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Professor Francesco Altomare
at his 60th anniversary

If there is a God, he is a great mathematician (Paul Dirac)

Between September 22nd−24th, 2011, the International Conference Re-
cent Developments in Functional Analysis and Approximation Theory was
held at Lecce, Italy. It was organized in collaboration by members of the
Universities of Salento, Bari and Basilicata being devoted to some signifi-
cant aspects of contemporary mathematical research on Functional Analy-
sis, Operator Theory and Approximation Theory including the applications
of these fields in other areas such as partial differential equations, integral
equations and numerical analysis. Behind this scientific activity there was an
emotional manifestation namely the celebration of Francesco Altomare’s 60th

birthday. The present note is intended to pay tribute to the man and profes-
sor Francesco Altomare, pointing out his contribution to the mathematical
community.

Biographical notes. Francesco Altomare was born on May 18th, 1951,
in Giovinazzo, a charming small town on the Adriatic coast. Growing up
close to the sea, he learned to love the beauty and the fascination of the
Infinite so far in mathematics. He married Raffaella Bavaro who is 58 years
old and nowdays teaches Economical Geography at secondary school. They
have two children: Bianca Maria (1983) and Gianluigi (1986). The former
got a PhD in Greek Philology in 2010 at the University of Bari and now she
is spending a study stay in Paris supported by a post-doc fellowship. The
latter is completing his university studies on Pharmacology at the University
of Parma.

Career. Francesco Altomare graduated in mathematics from the Uni-
versity of Bari (1975). In time, he has covered all levels of professional career:
senior research fellow at the Institute of Mathematical Analysis of the Uni-
versity of Bari (1975-1978), assistant professor at the Faculty of Sciences of
the University of Bari (1978-1985), associate professor at the same institu-
tion (1985-1987). Since 1987 he was promoted professor at the Faculty of
Sciences of the University of Basilicata (Potenza). From 1990 he has held a
professorship at the University of Bari where he is currently employed. In the
past years professor Altomare held many leadership positions: director of the
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Institute of Mathematics at the University of Basilicata (1987-1990), direc-
tor of the Graduate School in Mathematics at the University of Bari (1993-
1995), head of the Interuniversity Department of Mathematics of the Univer-
sity and the Polytechnic of Bari (1997-1999), coordinator of the PhD School
in Mathematics of the University of Bari (1999-2003). Under his guidance,
the following students received a PhD in mathematics: Sabrina Diomede,
Mirella Cappelletti Montano, Rachida Amiar, Vita Leonessa, Sabina Milella,
Graziana Musceo. Their present day scientific activity hallmarks the impress
of professor Altomare.

Research areas. Albert-Szent Gyorgyi, a Hungarian biochemist who ob-
tained the Nobel Prize for Medicine in 1937, said: ”Research is to see what
everybody else can see and to think what nobody else has thought.” At a close
look at professor Altomare’s activity we can identify three major scientific
research directions.

i) Real and Functional Analysis - Choquet representation theory, Cho-
quet boundaries, continuous function spaces, function algebras and Banach
algebras, locally convex vector lattices, positive linear forms and applications
to abstract Potential Theory and Harmonic Analysis.

ii) Operator Theory - positive operators, semigroups of operators, dif-
ferential operators and applications to evolution equations.

iii) Approximation Theory - Korovkin-type approximation theory, posi-
tive approximation processes, approximation of semigroups by means of pos-
itive operators.

His main achievements are concerned with general methods of construc-
tion of positive approximation processes by means of selections of Borel mea-
sures and a new method to investigate qualitative properties of positive op-
erator semigroups as well as of solutions of evolution equations by means of
positive operators.

Further on, we briefly certify his outstanding scientific activity and its
recognition.

Academic prestige. The main results of the above mentioned researches
are documented in about 80 papers published in scientific journals, conference
proceedings and special issues. We do not intend to present here this list of
publications. Consulting the MathSciNet database it can be easily identified.
Instead, we want to emphasize the following monograph written jointly with
Michele Campiti

Korovkin-type Approximation Theory and its Applications, de Gruyter Stud-
ies in Mathematics, 17, Walter de Gruyter & Co., Berlin, 1994, xii + 627 pp
MR 95g:41001

that serves as a landmark for many mathematicians who are grounded in this
research area. In this monograph it is presented a modern and comprehensive
exposition of the Korovkin-type theorems and some of their applications, by
following ingenious new paths that, other than to add new results, allows to
synthesize in a well-organized logical exposition the main results of about six
hundred articles on the subject. The monograph also well emphasizes one
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of the main peculiarities of Francesco Altomare, namely to be able to put
the mathematical problems of his concern, in the right general perspective
and to use (sometimes, to create) general tools that can be useful to better
understand the problems as well as other related aspects. As a matter of fact,
searching on MathSciNet we found that, so far, this book has been cited 111
times. Moreover, until now, Altomare’s papers have been cited 246 times by
90 authors in the MR Citation Database.

The activities carried out as visiting professor and as invited speaker
at several international meetings are other expressions of his value as a re-
searcher.

Francesco Altomare was a research visitor at the Universities of Paris
VI (1980 and 1981), Tübingen (1983) and Münster (1985). In 1985 he also
awarded a NATO research grant. On 2004 he spent a research period at
the Mathematical Institute of Oberwolfach under the RiP program. He was
invited to deliver lectures and postgraduate short courses and to develop
joint researches at several Italian and foreign universities such as Napoli,
Lecce, Cosenza, Potenza, Roma, Milano, Bologna, Trieste, Salerno, Palermo
Perugia, Sofia, Annaba, Erlangen, Passau, Valencia, Praga, Paseky, Siegen,
Vienna.

He also attended about fifty international meetings as invited speaker.
In addition to those which took place in many Italian cities, we mention re-
cent ones from abroad: Kaohsiung (Taiwan, 2000), Vienna (Austria, 2000),
Blaubeuren (Germany, 2001), Cluj-Napoca (Romania, 2002, 2006, 2010),
Piteşti (Romania, 2003), Witten-Bommerholz (Germany, 2004), Eger (Hun-
gary, 2005), Kitakyushu and Osaka (Japan, 2006), Ubeda (Spain, 2007, 2010).

Since 2004 F. Altomare has been the founding Editor-in-Chief at
Mediterranean Journal of Mathematics, a well-reputed international math-
ematical journal issued by the Department of Mathematics of the University
of Bari and published by Birkhäuser Verlag - Basel.

Also, his name is included in the Editorial Board of the following jour-
nals: Conferenze del Seminario di Matematica dell’Università di Bari (from
1990 to 2003), Revue d’Analyse Numérique et de Théorie de l’Approximation
(since 1998), Mathematical Reports (since 2000), Journal of Interdisciplinary
Mathematics (since 2004), Journal of Applied Functional Analysis (since
2004), Numerical Functional Analysis and Optimization (since 2008), Bol-
lettino dell’Unione Matematica Italiana (since 2008), Studia Universitatis
Babes-Bolyai, Mathematica (since 2009), The Journal of the Indian Acad-
emy of Mathematics (since 2009).

But above all, Altomare’s name is forever associated with the interna-
tional conferences FAAT (Functional Analysis and Approximation Theory)
held in Acquafredda di Maratea (Potenza). Six editions took place in 1989,
1992, 1996, 2000, 2004, 2009, respectively. Under Altomare’s wand and with
the help of his collaborators, for 20 years these meetings have brought to-
gether hundreds of mathematicians from all over the world in the fields of
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Functional Analysis, Operator Theory, Approximation Theory and have accu-
mulated over 300 papers published in Supplemento ai Rendiconti del Circolo
Matematico di Palermo. F. Altomare was co-editor of the corresponding Pro-
ceedings. Practically, these conferences have marked two decades of scientific
work of the mathematicians who have investigated the mentioned areas.

Returning to the conference in Lecce, in a short speech professor Al-
tomare revealed the secret of his success: a permanent support in family life
and the sacrifice made by someone who has created optimal conditions to
complete his scientific work. With a tear in the corner of his eyes he pro-
nounced a name: Raffaella - his wife.

Those 36 years of scientific activity and a lifetime cannot be condensed
in enough words on four pages, so, at this point, we limit ourselves to wishing
professor Francesco Altomare health and creative strenght. May he crop the
scientific seeds planted by himself.

Octavian Agratini
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Periodic solutions in totally nonlinear
difference equations with functional delay

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. We use the modification of Krasnoselskii’s fixed point theorem
due to T. A. Burton ( [1] Theorem 3) to show that the totally nonlinear
difference equation with functional delay

4x (t) = −a (t) x3 (t + 1) + G
(
t, x3 (t) , x3 (t− g (t))

)
, ∀t ∈ Z,

has periodic solutions. We invert this equation to construct a sum of
a compact map and a large contraction which is suitable for applying
Krasnoselskii-Burton theorem. Finally, an example is given to illustrate
our result.

Mathematics Subject Classification (2010): 39A10, 39A12.

Keywords: Fixed point, large contraction, periodic solutions, totally non-
linear delay difference equations.

1. Introduction

In this paper, we are interested in the analysis of qualitative theory of
periodic solutions of difference equation. Motivated by the papers [3], [5]-
[7] and the references therein, we consider the following totally nonlinear
difference equation with functional delay

4x (t) = −a (t)x3 (t+ 1) +G
(
t, x3 (t) , x3 (t− g (t))

)
, ∀t ∈ Z, (1.1)

where

G : Z× R× R → R,
with Z is the set of integers and R is the set of real numbers. Throughout this
paper 4 denotes the forward difference operator 4x (t) = x (t+ 1)−x (t) for
any sequence {x (t) , t ∈ Z} . For more on the calculus of difference equations,
we refer the reader to [4]. The equation (1.1) is totally nonlinear and we have
to add a linear term to both sides of the equation. Although the added term
destroys a contraction already present but it will be replaced it with the so
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called large contraction which is suitable in the fixed point theory. Our pur-
pose here is to use a modification of Krasnoselskii’s fixed point theorem due
T. A. Burton (see [1] Theorem 3) to show the existence of periodic solutions
for equation (1.1). To apply this variant of Krasnoselskii’s fixed point theo-
rem we have to invert equation (1.1) to construct two mappings; one is large
contraction and the other is compact. For details on Krasnoselskii’s theorem
we refer the reader to [8]. In Section 2, we present the inversion of difference
equations (1.1) and the modification of Krasnoselskii’s fixed point theorem.
We present our main results on periodicity in Section 3 and at the end we
provide an example to illustrate this work.

2. Inversion of the equation

Let T be an integer such that T ≥ 1. Define

CT = {ϕ ∈ C (Z,R) : ϕ(t+ T ) = ϕ (t)}

where C (Z,R) is the space of all real valued functions. Then (CT , ‖.‖) is a
Banach space with the maximum norm

‖ϕ‖ = max
t∈[0,T−1]

|ϕ (t)| .

In this paper we assume the periodicity conditions

a (t+ T ) = a (t) , g (t+ T ) = g (t) , g (t) ≥ g∗ > 0, (2.1)

for some constant g∗. Also, we assume that

a (t) > 0. (2.2)

We also require that G (t, x, y) is periodic in t and Lipschitz continuous in x
and y. That is

G (t+ T, x, y) = G (t, x, y) , (2.3)

and there are positive constants k1, k2 such that

|G (t, x, y)−G (t, z, w)| ≤ k1 |x− z|+ k2 |y − w| , for x, y, z, w ∈ R. (2.4)

Lemma 2.1. Suppose (2.1) and (2.3) hold. If x ∈ CT , then x is a solution of
equation (1.1) if and only if

x (t) =

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

(2.5)

×

[
t−1∑

r=t−T

a (r)
(
x (r + 1)− x3 (r + 1)

) t−1∏
s=r

(1 + a (s))−1

+
t−1∑

r=t−T

G
(
r, x3 (r) , x3 (r − g (r))

) t−1∏
s=r

(1 + a (s))−1

]
.
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Proof. Let x ∈ CT be a solution of (1.1). First we write this equation as

4x (t) + a (t)x (t+ 1) = a (t)x (t+ 1)− a (t)x3 (t+ 1)

+G
(
t, x3 (t) , x3 (t− g (t))

)
.

Multiplying both sides of the above equation by
t−1∏
s=0

(1 + a (s)) and then sum-

ming from t− T to t− 1 to obtain
t−1∑

r=t−T

4

[
r−1∏
s=0

(1 + a (s))x (r)

]

=
t−1∑

r=t−T

[
a (r)

{
x (r + 1)− x3 (r + 1)

}
+G

(
r, x3 (r) , x3 (r − g (r))

)] r−1∏
s=0

(1 + a (s)) .

As a consequence, we arrive at
t−1∏
s=0

(1 + a (s))x (t)−
t−T−1∏

s=0

(1 + a (s))x (t− T )

=
t−1∑

r=t−T

[
a (r)

{
x (r + 1)− x3 (r + 1)

}
+G

(
r, x3 (r) , x3 (r − g (r))

)] r−1∏
s=0

(1 + a (s)) .

Now, the lemma follows by dividing both sides of the above equation by
t−1∏
s=0

(1 + a (s)) and using the fact that x (t) = x (t− T ) . �

In the analysis, we employ a fixed point theorem in which the notion of
a large contraction is required as one of the sufficient conditions. First, we
give the following definition which can be found in [1] or [2].

Definition 2.2. (Large Contraction) Let (M,d) be a metric space and B :
M → M. B is said to be a large contraction if φ, ϕ ∈ M, with φ 6= ϕ then
d (Bφ,Bϕ) ≤ d (φ, ϕ) and if for all ε > 0, there exists a δ < 1 such that

[φ, ϕ ∈M,d (φ, ϕ) ≥ ε] ⇒ d (Bφ,Bϕ) ≤ δd (φ, ϕ) .

The next theorem, which constitutes a basis for our main result, is
a reformulated version of Krasnoselskii’s fixed point theorem due to T. A.
Burton (see [1], [2]).

Theorem 2.3. (Krasnoselskii-Burton) Let M be a bounded convex nonempty
subset of a Banach space (B, ‖.‖) . Suppose that A and B map M into B such
that

i. x, y ∈M, implies Ax+By ∈M ;
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ii. A is continuous and AM is contained in a compact subset of M ;
iii. B is a large contraction mapping.
Then there exists z ∈M with z = Az +Bz.

We will use this theorem to prove the existence of periodic solutions for
equation (1.1). We begin with the following proposition.

Proposition 2.4. If ‖.‖ is the maximum norm,

M =
{
ϕ ∈ C (Z,R) : ‖ϕ‖ ≤

√
3/3
}
,

and (Bϕ) (t) = ϕ (t+ 1)−ϕ3 (t+ 1) , then B is a large contraction of the set
M.

Proof. For each t ∈ Z we have for the real functions ϕ,ψ

|(Bϕ) (t)− (Bψ) (t)|
= |ϕ (t+ 1)− ψ (t+ 1)|
×
∣∣1− (ϕ2 (t+ 1) + ϕ (t+ 1)ψ (t+ 1) + ψ2 (t+ 1)

)∣∣ .
On the other hand,

|ϕ (t+ 1)− ψ (t+ 1)|2 = ϕ2 (t+ 1)− 2ϕ (t+ 1)ψ (t+ 1) + ψ2 (t+ 1)

≤ 2
(
ϕ2 (t+ 1) + ψ2 (t+ 1)

)
.

Using ϕ2 (t+ 1) + ψ2 (t+ 1) < 1 we have

|(Bϕ) (t)− (Bψ) (t)|
≤ |ϕ (t+ 1)− ψ (t+ 1)|
×
[
1−

(
ϕ2 (t+ 1) + ψ2 (t+ 1)

)
+ |ϕ (t+ 1)ψ (t+ 1)|

]
≤ |ϕ (t+ 1)− ψ (t+ 1)|

×
[
1−

(
ϕ2 (t+ 1) + ψ2 (t+ 1)

)
+
ϕ2 (t+ 1) + ψ2 (t+ 1)

2

]
≤ |ϕ (t+ 1)− ψ (t+ 1)|

[
1− ϕ2 (t+ 1) + ψ2 (t+ 1)

2

]
≤ ‖ϕ− ψ‖ .

Consequently we get
‖Bϕ−Bψ‖ ≤ ‖ϕ− ψ‖ .

Thus B is a large pointwise contraction. But B is still a large contraction for
the maximum norm. To show this, let ε ∈ (0, 1) be given and let ϕ,ψ ∈ M
with ‖ϕ− ψ‖ ≥ ε.

a) Suppose that for some t we have

ε/2 ≤ |ϕ (t+ 1)− ψ (t+ 1)| .

Then

(ε/2)2 ≤ |ϕ (t+ 1)− ψ (t+ 1)|2 ≤ 2
(
ϕ2 (t+ 1) + ψ2 (t+ 1)

)
,
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that is
ϕ2 (t+ 1) + ψ2 (t+ 1) ≥ ε2/8.

For all such t we have

|(Bϕ) (t)− (Bψ) (t)| ≤ |ϕ (t+ 1)− ψ (t+ 1)|
[
1− ε2

16

]
≤
[
1− ε2

16

]
‖ϕ− ψ‖ .

b) Suppose that for some t we have

|ϕ (t+ 1)− ψ (t+ 1)| ≤ ε/2,

then

|(Bϕ) (t)− (Bψ) (t)| ≤ |ϕ (t+ 1)− ψ (t+ 1)| ≤ (1/2) ‖ϕ− ψ‖ .
So, for all t we have

|(Bϕ) (t)− (Bψ) (t)| ≤ max
{

1/2, 1− ε2

16

}
‖ϕ− ψ‖ .

Hence, for each ε > 0, if δ = max
{

1/2, 1− ε2

16

}
< 1, then

‖Bϕ−Bψ‖ ≤ δ ‖ϕ− ψ‖ . �

3. Existence of periodic solutions

To apply Theorem 2.3, we need to define a Banach space B, a bounded
convex subset M of B and construct two mappings, one is a large con-
traction and the other is compact. So, we let (B, ‖.‖) = (CT , ‖.‖) and
M = {ϕ ∈ B | ‖ϕ‖ ≤ L} , where L =

√
3/3. We express equation (2.5) as

ϕ (t) = (Bϕ) (t) + (Aϕ) (t) := (Hϕ) (t) ,

where A,B : M → B are defined by

(Aϕ) (t) =

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

(3.1)

×
t−1∑

r=t−T

G
(
r, ϕ3 (r) , ϕ3 (r − g (r))

) t−1∏
s=r

(1 + a (s))−1
,

and

(Bϕ) (t) =

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

(3.2)

×
t−1∑

r=t−T

a (r)
(
ϕ (r + 1)− ϕ3 (r + 1)

) t−1∏
s=r

(1 + a (s))−1
.
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We suppose an additional condition, there is J ≥ 3 with

J
(
(k1 + k2)L3 + |G (t, 0, 0)|

)
≤ La (t) , ∀t ∈ Z. (3.3)

We shall prove that the mapping H has a fixed point which solves (1.1).

Lemma 3.1. For A defined in (3.1), suppose that (2.1)−(2.4) and (3.3) hold.
Then A : M → M is continuous in the maximum norm and maps M into a
compact subset of M.

Proof. We first show that A : M →M .
Let ϕ ∈M. Evaluate (3.1) at t+ T.

(Aϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1 + a (s))−1

)−1

×
t+T−1∑

r=t

G
(
r, ϕ3 (r) , ϕ3 (r − g (r))

) t+T−1∏
s=r

(1 + a (s))−1
.

Let j = r − T, then

(Aϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1 + a (s))−1

)−1

×
t−1∑

j=t−T

G
(
j + T, ϕ3 (j + T ) , ϕ3 (j + T − g (j + T ))

)
×

t+T−1∏
s=j+T

(1 + a (s))−1
.

Now let k = s− t, then

(Aϕ) (t+ T ) =

(
1−

t−1∏
k=t−T

(1 + a (k))−1

)−1

×
t−1∑

j=t−T

G
(
j, ϕ3 (j) , ϕ3 (j − g (j))

) t−1∏
k=j

(1 + a (k))−1

= (Aϕ) (t) .

That is, A : CT → CT .

In view of (2.4) we arrive at

|G (t, x, y)| = |G (t, x, y)−G (t, 0, 0) +G (t, 0, 0)|
≤ |G (t, x, y)−G (t, 0, 0)|+ |G (t, 0, 0)|
≤ k1 ‖x‖+ k2 ‖y‖+ |G (t, 0, 0)| .
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Note that from (2.2), we have 1−
t−1∏

s=t−T

(1 + a (s))−1
> 0. So, for any ϕ ∈M,

we have

|(Aϕ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

∣∣G (r, ϕ3 (r) , ϕ3 (r − g (r))
)∣∣ t−1∏

s=r

(1 + a (s))−1

≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

(
(k1 + k2)L3 + |G (r, 0, 0)|

) t−1∏
s=r

(1 + a (s))−1

≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1 t−1∑
r=t−T

La (r)
J

t−1∏
s=r

(1 + a (s))−1

=
L

J
< L.

Thus Aϕ ∈M.
Consequently, we have A : M →M.

We show that A is continuous in the maximum norm. Let ϕ,ψ ∈ M,
and let

α =

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

.

Note that from (2.2), we have max
r∈[t−T,t−1]

t−1∏
s=r

(1 + a (s))−1 ≤ 1. So,

|(Aϕ) (t)− (Aψ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

∣∣G (r, ϕ3 (r) , ϕ3 (r − g (r))
)

−G
(
r, ϕ3 (r) , ϕ3 (r − g (r))

)∣∣ t−1∏
s=r

(1 + a (s))−1

≤ (k1 + k2)
∥∥ϕ3 − ψ3

∥∥
×

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1 t−1∑
r=t−T

t−1∏
s=r

(1 + a (s))−1

≤ 3 (k1 + k2)TαL2 ‖ϕ− ψ‖ .
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Let ε > 0 be arbitrary. Define η = ε/K with K = 3 (k1 + k2)TαL2, where k1

and k2 are given by (2.4). Then, for ‖ϕ− ψ‖ < η we obtain

‖Aϕ−Aψ‖ ≤ K ‖ϕ− ψ‖ < ε.

This proves that A is continuous.
Next, we show that A maps bounded subsets into compact sets. As M is

bounded and A is continuous, then AM is a subset of RT which is bounded.
Thus AM is contained in a compact subset of M . Therefore A is continuous
in M and AM is contained in a compact subset of M. �

Lemma 3.2. Let B be defined by (3.2) and suppose that (2.1)−(2.2) hold.
Then B : M →M is a large contraction.

Proof. We first show that B : M →M .
Let ϕ ∈M. Evaluate (3.2) at t+ T.

(Bϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1 + a (s))−1

)−1

×
t+T−1∑

r=t

a (r)
(
ϕ (r + 1)− ϕ3 (r + 1)

) t+T−1∏
s=r

(1 + a (s))−1
.

Let j = r − T, then

(Bϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1 + a (s))−1

)−1

×
t−1∑

j=t−T

a (j + T )
(
ϕ (j + T + 1)− ϕ3 (j + T + 1)

)
×

t+T−1∏
s=j+T

(1 + a (s))−1
.

Now let k = s− t, then

(Bϕ) (t+ T ) =

(
1−

t−1∏
k=t−T

(1 + a (k))−1

)−1

×
t−1∑

j=t−T

a (j)
(
ϕ (j + 1)− ϕ3 (j + 1)

) t−1∏
k=j

(1 + a (k))−1

= (Bϕ) (t) .

That is, B : CT → CT .
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Note that from (2.2), we have 1−
t−1∏

s=t−T

(1 + a (s))−1
> 0. So, for any ϕ ∈M,

we have

|(Bϕ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

a (r)
∣∣ϕ (r + 1)− ϕ3 (r + 1)

∣∣ t−1∏
s=r

(1 + a (s))−1

≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

a (r)
∥∥ϕ− ϕ3

∥∥ t−1∏
s=r

(1 + a (s))−1

=
∥∥ϕ− ϕ3

∥∥ .
Since ‖ϕ‖ ≤ L, we have

∥∥ϕ− ϕ3
∥∥ ≤ (2√3

)
/9 < L. So, for any ϕ ∈ M, we

have
‖Bϕ‖ < L.

Thus Bϕ ∈M . Consequently, we have B : M →M.

It remains to show that B is large contraction in the maximum norm.
From the proof of Proposition 2.4 we have for ϕ,ψ ∈M, with ϕ 6= ψ

|(Bϕ) (t)− (Bψ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

a (r) ‖ϕ− ψ‖
t−1∏
s=r

(1 + a (s))−1

= ‖ϕ− ψ‖ .

Then ‖Bϕ−Bψ‖ ≤ ‖ϕ− ψ‖. Thus B is a large pointwise contraction. But
B is still a large contraction for the maximum norm. To show this, let ε ∈
(0, 1) be given and let ϕ,ψ ∈ M with ‖ϕ− ψ‖ ≥ ε. From the proof of the
Proposition 2.4 we have found δ < 1 such that

|(Bϕ) (t)− (Bψ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

a (r) δ ‖ϕ− ψ‖
t−1∏
s=r

(1 + a (s))−1

= δ ‖ϕ− ψ‖ .

Then ‖Bϕ−Bψ‖ ≤ δ ‖ϕ− ψ‖. Consequently, B is a large contraction. �
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Theorem 3.3. Let (CT , ‖.‖) be the Banach space of T -periodic real val-
ued functions and M = {ϕ ∈ CT | ‖ϕ‖ ≤ L} , where L =

√
3/3. Suppose

(2.1)−(2.4) and (3.3) hold. Then equation (1.1) has a T -periodic solution ϕ
in the subset M .

Proof. By Lemma 3.1, A : M → M is continuous and AM is contained in
a compact set. Also, from Lemma 3.2, the mapping B : M → M is a large
contraction. Moreover, if ϕ,ψ ∈M, we see that

‖Aϕ+Bψ‖ ≤ ‖Aϕ‖+ ‖Bψ‖ ≤ L/J +
(
2
√

3
)
/9 ≤ L.

Thus Aϕ+Bψ ∈M.
Clearly, all the hypotheses of Krasnoselskii-Burton Theorem 2.3 are satisfied.
Thus there exists a fixed point ϕ ∈ M such that ϕ = Aϕ + Bϕ. Hence the
equation (1.1) has a T -periodic solution which lies in M . �

Example 3.4. We consider the totally nonlinear difference equation with func-
tional delay

4x (t) = −8x3 (t+ 1) + sin
(
x3 (t)

)
+ cos

(
x3 (t− g (t))

)
, t ∈ Z, (3.4)

where
g (t+ T ) = g (t) .

So, we have

a (t) = 8, G
(
t, x3 (t) , x3 (t− g (t))

)
= sin

(
x3 (t)

)
+ cos

(
x3 (t− g (t))

)
.

Clearly, G (t, x, y) is periodic in t Lipschitz continuous in x and y. That is

G (t+ T, x, y) = G (t, x, y) ,

and

|G (t, x, y)−G (t, z, w)| = |sin (x)− sin (z) + cos (y)− cos (w)|
≤ |sin (x)− sin (z)|+ |cos (y)− cos (w)|
≤ |x− z|+ |y − w| .

Note that if J = 3 we have

J
(
(k1 + k2)L3 + |G (t, 0, 0)|

)
= 3

(
2
(√

3/3
)3

+ 1
)

≤
(√

3/3
)

8

= La (t) , ∀t ∈ Z.

Define M = {ϕ ∈ CT | ‖ϕ‖ ≤ L} , where L =
√

3/3. Then the difference (3.4)
has a T -periodic solution in M , by Theorem 2.
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Perov’s fixed point theorem for multivalued
mappings in generalized Kasahara spaces
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Abstract. In this paper we give some corresponding results to Perov’s
fixed point theorem which was given in a complete generalized metric
space. Our results will be given in a more general space, the so called
generalized Kasahara space. We will also use the case of multivalued
operators and give some fixed point results for multivalued Kannan,
Reich and Caristi operators.
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Keywords: Fixed point, generalized Kasahara space, multivalued map-
ping, matrix convergent to zero, sequence of successive approximations.

1. Introduction and preliminaries

The classical Banach contraction principle was extended for contractive
maps on spaces endowed with vector-valued metrics by Perov in 1964 (see
[5]).We recall some notions regarding Perov’s result.
Let X be a nonempty set and m ∈ N, m ≥ 1. A mapping d : X ×X → Rm

is called a vector-valued metric on X if the following statements are satisfied
for all x, y, z ∈ X:
d1) d(x, y) ≥ 0m, where 0m := (0, 0, . . . , 0) ∈ Rm;
d2) d(x, y) = 0m ⇒ x = y;
d3) d(x, y) = d(y, x);
d4) d(x, y) ≤ d(x, z) + d(z, y).

We mention that if α, β ∈ Rm, α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm)
and c ∈ R , then by α ≤ β (respectively α < β), we mean that αi ≤ βi

(respectively αi < βi), for all i = 1,m and by α ≤ c we mean that αi ≤ c,
for all i = 1,m.

A set X equipped with a vector-valued metric d is called a generalized
metric space. We will denote such a space with (X, d). For generalized metric
spaces, the notions of convergent sequence, Cauchy sequence, completeness,
open subset and closed subset are similar to those for usual metric spaces.
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Throughout this paper we denote by Mm,m(R+) the set of all m ×m
matrices with positive elements, by Θ the zero m×m matrix and by Im the
identity m ×m matrix. If A ∈ Mm,m(R+), then the symbol Aτ stands for
the transpose matrix of A. Notice also that, for the sake of simplicity, we will
make an identification between row and column vectors in Rm.

A matrix A ∈Mm,m(R+) is said to be convergent to zero if and only if
An → Θ as n → ∞ (see [11]). Regarding this class of matrices we have the
following classical result in matrix analysis (see [1](Lemma 3.3.1, page 55),
[6], [7](page 37), [11](page 12). More considerations can be found in [10].

Theorem 1.1. Let A ∈Mm,m(R+). The following statements are equivalent:

i) An → Θ, as n→∞;
ii) the eigenvalues of A lies in the open unit disc, i.e., |λ| < 1, for all λ ∈ C

with det(A− λIm) = 0;
iii) the matrix Im −A is non-singular and

(Im −A)−1 = Im +A+A2 + . . .+An + . . . ;

iv) the matrix (Im − A) is non-singular and (Im − A)−1 has nonnegative
elements;

v) the matrices Aq and qτA converges to zero for each q ∈ Rm.

The main result for self contractions on generalized metric spaces is
Perov’s fixed point theorem (see [5]):

Theorem 1.2 (A.I. Perov). Let (X, d) be a complete generalized metric space
and the mapping f : X → X with the property that there exists a matrix
A ∈ Mm,m(R+) such that d(f(x), f(y)) ≤ Ad(x, y), for all x, y ∈ X. If A is
a matrix convergent to zero, then

p1) there exists a unique x∗ ∈ X such that x∗ = f(x∗), i.e., the mapping f
has a unique fixed point;

p2) the sequence of successive approximations (xn)n∈N ⊂ X, xn = fn(x0)
is convergent and it has the limit x∗, for all x0 ∈ X;

p3) d(xn, x
∗) ≤ An(Im −A)−1d(x0, x1), for all n ∈ N;

p4) if g : X → X satisfies the condition d(f(x), g(x)) ≤ η, for all x ∈ X and
η ∈ Rm, then by considering the sequence (yn)n∈N ⊂ X, yn = gn(x0)
one has d(yn, x

∗) ≤ (Im−A)−1η+An(Im−A)−1d(x0, x1), for all n ∈ N.

In this paper we give some corresponding results to Perov fixed point
theorem. We will use the multivalued operators and we will adapt Perov’s
result to the context of generalized Kasahara spaces. In order to do this, we
recall the following notions and results:

Definition 1.3 (see [8]). Let X be a nonempty set, → be an L-space structure
on X, (G,+,≤, G→) be an L-space ordered semigroup with unity, 0 be the least
element in (G,≤) and dG : X×X → G be an operator. The triple (X,→, dG)
is called a generalized Kasahara space if and only if the following compatibility
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condition between → and dG holds:

for all (xn)n∈N ⊂ X with
∑
n∈N

d(xn, xn+1) < +∞

⇒ (xn)n∈N is convergent in (X,→).

Example 1.4. Let ρ : X×X → Rm
+ be a generalized complete metric on a set

X. Let x0 ∈ X and λ ∈ Rm
+ with λ 6= 0. Let dλ : X ×X → Rm

+ be defined by

dλ(x, y) =

{
ρ(x, y) , if x 6= x0 and y 6= x0,

λ , if x = x0 or y = x0.

Then (X,
ρ→, dλ) is a generalized Kasahara space.

In [3], S. Kasahara gives a useful tool which is used in proving the
uniqueness of a fixed point.

Lemma 1.5. Let (X,→, dG) be a generalized Kasahara space. Then

for all x, y ∈ X with dG(x, y) = dG(y, x) = 0 ⇒ x = y.

For more considerations on generalized Kasahara spaces, see [8] and the
references therein.

Through this paper, we consider G = Rm. The functional dG will be
denoted by d, which is not necessary a metric on X. In other words, we will
consider the generalized Kasahara space (X,→, d) where d : X ×X → Rm

+ is
a functional.

Finally, in the above setting, for a multivalued operator F : X ( X,
we shall use the following notations:

m1) P (X) := {Y ⊂ X | Y 6= ∅}, so F : X → P (X);
m2) Fix(F ) := {x∗ ∈ X | x∗ ∈ F (x∗)}, the set of all fixed points for F . For

simplicity, we will use the notation Fx instead of F (x), where x ∈ X;
m3) Graph(F ) = {(x, y) ∈ X ×X | y ∈ Fx}, the graph of F .

We say that F has closed graph, if and only if Graph(F ) is closed in
X × X with respect to →, i.e., if (xn)n∈N ⊂ X and yn ∈ Fxn, for all
n ∈ N with xn → x∗ ∈ X, as n → ∞ and if yn → y∗, as n → ∞ then
y∗ ∈ Fx∗.

2. Main results

Theorem 2.1. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued operator. We assume that:

i) there exists A ∈ Mm,m(R+) and for all x, y ∈ X and u ∈ Fx, there
exists v ∈ Fy such that

d(u, v) ≤ Ad(x, y);

ii) Graph(F ) is closed in X ×X with respect to →.
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If A converges to zero, then Fix(F ) 6= ∅. If, in addition, (Im − A) is non-
singular, (Im −A)−1 ∈Mm×m(R+) and

max{d(u, v) | u ∈ Fx, v ∈ Fy} ≤ Ad(x, y), for all x, y ∈ X

then F has a unique fixed point in X.

Proof. Let x0 ∈ X and x1 ∈ Fx0. If x1 = x0 then x0 ∈ Fix(F ). We assume
that x1 6= x0. Then by i) there exists x2 ∈ Fx1 such that

d(x1, x2) ≤ Ad(x0, x1).

Since x2 ∈ Fx1, if x2 = x1 then x1 ∈ Fix(F ). If we consider x2 6= x1 then
there exists x3 ∈ Fx2 such that

d(x2, x3) ≤ Ad(x1, x2) ≤ A2d(x0, x1).

By induction, we construct the sequence of successive approximations for F
starting from (x0, x1) ∈ Graph(F ). This sequence has the following proper-
ties:

1◦) xn+1 ∈ Fxn, for all n ∈ N;
2◦) d(xn, xn+1) ≤ And(x0, x1), for all n ∈ N.

Next, we have the following estimation:∑
n∈N

d(xn, xn+1) ≤
∑
n∈N

And(x0, x1) = (Im −A)−1d(x0, x1) < +∞.

Since (X,→, d) is a generalized Kasahara space, the sequence (xn)n∈N
is convergent in X with respect to →. Hence there exists x∗ ∈ X such that
xn → x∗ as n→∞. On the other hand, F has closed graph, so x∗ ∈ Fix(F ).

We prove now the uniqueness of the fixed point x∗.
Let x∗, y∗ ∈ Fix(F ) such that x∗ 6= y∗. Since x∗ ∈ Fx∗ and y∗ ∈ Fy∗,

we get that

d(x∗, y∗) ≤ max
u∈Fx∗

v∈Fy∗

d(u, v) ≤ Ad(x∗, y∗) ⇔ (Im −A)d(x∗, y∗) ≤ 0m.

Since Im − A is a non-singular matrix and (Im − A)−1 has non-negative
elements, it follows that d(x∗, y∗) = 0m. By the same way of proof, we get
that d(y∗, x∗) = 0m. By Lemma 1.5, we obtain x∗ = y∗. �

Remark 2.2. Let X be a nonempty set and ρ : X ×X → Rm
+ be a complete

generalized metric on X. Let (xn)n∈N be a sequence in X and let x ∈ X.
Then

xn
ρ→ x ⇔ ρ(xn, x) → 0m, as n→∞.

We have the following Maia type result:

Corollary 2.3. Let X be a nonempty set and ρ : X ×X → Rm
+ be a complete

generalized metric on X. Let d : X ×X → Rm
+ be a functional and F : X →

P (X) be a multivalued operator. We assume that
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i) there exists A ∈ Mm,m(R+) and for all x, y ∈ X and u ∈ Fx, there
exists v ∈ Fy such that

d(u, v) ≤ Ad(x, y);

ii) Graph(F ) is closed in X ×X with respect to
ρ→;

iii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y).
Then the following statements hold:

1) if A converges to zero, then Fix(F ) 6= ∅. If, in addition, (Im − A) is
non-singular, (Im −A)−1 ∈Mm×m(R+) and

max{d(u, v) | u ∈ Fx, v ∈ Fy} ≤ Ad(x, y), for all x, y ∈ X
then F has a unique fixed point in X.

2) ρ(xn, x
∗) ≤ c ·An(Im−A)−1d(x0, x1), for all n ∈ N, where x∗ ∈ Fix(F )

and (xn)n∈N is the sequence of successive approximations for F starting
from (x0, x1) ∈ Graph(F ).

Proof. By i) and by following the proof of Theorem 2.1, we can construct a
sequence (xn)n∈N of successive approximations for F starting from (x0, x1) ∈
Graph(F ) such that xn+1 ∈ Fxn and d(xn, xn+1) ≤ And(x0, x1), for all
n ∈ N. By iii) there exists c > 0 such that

ρ(xn, xn+1) ≤ c · d(xn, xn+1) ≤ c ·And(x0, x1), for all n ∈ N.

Now let p ∈ N, p > 0. Since ρ is a metric, we have that

ρ(xn, xn+p) ≤ ρ(xn, xn+1) + ρ(xn+1, xn+2) + . . .+ ρ(xn+p−1, xn+p)

≤ c ·And(x0, x1) + c ·An+1d(x0, x1) + . . .+ c ·An+p−1d(x0, x1).

Thus, for all n, p ∈ N with p > 0, the following estimation holds

ρ(xn, xn+p) ≤ c ·An(Im +A+ . . .+Ap−1)d(x0, x1). (2.1)

By letting n → ∞, we get that ρ(xn, xn+p) → 0m, so (xn)n∈N is a
Cauchy sequence in the complete generalized metric space (X, ρ). Therefore
(xn)n∈N is convergent in (X, ρ), so there exists x∗ ∈ X such that xn

ρ→ x.
By ii) it follows that x∗ ∈ Fix(F ). The uniqueness of the fixed point

x∗ follows from Theorem 2.1.
By letting p → ∞ in (2.1), we get the estimation mentioned in the

conclusion 2) of the corollary. �

Corollary 2.4. Let (X,→, d) be a generalized Kasahara space where d satisfies
d(x, x) = 0m, for all x ∈ X. Let F : X → P (X) be a multivalued operator.
We assume that:

i) there exists A ∈ Mm,m(R+), B ∈ Mm,m(R) and for all x, y ∈ X and
u ∈ Fx, there exists v ∈ Fv such that

d(u, v) ≤ Ad(x, y) +Bd(y, u);

ii) Graph(F ) is closed in X ×X with respect to →.
If A converges to zero, then F has at least one fixed point in X.
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Proof. Let x0 ∈ X and x1 ∈ Fx0. If x1 = x0 then x0 ∈ Fix(F ). We assume
that x1 6= x0. Then by i) there exists x2 ∈ Fx1 such that

d(x1, x2) ≤ Ad(x0, x1) +Bd(x1, x1) = Ad(x0, x1).

By following the proof of Theorem 2.1, the conclusion follows. �

As an application of the previous results we present an existence theorem
for a semi-linear inclusion systems.

Theorem 2.5. Let ϕ,ψ : [0, 1]2 →]0, 1
2 ] be two functions and F1, F2 : [0, 1]2 →

P ([0, 1]) be two multivalued operators defined as follows:

F1(x1, x2) =
[
ϕ(x1, x2),

1
2

+ ϕ(x1, x2)
]

and

F2(x1, x2) =
[
ψ(x1, x2),

1
2

+ ψ(x1, x2)
]
.

We assume that for each (x1, x2), (y1, y2) ∈ [0, 1]2 and each u1 ∈
F1(x1, x2), u2 ∈ F2(x1, x2), there exist v1 ∈ F1(y1, y2) and v2 ∈ F2(y1, y2)
such that

|u1 − v1| ≤ a|x1 − y1|+ b|x2 − y2|,
|u2 − v2| ≤ c|x1 − y1|+ d|x2 − y2|,

for all a, b, c, d ∈ R+ with |a+ d±
√

(a− d)2 + 4bc| < 2.
Then the system {

x1 ∈ F1(x1, x2)
x2 ∈ F2(x1, x2),

(2.2)

has at least one solution in [0, 1]2.

Proof. Let F := (F1, F2) : [0, 1]2 → P ([0, 1]2). Then the system (2.2) can be
represented as a fixed point problem of the form

x ∈ Fx, where x = (x1, x2) ∈ [0, 1]2.

We consider the generalized Kasahara space ([0, 1]2,
ρe−→, d) where:

i) ρe : [0, 1]2 × [0, 1]2 → R2
+ is defined by

ρe(x, y) = (|x1 − y1|, |x2 − y2|),

for all x = (x1, x2), y = (y1, y2) ∈ [0, 1]2;
ii) d : [0, 1]2 × [0, 1]2 → R2

+ is defined by

d(x, y) =

{
ρe(x, y) , x 6= θ and y 6= θ

(1, 1) , x = θ or y = θ
,

for all x = (x1, x2), y = (y1, y2) ∈ [0, 1]2, where θ = (0, 0).
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For each x = (x1, x2), y = (y1, y2) ∈ [0, 1]2 and u = (u1, u2) ∈ Fx, there
exists v = (v1, v2) ∈ Fy such that

d(u, v) ≤ Ad(x, y),

where A =
(
a b
c d

)
is a matrix convergent to zero, having its eigenvalues in

the open unit disc.
Since Graph(F ) is closed in [0, 1]2 w.r.t.

ρe−→, Theorem 2.1 holds. �

Remark 2.6. Some examples of matrix convergent to zero are:

a) any matrix A =
(
a a
b b

)
, where a, b ∈ R+ and a+ b < 1;

b) any matrix A =
(
a b
a b

)
, where a, b ∈ R+ and a+ b < 1;

c) any matrix A =
(
a b
0 c

)
, where a, b, c ∈ R+ and max{a, c} < 1;

In what follows, we present some results regarding the fixed points for
multivalued Kannan and Reich operators. For our proofs, we will need the
following result:

Lemma 2.7. Let A = (aij)i,j=1,m ∈Mm,m(R+) be a triangular matrix with

max
{
aii | i = 1,m

}
<

1
2
.

Then the matrix Λ = (Im −A)−1A is convergent to zero.

Proof. Suppose that A =


a11 a12 · · · a1m

0 a22 · · · a2m

...
... · · ·

...
0 0 · · · amm

 ∈ Mm,m(R+). Then the

eigenvalues of Λ are λi = aii

1−aii
, for all i = 1,m. Since all of the eigenvalues

of Λ are in the open unit disc, the conclusion follows from Theorem 1.1. �

A result for multivalued Kannan operators is presented bellow:

Theorem 2.8. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued operator. We assume that:

i) there exists A = (aij)i,j=1,m ∈ Mm,m(R+) a triangular matrix such
that max

i=1,m
aii <

1
2 and for all x, y ∈ X and u ∈ Fx, there exists v ∈ Fy

such that
d(u, v) ≤ A[d(x, u) + d(y, v)];

ii) Graph(F ) is closed in X ×X with respect to →.

Then F has at least one fixed point in X.
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Proof. Let x0 ∈ X and x1 ∈ Fx0. If x1 = x0, then we already have a fixed
point for F (x0 ∈ Fix(F )). Assuming that x1 6= x0, then by i), there exists
x2 ∈ Fx1 such that

d(x1, x2) ≤ A[d(x0, x1) + d(x1, x2)] ⇔ d(x1, x2) ≤ (Im −A)−1Ad(x0, x1).

We denote Λ = (Im −A)−1A and we have

d(x1, x2) ≤ Λd(x0, x1).

By taking into account Lemma 2.7 and by following the proof of Theorem
2.1, replacing A with Λ, the conclusion follows. �

Next we present a result regarding the fixed points for the multivalued
operators of Reich type:

Theorem 2.9. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued operator. We assume that:

i) there exist A = (aij)i,j=1,m, B = (bij)i,j=1,m, C = (cij)i,j=1,m ∈
Mm,m(R+), where

1) C is a triangular matrix with max
i=1,m

cii <
1
2

2) A+B ≤ C, i.e., aij + bij ≤ cij, for all i, j = 1,m
and for all x, y ∈ X and u ∈ Fx, there exists v ∈ Fy such that

d(u, v) ≤ Ad(x, y) +Bd(x, u) + Cd(y, v);

ii) Graph(F ) is closed in X ×X with respect to →.

Then F has at least one fixed point in X.

Proof. Let x0 ∈ X and x1 ∈ Fx0. If x1 = x0, then we already have a fixed
point for F (x0 ∈ Fix(F )). Assuming that x1 6= x0, then by i), there exists
x2 ∈ Fx1 such that

d(x1, x2) ≤ Ad(x0, x1) +Bd(x0, x1) + Cd(x1, x2)

⇔ d(x1, x2) ≤ (Im − C)−1(A+B)d(x0, x1) ≤ (Im − C)−1Cd(x0, x1).

We denote Λ = (Im − C)−1C. By taking into account Lemma 2.7 and
by following the proof of Theorem 2.1, replacing A with Λ, the conclusion
follows. �

Some other fixed point results can be established for the multivalued
Caristi operators:

Definition 2.10. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued operator. Let ϕ : X → Rm

+ be a functional. We say
that F is a multivalued Caristi operator if for all x ∈ X, there exists y ∈ Fx
such that

d(x, y) ≤ ϕ(x)− ϕ(y).

For more considerations on multivalued Caristi operators see [4] and [2].
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Theorem 2.11. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued Caristi operator, having closed graph with respect to
→. Then F has at least one fixed point in X.

Proof. Let x0 ∈ X. Then there exists x1 ∈ Fx0. If x1 = x0 then x0 ∈ Fix(F )
and the proof is complete. If x1 6= x0 then

d(x0, x1) ≤ ϕ(x0)− ϕ(x1).

Since x1 ∈ Fx0, there exists x2 ∈ Fx1. If x2 = x1 then x1 ∈ Fix(F )
and the proof is complete. If x2 6= x1 then

d(x1, x2) ≤ ϕ(x1)− ϕ(x2).

By induction, there exists xn+1 ∈ Fxn such that

d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1), for all n ∈ N.

We have the following estimations∑
n∈N

d(xn, xn+1) ≤ ϕ(x0)− ϕ(xn+1) ≤ ϕ(x0) < +∞.

Since (X,→, d) is a Kasahara space, the sequence (xn)n∈N is convergent in
(X,→). So there exists x∗ ∈ X such that xn → x∗, as n→∞.

Since Graph(F ) is closed, x∗ ∈ Fix(F ). �

By taking into account the Remark 2.2, we have the following result:

Corollary 2.12. Let X be a nonempty set and ρ : X×X → Rm
+ be a complete

generalized metric on X. Let d : X ×X → Rm
+ be a functional. Let ϕ : X →

Rm
+ be a functional.

Let F : X → P (X) be a multivalued operator such that

i) Graph(F ) is closed in X ×X with respect to
ρ→;

ii) for all x ∈ X, there exists y ∈ Fx such that d(x, y) ≤ ϕ(x)− ϕ(y);
iii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y).

Then F has at least one fixed point in X.

Proof. By ii) and the proof of the Theorem 2.11, there exists a sequence
(xn)n∈N in X such that

1) xn+1 ∈ Fxn, for all n ∈ N;
2) d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1), for all n ∈ N.

By iii) there exists c > 0 such that

ρ(xn, xn+1) ≤ c · d(xn, xn+1) ≤ c · (ϕ(xn)− ϕ(xn+1)), for all n ∈ N.

We will prove that the series
∑
n∈N

ρ(xn, xn+1) is convergent. For this

purpose, we need to show that the sequence of its partial sums is convergent
in Rm

+ .
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Denote by sn =
n∑

k=0

ρ(xk, xk+1). Then sn+1 − sn = ρ(xn+1, xn+2) ≥ 0,

for each n ∈ N. Moreover sn ≤
n∑

k=0

[
cϕ(xk) − cϕ(xk+1)

]
≤ cϕ(x0). Hence

(sn)n∈N is upper bounded and increasing in Rm
+ . So the sequence (sn)n∈N is

convergent in Rm
+ . It follows that the sequence (xn)n∈N is a Cauchy sequence

and, from the completeness of the metric space (X, ρ), convergent to a certain
element x∗ ∈ X. The conclusion follows from i). �

For more considerations on multivalued Kannan, Reich and Caristi op-
erators, see [9] and the references therein.
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Some multivalent functions with negative
coefficients defined by using a certain
fractional derivative operator

Mohamed K. Aouf

Abstract. In this paper we investigate the various important properties
and characteristics of the subclasses Sn(p, q, α, λ) and Cn(p, q, α, λ) of
multivalent functions with negative coefficients defined by using a cer-
tain operator of fractional derivatives. We also derive many results for
the modified Hadamard products of functions belonging to the classes
Sn(p, q, α, λ) and Cn(p, q, α, λ). Finally, several applications involving
an integral operator and certain fractional calculus operators are also
considered.

Mathematics Subject Classification (2010): 30C45.
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1. Introduction

Let T (n, p) denote the class of functions of the form :

f(z) = zp −
∞∑

k=n+p

akzk (ak ≥ 0; p, n ∈ N = {1, 2, ....}), (1.1)

which are analytic and p-valent in the open unit disc U = {z : |z| < 1}. A
function f(z) ∈ T (n, p) is said to be p-valently starlike of order α if it satisfies
the inequality :

Re

{
zf

′
(z)

f(z)

}
> α (z ∈ U ; 0 ≤ α < p; p ∈ N). (1.2)

We denote by T ∗n(p, α) the class of all p-valently starlike functions of order
α. Also a function f(z) ∈ T (n, p) is said to be p-valently convex of order α if
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it satisfies the inequality:

Re

{
1 +

zf
′′
(z)

f ′(z)

}
> α (z ∈ U ; 0 ≤ α < p; p ∈ N). (1.3)

We denote by Cn(p, α) the class of all p-valently convex functions of order
α. We note that (see for example Duren [4] and Goodman [5])

f(z) ∈ Cn(p, α) ⇐⇒ zf
′
(z)
p

∈ T ∗n(p, α) ( 0 ≤ α < p; p ∈ N). (1.4)

The classes T ∗n(p, α) and Cn(p, α) are studied by Owa [12].
Various operators of fractional calculus (that is, fractional integral and

fractional derivative) have been studied in the literature rather extensively
(cf., e.g. [3], [10], [15] and [16]) see also the various references cited therein).
For our present investigations, we recall the following definitions.

Definition 1.1. (Fractional Integral Operator). The fractional integral opera-
tor of order λ is defined, for a function f(z), by

D−λ
z f(z) =

1
Γ(λ)

z∫
0

f(ζ)
(z − ζ)1−λ

dζ (λ > 0) , (1.5)

where f(z) is an analytic function in a simply-connected region of the z-plane
containg the origin, and the multiplicity of (z−ζ)λ−1 is removed by requiring
log(z − ζ) to be real when z − ζ > 0.

Definition 1.2. (Fractional Derivative Operator). The fractional derivative of
order λ is defined, for a function f(z), by

Dλ
z f(z) =

1
Γ(1− λ)

d

dz

z∫
0

f(ζ)
(z − ζ)λ

dζ (0 ≤ λ < 1) , (1.6)

where f(z) is constrained, and the multiplicity of (z− ζ)−λ is removed, as in
Definition 1.1.

Definition 1.3. (Extended Fractional Derivative Operator). Under the hy-
potheses of Definition 1.2, the fractional derivative of order n + λ is defined,
for a function f(z), by

Dn+λ
z f(z) =

dn

dzn
Dλ

z f(z) (0 ≤ λ < 1;n ∈ N0 = N ∪ {0}) . (1.7)

Srivastava and Aouf [15] defined and studied the operator :

Ω(λ,p)
z f(z) =

Γ(p + 1− λ)
Γ(p + 1)

zλDλ
z f(z) (0 ≤ λ ≤ 1; p ∈ N) . (1.8)

For each f(z) ∈ T (n, p) , we have

(i) Ω(λ,p)
z f(z) = zp −

∞∑
k=n+p

Γ(k+1)Γ(p+1−λ)
Γ(p+1)Γ(k+1−λ)akzk , (1.9)
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(ii)
(
Ω(λ,p)

z f(z)
)(q)

= δ(p, q)zp−q −
∞∑

k=n+p

Γ(k+1)Γ(p+1−λ)
Γ(p+1)Γ(k+1−λ)δ(k, q)akzk−q

(q ∈ N0 = N ∪ {0}) (1.10)
where

δ(p, q) =
{

1 (q = 0)
p(p− 1)...(p− q + 1) (q 6= 0) ,

(1.11)

and

(iii) Ω(0,p)
z f(z) = f(z) and Ω(1,p)

z f(z) = zf
′
(z)

p . (1.12)

In this paper we investigate various interesting properties and character-
istics of functions belonging to two subclasses Sn(p, q, α, λ) and Cn(p, q, α, λ)
of the class T (n, p), which consist (respectively) of p-valently starlike and p-
valently convex functions of order α (0 ≤ α < p; p ∈ N). Indeed we have

Sn(p, q, α, λ) =

f(z) ∈ T (n, p) : Re

z
(
Ω(λ,p)

z f(z)
)(1+q)

(
Ω(λ,p)

z f(z)
)(q)

 > α

(z ∈ U ; 0 ≤ α < p− q; p, n ∈ N ; q ∈ N0; p > q)
}

(1.13)

and

Cn(p, q, α, λ) =

f(z) ∈ T (n, p) : Re

1 +
z

(
Ω(λ,p)

z f(z)
)(2+q)

(
Ω(λ,p)

z f(z)
)(1+q)

 > α

(z ∈ U ; 0 ≤ α < p− q; p, n ∈ N ; q ∈ N0; p > q)
}

. (1.14)

We note that, by specializing the parameters n, p, q, α and λ, we obtain
the following subclasses studied by various authors :
(i) Sn(p, q, α, 0) = Sn(p, q, α) and Cn(p, q, α, 0) = Cn(p, q, α) (Chen et al.
[2]);
(ii) Sn(p, 0, α, 0) (0 ≤ α < p; p, n ∈ N)

=
{

T ∗n(p, α) (Owa [12])
Tα(p, n) (Yamakawa [19]);

(iii) Sn(p, 0, α, 1) = Cn(p, 0, α, 0) (0 ≤ α < p; p, n ∈ N)

=
{

Cn(p, α) (Owa [12])
CTα(p, n) (Yamakawa [19]);

(iv) S1(p, 0, α, 0) = T ∗(p, α) and Sn(1, 0, α, 1) = C1 (p, 0, α, 0) = C(p, α),
(0 ≤ α < p; p ∈ N) (Owa [11] and Salagean et al. [13]);
(v) S1(p, 0, α, β) = S∗(p, α, β) and C1(p, 0, α, β) = C∗ (p, α, β) (0 ≤ α < p;
p ∈ N ; 0 ≤ β < 1) (Hossen [7]);
(vi) S1(1, 0, α, β) = T ∗(α, β) and C1(1, 0, α, β) = C(α, β) (0 ≤ α < 1; 0 <
β ≤ 1) (Gupta and Jain [6]);
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(vii) Sn(1, 0, α, 1) = Tα(n) and Cn(1, 0, α, 1) = Cα(n) (0 ≤ α < 1; n ∈ N)
(Srivastava et al. [18]);

In our present paper, we shall make use of the familiar operator Jc,p

defined by (cf. [1], [8] and [9]; see also [17])

(Jc,pf)(z) =
c + p

zc

z∫
0

tc−1f(t)dt . (1.15)

(f(z) ∈ T (n, p); c > −p; p ∈ N)
as well as the fractional calculus operator Dµ

z for which it is well known that
(see, for details, [10] and [15]; see also Section 6 below)

Dµ
z {zρ} =

Γ(ρ + 1)
Γ(ρ + 1− µ)

zρ−µ (ρ > −1; µ ∈ R) (1.16)

in terms of Gamma functions.

2. Coefficients estimates

Theorem 2.1. Let the function f(z) be defined by (1.1).
Then f(z) ∈ Sn(p, q, α, λ) if and only if

∞∑
k=n+p

(k − q − α)Γ(k + 1)Γ(p + 1− λ)
Γ(p + 1)Γ(k + 1− λ)

δ(k, q)ak ≤ (p− q − α)δ(p, q) , (2.1)

where δ(p, q) is given by (1.9).

Proof. Assume that the inequality (2.1) holds true. Thus we find that∣∣∣∣∣∣∣
z

(
Ω(λ,p)

z f(z)
)(1+q)

(
Ω(λ,p)

z f(z)
)(q)

− (p− q)

∣∣∣∣∣∣∣
≤

∞∑
k=n+p

(k−p)Γ(k+1)Γ(p+1−λ)
Γ(p+1)Γ(k+1−λ) δ(k, q)ak |z|k−p

δ(p, q)−
∞∑

k=n+p

Γ(k+1)Γ(p+1−λ)
Γ(p+1)Γ(k+1−λ)δ(k, q)ak |z|k−p

≤

∞∑
k=n+p

(k−p)Γ(k+1)Γ(p+1−λ)
Γ(p+1)Γ(k+1−λ) δ(k, q)ak

δ(p, q)−
∞∑

k=n+p

Γ(k+1)Γ(p+1−λ)
Γ(p+1)Γ(k+1−λ)δ(k, q)ak

≤ p− q − α .

This shows that the values of the function

Φ(z) =
z

(
Ω(λ,p)

z f(z)
)(1+q)

(
Ω(λ,p)

z f(z)
)(q)

(2.2)
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lie in a circle which is centered at w = (p−q) and whose radius is (p−q−α).
Hence f(z) satisfies the condition (1.11).

Conversely, assume that the function f(z) defined by (1.1) is in the class
Sn(p, q, α, λ). Then we have

Re


z

(
Ω(λ,p)

z f(z)
)(1+q)

(
Ω(λ,p)

z f(z)
)(q)



= Re


(p− q)δ(p, q)−

∞∑
k=n+p

(k−q)Γ(k+1)Γ(p+1−λ)
Γ(p+1)Γ(k+1−λ) δ(k, q)akzk−p

δ(p, q)−
∞∑

k=n+p

Γ(k+1)Γ(p+1−λ)
Γ(p+1)Γ(k+1−λ)δ(k, q)akzk−p

 > α

(2.3)
for some α (0 ≤ α < p − q), 0 ≤ λ ≤ 1, p, n ∈ N, q ∈ N0, p > q and z ∈ U .
Choose values of z on the real axis so that Φ(z) given by (2.2) is real. Upon
clearing the denominator in (2.3) and letting z → 1− through real values, we
can see that

(p− q)δ(p, q)−
∞∑

k=n+p

(k − q)Γ(k + 1)Γ(p + 1− λ)
Γ(p + 1)Γ(k + 1− λ)

δ(k, q)ak

≥ α

δ(p, q)−
∞∑

k=n+p

Γ(k + 1)Γ(p + 1− λ)
Γ(p + 1)Γ(k + 1− λ)

δ(k, q)ak

 . (2.4)

Thus we have the inequality (2.1). �

Corollary 2.2. Let the function f(z) defined by (1.1) be in the class
Sn(p, q, α, λ). Then

ak ≤
(p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)
(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) . (2.5)

The result is sharp for the function f(z) given by

f(z) = zp − (p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)
(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)

zk

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) . (2.6)

Theorem 2.3. Let the function f(z) defined by (1.1). Then f(z) ∈
Cn(p, q, α, λ) if and only if
∞∑

k=n+p

(k − q − α)Γ(k + 1)Γ(p + 1− λ)
(p− q − α)Γ(p + 1)Γ(k + 1− λ)

δ(k, q + 1)ak ≤ (p− q− α)δ(p, q + 1) .

(2.7)



34 Mohamed K. Aouf

Corollary 2.4. Let the function f(z) defined by (1.1) be in the class
Cn(p, q, α, λ). Then

ak ≤
(p− q − α)δ(p, q + 1)Γ(p + 1)Γ(k + 1− λ)
(k − q − α)δ(k, q + 1)Γ(k + 1)Γ(p + 1− λ)

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) . (2.8)
The result is sharp for the function f(z) given by

f(z) = zp − (p− q − α)δ(p, q + 1)Γ(p + 1)Γ(k + 1− λ)
(k − q − α)δ(k, q + 1)Γ(k + 1)Γ(p + 1− λ)

zk

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) . (2.9)

3. Distortion theorems

Theorem 3.1. If a function f(z) defined by (1.1) is in the class Sn(p, q, α, λ),
then {

p!
(p− j)!

− (p−q−α)δ(p,q)(n+p−q)!Γ(p+1)Γ(n+p+1−λ)
(n+p−q−α)(n+p−j)!Γ(n+p+1)Γ(p+1−λ) |z|n

}
|z|p−j

≤
∣∣∣f (j)(z)

∣∣∣ ≤ {
p!

(p− j)!
+ (p−q−α)δ(p,q)(n+p−q)!Γ(p+1)Γ(n+p+1−λ)

(n+p−q−α)(n+p−j)!Γ(n+p+1)Γ(p+1−λ) |z|n
}
|z|p−j

(z ∈ U ; 0 ≤ α < p− q; p, n ∈ N ; q, j ∈ N0; p > max {q, j}) . (3.1)
The result is sharp for the function f(z) given by

f(z) = zp − (p−q−α)δ(p,q)Γ(p+1)Γ(n+p+1−λ)
(n+p−q−α)δ(n+p,q)Γ(n+p+1)Γ(p+1−λ)z

n+p (p, n ∈ N) . (3.2)

Proof. In view of Theorem 2.1, we have

(n + p− q − α)δ(n + p, q)Γ(n + p + 1)Γ(p + 1− λ)
(p− q − α)δ(p, q)(n + p)!Γ(p + 1)Γ(n + p + 1− λ)

∞∑
k=n+p

k!ak

≤
∞∑

k=n+p

(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)
(p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)

ak ≤ 1

which readily yields
∞∑

k=n+p

k!ak ≤
(p− q − α)δ(p, q)(n + p− q)!Γ(p + 1)Γ(n + p + 1− λ)

(n + p− q − α)Γ(n + p + 1)Γ(p + 1− λ)
. (3.3)

Now, by differentiating both sides of (1.1) j times, we obtain

f (j)(z) =
p!

(p− j)!
zp−j −

∞∑
k=n+p

k!
(k − j)!

akzk−j (3.4)

(k ≥ n + p; p, n ∈ N ; q, j ∈ N0 = N ∪ {0}; p > max {q, j}) .

Theorem 3.1 follows readily from (3.3) and (3.4).
Finally, it is easy to see that the bounds in (3.1) are attained for the

function f(z) given by (3.2). �
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Theorem 3.2. If a function f(z) defined by (1.1) is in the class Cn(p, q, α, λ),
then{

1
(p− j)!

− (p−q−α)(n+p−q−1)!Γ(p+1)Γ(n+p+1−λ)
(n+p−q−α)(p−q−1)!(n+p−j)!Γ(n+p+1)Γ(p+1−λ) |z|

n

}
p! |z|p−j

≤
∣∣∣f (j)(z)

∣∣∣
≤

{
1

(p− j)!
+ (p−q−α)(n+p−q−1)!Γ(p+1)Γ(n+p+1−λ)

(n+p−q−α)(p−q−1)!(n+p−j)!Γ(n+p+1)Γ(p+1−λ) |z|
n

}
p! |z|p−j

(z ∈ U ; 0 ≤ α < p− q; p, n ∈ N ; q, j ∈ N0; p > max {q, j}) . (3.5)

The result is sharp for the function f(z) given by

f(z) = zp − (p− q − α)δ(p, q + 1)
(n + p− q − α)δ(n + p, q + 1)

zn+p (p, n ∈ N ; q ∈ N0; p > q) .

(3.6)
Radii of close-to-convexity, starlikeness and convexity

Theorem 3.3. Let the function f(z) defined by (1.1) be in the class
Sn(p, q, α, λ), then

(i) f(z) is p-valently close-to-convex of order ϕ (0 ≤ ϕ < p) in |z| < r1,
where

r1 = inf
k

{
(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)
(p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)

(
p− ϕ

k

)} 1
k−p

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) , (4.1)

(ii) f(z) is p-valently starlike of order ϕ (0 ≤ ϕ < p) in |z| < r2, where

r2 = inf
k

{
(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)
(p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)

(
p− ϕ

k − ϕ

)} 1
k−p

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) , (4.2)

(iii) f(z) is p-valently convex of order ϕ (0 ≤ ϕ < p) in |z| < r3, where

r3 = inf
k

{
(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)
(p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)

.
p(p− ϕ)
k(k − ϕ)

} 1
k−p

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) . (4.3)

Each of these results is sharp for the function f(z) given by (2.6).

Proof. It is sufficient to show that∣∣∣∣∣f
′
(z)

zp−1
− p

∣∣∣∣∣ ≤ p− ϕ (|z| < r1; 0 ≤ ϕ < p; p ∈ N) , (4.4)

∣∣∣∣∣zf
′
(z)

f(z)
− p

∣∣∣∣∣ ≤ p− ϕ (|z| < r2; 0 ≤ ϕ < p; p ∈ N) , (4.5)
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and that ∣∣∣∣∣1 +
zf

′′
(z)

f ′(z)
− p

∣∣∣∣∣ ≤ p− ϕ (|z| < r3; 0 ≤ ϕ < p; p ∈ N) (4.6)

for a function f(z) ∈ Sn(p, q, α, λ), where r1, r2 and r3 are defined by (4.1),
(4.2) and (4.3), respectively. �

4. Modified Hadamard products

For the functions fν(z) (ν = 1, 2) given by

fν(z) = zp −
∞∑

k=n+p

ak,νzk (ak,ν ≥ 0; ν = 1, 2) (5.1)

we denote that (f1⊗f2)(z) the modified Hadamard product (or convolution)
of the functions f1(z) and f2(z), defined by

(f1 ⊗ f2)(z) = zp −
∞∑

k=n+p

ak,1.ak,2z
k . (5.2)

Theorem 4.1. Let the functions fν(z) (ν = 1, 2) defined by (5.1) be in the
class Sn(p, q, α, λ). Then (f1 ⊗ f2)(z) ∈ Sn(p, q, γ, λ) where

γ = (p− q)−
n(p−q−α)2δ(p,q)Γ(p+1)Γ(n+p+1−λ)

(n+p−q−α)2δ(n+p,q)Γ(n+p+1)Γ(p+1−λ)−(p−q−α)2δ(p,q)Γ(p+1)Γ(n+p+1−λ) . (5.3)

The result is sharp for the functions fν(z) (ν = 1, 2) given by

fν(z) = zp − (p− q − α)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)
(n + p− q − α)δ(n + p, q)Γ(n + p + 1)Γ(p + 1− λ)

zn+p

(p, n ∈ N ; ν = 1, 2) . (5.4)

Proof. Emploing the technique used earlier by Schild and Silverman [14], we
need to find the largest γ such that

∞∑
k=n+p

(k − q − γ)δ(k, q)Γ(k + 1)Γ(k + 1)Γ(p + 1− λ)
(p− q − γ)δ(p, q)Γ(p + 1)Γ(k + 1− λ)

ak,1; ak,2 ≤ 1

(fν(z) ∈ Sn(p, α, β, λ) (ν = 1, 2)) . (5.5)
Since fν(z) ∈ Sn(p, α, β, λ) (ν = 1, 2), we readily see that

∞∑
k=n+p

(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)
(p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)

ak,ν ≤ 1 (ν = 1, 2). (5.6)

Therefore, by the Cauchy-Schwarz inequality, we obtain
∞∑

k=n+p

(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)
(p− q − γ)δ(p, q)Γ(p + 1)Γ(k + 1− λ)

√
ak,1; ak,2 ≤ 1 . (5.7)
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Thus we only need to show that

(k − q − γ)
(p− q − γ)

ak,1.ak,2 ≤
(k − q − α)
(p− q − α)

√
ak,1.ak,2 (k ≥ n + p; p, n ∈ N) , (5.8)

or, equivalently, that

√
ak,1.ak,2 ≤

(p− q − γ)(k − q − α)
(p− α)(k − q − γ)

(k ≥ n + p; p, n ∈ N) . (5.9)

Hence, in light of the inequality (5.7), it is sufficient to prove that

(p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)
(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)

≤

(p− γ)(k − q − α)
(p− α)(k − q − γ)

(k ≥ n + p; p, n ∈ N) . (5.10)

It follows from (5.10) that
γ ≤ (p− q)−

(k−p)(p−q−α)2δ(p,q)Γ(p+1)Γ(k+1−λ)
(k−q−α)2δ(k,q)Γ(k+1)Γ(p+1−λ)−(p−q−α)2δ(p,q)Γ(p+1)Γ(k+1−λ)

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) . (5.11)

Now, defining the function θ(k) by

θ(k) = (p− q)−

(k−p)(p−q−α)2δ(p,q)Γ(p+1)Γ(k+1−λ)
(k−q−α)2δ(k,q)Γ(k+1)Γ(p+1−λ)−(p−q−α)2δ(p,q)Γ(p+1)Γ(k+1−λ)

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q) , (5.12)

we see that θ(k) is an increasing function of k. Therefore, we conclude that

γ ≤ θ(n + p) = (p− q)−

n(p−q−α)2δ(p,q)Γ(p+1)Γ(n+p+1−λ)
(n+p−q−α)2δ(n+p,q)Γ(n+p+1)Γ(p+1−λ)−(p−q−α)2δ(p,q)Γ(p+1)Γ(n+p+1−λ) (5.13)

which evidently completes the proof of Theorem 4.1. �

Putting λ = 0 in Theorem 4.1, we obtain

Corollary 4.2. Let the functions fν(z) (ν = 1, 2) defined by (5.1) be in the
class Sn(p, q, α). Then (f1 ⊗ f2)(z) ∈ Sn(p, q, γ), where

γ = (p− q)− n(p− q − α)2δ(p, q)
(n + p− q − α)2δ(n + p, q)− (p− q − α)2δ(p, q)

. (5.14)

The result is sharp.

Remark 4.3. We note that the result obtained by Chen et al. [2, Theorem 5]
is not correct. The correct result is given by (5.14).

Using arguments similar to those in the proof of Theorem 4.1, we obtain
the following results.
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Theorem 4.4. Let the functions fν(z) (ν = 1, 2) defined by (5.1) be in the
class Cn(p, q, α, λ). Then (f1 ⊗ f2)(z) ∈ Cn(p, q, γ, λ) where

γ = (p− q)−
n(p−q−α)2δ(p,q+1)Γ(p+1)Γ(n+p+1−λ)

(n+p−q−α)2δ(n+p,q+1)Γ(n+p+1)Γ(p+1−λ)−(p−q−α)2δ(p,q+1)Γ(p+1)Γ(n+p+1−λ) .

(5.15)
The result is sharp for the functions fν(z) (ν = 1, 2) given by

f(z) = zp − (p− q − α)δ(p, q + 1)Γ(p + 1)Γ(n + p + 1− λ)
(n + p− q − α)δ(n + p, q + 1)Γ(n + p + 1)Γ(p + 1− λ)

zn+p

(p, n ∈ N ; q ∈ N0; p > q; ν = 1, 2) . (5.16)

Putting λ = 0 in Theorem 4.4, we obtain

Corollary 4.5. Let the functions fν(z) (ν = 1, 2) defined by (5.1) be in the
class Cn(p, q, α). Then (f1 ⊗ f2)(z) ∈ Cn(p, q, γ), where

γ = (p− q)− n(p− q − α)2δ(p, q + 1)
(n + p− q − α)2δ(n + p, q + 1)− (p− q − α)2δ(p, q + 1)

.

(5.17)
The result is sharp.

Remark 4.6. We note that the result obtained by Chen et al. [2, Theorem 6]
is not correct. The correct result is given by (5.17).

Theorem 4.7. Let the function f1(z) defined by (5.1) be in the class
Sn(p, q, α, λ). Suppose also that the function f2(z) defined by (5.2) be in the
class Sn(p, q, γ, λ). Then (f1 ⊗ f2)(z) ∈ Sn(p, q, ζ, λ), where ζ = (p− q)−

n(p− q − α)(p− q − γ)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)
(n + p− q − α)(n + p− q − γ)δ(n + p, q)Γ(n + p + 1)Γ(p + 1− λ)− Ω

.

(Ω = (p− q − α)(p− q − γ)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)) . (5.18)
The result is sharp for the functions fν(z) (ν = 1, 2) given by

f1(z) = zp − (p−q−α)δ(p,q)Γ(p+1)Γ(n+p+1−λ)
(n+p−q−α)δ(n+p,q)Γ(n+p+1)Γ(p+1−λ)z

n+p (p, n ∈ N) (5.19)

and

f2(z) = zp − (p−q−γ)δ(p,q)Γ(p+1)Γ(n+p+1−λ)
(n+p−q−γ)δ(n+p,q)Γ(n+p+1)Γ(p+1−λ)z

n+p (p, n ∈ N) . (5.20)

Theorem 4.8. Let the functions fν(z) (ν = 1, 2) defined by (5.1) be in the
class Sn(p, q, α, λ). Then the function

h(z) = zp −
∞∑

k=n+p

(
a2

k,1 + a2
k,2

)
zk (5.21)

belongs to the class Sn(p, q, ξ, λ), where

ξ = (p− q)−
2n(p−q−α)2δ(p,q)Γ(p+1)Γ(n+p+1−λ)

(n+p−q−α)2δ(n+p,q)Γ(n+p+1)Γ(p+1−λ)−2(p−q−α)2δ(p,q)Γ(p+1)Γ(n+p+1−λ) .

(5.22)
The result is sharp for the functions fν(z) (ν = 1, 2) defined by (5.4).
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Theorem 4.9. Let the functions fν(z) (ν = 1, 2) defined by (5.1) be in the
class Cn(p, q, α, λ). Then the function h(z) defined by (5.21) belongs to the
class Cn(p, q, η, λ), where

η = (p− q)−
2n(p−q−α)2δ(p,q+1)Γ(p+1)Γ(n+p+1−λ)

(n+p−q−α)2δ(n+p,q+1)Γ(n+p+1)Γ(p+1−λ)−2(p−q−α)2δ(p,q+1)Γ(p+1)Γ(n+p+1−λ) .

(5.23)
The result is sharp for the functions fν(z) (ν = 1, 2) given by (5.16).

5. Applications of fractional calculus

In this section, we shall investigate the growth and distortion proper-
ties of functions in the classes Sn(p, q, α, β) and Cn(p, q, α, β), involving the
operators Jc,p and Dµ

z . In order to derive our results, we need the following
lemma given by Chen et al. [3].

Lemma 5.1. (see Chen et al. [3]). Let the function f(z) defined by (1.1). Then

Dµ
z {(Jc,p)(z)} =

Γ(p + 1)
Γ(p + 1− µ

zp−µ −
∞∑

k=n+p

(c + p)Γ(k + 1)
(c + k)Γ(k + 1− µ)

akzk−µ

(µ ∈ R; c > −p; p, n ∈ N) (6.1)
and

Jc,p(Dµ
z {f(z)}) = (c+p)Γ(p+1)

(c+p−µ)Γ(p+1−µ)z
p−µ −

∞∑
k=n+p

(c+p)Γ(k+1)
(c+k−µ)Γ(k+1−µ)akzk−µ

(µ ∈ R; c > −p; p, n ∈ N) , (6.2)
provided that no zeros appear in the denominators in (6.1) and (6.2).

Theorem 5.2. Let the function f(z) defined by (1.1) be in the class
Sn(p, q, α, λ). Then∣∣D−µ

z {(Jc,pf)(z)}
∣∣ ≥ {

Γ(p + 1)
Γ(p + 1 + µ)

−

(c+p)(p−q−α)δ(p,q)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q)Γ(n+p+1+µ)Γ(p+1−λ) |z|

n
}
|z|p+µ

(z ∈ U ; 0 ≤ α < p− q; 0 ≤ λ ≤ 1;µ > 0; c > −p; p, n ∈ N ; q ∈ N0; p > q)
(6.3)

and ∣∣D−µ
z {(Jc,pf)(z)}

∣∣ ≤ {
Γ(p + 1)

Γ(p + 1 + µ)
+

(c+p)(p−q−α)δ(p,q)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q)Γ(n+p+1+µ)Γ(p+1−λ) |z|

n
}
|z|p+µ

(z ∈ U ; 0 ≤ α < p− q; 0 ≤ λ ≤ 1;µ > 0; c > −p; p, n ∈ N ; q ∈ N0; p > q) .
(6.4)

Each of the assertions (6.3) and (6.4) is sharp.
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Proof. In view of Theorem 2.1, we have

(n + p− q − α)δ(n + p, q)Γ(n + p + 1)Γ(p + 1− λ)
(p− q − α)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)

∞∑
k=n+p

ak

≤
∞∑

k=n

(k − q − α)δ(k, q)Γ(k + 1)Γ(p + 1− λ)
(p− q − α)δ(p, q)Γ(p + 1)Γ(k + 1− λ)

ak ≤ 1 ,

which readily yields
∞∑

k=n+p

ak ≤
(p− q − α)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)

(n + p− q − α)δ(n + p, q)Γ(n + p + 1)Γ(p + 1− λ)
. (6.5)

Consider the function F (z) defined in U by

F (z) =
Γ(p + 1 + µ)

Γ(p + 1)
z−µD−µ

z {(Jc,pf)(z)}

= zp −
∞∑

k=n+p

(c + p)Γ(k + 1)Γ(p + 1 + µ)
(c + k)Γ(p + 1)Γ(k + 1 + µ)

akzk

= zp −
∞∑

k=n+p

Φ(k)akzk (z ∈ U) ,

where

Φ(k) =
(c + p)Γ(k + 1)Γ(p + 1 + µ)
(c + k)Γ(p + 1)Γ(k + 1 + µ)

(k ≥ n + p; p, n ∈ N ;µ > 0) . (6.6)

Since Φ(k) is a decreasing function of k when µ > 0, we get

0 < Φ(k) ≤ Φ(n + p) =
(c + p)Γ(n + p + 1)Γ(p + 1 + µ)

(c + n + p)Γ(p + 1)Γ(n + p + 1 + µ)

(c > −p; p, n ∈ N ;µ > 0) . (6.7)
Thus, by using (6.5) and (6.7), we deduce that

|F (z)| ≥ |z|p − Φ(n + p) |z|n+p
∞∑

k=n+p

ak ≥ |z|p−

(c+p)(p−q−α)δ(p,q)Γ(p+1+µ)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q)Γ(n+p+1+µ)Γ(p+1−λ) |z|

n+p (z ∈ U)

and

|F (z)| ≤ |z|p + Φ(n + p) |z|n+p
∞∑

k=n+p

ak ≤ |z|p +

(c+p)(p−q−α)δ(p,q)Γ(p+1+µ)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q)Γ(n+p+1+µ)Γ(p+1−λ) |z|

n+p (z ∈ U),

which yield the inequalities (6.3) and (6.4) of Theorem 5.2. The equalities in
(6.3) and (6.4) are attained for the function f(z) given by

D−µ
z {(Jc,pf)(z)} ≤

{
Γ(p + 1)

Γ(p + 1 + µ)
−
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(c + p)(p− q − α)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)
(c + n + p)(n + p− q − α)δ(n + p, q)Γ(n + p + 1)Γ(p + 1− λ)

zn

}
zp+µ

(6.8)
or, equivalently, by

(Jc,pf) (z) = zp−
(c + p)(p− q − α)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)

(c + n + p)(n + p− q − α)δ(n + p, q)Γ(n + p + 1)Γ(p + 1− λ)
zn+p . (6.9)

Thus we complete the proof of Theorem 5.2. �

Theorem 5.3. Let the function f(z) defined by (1.1) be in the class
Sn(p, q, α, λ). Then

|Dµ
z {(Jc,pf)(z)}| ≥

{
Γ(p + 1)

Γ(p + 1− µ)
−

(c+p)(p−q−α)δ(p,q)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q)Γ(n+p+1−µ)Γ(p+1−λ) |z|

n
}
|z|p−µ

(z ∈ U ; 0 ≤ α < p− q; 0 ≤ λ ≤ 1; 0 ≤ µ < 1; c > −p; p, n ∈ N ; q ∈ N0; p > q)
(6.10)

and

|Dµ
z {(Jc,pf)(z)}| ≤

{
Γ(p + 1)

Γ(p + 1− µ)
+

(c+p)(p−q−α)δ(p,q)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q)Γ(n+p+1−µ)Γ(p+1−λ) |z|

n
}
|z|p−µ

(z ∈ U ; 0 ≤ α < p− q; 0 ≤ λ ≤ 1; 0 ≤ µ < 1; c > −p; p, n ∈ N ; q ∈ N0; p > q).
(6.11)

Each of the assertions (6.10) and (6.11) is sharp.

Proof. It follows from Theorem 2.1, that
∞∑

k=n+p

kak ≤
(p− q − α)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)

(n + p− q − α)δ(n + p, q)Γ(n + p)Γ(p + 1− λ)
. (6.12)

We consider the function H(z) defined in U by

H(z) =
Γ(p + 1− µ)

Γ(p + 1)
zµDµ

z {(Jc,pf)(z)}

= zp −
∞∑

k=n+p

Ψ(k)kakzk (z ∈ U) ,

where, for convience,

Ψ(k) =
(c + p)Γ(k)Γ(p + 1− µ)

(c + k)Γ(p + 1)Γ(k + 1− µ)
(k ≥ n + p; p, n ∈ N ; 0 ≤ µ < 1) .

Since Ψ(k) is a decreasing function of k when µ < 1, we find that

0 < Ψ(k) ≤ Ψ(n + p) =
(c + p)Γ(n + p)Γ(p + 1− µ)

(c + n + p)Γ(p + 1)Γ(n + p + 1− µ)

(c > −p; p, n ∈ N ; 0 ≤ µ < 1) . (6.13)
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Consequently, with the aid of (6.12) and (6.13), we find that

|H(z)| ≥ |z|p −Ψ(n + p) |z|n+p
∞∑

k=n+p

kak ≥ |z|p−

(c+p)(p−q−α)δ(p,q)Γ(p+1−µ)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q)Γ(n+p+1−µ)Γ(p+1−λ) |z|

n+p (z ∈ U)

and

|H(z)| ≤ |z|p + Ψ(n + p) |z|n+p
∞∑

k=n+p

kak ≤ |z|p +

(c+p)(p−q−α)δ(p,q)Γ(p+1−µ)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q)Γ(n+p+1−µ)Γ(p+1−λ) |z|

n+p (z ∈ U)

which yield the inequalities (6.10) and (6.11) of Theorem 5.3. The equalities
in (6.10) and (6.11) are attained for the function f(z) given by

Dµ
z {(Jc,pf)(z)} =

{
Γ(p + 1)

Γ(p + 1− µ)
−

(c + p)(p− q − α)δ(p, q)Γ(p + 1)Γ(n + p + 1− λ)
(c + n + p)(n + p− q − α)δ(n + p, q)Γ(n + p + 1− µ)Γ(p + 1− λ)

zn

}
zp−µ

(6.14)
or for the function (Jc,pf)(z) given by (6.9). The proof of Theorem 5.3 is thus
completed. �

Theorem 5.4. Let the function f(z) defined by (1.1) be in the class
Cn(p, q, α, λ). Then for z ∈ U ; 0 ≤ α < p − q; 0 ≤ λ ≤ 1; µ > 0; c >
0; p, n ∈ N ; q ∈ N0 and p > q, we have∣∣D−µ

z {(Jc,pf)(z)}
∣∣ ≥ {

Γ(p + 1)
Γ(p + 1 + µ)

−

(c+p)(p−q−α)δ(p,q+1)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q+1)Γ(n+p+1+µ)Γ(p+1−λ) |z|

n
}
|z|p−µ (6.15)

and ∣∣D−µ
z {(Jc,pf)(z)}

∣∣ ≤ {
Γ(p + 1)

Γ(p + 1− µ)
+

(c+p)(p−q−α)δ(p,q+1)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q+1)Γ(n+p+1+µ)Γ(p+1−λ) |z|

n
}
|z|p−µ

. (6.16)

Also for z ∈ U ; 0 ≤ α < p− q; 0 ≤ λ ≤ 1; 0 ≤ µ < 1; c > −p; p, n ∈ N ; q ∈
N0 and p > q, we have

|Dµ
z {(Jc,pf)(z)}| ≥

{
Γ(p + 1)

Γ(p + 1− µ)
−

(c+p)(p−q−α)δ(p,q+1)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q+1)Γ(n+p+1−µ)Γ(p+1−λ) |z|

n
}
|z|p−µ (6.17)

and

|Dµ
z {(Jc,pf)(z)}| ≤

{
Γ(p + 1)

Γ(p + 1− µ)
+

(c+p)(p−q−α)δ(p,q+1)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q+1)Γ(n+p+1−µ)Γ(p+1−λ) |z|

n
}
|z|p−µ

. (6.18)
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The equalities in (6.15), (6.16), (6.17) and (6.18) are attained for the function
f(z) given by

(Jc,pf) (z) = zp − (c+p)(p−q−α)δ(p,q+1)Γ(p+1)Γ(n+p+1−λ)
(c+n+p)(n+p−q−α)δ(n+p,q+1)Γ(n+p+1)Γ(p+1−λ)z

n+p. (6.19)

Remark 5.5. Putting λ = 0 in Theorems 5.2, 5.3, and 5.4, we obtain the
corresponding results for the classes Sn(p, q, α) and Cn(p, q, α), respectively.
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and suggestions.
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Abstract. We introduce the operator Dn
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tions that generalize previous results.
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1. Introduction

Let H(U) denote the class of analytic functions in the unit disc

U = {z ∈ C : |z| < 1} .

For a ∈ C and m ∈ N = {1, 2, . . . }, let

H[a, m] = {f ∈ H(U) : f(z) = a + amzm + · · · , z ∈ U}
and

Am =
{
f ∈ H(U) : f(z) = z + am+1z

m+1 + · · · , z ∈ U
}

,

with A1 = A.
Let f and g be members of H(U). The function f is said to be sub-

ordinate to g if there exists a function w analytic in U, with w(0) = 0 and
|w(z)| < 1, z ∈ U, such that f(z) = g(w(z)), z ∈ U. In this case, we write
f ≺ g or f(z) ≺ g(z), z ∈ U. If the function g is univalent in U, then f ≺ g
if and only if f(0) = g(0) and f(U) ⊆ g(U).

Let Ψ : C3 × U → C and let h be univalent in U. If p is analytic in U
and satisfies the second-order differential subordination

Ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U, (1.1)

then p is called a solution of the differential subordination. A univalent func-
tion q is called a dominant of the solution of the differential subordination, or
more simply a dominant, if p ≺ q for all p satisfying (1.1). A dominant q̃ that
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satisfies q̃ ≺ q for all dominants q of (1.1) is said to be the best dominant of
(1.1).

In order to prove our main results we shall need the following lemmas.

Lemma 1.1 ([2, p. 71]). Let h be a convex function with h(0) = a and let
γ ∈ C∗ be a complex number such that Reγ ≥ 0. If p ∈ H[a, n] and

p(z) +
1
γ

zp′(z) ≺ h(z) , z ∈ U

then
p(z) ≺ q(z) ≺ h(z) , z ∈ U,

where

q(z) =
γ

nzγ/n

∫ z

0

h(t)tγ/n−1dt , z ∈ U.

The function q is convex and the best dominant.

Lemma 1.2 ([3, p. 419]). Let r be a convex function in U and let

h(z) = r(z) + nαzr′(z) , z ∈ U,

where α > 0 and n ∈ N. If

p(z) = r(0) + pnzn + pn+1z
n+1 + · · · , z ∈ U

is holomorphic in U and

p(z) + αzp′(z) ≺ h(z) , z ∈ U,

then
p(z) ≺ r(z) , z ∈ U,

and this result is sharp.

Definition 1.3 ([1, p. 1429]). For a function f ∈ A, δ ≥ 0 and n ∈ N ∪ {0} ,
the Al-Oboudi differential operator Dn

δ f is defined by

D0f(z) = f(z),

D1
δf(z) = (1− δ)f(z) + δzf ′(z) = Dδf(z),

Dn
δ f(z) = Dδ

(
Dn−1

δ f(z)
)
, z ∈ U. (1.2)

Remark 1.4. Dn
δ is a linear operator and for f ∈ A,

f(z) = z +
∞∑

j=2

ajz
j ,

we have

Dn
δ f(z) = z +

∞∑
j=2

[1 + (j − 1)δ]najz
j , z ∈ U (1.3)

and (
Dn+1

δ f(z)
)′

= (Dn
δ f(z))′ + δz (Dn

δ f(z))′′ , z ∈ U. (1.4)
Also, when δ = 1, we obtain the Sălăgean differential operator ([6, p. 363]).
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Definition 1.5 ([5, p. 110]). For a function f ∈ A and n ∈ N ∪ {0} , the
Ruscheweyh differential operator Rnf is defined by

Rnf(z) =
z

(1− z)n+1
∗ f(z) =

z

n!
[zn−1f(z)](n), z ∈ U, (1.5)

where ∗ stands for the Hadamard product or convolution.

Remark 1.6. If f ∈ A,

f(z) = z +
∞∑

j=2

ajz
j ,

we have

R0f(z) = f(z),

R1f(z) = zf ′(z),

(n + 1)Rn+1f(z) = nRnf(z) + z (Rnf(z))′ , (1.6)

Rnf(z) = z +
∞∑

j=2

Cn
n+j−1ajz

j , z ∈ U. (1.7)

Definition 1.7. Let n ∈ N ∪ {0} , δ ≥ 0 and λ ≥ 0 with δ 6= (λ − 1)/λ. For
f ∈ A, let Dn

λδf denote the operator defined by Dn
λδ : A → A,

Dn
λδf(z) =

1
1− λ + λδ

[(1− λ)Dn
δ f(z) + λδRnf(z)], z ∈ U, (1.8)

where the operators Dn
δ f and Rnf are given by Definition 1.3 and Definition

1.5, respectively.

Remark 1.8. When λ = 0 in (1.8), we get the Al-Oboudi differential operator,
and when λ = 1 we obtain the Ruscheweyh differential operator.

Also, for n = 0, we have

D0
λδf(z) =

1
1− λ + λδ

[(1− λ)D0
δf(z) + λδR0f(z)] = f(z), z ∈ U.

Remark 1.9. Dn
λδ is a linear operator and for f ∈ A,

f(z) = z +
∞∑

j=2

ajz
j ,

by using (1.3) and (1.7), we have

Dn
λδf(z) = z +

1
1− λ + λδ

∞∑
j=2

[
(1− λ) (1 + (j − 1)δ)n + λδCn

n+j−1

]
ajz

j ,

(1.9)
z ∈ U.
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2. Main results

Theorem 2.1. If 0 ≤ α < 1, f ∈ Am and

Re
[(
Dn+1

λδ f(z)
)′

+
λδz(δn + δ − 1) (Rnf(z))′′

(1− λ + λδ)(n + 1)

]
> α , z ∈ U (2.1)

then

Re (Dn
λδf(z))′ > γ , z ∈ U,

where

γ = γ(α) = 2α− 1 +
2(1− α)

δm
β

(
1

δm

)
and

β(x) =
∫ 1

0

tx−1

1 + t
dt .

Proof. Let f ∈ Am,

f(z) = z +
∞∑

j=m+1

ajz
j , z ∈ U.

If

h(z) =
1 + (2α− 1)z

1 + z
, z ∈ U,

then (2.1) is equivalent to

(
Dn+1

λδ f(z)
)′

+
λδz(δn + δ − 1) (Rnf(z))′′

(1− λ + λδ)(n + 1)
≺ h(z), z ∈ U. (2.2)

Using the properties of Dn
λδf, Dn

δ f and Rnf, we obtain

(
Dn+1

λδ f(z)
)′

+
λδz(δn + δ − 1) (Rnf(z))′′

(1− λ + λδ)(n + 1)

=
[(1− λ)Dn+1

δ f(z) + λδRn+1f(z)]′

1− λ + λδ
+

λδz(δn + δ − 1) (Rnf(z))′′

(1− λ + λδ)(n + 1)

=
1− λ

1− λ + λδ

[
(Dn

δ f(z))′ + δz (Dn
δ f(z))′′

]
+

λδ

1− λ + λδ

[
z (Rnf(z))′ + nRnf(z)

n + 1

]′
+

λδz(δn + δ − 1) (Rnf(z))′′

(1− λ + λδ)(n + 1)

=
1− λ

1− λ + λδ
(Dn

δ f(z))′ +
(1− λ)δ

1− λ + λδ
z (Dn

δ f(z))′′

+
δλ

[
(Rnf(z))′ + z (Rnf(z))′′ + n (Rnf(z))′

]
(1− λ + λδ)(n + 1)



Differential subordinations 49

+
λδz(δn + δ − 1) (Rnf(z))′′

(1− λ + λδ)(n + 1)

=
1

1− λ + λδ

[
(1− λ) (Dn

δ f(z))′ + λδ (Rnf(z))′
]

+ δz
1

1− λ + λδ

[
(1− λ) (Dn

δ f(z))′′ + λδ (Rnf(z))′′
]

= (Dn
λδf(z))′ + δz (Dn

λδf(z))′′ , z ∈ U. (2.3)

Then, from (2.2) and (2.3), we have

(Dn
λδf(z))′ + δz (Dn

λδf(z))′′ ≺ h(z), z ∈ U. (2.4)

Let
p(z) = (Dn

λδf(z))′ , z ∈ U. (2.5)

In view of (1.9), we get

p(z) = 1 +
1

1− λ + λδ

∞∑
j=m+1

[
(1− λ) (1 + (j − 1)δ)n + λδCn

n+j−1

]
jajz

j−1

= 1 + bmzm + bm+1z
m+1 + . . . , z ∈ U.

and from (2.4), we obtain

p(z) + δzp′(z) ≺ h(z) , z ∈ U. (2.6)

By applying now Lemma 1.1, we have

p(z) ≺ q(z) ≺ h(z) , z ∈ U,

where

q(z) =
1

δmz1/δm

∫ z

0

h(t)t
1

δm−1dt

=
1

δmz1/δm

∫ z

0

[
2α− 1 + 2(1− α)

1
1 + t

]
t

1
δm−1dt

=
2α− 1

δmz1/δm

∫ z

0

t
1

δm−1dt +
2(1− α)
δmz1/δm

∫ z

0

t
1

δm−1

1 + t
dt

= 2α− 1 +
2(1− α)
δmz1/δm

∫ z

0

t
1

δm−1

1 + t
dt, z ∈ U.

The function q is convex, it is the best dominant and because q(U) is
symmetric with respect to the real axis, we get

Re (Dn
λδf(z))′ = Re p(z) > Re q(1) = γ(α) = 2α− 1 +

2(1− α)
δm

β

(
1

δm

)
.

�

Example 2.2. If f ∈ A, n = 1, λ = 1/2, δ = 1 and α = 1/2, then γ(α) = ln 2
and the inequality

Re
[
f ′(z) + 3zf ′′(z) + z2f ′′′(z)

]
>

1
2
, z ∈ U,
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implies that
Re [f ′(z) + zf ′′(z)] > ln 2, z ∈ U.

Theorem 2.3. Let m ∈ N, δ > 0 and let r be a convex function with r(0) = 1
and h a function such that

h(z) = r(z) + mδzr′(z) , z ∈ U.

If f ∈ Am, then the following subordination(
Dn+1

λδ f(z)
)′

+
λδz(δn + δ − 1) (Rnf(z))′′

(1− λ + λδ)(n + 1)
≺ h(z) = r(z)+mδzr′(z) , z ∈ U

(2.7)
implies that

(Dn
λδf(z))′ ≺ r(z) , z ∈ U,

and the result is sharp.

Proof. By using (2.3) and (2.5), the subordination (2.7) is equivalent to

p(z) + δzp′(z) ≺ h(z) = r(z) + mδzr′(z) , z ∈ U.

Hence, from Lemma 1.2, we conclude that

p(z) ≺ r(z) , z ∈ U,

that is,
(Dn

λδf(z))′ ≺ r(z) , z ∈ U,

and the result is sharp. �

Theorem 2.4. Let m ∈ N and let r be a convex function with r(0) = 1 and h
a function such that

h(z) = r(z) + mzr′(z) , z ∈ U.

If f ∈ Am, then the following subordination

(Dn
λδf(z))′ ≺ h(z) = r(z) + mzr′(z) , z ∈ U (2.8)

implies that
Dn

λδf(z)
z

≺ r(z) , z ∈ U,

and the result is sharp.

Proof. Let

p(z) =
Dn

λδf(z)
z

, z ∈ U. (2.9)

Differentiating (2.9), we have

(Dn
λδf(z))′ = p(z) + zp′(z) , z ∈ U,

and consequently, (2.8) becomes

p(z) + zp′(z) ≺ h(z) = r(z) + mzr′(z) , z ∈ U.

Hence, by applying Lemma 1.2, we conclude that

p(z) ≺ r(z) , z ∈ U,
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that is,
Dn

λδf(z)
z

≺ r(z) , z ∈ U,

and the result is sharp. �

Remark 2.5. For m = 1 and δ = 1, the above theorems were obtained by G.
I. Oros and G. Oros in [4].
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Properties of certain analytic functions
defined by a linear operator

Elsayed A. Elrifai, Hanan E. Darwish and Abdusalam R. Ahmed

Abstract. In this paper, we study and investigate starlikeness and con-
vexity of a class of multivalent functions defined by a linear operator
Lp,k(a, c)f(z). As a consequence, a number of sufficient conditions for
starlikeness and convexity of analytic functions are also obtained.
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Keywords: Multivalent function, starlike function, convex function,
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1. Introduction

Let A(p, k)(p, k ∈ N = {1, 2, 3, ....}) be the class of functions of the
form

f(z) = zp +
∞∑

m=k

ap+mzp+m (1.1)

which are analytic in the unit disk U = {z : |z| < 1} . We denote A(p, 1) = Ap

and A(1, 1) = A.

A function f(z) ∈ A(p, k) is said to be p-valent starlike of order α
(0 ≤ α < p) in U if

Re

(
zf

′
(z)

f(z)

)
> α, z ∈ U.

We denote by S∗p(α), the class of all such functions.
A function f(z) ∈ A(p, k) is said to be p-valent convex of order α

(0 ≤ α < p) in U if

Re

(
1 +

zf
′′
(z)

f ′(z)

)
> α, z ∈ U.
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Let Kp(α) denote the class of all those functions f ∈ A(p, k), which are
multivalently convex of order α in U. Note that S∗1 (α) and K1(α) are, re-
spectively, the usual classes of univalent starlike functions of order α and
univalent convex functions of order α, 0 ≤ α < 1, and will be denoted here
by S∗(α) and K(α), respectively. We shall use S∗ and K to denote S∗(0)
and K(0), respectively, which are the classes of univalent starlike (w.r.t the
origin) and univalent convex functions. These classes considered also by S.
Singh et. al. [6].
The class A(p, k) is closed under the Hadamard product (or convolution)

f(z) ∗ g(z) = (f ∗ g)(z) = zp +
∞∑

m=k

ap+mbp+mzp+m

= (g ∗ f)(z) (z ∈ U),

where

f(z) = zp +
∞∑

m=k

ap+mzp+m, g(z) = zp +
∞∑

m=k

bp+mzp+m.

Let the function ϕp,k(a, c) be defined by

ϕp,k(a, c; z) = zp +
∞∑

m=k

(a)m

(c)m
zp+m (z ∈ U), (1.2)

where c 6= 0,−1,−2, ..., (λ)0 = 1 and (λ)m = λ(λ + 1)...(λ + m − 1) for
m ∈ N.

Carlson and Shaffer [2] defined a convolution operator on A by

L(a, c)f(z) = ϕ1,1(a, c) ∗ f(z) (f(z) ∈ A). (1.3)

Similarly Xu and Aouf [1] define a linear operator Lp,k(a, c) on A(p, k) by

Lp,k(a, c)f(z) = ϕp,k(a, c) ∗ f(z) (f(z) ∈ A(p, k))

=

(
zp +

∞∑
m=k

(a)m

(c)m
zp+m

)
∗

(
zp +

∞∑
m=k

ap+mzp+m

)

= zp +
∞∑

m=k

(a)m

(c)m
ap+mzp+m. (1.4)

It is easily seen from (1.4) that

z(Lp,k(a, c)f(z))
′
= aLp,k(a + 1, c)f(z)− (a− p)Lp,k(a, c)f(z). (1.5)

Clearly Lp,k(a, c) maps A(p, k) into itself and Lp,k(c, c) is identity.
If a 6= 0,−1,−2, ..., then Lp,k(a, c) has an inverse Lp,k(c, a).
We note that

Lp,k(p + 1, p)f(z) =
zf

′
(z)
p

.
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For a real number λ > −p, we get

Lp,λ(λ + p, λ + p + 1)f(z) = Jp,λf(z) =
λ + p

zλ

z∫
0

tλ−1f(t)dt (1.6)

where Jp,λ the generalized Libera integral operator (see [4] ), and

Lp,k(λ + p, 1)f(z) = Dλ+p−1f(z)

where Dλ+p−1 the generalized Ruscheweyh derivative (see [5]).
A function f(z) ∈ A(p, k) is said to be in the class Sp,k(α, a, c) for all

z in U if it satisfies

Re
[
Lp,k(a + 1, c)f(z)

Lp,k(a, c)f(z)

]
>

α

p
, (1.7)

for some α(0 ≤ α < p, p ∈ N). We note that Sp,k(α, p, p) is the usual class
S∗p(α) of p-valent starlike functions of order α.

In the present paper, our aim is to determine sufficient conditions for
a function f ∈ A(p, k) to be a member of the class Sp,k(α, a, c). As a conse-
quence of our main result we get a number of sufficient conditions for star-
likeness and convexity of analytic functions.

2. Main result

To prove our result, we shall make use of the famous Jack’s Lemma
which we state below.
Lemma 2.1. (Jack [3]). Suppose w(z) be a nonconstant analytic function in
U with w(0) = 0. If |w(z)| attains its maximum value at a point z0 ∈ U on
the circle |z| = r < 1, then z0w

′
(z0) = mw(z0), where m is a real and m ≥ 1.

We now state and prove our main result.
Theorem 2.2. If f(z) ∈ A(p, k) satisfies∣∣∣∣Lp,k(a + 1, c)f(z)

Lp,k(a, c)f(z)
− 1
∣∣∣∣γ ∣∣∣∣Lp,k(a + 2, c)f(z)

Lp,k(a + 1, c)f(z)
− 1
∣∣∣∣β < Mp(k, a, c, α, β, γ)

(2.1)
(z ∈ U), for some α(0 ≤ α < p), β(β ≥ 0) γ ≥ 0 and β + γ > 0, then
f(z) ∈ Sp(k, a, c, α), and

Mp(k, a, c, α, β, γ) =

{
(1− α

p )γ(1− α
p + 1

2a )β , 0 ≤ α < p
2

(1− α
p )γ+β(1 + 1

a )β , p
2 ≤ α < p.

Proof. Case (i). Let 0 ≤ α < p
2 . Writing α

p = µ, we see that 0 ≤ µ ≤ 1
2 .

Define a function w(z) as:

Lp,k(a + 1, c)f(z)
Lp,k(a, c)f(z)

=
1 + (1− 2µ)w(z)

1− w(z)
, z ∈ U. (2.2)
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Then w(z) is analytic in U, w(0) = 0 and w(z) 6= 1 in U . By a simple
computation, we obtain from (2.2),

z(Lp,k(a + 1, c)f(z))
′

Lp,k(a + 1, c)f(z)
− z(Lp,k(a, c)f(z))

′

Lp,k(a, c)f(z)
=

2(1− µ)zw
′
(z)

(1− w(z))(1 + (1− 2µ)w(z))
(2.3)

and from (1.5) we get

Lp,k(a + 2, c)f(z)
Lp,k(a + 1, c)f(z)

=
1 + (1− 2µ)w(z)

1− w(z)
+

2(1− µ)zw
′
(z)

a(1− w(z))(1 + (1− 2µ)w(z))
.

Thus, we have∣∣∣∣Lp,k(a + 1, c)f(z)
Lp,k(a, c)f(z)

− 1
∣∣∣∣γ ∣∣∣∣Lp,k(a + 2, c)f(z)

Lp,k(a + 1, c)f(z)
− 1
∣∣∣∣β

=
∣∣∣∣2(1− µ)w(z)

1− w(z)

∣∣∣∣γ+β
∣∣∣∣∣1 +

zw
′
(z)

aw(z)(1 + (1− 2µ))w(z))

∣∣∣∣∣
β

.

Suppose that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

then by Lemma 2.1, we have w(z0) = eiθ, 0 < θ ≤ 2π and

z0w
′
(z0) = mw(z0), m ≥ 1.

Therefore, we have∣∣∣∣Lp,k(a + 1, c)f(z0)
Lp,k(a, c)f(z0)

− 1
∣∣∣∣γ ∣∣∣∣Lp,k(a + 2, c)f(z0)

Lp,k(a + 1, c)f(z0)
− 1
∣∣∣∣β

=
∣∣∣∣2(1− µ)w(z0)

1− w(z0)

∣∣∣∣γ+β ∣∣∣∣1 +
m

a(1 + (1− 2µ)w(z0))

∣∣∣∣β
=

2γ+β(1− µ)γ+β

|1− eiθ|β+γ

∣∣∣∣1 +
m

a(1 + (1− 2µ)eiθ)

∣∣∣∣β

≥ (1− µ)γ+β

(
1 +

m

2a(1− µ)

)β

≥ (1− µ)β+γ

(
1 +

1
2a(1− µ)

)β

= (1− µ)γ

(
1− µ +

1
2a

)β

which contradicts (2.1) for 0 ≤ α ≤ p
2 . Therefore, we must have |w(z)| < 1

for all z ∈ U, and hence f(z) ∈ Sp(k, a, c, α).
Case (ii). When p

2 ≤ α < p. In this case, we must have 1
2 ≤ µ < 1, where

µ = α
p . Let w be defined by

Lp,k(a + 1, c)f(z0)
Lp,k(a, c)f(z)

=
µ

µ− (1− µ)w(z)
, z ∈ U,
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where w(z) 6= µ
1−µ in U. Then w(z) is analytic in U and w(0) = 0. Proceeding

as in Case (i) and using identity (1.5), we obtain∣∣∣∣Lp,k(a + 1, c)f(z)
Lp,k(a, c)f(z)

− 1
∣∣∣∣γ ∣∣∣∣Lp,k(a + 2, c)f(z)

Lp,k(a + 1, c)f(z)
− 1
∣∣∣∣β

=
∣∣∣∣ (1− µ)w(z)
µ− (1− µ)w(z)

∣∣∣∣γ
∣∣∣∣∣ (1− µ)w(z)
µ− (1− µ)w(z)

+
(1− µ)zw

′
(z)

a(µ− (1− µ)w(z))

∣∣∣∣∣
β

=
∣∣∣∣ 1− µ

µ− (1− µ)w(z)

∣∣∣∣γ+β

|w(z)|γ
∣∣∣∣∣w(z) +

zw
′
(z)

a

∣∣∣∣∣
β

.

Suppose that there exists a point z0 ∈ U such that max
|z|≤|z0|

|w(z)| = |w(z0)| =

1, then by Lemma 2.1, we obtain w(z0) = eiθ and z0w
′
(z0) = mw(z0),m ≥ 1.

Therefore ∣∣∣∣Lp,k(a + 1, c)f(z0)
Lp,k(a, c)f(z0)

− 1
∣∣∣∣γ ∣∣∣∣Lp,k(a + 2, c)f(z0)

Lp,k(a + 1, c)f(z0)
− 1
∣∣∣∣β

=
(1− µ)γ+β

(
1 + m

a

)γ+β

|µ− (1− µ)eiθ|γ+β
≥
(

1− α

p

)γ+β (
1 +

1
a

)β

which contradicts (2.1) for p
2 ≤ α < p. Therefore, we must have |w(z)| < 1

for all z ∈ U, and hence f(z) ∈ Sp(k, a, c, α). This completes the proof of our
theorem.

3. Deductions

For p = 1, Theorem 2.2 reduces to the following results:
Corollary 3.1. If, for all z ∈ U, a function f(z) ∈ A satisfies∣∣∣∣L(a + 1, c)f(z)

L(a, c)f(z)
− 1
∣∣∣∣γ ∣∣∣∣L(a + 2, c)f(z)

L(a + 1, c)f(z)
− 1
∣∣∣∣β

<

{
(1− α)γ(1− α + 1

2a )β , 0 ≤ α < 1
2

(1− α)γ+β(1 + 1
a )β 1

2 ≤ α < 1,

for some real α(0 ≤ α < 1), β ≥ 0 and γ ≥ 0 with β + γ > 0, then
f(z) ∈ S1(k, a, c, α).

For
.
γ = 0 and β = 1 in Theorem 2.2, we obtain

Corollary 3.2. If, for all z ∈ U, a function f(z) ∈ A(p, k) satisfies∣∣∣∣L(a + 2, c)f(z)
L(a + 1, c)f(z)

− 1
∣∣∣∣ <

{
1− α

p + 1
2a , 0 ≤ α < p

2

(1− α
p )(1 + 1

a ) p
2 ≤ α < p,

then (
Lp,k(a + 1, c)f(z)

Lp,k(a, c)f(z)

)
>

α

p
, (z ∈ U).

Setting p = a = c = 1 in Theorem 2.2, we obtain the following result:
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Corollary 3.3. If f(z) ∈ A satisfies∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣
γ ∣∣∣∣∣zf

′′
(z)

f ′(z)

∣∣∣∣∣
β

< 22β(1− α)γ+β , 0 ≤ α < 1(z ∈ U)

for some β ≥ 0 and γ ≥ 0 with β + γ > 0, then

f(z) ∈ S∗(α).

Setting α = 0 in Corollary 3.1, we obtain the following criterion for starlike-
ness:
Corollary 3.4. For some non-negative real numbers β and γ with β + γ > 0,
if f(z) ∈ A satisfies∣∣∣∣∣zf

′
(z)

f(z)
− 1

∣∣∣∣∣
γ ∣∣∣∣∣zf

′′
(z)

f ′(z)

∣∣∣∣∣
β

< 22β (z ∈ U),

then f(z) ∈ S∗.
In particular, for β = 1 and γ = 1, we obtain the following interesting

criterion for starlikeness:
Corollary 3.5. If f(z) ∈ A satisfies∣∣∣∣∣zf

′
(z)

f(z)
− 1

∣∣∣∣∣
∣∣∣∣∣zf

′′
(z)

2f ′(z)

∣∣∣∣∣ < 22 (z ∈ U),

then f(z) ∈ S∗.
Setting a = c = p in Theorem 2.2, we obtain the following sufficient

condition for a function f(z) ∈ A(p, k) to be a p-valent starlike function of
order α.
Corollary 3.6. For all z ∈ U, if f(z) ∈ A(p, k) satisfies the following condition∣∣∣∣∣zf

′
(z)

pf(z)
− 1

∣∣∣∣∣
γ (

p

p + 1

)β
∣∣∣∣∣1p
(

1 +
zf

′′
(z)

f ′(z)

)
− 1

∣∣∣∣∣
β

<


(
1− α

p

)γ (
1− α

p + 1
2p

)β

, 0 ≤ α ≤ p
2(

1− α
p

)γ+β (
1 + 1

p

)β

, p
2 ≤ α < 0,

for some real numbers α, β and γ with 0 ≤ α < p, β ≥ 0, γ ≥ 0, β + γ > 0
then f(z) ∈ S∗p(α).
The substition p = 1 in Corollary 3.6, yields the following result:
Corollary 3.7. If f(z) ∈ A satisfies∣∣∣∣∣zf

′
(z)

f(z)
− 1

∣∣∣∣∣
γ ∣∣∣∣∣zf

′′
(z)

f ′(z)

∣∣∣∣∣
β

<

{
(1− α)γ (3− 2α)β

, 0 ≤ α < 1
2

(1− α)γ+β (4)β , 1
2 ≤ α < 1

where z ∈ U and α, β, γ are real numbers with 0 ≤ α < 1, β ≥ 0, γ ≥ 0,
β + γ > 0, then f(z) ∈ S∗(α).
In particular, writing β = 1, γ = 1 and α = 0 in Corollary 3.7, we obtain the
following result:
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Corollary 3.8. If f(z) ∈ A satisfies∣∣∣∣∣zf
′′
(z)

f ′(z)

(
zf

′
(z)

f(z)
− 1

)∣∣∣∣∣ < 3, z ∈ U

then f ∈ S∗.
Taking a = p + 1, c = p in Theorem 2.2, we get the following interesting
criterion for convexity of multivalent functions:
Corollary 3.9. If, for all z ∈ U, a function f(z) ∈ A(p, k) satisfies∣∣∣∣Lp,k(p + 2, p)f(z)

Lp,k(p + 1, p)f(z)
− 1
∣∣∣∣γ ∣∣∣∣Lp,k(p + 3, p)f(z)

Lp,k(p + 2, p)f(z)
− 1
∣∣∣∣β

=
(

p

p + 1

)γ
∣∣∣∣∣1p
(

1 +
zf

′′
(z)

f ′(z)

)
− 1

∣∣∣∣∣
γ ∣∣∣∣∣ z2f ′′′(z) + 6zf

′′
+ 6f

′

(p + 2) (zf ′′(z) + 2f ′(z))
− 1

∣∣∣∣∣
β

<

 (1− α
p )γ

(
1− α

p + 1
2p

)β

, 0 ≤ α < p
2

(1− α
p )γ+β(1 + 1

p )β , p
2 ≤ α < p,

for some real numbers α, β and γ with 0 ≤ α < p, β ≥ 0, γ ≥ 0, β + γ > 0,
then f(z) ∈ Kp(α).
Taking p = 1 in Corollary 3.9, we obtain the following sufficient condition
for convexity of univalent functions.
Corollary 3.10. For some non-negative real numbers α, β and γ with β+γ > 0
and α < 1, if f(z) satisfies∣∣∣∣∣zf

′′
(z)

f ′(z)

∣∣∣∣∣
γ ∣∣∣∣∣z2f ′′′(z) + 6z2f

′′
(z) + 6f

′
(z)

zf ′′(z) + 2f ′(z)
− 1

∣∣∣∣∣
β

<

{
(2)γ (1− α)γ

(
9
2 − 3α

)β
, 0 ≤ α < 1

2

(2)γ (1− α)γ+β (6)β
, 1

2 ≤ α < 1,

for all z ∈ U , then f ∈ K(α).
In particular, writing β = 1, γ = 1, and α = 0 in Corollary 3.10, we obtain
the following sufficient condition for convexity of analytic functions:
Corollary 3.11. If f ∈ A satisfies∣∣∣∣∣zf

′′
(z)

f ′(z)

(
z2f ′′′(z) + 5z2f

′′
(z) + 4f

′
(z)

zf ′′(z) + 2f ′(z)

)∣∣∣∣∣ < 9, (z ∈ U)

then f(z) ∈ K.
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Subclasses of analytic functions
associated with Fox-Wright’s generalized
hypergeometric functions based on Hilbert
space operator

Gangadharan Murugusundaramoorthy and Thomas Rosy

Abstract. In this paper, we define a generalized class of starlike func-
tions which are based upon some convolution operators on Hilbert space
involving the Fox-Wright generalization of the classical hypergeometric
pFq function (with p numerator and q denominator parameters). The
various results presented in this paper include (for example) normed co-
efficient inequalities and estimates, distortion theorems, and the radii of
convexity and starlikeness for each of the analytic function classes which
are investigated here. Also we obtain modified Hadamard product and
integral means results.

Mathematics Subject Classification (2010): 30C45.

Keywords: Analytic, univalent, starlikeness, convexity, Hadamard prod-
uct (convolution) hypergeometric functions.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk (1.1)

which are analytic and univalent in the open disc U = {z : z ∈ C; |z| < 1}.
For functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +

∞∑
k=2

bkzk,

we define the Hadamard product (or Convolution ) of f and g by

(f ∗ g)(z) = z +
∞∑

k=2

akbkzk, z ∈ U. (1.2)
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For positive real parameters α1, A1 . . . , αl, Al and β1, B1 . . . , βm, Bm,
(l,m ∈ N = 1, 2, 3, ...) such that

1 +
m∑

k=1

Bk −
l∑

k=1

Ak ≥ 0, z ∈ U, (1.3)

the Wright generalized hypergeometric function [15]

lΨm[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βm, Bm); z]

=l Ψm[(αt, At)1,l(βt, Bt)1,m; z]
is defined by

lΨm[(αt, At)1,l(βt, Bt)1,m; z] =
∞∑

k=0

{
l∏

t=0

Γ(αt + kAt}{
m∏

t=0

Γ(βt + kBt}−1 zk

k!
,

z ∈ U.
If At = 1(t = 1, 2, ..., l) and Bt = 1(t = 1, 2, ...,m) we have the relationship:

ΩlΨm[(αt, 1)1,l(βt, 1)1,m; z] ≡ lFm(α1, . . . αl;β1, . . . , βm; z)

=
∞∑

k=0

(α1)k . . . (αl)k

(β1)k . . . (βm)k

zk

k!
(1.4)

(l ≤ m + 1; l,m ∈ N0 = N ∪ {0}; z ∈ U) is the generalized hypergeometric
function (see for details [6]), where N denotes the set of all positive integers
and (α)n is the Pochhammer symbol and

Ω =

(
l∏

t=0

Γ(αt)

)−1( m∏
t=0

Γ(βt)

)
. (1.5)

By using the generalized hypergeometric function, Dziok and Srivastava
[6] introduced a linear operator which was subsequently extended by Dziok
and Raina [5] by using the Fox-Wright generalized hypergeometric function.

Let W[(αt, At)1,l; (βt, Bt)1,m] : A → A be a linear operator defined by

W[(αt, At)1,p; (βt, Bt)1,q]f(z) := z lφm[(αt, At)1,l; (βt, Bt)1,m; z] ∗ f(z)

We observe that, for f(z) of the form(1.1), we have

W[(αt, At)1,l; (βt, Bt)1,m]f(z) = z +
∞∑

k=2

σk(α1) akzk (1.6)

where σk(α1) is defined by

σk(α1) =
ΩΓ(α1 + A1(k − 1)) . . .Γ(αl + Al(k − 1))

(k − 1)!Γ(β1 + B1(k − 1)) . . .Γ(βm + Bm(k − 1))
. (1.7)

For convenience, we adopt the contracted notation W[α1]f(z) to repre-
sent the following:

W[α1]f(z) = W[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βm, Bm)]f(z) (1.8)

throughout the sequel. The linear operator W[α1]f(z) contains the Dziok-
Srivastava operator (see [6]), and as its various special cases contain
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such linear operators as the Hohlov operator, Carlson-Shaffer operator [3],
Ruscheweyh derivative operator [14], generalized Bernardi-Libera-Livingston
operator and fractional derivative operator [9]. Details and references about
these operators can be found in [5] and [6].

Let H be a complex Hilbert space and let L(H) denote the algebra of
all bounded linear operators on H. For a complex-valued function fanalytic
in a domain E of the complex z-plane containing the spectrum σ(P) of the
bounded linear operatorP, let f(P) denote the operator on H defined by [[2],
p. 568]

f(P) =
1

2πi

∫
C

(zI− P)−1f(z)dz, . (1.9)

where I is the identity operator onH and C is a positively-oriented simple rec-
tifiable closed contour containing the spectrum σ(P) in the interior domain.
The operator f(P) can also be defined by the following series:

f(P) =
∞∑

n=0

f (n)(0)
n!

Pn

which converges in the normed topology (cf. [4]).
We introduced a new subclass of analytic functions with negative coef-

ficients and discuss some interesting properties of this generalized function
class.

For 0 ≤ α < 1 and 0 < β ≤ 1, we let W(α, β) be the subclass of A
consisting of functions of the form (1.1) and satisfying the inequality∥∥∥∥ Jλ(P)− 1

J (P)− (2α− 1)

∥∥∥∥ < β (1.10)

where

Jλ(P) = (1− λ)
W[α1]f(P)

P
+ λ(W[α1]f(P))′, (1.11)

0 < γ ≤ 1, W[α1]f(z) is given by (1.8).
We further let W(α, β) = WT (α, β) ∩ T, where

T :=

{
f ∈ A : f(z) = z −

∞∑
k=2

akzk, ak ≥ 0; z ∈ U

}
(1.12)

is a subclass of A introduced and studied by Silverman [10].
In the following section we obtain coefficient estimates and extreme

points for the class WT (λ, α, β, ).

2. Coefficient bounds

Theorem 2.1. Let the function f be defined by (1.12). Then f ∈ WT (λ, α, β, )
if and only if

∞∑
k=2

(1 + λ(k − 1))[1 + β]σk(α1)ak ≤ 2β(1− α). (2.1)
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The result is sharp for the function

f(z) = z − 2β(1− α)
(1 + λ(k − 1))[1 + β]Ωσk(α1)

zk, k ≥ 2. (2.2)

Proof. Suppose f satisfies (2.1). Then for ‖z‖ = P = rI,
‖Jλ(P)− 1‖ − β ‖Jλ(P) + 1− 2α‖

=

∥∥∥∥∥−
∞∑

k=2

[1 + λ(k − 1)]σk(α1)akPk−1

∥∥∥∥∥
−β

∥∥∥∥∥2(1− α)−
∞∑

k=2

[1 + λ(k − 1)]σk(α1)akPk−1

∥∥∥∥∥
≤

∞∑
k=2

[1 + λ(k − 1)]ak σk(α1)rk−1 − 2β(1− α)

+
∞∑

k=2

[1 + λ(k − 1)]βσk(α1)akrk−1

=
∞∑

k=2

[1 + λ(k − 1)][1 + β]σk(α1)ak − 2β(1− α) ≤ 0, by (2.1).

Hence, by maximum modulus theorem and (1.10), f ∈ WT (α, β).
To prove the converse, assume that

∥∥∥∥ Jλ(P)− 1
Jλ(P) + 1− 2α

∥∥∥∥ =

∥∥∥∥∥∥∥∥
−

∞∑
k=2

[1 + λ(k − 1)]σk(α1)akPk−1

2(1− α)−
∞∑

k=2

[1 + λ(k − 1)]σk(α1)akPk−1

∥∥∥∥∥∥∥∥
≤ β, z ∈ U.

Putting P = rI(0 < r < 1, and upon letting r → 1−, yields the assertion
(2.1) of Theorem 2.1. �

Corollary 2.2. If f(z) of the form (1.12) is in WT (λ, α, β), then

ak ≤
2β(1− α)

(1 + kλ− λ)[1 + β]σk(α1)
, k ≥ 2, (2.3)

with equality only for functions of the form (2.2).

Theorem 2.3. (Extreme Points) Let

f1(z) = z and

fk(z) = z − 2β(1− α)
[1 + λ(k − 1)][1 + β]σk(α1)

zk, k ≥ 2, (2.4)

for 0 ≤ α < 1, 0 < β ≤ 1, λ ≥ 0. Then f(z) is in the class WT (α, β) if and
only if it can be expressed in the form

f(z) =
∞∑

k=1

µkfk(z), (2.5)
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where µk ≥ 0 and
∞∑

k=1

µk = 1.

Proof. Suppose f(z) can be written as in (2.5). Then

f(z) = z −
∞∑

k=2

µk
2β(1− α)

[1 + λ(k − 1)][1 + β]σk(α1)
zk.

Now,
∞∑

k=2

[1 + λ(k − 1)][1 + β]σk(α1)
2β(1− α)

µk
2β(1− α)

[1 + λ(k − 1)][1 + β]σk(α1)

=
∞∑

k=2

µk = 1− µ1 ≤ 1.

Thus f ∈ WT (α, β). Conversely, let us have f ∈ WT (α, β). Then by using
(2.3), we set

µk =
[1 + λ(k − 1)][1 + β]σk(α1)

2β(1− α)
ak, k ≥ 2

and

µ1 = 1−
∞∑

k=2

µk.

Then we have

f(z) =
∞∑

k=1

µkfk(z)

and hence this completes the proof of Theorem 2.3. �

3. Distortion bounds

In this section we obtain distortion bounds for the class WT (α, β).

Theorem 3.1. If f ∈ WT (α, β), then

r − 2β(1− α)
(1 + λ)[1 + β]σ2(α1)

r2 ≤ ‖f(P)‖ ≤ r +
2β(1− α)

(1 + λ)[1 + β]σ2(α1)
r2 (3.1)

1− 4β(1− α)
(1 + λ)[1 + β]σ2(α1)

r ≤ ‖f ′(P)‖ ≤ 1 +
4β(1− α)

(1 + λ)[1 + β]σ2(α1)
r, (3.2)

(P = r(0 < r < 1)). The bounds in (3.1) and (3.2) are sharp, since the
equalities are attained by the function

f(z) = z − 2β(1− α)
(1 + λ)[1 + β]σ2(α1)

z2 z = ±r. (3.3)
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Proof. In the view of Theorem 2.1, we have
∞∑

k=2

ak ≤
2β(1− α)

(1 + λ)[1 + β]σ2(α1)
(3.4)

Using (1.12) and (3.4), we obtain

‖P‖ − ‖P‖2
∞∑

k=2

ak ≤ ‖f(P)‖ ≤ ‖P‖+ ‖P‖2
∞∑

k=2

ak

r − r2 2β(1− α)
(1 + λ)[1 + β]σ2(α1)

≤ ‖f(P)‖ ≤ r + r2 2β(1− α)
(1 + λ)[1 + β]σ2(α1)

.(3.5)

Hence (3.1) follows from (3.5).
Further, since

∞∑
k=2

kak ≤
4β(1− α)

(1 + λ)[1 + β]σ2(α1)
.

Hence (3.2) follows from

1− r

∞∑
k=2

kak ≤ ‖f ′(P)‖ ≤ 1 + r

∞∑
k=2

kak. �

4. Radius of starlikeness and convexity

The radii of close-to-convexity, starlikeness and convexity for the class
WT (α, β) are given in this section.

Theorem 4.1. Let the function f(z) defined by (1.12) belongs to the class
WT (α, β). Then f(z) is close-to-convex of order δ (0 ≤ δ < 1) in the disc
‖P‖ < r1, where

r1 :=
[
(1− δ)[1 + λ(k − 1)][1 + β] σk(α1)

2kβ(1− α)

] 1
k−1

(k ≥ 2). (4.1)

The result is sharp, with extremal function f(z) given by (2.4).

Proof. Given f ∈ T and f is close-to-convex of order δ, we have

‖f ′(P)− 1‖ < 1− δ. (4.2)

For the left hand side of (4.2) we have

‖f ′(P)− 1‖ ≤
∞∑

k=2

kak‖P‖k−1.

The last expression is less than 1− δ if
∞∑

k=2

k

1− δ
ak‖P‖k−1 < 1.
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Using the fact, that f ∈ WT (α, β) if and only if
∞∑

k=2

[1 + λ(k − 1)][1 + β]ak σk(α1)
2β(1− α)

≤ 1.

We can say (4.2) is true if

k

1− δ
‖P‖k−1 ≤ [1 + λ(k − 1)][1 + β]σk(α1)

2β(1− α)
.

Or, equivalently,

‖P‖k−1 = rk−1 <

[
(1− δ)[1 + λ(k − 1)][1 + β] σk(α1)

2kβ(1− α)

]
which completes the proof. �

Theorem 4.2. Let f ∈ WT (α, β). Then
1. f is starlike of order δ(0 ≤ δ < 1) in the disc |z| < r2; that is,

Re
{

zf ′(z)
f(z)

}
> δ, (‖P‖ < r2 ; 0 ≤ δ < 1), where

r2 = inf
k≥2

{
(1− δ)[1 + λ(k − 1)][1 + β] σk(α1)

2β(1− α)(k − δ)

} 1
k−1

.

2. f is convex of order δ (0 ≤ δ < 1) in the disc |z| < r3, that is
Re

{
1 + zf ′′(z)

f ′(z)

}
> δ, (‖P‖ < r3; 0 ≤ δ < 1), where

r3 = inf
k≥2

{
(1− δ)[1 + λ(k − 1)][1 + β] σk(α1)

2β(1− α)k(k − δ)

} 1
k−1

.

Each of these results are sharp for the extremal function f(z) given by (2.4).

Proof. Given f ∈ T and f is starlike of order δ, we have∥∥∥∥Pf ′(P)
f(P)

− 1
∥∥∥∥ < 1− δ (P = r2I(0 < r1 < 1)). (4.3)

For the left hand side of (4.3) we have

∥∥∥∥Pf ′(P)
f(P)

− 1
∥∥∥∥ ≤

∞∑
k=2

(k − 1)ak ‖P‖k−1

1−
∞∑

k=2

ak ‖P‖k−1

.

The last expression is less than 1− δ if
∞∑

k=2

k − δ

1− δ
ak ‖P‖k−1 < 1.

Using the fact, that f ∈ WT (α, β) if and only if
∞∑

k=2

[1 + λ(k − 1)][1 + β]ak σk(α1)
2β(1− α)

< 1.
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We can say that (4.3) is true if

k − δ

1− δ
‖P‖k−1 <

[1 + λ(k − 1)][1 + β] σk(α1)
2β(1− α)

.

Or, equivalently,

‖P‖k−1 = r2 <
(1− δ)[1 + λ(k − 1)][1 + β] σk(α1)

2β(1− α)(k − δ)
,

which yields the starlikeness of the family.
(ii) Using the fact that f is convex if and only if zf ′ is starlike, we

can prove (ii), similar the to proof of (i). �

5. Modified Hadamard products

Let the functions fj(z)(j = 1, 2) be defined by (1.12). The modified
Hadamard product of f1(z) and f2(z) is defined by

(f1 ∗ f2)(z) = z −
∞∑

n=2

ak,1ak,2 zk.

Using the techniques of Schild and Silverman [13], we prove the following
results.

Theorem 5.1. For functions fj(z)(j = 1, 2) defined by (1.12), let f1 ∈
WT (α, β) and f2 ∈ WT (γ, β). Then (f1 ∗ f2) ∈∈ WT (ξ, β) where

ξ = 1− 2β(1− α)(1− γ)
σ2(α1)

, (5.1)

where σk(α1) is given by (1.7).

Proof. In view of Theorem 2.1, it suffice to prove that
∞∑

k=2

(1 + λ(k − 1))[1 + β]σk(α1)
2β(1− α)(1− ξ)

ak,1ak,2 ≤ 1, (0 ≤ ξ < 1)

where ξ is defined by (5.1). On the other hand, under the hypothesis, it
follows from (2.1) and the Cauchy’s-Schwarz inequality that

∞∑
k=2

(1 + λ(k − 1))[1 + β]σk(α1)
2β
√

(1− α)(1− γ)
√

ak,1ak,2 ≤ 1. (5.2)

We need to find the largest ξ such that
∞∑

k=2

(1 + λ(k − 1))[1 + β]σk(α1)

2β(1− ξ)(1− α)
ak,1ak,2

≤
∞∑

k=2

(1 + λ(k − 1))[1 + β]σk(α1)√
(1− α)(1− γ)

√
ak,1ak,2

or, equivalently that

√
ak,1ak,2 ≤ 1− ξ√

(1− α)((1− γ))
, (k ≥ 2).
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By view of (5.2) it is sufficient to find the largest ξ such that

2β
√

(1− α)(1− γ)(σn(α1))
−1 ≤ 1− ξ√

(1− α)((1− γ))

which yields

ξ = 1− 2β(1− α)(1− γ)

σk(α1)
for k ≥ 2 (5.3)

is an increasing function of k and letting k = 2 in (5.3), we have

ξ = 1− 2β(1− α)(1− γ)

σ2(α1)

where σ2(α1) is given by (1.7). �

Theorem 5.2. Let the function f(z) defined by (1.12) be in the class

WT (α, β). Also let g(z) = z−
∞∑

k=2

bkzk for |bk| ≤ 1. Then (f ∗g) ∈ WT (α, β).

Proof. Since

∞∑
k=2

(1 + λ(k − 1))[1 + β]σk(α1)|akbk|

≤
∞∑

k=2

(1 + λ(k − 1))[1 + β]σk(α1)ak|bk|

≤
∞∑

k=2

(1 + λ(k − 1))[1 + β]σk(α1)ak

≤ 2β(1− α)

it follows that (f ∗ g) ∈ WT (α, β), by the view of Theorem 2.1. �

Theorem 5.3. Let the functions fj(z)(j = 1, 2) defined by (1.12) be in the class

∈ WT (α, β). Then the function h(z) defined by h(z) = z−
∞∑

k=2

(a2
n,1 +a2

n,2)z
n

is in the class ∈ WT (ξ, β), where

ξ = 1− 4β(1− α)2

σ2(α1)(1 + λ)(1 + β)

and σ2(α1) is given by (1.7).

Proof. By virtue of Theorem 2.1, it is sufficient to prove that

∞∑
k=2

(1 + λ(k − 1))[1 + β]σk(α1)
2β(1− ξ)

(a2
n,1 + a2

n,2) ≤ 1, (5.4)
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where fj ∈ WT (ξ, β) we find from (2.1) and Theorem 2.1, that
∞∑

k=2

[
(1 + λ(k − 1))[1 + β]σk(α1)

2β(1− α)

]2
a2

n,j

≤
∞∑

k=2

[
(1 + λ(k − 1))[1 + β]σk(α1)

2β(1− α)
an,j

]2
, (5.5)

which yields
∞∑

k=2

1
2

[
(1 + λ(k − 1))[1 + β]σk(α1)

2β(1− α)

]2
(a2

n,1 + a2
n,2) ≤ 1. (5.6)

On comparing (5.5) and (5.6), it is easily seen that the inequality (5.4) will
be satisfied if

(1 + λ(k − 1))[1 + β]σk(α1)
2β(1− ξ)

≤ 1
2

[
(1 + λ(k − 1))[1 + β]σk(α1)

2β(1− α)

]2
, for k ≥ 2.

That is an increasing function of k (k ≥ 2). Taking k = 2 in (5.7), we have

ξ = 1− 4β(1− α)2

σk(α1)(1 + λ)(1 + β)
(5.7)

which completes the proof. �

6. Integral means inequalities

Lemma 6.1. [8] If the functions f and g are analytic in ∆ with g ≺ f, then
for κ > 0, and 0 < r < 1,

2π∫
0

∣∣g(reiθ)
∣∣κ dθ ≤

2π∫
0

∣∣f(reiθ)
∣∣κ dθ. (6.1)

In [10], Silverman found that the function f2(z) = z − z2

2 is often ex-
tremal over the family T. He applied this function to resolve his integral
means inequality, conjectured in [11] and settled in [12], that

2π∫
0

∣∣f(reiθ)
∣∣κ dθ ≤

2π∫
0

∣∣f2(reiθ)
∣∣κ dθ,

for all f ∈ T, κ > 0 and 0 < r < 1. In [12], he also proved his conjecture for
the subclasses of starlike functions of order α and convex functions of order
α.

In this section, we obtain integral means inequalities for the functions
in the family WT (α, β).

Applying Lemma 6.1, Theorem 2.1 and Theorem 2.3, we prove the fol-
lowing result.
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Theorem 6.2. Suppose f(z) ∈ WT (α, β) and f2(z) is defined by

f2(z) = z − 2β(1− α)
[1 + λ][1 + β]σ2(α1)

z2.

Then for z = reiθ, 0 < r < 1, we have
2π∫
0

‖f(z)‖κ
dθ ≤

2π∫
0

‖f2(z)‖κ
dθ. (6.2)

Proof. For f(z) = z −
∞∑

k=2

akzn, (6.2) is equivalent to proving that

2π∫
0

∥∥∥∥∥1−
∞∑

k=2

akzn−1

∥∥∥∥∥
κ

dθ ≤
2π∫
0

∥∥∥∥1− 2β(1− α)
[1 + λ][1 + β]σ2(α1)

z

∥∥∥∥κ

dθ.

By Lemma 6.1, it suffices to show that

1−
∞∑

k=2

ak‖P‖n−1 ≺ 1− 2β(1− α)
[1 + λ][1 + β]σ2(α1)

‖P‖.

Setting

1−
∞∑

k=2

ak‖P‖n−1 = 1− 2β(1− α)
[1 + λ][1 + β]σ2(α1)

w(z), (6.3)

and using (2.1), we obtain

‖w(z)‖ =

∥∥∥∥∥
∞∑

k=2

2β(1− α)
(1 + kλ− λ)[1 + β]σk(α1)

akzn−1

∥∥∥∥∥
≤ ‖P‖

∞∑
k=2

2β(1− α)
(1 + kλ− λ)[1 + β]σk(α1)

|ak|

≤ ‖P‖.

This completes the proof. �

Remark 6.3. In view of the relationship (1.4) the linear operator (1.6) and
by setting At = 1(t = 1, ..., l) and Bt = 1(t = 1, ...,m) and specific choices
of parameters l,m, α1, β1 the various results presented in this paper would
provide interesting extensions and generalizations of those considered earlier
for simpler analytic function classes.
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Abstract. In the present paper, we introduce and investigate some new
subclasses of analytic functions associated with a family of generalized
Srivastava-Attiya operator. Such results as subordination and superordi-
nation properties, inclusion relationships, integral-preserving properties
and convolution properties are proved. Several sandwich-type results are
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk, (1.1)

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}.

LetH(U) be the linear space of all analytic functions in U. For a positive
integer number n and a ∈ C, we let

H[a, n] :=
{
f ∈ H(U) : f(z) = a + anzn + an+1z

n+1 + · · ·
}

.

Let f, g ∈ A, where f is given by (1.1) and g is defined by

g(z) = z +
∞∑

k=2

bkzk.
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Then the Hadamard product (or convolution) f ∗ g of the functions f and g
is defined by

(f ∗ g)(z) := zp +
∞∑

k=2

akbkzk =: (g ∗ f)(z).

For two functions f and g, analytic in U, we say that the function f is
subordinate to g in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that
f(z) = g

(
ω(z)

)
(z ∈ U).

Indeed, it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following
equivalence:

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

In the following we recall a general Hurwitz-Lerch Zeta function
Φ(z, s, a) defined by (cf., e.g., [18, p. 121 et sep.])

Φ(z, s, a) :=
∞∑

k=0

zk

(k + a)s

(a ∈ C \ Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1),
where, as usual,

Z−0 := Z \ N (Z := {0,±1,±2, . . .}; N := {1, 2, 3, . . .}).

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta
function Φ(z, s, a) can be found in the recent investigations by (for example)
Choi and Srivastava [3], Ferreira and López [5], Garg et al. [6], Lin et al. [7],
Luo and Srivastava [10], Wen and Liu [19], Wen and Yang [20] and others.

Recently, Srivastava and Attiya [17] (see also Rǎducanu and Srivastava
[14], Liu [9], Prajapat and Goyal [13]) introduced and investigated the linear
operator:

Js, b(f) : A −→ A
defined, in terms of the Hadamard product (or convolution), by

Js, bf(z) := Gs, b(z) ∗ f(z) (z ∈ U; b ∈ C \ Z−0 ; s ∈ C; f ∈ A), (1.2)

where, for convenience,

Gs, b(z) := (1 + b)s[Φ(z, s, b)− b−s] (z ∈ U). (1.3)

It is easy to observe from (1.2) and (1.3) that
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Js, bf(z) = z +
∞∑

k=2

(
1 + b

k + b

)s

akzk.

Motivated essentially by the above-mentioned Srivastava-Attiya opera-
tor, Al-Shaqsi and Darus [1] (see also Darus and Al-Shaqsi [4]) introduced
and investigated the following integral operator:

J λ, µ
s, b f(z) = z +

∞∑
k=2

(
1 + b

k + b

)s
λ!(k + µ− 2)!

(µ− 2)!(k + λ− 1)!
akzk (z ∈ U), (1.4)

where (and throughout this paper unless otherwise mentioned) the parame-
ters s, b, λ and µ are constrained as follows:

s ∈ C; b ∈ C \ Z−0 λ > −1 and µ > 0.

We note that J 1,2
s,b is the Srivastava-Attiya operator, J λ,µ

0,b is the well-
known Choi-Saigo- Srivastava operator (see [2]).

It is easily verified from (1.4) that

z
(
J λ, µ

s, b f
)′

(z) = µJ λ, µ+1
s, b f(z)− (µ− 1)J λ, µ

s, b f(z), (1.5)

z
(
J λ+1, µ

s, b f
)′

(z) = (λ + 1)J λ, µ
s, b f(z)− λJ λ+1, µ

s, b f(z), (1.6)

and

z
(
J λ, µ

s+1, bf
)′

(z) = (b + 1)J λ, µ
s, b f(z)− bJ λ, µ

s+1, bf(z). (1.7)

By making use of the subordination between analytic functions and
the operator J λ, µ

s, b , we now introduce the following subclasses of analytic
functions.

Definition 1.1. A function f ∈ A is said to be in the class Fλ, µ
s, b (α;φ) if it

satisfies the subordination condition

(1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

≺ φ(z) (z ∈ U; α ∈ C ; φ ∈ P). (1.8)

Definition 1.2. A function f ∈ A is said to be in the class Gλ, µ
s, b (α;φ) if it

satisfies the subordination condition

(1− α)
J λ+1, µ

s, b f(z)
z

+ α
J λ, µ

s, b f(z)
z

≺ φ(z) (z ∈ U; α ∈ C ; φ ∈ P). (1.9)

Definition 1.3. A function f ∈ A is said to be in the class Hλ, µ
s, b (α;φ) if it

satisfies the subordination condition

(1− α)
J λ, µ

s+1, bf(z)
z

+ α
J λ, µ

s, b f(z)
z

≺ φ(z) (z ∈ U; α ∈ C ; φ ∈ P). (1.10)

In the present paper, we aim at proving some subordination and su-
perordination properties, inclusion relationships, integral-preserving proper-
ties and convolution properties associated with the operator J λ, µ

s, b . Several
sandwich-type results involving this operator are also derived.
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2. Preliminary results

In order to prove our main results, we need the following lemmas.

Lemma 2.1. ([11]) Let the function Ω be analytic and convex (univalent) in
U with Ω(0) = 1. Suppose also that the function Θ given by

Θ(z) = 1 + cnzn + cn+1z
n+1 + · · ·

is analytic in U. If

Θ(z) +
zΘ ′(z)

ζ
≺ Ω(z) (<(ζ) > 0; ζ 6= 0; z ∈ U), (2.1)

then

Θ(z) ≺ χ(z) =
ζ

n
z−

ζ
n

∫ z

0

t
ζ
n−1h(t)dt ≺ Ω(z) (z ∈ U),

and χ is the best dominant of (2.1).

Denote by Q the set of all functions f that are analytic and injective
on U− E(f), where

E(f) =
{

ε ∈ ∂U : lim
z→ε

f(z) = ∞
}

,

and such that f ′(ε) 6= 0 for ε ∈ ∂U− E(f).

Lemma 2.2. ([12]) Let q be convex univalent in U and κ ∈ C. Further assume
that <(κ) > 0. If

p ∈ H[q(0), 1] ∩Q,

and p + κzp′ is univalent in U, then

q(z) + κzq′(z) ≺ p (z) + κzp′(z)

implies q ≺ p, and q is the best subdominant.

Lemma 2.3. ([15]) Let q be a convex univalent function in U and let σ, η ∈ C
with

<
(

1 +
zq′′(z)
q′(z)

)
> max

{
0, −<

(
σ

η

)}
.

If p is analytic in U and

σp (z) + ηzp′(z) ≺ σq(z) + ηzq′(z),

then p ≺ q, and q is the best dominant.

Lemma 2.4. ([16]) Let the function Υ be analytic in U with

Υ(0) = 1 and < (Υ(z)) >
1
2

(z ∈ U).

Then, for any function Ψ analytic in U, (Υ∗Ψ)(U) is contained in the convex
hull of Ψ(U).
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3. Properties of the function class Fλ, µ
s, b (α; φ)

We begin by proving our first subordination property given by Theorem
3.1 below.

Theorem 3.1. Let f ∈ Fλ, µ
s, b (α;φ) with <(α) > 0. Then

J λ, µ
s, b f(z)

z
≺ µ

α
z−

µ
α

∫ z

0

t
µ
α−1φ(t)dt ≺ φ(z) (z ∈ U). (3.1)

Proof. Let f ∈ Fλ, µ
s, b (α;φ) and suppose that

h(z) :=
J λ, µ

s, b f(z)
z

(z ∈ U). (3.2)

Then h is analytic in U. Combining (1.5), (1.8) and (3.2), we easily find that

h(z)+
α

µ
zh′(z) = (1−α)

J λ, µ
s, b f(z)

z
+α

J λ, µ+1
s, b f(z)

z
≺ φ(z) (z ∈ U). (3.3)

Therefore, an application of Lemma 2.1 for n = 1 to (3.3) yields the assertion
of Theorem 3.1. �

By virtue of Theorem 3.1, we easily get the following inclusion relation-
ship.

Corollary 3.2. Let <(α) > 0. Then Fλ, µ
s, b (α;φ) ⊂ Fλ, µ

s, b (0;φ).

Theorem 3.3. Let α2 > α1 = 0. Then Fλ, µ
s, b (α2;φ) ⊂ Fλ, µ

s, b (α1;φ).

Proof. Suppose that f ∈ Fλ, µ
s, b (α2;φ). It follows that

(1− α2)
J λ, µ

s, b

z
+ α2

J λ, µ+1
s, b

z
≺ φ(z) (z ∈ U). (3.4)

Since
0 5

α1

α2
< 1

and the function φ is convex and univalent in U, we deduce from (3.1) and
(3.4) that

(1−α1)
J λ, µ

s, b f(z)
z

+ α1

J λ, µ+1
s, b f(z)

z

=
α1

α2

[
(1− α1)

J λ, µ
s, b f(z)

z
+ α1

J λ, µ+1
s, b f(z)

z

]
+

(
1− α1

α2

) J λ, µ
s, b f(z)

z

≺ φ(z) (z ∈ U),

which implies that f ∈ Fλ, µ
s, b (α1;φ). The proof of Theorem 3.3 is evidently

completed. �
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Theorem 3.4. Let f ∈ Fλ, µ
s, b (α;φ). If the integral operator F is defined by

F (z) :=
ν + 1
zν

∫ z

0

tν−1f(t)dt (z ∈ U; ν > −1), (3.5)

then

J λ, µ
s, b F (z)

z
≺ φ(z) (z ∈ U). (3.6)

Proof. Let f ∈ Fλ, µ
s, b (α; φ). Suppose also that

G(z) :=
J λ, µ

s, b F (z)
z

(z ∈ U). (3.7)

From (3.5), we deduce that

z
(
J λ, µ

s, b F
)′

(z) + νJ λ, µ
s, b F (z) = (ν + 1)J λ, µ

s, b f(z). (3.8)

Combining (3.1), (3.7) and (3.8), we easily get

G(z) +
1

ν + 1
zG′(z) =

J λ, µ
s, b f(z)

z
≺ φ(z) (z ∈ U). (3.9)

Thus, by Lemma 2.1 and (3.9), we conclude that the assertion (3.6) of The-
orem 3.4 holds. �

Theorem 3.5. Let f ∈ Fλ, µ
s, b (α;φ) and g ∈ A with <

(
g(z)

z

)
> 1

2 . Then

(f ∗ g)(z) ∈ Fλ, µ
s, b (α;φ).

Proof. Let f ∈ Fλ, µ
s, b (η;φ) and g ∈ A with <

(
g(z)

z

)
> 1

2 . Suppose also that

H(z) := (1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

≺ φ(z) (z ∈ U). (3.10)

It follows from (3.10) that

(1−α)
J λ, µ

s, b (f ∗ g)(z)
z

+α
J λ, µ+1

s, b (f ∗ g)(z)
z

= H(z)∗ g(z)
z

(z ∈ U). (3.11)

Since the function φ is convex and univalent in U, by virtue of (3.10), (3.11)
and Lemma 2.2, we conclude that

(1− α)
J λ, µ

s, b (f ∗ g)(z)
z

+ α
J λ, µ+1

s, b (f ∗ g)(z)
z

≺ φ(z) (z ∈ U), (3.12)

which implies that the assertion of Theorem 3.5 holds. �

Theorem 3.6. Let q1 be univalent in U and <(α) > 0. Suppose also that q1

satisfies

<
(

1 +
zq′′1 (z)
q′1(z)

)
> max

{
0,−<

(µ

α

)}
. (3.13)
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If f ∈ A satisfies the subordination

(1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

≺ q1(z) +
α

µ
zq′1(z), (3.14)

then
J λ, µ

s, b f(z)
z

≺ q′1(z),

and q1 is the best dominant.

Proof. Let the function h be defined by (3.2). We know that (3.3) holds.
Combining (3.3) and (3.14), we find that

h(z) +
α

µ
zh′(z) ≺ q1(z) +

α

µ
zq′1(z). (3.15)

By Lemma 2.3 and (3.15), we readily get the assertion of Theorem 3.6. �

If f is subordinate to F , then F is superordinate to f . We now derive
the following superordination result for the class Fλ, µ

s, b (α;φ).

Theorem 3.7. Let q2 be convex univalent in U, α ∈ C with <(α) > 0. Also let

J λ, µ
s, b f(z)

z
∈ H[q2(0), 1] ∩Q

and

(1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

be univalent in U. If

q2(z) +
α

µ
zq′2(z) ≺ (1− α)

J λ, µ
s, b f(z)

z
+ α

J λ, µ+1
s, b f(z)

z
,

then

q2(z) ≺
J λ, µ

s, b f(z)
z

,

and q2 is the best subdominant.

Proof. Let the function h be defined by (3.2). Then

q2(z) +
α

µ
zq′2(z) ≺ (1− α)

J λ, µ
s, b f(z)

z
+ α

J λ, µ+1
s, b f(z)

z
= h(z) +

α

µ
zh′(z).

An application of Lemma 2.4 yields the desired assertion of Theorem 3.7. �

Combining the above results of subordination and superordination, we
easily get the following “sandwich-type result”.

Theorem 3.8. Let q3 be convex univalent and q4 be univalent in U, α ∈ C
with <(α) > 0. Suppose also that q4 satisfies

<
(

1 +
zq′′4 (z)
q′4(z)

)
> max

{
0,−<

(µ

α

)}
.
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If

0 6=
J λ, µ

s, b f(z)
z

∈ H[q3(0), 1] ∩Q,

and

(1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

is univalent in U, also

q3(z) +
α

µ
zq′3(z) ≺ (1− α)

J λ, µ
s, b f(z)

z
+ α

J λ, µ+1
s, b f(z)

z
≺ q4(z) +

α

µ
zq′4(z),

then

q3(z) ≺
J λ, µ

s, b f(z)
z

≺ q4(z),

and q3 and q4 are, respectively, the best subordinant and the best dominant.

4. Properties of the function classes Gλ, µ
s, b (α; φ) and Hλ, µ

s, b (α; φ)

By means of (1.6) and (1.7), and by similarly applying the methods used
in the proofs of Theorems 3.1–3.8, respectively, we easily get the following
properties for the function classes Gλ, µ

s, b (α;φ) andHλ, µ
s, b (α;φ). Here we choose

to omit the details involved.

Corollary 4.1. Let f ∈ Gλ, µ
s, b (α;φ) with <(α) > 0. Then

J λ+1, µ
s, b f(z)

z
≺ λ + 1

α
z−

λ+1
α

∫ z

0

t
λ+1

α −1φ(t)dt ≺ φ(z) (z ∈ U).

Corollary 4.2. Let α2 > α1 = 0. Then Gλ, µ
s, b (α2;φ) ⊂ Gλ, µ

s, b (α1;φ).

Corollary 4.3. Let f ∈ Gλ, µ
s, b (α;φ). If the integral operator F is defined by

(3.5), then
J λ+1, µ

s, b F (z)
z

≺ φ(z) (z ∈ U).

Corollary 4.4. Let f ∈ Gλ, µ
s, b (α;φ) and g ∈ A with <

(
g(z)

z

)
> 1

2 . Then

(f ∗ g)(z) ∈ Gλ, µ
s, b (α;φ).

Corollary 4.5. Let q5 be univalent in U and <(α) > 0. Suppose also that q5

satisfies

<
(

1 +
zq′′5 (z)
q′5(z)

)
> max

{
0,−<

(
λ + 1

α

)}
.

If f ∈ A satisfies the subordination

(1− α)
J λ+1, µ

s, b f(z)
z

+ α
J λ, µ

s, b f(z)
z

≺ q5(z) +
α

λ + 1
zq′5(z),
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then
J λ+1, µ

s, b f(z)
z

≺ q′5(z),

and q5 is the best dominant.

Corollary 4.6. Let q6 be convex univalent in U, α ∈ C with <(α) > 0. Also
let

J λ+1, µ
s, b f(z)

z
∈ H[q6(0), 1] ∩Q

and

(1− α)
J λ+1, µ

s, b f(z)
z

+ α
J λ, µ

s, b f(z)
z

be univalent in U. If

q6(z) +
α

λ + 1
zq′6(z) ≺ (1− α)

J λ+1, µ
s, b f(z)

z
+ α

J λ, µ
s, b f(z)

z
,

then

q6(z) ≺
J λ+1, µ

s, b f(z)
z

,

and q6 is the best subdominant.

Corollary 4.7. Let q7 be convex univalent and q8 be univalent in U, α ∈ C
with <(α) > 0. Suppose also that q8 satisfies

<
(

1 +
zq′′8 (z)
q′8(z)

)
> max

{
0,−<

(
λ + 1

α

)}
.

If

0 6=
J λ+1, µ

s, b f(z)
z

∈ H[q7(0), 1] ∩Q,

and

(1− α)
J λ+1, µ

s, b f(z)
z

+ α
J λ, µ

s, b f(z)
z

is univalent in U, also

q7(z)+
α

λ + 1
zq′7(z)≺ (1−α)

J λ+1, µ
s, b f(z)

z
+α

J λ, µ
s, b f(z)

z
≺ q8(z)+

α

λ + 1
zq′8(z),

then

q7(z) ≺
J λ+1, µ

s, b f(z)
z

≺ q8(z),

and q7 and q8 are, respectively, the best subordinant and the best dominant.

Corollary 4.8. Let f ∈ Hλ, µ
s, b (α;φ) with <(α) > 0. Then

J λ, µ
s+1, bf(z)

z
≺ b + 1

α
z−

b+1
α

∫ z

0

t
b+1

α −1φ(t)dt ≺ φ(z) (z ∈ U).

Corollary 4.9. Let α2 > α1 = 0. Then Hλ, µ
s, b (α2;φ) ⊂ Hλ, µ

s, b (α1;φ).
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Corollary 4.10. Let f ∈ Hλ, µ
s, b (α;φ). If the integral operator F is defined by

(3.5), then
J λ, µ

s+1, bF (z)
z

≺ φ(z) (z ∈ U).

Corollary 4.11. Let f ∈ Hλ, µ
s, b (α;φ) and g ∈ A with <

(
g(z)

z

)
> 1

2 . Then

(f ∗ g)(z) ∈ Hλ, µ
s, b (α;φ).

Corollary 4.12. Let q9 be univalent in U and <(α) > 0. Suppose also that q9

satisfies

<
(

1 +
zq′′9 (z)
q′9(z)

)
> max

{
0,−<

(
b + 1

α

)}
.

If f ∈ A satisfies the subordination

(1− α)
J λ, µ

s+1, bf(z)
z

+ α
J λ, µ

s, b f(z)
z

≺ q9(z) +
α

b + 1
zq′9(z),

then
J λ, µ

s+1, bf(z)
z

≺ q′9(z),

and q9 is the best dominant.

Corollary 4.13. Let q10 be convex univalent in U, α ∈ C with <(α) > 0. Also
let

J λ, µ
s+1, bf(z)

z
∈ H[q10(0), 1] ∩Q

and

(1− α)
J λ, µ

s+1, bf(z)
z

+ α
J λ, µ

s, b f(z)
z

be univalent in U. If

q10(z) +
α

b + 1
zq′10(z) ≺ (1− α)

J λ, µ
s+1, bf(z)

z
+ α

J λ, µ
s, b f(z)

z
,

then

q10(z) ≺
J λ, µ

s+1, bf(z)
z

,

and q10 is the best subdominant.

Corollary 4.14. Let q11 be convex univalent and q12 be univalent in U, α ∈ C
with <(α) > 0. Suppose also that q12 satisfies

<
(

1 +
zq′′12(z)
q′12(z)

)
> max

{
0,−<

(
b + 1

α

)}
.

If

0 6=
J λ, µ

s+1, bf(z)
z

∈ H[q11(0), 1] ∩Q,
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and

(1− α)
J λ, µ

s+1, bf(z)
z

+ α
J λ, µ

s, b f(z)
z

is univalent in U, also

q11(z) +
α

b + 1
zq′11(z) ≺ (1− α)

J λ, µ
s+1, bf(z)

z
+ α

J λ, µ
s, b f(z)

z

≺ q12(z) +
α

b + 1
zq′12(z),

then

q11(z) ≺
J λ, µ

s+1, bf(z)
z

≺ q12(z),

and q11 and q12 are, respectively, the best subordinant and the best dominant.
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Abstract. In this article we prove that pseudo-parallel normal anti-
invariant submanifolds in Kenmotsu space forms are always semi-
parallel.
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1. Introduction

In 2008, [2], F. Dillen, J. Van der Veken and L. Vrancken proved that
Lagrange pseudo-parallel submanifolds of complex space forms are always
semi-parallel.

In this paper we prove that a n-dimensional pseudo-parallel and normal
anti-invariant submanifold M in a (2n+1)-dimensional Kenmotsu space form
M̃(c) is always semi-parallel. We also prove that this is not generally true for
pseudo-parallel Legendre submanifolds in Sasaki space forms.

Now, we remember some necessary useful notions and results for our
next considerations.
Let M̃ be a C∞–differentiable, (2n+1)–dimensional almost contact manifold
with the almost contact metric structure (F, ξ, η, g), where F is a (1, 1) tensor
field, η is a 1-form, g is a Riemannian metric on M̃ , ξ is the Reeb vector field,
all these tensors satisfying the following conditions :

F 2 = −I + η ⊗ ξ; η(ξ) = 1; g(FX, FY ) = g(X, Y )− η(X)η(Y ) (1.1)

for all X, Y in χ(M̃).
Let M be a submanifold of M̃ . We consider∇ the Levi-Civita connection

induced by ∇̃ on M , ∇⊥ the connection in the normal bundle T⊥(M), h the
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second fundamental form on M a̧nd A~n the Weingarten operator. The well-
known Gauss–Weingarten formulas on M are:

∇̃XY = ∇XY + h(X, Y ); ∇̃X~n = −A~nX +∇⊥X~n (1.2)

for X, Y in χ(M) and ~n in χ⊥(M).
We consider the Sasaki form Ω on M̃ , given by Ω(X, Y ) = g(X, FY ).

Also, denote by NF the Nijenhius tensor of F . It is known that M̃ is a Sasaki
manifold if and only if

dη = Ω; N (1) = NF + 2dη ⊗ ξ = 0

or equivalently
(∇̃XF )Y = g(X, Y )ξ − η(Y )X. (1.3)

An almost normal contact manifold M̃ is a Kenmotsu manifold if and
only if

dη = 0; dΩ = 2η ∧ Ω.

It is also known that, similar to the characterization (1.3) of Sasaki
manifolds, M̃ is a Kenmotsu manifold if and only if

(∇̃XF )Y = −η(Y )FX − g(X, FY )ξ (1.4)

for all X, Y in χ(M̃).
From [3] and [5], we have the following expressions of the curvature

tensor in Sasaki and Kenomotsu space forms :

R̃(X, Y )Z =
c + 3(−1)i+1

4
[g(Y, Z)X − g(X, Z)Y ]+

c− (−1)i+1

4
[η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ + Ω(X, Z)FY

− Ω(Y, Z)FX + 2Ω(X, Y )FZ], (1.5)

where i = −1 for Sasakian case and i = 1 for Kenmotsu case.
In the case of a (2n + 1)-dimensional contact manifold M̃ , the contact

distribution D = ker η is totally non integrabile and the maximal dimension
of its integral submanifolds M (called the integral submanifolds of the contact

manifold M̃) is n. A maximal integral submanifold M of a contact manifold
M̃ is a Legendre submanifold. Moreover, it is well known that an integral
submanifold M of a contact manifold M̃ is characterized by any of

(i) η = 0, dη = 0;
(ii) FX ∈ χ⊥(M) for all X in χ(M).

Another properties valid on these submanifolds in the case of Sasaki
manifolds and useful for our considerations are given in [7] by

Proposition 1.1. Let M be an integral submanifold of a (2n + 1)-dimensional
Sasaki manifold M̃ , n ≥ 1. Then:

(i) Aξ = 0;
(ii) AFXY = AFY X;
(iii) AFY X = −[Fh(X, Y )]T ;
(iv) ∇⊥X(FY ) = g(X, Y )ξ + F∇XY + [Fh(X, Y )]⊥;
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(v) ∇⊥Xξ = −FX for all X, Y in χ(M).

In the case of Kenmotsu manifolds, N. Papaghiuc, [6], introduced the
following

Definition 1.2. A submanifold M of a Kenmotsu manifold M̃ is a normal
semi-invariant submanifold if ξ is normal to M and M has two distributions
D and D⊥, called the invariant, respectively, the anti-invariant distribution
of M so that

(i) TxM = Dx ⊕D⊥x ⊕ < ξx >;
(ii) Dx, D⊥x , < ξx > are othogonal;
(iii) FDx ⊆ Dx; FD⊥x ⊆ T⊥x ,
for all x ∈ M .
If D = 0 then M is a normal anti-invariant submanifold of M̃ and if D⊥ = 0
then M is a invariant submanifold of M̃ .

Also, from [6], we have the following result

Proposition 1.3. If M is a normal anti-invariant submanifold of a Kenmotsu
manifold M̃ , then

(i) AFXY = AFY X, for all X, Y ∈ D⊥;
(ii) AξZ = −Z and ∇⊥Zξ = 0, for all Z ∈ χ(M).

2. Pseudo-parallel submanifolds in Kenmotsu and Sasaki space
forms

Proposition 2.1. If M is a m-dimensional, normal anti-invariant submanifold
of a (2n + 1)-dimensional Kenmotsu manifold M̃(c), then m ≤ n.

Proof. For x ∈ M we have TxM̃ = TxM ⊕ T⊥x M and dim FTxM =
dim TxM = m. Moreover, because M is normal anti-invariant we have
FTxM ⊆ T⊥x M ; FTxM⊥ < ξx > and then

dim T⊥x M ≥ dim FTxM + dim < ξx >= m + 1.

Now,

2m ≤ m + dim T⊥x M − 1 = dimTxM + dim T⊥x M − 1 = dim TxM̃ − 1 = 2n

and then m ≤ n. �

Recall that a submanifold M of the Riemannian manifold M̃ is semi-
parallel if

(R̃ · h)(X, Y, V, W ) = 0 (2.1)

where

(R̃ · h)(X, Y, V, W ) = R⊥(X, Y )h(V,W )− h(R(X, Y )V,W )
− h(V,R(X, Y )W )
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for all X, Y, Z,W in χ(M). Here R is the curvature tensor of M and R⊥ is
the normal component of the curvature tensor R̃ of M̃ on M .
M is pseudo-parallel if

(R̃ · h)(X, Y, V, W ) + Φ ·Q(g, h)(X, Y, V, W ) = 0, (2.2)

where Φ is a differential function on M̃ and

Q(g, h)(X, Y, V, W ) = h((X ∧ Y )V,W ) + h(V, (X ∧ Y )W ),
(X ∧ Y )V = g(Y, V )X − g(X, V )Y

for all X, Y, V, W in χ(M).
Let M̃(c) be a Kenmotsu space form with dim M̃(c) = 2n+1 and M be

a n-dimensional normal anti-invariant submanifold. We consider {X1, ..., Xn}
a local orthonormal basis in χ(M) and {ξ, FX1, ..., FXn} a local orthonormal
basis in χ⊥(M).
Because M is normal anti-invariant manifold and taking into account (1.1)
and (1.4) we have:

g(FX, FY ) = g(X, Y ); ∇̃X(FY ) = F ∇̃XY ; FR̃(X, Y )Z = R̃(X, Y )FZ
(2.3)

for all X, Y, Z in χ(M). Because Fh(X, Y ) belongs to χ(M) and taking into
account (1.2) and (2.3), we obtain

∇⊥X(FY ) = F∇XY ; −AFY X = Fh(X, Y ). (2.4)

From (1.1) and Proposition 1.3 we have

h(X, Y ) = FAFY X − g(X, Y )ξ = FAFXY − g(X, Y )ξ. (2.5)
We define the 3-form C(X, Y, Z) = g(h(X, Y ), FZ) for all X, Y, Z in χ(M).
From the symmetry of h and taking into account Proposition 1.3 and (2.5),
it follows that C is a totally symmetric 3-form.

From (1.5), the Codazzi equation and the fact that M is normal and
anti-invariant, we have

R̃(X, Y )Z =
c− 3

4
[g(Y, Z)X − g(X, Z)Y ] (2.6)

and

R(X, Y )Z =
c− 3

4
[g(Y, Z)X − g(X, Z)Y ] + Ah(Y,Z)X −Ah(X,Z)Y.

But from (2.5) and Proposition 1.3, we obtain

Ah(X,Z)Y = AFY AFXZ + g(X, Z)Y

and then

R(X, Y )Z =
c + 1

4
[g(Y, Z)X − g(X, Z)Y ] + [AFX , AFY ]Z. (2.7)

Moreover, from (2.4) we have:

R⊥(X, Y )FZ = FR(X, Y )Z (2.8)

for all X, Y, Z in χ(M).
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Now, we give the main result of this article.

Theorem 2.2. Any n-dimensional pseudo-parallel normal anti-invariant sub-
manifold M of a (2n + 1)-dimensional Kenmotsu space form M̃(c), with
n ≥ 1, is semi-parallel.

Proof. We have

g((R̃ · h)(X, Y, V, W ), FZ) = g(R⊥(X, Y )h(V,W ), FZ)
− g(h(R(X, Y )V,W ), FZ)
− g(h(V,R(X, Y )W ), FZ)

for X, Y, V, W in χ(M). Denote by

T1 = g(R⊥(X, Y )h(V,W ), FZ) T2 = g(h(R(X, Y )V,W ), FZ)

T3 = g(h(V,R(X, Y )W ), FZ).

Because the 3-form C is totally symmetric, it follows that T2 is sym-
metric in Z and W . From (2.5), Proposition 1.3, (2.7), (1.1) and (2.8), we
obtain:

T1 = g(R⊥(X, Y )h(V,W ), FZ) = g(R⊥(X, Y )FAFV W,FZ)

=
c + 1

4
[g(X, Y )g(h(Y, W ), FV )− g(Y,Z)g(h(X, W ), FV )]

+ g([AFX , AFY ]AFV W,Z),

T3 = g(h(V,R(X, Y )W ), FZ) = g(h(V,Z), FR(X, Y )W )

=
c + 1

4
[g(Y, W )g(h(X, Z), FV )− g(h(Y, Z), FV )g(X, W )]

+ g(AFV Z, [AFX , AFY ]W ).

Also,

T1 − T3 = T4 + T5

where

T4 =
c + 1

4
[g(h(Y, W ), FV )g(X, Y )− g(h(X, W ), FV )g(Y,Z)

− g(h(X, Z), FV )g(Y, W ) + g(h(Y, Z), FV )g(X, W )]

is symmetric in W and Z and

T5 = g([AFX , AFY ]AFV W,Z)− g(AFV Z, [AFX , AFY ]W ).

On the other hand, from the symmetry of h we have

g(AFV Z, [AFX , AFY ]W ) = −g([AFX , AFY ]AFV Z,W ).

From this we deduce that

T5 = g([AFX , AFY ]AFV Z,W )) + g([AFX , AFY ]AFV W,Z)
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is symmetric in W and Z and g((R̃ · h)(X, Y, V, W ), FZ) is sym-
metric in W and Z. Because M is pseudo-parallel it follows that
g(Q(g, h)(X, Y, V, W ), FZ) is symmetric in W and Z or equivalently

g(Y, W )g(h(V,X), FZ)− g(X, W )g(h(V, Y ), FZ)

= g(Y, Z)g(h(V,X), FW )− g(X, Z)g(h(V, Y ), FW ).
Taking X = W = V , Z, Y⊥X in this relation, we obtain

−g(X, X)g(h(Y, Z), FX) = g(Y, Z)g(h(X, X), FX). (2.9)

Let x be in M and S = {V ∈ TpM |g(V, V ) = 1} – the unit sphere and
f : S → F(M), where f(V ) = g(h(V, V ), FV ) for all V in S. Because f is
a continue function on S, it results that f attains its maximum in a vector
field X0, tangent to the submanifold in x.

Let {e1, ..., en−1, X0} be a local orthonormal basis in χ(M). Taking
Y = Z = X0 and X = ei in (2.9), we have:

g(h(X0, X0), F ei) = −f(ei), i = 1, ..., n− 1.

and for Y = Z = ei and X = X0

g(h(ei, ei), FX0) = −f(X0), i = 1, ..., n− 1.

{ξ, Fe1, ..., F en−1, FX0} is a local orthonormal basis in χ⊥(M) and

h(ei, ei) = −f(X0)FX0 − ξ −
n−1∑
j=1

f(ej)Fej

h(X0, X0) = f(X0)FX0 − ξ −
n−1∑
j=1

f(ej)Fej .

From these last two equalities we obtain

h(ei, ei) = h(X0, X0)− 2f(X0)FX0, h(X0, X0) = f(X0)FX0 − ξ. (2.10)

and f(ei) = 0 for i = 1...n − 1. From (2.10) we have g(h(X0, X0), FV ) = 0
for all V⊥X0, V in S. Moreover, (2.10) and (2.5) implies that

FAFX0X0 = f(X0)FX0 or −AFX0X0 = −f(X0)X0

and then
AFX0X0 = λ1X0; λ1 = f(X0). (2.11)

Putting X = X0 and Y⊥X0 in (2.9), we obtain

−g(X0, X0)g(h(Y, Z), FX0) = g(Y,Z)g(h(X0, X0), FX0)

and then
AFX0Y = −λ1Y. (2.12)

For Y⊥X0, X = Y , Y = Z = X0 in (2.9) we have:

−g(Y, Y )g(h(X0, X0), FY ) = g(X0, X0)g(h(Y, Y ), FY )

or
g(h(Y, Y ), FY ) = 0.
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Using the totally symmetry of the 3-form C and the last equality, we have

g(h(Y,Z), FW ) = 0

for all Y,Z,W⊥X0, Y,Z,W in χ(M). From (2.11) and (2.12) we have

h(X0, X0) = λ1FX0 + ξ, h(X0, Y ) = −λ1FY (2.13)

for Y⊥X0. Taking X = X0 and Z, Y⊥X0 in (2.9) we have:

h(Y, Z) = −λ1g(Y, Z)FX0. (2.14)

Taking Z = Y , Z⊥X0 and Z an unitary vector field in (2.14), we obtain

AFY Y = −λ1X0. (2.15)

If λ1 = 0 then h vanishes at x. We suppose that λ1 6= 0. For n > 2, we
consider two othonormal vector fields Y and Z, so that Y, Z⊥X0. Then

R(X0, Y )Y = (
c + 1

4
− 2λ2

1)X0,

and

R(Y, Z)Z = (
c + 1

4
+ λ2

1)Y.

Because M is a pseudo-parallel manifold, we have

(R̃ · h)(X0, Y, Y, Y ) + Φ(x)Q(g, h)(X0, Y, Y, Y ) = 0.

where

(R̃ · h)(X0, Y, Y, Y ) = 3λ1(
c + 1

4
− 2λ2

1)FY,

(Q · h)(X0, Y, Y, Y ) = −2λ1FY.

From these last three equalities we have:

Φ(x) =
3( c+1

4 − 2λ2
1)

2
. (2.16)

Also, we have:

(R̃ · h)(X0, Y, Y, Z) + Φ(x)Q(g, h)(X0, Y, Y, Z) = 0.

But

(R̃ · h)(X0, Y, Y, Z) = λ1(
c + 1

4
− 2λ2

1)FZ

Q(g, h)(X0, Y, Y, Z) = −λ1FZ.

From these last three equalities we deduce

Φ(x) =
c + 1

4
− 2λ2

1. (2.17)

From (2.17) and (2.16) we obtain Φ(x) = 0, that is M is semi-parallel. �
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Now, let M be a Legendre submanifold in a Sasaki space form M̃(c).
Taking into account (1.3) and the fact that M is a Legendre submanifold, we
have

F ∇̃XY = ∇̃X(FY )− g(X, Y )ξ

F R̃(X, Y )Z = R̃(X, Y )FZ + g(Y, Z)FX − g(X, Z)FY

for all X, Y, Z in χ(M).
Because M is a Legendre submanifold, using (1.2) and (1.3) we obtain:

h(X, Y ) = FAFY X; ∇⊥XFY = F∇XY + g(X, Y )ξ (2.18)

for X, Y, Z in χ(M). We also obtain that the 3-form C is totally symmetric
for Legendre pseudo-parallel submanifolds in Sasaki space forms. Moreover,
from (1.5) we have

R̃(X, Y )Z =
c + 3

4
[g(Y,Z)X − g(X, Z)Y ]

and

R⊥(X, Y )FZ = FR(X, Y )Z − g(Y,Z)FX + g(X, Z)FY

for all X, Y, Z in χ(M).
We define the tensor field

θ(X, Y, Z, V, W ) = g(h(X, V ), FZ)g(Y, W )− g(h(Y, V ), FZ)g(X, W ) (2.19)

for X, Y, Z,W in χ(M). Then θ is anti-symmetric in X and Y .
The submanifold M has axial semi-symmetry if θ is symmetric in Z and

W .

Proposition 2.3. Let M be a Legendre pseudo-parallel submanifold in the
Sasaki space form M̃(c) so that M has axial semi-symmetry. Then, for each
x ∈ M , there is X0 ∈ TpM , X0 a unit vector field and λ1 ∈ F(M) so that:

AFX0X0 = λ1X0; c = 1 + 8λ2
1.

From Proposition 2.3, we observe that the Sasaki space form M̃(c) has
Legendre pseudo-parallel submanifolds only if the λ1 is constant.
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[8] Pitiş, Gh., Geometry on Kenmotsu manifolds, Editura Transilvania Braşov,
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Negru-Vodă College
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Constanţa, Romania
e-mail: maria.cirnu@yahoo.com



Stud. Univ. Babeş-Bolyai Math. 56(2011), No. 3, 95–104

Four-dimensional matrix transformation
and rate of A-statistical convergence
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dimensional summability matrix methods on the A-statistical approxi-
mation of sequences of positive linear operators defined on the space of
all real valued Bögel-type continuous functions on a compact subset of
the real line. Furthermore, we study the rates of A-statistical conver-
gence in our approximation.
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1. Introduction

In order to improve the classical Korovkin theory, the space of Bögel-
type continuous (or, simply, B-continuous) functions instead of the classical
one has been used in [2, 3, 4, 5]. Recall that the concept of B-continuity was
first introduced in 1934 by Bögel [6] (see also [7, 8]). On the other hand,
this Korovkin theory has also been generalized via the concept of statistical
convergence (see, for instance, [11, 12]). It is well-known that every convergent
sequence (in the usual sense) is statistically convergent but its converse is
not always true. Also, statistical convergent sequences do not need to be
bounded. With these properties, the usage of the statistical convergence in
the approximation theory leads us to more powerful results than the classical
aspects.

We now recall some basic definitions and notations used in the paper.
A double sequence

x = {xm,n}, m, n ∈ N,
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is convergent in Pringsheim’s sense if, for every ε > 0, there exists N =
N(ε) ∈ N such that |xm,n − L| < ε whenever m,n > N . Then, L is called
the Pringsheim limit of x and is denoted by P − lim x = L (see [19]). In this
case, we say that x = {xm,n} is “P -convergent to L”. Also, if there exists a
positive number M such that |xm,n| ≤ M for all (m,n) ∈ N2 = N× N, then
x = {xm,n} is said to be bounded. Note that in contrast to the case for single
sequences, a convergent double sequence not to be bounded.

Now let
A = [aj,k,m,n], j, k,m, n ∈ N,

be a four-dimensional summability matrix. For a given double sequence x =
{xm,n}, the A-transform of x, denoted by Ax := {(Ax)j,k}, is given by

(Ax)j,k =
∑

(m,n)∈N2

aj,k,m,nxm,n, j, k ∈ N,

provided the double series converges in Pringsheim’s sense for every (j, k) ∈
N2. In summability theory, a two-dimensional matrix transformation is said to
be regular if it maps every convergent sequence into a convergent sequence
with the same limit. The well-known characterization for two-dimensional
matrix transformations is known as Silverman-Toeplitz conditions (see, for
instance, [16]). In 1926, Robison [20] presented a four-dimensional analog
of the regularity by considering an additional assumption of boundedness.
This assumption was made because a double P -convergent sequence is not
necessarily bounded. The definition and the characterization of regularity
for four-dimensional matrices is known as Robison-Hamilton conditions, or
briefly, RH-regularity (see, [15, 20]).

Recall that a four dimensional matrix A = [aj,k,m,n] is said to be RH-
regular, if it maps every bounded P -convergent sequence into a P -convergent
sequence with the same P -limit. The Robison-Hamilton conditions state that
a four dimensional matrix A = [aj,k,m,n] is RH-regular if and only if

(i) P − lim
j,k

aj,k,m,n = 0 for each (m,n) ∈ N2,

(ii) P − lim
j,k

∑
(m,n)∈N2

aj,k,m,n = 1,

(iii) P − lim
j,k

∑
m∈N

|aj,k,m,n| = 0 for each n ∈ N,

(iv) P − lim
j,k

∑
n∈N

|aj,k,m,n| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2
|aj,k,m,n| is P−convergent for each (j, k) ∈ N2,

(vi) there exist finite positive integers A and B such that∑
m,n>B

|aj,k,m,n| < A

holds for every (j, k) ∈ N2.

Now let A = [aj,k,m,n] be a non-negative RH-regular summability ma-
trix, and let K ⊂ N2. Then, a real double sequence x = {xm,n} is said to be
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A-statistically convergent to a number L if, for every ε > 0,

P − lim
j,k

∑
(m,n)∈K(ε)

aj,k,m,n = 0,

where
K(ε) := {(m,n) ∈ N2 : |xm,n − L| ≥ ε}.

In this case, we write st
(2)
A − lim xm,n = L. Observe that, a P -convergent dou-

ble sequence is A-statistically convergent to the same value but the converse
does not hold. For example, consider the double sequence x = {xm,n} given
by

xm,n =
{

mn, if m and n are squares,
1, otherwise.

We should note that if we take A = C(1, 1), which is the double Cesáro
matrix, then C(1, 1)-statistical convergence coincides with the notion of sta-
tistical convergence for a double sequence, which was introduced in [17, 18].
Finally, if we replace the matrix A by the identity matrix for four-dimensional
matrices, then A-statistical convergence reduces to the Pringsheim conver-
gence.

In most investigations the approximated functions are assumed to be
continuous. However, the considered approximation processes are often mean-
ingful for a bigger class of functions, namely for so-called B−continuous func-
tions introduced by Bögel [6, 7, 8].

The definition of B−continuous was introduced by Bögel as follows:
Let X and Y be compact subsets of the real numbers, and let D = X×Y .

Then, a function f : D → R is called B−continuous at a point (x, y) ∈ D if,
for every ε > 0, there exists a positive number δ = δ(ε) such that

|∆x,y [f (u, v)]| < ε,

for any (u, v) ∈ D with |u− x| < δ and |v − y| < δ, where the symbol
∆x,y [f (u, v)] denotes the mixed difference of f defined by

∆x,y [f (u, v)] = f(u, v)− f(u, y)− f(x, v) + f(x, y).

By Cb(D) we denote the space of all B-continuous functions on D.
Recall that C(D) and B(D) denote the space of all continuous (in the usual
sense) functions and the space of all bounded functions on D, respectively.
Then, notice that C(D) ⊂ Cb(D). Moreover, one can find an unbounded
B−continuous function, which follows from the fact that, for any function of
the type f(u, v) = g(u)+h(v), we have ∆x,y [f (u, v)] = 0 for all (x, y), (u, v) ∈
D.

The usual supremum norm on the spaces B(D) is given by

‖f‖ := sup
(x,y)∈D

|f (x, y)| for f ∈ B(D).

Throughout the paper, for fixed (x, y) ∈ D and f ∈ Cb(D), we use the
function Fx,y defined as follows:

Fx,y(u, v) = f(u, y) + f(x, v)− f(u, v) for (u, v) ∈ D. (1.1)
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Since
∆x,y [Fx,y(u, v)] = −∆x,y [f(u, v)]

holds for all (x, y), (u, v) ∈ D, the B−continuity of f implies the
B−continuity of Fx,y for every fixed (x, y) ∈ D. We also use the following
test functions

e0(u, v) = 1, e1(u, v) = u, e2(u, v) = v and e3(u, v) = u2 + v2.

With this terminology the authors [14] proved the following theorem,
which corresponds to the A-statistical formulation of the problem above stud-
ied by Badea et. al. [3].

Theorem 1.1. [14] Let {Lm,n} be a double sequence of positive linear opera-
tors acting from Cb (D) into B (D) , and let A = [aj,k,m,n] be a non-negative
RH−regular summability matrix method. Assume that the following condi-
tions hold:

δ
(2)
A

{
(m,n) ∈ N2 : Lm,n(e0;x, y) = e0 (x, y) for all (x, y) ∈ D

}
= 1

and
st

(2)
A − lim

m,n
‖Lm,n(ei)− ei‖ = 0 for i = 1, 2, 3.

Then, for all f ∈ Cb(D), we have

st
(2)
A − lim

m,n
‖Lm,n(Fx,y)− f‖ = 0,

where Fx,y is given by (1.1).

The aim of the present paper is to compute the rates of A-statistical
approximation in Theorem 1.1 with the help of mixed modulus of smoothness.

2. Rate of A-statistical convergence

Various ways of defining rates of convergence in the A-statistical sense
for two-dimensional summability matrix were introduced in [10]. In a similar
way, for four-dimensional summability matrix, defining rates of convergence
in the A-statistical sense introduced in [13]. In this section, we compute the
corresponding rates of A-statistical convergence in Theorem 1.1 by means of
four different ways.

Definition 2.1. [13] Let A = [aj,k,m,n] be a non-negative RH-regular summa-
bility matrix and let {αm,n} be a positive non-increasing double sequence. A
double sequence x = {xm,n} is A-statistical convergent to a number L with
the rate of o(αm,n), if for every ε > 0,

P − lim
j,k→∞

1
αj,k

∑
(m,n)∈K(ε)

aj,k,m,n = 0,

where
K(ε) :=

{
(m,n) ∈ N2 : |xm,n − L| ≥ ε

}
.
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In this case, it is denoted by

xm,n − L = st
(2)
A − o(αm,n) as m,n →∞.

Definition 2.2. [13] Let A = [aj,k,m,n] and {αm,n} be the same as in Definition
2.1. Then, a double sequence x = {xm,n} is A-statistical bounded with the
rate of O(αm,n) if for every ε > 0,

sup
j,k

1
αj,k

∑
(m,n)∈L(ε)

aj,k,m,n < ∞,

where
L(ε) :=

{
(m,n) ∈ N2 : |xm,n| ≥ ε

}
.

In this case, it is denoted by

xm,n = st
(2)
A −O(αm,n) as m,n →∞.

Definition 2.3. [13] Let A = [aj,k,m,n] and {αm,n} be the same as in Definition
2.1. Then, a double sequence x = {xm,n} is A-statistical convergent to a
number L with the rate of om,n(αm,n) if for every ε > 0,

P − lim
j,k→∞

∑
(m,n)∈M(ε)

aj,k,m,n = 0,

where
M(ε) :=

{
(m,n) ∈ N2 : |xm,n − L| ≥ ε αm,n

}
.

In this case, it is denoted by

xm,n − L = st
(2)
A − om,n(αm,n) as m,n →∞.

Definition 2.4. [13] Let A = [aj,k,m,n] and {αm,n} be the same as in Definition
2.1. Then, a double sequence x = {xm,n} is A-statistical bounded with the
rate of Om,n(αm,n) if for every ε > 0,

P − lim
j,k

∑
(m,n)∈N(ε)

aj,k,m,n = 0,

where
N(ε) :=

{
(m,n) ∈ N2 : |xm,n| ≥ ε αm,n

}
.

In this case, it is denoted by

xm,n = st
(2)
A −Om,n(αm,n) as m,n →∞.

We see from the above statements that, in Definitions 2.1 and 2.2 the
rate sequence {αm,n} directly effects the entries of the matrix A = [aj,k,m,n]
although, according to Definitions 2.3 and 2.4, the rate is more controlled by
the terms of the sequence x = {xm,n}.

Using these definitions we have the following auxiliary result [13].

Lemma 2.5. [13] Let {xm,n} and {ym,n} be double sequences. Assume that
let A = [aj,k,m,n] be a non-negative RH-regular summability matrix and let
{αm,n} and {βm,n} be positive non-increasing sequences. If xm,n − L1 =
st

(2)
A − o(αm,n) and ym,n − L2 = st

(2)
A − o(βm,n), then we have
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(i) (xm,n − L1) ∓ (ym,n − L2) = st
(2)
A − o(γm,n) as m,n → ∞ , where

γm,n := max {αm,n, βm,n} for each (m,n) ∈ N2,

(ii) λ(xm,n − L1) = st
(2)
A − o(αm,n) as m,n →∞ for any real number λ.

Furthermore, similar conclusions hold with the symbol “o” replaced by “O”.

The above result can easily be modified to obtain the following result
similarly.

Lemma 2.6. [13] Let {xm,n} and {ym,n} be double sequences. Assume that
A = [aj,k,m,n] is a non-negative RH-regular summability matrix and let
{αm,n} and {βm,n} be positive non-increasing sequences. If xm,n − L1 =
st

(2)
A − om,n(αm,n) and ym,n − L2 = st

(2)
A − om,n(βm,n), then we have

(i) (xm,n − L1)∓ (ym,n − L2) = st
(2)
A − om,n(γm,n) as m,n →∞ , where

γm,n := max {αm,n, βm,n} for each (m,n) ∈ N2,

(ii) λ(xm,n −L1) = st
(2)
A − om,n(αm,n) as m,n →∞ for any real number

λ.
Furthermore, similar conclusions hold with the symbol “om,n” replaced by
“Om,n”.

Now we recall the concept of mixed modulus of smoothness. For f ∈
Cb (D), the mixed modulus of smoothness of f , denoted by ωmixed (f ; δ1, δ2),
is defined to be

ωmixed (f ; δ1, δ2) = sup {|∆x,y [f(u, v)]| : |u− x| ≤ δ1, |v − y| ≤ δ2}
for δ1, δ2 > 0. In order to obtain our result, we will make use of the elementary
inequality

ωmixed (f ;λ1δ1, λ2δ2) ≤ (1 + λ1) (1 + λ2)ωmixed (f ; δ1, δ2)

for λ1, λ2 > 0. The modulus ωmixed has been used by several authors in
the framework of “Boolean sum type” approximation (see, for example, [9]).
Elementary properties of ωmixed can be found in [21] (see also [1]) and in
particular for the case of B-continuous functions in [2].

Then we have the following result.

Theorem 2.7. Let {Lm,n} be a sequence of positive linear operators acting
from Cb (D) into B (D) and let A = [aj,k,m,n] be a non-negative RH−regular
summability matrix. Let {αm,n} and {βm,n} be a positive non-increasing dou-
ble sequence. Assume that the following conditions hold:

P − lim
j,k→∞

1
αj,k

∑
(m,n)∈K

aj,k,m,n = 1, (2.1)

where K =
{
(m,n) ∈ N2 : Lm,n(e0;x, y) = 1 for all (x, y) ∈ D

}
; and

ωmixed (f ; γm,n, δm,n) = st
(2)
A − o(βm,n) as m,n →∞, (2.2)

where γm,n :=
√
‖Lm,n(ϕ)‖ and δm,n :=

√
‖Lm,n(Ψ)‖ with ϕ(u, v) =

(u− x)2, Ψ(u, v) = (v − y)2. Then we have, for all f ∈ Cb (D),

‖Lm,n(Fx,y)− f‖ = st
(2)
A − o(cm,n) as m,n →∞,
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where Fx,y is given by (1.1) and cm,n := max {αm,n, βm,n} for each (m,n) ∈
N2. Furthermore, similar results hold when the symbol “o” is replaced by “O”.

Proof. Let (x, y) ∈ D and f ∈ Cb (D) be fixed. It follows from (2.1) that

P − lim
j,k→∞

1
αj,k

∑
(m,n)∈N2\K

aj,k,m,n = 0. (2.3)

Also, since
∆x,y [Fx,y(u, v)] = −∆x,y [f(u, v)] ,

we observe that

Lm,n (Fx,y;x, y)− f(x, y) = Lm,n (∆x,y [Fx,y(u, v)] ; x, y)

holds for all (m,n) ∈ K. Then, using the properties of ωmixed we obtain

|∆x,y [Fx,y(u, v)]| ≤ ωmixed (f ; |u− x| , |v − y|)

≤
(

1 +
1
δ1
|u− x|

) (
1 +

1
δ2
|v − y|

)
×ωmixed (f ; δ1, δ2) .

(2.4)

Hence, using the monotonicity and the linearity of the operators Lm,n, for
all (m,n) ∈ K, it follows from (2.4) that

|Lm,n(Fx,y;x, y)− f (x, y)|
= |Lm,n (∆x,y [Fx,y(u, v)] ; x, y)|
≤ Lm,n (|∆x,y [Fx,y(u, v)]| ;x, y)

≤ Lm,n

((
1 +

1
δ1
|u− x|

) (
1 +

1
δ2
|v − y|

)
;x, y

)
ωmixed (f ; δ1, δ2)

=
{

1 +
1
δ1

Lm,n (|u− x| ;x, y) +
1
δ2

Lm,n (|v − y| ;x, y)

1
δ1δ2

Lm,n (|u− x| . |v − y| ;x, y)
}

ωmixed (f ; δ1, δ2) .

Using the Cauchy-Schwarz inequality, we have

|Lm,n(Fx,y;x, y)− f (x, y)|

≤
{

1 +
1
δ1

√
Lm,n (ϕ;x, y) +

1
δ2

√
Lm,n (Ψ;x, y)

1
δ1δ2

√
Lm,n (ϕ;x, y)

√
Lm,n (Ψ;x, y)

}
ωmixed (f ; δ1, δ2)

(2.5)

for all (m,n) ∈ K. Taking supremum over (x, y) ∈ D on the both-sides of
inequality (2.5) we obtain, for all (m,n) ∈ K, that

‖Lm,n(Fx,y)− f‖ ≤ 4ωmixed (f ; γm,n, δm,n) (2.6)

where δ1 := γm,n :=
√
‖Lm,n(ϕ)‖ and δ2 := δm,n :=

√
‖Lm,n(Ψ)‖. Now,

given ε > 0, define the following sets:

U : =
{
(m,n) ∈ N2 : ‖Lm,n(Fx,y)− f‖ ≥ ε

}
,

U1 : =
{

(m,n) ∈ N2 : ωmixed (f ; γm,n, δm,n) ≥ ε

4

}
.
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Hence, it follows from (2.6) that

U ∩K ⊆ U1 ∩K,

which gives, for all (j, k) ∈ N2,
1

cj,k

∑
(m,n)∈U∩K

aj,k,m,n ≤ 1
cj,k

∑
(m,n)∈U1∩K

aj,k,m,n

≤ 1
cj,k

∑
(m,n)∈U1

aj,k,m,n

≤ 1
βj,k

∑
(m,n)∈U1

aj,k,m,n. (2.7)

where cm,n = max {αm,n, βm,n}. Letting j, k → ∞ (in any manner) in (2.7)
and from (2.2), we conclude that

P − lim
j,k→∞

1
cj,k

∑
(m,n)∈U∩K

aj,k,m,n = 0. (2.8)

Furthermore, we use the inequality∑
(m,n)∈U

aj,k,m,n =
∑

(m,n)∈U∩K

aj,k,m,n +
∑

(m,n)∈U∩(N2\K)

aj,k,m,n

≤
∑

(m,n)∈U∩K

aj,k,m,n +
∑

(m,n)∈N2\K

aj,k,m,n

which gives,
1

cj,k

∑
(m,n)∈U

aj,k,m,n ≤
1

cj,k

∑
(m,n)∈U∩K

aj,k,m,n +
1

αj,k

∑
(m,n)∈N2\K

aj,k,m,n.

(2.9)
Letting j, k → ∞ (in any manner) in (2.9) and from (2.8) and (2.3), we
conclude that

P − lim
j,k→∞

1
cj,k

∑
(m,n)∈U

aj,k,m,n = 0.

The proof is completed. �

The following similar result holds.

Theorem 2.8. Let {Lm,n} be a sequence of positive linear operators acting
from Cb (D) into B (D) and let A = [aj,k,m,n] be a non-negative RH−regular
summability matrix. Let {αm,n} and {βm,n} be a positive non-increasing dou-
ble sequence. Assume that the following conditions holds:

P − lim
j,k→∞

∑
(m,n)∈K

aj,k,m,n = 1, (2.10)

where K =
{
(m,n) ∈ N2 : Lm,n(e0;x, y) = 1 for all (x, y) ∈ R2

}
; and

ωmixed (f ; γm,n, δm,n) = st
(2)
A − om,n(βm,n) as m,n →∞, (2.11)
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where γm,n :=
√
‖Lm,n(ϕ)‖ and δm,n :=

√
‖Lm,n(Ψ)‖ with ϕ(u, v) =

(u− x)2, Ψ(u, v) = (v − y)2. Then we have, for all f ∈ Cb (D),

‖Lm,n(Fx,y)− f‖ = st
(2)
A − om,n(βm,n) as m,n →∞,

where Fx,y is given by (1.1). Similar results hold when little “om,n” is replaced
by capital “Om,n”.

3. Concluding remarks

1) Specializing the sequences {αm,n} and {βm,n} in Theorem 2.7 or
Theorem 2.8 we can easily get Theorem 1.1. Thus, Theorem 2.7 gives us the
rates of A−statistical convergence of the operators Lm,n from Cb (D) into
B (D).

2) Replacing the matrix A by a double identity matrix and taking
αm,n = βm,n = 1 for all m,n ∈ N, we get the ordinary rate of convergence of
the operators Lm,n.
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Solution of a nonlinear system of second kind
Lagrange’s equations by fixed-point method

Ljubomir Georgiev and Konstantin Kostov

Abstract. The effect of forces acting upon a ferromagnetic rotational
ellipsoid located in a homogeneous rotating magnetic field is consid-
ered. Lagrange’s equations of the second kind connecting the motion
parameters of a particle with torques acting upon it are composed. A
non-homogeneous nonlinear autonomous system of second-order differ-
ential equations is obtained. That system is not solvable by quadrature.
A solution by fixed-point method is proposed in this paper.

Mathematics Subject Classification (2010): 74H20, 74H25, 47H10, 58C30.

Keywords: Fixed point, Lagrange’s equations, differential equations.

1. Introduction

The principle of rotating magnetic field is applied in designing machines
that intensify some technological processes like milling, emulsifying, mixing,
etc. Ferromagnetic working particles are placed in the so-called active volume
of the machine where they are driven by the field and exert a force-applying
effect upon the treated material. It is characteristic for their motion that
due to frequent collisions these particles are always in transition mode, i. e.
the angle between the field vector and the longitudinal axis of the working
particle changes. It can be assumed that after each collision there emerges a
motion of new initial conditions. Calculating precisely the technological effect
obtained requires good knowledge of the law of motion at arbitrary initial
conditions. Our goal is to establish the existence of unique solution of the
initial value problem for the corresponding system of two nonlinear second-
order differential equations. We take advantage of the fixed point method
to do this. At the end of this paper we present a sequence of successive
analytical approximations of the solution, which belongs to a suitable subset
of the space C([0,∞)).
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2. Physical model

A ferromagnetic rotational ellipsoid, formed by the rotation of an ellipse
of axes 2a and 2b around its long axis of length 2a and located in a homo-

geneous rotating magnetic field of flux-density modulus
→
B0, is considered. In

this case the ellipsoid is homogeneously magnetized, which makes possible
the analytical determination of its electromagnetic torque.

Fig. 1

Fig. 1 shows a layout of the particle, magnetic flux density and respective
torque

→
M . The denotations ([3]) are as follows:

→
a is a vector applied to the

center of the ellipsoid and directed along its axis. It shows the spatial position
of the particle considered (

∣∣∣→a ∣∣∣ is equal to the long (rotational) half-axis a of

the ellipsoid). α is the smaller angle between vectors
→
B0 and

→
a , ω is the

angular velocity of the rotating magnetic field, ωt + θ is the angle between

the axis z and field vector
→
B0, γ is the angle formed between the plane xOz

and vector
→
a ,

→
axz is a vector component of

→
a (its projection onto the plane

xOz), δ is the angle between
→
B0 and

→
axz. Denoted α, γ, ωt + θ and δ are

oriented angles between vectors or between vectors and axes.
The synchronous reactive torque is determined in [3]:

M = −KB0
2 sin 2α = −M0 sin 2α (2.1)

Vector
→
M is perpendicular to the plane defined by 2

→
a and

→
B0 and it

is of the same direction as that of
→
a′ ×

→
B0. Here,

→
a′ is the vector along the

ellipsoid’s long axis, which makes with
→
B0 an angle smaller than

π

2
.

Angles γ and δ are selected as generalized coordinates, defining uniquely
the spatial position of the ellipsoid. An additional axis u lying in the plane
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xOz and being at a positive angle
π

2
with respect to

→
axz is introduced.

The synchronous torque
→
M is decomposed along the axes y, u and

→
axz,

([5]):
→
M=

→
My +

→
Mu +

→
Ma, where My = −M0 sin 2δ, Mu = Mxzu =

−M0 cos2 δ sin 2γ, and Ma = Mxza = −M0 sin 2δ sin γ are scalar components
of

→
M along the respective axes.

The kinetic energy of the ellipsoid has the form:

T =
1
2
J

(
ω + δ̇

)2

+
1
2
Jγ̇2 +

1
2
Jaϕ̇2, (2.2)

where Ja is the inertia torque of the rotational ellipsoid with respect to the
axis 2a, J is the inertia torque of the rotational ellipsoid with respect to the
axis 2b that goes through its center of gravity and is perpendicular to

→
a ,

ϕ̇ is the angular velocity of the ellipsoid in its rotation around the axis 2a.
Therefore, ϕ is the third generalized coordinate. Let us read ϕ from the line,
which is located further away from the plane xOz and in which the plane
formed by

→
a and

→
axz crosses the ellipsoid at the initial time point t = 0. We

assume the positive direction should be determined by the right-hand screw
rule with axis

→
a .

A torque defined by currents acts on the ellipsoid as well. Its average
value ([5]) is

→
Me= −

→
j Mγ cos3 γδ̇, (2.3)

where Mγ =
πµ2

rσB2
0d4l

256(1 + µrNl)2(1 + k4d4/256)
is the current torque for γ =

0 at δ̇ = 1 rad/s. For a cylinder of determined size and given magnetic
permeability Mγ = const.

The torque Me acts along the axis y and exhibits itself only when there
is a difference between the angular velocities of the field and particle along
the axis y. The negative sign indicates that this torque opposes the change
in the angle δ. Besides the driving torques considered so far, there is also
a hysteresis torque that will be neglected for we consider a particle made of
soft-magnetic material and because of considerations related to its shape ([4]).
There exist resisting torques as well, resulting from the friction forces. Due
to the small size of the ellipsoid the linear velocities are of low values, and we
can consequently assume that frictional torques are proportional to the first
power of the respective angular velocity. Correspondingly, the proportionality
factors for motions along δ and along γ are equal to each other for in both
cases the rotation is realized around the axis 2b of the ellipsoid. Having in
mind that torques Mu, My, and Ma act along the direction of generalized
coordinates γ, δ, and ϕ, respectively, we compose the following system of
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Lagrange’s differential equations of the second order ([6]):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d

dt

∂T

∂γ̇
− ∂T

∂γ
= Mu − k1γ̇

d

dt

∂T

∂δ̇
− ∂T

∂δ
= My −Mγ δ̇ cos3 γ − k1(ω + δ̇)

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
= Ma − k2ϕ̇.

Here, k1γ̇, k1(ω + δ̇) and k2ϕ̇ are frictional torques in tracing out the
respective angles, and k1 and k2 are proportionality factors. The negative
signs before the frictional torques indicate that they are inversely proportional
to respective angular velocities. We replace with the torques derived above
and obtain ∣∣∣∣∣∣∣∣∣∣

Jγ̈ = −M0 cos2 δ sin 2γ − k1γ̇

J δ̈ = −M0 sin 2δ −Mγ δ̇ cos3 γ − k1δ̇ − k1ω

Jaϕ̈ = −M0 sin 2δ sin γ − k2ϕ̇.

(2.4)

The Lagrange’s equations (2.4) describe the motion of a rotational ellip-
soid placed in general position in a homogeneous magnetic field, rotating with
constant angular velocity, for every time instant. This is a non-homogeneous
nonlinear autonomous system of differential equations of second order. The
system is unsolvable by quadrature. We notice that the first two equations
are independent of the third one. In addition, the latter does not contribute
to solving the formulated problem as rotation around the axis

→
a does not

exert any technological effect.

3. Mathematical model

Let us consider the system composed by the first two equations, assum-
ing that the current torque is much smaller than the synchronous one, which
means we can neglect it. We obtain:∣∣∣∣∣∣

Jγ̈ = −M0 cos2 δ sin 2γ − k1γ̇

J δ̈ = −M0 sin 2δ − k1δ̇ − k1ω.
(3.1)

The system (3.1) is unsolvable by quadrature, too. We seek a solution
by means of contraction mapping principle ([1], [2], [7]) for it.

We denote by M =
M0

J
> 0, k =

k1

J
> 0 and obtain the system{

γ̈ = −M cos2 δ sin 2γ − kγ̇

δ̈ = −M sin 2δ − kδ̇ − kω.
(3.2)



Nonlinear system of second kind Lagrange’s equations 109

where γ = γ(t), δ = δ(t), t ∈ [0,∞), with the corresponding initial conditions
at t = 0.

Consider the second equation of the system (3.2).
If δ is a solution of

δ̈ = −M sin 2δ − kδ̇ − kω (3.3)

then (δ̈(s) + kδ̇(s))eks = −(M sin 2δ(s) + kω)eks. After integrating along s

from 0 to τ , we obtain: δ̇(τ) = (ω+ δ̇(0))e−kτ −ω−Me−kτ

∫ τ

0

eks sin 2δ(s)ds

and integrating once again along τ from 0 to t, we obtain:

δ(t) = δ(0) +
ω + δ̇(0)

k
(1− e−kt)− ωt−M

∫ t

0

∫ τ

0

e−k(τ−s) sin 2δ(s)dsdτ =

= δ(0)+
ω + δ̇(0)

k
(1−e−kt)−ωt−M

∫ t

0

(∫ t

s

e−k(τ−s)dτ

)
sin 2δ(s)ds =

= δ(0) +
ω + δ̇(0)

k
(1− e−kt)− ωt− M

k

∫ t

0

(
1− e−k(t−s)

)
sin 2δ(s)ds,

which means that
δ(t) = G(δ)(t), ∀t ≥ 0, (3.4)

where the operator G is defined on a suitable subset B of the space of the
functions continuous in [0,∞):

G(f)(t)=δ(0)+
ω+δ̇(0)

k
(1− e−kt)−ωt−M

k

∫ t

0

(1− e−k(t−s)) sin 2f(s)ds, t ≥ 0.

(3.5)
If δ is a continuous solution of (3.4) then

δ̇ =(ω + δ̇(0))e−kt− ω − M

k
sin 2δ(t)+

M

k

d

dt

(
e−kt

∫ t

0

eks sin 2δ(s)ds
)

=

= (ω + δ̇(0))e−kt − ω −M

∫ t

0

e−k(t−s) sin 2δ(s)ds;

δ̈ = −k(ω + δ̇(0))e−kt + Mk

∫ t

0

e−k(t−s) sin 2δ(s)ds−M sin 2δ(t) =

= −M sin 2δ(t)− kδ̇ − kω.
In other words, δ is a twice-differentiable function satisfying (3.3).

By means of analogous transformations on the first of equations from
(3.2) we reduce the system (3.2) to the following one:{

γ(t) = Fδ(γ)(t), ∀t ≥ 0
δ(t) = G(δ)(t), ∀t ≥ 0 , (3.6)

where G is defined as (3.5) and for any fixed function f ∈ B the operator F
is defined on the same set B as follows: F (g) = Ff (g), and for any t ≥ 0:

Ff (g)(t)=γ(0)+
γ̇(0)
k

(1− e−kt)− M

k

∫ t

0

(1− e−k(t−s)) cos2 f(s) sin 2g(s)ds.

(3.7)
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Remark 3.1. One can try to use various kinds of schemes to find numerical
approximations of the solution of the system (3.1). For example, one can
seek the approximations with some methods such as Runge-Kutta methods
(or Euler’s method, or Newton’s method) for the corresponding system:{

ẋ(t) = F (x(t)), 0 < t < T0

x(0) = x0,

where x(t) = (x1(t), x2(t), x3(t), x4(t))T ,
F (x) = (F1(x), F2(x), F3(x), F4(x))T ; x1 = δ, x2 = γ, x3 = δ̇, x4 = γ̇;
F1 = x3, F2 = x4, F3 = −Msin2x1−kx3−kω, F4 = −Mcos2x1sin2x2−kx4.

But does the last nonlinear system have a solution and whether, if the
system has a solution, it is only one?

We look for global solution of the system (3.6) (resp. of the system
(3.1)).

In what follows we give a proof (by means of fixed point method) that
there exists a unique solution.

Define the set B : B =
{
h ∈ C ([0,∞)) : |h(t)| ≤ Ceλt, ∀t ≥ 0

}
with constants λ > m, m = max

{
3M

k
, ω +

M

k

}
= max

{
3M0

k1
, ω +

M0

k1

}
,

and

C = |δ(0)|+

∣∣∣ω + δ̇(0)
∣∣∣

k
+ |γ(0)|+ |γ̇(0)|

k
+

1
2
.

Norm in B is introduced as follows:

‖f‖B = sup
{
e−λt |f(t)| : t ≥ 0

}
, f ∈ B,

and with the corresponding metrics: d(f, f) =
∥∥f − f

∥∥
B

(
f, f ∈ B

)
the set

B becomes a complete metric space.
Define the product space E = B× B with a norm:

‖(g, f)‖ = ‖g‖B + ‖f‖B .

With the corresponding metrics d
(
(g, f), (g, f)

)
= ‖g − g‖B +

∥∥f − f
∥∥

B
, E

becomes a Banach space.
Define on E the operator T : T ((g, f)) = (Ff (g), G(f)) , (g, f) ∈ E.
It has the following properties: T ((g, f)) ∈ E, ∀(g, f) ∈ E.
Indeed, G(f), Ff (g) are continuous functions in [0,∞);

e−λt |G(f)(t)| ≤ e−λt |a(t)|+ M

k
te−λt ≤ |δ(0)|+

∣∣∣ω + δ̇(0)
∣∣∣

k
+

(
ω +

M

k

)
· 1
λe

,

consequently e−λt |G(f)(t)| ≤ |δ(0)|+

∣∣∣ω + δ̇(0)
∣∣∣

k
+

1
e

< C

(a(t) = δ(0) +
ω + δ̇(0)

k
(1− e−kt)− ωt, t ≥ 0);

e−λt |Ff (g)(t)| ≤ |γ(0)|+ |γ̇(0)|
k

+
M

k
· 1
λe

≤ |γ(0)|+ |γ̇(0)|
k

+
1
e

< C.
Moreover,
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d
(
T ((g, f)), T ((g, f))

)
=

∥∥∥Ff (g)− Ff (g)
∥∥∥

B
+

∥∥G(f)−G(f)
∥∥

B
=

=
M

k
sup
t≥0

{
e−λt

∫ t

0

(1− e−k(t−s))[cos2f(s) sin 2g(s)−cos2f(s) sin 2g(s)]ds

}
+

+
M

k
sup
t≥0

{
e−λt

∫ t

0

(1− e−k(t−s))[sin(2f(s))− sin(2f(s))]ds

}
≤

≤M

k
sup
t≥0

{
e−λt

∫ t

0

∣∣2 sin(g(s)−g(s)) cos2(f(s)) cos(g(s)+g(s))
∣∣ ds

}
+

+
M

k
sup
t≥0

{
e−λt

∫ t

0

∣∣sin(f(s)− f(s)) sin(2g(s)) sin(f(s) + f(s))
∣∣ ds

}
+

+
M

k
sup
t≥0

{
e−λt

∫ t

0

(1− e−k(t−s))
∣∣2 sin(f(s)−f(s)) cos(f(s)+f(s))

∣∣ ds

}
≤

≤ 2M

k
sup
t≥0

{
e−λt

∫ t

0

|g(s)− g(s)| ds

}
+

3M

k
sup
t≥0

{
e−λt

∫ t

0

∣∣f(s)− f(s)
∣∣ ds

}
,

from where we obtain:

d
(
T ((g, f)), T ((g, f))

)
≤

≤ M

k

(
2 ‖g − g‖B + 3

∥∥f − f
∥∥

B

)
sup
t≥0

{
e−λt

∫ t

0

eλsds

}
≤

≤ M

kλ

(
2 ‖g − g‖B + 3

∥∥f − f
∥∥

B

)
.

Therefore d
(
T ((g, f)), T ((g, f))

)
≤ βd

(
(g, f), (g, f)

)
,

i. e. T is a contraction operator on E with Lipschitz constant β =
3M

kλ
< 1.

In view of contraction mapping principle T has a unique fixed point on
E, which allows us making the following conclusion:

4. Conclusion

The system (3.1) has a unique solution (γ, δ) the coordinate functions
of which belong to the set B. The solution can be obtained as the limit (in
B× B) of the sequence of successive approximations {(gn, fn)}∞n=0:

g0(t) = γ(0) +
γ̇(0)
k

(
1− e−kt

)
;

f0(t) = δ(0) +
ω + δ̇(0)

k

(
1− e−kt

)
, ∀t ≥ 0 ((g0, f0) ∈ E) ;

fn(t) = f0(t)− ωt− M

k

∫ t

0

(
1− e−k(t−s)

)
sin[2fn−1(s)]ds, n=1,2,...

gn(t) = g0(t)−
M

k

∫ t

0

(
1− e−k(t−s)

)
cos2[fn−1(s)] sin[2gn−1(s)]ds, n=1,2,...

As we have already shown, the limit of {(gn, fn)}∞n=0 in E is the unique
fixed point of the operator T . In particular, the limit of {fn}∞n=0 in B is the
function δ and therefore, the limit of {gn}∞n=0 in B is the function γ, that
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is the unique fixed point of T is the ordered pair (γ, δ), which is the unique
solution (in E) of the system (5′′), and respectively – of the system (3.1).
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On the nonlocal initial value problem
for first order differential systems

Octavia Nica and Radu Precup

Abstract. The aim of the is to study the existence of solutions of ini-
tial value problems for nonlinear first order differential systems with
nonlocal conditions. The proof will rely on the Perov, Schauder and
Leray-Schauder fixed point principles which are applied to a nonlinear
integral operator splitted into two parts, one of Fredholm type for the
subinterval containing the points involved by the nonlocal condition, and
an another one of Volterra type for the rest of the interval. The novelty
in this paper is that this approach is combined with the technique that
uses convergent to zero matrices and vector norms.

Mathematics Subject Classification (2010): 34A34, 34A12, 45G10.

Keywords: Nonlinear differential system, nonlocal initial condition, fixed
point theorem, vector norm, matrix convergent to zero.

1. Introduction

In this paper we deal with the nonlocal initial value problem for the
first order differential system

x′ (t) = f (t, x (t) , y(t))

y′ (t) = g (t, x (t) , y(t)) (a.e. on [0, 1])

x (0) +
m∑
k=1

akx(tk) = 0

y (0) +
m∑
k=1

ãky(tk) = 0.

(1.1)

Here f, g : [0, 1]×R2 → R are Carathéodory functions, tk are given points
with 0 ≤ t1 ≤ t2 ≤ ... ≤ tm < 1 and ak, ãk are real numbers with

1 +
m∑
k=1

ak 6= 0 and 1 +
m∑
k=1

ãk 6= 0.
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Notice that the nonhomogeneous nonlocal initial conditions
x (0) +

m∑
k=1

akx(tk) = x0

y (0) +
m∑
k=1

ãky(tk) = y0

can always be reduced to the homogeneous ones (with x0 = y0 = 0) by the
change of variables x1(t) := x(t)− a x0 and y2(t) := y(t)− ã y0, where

a =

(
1 +

m∑
k=1

ak

)−1

and ã =

(
1 +

m∑
k=1

ãk

)−1

.

According to [2], Problem (1.1) is equivalent to the following integral system
in C [0, 1]2 :

x(t) = −a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

y(t) = −ã
m∑
k=1

ãk

∫ tk

0

g (s, x (s) , y(s)) ds+
∫ t

0

g (s, x (s) , y(s)) ds.

This can be viewed as a fixed point problem in C [0, 1]2 for the completely
continuous operator T = (T1, T2), T : C [0, 1]2 → C [0, 1]2 , where T1 and T2

are given by

T1(x, y)(t) = −a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds,

T2(x, y)(t) = −ã
m∑
k=1

ãk

∫ tk

0

g (s, x (s) , y(s)) ds+
∫ t

0

g (s, x (s) , y(s)) ds.

Operators T1 and T2 appear as sums of two integral operators, one of Fred-
holm type, whose values depend only on the restrictions of functions to
[0, tm], and the other one, a Volterra type operator depending on the re-
strictions to [tm, 1] , as this was pointed out in [3]. Thus, T1 can be rewritten
as T1 = TF1 + TV1 , where

TF1(x, y)(t) =



−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds,

if t < tm

−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ tm

0

f (s, x (s) , y(s)) ds,

if t ≥ tm
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and

TV1(x, y)(t) =


0, if t < tm∫ t

tm

f (s, x (s) , y(s)) ds, if t ≥ tm.

Similarly, T2 = TF2 + TV2 , where

TF2(x, y)(t) =



−ã
m∑
k=1

ãk

∫ tk

0

g (s, x (s) , y(s)) ds+
∫ t

0

g (s, x (s) , y(s)) ds,

if t < tm

−ã
m∑
k=1

ãk

∫ tk

0

g (s, x (s) , y(s)) ds+
∫ tm

0

g (s, x (s) , y(s)) ds,

if t ≥ tm

and

TV2(x, y)(t) =


0, if t < tm∫ t

tm

g (s, x (s) , y(s)) ds, if t ≥ tm.

This allows us to split the growth condition on the nonlinear terms f(t, x, y)
and g(t, x, y) into two parts, one for t ∈ [0, tm] and another one for t ∈
[tm, 1] , in a such way that one reobtains the classical growth when tm = 0,
that is for the local initial condition x(0) = 0. In what follows, the notation
|x|C[a,b] stands for the max-norm on C [a, b]

|x|C[a,b] = maxt∈[a,b] |x(t)| ,

while ‖x‖C[a,b] denotes the Bielecki norm

‖x‖C[a,b] =
∣∣∣x (t) e−θ(t−a)

∣∣∣
C[a,b]

for some suitable θ > 0.
Nonlocal initial value problems were extensively discussed in the lit-

erature by different methods (see for example [2], [3], [5], [6], [8], [10]). The
results in the present paper extend to systems those established for equations
in [3]. The method could be adapted to treat systems of evolution equations
as this was done for equations in [4].

In the next section three different fixed point principles will be used in
order to prove the existence of solutions for the semilinear problem, namely
the fixed point theorems of Perov, Schauder and Leray-Schauder (see [10]).
In all three cases a key role will be played by the so called convergent to
zero matrices. A square matrix M with nonnegative elements is said to be
convergent to zero if

Mk → 0 as k →∞.

It is known that the property of being convergent to zero is equivalent to
each of the following three conditions (for details see [10], [11]):
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(a) I −M is nonsingular and (I −M)−1 = I +M +M2 + ... (where I
stands for the unit matrix of the same order as M);

(b) the eigenvalues of M are located inside the unit disc of the complex
plane;

(c) I −M is nonsingular and (I −M)−1 has nonnegative elements.

The following lemma, whose proof is immediate from characterization
(b) of convergent to zero matrices, will be used in the sequel:

Lemma 1.1. If A is a square matrix that converges to zero and the elements
of an other square matrix B are small enough, then A+B also converges to
zero.

We finish this introductory section by recalling (see [1], [10]) three fun-
damental results which will be used in the next sections. LetX be a nonempty
set. By a vector-valued metric on X we mean a mapping d : X ×X → Rn

+

such that

(i) d(u, v) ≥ 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

Here, if x, y ∈ Rn, x = (x1, x2, ..., xn), y = (y1, y2, ..., yn), by x ≤ y we mean
xi ≤ yi for i = 1, 2, ..., n. We call the pair (X, d) a generalized metric space.
For such a space convergence and completeness are similar to those in usual
metric spaces.

An operator T : X → X is said to be contractive (with respect to the
vector-valued metric d on X) if there exists a convergent to zero matrix M
such that

d(T (u), T (v)) ≤Md(u, v) for all u, v ∈ X.

Theorem 1.2 (Perov). Let (X, d) be a complete generalized metric space and
T : X → X a contractive operator with Lipschitz matrix M. Then T has a
unique fixed point u∗ and for each u0 ∈ X we have

d(T k(u0), u∗) ≤Mk(I −M)−1d(u0, T (u0)) for all k ∈ N.

Theorem 1.3 (Schauder). Let X be a Banach space, D ⊂ X a nonempty
closed bounded convex set and T : D → D a completely continuous operator
(i.e., T is continuous and T (D) is relatively compact). Then T has at least
one fixed point.

Theorem 1.4 (Leray–Schauder). Let (X, || . ||) be a Banach space, R > 0,
BR(0;X) = {u ∈ X : ‖u‖ ≤ R} and T : BR(0;X) → X a completely
continuous operator. If ||u|| < R for every solution u of the equation u =
λT (u) and any λ ∈ (0, 1), then T has at least one fixed point.

Throughout the paper we shall assume that the following conditions are
satisfied:

(H1) 1 +
m∑
k=1

ak 6= 0 and 1 +
m∑
k=1

ãk 6= 0.
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(H2) f, g : [0, 1]×R2 → R is such that f(., x, y), g(., x, y) are measurable
for each (x, y) ∈ R2 and f(t, ., .), g(t, ., .) are continuous for almost all t ∈
[0, 1].

2. Nonlinearities with the Lipschitz property.
Application of Perov’s fixed point theorem

Here we show that the existence of solutions of problem (1.1) follows
from Perov’s fixed point theorem in case that f, g satisfy Lipschitz conditions
in x and y :

|f(t, x, y)− f(t, x, y)| ≤

{
b1 |x− x|+ b̃1 |y − y| if t ∈ [0, tm]

c1 |x− x|+ c̃1 |y − y| if t ∈ [tm, 1] ,
(2.1)

|g(t, x, y)− g(t, x, y)| ≤

{
B1 |x− x|+ B̃1 |y − y| if t ∈ [0, tm]

C1 |x− x|+ C̃1 |y − y| if t ∈ [tm, 1]
(2.2)

for all x, y, x, y ∈ R.

Theorem 2.1. If f, g satisfy the Lipschitz conditions (2.1), (2.2) and the ma-
trix

M0 :=

[
b1tmA1 b̃1tmA1

B1tmA2 B̃1tmA2

]
(2.3)

converges to zero, then problem (1.1) has a unique solution.

Proof. We shall apply Perov’s fixed point theorem in C [0, 1]2 endowed with
the vector norm ‖.‖ defined by

‖u‖ = (‖x‖ , ‖y‖)

for u = (x, y) , where for z ∈ C [0, 1] , we let

‖z‖ = max
{
|z|C[0,tm] , ‖z‖C[tm,1]

}
.

We have to prove that T is contractive, more exactly that

‖T (u)− T (u)‖ ≤Mθ ‖u− u‖

for all u = (x, y), u = (x, y) ∈ C [0, 1]2 and some matrix Mθ converging to
zero. To this end, let u = (x, y), u = (x, y) be any elements of C [0, 1]2 . For
t ∈ [0, tm] , if we denote

A1 := 1 + |a|
m∑
k=1

|ak| ,
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we have

|T1(x, y)(t)− T1(x, y)(t)|

=

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

+a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds−
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ A1

∫ tm

0

|f (s, x (s) , y(s))− f (s, x (s) , y(s))| ds

≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm] .

Taking the supremum, we obtain that

|T1(x, y)− T1(x, y)|C[0,tm] ≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm] .

(2.4)
For t ∈ [tm, 1] and any θ > 0, we have

|T1(x, y)(t)− T1(x, y)(t)|

=

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

+a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds−
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm]

+
∫ t

tm

(c1 |x(s)x− x(s)|+ c̃1 |y(s)− y(s)| ) ds.

The last integral can be further estimated as follows:∫ t

tm

(c1 |x(s)x− x(s)|+ c̃1 |y(s)− y(s)| ) ds

= c1

∫ t

tm

|x(s)− x(s)| · e−θ(s−tm) · eθ(s−tm)ds

+c̃1
∫ t

tm

|y(s)− y(s)| · e−θ(s−tm) · eθ(s−tm)ds

≤ c1
θ
eθ(t−tm) ‖x− x‖C[tm,1]

+
c̃1
θ
eθ(t−tm) ‖y − y‖C[tm,1]

.

Thus

|T1(x, y)(t)− T1(x, y)(t)|
≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm]

+
c1
θ
eθ(t−tm) ‖x− x‖C[tm,1]

+
c̃1
θ
eθ(t−tm) ‖y − y‖C[tm,1]

.
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Dividing by eθ(t−tm) and taking the supremum when t ∈ [tm, 1], we obtain

‖T1(x, y)− T1(x, y)‖C[tm,1]
(2.5)

≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm]

≤ c1
θ
‖x− x‖C[tm,1]

+
c̃1
θ
‖y − y‖C[tm,1]

.

Now (2.4) and (2.5) imply that

‖T1(x, y)− T1(x, y)‖ ≤
(
b1tmA1 +

c1
θ

)
‖x− x‖+

(
b̃1tmA1 +

c̃1
θ

)
‖y − y‖ .

(2.6)
Similarly

‖T2(x, y)− T2(x, y)‖≤
(
B1tmA2 +

C1

θ

)
‖x− x‖+

(
B̃1tmA2 +

C̃1

θ

)
‖y − y‖ ,

(2.7)
where

A2 = 1 + |ã|
m∑
k=1

|ãk| .

Using the vector norm we can put both inequalities (2.6), (2.7) under the
vector inequality

‖T (u)− T (u)‖ ≤Mθ ‖u− u‖ ,
where

Mθ =

[
b1tmA1 + c1

θ b̃1tmA1 + c̃1
θ

B1tmA2 + C1
θ B̃1tmA2 + C̃1

θ

]
. (2.8)

Clearly matrix Mθ can be represented as Mθ = M0 +M1, where

M1 =

[
c1
θ

c̃1
θ

C1
θ

C̃1
θ

]
.

Since M0 is assumed to be convergent to zero, from Lemma 1.1 we have that
Mθ also converges to zero for large enough θ > 0. The result follows now
from Perov’s fixed point theorem. �

3. Nonlinearities with growth at most linear.
Application of Schauder’s fixed point theorem

Here we show that the existence of solutions of problem (1.1) follows
from Schauder’s fixed point theorem in case that f, g satisfy instead of the
Lipschitz condition the more relaxed condition of at most linear growth:

|f(t, x, y)| ≤

{
b1 |x|+ b̃1 |y|+ d1 if t ∈ [0, tm]

c1 |x|+ c̃1 |y|+ d2 if t ∈ [tm, 1] ,
(3.1)
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|g(t, x, y)| ≤

{
B1 |x|+ B̃1 |y|+D1 if t ∈ [0, tm]

C1 |x|+ C̃1 |y|+D2 if t ∈ [tm, 1] .
(3.2)

Theorem 3.1. If f, g satisfy (3.1), (3.2) and the matrix (2.3) converges to
zero, then problem (1.1) has at least one solution.

Proof. In order to apply Schauder’s fixed point theorem, we look for a
nonempty, bounded, closed and convex subset B of C [0, 1]2 so that T (B) ⊂
B. Let x, y be any elements of C [0, 1] .
For t ∈ [0, tm] , we have

|T1(x, y)(t)| =

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ A1

∫ tm

0

|f (s, x (s) , y(s))| ds

≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] + d1tmA1.

Taking the supremum, we obtain that

|T1(x, y)|C[0,tm] ≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] . (3.3)

For t ∈ [tm, 1] and any θ > 0, we have

|T1(x, y)(t)| =

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] + d1tmA1

+
∫ t

tm

(c1 |x(s)|+ c̃1 |y(s)|+ d2 ) ds

≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] + d1tmA1 + (1− tm)d2

+ c1

∫ t

tm

|x(s)| · e−θ(s−tm) · eθ(s−tm)ds

+ c̃1

∫ t

tm

|y(s)| · e−θ(s−tm) · eθ(s−tm)ds

≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] + c0

+
c1
θ
eθ(t−tm) ‖x‖C[tm,1]

+
c̃1
θ
eθ(t−tm) ‖y‖C[tm,1]

,

where c0 = d1tmA1 +(1− tm)d2. Dividing by eθ(t−tm) and taking the supre-
mum, it follows that

‖T1(x, y)‖C[tm,1]
≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] (3.4)

+
c1
θ
‖x‖C[tm,1]

+
c̃1
θ
‖y‖C[tm,1]

+ c0.
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Clearly (3.3), (3.4) give

‖T1(x, y)‖ ≤
(
b1tmA1 +

c1
θ

)
‖x‖+

(
b̃1tmA1 +

c̃1
θ

)
‖y‖+ c̃0, (3.5)

where c̃0 = max {d1tmA1, c0} . Similarly

‖T2(x, y)‖ ≤
(
B1tmA2 +

C1

θ

)
‖x‖+

(
B̃1tmA2 +

C̃1

θ

)
‖y‖+ C̃0, (3.6)

with C̃0 = max {D1tmA2, C0} . Now (3.5), (3.6) can be put together as[
‖T1(x, y)‖
‖T2(x, y)‖

]
≤Mθ

[
‖x‖
‖y‖

]
+

[
c̃0

C̃0

]
,

where matrix Mθ is given by (2.8) and converges to zero for large enough
θ > 0. Next we look for two positive numbers R1, R2 such that if ‖x‖ ≤
R1, ‖y‖ ≤ R2, then ‖T1(x, y)‖ ≤ R1, ‖T2(x, y)‖ ≤ R2. To this end it is
sufficient that

(
b1tmA1 + c1

θ

)
R1 +

(
b̃1tmA1 + c̃1

θ

)
R2 + c̃0 ≤ R1(

B1tmA2 + C1
θ

)
R1 +

(
B̃1tmA2 + C̃1

θ

)
R2 + C̃0 ≤ R2,

(3.7)

or equivalently

Mθ

[
R1

R2

]
+

[
c̃0

C̃0

]
≤

[
R1

R2

]
,

whence [
R1

R2

]
≥ (I −Mθ)

−1

[
c̃0

C̃0

]
.

Notice that I −Mθ is invertible and its inverse (I −Mθ)
−1 has nonnegative

elements since Mθ converges to zero. Thus, if

B =
{
(x, y) ∈ C[0, 1]2 : ‖x‖ ≤ R1, ‖y‖ ≤ R2

}
,

then T (B) ⊂ B and Schauder’s fixed point theorem can be applied. �

4. More general nonlinearities.
Application of the Leray-Schauder principle

We now consider that nonlinearities f, g satisfy more general growth
conditions, namely:

|f(t, u)| ≤

{
ω1(t, |u|e) if t ∈ [0, tm]

α(t)β1(|u|e), if t ∈ [tm, 1],
(4.1)

|g(t, u)| ≤

{
ω2(t, |u|e) if t ∈ [0, tm]

α(t)β2(|u|e) if t ∈ [tm, 1],
(4.2)
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for all u = (x, y) ∈ R2, where by |u|e we mean the Euclidean norm in R2.
Here ω1, ω2 are Carathéodory functions on [0, tm]×R+, nondecreasing in their
second argument, α ∈ L1 [tm, 1] , while β1, β2 : R+ → R+ are nondecreasing
and 1/β1, 1/β2 ∈ L1

loc(R+).

Theorem 4.1. Assume that conditions (4.1), (4.2) hold. In addition assume
that there exists a positive number R0 such that for ρ = (ρ1, ρ2) ∈ (0,∞)2

1
ρ1

∫ tm

0

ω1(t, |ρ|e)dt ≥
1
A1

1
ρ2

∫ tm

0

ω2(t, |ρ|e)dt ≥
1
A2

implies |ρ|e ≤ R0 (4.3)

and ∫ ∞

R∗

dτ

β1(τ) + β2(τ)
>

∫ 1

tm

α(s)ds, (4.4)

where R∗ =

[(
A1

∫ tm

0

ω1(t, R0)dt
)2

+
(
A2

∫ tm

0

ω2(t, R0)dt
)2
]1/2

.

Then problem (1.1) has at least one solution.

Proof. The result will follow from the Leray-Schauder fixed point theorem
once we have proved the boundedness of the set of all solutions to equations
u = λT (u), for λ ∈ [0, 1]. Let u = (x, y) be such a solution. Then, for
t ∈ [0, tm], we have

|x(t)| = |λT1(x, y)(t)| (4.5)

= λ

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤

(
1 + |a|

m∑
k=1

|ak|

)∫ tm

0

|f (s, x (s) , y(s))| ds

= A1

∫ tm

0

|f (s, u(s))| ds

≤ A1

∫ tm

0

ω1(s, |u(s)|e)ds.

Similarly

|y(t)| ≤ A2

∫ tm

0

ω2(s, |u(s)|e)ds. (4.6)

Let ρ1 = |x|C[0,tm] , ρ2 = |y|C[0,tm] . Then from (4.5), (4.6), we deduce
ρ1 ≤ A1

∫ tm

0

ω1(t, |ρ|e)dt

ρ1 ≤ A1

∫ tm

0

ω1(t, |ρ|e)dt.
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This by (4.3) guarantees
|ρ|e ≤ R0. (4.7)

Next we let t ∈ [tm, 1]. Then

|x(t)| = |λT1(x, y)(t)|

= λ

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ A1

∫ tm

0

ω1(t, R0)dt+
∫ t

tm

|f (s, x (s) , y(s))| ds

≤ A1

∫ tm

0

ω1(t, R0)dt+
∫ t

tm

α(s)β1(|u(s)|e)ds

= : φ1(t)

and similarly

|y(t)| ≤ A1

∫ tm

0

ω2(t, R0)dt+
∫ t

tm

α(s)β2(|u(s)|e)ds

= : φ2(t).

Denote ψ(t) :=
(
φ2

1(t) + φ2
2(t)

)1/2
. Then{

φ
′

1(t) = α(t)β1(|u(t)|e) ≤ α(t)β1(ψ (t))

φ
′

2(t) = α(t)β2(|u(t)|e) ≤ α(t)β2(ψ (t))).
(4.8)

Consequently

ψ
′
(t) =

φ1(t)φ
′

1(t) + φ2(t)φ
′

2(t)
ψ (t)

≤ α(t) · φ1(t)
ψ (t)

· β1(ψ (t)) + α(t) · φ2(t)
ψ (t)

· β2(ψ (t))

≤ α(t) [β1(ψ (t)) + β2(ψ (t))] .

It follows that ∫ t

tm

ψ′ (s)
β1(ψ (s)) + β2(ψ (s))

ds ≤
∫ t

tm

α(s)ds.

Furthermore, also using (4.4) we obtain∫ ψ(t)

ψ(tm)

dτ

β1(τ) + β2(τ))
≤
∫ t

tm

α(s)ds ≤
∫ 1

tm

α(s)ds <
∫ ∞

R∗

dτ

β1(τ) + β2(τ)
.

(4.9)
Note that ψ (tm) = R∗. Then from (4.9) it follows that there exists R1 such
that

ψ(t) ≤ R1

for all t ∈ [tm, 1]. Then |x(t)| ≤ R1 and |y(t)| ≤ R1, for all t ∈ [tm, 1], whence

|x|C[tm,1]
≤ R1, |y|C[tm,1]

≤ R1. (4.10)
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Let R = max{R0, R1}. From (4.7), (4.10) we have |x|C[0,1] ≤ R and |y|C[0,1] ≤
R. �

Remark 4.2. If ω1 (t, τ) = α0 (t)β0 (τ) , then the first inequality in (4.3)
implies that β0 (τ) ≤ cτ + c′ for all τ ∈ R+ and some constants c and c′,
i.e. the growth of β0 is at most linear. However, β1 may have a superlinear
growth. Thus we may say that under the assumptions of Theorem 4.1, the
growth of f (t, u) in u is at most linear for t ∈ [0, tm] and can be superlinear
for t ∈ [tm, 1]. The same can be said about g (t, u) .

In particular, when tm = 0, that is when problem (1.1) becomes the
classical local initial value problem x′ = f (t, x, y)

y′ = g (t, x, y) (a.e. t ∈ [0, 1])
x (0) = y (0) = 0,

(4.11)

our assumptions reduce to the classical conditions (see [7], [9]) and Theorem
4.1 gives the following result:

Corollary 4.3. Assume that

|f(t, u)| ≤ α(t)β1(|u|e),
|g (t, u)| ≤ α (t)β2 (|u|e)

for t ∈ [0, 1] and u ∈ R2, where α ∈ L1 [0, 1] , while β1, β2 : R+ → R+ are
nondecreasing and 1/β1, 1/β2 ∈ L1

loc(R+). In addition assume that∫ ∞

0

dτ

β1(τ) + β2(τ)
>

∫ 1

0

α(s)ds.

Then, problem (4.11) has at least one solution.
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Bezier blending surfaces on astroid

Marius Birou

Abstract. In this article we construct Bezier surfaces on a domain
bounded by an astroid using the univariate polynomial Bernstein op-
erator. We study the monotonicity and we give conditions of convexity
in some directions for the constructed surfaces. Also, we give conditions
for obtaining hyperbolic, parabolic and elliptic surfaces.

Mathematics Subject Classification (2010): 65D10, 41A10.

Keywords: Bezier surfaces, monotonicity, convexity.

1. Introduction

The surfaces of blending type have been introduced by Coons in [5].
They have the property of matching some given curves. In some previous
papers [1, 2, 3, 4, 9] there were constructed the blending surfaces with the
support on the border of a rectangular, triangular or circular domain and
having a fixed height in a point from the domain. In this paper we obtained
the Bezier surfaces which stay on an astroid. We construct the surfaces using
the univariate Bernstein operator. The obtained surfaces are defined on a
domain bounded by an astroid, they stay on the border of the domain and
have a fixed height in the center of the domain. Instead of the control points
from the case of classical Bezier surfaces we use a curves network (one of
the curves from network is reduced to a point). We study the monotonic-
ity and the convexity using the first and the second directional derivatives
respectively (like in [7, 8, 10]).

These surfaces can be used in civil engineering (as roofs for buildings) or
in Computer Aided Geometric Design (CAGD). For roof surfaces the maximal
stress acts in the parabolical points (see [3, 4, 9, 11]). It is preferable to
avoid having the parabolic points among the points of other type (hyperbolic,
elliptic). We give conditions for obtaining the surfaces of hyperbolic, parabolic
or elliptic type.
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2. Construction of the surfaces

Let n ∈ N, n ≥ 2 and hi, h ∈ R, i = 1, ..., n − 1 be such that

0 = hn < hn−1 < ... < h1 < h0 = h (2.1)

and let f : [0, 1] → R be a function with the properties

f(0) = h,

f( j
n
) = hj , j = 1, ..., n − 1,

f(1) = 0.

(2.2)

Let Bn the univariate Bernstein operator on the interval [0, 1],

(Bnf)(y) =

n
∑

j=0

bjn(y)f(
j

n
),

where the functions bjn are given by formula

bjn(y) =

(

n

j

)

yj(1 − y)n−j , for j = 0, ..., n.

Taking into account (2.2), we obtain

(Bnf)(y) = b0n(y)h +

n−1
∑

j=1

bjn(y)hj . (2.3)

The function in (2.3) has the properties

(Bnf)(0) = h, (Bnf)(1) = 0.

Let D = {(X, Y ) ∈ R
2 : X

2

3 +Y
2

3 ≤ 1} be a domain in the XOY plane

(the domain bounded by the astroid X
2

3 + Y
2

3 = 1).

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. The astroid
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If we make the substitution y =
(

X
2

3 + Y
2

3

)α

, α > 0 in (2.3), we obtain

the surfaces

F (X, Y ) := (Bnf)
((

X
2

3 + Y
2

3

)α)

= (2.4)

= b0n

((

X
2

3 + Y
2

3

)α)

h +

n−1
∑

j=1

bjn

((

X
2

3 + Y
2

3

)α)

hj , (X, Y ) ∈ D.

The surfaces (2.4) have the properties

F |∂D = 0,

F (0, 0) = h.

It follows that the surfaces F match the astroid X
2

3 + Y
2

3 = 1, Z = 0 (the
surfaces stay on the border of domain D) and the height of the surfaces in
the point (0, 0) is h.

We can give a parametrical representation for these surfaces














X = u cos3 v,

Y = u sin3 v,

Z = b0n(u
2α

3 )h +
n−1
∑

j=1

bjn(u
2α

3 )hj

u ∈ [0, 1], v ∈ [0, 2π].

Next sections, we study the monotonicity and the convexity using the
directional derivative of the first and the second order respectively. The do-
main D is not convex but it is a star convex set with respect to the point
(0, 0). We will use directions that pass by the point (0, 0). Also, some results
about the type of the points of the surfaces F on the domain D \D1, where
D1 = {(x, 0), x ∈ [−1, 1]} ∪ {(0, y), y ∈ [−1, 1]}, are given.

3. Monotonicity of the surfaces

We denote

∆1hj = hj+1 − hj , j = 0, ..., n − 1.

We recall that a bivariate function G is increasing (decreasing) in the direction
d = (d1, d2) ∈ R

2 if

G(X + λd1, Y + λd2) ≥ (≤)G(X, Y ), (3.1)

for every (X, Y ) ∈ A ⊂ R
2 and every λ > 0 such that (X +λd1, Y +λd2) ∈ A.

The first order directional derivative in the direction d = (d1, d2) of a C1

function G is

DdG = d1GX + d2GY .

The conditions (3.1) are equivalent to

DdG ≥ 0(≤ 0), on A.

Next theorem gives conditions for the monotonicity in some directions
of the surfaces F .
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Theorem 3.1. If
(

d1X
−

1

3 + d2Y
−

1

3

)

< 0 (> 0) on D \D1, then F is in-

creasing (decreasing) in the direction (d1, d2) on D \D1, where (d1, d2) is a
direction that pass by the point (0, 0).

Proof. Let (X, Y ) ∈ D \D1 and (d1, d2) a direction that pass by the point
(0, 0). Using some results from [6], it follows that the first partial derivatives
of the function F are given by

FX(X, Y ) =
2nαX−

1

3

3

(

X
2

3 + Y
2

3

)α−1
n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj ,

FY (X, Y ) =
2nαY −

1

3

3

(

X
2

3 + Y
2

3

)α−1
n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj.

If we compute the first order directional derivative of the function F in the
direction d = (d1, d2), we obtain

DdF (X, Y ) =

=
2nα

3

(

d1X
−

1

3 + d2Y
−

1

3

)(

X
2

3 + Y
2

3

)α−1
n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

D1hj .

Taking into account (2.1), the condition d1X
−

1

3 +d2Y
−

1

3 < 0 (> 0) on D \D1

implies DdF > 0 (< 0) on D \D1, and the theorem is proved. �

4. Convexity and type of the surfaces

We denote

∆2hj+1 = hj+2 − 2hj+1 + hj , j = 0, ..., n − 2.

We recall that a bivariate C2 function G is convex (concave) in the the
direction d = (d1, d2) ∈ R

2 if and only if D2
dG ≥ 0 (≤ 0) on A ⊂ R

2 , where
D2

dG is the second order directional derivative in direction d = (d1, d2) of the
function G,

D2
dG = d2

1GXX + 2d1d2GXY + d2
2GY Y .

We give sufficient conditions for convexity in some directions of the
surfaces F .

Theorem 4.1. If α ∈ (0, 1] and ∆2hj ≥ 0, j = 0, ..., n − 2, then the function
F is convex in the direction (d1, d2) on D \D1, where (d1, d2) is a direction
that pass by the point (0, 0) .

Proof. Let (X, Y ) ∈ D \D1 and (d1, d2) a direction that pass by the point
(0, 0). Taking into account results from [6], the second order derivatives of
the function F are

FXX(X, Y ) = (4.1)

=
4X−

2

3 n(n − 1)α2

9

(

X
2

3 + Y
2

3

)2α−2
n−2
∑

j=0

bj,n−2

((

X
2

3 + Y
2

3

)α)

∆2hj+
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+

(

4X−

2

3 α(α − 1)

9

(

X
2

3 + Y
2

3

)α−2

−
2X−

4

3 α

9

(

X
2

3 + Y
2

3

)α−1

)

×

×n

n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj ,

FXY (X, Y ) =
4X−

1

3 Y −
1

3 α2

9

(

X
2

3 + Y
2

3

)2α−2

× (4.2)

×n(n − 1)
n−2
∑

j=0

bj,n−2

((

X
2

3 + Y
2

3

)α)

∆2hj+

+
4X−

1

3 Y −
1

3 nα(α − 1)

9

(

X
2

3 + Y
2

3

)α−2
n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj ,

FY Y (X, Y ) = (4.3)

=
4X−

2

3 n(n − 1)α2

9

(

X
2

3 + Y
2

3

)2α−2
n−2
∑

j=0

bj,n−2

((

X
2

3 + Y
2

3

)α)

∆2hj+

+

(

4Y −
2

3 α(α − 1)

9

(

X
2

3 + Y
2

3

)α−2

−
2Y −

4

3 α

9

(

X
2

3 + Y
2

3

)α−1

)

×

×n

n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj .

If we compute the second order directional derivative in the direction d =
(d1, d2) of the function F , we obtain

D2
dF (X, Y ) =

4α2

9

(

d1X
−

1

3 + d2Y
−

1

3

)2 (

X
2

3 + Y
2

3

)2α−2

×

×n(n − 1)

n−2
∑

j=0

bj,n−2

((

X
2

3 + Y
2

3

)α)

∆2hj+

+
4α(α − 1)

9

(

d1X
−

1

3 + d2Y
−

1

3

)2 (

X
2

3 + Y
2

3

)α−2

×

×n

n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj−

−
2nα

9

(

d2
1X

−

4

3 + d2
2Y

−

4

3

)(

X
2

3 + Y
2

3

)α−1
n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj .

From α ∈ (0, 1], ∆2hj ≥ 0, j = 0, ..., n− 2 and the condition (2.1), it follows
D2

dF ≥ 0 on D \D1. Thus, the conclusion of the theorem holds. �
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We recall that a point of a surface Z = G(X, Y ), (X, Y ) ∈ A ⊂ R2 is
parabolic point if PG(X, Y ) = 0, where

PG(X, Y ) = GXX(X, Y )GY Y (X, Y ) − (GXY (X, Y ))2. (4.4)

If we have PG(X, Y ) < 0 (> 0) the point (X, Y ) is called hyperbolic point
(elliptic point). The surface G is called of parabolic (hyperbolic, elliptic) type
if all the points of the surface are parabolic (hyperbolic, elliptic).

The following theorem gives conditions for obtaining the surfaces F of
different types on D \D1.

Theorem 4.2. We have:

1. If α ∈
(

0, 3

2

)

and ∆2hj ≥ 0, j = 0, ..., n − 2, then the surfaces F are of
elliptic type on D \D1.

2. If α = 3

2
and ∆2hj ≥ 0, j = 0, ..., n−2 and there exists j0 ∈ {0, ..., n−2}

such that ∆2hj0 6= 0, then the surfaces F are of elliptic type on D \D1.
3. If α = 3

2
and ∆2hj = 0, j = 0, ..., n − 2, then the surfaces F are of

parabolic type on D \D1.
4. If α = 3

2
and ∆2hj ≤ 0, j = 0, ..., n−2 and there exists j0 ∈ {0, ..., n−2}

such that ∆2hj0 6= 0, then the surfaces F are of hyperbolic type on
D \D1.

5. If α ∈
(

3

2
,∞
)

and ∆2hj ≤ 0, j = 0, ..., n− 2, then the surfaces F are of
hyperbolic type on D \D1.

Proof. Let (X, Y ) ∈ D \D1. From (4.4) and (4.1)-(4.3) we obtain

PF (X, Y ) =

= −
4α2(2α − 3)

(

X
2

3 + Y
2

3

)2α−2

81X
4

3 Y
4

3



n

n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj





2

+

−
8α3

(

X
2

3 + Y
2

3

)3α−2

81X
4

3 Y
4

3



n

n−1
∑

j=0

bj,n−1

((

X
2

3 + Y
2

3

)α)

∆1hj



×

×



n(n − 1)

n−2
∑

j=0

bj,n−2

((

X
2

3 + Y
2

3

)α)

∆2hj



 ,

The conclusions of the theorem follow using the condition (2.1). �

Remark 4.3. The conditions from Theorem 4.1 and Theorem 4.2 depend only
the parameters hj (i.e. they depend only on the control network).

We have plotted the surface F for n = 3.

In Figure 2.a we take h = h0 = 3, h1 = 1.5, h2 = 0.5, h3 = 0 and α = 1;
we have ∆2hj > 0, j = 0, 1. The surface is of elliptic type.

In Figure 2.b we take h = h0 = 3, h1 = 1.5, h2 = 0.5, h3 = 0 and
α = 1.5; we have ∆2hj > 0, j = 0, 1. The surface is of elliptic type.
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Figure 2. The surface F for n = 3.
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In Figure 2.c we take h = h0 = 3, h1 = 2, h2 = 1, h3 = 0 and α = 1.5;
we have ∆2hj = 0, j = 0, 1. The surface is of parabolic type.

In Figure 2.d we take h = h0 = 3, h1 = 2.3, h2 = 1.2, h3 = 0 and
α = 1.5; we have ∆2hj < 0, j = 0, 1. The surface is of hyperbolic type.

In Figure 2.e we take h = h0 = 3, h1 = 2.3, h2 = 1.2, h3 = 0 and α = 2;
we have ∆2hj < 0, j = 0, 1. The surface is of hyperbolic type.

In Figure 2.f we take h = h0 = 3, h1 = 2.3, h2 = 1.2, h3 = 0 and α = 10;
we have ∆2hj < 0, j = 0, 1. The surface is of hyperbolic type.
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Uniform weighted approximation by positive
linear operators

Adrian Holhoş

Abstract. We characterize the functions defined on a weighted space,
which are uniformly approximated by a sequence of positive linear ope-
rators and we obtain the range of the weights which can be used for
uniform approximation. We, also, obtain an estimation of the remainder
in terms of the usual modulus of continuity. We give particular results
for the Szász-Mirakjan and Baskakov operators.

Mathematics Subject Classification (2010): 41A36, 41A25.

Keywords: Positive linear operators, weighted spaces, rate of approxi-
mation, modulus of continuity.

1. Introduction

Let I ⊆ R be a noncompact interval and let ρ : I → [1,∞) be an
increasing and differentiable function called weight. Let Bρ(I) be the space
of all functions f : I → R such that |f(x)| ≤ M · ρ(x), for every x ∈ I, where
M > 0 is a constant depending on f and ρ, but independent of x. The space
Bρ(I) is called weighted space and it is a Banach space endowed with the
ρ-norm

‖f‖ρ = sup
x∈I

|f(x)|
ρ(x)

.

Let Cρ(I) = C(I) ∩ Bρ(I) be the subspace of Bρ(I) containing continuous
functions.

Let (An)n≥1 be a sequence of positive linear operators defined on the
weighted space Cρ(I). It is known (see [13]) that An maps Cρ(I) onto Bρ(I)
if and only if Anρ ∈ Bρ(I).

In the paper [7], the authors present some ideas related to the approxi-
mation of functions in weighted spaces and enounced some unsolved problems
in weighted approximation theory. Three such problemms are:
1. Let F be a linear subspace of RI and An : F → C(I) a sequence of positive
linear operators. For which weights ρ, does An map Cρ(I) ∩ F onto Cρ(I)
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with uniformly bounded norms?
2. For which functions f ∈ Cρ(I) do we have ‖An − f‖ρ → 0, as n →∞?
3. Which moduli of smoothness are appropriate for weighted approximation?

Some ideas to solve these problems and some partial solutions were given
in the article already mentioned. In this paper, we give some answers to these
three problems. For a given sequence of positive linear operators, An, we
characterize those functions f belonging to Cρ(I) such that ‖An − f‖ρ → 0
and obtain all the weights ρ for which this uniform convergence in the ρ-norm
is true. We, also, obtain an estimation of the remainder Anf − f , in terms of
the modulus of continuity of the function f . As applications, we give some
results related to the Szász-Mirakjan and Baskakov operators.

We will use the following modulus of continuity

ωϕ (f, δ) = sup
t,x∈I

|ϕ(t)−ϕ(x)|≤δ

|f(t)− f(x)|,

for all f ∈ B(I), where ϕ : I → J , (J ⊂ R), is a differentiable bijective
function, with ϕ′(x) > 0, for all x ∈ I. This modulus is a particular case of
the general modulus

ωd(f, δ) = sup { |f(t)− f(x)| : t, x ∈ X, d(t, x) ≤ δ } ,

where f is a bounded function defined on X and (X, d) is a compact metric
space. For details related to this general modulus of continuity see [8], [15]
and [20]. The particular modulus ωϕ (f, δ) is obtained for the metric d(t, x) =
|ϕ(t)− ϕ(x)| and has the following properties (see [17], for example)

Proposition 1.1. Let f ∈ B(I) and δ > 0.
(i) ωϕ (f, δ) = ω(f ◦ϕ−1, δ), where ω is the usual modulus of continuity.
(ii) Let (δn)n≥1 be sequence of positive real numbers converging to 0.

Then f ◦ ϕ−1 is uniformly continuous on J if and only if ωϕ (f, δn) → 0.

(iii) |f(t)− f(x)| ≤
(

1 +
|ϕ(t)− ϕ(x)|

δ

)
ωϕ (f, δ), for every t, x ∈ I.

2. Main result

Theorem 2.1. Let An : Cρ(I) → Bρ(I) be positive linear operators reproducing
constant functions and satisfying the conditions

sup
x∈I

An(|ϕ(t)− ϕ(x)|, x) = an → 0, (n →∞) (2.1)

sup
x∈I

An(|ρ(t)− ρ(x)|, x)
ρ(x)

= bn → 0. (n →∞) (2.2)

If An(f, x) is continuously differentiable and there is a constant K(f, ρ, n)
such that

|(Anf)′(x)|
ϕ′(x)

≤ K(f, ρ, n) · ρ(x), for every x ∈ I, (2.3)
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and ρ and ϕ are such that there exists a constant α > 0
ρ′(x)
ϕ′(x)

≤ α · ρ(x), for every x ∈ I, (2.4)

then, the following statements are equivalent

(i) ‖Anf − f‖ρ → 0 as n →∞.

(ii)
f

ρ
◦ ϕ−1 is uniformly continuous on J.

Furthermore, we have

‖Anf − f‖ρ ≤ bn · ‖f‖ρ + 2 · ωϕ

(
f

ρ
, an

)
, for every n ≥ 1. (2.5)

Proof. Let us prove that (ii) implies (i). Using the inequality (ii) of Proposi-
tion 1.1, we obtain for a function f ∈ Cρ(I)

|f(t)− f(x)| ≤ |f(t)|
ρ(t)

· |ρ(t)− ρ(x)|+ ρ(x) ·
∣∣∣∣f(t)
ρ(t)

− f(x)
ρ(x)

∣∣∣∣
≤ ‖f‖ρ · |ρ(t)− ρ(x)|+ ρ(x) ·

(
1 +

|ϕ(t)− ϕ(x)|
δ

)
ωϕ

(
f

ρ
, δ

)
.

Applying the positive linear operators An to the last inequality, we obtain

|An(f, x)− f(x)|
ρ(x)

≤ ‖f‖ρ ·
An(|ρ(t)− ρ(x)| , x)

ρ(x)

+
(

1 +
An(|ϕ(t)− ϕ(x)| , x)

δn

)
ωϕ

(
f

ρ
, δn

)
,

which proves the relation (2.5). Because an → 0 and f
ρ ◦ ϕ−1 is uniformly

continuous on J we deduce that ωϕ

(
f
ρ , an

)
→ 0 as n →∞. Because bn → 0

we obtain that ‖Anf − f‖ρ → 0.
Now, let us prove that (i) implies (ii). Because of the relation

ωϕ

(
f

ρ
, δn

)
≤ ωϕ

(
f −Anf

ρ
, δn

)
+ ωϕ

(
Anf

ρ
, δn

)
≤ ‖f −Anf‖ρ + ωϕ

(
Anf

ρ
, δn

)
it remains to prove that ωϕ

(
Anf

ρ , δn

)
→ 0.

Applying the Cauchy mean value theorem, there is c between x ∈ I and
t ∈ I, such that

ϕ′(c)
[
An(f, t)

ρ(t)
− An(f, x)

ρ(x)

]
=
(

Anf

ρ

)′
(c) · [ϕ(t)− ϕ(x)] .

We have

ωϕ

(
Anf

ρ
, δn

)
= sup

t,x∈I
|ϕ(t)−ϕ(x)|≤δn

∣∣∣∣An(f, t)
ρ(t)

− An(f, x)
ρ(x)

∣∣∣∣ ≤
∥∥∥∥∥ 1

ϕ′
·
(

Anf

ρ

)′∥∥∥∥∥ · δn,
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which implies ωϕ

(
Anf

ρ , δn

)
→ 0, for a suitable choice of the sequence δn → 0,

if ∥∥∥∥∥ 1
ϕ′
·
(

Anf

ρ

)′∥∥∥∥∥ = sup
x∈I

∣∣∣∣∣ 1
ϕ′(x)

·
(

Anf

ρ

)′
(x)

∣∣∣∣∣ < ∞.

But, for every f ∈ Cρ(I) and for every n ≥ 1∥∥∥∥∥ 1
ϕ′
·
(

Anf

ρ

)′∥∥∥∥∥ =
∥∥∥∥ 1

ϕ′
·
(

(Anf)′

ρ
− Anf · ρ′

ρ2

)∥∥∥∥
≤
∥∥∥∥ (Anf)′

ρ · ϕ′

∥∥∥∥+ ‖f‖ρ · ‖Anρ‖ρ ·
∥∥∥∥ ρ′

ρ · ϕ′

∥∥∥∥ < ∞,

because of the relations (2.3) and (2.4). So, the theorem is proved. �

Remark 2.2. For ρ(x) = 1, the result of Theorem 2.1 was obtained by Totik
[23], by de la Cal and Cárcamo [10] and by myself [18].

Remark 2.3. The function ϕ is close connected with the given sequence of
positive linear operators. It can be obtained in the following manner: we
choose the function θ such that

θ′(x)
√

An((t− x)2, x) ≤ Kn,

where Kn is a constant not depending on x, and such that θ verifies the
conditions (2.3) and (2.4). Then, by the argument of the implication (i) ⇒ (ii)
from the Theorem 2.1, we obtain that f

ρ ◦θ
−1 is uniformly continuous. But, in

most of the cases, θ−1 has a complicate form and the relation (2.1) is difficult
to prove. To overcome this, we consider ϕ such that θ ◦ ϕ−1 is uniformly
continuous. So, we get that f

ρ ◦ ϕ−1 is a uniformly continuous function.

Remark 2.4. The relation (2.4) gives us the connection between the function
ϕ and the weight ρ. We must have

ρ(x) ≤ Meα·ϕ(x), for every x ∈ I, (2.6)

where M,α > 0 are constants independent of x. So, we have obtained the
range of the weights ρ, for which Theorem 2.1 is valid.

Remark 2.5. The maximal class of weights is ρ(x) = eαϕ(x). In order to
prove the result of the Theorem for this weight, we prove first the inequality
An(ρ, x) ≤ Cαρ(x), for every x ∈ I and for every α > 0, where Cα > 0 is a
constant independent of x. Then, we prove the relation

lim
n→∞

sup
x∈I

An(|ϕ(t)− ϕ(x)|2, x) = 0. (2.7)

Using the Cauchy-Schwarz inequality for positive linear operators we get that
the sequence

an = sup
x∈I

An(|ϕ(t)− ϕ(x)|, x) ≤ sup
x∈I

√
An(|ϕ(t)− ϕ(x)|2, x)
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is convergent to 0. Using the Geometric-Logarithmic-Arithmetic Mean Ine-
quality (see [19, p. 40])

√
u · v ≤ u− v

lnu− ln v
<

u + v

2
, 0 < v < u, (2.8)

we obtain∣∣∣eαϕ(t) − eαϕ(x)
∣∣∣ ≤ eαϕ(t) + eαϕ(x)

2
· α |ϕ(t)− ϕ(x)| , t, x ∈ I,

and

bn = sup
x∈I

An(|ρ(t)− ρ(x)|, x)
ρ(x)

≤ sup
x∈I

α

2

√
An((ρ(t) + ρ(x))2, x)

ρ(x)
(
An(|ϕ(t)− ϕ(x)|2, x)

) 1
2

≤ sup
x∈I

α

2

(
Sn(ρ2(t), x)

ρ2(x)
+ 2

Sn(ρ, x)
ρ(x)

+ 1
) 1

2 (
An(|ϕ(t)− ϕ(x)|2, x)

) 1
2

≤ α

2

√
C2α + 2Cα + 1 · sup

x∈I

(
An(|ϕ(t)− ϕ(x)|2, x)

) 1
2 .

If (2.7) is true, then (bn)n∈N converges to 0. To obtain the result of the
Theorem 2.1 it remains to prove (2.3).

3. Applications

Lemma 3.1. For every α > 0 and ρ(x) = eα
√

x, the Szász-Mirakjan operators
defined by

Snf(x) = e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
, x ∈ [0,∞),

map Cρ[0,∞) onto Cρ[0,∞).

Proof. Let us notice that Sn(ρ, x) exists for every x ≥ 0. This is true because

Sn(ρ, x) = e−nx
∞∑

k=0

(nx)k

k!
e
α
√

k√
n ≤ e−nx

∞∑
k=0

(nx)k

k!
e
α k√

n = enxe
α√
n−nx.

Because Snf converges uniformly to f on [0, 1] (see [1], for example), we
have Sn(ρ, x) ≤ C1,α · ρ(x), for every x ∈ [0, 1]. Let us prove that Sn(ρ, x) ≤
C2,α · ρ(x), for every x ≥ 1.

Sn(eα
√

t, x)
eα
√

x
= e−nx

∑
k>nx

(nx)k

k!
e
α

(√
k
n−

√
x
)

+ e−nx
∑

k≤nx

(nx)k

k!
eα
√

k
n

eα
√

x

≤ e−nx
∑

k>nx

(nx)k

k!
e

α√
x ( k

n−x) + e−nx
∑

k≤nx

(nx)k

k!

≤ e
nx

(
e

α
n
√

x−1

)
−α x√

x + 1.
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Using the inequality et − 1 ≤ tet, we obtain for every x ≥ 1 and every n ≥ 1
that

Sn(eα
√

t, x)
eα
√

x
≤ e

nx α
n
√

x
e

α
n
√

x− αx√
x + 1 ≤ e

α
√

x α
n
√

x
e

α
n
√

x

+ 1 ≤ eα2eα

+ 1.

We have proved that

‖Snρ‖ρ = sup
x≥0

Sn(ρ, x)
ρ(x)

≤ Cα, (3.1)

where Cα > 0 is a constant dependent of α, but independent of n. �

Corollary 3.2. For a number α > 0 and ρ(x) = eα
√

x, the Szász-Mirakjan
operators Sn : Cρ[0,∞) → Cρ[0,∞) have the property that

‖Snf − f‖ρ → 0, as n →∞
if and only if, the function

f(x2)e−αx is uniformly continuous on [0,∞).

Moreover, for f ∈ Cρ[0,∞) we have

‖Snf − f‖ρ ≤ ‖f‖ρ ·
αC√

n
+ 2 · ω

(
f(t2)e−αt,

1√
n

)
, for every n ≥ 1,

where C = supn∈N
1
2

√
‖Snρ2‖ρ2 + 2 ‖Snρ‖ρ + 1 is a constant depending only

on α.

Proof. We set ϕ(x) =
√

x. The function ρ(x) = eα
√

x verifies the relation
(2.4) with equality.

We have the relations Sn(1, x) = 1 and Sn((t− x)2, x) = x/n (see [1],
for example). We prove now the relation (2.7).

sup
x≥0

Sn(|ϕ(t)− ϕ(x)|2, x) = sup
x≥0

Sn

(
|t− x|2(√
t +

√
x
)2 , x

)

≤ sup
x≥0

Sn(|t− x|2, x)
x

=
1
n

.

For a function f ∈ Cρ(I) the derivative (Snf)′(x) fulfills:

|(Snf)′(x)| =

∣∣∣∣∣nx
∞∑

k=0

f

(
k

n

)(
k

n
− x

)
e−nx (nx)k

k!

∣∣∣∣∣
≤ n

x
‖f‖ρ Sn(ρ(t)|t− x|, x) ≤

√
C2α ‖f‖ρ ρ(x)

√
n√
x

,

because

Sn(ρ(t)|t− x|, x) ≤
√

Sn(ρ2(t), x) ·
√

Sn((t− x)2, x) ≤
√

C2αρ(x)
√

x

n
.

We obtain
|(Snf)′(x)|

ϕ′(x)
≤ Cf,n,α · ρ(x), for every x ≥ 0,
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so, the relation (2.3) is proved. �

Remark 3.3. The result from Corollary 3.2 for the limit case, α=0, was ob-
tained in [21], [23], [10] and [18].

Remark 3.4. In [16], it was proved that Sn(f, x) exists for every function
f with the property f(x) = O(eαx ln x), α > 0 and moreover, Snf converges
uniformly to f on compact subsets of the interval [0,∞). In [5], Becker studied
the global approximation of functions using Szász-Mirakjan operators for the
polynomial weight ρ(x) = 1 + xN , N ∈ N. Becker, Kucharsky and Nessel [6]
studied the global approximation for the exponential weight ρ(x) = eβx. But
because

sup
x≥0

Sn(eβt, x)
eβx

= sup
x≥0

enx(e
β
n−1)−βx = +∞,

they obtain results only for the space C(η) = ∩β>ηCβ , where Cβ is Cρ for
ρ = eβx. It is also mentioned, that for any f ∈ Cβ we have Snf ∈ Cγ , for
γ > β and for n > β/ ln(γ/β). Ditzian [11], also, gives some inverse theorems
for exponential spaces. In [2], Amanov obtained that the condition

sup
x≥0

ρ(x +
√

x)
ρ(x)

< ∞

upon the weight ρ, is necessary and sufficient for the uniform boundedness of
the norms of the operators Sn : Cρ[0,∞) → Cρ[0,∞). He mentions that this
condition implies the inequality

ρ(x) ≤ eα
√

1+x, x ≥ 0.

He, also, gives a characterization of the functions f which are uniformly
approximated by Snf in the ρ-norm, using a weighted second order modulus
of smoothness.

The fact that ρ(x) = O(eα
√

x) is the maximal class of weights for which
Sn maps Cρ[0,∞) into Cρ[0,∞) can be proved by the following argument: we
take ρ(x) = eαΦ(x), α > 0, where Φ(x) is a strictly increasing differentiable
function with the properties that

lim
x→∞

Φ(x) = ∞ and lim
x→∞

Φ′(x)
√

x = ∞, (3.2)

and we prove that ‖Snρ‖ρ is not finite for all α > 0. From condition (3.2), by
l’Hospital’s rule, limx→∞Φ(x)/

√
x = ∞, so, there are M > 1/α and x0 ≥ 1

such that Φ(x) > M
√

x, for x ≥ x0. We obtain for x ≥ x0(
eαΦ(x)

)′′
= eαΦ(x)

[
αΦ′′(x) + [αΦ′(x)]2

]
> eαΦ(x)

(
−αM

4x
3
2

+
(αM)2

4x

)
> 0,

so, eαΦ is convex on [x0,∞). We can redefine Φ (if it is necessary), such that
eαΦ is a convex function on [0,∞). By a result of Cheney and Sharma [9], we
deduce that Sn(ρ, x) ≥ ρ(x). Suppose that

lim
x→∞

Sn(ρ, x)
ρ(x)

= Lα < ∞, for every α > 0. (3.3)
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Because Snρ ≥ ρ, we obtain Lα ≥ 1. But, using l’Hospital’s rule, we have

Lα = lim
x→∞

Sn(eαΦ(t), x)
eαΦ(x)

= lim
x→∞

(SneαΦ)′(x)
αΦ′(x)eαΦ(x)

≤ lim
x→∞

n
x

√
Sn((t− x)2, x)

αΦ′(x)
·
√

Sn(e2αΦ(t), x)
eαΦ(x)

≤ lim
x→∞

1
α
√

nΦ′(x)
√

x
·
√

Sn(e2αΦ(t), x)
e2αΦ(x)

= 0 ·
√

L2α = 0,

which is a contradiction with Lα ≥ 1.

Lemma 3.5. For every α > 0 and ρ(x) = (1 + x)α, the Baskakov operators
defined by

Vnf(x) =
∞∑

k=0

(
n + k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
, x ≥ 0,

map Cρ[0,∞) onto Cρ[0,∞).

Proof. In [5], Becker proves that Vn(1+ tN , x) ≤ C1(1+xN ), for every x ≥ 0
and every N ∈ N. We deduce that

Vn((1 + t)m, x) ≤ C2 · Vn(1 + tm, x) ≤ C3(1 + xm) ≤ C3(1 + x)m,

for every x ≥ 0 and every m ∈ N. We prove, now, that for β ∈ [0, 1) we have
Vn((1 + t)β , x) ≤ C4(1 + x)β . Using the inequality ln(1 + t) ≤ t, for t > −1,
we obtain

Vn((1 + t)β , x)
(1 + x)β

=
∞∑

k=0

(
n + k − 1

k

)
xk

(1 + x)n+k
eβ[ln(1+ k

n )−ln(1+x)]

=
∞∑

k=0

(
n + k − 1

k

)
xk

(1 + x)n+k
e
β ln

(
1+

k
n
−x

1+x

)

≤
∞∑

k=0

(
n + k − 1

k

)
xk

(1 + x)n+k
eβ

k
n
−x

1+x

= (1− x(e
β

n(1+x) − 1))−n · e
−βx
1+x .

The last expression is well-defined for every x ≥ 0 and every n ≥ 1, because

1− x(e
β

n(1+x) − 1) ≥ 1− lim
x→∞

x(e
β

n(1+x) − 1) = 1− β

n
> 0.

Because of the inequality

sup
x≥0

[
(1− x(e

β
n(1+x) − 1))−n · e

−βx
1+x

]
≤
(

1− β

n

)−n

· 1 ≤ 1
1− β

,

we deduce that Vn((1 + t)β , x) ≤ C4(1 + x)β , for every x ≥ 0, where C4 is a
constant not depending on x and n.
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For α > 0, we choose m = [2α] ∈ N and β = 2α − m ∈ [0, 1). Using
Cauchy-Schwarz inequality, we obtain

Vn((1 + t)α, x) = Vn((1 + t)
m
2 · (1 + t)

β
2 , x)

≤
√

Vn((1 + t)m, x) · Vn((1 + t)β , x)

≤
√

C3(1 + x)m · C4(1 + x)β = C5(1 + x)α,

which proves that Vnρ ∈ Cρ[0,∞). �

Corollary 3.6. For a real number α > 0 and for ρ(x) = (1+x)α the Baskakov
operators Vn : Cρ[0,∞) → Cρ[0,∞) have the property that

‖Vnf − f‖ρ → 0, as n →∞

if and only if

f(ex − 1)e−αx, is uniformly continuous on [0,∞).

Moreover, for f ∈ Cρ[0,∞) and for n ≥ 2, we have

‖Vnf − f‖ρ ≤ ‖f‖ρ ·
αC√
n− 1

+ 2 · ω
(

f(et − 1)e−αt,
1√

n− 1

)
.

Proof. Setting ϕ(x) = ln(1 + x), the function ρ(x) = (1 + x)α verifies the
relation (2.4) with equality.

We have the relations Vn(1, x) = 1, Vn(t, x) = x and Vn((t− x)2, x) =
x(1 + x)/n (see [1], for example). We prove now the relation (2.7). Using the
inequality (2.8) we have

|ϕ(t)− ϕ(x)|2 = |ln(1 + t)− ln(1 + x)|2

≤ |t− x|2

(1 + t)(1 + x)
=

∣∣∣∣∣
√

1 + t

1 + x
−
√

1 + x

1 + t

∣∣∣∣∣
2

and using the fact that

Vn

(
1

1 + t
, x

)
=

∞∑
k=0

(
n + k − 1

k

)
xk

(1 + x)n+k
· n

n + k

≤ n

(n− 1)(1 + x)

∞∑
k=0

(
n + k − 2

k

)
xk

(1 + x)n−1+k

=
n

(n− 1)(1 + x)

we obtain

Vn(|ϕ(x)− ϕ(t)|2, x) ≤ Vn(1 + t, x)
1 + x

− 2Vn(1, x) + (1 + x)Vn

(
1

1 + t
, x

)
≤ 1− 2 +

n

n− 1
=

1
n− 1

, for n ≥ 2.
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The derivative (Vnf)′(x) verifies the relation

|(Vnf)′(x)| =

∣∣∣∣∣ n

x(1 + x)

∞∑
k=0

f

(
k

n

)(
x− k

n

)(
n + k − 1

k

)
xk

(1 + x)n+k

∣∣∣∣∣
≤ n

x(1 + x)
‖f‖ρ · Vn(ρ(t)|t− x|, x) ≤ C1 ‖f‖ρ ρ(x)

√
n√

x(1 + x)
,

because

Vn(ρ(t)|t− x|, x) ≤
√

Vn(ρ2(t), x) ·
√

Vn((t− x)2, x) ≤ C1ρ(x)

√
x(x + 1)

n
.

We obtain
|(Vnf)′(x)|

θ′(x)
≤ C2ρ(x), for every x ≥ 0,

where θ(x) = ln
(
x + 1

2 +
√

x(1 + x)
)
. The inequality

ρ′(x)
θ′(x)

= α(1 + x)α−1
√

x(1 + x) ≤ α · ρ(x), x ≥ 0,

proves the relation (2.4) for the function θ instead of ϕ. Using the fact that

(θ ◦ ϕ−1)(x) = ln
(

ex − 1
2

+
√

(ex − 1)ex

)
is a uniformly continuous function on [0,∞) (this is true, because it is a
continuous function with the property that (θ ◦ ϕ−1)(x) − x has finite limit
at infinity) and using Theorem 2.1, the Remarks 2.3 and 2.5, the proof of the
corollary is complete. �

Remark 3.7. The result of the Corollary 3.6 for the limit case, α = 0, was
obtained in [22], [23], [10] and [18].

Remark 3.8. Becker [5] studied the global approximation of functions from
the polynomial weighted space and remarked that ”polynomial growth is the
frame best suited for global results for the Baskakov operators”. The reason
is that for the exponential weight ρ(x) = eβx, the series Vn(ρ, x) exists only
for x < (e

β
n − 1)−1. Nevertheless, Ditzian [11] gave some inverse results for

functions with exponential growth.
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Some new properties of Generalized
Bernstein polynomials

Donatella Occorsio

Abstract. Let Bm(f) be the Bernstein polynomial of degree m. The
Generalized Bernstein polynomials

Bm,λ(f, x) =

∞∑
i=1

(−1)i+1

(
λ

i

)
Bi

m(f ;x), λ ∈ R+

were introduced in [13]. In the present paper some of their properties are
revisited and some applications are presented. Indeed, the stability and
the convergence of a quadrature rule on equally spaced knots is studied
and a class of curves depending on the shape parameter λ, including
both Bézier and Lagrange curves, is introduced.

Mathematics Subject Classification (2010): 41A10, 65D30, 65D17.

Keywords: Linear operators, approximation by polynomials, numerical
integration, Computer Aided Geometric Design.

1. Introduction

The operator Bm,λ, introduced and studied in [13], is defined as

Bm,λ =
∞∑
i=1

(−1)i+1

(
λ

i

)
Bi

m, λ ∈ R+,

where Bi
m = Bm(Bi−1

m ), and Bm is the Bernstein operator. Bm,λ is a lin-
ear operator, not always positive, that maps bounded functions into poly-
nomials of degree at most m. The sequence {Bm,λ(f)}m has the property
of improving the order of convergence when the smoothness of the function
increases (see [11, 14]). For instance, assuming f ∈ C(2[λ])([0, 1]), λ ≥ 1, we
have |f − Bm,λ(f)| = O

(
1

mλ

)
. In this sense, the sequence {Bm,λ(f)}m pro-

duces a significant enhancement with respect to the behavior of the ordinary
Bernstein sequence.

Moreover the sequence {Bm,λ(f)}m includes both Bernstein polynomi-
als (λ = 1) and, as limit case, the Lagrange interpolating polynomial on
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equally spaced knots (λ → ∞). In spite of these mentioned properties, the
expression derived in [13] in the monomial basis (1, x, . . . , xm) is no easy
for the computation and, in addition, produces instability in the polynomial
evaluation.

In the present paper we first express Bm,λ(f) as the Bernstein polyno-
mial of a function g, suitable related to f. Therefore, the evaluation of Bm(g)
can be performed by de Casteljau scheme, which is a stable algorithm. More-
over, using Bm,λ(f) = Bm(g), we can revisit some proofs, like, for instance,
the property of mapping bounded functions into polynomials. In order to ex-
ploit the above mentioned ”good” properties, we consider two applications.

The first is the approximation of integrals
∫ 1

0
f(x)dx, obtained by replacing

the function f with Bm,λ(f). By this way, it is derived a simple quadrature
rule that we prove to be stable and convergent and whose order of accuracy as
faster decays as smoother is the integrand function f . Such kind of formulas
can be of interest since there are not so many polynomial quadrature rules
involving equally spaced points and having a ”good” behavior of the error.

The second application deals with the employment of {Bm,λ}λ in CAGD
(Computer Aided Geometric Design), by considering a possible generalization
of the well-known Bézier curves. Given a control polygon

P = [P0, . . . ,Pm], Pj ∈ R2,

we call the curves of parametric equations

Bm,λ[P0, . . . ,Pm](t) =
m∑
j=0

p
(λ)
m,j(t)Pj , 0 ≤ t ≤ 1,

Generalized Bézier curves. Curves in this class change continuously their
shape, ”bridging” the Bézier curve Bm[P0, . . . ,Pm] to the Lagrange interpo-
lating curve Lm[P0, . . . ,Pm]. Some generalization in this sense where intro-
duced and studied in [2], [3], [4], [15] (see also [9], [16]).

The outline of this paper is as follows. Section 2 contains the new vector
expression and some properties deducible from this. In Section 3 are stated
the announced applications, equipped with some numerical and graphical
tests. Finally, Section 4 will contain the proofs of the main results.

2. The Bm,λ(f) polynomials

For any continuous function f on the unit interval [0, 1] (f ∈ C0([0, 1])),
let Bm(f) be the m−th Bernstein polynomial

Bm(f ;x) =

m∑
k=0

pm,k(x)f

(
k

m

)
, pm,k(x) =

(
m

k

)
xk(1− x)m−k. (2.1)

Denoting by Bi
m(f) = Bm(Bi−1

m (f)), B0
m(f) = f the i-th iterate of the Bern-

stein polynomial, in [13] (see also [1], [8], [12]) the authors introduced and
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studied the following linear combination of Bi
m(f),

Bm,λ(f, x) =
∞∑
i=1

(−1)i+1

(
λ

i

)
Bi

m(f ;x), λ ∈ R+. (2.2)

For any fixed λ, {Bm,λ(f)}m, will be called sequence of generalized Bernstein
polynomials of parameter λ. For λ = 1, Bm,λ = Bm. The special case λ ∈ N
was studied in [12]. Here we will consider the case λ ≥ 1 . An expression of
the polynomial Bm,λ(f) is

Bm,λ(f ;x) =
m∑
j=0

p
(λ)
m,j(x)f

(
j

m

)
, 0 ≤ x ≤ 1, (2.3)

where

p
(λ)
m,j(x) =

∞∑
i=1

(
λ

i

)
(−1)i−1Bi−1

m (pm,i;x). (2.4)

Since by (2.3) the evaluation of Bm,λ is not feasible, first we derive

a vectorial form of the basis {p(λ)m,k}mk=0, by which for any function f , the

polynomial Bm,λ(f) coincides with the Bernstein polynomial Bm(g), g being
a function related to f .

Theorem 2.1. Assume λ ≥ 1. Setting

p(λ)
m (x) = [p

(λ)
m,0(x), p

(λ)
m,1(x), . . . , p

(λ)
m,m(x)]T ,

and

pm(x) = [pm,0(x), . . . , pm,m(x)]T ,

one has

p(λ)
m (x)T = pm(x)TCm,λ, (2.5)

where

Cm,λ = A−1[I − (I −A)λ] = [I − (I −A)λ]A−1 ∈ R(m+1)×(m+1), (2.6)

(A)i,j = pm,j(ti), i = 0, 1, . . . ,m, j = 1, 2, . . . ,m (2.7)

ti = i/m, i = 0, 1, . . . ,m, and I is the identity matrix of order (m+1). Then,
for any f ∈ C0([0, 1]), setting

fm = [f0, f1, . . . , fm]T , fi = f(ti), (2.8)

the polynomial Bm,λ(f) can be represented in the following form

Bm,λ(f ;x) = pm(x)TCm,λfm. (2.9)

In the case λ = k ∈ N, the matrix Cm,λ is given by

Cm,k = [I + (I −A) + (I −A)2 + . . . (I −A)k−1] (2.10)

= A−1[I − (I −A)k]

and the polynomial Bm,λ(f) is directly computed by using a very simple
algorithm, as the expression in (2.10) suggests. However, when λ is not an
integer, the matrix series in (2.2) can be obtained by an equivalent finite
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process. To do this, we need the following definition of matrix function on
the spectrum (see for instance [10]).

Definition 2.2. Let B a real matrix of order n and suppose that ξ1, ξ2, . . . , ξs
are the distinct eigenvalues of B of algebraic multiplicity n1, n2, . . . , ns, re-
spectively. Let f be defined on the spectrum of B. Then f(B) := Hn(f ;B),
where Hn(f) is the Hermite interpolating polynomial of degree less than n
that satisfies the interpolation conditions

Hn(f
(j); ξi) = f (j)(ξi), j = 0, 1, . . . , ni − 1, i = 1, 2, . . . , s.

Denote by ∆hf(x) = f(x + h) − f(x) the forward difference of the
function f and shift h ∈ R, and let be ∆i

h = ∆i−1
h (∆h). About the eigenvalues

of the matrix A we prove:

Proposition 2.3. The eigenvalues {ξm,i}mi=0 of the matrix A are

ξm,0 = ξm,1 = 1, ξm,i =
i−1∏
j=1

(
1− j

m

)
=

(
m

i

)
∆i

1
m
ei(0), i = 2, . . . ,m,

(2.11)
with ek(x) = xk, k ∈ N. Therefore, denoting by {µi}mi=1 the eigenvalues of
Cm,λ,

µm,0 = µm,1 = 1, µm,i =
1− (1− ξm,i)

λ

ξm,i
, i ≥ 2. (2.12)

For any set of knots x1, x2, . . . , xi, the so-called divided differences of a
given function f are defined recursively by

[x1; f ] = f(x1),

[x1, ..., xk; f ] =
[x2, ..., xk; f ]− [x1, ..., xk−1; f ]

xk − x1
, if xk ̸= xk−1

and, if f (i−1)(x1) exists,

[x1, x2, . . . , xi; f ] =
f (i−1)(x1)

(i− 1)!
, if x1 = x2 = · · · = xi, i ≥ 2.

Then, by using Proposition 2.3 and Definition 2.2, we can deduce

Corollary 2.4. Assume λ ≥ 1. Setting

σ(x) = [1− (1− x)λ]x−1,

we have

Cm,λ = Iσ(ξm,0)+

m∑
j=1

[ξm,0, ξm,1, . . . , ξm,j ;σ]

j−1∏
k=0

(A−ξm,kI) =: ρ(A). (2.13)

Therefore

Bm,λ(f ;x) = pm(x)T ρ(A)fm, (2.14)
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Remark 2.5. By the previous result it follows that Bm,λ(f) can be considered
as the m−th Bernstein polynomial of the function g such that

gk := g(tk) = [ρ(A)fm]k, k = 0, 1, . . . ,m,

i.e.

Bm(g;x) = Bm,λ(f ;x) = pm(x)Tgm,

where

gm := [g0, g1, . . . , gm]T . (2.15)

As a consequence, we can now compute the polynomial Bm,λ(f) by
using the de Casteljau recursive scheme.

Remark 2.6. Let us denote by Lm(f) the Lagrange polynomial interpolating
f at the equally spaced knots tj , j = 0, 1, . . . ,m, i.e.

Lm(f ;x) =
m∑
j=0

lm,j(x)f (tj) = lm(x)T fm,

where

lm,j(x) =

m∏
j ̸=i=1

(x− ti)

(tj − ti)
, lm(x) = [lm,0(x), lm,1(x), . . . , lm,m(x)]T ,

and fm is defined in (2.8). By (2.9) and using pm(x)TA−1 = lm(x)T [15], it
follows

Bm,λ(f ;x) = Lm(h;x) = lm(x)Thm (2.16)

where

hm := [h0, h1, . . . , hm]T = Cm,λfm, hi = h(ti), i = 0, 1, . . . ,m, (2.17)

i.e. Bm,λ(f) is also the Lagrange polynomial interpolating the function h at
the equally spaced knots tj , j = 0, 1, . . . ,m.

As consequence of (2.16), it is very easy to revisit the proof of the next
result obtained in [13]:

For any m,

lim
λ→∞

Bm,λ(f ;x) = Lm(f ;x), ∀f ∈ C0([0, 1]), (2.18)

uniformly in x ∈ [0, 1]. Indeed, it immediately follows by (2.16), (2.17) and

lim
λ→∞

Cm,λ = A−1. (2.19)

Relation (2.18) allows to say that the sequence {Bm,λ}λ links continu-
ously the Bernstein operator to the Lagrange one.

In the next Proposition we derive another representation of Bm,λ(f) by
means of the finite difference of the function f at the point 0. This expression
generalizes the well-known relation

Bm(f ;x) =
m∑

k=0

(
m

k

)
xk∆k

1
m
f(0), (2.20)



152 Donatella Occorsio

and it is useful to determine the closed expression of Bm,λ(ek), k = 1, 2, . . . ,
being ek(x) = xk, k ∈ N.

Theorem 2.5. Assume λ ≥ 1. Let M be the upper triangular matrix of ele-
ments (M)i,j =

(
m
i

)
∆i

1
m

ej(0), i = 0, 1, . . . ,m, j = 0, 1, . . . , i, and define

Mm,λ = M−1[I − (I −M)λ] = [I − (I −M)λ]M−1 ∈ R(m+1)×(m+1). (2.21)

For any f ∈ C0([0, 1]), setting

dm = [f(0),m∆ 1
m
f(0), . . . ,

(
m

k

)
∆k

1
m
f(0), ...,∆m

1
m
f(0)]T ,

the polynomial Bm,λ(f) can be represented in the following form

Bm,λ(f ;x) = xTMm,λdm. (2.22)

and also

Bm,λ(f ;x) = xT ρ(M)dm, (2.23)

where

ρ(M) = Iσ(ξm,0) +
m∑
j=1

[ξm,0, ξm,1, . . . , ξm,j ;σ]

j−1∏
k=0

(M − ξm,kI). (2.24)

σ(x) = [1− (1− x)λ]x−1 and ξm,i =
(
m
i

)
∆i

1
m

ei(0).

Remark 2.6. In view of (2.23), we derive

Bm,λ(ek;x) = xT ρ̃(A)kd̃k (2.25)

where ρ̃(A)k ∈ R(m+1)×k is the matrix formed by the first k columns of ρ(A)

and d̃k ∈ Rk is the vector formed by the first k components of d.

Remark 2.7. Denoting by Vm := Vm(t0, t1, . . . , tm) the Vandermonde ma-

trix w.r.t the knots t0, t1, . . . , tm, i.e. (Vm)i,j = tji , i = 0, 1, . . . ,m, j =
0, 1, . . . ,m, we get

Mm,λ = V−1
m Cm,λVm (2.26)

which easily follows by combining Vmdm = fm and xT = pT
mVm.

We conclude this section, giving some details about the computation of
polynomials Bm,λ(f). Since the polynomial Bm,λ(f ;x) is also the Bernstein
polynomial of the function g = Cmλf , it can be computed by using the de
Casteljau algorithm w.r.t. g. The algorithm is numerically stable and requires
m2 long operations, for any x ∈ [0, 1]. Since A is a centrosymmetric matrix
(i.e. ai,j = am−i,m−j , i, j = 0, 1, 2, . . . ,m), we deduce that its construction

can be performed in
[
m+1
2

]3
long operations. Let us distinguish between the

case λ integer or not. If λ = k ∈ N, by (2.10), the global cost to construct

Cm,k is (k−1)
[
m+1
2

]3
. A significant reduction is obtained by choosing k = 2p,

whereas, by using

Cm,2p = Cm,2p−1 + (I −A)2
p−1

Cm,2p−1 ,
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the computational effort is almost m3 log2 k. (see [15].)

In the general case λ ∈ R+, we have to use (2.13) and the global cost for
compute Cm,λ increases, requiring almost (m−2)m3/2 ∼ m4/2. Even though
the computation of Cm,λ requires the major computational effort, for fixed
values of m and λ its construction can be performed only once.

3. Two applications

In this section we discuss two different applications.

3.1. A quadrature rule on equally spaced knots

As we have said, quadrature rules involving equally spaced points and
having a ”good” behavior of the error can be of interest. Indeed, the Newton-
Cotes rules present catastrophic instability, since they are based on interpo-
lation processes on equally spaced knots. About the error of composite rules,
like Trapezoidal or Simpson rule, they suffer from saturation phenomena,
and the error decays like O( 1

m2 ) and O( 1
m4 ), respectively. Here we revisit the

following quadrature rule suggested in [12],

∫ 1

0

f(x)dx =

∫ 1

0

Bm,k(f ;x)dx+Rk
m(f) =: Σm(f) +Rk

m(f), (3.1)

where λ = k ∈ N.
Since for any j = 0, 1, . . . ,m∫ 1

0

pm,j(x)dx =
1

m+ 1
,

by (2.9) and (2.10), we derive

Σm(f) =
1

m+ 1

m∑
j=0

(
m∑
i=0

(Cm,k)i,j

)
f(tj) :=

m∑
j=0

D
(k)
j f(tj). (3.2)

Now we prove that the rule is numerically stable and convergent and that
for smooth functions the rate of convergence improves as the parameter k
increases.

Theorem 3.1. With the notation used in (3.1)-(3.2),

sup
m

m∑
j=0

|D(k)
j | < ∞, (3.3)

and for any f ∈ C2k([0, 1]), k ≥ 2, 2k < m

|Rk
m(f)| ≤ C

mk

(
∥f∥∞ + ∥f (2k)∥∞

)
, (3.4)

where C is a positive constant independent of f and m.
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Now we show the performance of the method by some numerical tests.
In the tables for each degree m and for the specified values ok k, we report
the values obtained in computing the quadrature sum (3.2) in 16−digits
precision, comparing also with the results obtained by using the composite
Trapezoidal and Simpson rules. For these rules the value of m represents the
number of function evaluations.

Example 3.2. ∫ 1

0

arctan(x)

(1 + x2)3
dx

In this example the exact value is 0.1713839674246280. Here f ∈ C∞([0, 1]).
The apparent slow convergence depends on the ”fast” increasing values of
the seminorm ∥f (2k)∥∞. For instance ∥f (16)∥∞ ∼ 1.2× 1015.

m k = 5 k = 8 k = 16

4 0.17 0.17 0.17

8 0.171 0.171 0.17138

16 0.17138 0.171383 0.171383

32 0.17138396 0.17138395 0.17138396

64 0.171383967 0.1713839674 0.17138396742

128 0.1713839674 0.171383967424 0.1713839674244628

256 0.171383967424 0.171383967424628

512 0.171383967424628

m Trapezoidal m Simpson

256 0.17138 64 0.173839

512 0.171383 128 0.17383967

4096 0.17138396 256 0.173839674

16384 0.171383967 512 0.1738396742

131072 0.1713839674 1024 0.17383967424

1048576 0.171383967424 2048 0.1713839674246

4194304 0.17138396742462 4096 0.171383967424628

Example 3.3. ∫ 1

0

(1− x)5π

1 + x3
dx

In this example the exact value is 0.0597973223176919. Since the function
f ∈ C15([0, 1]), in view of the Theorem 3.1, the error behaves like O

(
1

m7

)
.

As we can see the machine precision is attained for m = 1024, k = 7,
whereas according to the estimate (3.4) and taking into account the high
value of the seminorm ∥f (14)∥∞ ∼ 1.5 × 1015, we can expect only 5 exact
digits. We remark that the order of convergence improves even though k
exceeds the maximum value assuring estimate (3.4).
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m k = 7 k = 16 k = 32

32 0.059 0.059797 0.0597973

64 0.059797 0.059797322 0.0597973223

128 0.059797322 0.059797322317 0.0597973223176919

256 0.05979732231 0.0597973223176919

512 0.05979732231769

1024 0.0597973223176919

m Trapezoidal m Simpson

256 0.059 64 0.05979

1024 0.05979 128 0.0597973

2048 0.059797 512 0.059797322

16384 0.05979732 1024 0.0597973223

131072 0.0597973223 4096 0.059797322317

2097152 0.171383967424 8192 0.05979732231769

3600000 0.0597973223176 32768 0.059797322317691

As can be observed, the number of function’s evaluation required w.r.t.
Trapezoidal and Simpson rules is drastically reduced. This aspect can justify
the high computational cost needed for the construction of Cm,k in (3.2).

3.2. Generalized Bézier curves

Finally we want to show some properties of the parametric curves based
onBm,λ operator and that in some sense generalize the classical Bézier curves.
Such a kind of curves were introduced and studied in [15] in the special case
λ ∈ N.

The class of Polya curves represent, for instance, a family of polynomial
curves which generalizes Bézier and Lagrange curves (see [2],[3], [4]).

Definition 3.4. Let P = [P0, . . . ,Pm]T ,Pj ∈ R2 be a given control polygon.
Curves of parametric equations

Bm,λ[P0, . . . ,Pm](t) =
m∑
j=0

p
(λ)
m,j(t)Pj , 0 ≤ t ≤ 1, λ ∈ R+, (3.5)

with blending functions p
(λ)
m,j given in (2.4), will be called GB(λ) curves.

In particular the curve of equation (3.5) reduces to Bézier curve for λ = 1

Bm[P0, . . . ,Pm](t) =
m∑
j=0

pm,j(t)Pj , 0 ≤ t ≤ 1, (3.6)

while, for λ → ∞, (3.5) represents the Lagrange curve of the same control
polygon P.

The flexible parameter λ is used in order to model different shapes w.r.t
the same control polygon P, obtaining as extreme cases the Bézier curve and
the Lagrange interpolating curve. In this sense λ is a ”shape parameter”.
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It is known (see [7]) that relevant geometric properties of paramet-
ric curves descend from corresponding properties of the blending functions

{p(λ)m,k}. We now collect some properties satisfied by GB(λ) curves.

• Coordinate system independence
GB(λ) curves will not change if the coordinate system is changed, since

m∑
j=0

p
(λ)
m,j(x) = 1.

Indeed, this is proved taking into account that the sum of the elements
of each row of Cm,λ is equal to 1.

• Smoothness
GB(λ) are polynomial curves.

• Endpoint Interpolation Indeed,

Bm,λ[P0, . . . ,Pm](0) = P0, Bm,λ[P0, . . . ,Pm](1) = Pm,

since Bm,λ(f ; 0) = f(0), Bm,λ(f ; 1) = f(1) [13].
• Symmetry

Curves are symmetric if they do not change under a reverse reordering
of the control points sequence, i.e. if and only if

Bm,λ[P0, . . . ,Pm](t) = Bm,λ[Pm, . . . ,P0](1− t),

which holds taking into account

p
(λ)
m,j(x) = p

(λ)
m,m−j(1− x), j = 0, . . . ,m. (3.7)

• Preservation of points and lines

This is equivalent to
∑m

j=0 p
(λ)
m,j(x) = 1,

∑m
k=0 kp

(λ)
m,k(x) = mx. The

first relation is equivalent to the coordinate system independence, while
the second holds in view of [13]

Bm,λ(e1; t) = e1(t), e1(t) = t.

• Nondegeneracy
The curve cannot collapse to a single point, and this is implied from the

linear independence of the blending functions {p(λ)m,k}.
• Numerical stability

Since GB(λ) are the Bézier curves of the polygon

Tλ := ρ(A)[P0, . . . ,Pm], (3.8)

the rendering algorithm is essentially the de Casteljau recursive scheme
applied to the new control polygon Tλ.

Moreover, GB(λ) curves satisfy all the properties of the Bézier curves
w.r.t. the new control polygon Tλ.

We conclude proposing two graphical examples showed in Figures 1 and
2. Here, for two given control polygons of 5 and 9 vertices, respectively, the
curves GB(λ) are rendered for different shape parameter values.
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Figure 1. λ = 1, 3, 7.1, 11, 19.9
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Figure 2. λ = 1, 3, 8.9, 40, 120

4. The proofs

Proof of Proposition 2.3. It is known that [5]

Bm(qi;x) = ξm,iqi(x), m ≥ i, qi ∈ Pi. (4.1)

i.e., ξm,i in (2.11) are the eigenvalues of the operator Bm and qi, i =
0, . . . ,m are the corresponding eigenfunctions. Setting

pm(x) = [pm,0(x), . . . , pm,m(x)]T , qm(x) = [q0(x), . . . , qm(x)]T ,

γi = [qi(0), qi(1/m), . . . , qi(1)]
T ,

Γ = [γ0, γ1, . . . , γm], Ψ = diag[ξm,0, ξm,1, . . . , ξm,m],
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(4.1) can be rewritten as

pm(x)T γi = qi(x)ξm,i, i = 0, . . . ,m,

that is
pm(x)TΓ = qm(x)TΨ,

and evaluating at x = t0, t1, . . . , tm, it follows

AΓ = ΓΨ,

where A is the matrix in (2.7). Since {qi}mi=0 is a basis for the space Pm, Γ is
nonsingular, and by

A = ΓΨΓ−1, (4.2)

the proposition follows. �
In order to prove Theorem 2.1, we need the following

Theorem 4.1. [10, Th. 3, p.328] Let B a real matrix of order n and suppose
that z1, z2, . . . , zs are the distinct eigenvalues of B of algebraic multiplicity
n1, n2, . . . , ns, respectively. Let the function f(z) have a Taylor series about
z0 ∈ R

f(z) =

∞∑
ν=0

αν(z − z0)
ν

with radius of convergence r. Then the function f(B) is defined and is given
by

f(B) =
∞∑
ν=0

αν(B − z0I)
ν

if and only if the distinct eigenvalues of A satisfy one of the following condi-
tions:

1. |zk − z0| < r;
2. |zk − z0| = r and the series for f (nk−1)(z) is convergent at the point

z = zk, 1 ≤ k ≤ s.

Proof of Theorem 2.1. We recall the following representation given in [15]

Bi
m(f ;x) = pT

mAi−1fm. (4.3)

Therefore (2.3) becomes

Bm,λ(f ;x) = pm(x)T
∞∑
i=1

(−1)i+1

(
λ

i

)
Ai−1fm. (4.4)

Denoting by {φm,i := 1 − ξm,i}mi=0 the eigenvalues of I − A, by Proposition
2.3 it follows 0 ≤ φm,i < 1, i = 1, 2, . . . ,m and

∞∑
i=0

(−1)i
(
λ

i

)
Ai = (I −A)λ, λ ≥ 1. (4.5)

The proposition is completely proved combining last relation with (4.4). �
Proof of Theorem 2.5. First we prove

Bi
m(f ;x) = xTM i−1dm. (4.6)
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For i = 1 (4.6) holds, in view of (2.20). Assume that (4.6) holds for i. By
using (2.20)

Bi+1
m (f ;x) = Bm(Bi

m(f);x) =

m∑
l=0

Bm(el;x)

m∑
k=0

M i−1
l,k

(
m

k

)
∆k

1
m
f(0)

=
m∑
l=0

m∑
j=0

xj

(
m

j

)
∆j

1
m

el(0)
m∑

k=0

M i−1
l,k

(
m

k

)
∆k

1
m
f(0)

=

m∑
j=0

xj
m∑

k=0

(
m

k

)
∆k

1
m
f(0)

m∑
l=0

Mi,lM
i−1
l,k = xTM idm.

By induction (4.6) is true for every i. Following the same arguments used in
the proof of Theorem 2.1, under the assumption λ ≥ 1, we get

Bm,λ(f, x) = xT
∞∑
i=1

(−1)i+1

(
λ

i

)
M i−1dm = xTM−1[I − (I −M)λ]dm. �

Proof of Theorem 3.1. In order to prove (3.3), we start from

m∑
j=0

|D(k)
j | = 1

m+ 1

m∑
j=0

∣∣∣∣∣
m∑
i=0

(Cm,k)i,j

∣∣∣∣∣ ≤ max
0≤i≤m

m∑
j=0

|(Cm,k)i,j | = ∥Cm,k∥∞

and by (2.10),

m∑
i=0

|D(k)
j | ≤ ∥Cm,k∥∞ ≤ ∥I∥∞ + ∥I −A∥∞ + ∥I −A∥2∞ + · · ·+ ∥I −A∥k−1

∞

≤ 1 + 2 + · · ·+ 2k−1 = 2k − 1, since ∥A∥∞ = 1.

To prove (3.4), we use [12]

∥f −Bm,k(f)∥∞ ≤ m−k
2k∑
ν=0

bν∥f (ν)∥∞

(see also [17]) where bν are positive constants independent of f . Therefore,
since [6, p.310, Lemma 2.1]

2k∑
ν=0

bν∥f (ν)∥∞ ≤ C(∥f∥∞ + ∥f (2k)∥∞),

(3.4) follows. �
Acknowledgement. I am grateful to professor Mastroianni for his helpful sug-
gestions. Moreover, I thank the referee for his useful remarks.
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abstractă, proiectori Altomare, Editura Technică, Colecţia Universitaria, 1999.
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Book reviews

Barry Simon, Szegö’s Theorem and Its Descendants – Spectral Theory for L2

Perturbations of Orthogonal Polynomials, Princeton University Press, Princeton
and Oxford 2011, x + 650 pp. ISBN-13: 978-0-691-14704-8.

This volume, dealing with orthogonal polynomials on the real line
(OPRL), can be considered as complementary to the monumental two volume
treatise of the author on orthogonal polynomials on the unit circle D (OPUC),
published by the American Mathematical Society, AMS Colloquium Series,
volumes 54.1 and 54.2, Providence RI, 2005. As the author does mention in
the Preface, although there are some inevitable overlap between them (mainly
in Chapters 2 and 3), the present one is concentrated on topics not contained
there. The focus is on sum rules for OPRL, but some results existing at the
time when the OPUC volumes were written but of which the author was not
aware, are also included. In fact, as remarked Szegö, using the transforma-
tions E : D → C ∪ {∞}, E(z) = z + z−1, and Q = E|∂D, Q(eiθ) = 2 sin θ,
some results on OPUC can be translated to OPRL.

The main goal of the book is to emphasize the deep connections be-
tween spectral theory and topics from classical analysis related to OPRL.
The author calls a gem of spectral theory a theorem putting in one-to-one
correspondence a class of spectral data with a class of objects.

The general framework is that of orthogonal polynomials (Pn)∞n=0 with
respect to a finite positive measure dρ on R having finite moments:∫
|xn|dρ(x) < ∞ for all n. The measure dρ is called trivial if supp (dρ) is finite

(equivalently, L2(∂D, dρ) is finite dimensional), and nontrivial otherwise. If dρ
is nontrivial, then 0 <

∫
|P (x)|dρ(x) < ∞ for every polynomial P. The OPRL

satisfy a recursion relation xPn(x) = Pn+1(x)+bn+1Pn(x)+a2
nPn−1(x), with

P−1(x) ≡ 0. The first gems of spectral theory presented in the book are the
Blumenthal-Weil theorem asserting that for an infinite Jacobi matrix J with
coefficients satisfying the conditions (1): an → 1 and bn → 0, the essential
spectrum of J is σess(J) = [−2, 2], and the converse, the theorem of Denisov
and Rakhmanov, asserting that, under some supplementary hypotheses, the
equality σess(J) = [−2, 2] implies the conditions (1).

Szegö’s theorem, published in 1915, alluded to in the title of the book,
solves positively a conjecture of Pólya asserting that limn→∞Dn(w)1/n =
exp

(∫
log(w(θ) dθ

2π

)
, where w > 0 is a weight function and Dn(w) is the

determinant of the Toeplitz matrix of order n associated with the moments
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ck =
∫

e−ikθw(θ) dθ
2π , k ≥ 0. In fact, Szegö proved a stronger result, namely

that Dn+1/Dn has as limit the written quantity. A detailed proof of this the-
orem, some extensions and detours are given in Chapter 2, while in Chapter
3, The Killip-Simon theorem: Szegö theorem for OPRL, one gives a proof of
Szegö theorem for OPRL whose essential support is [−2, 2]. Matrix orthog-
onal polynomials on the real line are discussed in Chapter 4 and periodic
OPRL in Chapter 5. Chapter 6, Toda flows and symplectic structures, is con-
cerned with the close relations between periodic Jacobi matrices and Toda
lattices of dynamical systems. Chapter 7, Right limits, contains some results
needed for the proofs in Chapter 8 of Szegö and Killip-Simon theorems for
periodic OPRL, and in Chapter 9 of Szegö theorem for finite gap OPRL. The
last chapter of the book, Chapter 10, A.C. spectrum for Bethe-Cayley trees,
is concerned with the sum rules in the study of perturbed Laplacians, called
Bethe lattices by physicists and Cayley trees by mathematicians. The author
adopted a mixed terminology.

The book is clearly written and very well organized - each section ends
with a paragraph called Remarks and Historical Notes, containing references
to bibliography as well as some pertinent and cute remarks of the author. The
bibliography counts 465 items with specifications of the pages where each one
is cited in the text.

The author is a reputed specialist in the area, most of his contributions
and of his students appearing here for the first time in book form.

Presenting a modern approach to some classical problems, relating clas-
sical analysis and spectral theory, but with some problems in physics as well,
this book together with the AMS volumes on orthogonal polynomials on the
unit circle, will become standard references in the field and an invaluable
source for further research.

Mirela Kohr

A. Ya. Helemskii, Quantum Functional Analysis. A Non-Coordinate
Approach, University Lecture Series, Vol. 56, American Mathematical Soci-
ety, Providence, Rhode Island 2010, xvii+241 pp, ISBN:978-0-8218-5254-5

The term ”quantum space” used in the book is synonym to that of
”abstract operator space”. As the author explains in the Introduction the
aim of the present book is to introduce the ”pedestrian” reader to this fas-
cinating area of investigation, being based on the difficulties he encountered
when reading the classical texts of the ”founding fathers” of the theory -
E. G. Effros, G. Pisier, V. Paulsen, U. Haagerup. a.o. The term ”quantum”
or ”non-commutative” means that at an early stage, in some crucial defini-
tions, some commutative objects, functions or scalars, are replaced by ”non-
commutative” ones, meaning matrices or operators. In the case of a linear
space E, written as C⊗E, the scalars C are replaced by some ”good” operator
algebras, and the usual norm by a ”quantum norm” (synonym for ”opera-
tor space structure”). In the present book as good algebras one takes the
algebra F(L) of bounded finite rank operators on a fixed separable Hilbert
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space L or the algebra B(L) of bounded operators on L. A natural core no-
tion is that of completely bounded map which makes the whole machinery to
work properly. In this way a far reaching generalization of classical functional
analysis is obtained and, at a same time, it led to spectacular solutions of
some long standing problems in operator theory and in other areas, to quote
only the negative solution given by Pisier in 1997 (see, G. Pisier, Similarity
problem and completely bounded maps, 2nd, Expanded Edition, Lect. Notes.
Math. vol. 1618, Springer, Berlin 2001) to the problem of the similarity of
polynomially bounded operators, posed by Halmos in his famous paper ”Ten
problems in Hilbert space”, Bulletin AMS 76 (1970).

Although, as the author does mention, in essence a matter of test, the
non-coordinate approach (i.e., based on operators) adopted in this book has
some advantages over the matrix (coordinate) based approach, or at least
it can be an alternative for the presentation given in most of the books on
operator spaces.

Some fundamental results of the theory such as Ruan’s representation
theorem (every abstract operator space can be realized as a concrete operator
space), the Hahn-Banach type theorem of Arveson and Wittstock and the
decomposition theorem of Paulsen are enounced in Chapter 0. Three basic
definitions and three principal theorems. Their proofs, rather long, deep and
intricate, requiring considerable effort from the reader are postponed to Part
III. Principal theorems revisited in earnest, of the book.

The presentation is made axiomatically, based on Ruan’s axioms, al-
lowing a quick access to some fundamental constructions (as quantum tensor
products and duality theory) as well as the presentation of some illuminating
examples. This is done in Part I. The beginning: Spaces and operators, con-
taining the chapters 1. Preparing the stage, 2. Abstract operator (=quantum)
spaces, 3. Completely bounded operators, 4. The completion of abstract opera-
tor spaces, and Part II. Bilinear operators, tensor products and duality, with
the chapters 5. Strongly and weakly completely bounded bilinear operators,
6. New preparations: Classical tensor products, 7. Quantum tensor products,
and 8. Quantum duality.

The author is well-known for his results on the homology of Banach
algebras (see the book, A. Ya. Helemskii, The homology of Banach and topo-
logical algebras, Kluwer A.P., Dordrecht, 1989), as well as for his expository
texts as, for instance, Lectures and exercises on functional analysis, AMS ,
Providence, RI, 2005.

Written in a didactic manner, the book contains a very clear presenta-
tion of the basic results of quantum functional analysis, accessible to a reader
with few experience in the area - the prerequisites are basic functional anal-
ysis (for instance, as exposed by ordinary print in author’s book mentioned
above), some results on modules and bimodules over an algebra and some ba-
sic facts on C∗-algebras (in fact, this last field can be avoided by considering
them as the algebra of all bounded operators on a Hilbert space).

S. Cobzaş
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Peter Kosmol and Dieter Müller-Wichards, Optimization in Function Spaces
- with stability considerations in Orlicz spaces, Series in Nonlinear Analysis
and Applications, Vol. 13, Walter de Gruyter, Berlin - New York, 2011, xiv
+ 377 pages, ISBN: 978-3-11-025020-6, e-ISBN 978-3-11-025021-3, ISSN
0941-813X.

The book is concerned with convex optimization in Banach spaces, with
emphasis on Orlicz spaces.

The first two chapters, 1. Approximation in Orlicz spaces, and 2. Polya
algorithms in Orlicz spaces, deal with Haar subspaces and Chebyshev alter-
nation theorem in C(T ), their extensions to Orlicz spaces and with Polya
algorithm for discrete Chebyshev approximation - convergence and stability.

Chapter 3. Convex sets and convex functions, contains a fairly com-
plete presentation of basic results about convex functions, including conti-
nuity, differentiability (Gâteaux and Fréchet), Fenchel-Moreau duality with
applications to optimization problems (existence, characterization, Lagrange
multipliers). The fact that the Gâteaux differential of a continuous convex
function is demi-continuous is used later (in Chapter 8) to prove that a re-
flexive and Gâteaux smooth Orlicz space is Fréchet smooth.

The fourth chapter contains an overview of some numerical methods
for non-linear and optimization problems (secant and Newton-type meth-
ods), a detailed treatment being given in an other monograph by P. Kosmol,
Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Opti-
mierungaufgaben, B. G. Teubner Studienbücher, Stuttgart, 1993, 2nd ed.

The main tools used in Chapter 5, Stability and two-stage optimization
problems, are some uniform boundedness results for families of convex func-
tions and convex operators, proved by the first author, and extending the
well-known Banach-Steinhaus principle.

Orlicz spaces are studied in chapters 6. Orlicz spaces, 7. Orlicz norms
and duality, and 8. Differentiability and convexity in Orlicz spaces. This
study includes the Orlicz spaces LΦ and MΦ equipped with Luxemburg or
Orlicz norms, duality, reflexivity, as well as geometric properties of Orlicz
spaces - rotundity and smoothness, Efimov-Stechkin property, with applica-
tions to best approximation and optimization, Tikhonov regularization, Ritz
method and greedy algorithms.

In the last chapter of the book, 9. Variational calculus, one considers
minimization with respect to both the state variables x and

.
x in some min-

imization problems. The fundamental theorem of the Calculus of Variations
(the Euler-Lagrange equation) is obtained by using some quadratic supple-
ments making the Lagrangian convex in the vicinity of the solution, avoiding
in this way the usage of field theory and of Hamilton-Jacobi equations. As
application, a detailed treatment of the isoperimetric problem, called by the
authors the Dido problem, is included.
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The authors are authoritative voices in the area, known for their papers
and books (e.g., P. Kosmol, Optimierung und Approximation, de Gruyter,
Berlin-New York, 2010, 2nd ed, and the book quoted above).

Written in a clear and accessible manner (only mathematical analysis,
linear algebra and familiarity with measure theory and functional analysis is
required), the book can serve as a base for second half undergraduate or mas-
ter courses on linear and nonlinear functional analysis, dealing with themes
as convex functions and optimization, Orlicz spaces and their geometry, vari-
ational calculus.

W. W. Breckner

Siu-Ah Ng, Nonstandard methods in functional analysis - lectures and notes,
World Scientific, London - Singapore - Beijing, xxii + 316 pages, ISBN: 13
978-981-4287-54-8 and 10 981-4287-54-7.

The nonstandard analysis has its origins in the 60s in the work of Abra-
ham Robinson in his attempt to put on a rigorous basis Leibniz’s differential
calculus based on infinitesimal quantities (called monads). The construction,
based on techniques from model theory for the first order logic, was presented
for the first time in book form by A. Robinson, Non-standard analysis, North
Holland 1966. Although, at the beginning, the idea was to present nonstan-
dard proofs of known results, soon new results were obtained by nonstandard
methods, the most striking being the solution to the invariant space prob-
lem for polynomially compact operators obtained by A. R. Bernstein and A.
Robinson in 1966. In the same year P. Halmos gave a standard proof to this
result. A presentation of the result is given in the book by M. Davis, Applied
nonstandard analysis, J. Wiley 1977. Some spectacular results in measure
theory with applications to probability theory, based on nonstandard meth-
ods, were obtained in 1975 by P. Loeb. The methods of nonstandard analysis
require some preliminary effort from the newcomer, for which, as remarked
A. Uspenski in the authoritative Preface written for the Russian edition (Mir,
Moskva 1982) of the above mentioned book of M. Davis, some nonstandard
reasonings can look as strange as ”a description of the endocrine systems of
griffons and unicorns or of the chemical reactions between the philosophical
stone and phlogiston”.

The aim of the present book is to disprove this impression and to show
that, once acquainted, the methods of nonstandard analysis lead to more
transparent and intuitive proofs of known results in functional analysis, and
to new results as well.

The first chapter contains an overview of the basic methods and tools
of nonstandard analysis (extensions and ultraproduct techniques) with appli-
cations to elementary calculus, topology and measure theory. In the second
chapter, Banach spaces, the author passes to the presentation of basic re-
sults on normed spaces - nonstandard hulls, linear operators, Hahn-Banach
theorem, weak compactness, reflexivity. Two topics that fit very well with
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nonstandard methods are finite representability and superreflexivity. The ex-
posure continues in Chapter 3 with a presentation of basic results on Banach
algebras. The last chapter of the book, Chapter 4, Selected research topics, is
concerned with fixed points, noncommutative Loeb measures, Hilbert space-
valued integrals.

The book is a good introduction to nonstandard methods in functional
analysis and can serve as a base text for master courses or for self-study.

S. Cobzaş

Kenneth Kuttler, Calculus - Theory and applications,
World Scientific, London - Singapore - Beijing, 2011
Volume I, xii + 480 pages, ISBN: 13 978-981-4329-69-9 (pbk) and 10
981-4329-69-X (pbk).
Volume II, xii + 410 pages, ISBN: 13 978-981-4329-70-5 (pbk) and 10
981-4329-70-3(pbk).

This is a comprehensive course on Calculus of functions of one and of
several variables. To make the book self-contained (as much as possible), the
author has included in the first chapter of the first volume, A short review
of the precalculus, some supplementary material, mainly from linear algebra
and geometry (some trigonometry is included as well). This volume contains
also the elements of calculus of functions of one variable - limits, continu-
ity, derivatives, antiderivatives, some elementary differential equations, the
Riemann integral and infinite series.

Chapters 12, Fundamentals, and 13, Vector products, are devoted to vec-
tor calculus in Rn including the dot and the cross products. The last chapter
of the first volume, 13, Some curvilinear coordinate systems, beside some
results on curvilinear coordinates (as, e.g., graphs and area in polar coordi-
nates) contains also an exposition of Kepler’s laws on the planetary motion,
completed in Appendix B with a presentation of Newton’s laws of motion.
Appendix A is devoted to some results in plane geometry and trigonometry.
This topic is considered again in Appendix F of the second volume with the
study of Christoffel symbols, curl and cross products in curvilinear coordi-
nates

The second volume is devoted to the calculus of functions of several vari-
ables. As the linear algebra is the skeleton of the n-dimensional calculus and
at the same time furnishes a lot of useful tools, the first three chapters 1, Ma-
trices and linear transformations, 2, Determinants, and 3, Spectral theory (a
study of eigenvalues and eigenvectors), are devoted to this topic, completed in
Appendix A, The mathematical theory of determinants, with rigorous proofs
of the properties of determinants and applications to the diagonalization of
matrices.

Chapter 4, Vector valued functions, is concerned with limits and conti-
nuity properties. A special chapter (Chapter 5) is devoted to vector functions
of one real variable (derivatives and integrals) with applications in Chapter
6, Motion on a space curve, to spatial curves and their geometry.
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The differential calculus of functions of several variables is developed in
Chapters 7, Functions of many variables, and 8, The derivatives of functions
of many variables, with applications, in Chapter 9, Optimization, to local
and conditioned extrema. This study is completed in Appendix B with a
proof of the implicit function theorem with applications to local structure of
differentiable functions.

The basic notions and tools of the Riemann integral in Rn are given in
chapters 10, The Riemann integral and 11, The integral in other coordinates,
at an informal level, the rigorous proofs (including a proof of the change of
variables formula) being postponed to Appendices C, The theory of Riemann
integral, and D, Volumes in higher dimensions (the function Gamma and the
volume of balls in Rn).

The integral on two dimensional surfaces in R3 is treated in Chapter
12, while Chapter 13 is concerned with the calculus of vector fields. Other
physical applications (as, e.g., the Coriolis acceleration of the rotating earth)
are given in Appendix E.

The book is written in a very didactic manner reflecting the teaching
experience of the author - one starts with examples and particular cases
before presenting the general case and rigorous proofs (most being given in
appendices).

There are a lot of interesting concrete examples (some of them in-
cluded in the exercises) from physics, mechanics, astronomy, economics,
some of them presented in an entertaining amazing way. Each chapter ends
with a set of well chosen exercises, many having answers or hints at the
end of each volume. The most challenging are marked by *. A web page,
http://www.byu.edu/ klkuttle/CalculusMaterial, contains supplementary ma-
terial and routine exercises.

The author is well known for his books on calculus and linear algebra,
from which Modern Calculus, CRC Press, Boca Raton 1998, contains more
advanced topics.

These volumes, written in a live and accessible but at the same time
rigorous style, can be used for basic courses in calculus (or linear algebra),
at beginning or advanced levels.

Tiberiu Trif

I. Meghea, Ekeland variational principle: with generalizations and variants,
Old City Publishing, Philadelphia and Éditions des Archives Contempo-
raines, Paris, 2009, iv+524 pp. ISBN: 978-1-933153-08-7; 978-2-914610-96-4

The variational principle discovered by Ivar Ekeland in 1972 (called in
what follows EkVP) turned out to be a powerful and versatile tool in many
branches of mathematics – Banach space geometry, optimization, economics,
etc. This was masterly illustrated by Ekeland in the survey paper from the
Bulletin of the American Mathematical Society 39 (2002), no. 2, pp. 207265,
and proved by subsequent developments. In fact, EkVP is a paradigm of a
maximality principle used by E. Bishop and R. Phelps in the proof of their
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famous result on the density of support functionals and is also related to the
Brezis-Browder maximality principle. Nowadays there are a lot of variational
principles originating from EkVP: smooth variational principles, vector vari-
ational principles, perturbed variational principles. After more than 30 years
since the discovery of EkVP, the present monograph demonstrates that this
principle could be considered as the landmark of modern variational calculus.

The first chapter, I. Ekeland variational principle, is devoted to the
presentation of the original Ekeland variational principle in complete metric
spaces and of some equivalent results – the drop and flower petal theorems,
the Bishop-Phelps theorem, Caristi-Kirk fixed point theorem. Applications
to minimax-type theorems in Banach space and on Finsler manifolds and to
Clarke’s subdifferential calculus for locally Lipschitz functions are included.
This chapter contains also some extensions of EkVP – vector variants of
EkVP, EkVP in locally convex spaces, in uniform spaces and in probabilistic
metric spaces.

The second chapter II. Smooth variational principles, is concerned with
Borwein-Preiss and Deville-Godefroy-Zizler smooth variational principles and
Ghoussoub-Maurey perturbed variational principle. The chapter ends with a
variational principle, proved by Yongxin Li and Shuzhong Shi (2000), unifying
and generalizing both EkVP and Borwein-Preiss variational principle. As it
is shown in the book EkVP cannot be recovered in its full generality from
Borwein-Preiss variational principle.

Beside the bibliography referred to in the main text, the book contains
also an Additional Bibliography with brief presentations of some results ap-
peared after the book was written or which do not fit the general context.

Collecting the essential results on variational principles and presenting
them in a coherent and didactic way (there are a lot of improvements of the
results taken from various sources and corrections of the proofs, belonging to
the author), the book is a very useful reference for researchers in this area as
well as for those interested in applications. By the detailed presentation of
the subject the book can be used also by the newcomers or as a support for
an advanced course in nonlinear analysis.

S. Cobzaş
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