process b.
2. The functions f and g are deterministic.
3. The functions f and g are Fréchet differentiable with respect to x ∈ H

for all t ∈ [0, T ] and the Fréchet derivatives ∇xf(t, x) and ∇xg(t, x) are
bounded in the following sense: There exists a positive constant c such
that

‖∇xf(t, x)‖L(H,H), ‖∇xg(t, x)‖L(H,L2(K,H)) ≤ c

for all t ∈ [0, T ], x ∈ H.
4. The initial condition X0 is deterministic.

Theorem 5.4. There exists DrU(t) as an L2(K, H)-valued random variable
for all r, t ∈ [0, T ].

Proof. We process the proof in two steps:
Step 1: It follows from the above assumption 3 that the functions f and
g are globally Lipschitz continuous. Consequently, we can consider directly
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the Galerkin equations (4.2). Similar to Remark 3 in [5] we have for the
variational solution U

lim
n→∞

E‖Un(t)− U(t)‖2 = 0 and lim
n→∞

E

∫ t

0

‖Un(s)− U(s)‖2ds = 0 (5.1)

for all t ∈ [0, T ]. Equation (4.2) is an Itô equation in Vn and Hn and its
solution can be approximated by the method of successive approximations

Um+1
n (t) = X0n − i

∫ t

0

AnUm
n (s)ds (5.2)

+i

∫ t

0

Fn(s, Um
n (s))ds + i

∫ t

0

Gn(s, Um
n (s))dWn(s)

+i

∫ t

0

An(s)Zn(s)ds.

for m = 0, 1, . . . with U0(s) ≡ X0n.
The finite dimensional theory shows

lim
m→∞

E‖Um
n (t)− Un(t)‖2 = 0. (5.3)

Now we calculate DrU
m+1
n (t). Since Um+1

n is Ft-measurable we get also
the Fr-measurability for r ≥ t. In this case it follows from Proposition 5.3
DrU

m+1
n (t) = 0. We now consider r < t. Then, by Proposition 5.2, Proposi-

tion 5.3 and Remark 3.2 we get

DrU
m+1
n (t) = −i

∫ t

r

AnDrU
m
n (s)ds (5.4)

+i

∫ t

r

∇xFn(s, Um
n (s))DrU

m
n (s)ds

+i

∫ t

r

∇xFn(s, Um
n (s))DrZn(s)ds

+i

∫ t

r

∇xGn(s, Um
n (s))DrU

m
n (s)dWn(s)

+i

∫ t

r

∇xGn(s, Um
n (s))DrZn(s)dWn(s)

+iGn(r, Um
n (r)) + i

∫ t

r

An(s)DrZn(s)ds

where DrZn(t) : Kn → Hn is the linear operator defined by

(DrZn(t)x, y) =
(
Mh (bn(·)x, y)

)
(s).

DrZn(t) has values in L(Kn, Vn) and L(Kn,Hn). Since the spaces are finite
dimensional, the operators are also Hilbert-Schmidt operators. If we use the
energy equality in the space L2(Kn,Hn), then we get by the assumptions of
this section and by Gronwall’s lemma that there is a positive constant C with

E‖DrU
m
n (t)‖2

L2(K,H) ≤ C
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for all m, r, t and fixed n, since from equation (5.3) the boundedness of
E‖Um

n (t)‖2 follows for all m, r, t and fixed n. The constant C does not depend
on n. Then we get by Lemma 5.1, from the last inequality and from equation
(5.3) that DrUn(t) exists and

E‖DrUn(t)‖2
L2(K,H) ≤ C. (5.5)

Step 2: Since the relations (5.5) and (5.1) hold, we can use again Lemma 5.1
and get

E‖DrU(t)‖2
L2(K,H) ≤ C.

�

Theorem 5.5. Consider that the assumptions of this section hold. Then, for
t > r we have

DrX(t) = DrU(t) + i(Mhb(·))(r),
where (Mhb(·))(r) ∈ L2(K, H) is defined by the bilinearform

(Mh(b(·)x, y))(r) for all x ∈ K, x ∈ H.

Proof. Theorem 5.4 shows the existence of DrU(t) and it holds DrX(t) =
DrU(t) + iDrZ(t). Since b is deterministic, we get by Proposition 5.3 and
Remark 3.2 for t > r

DrZ(t) = (Mhb(·))(r).
�

Remark 5.6. The Malliavin derivative is used for example to define Skorochod
integrals [12] and in the optimal control theory [1]. Optimal control problems
for stochastic Schrödinger equations are under preparation.

Acknowledgement. This work was supported by CNCSIS - UEFISCSU (Ro-
mania) project number PN II IDEI ID 2162/nr. 501/2008 ”Nonsmooth phe-
nomena in nonlinear elliptic problems” and by Deutsche Forschungsgemein-
schaft (Germany) project GR 1525/10-1.

References

[1] Anh, V.V., Grecksch, W., Yong, J., Regularity of Backward Stochastic Volterra
Integral Equations, Stochastic Analysis and Applications, 29(2011), no. 1, 146–
168.

[2] Bang, O., Christiansen, P.L., If, F., Rasmussen, K.O., Gaididei, Y.B., Tem-
perature Effects in a Nonlinear Model of Monolayer Scheibe Aggregates, Phys.
Rev. E, 49(1994), 4627-4636.

[3] Biagini, F., Oksendal, B., Sulem, A., Wallner, N., An Introduction to White
Noise Theory and Malliavin Calculus for Fractional Brownian Motion, Proc.
Royal Soc. London, A, 460(2004), 347-372.

[4] Bogachev, V.I., Measure Theory, Vol. I, Springer-Verlag, New-York, 2007.

[5] Grecksch, W., Lisei, H., Stochastic Nonlinear Equations of Schrödinger Type,
to appear in Stochastic Analysis and Applications.



Stochastic Schrödinger equation 391

[6] Grecksch, W., Roth, C., Anh, V.V., Q-Fractional Brownian Motion in Infinite
Dimensions with Applications to Fractional Black-Scholes Market, Stochastic
Analysis and Applications, 27(2009), no. 1, 149-175.

[7] Carmona, R., Tehrani, M., Interest Rate Models: an Infininite Dimensional
Stochastic Analysis Perspective, Springer Verlag, Berlin - Heidelberg, 2006.

[8] Dautray, R., Lions, J.L., Mathematical Analysis And Numerical Methods For
Science And Technology, Volume 5, Evolution Problems I. Springer-Verlag,
Berlin, 1992.

[9] De Bouard, A., Debussche, A., A Stochastic Nonlinear Schrödinger Equation
with Multiplicative Noise, Commun. Math. Phys., 205(1999), 161–181.

[10] De Bouard, A., Debussche, A., A Semi-discrete Scheme for the Stochastic Non-
linear Schrödinger Equation, Numer. Math., 96(2004), 733–770.

[11] Debussche, A., Odasso, C., Ergodicity for a Weakly Damped Stochastic Non-
linear Schrödinger Equation, J. Evol. Eq., 5(2005), 317-356.

[12] Duncan, T.E., Maslowski, B., Pasic-Duncan, B., Fractional Brownian Motion
and Stochastic Equations in Hilbert Space, Stochast. Dyn., 2(2002), 225–250.

[13] Falkovich, G.E., Kolokolov, I., Lebedev, V., Turitsyn, S.K., Statistics of
Soliton-Bearing Systems with Additive Noise, Phys. Rev. E, 63(2001).

[14] Mora, C.M., Rebolledo, R., Regularity of Solutions to Linear Stochastic
Schrödinger Equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top.,
10(2007), 237-259.

[15] Mora, C.M., Rebolledo, R., Basic Properties of Nonlinear Stochastic Schrö-
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Stochastic simulation of the gradient process
in semi-discrete approximations of diffusion
problems

Flavius Guiaş

Abstract. We analyze a stochastic version of the so-called diffusion-
velocity method. For moving particles with velocities depending on the
gradient of their density function we introduce a stochastic scheme based
on the simulation of the gradient process where the values of the density
are recovered by a numerical integration method. We apply this method
to the diffusion equation and show a convergence result.

Mathematics Subject Classification (2010): 65C20, 68U20, 65M06.

Keywords: Stochastic simulation, diffusion, gradient process.

1. Introduction

Numerical particle methods are suited to approximate the time evolution of
a density function by simulating trajectories of the (interacting) particles.
We assume that the velocity vector depends (linearly or nonlinearly) on the
gradient of this density function. For example in the so-called deterministic
diffusion of particles one assigns to every particle a velocity vector which
is proportional to the logarithmic derivative of the density function. This
principle can be derived as follows: consider in a volume element U ⊂ Rd the
continuity equation: ut = −∇· (uv), which describes the motion with velocity
v of a quantity with density function u. Pure formally, if we put v = −∇u

u we
obtain nothing else than the diffusion equation: ut = ∆u. This type of velocity
is often called in the physical literature as osmotic velocity. A discussion
of this deterministic particle method together with several applications is
presented in [4] and [5] and a rigorous convergence result is proved in [3].

Our goal is to construct an analogous scheme in a stochastic framework.
The main motivation is that this scheme may be used in combination with
usual Monte Carlo methods for kinetic equations in a spatially inhomogeneous
setting, with spatial motion and local interaction.
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After moving a particle from a location to another the density config-
uration changes, so one has also to update the corresponding values of the
gradient. In a stochastic framework for particle simulation, the use of stan-
dard discretization schemes for computing the gradient can lead to strong
oscillations in the density values. In order to avoid this problem we consider
the simulation of the gradient process. Given an initial data in terms of the
density, one computes the gradient by a usual discretization scheme (e.g. fi-
nite differences). The scheme follows then only the dynamics of the gradient
process which are derived from the original dynamics of the particle system.
The density is recovered by a numerical integration method.

In this paper we present an application of the principle described above
to the diffusion equation. By this example we intend also to develop a for-
malism and a methodology which can be applied in more general cases.

In Section 2 introduce the stochastic counterpart of the diffusion-
velocity method. We point out that this direct approach in the stochastic
framework leads to strong fluctuations of the density profile which we want
to approximate. In order to overcome this problem we introduce in Section
3 a stochastic scheme for the gradient process. Convergence results for the
density computed by numerical integration are presented in Section 4.

2. The diffusion-velocity method in a stochastic framework

In this section we will present an approach to approximate the diffusion
equation in the one-dimensional case, which can be extended easily to higher
dimensions. The goal is to approximate on the interval (0, 1) the solution of:

ut = uxx, with the boundary condition:

 u(0) = u(1) = 0 (D)
or

ux(0) = ux(1) = 0 (N)
(2.1)

and initial condition u(0, x) = u0(x) ∈ H1(0, 1) for all x ∈ [0, 1].
In this section we will assume that u0 ≥ 0. Let M be an integer, denote

ε = M−1 and consider the discrete set of sites Gε = {kε, k = 1,M − 1}.
Assume that we have N particles distributed in the locations of Gε, and
denote by nk(t) the number of particles present at the moment t in the
location kε. We introduce the scaling parameter h = M/N = ε−1N−1, which
means that h−1 is the average number of particles per site. The density
function corresponding to this particle system is defined in the points kε of
the discretization grid by uk(t) = hnk(t). In analogy to the formula v = −∇u

u

we assign to the particles located at kε, k = 1,M − 1, the velocity

vk(t) =
uk−1(t)− uk+1(t)

2εuk(t)
.

Sometimes we will consider formal function values at the boundary sites
0 and Mε = 1 (which contain no particles), in order to model the boundary
conditions. These values influence the transitions in the sites ε and (M −1)ε.
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Every particle situated at kε can jump one site to the left or to the right
(depending on the sign of the velocity). Our interest is however to follow the
time evolution of the density function and from this viewpoint all particles
present in the same location are indistinguishable. That is, if any particle
from the site kε jumps with the rate Mvk = ε−1|vk|, the density function in
the new state will be the same, independently on which particle jumped. We
can thus consider a single transition of this type and multiply the rate with
nk(t), i.e. with the number of particles present at time t at the site kε.

2.1. Construction of the Markov jump process

Based on the previous considerations, we will construct two RM−1-valued
Markov jump processes as follows. Given the time moment t and the state
u(t) = (uk(t))M−1

k=1 , we define

wk(t) = hnk(t) · vk(t) =
uk−1(t)− uk+1(t)

2ε
=: −∇εu

k(t) (2.2)

for k = 1,M − 1.
The transitions in the interior sites are given by:

u(t) → u(t)− hek + hek+ζ(wk) at rate h−1ε−1|wk(t)| (2.3)

where ei denotes the i-th unit vector in RM−1, while ζ(·) denotes the signum
function. This corresponds to the jump of a particle from the site k in the
site k + ζ(wk), for k = 1,M − 1.

The quantity wk(t) defined in (2.2) represents the discrete derivative of
the density function uk(t) and the transition (2.3) changes this function in
the locations k, k + ζ(wk), k + 2ζ(wk), k − ζ(wk) as follows:

wk → −ζ(wk)
uk+ζ(wk) + h− uk−ζ(wk)

2ε
= wk − h

2ε
ζ(wk) (2.4)

wk+ζ(wk) → −ζ(wk)
uk+2ζ(wk) − uk + h

2ε
= wk+ζ(wk) − h

2ε
ζ(wk)

wk+2ζ(wk) → −ζ(wk)
uk+3ζ(wk) − uk+ζ(wk) − h

2ε
= wk+2ζ(wk) +

h

2ε
ζ(wk)

wk−ζ(wk) → −ζ(wk)
uk − h− uk−2ζ(wk)

2ε
= wk−ζ(wk) +

h

2ε
ζ(wk)

at rate h−1ε−1|wk(t)|.
We will discuss next the situation at the boundary.
In the case of zero boundary conditions (D), we consider formally ui(t) =

0 for all i 6∈ {1, . . . ,M − 1} in all expressions from (2.3). This value does not
change after any possible transition, that is, the particle which leaves the
interior of the domain is ’killed’. Outside the range 1,M − 1 the function
w is not defined. Consider w1(t) = − 1

2εu
2(t) and wM−1(t) = 1

2εu
M−2(t).

Note that always holds w1 ≤ 0 and wM−1 ≥ 0. This implies that in the case
k = 1 or k = M − 1, the changes of wk−ζ(wk) are well defined in (2.4), while
wk+ζ(wk) and wk+2ζ(wk) are not present, the indices being out of range.
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In the case of Neumann boundary conditions (N) we take

w1(t) = wM−1(t) = 0.

2.2. Remarks

As the following considerations will show, the density function u may exhibit
strong oscillations. Suppose that we have an even number of interior loca-
tions {1, . . . , 2M}, while the sites 0 and 2M +1 correspond to the boundary.
Expressing u in terms of w in the case of 0 boundary conditions we obtain

u2k − u2k+1 = −2ε

(
k∑

i=1

w2i−1 +
M∑

i=k+1

w2i

)
. (2.5)

The value of the difference in (2.5) approaches the integral −
∫ 1

0
wdx.

Since the expected limits satisfy w = −ux, the difference will be close to
u(1)− u(0), up to a factor of O(ε). The same statement holds for Neumann
boundary conditions, where the computations are similar, but the expressions
for the values of u in the sites 2, 2M − 1 involve also the values of u1 and
u2M (which cannot be computed directly from w). In this situation, especially
in the case of asymmetric initial data, the value of the difference can be of
O(1). If the integral is nonzero, the difference u2k −u2k+1 will have basically
a constant sign, which means that one can observe a strongly oscillating
pattern. Only in the case that the integral vanishes (in our setting only for
zero boundary conditions or symmetric data) the oscillations have a smaller
amplitude. In this case, after some elementary computations, the difference
(2.5) can be estimated by ε(‖w‖∞ + 1

2‖w
′‖∞) +O(ε2).

3. The particle scheme for the gradient process

Based on the previous considerations, we will present next a particle scheme
for the one-dimensional diffusion equation. We consider a discretized version
of the initial condition u0 of the equation (2.1), from which we derive the
values of w(0) according to (2.2) and the settings at the boundary. In the
interior of the domain we simulate the time evolution of the gradient process
w according to (2.4). The state changes of the process which affect the values
of w at the ’near boundary’ sites are chosen such that for given ε, the de-
terministic difference equation obtained in the limit proves to be consistent
with the corresponding diffusion equation for w = ux, where u is a sufficiently
smooth solution of (2.1).

For zero boundary conditions (D) we construct the dynamics at the
’near-boundary’ sites ε and (M − 1)ε according to the following natural con-
servation principle. Since we expect w = −ux and thus∫ 1

0

w(x)dx = u(0)− u(1) = 0,
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we impose that
∑M−1

i=1 wi(t) = 0 for all t. That is, the total sum of the changes
after each transition should vanish. In the interior this condition is fulfilled
in all situations, as one can see from (2.4).

In order to construct the approximate solution for equation (2.1) we
have to perform a numerical integration. An accurate result is delivered for
example by the computation of

u(t, x) :=
1
2

(
−
∫ x

0

w(t, y)dy +
∫ 1

x

w(t, y)dy + u(t, 0) + u(t, 1)
)

(3.1)

with the trapezoidal rule.
For zero boundary conditions (D) we can compute u by knowing only

the gradient process w, since the density function vanishes at the bound-
ary. In order to perform the integration, we need the values of w in the
boundary sites 0 and Mε = 1. For zero boundary conditions we have (for-
mally): wx(t, 0) ≈ −uxx(t, 0) ≈ − d

dtu(t, 0) = 0. We take thus w(0) = w(ε)
and w(1) = w((M − 1)ε).

In the case of Neumann boundary conditions (N) we do not know the val-
ues u(t, 0) and u(t, 1) (except if we simulate also the density process). But we
can recover u by using the conservation property

∫ 1

0
u(t, x)dx =

∫ 1

0
u0(x)dx.

If we let f(t, x) = −
∫ x

0
w(t, y)dy +

∫ 1

x
w(t, y)dy, we then have

u(t, x) :=
1
2

(
f(t, x)−

∫ 1

0

f(t, y)dy
)

+
∫ 1

0

u0(x)dx.

By a discrete version of the above formula (computed by the trapezoidal rule)
we can recover the desired approximation for the solution of (2.1) by knowing
only the initial data and the time evolution of the gradient process w.

3.1. Dynamics in terms of the infinitesimal generator

We will express the dynamics of the Markov process w given by the transitions
(2.4) in terms of its generator, by using the characterization from [1], p.162 f.
If we have an E-valued Markov jump process with a set of transitions {x(·) →
y(·)} and the corresponding rates rx→y, the waiting time parameter function
λ(t) =

∑
rx→y is given by the sum of all possible transition rates. The

infinitesimal generator Λ is an operator acting on the bounded, measurable
functions on E and is given by (Λf)(x) =

∑
x→y(f(y)− f(x))rx→y.

We note that for fixedM andN the process w has bounded components,
i.e. there exists a constant LM,N such that max|wk| ≤ LM,N for all times.
The waiting time parameter function λ is also bounded, which implies that
the process is well-defined for all t, i.e. the jumps do not accumulate.

For a vector w ∈ RM−1 and 3 ≤ k ≤ M − 3 denote ηw
k := ek−ζ(wk) −

ek − ek+ζ(wk) + ek+2ζ(wk). In order to define the values in the sites near
the boundary, we take into account the requirements of conservation and
consistency.
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In the case of zero boundary condition (D) we define:

ηw
1 =

{
−e1 + e2 if w1 < 0
−e2 + e3 if w1 > 0 (3.2)

ηw
2 =

{
−e2 + e3 if w2 < 0

e1 − e2 − e3 + e4 if w2 > 0.

At the other end of the interval we define similarly ηw
M−i for i = 1, 2 by

replacing wi with −wM−i and ej with eM−j for j = 1 . . . 4.
For Neumann boundary condition (N) we consider ηw

1 = ηw
M−1 = 0 and

for k = 2, 3 (or k = M − 3,M − 2) we suppress the term e1 (respectively
eM−1) if it appears in the formula ηw

k = ek−ζ(wk)− ek− ek+ζ(wk) + ek+2ζ(wk).
Taking in account (2.4), the transitions of the process w are therefore

given by

w −→ w + ζ(wk)
h

2ε
ηw

k

at rate h−1ε−1|wk(t)|.
Define the linear operator ∆ζ(w)

ε φ by:

(∆ζ(w)
ε φ)k :=

1
2ε2

〈ηw
k , φ〉 (3.3)

for all φ ∈ RM−1, where 〈·, ·〉 denotes the scalar product on RM−1.
For 3 ≤ k ≤M − 3 we thus have

(∆ζ(w)
ε φ)k =

1
2ε2

[φk−ζ(wk) − φk − φk+ζ(wk) + φk+2ζ(wk)]. (3.4)

For a fixed element φ ∈ RM−1 consider on RM−1 a bounded smooth
function fφ which on the set {x : max|xk| ≤ LM,N} has the form fφ(x) =
〈x, φ〉 =

∑M−1
i=1 xiφi. Outside this set the values of the function are in our

case not of interest, only the boundedness is essential. From [1], p.162 we
have that the process w satisfies the identity

fφ(w(t)) = fφ(w(0)) +
∫ t

0

(Λwfφ)(w(s))ds+Mφ(t) (3.5)

where Mφ(·) is a martingale with respect to the filtration generated by the
process w and Λw is the infinitesimal generator. The value Λwfφ is given by

(Λwfφ)(w(t)) =
h

2ε

∑
k

〈ζ(wk)ηw
k , φ〉h−1ε−1|wk(t)|

=
1

2ε2
∑

k

[φk−ζ(wk) − φk − φk+ζ(wk) + φk+2ζ(wk)]wk(t)

= 〈∆ζ(w)
ε φ,w(t)〉. (3.6)

Equation (3.5) becomes thus

〈w(t), φ〉 = 〈w(0), φ〉+
∫ t

0

〈∆ζ(w)
ε φ,w(s)〉ds+Mw

φ (t). (3.7)



Stochastic simulation of the gradient process 399

3.2. The deterministic scheme as limit of the family of stochastic processes

By standard techniques as in [1] or [2] one can show that for fixed ε the
stochastic processes converge in probability for N →∞ to the solution of the
ODE-system obtained by suppressing the martingale term in (3.7). We may
note that the stochastic method proposed here delivers for fixed ε an approx-
imation of the solution of the ODE-system by computing all transitions of
the stochastic process at the ’microscopic level’. However, this ODE-system is
not meant to be approximated by a deterministic time-discretization scheme,
but its solution is approximated directly by the stochastic simulations. The
convergence for ε → 0 of the difference scheme provided by the spatially
discretized system to the solution of the corresponding spatially continuous
diffusion equation will be analyzed subsequently. The system of ODE’s which
is obtained for N →∞ and fixed ε is therefore given by:

〈vε(t), φ〉 = 〈vε(0), φ〉+
∫ t

0

〈∆ζ(vε)
ε φ, vε(s)〉ds (3.8)

for all φ ∈ RM−1, where for any w ∈ RM−1, ∆ζ(w)
ε φ was defined in (3.3)

as
(∆ζ(w)

ε φ)k :=
1

2ε2
〈ηw

k , φ〉.

The vectors ηw
k can be written in the more convenient form:

ηw
k = −ek−2ζ(wk ∧ 0) + ek−1ζ(wk)− ek − ek+1ζ(wk) + ek+2ζ(wk ∨ 0) (3.9)

for 3 ≤ k ≤M − 3 and, for zero boundary conditions,

ηw
2 = e1ζ(w2 ∨ 0)− e2 − e3ζ(w2) + e4ζ(w2 ∨ 0)
ηw
1 = e1ζ(w1 ∧ 0)− e2ζ(w1) + e3ζ(w1 ∨ 0).

By x∧0, x∨0 we denote respectively the minimum between x and 0 and the
maximum between x and 0. The terms ηw

M−1, η
w
M−2 are defined analogous to

ηw
1 and ηw

2 . With this form we obtain:

(∆ζ(w)
ε φ)k =

1
2ε2

[
−φk−2ζ(wk ∧ 0) + φk−1ζ(wk)− φk − φk+1ζ(wk)

+ φk+2ζ(wk ∨ 0)
]

for 3 ≤ k ≤M − 3 and

(∆ζ(w)
ε φ)2 =

1
2ε2

[
φ1ζ(w2 ∨ 0)− φ2 − φ3ζ(w2) + φ4ζ(w2 ∨ 0)

]
(∆ζ(w)

ε φ)1 =
1

2ε2
[
φ1ζ(w1 ∧ 0)− φ2ζ(w1) + φ3ζ(w1 ∨ 0)

]
.

An explicit form of the deterministic equations is given by letting φ = ei

in (3.8), for i = 1,M − 1. We obtain then the system

vi
ε(t) = vi

ε(0) +
∫ t

0

〈∆ζ(v)
ε ei, vε(s)〉ds (3.10)

= vi
ε(0) +

∫ t

0

F i
ε(vε(s))ds
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for i = 1,M − 1, where for 3 ≤ i ≤M − 3 we have the explicit form:

F i
ε(vε) =

1
2ε2

[
vi−2

ε ∨ 0− |vi−1
ε | − vi

ε + |vi+1
ε |+ vi+2

ε ∧ 0
]
.

The terms corresponding to the sites near the boundary are computed simi-
larly by using the corresponding values of ηw

k .

4. Convergence results

In this section we analyze the approximation properties of the diffusion equa-
tion in the case of zero boundary conditions (D) by the ODE system (3.10).

Set u0
ε = uM

ε = 0 and for i ∈ {1, . . . ,M − 1} define

ui
ε(t) = −ε

i∑
k=1

vk
ε (t). (4.1)

Note that this corresponds to a discrete integration scheme for computing
u(t, x) = −

∫ x

0
v(t, x)dx. For the sake of computations we will treat the theo-

retical estimates with this construction, but in practice we will use a scheme
for computing the integrals in (3.1), that is we integrate in both directions.

Define the piecewise linear function uε(t, ·) : [0, 1] → R by:

uε(t, x) := −vi+1
ε (t)(x− iε) + ui

ε(t) (4.2)

for x ∈ [iε, (i+1)ε]. We take u0
ε = uM

ε = vM
ε = 0. This is the linear interpolant

between the values ui
ε at the sites iε. Let us first show some properties of the

solutions vε of (3.10) and of uε defined in (4.1).

Lemma 4.1. (i) We have for all T > 0:

sup
t∈[0,T ]

M−1∑
i=1

(ui
ε(t))

2 ≤
M−1∑
i=1

(ui
ε(0))2.

(ii) Suppose vε(t) has the following properties for all t ∈ [0, T ]: v1
ε(t) ≤

0, vM−1
ε (t) ≥ 0 and if vi

ε(t) · vi+2
ε (t) ≥ 0 then we have also vi

ε(t) · vi+1
ε (t) ≥ 0.

Under these assumptions we have:

sup
t∈[0,T ]

M−1∑
i=1

(vi
ε(t))

2 ≤
M−1∑
i=1

(vi
ε(0))2.

Proof. We recall the form (3.8) of the deterministic equation system:

〈 d
dt
vε(t), φ〉 = 〈∆ζ(vε)

ε φ, vε(t)〉 (4.3)

which holds for all vectors φ = (φi)M−1
i=1 ∈ RM−1. In order to derive a similar

equation for uε, we take as test vectors φ = −εφ(i) := −ε(φi, φi, . . . φi, 0, . . . 0)
where the first i components are equal to φi and the rest are 0. We obtain
then:

d

dt
ui

ε(t)φ
i = −ε〈∆ζ(vε)

ε φ(i), vε(t)〉. (4.4)
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In particular, if we take φ = −εθ(i) := −ε(1, 1, . . . 1, 0, . . . 0) (the first i
components are equal to 1) we obtain:

d

dt
ui

ε(t) = −ε〈∆ζ(vε)
ε θ(i), vε(t)〉. (4.5)

For 3 ≤ i ≤M − 3 we have:

d

dt
ui

ε(t) = − 1
2ε

M−1∑
k=1

[θk−ζ(vk
ε )

(i) − θk
(i) − θ

k+ζ(vk
ε )

(i) + θ
k+2ζ(vk

ε )

(i) ]vk
ε . (4.6)

Taking in account the structure of θ(i) we can note that the terms in
the brackets vanish, except in the situation that i − 2 ≤ k ≤ i + 2. In this
case the values depend on the sign of the corresponding vk

ε , and we obtain
easily:

d

dt
ui

ε(t) =
1
2ε
[
(vi−1

ε ∨ 0) + (vi
ε ∧ 0)− (vi+1

ε ∨ 0)− (vi+2
ε ∧ 0)

]
. (4.7)

Let us consider further a general form for φ. By summing up the equa-
tions (4.4) with respect to i we obtain:

〈 d
dt
uε(t), φ〉 = −ε

M−1∑
i=1

〈∆ζ(vε)
ε φ(i), vε(t)〉. (4.8)

Let us compute the r.h.s. by rearranging the terms in a convenient form. We
have:
M−1∑
i=1

〈∆ζ(vε)
ε φ(i), vε(t)〉=

M−1∑
i=1

M−1∑
k=1

(∆ζ(vε)
ε φ(i))k ·vk

ε =
M−1∑
k=1

vk
ε ·

M−1∑
i=1

(∆ζ(vε)
ε φ(i))k.

Taking in account formula (3.10) we thus have for 3 ≤ k ≤M − 3:

(∆ζ(vε)
ε φ(i))k =

=
1

2ε2
[
−φk−2

(i) ζ(vk
ε ∧ 0) + φk−1

(i) ζ(vk
ε )− φk

(i) − φk+1
(i) ζ(vk

ε ) + φk+2
(i) ζ(vk

ε ∨ 0)
]
.

Since φ(i) = (φi, φi, . . . φi, 0, . . . 0), it follows imediately that the expression
vanishes for i < k−2 and i ≥ k+2. By analyzing all possibilities with respect
to the sign of vk

ε we obtain for 3 ≤ k ≤M − 3 the expression:
M−1∑
i=1

(∆ζ(vε)
ε φ(i))k =

1
2ε2

[
(φk−1 − φk+1)ζ(vk

ε ∨ 0) + (φk − φk−2)ζ(vk
ε ∧ 0)

]
.

(4.9)
In the case of the the terms corresponding to the sites near the boundary

we obtain similarly
M−1∑
i=1

(∆ζ(vε)
ε φ(i))1 =

1
2ε2

[−φ2ζ(v1
ε ∨ 0) + φ1ζ(v1

ε ∧ 0)]

and
M−1∑
i=1

(∆ζ(vε)
ε φ(i))2 =

1
2ε2

[(φ1 − φ3)ζ(v2
ε ∨ 0) + φ2ζ(v2

ε ∧ 0)].
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Similar equations are derived at the other end of the interval. We note that
these equations can be also reduced to the form (4.9) by setting φj = 0 if
j 6∈ {1, . . . ,M − 1}.

Since all computations are nothing more than rearrangements of the
terms, we can obtain the same results by multiplying the explicit equations
with time dependent test functions φ(t). We can take now φ = uε(t) and use
the corresponding φ(i). Note that uj−1

ε − uj+1
ε = ε(vj+1

ε + vj
ε) and that we

can set uj
ε = vj

ε = 0 if j 6∈ {1, . . . ,M − 1}, due to the considered boundary
conditions. We then have:

M−1∑
k=1

vk
ε

M−1∑
i=1

(∆ζ(vε)
ε φ(i))k =

=
1
2ε

M−1∑
k=1

vk
ε [(vk

ε + vk+1
ε )ζ(vk

ε ∨ 0)− (vk
ε + vk−1

ε )ζ(vk
ε ∧ 0)]

=
1
2ε

M−1∑
k=1

[(vk
ε )2 + vk

ε v
k+1
ε ζ(vk

ε ∨ 0)− vk
ε v

k−1
ε ζ(vk

ε ∧ 0)] =:
1
2ε

M−1∑
k=1

ak.

The terms ak have the form:

ak =

{
(vk

ε )2 + vk
ε v

k+1
ε if vk

ε > 0

(vk
ε )2 + vk

ε v
k−1
ε if vk

ε ≤ 0.

We claim that
∑

k ak ≥ 0. In order to show this, we proceed inductively.
Denote Sm =

∑m
k=1 ak. We have S1 = a1 = (v1

ε)2 + v1
εv

2
εζ(v

1
ε ∨ 0). If v1

ε ≤ 0
then S1 = (v1

ε)2 ≥ 0. If v1
ε ≥ 0 and v2

ε ≤ 0 then S2 = (v1
ε)2+2v1

εv
2
ε +(v2

ε)2 ≥ 0.
If v1

ε > 0, v2
ε > 0, . . . , vp−1

ε > 0, vp
ε ≤ 0, then we have a1+a2+· · ·+ap = (v1

ε)2+
v1

εv
2
ε + · · ·+(vp−1

ε )2+2vp
εv

p−1
ε +(vp

ε )2 ≥ 0. We have thus (Sp ≥ 0 and vp
ε ≤ 0).

The first step leads thus to a situation on the type (Sp ≥ 0 and vp
ε ≤ 0).

If p = M − 1 we are done. If not, we repeat the procedure. Suppose
that we have shown that (Sk−1 ≥ 0 and vk−1

ε ≤ 0). If vk
ε ≤ 0, then we have

ak = (vk
ε )2 + vk

ε v
k−1
ε ≥ 0 and thus (Sk ≥ 0 and vk

ε ≤ 0).
If vk

ε > 0 and vk+1
ε ≤ 0, then we have ak + ak+1 = (vk

ε )2 + 2vk
ε v

k+1
ε +

(vk+1
ε )2 ≥ 0. This implies (Sk+1 ≥ 0 and vk+1

ε ≤ 0).
If vk

ε > 0 and vk+1
ε > 0, . . . , vp−1

ε > 0, vp
ε ≤ 0, then we have ak + ak+1 +

· · · + ap = (vk
ε )2 + vk

ε v
k+1
ε + · · · + (vp−1

ε )2 + 2vp
εv

p−1
ε + (vp

ε )2 ≥ 0. We have
thus (Sp ≥ 0 and vp

ε ≤ 0).
If starting with some index j we have vk

ε ≥ 0 for k ≥ j, then we are done,
since we add only positive terms ak for k ≥ j. In the case of the last term
we have then only (vM−1

ε )2. The other alternative is to obtain the situation
(SM−1 ≥ 0 and vM−1

ε ≤ 0), when we are also done.
The fact that for φ = uε we have SM−1 ≥ 0, together with equation

(4.8) imply d
dt 〈uε(t), uε(t)〉 = 2〈 d

dtuε(t), uε(t)〉 = −SM−1 ≤ 0 which proves
the first part of the lemma.
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For the second part we take φ = vε(t) in (4.3) and we have to show that
〈∆ζ(vε)

ε vε(t), vε(t)〉 ≤ 0. This can be written also as
∑M−1

k=1 Tk ≤ 0, where

Tk = [−vk−2
ε ζ(vk

ε ∧ 0) + vk−1
ε ζ(vk

ε )− vk
ε − vk+1

ε ζ(vk
ε ) + vk+2ζ(vk

ε ∨ 0)] · vk
ε

if 3 ≤ k ≤M − 3, and

T1 = [v1
εζ(v

1
ε ∧ 0)− v2

εζ(v
1
ε) + v3

εζ(v
1
ε ∨ 0)] · v1

ε

T2 = [v1
εζ(v

2
ε ∨ 0)− v2

ε − v3
εζ(v

2
ε) + v4ζ(v2

ε ∨ 0)] · v2
ε ,

while TM−1, TM−2 are computed analogous to T1, T2. We will structure the
proof in an algorithmic fashion.

From the hypothesis we have that v1
ε ≤ 0. Define T := 0.

0. If we have v2
ε ≤ 0 let T := T1 + T2. We have thus

T = −(v1
ε)2 + v1

εv
2
ε − (v2

ε)2 + v2
εv

3
ε ≤ −1

2
(v2

ε)2 + v2
εv

3
ε .

Let q = 1 and GOTO 2.
1. Else, if we have v2

ε > 0, then the hypothesis implies that we have also
v3

ε ≥ 0. Let T := T1 + T2. We have thus

T = −(v1
ε)2 + 2v1

εv
2
ε − (v2

ε)2 − v2
εv

3
ε + v2

εv
4
ε ≤ −(v2

ε)2 + v2
εv

4
ε .

Let p = 2 and GOTO 3.
2. Suppose we have vq

ε ≤ 0, vq+1
ε ≤ 0, . . . vp−1

ε ≤ 0, vp
ε > 0 and

T ≤ −1
2
(vq+1

ε )2 + vq+1
ε vq+2

ε .

The hypothesis on vε implies that we must have also vp+1
ε ≥ 0. We

observe that for q+2 ≤ k ≤ p−1 in the sum Tk−1 +Tk appear the cancelling
terms −vk

ε v
k−1
ε ζ(vk−1

ε )+ vk
ε v

k−1
ε ζ(vk

ε ), since vk−1
ε and vk

ε have the same sign.
If p = q + 2 we do not have such terms. We thus have:

p∑
k=q+2

Tk = −
p∑

k=q+2

(vk
ε )2 +

p−1∑
k=q+2

vk
ε v

k−2
ε + 2vp−1

ε vp
ε − vp

εv
p+1
ε + vp

εv
p+2
ε

≤ −1
2
(vq+2

ε )2 · χ{p>q+2} − (vp
ε )2 + vp

εv
p+2
ε .

We grouped the terms in order to obtain nonpositive quantities like
[(−vk

ε )2 + 2vk
ε v

k−2
ε − (vk−2

ε )2]/2, together with 2vp−1
ε vp

ε and −vp
εv

p+1
ε which

are also ≤ 0.
Let T := T +

∑p
k=q+2 Tk. If p = q + 2 we obtain:

T ≤ −1
2
(vq+1

ε )2 + vq+1
ε vq+2

ε − (vq+2
ε )2 + vq+2

ε vq+4
ε ≤ −(vq+2

ε )2 + vq+2
ε vq+4

ε

since vq+1
ε vq+2

ε ≤ 0. If p > q + 2 we have:

T ≤ −1
2
(vq+1

ε )2 + vq+1
ε vq+2

ε − 1
2
(vq+2

ε )2 − (vp
ε )2 + vp

εv
p+2
ε ≤ −(vp

ε )2 + vp
εv

p+2
ε .

(stopping condition) If p = M − 2 we are done, since the term vp
εv

p+2
ε

does not appear, while TM−1 equals −(vM−1
ε )2 − vM−1

ε vM−2
ε , which can be



404 Flavius Guiaş

grouped together with −(vM−2
ε )2 in order to obtain a nonpositive quantity.

If p = M − 1 we are also done.
3. Suppose we have vp

ε ≥ 0, vp+1
ε ≥ 0, . . . vq−1

ε ≥ 0, vq
ε ≤ 0 and

T ≤ −(vp
ε )2 + vp

εv
p+2
ε .

The hypothesis implies that we have vq+1
ε ≤ 0. Similarly as in 2. (drop-

ping nonpositive terms which are not needed and using the cancelling prop-
erty) we compute:

q+1∑
k=p+1

Tk =

= −
q+1∑

k=p+1

(vk
ε )2 +

q−1∑
k=p+1

vk
ε v

k+2
ε + vq

εv
q−2
ε + 2vq

εv
q−1
ε + vq+1

ε vq−1
ε + vq+1

ε vq+2
ε

≤ −1
2
(vp+2

ε )2 − 1
2
(vq

ε)2 − 1
2
(vq+1

ε )2 + vq
εv

q−2
ε + vq+1

ε vq+2
ε .

Let T := T +
∑q+1

k=p+1 Tk. If q = p+ 2 we obtain:

T ≤ −(vp
ε )2 + vp

εv
p+2
ε − (vp+2

ε )2 − 1
2
(vp+3

ε )2 + vp
εv

p+2
ε + vp+3

ε vp+4
ε

≤ −1
2
(vp+3

ε )2 + vp+3
ε vp+4

ε ,

since vp
εv

p+2
ε ≤ 0.

If q > p+ 2 we have:

T ≤ −(vp
ε )2 + vp

εv
p+2
ε − 1

2
(vp+2

ε )2 − 1
2
(vq

ε)2 − 1
2
(vq+1

ε )2 + vq
εv

q−2
ε + vq+1

ε vq+2
ε

≤ −1
2
(vq+1

ε )2 + vq+1
ε vq+2

ε ,

since vq
εv

q−2
ε ≤ 0. If q + 1 = M − 1 and vM−1

ε = 0 we don’t have the term
vq+1

ε vq+2
ε and we are done. Otherwise, since vM−1

ε ≥ 0, we cannot end in the
situation q = M − 2. Thus, GOTO 2.

The above algorithm clearly stops in step 2. arriving in the final situation
with T =

∑M−1
k=1 Tk ≤ 0. The proof is thus completed. �

Remark. The assumptions on vε in (ii) hold true, at least on a given time
interval, if vε(0) is constructed by taking the finite differences of a positive,
piecewise Lipschitz continuous function u0 and ε is chosen small enough. As it
will be shown further, for the convergence of the method we will need bounds
for
∑
ε(vk

ε (t))2 independent on ε. This condition is not fulfilled if we choose an
arbitrary initial data vε(0). Numerical computations show that the sum will
blow up in a short time if we take e.g. vk

ε (0) = (−1)k if k ∈ {1, . . . , 2M}\{M}
and vM

ε (0) = 2(−1)M . In general we cannot expect for vε a similar inequality
as for uε in (i), but in most practically relevant situations this property holds
true, as shown for example in (ii).
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Lemma 4.2. (Energy estimates). Assume that for all ε we have

‖uε(0, ·)‖H1
0 (0,1) ≤ C0‖u0‖H1

0 (0,1)

for a given function u0 ∈ H1
0 (0, 1), with a positive constant C0. Suppose

further that the functions vε(t) satisfy the inequality supt≤T

∑
k(vk

ε (t))2 ≤
C1

∑
k(vk

ε (0))2 with a positive constant C1, independent on ε (in particular,
if the assumption from Lemma 4.1 (ii) holds). Then there exists a constant
C > 0, independent on ε, such that:

sup
t∈[0,T ]

[
‖uε(t, ·)‖H1

0 (0,1) + ‖ d
dt
uε(t, ·)‖H−1(0,1)

]
≤ C‖u0‖H1

0 (0,1).

Proof. We have:

sup
t∈[0,T ]

[ ∫ 1

0

u2
ε(t, x)dx

]
= sup

t∈[0,T ]

[M−1∑
i=0

∫ (i+1)ε

iε

(
−vi+1

ε (t)(x− iε) + ui
ε(t)
)2
dx
]

≤ 2 sup
t∈[0,T ]

[M−1∑
i=0

∫ (i+1)ε

iε

(
(vi+1

ε (t))2(x− iε)2 + (ui
ε(t))

2
)
dx
]

= 2 sup
t∈[0,T ]

[M−1∑
i=0

( (vi+1
ε (t))2

3
(x− iε)3

∣∣∣(i+1)ε

iε
+ ε(ui

ε(t))
2
)]

= 2 sup
t∈[0,T ]

[M−1∑
i=0

(ε3
3

(vi+1
ε (t))2 + ε(ui

ε(t))
2
)]

≤ 2C1

M−1∑
i=0

(ε3
3

(vi+1
ε (0))2 + ε(ui

ε(0))2
)

= 2C1
ε2

3
‖(uε(0, ·))x‖2

L2(0,1) + 2C1‖uε(0, ·)‖2
L2(0,1).

We made use of Lemma 4.1 and on the hypothesis on vε. Using now the
estimate for uε(0, ·) from the hypothesis we obtain: supt∈[0,T ] ‖uε(t)‖2

L2(0,1) ≤
C ′‖u0‖2

H1 . Note that the equation for vε implies that we always have

sup
t∈[0,T ]

M−1∑
i=0

ε3(vi+1
ε (t))2 ≤ C(T )

M−1∑
i=0

ε(vi+1
ε (0))2.

We can show thus that supt∈[0,T ] ‖uε(t)‖L2(0,1) ≤ C ′‖u0‖H1 by using only the
H1-bounds for uε(0), independent on any additional assumptions on vε(t).
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We further have:

sup
t∈[0,T ]

∫ 1

0

(uε(t, x)x)2dx = sup
t∈[0,T ]

M−1∑
i=0

ε(vi+1
ε (t))2

≤ C1

M−1∑
i=0

ε(vi+1
ε (0))2 = C1‖(uε(0, ·))x‖2

L2(0,1) ≤ C1C0‖u0‖2
H1 .

In the previously used notation, where 〈·, ·〉 denotes the usual scalar
product on RM−1, we have for ψ ∈ C∞0 (0, 1) with ‖ψ‖H1

0
= 1:

sup
t∈[0,T ]

∫ 1

0

d

dt
uε(t, x)ψ(x)dx

= sup
t∈[0,T ]

M−1∑
i=0

∫ (i+1)ε

iε

(
− d

dt
vi+1

ε (t)(x− iε) +
d

dt
ui

ε(t)
)
ψ(x)dx

= sup
t∈[0,T ]

[−〈 d
dt
vε(t), Ψ̃1〉+ 〈 d

dt
uε(t), Ψ̃2〉]

where Ψ̃1, Ψ̃2 ∈ RM−1 are given by

(Ψ̃1)k =
∫ kε

(k−1)ε

(x− (k − 1)ε)ψ(x)dx

respectively

(Ψ̃2)k =
∫ (k+1)ε

kε

ψ(x)dx.

By (4.3) we have

〈 d
dt
vε(t), Ψ̃1〉 = 〈∆ζ(vε)

ε Ψ̃1, vε(t)〉

where ∆ζ(vε)
ε Ψ̃1 is computed like in (3.10) and has the form

(∆ζ(vε)
ε Ψ̃1)k =

1
2ε2

∑
j∈Ik

±(Ψ̃j+1
1 − Ψ̃j

1), (4.10)

since we always can group the terms which arise in the r.h.s. of (3.10) in pairs
with opposite signs. The index set Ik has two elements, except for sites kε
near the boundary, when we have only one element.

By partial integration we have:

Ψ̃j
1 =

∫ jε

(j−1)ε

(x−(j−1)ε)ψ(x)dx =
ε2

2
ψ(jε)− 1

2

∫ jε

(j−1)ε

(x−(j−1)ε)2ψ′(x)dx.

A similar formula holds also for Ψ̃j+1
1 . By substraction we obtain easily the

estimate

1
2ε2

|Ψ̃j+1
1 − Ψ̃j

1| ≤
1
4
(2
∫ (j+1)ε

jε

|ψ′(x)|dx+
∫ jε

(j−1)ε

|ψ′(x)|dx)
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≤ 1
2

∫ (j+1)ε

(j−1)ε

|ψ′(x)|dx,

which in conjunction with the Cauchy-Schwartz inequality implies:

Tj :=
1

4ε4
|Ψ̃j+1

1 − Ψ̃j
1|2 ≤

ε

2

∫ (j+1)ε

(j−1)ε

|ψ′(x)|2dx. (4.11)

Returning to (4.10), where the index j has at most two values, we thus have
the estimate: [(∆ζ(vε)

ε Ψ̃1)k]2 ≤ ε
∑

j∈Ik
Tj with Tj given in (4.11). It can be

readily seen that there exists a constant C ′ > 0 such that∑
k

∑
j∈Ik

Tj ≤ C ′‖ψ′‖2
L2(0,1) ≤ C ′,

since every index j appears in the above sums maximally a given number of
times. We thus have:

|〈 d
dt
vε(t), Ψ̃1〉|2 = |〈∆ζ(vε)

ε Ψ̃1, vε(t)〉|2 ≤
∑

k

(vk
ε (t))2

∑
k

[(∆ζ(vε)
ε Ψ̃1)k]2

≤ C ′
∑

k

ε(vk
ε (t))2 ≤ C ′C1

∑
k

ε(vk
ε (0))2 ≤ C ′C1C0‖u0‖2

H1 (4.12)

where the constants C ′, C1, C0 do not depend on ψ and on ε.
By (4.8) and the subsequent computations we have:

〈 d
dt
uε(t), Ψ̃2〉 = −ε

M−1∑
i=1

〈∆ζ(vε)
ε (Ψ̃2)(i), vε(t)〉 = −ε

M−1∑
k=1

vk
ε (t)T ′k

where from (4.9), we have that

T ′k :=
M−1∑
i=1

(∆ζ(vε)
ε (Ψ̃2)(i))k = ± 1

2ε2
(Ψ̃jk

2 − Ψ̃jk−2
2 )

with jk = k or jk = k + 1, depending on the sign on vk
ε (t).

By partial integration we have:

Ψ̃jk

2 =
∫ (jk+1)ε

jkε

ψ(x)dx = εψ((jk + 1)ε)−
∫ (jk+1)ε

jkε

(x− jkε)ψ′(x)dx

and for Ψ̃jk−2
2 we obtain a similar equation. Proceeding similarly as in the

case of Ψ̃1 we arrive at

ε(T ′k)2 ≤ 3
∫ (jk+1)ε

(jk−2)ε

|ψ′(x)|2dx

with
∑

k ε(T
′
k)2 ≤ C ′′‖ψ′‖2

L2(0,1) ≤ C ′′.
Similarly as in the previous computations we have:

|〈 d
dt
uε(t), Ψ̃2〉|2 ≤
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≤ (
M−1∑
k=1

|ε 1
2 vk

ε (t)||ε 1
2T ′k|)2 ≤

M−1∑
k=1

ε|vk
ε (t)|2 ·

M−1∑
k=1

ε(T ′k)2 ≤ C1C
′′C0‖u0‖2

H1 .

This completes the proof of the lemma. �

Theorem 4.3. If on the time interval [0, T ] the hypotheses of Lemma
4.2 hold, then the family uε(·, ·) has a weakly convergent subsequence in
L2(0, T ;H1

0 (0, 1))∩ H1(0, T ;H−1(0, 1)) and the limit function, denoted by
u, lies in C(0, T ;L2(0, 1)). Moreover, if we have ‖uε(0) − u0‖L2(0,1) → 0 as
ε→ 0, then u satisfies for all test functions φ ∈ C([0, T ]×[0, 1])∩C∞((0, T )×
(0, 1)) with suppφ ⊂ [0, T )× (0, 1) the equation:

−
∫ T

0

(u(t),
d

dt
φ(t))dt = (u0, φ(0))−

∫ T

0

(ux(t), φx(t))dt.

By (·, ·) we denote the usual duality pairing in the corresponding function
spaces.

Proof. The weak convergence property is implied by the apriori estimates
from Lemma 4.2. By a result from [6], p.379 we have further u ∈
C(0, T ;L2(0, 1)). We denote the convergent subsequence again by uε. For
a test function φ like in the hypothesis we have:

−
∫ T

0

(u(t),
d

dt
φ(t))dt− (u0, φ(0)) +

∫ T

0

(ux(t), φx(t))dt =

= −
∫ T

0

(u(t)− uε(t),
d

dt
φ(t))dt− (u0 − uε(0), φ(0)) +

+
∫ T

0

(ux(t)− (uε)x(t), φx(t))dt−
∫ T

0

(uε(t),
d

dt
φ(t))dt

−(uε(0), φ(0)) +
∫ T

0

((uε)x(t), φx(t))dt.

The first three terms converge to 0 as ε→ 0 due to the weak convergence
property. In order to prove the statement of the theorem, we will show that
the rest of the sum can be made arbitrarily small for ε small enough. For this
it suffices to show that the term

sup
t≤T

[(
d

dt
uε(t), φ(t)) + ((uε)x(t), φx(t))] (4.13)

can be proved to be arbitrarily small by taking ε small enough.
Similarly like in Lemma 4.2 we obtain:

(
d

dt
uε(t), φ(t)) + ((uε)x(t), φx(t)) = (4.14)

= −〈 d
dt
vε(t), Φ̃1(t)〉+ 〈 d

dt
uε(t), Φ̃2(t)〉+ 〈vε(t), Φ̃3(t)〉

= 〈vε(t),∆ζ(vε)
ε Φ̃1(t)〉+ 〈vε(t),∇ζ(vε)

ε Φ̃2(t)〉+ 〈vε(t), Φ̃3(t)〉
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where the vectors Φ̃i(t) ∈ RM−1 have the components

Φ̃k
1(t) =

∫ kε

(k−1)ε

(y − (k − 1)ε)φ(t, y)dy,

Φ̃k
2(t) =

∫ (k+1)ε

kε

φ(t, y)dy,

Φ̃k
3(t) =

∫ kε

(k−1)ε

φx(t, y)dy

and where

(∆ζ(vε)
ε Φ̃1(t))k =

1
2ε2

[−Φ̃k−2
1 ζ(vk

ε ∧ 0) + Φ̃k−1
1 ζ(vk

ε )− Φ̃k
1

−Φ̃k+1
1 ζ(vk

ε ) + Φ̃k+2
1 ζ(vk

ε ∨ 0)]

(∇ζ(vε)
ε Φ̃2(t))k =

1
2ε

[(Φ̃k−1
2 − Φ̃k+1

2 )ζ(vk
ε ∨ 0) + (Φ̃k

2 − Φ̃k−2
2 )ζ(vk

ε ∧ 0)].

By taking ε small enough, since φ has compact support in [0, T ) × (0, 1),
we may consider only indices k for which the above formulas hold for all
t, disregarding the sites near the boundary where φ vanishes. By the same
reason (neglecting the sites close to the boundary), we may note that for
i = 1, 2, 3 we can write (Φ̃i(t))k = Φi(t, kε) where the functions Φi are
defined on [0, T ]× (0, 1) by

Φ1(t, x) =
∫ x

x−ε

(y − x+ ε)φ(t, y)dy,

Φ2(t, x) =
∫ x+ε

x

φ(t, y)dy,

Φ3(t, x) =
∫ x

x−ε

φx(t, y)dy = φ(t, x)− φ(t, x− ε).

The derivatives with respect to x of these functions are given by

Φ1,x(t, x) = εφ(t, x)−
∫ x

x−ε

φ(t, y)dy,

Φ1,xx(t, x) = εφx(t, x)− φ(t, x) + φ(t, x− ε),

Φ2,x(t, x) = φ(t, x+ ε)− φ(t, x).

By the Taylor formula, using the form of Φi and the bounds of the derivatives
of second and third order of φ(t, ·) it is easy to see that if vk

ε > 0 we have:

(∆ζ(vε)
ε Φ̃1(t))k = Φ1,xx(t, kε) +O(ε2) (4.15)

(∇ζ(vε)
ε Φ̃2(t))k = −Φ2,x(t, kε) +O(ε2)

while for vk
ε < 0 we have:

(∆ζ(vε)
ε Φ̃1(t))k = Φ1,xx(t, (k − 1)ε) +O(ε2) (4.16)

(∇ζ(vε)
ε Φ̃2(t))k = −Φ2,x(t, (k − 1)ε) +O(ε2).
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Plugging (4.15), (4.16) together with the formulae for Φ3, Φ1,x, Φ1,xx,
Φ2,x into (4.14), we obtain:

(
d

dt
uε(t), φ(t)) + ((uε)x(t), φx(t)) =

∑
k

vk
ε (t)Uk(t) (4.17)

where for vk
ε (t) > 0 we have:

Uk(t) = εφx(t, kε)− φ(t, kε) + φ(t, (k − 1)ε)
−φ(t, (k + 1)ε) + φ(t, kε) + φ(t, kε)− φ(t, (k − 1)ε) +O(ε2)

= εφx(t, kε)− φ(t, (k + 1)ε) + φ(t, kε) +O(ε2)

= −ε
2

2
φxx(t, ξk) +O(ε2)

while for vk
ε (t) < 0 we have similarly Uk(t) = − ε2

2 φxx(t, ηk) +O(ε2).
The regularity of φ implies that if vk

ε (t) 6= 0 we have Uk(t) of magnitude
O(ε2), otherwise we have vk

ε (t)Uk(t) = 0. Using the L2-boundedness property
of vε(t) we conclude that the expression in (4.13) can be made thus arbitrary
small for ε small enough. The proof is completed. �
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Adriana Brândaş, Approximation of fuzzy numbers by trapezoidal
fuzzy numbers preserving the core and the expected value . . . . . . . . 247

Michele Campiti, Giusy Mazzone and Cristian Tacelli,
Approximation of cosine functions and Rogosinski type operators . 261

Carsten Carstensen and Christian Merdon, Remarks on the
state of the art of a posteriori error control of elliptic PDEs in
energy norms in practise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

George Chelidze and Nicholas Vakhania, On a quaternion
valued Gaussian random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Ioana Chiorean, Liana Lupşa and Luciana Neamţiu,
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for second order nonlinear polylocal problems . . . . . . . . . . . . . . . . . . . . 515
Cristina Radu, Saddika Tarabie and Andreea Veţeleanu,
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Uniform approximation in weighted spaces
using some positive linear operators

Adrian Holhoş

Abstract. We characterize the functions defined on a weighted space,
which are uniformly approximated by the Post-Widder, Gamma, Weier-
strass and Picard operators and we obtain the range of the weights which
can be used for uniform approximation. We give, also, an estimation of
the rate of the approximation in terms of the usual modulus of continu-
ity. Some well-known results are obtained, as limit cases.

Mathematics Subject Classification (2010): 41A36, 41A25.

Keywords: Positive linear operator, rate of approximation, weighted
spaces, modulus of continuity.

1. Introduction

In the survey paper [2], the authors present some ideas related to the ap-
proximation of functions in weighted spaces and enounced some unsolved
problems in weighted approximation theory. Three such problems are:
1. Let F be a linear subspace of RI and An : F → C(I) a sequence of positive
linear operators. For which weights ρ, does An map Cρ(I) ∩ F onto Cρ(I)
with uniformly bounded norms?
2. For which functions f ∈ Cρ(I) do we have ‖An − f‖ρ → 0, as n →∞?
3. Which moduli of smoothness are appropriate for weighted approximation?

In [6], we presented a result that give an answer to this questions. Below,
in Theorem 1.1 we recall this result. In the same paper, we analized the
particular cases of Szász-Mirakjan and Baskakov operators. In this paper, we
continue the applications of the general result in the case of some integral-
type positive linear operators, namely: the Post-Widder, Gamma, Gauss-
Weierstrass and Picard operators. Firstly, we introduce the basic notations.

Let I ⊆ R be a noncompact interval and let ρ : I → [1,∞) be an
increasing and differentiable function called weight. Let Bρ(I) be the space
of all functions f : I → R such that |f(x)| ≤ M · ρ(x), for all x ∈ I, where
M > 0 is a constant depending on f and ρ, but independent of x. The space



414 Adrian Holhoş

Bρ(I) is called weighted space and it is a Banach space endowed with the
ρ-norm

‖f‖ρ = sup
x∈I

|f(x)|
ρ(x)

.

Let Cρ(I) = C(I) ∩ Bρ(I) be the subspace of Bρ(I) containing continuous
functions.

Let (An)n≥1 be a sequence of positive linear operators defined on the
weighted space Cρ(I). It is known (see [4]) that An maps Cρ(I) onto Bρ(I)
if and only if Anρ ∈ Bρ(I).

Theorem 1.1. Let An : Cρ(I) → Bρ(I) be positive linear operators reproducing
constant functions and satisfying the conditions

sup
x∈I

An(|ϕ(t)− ϕ(x)|, x) = an → 0, (n →∞) (1.1)

sup
x∈I

An(|ρ(t)− ρ(x)|, x)
ρ(x)

= bn → 0. (n →∞) (1.2)

If An(f, x) is continuously differentiable and there is a constant K(f, ρ, n)
such that

|(Anf)′(x)|
ϕ′(x)

≤ K(f, ρ, n) · ρ(x), for every x ∈ I, (1.3)

and ρ and ϕ are such that there exists a constant α > 0 with the property

ρ′(x)
ϕ′(x)

≤ α · ρ(x), for every x ∈ I, (1.4)

then, the following statements are equivalent

(i) ‖Anf − f‖ρ → 0 as n →∞.

(ii)
f

ρ
◦ ϕ−1 is uniformly continuous on J.

Furthermore, we have

‖Anf − f‖ρ ≤ bn · ‖f‖ρ + 2 · ω
(

f

ρ
◦ ϕ−1, an

)
, for every n ≥ 1.

Remark 1.2. The relation (1.4) give us the connection between the function
ϕ and the weight ρ. We must have

ρ(x) ≤ Meα·ϕ(x), for every x ∈ I,

where M,α > 0 are constants independent of x. So, we have obtained the
range of the weights ρ, for which Theorem 1.1 is valid. In the case of the
maximal class of weights: ρ(x) = eαϕ(x), instead of proving the conditions
(1.1) and (1.2) we prove

lim
n→∞

sup
x∈I

An(|ϕ(t)− ϕ(x)|2, x) = 0. (1.5)
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For the estimation of the sequences (an)n∈N and (bn)n∈N we use the inequa-
lities

an ≤ sup
x∈I

√
An(|ϕ(t)− ϕ(x)|2, x)

bn ≤
α

2

√
‖Anρ2‖ρ2 + 2 ‖Anρ‖ρ + 1 · sup

x∈I

√
An(|ϕ(t)− ϕ(x)|2, x).

2. Main results

The Post-Widder operators.

Lemma 2.1. For I = (0,∞) and for ρ(x) = 1 + xα, for some α > 0, the
Post-Widder operators ([9], [14])

Pn(f, x) =
1

(n− 1)!

(n

x

)n
∫ ∞

0

e−
nu
x un−1f(u) du, x > 0,

have the property that Pnf ∈ Cρ(0,∞) for every f ∈ Cρ(0,∞).

Proof. Setting t = nu/x, we get

Pn(ρ, x) = 1 +
1

(n− 1)!

∫ ∞

0

e−ttn−1

(
xt

n

)α

dt = 1 +
xαΓ(n + α)
nα(n− 1)!

.

Using the formula (see [1, formula 6.1.46])

lim
n→∞

Γ(n + α)
nαΓ(n)

= 1,

we deduce the existence of a constant C > 0, independent of n, such that
Γ(n + α) ≤ Cnα(n− 1)!, for every n ≥ 1. We obtain

Pn(ρ, x) ≤ Cρ(x), x > 0,

which proves the mapping property of Pn. �

Theorem 2.2. For α > 0 and ρ(x) = 1 + xα, the Post-Widder operators
Pn : Cρ(0,∞) → Cρ(0,∞) have the property

‖Pnf − f‖ρ → 0, whenever n →∞

if and only if

f(ex)e−αx is uniformly continuous on (0,∞).

Moreover, for every f ∈ Cρ(0,∞) and every n ≥ 2, we have

‖Pnf − f‖ρ ≤ ‖f‖ρ

αC√
n− 1

+ 2 · ω
(

f(et)e−αt,
1√

n− 1

)
,

where C = supn∈N
1
2

√
‖Pnρ2‖ρ2 + 2 ‖Pnρ‖ρ + 1 < ∞ is a constant depending

only on α.
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Proof. Using the Geometric-Logarithmic-Arithmetic Mean Inequality (see [8,
p. 40])

√
u · v ≤ u− v

lnu− ln v
<

u + v

2
, 0 < v < u, (2.1)

for the function ϕ(x) = lnx, we obtain

|ϕ(t)− ϕ(x)| ≤

∣∣∣∣∣
√

t

x
−
√

x

t

∣∣∣∣∣ , t, x > 0.

Because Pn(1, x) = 1, Pn(t, x) = x and Pn

(
1
t , x
)

= n
(n−1)x , n ≥ 2, we deduce

sup
x>0

Pn(|ϕ(t)− ϕ(x)|2, x) ≤ sup
x>0

[
Pn

(
t

x
, x

)
+ Pn

(x

t
, x
)
− 2
]

=
1

n− 1
,

which proves (1.5)
Now, using the equality (see [12])

Pn((t− x)2, x) =
x2

n

and the Cauchy-Schwarz inequality for positive linear operators, we have

Pn(|t− x|ρ(t), x) ≤
√

Pn((t− x)2, x) · Pn(ρ2, x) ≤ x√
n
· C1ρ(x).

Estimating the absolute value of the derivative

|(Pnf)′(x)| = n

x2

∣∣∣∣∫ ∞

0

(n

x

)n 1
(n− 1)!

e−
nu
x un−1(u− x)f(u) du

∣∣∣∣
≤ n

x2
Pn(|t− x| · |f(t)|, x)| ≤ n

x2
‖f‖ρ Pn(|t− x|ρ(t), x)

≤ ‖f‖ρ

√
n

x
C1ρ(x),

we obtain
|(Pnf)′(x)|

ϕ′(x)
≤ C2ρ(x), for every x > 0,

which proves (1.3) The relation (1.4) is true because

ρ′(x)
ϕ′(x)

= αxα ≤ α(1 + xα) = αρ(x).

Using the Theorem 1.1, the convergence ‖Pnf − f‖ρ → 0 is true if and only
if the function f

ρ ◦ ϕ−1 is uniformly continuous on (0,∞). The equality

f(ex)
eαx

=
f(ex)

1 + eαx
·
(
1 + e−αx

)
,

the boundedness of the function 1 ≤ 1+e−αx ≤ 2 and the uniform continuity
of the functions 1 + e−αx and (1 + e−αx)−1 prove that f

ρ ◦ ϕ−1 is uniformly
continuous, if and only if f(ex)e−αx is uniformly continuous. �

Remark 2.3. The result of the Theorem 2.2 for the limit case, α = 0, was
obtained in [12] and in [3].
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The Gamma operators.

Lemma 2.4. For I = (0,∞) and for ρ(x) = 1 + xα, for some α > 0 the
Gamma operators ([7])

Gn(f, x) =
xn+1

n!

∫ ∞

0

e−xuunf
(n

u

)
du, x > 0, n ≥ 1,

have the property that Gnf ∈ Cρ(0,∞) for every f ∈ Cρ(0,∞) and n ≥ [α].

Proof. Setting xu = t, we get

Gn(ρ, x) = 1 +
1
n!

∫ ∞

0

e−ttn
(nx

t

)α

dt = 1 +
(nx)αΓ(n + 1− α)

n!
.

Using the formula (see [1, formula 6.1.46])

lim
n→∞

nαΓ(n + 1− α)
Γ(n + 1)

= 1,

we deduce the existence of a constant C > 0, independent of n, such that
nαΓ(n + 1− α) ≤ Cn!, for every n ≥ [α]. We obtain

Gn(ρ, x) ≤ Cρ(x), x > 0,

which proves the property of Gn stated in the lemma. �

Theorem 2.5. For α > 0 and ρ(x) = 1 + xα, the Gamma operators
Gn : Cρ(0,∞) → Cρ(0,∞) have the property

‖Gnf − f‖ρ → 0, whenever n →∞
if and only if

f(ex)e−αx is uniformly continuous on (0,∞).

Moreover, for every f ∈ Cρ(0,∞) and every n ≥ [2α], we have

‖Gnf − f‖ρ ≤ ‖f‖ρ

αC√
n

+ 2 · ω
(

f(et)e−αt,
1√
n

)
,

where C = supn∈N
1
2

√
‖Gnρ2‖ρ2 + 2 ‖Gnρ‖ρ + 1 < ∞ is a constant depen-

ding only on α.

Proof. As in the proof of the Theorem 2.2, let ϕ(x) = lnx. We have

|ln t− lnx| ≤

∣∣∣∣∣
√

t

x
−
√

x

t

∣∣∣∣∣ , t, x > 0.

Because Gn(e0, x) = 1, Gn(t, x) = x and

Gn

(
1
t
, x

)
=

n + 1
nx

,

we deduce

sup
x>0

Gn(|ϕ(t)− ϕ(x)|2, x) ≤ sup
x>0

[
Gn

(
t

x
, x

)
+ Gn

(x

t
, x
)
− 2
]

=
1
n

,

which proves (1.5).
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Estimating the derivative

|(Gnf)′(x)| =
∣∣∣∣n + 1

x
Gn(f, x)− n + 1

x
Gn+1

(
f

(
nt

n + 1

)
, x

)∣∣∣∣
≤ n + 1

x
‖f‖ρ |Gn(ρ, x) + Gn+1(ρ, x)|

≤ ‖f‖ρ

n + 1
x

C1ρ(x),

we deduce
|(Gnf)′(x)|

ϕ′(x)
≤ C2ρ(x), for every x > 0,

which proves (1.3). The relation (1.4) is true, because

ρ′(x)
ϕ′(x)

= αxα ≤ α(1 + xα) = αρ(x).

Using the Theorem 1.1, the convergence ‖Pnf − f‖ρ → 0 is true if and only
if the function f

ρ ◦ ϕ−1 is uniformly continuous on (0,∞). The equality

f(ex)
eαx

=
f(ex)

1 + eαx
·
(
1 + e−αx

)
,

the boundedness of the function 1 ≤ 1+e−αx ≤ 2 and the uniform continuity
of the functions 1 + e−αx and (1 + e−αx)−1 prove that f

ρ ◦ ϕ−1 is uniformly
continuous, if and only if f(ex)e−αx is uniformly continuous. �

Remark 2.6. The result of the Theorem 2.5 for the limit case, α = 0, was
obtained in [11].

The Gauss-Weierstrass operators.

Lemma 2.7. For I = R and for ρ(x) = eαx, for some α > 0, the Gauss-
Weierstrass operators ([13])

Wnf(x) =
√

n√
2π

∫ ∞

−∞
e−n

(u−x)2

2 f(u) du, x ∈ (−∞,∞),

have the property that Wnf ∈ Cρ(R) for f ∈ Cρ(R).

Proof. We have

Wn(ρ, x)
ρ(x)

=
√

n√
2π

∫ ∞

−∞
e−n

(u−x)2

2 +α(u−x) du

=
√

n√
2π

∫ ∞

−∞
e−

n
2 (u−x−α

n )2

· eα2
2n du = e

α2
2n ≤ e

α2
2 ,

which proves the statement from the lemma. �

Theorem 2.8. For α > 0 and for ρ(x) = eαx the Gauss-Weierstrass operators
Wn : Cρ(R) → Cρ(R) have the property

‖Wnf − f‖ρ → 0, whenever n →∞,
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if and only if

f(x)e−αx is uniformly continuous on R.

Moreover, for every f ∈ Cρ(R) and for every n ≥ 1, we have

‖Wnf − f‖ρ ≤ ‖f‖ρ

αC√
n

+ 2 · ω
(

f(t)e−αt,
1√
n

)
,

where C = e
α2
2

√
1 + α2

4

(
1 + e

α2
2

)2

.

Proof. Set ϕ(x) = x. Because Wn(e0, x) = 1 and Wn((t − x)2, x) = 1
n (see

[10]), we get

Wn(|ϕ(t)− ϕ(x)|2, x) = Wn((t− x)2, x) =
1
n

,

which proves (1.5). Using the relation

Wn(eαt, x) = eαx · eα2
2n

we deduce

bn = sup
x∈I

Wn(|ρ(t)− ρ(x)|, x)
ρ(x)

=
Wn (|eαt − eαx| , x)

eαx

≤
√

Wn(e2αt, x)− 2eαxWn(eαt, x) + e2αx

ρ(x)

=

√
e2αx · e 4α2

2n − 2e2αx · eα2
2n + e2αx

eαx
=
√

e
4α2
2n − 2e

α2
2n + 1.

Using the equality x4−2x+1 = (x−1)[(x−1)(x+1)2+2x] and the inequality
et − 1 ≤ tet, for t = α2

2n , we obtain

bn ≤
√(

e
α2
2n − 1

)
·
√(

e
α2
2n − 1

)(
e

α2
2n + 1

)2

+ 2e
α2
2n

≤ α√
2n

e
α2
2

√
2 +

α2

2

(
1 + e

α2
2

)2

≤ αC√
n

.

The estimation of the derivative

|(Wnf)′(x)| = n|Wn((t− x)f(t), x)| ≤ n ‖f‖ρ Wn(|t− x|ρ(t), x)

≤ n ‖f‖ρ

√
Wn((t− x)2, x)

√
Wn(e2αt, x)

=
√

n ‖f‖ρ e
2α2

n ρ(x)

proves the relation
|(Wnf)′(x)|

ϕ′(x)
≤ C1ρ(x), for every x ∈ R.

�

Remark 2.9. The result of the Theorem 2.8 for the limit case, α = 0, was
obtained in [5] and partially in [10].
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The Picard Operators.

Lemma 2.10. For I = R and for ρ(x) = eαx, for some α > 0, the Picard
operators

Pn(f, x) =
n

2

∫ ∞

−∞
e−n|u−x|f(u) du, x ∈ R, n ≥ [α] + 2,

have the property that Pnρ ∈ Cρ(R) for every f ∈ Cρ(R).

Proof. The evaluation

Pn(ρ, x)
ρ(x)

=
n

2

∫ x

−∞
eαu−nx+nu−αx du +

n

2

∫ ∞

x

eαu+nx−nu−αx du

=
n

2
e−nx−αx eu(α+n)

α + n

∣∣∣∣x
−∞

+
n

2
enx−αx eu(α−n)

α− n

∣∣∣∣∞
x

=
n2

n2 − α2
≤ 1 + α,

proves the statement from the lemma. �

Theorem 2.11. For α > 0 and for ρ(x) = eαx the Picard operators
Pn : Cρ(R) → Cρ(R), n ≥ [2α] + 2, have the property

‖Pnf − f‖ρ → 0, whenever n →∞,

if and only if

f(x)e−αx is uniformly continuous on R.

Furthermore, for every f ∈ Cρ(R) and for every n ≥ [2α] + 2, it is true the
estimation

‖Pnf − f‖ρ ≤ ‖f‖ρ

αC

n
+ 2 · ω

(
f(t)e−αt,

√
2

n

)
,

where C > 0 is a constant dependening on α, but independent of n.

Proof. Set ϕ(x) = x. Using the relations Pn(e0, x) = 1, Pn(e1, x) = x and
Pn(e2, x) = x2 + 2

n2 , we obtain

an = sup
x∈R

Pn(|ϕ(t)− ϕ(x)|, x) ≤ sup
x∈R

√
Pn((t− x)2, x) =

√
2

n
,

which proves (1.1). Using the equality

Pn(eαt, x) =
n2eαx

n2 − α2
,
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obtained in the previous lemma, we get

bn = sup
x∈R

Pn(|ρ(t)− ρ(x)|, x)
ρ(x)

= sup
x∈R

Pn (|eαt − eαx| , x)
eαx

≤ sup
x∈R

√
Pn(e2αt, x)− 2eαxPn(eαt, x) + e2αx

ρ(x)

=

√
n2

n2 − 4α2
− 2n2

n2 − α2
+ 1 = α

√
2(n2 + 2α2)

(n2 − 4α2)(n2 − α2)
≤ αC

n
,

where

C2 = max
n≥[2α]+2

2n2(n2 + 2α2)
(n2 − 4α2)(n2 − α2)

.

Using the relation

Pn(f, x) =
n

2

∫ x

−∞
f(u)e−n(x−u) du +

n

2

∫ ∞

x

f(u)e−n(u−x) du

we can compute the derivative

P ′n(f, x) =
n2

2

(∫ ∞

x

f(u)e−n(u−x) du−
∫ x

−∞
f(u)e−n(x−u) du

)
=

n2

2

∫ ∞

0

[f(x + t)− f(x− t)] e−nt dt

and obtain the estimation

|P ′n(f, x)| ≤ n2

2

∫ ∞

0

|f(x + t)− f(x− t)| e−nt dt

≤ ‖f‖ρ

n2

2

∫ ∞

0

[
eα(x+t) + eα(x−t)

]
e−nt dt

≤ eαx ‖f‖ρ

n3

n2 − α2
.

This proves the inequality

|P ′n(f, x)|
ϕ′(x)

≤ Cn,αρ(x), for every x ∈ R.

�

Corollary 2.12. For a continuous and bounded function f : R → R, it is true
the equivalence

‖Pnf − f‖ → 0, (n →∞) if and only if f is uniformly continuous on R.

Moreover,

‖Pnf − f‖ ≤ 2 · ω

(
f,

√
2

n

)
, n ≥ 2.
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[3] de la Cal, J., Cárcamo, J., On uniform approximation by some classical
Bernstein-type operators, J. Math. Anal. Appl., 279(2003), 625–638.

[4] Gadjiev, A.D., Theorems of Korovkin type, Mat. Zametki., 20(1976), no. 5,
781–786, (in Russian), Math. Notes, 20(1976), no. 5, 996–998.
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[8] Mitrinović, D.S., Pec̆arić, J., Fink, A.M., Classical and New Inequalities in
Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

[9] Post, E.L., Generalized differentiation, Trans. Amer. Math. Soc., 32(1930),
723–781.

[10] Stancu, D.D., Use of probabilistic methods in the theory of uniform approxi-
mation of continuous functions, Rev. Roumaine Math. Pures Appl., 14(1969),
673–691.

[11] Totik, V., Uniform approximation by positive operators on infinite intervals,
Anal. Math., 10(1984), 163–182.

[12] Totik, V., Uniform approximation by Exponential-Type Operators, J. Math.
Anal. Appl., 132(1988), 238–246.
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Recent results on Chlodovsky operators

Harun Karsli

Abstract. We take a view on the results concerning the Bernstein–
Chlodovsky operators obtained especially in the last five years. The
list presented in this paper is not exhaustive. We apologise all authors
possessing papers on the Chlodovsky operators and are not referred in
this paper.
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1. Introduction

For a function f defined on [0,∞) and bounded on every finite interval [0, b] ⊂
[0,∞), the classical Bernstein-Chlodovsky operators are defined by

(Cnf) (x) :=
n∑

k=0

f

(
bn

n
k

)
pk,n

(
x

bn

)
, (1.1)

where pk,n denotes as usual

pk,n(x) =
(

n
k

)
xk (1− x)n−k

, 0 ≤ x ≤ 1,

and (bn)∞n=1 is a positive increasing sequence of reals with the properties

lim
n→∞

bn = ∞ , lim
n→∞

bn

n
= 0. (1.2)

These polynomials were introduced by I. Chlodovsky [11] in 1937 to generalize
the Bernstein polynomials (Bnf)(x), for the case bn = 1, n ∈ N0, which
approximate the function f on the interval [0, 1] (or, suitably modified on
any fixed finite interval [−b, b]). His main result is the following:

Chlodovsky’s Theorem. Let (bn) satisfy (1.2) and, for b > 0, let M(b; f) :=
sup

0≤t≤b
|f(t)| . If

lim
n→∞

M(bn; f) exp(−σn/bn) = 0 for each σ > 0, (1.3)
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then
lim

n→∞
(Cnf) (x) = f(x)

at each point x of continuity of the function f .

As a corollary he states that if a function f belonging to C[0,∞) is of order
f(x) = O(expxp) for some p > 0, and if the sequence {bn} satisfies the
condition

bn ≤ n
1

p+1+η ,

where η > 0, no matter how small, then (Cnf)(x) converges to f(x) at each
point x ∈ R+.

The first part of the next and very important lemma is due to
Chlodovsky [11].

For t ∈ [0, 1] the inequality

0 ≤ z ≤ 3
2

√
nt(1− t)

implies ∑
|k−nt|≥2z

√
nt(1−t)

pk,n(t) ≤ 2 exp
(
−z2

)
.

In particular, for 0 < δ ≤ x < bn and sufficiently large n,∑
| kbn

n −x|≥δ

pk,n

(
x

bn

)
≤ 2 exp

(
− δ2

4x

n

bn

)
. (1.4)

The proof of (1.4) is given in the 1960 by Albrycht and Radecki [2].

Chlodovsky showed more, namely the simultaneous convergence of the de-
rivative (Cnf)′(x) to f ′(x) at points x where it exists, a result taken up by
Butzer [6].

Next question concerning Chlodovsky operators was the rate of approxima-
tion by (Cnf) (x) to f(x), which is the counterpart of the classical questions
for Bernstein polynomials answered by Voronovskaya [29] in 1932. She showed
that for bounded f on [0, 1], one has the asymptotic formula

lim
n→∞

n[(Bnf)(x0)− f(x0)] =
x0(1− x0)

2
f ′′(x0) (1.5)

at each fixed point x0 ∈ [0, 1] for which there exists f ′′(x0) 6= 0.

The following relations of the Voronovskaya-type for the Chlodovsky opera-
tors and their derivatives are presented in [2].

If a function f satisfies

lim
n→∞

n

bn
exp

(
−σ

n

bn

)
M(bn; f) = 0 for each σ > 0,

then the Voronovskaya-type theorems for Chlodovsky operators read

lim
n→∞

n

bn
[Cnf(x)− f(x)] =

x

2
f ′′(x)
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at each point x ≥ 0 for which f ′′(x) exists.

2002 [3] In their introduction the authors write that “ as far as we know,
[a Voronovskaya-type formula] cannot be stated for the classical Cn”. For this
purpose they introduced the “more flexible” polynomials

C∗
nf(x) =

n∑
k=0

f
(cn

n
k
)( n

k

)(
x

bn

)k (
1− x

bn

)n−k

for which bn ≤ cn for all n ≥ 1, and bn → 0, bn/n → 0, with bn − cn → 0,
all as n →∞. They worked in the weighted (polynomial) space. Their main
theorem stated that

lim
n→∞

ρn[C∗
nf(x)− f(x)] = axf ′′(x) + bxf ′(x),

where {ρn} is a divergent increasing sequence of reals such that ρncn/n → 2a
and ρn(cn/bn − 1) → b as n →∞, a, b ≥ 0.

It is a pity these authors were not aware of the paper [2].

2003 [4] In this paper it is presented the extension of (1.5) to derivatives
of the Bernstein polynomials. The result states that for bounded f for which
f ′′′(x) exists at x ∈ [0, 1], one has

lim
n→∞

n[(Bnf)′(x)− f ′(x)] =
1− 2x

2
f ′′(x) +

x(1− x)
2

f ′′′(x). (1.6)

2. A brief history of the recent results on Chlodovsky
operators (2005-...)

We present below, in chronological order, a list of papers dealing with the
Bernstein-Chlodovsky Polynomials.

2005 [13] We introduce a Chlodovsky Type Durrmeyer operator as fol-
lows: Dn : BV [0,∞) → P,

(Dnf) (x) =
(n + 1)

bn

n∑
k=0

pk,n

(
x

bn

) bn∫
0

f(t)pk,n

(
t

bn

)
dt, 0 ≤ x ≤ bn (2.1)

where P := {P : [0,∞) → R}, is a polynomial functions set, and pk,n (x) =(
n
k

)
xk(1−x)n−k is the Bernstein basis. We estimated the rate of convergence

of operators Dn, for functions of bounded variation at the points which one
sided limit exist, for functions of bounded variation on the interval [0,∞), by
means of the techniques of probability theory.

2006 [8] The authors establish two inverse theorems for Bernstein-
Chlodovsky type polynomials of two variables in a rectangular and a tri-
angular domain.
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2006 [15] The aim of this paper is to study the problem of the ap-
proximation of functions of two variables by means of Bernstein-Chlodovsky
polynomials in a rectangular domain.

2006 [1] The concern of this note is to introduce a general class of linear
positive operators of discrete type acting on the space of real valued functions
defined on a plane domain. These operators preserve some test functions of
Bohman-Korovkin theorem. As a particular class, a modified variant of the
bivariate Bernstein-Chlodovsky operators is presented.

2007 [17] We estimate the rate of pointwise convergence of the Chlodov-
sky-type Bernstein operators (Cnf)(x) for functions defined on the interval
[0, bn], for bn → ∞ as n → ∞, which are of bounded variation on [0,∞).
At those points for which one-sided limits exists, we shall prove that the

operators (Cnf)(x) converge to the limit
f(x+) + f(x−)

2
.

2007 [18] Denote by DBV (I), the class of differentiable functions defined
on a set I ⊂ R, whose derivatives are with bounded variation on I:

DBV (I) = {f : f ′ ∈ BV (I)} .

The aim of this paper is to estimate the rate of convergence of Dnf defined
in (2.1) toward f , which is a function that has a derivative with bounded
variation on [0, bn],where bn → ∞ as n goes to infinity. (Dnf)(x) converges
to f(x) in every point x of discontinuity of the first kind of the derivative of
f .

2008 [19] We define a new kind of MKZD operators for functions defined
on [0, bn], named Chlodovsky-type MKZD operators as

(M∗
nf) (x) =

∞∑
k=0

n + k

bn
mn,k

(
x

bn

) bn∫
0

f(t)bn,k

(
t

bn

)
dt, 0 ≤ x ≤ bn,

where mn,k (x) =
(

n + k − 1
k

)
xk(1−x)n and bn,k(t) = n

(
n + k

k

)
tk(1−t)n−1.

The aim of this paper is to study the behavior of the M∗
n operators for func-

tions of bounded variation and give an estimate, by means of the techniques of
probability theory, of the rate of convergence of the operators on the interval
[0, bn], (n →∞) extending infinity.

2008 [20] The concern of this paper is to study the rate of convergence
of Cnf to f for f ∈ DBV ([0, bn]) , (n →∞) extending infinity. At the point
x, which is a discontinuity of the first kind of the derivative, we shall prove
that (Cnf) (x) converge to the limit f(x).
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2008 [23] For α ≥ 1, we now introduce Chlodovsky-Bézier operators
Cn,α as follows:

(Cn,αf) (x) =
n∑

k=0

f

(
k bn

n

)
Q

(α)
n,k

(
x

bn

)
, ( 0 ≤ x ≤ bn ), (2.2)

where Q
(α)
n,k( x

bn
) =

(
Jn,k( x

bn
)
)α

−
(
Jn,k+1( x

bn
)
)α

and Jn,k( x
bn

) =
n∑

j=k

pj,n( x
bn

)

be the Bézier basis functions. Obviously, Cn,α is a positive linear operator and
Cn,α(1, x) = 1. In particular when α = 1, the operators (2.2) reduce to the
operators (1.1) In this paper, we estimate the rate of pointwise convergence
of the Bézier Variant of Chlodovsky operators Cn,α for functions, defined on
the interval extending infinity, of bounded variation.

2008 [24] We introduce the following q-Chlodovsky polynomials defined
as

(Cn,qf)(x) =
n∑

k=0

f

( [k]q
[n]q

bn

)[
n
k

]
q

(
x

bn

)k n−k−1∏
s=0

(
1− qs x

bn

)
, 0 ≤ x ≤ bn

where (bn) is a positive increasing sequence with the property (1.2). We study
some approximation properties of these new operators, which include the
well-known Bohman-Korovkin-type theorem, degree of pointwise and uniform
convergence and investigation of the monotonocity property of q−Chlodovsky
operators.

2009 [9] The author introduce the positive linear operators q-Bernstein-
Chlodovsky polynomials on a rectangular domain and obtain their Korovkin
type approximation properties. The rate of convergence of this generalization
is obtained by means of the modulus of continuity, and also by using the K-
functional of Peetre. He obtains weighted approximation properties for these
positive linear operators and their generalizations.

2009 [16] Approximation on an unbounded interval is studied in this
work by means of a new-defined two-parameter polynomial operator based
on Chlodovsky polynomials. The operator’s properties including convergence
rate are investigated using the weighted modulus of continuity.

2009 [7] This paper is first of all devoted to the counterpart of (1.6)
for the Chlodovsky polynomials, namely the Voronovskaya-type theorem for
(Cnf)′(x). The Theorem states that:

For a function f , defined on [0,∞)

lim
n→∞

n

bn
[(Cnf)′(x)− f ′(x)] =

f ′′(x) + xf ′′′(x)
2

(2.3)

at each fixed point x ≥ 0 for which f ′′′(x) exists, provided that the growth
condition (1.3) is satisfied.

The second aim of this paper is to study Voronovskaya-type theorems for the
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derivatives of this operator and to compare the effectiveness of the Szász-
Mirakyan operator with the Bernstein-Chlodovsky polynomials in general.

The only way to fully match the assertion of (2.3) is to work with the Szász-
Chlodovsky operator

exp
(
−nx

bn

) ∞∑
k=0

f

(
kbn

n

)(
nx

bn

)k 1
k!

:= (Lnf)(x),

defined and studied by Stypinski [28].

In the same paper, given a function f locally integrable on the interval [0,∞)
we define the Kantorovich variant of the Chlodovsky-Bernstein polynomials
as

(Knf)(x) :=
n + 1
bn+1

n∑
k=0

pk,n

(
x

bn+1

) (k+1)bn+1
n+1∫

kbn+1
n+1

f(u)du if 0 ≤ x ≤ bn+1,

(2.4)
where (bn) satisfies conditions (1.2).

If F denotes the indefinite integral of f , i.e., F (x) =

x∫
0

f(u)du, then we have

(Cn+1F )′(x) = (Knf)(x) for almost all x ∈ [0, bn+1], in particular for every
x ∈ [0, bn+1] at which f is continuous.

We set

M I(b; f) :=

√√√√√ b∫
0

|f(u)|2 du.

The following result is a corollary of our Theorem on the Voronovskaya-type
theorems for the derivatives of (Cnf)(x).

If one has

lim
n→∞

n√
bn

exp
(
−α

n

bn

)
M I(bn; f) = 0

for every α > 0, then

lim
n→∞

n + 1
bn+1

[(Knf)(x)− f(x)] =
f ′(x) + xf ′′(x)

2

at each fixed point x ≥ 0 for which f ′′(x) exists.

2009 [26] In this paper we introduce the Bézier variant of the Chlo-
dovsky-Kantorovich operators (2.4) of order (n− 1) for f ∈ Lloc[0,∞) as

Kn−1,αf(x) :=
n

bn

n−1∑
k=0

Q
(α)
n−1,k

(
x

bn

) (k+1)bn
n∫

kbn
n

f(u)du if 0 ≤ x ≤ bn, (2.5)
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where α > 0, Q
(α)
n−1,k (t) = Jα

n−1,k (t) − Jα
n−1,k+1 (t) and Jn−1,k (t) are the

Bézier basis functions defined for t ∈ [0, 1] as

Jn−1,k (t) =
n−1∑
j=k

pj,n−1 (t) if k = 0, 1, . . . , n− 1,

Jn−1,n (t) = 0. Clearly, if α = 1 then Kn−1,αf reduce to operators (2.4)
with n replaced by n− 1. Our paper is concerned with the rate of pointwise
convergence of operators (2.5) when f ∈ Mloc[0,∞),i.e. f is measurable and
locally bounded on [0,∞). By using the Chanturiya modulus of variation we
present estimations for the rate of convergence of Kn−1,αf(x) at the points x
of continuity of f and at the discontinuity points of the first kind of f . We will
formulate our results for Kn−1,αf with α > 0. The corresponding estimations
for the Chlodovsky-Kantorovich polynomials Kn−1f follow immediately as a
special case α = 1.

2009 [27] The author estimate the rates of convergence of Chlodovsky-
Kantorovich polynomials in classes of locally integrable functions. Namely,

if f ∈ Lloc[0,∞) and if

lim
n→∞

bn∫
0

|f(u)| du exp(−σ
n

bn
) = 0 for each σ > 0,

then
lim

n→∞
(Knf) (x) = f(x) almost everywhere on [0,∞),

i.e. at every x > 0 at which F ′(x) = f(x).

Some modified Chlodovsky-Kantorovich operators are considered also in [14].

2009 [22] For f ∈ Xloc[0,∞) and α ≥ 1, we introduce the Bézier variant
of Chlodovsky-Durrmeyer operators Dn,α as follows:

(Dn,αf) (x) =
n + 1

bn

n∑
k=0

Q
(α)
n,k

(
x

bn

) bn∫
0

f(t)pk,n

(
t

bn

)
dt, 0 ≤ x ≤ bn, (2.6)

Obviously, Dn,α is a positive linear operator and Dn,α(1, x) = 1. Particularly,
when α = 1 the operators (2.6) reduce to the operators (2.1).

The paper is concerned with the rate of pointwise convergence of the opera-
tors (2.6) when f belong to Xloc[0,∞). By using the Chanturiya modulus of
variation we examine the rate of pointwise convergence of (Dn,αf) (x) at the
points of continuity and at the discontinuity points of the first kind of f .

It is necessary to point out that in the present paper we extend and improve
the earlier result of [13] for Chlodovsky-Durrmeyer operators.

At first, we give the following definition.

Definition. Let f be a bounded function on a compact interval I = [a, b]. The
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modulus of variation νn(f ; [a, b]) of the function f is defined for nonnegative
integers n as follows:

ν0(f ; [a, b]) = 0

and for n ≥ 1

νn(f ; [a, b]) = sup
Πn

n−1∑
k=0

|f(x2k+1)− f(x2k)| ,

where Πn is an arbitrary system of n disjoint intervals (x2k, x2k+1), where
k = 0, 1, ..., n− 1, i.e., a ≤ x0 < x1 ≤ x2 < x3... ≤ x2n−2 < x2n−1 ≤ b.

If f ∈ BVp(I), p ≥ 1, i.e., if f is of bounded pth power variation on I, then
for every k ∈ N,

νk(f ; I) ≤ k1−1/pVp(f, I),

where Vp(f, I) denotes the total pth power variation of f on I, defined as the

upper bound of the set of numbers

(∑
j

|f(kj)− f(lj)|p
)1/p

over all finite

systems of non-overlapping intervals (kj , lj) ⊂ I. We also consider the class
BV p

loc[0,∞), p ≥ 1, consisting of all functions of bounded pth power variation
on every compact interval I ⊂ [0,∞).

Theorem 2.1. Let f ∈ Xloc[0,∞) and assume that the one-sided limits f(x+),
f(x−) exist at a fixed point x ∈ (0,∞). Then, for all integers n such that
bn > 2x and 4bn ≤ n one has∣∣∣∣Dn,α(f ;x)− f(x+) + αf(x−)

α + 1

∣∣∣∣ ≤ 2ν1(gx;Hx(x
√

bn/n))

+
32α

x2

(
x

(
1− x

bn

)
+

bn

n

)m−1∑
j=1

νj(gx;Hx(jx
√

bn/n))
j3

+
νm(gx;Hx(x))

m2


+

2αcq

x2q
µ(bn; f)

(
bn

n

)q (
x

(
1− x

bn

)
+

bn

n

)q

+
2α |f(x+)− f(x−)|√

nx
bn

(
1− x

bn

) ,

where m := [
√

n/bn], Hx(u) = [x − u, x + u] for 0 ≤ u ≤ x, µ(b; f) :=
sup

0≤t≤b
|f(t)| ,

gx(t) :=

 f(t)− f(x+) if t > x,
0 if t = x,

f(t)− f(x−) if 0 ≤ t < x,

q is an arbitrary positive integer and cq is a positive constant depending only
on q.

From Theorem 2.1 we get



Recent results on Chlodovsky operators 431

Theorem 2.2. Let f ∈ BV p
loc[0,∞), p ≥ 1, and let x ∈ (0,∞). Then, for all

integers n such that bn > 2x and 4bn ≤ n we have∣∣∣∣Dn,α(f ;x)− f(x+) + αf(x−)
α + 1

∣∣∣∣ ≤ 2Vp(gx;Hx(x
√

bn/n))

+
27+1/pα

x2m1+1/p

(
x

(
1− x

bn

)
+

bn

n

) (m+1)2−1∑
k=1

Vp(gx;Hx( x√
k
))(√

k
)1−1/p

+
2αcq

x2q
µ(bn; f)

(
bn

n

)q (
x

(
1− x

bn

)
+

bn

n

)q

+
2α |f(x+)− f(x−)|√

nx
bn

(
1− x

bn

) .

So, we get the following approximation theorem.

Corollary 2.3. Suppose that f ∈ Xloc[0,∞) (in particular, f ∈ BV p
loc[0,∞),

p ≥ 1) and that there exists a positive integer q such that

lim
n→∞

(
bn

n

)q

µ(bn; f) = 0.

Then, at every point x ∈ (0,∞) at which the limits f(x+), f(x−) exist, we
have

lim
n→∞

Dn,α(f ;x) =
f(x+) + αf(x−)

α + 1
.

Obviously, the above relations hold true for every measurable function f
bounded on [0,∞), in particular for every function f of bounded pth power
variation (p ≥ 1) on the whole interval [0,∞).

2010 [10] In this paper, the author investigates convergence and approxi-
mation properties of a Chlodovsky type generalization of Stancu polynomials.

2010 [25] The authors estimate the rates of pointwise approximation
of certain King-type positive linear operators for functions with derivative of
bounded variation. We also extend our results to the statistical approximation
process via the concept of statistical convergence.

2010 [5] In this work, they state a Chlodovsky variant of a multivariate
beta operator to be called hereafter the multivariate beta-Chlodovsky opera-
tor. They show that the multivariate beta-Chlodovsky operator can preserve
properties of a general function of modulus of continuity and also the Lips-
chitz constant of a Lipschitz continuous function.

2010 [12] Another recent result concerning uniform approximation by
the Chlodovsky operators is due to A. Holhoş.
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2010 [21] Let Jn,k (t) =
n∑

j=k

pj,n (t) , t ∈ [0, 1], be the Bézier basis func-

tions. For f ∈ Xloc[0,∞) and α > 0, the Bézier modification Cn,αf of oper-
ators (1.1) is defined as

Cn,αf(x) =
n∑

k=0

f

(
kbn

n

)
Q

(α)
n,k

(
x

bn

)
for x ∈ [0, bn], (2.7)

where Q
(α)
n,k (t) = Jα

n,k (t)− Jα
n,k+1 (t) for t ∈ [0, 1] ( Jn,l (x) ≡ 0 if l > n ).

If α = 1, then Cn,αf reduce to the operators (1.1).

Recently, Karsli and Ibikli [17],[23] gave some estimates for the rates
of convergence of operators (1.1) and (2.7) (with α ≥ 1) for functions f ∈
BV [0,∞). In this paper:

1− we essentially improve those estimates,

2− we extend those results to some wider classes of functions, in par-
ticular for classes BV p[0,∞) with p > 1,

3− we extend them to all parameters α > 0.

If x ∈ (0,∞), the following intervals Hx(u) := [x − u, x + u] for 0 < u ≤ x
will be used.

Theorem 2.4. Let f ∈ Xloc[0,∞) and assume that the one-sided limits f(x+),
f(x−) exist at a fixed point x ∈ (0,∞). Then, for all integers n such that
bn > 2x and n/bn ≥ max {4, 21/x} we have∣∣∣∣Cn,αf(x)− 1

2α
f(x+)−

(
1− 1

2α

)
f(x−)

∣∣∣∣ ≤ 2ν1(gx;Hx(x
√

bn/n))

+
16λα

x2

(
x

(
1− x

bn

)
+

bn

n

)m−1∑
j=1

νj(gx;Hx(jx
√

bn/n))
j3

+
νm(gx;Hx(x))

m2


+κα

√
bn

n

√
bn

x (bn − x)

(
|f(x+)− f(x−)|+ |f(x)− f(x−)| en

(
x

bn

))

+4καM(bn; f) exp
(
−ρα

nx

4bn

)
,

where m := [
√

n/bn], κα = max {1, α} , ρα = min {1, α} , λα is a positive
constant depending only on α ( if α ≥ 1 then λα = α ), en(x/bn) = 1 if
there exists a k′ ∈ {0, 1, ..., n} such that nx = k′bn, en(x/bn) = 0 otherwise,
M(b; f) := sup

0≤t≤b
|f(t)| .

Here we note that, under the Chlodovsky condition (1.3), Theorem 2.4 is also
an approximation theorem. To see this we must verify that the right-hand
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side of the inequality given in this theorem converges to zero as n → ∞. In
view of (1.2) we have bn/n → 0 and m =

[√
n/bn

]
→∞ as n →∞. Clearly,

νm(gx;Hx(x))
m2

≤ 2
m

M(2x; f) → 0 as n →∞.

Therefore it is enough to consider only the term

Λm(x) :=
m−1∑
j=1

νj(gx;Hx(jxdn))
j3

where dn =
√

bn/n.

It is easy to see that

Λm(x) ≤
m−1∑
j=1

ν1(gx;Hx(jxdn))
j2

≤ 4dn

mdn∫
dn

ν1(gx;Hx(xt))
t2

dt

≤ 4dn

m+1∫
1

ν1

(
gx;Hx

(x

s

))
ds ≤ 4

m

m∑
k=1

ν1

(
gx;Hx

(x

k

))
.

Since the function gx is continuous at x and ν1(gx;Hx(x/k)) denotes the oscil-
lation of gx on the interval [x−x/k, x+x/k], we have lim

k→∞
ν1 (gx;Hx (x/k)) =

0. Consequently lim
m→∞

Λm(x) = 0, by the well-known theorem on the limit of
the sequence of arithmetic means. Hence we get the following

Corollary 2.5. Suppose that f ∈ Xloc[0,∞) and that the Chlodovsky condition
(1.3) is satisfied. Then

lim
n→∞

Cn,αf(x) =
1
2α

f(x+) +
(

1− 1
2α

)
f(x−) (2.8)

at every point x ∈ (0,∞) at which the limits f(x+), f(x−) exist.

Of course, relation (2.8) holds true for every function f bounded on the
interval [0,∞). In particular, if α = 1 and x is the point of continuity of f ,
our Corollary 2.5 coincides with the above mentioned theorem of Chlodovsky.

Retaining the symbols used in Theorem 2.4 we also get

Theorem 2.6. Let f ∈ BV p
loc[0,∞), p ≥ 1, and let x ∈ (0,∞). Then∣∣∣∣Cn,αf(x)− 1

2α
f(x+)−

(
1− 1

2α

)
f(x−)

∣∣∣∣ ≤ 2Vp(gx;Hx(x
√

bn/n))
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+
26+1/pλα

x2m1+1/p

(
x

(
1− x

bn

)
+

bn

n

) (m+1)2−1∑
k=1

Vp

(
gx;Hx

(
x√
k

))
(√

k
)1−1/p

+κα

√
bn

n

√
bn

x (bn − x)

(
|f(x+)− f(x−)|+ |f(x)− f(x−)| en

(
x

bn

))
+4καM(bn; f) exp

(
−ρα

nx

4bn

)
,

for all integers n such that bn > 2x and n/bn ≥ max {4, 21/x} .

It is easy to verify that, in view of continuity of gx at x,

lim
m→∞

1
m1+1/p

(m+1)2−1∑
k=1

1(√
k
)1−1/p

Vp

(
gx;Hx

(
x√
k

))
= 0.

Hence from Theorem 2.6 we have

Corollary 2.7. If f belongs to the class BV p
loc[0,∞), p ≥ 1, and if it satisfies

condition (1.3), the relation (2.8) holds true at every x ∈ (0,∞). In particu-
lar, (2.8) remains valid for every function f of class BV p[0,∞), p ≥ 1.

Corollary 2.8. Let us consider now the special case p = 1, α ≥ 1, and let us
suppose that f ∈ BV [0,∞). Then at every x > 0 and for all integers n such
that bn > 2x and n/bn ≥ 4, we have∣∣∣∣Cn,αf(x)− 1

2α
f(x+)−

(
1− 1

2α

)
f(x−)

∣∣∣∣ ≤ 2V (gx;Hx(x
√

bn/n))

+
29αbn

n

(
1
x
− 1

bn

) 2[n/bn]∑
k=1

V

(
gx;Hx

(
x√
k

))
+ 4αM exp

(
− nx

4bn

)

+α

√
bn

n

√
bn

x (bn − x)

(
|f(x+)− f(x−)|+ |f(x)− f(x−)| en

(
x

bn

))
,

where M = sup
0≤x<∞

|f(x)| and V (gx;H) denotes the Jordan variation of gx

on the interval H.

The above estimate is essentially better than the estimates presented in [17]
(α = 1) and [23] (α ≥ 1).
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infini en séries de polynomes de M. S. Bernstein, Compositio Math., 4(1937),
380-393.
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Multifractional Brownian motion in vehicle
crash tests

Diana Keller

Abstract. Different crash tests are carried out in the car industry to
measure the acceleration dependent on time. With the aim of improv-
ing the airbag-system a discussion of crash processes was raised. Experi-
mental studies approve the modelling of the crash tests as a multifrac-
tional Brownian motion which will be introduced as a generalisation of
the fractional case (including the Wiener process). Based on the ideas
of Coeurjolly [1] an estimation of the significant time-dependent Hurst
parameter H(t) will be developed. Its interpretation as a measure of
deformation of the crash car leads to interesting results. So the Hurst
index’ value is important for supporting the fire-decision [4].

Mathematics Subject Classification (2010): 60H05, 60H30, 62P30.

Keywords: Multifractional Brownian motion, Itô integral, Hurst index,
vehicle crash tests, airbag-control-model.

1. Motivation of the model

The car industry has performed extensive crash tests for sensitizing and im-
proving the airbag-system. They have measured the acceleration dependent
on time with different sensors installed on characteristic positions in the ve-
hicle, especially in the front part of the cars. The activation of the restraint-
system is implemented in the airbag-control-unit which is mounted on the
middle tunnel. On the basis of mechanical models in a crash situation the
airbag-algorithms will be specifically adapted and optimized for each new
car. To further improve the accident detection a more general mathematical
discussion of the crash process should be conducted.

Currently the crucial criterion for activating the airbags is the velocity
calculated by the integral over the acceleration. But these results are not
sufficient for a distinction between different crash cases and situations. The
aim is to identify the type of crash so that selected airbags will fire only if
they are necessary.
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The researches are premised on data like in Figure 1 whose character
changes in time. Here a head-on collision with 56 km/h against a solid wall
is presented. There arises the question whether crash test situations suffice a
stochastic process. This assumption can be affirmed because the progress of
acceleration is significant: wild fluctuations at the beginning which rapidly
decrease after 50 ms. These fluctuations can be described by the fractional
Brownian motion with a Hurst index H greater than 0 but less than 1/2. If H
converges to 1 the fractional Brownian motion will tend to a random variable.
This supports the interpretation of the crash process as a multifractional
Brownian motion with a time-dependent Hurst parameter H(t).
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Figure 1. Head-on collision with 56 km/h against a solid wall

2. The multifractional Brownian motion

2.1. Definition and representation

First the fractional Brownian motion will be defined as a Brownian motion
with a constant parameter H:

Definition 2.1. A real-valued random process (BH(t), t ≥ 0) is called fractional
Brownian motion with Hurst parameter H ∈ (0, 1) provided that

(i) BH(t) is a Gaussian process;
(ii) BH(0) = 0 a.s.;
(iii) IE (BH(t)) = 0, ∀ t ≥ 0, that means the process is centered;
(iv) IE (BH(t)BH(s)) = 1

2 Var (BH(1))
[
|t|2H + |s|2H − |t− s|2H

]
.

Especially the case H = 0.5 leads to the Brownian motion also known
as Wiener process [4]. A generalisation of the fractional Brownian motion is
the multifractional Brownian motion where the constant Hurst index H will
be substituted by a time-dependent Hurst exponent H(t):
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Definition 2.2. A real-valued random process (BHt
(t), t ≥ 0) is said to be a

multifractional Brownian motion if the following conditions are fulfilled

(i) BHt(t) is a Gaussian process;
(ii) BH0(0) = 0 a.s.;
(iii) IE (BHt

(t)) = 0, ∀ t ≥ 0, that means the process is centered;
(iv) IE (BHt

(t)BHs
(s)) = 1

2 C(Ht,Hs)
[
|t|Ht+Hs + |s|Ht+Hs − |t− s|Ht+Hs

]
,

with C(Ht,Hs) = const. dependent on Ht and Hs;
(v) H : [0,∞) 7→ (0, 1) is Hölder continuous with exponent β > 0.

This definition of the multifractional case is equivalent to a representa-
tion as an Itô integral [5]

BHt (t) =
1

Γ
(
Ht + 1

2

)


0∫
−∞

[
(t− s)Ht− 1

2 − (−s)Ht− 1
2

]
dB(s) +

t∫
0

(t− s)Ht− 1
2 dB(s)


for all t ≥ 0 where H : [0,∞) 7→ (0, 1) is a Hölder continuous function with
exponent β > 0 and B marks the ordinary two-sided Brownian motion.

A process
(
B(t), t ∈ R1

)
denotes a two-sided Brownian motion if

B(t) =

{
B1(t) : for t ≥ 0,

B2(−t) : for t < 0,

where B1(t) and B2(t) are two independent Brownian motions for t ≥ 0.

2.2. Typical properties

Because of zero mean and the Itô isometry [3] of the stochastic integral all the
properties listed in Definition 2.2 can be proved from the equivalent integral
representation, explicitly shown in [4]. Furthermore two important theorems
will be presented but not proved, only the main idea will be mentioned.

Theorem 2.3. The multifractional Brownian motion BHt(t) is a continuous
process for all t ∈ [0,∞) with probability 1.

It is possible to show this with the help of skilful splittings of the Itô
integral representation, some fundamental inequalities and the Kolmogorov
criterion [5], detailed in [4].

Theorem 2.4. It exists a positive continuous function t 7→ σt so that for all
t ≥ 0 the following asymptotic distribution holds

BHt+h
(t + h)−BHt

(t)
hHt

L−−−→
h→0

N(0, σ2
t ).

Evidently the mean is 0 but the variance is harder to predict. Again
skilful splittings and useful inequalities yield the result [5], explicitly in [4].
Hence a standard multifractional Brownian motion can be introduced.
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2.3. Hurst index’ estimation

An estimation of the significant time-dependent Hurst parameter H(t) is
based on the ideas of Coeurjolly [1], [2]. It is a kind of parameter estimator
harking back to the asymptotic behaviour of the k-th absolute moment. Here
k ≤ 2 is considered. A particularity is that only one realisation is necessary for
the estimation which actually is a well-known method for the fractional case
with constant H. First the raw data have to be filtered, here with the so called
Daubechies-filter. Then the procedure will be extended from the fractional
Brownian motion to the multifractional one. That means the estimation does
not happen over the entire time range, but rather over a defined time period
so that a time-dependent H(t) will be obtained (see also in the next chapter).

With the help of the trajectory filtered by the Daubechies-filter a of
length l + 1 (in detail [1], [2])

V a

(
i

n

)
=

l∑
q=0

aqBH

(
i− q

n

)
, for i = l, . . . , n− 1,

the covariance function πa
H of this series will be calculated by

πa
H(j) = IE

(
V a

(
i

n

)
V a

(
i + j

n

))
= −1

2

l∑
q,r=0

aqar |q − r + j|2H
.

The k-th empirical absolute moment of the discrete variations of the fractional
Brownian motion has the following representation

Sn(k, a) =
1

n− l

n−1∑
i=l

∣∣∣∣V a

(
i

n

)∣∣∣∣k .

Finally Coeurjolly estimates the Hurst parameter H by

Ĥn(k, a) = g−1
k,a,n (Sn(k, a)) ,

where the function g−1
k,a,n(t) is defined as the inverse of

gk,a,n(t) =
1

nkt
{πa

t (0)} k
2 Ek

and the indices k, a and n denote the order of the moment, the filter and the
number of partition points. The factor Ek depends on the used order k of the
moment and is explained by

Ek = 2
k
2 Γ

(
k +

1
2

)
Γ

(
1
2

)
.
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3. Crash test analysis

3.1. Application of the estimation

Experimental studies have shown that the Hurst index depends on time.
Figure 1 represents the acceleration measured over 500 ms in 10.000 data
points. That means for 1 ms 20 data points are available. But if the airbags
are necessary to protect the inmates they have to fire empirically by no later
than 25 ms. So it suffices to consider only the first 500 measured points.

Now the described method to estimate the Hurst index H(t) can be
applied using the Daubechies-filter of order 6 and a time period of 10 ms con-
taining 200 data points. Practically the first approximation of H results from
considering the interval (1, 200). Then all intervals from (2, 201) to (301, 500)
will be examined. Because the fire-decision is usually made after 25 ms there
are 15 ms available for interpretation.

The Hurst parameter is a measure of deformation of the crash car with
a small H corresponding to a big deformation and a big one to a small
deformation. Please note 0 < H < 1. If the passenger cabin is affected by
deformation there will be a high risk of injury for the occupants. That is why
the activation of the airbags is essential.

10 15 20 25
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0.1

0.2

0.3
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0.5

H
(t
)

t in ms

Figure 2. Corresponding Hurst parameter to head-on collision

The corresponding Hurst index to the head-on collision in Figure 1
is illustrated in Figure 2, the first estimation after 10 ms and the last one
after 25 ms. With small values of H(t) the airbags have to activate because
a big deformation is associated and the inmates are in jeopardy.

3.2. Introduction and evaluation of the test cases

Four different crash cases depicted in Figure 3 were investigated. The first
one is the head-on collision against a solid wall with velocities between 16
and 56 km/h. This crash situation will be abbreviated with frontal. In the
picture at the top on the right a car is overlapping a barrier by only 40 %.
The barrier is a deformable obstacle (that is where the name deform comes
from) and the car collides with the obstacle with 40 to 64 km/h. The third
one is called angle10 and illustrates the crash with only 15 km/h against a
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solid wall at an angle of 10 degrees and a 40 % overlap. Finally at the bottom
on the right there is a collision against a solid wall at an angle of 30 degrees
with velocities of 32 or 40 km/h which will be abbreviated with angle30.

solid wall (frontal) deformable obstacle (deform)

solid wall at an angle of 

10° (angle10)

solid wall at an angle of 

30° (angle30)

40%

40%

10°

30°

Figure 3. Distinction between crash cases

As a measure of deformation of the crash car the Hurst index will be con-
sidered for each situation and velocity. This leads to very interesting results.
Figure 4 shows the Hurst parameters for some selected cases estimated with
the method above using the Daubechies-filter of order 6 and a time period of
10 ms realised in 200 data points.
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Figure 4. Hurst parameters for selected cases
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The red line at the top represents a collision at an angle of 10 degrees and
15 km/h against a solid wall (overlapping 40 %). With a big monotonically
decreasing Hurst index between 1 and 0.5 the deformation of the car body
is very small. There is only an almost unnoticeable danger for the inmates
and therefore the airbags are unnecessary. It is the biggest Hurst index of the
four observed cases in Figure 4, thus the lowest damage. In consideration
of a velocity of only 15 km/h this result is easily comprehensible.

Beneath, the crash case with the deformable obstacle proceeds nearly
constantly at 0.5 and the velocity of 64 km/h suggests the use of the airbags.
It is the biggest test velocity and a huge deformation is accompanied by a high
risk of injury for the vehicle occupants. To grant the best possible protection
the airbags have to fire.

The orange Hurst index belongs to a car which collides with a solid wall
at an angle of 30 degrees and a velocity of 40 km/h. The car slides along the
wall because of the angle of contingence. With values of about 0.4 the Hurst
parameter is smaller than in the previous cases. That means the deformation
is greater due to the rough impact. So the airbags are essential because of
the imminent danger.

Last but not least the blue line characterises a head-on collision against
a solid wall with 56 km/h. Monotonically decreasing values between 0.35
and 0.1 illustrate the crash situation with the smallest Hurst index. Hence
the biggest deformation of the vehicle takes place and the occupants could
be seriously injured. Such a head-on collision can entail severe consequences
and therefore require the airbags to be deployed.

In Figure 4 two of the curves are monotonically decreasing while the
other two are nearly constant. Perhaps more information to support the fire-
decision are conceivable by use of the monotonicity of the trajectories. More-
over the estimation of the Hurst index in the case angle10 is much greater
than in all the other cases. The airbags do not have to fire because there is
only a small deformation contrary to the three other cases. That is why the
airbags are necessary to guarantee the safety of the passengers.

Looking at the mentioned figure a boundary at about 0.5 seperating
the case with airbags from these without can be supposed. This boundary
is well-motivated since H = 0.5 forms the characteristic change between
wild fluctuations of the acceleration and the levelling values which tend to a
random variable. The special case H = 0.5 realises the Brownian motion.

3.3. Further results in detail

Considering the four presented crash situations and averaging over the Hurst
parameters of these crashes with the same case and the same velocity there
are the following outcomes.
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Figure 5. Hurst parameter for the case frontal

In Figure 5 the estimation on top (head-on collision with a velocity of
16 km/h) differs with values greater than 0.5 from all the other velocities. A
big Hurst index is interpreted as a small deformation of the car body and a
small risk for the occupants. That is why the airbags are unnecessary. This
result is very catchy because a velocity of 16 km/h is so slow that big damages
are unbelievable. But the tests with all the other velocities show with values
less than 0.5 that the deformation is getting greater and so the risk of injury
is growing. The airbags have to activate to protect the inmates optimally.
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Figure 6. Hurst parameter for the case deform

The estimations of the case deform are close together and their progress
is nearly identically. But it is conspicuous that the Hurst parameter is decreas-
ing with growing velocities. That means the deformation keeps on entering
into the passenger cabin and the occupants are increasingly threatened. To
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give maximum shelter to the inmates the use of the airbags is essential at all
presented velocities.

Nevertheless Figure 6 requires to raise the boundary between the cases
with and without airbags from 0.5 to 0.6 because the collision with 40 and 60
km/h against a deformable obstacle - where the activation of the airbags can
not be abandoned - have Hurst parameters just under 0.6. Such an enlarge-
ment does not contradict all the previous figures since in all crashes with a
lower Hurst index the airbags have to fire and in all crashes with a greater
Hurst parameter the airbags are not necessary.
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Figure 7. Hurst parameter for the case angle10

The trajectory of the estimated Hurst index of the case angle10 with 15
km/h in Figure 7 is the same as in Figure 4 because there were no other
velocities to analyse.
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Figure 8. Hurst parameter for the case angle30
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Finally the case angle30 is mapped in Figure 8 whose curves are simi-
lar to the estimations of the case frontal. If the case is unknown one can
interchange them. But considering the known velocities the distinction is
easier since the estimations of the case frontal start with greater values at
about 0.5 and finish with lower values at about 0.2 after 25 ms, the moment
the fire-decision has to be made.

There exists a characteristic estimation for the Hurst index in each crash
situation so that on the one hand different crash cases and situations can be
distinguished due to progress and dimension of H(t) and on the other hand
there are some similarities. Referring to the averages of crash cases with
the same situation and the same velocity a strict boundary at about 0.6 is
recognisable - a boundary between cases where the airbags have to fire and
those where they are unnecessary. All these results are heuristically and have
to be tested with more data to cover a bigger spectrum of crash cases and
velocities.

One difficulty in all well-known methods of the past was to differentiate
the case deform from the case angle10. Now a distinction between these two
cases is obvious. It is harder to differ between the cases frontal and angle30.
Perhaps a symbiosis of old and new methods is promising.

4. Conclusion

In sum, the Hurst index’ value is important for supporting the fire-decision.
It exists a characteristic estimation of the Hurst parameter in progression
and dimension for each crash situation so that a strict distinction is possible.
In certain circumstances only special airbags have to fire. With huge values
of H(t) the collision at an angle of 10 degrees - requiring no activation of the
airbags - contrasts with all the other cases with Hurst parameters less than
0.6. The airbags are essential for the security of the inmates. All in all there
is a distinct boundary at about 0.6 between non-activating and activating
the airbags. But this is only an assumption, perhaps this boundary has to
be corrected by investigating more statistical series, other crash cases and
velocities.

A boundary of 0.5 would be motivated very well because H = 0.5 is
the characteristic change between wild fluctuations and the levelling values
of the acceleration which tend to a random variable. It is the special case of
the well-known Brownian motion.

An interesting question arises: Is it possible to make the fire-decision
based only on the knowledge of the estimated Hurst index? This would be a
very great result but requires any more researches.
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Numerical quadratures and orthogonal
polynomials

Gradimir V. Milovanović

Abstract. Orthogonal polynomials of different kinds as the basic tools
play very important role in construction and analysis of quadrature
formulas of maximal and nearly maximal algebraic degree of exactness.
In this survey paper we give an account on some important connections
between orthogonal polynomials and Gaussian quadratures, as well as
several types of generalized orthogonal polynomials and corresponding
types of quadratures with simple and multiple nodes. Also, we give
some new results on a direct connection of generalized Birkhoff-Young
quadratures for analytic functions in the complex plane with multiple
orthogonal polynomials.

Mathematics Subject Classification (2010): 33C45, 41A55, 65D30, 65D32.

Keywords: Quadrature formula, node, weight, maximal degree of exact-
ness, orthogonal polynomial, quasi-orthogonal polynomial, s-orthogonal
polynomial, σ-orthogonal polynomial, multiple orthogonal polynomial.

1. Introduction

Let Pn be the set of all algebraic polynomials of degree at most n and dσ
be a finite positive Borel measure on the real line R such that its support
supp(dσ) is an infinite set, and all its moments µk =

∫
R tk dσ(t), k = 0, 1, . . .,

exist and are finite.
The n-point quadrature formula∫

R
f(t)dσ(t) =

n∑
k=1

σkf(τk) + Rn(f), (1.1)

which is exact on the set P2n−1 is known as the Gauss-Christofell quadrature
formula (cf. [14, p. 29], [20, p. 324]). It is a quadrature formula of the maximal
algebraic degree of exactness, i.e., Rn(Pdmax) = 0, where dmax = 2n− 1.

This famous method of numerical integration, for the Legendre measure
dσ(t) = dt on [−1, 1], was discovered in 1814 by C.F. Gauss [11], using his
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theory of continued fractions associated with hypergeometric series. It is in-
teresting to mention that Gauss determined numerical values of quadrature
parameters, the nodes τk and the weights σk, k = 1, . . . , n, for all n ≤ 7. An
elegant alternative derivation of this method was provided by Jacobi, and
a significant generalization to arbitrary measures was given by Christoffel.
The error term Rn(f) and convergence were proved by Markov and Stielt-
jes, respectively. A nice survey of Gauss-Christoffel quadrature formulae was
written by Gautschi [12].

In this survey paper we give an account on some important connec-
tions between orthogonal polynomials and Gaussian quadratures, as well as
several types of generalized orthogonal polynomials and corresponding types
of quadratures. The paper is organized as follows. Section 2 is devoted to
quadratures of Gaussian type (with maximal or nearly maximal degree of
exactness) and quasi-orthogonal polynomials. A connection between s- and
σ-orthogonal polynomials and quadratures with multiple nodes is presented
in Section 3. Finally, in Section 4 we consider the so-called multiple orthogo-
nal polynomials and give two applications. First, we show a direct connection
of Borges quadratures [3] with multiple orthogonal polynomial. Second ap-
plication is related to a generalization of the Birkhoff-Young quadratures [2]
for analytic functions in the complex plane. We give a characterization of
such generalized quadratures in terms of multiple orthogonal polynomials
and prove the existence and uniqueness of these quadratures.

2. Orthogonal and quasi-orthogonal polynomials and Gaussian
type of quadratures

The construction of quadrature formulae of the maximal (Gauss-Christoffel),
or nearly maximal, algebraic degree of exactness for integrals involving a
positive measure dσ is closely connected to polynomials orthogonal on the
real line with respect to the inner product

(f, g) = (f, g)dσ =
∫

R
f(t)g(t) dσ(t) (f, g ∈ L2(dσ)). (2.1)

The monic polynomials πν = πν(dσ; · ), ν = 0, 1, . . ., orthogonal with respect
to (2.1) satisfy the three-term recurrence relation (cf. [20, p. 97])

πν+1(t) = (t− αν)πν(t)− βνπν−1(t), ν = 0, 1, . . . , (2.2)
π0(t) = 1, π−1(t) = 0,

with recurrence coefficients αν = αν(dσ) and βν = βν(dσ) > 0, and β0 =
µ0 =

∫
R dσ(t) (by definition).

The following theorem is due to Jacobi (cf. [20, p. 322]):

Theorem 2.1. Given a positive integer m (≤ n), the quadrature formula (1.1)
has degree of exactness d = n− 1 + m if and only if the following conditions
are satisfied:

1◦ Formula (1.1) is interpolatory;
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2◦ The node polynomial qn(t) = (t− τ1)(t− τ2) · · · (t− τn) satisfies

(∀p ∈ Pm−1) (p, qn) =
∫

R
p(t)qn(t) dσ(x) = 0.

According to this theorem, an n-point quadrature formula (1.1) has the
maximal degree of exactness 2n − 1, i.e., m = n is optimal, because the
higher m (> n) is impossible. Namely, the condition 2◦ in Theorem 2.1 for
m = n + 1 requires the orthogonality (p, qn) = 0 for all p ∈ Pn, which is
impossible when p = qn.

Thus, in the case m = n, the orthogonality condition 2◦ from The-
orem 2.1 shows that the node polynomial qn must be (monic) orthogonal
polynomial with respect to the measure dσ, and therefore the nodes τk must
be zeros of the polynomial qn(t) = πn(dσ; t). The corresponding weights σk

(Christoffel numbers) can be expressed in terms of orthogonal polynomials
as values of the Christoffel function λn(dσ; t) at these zeros (cf. [20, p. 324]).

Computationally, today there are very stable methods for generating
Gauss-Christoffel rules. The most popular of them is one due to Golub and
Welsch [18]. Their method is based on determining the eigenvalues and the
first components of the eigenvectors of a symmetric tridiagonal Jacobi ma-
trix Jn(dσ), with elements formed from the coefficients in the three-term
recurrence relation (2.2).

Theorem 2.2. The nodes τk in the Gauss-Christoffel quadrature rule (1.1),
with respect to a positive measure dσ, are the eigenvalues of the n-th order
Jacobi matrix

Jn(dσ) =



α0

√
β1 O√

β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

√
βn−1

O
√

βn−1 αn−1

 ,

where αν and βν , ν = 0, 1, . . . , n − 1, are the coefficients in the three-term
recurrence relation for the monic orthogonal polynomials πν(dσ; · ), and the
weights σk are given by

σk = β0v
2
k,1, k = 1, . . . , n,

where β0 = µ0 =
∫

R dσ(t) and vk,1 is the first component of the normalized
eigenvector vk corresponding to the eigenvalue τk,

Jn(dσ)vk = τkvk, vT
k vk = 1, k = 1, . . . , n.

If we put a smaller value of m, say m = n− r, in Theorem 2.1, the node
polynomial can be expressed in terms of orthogonal polynomials πν as

qn(t) = qn,r(t) = πn(t) + %1πn−1(t) + · · ·+ %rπn−r(t), (2.3)

where %1, . . . , %r are real numbers and n > r. For r = 0 we put qn,0 = πn.
Such polynomials {qn,r} are known as quasi-orthogonal polynomials and

they play very important role in the study of interpolatory quadratures with
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exactness d = 2n − r − 1, 0 ≤ r < n. Notice that for r = n, i.e., m = 0, the
quadrature (1.1) is only interpolatory, without the orthogonality condition
2◦ in Theorem 2.1.

It is clear if τk, k = 1, . . . , n, are nodes of the quadrature formula (1.1),
with exactness d = 2n−r−1, then these nodes are zeros of a quasi-polynomial
of the form (2.3). Contrary, if a quasi-polynomial qn,r has n real distinct zeros
τk, k = 1, . . . , n, then there exists a quadrature rule of the form (1.1), with
exactness d = 2n− r− 1 and non-zero weights σk, k = 1, . . . , n. Such kind of
quadratures have been studied by several authors (cf. [4, 5, 10, 21, 43]).
Quadratures with positive weigts are of particular interest and they are
known as positive quadrature formulae. Their convergence and some char-
acterizations were studied by several authors (cf. [10, 26, 27, 44]). For exam-
ple, Xu [44] showed that the quasi-orthogonal polynomials that lead to the
positive quadratures can all be expressed as characteristic polynomials of a
symmetric tridiagonal matrix with positive subdiagonal entries. Also, as a
consequence, for a fixed n, Xu [44] obtained that every positive quadrature
is a Gaussian quadrature formula for some another nonnegative measure.

Positive quadrature formulas on the real line with the highest degree of
exactness and with one or two prescribed nodes anywhere on the interval of
integration have been recently characterized in [5]. The simplest kinds of such
formulas are well known Gauss-Radau and Gauss-Lobatto quadratures with
one or both (finite) endpoints being fixed nodes, respectively (cf. [20, p. 328]).
Their nodes and weights can be obtained by a little modification of the Golub-
Welsch Theorem 2.2. Also, some cases with one or two additional prescribed
nodes inside the interval of integration can be analyzed by considering certain
modified Jacobi matrices (see [5]).

3. Power orthogonality and quadrature with multiple nodes

The first idea of numerical integration involving multiple nodes appeared in
the middle of the last century (Chakalov [6, 7, 8], Turán [40], Popoviciu [28],
Ghizzetti and Ossicini [15, 16], etc.).

Let η1, . . . , ηm (η1 < · · · < ηm) be given fixed (or prescribed) nodes,
with multiplicities m1, . . . ,mm, respectively, and τ1, . . . , τn (τ1 < · · · < τn)
be free nodes, with given multiplicities n1, . . . , nn, respectively. Interpolation
quadrature formulae of a general form

I(f) =
∫

R
f(t) dσ(t) ∼=

n∑
ν=1

nν−1∑
i=0

Ai,νf (i)(τν) +
m∑

ν=1

mν−1∑
i=0

Bi,νf (i)(ην), (3.1)

with an algebraic degree of exactness at least M + N − 1, were investigated
by Stancu [31, 35, 38].

Using fixed and free nodes we introduce two polynomials

qM (t) : =
m∏

ν=1

(t− ην)mν and QN (t) : =
n∏

ν=1

(t− τν)nν ,
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where M =
∑m

ν=1 mν and N =
∑n

ν=1 nν . Choosing the free nodes to increase
the degree of exactness leads to the so-called Gaussian type of quadratures. If
the free (or Gaussian) nodes τ1, . . . , τn are such that the quadrature rule (3.1)
is exact for each f ∈ PM+N+n−1, then we call it the Gauss-Stancu formula.
Stancu [36] proved that τ1, . . . , τn are the Gaussian nodes if and only if∫

R
tkQN (t)qM (t) dσ(t) = 0, k = 0, 1, . . . , n− 1. (3.2)

Under some restrictions of node polynomials qM (t) and QN (t) on the support
interval of the measure dσ(t) we can give sufficient conditions for the existence
of Gaussian nodes (cf. Stancu [36] and [17]). For example, if the multiplicities
of the Gaussian nodes are odd, e.g., nν = 2sν + 1, ν = 1, . . . , n, and if the
polynomial with fixed nodes qM (t) does not change its sign in the support
interval of the measure dσ(t), then, in this interval, there exist real distinct
nodes τν , ν = 1, . . . , n.

The last condition for the polynomial qM (t) means that the multiplici-
ties of the internal fixed nodes must be even. Defining a new (nonnegative)
measure dσ̂(t) := |qM (t)| dσ(t), the “orthogonality conditions” (3.2) can be
expressed in a simpler form∫

R
tkQN (t) dσ̂(t) = 0, k = 0, 1, . . . , n− 1.

This means that the general quadrature problem (3.1), under these condi-
tions, can be reduced to a problem with only Gaussian nodes, but with re-
spect to another modified measure. Computational methods for this purpose
are based on Christoffel’s theorem and described in details in [13] (see also
[17]).

Let πn(t) : =
∏n

ν=1(t − τν). Since QN (t)/πn(t) =
∏n

ν=1(t − τν)2sν ≥ 0
over the support interval, we can make an additional reinterpretation of the
“orthogonality conditions” (3.2) in the form∫

R
tkπn(t) dµ(t) = 0, k = 0, 1, . . . , n− 1, (3.3)

where

dµ(t) =

(
n∏

ν=1

(t− τν)2sν

)
dσ̂(t). (3.4)

This means that πn(t) is a polynomial orthogonal with respect to the new
nonnegative measure dµ(t) and, therefore, all zeros τ1, . . . , τn are simple,
real, and belong to the support interval. As we see the measure dµ(t) in-
volves the nodes τ1, . . . , τn, i.e., the unknown polynomial πn(t), which is
implicitly defined. This polynomial πn(t) belongs to the class of the so-called
σ-orthogonal polynomials {πn,σ(t)}n∈N0 , which correspond to the sequence
σ = (s1, s2, . . .) connected with multiplicities of Gaussian nodes. Namely,
the solution (τ̂1, . . . , τ̂n) of the previous (nonlinear) system of equations (3.3)
gives the σ-orthogonal polynomial

πn(t) = πn,σ(t) = (t− τ̂1) · · · (t− τ̂n),
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which is also the unique solution of the extremal problem

min
τ1<···<τn

∫
R
|t− τ1|2s1+2 · · · |t− τn|2sn+2dσ̂(t) =

∫
R
|πn,σ(t)|2dµ̂(t), (3.5)

where dµ̂ is of the form (3.4) with τ̂ν instead of τν , ν = 1, . . . , n.
If σ = (s, s, . . .), these polynomials reduce to the s-orthogonal polyno-

mials and the corresponding extremal problem (3.5) becomes

min
p∈Pn−1

∫
R
|tn + p(t)|2s+2dσ̂(t) =

∫
R
|πn(t)|2dµ̂(t) = ‖πn‖2dµ̂,

where dµ̂(t) = πn(t)2sdσ̂(t). (For details see Milovanović [22].)
Quadratures with only Gaussian nodes (m = 0),∫

R
f(t) dσ(t) =

n∑
ν=1

2sν∑
i=0

Ai,νf (i)(τν) + R(f),

which are exact for all algebraic polynomials of degree at most dmax =
2
∑n

ν=1 sν + 2n − 1, are known as Chakalov-Popoviciu quadrature formulas
(see [6, 7, 8], [28]). A deep theoretical progress in this subject was made by
Stancu (see [38] and [32]–[37]). In the special case of the Legendre measure
on [−1, 1], when all multiplicities are mutually equal, these formulas reduce
to the well-known Turán quadrature [40]. A connection between quadratures,
s and σ-orthogonality and moment-preserving approximation with defective
splines was given in survey paper [22]. A very efficient method for constructing
quadratures with multiple nodes was given recently by Milovanović, Spalević
and Cvetković [24]. We mention also a nice recent book by Shi [30].

4. Multiple orthogonality

In this section we consider applications of multiple orthogonal polynomials
to some special type of quadratures. Otherwise, multiple orthogonal polyno-
mials are intimately related to Hermite-Padé approximants and, because of
that, they are known as Hermite-Padé polynomials. A nice survey on these
polynomials, as well as some their applications to various fields of mathemat-
ics (number theory, special functions, etc.) and in the study of their analytic,
asymptotic properties, was given by Aptekarev [1].

4.1. Multiple orthogonal polynomials

Multiple orthogonal polynomials are a generalization of standard orthogonal
polynomials in the sense that they satisfy m orthogonality conditions.

Let m ≥ 1 be an integer and let wj , j = 1, . . . ,m, be weight functions
on the real line so that the support of each wj is a subset of an interval
Ej . Let ~n = (n1, n2, . . . , nm) be a vector of m nonnegative integers, which
is called a multi-index with the length |~n| = n1 + n2 + · · · + nm. There are
two types of multiple orthogonal polynomials, but here we consider only the
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so-called type II multiple orthogonal polynomials π~n(t) of degree |~n|. Such
monic polynomials are defined by the m orthogonality relations∫

E1

π~n (t) t`w1(t) dt = 0, ` = 0, 1, . . . , n1 − 1,∫
E2

π~n (t) t`w2(t) dt = 0, ` = 0, 1, . . . , n2 − 1,

...∫
Em

π~n (t) t`wm(t) dt = 0, ` = 0, 1, . . . , nm − 1.


(4.1)

Evidently, for m = 1 they reduce to the ordinary orthogonal polynomials.
The conditions (4.1) give |~n| linear equations for the |~n| unknown coeffi-

cients ak,~n of the polynomial π~n (t) =
|~n|∑

k=0

ak,~n tk, where a|~n|,~n = 1. However,

the matrix of coefficients of this system of equations can be singular and we
need some additional conditions on the m weight functions to provide the
uniqueness of the multiple orthogonal polynomials. If the polynomial π~n (t)
is unique, then we say that ~n is a normal multi-index and if all multi-indices
are normal then we have a complete system.

One important complete system is the AT system, in which all weight
functions are supported on the same interval E (= E1 = E2 = · · · = Em)
and the following |~n| functions:

w1(t), tw1(t), . . . , tn1−1w1(t), w2(t), tw2(t), . . . , tn2−1w2(t),

. . . , wm(t), twm(t), . . . , tnm−1wm(t)

form a Chebyshev system on E for each multi-index ~n. This means that every
linear combination

m∑
j=1

Qnj−1(t)wj(t),

where Qnj−1 is a polynomial of degree at most nj − 1, has at most |~n| − 1
zeros on E.

In 2001 Van Assche and Coussement [42] proved the following result:

Theorem 4.1. In an AT system the type II multiple orthogonal polynomial
π~n (x) has exactly |~n| zeros on E.

For these multiple orthogonal polynomials with nearly diagonal multi-
index there is an interesting recurrence relation of order m + 1. Let n ∈ N
and write it as n = km + j, with k = [n/m] and 0 ≤ j < m. The nearly
diagonal multi-index ~s(n) corresponding to n is given by

~s(n) = (k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸
j times

, k, k, . . . , k︸ ︷︷ ︸
m−j times

).
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Denote the corresponding type II multiple (monic) orthogonal polynomials
by πn(t) = π~s(n)(t). Then, the following recurrence relation

xπk(t) = πk+1(t) +
m∑

i=0

αk,m−iπk−i(t) , k ≥ 0, (4.2)

holds, with initial conditions π0(t) = 1 and πi(t) = 0 for i = −1,−2, . . . ,−m
(see [41]).

Setting k = 0, 1, . . . , n− 1 in the recurrence relation (4.2), we get

t


π0(t)
π1(t)

...
πn−1(t)

 = Hn


π0(t)
π1(t)

...
πn−1(t)

+ πn(t)


0
0
...
1

 ,

i.e.,
Hnpn(t) = tpn(t)− πn(t)en, (4.3)

where

pn(t) =
[
π0(t) π1(t) . . . πn−1(t)

]T
, en = [0 0 . . . 0 1]T ,

and Hn = [hij ]ni,j=1 is a lower (banded) Hessenberg matrix of order n, where

hi,i+1 = 1, i = 1, . . . , n− 1;
hi,i−r = αi−1,m−r, i = r + 1, . . . , n, r = 0, 1, . . . ,m.

It is easy to see that πn(t) = det(tIn −Hn), where In is the identity matrix
of the order n. In [25] we presented an effective numerical method for con-
structing the Hessenberg matrix Hn using a form of the discretized Stieltjes-
Gautschi procedure.

These multiple orthogonal polynomials can be applied to some kinds of
quadratures. Here, we consider such two applications.

4.2. Quadratures of C.F. Borges

In 1994 Borges [3] considered a problem that arises in evaluation of computer
graphics illumination models. Starting with that problem, he examined the
problem of numerically evaluating a set of m definite integrals taken with
respect to distinct weight functions wj , j = 1, 2, . . . ,m, but related by a
common integrand and interval of integration∫

E

f(t)wj(t) dt, j = 1, 2, . . . ,m.

It was shown that it is not efficient to use a set of m Gauss-Christoffel quad-
rature formulas because valuable information is wasted.

In [3] Borges introduced a performance ratio as

R =
Overall degree of exactness + 1
Number of integrand evaluation

.
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For example, for a set of m Gauss-Christoffel n-point quadrature formulas,
this performance index gives

R =
(2n− 1) + 1

mn
=

2
m

,

i.e., R < 1 for all m > 2.
Borges [3] proposed quadratures of the following form∫

E

f(t) wj(t) dt ≈
n∑

ν=1

Aj,νf(τν), j = 1, 2, . . . ,m. (4.4)

If Aj,ν are determined so that (4.4) are interpolatory quadratures (degree
of exactness ≤ n − 1), then R = n/n = 1. However, this performance ratio
can be improved taking an AT system of the weights W = {w1, w2, . . . , wm}
supported on the same interval E. For a multi-index ~n = (n1, n2, . . . , nm) we
put n = |~n|.

Following [3, Definition 3] an optimal set of quadratures with respect
to (W,~n) was introduced in [25]. In that sense, the Borges set of quadratures
(4.4) is optimal if and only if their weight coefficients Aj,ν and nodes τν

satisfy the following system of equations
n∑

ν=1

Aj,ν τk
ν =

∫
E

tkwj(t) dt, k = 0, 1, . . . , n + nj − 1,

for j = 1, 2 . . . , m.
Regarding this facts, the following characterization of Borges quadra-

tures in terms of multiple orthogonal polynomials can be given (see [25]):

Theorem 4.2. Let W be an AT system of weight functions supported on the
interval E, ~n = (n1, n2, . . . , nm), and n = |~n|. The Borges quadrature formu-
lae (4.4) form an optimal set with respect to (W,~n) if and only if:

1◦ They are exact for all polynomials of degree ≤ n− 1;
2◦ The node polynomial qn(t) = (t − τ1)(t − τ2) · · · (t − τn) is the type

II multiple orthogonal polynomial π~n with respect to W .

Notice that the performance ratio for such quadratures is R > 1. Evi-
dently, the nodes τν , ν = 1, . . . , n, as a zeros of the type II multiple orthogonal
polynomial π~n, are distinct and located in E (see Theorem 4.1). The weight
coefficients satisfy m systems of linear equations with Vandermonde matrix

V (τ1, τ2, . . . , τn)


Aj,1

Aj,2

...
Aj,n

 =


µ

(j)
0

µ
(j)
1
...

µ
(j)
n−1

 , j = 1, 2, . . . ,m,

where
µ(j)

ν =
∫

E

tνwj(t) dt, ν = 0, 1, . . . , n− 1.

This Vandermonde matrix is non-singular and each of the previous systems
always has the unique solution.
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For the case of the nearly diagonal multi-indices ~s(n) we can compute
the nodes τν , ν = 1, . . . , n, as eigenvalues of the corresponding banded Hes-
senberg matrix Hn. Then, from (4.3) it follows that the eigenvector associated
with τν is given by pn(τν), where pn(t) =

[
π0(t) π1(t) . . . πn−1(t)

]T . We
can use now this fact to compute the weight coefficients Aj,ν by requiring
that each rule correctly generate the first n modified moments

µ̂(j)
ν =

∫
E

πν(t)wj(t) dt, ν = 0, 1, . . . , n− 1.

Let Vn be the matrix of the eigenvectors of matrix Hn, each normalized
so that the first component is equal to 1, i.e.,

Vn =
[
pn(τ1) pn(τ2) . . . pn(τn)

]
.

Thus, for determining the weight coefficients we should solve the following m
systems of equations

Vn


Aj,1

Aj,2

...
Aj,n

 =


µ̂

(j)
0

µ̂
(j)
1
...

µ̂
(j)
n−1

 , j = 1, 2, . . . ,m.

This efficient and stable algorithm for constructing Borges quadratures,
as well as several numerical examples, were given in [25].

4.3. Birkhoff-Young quadratures and improvements

For numerical integration of analytic functions over a line segment in the
complex plane, Birkhoff and Young [2] proposed a quadrature formula of the
form

I(f) =

z0+h∫
z0−h

f(z) dz =
h

15
{
24f(z0) + 4 [f(z0 + h) + f(z0 − h)]

− [f(z0 + ih) + f(z0 − ih)]
}

+ RBY
5 (f). (4.5)

For the error term RBY
5 (f) the following estimate [45] (see also Davis and

Rabinowitz [9, p. 136])

|RBY
5 (f)| ≤ |h|7

1890
max
z∈S

|f (6)(z)|

holds, where S denotes the square with vertices z0 + ikh, k = 0, 1, 2, 3. This
error estimate is about four tenths as large as the corresponding error RES

5 (f)
for the so-called extended Simpson’s rule (cf. [29, p. 124])

I(f) ≈ h

90
{
114f(z0)+34

[
f(z0 +h)+f(z0−h)

]
−
[
f(z0 +2h)+f(z0−2h)

]}
,

for which we have

|RES
5 (f)| ∼ |h|7

756
|f (6)(ζ)|, 0 <

ζ − (z0 − 2h)
4h

< 1.
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Without loss of generality we can consider the integration over [−1, 1]
for analytic functions in a unit disk Ω =

{
z : |z| ≤ 1

}
, so that the previous

Birkhoff-Young formula (4.5) becomes∫ 1

−1

f(z) dz =
8
5
f(0) +

4
15
[
f(1) + f(−1)

]
− 1

15
[
f(i) + f(−i)

]
+R5(f). (4.6)

In 1976 Lether [19] pointed out that the three point Gauss-Legendre
quadrature∫ 1

−1

f(z) dz =
8
9
f(0) +

5
9
[
f(
√

3/5) + f(−
√

3/5)
]
+R3(f), (4.7)

which is also exact for all polynomials of degree at most five, is more precise
than (4.6) and he recommended it for numerical integration. However, Tošić
[39] improved the quadrature (4.6) in the form∫ 1

−1

f(z) dz = Af(0)+B
[
f(r)+f(−r)

]
+C

[
f(ir)+f(−ir)

]
+RT

5 (f ; r), (4.8)

where

A = 2
(

1− 1
5r4

)
, B =

1
6r2

+
1

10r4
, C = − 1

6r2
+

1
10r4

, 0 < r < 1,

and the error-term is given by the expression

RT
5 (f ; r) =

(
−2

3
r4 +

2
7

)
f (6)(0)

6!
+
(
−2

5
r4 +

2
9

)
f (8)(0)

8!
+ · · · . (4.9)

Evidently, for r = 1 this formula reduces to (4.6) and for r =
√

3/5 to the
Gauss-Legendre formula (4.7) (then C = 0). Moreover, for r = 4

√
3/7 the

first term on the right-hand side in (4.9) vanishes and (4.8) reduces to the
modified Birkhoff-Young formula of maximum accuracy (named MF in [39]),
with the coefficients

A =
16
15

, B =
1
6

(
7
5

+

√
7
3

)
, C =

1
6

(
7
5
−
√

7
3

)
,

and with the error-term

RMF
5 (f) = RT

5 (f ; 4
√

3/7) =
1

793800
f (8)(0) +

1
61122600

f (10)(0) + · · · .

This formula was extended by Milovanović and D- ord-ević [23] to the following
quadrature formula of interpolatory type∫ 1

−1

f(z) dz = Af(0) + C11

[
f(r1) + f(−r1)

]
+ C12

[
f(ir1) + f(−ir1)

]
+C21

[
f(r2) + f(−r2)

]
+ C22

[
f(ir2) + f(−ir2)

]
+R9(f ; r1, r2),

where 0 < r1 < r2 < 1. They proved that for

r1 = r∗1 =
4

√
63− 4

√
114

143
and r2 = r∗2 =

4

√
63 + 4

√
114

143
,



460 Gradimir V. Milovanović

this formula reduces to a quadrature rule of the algebraic exactness p = 13,
with the error-term

R9(f ; r∗1 , r∗2) =
1

28122661066500
f (14)(0) + · · · ≈ 3.56 · 10−14f (14)(0).

4.4. Generalized Birkhoff-Young quadratures

In this subsection we consider a kind of generalized Birkhoff-Young quadra-
ture formulas and give a connection with multiple orthogonal polynomials.
We introduce N -point quadrature formula for weighted integrals of analytic
functions in Ω =

{
z : |z| ≤ 1

}
,

I(f) :=
∫ 1

−1

f(z)w(z) dz = QN (f) + RN (f),

where w : (−1, 1) → R+ is an even positive weight function, for which all
moments µk =

∫ 1

−1
zkw(z) dz, k = 0, 1, . . ., exist.

For a given fixed integer m ≥ 1 and for each N ∈ N, we put N = 2mn+ν,
where n = [N/2m] and ν ∈ {0, 1, . . . , 2m−1}. We define the node polynomial

ωN (z) = zνpn,ν(z2m) = zν
n∏

k=1

(z2m − rk), 0 < r1 < · · · < rn < 1, (4.10)

and consider the corresponding interpolatory quadrature rule QN of the form

QN (f) =
ν−1∑
j=0

Cjf
(j)(0) +

n∑
k=1

m∑
j=1

Ak,j

[
f
(
xkeiθj

)
+ f

(
−xkeiθj

)]
,

where

xk = 2m
√

rk, k = 1, . . . , n; θj =
(j − 1)π

m
, j = 1, . . . ,m.

If ν = 0, the first sum in QN (f) is empty.

Theorem 4.3. Let m be a fixed positive integer and w be an even positive
weight function w on (−1, 1), for which all moments µk =

∫ 1

−1
zkw(z) dz,

k ≥ 0, exist. For any N ∈ N there exists a unique interpolatory quadrature
QN (f) with a maximal degree of exactness dmax = 2(m + 1)n + s, where

n =
[

N

2m

]
, ν = N − 2mn, s =

{
ν − 1, ν even,

ν, ν odd.
(4.11)

The node polynomial (4.10) is characterized by the following orthogonality
relations ∫ 1

0

tkpn,ν(tm)ts/2w(
√

t) dt = 0, k = 0, 1 . . . , n− 1. (4.12)

Proof. For a given N ∈ N and a fixed m ∈ N, suppose that f ∈ Pd, where
d ≥ N = 2mn + ν, with n = [N/2m] and ν = N − 2mn. Then, it can be
expressed in the form

f(z) = u(z)ωN (z) + v(z) = u(z)zνpn,ν(z2m) + v(z), u ∈ Pd−N , v ∈ PN−1,
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from which, by an integration with respect to the weight function w, we get

I(f) =
∫ 1

−1

u(z)zνpn,ν(z2m)w(z) dz + I(v).

Since our quadrature is interpolatory and v(z) = f(z) at the zeros of ωN ,
we have I(v) = QN (v) = QN (f). Thus, the quadrature formula QN (f) has a
maximal degree of precision if and only if∫ 1

−1

u(z)zνpn,ν(z2m)w(z) dz = 0

for a maximal degree of the polynomial u ∈ Pd−N . According to the values
of ν, this “orthogonality condition” can be represented in the form∫ 1

−1

h(z2)zs+1pn,ν(z2m)w(z) dz = 0, h ∈ Pn−1, (4.13)

which means that the maximal degree of the polynomial u ∈ Pd−N is

dmax −N =
{

2n− 1, ν is even,
2n, ν is odd,

i.e., dmax = 2(m + 1)n + s, where s is defined by (4.11).
Finally, by substitution z2 = t, the orthogonality conditions (4.13) can

be expressed in the form (4.12). �

Regarding (4.12) the polynomial t 7→ pn,ν(tm) (of degree mn) is orthog-
onal to Pn with respect to the weight function ts/2w(

√
t) on (0, 1), and it can

be interpreted in terms of multiple orthogonal polynomials.

Theorem 4.4. Under conditions of the previous theorem, for any N ∈ N
there exists a unique interpolatory quadrature QN (f), with a maximal degree
of exactness dmax = 2(m + 1)n + s, if and only if the polynomial pn,ν(t) is
the type II multiple orthogonal polynomial π~n(t), with respect to the weights
wj(t) = t(s+2j)/(2m)−1w(t1/(2m)), with nj = 1 +

[
n−j
m

]
, j = 1, . . . ,m.

Proof. Evidently, the conditions (4.12) are equivalent to∫ 1

0

tk/mpn,ν(t)t(s+2)/(2m)−1w(t1/(2m)) dt = 0, k = 0, 1, . . . , n− 1.

Now, putting k = m` + j − 1, ` = [k/m], we get for each j = 1, . . . ,m,∫ 1

0

t`pn,ν(t)wj(t) dt = 0, ` = 0, 1 . . . , nj − 1,

where

wj(t) = t(s+2j)/(2m)−1w(t1/(2m)) and nj = 1 +
[
n− j

m

]
.

Notice that these weight functions, defined on the same interval E1 = E2 =
· · · = Em = E = (0, 1), can be expressed in the form wj(t) = t(j−1)/mw1(t),
j = 1, . . . ,m, where w1(t) = t(s+2)/(2m)−1w(t1/(2m)). Since the Müntz system
{tk+(j−1)/m}, k = 0, 1, . . . , nj − 1; j = 1, . . . ,m, is a Chebyshev system
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on [0,∞), and also on E = (0, 1), and w1(t) > 0 on E, we conclude that
{wj , j = 1, . . . ,m} is an AT system on E.

Therefore, according to Theorem 4.1, the unique type II multiple or-
thogonal polynomial pn,ν(t) = π~n(t) has exactly

|~n| :=
m∑

j=1

nj =
m∑

j=1

(
1 +

[
n− j

m

])
= n

zeros in (0, 1). �
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on Jacobi nodes
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Abstract. This paper is devoted to obtain estimates and to point out
convergence-type results and the superdense unbounded divergence for
some pointwise approximation formulas, related to the Chebyshev best
approximation on Jacobi node matrix.
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1. Introduction

Denote by C the Banach space of all continuous functions f : [−1, 1] → R,
endowed with the uniform norm and let Cr, r ≥ 1, be the subspace of C
which contains the functions f whose derivatives up to the order r belong to
C; we admit C0 = C.

Let us consider, also, a strictly increasing sequence of positive integers
mn, with mn ≥ n + 1, ∀ n ≥ 1, and the node matrix

M = {xk
mn

: n ≥ 1, 1 ≤ k ≤ mn}, (1.1)

where −1 ≤ x1
mn

< x2
mn

< x3
mn

< . . . < xmn
mn

≤ 1.
Define the operators Un : C → Pn, n ≥ 1, as follows: for each f in C,

let Unf be the unique polynomial of Pn for which the infimum of the set

{max{|f(xk
mn

)− P (xk
mn

)| : 1 ≤ k ≤ mn} : P ∈ Pn} (1.2)

is attained, [1], [4]; in this paper, Pn is the usual notation for the set of all
algebraic polynomials of degree at most n ∈ N.

The polynomial Unf = Un(f ;M) ∈ Pn, that provides the best approx-
imation of f in the Chebyshev sense, with respect to the finite point set

Jn = {xk
mn

: 1 ≤ k ≤ mn}, n ≥ 1, (1.3)
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is said to be the M-projection of f on the space Pn.
We associate to each row Jn, n ≥ 1, and f ∈ C, the Lagrange polynomial

Lmn
f which interpolates f at the nodes of Jn, namely

(Lmn
f)(x) =

mn∑
k=1

f(xk
mn

)lkmn
(x), x ∈ [−1, 1], (1.4)

and the Lebesgue function Λmn : [−1, 1] → [0,∞),

Λmn(x) =
mn∑
k=1

|lkmn
(x)|, x ∈ [−1, 1], (1.5)

where

lkmn
(x) =

umn
(x)

(x− xk
mn

)u′mn
(xk

mn
)
, 1 ≤ k ≤ mn; umn

(x) =
mn∏
k=1

(x−xk
mn

), n ≥ 1.

(1.6)
Clearly, if mn = n + 1, n ≥ 1, then the operators Un coincide with the

classical Lagrange projection operators, f 7→ Lmn
f .

On the other hand, assuming that each row Jn of M contains exactly
n + 2 points, i.e. mn = n + 2, ∀ n ≥ 1, Ph. C. Curtis Jr., [4], has proved
that the corresponding M-projection operators Un, n ≥ 1, are linear and
continuous operators and there exists a function g ∈ C for which the sequence
(Ung)n≥1 fails to converge uniformly on [−1, 1]. As we proved in [5], the set
of all functions f ∈ C with the property that lim sup

n→∞
‖Unf‖ = ∞ is, in fact,

a superdense set in the Banach space (C, ‖ · ‖); this superdense unbounded
divergence remains valid if mn = n + 3 and the nodes of Jn are symmetric
with respect to the origin, ∀ n ≥ 1, [6]. We recall that a subset S of a
topological space T is said to be superdense in T if it is residual (i.e. its
complement is of first Baire category), uncountable and dense in T . These
results of divergence type contrast with the well-known theorem concerning
the uniform convergence of the best approximation polynomials in supremum
norm, which states that the operators Qn : C → Pn, defined by ‖f−Qnf‖ =
inf{‖f −P‖ : P ∈ Pn}, f ∈ C, are continuous nonlinear projections and the
sequence (Qnf)n≥1 is uniformly convergent to f , for each f ∈ C.

In the next sections, we consider the case mn = n + 2, n ≥ 1. Our aim
is to point out estimates, results of convergence type and the phenomenon
of condensation of singularities for some pointwise approximation formulas
associated to the Chebyshev best approximation on the Jacobi node matrix.

The paper is organized as follows. In the second section, we introduce
the point-functionals that define the pointwise approximation formulas for
an arbitrary node matrix M in (1.1) and we derive an estimate of the corre-
sponding approximation error. In the third and fourth sections we establish
results of convergence type and we prove the superdense unbounded diver-
gence, respectively, for the pointwise approximation formulas corresponding
to the Jacobi matrix. To this goal, we use the following principle of conden-
sation of singularities from Functional Analysis.
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Theorem 1.1. [2], [3]. If X is a Banach space, Y is a normed space and
(An)n≥1 is a sequence of continuous linear operators from X into Y so that
the set of norms {‖An‖ : n ≥ 1} is unbounded, then the set of singularities
of the family {An : n ≥ 1}, namely

S =
{

x ∈ X : lim sup
n→∞

‖Anx‖ = ∞
}

,

is superdense in X.

In this paper, the notations m, M , Mk, k ≥ 1, stand for some generic
positive constants, which do not depend on n. If (an) and (bn) are sequences
of real numbers with bn 6= 0, we write an ∼ bn if 0 < m ≤ |an/bn| ≤ M ,
for all n ≥ 1. Also, ω(f ; ·) denotes the modulus of continuity of a function
f ∈ C.

2. Estimates for pointwise approximation formulas

Firstly, let us derive, according to [4], the formula of computing Unf , for
a given n ≥ 1. Let σn+2 ∈ C be a function satisfying the conditions
σn+2(xk

n+2) = (−1)k, 1 ≤ k ≤ n + 2. By means of Theorem of Charles
de la Vallée-Poussin, [1], [8], and taking into account (1.2), we get:

Unf = Ln+2f −
an+1(f)

an+1(σn+2)
Ln+2σn+2; f ∈ C, n ≥ 1, (2.1)

where an+1(f) is the leading-coefficient of Ln+2f .
Further, by introducing the notation

τk
n+2 = (u′n+2(x

k
n+2))

−1, 1 ≤ k ≤ n + 2, (2.2)

and remarking that signτk
n+2 = (−1)n−k, 1 ≤ k ≤ n + 2, we have:

an+1(f) =
n+2∑
k=1

τk
n+2f(xk

n+2) (2.3)

and

an+1(σn+2) = (−1)n+2
n+2∑
k=1

|τk
n+2|. (2.4)

The relations (2.1), (1.4) and the definition of σn+2 lead to:

(Unf)(x) =
n+2∑
k=1

dk
n+2(f)lkn+2(x); f ∈ C, |x| ≤ 1, n ≥ 1, (2.5)

where the linear functionals dk
n+2 : C → R, are given by:

dk
n+2(f) = f(xk

n+2) + (−1)k+1 an+1(f)
an+1(σn+2)

, 1 ≤ k ≤ n + 2. (2.6)
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The relations (2.3) and (2.4) give |an+1(f)| ≤ |an+1(σn+2)| · ‖f‖ which,
combined with (2.5) and (2.6), yield |dk

n+2(f)| ≤ 2‖f‖, so:

|(Unf)(x)| ≤ 2Λn+2(x) · ‖f‖; f ∈ C, |x| ≤ 1, n ≥ 1. (2.7)

Now, for a given point t ∈ [−1, 1], let us define the point-functionals
T t

n : C → R by

T t
n(f) = (Unf)(t) =

n+2∑
k=1

dk
n+2(f) · lkn+2(t); f ∈ C, n ≥ 1 (2.8)

and let us consider the approximation-errors Rt
nf , of the pointwise approxi-

mation formulas

f(t) = T t
n(f) + Rt

n(f); f ∈ C, n ≥ 1, (2.9)

associated to the Chebyshev discrete best approximation on the nodes (1.3)
of Jn.

By using the relation UnP = P , ∀ P ∈ Pn, that follows from (2.1), we
obtain, taking into account (2.9):

|Rt
nf | = |Rt

n(f − P )| ≤ |f(t)− P (t)|+ |T t
n(f − P )|, f ∈ Pn.

The last inequality, combined with (2.7), leads to:

|Rt
nf | ≤ (1 + 2Λn+2(t)) · ‖f − P‖; f ∈ C, P ∈ Pn. (2.10)

Further, let f ∈ Cr, r ≥ 0. It follows from the inequality of Gopengauz,
[9], the existence of a polynomial P̃ ∈ Pn so that:

‖f − P̃‖ ≤ M1n
−rω

(
f (r);

1
n

)
; n ≥ 1, (2.11)

where M1 = M1(r).
We derive from (2.10) and (2.11):

|Rt
nf | ≤ M1n

−r(1 + 2Λn+2(t))ω
(

f (r);
1
n

)
; f ∈ Cr, n ≥ 1. (2.12)

Finally, (2.12) leads to the following statement.

Theorem 2.1. The pointwise approximation formulas (2.8) and (2.9), with
respect to an arbitrary point t ∈ [−1, 1], are convergent on Cr, r ≥ 0, i.e.

lim
n→∞

T t
n(f) = f(t), ∀ f ∈ Cr,

if the corresponding Lebesgue functions satisfy the condition

Λn+2(t) = O(nr).
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3. Results of convergence-type for pointwise Jacobi
approximation formulas

In this section and the next section, we take as node matrix M the Jacobi
ultraspherical matrix M(α), α > −1, whose n-th row contains the roots
of the Jacobi ultraspherical polynomial P

(α)
n+2, n ≥ 1. In this framework, the

formulas (2.8) and (2.9) will be refereed to as pointwise Jacobi approximation
formulas, associated to the Chebyshev discrete best approximation.

The following estimate is valid, [7]:

Λn(t)− 1 ∼ |P (α)
n (t)|

√
n · kn(α); n ≥ 2, t ∈ [−1, 1], (3.1)

with

kn(α) =



1 + (1− t)α/2+1/4 lnn, if α > −1/2

lnn, if α = −1/2

ln(2 + n
√

1− t)
(1− t)−α/2−1/4 + nα+1/2

, if α < −1/2.

(3.2)

It follows from (2.12), (3.1) and (3.2):

|Rt
nf | ≤ M2n

−r(1 + |P (α)
n+2(t)|

√
n + 2 kn+2(α))ω

(
f (r);

1
n

)
; (3.3)

f ∈ Cr, n ≥ 2, t ∈ [−1, 1].

3.1. First case

Suppose that t ∈ (−1, 1). The following statement holds.

Theorem 3.1. Let consider the Jacobi pointwise approximation formulas with
respect to an arbitrary point t ∈ (−1, 1).

1◦. If r > α + 1/2 > 0 or α ≤ −1
2

and r ≥ 1, then these formulas are
convergent on the space Cr, namely

lim
n→∞

T t
n(f) = f(t), ∀ f ∈ Cr.

2◦. If α +
1
2
∈ N∗ and r = α +

1
2

or α ≤ −1
2

and r = 0, then these
formulas are convergent on the subset of all f ∈ Cr, whose r-th derivatives
satisfy the Dini-Lipschitz condition

lim
δ↘0

ω(f (r); δ) ln δ = 0.

Proof. The estimate ‖P (α)
n ‖ ∼ nq, with q = max{α,−1/2}, [10], together

with (3.3), yields:
|Rt

nf | ≤ M3n
α−r+1/2(lnn)ω

(
f (r);

1
n

)
, if α > −1/2

|Rt
nf | ≤ M3n

−r(lnn)ω
(

f (r);
1
n

)
, if α ≤ −1/2,

(3.4)
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for each f ∈ Cr, n ≥ 2 and t ∈ (−1, 1) \ Jn.
If t ∈ Jn, then P

(α)
n+2(t) = 0 and (2.12) provides:

|Rt
nf | ≤ 3M1n

−rω

(
f (r);

1
n

)
,

so the formulas (3.4) are valid for t ∈ (−1, 1).
The estimates (3.4) and the properties of ω imply the validity of the

assertions 1◦ and 2◦ of this theorem, which completes the proof. �

3.2. Second case

Let us examine the remaining cases t = ±1.

Theorem 3.2. Let consider the Jacobi pointwise approximation formulas with
respect to the end points t = −1 and t = 1.

1◦. If r ≥ α + 1/2 > 0 or α = −1/2 and r ≥ 1 or α < −1/2 and r ≥ 0,
then these formulas are convergent on the space Cr.

2◦. If α = −1/2 and r = 0, then these formulas are convergent on the
subset of all functions f in C satisfying the Dini-Lipschitz condition

lim
δ↘0

ω(f ; δ) ln δ = 0.

Proof. Using the estimate |P (α)
n (±1)| ∼ nα, α > −1, [10], we derive from

(3.1) and (3.2)

Λn(1) ∼

 nα+1/2, if α > −1/2
lnn, if α = −1/2
1, if α < −1/2.

(3.5)

The relations (2.12) and (3.5) yield:

|R±1
n f | ≤ M4n

α−r+1/2ω

(
f (r);

1
n

)
, if α > −1/2

|R±1
n f | ≤ M5n

−r lnnω

(
f (r);

1
n

)
, if α = −1/2

|R±1
n f | ≤ M6n

−rω

(
f (r);

1
n

)
, if α < −1/2,

which proves the assertions 1◦ and 2◦ of this theorem. �

4. Superdense unbounded divergence for a class of Jacobi
pointwise approximation formulas

In this section, we emphasize the phenomenon of condensation of singularities
for the family of the pointwise approximating functionals {T 0

n : n ≥ 1}.
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Theorem 4.1. The set of all functions f ∈ C for which the Jacobi point-
wise approximation formulas (2.8) and (2.9) with respect to the origin are
unboundedly divergent, i.e. lim sup

n→∞
|T 0

nf | = ∞, is superdense in the Banach

space (C, ‖ · ‖).

Proof. Define fn+2 ∈ C by

fn+2(x) =

 signlkn+2(0), if x ∈ Jn

1, if x ∈ {−1, 1}
linear, otherwise.

We obtain from (2.5), (2.6) and (2.8):

T 0
4n−2(f4n) =

4n∑
k=1

[
1 + (−1)k+1 a4n−1(f)

a4n−1(σ4n)
signlk4n(0)

]
|lk4n(0)|. (4.1)

On the other hand, the relations signlk4n(0) = (−1)k, 1 ≤ k ≤ 2n and
sigmlk4n(0) = (−1)k+1, 2n + 1 ≤ k ≤ 4n, show that f4n is an even function,
so we derive from (2.2) and (2.3):

a4n−1(f4n) =
4n∑

k=1

τk
4nf4n(xk

4n) =
4n∑

k=1

τ4n−k+1
4n f4n(x4n−k+1

4n )

=
4n∑

k=1

f4n(−xk
4n)

u′4n(−xk
4n)

= −
4n∑

k=1

f4n(xk
4n)

u′4n(xk
4n)

= −a4n−1(f4n) (4.2)

because the nodes of Jn in M(α) are symmetric with respect to the origin
and u4n is an even function. So, we obtain from (4.2):

a4n−1(f4n) = 0, n ≥ 1. (4.3)

The equalities (4.1) and (4.3) leads to:

T 0
4n−2(f4n) = Λ4n(0), n ≥ 1. (4.4)

Using the estimates (3.1), (3.2) and taking into account that

|P (α)
2n (0)| ∼ 1/

√
n,

[10], we infer:
Λ4n(0)− 1 ∼ lnn, ∀ α > −1. (4.5)

The relations (4.4) and (4.5) give:

|T 0
4n−2(f4n)| ∼ lnn, n ≥ 2, α > −1. (4.6)

Finally, apply Theorem 1.1, with X = C, Y = R, An = T 0
n and remark

that:

sup{‖An‖ : n ≥ 1} ≥ sup{‖T 0
4n−2‖ : n ≥ 1} ≥ sup{|T 0

4n−2(f4n)| : n ≥ 1},

which together with (4.6), proves the unboundedness of the set of norms
{‖An‖ : n ≥ 1}. This completes the proof. �
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On elliptic partial differential equations with
random coefficients
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Abstract. We consider stationary diffusion equations with random co-
efficients which cannot be bounded strictly away from zero and infinity
by constants. We prove the existence of a unique solution to the cor-
responding weak formulation with different solution and test function
spaces. Furthermore, the convergence of the Stochastic Galerkin solution
is established under certain conditions.
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1. Introduction

In recent years there has been a growing interest in quantifying uncertainty in
complex systems which are modeled via algebraic, ordinary or partial differen-
tial equations with random input data. For example, the stationary diffusion
equation with a random coefficient is an instructive model problem. Thus,
we consider the boundary value problem consisting of the random partial
differential equation

−∇ · (κ∇u) = f

and some suitable boundary conditions. Thereby, the coefficient κ and also
the forcing f are random functions. In previous works (see for example
Babuška et al. [1, 3, 4] or Schwab et al. [5, 6, 14]) it is often assumed that
there exist constants κ, κ > 0, such that

0 < κ ≤ κ(x, ω) ≤ κ a.e. and a.s.

Then the theorem of Lax-Milgram can be used to prove the existence of a
unique weak solution. In a first step towards a generalization of the problem
setting Galvis and Sarkis [9] as well as Gittelson [11] investigate this random

This work was supported by the Deutsche Forschungsgemeinschaft Priority Programme
1324.
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partial differential equation where the coefficient is modeled as a lognormal
random field. That is, κ(x) = exp(G(x)) with a Gaussian random field G(x).
In this case, however, there do not exist constants κ, κ > 0 as above and
thus the Lax-Milgram theorem is not applicable. For this reason, the authors
employ alternative techniques to prove the existence and uniqueness of the
weak solution and to obtain a priori error estimates of the Stochastic Galerkin
approximation to this solution. In the following we generalize these results
to arbitrary random input fields which can be bounded by random variables
κmin, κmax > 0 a.s., that is,

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a.e. and a.s.

2. Setting and problem formulation

Let D ⊂ Rd, d ∈ N, be a bounded Lipschitz domain and (Ω,A,P) a proba-
bility space. We consider the following boundary value problem

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω) x ∈ D, ω ∈ Ω

u(x, ω) = 0 x ∈ ∂D, ω ∈ Ω (2.1)

with random coefficient κ and random forcing f . We assume that the coeffi-
cient function κ : D×Ω → R is a strongly measurable random variable with
values in L∞(D) and that there exist real-valued random variables κmin and
κmax such that

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a.e. and a.s. (2.2)

We define the pathwise bilinear form b(·, ·;ω) : H1(D)×H1(D) → R by

b(u, v;ω) =
∫
D

κ(x, ω)∇u(x) · ∇v(x) dx

for ω ∈ Ω and we denote by 〈g, v〉H−1,H̊1 the duality pairing between g ∈
H−1(D) and v ∈ H̊1(D). Now, assuming that f is a random variable with
values in H−1(D), we consider a pathwise weak formulation of the boundary
value problem:

Problem 2.1 (Pathwise Weak Formulation). Find a random variable ũ with
values in H̊1(D), such that

b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D) (2.3)

holds almost surely.

Remark 2.2. In Problem 2.1 we look for a random variable ũ with values in
H̊1(D), such that

P
(
b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D)

)
= 1. (2.3a)
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Due to the separability of H̊1(D) this problem is equivalent to the weaker
problem formulation: Find a random variable ũ with values in H̊1(D), such
that for all v ∈ H̊1(D) there holds

P
(
b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1

)
= 1. (2.4)

Since every realization of the coefficient κ is bounded by assumption
(2.2) and f is a random variable with values in H−1(D), by the theorem of
Lax-Milgram (see e.g. [7] Theorem 2.7.7) there exists a mapping ũ : Ω →
H̊1(D), ω 7→ ũ(ω) satisfying

b(ũ(ω), v;ω) = 〈f(ω), v〉H−1,H̊1 for all v ∈ H̊1(D)

for almost all ω ∈ Ω. Furthermore, the estimate

‖ũ(ω)‖H1(D) ≤ C
‖f(ω)‖H−1(D)

κmin(ω)
a.s. (2.5)

holds, where C > 0 is a suitable constant which does not depend on ω ∈ Ω.
This mapping ũ is a.s. uniquely defined and measurable as is proved in the
next Lemma.

Lemma 2.3. Assume κ : D×Ω → R is a strongly measurable random variable
in L∞(D) satisfying

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a.e. and a.s.

for real-valued random variables κmin, κmax, and f is a random variable with
values in H−1(D). Then the mapping ũ : Ω → H̊1(D) is a random variable
in H̊1(D) which is measurable with respect to the σ-algebra σ(f, κ), generated
by f and κ, and solves Problem 2.1.

Proof. From the assumptions on κ and f it follows that there exist sequences
(κn)n∈N and (fn)n∈N of σ(f, κ)-measurable, simple random variables with
values in L∞(D) and H−1(D), respectively, satisfying

‖κ− κn‖L∞(D) → 0, a.s. and ‖f − fn‖H−1(D) → 0, a.s. for n →∞.

Then the result follows immediately from the properties of the pathwise bi-
linear form b and the convergence of the simple random variables. �

In analogy to variational formulations of boundary value problems with
purely deterministic input data we want to study also the corresponding
variational formulation for random input data which is sometimes referred
to as “stochastic variational formulation”. Such a formulation is obtained by
defining a suitable bilinear form on a Hilbert space of random variables in
H̊1(D), e.g. a(u(·), v(·)) = EPb(u(·), v(·); ·), and correspondingly by defining
a linear form. However, since the coefficient κ is not bounded by constants but
random variables we cannot directly use the Lax-Milgram theorem to prove
existence and uniqueness of the weak solution. To address this problem we
will define suitable solution and test function spaces to formulate the problem
and to ensure the existence of a unique weak solution. The key observation
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is obtained as follows: Squaring inequality (2.5) and taking the expectation
EP with respect to the probability measure P yields

EP

(
‖ũ‖2H1(D)

)
≤ C2EP

(
‖f‖2H−1(D)

κ2
min

)
. (2.6)

Hence, the pathwise solution ũ is a second-order random variable in H̊1(D)
if the second-order moment of the H−1-norm of f , weighted with the re-
ciprocal of the real-valued random variable κ2

min, is finite. Thus, we need
weighted function spaces in order to formulate the stochastic variational prob-
lem. Given a general real-valued random variable % > 0 a.s. we introduce the
spaces

Um
% : = L2(Ω,A, %dP;Hm(D)), m ∈ Z, and

Ům
% : = L2(Ω,A, %dP; H̊m(D)), m ∈ N0,

where the %-weighted L2-spaces are defined by

L2(Ω,A, %dP;V ) :=
{
ξ : Ω → V measurable : EP

(
‖ξ‖2V %

)
< ∞

}
with V = Hm(D) or H̊m(D), respectively. Endowing the spaces Um

% and Ům
%

with the inner product

(u, v)Um
%

= EP

(
(u, v)Hm(D)%

)
, u, v ∈ Um

%

and the induced norm

‖u‖Um
%

=
√

EP

(
‖u‖2Hm(D)%

)
, u ∈ Um

%

these spaces are also Hilbert spaces and there exist isomorphisms to the
corresponding tensor product spaces (see e.g. [13])

Um
%
∼= Hm(D)⊗ L2(Ω,A, %dP) and Ům

%
∼= H̊m(D)⊗ L2(Ω,A, %dP),

if L2(Ω,A, %dP) is separable. Furthermore, we note that the seminorm

|u|U1
%

=
√

EP

(
|u|2H1(D)%

)
=

√√√√ ∫
D×Ω

|∇u(x, ω)|2%(ω) dx dP(ω)

is equivalent to the norm ‖ · ‖U1
%

in Ů1
% and that the dual space of Ům

% can
be identified with the space U−m

%−1 . For convenience we denote by Um or

Ům the spaces Hm(D) ⊗ L2(Ω,A,P) or H̊m(D) ⊗ L2(Ω,A,P), respectively.
On occasion we will replace P by another probability measure Q and write
Um

Q := Hm(D)⊗ L2(Ω,A,Q) and Ům
Q := H̊m(D)⊗ L2(Ω,A,Q).

Then for a given f ∈ U−1
1

κ2
min

the stochastic weak formulation reads as follows:

Problem 2.4 (Stochastic Weak Formulation). Find û ∈ Ů1, such that

a(û, v) = 〈f, v〉 for all v ∈ Ů1
κ2

min
, (2.7)
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where the bilinear form a is given by

a(u, v) = EP

∫
D

κ(x)∇u(x) · ∇v(x) dx

 =
∫
Ω

b(u(ω), v(ω);ω) dP(ω) (2.8)

and the duality pairing between f ∈ U−1
1

κ2
min

and v ∈ Ů1
κ2

min
is given by

〈f, v〉 = EP

(
〈f, v〉H−1,H̊1

)
=
∫
Ω

〈f(ω), v(ω)〉H−1,H̊1 dP(ω).

It is important to note that the solution and test function spaces are
now different spaces. Furthermore, the domain of the bilinear form a is a
proper subset of Ů1 × Ů1

κ2
min

, i.e., the bilinear form a is not defined or finite

for all pairs (u, v) ∈ Ů1 × Ů1
κ2

min
. Thus, an implicit requirement of the weak

formulation is to find a solution û such that the related bilinear form a(û, ·)
is defined and finite for all test functions.

3. Existence and uniqueness of weak solution

In this section, we will present two alternative proofs of existence and unique-
ness of a solution to the weak formulation (2.7). Both approaches have ben-
efits and drawbacks but when combined appropriately they are a powerful
tool to study weak solutions and their properties. First we state a theorem
which is a generalization of the Lax-Milgram theorem where the bilinear form
is not defined on a cartesian product.

Theorem 3.1. Let Hilbert spaces X1, X2, Y1, Y2 with dense and continuous
embeddings X2 ⊂ X1 and Y2 ⊂ Y1 and a bilinear form a : X1×Y1 % Da → R
be given such that

(i) the restricted bilinear forms a∣∣X1×Y2
: X1 × Y2 → R

and a∣∣X2×Y1
: X2 × Y1 → R are continuous,

(ii) there holds the inf-sup condition with a constant c > 0

inf
u∈X1\{0}

sup
v∈Y1\{0}

|a(u, v)|
‖u‖X1‖v‖Y1

≥ c > 0, and

(iii) for any v ∈ Y1 \ {0} there exists u ∈ X2 such that a(u, v) > 0.

Then for any f ∈ Y ∗
1 there exists a unique u ∈ X1 satisfying

a(u, v) = 〈f, v〉 for all v ∈ Y1.

Proof. The operator Ta : X1 → Y ∗
2 , u 7→ a(u, ·), is linear and continuous.

The restricted operator T̂a : X1 % D(T̂a) → Y ∗
1 ⊂ Y ∗

2 associated with Ta is
densely defined, since X2 ⊂ D(T̂a) ⊂ X1 is densely embedded, and injective
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and closed, because of the inf-sup condition (ii). Therefore it follows with
Banach’s closed range theorem (see e.g. [17] p. 205) that

R(T̂a) = N (T̂ ∗
a )⊥

where T̂ ∗
a is the adjoint operator of T̂a. Condition (iii) yields N (T̂ ∗

a ) = {0},
thus R(T̂a) = Y ∗

1 , which completes the proof. �

Corollary 3.2. For any f ∈ U−1
1

κ2
min

there exists a unique û ∈ Ů1 satisfying the

stochastic weak formulation (2.7) and the estimate

‖û‖U1 ≤ C‖f‖U−1
1

κ2
min

.

Proof. The Hilbert spaces X1 = Ů1, X2 = Ů1
κ2

max
κ2

min

, Y1 = Ů1
κ2

min
and Y2 =

Ů1
κ2

max
and the bilinear form a defined in (2.8) satisfy all conditions in The-

orem 3.1. The continuous and dense embeddings and the continuity of the
bilinear forms a∣∣Ů1×Ů1

κ2
max

: Ů1 × Ů1
κ2

max
→ R and a∣∣Ů1

κ2
max

κ2
min

×Ů1
κ2

min

:

Ů1
κ2

max
κ2

min

× Ů1
κ2

min
→ R follow immediately from the definition of the spaces. To

verify the inf-sup condition (ii), we define for u ∈ Ů1 the random variable vR

with values in H̊1(D) by

vR :=

{
u

κmin
, κmax

κmin
≤ R,

0, otherwise,

and denote by BR the set

BR :=
{

ω ∈ Ω :
κmax(ω)
κmin(ω)

≤ R

}
.

Thus we obtain vR ∈ Ů1
κ2

min
, since

|vR|2U1
κ2

min

=
∫

BR

|u(ω)|2H1(D) dP(ω) ≤ |u|2U1 < ∞,

and by assumption (2.2) on the coefficient κ there holds

|a(u, vR)| =
∫

D×BR

κ(x, ω)
κmin(ω)

|∇u(x, ω)|2 dx dP(ω) ≥
∫

BR

|u(ω)|2H1(D) dP(ω).

Since P
(
Ω \

⋃
R>0 BR

)
= 0, there exists for every δ > 0 a R > 0 such that∫

BR

|u(ω)|2H1(D) dP(ω) ≥ (1− δ)|u|2U1
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and thus

sup
v∈Ů1

κ2
min

\{0}

|a(u, v)|
|v|U1

κ2
min

≥ |a(u, vR)|
|vR|U1

κ2
min

≥
(1− δ)|u|2U1

|u|U1
= (1− δ)|u|U1 .

Because δ > 0 can be chosen arbitrarily the inf-sup condition holds with
constant c = 1. Condition (iii) is satisfied, since for any v ∈ Ů1

κ2
min

\ {0} we
can define

uR :=

{
vκmin, κmax

κmin
≤ R,

0, otherwise,
and the set BR as above,

which satisfies uR ∈ Ů1 and a(uR, v) > 0 for R large enough. Hence, by
Theorem 3.1 the statement follows. �

Obviously, Corollary 3.2 is also true for problems with other boundary
conditions as long as the seminorm is a norm in the corresponding function
spaces.

An alternative method to prove existence and uniqueness of the solu-
tion to Problem 2.4 where the coefficient κ is a lognormal random field, is
given in the work of Gittelson [11]. For this special case it can be shown that
the unique pathwise solution ũ is also the unique solution of the stochas-
tic variational problem if it belongs to the solution space. Below we prove
an analogous result for the more general assumptions (2.2) on the random
coefficient.

Theorem 3.3. For f ∈ U−1
1

κ2
min

the unique solution ũ of Problem 2.1 belongs

to Ů1 and it solves also Problem 2.4. Furthermore, any solution û ∈ Ů1 of
Problem 2.4 is σ(f, κ)-measurable and there holds

û(x, ω) = ũ(x, ω) a.e. and a.s.

Proof. Recalling that f ∈ U−1
1

κ2
min

and utilizing the estimate (2.6) we obtain

‖ũ‖2U1 = EP‖ũ‖2H1(D) ≤ C2EP

‖f‖2H−1(D)

κ2
min

= C2‖f‖2
U−1

1
κ2

min

< ∞.

Since ũ satisfies equation (2.3), there holds for all v ∈ Ů1
κ2

min

b(ũ(ω), v(ω);ω) = 〈f(ω), v(ω)〉H−1,H̊1 a.s.

Taking the expectation yields a(ũ, v) = 〈f, v〉 for all v ∈ Ů1
κ2

min
and hence ũ

solves Problem 2.4. Now, we consider a random variable û ∈ Ů1 satisfying

a(û, v) = 〈f, v〉 for all v ∈ Ů1
κ2

min
.
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Then we define for w ∈ H̊1(D) and A ∈ A the functions vw,A(x, ω) :=
w(x) 1A(ω)

κmin(ω) . It follows vw,A ∈ Ů1
κ2

min
and we get

EP
1A

κmin
b(û, w; ·) = a(û, vw,A) = 〈f, vw,A〉 = EP

1A

κmin
〈f, w〉H−1,H̊1 .

Since A ∈ A can be chosen arbitrarily this implies for any w ∈ H̊1(D)

b(û(ω), w;ω) = 〈f(ω), w〉H−1,H̊1 a.s.

Hence, the random variable û with values in H̊1(D) solves problem (2.4) and
since its solution is almost surely unique and σ(f, κ)-measurable (cf. Lemma
2.3), there holds

û(x, ω) = ũ(x, ω) a.e. and a.s.,
i.e., the random variable û is measurable with respect to the σ-algebra σ(f, κ).

�

4. Stochastic Galerkin discretization

Let ξ := (ξi)i∈Iξ
with index set Iξ ⊆ N be a sequence of real-valued so

called “basic” random variables, such that there are measurable functions
κξ, fξ : D × R|Iξ| → R satisfying

κ(x, ω) = κξ(x, ξ(ω)) and f(x, ω) = fξ(x, ξ(ω)) a.e. and a.s.

Thereby the index set Iξ can be finite, i.e., Iξ = {1, . . . ,M}, M ∈ N, or the
set of the natural numbers, i.e., Iξ = N. Sequences of basic random variables
can be obtained with the help of Karhunen-Loève expansions (see e.g. [12])
or other series expansions (see e.g. [10]) of the input data.

Then according to Theorem 3.3 the solution û of variational formulation
(2.7) belongs to L2(Ω, σ(ξ),P; H̊1(D)) since κ and f are σ(ξ)-measurable.
In the following we assume that the random variable ξ = (ξi)i∈Iξ

on the
probability space (Ω,A,P) has the distribution FP

ξ and that any ξi, i ∈ Iξ,
possesses finite moments of arbitrary order, i.e., EP|ξi|n < ∞, n ∈ N, and a
continuous distribution function FP

ξi
.

In order to apply the Stochastic Galerkin Method we define the space

UN,K,p := Up ⊗ UN,K ⊂ Ů1

which serves as solution space for the Stochastic Galerkin approximation. The
space Up is a finite-dimensional subspace of H̊1(D) obtained by a uniform
p version of the Finite Element Method and UN,K is a finite-dimensional
subspace of L2(Ω, σ(ξ1, . . . , ξK),P) ⊆ L2(Ω, σ(ξ),P) with {1, . . . ,K} ⊆ Iξ.
Since we want to use generalized polynomial chaos (see e.g. [15, 16]), i.e.
polynomials in the underlying basic random variables ξ, we construct the
finite dimensional space UN,K as follows,

UN,K := span

ξα :=
∏
i∈Iξ

ξαi
i , α ∈ ΛN,K

 .
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We choose the index set

ΛN,K ⊂ Λ := {α ∈ N|Iξ|
0 : α has only finitely many non-zero entries}

such that the total degree of the multivariate polynomials is bounded,

ΛN,K = {α ∈ Λ : αi = 0 ∀ i > K, |α| ≤ N }, |α| :=
∑
i∈Iξ

αi.

As discretized test function space we choose

VN,K,p :=
{

u

κmin
: u ∈ UN,K,p

}
.

Then for a given f ∈ U−1
1

κ2
min

the discrete version of the weak formulation (2.7)

reads as follows:

Problem 4.1 (Discrete Weak Formulation). Find ûN,K,p ∈ UN,K,p, such that

a(ûN,K,p, v) = 〈f, v〉 for all v ∈ VN,K,p. (4.1)

The existence of a unique Stochastic Galerkin solution ûN,K,p ∈ UN,K,p

to problem (4.1) can be proved under the assumptions in the following lemma.

Lemma 4.2. If κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 then for any f ∈ U−1
1

κ2
min

there exists a unique ûN,K,p ∈ UN,K,p such that

a(ûN,K,p, v) = 〈f, v〉 for all v ∈ VN,K,p.

Proof. The result follows from Theorem 3.1 with the Hilbert spaces

X1 = UN,K,p ⊂ Ů1, X2 = UN,K,p ⊂ Ů1
κ2

max
κ2

min

,

Y1 = VN,K,p ⊂ Ů1
κ2

min
and Y2 = VN,K,p ⊂ Ů1

κ2
max

due to κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 and a discrete version of the inf-sup
condition for the bilinear form a. �

Now, we want to investigate the approximation error of this Stochastic
Galerkin solution ûN,K,p. Employing the discrete inf-sup condition we get a
quasi-optimal result for the Galerkin solution, i.e., the error can be bounded
by a best approximation error in another – a stronger – norm.

Lemma 4.3. If κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 and û ∈ Ů1
κ2

max
κ2

min

then the

following estimate holds

|û− ûN,K,p|U1 ≤ C̃ inf
z∈UN,K,p

|û− z|U1
κ2

max
κ2

min

with a constant C̃ > 0 (independent of N,K and p) for the solutions û and
ûN,K,p of the weak formulation (2.7) and the discrete weak formulation (4.1),
respectively.
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Proof. Utilizing a(û − z, v) = a(ûN,K,p − z, v) for all v ∈ VN,K,p and the
discrete inf-sup condition we obtain

|û− ûN,K,p|U1 ≤ |û− z|U1 + |ûN,K,p − z|U1

≤ |û− z|U1 + |û− z|U1
κ2

max
κ2

min

≤ 2|û− z|U1
κ2

max
κ2

min

for all z ∈ UN,K,p. �

Consequently we measure the error in the stronger U1
κ2

max
κ2

min

-norm and we

assume the following.

Assumption 4.4. Let q := EP
κ2

max

κ2
min

< ∞ and assume κ2
max

κ2
min

is σ(ξ)-measurable,

i.e., there exists a measurable transformation tκ2
max

κ2
min

: R|Iξ| → R+ with κ2
max

κ2
min

=

tκ2
max

κ2
min

(ξ).

Then the measure Q with dQ = 1
q κ2

maxκ−2
mindP is a probability measure.

In the following we consider the function spaces Um
Q and Ům

Q instead of Um
κ2

max
κ2

min

and Ům
κ2

max
κ2

min

, m ∈ Z, which coincide with Um
κ2

max
κ2

min

and Ům
κ2

max
κ2

min

but are much

easier to handle due to the corresponding probability space (Ω,A,Q) at hand.

Corollary 4.5. If κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 and Assumption 4.4 is

fulfilled there holds for û ∈ Ů1
Q with a suitable constant C > 0 (independent

of N,K and p)

|û− ûN,K,p|U1 ≤ C inf
z∈UN,K,p

|û− z|U1
Q

(4.2)

for the solutions û and ûN,K,p of the corresponding weak formulation (2.7)
and discrete weak formulation (4.1).

Proof. This result follows immediately from Lemma 4.3 and Assumption 4.4.
�

By choosing a suitable z ∈ UN,K,p and applying the triangle inequal-
ity to the right-hand side of (4.2) we can identify different sources of the
approximation error. To see this, we introduce some notations: We denote by

ΠŮ1
Q,N,K,p

: Ů1
Q → UN,K,p

the orthogonal projection onto UN,K,p, and by

ΠŮ1
Q,N,K

: Ů1
Q → H̊1(D)⊗ UN,K

the orthogonal projection onto H̊1(D)⊗ UN,K ,
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both with respect to the U1
Q-norm. Assuming û ∈ Ů1

Q the approximation
error of the Stochastic Galerkin approximation to the exact solution can be
estimated using (4.2) with z = ΠŮ1

Q,N,K,p
û as

|û− ûN,K,p|U1 ≤ C
[
|û−ΠŮ1

Q,N,K
û|U1

Q
+ |ΠŮ1

Q,N,K
û−ΠŮ1

Q,N,K,p
û|U1

Q

]
. (4.3)

Hence this error has two components, namely an approximation error due to
discretizing in the stochastic dimension and an approximation error due to
discretizing in the spatial dimension.

The spatial approximation error can be bounded using standard argu-
ments from the theory of Finite Element Methods (FEMs). Here, we have
employed a p version of the FEM (see e.g. [2]). Under the assumptions of
Corollary 2.2 in [2] there holds the following.

Corollary 4.6. If κ2
max

κ2
min

∈ Lr(Ω,A,P) for some r > 1 and Assumption 4.4 is

satisfied then for û ∈ Uk
κ2

max
κ3

min

∩ Ů1
Q with constant C̃ > 0 (independent of N ,

K, p and û) there holds

|ΠŮ1
Q,N,K

û−ΠŮ1
Q,N,K,p

û|U1
Q
≤ C̃p−(k−1)‖û‖Uk

κ2
max

κ3
min

.

Proof. From Corollary 2.2 in [2] it follows√
κmin(ω)

∣∣∣ΠŮ1
Q,N,K

û(ω)−ΠŮ1
Q,N,K,p

û(ω)
∣∣∣
H1(D)

≤ C̃p−(k−1)‖û(ω)‖Hk(D)

with a constant C̃ independent of N , K, p, ω ∈ Ω and û. Squaring and taking
the expectation EQ with respect to Q leads to

EQ

∣∣∣ΠŮ1
Q,N,K

û−ΠŮ1
Q,N,K,p

û
∣∣∣2
H1(D)

≤ C̃2p−2(k−1)EQ

‖û‖2Hk(D)

κmin
.

�

We note that analogous results to Corollary 4.6 can be obtained for h
or h-p versions of the FEM by using Theorem 2.1 in [2].

The first term on the right-hand side of inequality (4.3) can be esti-
mated with the help of generalized polynomial chaos expansions. In view of
Assumption 4.4 the random variable ξ = (ξi)i∈Iξ

as a random variable on the
probability space (Ω,A,Q) has the distribution FQ

ξ (dy) = 1
q tκ2

max
κ2

min

(y)FP
ξ (dy).

Assuming EQ|ξi|n < ∞ for all i ∈ Iξ and n ∈ N the multivariate orthonormal
polynomials {qα(ξ), α ∈ Λ} in L2(Ω,A,Q) exist. Hence, in order to expand
any random variable u ∈ L2(Ω, σ(ξ),Q; H̊1(D)) in this generalized polyno-
mial chaos the polynomials {qα(ξ), α ∈ Λ} have to be dense in L2(Ω, σ(ξ),Q).
Some necessary conditions to establish this property are discussed in [8]. If
the polynomials lie dense and û ∈ L2(Ω, σ(ξ),Q; H̊1(D)) then the solution
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possesses a generalized polynomial chaos expansion {qα(ξ), α ∈ Λ}, i.e.,

û(x, ω) =
∑
α∈Λ

ûα(x)qα(ξ(ω)), where ûα(x) = EQû(x)qα(ξ).

Furthermore, the projection ΠŮ1
Q,N,K

û is given by the truncated expansion

ΠŮ1
Q,N,K

û(x, ω) =
∑

α∈ΛN,K

ûα(x)qα(ξ(ω)).

Corollary 4.7. If the polynomials {qα(ξ), α ∈ Λ} are dense in L2(Ω, σ(ξ),Q)
and û ∈ Ů1

Q then the approximation error

|û−ΠŮ1
Q,N,K

û|U1
Q
→ 0 (K, N →∞).

Proof. The multivariate polynomials {qα(ξ), α ∈ Λ} form an orthonormal
basis of L2(Ω, σ(ξ),Q) because they are dense in L2(Ω, σ(ξ),P). Since the
weak solution û is σ(ξ)-measurable (according to Theorem 3.3) and⋃

N≥0, K≥1

ΛN,K = Λ

there holds that ΠŮ1
Q,N,K

û → û in Ů1
Q for K →∞, N →∞. �

Hence in view of Corollary 4.6 and Corollary 4.7 the approximation
error |û− ûN,K,p|U1 converges to zero if the solution û ∈ U2

κ2
max

κ3
min

∩ Ů1
Q and

the orthonormal polynomials {qα(ξ), α ∈ Λ} are complete in L2(Ω, σ(ξ),Q).

5. Numerical example

Now, we turn to a specific application, namely the approximation of the solu-
tion of an one-dimensional differential equation with random data. Consider
the boundary value problem

−(κ(x, ω)u′(x, ω))′ = f(x), x ∈ (0, 1), ω ∈ Ω

u(0, ω) = 0, ω ∈ Ω

κ(1, ω)u′(1, ω) = F, ω ∈ Ω

where forcing f ∈ H−1(D) is a deterministic function, F a given constant
and κ a strongly measurable random variable in L∞(D) satisfying

0 < κmin(ω) ≤ κ(x, ω) ≤ κmax(ω) < ∞ a.e. and a.s.

for some real-valued random variables κmin and κmax. Then the exact solu-
tion is given by

u(x, ω) =

x∫
0

1
κ(y, ω)

F +

1∫
y

f(z) dz

 dy.
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If the coefficient κ is modeled as an exponential function of the absolute value
of one standard Gaussian distributed random variable, that is,

κ(x, ω) := exp(|ζ(ω)|x) with ζ ∼ N (0, 1)

then κ is bounded by

0 < 1 ≤ κ(x, ω) ≤ exp(|ζ(ω)|) < ∞ a.e. and a.s.

The random variable κ2
max/κ2

min=exp(2|ζ|) is in Lr(Ω,A,P) for all r≥1. As
basic random variable we choose the standard Gaussian distributed random
variable ζ, i.e., ξ = ζ, and employ the Stochastic Galerkin Method using
orthonormal polynomials, i.e. polynomial chaos, in ξ. Figure 1 shows the rel-
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Figure 1. Relative errors of mean (left) and second moment
(right) of the Stochastic Galerkin approximation to the so-
lution with f ≡ 1 and F = 1 using polynomials of different
orders in ξ.

ative errors of the mean and second-order moment of the Stochastic Galerkin
approximation to the exact solution as a function of the spatial variable x.
Thereby we have chosen the forcing f ≡ 1 and the boundary value F = 1 and
we use a p version of the Finite Element Method, precisely, a single Gauss-
Lobatto-Legendre spectral finite element of degree p = 20 for the spatial
discretization. In the stochastic dimension we use orthonormal polynomials
in ξ up to degree 5, 10, 15 and 20. Obviously, the error decays, which agrees
with the theory developed in Section 4. On the other hand it is also possible
to choose as basic random variable η = |ζ|, a chi-distributed random variable
with one degree of freedom. Thus, we can use orthonormal polynomials, i.e.
generalized polynomial chaos, in η within the Stochastic Galerkin Method,
in particular orthonormal polynomials in η up to degree 2 and 5. In the spa-
tial dimension we again use a single Gauss-Lobatto-Legendre spectral finite
element of degree p = 20 . In Figure 2 we observe that the associated relative
errors of the mean and second-order moment tend to zero much faster than
for the standard Gaussian basic random variable ξ. Notably, we obtain much
better approximation results by using polynomials up to order 2 and 5 in
η = |ζ| as compared to polynomials up to order 20 in ξ = ζ. Hence, the
approximation error, more precisely the rate of convergence, and thus the
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Figure 2. Relative errors of mean (left) and second moment
(right) of the Stochastic Galerkin approximation to the so-
lution with f ≡ 1 and F = 1 using polynomials of different
orders in η.

approximation quality depends on the set of basic random variables. This
relation is currently being investigated in ongoing research.
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[2] Babuška, I., Suri, M., The p and h-p versions of the finite element method,
basic priniciples and properties, SIAM Review, 36(1994), no. 4, 578–632.
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Note on q-Bernstein-Schurer operators

Carmen-Violeta Muraru

Abstract. In this paper, we introduce a generalization of the Bernstein-
Schurer operators based on q-integers and get a Bohman-Korovkin type
approximation theorem of these operators. We also compute the rate of
convergence by using the first modulus of smoothness.

Mathematics Subject Classification (2010): 41A36.

Keywords: q-integers, positive linear operator, Bernstein operator, mod-
ulus of continuity.

1. Preliminaries

Lupaş [18] introduced in 1987 a q-type of the Bernstein operators and in 1997
another generalization of these operators based on q-integers was introduced
by Phillips [20]. He obtained the rate of convergence and a Voronovskaja
type asymptotic formula for the new Bernstein operators. After this, many
authors studied new classes of q-generalized operators. To show the extend of
this research direction, we mention in the following some achievements in this
field. In [5] Bărbosu introduced a Stancu type generalization of two dimen-
sional Bernstein operators based on q-integers. In [1] O. Agratini introduced
a new class of q-Bernstein-type operators which fix certain polynomials and
studied the limit of iterates of Lupaş q-analogue of the Bernstein operators.
In [4] Aral and Doǧru obtained the uniform approximation of q-Bleimann-
Butzer-Hahn (BBH) operators and in [9] O. Doǧru and V. Gupta studied the
monotonicity properties and the Voronovskaja type asymptotic estimate of
these operators. See also the recent paper [2].

T. Trif [21] investigated Meyer-König and Zeller (MKZ) operators based
on q-integers. Some approximation properties of q-MKZ operators were inves-
tigated by W. Heping in [16]. O. Doǧru and O. Duman introduced also a new
generalization of Meyer-König and Zeller operators and studied some statis-
tical approximation properties in [7]. O. Doǧru and Gupta [8] constructed a
q-type generalization of Meyer-König and Zeller operators in bivariate case.
A new q-generalization of Meyer-König and Zeller type operators was con-
structed by Doǧru and Muraru for improve the rate of convergence, see [10].
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O. Doǧru and M. Orkcu proved in [11] that a new modification of q-MKZ
operators provides a better estimation on the [αn, 1] ⊂ [1/2, 1) by means of
the modulus of continuity.

An extension in q-Calculus of Szász-Mirakyan operators was constructed
by Aral [3] who formulated also a Voronovskaya theorem related to q-
derivatives for these operators.

Durrmeyer type generalization of the operators based on q-integers was
studied by Derriennic in [6]. Gupta and Heping introduced a q-analoque of
Bernstein-Durrmeyer operators in [13] and in 2009 Gupta and Finta [14]
studied some local and global approximation properties for q-Durrmeyer op-
erators. See also [12]. In [15] Gupta and Radu constructed a q-analoque of
Baskakov-Kantorovich operators and investigated their weighted statistical
approximation properties. Also, N. Mahmudov introduced in [19] new classes
of q-Baskakov and q-Baskakov-Kantorovich operators.

First of all, we recall elements of q-Calculus, see, e.g., [17]. For any fixed
real number q > 0, the q-integer [k]q, for k ∈ N is defined as

[k]q =
{

(1− qk)/(1− q), q 6= 1,
k, q = 1.

Set [0]q = 0. The q-factorial [k]q! and q-binomial coefficients
[n
k

]
q

are

defined as follows

[k]q! =
{

[k]q[k − 1]q . . . [1]q, k = 1, 2, . . . ,
1, k = 0,[n

k

]
q

=
[n]q!

[k]q![n− k]q!
(0 ≤ k ≤ n).

The q-analogue of (x− a)n is the polynomial

(x− a)n
q =

{
1 if n = 0,
(x− a)(x− qa) . . . (x− qn−1a) if n ≥ 1.

C([a, b]) represents the space of all real valued continuous functions
defined on [a, b]. The space is endowed with usual norm ‖ · ‖ given by

‖f‖ = sup
x∈[a,b]

|f(x)|.

Let p ∈ N be fixed. In 1962 Schurer [22] introduced and studied the
operators B̃m,p : C([0, p + 1]) → C([0, 1]) defined for any m ∈ N and any
function f ∈ C([0, p + 1]) as follows

B̃m,p(f ;x) =
m+p∑
k=0

(
m + p

k

)
xk(1− x)m+p−kf

(
k

m

)
, x ∈ [0, 1].

Our aim is to introduce a q-analogue of the above operators. We inves-
tigate the approximation properties of this class and we estimate the rate of
convergence by using modulus of continuity.
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2. Construction of generalized q-Bernstein-Schurer and
approximation properties

Throughout the paper we consider q ∈ (0, 1).
For any m ∈ N and f ∈ C([0, p + 1]), p is fixed, we construct the class of
generalized q-Bernstein-Schurer operators as follows

B̃m,p(f ; q;x) =
m+p∑
k=0

[
m + p

k

]
q

xk

m+p−k−1∏
s=0

(1− qsx)f
(

[k]q
[m]q

)
, x ∈ [0, 1].

(2.1)
From here on, an empty product is taken to be equal 1. Clearly, the

operator defined by (2.1) is linear and positive.

Lemma 2.1. Let Bm,p(·; q; ·) be given by (2.1). The following identities
1◦ B̃m,p(e0; q;x) = 1,

2◦ B̃m,p(e1; q;x) =
x[m + p]q

[m]q
,

3◦ B̃m,p(e2; q;x) =
[m + p]q

[m]2q
([m + p]qx2 + x(1− x))

hold, where ej(x) = xj, j = 0, 1, 2.

Proof. 1◦ We use the known identity
n∑

k=0

[n
k

]
q
xk(1− x)n−k

q = 1,

which can be proved by induction with respect to n. Actually, the left hand
side represents (Bn,qe0)(x) where Bn,q is the q-analogue of Bernstein operator
introduced by G. M. Phillips [20]. Phillips proved Bn,qe0 = e0.

In the above we choose n := m + p.
Since

(1− x)m+p−k
q =

m+p−k−1∏
s=0

(1− qsx),

we get
m+p∑
k=0

[
m + p

k

]
q

xk

m+p−k−1∏
s=0

(1− qsx) = 1.

Consequently, we obtain B̃m,p(e0; q;x) = 1.

2◦ B̃m,p(e1; q;x) =
m+p∑
k=1

[
m + p

k

]
q

xk

m+p−k−1∏
s=0

(1− qsx)
[k]q
[m]q

k→k+1= x · [m + p]q
[m]q

m+p−1∑
k=0

[m + p− 1]q!
[k]![m + p− k − 1]q!

xk

m+p−k−2∏
s=0

(1− qsx)

= x · [m + p]q
[m]q

.
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3◦ B̃m,p(e2; q;x) =
m+p∑
k=1

[
m + p

k

]
q

xk

m+p−k−1∏
s=0

(1− qsx)
[k]2q
[m]2q

=
m+p∑
k=1

[k]q
[m]q

· [k]q
[m]q

· [m + p]q!
[m + p− k]q![k]q!

· xk

m+p−k−1∏
s=0

(1− qsx).

Taking into account that [k]q = q[k − 1]q + 1, we obtain

B̃m,p(e2; q;x) =
[m + p]q

[m]2q

m+p∑
k=2

q[k − 1]q[m + p− 1]q!
[k − 1]q![m + p− k]q!

xk

m+p−k−1∏
s=0

(1− qsx)

+
[m + p]q

[m]2q

m+p∑
k=1

[m + p− 1]q!
[k − 1]q![m + p− k]q!

xk

m+p−k−1∏
s=0

(1− qsx).

Replacing k → k + 2 in first sum and k → k + 1 in the second, we have

B̃m,p(e2; q;x) =
[m + p− 1]q[m + p]q

[m]2q
q

m+p−2∑
k=0

[m + p− 2]q!
[k]q![m + p− k − 2]q

· xk+2

m+p−k−3∏
s=0

(1− qsx)

+
[m + p]q

[m]2q

m+p−1∑
k=0

[m + p− 1]q!
[k]q![m + p− k − 1]q

xk+1

m+p−k−2∏
s=0

(1− qsx)

=
[m + p− 1]q[m + p]q

[m]2q
qx2 +

[m + p]q
[m]2q

x.

Since [m+ p− 1]qqx2 +x = [m+ p]qx2 +x(1−x), the conclusion follows. �

We can give now the following result, a theorem of Korovkin type.

Theorem 2.2. Let q = qm satisfy 0 < qm < 1, lim
m→∞

qm = 1 and lim
m→∞

qm
m = a,

a < 1. Then, for any f ∈ C([0, p + 1]), the following relation holds

lim
m→∞

B̃m,p(f ; qm) = f uniformly on [0, 1].

Proof. The proof is based on the well known Korovkin theorem regarding the
convergence of a sequence of linear and positive operators. So, it is enough
to prove the conditions

lim
m→∞

B̃m,p(ei; qm;x) = xi, i = 0, 1, 2,

uniformly on [0, 1].
To prove the theorem we take into account the next relations obtained

by simple calculations, where p is a fixed natural number.

lim
m→∞

[m + p]qm

[m]qm

= 1, lim
m→∞

[m + p]qm

[m]2qm

= 0. (2.2)

Taking into account Lemma 2.1 and the relations (2.2), our statement is
proved. �
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3. On the rate of convergence

We will estimate the rate of convergence in terms of the modulus of continuity.
Let f ∈ C([0, b]). The modulus of continuity of f denoted by ωf (δ) gives the
maximum oscillation of f in any interval of length not exceeding δ > 0 and
it is given by relation

ωf (δ) = sup
|y−x|≤δ

|f(y)− f(x)|, x, y ∈ [0, b].

It is known that lim
δ→0+

ωf (δ) = 0 for f ∈ C([0, b]), and for any δ > 0 one has

|f(y)− f(x)| ≤ ωf (δ)
(
|y − x|

δ
+ 1
)

. (3.1)

Our result will be read as follows.

Theorem 3.1. If f ∈ C([0, 1 + p]), then

|B̃m,p(f ; q;x)− f(x)| ≤ 2ωf (δm)

takes place, where

δm =
1√
[m]q

(
p +

1
2
√

1− qm

)
, q ∈ (0, 1). (3.2)

Proof. Since Bm,pe0 = e0, we have

|B̃m,p(f ; q;x)− f(x)|

≤
m+p∑
k=0

∣∣∣∣f ( [k]q
[m]q

)
− f(x)

∣∣∣∣ [m + p]q!
[m + p− k]q![k]q!

xk

m+p−k−1∏
s=0

(1− qsx).

In view of (3.1) we get
|B̃m,p(f ; q;x)− f(x)|

≤ ωf (δ)

{
1
δ

m+p∑
k=0

∣∣∣∣ [k]q
[m]q

− x

∣∣∣∣ [m + p]q!
[m + p− k]q![k]q!

xk

m+p−k∏
s=0

(1− qsx)

+
m+p∑
k=0

[m + p]q!
[m + p− k]q![k]q!

xk

m+p−k∏
s=0

(1− qsx)

}

=ωf (δ)

{
1
δ

m+p∑
k=0

∣∣∣∣∣ [k]q
[m]q

−x

∣∣∣∣∣ [m + p]q!
[m + p− k]q![k]q!

xk

m+p−k∏
s=0

(1−qsx)+(B̃m,p,qe0)(x)

}
.

Using Cauchy-Schwartz inequality and Lemma 2.1 we can write

|B̃m,p(f ; q;x)− f(x)|

≤ωf (δ)

1
δ

(
m+p∑
k=0

(
[k]q
[m]q

−x

)2 [m + p]q!
[m + p− k]q![k]q!

xk

m+p−k∏
s=0

(1− qsx)

)1/2

+1


= ωf (δ)

{
1
δ
((B̃m,p,qe2)(x)− 2x(B̃m,p,qe1)(x) + x2(B̃m,p,qe0)(x))1/2 + 1

}
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=ωf (δ)

{
1
δ

(
[m + p]q

[m]2q
([m + p]qx2 + x(1− x))− 2x2 [m + p]q

[m]q
+ x2

)1/2

+ 1

}

= ωf (δ)

1
δ

(
x2

(
[m + p]q

[m]q
− 1
)2

+ x(1− x)
[m + p]q

[m]2q

)1/2

+ 1

 .

On the basis of the relation (a2 + b2)1/2 ≤ |a| + |b|, the above inequality
implies

|B̃m,p(f ; q;x)− f(x)|

≤ ωf (δ)

{
1
δ

(
x

∣∣∣∣ [m + p]q
[m]q

− 1
∣∣∣∣+
√

x(1− x)
[m]q

√
[m + p]q

[m]q

)
+ 1

}
. (3.3)

Since

x

∣∣∣∣ [m + p]q
[m]q

− 1
∣∣∣∣ ≤ p√

[m]q
,

√
[m + p]q

[m]q
≤ 1√

1− qm

and max
x∈[0,1]

x(1− x) = 1/4, choosing δ = δm as in (3.2), we obtain the desired

result. �
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[8] Doǧru, O., Gupta, V., Korovkin-type approximation properties of bivariate q-
Meyer-Konig and Zeller operators, Calcolo, 43(2006), 51-63.
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Department of Mathematics and Informatics
e-mail: carmen 7419@yahoo.com, cmuraru@ub.ro
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Estimates for general positive linear
operators on non-compact interval
using weighted moduli of continuity

Radu Păltănea

Abstract. We give estimates with explicit constants of the degree of ap-
proximation by general positive linear operators on the interval [0,∞),
using a weighted modulus of continuity. In particular we obtain a quan-
titative version of a result of Totik concerning Szász-Mirakjan operators.

Mathematics Subject Classification (2010): 41A36.

Keywords: Positive linear operators, weighted modulus of continuity.

1. Introduction

The moduli of continuity or smoothness of different kinds play a crucial role in
estimating the degree of approximation by using linear methods. In approx-
imation on non-compact intervals more convenient are the weighted moduli.
There are several types of constructions of weighted moduli of first order.
A very short list of contributions in this directions are given in References.

In this paper we introduce a class of first order weighted moduli of
continuity constructed starting from a family of ”admissible” functions and
we deduce estimates for general positive operators. These estimates are with
explicit constants. Such type of estimates are already obtained for weighted
moduli on a compact interval, for the Ditzian-Totik modulus of second order,
(see [9], [8], [12]).

Finally we remark that, in the case of a certain admissible function, our
modulus is equivalent to the usual modulus applied to a certain modification
of the function. This last modulus was used by Totik [14] for Szász-Mirakjan
operators.
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2. A general estimate with the modulus ωϕ

Denote N0 = N ∪ {0}. For k ∈ N denote by Πk, the space of polynomials of
degree at most k and for j ∈ N0 consider the monomial functions ej(t) = tj ,
t ∈ [0,∞). Denote by [a], the integer part of a number a ∈ R. Denote also by
F(I), the space of real functions defined on an interval I.

We adopt the following

Definition 2.1. A function ϕ ∈ C([0,∞)) is named admissible if it satisfies
the following conditions:

i) ϕ(t) > 0, for t ∈ (0,∞);
ii) 1

ϕ is convex on interval (0,∞);
iii) we have

lim
a→+0

∫ x

a

dt

ϕ(t)
< ∞ for all x > 0; (2.1)

iv) we have ∫ ∞

0

dt

ϕ(t)
= +∞. (2.2)

In this definition we use the Riemann improper integral. Using an ad-
missible function ϕ we introduce the following first order weighted modulus.

Definition 2.2. For f ∈ F([0,∞)), and h > 0 set:

ωϕ(f, h) = sup
{
|f(v)− f(u)| : u, v ∈ [0,∞), |v − u| ≤ hϕ

(
u + v

2

)}
.

(2.3)

We admit in this definition that the supremum could be equal to +∞.

Remark 2.3. Function e0 is admissible and for ϕ = e0 we obtain ωϕ = ω,
where ω denotes the usual first order modulus.

Property iii) allows to take ϕ with condition 1
ϕ(x) = O(xα) (x → 0),

with α > −1. Very suitable for applications is the case ϕ(x) ∼
√

x (x → 0),
when the dependence of modulus ωϕ(f, ·) on the values taken by a function
f in a neighbourhood of the point x = 0 is similar with the dependence
of the first order Ditzian-Totik modulus on the values taken by a function
near the end points of the interval [0, 1]. However if we take ϕ(x) =

√
x, for

x ≥ 0, then ωϕ(f, h) is finite for any h > 0 only if f satisfies the restrictive
condition f(x) = O(

√
x) (x → ∞). This fact can be deduced, for instance,

from Remark 2.6 in Section 2.
In order to enlarge the class of functions for which ωϕ(f, h) < ∞, for any

h > 0, by condition iv), we have the possibility to take ϕ rapidly decreasing
to 0 when x → ∞. For instance an admissible function is ϕ(x) =

√
x

1+xm ,
x ≥ 0, for m ∈ N, m ≥ 2. Then we have ωϕ(f, h) < ∞, for any differentiable
function f such that |f ′(x)| ≤ Mxm− 1

2 .
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Given an admissible function ϕ, we consider the following corresponding
function

Φ(x) =
∫ x

0

dt

ϕ(t)
, x ∈ (0,∞). (2.4)

Lemma 2.4. Let f ∈ F([0,∞)), h > 0 and 0 ≤ a < b, such that Φ(b)−Φ(a) =
h. Then for all points c, d such that a ≤ c ≤ d ≤ b, we have

|f(d)− f(c)| ≤ ωϕ(f, h). (2.5)

Proof. We have to show that d− c ≤ hϕ
(

c+d
2

)
.

From condition iii) of Definition 2.1 we deduce, using Jensen inequality:

d− c

ϕ
(

c+d
2

) ≤ ∫ d

c

dt

ϕ(t)
.

But ∫ d

c

dt

ϕ(t)
≤
∫ b

a

dt

ϕ(t)
= Φ(b)− Φ(a) = h.

�

Lemma 2.5. Let f ∈ F([0,∞)), x > 0 and h > 0. We have

|f(t)− f(x)| ≤
(

1 +
1
h2

(Φ(t)− Φ(x))2
)

ωϕ(f, h). (2.6)

Proof. We may consider only the case ωϕ(f, h) < ∞. Note that function
Φ : (0,∞) → (0,∞) is a strictly increasing bijection. Therefore it admits an
inverse Φ−1 : (0,∞) → (0,∞).

Put p =
[

Φ(x)
h

]
. Define the sequence (uj)j≥−p by

uj = Φ−1(jh + Φ(x)), j ≥ −p.

From this it immediately follows that

Φ(uj+1)− Φ(uj) = h, j ≥ −p.

Consider the decomposition

[0,∞) = [0, u−p) ∪
∞⋃

j=−p

[uj , uj+1),

where [0, u−p) = ∅, if u−p = 0. Let t ∈ [0,∞). We have to consider several
cases.

Case 1: t ∈ [x,∞). Then there is an index n ∈ N0, such that t ∈
[un, un+1). We have

|f(t)− f(x)| ≤ |f(t)− f(un)|+
n−1∑
j=0

|f(uj+1)− f(uj)|,

where the last sum is 0 if n = 0. Using Lemma 2.4 we have |f(t)− f(un)| ≤
ωϕ(f, h) and |f(uj+1)− f(uj)| ≤ ωϕ(f, h), for 0 ≤ j ≤ n− 1. Hence

|f(t)− f(x)| ≤ (n + 1)ωϕ(f, h).
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If n = 0, from this we obtain directly relation (2.6). If n ≥ 1 we have succes-
sively:

1 + n = 1 +
1
h

n−1∑
j=0

(Φ(uj+1)− Φ(uj) = 1 +
1
h

(Φ(un)− Φ(x))

≤ 1 +
1
h
|Φ(t)− Φ(x)| ≤ 1 +

1
h2

· (Φ(t)− Φ(x))2

It follows relation (2.6).
Case 2: t ∈ [u−p, x). This implies that p ≥ 1. Then there is n ∈ N, such

that t ∈ [u−n−1, u−n). We have

|f(t)− f(x)| ≤ |f(t)− f(u−n)|+
n−1∑
j=0

|f(u−j)− f(u−j−1)|,

where the last sum is 0 if n = 0. Using Lemma 2.4 we have |f(t)− f(u−n)| ≤
ωϕ(f, h) and |f(u−j)− f(u−j−1)| ≤ ωϕ(f, h), for 0 ≤ j ≤ n− 1. Hence

|f(t)− f(x)| ≤ (n + 1)ωϕ(f, h).

If n = 0, from this we obtain directly relation (2.6). If n ≥ 1 we have succes-
sively, similarly as in Case 1:

1 + n = 1 +
1
h

n−1∑
j=0

(Φ(u−j)− Φ(u−j−1)) = 1 +
1
h

(Φ(x)− Φ(u−n))

≤ 1 +
1
h
|Φ(x)− Φ(t)| ≤ 1 +

1
h2

· (Φ(t)− Φ(x))2

Case 3: t ∈ [0, u−p). We have

|f(t)− f(x)| ≤ |f(t)− f(u−p)|+
p−1∑
j=0

|f(u−j)− f(u−j−1)|,

where the last sum is 0 if p = 0. Let show that |f(t) − f(u−p)| ≤ ωϕ(f, h).

We must to prove u−p− t ≤ hϕ
(

u−p+t
2

)
. But from the convexity of function

1
ϕ we obtain

u−p − t

ϕ
(

u−p+t
2

) ≤ ∫ u−p

t

ds

ϕ(s)
= Φ(u−p)− Φ(t) ≤ Φ(u−p).

Since function Φ−1 is strictly increasing and Φ(x) − ph < h it follows that
u−p ≤ Φ−1(h). Hence Φ(u−p) ≤ h. Then we continue like in Case 2, for
n = p. �

Remark 2.6. From the proof of Lemma 2.5 it follows that for f ∈ F([0,∞)),
x > 0 and h > 0, we have also

|f(t)− f(x)| ≤
(

1 +
1
h
|Φ(t)− Φ(x)|

)
ωϕ(f, h). (2.7)
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The main result of this section is the following

Theorem 2.7. Let W be a linear subspace of F([0,∞)) and let F : W → R
be a positive linear functional. Let x ∈ [0,∞) and let ϕ be an admissible
function. Suppose that (Φ−Φ(x)e0)2 ∈ W and e0 ∈ W . Then, for all f ∈ W
and all h > 0 we have

|F (f)− f(x)| ≤ |f(x)| · |F (e0)− 1|

+
(
F (e0) + h−2F ((Φ− Φ(x)e0)2)

)
ωϕ(f, h). (2.8)

Proof. The theorem follows from Lemma 2.5 and the inequality:

|F (f)− f(x)| ≤ |f(x)| · |F (e0)− 1|+ F (|f − f(x)e0|).
�

Corollary 2.8. Let W be a linear subspace of F([0,∞)) and let L : W →
F([0,∞)) be a positive linear operator. Let ϕ an admissible function. Suppose
that (Φ − Φ(x)e0)2 ∈ W for each x ∈ [0,∞) and also e0 ∈ W . Then for all
f ∈ W , all x ∈ [0,∞) and h > 0 we have

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+
(
L(e0, x) + h−2L((Φ− Φ(x)e0)2, x)

)
ωϕ(f, h). (2.9)

Remark 2.9. In the case ϕ = e0, we have Φ = e1 and relation (2.9) becomes
the well-known estimate of Mond [11].

3. Estimates for the weight ϕ(x) =
√

x

Theorem 3.1. Let W ⊂ F([0,∞)) be a linear subspace, such that Π2 ∈ W . If
L : W → F((0,∞)) is a positive linear operator, then for any f ∈ W , any
x ∈ (0,∞) and any h > 0 we have

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+
(

L(e0, x) +
4

h2x
L((e1 − xe0)2, x)

)
ωϕ(f, h). (3.1)

In the particular case L(e0) = e0 and h =
√

L((e1−xe0)2,x)
x we have

|L(f, x)− f(x)| ≤ 5 · ωϕ

(
f,

√
L((e1 − xe0)2, x)

x

)
. (3.2)

Proof. We apply Corollary 2.8 by taking into account the estimate:(∫ t

x

du√
u

)2

= (2(
√

t−
√

x))2 = 4 ·
(

t− x
√

x +
√

t

)2

≤ 4(t− x)2

x
.

�

In the following theorem we give the connections between the modulus
ωϕ(f, •), for ϕ(x) =

√
x and the usual modulus of function f(x2).
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Theorem 3.2. For any f ∈ F([0,∞)) and h > 0 we have

ωϕ(f,
√

2h) ≤ ω(f ◦ e2, h) ≤ ωϕ(f, 2h). (3.3)

Proof. Let x, y ∈ [0,∞), such that |x2 − y2| ≤
√

2h
√

x2+y2

2 , which is equiv-

alent to the inequality |x − y| ≤ h
√

x2+y2

x+y . But
√

x2 + y2 ≤ x + y. Hence
|x− y| ≤ h. It follows |f(x2)− f(y2)| ≤ ω(f ◦ e2, h). Therefore

sup
x,y, |x2−y2|≤

√
2h

√
x2+y2

2

|f(x2)− f(y2)| ≤ ω(f ◦ e2, h).

But

sup
x,y, |x2−y2|≤

√
2h

√
x2+y2

2

|f(x2)− f(y2)| = sup
u,v, |u−v|≤

√
2h
√

u+v
2

|f(u)− f(v)|

= ωϕ(f,
√

2h).

Therefore
ωϕ(f,

√
2h) ≤ ω(f ◦ e2, h).

Conversely, let x, y ∈ [0,∞), such that |
√

x−√y| ≤ h, which is equiva-

lent to |x−y| ≤ h(
√

x+
√

y). But
√

x+
√

y ≤ 2
√

x+y
2 . Hence |x−y| ≤ 2

√
x+y

2

and consequently |f(y)− f(x)| ≤ ωϕ(f, 2h). Since x, y are arbitrarily chosen,
we have

sup
x,y, |

√
x−√y|≤h

|f(y)− f(x)| ≤ ωϕ(f, 2h).

But

sup
x,y, |

√
x−√y|≤h

|f(y)− f(x)| = sup
u,v, |u−v|≤h

|f(u2)− f(v2)|

= ω(f ◦ e2, h).

Therefore
ω(f ◦ e2, h) ≤ ωϕ(f, 2h).

Corollary 3.3. For ϕ(x) =
√

x, x ∈ [0,∞) and a function f ∈ F([0,∞)), the
following are equivalent:

i) lim
h→0

ωϕ(f, h) = 0,

ii) the function f(x2), x ∈ [0,∞) is uniformly continuous.

We exemplify for the Szász-Mirakjan operators

Sn(f, x) =
∞∑

k=0

f

(
k

n

)
e−nx (nx)k

k!
, (3.4)

x ∈ [0,∞), n ∈ N and f ∈ W , where W ⊂ F([0,∞)) is the linear subspace
of the functions f for which the series above is convergent.

We have Sn(e0, x) = 1, Sn((e1−xe0)2, x) = x
n . Also we have Sn(f, 0) =

f(0) for any f ∈ W . Hence we obtain:
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Theorem 3.4. Let ϕ(x) =
√

x. Let f ∈ W , x ∈ [0,∞), n ∈ N. Then

|Sn(f, x)− f(x)| ≤ 5 · ωϕ

(
f,

1√
n

)
. (3.5)

�

Remark 3.5. In view of Corollary 3.3, relation (3.5) gives a quantitative ver-
sion of a result of Totik [14] which states that, if f(x2) is a uniformly contin-
uous function, x ∈ [0,∞), then the sequence of functions (Snf)n is uniformly
convergent on [0,∞) to function f .

4. Estimates for the weight ϕ(x) =
√

x
1+xm , m ∈ N, m ≥ 2

Theorem 4.1. Let W ⊂ F([0,∞)) be a linear subspace, such that Π2m ∈ W .
If L : W → F([0,∞)) is a positive linear operator, then for any f ∈ W , any
x ∈ (0,∞) and any h > 0 we have

|L(f, x)− f(x)| ≤ |f(x)| · |L(e0, x)− 1|

+
(
L(e0, x) +

4
h2x

L((e1 − xe0)2(2e0 + x2me0 + e2m), x)
)
ωϕ(f, h).

Proof. We apply Corollary 2.8 and use the estimate:(∫ t

x

(1 + um)du√
u

)2

= 4
(√

t−
√

x +
(
√

t)2m+1 − (
√

x)2m+1

2m + 1

)2

≤ 8(
√

t−
√

x)2

1 +

(∑2m
k=0(

√
t)k(

√
x)2m−k

2m + 1

)2


≤ 8
(t− x)2

x

[
1 +

(
tm + xm

2

)2
]

≤ 4
(t− x)2

x
(2 + t2m + x2m).

�

Acknowledgments. We are grateful to the anonymous referee for suggestions
made for a better presentation of the paper.

References

[1] Amanov, N.T., On the weighted approximation by Szasz-Mirakjan operators,
Anal. Math., 18(1992), no. 3, 167–184.

[2] Becker, M., Global approximation theorems for Szász-Mirakjan and Baskakov
type operators, Indiana Univ. Math. J., 27(1978), 127-138.

[3] Bustamente, J., Estimates of positive linear operators in terms of second-order
moduli, J. Math. Anal. Appl., 345(2008), 203–212.



504 Radu Păltănea
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Steffensen type methods for approximating
solutions of differential equations

Flavius Pătrulescu

Abstract. The implicit methods for numerical solving of ODEs lead to
nonlinear equations which are usually solved by the Newton method.
We study the use of a Steffensen type method instead, and we give con-
ditions under which this method provides bilateral approximations for
the solution of these equations; this approach offers a more rigorous con-
trol of the errors. Moreover, the method can be applied even in the case
when certain functions are not differentiable on the definition domain.
The convergence order is the same as for Newton method.

Mathematics Subject Classification (2010): 65L04, 65L05, 65H05.

Keywords: Initial value problems, stiff equations, Steffensen method,
Newton method, convergence order.

1. Introduction

The mathematical modeling of many problems in physics, engineering, che-
mistry, biology, etc. gives rise to ordinary differential equations or systems of
ordinary differential equations.

It is known that a high-order initial value problem (IVP) for differential
equations or systems of equations can be rewritten as a first-order IVP system
(see e.g. [4], [5]) so that the standard IVP can be written in the form:

{
y′ = f(x, y), x ∈ I

y(a) = y0,
(1.1)

where: y0 ∈ R
m, I ⊆ R, f : I × R

m → R
m and a ∈ I.

A solution is sought on the interval [a, b] ⊂ I, where a, b are finite. In
this paper we consider only the scalar case, i.e., m = 1.

In practice, the number of cases where an exact solution can be found
by analytical means is very limited, so that one uses numerical methods for
the approximation of the solution.
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Integrating (1.1), for m = 1, using an implicit linear multistep method
with step-size h, leads to the solving at each step of an equation of the form:

y = hAφ(x, y) + ψ. (1.2)

Here A is a constant determined by the numerical method and ψ is a known
value.

This equation can be solved by the fixed point iteration

y(ν+1) = hAφ(x, y(ν)) + ψ, y(0) arbitrary, ν = 0, 1, . . . (1.3)

which converges to the unique solution of (1.2) provided that:

h < 1
|A|L

, (1.4)

where L is the Lipschitz constant of φ with respect to the second variable.
Condition (1.4) becomes too restrictive for stiff problems. Thus, if we

use an explicit method to solve a stiff equation, we have to use an excessively
small step-size to avoid instability; if we use an implicit method with an
absolute stability region large enough to impose no stability restriction, we
can choose a step-size as large as we want, but we will not be able to solve the
implicit equation (1.2) by the iteration (1.3) unless the step-size is excessively
small.

In order to overcome this difficulty one uses the Newton iteration instead
of the fixed point iteration. Newton iteration applied to the equation:

F (y) = 0, (1.5)

where F : [c, d] → R, c, d ∈ R, c < d, has the form:

y(ν+1) = y(ν) − F (y(ν))/F ′(y(ν)), ν = 0, 1, 2, . . . , y(0) ∈ [c, d]. (1.6)

When applied to the equation (1.2), where F (y) = y − hAφ(x, y) − ψ,
we get:

y(ν+1) = y(ν) − (y(ν) − hAφ(x, y(ν)) − ψ)/(1 − hAφ′y(x, y(ν))), (1.7)

i.e.,

y(ν+1) = (hA(φ(x, y(ν)) − y(ν)φ′y(x, y(ν))) + ψ)/(1 − hAφ′y(x, y(ν))). (1.8)

One step of Newton iteration requests considerably more computing time
than one step of fixed point iteration. Each step of the latter costs one func-
tion evaluation, whereas each step of the former calls for the updating of the
derivative.

In this paper we approximate the solution of equation (1.5) using the
Steffensen type method:

y(ν+1) = y(ν) −
F (y(ν))

[y(ν), g(y(ν));F ]
, ν = 0, 1, . . . (1.9)

where g : [c, d] → [c, d] is an auxiliary function such that the equation:

y − g(y) = 0 (1.10)



Steffensen type methods for approximating solutions of ODE 507

is equivalent to (1.5), and [u, v;F ] represents the first order divided difference
of F at the points u, v ∈ [c, d]. This method does not require the calculation
of the derivative of the function F .

Let y∗ ∈ (c, d) be the root of equation (1.5). If the elements of the
sequence (y(ν))ν≥0 belong to the interval [c, d] then from Newton identity
and (1.9) we obtain:

y∗ − y(ν+1) = −
[y∗, y(ν), g(y(ν));F ](y∗ − y(ν))(y∗ − g(y(ν)))

[y(ν), g(y(ν));F ]
,

where [u, v, w;F ] represents the second order divided difference of F at the
points u, v, w ∈ [c, d]. If g is Lipschitz on [c, d] with constant L and if we
assume that there exist the real numbers M,m > 0 such that:

|[u, v, w;F ]| < M and |[u, v;F ]| > m,

for all u, v, w ∈ [c, d], then:

|y∗ − y(ν+1)| ≤
ML|y∗ − y(ν)|2

m
,

which shows that the q-convergence order for the method (1.9) is 2, i.e., the
same as for the Newton method.

In [7] are given conditions for the convergence of the sequences ge-
nerated by relation (1.9), and the function g is defined such that the se-
quences (y(ν))ν≥0 and (g(y(ν)))ν≥0 approximate bilaterally the exact solution
y∗. Thus, we have an a posteriori error control.

For the functions F and g we suppose the following hypothesis:

(α) the equations (1.5) and (1.10) are equivalent;
(β) the function g is continuous and decreasing on [c, d];
(γ) the equation (1.5) has a unique solution y∗ ∈ (c, d).

The following theorem holds (see [7]):

Theorem 1.1. If the functions F and g satisfy the conditions (α) − (γ) and
moreover the following conditions hold:

(i) F is increasing and convex on [c, d];
(ii) F (y0) < 0;

(iii) g(y0) ≤ d,

then the elements of the sequences (y(ν))ν≥0 and (g(y(ν)))ν≥0 belong to the
interval [c, d] and the following properties hold:

(j) the sequence (y(ν))ν≥0 is increasing and convergent;

(jj) the sequence (g(y(ν)))ν≥0 is decreasing and convergent;

(jjj) y(ν) ≤ y∗ ≤ g(y(ν)), ν = 0, 1, . . ..
(jv) lim

ν→∞

y(ν) = lim
ν→∞

g(y(ν)) = y∗;

(vj) |y∗ − y(ν)| ≤ |g(y(ν)) − y(ν)|, ν = 0, 1, . . . .

In the above theorem the auxiliary function g can be taken as:

g(y) = y − F (y)
F ′(c) . Similar results have been obtained in [7] if F verifies the

properties:
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-F is increasing and concave; g can be taken as g(y) = y − F (y)
F ′(d) ;

-F is decreasing and concave; g can be taken as g(y) = y − F (y)
F ′(c) ;

-F is decreasing and convex; g can be taken as g(y) = y − F (y)
F ′(d) .

The interval [a, b] is partitioned by the point set {xn} defined by
xn = a + nh, n = 0, 1, . . . , N , h = (b − a)/N , and yn denotes an
approximation to the exact solution y of (1.1) at xn.

If we use an implicit linear multistep method then yn, n = 1, . . . , N , are
the solutions of the equation:

y = hAφ(xn, y) + ψn, (1.11)

where ψn = ψn(a, h, yn−1, yn−2, . . . , y0).We call this equation as approximant
equation and we denote by y∗n ∈ (c, d), n = 1, . . . , N , the exact solution.

For each n = 1, . . . , N let Fn : [c, d] → R be defined by

Fn(y) = y − hAφ(xn, y) − ψn. (1.12)

Then equation (1.11) can be rewritten in the form Fn(y) = 0.
To approximate bilaterally the solution y∗n, n = 1, . . . , N , we generate

the sequence (y
(ν)
n )ν≥0, by:

y(ν+1)
n = y(ν)

n −
Fn(y

(ν)
n )

[y
(ν)
n , g(y

(ν)
n );Fn]

, ν = 0, 1, . . . (1.13)

or, using (1.12),

y(ν+1)
n =

hA(φ(xn, y
(ν)
n ) − y

(ν)
n [y

(ν)
n , g(y

(ν)
n );φ(xn, ·)]) + ψn

1 − hA[y
(ν)
n , g(y

(ν)
n );φ(xn, ·)]

. (1.14)

From Theorem 1.1, if Fn is increasing and convex, and the initial guess

y
(0)
n satisfy Fn(y

(0)
n ) < 0, then the sequences (y

(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0 converge

to y∗n and we have the inequalities:

y(ν)
n ≤ y∗n ≤ g(y(ν)

n ), ν = 0, 1, . . . .

The rest of the cases can be treated in a similar fashion.

2. Application to the trapezoidal rule

We consider the trapezoidal rule to integrate the initial value problem (1.1),
for m = 1, and the Steffensen method described above to solve the approxi-
mant equation (1.11).

The trapezoidal rule is a 1-step Adams-Moulton method (an implicit
method), and for (1.1) is defined by:

yn = yn−1 + h
2 (f(xn, yn) + f(xn−1, yn−1)), n = 1, . . . , N.

It is known that the trapezoidal rule is an A-stable method and has order 2
(see [5]).
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For any point xn, n = 1, . . . , N , we have:

yn − h
2 f(xn, yn) − h

2 f(xn−1, yn−1) − yn−1 = 0 (2.1)

and in this case Fn(y) = y − h
2 f(xn, y) −

h
2 f(xn−1, yn−1) − yn−1. Thus, in

(1.11) we have A = 1
2 , φ(xn, y) = f(xn, y) and ψn = h

2f(xn−1, yn−1) + yn−1,
n = 1, . . . , N .

For simplicity we consider only the autonomous case, i.e. f = f(y), and
in this case equation (2.1) becomes:

yn − h
2 f(yn) − h

2 f(yn−1) − yn−1 = 0 (2.2)

and Fn(y) = y − h
2 f(y) − ψn, ψn = h

2 f(yn−1) + yn−1, n = 1, . . . , N .
Using the fact that

[u, v;Fn] = 1 − h
2 [u, v; f ], for all u, v ∈ [c, d], (2.3)

and
[u, v, w;Fn] = −h

2 [u, v, w; f ], for all u, v, w ∈ [c, d], (2.4)

n = 1, . . . , N , we obtain that the auxiliary function g can be taken
as (see [10]):

g(y) =
h
2 (f(y) − y[d− ε, d; f ]) + ψn

1 − h
2 [d− ε, d; f ]

;

or

g(y) =
h
2 (f(y) − y[c, c+ ε; f ]) + ψn

1 − h
2 [c, c+ ε; f ]

,

where ε is sufficiently small such that the exact solution y∗n of the equation
Fn(yn) = 0, n = 1, . . . , N , belongs to the interval [c+ ε, d− ε].

For each n = 1, . . . , N we denote:

ψn
max = max{yk + h

2 f(yk)|k = 0, . . . , n− 1},

ψn
min = min{yk + h

2 f(yk)|k = 0, . . . , n− 1}.

We are lead to the main results of this work:

Theorem 2.1. If the function f , the step-size h, and the initial guesses y
(0)
n ,

n = 1, . . . , N , satisfy the following conditions:

(i) [u, v, w, f ] ≤ 0, for all u, v, w ∈ [c, d];
(ii) (m ≤ [u, v, f ] ≤ M ≤ 0, for all u, v ∈ [c, d]) or (0 ≤ m ≤ [u, v, f ] ≤ M ,

for all u, v ∈ [c, d], and h ≤ 2
M

);

(iii) y
(0)
n − h

2 f(y
(0)
n ) < ψn

min;

(iv) y
(0)
n M − f(y

(0)
n ) ≥ 2

h
[d(M h

2 − 1) + ψn
max],

then the elements of the sequences (y
(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0, n = 1, . . . , N , be-

long to the interval [c, d] and the following properties hold:

(j) (y
(ν)
n )ν≥0 is increasing and convergent;

(jj) (g(y
(ν)
n ))ν≥0 is decreasing and convergent;

(jjj) y
(ν)
n ≤ y∗n ≤ g(y

(ν)
n ), ν = 0, 1, . . .;

(jv) lim
ν→∞

y
(ν)
n = lim

ν→∞

g(y
(ν)
n ) = y∗n;
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(v) |y∗n − y
(ν)
n | ≤ |g(y

(ν)
n ) − y

(ν)
n |, ν = 0, 1, . . . .

Proof. From (2.3), (2.4) and (i), (ii) we have [u, v;Fn] ≥ 0, [u, v, w;Fn] ≥ 0,
n = 1, . . . , N , for all u, v, w ∈ [c, d], and we deduce that Fn is increasing and
convex.

Also, from (iii) and (iv) we obtain that the initial guesses satisfy the

inequalities: F (y
(0)
n ) < 0 and g(y

(0)
n ) ≤ d, n = 1, . . . , N .

Using Theorem 1.1 we deduce that the properties (j) − (v) hold. �

The following theorems can be proved in a similar manner:

Theorem 2.2. If the function f , the step-size h, and the initial guesses y
(0)
n ,

n = 1, . . . , N , satisfy the following conditions:

(i) [u, v, w, f ] ≤ 0, for all u, v, w ∈ [c, d];
(ii) 0 ≤ m ≤ [u, v, f ] ≤M , for all u, v ∈ [c, d];

(iii) y
(0)
n − h

2 f(y
(0)
n ) < ψn

min;

(iv) y
(0)
n m− f(y

(0)
n ) ≥ 2

h
[c(mh

2 − 1) + ψn
max];

(v) 2
m

≤ h,

then the elements of the sequences (y
(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0, n = 1, . . . , N , be-

long to the interval [c, d] and the following properties hold:

(j) (y
(ν)
n )ν≥0 is decreasing and convergent;

(jj) (g(y
(ν)
n ))ν≥0 is increasing and convergent;

(jjj) g(y
(ν)
n ) ≤ y∗n ≤ y

(ν)
n , ν = 0, 1, . . .;

(jv) lim
ν→∞

y
(ν)
n = lim

ν→∞

g(y
(ν)
n ) = y∗n;

(v) |y∗n − y
(ν)
n | ≤ |g(y

(ν)
n ) − y

(ν)
n |, ν = 0, 1, . . . .

Theorem 2.3. If the function f , the step-size h and the initial guesses y
(0)
n ,

n = 1, . . . , N , satisfy the following conditions:

(i) [u, v, w, f ] ≥ 0, for all u, v, w ∈ [c, d];
(ii) (m ≤ [u, v, f ] ≤ M ≤ 0, for all u, v ∈ [c, d]) or (0 ≤ m ≤ [u, v, f ] ≤ M ,

for all u, v ∈ [c, d], and h ≤ 2
M

);

(iii) y
(0)
n − h

2 f(y
(0)
n ) > ψn

max;

(iv) y
(0)
n M − f(y

(0)
n ) ≤ 2

h
[c(M h

2 − 1) + ψn
min],

then the elements of the sequences (y
(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0, n = 1, . . . , N , be-

long to the interval [c, d] and the following properties hold:

(j) (y
(ν)
n )ν≥0 is decreasing and convergent;

(jj) (g(y
(ν)
n ))ν≥0 is increasing and convergent;

(jjj) g(y
(ν)
n ) ≤ y∗n ≤ y

(ν)
n , ν = 0, 1, . . .;

(jv) lim
ν→∞

y
(ν)
n = lim

ν→∞

g(y
(ν)
n ) = y∗n;

(v) |y∗n − y
(ν)
n | ≤ |g(y

(ν)
n ) − y

(ν)
n |, ν = 0, 1, . . . .

Theorem 2.4. If the function f , the step-size h and the initial guesses y
(0)
n ,

n = 1, . . . , N , satisfy the following conditions:
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(i) [u, v, w, f ] ≥ 0, for all u, v, w ∈ [c, d];
(ii) 0 ≤ m ≤ [u, v, f ] ≤M , for all u, v ∈ [c, d];

(iii) y
(0)
n − h

2 f(y
(0)
n ) > ψn

max;

(iv) y
(0)
n m− f(y

(0)
n ) ≤ 2

h
[d(mh

2 − 1) + ψn
min];

(v) 2
m

≤ h,

then the elements of the sequences (y
(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0, n = 1, . . . , N , be-

long to the interval [c, d] and the following properties hold:

(j) (y
(ν)
n )ν≥0 is increasing and convergent;

(jj) (g(y
(ν)
n ))ν≥0 is decreasing and convergent;

(jjj) y
(ν)
n ≤ y∗n ≤ g(y

(ν)
n ), ν = 0, 1, . . .;

(jv) lim
ν→∞

y
(ν)
n = lim

ν→∞

g(y
(ν)
n ) = y∗n;

(v) |y∗n − y
(ν)
n | ≤ |g(y

(ν)
n ) − y

(ν)
n |, ν = 0, 1, . . . .

3. Numerical example

We consider the autonomous initial value problem:
{
y′(x) = cos2(y(x)), x ∈ [0, 1],

y(0) = 0.
(3.1)

The exact solution is y : [0, 1] → R, y(x) = arctan(x), and it is plotted in
Figure 1(a) with continuous line.

If we use the trapezoidal rule to integrate the above initial value problem
we must solve for each mesh point xn = nh, n = 1, . . . , N , h = 1/N , N ∈ N,
the nonlinear equation:

yn = yn−1 + h
2 (cos2 yn + cos2 yn−1), (3.2)

where x0 = 0 and we choose y0 = 0.
According to the above sections we can write (3.2) in the form

Fn(y) = 0,

where Fn(y)=y− h
2 cos2(y)−ψn, and ψn = yn−1+

h
2 cos2(yn−1), n = 1, . . . , N .

It is easy to show that equation (3.2) has a unique solution y∗n ∈ (0, π
4 ),

n = 1, . . . , N , and we will use a Steffensen type method to obtain a numerical
approximation, ỹn, for this solution.

From F ′

n(y) = 1 + h
2 sin(2y) ≥ 0 and F ′′

n (y) = h cos(2y) ≥ 0, y ∈ [0, π
4 ],

n = 1, . . . , N , we deduce that Fn is increasing and convex. Thus, we can
define the decreasing function g as:

g(y) = y −
Fn(y)

F ′

n(0)
= y − Fn(y) = h

2 cos
2(y) + ψn, n = 1, . . . , N.

Also, from Theorem 2.1, choosing for each n = 1, . . . , N the initial guesses

y
(0)
n such that it verifies the conditions (iii) and (iv) we obtain bilateral

approximations of the solution y∗n and an a posteriori error control.
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The numerical solution, obtained with the method described above, for
the step size h = 0.05 is also plotted in Figure 1(a) with circle marker. The
values of the errors εn = |y(xn) − ỹn|, n = 1, . . . , N , are presented in the
following table. They are also plotted in Figure 1(b). We observe a very good
agreement when we compare the numerical with the analytical solution.
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Figure 1. (a) The exact solution (continuous line) and the
numerical solution (circle marker). (b) The values of the er-
rors

Table 1. The values of the errors

xn εn xn εn

0.05 0.00002068828052 0.55 0.00010932962999
0.1 0.00004056160110 0.6 0.00010478854028
0.15 0.00005887122616 0.65 0.00009889278012
0.2 0.00007499149969 0.7 0.00009200032239
0.25 0.00008845999793 0.75 0.00008443386474
0.3 0.00009899709371 0.8 0.00007647332226
0.35 0.00010650491201 0.85 0.00006835314397
0.4 0.00011104895260 0.9 0.00006026315926
0.45 0.00011282772086 0.95 0.00005235176793
0.5 0.00011213634983 1 0.00004473048874
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Approximation methods for second order
nonlinear polylocal problems

Daniel N. Pop and Radu T. Tr̂ımbiţaş

Abstract. Consider the problem:

y

′′(x) + f(x, y) = 0, x ∈ [0, 1]

y(a) = α

y(b) = β, a, b ∈ (0, 1).

This is not a two-point boundary value problem since a, b ∈ (0, 1). It is
possible to solve this problem by dividing it into the three problems: a
two-point boundary value problem (BVP) on [a, b] and two initial-value
problems (IVP), on [0, a] and [b, 1]. The aim of this work is to present
two solution procedures: one based on B-splines of order k + 2 and the
other based on a combination of B-splines (order k + 2) with a (k + 1)-
order Runge-Kutta method. Then, we give two numerical examples and
compare the methods experimentally.

Mathematics Subject Classification (2010): 65D07, 34B15, 65F50, 49M15.

Keywords: B-splines, nonlinear boundary value problems, sparse matri-
ces, Newton method.

1. Introduction

Consider the problem (PVP - Polylocal Value Problem):

y′′(x) + f(x, y) = 0, x ∈ [0, 1] (1.1)

y(a) = α (1.2)

y(b) = β, a, b ∈ (0, 1), a < b. (1.3)

where a, b, α, β ∈ R. This is not a two-point boundary value problem, since
a, b ∈ (0, 1).

We try to solve the problem using two methods:

• a collocation method based on B-splines of order k + 2;
• a combined method based on B-splines (order k+2) and a Runge-Kutta

method(order k + 1).
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The methods are new in this context: the conditions are stated at interior
points. Also it is shown that the Runge-Kutta method does not degrade the
accuracy provided by the collocation method for the BVP.

Our choice to use these methods is based on the following reasons :

1. We write the code using the function spcol in MATLAB Spline Toolbox.
2. It is the most suitable method, for a general purpose code, among the

finite element ones. See [2, 17, 21], where complexity comparisons which
support the above claim are made and collocation, when efficiently im-
plemented, is shown to be competitive with finite differences using ex-
trapolation.

3. Theoretical results on the convergence of collocation method are given
in [6, 16].

4. Several representative test problems demonstrate the stability and flex-
ibility [7].

5. For each Newton iteration, the resulting linear algebraic system of equa-
tions (after using Newton method with quasilinearization) is solved us-
ing methods given in [8].

We also consider the BVP :

y′′(x) + f(x, y) = 0, x ∈ [a, b] (1.4)

y(a) = α (1.5)

y(b) = β, (1.6)

To apply the collocation theory, we need to have an isolated solution
y(x) of the problem (1.4)+(1.5)+(1.6), and this occurs if the above linearized
problem for y(x) is uniquely solvable. R.D Russel and L.F.Shampine [22]
study the existence and the uniqueness of the isolated solution.

Theorem 1.1. [22] Suppose that y(x) is a solution of the boundary value prob-
lem (1.4)+(1.5)+(1.6), that the functions

f(x, z) and
∂f(x, z)

∂y

are defined and continuous for a ≤ x ≤ b, and |z − y| ≤ δ, δ > 0, and
the homogeneous equation y′′(x) = 0 subject to the homogeneous boundary
conditions (1.5)+(1.6) has only the trivial solution. If the linear homogeneous
equation

z′′(x) +
∂f(x, y)

∂y
z(x) = 0

has only trivial solution, then this is sufficient to guarantee that there exists
a σ > 0 such y(x) is the unique solution of problem BVP in the sphere:

{w : ‖w − y′′‖ ≤ σ}.

For the existence and uniqueness of an IVP, we recall the following
result.
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Theorem 1.2. [15, pp. 112-113]Suppose that D = {a ≤ x ≤ b,−∞ < y < ∞}
and f(x, y) is continuous on D. If f satisfies a Lipschitz condition on D in
the variable y, then the initial value problem (IVP)






y′ = z,
z′ = −f(x, y), a ≤ x ≤ b,
y(a) = α,
y′(a) = ς,

(1.7)

has a unique solution y(x) for a ≤ x ≤ b.

If the problem BVP has the unique solution, the requirement y(x) ∈
C2[0, 1] ensure the existence and the uniqueness of the solution of PVP.

2. The collocation method for solving the polylocal problem
using B-splines

2.1. B-splines bases of degree k (order k + 1)

For reason of efficiency, stability, flexibility in order, and continuity, we choose
B-splines as the basis functions. Efficient algorithms for calculating with B-
splines are given by deBoor [9, 10] and Risler[20].

Consider a sequence of knots t0, . . . , tm, such that ti ≤ ti+1 for all i.

Definition 2.1. Let t = (t0, . . . , tm). For x ∈ R, 0 ≤ i ≤ m − k − 1, we define
B-splines of degree k as follows:





Bi,0 =

{
1, if ti ≤ x < ti+1

0, otherwise
Bi,k(x) = wi,k(x)Bi,k−1(x) + (1 − wi+1,k(x))Bi+1,k−1(x),

(2.1)

where

wi,k(x) =

{ x−ti

ti+k−ti
, if ti < ti+k

0, otherwise.
(2.2)

If s(x) =
∑m−k−1

r=0 crBr,k(x), then its derivatives can be found for x ∈
(tj , tj+k) from (see for more details [4, pp. 62]):

s(i)(x) =

j∑

l=j−k+i−1

cl,i+1Bl,k−i(x), (2.3)

where

cl,i+1 :=

{
cl, if i = 0

(k − i)
cl,i−cl−1,i

tl+k−i−tl
, if i > 0.

(2.4)

To evaluate B
(i)
j,k(x), we take cr = δrj , for r = 0, . . . , m − k − 1, in (2.3) and

(2.4).
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2.2. Principles of the method

First we are interested to a global approach for the solution of problem (1.1)
+ (1.2) + (1.3). Let ∆ be a partition of [0, 1] like

∆ : 0 = x0 < x1 < · · · < xN−1 = 1. (2.5)

We insert the points a and b into the partition. Suppose xl = a and xl+p = b,
0 < l < N + 1, 1 < l + p < N + 1. The multiplicity of each point inner point
is k, and the multiplicity of endpoints is k + 2. Let

Hi := xi+1 − xi, i = 0, . . . , N (2.6)

be the step sizes.

We construct the following collocation points

ξij := xi + Hiρj ; i = 0, 1, . . . , N − 1, j = 1, 2, . . . , k, (2.7)

on each subinterval [xi, xi+1], i = 0, 1, . . . , N − 1, where

0 < ρ1 < ρ2 < · · · < ρk < 1 (2.8)

are the roots of k-th Legendre polynomial (see [5] for more details). We insert
the points a and b into the set of collocation point, so we obtain n = Nk + 2
points.

Remark 2.2. If a or b coincide with one of the previously computed collocation
point, then we increment N .

One renumbers the collocation points, such that the first is ξ0 := x0 +
H0ρ0, and the last is ξn−1 := xN +HNρk, where n = Nk +2. The dimension
of our spline space must be n = Nk + 2. Using notations in section 2.1, we
have m = (N + 1)k + 4. Therefore, the partition of [0, 1] becomes: [23, pp.
65]:

∆ : 0 = x0 ≤ x1 ≤ · · · ≤ xm = 1. (2.9)

Definition 2.3. A function v(x) is in the family L(∆, k, p) if v(x) is a poly-
nomial of degree k on each subinterval of ∆ and v ∈ Cp[0, 1]. The subfamily
L′(∆, k, p) consists of all functions in L(∆, k, p) which satisfy the boundary
conditions (1.5) + (1.6).

Suppose a partition (2.9) of [0, 1] and a sequence of partitions ∆n(n =
1, 2, 3, . . . ) satisfying

lim
n→∞

h(∆n) = 0

are given. If we form a set of points Sn(n = 1, 2, . . . ) like in (2.9), then, for
a large n (see [25] for more details), there is a unique element u ∆n

(x) of

L′(∆n, k + 1, 1) satisfying (1.4) at each point of Sn and
∥∥u ∆n

(x) − y(x)
∥∥ ≤ δ. (2.10)
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The approximate solution yn(x) and its derivatives up to order two
converge uniformly to y(x) and to its derivatives of corresponding orders.
Moreover the rate of convergence is bounded by

∥∥∥u ∆n
(x)(k) − y(k)(x)

∥∥∥ ≤ θFn(u′′), k = 0, 1, (2.11)

where θ is a constant independent of n and Fn(u′′) is the error of the best
uniform approximation to y′′(x) in L(∆n, k − 1, 0).

We wish to find an approximate solution of the problem
(1.1)+(1.2)+(1.3) in L(∆, k + 1, 1), having the following form:

u∆(x) =
n−1∑

i=0

ciBi,k+1(x), (2.12)

where Bi,k+1(x) is a B-spline of order (k + 2) with knots {xi}
m
i=0.

Remark 2.4. Our approximation method is inspired from ([11], chap. 2,5)

Let

J = {0, . . . , n − 1}\{l, l + p}.

We impose the conditions:

(c1) The approximate solution (2.12) satisfies the differential equation
(1.1) at ξj , j ∈ J , where ξj are the collocation points.

(c2) The solution satisfies u∆(ξl) = α, u∆(ξl+p) = β (we recall that
a = ξl, b = ξl+p).

The conditions (c1) and (c2) yield a nonlinear system with n equations:






n−1∑
i=0

ciBi,k+1(a) = α, j = l,

n−1∑
i=0

ciB
′′

i,k+1(ξj) + f

(
ξj ,

n−1∑
i=0

ciBi,k+1(ξj)

)
= 0, j ∈ J,

n−1∑
i=0

ciBi,k+1(b) = β, j = l + p,

(2.13)

with unknowns (ci)
n−1
i=0 . If F = [F0, F1, . . . , Fn−1]

T
are the functions defined

by the equations of the nonlinear systems, using the quasilinearization of
Newton method [4, pp. 52-55], we find the next approximation by means of

c(k+1) = c(k) − w(k), (2.14)

where c(k) is the vector of unknowns obtained at the k-th step, and w(k) is
the solution of the linear system:

F ′(c(k))w = F (c(k)). (2.15)



520 Daniel N. Pop and Radu T. Tr̂ımbiţaş

The Jacobian matrix F ′ = (Jij) is banded and it is given by

Jij =






Bj,k+1(a), for i = l
Bj,k+1(b), for i = l + p

B′′

j,k+1(ξi) + ∂f
∂y

(
ξi,

n−1∑
i=1

ciBj,k+1(ξi)

)
Bj,k+1(ξi), for i ∈ J.

(2.16)
To solve (1.1)+(1.2)+(1.3) we use the method presented in [7, pp. 670-

674] and [24, pp. 771-795]. An initial approximation u(0) ∈ C1 [0, 1] is re-
quired.

The successful stopping criterion [1] is
∥∥∥u(k+1) − u(k)

∥∥∥ ≤ abstol +
∥∥∥u(k+1)

∥∥∥ reltol,

where, abstol and reltol is the absolute and the relative error tolerance, re-
spectively, and the norm is the usual uniform convergence norm. The relia-
bility of the error-estimation procedure being used for stopping criterion was
verified in [3]. Papers on this topics exploit the almost block diagonal struc-
ture of collocation matrix and recommend an LU factorization (see [8, 3]).

3. A combined method using B-splines and Runge-Kutta
methods

Our second method consists of the decomposition of the problem (1.1) +
(1.2) + (1.3) into three problems:

1. A BVP on [a, b] (problem (1.4)+(1.5)+(1.6));
2. Two IVPs on [0, a] and [b, 1].

Also we suppose that the problem (1.4)+(1.5)+(1.6) satisfies hypothesis
of the Theorem 1.1, which ensures a sufficient condition to guarantee that
there exists a σ > 0 such that y(x) is the unique solution of problem BVP in
the sphere

{w : ‖w − y′′‖ ≤ σ}.

Due to conditions in Theorems 1.1 and 1.2, the problem (1.1)+
(1.2)+(1.3) has a unique solution. To solve the problem (1.4)+(1.5)+(1.6),
we use the collocation method presented in Section 2. This time, we consider
a partition of [a, b] as follows

∆ : a = x0 < x1 < · · · < xN = b.

The multiplicity of a and b is k + 2 and the multiplicity of inner points is k.
The dimension of spline space is again Nk + 2, and the nonlinear system is
analogous to (2.13).

For the solution of the two initial value problems, we use a Runge-Kutta
method of appropriate order. This needs good approximations of y′(a) and
y′(b), which could be obtained with no additional effort during the colloca-
tion. Let u∆(x) be the approximation computed by the combined method.
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Theorem 3.1. If u is an isolated solution of (1.1)+ (1.2)+(1.3), f has con-
tinuous second order partial derivatives and the initial guess is sufficiently
close to u, then the combined method is convergent to u and its accuracy is
O(hk+1), where h is the norm of the partition ∆ given by (2.9).

Proof. For the problem (1.4)+(1.5)+(1.6) we apply Theorem 5.147, page 257
in [4]. We conclude that Newton method, applied to ∆, converges quadrat-
ically to the restriction of u to ∆, and the accuracy for the approximation
and its derivative is O(hk+1), that is

|u
(j)

∆
(x) − y(j)(x)| = O(hk+1), x ∈ [a, b], j = 0, 1.

We extend convergence and the accuracy to the whole interval [0, 1] by using
the stability and the convergence of Runge-Kutta methods. A (k + 1)-order
explicit Runge-Kutta method is consistent and stable, so it is convergent,
and its accuracy is O(hk+1). Thus the final solution has the same accuracy.
The stability and convergence of Runge-Kutta method are guaranteed by
Theorems 5.3.1, page 285 and 5.3.2, page 288 in [13]. �

4. Some considerations on complexity

We will give a rough estimation of the complexity of our methods. We start
with the first method. In the sequel, B will be the cost for B-spline evaluation
and f the time for a function evaluation.

The time required to construct the collocation matrix is C0 = 2(Nk +
1)(k + 2)B.

To construct the Jacobian we need Nk(k +2)(B + f). The construction
of the right-hand side requires (Nk + 2)B + NkB + Nkf . So, for the linear
system construction, we obtain

W1 = ((B + f)k2 + (4B + 3f)k)N + B

For a banded linear system with bandwidth w the total cost for solution,

using LU with pivoting is n(w2

2 + w) (see [12, pp. 79-80]). In our case, n =

Nk + 2, and w = 3
2 (k + 2), and the cost for the solution of the linear system

will be

W2 =

(
21

2
k +

9

8
k3 +

15

2
k2

)
N + 15k + 21 +

9k2

4
.

The cost of Newton step is Ws = W1 + W2, that is,

Ws =

[
9k3

8
+

(
f + B +

15

2

)
k2 +

(
3f + 4B +

21

2

)
k

]
N+2B+15k+21+

9k2

4
.

The total cost is IWs + C0, where I is the number of steps required in
Newton methods. Since the convergence is quadratic, if the final tolerance is
ε, assuming δi+1 = cδ2

i , where δi is the error at the ith step, we obtain [18,
pp. 295-297]

I =
1

log 2
log

log |c| + log ε

log |c| + log |δ0|
.
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For the second method, the same analysis works for BVP solution part.
We have an additional amount of work for Runge-Kutta method. If the num-
ber of stages is s and the number of points is p, the cost is O(psf).

5. Implementation and numerical examples

We implemented the ideas from previous sections in MATLAB 2010a. Our
code uses MATLAB Spline Toolbox and sparse matrices (see [26]). The func-
tion spcol allows us to compute easily the collocation matrix. For IVPs the
solver ode45 works fine. To avoid the error propagation, we chose for (BVP)
B-splines of order 4 (degree 3) or order 5 (degree 4).

We implemented two functions: polycollocnelin, global B-spline col-
location, and polycalnlinRK, the combined method (B-spline collocation +
Runge-Kutta).

Consider the following examples:

1. [14] Consider the PVP

y′′(x) + y3(x) +
4 − (x − x2)3

(x + 1)3
= 0; x ∈ (0, 1)

y(1/4) = 3/20; y(1/2) = 1/6

(5.1)

with exact solution

y(x) =
x − x2

x + 1
.

2.
y′′(x) + e−y(x) = 0; x ∈ [0, 1]

y(π/6) = ln(3/2), y(π/4) = ln((2 +
√

2)/2)
(5.2)

with the exact solution

y = ln(sin(x) + 1).

We applied both methods to each example.
Figure 1 shows the exact solutions and the starting functions. The error

plots for both methods, in semi-logarithmic scale, are given in Figure 2 for
the first example and in Figure 3 for the second example, respectively.

We chose as starting function the Lagrange interpolation polynomial
that takes the values α and β at a and b.

Table 1 gives the residuals e
(j)
∆ ‖y(j) − y

(j)
∆ ‖, for j = 0, 1, 2, for the

global method based on B-splines. For the residuals it holds ‖y(j) − y
(j)
∆ ‖ =

O(|∆‖)k+2−j , for j = 0, 1, 2. To check this experimentally, we plot the resid-
uals versus 1/∆, for various values of N in a log-log scale (see Figure 4, the
left column, for Example (5.1) and Figure 4, the right column, for Example
(5.2)).

In order to compare the costs (run-times) experimentally we used MAT-
LAB functions tic and toc. The results are given in Table 2.

The time for combined method is a bit larger.
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Figure 1. Exact solution and starting approximation
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Figure 2. Error plot for example (5.1)
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Figure 3. Error plot for example (5.2)

The next numerical experiment compares the running time of our meth-
ods to the running time of a pseudospectral method (see [19] for implemen-
tation details of the latter). As example, we consider a variant of Bratu’s
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Figure 4. Order estimation for Example (5.1) (left) and

Example (5.2) (right): e
(0)
∆ - up, e

(1)
∆ - middle, and e

(2)
∆ -

bottom

Example (5.1) Example (5.2)
N ‖y−y∆‖ ‖y′

−y′

∆‖ ‖y′′
−y′′

∆‖ ‖y−y∆‖ ‖y′
−y′

∆‖ ‖y′′
−y′′

∆‖
5 6e-05 0.000123 0.00229 1.04e-05 2.15e-05 0.000172
6 6e-05 0.000123 0.00229 3.72e-06 8.47e-06 0.000124
7 6e-05 0.000123 0.00229 1.59e-06 3.96e-06 0.000106
8 6e-05 0.000123 0.00229 7.37e-07 2.02e-06 5.65e-05
9 6.9e-06 1.63e-05 0.000769 3.84e-07 1.16e-06 3.61e-05
10 6.9e-06 1.63e-05 0.000769 2.04e-07 6.81e-07 2.42e-05
11 6.9e-06 1.63e-05 0.000769 1.21e-07 4.46e-07 2.14e-05
12 6.9e-06 1.63e-05 0.000769 1.82e-08 2.02e-07 1.81e-05
13 1.4e-06 3.64e-06 0.000346 1.3e-08 1.44e-07 9.77e-06
14 1.4e-06 3.64e-06 0.000346 7.54e-09 1.09e-07 1.51e-05
15 1.4e-06 3.64e-06 0.000346 5.54e-09 8.32e-08 6.08e-06
16 1.4e-06 3.64e-06 0.000346 3.54e-09 6.22e-08 7.92e-06
17 3.99e-07 1.22e-06 0.000148 2.81e-09 4.65e-08 4.65e-06
18 3.99e-07 1.22e-06 0.000148 1.89e-09 3.51e-08 4.76e-06
19 3.99e-07 1.22e-06 0.000148 1.43e-09 2.98e-08 4.14e-06
20 3.99e-07 1.22e-06 0.000148 1.02e-09 2.5e-08 3.7e-06

Table 1. Error table for Examples (5.1) and (5.2)

problem [4, page 491] for λ = 1

y′′ + ey = 0, x ∈ (0, 1)

y(0.2) = y(0.8) = 0.08918993462883.
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Method 1 Method 2
First example 0.017501 0.022751
Second example 0.016387 0.021535

Table 2. Run times

ε PseudoS BS+RK Global BS
10−5 0.054 0.035 0.021
10−6 0.077 0.043 0.023
10−7 0.049 0.025 0.024
10−8 0.055 0.031 0.031
10−9 0.054 0.036 0.030
10−10 0.058 0.026 0.028

Table 3. Running times for Bratu’s problem

We chose 128 collocation points, and as starting function y0(t) = 39
70x(x− 1).

The running times for various tolerances are given in Table 3.
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global estimations for the error of approximation.
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1. Introduction

The aim of this paper is to study the approximation properties of a new
Szász-Mirakjan type operator constructed by using q-Calculus. Firstly, we
recall some basic definitions and notations used in quantum calculus, see,
e.g., [6, pp. 7-13].

Let q > 0. For any n ∈ N0 := {0} ∪ N the q-integer [n]q is defined by

[n]q := 1 + q + . . . qn−1 (n ∈ N), [0]q := 0,

and the q-factorial [n]q! by

[n]q! := [1]q[2]q . . . [n]q (n ∈ N), [0]q! := 1.

Also, the q-binomial coefficients are denoted by
[
n
k

]
q

and are defined by

[
n
k

]
q

=
[n]q!

[k]q! [n− k]q!
, k = 0, 1, . . . , n.

The q-derivative of a function f : R → R is defined by

Dqf (x) =
f(x)− f(qx)

(1− q)x
, x 6= 0, Dqf (0) := lim

x→0
Dqf (x) ,

and the high q-derivatives D0
qf := f, Dn

q f := Dq

(
Dn−1

q f
)
, n ∈ N.
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The product rule is

Dq (f(x)g(x)) = Dq (f(x)) g(x) + f(qx)Dq (g(x)) . (1.1)

We recall the q-Taylor theorem as it is given in [4, p. 103].

Theorem 1.1. If the function g(x) is capable of expansion as a convergent
power series and q is not a root of unity, then

g(x) =
∞∑

r=0

(x− a)r
q

[r]q!
Dr

qg(a),

where

(x− a)r
q =

r−1∏
s=0

(x− qsa) =
r∑

k=0

[
r
k

]
q

q
k(k−1)

2 xr−k(−a)k.

2. Auxiliary results

Throughout the paper we consider q ∈ (0, 1).
We define a suitable q-difference operator as follows

∆0
qfk,s = fk,s, (2.1)

∆r+1
q fk,s = qr∆r

qfk+1,s −∆r
qfk,s−1, r ∈ N0, (2.2)

where fk,s = f
(

[k]q
qs[n]q

)
, k ∈ N0, s ∈ Z.

The following lemma gives an expression for the r-th q-differences ∆r
qfk,s

as a sum of multiplies of values of f .

Lemma 2.1. The q-difference operator ∆r
q defined by (2.1)-(2.2)satisfies

∆r
qfk,s =

r∑
j=0

(−1)r−jqj(j−1)/2

[
r
j

]
q

fk+j,j+s−r for r, k ∈ N0, s ∈ Z.

(2.3)

Taking into account the relations (2.1)-(2.2) and the formula[
r + 1
j + 1

]
q

= qr−j

[
r
j

]
q

+
[

r
j + 1

]
q

,

the identity (2.3) can be easily obtained by induction over r ∈ N0.
In what follows, the monomial of m degree is denoted by em, m ∈ N0.
Let us denote by [x0, x1, . . . , xn; f ] the divided difference of the function

f with respect to the points x0, x1, . . . , xn.

Lemma 2.2. For all k, r ∈ N0, s ∈ Z, we have

[xk,s−1, . . . , xk+r,s+r−1; f ] =
qr(r+2s−1)/2[n]rq

[r]q!
∆r

qfk,r+s−1, (2.4)

where xk,s−1 = [k]q
qs−1[n]q

.
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Proof. We use the mathematical induction with respect to r. For r = 0 the
equality (2.4) follows immediately from (2.1). Let us assume that (2.4) holds
true for some r ≥ 0 and all k ∈ N0, s ∈ Z.

We have

[xk,s−1, . . . , xk+r+1,s+r; f ]

=
[xk+1,s, . . . , xk+r+1,s+r; f ]− [xk,s−1, . . . , xk+r,s+r−1; f ]

xk+r+1,s+r − xk,s−1
.

Since xk+r+1,s+r − xk,s−1 = [r+1]q
qr+s[n]q

, by using (2.2) we get

[xk,s−1, . . . , xk+r+1,s+r; f ]

=
q(r+1)(r+2s)/2[n]r+1

q

[r + 1]q!
(
qr∆r

qfk+1,r+s −∆r
qfk,r+s−1

)
=
q(r+1)(r+2s)/2[n]r+1

q

[r + 1]q!
∆r+1

q fk,r+s.

�

3. Construction of the operators

In 1987 A. Lupaş [9] introduced the first q-analogue of Bernstein operator
and investigated its approximating and shape-preserving properties. Another
q-generalization of the classical Bernstein polynomials is due to G. Phillips
[13]. More properties of these two q-extensions were obtained over time in
several papers such as [3], [10], [11], [1]. We mention that the comprehensive
survey [12] due to S. Ostrovska gives a good perspective of the most important
achievements during a decade relative to these operators.

Two of the known expansions in q-calculus of the exponential function
are given as follows (see, e.g., [6, p. 31])

Eq(x) =
∞∑

k=0

qk(k−1)/2 xk

[k]q!
, x ∈ R, |q| < 1,

eq(x) =
∞∑

k=0

xk

[k]q!
, |x| < 1

1− q
, |q| < 1.

It is obvious that lim
q→1−

Eq(x) = lim
q→1−

eq(x) = ex.

For q ∈ (0, 1), in [2] A. Aral introduced the first q-analogue of the
classical Szász-Mirakjan operators given by

Sq
n(f ;x) = Eq

(
− [n]q

x

bn

) ∞∑
k=0

f

(
[k]q bn
[n]q

) (
[n]q x

)k

[k]q!(bn)k
,

where 0 ≤ x < bn

1−qn , (bn)n is a sequence of positive numbers such that
lim
n
bn = ∞.
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The operator Sq
n reproduces linear functions and

Sq
n(e2;x) = qx2 +

bn
[n]q

x, 0 ≤ x <
bn

1− qn
.

Motivated by this work, for q ∈ (0, 1) we give another q-analogue of the
same class of operators as follows

Sn,q (f ;x) =
∞∑

k=0

(
[n]q x

)k

[k]q!
qk(k−1)Eq

(
− [n]q q

kx
)
f

(
[k]q

[n]q qk−1

)
, x ≥ 0,

(3.1)
where f ∈ F (R+) := {f : R+ → R, the series in (3.1) is convergent} .

Since Eq (x) is convergent for every x ∈ R, by using Theorem 1.1 and
the property Dr

qEq (x) = q
r(r−1)

2 Eq (qrx) we obtain

∞∑
r=0

(−x)r

[r]q!
qr(r−1)Eq (qrx) = Eq(0) = 1, x ∈ R,

which yields that the operator Sn,q is well defined.
For q → 1−, the above operators reduce to the classical Szász-Mirakjan

operators. In this case, the approximation function Sn,qf is defined on R+

for each n ∈ N.

Theorem 3.1. Let q ∈ (0, 1) and Sn,q, n ∈ N, be defined by (3.1). For any
f ∈ F (R+) we have

Sn,q(f ;x) =
∞∑

r=0

([n]qx)
r

[r]q!
q

r(r−1)
2 ∆r

qf0,r−1, x ≥ 0. (3.2)

Proof. Let f ∈ F (R+).
By using (2.1), the operator Sn,q can be expressed as follows

Sn,q (f ;x) =
∞∑

k=0

(
[n]q x

)k

[k]q!
qk(k−1)Eq

(
− [n]q q

kx
)

∆0
qfk,k−1.

Applying q-derivative operator to Sn,qf and taking into account the product
rule (1.1) and the property DqEq(ax) = aEq(aqx), (see e.g. [6, pp. 29-32]),
we have

DqSn,q(f ;x)

= [n]q
∞∑

k=0

(
[n]q x

)k

[k]q!
qk(k+1)Eq

(
− [n]q q

k+1x
) (

∆0
qfk+1,k −∆0

qfk,k−1

)

= [n]q
∞∑

k=0

(
[n]q x

)k

[k]q!
qk(k+1)Eq

(
− [n]q q

k+1x
)

∆1
qfk,k.
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For n ∈ N and x ∈ R+, by induction with respect to r ∈ N, we can prove

Dr
qSn,q(f ;x)

= [n]rqq
r(r−1)

2

∞∑
k=0

(
[n]q x

)k

[k]q!
qk(2r+k−1)Eq

(
− [n]q q

k+rx
)

∆r
qfk,k+r−1.

Choosing x = 0, we deduce Dr
qSn,q(f ; 0) = [n]rqq

r(r−1)
2 ∆r

qf0,r−1.
Choosing a = 0 in Theorem 1.1, we obtain

Sn,q(f ;x) =
∞∑

r=0

([n]qx)
r

[r]q!
q

r(r−1)
2 ∆r

qf0,r−1,

which completes the proof. �

Corollary 3.2. Let q ∈ (0, 1) and Sn,q, n ∈ N, be defined by (3.1). For any
f ∈ F (R+) we have

Sn,q(f ;x) =
∞∑

r=0

xr

[
0,

1
[n]q

,
[2]q
q[n]q

, . . . ,
[r]q

qr−1[n]q
; f
]
, x ≥ 0. (3.3)

Proof. The identity (3.3) is obtained from the above theorem and (2.4) by
choosing k = s = 0. �

Corollary 3.3. For all n ∈ N, x ∈ R+ and 0 < q < 1, we have

Sn,q (e0;x) = 1, (3.4)
Sn,q (e1;x) = x, (3.5)

Sn,q (e2;x) = x2 +
1

[n]q
x. (3.6)

Moreover, for m ∈ N0 and 0 < q < 1, the operator Sn,q defined by (3.1)
can be expressed as

Sn,q(em;x) =
m∑

r=0

xr

[
0,

1
[n]q

,
[2]q
q[n]q

, . . . ,
[r]q

qr−1[n]q
; em

]
, x ≥ 0. (3.7)

Proof. Since for any distinct points x0, . . . , xr, the divided difference

[x0, . . . , xr; em] =

 0 if m < r,
1 if m = r,

x0 + . . .+ xr if m = r + 1,

(see e.g. [5, p.63]), the identities (3.4)-(3.7) are obvious. �

Lemma 3.4. For m ∈ N0 and q ∈ (0, 1) we have

Sn,q(em;x) ≤ Am,q(1 + xm), x ≥ 0, n ∈ N, (3.8)

where Am,q is a positive constant depending only on q and m.
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Proof. Let m ∈ N. From (3.7) we get

Sn,q(em;x) ≤ (1 + xm)
m∑

r=1

[
0,

1
[n]q

, . . . ,
[r]q

qr−1[n]q
; em

]
.

Applying the well known Lagrange’s Mean Value Theorem, we can write

Sn,q(em;x) ≤ (1 + xm)
m∑

r=1

(
m
r

)
(ξr)

m−r
,

where 0 < ξr <
[r]q

qr−1[n]q
, 0 < r ≤ m.

Consequently, we have

Sn,q(em;x) ≤ (1 + xm)
m∑

r=1

(
m
r

)
[r]m−r

q

q(r−1)(m−r)[n]m−r
q

≤ (1 + xm)[m]m−1
q

m∑
r=1

(
m
r

)
1

q(r−1)(m−r)qm−r+r2

≤ Am,q(1 + xm),

where

Am,q := [m]m−1
q

(
1 +

1
qm

)m

, m ≥ 1. (3.9)

For m = 0 we can take A0,q = 1
2 . �

Examining relation (3.6) it is clear that the sequence of the operators
(Sn,q)n does not satisfies the conditions of Bohman-Korovkin theorem.

Further on, we consider a sequence (qn)n, qn ∈ (0, 1), such that

lim
n
qn = 1. (3.10)

The condition (3.10) guarantees that [n]qn
→∞ for n→∞.

Theorem 3.5. Let (qn)n be a sequence satisfying (3.10) and let the operators
Sn,qn

, n ∈ N, be defined by (3.1). For any compact J ⊂ R+ and for each
f ∈ C(R+) we have

lim
n→∞

Sn,qn
(f ;x) = f(x), uniformly in x ∈ J.

Proof. Replacing q by a sequence (qn)n with the given conditions, the result
follows from (3.4)-(3.6) and the well-known Bohman-Korovkin theorem (see
[7], pp. 8-9). �

4. Error of approximation

Let α ∈ N. We denote by Bα(R+) the weighted space of real-valued functions
f defined on R+ with the property |f(x)| ≤Mf (1+xα) for all x ∈ R+, where
Mf is a constant depending on the function f . We also consider the weighted
subspace Cα(R+) of Bα(R+) given by

Cα(R+) := {f ∈ Bα(R+) : f continuous on R+} .
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Endowed with the norm ‖·‖α, where ‖f‖α := sup
x∈R+

|f(x)|
1+xα , both Bα(R+)

and Cα(R+) are Banach spaces.
We can give estimates of the error |Sn,q(f ; ·)− f |, n ∈ N, for unbounded

functions by using a weighted modulus of smoothness associated to the space
Bα (R+).

We consider

Ωα(f ; δ) := sup
x≥0

0<h≤δ

|f(x+ h)− f(x)|
1 + (x+ h)α

, δ > 0, α ∈ N. (4.1)

It is evident that for each f ∈ Bα (R+), Ωα(f ; ·) is well defined and

Ωα(f ; δ) ≤ 2 ‖f‖α , δ > 0, f ∈ Bα (R+) , α ∈ N.
The weighted modulus of smoothness Ωα(f ; ·) possesses the following prop-
erties ([8]).

Ωα(f ;λδ) ≤ (λ+ 1)Ωα(f ; δ), δ > 0, λ > 0, (4.2)
Ωα(f ;nδ) ≤ nΩα(f ; δ), δ > 0, n ∈ N,

lim
δ→0+

Ωα(f ; δ) = 0.

Theorem 4.1. Let (qn)n be a sequence satisfying (3.10). Let q0 = inf
n∈N

qn and

α ∈ N. For each n ∈ N and every f ∈ Bα (R+) one has

|Sn,qn
(f ;x)− f(x)| ≤ Cα,q0(1 + xα+1)Ωα

(
f ;
√

1/[n]qn

)
, x ≥ 0, (4.3)

where Cα,q0 is a positive constant independent of f and n.

Proof. Let n ∈ N, f ∈ Bα (R+) and x ≥ 0 be fixed. Setting µx,α(t) :=
1 + (x+ |t− x|)α and ψx(t) := |t− x|, t ≥ 0, relations (4.1) and (4.2) imply

|f(t)− f(x)| ≤ (1 + (x+ |t− x|)α)
(

1 +
1
δ
|t− x|

)
Ωα(f ; δ)

= µx,α(t)
(

1 +
1
δ
ψx(t)

)
Ωα(f ; δ), t ≥ 0.

By using the Cauchy inequality for linear positive operators which pre-
serve the constants, we obtain

|Sn,qn(f ;x)− f(x)| ≤ Sn,qn (|f − f(x)| ;x) (4.4)

≤
(
Sn,qn

(µx,α;x) +
1
δ
Sn,qn

(µx,αψx;x)
)

Ωα(f ; δ)

≤
√
Sn,qn(µ2

x,α;x)
(

1 +
1
δ

√
Sn,qn(ψ2

x;x)
)

Ωα(f ; δ).

Since

µ2
x,α(t) = (1 + (x+ |t− x|)α)2 ≤ 2

(
1 + (2x+ t)2α

)
≤ 2

(
1 + 22α

(
(2x)2α + t2α

))
,
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and taking into account (3.4) and (3.8) we get

Sn,qn
(µ2

x,α;x) ≤ B2
α,qn

(1 + x2α), (4.5)

where B2
α,qn

= 2α+1
(
22α +A2α,qn

)
.

According to (3.4)-(3.6) we have Sn,qn
(ψ2

x;x) = 1
[n]qn

x.

By choosing δ :=
√

1
[n]qn

in (4.3), from (4.5) follows

|Sn,qn
(f ;x)− f(x)| ≤ Bα,qn

√
1 + x2α(1 +

√
x)Ωα

(
f ;

√
1

[n]qn

)
.

Finally, since 1 +
√
x ≤

√
2
√

1 + x and (1 + x2α)(1 + x) ≤ 4(1 + xα+1)
for x ≥ 0 and α ∈ N, we obtain

|Sn,qn
(f ;x)− f(x)| ≤ Cα,q0(1 + xα+1)Ωα

(
f ;
√

1/[n]qn

)
, x ≥ 0,

where q0 := inf
n∈N

qn and Cα,q0 := 2
√

2Bα,q0 . �

On the basis of Theorem 4.1 we give the following global estimate.

Corollary 4.2. Let (qn)n be a sequence satisfying (3.10) and α ∈ N. For each
n ∈ N and every f ∈ Bα (R+) one has

‖Sn,qn
(f ; ·)− f‖α+1 ≤ Cα,q0Ωα

(
f ;
√

1/[n]qn

)
,

where Cα,q0 is a positive constant independent of f and n.

Remark 4.3. For any function f ∈ Bα (R+) , α ∈ N, the rate of convergence
of the operators Sn,qn

(f ; ·) to f in weighted norm is
√

1
[n]qn

which is faster

than
√

bn

[n]qn
obtained in [2].
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Abstract. We associate to a given sequence of positive linear integral
operators a sequence of discrete operators and investigate the relation-
ship between the two sequences. Several examples illustrate the general
results.
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1. Introduction

Let In : C[a, b] −→ C[a, b], n ≥ 1, be a sequence of positive linear operators
of the form

In(f ;x) =
n∑

k=0

hn,k(x)An,k(f), f ∈ C[a, b], x ∈ [a, b],

where hn,k ∈ C[a, b], hn,k ≥ 0 and

An,k(f) =
∫ b

a

f(t)dµn,k(t)

with µn,k probability Borel measures on [a, b], n ≥ 1, k = 0, 1, . . . , n.
Let xn,k ∈ [a, b] be the barycenter of µn,k, i.e.,

xn,k =
∫ b

a

tdµn,k(t).

We associate with the sequence (In) the sequence of operators

Dn(f ;x) =
n∑

k=0

hn,k(x)f(xn,k).

Generally speaking, the operators Dn are simpler than In. We investigate the
properties of Dn in relation with those of In.
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2. Some examples

For n ≥ 1 and k = 0, 1, . . . , n let

pn,k(x) =
(

n

k

)
xk(1− x)n−k, x ∈ [0, 1].

Example 2.1. Let Un : C[0, 1] −→ C[0, 1] be the genuine Bernstein-Durrmeyer
operators (see [3] and the references therein) defined by

Un(f ;x) := f(0)pn,0(x) + f(1)pn,n(x) +

+(n− 1)
n−1∑
k=1

pn,k(x)
∫ 1

0

pn−2,k−1(t)f(t)dt.

It is easy to see that the associated operators are the classical Bernstein
operators

Bn(f ;x) =
n∑

k=0

pn,k(x)f
(k

n

)
.

Example 2.2. Consider the sequences of real numbers an and bn such that
0 ≤ an < bn ≤ 1, n ≥ 1. In [1] the authors introduced and investigated the
operators

Cn(f ;x) =
n∑

k=0

pn,k(x)
( n + 1

bn − an

∫ k+bn
n+1

k+an
n+1

f(t)dt
)
,

where f ∈ C[0, 1] and x ∈ [0, 1].
The associated operators are the Stancu type operators (see [15])

Sn(f ;x) =
n∑

k=0

pn,k(x)f
(2k + an + bn

2(n + 1)

)
.

In particular, for an = 0 and bn = 1, (Cn) becomes the sequence of classical
Kantorovich operators.
Example 2.3. Let a, b > −1 and α ≥ 0. Consider the positive linear functionals
Tn,k : C[0, 1] −→ R,

Tn,k(f) :=

∫ 1

0
f(t)tck+a(1− t)c(n−k)+bdt

B(ck + a + 1, c(n− k) + b + 1)
,

where c := cn := [nα] and B is the Beta function.
For f ∈ C[0, 1] and x ∈ [0, 1] let

Pn(f ;x) :=
n∑

k=0

pn,k(x)Tn,k(f), ;n ≥ 1.

The sequence of positive linear operators (Pn) was introduced by D.
Mache (see [5], [6]); it represents a link between the Durrmeyer operators with
Jacobi weights (obtained for α = 0) and the Bernstein operators (obtained as
a limiting case when α −→ ∞). Concerning the properties of the operators
Pn and their relationship with Durrmeyer, Bernstein, and other operators,
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see [5], [6], [8], [9], [10], [11]. The semigroup of operators, represented in terms
of iterates of Pn, is investigated in [2], [9], [10], [11], [12].

Let ei(x) = xi, x ∈ [0, 1], i = 0, 1, . . . . Then Tn,k(e0) = 1 and the
barycenter of the probability Radon measure Tn,k is

Tn,k(e1) =
ck + a + 1

cn + a + b + 2
.

As in Section 1, we associate with the sequence (Pn) the simpler se-
quence of positive linear operators (Vn) defined, for f ∈ C[0, 1] and x ∈ [0, 1],
by

Vn(f ;x) :=
n∑

k=0

pn,k(x)f
( ck + a + 1

cn + a + b + 2

)
.

When a = b = −1, or when α −→∞, we get the classical Bernstein operators;
when α = 0, the operators Vn reduce to the operators considered by D.D.
Stancu in [15].

In the next sections we investigate the properties of the operators (Vn)
in connection with the properties of (Pn); see also [7].

3. Approximation properties

By direct computation we get

Vne0 = e0,

Vne1 =
cne1 + (a + 1)e0

cn + a + b + 2
,

Vne2 =
c2n(n− 1)e2 + cn(c + 2a + 2)e1 + (a + 1)2e0

(cn + a + b + 2)2
.

Let us remark that
lim

n→∞
Vnei = ei, i = 0, 1, 2,

uniformly on [0, 1].
From the classical Korovkin Theorem we infer:

Proposition 3.1. For all f ∈ C[0, 1],

lim
n→∞

Vnf = f, uniformly on [0, 1].

In the sequel we shall use the inequality

|L(f)− f(b)| ≤ (L(e2)− b2)
‖f ′′‖

2
, f ∈ C2[0, 1],

where L is a probability Radon measure on [0, 1], b = L(e1) is the barycenter
of L, and ‖ · ‖ is the uniform norm. To prove this inequality, it suffices to
apply the barycenter inequality

L(h) ≥ h(b), h ∈ C[0, 1] convex,

to the convex functions
||f ′′||

2
e2 ± f.
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Theorem 3.2. For n ≥ 1, x ∈ [0, 1], and f ∈ C2[0, 1] we have

|Pn(f ;x)− Vn(f ;x)| ≤
c2n(n− 1)x(1− x) + cn(b− a)x + cn(a + 1) + (a + 1)(b + 1)

2(cn + a + b + 2)2(cn + a + b + 3)
‖f ′′‖.

Proof. Since the barycenter of Tn,k is

ck + a + 1
cn + a + b + 2

,

we have

|Tn,k(f)− f
( ck + a + 1

cn + a + b + 2

)
| ≤

(
Tn,k(e2)−

( ck + a + 1
cn + a + b + 2

)2)‖f ′′‖
2

=
(ck + a + 1)(c(n− k) + b + 1)

(cn + a + b + 2)2(cn + a + b + 3)
‖f ′′‖

2
.

Consequently,

|Pn(f ;x)− Vn(f ;x)| ≤ ‖f ′′‖
2

n∑
k=0

pn,k(x)
(ck + a + 1)(c(n− k) + b + 1)

(cn + a + b + 2)2(cn + a + b + 3)

=
‖f ′′‖

2
c2n(n− 1)x(1− x) + cn(b− a)x + cn(a + 1) + (a + 1)(b + 1)

(cn + a + b + 2)2(cn + a + b + 3)
.

�

Let us remark that for α = a = b = 0 the operators Pn reduce to the
classical Durrmeyer operators Mn. Consequently, the previous theorem yields

Corollary 3.3. For n ≥ 1, x ∈ [0, 1] and f ∈ C2[0, 1] we have

|Mn(f ;x)−
n∑

k=0

pn,k(x)f
(k + 1

n + 2

)
| ≤

≤ n(n− 1)x(1− x) + n + 1
2(n + 2)2(n + 3)

||f ′′||.

4. Asymptotic formulae

The moments of the operator Vn are defined by

Mn,m(x) := Vn((e1 − xe0)m;x) =
n∑

k=0

( ck + a + 1
cn + a + b + 2

− x
)m

pn,k(x).

Let us remark that

M ′
n,m(x) =

n∑
k=0

( ck + a + 1
cn + a + b + 2

− x
)m

p′n,k(x)−mMn,m−1(x).

Since
x(1− x)p′n,k(x) = (k − nx)pn,k(x),
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we get

x(1− x)M ′
n,m(x) =

n∑
k=0

( ck + a + 1
cn + a + b + 2

− x
)m

(k − nx)pn,k(x)

−mx(1− x)Mn,m−1(x) =

=
cn + a + b + 2

c

n∑
k=0

( ck + a + 1
cn + a + b + 2

− x
)m+1

pn,k(x)

− a + 1− (a + b + 2)x
c

n∑
k=0

( ck + a + 1
cn + a + b + 2

− x
)m

pn,k(x)

−mx(1− x)Mn,m−1(x).

Consequently, the following recurrence formula for the moments of Vn is valid:

Theorem 4.1. For all n ≥ 1 and m ≥ 1,

(cn + a + b + 2)Mn,m+1(x) = cx(1− x)M ′
n,m(x)+

+ (a + 1− (a + b + 2)x)Mn,m(x) + cmx(1− x)Mn,m−1(x).

It is easy to verify that

Mn,0(x) = 1, Mn,1(x) =
a + 1− (a + b + 2)x

cn + a + b + 2
.

By using the recurrence formula we get

Mn,2(x) =
c2nx(1− x) + (a + 1− (a + b + 2)x)2

(cn + a + b + 2)2
.

The same recurrence formula can be used in order to verify that

Mn,m(x) = O(n−[ m+1
2 ]), m ≥ 0,

uniformly for x ∈ [0, 1].
Now the assumptions of Sikkema’s theorem [14] are fulfilled; conse-

quently, we have the following Voronovskaja type formula:

Theorem 4.2.

lim
n→∞

n(Vn(f ;x)−f(x))=

{
x(1−x)

2 f ′′(x) + (a + 1− (a + b + 2)x)f ′(x), α = 0
x(1−x)

2 f ′′(x), α > 0,

for all f ∈ C[0, 1] such that f ′′(x) exists and is finite.Moreover, if f ∈
C2[0, 1], the convergence is uniform on [0, 1].

Concerning the (similar) Voronovskaja formula for the operators Pn, see
[10] and the references given there.
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5. Iterates of Vn

Let r be a non-negative integer, r ≤ n. It is well-known (see, e.g., [4] and the
references given there) that

Bner =
n(n− 1) . . . (n− r + 1)

nr
er + terms of lower degree,

where Bn are the classical Bernstein operators.
Let

ϕr :=
(cne1 + (a + 1)e0

cn + a + b + 2

)r

.

Then, for k = 0, 1, . . . , n,

ϕr(
k

n
) =

( ck + a + 1
cn + a + b + 2

)r

,

so that

Vner = Bnϕr =
( cn

cn + a + b + 2

)r

Bner + terms of lower degree

=
n(n− 1) . . . (n− r + 1)

(cn + a + b + 2)r
crer + terms of lower degree.

It follows that:

Theorem 5.1. The numbers

λr :=
n(n− 1) . . . (n− r + 1)

(cn + a + b + 2)r
cr, r = 0, 1, . . . , n,

are eigenvalues of Vn, and the eigenfunction corresponding to λr can be cho-
sen as a monic polynomial of degree r.

Now let us describe Vn as

Vn(f ;x) =
n∑

k=0

pn,k(x)f
( k + a+1

c

n + a+b+2
c

)
Under this form we see that Vn coincides with the operator S<0,β,γ>

n defined
in [4;(1)], if

β :=
a + 1

c
, γ :=

a + b + 2
c

.

Now the above Theorem 5.1 can be considered also as a consequence of The-
orem 1 in [4].

The over-iterates of Vn can be studied by using the results of [4] or [13].
Indeed, let

aj :=
j + β

n + γ
=

cj + a + 1
cn + a + b + 2

, j = 0, 1, . . . , n.

From [4;(9), (11), (12)] or from [13; Th. 5.3] we deduce for f ∈ C[0, 1] :

lim
m→∞

V m
n f = e0

n∑
j=0

djf
( cj + a + 1

cn + a + b + 2

)
,
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uniformly on [0, 1], where (d0, d1, . . . , dn) is the unique solution of the system pn,0(a0) . . . pn,0(an)
. . . . . . . . .

pn,n(a0) . . . pn,n(an)

  d0

. . .
dn

 =

 d0

. . .
dn


satisfying d0 ≥ 0, . . . , dn ≥ 0, d0 + · · ·+ dn = 1.

6. Shape preserving properties

For each m ≥ 0 consider the function

ϕm(t) =
( cnt + a + 1

cn + a + b + 2

)m

, t ∈ [0, 1].

Let Bn be the classical Bernstein operators on C[0, 1]. Then we have

Vnem = Bnϕm, n ≥ 1.

Consequently, the technique used in [16, Section 25.2] can be applied; as in
[16, Cor.25.2] we get

Theorem 6.1. If 0 ≤ m ≤ n and f ∈ C[0, 1] is convex of order m, then Vnf
is convex of order m.

For convex functions of order 1, i.e., usual convex functions, we have
also

Theorem 6.2. If f ∈ C[0, 1] is convex, then

Pn(f ;x) ≥ Vn(f ;x) ≥ f
( cnx + a + 1

cn + a + b + 2

)
, x ∈ [0, 1].

Proof. Let f ∈ C[0, 1] be convex, and x ∈ [0, 1]. From the barycenter inequal-
ity we know that

Tn,k(f) ≥ f
( ck + a + 1

cn + a + b + 2

)
, k = 0, 1, . . . , n,

which immediately yields

Pn(f ;x) ≥ Vn(f ;x).

On the other hand, consider the probability Radon measure

g −→ Vn(g;x), g ∈ C[0, 1].

The corresponding barycenter is

Vn(e1;x) =
cnx + a + 1

cn + a + b + 2
.

Again by the barycenter inequality we get

Vn(f ;x) ≥ f
( cnx + a + 1

cn + a + b + 2

)
. �
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vol.142, 143-152, Birkhäuser Verlag, Basel, 2002.

[11] Rasa, I., Semigroups associated to Mache operators (II), In: Trends and Ap-
plications in Constructive Approximation, (Eds.) M.G. de Bruin, D.H. Mache
and J. Szabados, ISNM vol. 151, 225-228, Birkhäuser Verlag, Basel, 2005.
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Stud. Univ. Babeş-Bolyai Math. 56(2011), No. 2, 545–549

Area preserving maps from rectangles to
elliptic domains

Daniela Roşca

Abstract. We construct a bijection from R
2 to R

2, which maps, for each
α ∈ (0,∞), rectangles of arbitrary edges 2αL1, 2αL2 onto ellipses with
semi-axes αa, αb, with a, b satisfying 4L1L2 = πab. This bijection pre-
serves area and thus allows us to construct uniform and refinable grids
on elliptic domains starting from uniform and refinable grids on rectan-
gles.

Mathematics Subject Classification (2010): 65M50, 65N50.

Keywords: Uniform grid, refinable grid, hierarchical grid, equal area pro-
jection, ellipse.

1. Introduction

Uniform and refinable grids (UR) are useful in many applications, like con-
struction of multiresolution analysis and wavelets, or for solving numerically
partial differential equations. While on a rectangle or on other polygonal do-
mains the construction of UR grids is trivial, it is not immediate on an elliptic
domain or on a disc.

In this paper we construct an area preserving bijection from R
2 to R

2,
which maps rectangles of arbitrary edges 2αL1, 2αL2 onto ellipses with semi-
axes αa, αb, with a, b satisfying 4L1L2 = πab. This allows us to transport a
rectangular grid to an elliptic grid, preserving the area of the cells. In partic-
ular, any uniform1 rectangular grid is mapped into a uniform elliptic grid. A
refinement process is needed when a grid is not fine enough to solve a problem
accurately. A uniform refinement consists in dividing a cell into a given num-
ber of smaller cells with the same area. With the procedure described here,
any uniform refinement of a rectangular grid leads to a uniform refinement
of the corresponding elliptic grid.

1A grid is uniform if its cells have the same area.
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In the particular case of the disc, such a bijection was constructed in a
previous paper [1] and helped us to construct uniform grids on the sphere.

The particular case when 2L1 =
√

πa and 2L2 =
√

πb (the semi-axes
a, b of the ellipse are proportional to the edges 2L1, 2L2 of the rectangle) was
considered in [2]. Here we consider the general case when the edges of the
rectangle are arbitrary and the semi-axes satisfy the condition 4L1L2 = πab,
implied by the fact that the rectangle and the ellipse have the same area.
Also, we use another method of construction than the one in [1, 2].

2. Construction of an area preserving bijection in R
2

Consider the ellipse Ea,b of semi-axes a and b, a, b > 0, of equation

x2

a2
+

y2

b2
= 1,

and the rectangle RL1,L2
with edges of lengths 2L1 and 2L2, defined as

RL1,L2
= {(x, y) ∈ R

2, |x| = L1, |y| = L2}.

The domains enclosed by Ea,b and RL1,L2
will be denoted by Ea,b and

RL1,L2
, respectively. We will construct a bijection T a,b

L1,L2
: R

2 → R
2 which

maps each rectangle RαL1,αL2
onto the ellipse Eαa,αb and has the area pre-

serving property

A(D) = A(T a,b
L1,L2

(D)), for every domain D ⊆ R
2. (2.1)

Here A(D) denotes the area of D. Thus, A(RL1,L2
) = A(Ea,b) implies

πab = 4L1L2.

We focus for the moment on the first octant I of the plane,

I = IL1,L2
= {(x, y) ∈ R

2, 0 ≤ L1y ≤ L2x}.

The map T a,b
L1,L2

will be defined in such a way that each half-line dm ⊂ I

of equation y = mx (0 ≤ m ≤ L2

L1

) is mapped onto the half-line dϕ(m) of

equation Y = ϕ(m)X, such that

0 ≤ ϕ(m) ≤
b

a
, for 0 ≤ m ≤

L2

L1
.

Let Q = Q(L1, mL1) and let Q′ = Q′(L1, 0) be its projection on Ox. The
area of the triangle OQQ′ is

A△ =
mL2

1

2
=

yL2
1

2x
.

We denote by (X, ϕ(m)X) the coordinates of the point P = T a,b
L1,L2

(Q) ∈ Ea,b.

The area of the portion of the elliptic domain Ea,b located between the axis
OX and the line Y = ϕ(m)X will be

Ae =
abθ

2
,
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where

θ = arctan
aϕ(m)

b
is the angle between the axis OX and OP. Next, we impose the area preserv-
ing property A△ = Ae, which yields

θ =
πL1y

4L2x
,

and therefore

ϕ(m) =
b

a
tan

πL1y

4L2x
.

It is easy to see that ϕ has the following properties:

ϕ(0) = 0, ϕ

(
L2

L1

)
=

b

a
, and

0 ≤ ϕ(m) ≤
b

a
, for 0 ≤ m ≤

L2

L1
.

Consider now M = M(x, mx) and N = T a,b
L1,L2

(M) = (X, ϕ(m)X),
which belongs to an ellipse Eαa,αb for a certain α. The portion of the elliptic

domain Eαa,αb, located between ON and OX , has the area

Ae,α =
abθα2

2
,

whereas the area of the triangle OMM ′, with M ′ = M ′(x, 0) is mx2/2.
Again, the area preserving property implies this time

α = x

√
m

abθ
= 2x

√
L2

L1
·

1

πab
.

Finally, from N ∈ Eαa,αb we obtain

X2

a2
+

X2ϕ2(m)

b2
= α2,

and therefore

X =
abα√

b2 + a2ϕ2(m)
=

aα
√

1 + tan2 θ
= aα cos θ = 2x

√
aL2

bL1π
cos

πL1y

4L2x
,

Y = ϕ(m)X = 2x

√
bL2

aL1π
sin

πL1y

4L2x
.

A simple calculation shows that the Jacobian of T a,b
L1,L2

is 1 and therefore

relation (2.1) is fulfilled for domains D ⊆ I.
By similar arguments for the other seven octants, we find that the func-

tion T a,b
L1,L2

: R
2 → R

2 which maps rectangles onto ellipses and preserves
areas is defined as follows:

• For L1|y| ≤ L2|x|,

(x, y) 7−→ (X, Y ) =

(
2x

√
aL2

bL1π
cos

πL1y

4L2x
, 2x

√
bL2

aL1π
sin

πL1y

4L2x

)
;
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Figure 1. A horizontal grid and its image grid on the el-
liptic domain. The image of the bold line on the left is the
bold curve on the right.

• For L2|x| ≤ L1|y|,

(x, y) 7−→ (X, Y ) =

(
2y

√
aL1

bL2π
sin

πL2x

4L1y
, 2y

√
bL1

aL2π
cos

πL2x

4L1y

)
.

For the origin we take T a,b
L1,L2

(0, 0) = (0, 0). We can prove that T a,b
L1,L2

is
continuous and bijective and its inverse is given by the following formulas:

• For a|Y | ≤ b|X |,

(X, Y ) 7−→ (x, y) = sign(X)

√
X2 +

a2

b2
Y 2

(√
π

2
,

2b

a
√

π
arctan

aY

bX

)
;

• For b|X | ≤ a|Y |,

(X, Y ) 7−→ (x, y) = sign(Y )

√
b2

a2
X2 + Y 2

(
2a

b
√

π
arctan

bX

aY
,

√
π

2

)
.

3. Uniform and refinable grids

The area preserving maps constructed in the previous section can be used
for the construction of UR grids on elliptic domains, by mapping any UR
rectangular grid.

Figure 1 shows the image of horizontal lines by an application T a,b
L1,L2

. In
Figures 2 and 3 we show two grids on an elliptic domain and its refinement,
both images of a rectangular grid.

Of course, other 2D uniform grids on a rectangle can be constructed,
including triangular grids with different types of refinements.

Acknowledgement. The work has been co-funded by the Sectoral Operational
Programme Human Resources Development 2007-2013 of the Romanian Min-
istry of Labor, Family and Social Protection through the Financial Agreement
POSDRU/89/1.5/S/62557.
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Figure 2. A uniform grid on a rectangle and its image - a
uniform grid on the elliptic domain.

Figure 3. A refinement of the grid in Figure 2 and its image
- a refinement of the elliptic grid in Figure 2.
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On Grüss-type inequalities for positive
linear operators

Maria-Daniela Rusu

Abstract. The classical form of Grüss’ inequality gives an estimate of
the difference between the integral of the product and the product of the
integrals of two functions in C[a, b]. It was first published by G. Grüss
in [7]. The aim of this article is to discuss Grüss-type inequalities in
C(X), the set of continuous functions defined on a compact metric space
X. We consider a functional L(f) := H(f ; x), where H : C(X) → C(X)
is a positive linear operator and x ∈ X is fixed. Generalizing a result of
Acu et al. [1], a quantitative Grüss-type inequality is obtained in terms
of the least concave majorant of the classical modulus of continuity.
The interest is in the degree of non-multiplicativity of the functional
L. Moreover, for the case X = [a, b] we improve the inequality and
apply it to various known operators, in particular those of Bernstein-,
convolution- and Shepard-type.

Mathematics Subject Classification (2010): 47A63, 41A25, 47B38.

Keywords: Grüss-type inequality, compact metric space, least concave
majorant of the modulus of continuity, convolution-type operator, Shep-
ard interpolation operator.

1. Introduction

The classical form of Grüss’ inequality gives an estimate of the difference
between the integral of the product and the product of the integrals of two
functions in C[a, b]. It was first published by G. Grüss in [7]. The aim of this
article is to discuss Grüss-type inequalities in C(X), the set of continuous
functions defined on a compact metric space X. We consider a functional
L(f) := H(f ;x), where H : C(X) → C(X) is a positive linear operator
and x ∈ X is fixed. Generalizing a result of Acu et al. [1], a quantitative
Grüss-type inequality is obtained in terms of the least concave majorant of
the classical modulus of continuity. The interest is in the degree of non-
multiplicativity of the functional L. Moreover, for the case X = [a, b] we
improve the inequality and apply it to various known operators, in particular
those of Bernstein-, convolution- and Shepard-type.



552 Maria-Daniela Rusu

2. Auxiliary results

Before giving our main results, we need some introductory notions that will
be used in the sequel. Let C(X) = CR((X, d)) represent the Banach lattice of
real-valued continuous functions defined on the compact metric space (X, d).
Then we have the following definition:

Definition 2.1. Let f ∈ C(X). If, for t ∈ [0,∞), the quantity

ωd(f ; t) := sup {|f(x)− f(y)| , d(x, y) ≤ t}

is the usual modulus of continuity, then its least concave majorant is given
by

ω̃d(f, t) =

 sup
0≤x≤t≤y≤d(X),x 6=y

(t−x)ωd(f,y)+(y−t)ωd(f,x)
y−x for 0 ≤ t ≤ d(X) ,

ωd(f, d(X)) if t > d(X) ,

and d(X) < ∞ is the diameter of the compact space X.

For 0 < r ≤ 1, let Lipr be the set of all functions g ∈ C(X) with the
property that

|g|Lipr
:= sup

d(x,y)>0

|g(x)− g(y)| /dr(x, y) < ∞.

Lipr is a dense subspace of C(X) equipped with the supremum norm ‖·‖∞,
and |·|Lipr

is a seminorm on Lipr.
We also need to define the K−functional with respect to (Lipr, |·|Lipr

),
which is given by

K (t, f ;C(X), Lipr) := inf
g∈Lipr

{
‖f − g‖∞ + t · |g|Lipr

}
,

for f ∈ C(X) and t ≥ 0.
Another tool for some proofs that follow is a lemma of Brudny̌i (see [10])

that gives the relationship between the K-functional and the least concave
majorant of the modulus of continuity.

Lemma 2.2. Every continuous function f on X satisfies

K

(
t

2
, f ;C(X), Lip1

)
=

1
2
· ω̃d(f, t), 0 ≤ t ≤ d(X).

In the case X = [a, b], we also have

K

(
t

2
, f ;C[a, b], C1[a, b]

)
:= inf

g∈C1[a,b]

{
‖f − g‖∞ +

t

2
· ‖g′‖∞

}
=

1
2
· ω̃(f ; t), t ≥ 0.
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3. Grüss-type inequalities in a compact metric space

What we do here is generalize Theorem 4 in [1] in the case of a compact
metric space.

We consider (X, d) a compact metric space, x ∈ X fixed, with diameter
d(X) > 0. Now let H : C(X) → C(X) be a positive linear operator reproduc-
ing constant functions. We define the positive linear functional H(·;x) and
consider the positive bilinear functional

D(f, g) := H(f · g;x)−H(f ;x) ·H(g;x).

It was remarked after Theorem 4 in [1] that the assertion given there
can be generalized by replacing ([a, b], |·|) by a compact metric space (X, d),
the second moment H((e1 − x)2;x) by H(d2(·, x);x), and the K-functional
K(·, f ;C[a, b], C1[a, b]) by K(·, f ;C(X), Lip1).

We then obtain the following result:

Theorem 3.1. If f, g ∈ C(X), (X, d) a compact metric space and x ∈ X fixed,
then the inequality

|D(f, g)| ≤ 1
4
ω̃d

(
f ; 4
√

H(d2(·, x);x)
)
· ω̃d

(
g; 4
√

H(d2(·, x);x)
)

(3.1)

holds.

Proof. Let f, g ∈ C[a, b] and r, s ∈ Lip1. We use the Cauchy-Schwarz inequal-
ity for positive linear functionals:

|H(f ;x)| ≤ H(|f | ;x) ≤
√

H(f2;x) ·H(1;x) =
√

H(f2;x),

so we have
D(f, f) = H(f2;x)−H(f ;x)2 ≥ 0.

Hence D is a positive bilinear form on C(X). Using Cauchy-Schwarz for D
gives us

|D(f, g)| ≤
√

D(f, f)D(g, g) ≤ ‖f‖∞ · ‖g‖∞ .

Because H : C(X) → C(X) is a positive linear operator reproducing constant
functions, H(f ;x), with fixed x ∈ X, is a positive linear functional that we
can represent as follows

H(f ;x) :=
∫

X

f(t)dµx(t),

where µx is a Borel probability measure on X, i.e.,
∫

X
dµx(t) = 1. For r as

above, we have

D(r, r) = H(r2;x)−H(r;x)2 =
∫

X

r2(t)dµx(t)−
(∫

X

r(u)dµx(u)
)2

=
∫

X

(
r(t)−

∫
X

r(u)dµx(u)
)2

dµx(t)

=
∫

X

(∫
X

(r(t)− r(u)) dµx(u)
)2

dµx(t)
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≤
∫

X

(∫
X

(r(t)− r(u))2 dµx(u)
)

dµx(t)

≤ |r|2Lip1

∫
X

(∫
X

d2(t, u)dµx(u)
)

dµx(t)

≤ |r|2Lip1

∫
X

(∫
X

[d(t, x) + d(x, u)]2 dµx(u)
)

dµx(t)

= |r|2Lip1

∫
X

∫
X

{
d2(t, x) + 2 · d(t, x) · d(x, u) + d2(x, u)

}
dµx(u)dµx(t)

= |r|2Lip1

[∫
X

d2(t, x)dµx(t)+2

∫
X

∫
X

d(t, x)d(x, u)dµx(u)dµx(t)+

∫
X

d2(x, u)dµx(u)

]
= |r|2Lip1

[
H(d2(·, x); x)+2

(∫
X

d(t, x)dµx(t)

)(∫
X

d(u, x)dµx(u)

)
+H(d2(·, x); x)

]
= |r|2Lip1

[
H(d2(·, x);x) + 2H(d(·, x);x) ·H(d(·, x);x) + H(d2(·, x);x)

]
= |r|2Lip1

[
2H(d2(·, x);x) + 2H(d(·, x);x)2

]
≤ |r|2Lip1

[
2H(d2(·, x);x) + 2H(d2(·, x);x)

]
= 4 |r|2Lip1

·H(d2(·, x);x).

For r, s as above, we have the estimate

|D(r, s)| ≤
√

D(r, r)D(s, s) ≤ 4 |r|Lip1
· |s|Lip1

·H(d2(·, x);x).

Moreover, for f ∈ C(X) and s ∈ Lip1, the inequality

|D(f, s)| ≤
√

D(f, f)D(s, s) ≤ 2 ‖f‖∞ · |s|Lip1
·
√

H(d2(·, x);x)

holds. Similarly, if r ∈ Lip1 and g ∈ C(X), we have

|D(r, g)| ≤
√

D(r, r)D(g, g) ≤ 2 ‖g‖∞ · |r|Lip1
·
√

H(d2(·, x);x).

Now let f, g ∈ C(X) be fixed and r, s ∈ Lip1 arbitrary. Then

|D(f, g)|
= |D(f − r + r, g − s + s)|
≤ |D(f − r, g − s)|+ |D(f − r, s)|+ |D(r, g − s)|+ |D(r, s)|

≤ ‖f − r‖∞ · ‖g − s‖∞ + 2 ‖f − r‖∞ · |s|Lip1
·
√

H(d2(·, x);x)

+ 2 ‖g − s‖∞ · |r|Lip1
·
√

H(d2(·, x);x) + 4 |r|Lip1
· |s|Lip1

·H(d2(·, x);x)

= ‖f − r‖∞ · {‖g − s‖∞ + 2 |s|Lip1
·
√

H(d2(·, x);x)}

+ 2 |r|Lip1
·
√

H(d2(·, x);x) · {‖g − s‖∞ + 2 |s|Lip1
·
√

H(d2(·, x);x)}

= {‖f − r‖∞ + 2 |r|Lip1

√
H(d2(·, x);x)}

· {‖g − s‖∞ + 2 |s|Lip1

√
H(d2(·, x);x)}.
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We now pass to the infimum over r and s, respectively, which leads us to

|D(f, g)|

≤ K
(√

4H(d2(·, x);x), f ;C(X), Lip1

)
K
(√

4H(d2(·, x);x), g;C(X), Lip1

)
=

1
2
ω̃
(
f ; 2 ·

√
4H(d2(·, x);x)

)
· 1
2
ω̃
(
g; 2 ·

√
4H(d2(·, x);x)

)
=

1
4
ω̃
(
f ; 4
√

H(d2(·, x);x)
)
· ω̃
(
g; 4
√

H(d2(·, x);x)
)

.

This ends our proof. �

3.1. Shepard-type operators

The latter result from Theorem 3.1 can be applied to Shepard-type operators
defined in the general setting. An example of such Shepard-type operators
goes back to the work of I.K. Crain and B.K. Bhattacharyya [3] and D.
Shepard [11] and was first investigated by W.J. Gordon and J.A. Wixom [6].
Other important references are e.g. the Habilitationsschrift [4] and the pa-
per [5], both by H. Gonska.

In both of the latter references, we have the following:

Definition 3.2. Let (X, d) be a metric space and let x1, . . . , xn be a finite
collection of distinct points in X. We further suppose that for each n-tuple
(x1, . . . , xn) we have a finite given sequence (µ1, . . . , µn) of real numbers µi >
0. Then the Crain-Bhattacharyya-Shepard (CBS) operator is given by

Sn(f ;x) := Sµ1,...,µn
x1,...,xn

(f, x)

:=

{∑n
i=1 f(xi) · d(x,xi)

−µi∑n
l=1 d(x,xl)

−µl
, x 6∈ {x1, . . . , xn}

f(xi) , otherwise.

Here x ∈ X and f is a real-valued function defined on X.

Remark 3.3. From the above definition, we can state that Sn is a positive
linear operator on C(X) that satisfies Sn(1X , x) = 1 for all x ∈ X. Also it
holds that Sn(f, xi) = xi, for all xi, 1 ≤ i ≤ n.

We now restrict ourselves to the simpler case 1 ≤ µ = µ1 = . . . = µn

and denote the corresponding operator by Sµ
n . Now let H := Sµ

n . Then we
have the following main result:

Theorem 3.4. Let f, g ∈ C(X) be two given functions. Then the inequality

|D(f, g)|≤ 1
4
ω̃d

f ; 4

√√√√ n∑
i=1

d(x, xi)2−µ∑n
l=1 d(x, xl)−µ

ω̃d

g; 4

√√√√ n∑
i=1

d(x, xi)2−µ∑n
l=1 d(x, xl)−µ


holds, for x 6∈ {x1, . . . , xn}. For x = xi, |D(f, g)| = 0.
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Proof. If we substitute the CBS operator Sµ
n in the result of Theorem 3.1,

the following inequality

|D(f, g)| = |Sµ
n(f · g;x)− Sµ

n(f ;x) · Sµ
n(g;x)|

≤ 1
4
ω̃d

(
f ; 4
√

Sµ
n(d2(·, x);x)

)
· ω̃d

(
g; 4
√

Sµ
n(d2(·, x);x)

)
holds. The second moment of the CBS-operator can be written as

Sµ
n(d2(·, x);x) =

{∑n
i=1

d(x,xi)
2−µ∑n

l=1 d(x,xl)−µ , x 6∈ {x1, . . . , xn},
0 , otherwise.

(3.2)

Using (3.2) in the previous estimate, we get the claimed result and this ends
our proof. �

Remark 3.5. We can also apply the Grüss-type inequality for the CBS oper-
ator defined on X = [a, b], but we are not doing this here. What will be done
in the sequel is improve the inequality from Theorem 4 in [1] and then apply
it to different types of operators.

4. Grüss-type inequalities in C[a, b]

In a recent paper [1], Grüss-type inequalities in C[a, b] were treated. The
degree of non-multiplicativity of a positive linear operator H : C[a, b] →
C[a, b] that reproduces constant functions was examined. For fixed x ∈ [a, b]
and two functions f, g ∈ C[a, b], the positive linear functional H(·;x) was
defined and the positive bilinear functional

D(f, g) := H(f · g;x)−H(f ;x) ·H(g;x)

was considered. We improve a result from the above stated article (see The-
orem 4) by removing the constant

√
2 in the arguments of the least concave

majorants. The idea of the proof was given by two of the authors of the
article, namely H. Gonska and I. Raşa.

We state and prove the following:

Theorem 4.1. If f, g ∈ C[a, b] and x ∈ [a, b] is fixed, then the inequality

|D(f, g)| ≤ 1
4
ω̃
(
f ; 2
√

H((e1 − x)2;x)
)
· ω̃
(
g; 2
√

H((e1 − x)2;x)
)

holds, where e1 denotes the first monomial given by e1(t) = t, t ∈ [a, b].

Proof. Let f, g ∈ C[a, b] and r, s ∈ C1[a, b]. Just like in the proof of Theorem
4 in [1], we use the Cauchy-Schwarz inequality for positive linear functionals:

|H(f ;x)| ≤ H(|f | ;x) ≤
√

H(f2;x) ·H(1;x) =
√

H(f2;x),

so we have
D(f, f) = H(f2;x)−H(f ;x)2 ≥ 0.

Then we can say that D is a positive bilinear form on C[a, b]. Using Cauchy-
Schwarz for D, we obtain

|D(f, g)| ≤
√

D(f, f)D(g, g) ≤ ‖f‖∞ · ‖g‖∞ .
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As stated before, H : C[a, b] → C[a, b] is a positive linear operator that
reproduces constant functions, so that H(·;x), with fixed x ∈ [a, b], is a
positive linear functional that can be represented as

H(f ;x) =
∫ b

a

f(t)dµx(t),

where µx is a probability measure on [a, b], i.e.,
∫ b

a
dµx(t) = 1. The interest

is in finding an upper bound for the following:

|D(f, g)| = |D(f − r + r, g − s + s)|
≤ |D(f − r, g − s)|+ |D(f − r, s)|+ |D(r, g − s)|+ |D(r, s)| .

What is different from Theorem 4 in [1] is that we replace a part of the
proof with the following results. We first consider Theorem 12 from the same
paper [1]. Let the function h in this theorem be equal to e1. Then we can
write

|D(r, s)| ≤ ‖r′‖∞ · ‖s′‖∞ · |D(e1, e1)|

and we know that

0 ≤ |D(e1, e1)| = H(e2;x)−H(e1;x)2 ≤ H((e1 − x)2;x).

This last inequality is true, because

H((e1 − x)2;x) = H(e2 − 2 · e1 · x + x2;x)

= H(e2;x)− 2 · x ·H(e1;x) + x2 ·H(e0;x)

≥ H(e2;x)−H(e1;x)2

is equivalent to

x2 − 2 · x ·H(e1;x) + H(e1;x)2 = (x−H(e1;x))2 ≥ 0.

We then get

|D(r, s)| ≤ ‖r′‖∞ · ‖s′‖∞ ·H((e1 − x)2;x).

For f − r ∈ C[a, b] and g − s ∈ C[a, b] we have

|D(f − r, g − s)| ≤ ‖f − r‖∞ · ‖g − s‖∞ .

Moreover, if f − r ∈ C[a, b] and s ∈ C1[a, b], then

|D(f − r, s)| ≤
√

D(f − r, f − r) ·D(s, s)

≤ ‖f − r‖∞ · ‖s′‖∞ ·
√

H((e1 − x)2;x)

and similarly, for r ∈ C1[a, b], g − s ∈ C[a, b], we obtain

|D(r, g − s)| ≤ ‖r′‖∞ · ‖g − s‖∞ ·
√

H((e1 − x)2;x).
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If we combine all these inequalities, we have

|D(f, g)| ≤ ‖f − r‖∞ · ‖g − s‖∞ + ‖f − r‖∞ · ‖s′‖∞ ·
√

H((e1 − x)2;x)

+ ‖r′‖∞ · ‖g − s‖∞ ·
√

H((e1 − x)2;x) + ‖r′‖∞ · ‖s′‖∞ ·H((e1 − x)2;x)

= ‖f − r‖∞ ·
{
‖g − s‖∞ + ‖s′‖∞ ·

√
H((e1 − x)2;x)

}
+ ‖r′‖∞ ·

√
H((e1 − x)2;x) ·

{
‖g − s‖∞ + ‖s′‖∞ ·

√
H((e1 − x)2;x)

}
=
{
‖f − r‖∞ + ‖r′‖∞ ·

√
H((e1 − x)2;x)

}
·
{
‖g − s‖∞ + ‖s′‖∞ ·

√
H((e1 − x)2;x)

}
.

We now pass to the infimum with respect to each of r, s and we obtain the
wanted result:

|D(f, g)|

≤ K
(√

H((e1 − x)2;x), f ;C0, C1
)
·K

(√
H((e1 − x)2;x), g;C0, C1

)
=

1
2
ω̃
(
f ; 2
√

H((e1 − x)2;x)
)
· 1
2
ω̃
(
g; 2
√

H((e1 − x)2;x)
)

=
1
4
ω̃
(
f ; 2
√

H((e1 − x)2;x)
)
· ω̃
(
g; 2
√

H((e1 − x)2;x)
)

.

This ends our proof. �

At present it is an open problem if the improved inequality in Theo-
rem 4.1 can be generalized to C(X) with (X, d) a compact metric space.

5. Applications

We can now apply the above improved result for different kinds of operators,
like Bernstein- , convolution- and a special kind of Shepard-type operators.

5.1. Bernstein operator

As a first example, we have the following remark:

Remark 5.1. We consider H := Bn, the Bernstein operator defined by

Bn(f ;x) :=
n∑

k=0

f

(
k

n

)
·
(

n

k

)
· xk(1− x)n−k,

where f ∈ C[0, 1] and x ∈ [0, 1], n = 1, 2, . . .. It is well known that the second
moment of the Bernstein polynomial is equal to

Bn((e1 − x)2;x) =
x(1− x)

n
.
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Using Theorem 4.1, we get the Grüss-type inequality for the Bernstein oper-
ator as follows:

|Bn(fg;x)−Bn(f ;x)Bn(g;x)|

≤ 1
4
ω̃
(
f ; 2
√

Bn((e1 − x)2;x)
)
· ω̃
(
g; 2
√

Bn((e1 − x)2;x)
)

=
1
4
ω̃

(
f ; 2

√
x(1− x)

n

)
· ω̃

(
g; 2

√
x(1− x)

n

)

≤ 1
4
· ω̃
(

f ;
1√
n

)
· ω̃
(

g;
1√
n

)
,

for two functions f, g ∈ C[0, 1].

5.2. Convolution-type operators

These types of operators were treated by many authors, like J.-D. Cao, H.
Gonska and H.-J. Wenz (see [2]). One of the first authors to give the following
definition was H.G. Lehnhoff in [8]:

Definition 5.2. For the case X = [−1, 1], given a function f ∈ C(X) and any
natural number n, the convolution operator Gm(n) is given by

Gm(n)(f, x) :=
1
π
·
∫ π

−π

f(cos(arccos(x) + υ)) ·Km(n)(υ)dυ,

where the kernel Km(n) is a positive and even trigonometric polynomial of
degree m(n) satisfying ∫ π

−π

Km(n)(υ)dυ = π,

meaning that Gm(n)(1, x) = 1 for x ∈ X.

It is clear that Gm(n)(f, ·) is an algebraic polynomial of degree m(n)
and the kernel Km(n) has the following form:

Km(n)(υ) =
1
2

+
m(n)∑
k=1

ρk,m(n) · cos(kυ),

for υ ∈ [−π, π].
We also need another result that goes back to H.G. Lehnhoff [8]:

Lemma 5.3. For x ∈ X the inequality

Gm(n)((e1 − x)2, x)

= x2

{
3
2
− 2 · ρ1,m(n) +

1
2
· ρ2,m(n)

}
+ (1− x2) ·

{
1
2
− 1

2
· ρ2,m(n)

}
holds. Here e1 denotes the first monomial given by e1(t) = t for |t| ≤ 1.

This lemma gives the second moment of the convolution-type operator,
which we will need in the sequel.

Furthermore, we take into account different degrees m(n), different con-
volution operators and Grüss-type inequalities, respectively.
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5.2.1. Convolution-type operator with Fejér-Korovkin kernel. If we consider
degree m(n) = n− 1, for n ∈ N, the Fejér-Korovkin kernel is given by

Kn−1(υ) =
1

n + 1

 sin
(

π
n+1

)
· cos

(
(n + 1)υ

2

)
cos(υ)− cos

(
π

n+1

)
2

with

ρ1,n−1 = cos
(

π

n + 1

)
, ρ2,n−1 =

n

n + 1
cos
(

2π

n + 1

)
+

1
n + 1

.

Using the latter relations, we get

Gn−1

(
(e1 − x)2;x

)
≤
∣∣∣∣32 − 2 · ρ1,n−1 +

1
2
ρ2,n−1

∣∣∣∣+ 1
2
|1− ρ2,n−1|

≤
∣∣∣∣32 − 2 cos

(
π

n + 1

)
+

1
2(n + 1)

+
n

2(n + 1)
cos
(

2π

n + 1

)∣∣∣∣
+

1
2
·
∣∣∣∣1− 1

n + 1
− n

n + 1
· cos

(
2π

n + 1

)∣∣∣∣
≤ 3 ·

(
π

n + 1

)2

+
(

π

n + 1

)2

= 4 ·
(

π

n + 1

)2

.

Having this preamble, we can now state the following result.

Theorem 5.4. If we consider f, g ∈ C(X) and the convolution-type operator
of degree n− 1 with the Fejér-Korovkin kernel, we have

|D(f, g)| = |Gn−1(f · g;x)−Gn−1(f ;x) ·Gn−1(g;x)|

≤ 1
4
ω̃

(
f ;

4π

n + 1

)
· ω̃
(

g;
4π

n + 1

)
= O

(
ω̃

(
f ;

1
n

)
· ω̃
(

g;
1
n

))
.

5.2.2. Convolution-type operator with de La Vallée Poussin kernel. We now
have degree m(n) = n ∈ N0 and we define the de La Vallée Poussin kernel by

Vn(υ) =
(n!)2

(2n)!
·
(
2 cos

(υ

2

))2n

with

ρ1,n =
n

n + 1
, ρ2,n =

(n− 1)n
(n + 1)(n + 2)

.
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Using the two relations, we have the second moment:

Gn

(
(e1 − x)2;x

)
≤
∣∣∣∣32 − 2n

n + 1
+

1
2
· n(n− 1)
(n + 1)(n + 2)

∣∣∣∣
+

1
2

∣∣∣∣1− n(n− 1)
(n + 1)(n + 2)

∣∣∣∣
≤
∣∣∣∣ 3
(n + 1)(n + 2)

∣∣∣∣+ ∣∣∣∣ 2n + 1
(n + 1)(n + 2)

∣∣∣∣
≤ 2

n + 1
.

Taking this into account, we give the following theorem:

Theorem 5.5. If we consider the convolution-type operator with the de La
Vallée Poussin kernel we have

|D(f, g)| = |Gn(f · g;x)−Gn(f ;x) ·Gn(g;x)|

≤ 1
4
ω̃

(
f ;

2
√

2√
n + 1

)
· ω̃

(
g;

2
√

2√
n + 1

)

= O
(

ω̃

(
f ;

1√
n

)
· ω̃
(

g;
1√
n

))
.

5.2.3. Convolution-type operator with Jackson kernel. Finally, the last op-
erator we consider is of degree m(n) = 2n − 2, with n ∈ N. For this, the
Jackson kernel has the form

J2n−2(υ) =
3

2n(2n2 + 1)
·

(
sin
(
nυ

2

)
sin
(

υ
2

) )4

with

ρ1,2n−2 =
2n2 − 2
2n2 + 1

, ρ2,2n−2 =
2n3 − 11n + 9

n(2n2 + 1)

and the second moment

G2n−2

(
(e1 − x)2;x

)
≤
∣∣∣∣32 − 4n2 − 4

2n2 + 1
+

1
2
· 2n3 − 11n + 9

n(2n2 + 1)

∣∣∣∣
+

1
2
·
∣∣∣∣1− 2n3 − 11n + 9

n(2n2 + 1)

∣∣∣∣
≤
∣∣∣∣ 9
2n(2n2 + 1)

∣∣∣∣+ ∣∣∣∣ 12n− 9
2n(2n2 + 1)

∣∣∣∣
≤ 6

2n2 + 1
≤ 3

n2
.

The result is as follows:



562 Maria-Daniela Rusu

Theorem 5.6. If we consider the convolution-type operator with the Jackson
kernel we have

|D(f, g)| = |G2n−2(f · g;x)−G2n−2(f ;x) ·G2n−2(g;x)|

≤ 1
4
ω̃

(
f ;

2
√

3
n

)
· ω̃

(
g;

2
√

3
n

)

= O
(

ω̃

(
f ;

1
n

)
· ω̃
(

g;
1
n

))
.

As we can see, the best degrees of approximation are obtained when
dealing with the Grüss-type inequality for convolution operators in the cases
of Fejér-Korovkin and Jackson kernels.

Remark 5.7. Another possibility is to apply the above obtained Grüss in-
equality for the Shepard-type operator defined on C[0, 1]. But this result,
just like in the case of the Hermite-Fejér operator, is disappointing (see Re-
mark 7 in [1]).

6. A pre-Grüss-type inequality for the CBS operator

We now try to find a pre-Grüss inequality for the CBS-operator. Just like
in the case of the pre-Grüss-type inequality for the Hermite-Fejér operator,
obtained in [1] (see Theorem 8), the idea is to find a different approach.
We consider the special case X = [0, 1], d(x, y) = |x− y|. Then, taking
H := Sµ

n+1 the CBS operator based on n + 1 equidistant points xi = i
n , for

0 ≤ i ≤ n and 1 ≤ µ ≤ 2, we get:

Theorem 6.1. Let f, g ∈ C[0, 1]. Then the inequality

|D(f, g)|

≤ 1
2

min
{
‖f‖∞ ω̃d

(
g; 4Sµ

n+1 (|e1 − x| ;x)
)
; ‖g‖∞ ω̃d

(
f ; 4Sµ

n+1 (|e1 − x| ;x)
)}

holds.

Proof. We want to estimate

|D(f, g)| =
∣∣Sµ

n+1(f · g;x)− Sµ
n+1(f ;x) · Sµ

n+1(g;x)
∣∣ .

For two fixed functions f, g ∈ C[0, 1] and an arbitrary s ∈ C1[0, 1], we have

|D(f, g)| = |D(f, g − s + s)| ≤ |D(f, g − s)|+ |D(f, s)| . (6.1)
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First, if we have f ∈ C[0, 1] and s ∈ C1[0, 1], we continue with

|D(f, s)| =
∣∣Sµ

n+1(f · s;x)− Sµ
n+1(f ;x) · Sµ

n+1(s;x)
∣∣

=
∣∣Sµ

n+1(f(s− Sµ
n+1(s;x));x)

∣∣
=
∣∣Sµ

n+1,t(f(t)(s(t)− s(x) + s(x)− Sµ
n+1(s;x));x)

∣∣
≤ ‖f‖∞ · Sµ

n+1,t(|s(t)− s(x)|+
∣∣s(x)− Sµ

n+1(s;x)
∣∣ ;x)

≤ ‖f‖∞ · Sµ
n+1(‖s′‖∞ · |e1 − x|+ ‖s′‖∞ · Sµ

n+1(|e1 − x| ;x);x)

= 2 · ‖f‖∞ · ‖s′‖∞ · Sµ
n+1(|e1 − x| ;x).

If we now use this result in (6.1), we get

|D(f, g)| ≤ ‖f‖∞ · ‖g − s‖∞ + 2 · ‖f‖∞ · ‖s′‖∞ · Sµ
n+1(|e1 − x| ;x)

= ‖f‖∞ {‖g − s‖∞ + 2 · ‖s′‖∞ · Sµ
n+1(|e1 − x| ;x)}.

Passing to the infimum over s ∈ C1[0, 1], it follows

|D(f, g)| ≤ ‖f‖∞ ·K(2 · Sµ
n+1(|e1 − x| ;x), g;C[0, 1], C1[0, 1])

=
1
2
· ‖f‖∞ · ω̃

(
g, 4 · Sµ

n+1(|e1 − x| ;x)
)
.

The same estimate holds if we interchange f and g. Putting both inequalities
together, we get the result we were looking for. �

In the above result, the first absolute moment of the CBS operator
appears, which can be represented by

Sµ
n+1(|e1 − x| ;x) =


∑n

i=0
|x− i

n |1−µ∑n
l=0 |x− l

n |−µ , x 6∈ {x0, . . . , xn}

0 , otherwise.

The idea is to further estimate this quantity. For that, we use an idea from [5]
(see proof of Theorem 4.3).

We distinguish three important cases for different values of µ.
The first case is µ = 1. The first absolute moment of the CBS operator
becomes

S1
n+1(|e1 − x| ;x) =

{∑n
i=0

1∑n
l=0 |x− l

n |−1 , x 6∈ {x0, . . . , xn}

0 , otherwise

=

(n + 1)
(∑n

l=0
1

|x− l
n |

)−1

, x 6∈ {x0, . . . , xn}

0 , otherwise.
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Let now l0 be defined by l0
n < x < l0+1

n . Then we have

1
n + 1

·

(
n∑

l=0

1∣∣x− l
n

∣∣
)
≥ n

n + 1
·

{
l0∑

l=0

1
l0 + 1− l

+
n∑

l=l0+1

1
l − l0

}

≥ n

n + 1

{∫ l0+2

1

1
x

dx +
∫ n−l0+1

1

1
x

dx

}
=

n

n + 1
ln((l0 + 2) · (n− l0 + 1))

≥ n

n + 1
· ln(2n + 2),

and the second absolute moment is then

S1
n+1(|e1 − x| ;x) ≤ n + 1

n · ln(2n + 2)
,

for x 6∈ {x0, . . . , xn}. In the end we get

|D(f, g)|

≤ 1
2

min
{
‖f‖∞ · ω̃d

(
g;

4(n + 1)
n · ln (2n + 2)

)
, ‖g‖∞ · ω̃d

(
f ;

4(n + 1)
n · ln (2n + 2)

)}
.

For the other two cases we will consider, first let l0 defined by∣∣∣∣x− l0
n

∣∣∣∣ = min
{∣∣∣∣x− l

n

∣∣∣∣ : 0 ≤ l ≤ n

}
.

Then for the case x 6∈ {x0, . . . , xn}, we have

Sµ
n+1(|e1 − x| ;x) ≤ |x− xl0 |

µ ·
n∑

i=0

|x− xi|1−µ

≤ 1
n

+
(

1
n

)
·

{∑
i<l0

|x− xi|1−µ +
∑
i>l0

|x− xi|1−µ

}

≤ 1
n

+
(

1
n

)
·

{
l0−1∑
k=0

(
1
2

+ k

)1−µ

+
n−l0−1∑

k=0

(
1
2

+ k

)1−µ
}

,

with 0 ≤ l0 ≤ n. Either of the two last sums may be empty. Estimating the
result in the accolades from above, we get

Sµ
n+1(|e1 − x| ;x) ≤

{
1
n + 1

n ·
[
2µ + 2

2−µ ·
(

n+1
2

)2−µ
]

, for 1 < µ < 2
1
n + 1

n · [4 + 2 · ln(n + 1)] , for µ = 2
.

(6.2)

For 1 < µ < 2, we obtain

|D(f, g)|

≤ 1
2

min
{
‖f‖∞ ω̃d

(
g; 4Sµ

n+1 (|e1 − x| ;x)
)
, ‖g‖∞ ω̃d

(
f ; 4Sµ

n+1 (|e1 − x| ;x)
)}
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where the first absolute moment can be estimated from above as in (6.2). For
µ = 2 we obtain

|D(f, g)|

≤ 1
2

min
{
‖f‖∞ ω̃d

(
g;

20 + 8 · ln(n + 1)
n

)
, ‖g‖∞ ω̃d

(
f ;

20 + 8 · ln(n + 1)
n

)}
.

One can also obtain results for µ > 2. This was done by G. Somor-
jai [12](see also J. Szabados [13] for µ > 4), but we are not treating other
cases in this article.
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Bernstein quasi-interpolants on triangles

Paul Sablonnière

Abstract. The aim of this paper is to provide some results on Bernstein
quasi-interpolants of different types applied to functions defined on a
triangle. Classical multivariate Bernstein operators and their extensions
have been studied for about 25 years by various authors. Based on their
representation as differential operators, we extend our previous results
on the univariate case to the multivariate one and we define new families
of Bernstein quasi-interpolants. Then we compare their approximation
properties on various types of functions. Our approach seems to be dis-
tinct from another interesting extension given in [5, 6].

Mathematics Subject Classification (2010): 41A35, 41A63.

Keywords: Bernstein operators.

1. Introduction and notations

The aim of this paper is to provide some results on Bernstein quasi-
interpolants of different types applied to functions defined on a triangle.
Classical multivariate Bernstein operators and their extensions have been
studied for about 25 years by various authors (see references). These exten-
sions are of Kantorovitch and Durrmeyer types. We only consider the latter
together with the genuine case studied e.g. in [24, 27, 39, 47].
On the unit triangle T := {(x, y) |x, y ≥ 0, 0 ≤ x + y ≤ 1}, the classical
Bernstein quasi-interpolants are defined by

Bnf(x, y) :=
∑

0≤i+j≤n

f

(
i

n
,
j

n

)
n!

i!j!k!
xiyjzk, z := 1−x−y, k := n−i−j.

Using the notation α := (i, j) ∈ ∆n := {(i, j)|0 ≤ i + j ≤ n}, we often write
them as

Bnf :=
∑

α∈∆n

f
(α

n

)
Bn

α, Bn
α(x, y, z) :=

n!
i!j!k!

xiyjzk

where {Bn
α, α ∈ ∆n} is the Bernstein basis of Pn. The Durrmeyer extension

has been first developed by Derriennic [13][14] in the case of the Legendre



568 Paul Sablonnière

weight and later by various authors in the general case of Jacobi weights
[7][8]. With the sacalar product

〈f, g〉 :=
∫

T

w(x, y)f(x, y)g(x, y)dxdy, w(x, y) = xpyqzr, p, q, r > −1

the multivariate Bernstein-Durrmeyer (abbr. BD) operator is defined by

Mnf :=
∑

γ∈∆n

〈B̃n
γ , f〉Bn

γ , where B̃n
γ := Bn

γ /〈1, Bn
γ 〉

The genuine Bernstein-Durrmeyer (abbr. GBD) case corresponds to the limit
weight w(x, y) = 1/xyz and has been studied e.g. in [47]. Its definition in-
volves line integrals along the sides of the triangle T .
Using the representation of the above operators as differential operators in
the space P of bivariate polynomials, we extend our previous results on uni-
variate operators [40, 42, 44, 45, 46] to the bivariate ones and we define new
families of Bernstein quasi-interpolants (partial results are given in [41, 44]).
Then we compare their approximation properties on various types of func-
tions. Our approach seems to be distinct from another interesting extension
given by Berdysheva, Jetter and Stöckler in [3]-[6].
Here is a brief outline of the paper. In sections 2 and 3, we compute the
differential forms of the operator Bn and its inverse An on the space Pn of
polynomials of total degree at most n and we define the associated quasi-
interpolants B(r)

n , 0 ≤ r ≤ n (abbr. QIs). Then, in sections 4 and 5 (resp. 6
and 7), we follow the same program for Bernstein-Durrmeyer operators Mn

with Legendre weight w = 1 (resp. the genuine Bernstein-Durrmeyer opera-
tors Gn). In section 8, we give some partial results on the asymptotic expan-
sions and convergence orders of these various quasi-interpolants. In section 9,
we give some results on numerical experiments done on the approximations
of two functions by Bernstein and genuine Bernstein-Durrmeyer operators.
Finally, in Section 10, we set some open problems that would be useful to
solve for the applications of those QIs to various problems in approximation
theory and numerical analysis.

2. The classical Bernstein operator

2.1. Bn and its inverse An = B−1
n as operators on Pn

The classical Bernstein operator

Bnf :=
∑

α∈∆n

f
(α

n

)
Bn

α

where {Bn
α, α ∈ ∆n} is the Bernstein basis of Pn, is an isomorphism of the

space Pn of bivariate polynomials of total degree at most n. This can be
proved in various ways. For example, let {`n

α, α ∈ ∆n} be the Lagrange basis
of Pn (see e.g. Ciarlet [11], chapter 2) based on points {α

n , α ∈ ∆n}, then
Bn`n

α = Bn
α for α ∈ ∆n. Similarly, let {νn

α , α ∈ ∆n} be the Newton basis of
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Pn based on the same points {α
n , α ∈ ∆n}, defined for |α| = i + j = p ≤ n

and using the Pochammer symbol (n)p = n(n− 1) . . . (n− p + 1), by

νn
α =

i−1∏
k=0

(nx− k)
j−1∏
`=0

(ny − `)/(n)p

then Bnνn
α = mα where mα(x, y) = mi,j(x, y) := xiyj are the monomials of

Pn. So the image of the Lagrange (resp. Newton) basis is the Bernstein (resp.
monomial) basis.
Denoting An = B−1

n the inverse operator of Bn on Pn, then we have AnBn
α =

`n
α and Anmα = νn

α for all α ∈ ∆n. These properties are used below for the
computation of the coefficients of An expressed as a differential operator.

2.2. Bn as a differential operator

As in the univariate case (see e.g. [33], chapter 1, and [45]), the operator Bn

has the following representation in Pn:

Bn = Id +
n∑

r=2

∑
k+`=r

βk,`D
k,`

Note that the polynomial coefficients βk,` should be denoted β
(n)
k,` since they

depend on n. However, we omit the upper index for the sake of clarity.
Theorem. The polynomial coefficients βk,` satisfy the recurrence relation, for
k, ` ≥ 1

n ((k + 1)βk+1,` + (` + 1)βk,`+1)

= (1− x− y) (x(∂10βk,` + βk−1,`) + y(∂01βk,` + βk,`−1)) .

with β0,0 = 1, β1,0 = β0,1 = 0, and for k, ` ≥ 1

n(k + 1)βk+1,0 = x(1− x)(∂10βk,0 + βk−1,0)

n(` + 1)β0,`+1 = y(1− y)(∂01β0,` + β0,`−1)
Proof. Using Taylor’s formula

f(s, t) = f(x, y) +
∑
r≥1

1
r!

( ∑
k+`=r

(
n

k

)
(s− x)k(t− y)`Dk,`f(x, y)

)
and applying the Bernstein operator

Bnf(x, y)=f(x, y)+
∑
n≥1

1
n!

( ∑
k+`=n

(
n

k

)
Bn[(.− x)k(.− y)`](x, y)Dk,`f(x, y)

)
we first obtain

βk,`(x, y) :=
1
n!

(
n

k

)
Bn[(.− x)k(.− y)`](x, y).

or, setting φk,` = (.− x)k(.− y)` and m := n− k − ` :

βk,` =
1

k!`!(n− k − `)!

∑
i+j≤n

φk,`

(
i

n
,
j

n

)
Bn

i,j
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Let us compute the expression

z(xD1,0 + yD0,1)βk,` =
xzD1,0 + yzD0,1

k!`!m!
Bnφk,`

First we get

D1,0Bnφk,` = −k
∑

i+j≤n

φk−1,`

(
i

n
,
j

n

)
Bn

i,j +
∑

i+j≤n

φk,`

(
i

n
,
j

n

)
D1,0Bn

i,j ,

with
D1,0Bn

i,j = n
(
Bn−1

i−1,j −Bn−1
i,j

)
Moreover, we have

nxzBn
i−1,j = izBn

i,j , and nxzBn
i,j = (n− i− j)Bn

i,j

therefore

xzD1,0Bnφk,` = −kxzBnφk−1,` + z
∑

iφk,`

(
i

n
,
j

n

)
Bn

i,j

−x
∑

(n− i− j)φk,`

(
i

n
,
j

n

)
Bn

i,j .

Now, using the identities:

i = n

(
i

n
− x

)
+ nx, and i = n

(
z − n

(
i

n
− x

)
− n

(
j

n
− x

))
we obtain

xzD1,0Bnφk,` = −kzBnφk−1,` + n(1− y)Bnφk+1,` + nxBnφk,`+1

In the same way, we also have

yzD0,1Bnφk,` = −kzBnφk,`−1 + n(1− x)Bnφk,`+1 + nyBnφk+1,`

and finally

z(xD1,0 + yD0,1)Bnφk,` = −kz(xBnφk−1,` + yBnφk,`−1)

+n(Bnφk+1,` + Bnφk,`+1),
which gives the following recurrence relation on the polynomial coefficients:

n(k+1)βk+1,`+n(`+1)βk,`+1 =z
(
x(D1,0βk,`+βk−1,`)+ y(D0,1βk,`+βk,`−1)

)
.

�
Examples. Using the notations X := x(1 − x), Y := y(1 − y), the first beta
polynomials (depending on n) are given by

2nβ2,0 = X, nβ1,1 = −xy

6n2β3,0 = X(1− 2x), 2n2β2,1 = −3xy(1− 2x),

24n3β4,0 = X(1 + 3(n− 2)X), 6n3β3,1 = −4xy(1 + 3(n− 2)X),

4n3β2,2 = xy(n− 1− (n− 2)(x + y) + 3(n− 2)xy)

5!n4β5,0 = (1− 2x)X(1 + 2(5n− 6)X), 24n4β4,1 = −xy(1 + 2(5n− 6)X)

12n5β3,2 = 10xy((n− 1)(1− 6x)− (n− 2)y − (5n− 6)x(x + 3y − 4xy))



Bernstein quasi-interpolants on triangles 571

2.3. An := B−1
n as a differential operator

2.3.1. First method: long recursion. The operator An has also the following
representation in Pn:

An = Id +
n∑

p=2

∑
i+j=p

αi,jD
i,j

A first method, giving a long recursion, consists in deducing the polynomial
coefficients from the identities Anmk,` = νn

k,` for 0 ≤ i + j ≤ n.

νn
k,` = xky` +

k+∑̀
p=2

∑
i+j=p

k!
(k − i)!

`!
(`− j)!

xk−iy`−jαi,j

giving the (long) recursion

αk,` =
νn

k,` −mk,`

k!`!
−

∑
(0,0)<(i,j)<(k,`)

xk−i

(k − i)!
y`−j

(`− j)!
αi,j .

2.3.2. Second method : expansion in the Newton basis. From the Taylor
expansion of f ∈ Pn:

f(., .) = f(x, y) +
n∑

p=1

∑
k+`=p

(.− x)k(.− y)`

k!`!
Dk,lf(x, y),

we deduce

Anf = f +
n∑

p=1

 ∑
k+`=p

An

[
(.− x)k(.− y)`

k!`!

]
Dk,lf(x, y)


giving

αk,`(x, y) = An

[
(.− x)k(.− y)`

k!`!

]
and since Anmij = νi,j , we obtain the compact form :

αk,`(x, y) =
(−1)p

k!`!

k∑
i=0

∑̀
j=0

(
k

i

)(
`

j

)
(−1)i+jxk−iy`−jνi,j(x, y).

2.3.3. Third method : direct short recursion. At least for polynomials αk,0

and α0,`, we have the short recursions [45]

(k + 1)(n− k)αk+1,0 = −k(1− 2x)αk,0 −Xαk−1,0.

(` + 1)(n− `)α0,`+1 = −k(1− 2y)α0,` − Y α0,`−1.

Following the model of beta-polynomials:

(k+1)nβk+1,`+n(`+1)βk,`+1 =z
(
x(D1,0βk,`+βk−1,`)+y(D0,1βk,`+ βk,`−1)

)
.

it would be possible to get a recursion for the computation of these polyno-
mials. However, it is still an open question.
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2.3.4. A table of polynomials alpha. With the notations X = x(1− x), Y =
y(1− y), nk := (n− 1) . . . (n− k), [i, j] := αi,j , here are the first polynomials
alpha

2n1[2, 0] = X, n1[1, 1] = xy, 2n1[2, 0] = Y

3n2[3, 0] = (1− 2x)X n2[2, 1] = −xy(12x),

n2[1, 2] = −xy(1− 2y), 3n2[0, 3] = (1− 2y)Y

8n3[4, 0] = −X(2− (n + 6)X), 2n3[3, 1] = xy(2− (n + 6)X),

4n3[2, 2] = xy(n− (n + 6)(x + y − 3xy))

30n4[5, 0] = (1− 2x)X(6− (5n + 12)X),

6n4[4, 1] = −xy(1− 2x)(6− (5n + 12)X)

6n4[3, 2] = −xy(n− 6nx− (n + 12)y + (5n + 12)x(x + 3y − 4xy))

3. Bernstein quasi-interpolants

3.1. Quasi-interpolants of order r

Given 0 ≤ r ≤ n, define the truncated inverse of order r

A(r)
n = Id +

r∑
p=2

∑
i+j=p

αi,jD
i,j

Then the Bernstein-quasi-interpolant (abbr. BQI) of order r is defined by

B(r)
n = A(r)

n Bn

In other words, for all polynomial p ∈ Pn, we have

B(r)
n p = Bnp +

r∑
p=2

∑
i+j=p

αi,jD
i,jBnp

Theorem. The operator B(r)
n is exact on Pr, for all 0 ≤ r ≤ n.

Proof. As p = AnBnp = B(n)
n p, we can write

p− B(r)
n p =

n∑
p=r+1

∑
i+j=p

αi,jD
i,jBnp

As p ∈ Pr, we have Bnp ∈ Pr, thus Di,jBnp = 0 for all (i, j) satisfying
i + j = p ≥ r + 1, thus p− B(r)

n p = 0. �
Therefore, we have constructed a chain of intermediate operators between the
classical Bernstein operator and the identity operator which can be written
in the form of the Lagrange interpolation operator Ln since AnBn

α = `n
α:

p = AnBnp =
∑

α∈∆n

f
(α

n

)
AnBn

α =
∑

α∈∆n

f
(α

n

)
`n
α = Lnp
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3.2. Some open questions on BQIs

Among the open questions relative to the BQIs, the following seem particu-
larly interesting:
1) Prove, as in the univariate case [50], that for r ∈ N fixed, the BQIs of
order r are uniformly bounded, i.e. there exists a constant Cr such that

‖B(r)
n ‖∞ ≤ Cr for all n ≥ r

2) Numerical experiments show that some functions f (e.g. of Runge type)
are better approximated by intermediate polynomials B(r)

n f rather than by
their Lagrange interpolant. This is not quite surprising in view of the fact that
‖Ln‖∞ goes to infinity rather fastly when n →∞ (see e.g. [9]). Therefore the
approximating polynomials generated in this way can be useful in practice,
in approximation as well as in CAGD.
3) It would be interesting to have a direct formula giving the polynomial
coefficients αi,j , or at least a short recursive formula.

4. Bernstein-Durrmeyer operators

For the sake of simplicity, we take w = 1 (Legendre) and we only con-
sider Bernstein Durrmeyer quasi-interpolants (abbr. BDQIs) in that case.
Of course, the same technique can be extended to general BDQIs with an
arbitrary Jacobi weight. It would be also interesting to study the generaliza-
tions recently proposed in [3, 4]. Setting

〈f, g〉 :=
∫

T

f(x, y)g(x, y)dxdy

since area(T ) = 1/2, we have∫
T

Bn
γ =

1
(n + 1)(n + 2)

whence the definition of the BD operator:

Mnf := (n + 1)(n + 2)
∑

γ∈∆n

〈Bn
γ , f〉Bn

γ

4.1. Mn and Kn = M−1
n as operators on Pn

Consider a family of orthogonal polynomials {Pk,`, 0 ≤ |γ| = k + ` ≤ n} on
T (see e.g. [12, 21, 22, 48]) whose expansion in the BB basis is the following:

Pγ =
∑

δ∈∆n

p(δ, γ)Bn
δ

It is known (see e.g. [13]) that for γ ∈ ∆s, with 0 ≤ s ≤ n, one has

MnPγ = ργ(n)Pγ ,

where the eigenvalue is given by

ργ(n) =
[n]s

(n + 3)s
=

Γ(n + 1)
Γ(n− s + 1)

Γ(n + 3)
Γ(n + s + 3)
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We use here the Pochhammer symbol defined by

(n)s := n(n + 1) . . . (n + s− 1) =
(n + s− 1)!

(n− 1)!
=

Γ(n + s)
Γ(n)

and we set

[n]s := n(n− 1) . . . (n− s + 1) =
n!

(n− s)!
=

Γ(n + 1)
Γ(n− s + 1)

Thus Mn is an automorphism of Pn. Denoting Kn = M−1
n , we have

KnPγ = ρ−1
γ (n)Pγ , γ ∈ ∆n

4.2. Mn as a differential operator on Pn

Like the classical Bernstein operator, the BD operator Mn can be expressed
as a differential operator on Pn:

Mn =
n∑

r=0

∑
δ∈∆r

µ
(n)
δ Dδ, µ

(n)
δ ∈ Pr

Therefore, for |γ| = m ≤ n:

MnPγ =
m∑

r=0

∑
δ∈∆r

µ
(n)
δ DδPγ = ργ(n)Pγ

As in Section 2.2, a direct expression of the polynomials µ
(n)
δ for δ = (k, `) ∈

∆r, can be deduced from Taylor’s formula:

µ
(n)
δ =

1
r!

(
r

k

)
Mn[(.− x)k(.− y)`]

4.3. Kn := M−1
n as a differential operator

One can also write Kn as a differential operator on Pn:

Kn =
n∑

r=0

∑
δ∈∆r

κ
(n)
δ Dδ, κ

(n)
δ ∈ Pr

Therefore, for |γ| = m ≤ n, we have the long recursion:

KnPγ =
m∑

r=0

∑
δ∈∆r

κ
(n)
δ DδPγ = ρ−1

γ (n)Pγ

For the computation of the polynomial coefficients κ, we did not use this
method. Rather, we compute the polynomials pγ := Mnmγ from which we
deduce Knpγ = mγ as follows.
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4.4. The polynomials pγ

In order to find the polynomial pγ whose image by Mn is the monomial
mγ := xiyj , i.e. such that Knmγ = pγ , we write

pγ :=
∑

δ∈∆n

c(γ, δ)B(n)
δ

Setting

Bn
γ := Bn

i,j :=
n!

i!j!k!
xiyjzk, k := n− i− j, for γ := (i, j) ∈ ∆n,

Bn
δ := Bn

p,q :=
n!

p!q!r!
xpyqzr, r := n− p− q, for δ := (p, q) ∈ ∆n

and introducing the Gram matrix

G[γ, δ] := 〈Bn
γ , Bn

δ 〉 =
1

(n + 1)2

(
i+p

i

)(
j+q

j

)(
k+r

k

)(
2n+2
n+1

)
we obtain

Mnpγ =
∑

δ∈∆n

c(γ, δ)MnB
(n)
δ =

1
2
(n+1)(n+2)

∑
δ∈∆n

c(γ, δ)

(∑
θ∈∆n

G[δ, θ]Bn
θ

)

Mnpγ =
1
2
(n + 1)(n + 2)

∑
θ∈∆n

(∑
δ∈∆n

G[θ, δ]c(γ, δ)

)
Bn

θ

Now, we need the representation of the monomial mγ in the BB basis:

mi,j =
∑

θ∈∆n

(
i
r

)(
j
s

)(
n

r,s

) Bn
θ , θ := (r, s)

By identification, we compute c(γ, δ) as the solution of the system of linear
equations

1
2
(n + 1)(n + 2)

∑
δ∈∆n

G[θ, δ]c(γ, δ) =

(
i
r

)(
j
s

)(
n

r,s

) , θ ∈ ∆n

4.5. A table of the first polynomials kappa

The list of the first kappa polynomials shows that they are more complex
than alpha polynomials of section 2.3.4 :

nκ
(n)
1,0 = 3x− 1, nκ

(n)
0,1 = 3y − 1

(n)2 κ
(n)
2,0 = (n + 9)x2 − (n + 7)x + 1

(n)2 κ
(n)
1,1 = 2(n + 9)xy − 4(x + y) + 1

(n)2 κ
(n)
0,2 = (n + 9)y2 − (n + 7)y + 1

(n)3 κ
(n)
3,0 = 5(n + 5)x3 − (7n + 31)x2 + (2n + 11)x− 1

(n)3 κ
(n)
2,1 = 15(n + 5)x2y − (n + 13)x2 − 4(2n + 11)xy + (n + 8)x + 5y − 1

(n)3 κ
(n)
1,2 = 15(n + 5)xy2 − (n + 13)y2 − 4(2n + 11)xy + 5x + (n + 8)y − 1
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(n)3 κ
(n)
0,3 = 5(n + 5)y3 − (7n + 31)y2 + (2n + 11)y − 1

(n)4 κ
(n)
4,0 =

1
2
((n + 4)(n + 33)x4 − 2(n2 + 34n + 113)x3

+(n + 4)(n + 33))x2 − 6(n + 5)x + 2)

(n)4 κ
(n)
3,1 = 2(n + 4)(n + 33)x2y(x− 1)− 2(3n + 19)x3

+(8n + 39)x(x + 2y)− 2(n + 6)x− 6y + 1

(n)4 κ
(n)
2,2 = 3(n+4)(n+33)x2y2−(n2+46n+189)xy(x+y)+(n+18)(x2+y2)

+(n + 5)(n + 18)xy − (n + 9)(x + y) + 1

κ
(n)
1,3 (x, y) = κ

(n)
3,1 (y, x), κ

(n)
0,4 (x, y) = κ

(n)
4,0 (y, x).

5. Bernstein-Durrmeyer quasi-interpolants

5.1. Bernstein-Durrmeyer quasi-interpolants of order r

Given 0 ≤ r ≤ n, define the truncated inverse of order r

K(r)
n = Id +

r∑
p=2

∑
i+j=p

κi,jD
i,j

Then the Bernstein-Durrmeyer quasi-interpolant (abbr. BDQI) of order r is
defined by

M(r)
n = K(r)

n Mn

In other words, for all polynomial p ∈ Pn, we have

M(r)
n p = Mnp +

r∑
p=2

∑
i+j=p

κi,jD
i,jMnp

Theorem. The operator M(r)
n is exact on Pr, for all 0 ≤ r ≤ n.

The proof is the same as for BQIs.
Therefore, we have constructed a chain of intermediate operators between the
Bernstein-Durrmeyer operator and the identity operator. The latter can be
written in the form of the orthogonal projector Pn on the space Pn. Indeed,
since Mn is a self-adjoint isomorphism in that space, we have, for all p ∈ Pn:

0 = 〈f − Pnf,Mnp〉 = 〈Mn(f − Pnf), p〉

As Mn(f − Pnf) ∈ Pn, this implies first that Mnf = MnPnf , i.e.
MnKnMnf = MnPnf and second that KnMnf = Pnf , in other words
KnMn = KnMn, q.e.d. �
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5.2. Some open questions on BDQIs

Among the open questions relative to the BDQIs, the following seem partic-
ularly interesting:
1) Prove that for r ∈ N fixed, the BDQIs of order r are uniformly bounded
for Lp norms i.e. there exists constants C(r, p) such that

‖B(r)
n ‖p ≤ C(r, p) for all n ≥ r

2) As for BQIs, numerical experiments show that some functions f (e.g. of
Runge type) are better approximated by intermediate polynomials M(r)

n f
rather than by their L2-orthogonal projection Pnf on Pn. (This is not quite
surprising in view of the fact that ‖Ln‖∞ goes to infinity fastly when n →∞).
Therefore the approximating polynomials generated in this way can be useful
in practice, both in approximation and in CAGD.
3) It would be interesting to have a direct formula giving the polynomial co-
efficients κi,j , or at least a recursive formula allowing their fast computation.
4) From the computational point of view, it would be also interesting to have
a fast algorithm for the effective computation of scalar products 〈Bn

γ , f〉. Even
though the Bernstein polynomials are Jacobi weights (up to a constant), using
the corresponding Gauss-Jacobi cubature formulas seem rather complicated
since weights and data points are distinct.

6. Genuine Bernstein-Durrmeyer operators

Let fs denote the restriction of f to the edge opposite to the vertex As = (es)
(barycentric coordinates :s e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1)), let
bn−2
k−1 be the univariate Bernstein polynomials on that edge, and let ∆∗

n be the
set of indices γ ∈ ∆n with no null component. Then the genuine Bernstein-
Durrmeyer (abbr. GBD) operators are defined by

Gnf :=
3∑

r=1

f(er)Bn
ner

+ (n− 1)
3∑

s=1

n−1∑
k=1

〈fs, b
n−2
k−1〉B

n
k

+(n− 1)(n− 2)
∑

γ∈∆∗
n

〈f,Bn−3
α 〉Bn

α

Note that in the second sum, 〈fs, b
n−2
k−1〉 is a univariate sacalar product along

the edge, and Bn
k is an abbreviation for Bn

α when α = (k, n−k, 0), (k, 0, n−k)
or (0, k, n− k).
Like the classical Bernstein and the BD operators, the GBD operator Gn can
be expressed as a differential operator on Pn:

Gn =
n∑

r=0

∑
δ∈∆r

θ
(n)
δ Dδ, β̄

(n)
δ ∈ Pr
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The inverse operator Hn := G−1
n can also be expressed as a differential oper-

ator on Pn:

Hn =
n∑

r=0

∑
δ∈∆r

η
(n)
δ Dδ, ᾱ

(n)
δ ∈ Pr

7. Genuine Bernstein-Durrmeyer quasi-interpolants

7.1. Genuine Bernstein-Durrmeyer quasi-interpolants of order r

Given 0 ≤ r ≤ n, define the truncated inverse of order r

H(r)
n = Id +

r∑
p=2

∑
i+j=p

θi,jD
i,j

Then the Genuine Bernstein-Durrmeyer quasi-interpolant (abbr. GBDQI) of
order r is defined by

G(r)
n = H(r)

n Gn

G(r)
n :=

r∑
|γ|=0

η(n)
γ DγGn, 0 ≤ r ≤ n

Theorem. The operator G(r)
n is exact on Pr, for all 0 ≤ r ≤ n.

The proof is the same as for BQIs and BDQIs.

7.2. A table of the first polynomials eta

With the notation nk := (n− 1) . . . (n− k), here are the first polynomials

n1η
(n)
20 = −X, n1η̄

(n)
11 = 2xy

n2η
(n)
30 = (1− 2x)X, n2η̄

(n)
21 = −3xy(1− 2x)

2n3η
(n)
40 = X((n + 7)X − 2), n3η̄

(n)
31 = −2xy((n + 7)X − 2)

n3η
(n)
22 = xy((n + 7)(3xy − x− y) + n + 1)

n4η5,0 := (1− 2x)X(1− (n + 3)X), n4η4,1 := 5(2x− 1)(1− (n + 3)X)xy

n4η3,2 := (5(n + 3)x(4xy − x− 3y) + (n + 1)(6x− 1) + (n + 11)y)xy

8. Asymptotic formulas for Bernstein type quasi-interpolants

We only sketch a study the convergence for polynomials though the results
can be extended to smooth functions (this will be developed elsewhere). Given
a polynomial p ∈ P, we are interested in the following limits:

limnr+1(Q(2r)
n p(x)− p(x)) and lim nr+1(Q(2r+1)

n p(x)− p(x))

where Q(s)
n , s = 2r, 2r+1 is one of the three types of Bernstein QIs previously

defined. For original operators (case s = 0), see also [1, 2, 33, 34, 48].
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8.1. Bernstein QIs

For beta and alpha polynomials, we define the polynomials

β̄k,` = lim nrβk,` for k + ` = 2r − 1 or 2r

ᾱk,` = lim nrαk,` for k + ` = 2r − 1 or 2r

From the recurrence formulas of section 2.2, we immediately deduce the fol-
lowing
Theorem. The following recurrence relations hold:

(k + 1)β̄k+1,` + (` + 1)β̄k,`+1 = z
(
xβ̄k−1,` + yβ̄k,`−1

)
for k + ` = 2r − 1,

(k + 1)β̄k+1,` + (` + 1)β̄k,`+1 = z
(
xD1,0β̄k,` + yD0,1β̄k,`

)
for k + ` = 2r.

We have not yet obtained the general formulas for alpha-polynomials. How-
ever, for polynomials ᾱk,0 and ᾱ0,`, we deduce from the recurrence formulas
of section 2.3.4 :

(2r+1)ᾱ2r+1,0 = −2r(1−2x)ᾱ2r,0−Xᾱ2r−1,0 (2r+2)ᾱ2r+2,0 = −Xᾱ2r,0,

(2r+1)ᾱ0,2r+1 = −2r(1−2y)ᾱ0,2r−Y ᾱ0,2r−1 (2r+2)ᾱ0,2r+2 = −Y ᾱ0,2r,

Here is a table of the first polynomials:

(k, `) βk,` αk,`

(2, 0) X/2 −X/2
(1, 1) −xy xy
(3, 0) (1− 2x)X/6 (1− 2x)X/3
(2, 1) −xy(1− 2x)/2 −xy(1− 2x)
(4, 0) X2/8 X2/8
(3, 1) −xyX/2 −xyX/2
(2, 2) xy(z + 3xy)/4 xy(z + 3xy)/4

The asymptotic formulas are obtained as follows. For any polynomial f :

f − B(q)
n f =

∑
p≥q+1

∑
i+j=p

αi,jD
i,jf

For q = 2r − 1 , we get

nr(f − B(2r)
n f) =

∑
p≥2r

∑
i+j=p

nrαi,jD
i,jBnf

As lim nrαi,j = ᾱi,j for i + j = 2r, lim nrαi,j = 0 for i + j = p > 2r and
lim Di,jBnf = Di,jf , we obtain:

limnr(f − B(2r)
n f) =

∑
i+j=2r

ᾱi,jD
i,jf

Similarly, for q = 2r , we get

nr+1(f − B(2r+1)
n f) =

∑
p≥2r+1

∑
i+j=p

nr+1αi,jD
i,jBnf
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As lim nr+1αi,j = ᾱi,j for i + j = 2r + 1, 2r + 2, lim nr+1αi,j = 0 for i + j =
p > 2r + 2 and lim Di,jBnf = Di,jf , we obtain:

limnr+1(f − B(2r+1)
n f) =

2r+2∑
p=2r+1

∑
i+j=p

ᾱi,jD
i,jf

Examples.

lim n(f − B(2)
n f) = −1

2
(XD2,0f − xyD1,1f + Y D0,2f)

lim n2(f − B(3)
n f) =

∑
|γ|=3

ᾱγDγf +
∑
|γ|=4

ᾱγDγf

=
1
3
(1− 2x)XD3,0f −xy(1− 2x)D2,1f −xy(1− 2xy)D1,2f +(1− 2y)Y D0,3f

+
1
8
X2D4,0f − 1

2
xyXD3,1f +

1
4
xy(z + 3xy)D2,2f − 1

2
xyY D1,3f +

1
8
Y 2D0,4f

8.2. Bernstein-Durrmeyer QIs

For lambda and kappa polynomials, we define

λ̄k,` = lim nrλk,` for k + ` = 2r − 1 or 2r

κ̄k,` = lim nrκk,` for k + ` = 2r − 1 or 2r

Here is a table of the first polynomials κ̄k,`:
(k, `) κ̄k,`

(1, 0) 3x− 1
(2, 0) −X
(1, 1) 2xy
(3, 0) −X(5x− 2)
(2, 1) x(15xy − x− 8y + 1)
(4, 0) X2/2
(3, 1) −2xyX
(2, 2) xy(3xy − (x + y) + 1)

As for Bernstein QIs, we deduce, for any polynomial p :

lim nr(f −M(2r)
n f) =

∑
i+j=2r

κ̄i,jD
i,jf, q = 2r − 1

Similarly, for q = 2r , we get

lim nr+1(f −M(2r+1)
n f) =

2r+2∑
p=2r+1

∑
i+j=p

κ̄i,jD
i,jf, q = 2r

Examples.

lim n(f −M(2)
n f) = −XD2,0f + 2xyD1,1f − Y D0,2f

lim n2(f −M(3)
n f) =

∑
|γ|=3

ᾱγDγf +
∑
|γ|=4

ᾱγDγf

= −X(5x−2)D3,0f−x(15xy−x−8y+1)D2,1f−yx(15xy−8x−y+1)D1,2f
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−(5y − 2)Y D0,3f +
1
2
X2D4,0f − 2xyXD3,1f

+xy(3xy − (x + y) + 1)D2,2f − 2xyY D1,3f +
1
2
Y 2D0,4f

8.3. Genuine Bernstein-Durrmeyer QIs

For and polynomials, we define

θ̄k,` = lim nrθk,` for k + ` = 2r − 1 or 2r

η̄k,` = lim nrηk,` for k + ` = 2r − 1 or 2r

Here is a table of the first polynomials:

(k, `) η̄k,`

(2, 0) −X
(1, 1) 2xy
(3, 0) (1− 2x)X
(2, 1) −3xy(1− 2x)
(4, 0) X2/2
(3, 1) −2xyX
(2, 2) xy(3xy − (x + y) + 1)

9. Numerical experiments on Bernstein quasi-interpolants

We present some numerical tests on the following functions

f1(x, y) =
1

1 + 16((x− 1/3)2 + (y − 1/3)2)

f2(x, y) = exp(−x2 − y2)

using classical and genuine Bernstein quasi-interpolants of various degrees
and orders.
We denote the uniform errors respectively by eb

(r)
n f := ‖f −B(r)

n f‖ for Bern-
stein QIs and by eg

(r)
n := ‖f − G(r)

n f‖ for genuine Bernstein-Durrmeyer QIs.

(n, r) eb
(r)
n f1 eb

(r)
n f2 (n, r) eg

(r)
n f1 eg

(r)
n f2

(8, 0) 0.38 3.6(-2) (5, 1) 0.6 8.8(−2)
(8, 3) 8.4(-2) 2.3(-3) (5, 3) 0.3 8.8(−3)
(8, 5) 2.4(-2) 1.2(-4) (5, 4) 0.25 1.2(−3)
(8, 8) 0.12 2.0(-6) (5,5) 0.14 4.8(-4)
(15, 0) 0.26 2.0(-2) (10,0) 0.46 5.2(-2)
(15, 4) 4.6(-2) 4.4(-5) (10,2) 0.25 5.2(-3)
(15, 8) 1.2(-2) 6.0(-8) (10,4) 0.15 4.0(-4)
(15, 9) 5.6(-3) 3.0(-8) (10,6) 8.4(-2) 4.8(-5)
(15, 10) 9.2(-3) 3.4(-9) (10,7) 0.12 2.6(-4)
(15, 15) 1.5(-2) 5.0(-11) (10,10)
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We see that the behaviours of QIs are quite different for f1 and f2.
1) f1 is a rational function of Runge type : the Lagrange interpolants for n = 8
and n = 15 both give bad results. However, the errors eb

(r)
n f1 seem to have

a minimum value for some intermediate QIs, for example for (n, r) = (8, 5)
and (n, r) = (15, 9). A similar fact occurs for the errors eg

(r)
n f1 where the

minimum value is obtained for (n, r) = (10, 6). However the errors are higher
than those obtained by Bernstein QIs for n = 8.
2) f1 is a good analytic function with a nice behaviour: the Lagrange inter-
polant gives the best results. The errors slowly decrease from r = 0 to r = n.
If one does not want a very high precision, the first QIs can be taken as
approximants of the given function. For the genuine Durrmeyer operator, the
errors for n = 10 are higher than those obtained by Bernstein QIs for n = 8,
except maybe the minimum value for (n, r) = (10, 6).
We also compared the above results with those obtained using the BD opera-
tor with Legendre weight (the errors are denoted ed

(r)
n f). For the two tested

functions, the results were worse. We only give them for the exponential
functionf2.

(n, r) eb
(r)
n f2 eg

(r)
n f2 ed

(r)
n f2

(5, 0) 5.6(−2) 8.8(−2) 0.18
(5, 3) 4.6(−3) 8.8(−3) 4.2(-3)
(5, 4) 6.4(−4) 1.2(−3) 2.3(-3)
(5,5) 6.4(-4) 8.8(-4) 1.6(-3)

As a conclusion of these tests (and of other tests done on various functions),
the classical Bernstein QIs seem a priori to be the more efficient. Of course,
the values of f on uniform lattices of points of the triangle must be available.
If the function is only known by its moments or other mean integral values,
then one could consider the approximation by BDQIs with convenient Jacobi
weights or by GDQIs.

10. Some applications

In this final section, we briefly present some possible applications of the above
quasi-interpolants to various problems in approximation, CAGD and numer-
ical analysis.

• in approximation, the Hausdorff moment problem in T consists in find-
ing a function f having given moments µγ(f) :=

∫
T

f(x, y)xky`dxdy for
some indices γ = (k, `) ∈ N2. Such a function can be approximated by
the Bernstein-Durrmeyer quasi-interpolants of Section 5. Indeed, scalar
products 〈f,Bn

α〉 are directly computable from moments, so Mnf is
easily obtained together with its partial derivatives.

• in CAGD, when one is interested in approximating a function defined on
a uniform lattice of points in the triangle T , Bernstein quasi-interpolants
of Section 3 can sometimes offer an alternative to strict interpolation at



Bernstein quasi-interpolants on triangles 583

those points since their norms seem to be uniformly bounded in n for a
given order r.

• in numerical analysis, it would be perhaps interesting to derive cubature
formulas from integration of Bernstein quasi-interpolants. In the same
way, approximate formulas for partial derivatives can be obtained by
computing derivatives of Bernstein or Bernstein-Durrmeyer type quasi-
interpolants.
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stochastic differential equations driven
by multifractional Brownian motion
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Abstract. The aim of this paper is to approximate the solution of a
stochastic differential equations

dX(t) = F (X(t))dt + G(X(t))dB(t), X(0) = X0, t ≥ 0

on Rn. We will use wavelet approximation of multifractional Brownian
motion.

Mathematics Subject Classification (2010): Primary 60H10; Secondary:
60H05, 60J65.

Keywords: Stochastic differential equation, fractional Brownian motion.

1. Introduction

The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a zero
mean Gaussian random process

(
B(t)

)
t≥0

with continuous sample paths and

with covariance function

E
(
B(s)B(t)

)
=

1
2

(
t2H + s2H − |s− t|2H

)
.

For H = 1
2 the fractional Brownian motion is the ordinary standard

Brownian motion.
The fractional Brownian motion B has on any finite interval [0, T ]

Hölder continuous paths with exponent γ ∈ (0,H) (see [5]). Moreover, the
quadratic variation on [a, b] ⊆ [0, T ] is

lim
|∆n|→0

n∑
i=1

(
B(tni )−B(tni−1)

)2

=

 ∞ if H < 1
2 ,

b− a if H = 1
2 ,

0 if H > 1
2 ,

(1.1)

where ∆n = (a = tn0 < · · · < tnn = b) is a partition of [a, b] with

|∆n| = max
1≤i≤n

(tni − tni−1).
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If H 6= 1
2 , then the convergence in (1.1) holds with probability 1 uni-

formly in the set of all partitions of [a, b], while for H = 1
2 the convergence in

(1.1) holds in mean square uniformly in the set of all partitions of [a, b]. Note
that, if H 6= 1

2 , then B is not a semimartingale, so the classical stochastic
integration does not work. But the Hölder continuity of B will ensure the
existence of integrals

T∫
0

G(u)dB(u),

defined in terms of fractional integration as investigated in [15] and [16] for
the stochasticc process (G(t))t∈[0,T ] with Hölder continuous paths of order
α > 1 − H. Moreover, the fractional Brownian motion is H-self similar, so
for any c > 0 the process

(
cHB(t/c)

)
t≥0

is again a fractional Brownian

motion, has stationary increments. Stochastic differential equations driven
by fBm have received considerable attention during the last two decades.
Fractional Brownian motion as driving noise is used in electrical engineering
([6]) or biophysics ([11]). Moreover, fBm has established itself also in financial
modelling ([4],[8]).

The multifractional Brownian motion (mfBm) is obtained by replacing
the constant parameter H of the fractional Brownian motion by a smooth
enough functional parameter H(·). We denote by H a function defined on the
real line and with values in a fixed interval [a, b] ⊂ (0, 1). We assume that it
is uniformly Hölder continuous of order β > b on each compact subset of R.

In this article we study the approximation of the Itô stochastic differ-
ential equation

dX(t) = F (X(t))dt + G(X(t))dB(t), X(0) = X0, t ≥ 0 (1.2)

on Rn. Here F : Rn → Rn, G : Rn → Rn, B =
(
B(t)

)
t≥0

, H ∈ (0, 1)

is a 1-dimensional multifractional Brownian motion adapted to a filtration
F = (Ft)t≥0 on a probability space (Ω,K, P ), and x0 is a F0 measurable
random variable independent of B.

Suppose with F and G satisfy with probability 1:
F ∈ C(Rn × [0, T ], Rn), G ∈ C1(Rn × [0, T ], Rn) and

F (·, t), ∂G(·, t)
∂x

,
∂G(·, t)

∂t
are locally Lipschitz, ∀t ∈ [0, T ].

2. Wavelet approximation for (B(t))t∈[0,1]

Let {2j/2Ψ(2jx−k) : (j, k) ∈ Z2} be a Lamarie Meyer wavelet basis of L2(R)
and denote by Ψ the function defined by

Ψ(x, θ) =
∫

R
eixy Ψ(y)

|y|θ+ 1
2
dy,
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where Ψ(y) is the Fourier transform. We use the following wavelet approxi-
mation of the multifractional Brownian motion (B(t))t∈[0,1] with Hurst index
H investigated in [1].

B(t) =
∞∑

j=−∞

∞∑
k=−∞

2−jH(k/2j)(Ψ(2jt− k, H(k/2j))−Ψ(−k,H(k/2j)))εj,k,

(2.1)
where εj,k are independent identically distributed N(0, 1) random variables.
This process was introduced in [3] to model fBm with piecewise constant
Hurst index and continuous path.

As in [2] and [12] we consider the following assumptions for Ψ: Ψ ∈ C1

and there exists a constant c > 0 such that

| sup
θ∈[a,b]

Ψ(t, θ)| ≤ c

(2 + |t|)2
and | sup

θ∈[a,b]

Ψ′(t, θ)| ≤ c

(2 + |t|)3
for all t ∈ R.

(2.2)
We consider the following high frequency component of the wavelet rep-

resentation in (2.1)

V1(t) =
∞∑

j=0

∞∑
k=−∞

2−jH(Ψ(2jt− k,H(k/2j))−Ψ(−k,H(k/2j)))εj,k

and the low frequency component

V2(t) =
−1∑

j=−∞

∞∑
k=−∞

2−jH(Ψ(2jt− k,H(k/2j))−Ψ(−k, H(k/2j)))εj,k.

Obviously,
B(t) = V1(t) + V2(t) for each t ∈ [0, 1].

Let N ∈ N. In the following we use two approximation components, corre-
sponding to the components V1, respectively V2, namely

BN
1 (t) =

N∑
j=0

∑
|k|≤ 2N+4

(N−j+1)2

2−jH(Ψ(2jt− k, H(k/2j))−Ψ(−k, H(k/2j)))εj,k

and

BN
2 (t) =

−1∑
j=−2[N/2]

∑
|k|≤2[N/2]

2−jH(Ψ(2jt−k, H(k/2j))−Ψ(−k,H(k/2j)))εj,k.

We denote
BN (t) = BN

1 (t) + BN
2 (t) for each t ∈ [0, 1]. (2.3)

Using Theorem 2 and Theorem 3 from [2] we have the following result:

Theorem 2.1. The sequence (BN )N∈N converges to B almost surely in ω ∈ Ω
and uniformly in t ∈ [0, 1], i.e.

P
(

lim
N→∞

sup
t∈[0,1]

|BN (t)−B(t)| = 0
)

= 1.
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In the sequel we need the following result:

Theorem 2.2. For all N ∈ N the approximating processes (BN (t))t∈[0,1] are
Lipschitz continuous with probability 1.

Proof. We write

|BN (s)−BN (t)| ≤ |BN
1 (s)−BN

1 (t)|+ |BN
2 (s)−BN

2 (t)|

≤
N∑

j=0

∑
|k|≤ 2N+4

(N−j+1)2

2−jH |Ψ(2js− k,H(k/2j))−Ψ(2jt− k,H(k/2j)))||εj,k|

+
−1∑

j=−2[N/2]

∑
|k|≤2[N/2]

2−jH |Ψ(2js− k,H(k/2j))−Ψ(2jt− k,H(k/2j))||εj,k|.

Using the assumption (2.2) for Ψ and using that the set of indices of j and k
is bounded, it follows that there exists a cN > 0 (depending on ω) such that

|BN (s)−BN (t)| ≤ cN |s− t| for all s, t ∈ [0, 1] and all n ∈ N.

�

3. Fractional integrals and derivatives

Let a, b ∈ R, a < b and f, g : R → R. We use notions and results about
fractional calculus, from [14] and [15]:

f(a+) := lim
δ↘0

f(a + δ), f(b−) := lim
δ↘0

f(b− δ),

fa+(x) = I(a,b)(f(x)− f(a+)), gb−(x) = I(a,b)(g(x)− g(b−)).

Note that for α > 0 we have (−1)α = eiπα.

For f ∈ L1(a, b) and α > 0 the left- and right-sided fractional Rieman-
Liouville integral of f of order α on (a, b) is given for almost every x by

Iα
a+f(x) =

1
Γ(α)

x∫
a

(x− y)α−1f(y)dy

and

Iα
b−f(x) =

(−1)−α

Γ(α)

b∫
x

(y − x)α−1f(y)dy.

For p > 1 let Iα
a+(Lp(a, b)), be the class of functions f which have

the representation f = Iα
a+Φ, where Φ ∈ Lp(a, b), and let Iα

b−(Lp(a, b))
be the class of functions g which have the representation g = Iα

b−ϕ, where
ϕ ∈ Lp(a, b). If 0 < α < 1, then the function Φ, respectively ϕ, in the rep-
resentations above agree almost surely with the left-sided and respectively
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right-sided fractional derivative of f of order α (in the Weyl representation)

Φ(x) = Dα
a+f(x) =

1
Γ(1− α)

 f(x)
(x− a)α

+ α

x∫
a

f(x)− f(y)
(x− y)α+1

dy

 I(a,b)(x)

and

ϕ(x) = Dα
b−g(x) =

(−1)α

Γ(1− α)

 g(x)
(b− x)α

+ α

b∫
x

g(x)− g(y)
(y − x)α+1

dy

 I(a,b)(x).

The convergence at the singularity y = x holds in the Lp-sense. Recall that

Iα
a+(Dα

a+f) = f for f ∈ Iα
a+(Lp(a, b)), Iα

b−(Dα
b−g) = g for g ∈ Iα

b−(Lp(a, b))

and
Dα

a+(Iα
a+f) = f, Dα

b−(Iα
b−g) = g for f, g ∈ L1(a, b).

For completeness we denote

D0
a+f(x) = f(x), D0

b−g(x) = g(x), D1
a+f(x) = f ′(x), D1

b−g(x) = g′(x).

Let 0 ≤ α ≤ 1. The fractional integral of f with respect to g is defined as
b∫

a

f(x)dg(x) = (−1)α

b∫
a

Dα
a+fa+(x)D1−α

b− gb−(x)dx (3.1)

+f(a+)(g(b−)− g(a+))

if fa+ ∈ Iα
a+(Lp(a, b)), gb− ∈ I1−α

b− (Lq(a, b)) for 1
p + 1

q ≤ 1.
In our investigations we will take p = q = 2. If 0 ≤ α < 1

2 , then the
integral in (3.1) can be written as

b∫
a

f(x)dg(x) = (−1)α

b∫
a

Dα
a+f(x)D1−α

b− gb−(x)dx (3.2)

if f ∈ Iα
a+(L2(a, b)), f(a+) exists, gb− ∈ I1−α

b− (L2(a, b)) (see [15]).

4. The stochastic integral

Without loss of generality we consider 0 < T ≤ 1, because for arbitrary T > 0
we can rescale the time variable using the H-self similarity property of the
multifractional Brownian motion meaning that

(
B(ct)

)
t≥0

and
(
cHB(t)

)
t≥0

are equal in distribution for every c > 0.

We will define the

T∫
0

G(u)dB(u) Itô integral instead of

t∫
0

G(u)dB(u)

and use
t∫

0

G(u)dB(u) =

T∫
0

I[0,t](u)G(u)dB(u) for t ∈ [0, T ]
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(by Theorem 2.5, p. 345, in [15]).
We consider α > 1−H. It follows by (3.2) that

T∫
0

G(u)dB(u) = (−1)α

T∫
0

Dα
0+G(u)D1−α

T− BT−(u)du (4.1)

for G ∈ Iα
0+(L2(0, T )), where G(0+) exists and BT− ∈ I1−α

T− (L2(0, T )).
The condition G ∈ Iα

0+(L2(0, T )) (with probability 1) means that G ∈
L2(0, T ) and

Iε(x) =

x−ε∫
0

G(x)−G(y)
(x− y)α+1

dy for x ∈ (0, T )

converges in L2(0, T ) as ε ↘ 0.
The condition BT− ∈ I1−α

T− (L2(0, T )) means BT− ∈ L2(0, T ) and

Jε(x) =

T∫
x+ε

B(x)−B(y)
(y − x)2−α

dy for x ∈ (0, T )

converges in L2(0, T ) as ε ↘ 0 This condition for B is fulfilled for α >
1−H, since the multifractional Brownian motion B is almost surely Hölder
continuous with exponent γ ∈ (0,H) (see [5]).

We will use (3.2) for the integrals with respect the approximating pro-
cesses

(
BN (t)

)
t∈[0,T ]

. Observe that BN,T− ∈ I1−α
T− (L2(0, T )), which follows

from the Lipschitz continuity property in Theorem 2.2. We have
T∫

0

G(u)dBN (u) = (−1)α

T∫
0

Dα
0+G(u)D1−α

T− BN,T−(u)du (4.2)

for G ∈ Iα
0+(L2(0, T )), where G(0+) exists.

Let
(
Z(t)

)
t∈[0,T ]

be a cádlág process. Its generalized quadratic variation

process
(
[Z](t)

)
t∈[0,T ]

is defined as

[Z](t) = lim
ε↘0

ε

1∫
0

t∫
0

1
u

(Zt−(s + u)− Zt−(s))2dsdu + (Z(t)− Z(t−))2,

if the limit exists uniformly in probability (see [16] ).
In particular, if B is a multifractional Brownian motion with Hurst

index H ∈ ( 1
2 , 1) and BN is an approximation of B as given in (2.3), it is

easy to verify that

[B](t) = 0 and [BN ](t) = 0 for each t ∈ [0, T ], (4.3)

because B is locally Hölder continuous and BN is Lipschitz continuous. The
Itô formula for change of variable for fractional integrals is given in the next
theorem.
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Theorem 4.1 ([16], Theorem 5.8, p. 170). Let
(
Z(t)

)
t∈[0,T ]

be a continuous

process with generalized quadratic variation [Z]. Let Q : R × [0, T ] → R be
a random function such that a.s. we have Q ∈ C1(R × [0, T ]) and ∂2Q

∂x2 ∈
C(R× [0, T ]). Then, for t0, t ∈ [0, T ] we have

Q(Z(t), t)−Q(Z(t0), t0) =

t∫
t0

∂Q

∂x
(Z(s), s)dZ(s) +

t∫
t0

∂Q

∂t
(Z(s), s)ds

+

t∫
t0

∂2Q

∂2x
(Z(s), s)d[Z]s.

Let 1 −H < α < 1
2 and let G ∈ Iα

0+(L2(0, T )) such that G(0+) exists.
We define the processes

Z(t) =

t∫
0

G(s)dB(s) and ZN (t) =

t∫
0

G(s)dBN (s), t ∈ (0, T ].

Then by Theorem 5.6, p. 167 in [16] it follows that

[Z](t) = 0 and [ZN ](t) = 0.

Using Theorem 4.1, it follows that, if Q : R× [0, T ] → R is a random function
such that a.s. we have Q ∈ C1(R × [0, T ]) and ∂2Q

∂x2 ∈ C(R × [0, T ]), then for
t0, t ∈ [0, T ] we have

Q(Z(t), t)−Q(Z(t0), t0) =

t∫
t0

∂Q

∂x
(Z(s), s)G(s)dB(s) (4.4)

+

t∫
t0

∂Q

∂t
(Z(s), s)ds

and

Q(ZN (t), t)−Q(ZN (t0), t0) =

t∫
t0

∂Q

∂x
(ZN (s), s)G(s)dBN (s) (4.5)

+

t∫
t0

∂Q

∂t
(ZN (s), s)ds.

5. Stochastic differential equations driven by multifractional
Brownian motion

Let
(
B(t)

)
t≥0

be a multifractional Brownian motion with Hurst parameter

H such that H > 1
2 . We investigate stochastic differential equations of the
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form

dX(t) = F (X(t), t)dt + G(X(t), t)dB(t), (5.1)
X(t0) = X0,

where t0 ∈ (0, T ], X0 is a random vector in Rn and the random functions F
and G satisfy with probability 1 the following conditions:

(C1) F ∈ C(Rn × [0, T ], Rn), G ∈ C1(Rn × [0, T ], Rn);

(C2) for each t ∈ [0, T ] the functions F (·, t), ∂G(·, t)
∂xi

,
∂G(·, t)

∂t
are locally Lip-

schitz for each i ∈ {1, . . . , n}.

We consider the pathwise auxiliary partial differential equation on Rn ×R×
[0, T ]

∂K

∂z
(y, z, t) = G(K(y, z, t), t), (5.2)

K(Y0, Z0, t0) = X0,

where Y0 is an arbitrary random vector in Rn and Z0 an arbitrary random
variable in R. From the theory of differential equations it follows that with
probability 1 there exists a local solution K ∈ C1(Rn× [0, T ], Rn) in a neigh-
bourhood V of (Y0, Z0, t0) with partial derivatives being Lipschitz in the
variable y and

det
(

Ki

∂yj
(y, z, t)

)
1≤i,j≤n

6= 0.

We have for (x, y, t) ∈ V

∂2K

∂z2
(y, z, t) =

n∑
j=1

∂G

∂xj
(K(y, z, t), t)Gj(K(y, z, t), t).

We also consider the pathwise differential equation (in matrix representation)
on [0, T ]

dY (t) =
(

K

∂y
(Y (t), B(t), t)

)−1[
F (K(Y (t), B(t), t), t)− ∂K

∂t
(Y (t), B(t), t)

]
dt

Y (t0) = Y0,

which has a unique local solution on a maximal interval (t10, t
2
0) ⊆ [0, T ] with

t0 ∈ (t10, t
2
0) (see [13]).

Applying the Itô formula, see Theorem 4.1 and relation (4.4), to the
random function Q(z, t) = K(Y (t), z, t) (in fact, successively for K1, . . . ,Kn)
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and the fractional Brownian motion B we obtain

K(Y (t), B(t), t)−K(Y (t0), B(t0), t0)

=
n∑

j=1

t∫
t0

∂K

∂yj
(Y (s), B(s), s)dY j(s) +

t∫
t0

∂K

∂z
(Y (s), B(s), s)dB(s)

+

t∫
t0

∂K

∂t
(Y (s), B(s), s)ds

=
n∑

j=1

t∫
t0

∂K

∂yj
(Y (s), B(s), s)dY j(s)

+

t∫
t0

G(K(Y (s), B(s), s), s)dB(s) +

t∫
t0

∂K

∂t
(Y (s), B(s), s)ds

=

t∫
t0

F (K(Y (s), B(s), s), s)ds +

t∫
t0

G(K(Y (s), B(s), s), s)dB(s).

Therefore,

X(t) := K(Y (t), B(t), t)

satisfies

X(t) = X0 +

t∫
t0

F (X(s), s)ds +

t∫
t0

G(X(s), s)dB(s).

Instead of the process
(
B(t)

)
t∈[0,1]

we consider its approximations(
BN (t)

)
t∈[0,1]

given in (2.3). For each N ∈ N we consider the pathwise

differential equation (in matrix representation)

dYN (t) =
(

∂K

∂y
(YN (t), BN (t), t)

)−1 [
F (K(YN (t), BN (t), t), t)

−∂K

∂t
(YN (t), BN (t), t)

]
dt

YN (t0) = Y0,

which has a unique local solution YN on a maximal interval (t1, t2) ⊂ (t10, t
2
0)

of existence which contains t0. Applying the Itô formula, see Theorem 4.1 and
(4.5), to the random function Q(z, t) = K(YN (t), z, t) (in fact, successively
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for K1, . . . ,Kn) and the process BN we obtain

K(YN (t), BN (t), t)−K(YN (t0), BN (t0), t0)

=
n∑

j=1

t∫
t0

∂K

∂yj
(YN (s), BN (s), s)dY j

N (s) +

t∫
t0

∂K

∂z
(YN (s), BN (s), s)dBN (s)

+

t∫
t0

∂K

∂t
(YN (s), BN (s), s)ds

=
n∑

j=1

t∫
t0

∂K

∂yj
(YN (s), BN (s), s)dY j

N (s) +

t∫
t0

G(K(YN (s), BN (s), s), s)dBN (s)

+

t∫
t0

∂K

∂t
(YN (s), BN (s), s)ds

=

t∫
t0

F (K(YN (s), BN (s), s), s)ds +

t∫
t0

G(K(YN (s), BN (s), s), s)dBN (s).

Therefore,
XN (t) := K(YN (t), BN (t), t)

satisfies

XN (t) = X0 +

t∫
t0

F (XN (s), s)ds +

t∫
t0

G(XN (s), s)dBN (s), t ∈ (t1, t2).

By Theorem 7.2 [13] it follows that we have the following pathwise property

lim
N→∞

sup
t∈(t1,t2)

‖YN (t)− Y (t)‖ = 0.

Then the continuity properties of K and (2.4) imply that for a.e. ω ∈ Ω it
holds

lim
N→∞

sup
t∈(t1,t2)

‖XN (t)−X(t)‖ = 0.

By this we have proved the main result of our paper:

Theorem 5.1. Let B be a multifractional Brownian motion approximated
through the processes BN given in (2.1) and (2.3). Let F,G : Rn×[0, T ] → Rn

be random functions satisfying with probability 1 the conditions (C1) and
(C2). Let t0 ∈ (0, T ] be fixed. Then, each of the stochastic equations

X(t) = X0 +

t∫
t0

F (X(s), s)ds +

t∫
t0

G(X(s), s)dB(s),
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XN (t) = X0 +

t∫
t0

F (XN (s), s)ds +

t∫
t0

G(XN (s), s)dBN (s), N ∈ N

admits almost surely a unique local solution on a common interval (t1, t2)
(which is independent of N and contains t0). Moreover, we have the following
approximation result

P

(
lim

N→∞
sup

t∈(t1,t2)

‖XN (t)−X(t)‖ = 0

)
= 1.
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1, Kogălniceanu Street
400084 Cluj-Napoca
Romania
e-mail: asoos@math.ubbcluj.ro
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Maria Talpău Dimitriu

Abstract. We present estimates of the degree of approximation by
positive linear operators which preserve linear function, with the K-
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2,ϕ, 1 ≤ s ≤ ∞.
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1. Introduction

Estimates with the second order modulus ω2 given by

ω2(f, t) = sup
|x−y|≤2t

∣∣∣∣f(x)− f

(
x+ y

2

)
+ f(y)

∣∣∣∣ , f ∈ C[a, b], t > 0

were established by H. Esser in 1976, G. Freud in 1978, H. Gonska in 1984
and R. Păltănea in 1995.

In [8] is given the following axiomatic definition for the modulus of
continuity:

Definition 1.1. Let X be a linear space of functions f : I −→ R (I ⊂ R an
interval) who include the space of algebric polynomials of degree at most r
denoted by Πr, r ∈ N. A function Ωr : X × (0,∞) −→ [0,∞)∪ {∞} is called
a modulus of continuity of order r on X if and only if the following axioms
are satisfied

1. Ωr (f, t1) ≤ Ωr (f, t2) if 0 < t1 < t2
2. Ωr (f + p, t) = Ωr (f, t) if p ∈ Πr−1

3. Ωr (0, t) = 0.
Moreover, if there exists a constant M > 0 such that Ωr (er, t) ≤Mtr for all
t > 0, then the modulus ωr is called normalized.

There are established estimates with different second order moduli based
on the following general result:
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Theorem 1.2. 1 [8, p. 20]Let [c, d] ⊂ [a, b], L : C[a, b] −→ C[c, d] a positive
linear operator such that Le0 = e0 and Le1 = e1, Ω2 a second order modulus
on C[a, b], f ∈ C[a, b], t > 0 and x ∈ (c, d). Suppose that there exists a

function ψ : [0,∞) −→ [0,∞) such that ψ
(
|e1 − xe0|

t

)
∈ C[a, b] and

|∆ (f ;x1, x, x2)| ≤ δt (ψ;x1, x, x2)Ω2(f, t), a ≤ x1 < x < x2 ≤ b.

Then

|L(f, x)− f(x)| ≤ L

(
ψ

(
|e1 − xe0|

t

)
, x

)
Ω2(f, t).

The notations used are:
• ek for the function ek(x) = xk, k ∈ N ∪ {0};
• ∆(f ;x1, x, x2) =

x2 − x

x2 − x1
f (x1) +

x− x1

x2 − x1
f (x2)− f(x) for f : [a, b] −→

R, x1, x, x2 ∈ [a, b], x1 6= x2;

• δt(ψ;x1, x, x2) =
x2 − x

x2 − x1
ψ

(
x− x1

t

)
+

x− x1

x2 − x1
ψ

(
x2 − x

t

)
for ψ :

[0,∞) −→ R, x1, x, x2 ∈ [0,∞), x1 < x < x2, t > 0.
The K-functional Ks

r (f, t) = Ks (f, tr;C[a, b],Cr[a, b]) , t > 0, 1 ≤ s ≤ ∞
defined for the Banach space (C[a, b], ‖·‖) and the semi-Banach subspace
(Cr[a, b], |·|Cr ) , |f |Cr =

∥∥f (r)
∥∥ by

Ks
r (f, t) = inf

g∈Cr[a,b]

∥∥∥(‖f − g‖ , tr
∥∥∥g(r)

∥∥∥)∥∥∥
s
, 1 ≤ s ≤ ∞,

where ‖·‖s , 1 ≤ s < ∞, is the Minkowski norm in R2 and ‖·‖∞ is the
Chebychev norm in R2, respectively, is a modulus of continuity of order r
normalized on C[a, b]. An useful relation between the K-functionals is given
by:

Lemma 1.3. [13] Let 1 ≤ s <∞ and r ∈ N. Then for f ∈ C[a, b] and t > 0

Ks
r (f, t) = inf

u>0

(
1 +

trs

urs

) 1
s

K∞
r (f, u) holds. (1.1)

In the weighted case, for r ∈ N and ϕ(x) =
√
x(1− x), x ∈ [0, 1] we

denote by

Cϕ[0, 1] =
{
f ∈ C(0, 1) | (∃) lim

x→0+
f(x)ϕ(x), lim

x→1−
f(x)ϕ(x) ∈ R

}
and

Wr
Cϕr [0, 1] =

{
f ∈ Cr−1[0, 1] | f (r) ∈ Cϕr [0, 1]

}
.

The K-functional Ks
r,ϕ(f, t) = Ks

(
f, tr;C[0, 1],Wr

Cϕr
[0, 1]

)
, t > 0, 1 ≤ s ≤

∞ defined for the Banach space (C[0, 1], ‖·‖) and the semi-Banach subspace

1We refer here only the particular case when the operators preserves the linear functions.
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Wr

Cϕr
[0, 1], |·|W r

Cϕr

)
, |f |W r

Cϕr
=
∥∥ϕrf (r)

∥∥ by

Ks
r,ϕ (f, t) = inf

g∈Wr
Cϕr

[0,1]

∥∥∥(‖f − g‖ , tr
∥∥∥ϕrg(r)

∥∥∥)∥∥∥
s
, 1 ≤ s ≤ ∞,

is a modulus of continuity of order r normalized on C[0, 1] and we have

Lemma 1.4. [14] Let 1 ≤ s <∞ and r ∈ N. Then for f ∈ C[a, b] and t > 0

Ks
r,ϕ(f, t) = inf

u>0

(
1 +

trs

urs

) 1
s

K∞
r,ϕ(f, u) holds. (1.2)

In Section 2 are given estimates with theK-functionalKs
2 and in Section

3 are given estimates with the K-functional Ks
2,ϕ.

2. General estimates with Ks
2 , 1 ≤ s ≤ ∞

Theorem 2.1. Let [c, d] ⊆ [a, b], L : C[a, b] −→ C[c, d] a positive linear oper-
ator such that Le0 = e0, Le1 = e1 and f ∈ C[a, b]. Then for every x ∈ (c, d)
and t > 0, we have

|L(f, x)− f(x)| ≤

2 +
L
(
(e1 − xe0)

2
, x
)

2t2

K∞
2 (f, t). (2.1)

Conversely, if there exist A, B ≥ 0 such that

|L(f, x)− f(x)| ≤

A+B
L
(
(e1 − xe0)

2
, x
)

t2

K∞
2 (f, t) (2.2)

holds for all positive linear operator L, any f ∈ C[a, b], any x ∈ (c, d) and

any t > 0, then B ≥ 1
2

and A ≥ 2.

Proof. Let g ∈ C2[a, b], x1, x, x2 ∈ [a, b], x1 < x < x2. We have

|∆ (f ;x1, x, x2)| ≤ |∆ (f − g;x1, x, x2)|+ |∆ (g;x1, x, x2)|
≤ 2 ‖f − g‖+ |∆ (g;x1, x, x2)|

and

|∆ (g;x1, x, x2)| =
∣∣∣∣ x2 − x

x2 − x1
(g (x1)− g(x)) +

x− x1

x2 − x1
(g (x2)− g(x))

∣∣∣∣
= | x2 − x

x2 − x1

(
g′(x) (x1 − x) +

g′′ (ξ1)
2

(x1 − x)2
)

+
x− x1

x2 − x1

(
g′(x) (x2 − x) +

g′′ (ξ2)
2

(x2 − x)2
)
|

=
(x2 − x) (x− x1)

2 (x2 − x1)
|g′′ (ξ1) (x− x1) + g′′ (ξ2) (x2 − x)|

≤ (x2 − x) (x− x1)
2

‖g′′‖
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with ξi between x and xi, i = 1, 2. Therefore

|∆(f ;x1, x, x2)| ≤ 2 ‖f − g‖+
(x2 − x) (x− x1)

2t2
t2 ‖g′′‖

≤
(

2 +
(x2 − x) (x− x1)

2t2

)
max

{
‖f − g‖ , t2 ‖g′′‖

}
.

Since g was arbitrary it follows that

|∆ (f ;x1, x, x2)| ≤
(

2 +
(x2 − x) (x− x1)

2t2

)
K∞

2 (f, t). (2.3)

If we take ψ(u) = 2 +
u2

2
then (2.3) means

|∆ (f ;x1, x, x2)| ≤ δt (ψ;x1, x, x2)K∞
2 (f, t), x1 < x < x2.

By Theorem 1.2 we have

|L(f, x)− f(x)| ≤

2 +
L
(
(e1 − xe0)

2
, x
)

2t2

K∞
2 (f, t).

Now we prove the converse part. We consider the positive linear operator
L defined by

L(h, x) = (1− x)h(0) + xh(1), h ∈ C[0, 1].

For f = e2 we have K∞
2 (e2, t) ≤ 2t2 and from (2.2) it follows

x(1− x) ≤ 2At2 + 2Bx(1− x).

Passing to the limit t→ 0, we obtain B ≥ 1
2
.

For f(x) = α(4x − 1), x ∈
[
0,

1
2

]
, f(x) = α(3 − 4x), x ∈

(
1
2
, 1
]
, α > 0, we

have K∞
2 (f, t) ≤ ‖f‖ = α and from (2.2) it follows for x =

1
2

that

2α ≤
(
A+

B

4t2

)
α.

Passing to the limit t→∞, we obtain A ≥ 2. �

Corollary 2.2. Under the conditions of theorem we have

|L(f, x)− f(x)| ≤ max

2,
L
(
(e1 − xe0)

2
, x
)

2t2

K1
2 (f, t) (2.4)

and

|L(f, x)− f(x)| ≤

2s′
+
L
(
(e1 − xe0)

2
, x
)s′

2s′t2s′


1
s′

Ks
2(f, t) (2.5)
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where 1 < s <∞ and s′ =
s

s− 1
.

Conversely
• if there exist A, B ≥ 0 such that

|L(f, x)− f(x)| ≤ max

A, BL
(
(e1 − xe0)

2
, x
)

t2

K1
2 (f, t) (2.6)

holds for all positive linear operator L, any f ∈ C[a, b], any x ∈ (c, d)

and any t > 0, then B ≥ 1
2

and A ≥ 2.
• if there exist A, B ≥ 0 such that

|L(f, x)− f(x)| ≤

A+B
L
(
(e1 − xe0)

2
, x
)s′

t2s′


1
s′

Ks
2(f, t) (2.7)

holds for all positive linear operator L, any f ∈ C[a, b], any x ∈ (c, d)

and any t > 0, then B ≥ 1
2s′ and A ≥ 2s′

.

Proof. Using the estimate (2.1), we obtain

|L(f, x)− f(x)| ≤

2 +
L
(
(e1 − xe0)

2
, x
)

2u2

K∞
2 (f, u)

≤ max

2,
L
(
(e1 − xe0)

2
, x
)

2t2


(

1 +
t2

u2

)
K∞

2 (f, u),

where u > 0 is arbitrary. Hence, by Lemma 1.3, we find (2.4). For 1 < s <∞,
by (2.1) and Hölder’s inequality, we have

|L(f, x)− f(x)| ≤

2s′
+
L
(
(e1 − xe0)

2
, x
)s′

2s′t2s′


1
s′ (

1 +
t2s

u2s

) 1
s

K∞
2 (f, u),

where u > 0 is arbitrary. Hence, by Lemma 1.3, we find (2.5).
For the converse part we make the same choices like in Theorem 2.1. �

Example 2.3. We consider the Bernstein-type operator Pn,m : C[0, 1] −→
C[0, 1] ( see [12], [3])

Pn,m(f, x) =
n∑

k=0

bn,k,m(x) · f
(
k

n

)
where
bn,k,m(x) =

(
n−m

k

)
xk(1− x)n−m−k+1 for 0 ≤ k < m,

bn,k,m(x) =
(
n−m

k

)
xk(1− x)n−m−k+1 + · · ·+

(
n−m
k−m

)
xk−m+1(1− x)n−k

for m ≤ k ≤ n−m and
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bn,k,m(x) =
(
n−m
k−m

)
xk−m+1(1− x)n−k for n−m < k ≤ n,

with n ∈ N, m ∈ N ∪ {0} , m <
n

2
. We have

Pn,m (e0, x) = 1
Pn,m (e1, x) = x

Pn,m

(
(e1 − xe0)

2
, x
)

=
(

1 +
m(m− 1)

n

)
x(1− x)

n
.

Theorem 2.1 implies for f ∈ C[0, 1], x ∈ (0, 1) and t =

√
x(1− x)

n

|Pn,m(f, x)− f(x)| ≤
[
2 +

1
2

(
1 +

m(m− 1)
n

)]
K∞

2

(
f,

√
x(1− x)

n

)
.

From Corollary 2.2 we obtain

|Pn,m(f, x)− f(x)| ≤ max
{

2,
1
2

(
1 +

m(m− 1)
n

)}
K1

2

(
f,

√
x(1− x)

n

)
and

|Pn,m(f, x)− f(x)| ≤

[
2s′

+
1

2s′

(
1 +

m(m− 1)
n

)s′] 1
s′

Ks
2

(
f,

√
x(1− x)

n

)

where 1 < s < ∞ and s′ =
s

s− 1
. In particular, for m = 0 or m = 1 we

obtain the estimates for the Bernstein operators.

3. General estimates with Ks
2,ϕ, 1 ≤ s ≤ ∞

Theorem 3.1. Let L : C[0, 1] −→ C[0, 1] be a positive linear operator such
that Le0 = e0, Le1 = e1 and f ∈ C[0, 1]. Then for all x ∈ (0, 1) and t > 0 we
have

|L(f, x)− f(x)| ≤

2 +
L
(
(e1 − xe0)

2
, x
)

t2ϕ2(x)

K∞
2,ϕ(f, t). (3.1)

Conversely, if there exist A, B ≥ 0 such that

|L(f, x)− f(x)| ≤

A+B
L
(
(e1 − xe0)

2
, x
)

t2ϕ2(x)

K∞
2,ϕ(f, t) (3.2)

holds for all positive linear operator L, any f ∈ C[0, 1], any x ∈ (0, 1) and
any t > 0, then B ≥ 1 and A ≥ 2.

Proof. Let g ∈ W2
Cϕ2

[0, 1], x1, x, x2 ∈ [0, 1], x1 < x < x2. We have

|∆ (f ;x1, x, x2)| ≤ |∆ (f − g;x1, x, x2)|+ |∆ (g;x1, x, x2)|
≤ 2 ‖f − g‖+ |∆ (g;x1, x, x2)|
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and

|∆ (g;x1, x, x2)| =
∣∣∣∣ x2 − x

x2 − x1
(g (x1)− g(x)) +

x− x1

x2 − x1
(g (x2)− g(x))

∣∣∣∣
= | x2 − x

x2 − x1

g′(x) (x1 − x) +

x1∫
x

g′′ (u) (x1 − u) du


+
x− x1

x2 − x1

g′(x) (x2 − x) +

x2∫
x

g′′ (u) (x2 − u) du

|
=

∣∣∣∣∣∣ x2 − x

x2 − x1

x1∫
x

g′′ (u) (x1 − u) du− x1 − x

x2 − x1

x2∫
x

g′′ (u) (x2 − u) du

∣∣∣∣∣∣
≤ x2 − x

x2 − x1
·
∥∥ϕ2g′′

∥∥ · x∫
x1

u− x1

ϕ2(u)
du+

x− x1

x2 − x1
·
∥∥ϕ2g′′

∥∥ · x2∫
x

x2 − u

ϕ2(u)
du.

Let us now make use of the fact that the function u 7→ t− u

u(1− u)
, u ∈ (0, t),

t ∈ (0, 1] is decreasing [8] and we obtain

|∆ (g;x1, x, x2)| ≤

≤ x2 − x

x2 − x1
·
∥∥ϕ2g′′

∥∥ · 1−x1∫
1−x

1− u− x1

ϕ2(1− u)
du+

x− x1

x2 − x1
·
∥∥ϕ2g′′

∥∥ · x2∫
x

x2 − u

ϕ2(u)
du

≤ x2 − x

x2 − x1
·
∥∥ϕ2g′′

∥∥ · 1−x1∫
1−x

x− x1

ϕ2(1− x)
du+

x− x1

x2 − x1
·
∥∥ϕ2g′′

∥∥ · x2∫
x

x2 − x

ϕ2(x)
du

=
(x2 − x) (x− x1)

ϕ2(x)

∥∥ϕ2g′′
∥∥

therefore

|∆(f ;x1, x, x2)| ≤ 2 ‖f − g‖+
(x2 − x) (x− x1)

t2ϕ2(x)
t2
∥∥ϕ2g′′

∥∥
≤

(
2 +

(x2 − x) (x− x1)
t2ϕ2(x)

)
max

{
‖f − g‖ , t2

∥∥ϕ2g′′
∥∥} .

Since g was arbitrary it follows that

|∆ (f ;x1, x, x2)| ≤
(

2 +
(x2 − x) (x− x1)

t2ϕ2(x)

)
K∞

2,ϕ(f, t). (3.3)

If we take ψ(u) = 2 +
u2

ϕ2(x)
then (3.3) means

|∆ (f ;x1, x, x2)| ≤ δt (ψ;x1, x, x2)K∞
2,ϕ(f, t), x1 < x < x2.
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By Theorem 1.2 we have

|L(f, x)− f(x)| ≤

2 +
L
(
(e1 − xe0)

2
, x
)

t2ϕ2(x)

K∞
2,ϕ(f, t).

Now we prove the converse part. To show that A ≥ 2, we consider the
positive linear operator L defined by

L(h, x) = (1− x)h(0) + xh(1), h ∈ C[0, 1].

For f(x) = α(4x − 1), x ∈
[
0,

1
2

]
, f(x) = α(3 − 4x), x ∈

(
1
2
, 1
]
, α > 0, we

have K∞
2,ϕ (f, t) ≤ ‖f‖ = α and from (3.2) it follows for x =

1
2

that

2α ≤
(
A+

B

t2

)
α.

Passing to the limit t→∞, we obtain A ≥ 2.
To show that B ≥ 1, we choose

L(h, x) =
(
1− xβ

)
h(0) + xβh

(
x1−β

)
, β ∈ (0, 1), h ∈ C[0, 1]

and f(x) = x1+α, α > 0. We have f ∈ W2
Cϕ2

[0, 1] and then

K∞
2,ϕ(f, t) ≤ t2

∥∥ϕ2f ′′
∥∥ = t2

αα+1

(α+ 1)α
.

We replace it in (3.2) and passing to the limit t→ 0, we obtain

x1+α
(
x−αβ − 1

)
≤ B ·

x
(
x−β − 1

)
1− x

· αα+1

(α+ 1)α

i.e.

B ≥ xα(1− x) ·
(
x−αβ − 1

)
x−β − 1

· (α+ 1)α

αα+1
.

Passing to the limit β → 0, we obtain B ≥ xα(1 − x)
(α+ 1)α

αα
. Since x is

arbitrary, this implies B ≥ 1
α+ 1

. Passing to the limit α → 0, we obtain

B ≥ 1. �

Corollary 3.2. Under the conditions of theorem we have

|L(f, x)− f(x)| ≤ max

2,
L
(
(e1 − xe0)

2
, x
)

t2ϕ2(x)

K1
2,ϕ(f, t) (3.4)

and

|L(f, x)− f(x)| ≤

2s′
+
L
(
(e1 − xe0)

2
, x
)s′

t2s′ϕ2s′(x)


1
s′

Ks
2,ϕ(f, t) (3.5)



Estimates with Peetre’s K-functionals of order 2 607

where 1 < s <∞ and s′ =
s

s− 1
.

Conversely
• if there exist A, B ≥ 0 such that

|L(f, x)− f(x)| ≤ max

A, BL
(
(e1 − xe0)

2
, x
)

t2ϕ2(x)

K1
2,ϕ(f, t) (3.6)

holds for all positive linear operator L, any f ∈ C[0, 1], any x ∈ (0, 1)
and any t > 0, then B ≥ 1 and A ≥ 2.

• if there exist A, B ≥ 0 such that

|L(f, x)− f(x)| ≤

A+B
L
(
(e1 − xe0)

2
, x
)s′

t2s′ϕ2s′(x)


1
s′

Ks
2,ϕ(f, t) (3.7)

holds for all positive linear operator L, any f ∈ C[0, 1], any x ∈ (0, 1)
and any t > 0, then B ≥ 1 and A ≥ 2s′

.

Proof. We use the estimate (3.1) and Lemma 1.4 (see also the proof of Corol-
lary 2.2). For the converse part we make the same choices like in Theorem
3.1. �
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e-mail: marias td@yahoo.com; mdimitriu@unitbv.ro
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1. Introduction

Consider the two equivalent classical definitions of the real exponential func-
tion

ex = 1 +
x

1!
+

x2

2!
+ . . .

xn

n!
+ . . . (1.1)

respectively

ex = lim
n→∞

(
1 +

x

n

)n

, (1.2)

both convergences being uniform on compact subsets of R.
Their speed of convergence is different. Concerning the Taylor-Maclaurin ap-
proximation (1.1) of the exponential, see D. S. Mitrinović [3], pp. 268-269.
For the approximation given by (1.2), also in this classical book are given the
following inequalities

0 ≤ ex −
(
1 +

x

n

)n

≤ x2ex

n
, for |x| < n and n ∈ N∗;

0 ≤ e−x −
(
1− x

n

)n

≤ x2 (1 + x) e−x

2n
, for 0 ≤ x < n, n ∈ N, n ≥ 2;

0 ≤ e−x −
(
1− x

n

)n

≤ x2

2n
, for 0 ≤ x ≤ n and n ∈ N∗

(see [4], [5], [13], [14], [15]).
In [7] we gave some stronger inequalities, namely
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i) If x > 0, t > 0 and t > 1−x
2 then

x2ex

2t + x + max{x, x2}
< ex −

(
1 +

x

t

)t

<
x2ex

2t + x
. (1.3)

ii) If x > 0, t > 0 and t > x−1
2 then

x2e−x

2t− x + x2
< e−x −

(
1− x

t

)t

<
x2e−x

2t− 2x + min{x, x2}
(1.4)

and we detailed the proof of (1.3) (for the proof of (1.4) see[12], pp. 258-260).
Also, note en passant, that the previous inequalities give by the simple

particularization x = 1, the characterizations of the ”speed” of convergence
of four standard sequences related to the numbers e and 1

e , namely 1)

e
2n + 2

< e−
(

1 +
1
n

)n

<
e

2n + 1
([8], pag. 38, [11])

e
2n + 1

<

(
1 +

1
n

)n+1

− e <
e
2n

([10])

1
2ne

<
1
e
−
(

1− 1
n

)n

<
1

(2n− 1)e
([6], [7])

1
(2n− 1)e

<

(
1− 1

n

)n−1

− 1
e

<
1

(2n− 2)e
([6], [7]).

2. The main result

Now we will establish the best approximation of e by the family of sequences
of general term

(
1 + 1

n

)n+p, where p is a real parameter; this may suggest
the best approximation of ex, x > 0, by some algebraic functions.

Consider the known limited expansion

(1 + x)
1
x = e

(
1− 1

2
x +

11
24

x2 − 7
16

x3

)
+ O(x4), (2.1)

and also the limited binomial one

(1 + x)p = 1 +
p

1!
x +

p(p− 1)
2!

x2 +
p(p− 1)(p− 2)

3!
x3 + O(x4). (2.2)

1)Using the notations en =
(
1 + 1

n

)n
, fn =

(
1 + 1

n

)n+1
, gn =

(
1− 1

n

)n
, hn =(

1− 1
n

)n−1
and applying the GM-AM inequality for the numbers a1 = a2 = a3 = . . . =

an = 1 + 1
n

, an+1 = 1, we obtain that the sequence (en)n is strictly increasing (see [9]).

Applying the GM-AM inequality for the numbers b1 = b2 = b3 = . . . = bn = 1 − 1
n

,

bn+1 = 1, we obtain analogously that the sequence (gn)n is strictly increasing. The iden-

tities fn = 1
gn+1

and hn = 1
en−1

show us that the sequences (fn)n and (hn)n are strictly

decreasing. Therefore en < e < fn and gn < 1
e

< hn.
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Remark. The formula (2.1) is can be obtained in a classical way, using

the well-known limited expansions ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ O(x5) and

exp y = 1 + y
1!

+ y2

2!
+ y3

3!
+ y4

4!
+ O(y5). Then

1

e
(1 + x)

1
x =

1

e
exp

(
1

x
ln(1 + x)

)
=

= exp

(
1

x
ln(1 + x)− 1

)
= exp

(
−x

2
+

x2

2
− x3

4
+ O(x4)

)
=

=

(
3∑

k=0

1

k!

(
−x

2
+

x2

2
− x3

4
+ O(x4)

)k
)

+ O(x4)

and some standard calculations give (2.1).

Multiplying (2.1) and (2.2), part by part, performing the usual calcula-
tions and replacing x by 1

n (n = 1, 2, 3, . . .), we obtain

(
1 + 1

n

)n+p = e +
(

p− 1
2

)
e
n

+
12p2 − 24p + 11

24
· e
n2

+

+
8p4 − 36p2 + 50p− 21

48
· e
n3

+ O

(
1
n4

)
.

(2.3)

From (2.3), we see that

lim
n→∞

n

((
1 +

1
n

)n+p

− e

)
=


0, for p =

1
2(

p− 1
2

)
e for p 6= 1

2

. (2.4)

For p = 1
2 it results that the term in 1

n of (2.3) vanishes and we have(
1 +

1
n

)n+1/2

= e +
e

12n2
− e

12n3
+ O

(
1
n4

)
and so

n2

((
1 +

1
n

)n+ 1
2

− e

)
=

e
12

− e
12n

+ O

(
1
n2

)
,

which conducts us to the equality

lim
n→∞

n2

((
1 +

1
n

)n+ 1
2

− e

)
=

e
12

. (2.5)

Another way to obtain (2.5) consists in a (repeated) use of the
L’Hospital ’s rule, but this gives no idea of the provenance of the result.

So, the best approximation of e by the sequences of general term(
1 + 1

n

)n+p is the one corresponding to p = 1
2 .
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3. A two-sided estimate

The equality (2.5) suggests us to search a two sided estimate of the form

e
12(n + α)2

<

(
1 +

1
n

)n+ 1
2

− e <
e

12(n + β)2
(3.1)

where α and β are two real constants.
Professor Ioan Gavrea communicated me ([1]) a convenient left part of

(3.1), namely for α = 1
2 , we have

e

12
(

n +
1
2

)2 <

(
1 +

1
n

)n+ 1
2

− e. (3.2)

We present here his proof. Let

an =

(
1 +

1
n

)n+ 1
2

e
be and bn = ln an, that is

bn =
(

n +
1
2

)
[ln(n + 1)− lnn]− 1.

We have successively

bn =
(

n +
1
2

)[
ln
(

n +
1
2

+
1
2

)
− ln

(
n +

1
2
− 1

2

)]
− 1

=
(
n +

1
2

)ln
(

n+
1
2

)1 +
1

2
(

n +
1
2

)
−ln

(
n+

1
2

)1− 1

2
(

n +
1
2

)

−1

=
(

n +
1
2

)ln

1 +
1

2
(

n +
1
2

)
− ln

1− 1

2
(

n +
1
2

)

− 1

= u

[
ln
(

1 +
1
2u

)
− ln

(
1− 1

2u

)]
− 1,

where we have denoted n + 1
2 = u

Using now the well known expansions

ln(1 + x) = x− x2

2
+

x3

3
− . . . |x| < 1

ln(1− x) = −x− x2

2
− x3

3
− . . . |x| < 1
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(uniform convergent in every compact K ⊂ (−1, 1)) and performing the usual
calculations, we obtain

bn = 2n

(
1
2n

+
1
3

1
(2n)3

+
1
5

1
(2n)5

+ . . .

)
− 1 =

1
12n2

+
1

8n4
+ . . . >

1
12n2

(because of n > 0). Therefore (using that ex > 1 + x, for x > 0) we have(
1 +

1
n

)n+1/2

e
= an = ebn > e

1
12u2 > 1 +

1
12u2

and so (
1 +

1
n

)n+1/2

> e

1 +
1

12
(

n +
1
2

)n

 ,

that gives (3.2).
The problem of finding of an adequate constant β in (3.1) remains open.

4. Concluding remarks

The previous results, concerning the approximation of the number e by the
sequence

(
1 + 1

n

)n+p conduct to the idea to search a similar approximation
of the exponential. We mention that an approximation of the exponential
using the rational functions was given by J. Karamata (see [2]).
Acknowledgments. I thank Professor Ioan Gavrea for his communication of
the inequality (3.2) and the proof.
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