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N -structures applied to associative-Z-ideals
in IS-algebras

Ali H. Handam

Abstract. In this paper the notion of N -Z-ideals and N-associative Z-ideals in
IS-algebra is introduced, as well as some of their properties are investigated.
The relations between N-Z-ideals and N -associative Z-ideals are discussed. A
characterization of N-associative Z-ideals is provided.

Mathematics Subject Classification (2010): 06F35, 03G25.
Keywords: 1S-algebras, NV-structure, N- Z-ideal, N-associative Z-ideal.

1. Introduction

Imai and Iséki [1] in 1966 introduced the notion of a BCK-algebra. In the same
year, Iséki [2] introduced BCI-algebras as a super class of the class of BCK-algebras.
In 1993, Jun et al. [3] introduced a new class of algebras related to BCI-algebras
and semigroups, called a BCI-semigroup/BCI-monoid/BCI-group. In 1998, for the
convenience of study, Jun et al. [8] renamed the BCI-semigroup (respectively, BCI-
monoid and BCI-group) as the IS-algebra (respectively, IM-algebra and IG-algebra)
and studied further properties of these algebras (see [7]).

A (crisp) set A in a universe X can be defined in the form of its characteristic
function py : X — {0, 1} yielding the value 1 for elements belonging to the set A and
the value 0 for elements excluded from the set A. So far most of the generalization of
the crisp set have been conducted on the unit interval [0,1] and they are consistent
with the asymmetry observation. In other words, the generalization of the crisp set
to fuzzy sets relied on spreading positive information that fit the crisp point {1} into
the interval [0, 1]. Because no negative meaning of information is suggested, we now
feel a need to deal with negative information. To do so, we also feel a need to supply
mathematical tool. To attain such object, Jun et al. [5] introduced a new function
which is called negative-valued function, and constructed AV -structures. They applied
N-structures to BCK/BCl-algebras, and discussed N -subalgebras and N-ideals in
BCK/BClI-algebras. Jun et al. [6] considered closed ideals in BCH-algebras based on
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N-structures. Jun et al. [4] introduced the notion of a (created) N -ideal of subtraction
algebras, and investigated several characterizations of N -ideals.

In this paper, we introduced the notion of N-Z-ideals and A -associative Z-ideals
in IS-algebras, and studied several related properties.

2. Basic results on IS-algebras

The following necessary elementary aspects of IS-algebras will be used through-
out this paper.

By a BCl-algebra we mean an algebra (X, *,0) of type (2,0) satisfying the fol-
lowing axioms: for every z,y,z € X [2],
(1) (25 y) * (@5 2)) % (25 9) =0,
(I1) (2 + (w y)  y = 0,
(IIT) zxx =0,
(IV)z+xy=0and y*xxz =0 imply z = y.
A BCl-algebra X satisfying 0 < z for all x € X is called a BCK-algebra. In any
BClI-algebra X one can define a partial order “<” by putting x < y if and only if
zxy =0.
A BCl-algebra X has the following properties for any z,y,z € X [2]:
(A1) %0 =z,
(xxy)*xz=(x*xz2)*y,

(x*2)*(y*2) Jx*y,

2% (0 (@ry) —ary,
Ox(xxy)=(0xx)x(0xy),
05 (0 (5% 2) % (y2))) = (0% 9) % (02).

A non-empty subset I of a BCl-algebra X is called an ideal of X if (S1): 0 € I,
(52): xxy € I and y € I imply that x € I. A non-empty subset I of X is called a
associative ideal of X if it satisfies (S1) and (S3): ((x xy) x2) € I, (y *x z) € I imply
that z € I.

Definition 2.1. [8]. An IS-algebra is a non-empty set X with two binary operations
“” and “” and constant 0 satisfying the axioms

(B1) (X,%,0) is a BCI-algebra,
(B2) (X,-) is a semigroup,
(B3) the operation “” is distributive (on both sides) over the operation “x”, that is,

z-(yxz)=(x-y)*x(x-2)and (x*xy)-z2=(x-2)*(y-2) for all z,y,z € X.
Note that, the IS-algebra is a generalization of the ring (see [8]).
Proposition 2.2. [3]. Let X be an IS-algebra. Then we have

(1)0-z=2-0=0,
(2) © Xy implies that -z <y-zand z-x <X z -y, for all z,y,z € X.
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Definition 2.3. [8]. A non-empty subset A of an IS-algebra X is called a left (resp.
right) Z-ideal of X if
(1) z-a€ A (resp. a-x € A) whenever x € X and a € A,

(2) for any z,y € X, zxy € A and y € A imply that x € A.
Both a left and right Z-ideal is called Z-ideal.

Definition 2.4. [9]. A non-empty subset A of an IS-algebra X is called a left (resp.
right) associative Z-ideal of X if

(1) z-a€ A (resp. a-x € A) whenever x € X and a € A,

(2) for any x,y,z € X, (xxy)*xz € A and y x z € A imply that x € A.

3. N -associative Z-ideals

Denote by F(X,[—1,0]) the collection of functions from a set X to [—1,0]. We
say that, an element of F(X,[—1,0]) is a negative-valued function from X to [—1,0]
(briefly, N-function on X). By an A/-structure we mean an ordered pair (X, £), where
¢ is an NV-function on X. In what follows, let X be an IS-algebra and ¢ an N -function
on X unless otherwise specified.

Definition 3.1. Let X be an IS-algebra. An N -structure (X, £) is called a left N -I-ideal
(resp. a right N'-I-ideal) of X if

(C1) (E(zy) < &(y)) (resp. E(wy) < &(x)) for all z,y € X;

(€2) §(z) < max {{(x*y),{(y)} for all z,y € X.

An N-structure (X&) is called an N-Z-ideal of X if it is both a left N-Z-ideal
and a right N-Z-ideal of X.
Definition 3.2. Let X be an IS-algebra. An N -structure (X, &) is called a left N -
associative L-ideal (resp. a right N -associative I-ideal) of X if it satisfies (C1) and
(C3) &(z) <max {£((x xy) * 2),E(y * 2)} for all z,y,z € X.

An N-structure (X, €) is called an NM-associative Z-ideal of X if it is both a left
N-associative Z-ideal and a right M -associative Z-ideal of X.

Example 3.3. Consider an IS-algebra X = {0, a, b, ¢} with Cayley tables as follows:

*‘Oabc -‘Oabc
0/{0 0 b 00 0 0 O
ala 0 ¢ b al0 a 0 a
b|b b 0 0 bl0 O b b
cle b a O c|0 a b c

(1) Let (X, &) be an N-structure in which £ is given by
0 a b ¢ .
&= < ot te >, where ty < t; in [—1,0].
Then (X, ) is an N -Z-ideal of X.
(2) Let (X,¢) be an N-structure in which ¢ is given by

0 a b ¢ .
C:(to th t 4 ),Wheret0<t1 in [—1,0].
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Then (X, ¢) is an NM-associative Z-ideal of X.

Proposition 3.4. Every left (resp. right) N -associative T-ideal (X, &) satisfies the fol-
lowing inequality:

(Ve € X) (£(0) <&()) 3.1

Theorem 3.5. Every left (resp. right) N -associative Z-ideal is a left (resp. right) N -
T-ideal.

Proof. Let (X, &) be a left (resp. right) NM-associative Z-ideal of X. Then, &(xy) < &(
(resp. &(zy) < &(x)) for all z,y € X. Now, let 2 = 0 in (C3), we have £(z)

maz {((x xy) x0),£(y*+0)} for all x,y € X. So, £(x) < max{&{((x*y)),{(y)}.
Therefore, (X, £) is a left (resp. right) N -Z-ideal of X. O

TINE

The next example shows that the converse of Theorem 3.5 is not always true.

Example 3.6. Consider the N-Z-ideal (X, ¢) given in Example 3.3. By routine calcu-
lations, it is easy to check that (X&) is not an N -associative Z-ideal of X.

Proposition 3.7. Every left (resp. right) N -associative I-ideal (X, ) satisfies the fol-
lowing inequality:

(Va,y € X) (§(z) < &((wxy) xy)) (3.2)

Proof. Let (X,€) be a left (resp. right) NM-associative Z-ideal of X. If we let z 1=y
in (C3), then we have £(x) < max {{((x xy) *y),&(y xy)} for all z,y € X. Using 3.1
and (II7), it follows that, £(x) < &((x xy) x y) for all z,y € X. O

Proposition 3.8. If (X,£) is a left (resp. right) N -associative T-ideal of X, then

(Vz,ye X) (z =y =£&(x) <&(y)) (3-3)

Proof. Let x,y € X be such that x < y. If we let z := 0 in (C3), then we have
&(z) < max{&((zxy) *0),£(y x0)} for all ,y € X. Since, x =< y implies z x y = 0,
&(z) < max{€(0x0),&(y*0)}. It follows from axiom (III) and (Al) that &(x) <
£(y). O

Proposition 3.9. Let (X, &) be a left (resp. right) N- T-ideal of X. Then, x xy < z
implies £(x) < max {£(2),&(y)} for all z,y,z € X.

Theorem 3.10. Let (X&) be a left (resp. right) N -associative T-ideal of X. Then, for
any x,y,z € X,

(1) x *y < z implies £(z) < &(y * 2).

(i) §(z) < £(0* ).
(iid) E((2 - y) * (z - 2)) <E&(y * 2) (vesp. E((x - 2)  (y - 2)) < E(2 *y)).
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Proof. (i) Suppose that (X, &) is a left (resp. right) N -associative Z-ideal of X, by
(C3) we have &(x) < maz {&((z *xy) * w),&(y*w)} for all z,y,w € X. Since, zxy < 2
implies (x * y) * w < z x w, by (3.3), it follows that &((z * y) *x w) < &(z x w).
Hence, {(z) < max {({(z*w),&(y*w)}. If we let w = z, then we have, £(z) <

maz {(£(0),§(y * 2)} = &(y * 2).
(i3) Let z = z * y in (C3), then

§(x) < max{£(0),E(y * (xxy)} = E(y * (v xy) (3.4)
If we let y = 0 in (3.4), then we obtain also

f@) < €0%(@+0))
— &(0+a) by (A1)

(91) It follows directly from (B3) and (C1). O
Definition 3.11. [5]. Let (X, €) and (X, () be two N -structures.

(1) The union, £ U ¢ of £ and ( is defined by (£ U ¢)(x) = max {&(z),((z)} for all
e X.
(2) The intersection, £ N ¢ of £ and ¢ is defined by (£ N ¢)(x) = min {&(z),((z)} for
all z € X.

Obviously, (X,£U() and (X, £N() are N-structures which are called the union
and the intersection of (X, &) and (X, (), respectively.

Proposition 3.12. If (X&) and (X, () are left (resp. right) N -associative T-ideals of
X, then the union (X,£U() is a left (resp. right) N -associative T-ideal of X.

Now, we give an example to show that the intersection of two N-Z-ideals may
not be an NV-Z-ideal.

Example 3.13. Consider the two A-Z-ideals (X&) and (X, () given in Example 3.3.
The intersection £ N ( is given by
0 a b ¢ .
EN¢ = ( to to to t >7 where ty < t; in [-1,0].
€N¢ is not an N-Z-ideal of X, since (£N¢)(c) =1 £ max {(EN¢)(exb),(ENC)(b)} =
to.
For any N-function £ on X and t € [—1,0), define the set C(&,t) as

C&t) ={r e X [&(x) <t}.

Theorem 3.14. An N -structure (X, &) is a left (resp. right) N -associative T-ideal of
X if and only if every non-empty set C(&,t) is a left (resp. right) associative T-ideal
of X for allt € [-1,0).

Proof. Assume that (X, €) is a left (resp. right) A -associative Z-ideal of X and let t €
[-1,0) be such that C(£,t) # 0. Let € X and a € C(&,t). Then, £(a) < t. It follows
from (C1) that {(z-a) < €(a) <t (resp. {(a-z) < &(a) < t). Hence, z-a € C(,1) (resp.
a-x €C(&t)). Now, let (xxy)*xz € C(§,t) and (y*z) € C(§,t). Then, {((zxy)*z) <t
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and &(yx*z) < t. Using (C3) we obtain, {(z) < max {{((z xy) * 2),&(y * 2)} < t. Thus
x € C(&,t). Therefore, C(£,t) is a left (resp. right) associative Z-ideal of X for all
€ [-1,0).
Conversely, suppose that every non-empty set C(&,¢t) is a left (resp. right) associative
Z-ideal of X for all ¢ € [—1,0). If there are a,b € X such that {(a - b) > £(b) (resp.
&(ab) > &(a)), then, £(a-b) > tg > &(b) (resp. £(ab) > to > &(a)) for some ty € [—1,0).
Hence, b € C(&,tp) (resp. a € C(,tp)) and a - b ¢ C(&,tp). This is a contradiction.
Thus, £(z - y) < &(y) (resp. £(x - y) < &(x)) for all z,y € X. Now, assume that there
exist a,b,¢ € X such that £(a) > mazx {{((a*b) *c),&(b*c)}. Then, &(a) > t; >
max {&((a*b) xc),£(bxc)} for some t; € [—1,0). Hence, (a*b) x c,bxc € C({,t1)
and a ¢ C(&,t1), which is a contradiction. Therefore, (X,€) is a left (resp. right)
N-associative Z-ideal of X. O

Theorem 3.15. Let A be a left (resp. right) associative T-ideal of X and let (X, &) be
an N -structure in X defined by

_ to ifxe A
¢(@) _{ t; otherwise ’

where 9 < t; in [—1,0]. Then, the N-structure (X,¢) is a left (resp. right) N-
associative Z-ideal of X.

Proof. 1t follows directly from Theorem 3.14. O

For any N-structure (X, &) and any element w € X, consider the set

Dy :={z € X [§{(x) <(w)}.
Then, D,, is non-empty subset of X.

Theorem 3.16. If an N -structure (X,&) is a left (resp. right) N -associative I-ideal
of X, then Dy, is a left (resp. right) associative T-ideal of X for all w € X.

Proof. Let a € D, and © € X. Then, £(a) < {(w). By (C1) it follows that &(x -

&(a) < &(w) (resp. £(a-x) < €&(a) < &(w)). Hence z-a € D, (resp. a-x € D,,). Now, let
z,y,z € X be such that (zxy)*z € D, and y*z € D,,. Then, {((x*xy)*2) < {(w) and
§(y * 2) < §(w). By (C3) it follows that {(x) < max {{((z * y) * 2),£(y * 2)} < {(w).
Hence, © € D,,. Therefore, D,, is a left (resp. right) associative Z-ideal of X for all
we X. 0

a) <

References

[1] Imai, Y., Iséki, K., On aziom systems of propositional calculi, XIV Proceedings of the
Japan Academy, 42(1966), 19-22.

[2] Iséki, K., An algebra related with a propositional calculus, Proceedings of the Japan
Academy, 42(1966), 26-29.

[3] Jun, Y.B., Hong, S.M., Roh, E.H., BCI-semigroups, Honam Mathematical Journal,
15(1993), no. 1, 59-64.

[4] Jun, Y.B., Kavikumar, J., So, K.S., N-ideals of subtraction algebras, Communications
of the Korean Mathematical Society, 25(2010), no. 2, 173-184.



N-structures applied to associative-Z-ideals in IS-algebras 9

[6] Jun, Y.B., Lee, K.J., Song, S.Z., N-ideals of BCK/BClI-algebras, Journal of the
Chungcheong mathematical Society, 22(2009), 417-437.

[6] Jun, Y.B., (.jz‘miirk7 M.A., Roh, E.H., N-structures applied to closed ideals in BCH-
algebras, International Journal of Mathematics and Mathematical Sciences, vol. 2010,
Article ID 943565, 9 pages, 2010.

[7] Jun, Y.B., Roh, E.H., Xin, X.L., I-ideals generated by a set in IS-algebras, Bulletin of
the Korean Mathematical Society, 35(1998), no. 4, 615-624.

[8] Jun, Y.B., Xin, X.L., Roh, E.H., A class of algebras related to BCI-algebras and semi-
groups, Soochow Journal of Mathematics, 24(1998), no. 4, 309-321.

[9] Roh, E.H., Jun, Y.B., Shim, W.H., Some ideals in IS-algebras, Scientiac Mathematicae,
2(1999), no. 3, 315-320 (electronic).

Ali H. Handam

Department of Mathematics

Al al-Bayt University

P.O. Box: 130095, Al Mafraq, Jordan
e-mail: ali.handam@windowslive.com






Stud. Univ. Babes-Bolyai Math. 57(2012), No. 1, 11-14

On skew group algebras and symmetric algebras

Constantin Cosmin Todea

Abstract. We identify and define a class of algebras which we call inv-symm
algebras and prove that are principally symmetric. Two important examples are
given, and we prove that the skew group algebra associated to these algebras
remains inv-symm.

Mathematics Subject Classification (2010): 165XX.

Keywords: inverse semigroup, symmetric algebra, skew group algebra.

1. Inv-symm algebras

Following [2] we recall the concept of an inverse semigroup and we use basic
results without comments. A semigroup (S,-) is inverse if for any s € S there is a
unique § (named inverse) such that s-5-s = s and 5-s-§ = 5. By [2 1.1, Theorem 3] 1f
(S, -) is inverse then all idempotents of S commutes and we have § = s and s - st=1-5
for any s € S. We denote usually by k a commutative ring and by A a k-algebra. If
B is a subset of A with 0 ¢ B, we denote by B* the set BU{0} and by Idemp(B) the
set of all idempotents of B. The following definition is suggested by the ideas from
[3] and by methods used to prove that the group algebra is a symmetric algebra.

Definition 1.1. A k-algebra A is inv-symm if there is a finite k-basis B such that:

(1) (B%,-) is an inverse semigroup.
(2) Fort,s € B we havet-s# 0 if and only if s-S=1-t.

Example 1.2. If A = kG is the group algebra over a finite group G then the finite set
B = (@ is a k-basis which satisfies conditions from Definition 1.1. We have in this case
=51 t-s#0ands-§=1-tforany t,s € B.

Example 1.3. If A = End;(M), where M is a kG-lattice (that is a finitely generated,
free k-module with a G-stable finite basis X), then B = {b,, | =,y € X} with
bpy: M — M, byy(2) =z if 2=y, and b, ,(2) = 0 if z # y, satisfies the conditions
from 1.1. It requires some computation to verify that b, , 0 by, 4, = 0if y # x1, and
be,y 0 by, y, = by y, if y =x1. We have that b, , € Idemp(B) if and only if z = y.
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Remark 1.4. Moreover the above two examples are also G-algebras with G-stable
basis. This suggest that we can define a class of symmetric G-algebras and to analyze
the skew group algebra in this case.

Lemma 1.5. Let A be an inv-symm k-algebra with basis B satisfying Definition 1.1
and t,s € B. The following statements are true:
a) For 0 € B! we have 0 =0 and s € B if and only if § € B.
b) For all s € B we have s -5 € Idemp(B) and 5-s € Idemp(B). Particularly
Idemp(B) # 0.
c) Ift-s#0 andt-s € ldemp(B) thent =75.

Proof. a) For 0 is easy to check. Let s € B, then there is a unique 5 € B¥ with the
properties of the inverse element. Suppose that § = 0 then 5= 6, which gives
s = 0, a contradiction.
b) For s € B we have 5 € B such that s-5-s=sand5-s-5=3. Now s-5€ B
(sinceif s-5=0=s=0¢ B) and (s-5)-(s-8) =(s-5-8)-§=
¢) Suppose that t-s # 0 and t-s € Idemp(B). Then s-5=1-t and ¢ -
We multiply the last relation with § on the right and obtain

t-s-t-s-S=t-s-S§=t-s-t-t-t=t-t-t=t-s-t="t

Similarly we obtain s-t-s=1t¢, thust =s.

From [1] we recall the definition of a symmetric algebra. A k-algebra A is called
symmetric if it is finitely generated and projective as k-module and thereis 7: A — k
a central form (that is k-linear map with 7(a - a’) = 7(a’ - @) for all a,a’ € A), which
induces an isomorphism of A — A-bimodules

7 A A% F(a)(b) = 7(a-b),

where a,b € A and A* is the k-dual. 7 is called symmetric form of A and A is
principally symmetric if 7 is onto.

Theorem 1.6. If A is an inv-symm k-algebra then A is principally symmetric. In
particular it is symmetric.

Proof. By Definition 1.1 A is a finitely generated k-module and free, thus projective.
We define the following k-linear form on the basis B

[ 1k,s € Idemp(B)
75(5) = { Ojc s ¢ Idem;)(B)

From Lemma 1.5, b) it follows that 7p is not the zero map and 75 is a k-linear form.
We prove that it is a central form, that is 75(s - t) = 75(t - s) where t,s € B, by
considering the cases:

-Ift-s#0and t-s € Idemp(B), by Lemma 1.5, ¢) it follows that § = ¢ and
then

TB:A—k,

TB(S . /S\) = 1k: = TB(§~ S).
-Ift-s#0and t-s € B\ Idemp(B) then 75(t-s) = 0. Now, if s-t # 0 and
s -t € Idemp(B) by Lemma 1.5, ¢) we get that s = t, which is a contradiction with
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Tp(t-s) = 0. So we have two possibilities: s-t =0, or s+t # 0 and s - ¢ ¢ Idemp(DB).
In both subcases 75(s - t) = 0.

-Ift-s =0 then 75(¢-s) = 0, and the same analyze to the second case gives us
equality.

7p induces the following A — A-bimodule homomorphism 75 : A — A* defined
by

75(t)(s) = TB(t - s)
for any t,s € B.

First we prove that 75 is injective. Let t1,t5 € B such that 75(t1-s) = 75(t2 - 5)
for any s € B. We choose s = #; and obtain that TB(t2 - ﬁ) = 1;. It follows that
to-t1#£0and to -1, € Idemp(B). By Lemma 1.5, ¢) we obtain that t5 = 1=t

For surjectivity let A € A* and define a =}, 5 A() .t e A. Then for s € B

75(a)(s) = ) AMD)7s(t- 5).

teB
Since 75(t - s) = 1, if and only if s = ¢ we obtain that
T5(a)(s) = A(s) - B(5- s) = A(s).
This concludes the proof. O

2. Skew group algebras

In this section we will investigate the skew group algebra associated to a G-
algebra which is an inv-symm algebra, where G is a finite group. The Remark 1.4 is
the starting point of the next definition.

Definition 2.1. A G-algebra A is called G-inv-symm if it is inv-symm, with the basis
B (from Definition 1.1) G-stable.

It is easy to show, using Theorem 1.6, that any G-inv-symm algebra is G-
permutation and principally symmetric. If A is a G-algebra we denote the action
of an g € G on a € A by Ya.

Theorem 2.2. Let G be a finite group and A a G-algebra. If A is G-inv-symm then
the skew group algebra, denoted A x G, is inv-symm. In particular it is principally
symmetric.

Proof. We remind the definition of a skew group algebra. The skew group algebra
A G is the free A-module of basis

{axglae A geGY,
where a x g is a notation and the product is given by
(axg)(bxh)=a-9bxgh.
Since B is the k-basis of A it is easy to check that the set
BxG={s*xg|se€ B,geG}
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is a k-basis of the skew group algebra. Moreover it is a finite semigroup with zero,
with the product defined above, since B is G-stable. Next we verify the conditions
from Definition 1.1:

(1). We prove that the inverse of s x g € Bx G is the element

—

sxg= 9 Sxg e BxG.
We have
(s%g) (7 Sxg N(sxg)=(s-Sxlg)(sxg)=5-5-Csxg=s*g.
Similarly we prove the other statement. Suppose now that there is t x h € B x G such
that (s* g)(t*h)(s*g) = s*g. Then we have that
(s-9txgh)(sxg) =sxg=s5-9t-Isxghg=s5%g.

We have that h = gL and t = 9 '3, thus it is unique.
(2). Let sxg,txh € BxG. We have that (txh)(sxg) # 0 if and only if ¢-"s # 0.
We also have that

(s%g) (7 Fxg )= (" FTxh )txh) s Fxg="" T txlg e
5-5= hil(tA~ tyehshs=tt
But since A is G-inv-symm the last condition is equivalent to ¢ - s # 0, by Definition

1.1, statement(2). O
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fractional differential equations
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Abstract. In this paper, we study the existence and uniqueness of solutions
to the Cauchy problem for nonautonomous fractional differential equations in-
volving Caputo derivative in Banach spaces. Definition for the solution in the
Carathéodory sense and fundamental lemma are introduced. Some sufficient con-
ditions for the existence and uniqueness of solutions are established by means of
fractional calculus, Holder inequality via fixed point theorem under some weak
conditions.
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1. Introduction

Fractional differential equations have gained considerable importance due to
their application in various sciences, such as physics, mechanics, chemistry, engineer-
ing, etc. One can see the monographs of Diethelm [2], Miller and Ross [3], Kilbas et al.
[4], Lakshmikantham et al. [5], Podlubny [6]. In survey, Agarwal et al. [7, 8] establish
sufficient conditions for the existence and uniqueness of solutions for various classes
of initial and boundary value problem for fractional differential equations and inclu-
sions involving the Caputo derivative in finite and involving the Riemann-Liouville
derivative in infinite dimensional spaces. Very recently, a lot of papers have been
devoted to fractional differential equations and optimal controls in Banach spaces
[9, 10, 11, 12, 13, 14, 15, 16).

In this paper, we reconsider the following Cauchy problem for nonautonomous
fractional differential equations

cDlu(t) = A(t)u(t) + f(t,u(t)), t e J=1[0,T], T >0, (1.1)

u(0) = uyp, '
in a Banach space X, where ©D? is the Caputo fractional derivative of order ¢ € (0,1),
{A(t),t € J} is a family of linear bounded operators in X, the function t — A(t) is
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continuous in the uniform operator topology, f : J x X — X is Lebesgue measurable
with respect to t and satisfies some assumptions that will be specified later.

A pioneering work on the existence of solutions for this kind of Cauchy problems
has been studied by Balachandran and Park [9] in the case of f : J x X — X is
continuous and satisfies uniformly Lipschitz condition. In the present paper, we revisit
this interesting problem and introduce a definition for solution of the system (1.1) in
the Carathéodory sense and establish the existence and uniqueness of solutions for
the system (1.1) under some weak conditions.

To prove our main results, we apply the classical fixed point theory including
Krasnoselskii’s fixed point theorem and Banach contraction principle via fractional
calculus and Holder inequality. Compared with the results appeared in [9], there are
at least two differences: (i) assumptions on f are more general and easy to check;
(ii) a definition for solution in the Carathéodory sense is established; (iii) two new
existence results of solution in the Carathéodory sense are given.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts.
Throughout this paper, (X, | - ||) will be a Banach spaces. Let C(.J, X') be the Banach
space of all continuous functions from J into X with the norm ||u||¢ := sup{||u(?)| :
t e J} for u € C(J, X).

Let us recall the following known definitions. For more details see [4].

Definition 2.1. The fractional integral of order v with the lower limit zero for a func-
tion f is defined as

NN T A ()
I f(t)_F(W)/o (t—s)deS’ t>0, v>0,

provided the right side is point-wise defined on [0,00), where T'(+) is the gamma func-
tion.

Definition 2.2. The Riemann-Liouville derivative of order v with the lower limit zero
for a function f :[0,00) — R can be wrilten as

1 d [t f(s)
Lpo :77/ SR A2 1 .
f(t) T(n—~) di* J, (tfs)vﬂfnds’ t>0, n <y<n

Definition 2.3. The Caputo derivative of order v for a function f : [0,00) — R can
be written as

n—1
CDYF(t) = LD”(f(t) -3 ’ij(k)(o)), t>0, n—1<vy<n.
k=0 """
Remark 2.4. (i) If f(¢) € C™[0, ), then
t (n)(g
‘DVf(t) = F(nl— 7 /0 0 _fs)w(Jr)l—ndS = [nfvf(n)(t), t>0, n—-1<vy<n.

(ii) The Caputo derivative of a constant is equal to zero.
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(iii) If f is an abstract function with values in X, then integrals which appear
in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

For measurable functions m : J — R, define the norm

1
([imopa)’ 1<p<o.
HmHLP(J) = JJ
inf { sup |m(t)|}, p = oo,
w(1)=0 tej—J
where 1(J) is the Lebesgue measure on J. Let LP(J, R) be the Banach space of all
Lebesgue measurable functions m : J — R with ||m||1»(s) < oo.

Lemma 2.5. (Lemma 2.1, [17]) For all 8 > 0 and ¥ > —1,
t

/ (t — 5)P~1s%ds = C (B, 9)tPHY
0

where C(3,9) = %'

Theorem 2.6. (Krasnoselskii fived point theorem) Let B be a closed conver and
nonempty subsets of X. Suppose that L and N are in general nonlinear operators
which map B into X such that

(i) Lz + Ny € B whenever x,y € B;

(i) L is a contraction mapping;

(i11) N is compact and continuous.

Then there exists a z € B such that z = Lz + N z.

3. Main results

In this section, we discuss the existence of solution for the system (1.1) by means
of fixed point theorems.

We make the following assumptions:
[H1]: For any w € X, f(¢,u) is Lebesgue measurable with respect to ¢t on J.
[H2]: For any t € J, f(t,u) is continuous with respect to v on X.

[H3]: There exist a ¢; € (0,¢) and a function h(t) € Lﬁ(J7 RY):= Li(J), such
that || f(t,u)|| < h(t), for arbitrary (¢,u) € J x X.

[H4]: For every ¢ € J, the set K = {(t — s)77' f(s,u(s)) : u € C(J,X),s € [0,t]}
is relatively compact.

Now, let us introduce the definition of a solution of the system (1.1).

Definition 3.1. A function u € C(J, X) is called a solution of the system (1.1) on J if
(i) the function u(t) is absolutely continuous on J,
(i) u(0) = up, and
(ii1) u satisfies the equation in the system (1.1).
For brevity, let
q—1

H=|h A <M, p= -1,0).
Il 4.,y IO <, 8= L e (-1,0)
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By Definition 2.1-2.3, using the same method in Theorem 3.2 of [1], we obtain
the following lemma immediately.

Lemma 3.2. Let the hypothesis [H1]-[H3] hold. A function u € C(J,X) is a solution
of the fractional integral equation

1 t a-1 L t — )7L (s, u(s))ds
u(t) _UO+F(Q)/0 (t— )T A(s)u(s)ds + e /0 (t—9)"""f(s,u(s))ds, (3.1)

if and only if u is a solution of the system (1.1).
Now, we are ready to present and prove our main results.

Theorem 3.3. Assume that [H1]-[H/] hold. If the following condition

MT1
Q =—-<1 3.2
M,T,q F(q+1) < ( )

holds, then the system (1.1) has at least one solution.

Proof. Choose

HTOEHC—a) | Mluo|T*
F(@)(+5)"1 " T(a+D
r>—1 1_ MT3_ = .
I'(g+1)

and define the set
Cr={ueC(J,X): ||u—u <r}

By Lemma 3.2, the system (1.1) is equivalent to the following fractional integral
equation

I'(q)

Now we define two operators P and @ on C, as follows:

L t a-1 1 t — 9)T (s, u(s))ds
u(t):uo—i-@/o(t—s) A(s)u(s)ds—k—/o(t $)I7  f(s,u(s))ds.

(Pu)(t) = ﬁ/o (t— s)q_lf(s,u(s))ds,

and
(Qu)(t) = uo + ﬁ /0 (t— 8)T7 A(s)u(s)ds.

Therefore, the existence of a solution of the system (1.1) is equivalent to that the
operator P + ( has a fixed point on C,.. The proof is divided into three steps.
Step 1: For all u,v € C,., Pu+ Qu € C,.



On the existence of solutions for a class of fractional differential equations

For every pair u,v € C, and any § > 0, by using Holder inequality, we get

[(Pu+ Qu)(t +0) — (Pu+ Qu)®)|

< o / L= 9 — (15— )7 h(s)ds
tos | Tt 5= 9 h(s)ds
| = )7 — (46— 5)7 )M o(s) s
b | T 5 s M) s

o]

+ﬁ (/tt+5[(t+5_ S)Q‘l]llqlds> . (/tt+6(h(8))(111d5> @

Mol +7) [ et s eyt
t /O(t )11 (45— 5)11d

M(Juoll +7) [ s ey,
+ Tq) /t (t+6—15)""d
H ([ e s i)
<t (¢ 0w o)

H t+6 ) I—q
+F(q)</t (t+6—s) ds)

M ([Juoll +7) ! _ )1 _ )11 s
+7F(q) /O(t ) (t+d6—s5)"d

M(Jluoll +7) [+ _ a1
+ (q) /t (t+0—s)""ds

W <t1+6 —(t+ 5)1+6 4 51+6)1—q1

L " sama-a)

I(g)(1+ )t

+

M([Juol| +7) M([Juo|| + )
PN T (o _ (1 4 6)9 4 §9) 4 ZUOI T 5q
T(g+1) ( (t+0)"+0%) + I(g+1)
2H o 2M(Juoll + 1)
< 5+8)(A—a1) 54
= T+ s TS

As § — 0, the right-hand side of the above inequality tends to zero.
Therefore Pu+ Qu € C(J, X).

19
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Moreover, for all t € J, we get

1(Pu)(t) + (Qu)(t) — uo|
H (5 N " M(uwll+7) %, .
(/o(t s)ds> +7/0(t $)97 ds

L'(q) I'(q)
HTA+8)(1-aq1) M (|Jug|| 4 r)T9
I(g)(1+p)! - L(g+1)
HT(+6)(1—a1) M ||uo|| T MT1
{r<q><1 +B)n " T(g+1) } Tg+1)

< 7

which implies that Pu+ Qv € C,..
Step 2: @Q is a contraction operator.
For arbitrary u,v € C,., we have

jQu-qil < 4 ( - s ) Ju vl

MT? o
—||u — |,
I(g+1) ¢

which implies that

[Qu — Qullc < Q1 gllu—vlc.

From the condition (3.2), we know that @ is a contraction operator.

Step 3: We show that P is a complete continuous operator.

For that, let {u,} be a sequence of C, such that u, — wu in C,.. Then,
F(s,un(s)) = f(s,u(s)) as n — oo due to the hypotheses [H2].

Now, for all t € J, we have

1

[(Pun)(t) = (Pu)(®)] < 1ﬂ(q)/o(t—S)q 1f (s, un(s)) = f(s,u(s))l|ds.

On the one other hand using [H3], we get for each t € J,

1f (s, un(s)) — f(s,u(s))]| < 2h(s) € Lt (J).

On the other hand, using the fact that the functions s — 2h(s)(t — s)97! is integrable
on J, by means of the Lebesgue Dominated Convergence Theorem yields

/0 (t = 8)" I f (s, un(s)) = f(s,u(s))ds — 0.

Thus, Pu, — Pu as n — oo which implies that P is continuous.
Let {u,} be a sequence on C, then

1 t =1 (s u,(s))ds
)/Ou—s) £ (5,1un(5))ds,

(Puy,)(t) = T(q)
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for all ¢ € J, using Holder inequality, we have

IPu) @) < I)A(t—sﬁ*hwﬂs

I'(q
HT+8)(1-q1)
L(g)(1+p)t -

This yields that the sequence {Pu,} is uniformly bounded.

Now, we need to prove that {Pu,} be equicontinuous.
For 0 <t <ty <T, we get

[(Pun)(t2) = (Pun)(t)|

IN
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< W <t1 —ty "+ (t2 — t1) )
H
—  (ty — 1) HAO-q)
MO
2H

A (e — 0B —ar)
F(q)(l +B)l_q1 (tz tl) .
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As ty — t1, the right-hand side of the above inequality tends to zero. Therefore { Pu,, }

is equicontinuous.

In view of the condition [H4] and Mazur Lemma, we know that convK is com-

pact.
For any t* € J,

(Punt') = g Jim 3256 = 0 ()
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where

k1 it* ittt
o = li St = =) (= u (&),
¢ kggozk( ) (G un(2)

i—
Since conv K is convex and compact, we know that (,, € convK. Hence, for any t* € J,
the set {Pu,} (n=1,2,--+) is relatively compact. From Ascoli-Arzela theorem every
{Puy,(t)} contains a uniformly convergent subsequence {Pu,, (t)} (k =1,2,---) on
J. Thus, the set {Pu : u € C,} is relatively compact.

Therefore, the continuity of P and relatively compactness of the set {Pu : u €
C,} implies that P is a completely continuous operator. By Krasnoselskii’s fixed point
theorem, we get that P+ @ has a fixed point in C,.. Then system (1.1) has a solution
on t € J, and this completes the proof. O

Now we assume the following hypotheses: )
[H5]: There exist a g3 € [0, ¢) and a real-valued function u(t) € L9z (J) such that
IIf(t,w) — f(t,0)]] < p(@)|luw—v|, for all u,v € X, ¢t € J.
[H6]: Let
KT1+8)(1-q2) MT1
Pt = o e g

_ . /g1 —
where K = ||M||LE(J), ﬁ 1—q2 € ( 150)

Theorem 3.4. Assume that [H1]-[H3], [H5]-[H6] hold. Then the system (1.1) has a
unique solution.

Proof. We define a operator F' by

(Fu)(t) = ug + ﬁ/o (t — )T A(s)u(s)ds + ﬁ /0 (t —s)7  f(s,u(s))ds.

Therefore, the existence of a solution of the system (1.1) is equivalent to that the
operator F' has a fixed point in C,., where r is given in (3.3).
We can show that F(C,) C C,. In fact, for any u,v € C,, by using Holder

inequality we get
1—
ool (1 o)~
I'(q) 0

[(Fu)(t) = (Fo)(@)]
+FJZ) (/0 (t— s)qlds) lu —v|c

KTA+8)(1-g2) MT1
+
L(g)(1+p)tme T +1)

IN

lu—vlle.

Hence,

[Fu—Folo < ®x m1.q.0 v —vlc-
In view of [H6], by applying the Banach contraction mapping principle we know that
the operator F' has a unique fixed point in C,.. Therefore, the system (1.1) has a
unique solution. The proof is completed. O
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Some properties of certain class of multivalent
analytic functions

Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and
Ekram Elsayed Ali

Abstract. In this paper we introduce a certain general class @g(a, ¢, A,B) (8 >0,
a>0,¢>0 -1<B<A<LI1 peN ={1,2..}) of multivalent analytic
functions in the open unit disc U = {z : |z| < 1} involving the linear operator
Ly(a,c). The aim of the present paper is to investigate various properties and
characteristics of this class by using the techniques of Briot-Bouquet differential
subordination. Also we obtain coefficient estimates and maximization theorem
concerning the coefficients.

Mathematics Subject Classification (2010): 30C45.

Keywords: Analytic, multivalent, differential subordination.

1. Introduction

Let A(p) denote the class of functions of the form:

f(z) =2+ Zap+kzp+k (peN={1,2,..}), (1.1)
k=1

which are analytic and p-valent in the open unit disc U = {z : |z] < 1}. Let © denotes
the class of bounded analytic functions w(0) = 0 and |w(z)| < |z| for z € U. If f and
g are analytic in U, we say that f subordinate to g, written symbolically as follows:

f=g (zelU)or f(z) <g(2),

if there exists a Schwarz function w, which (by definition) is analytic in U with
w(0) = 0 and |w(2)| < 1 (2 € U) such that f(z) = g(w(z)) (2 € U). In particular, if
the function g(z) is univalent in U, then we have the following equivalence (cf., e.g.,
[5], [18]; see also [19, p. 4]):

f(2) < g(2) & f(0) = g(0) and f(U) C g(U).
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For functions f(z) € A(p), given by (1.1), and g(z) € A(p) given by

g(z) ="+ by’ (peN), (1.2)
k=1

then the Hadamard product (or convolution) of f(z) and g(z) is defined by

(f*9)(2) = 2"+ apirbpsnz”™ = (g5 £)(2) . (1.3)

k=1
We now define the function ¢,(a,c; z) by

pla,c; z) *szrZ i 2Ptk zEU;aER;cER\ZO_:ZO_:{O,fl,—Q,...}),

(1.4)
where (\), denoted the Pochhammer symbol defined (for A\,v € C and in terms of
the Gamma function) by

(A +v) :{ 1 (v =0;x € C\{0}),

e =Ty AA+ 1A +n=1) (veN;AeQ),

(1.5)

With the aid of the function ¢, (a,c; 2) defined by (1.4), we consider a function
@ (a,¢; z) given by the following convolution:

4P
cpp(a,c;z)*gp;(a,c;z) :m (A>—-p; z€U), (1.6)
which yields the following family of linear operator I;‘(a, c):
I;‘(a,c)f(z) =@l (a,c2) % f(z) (a,c€ R\Zj;A>—p;z€U). (1.7)
For a function f(z) € A(p), given by (1.1), it is easﬂy seen from (1.6) that

A+
IZ’,\(a o) f(z) =2 + Z ng ap+kzp+k (z€U). (1.8)

Tt is readily verified from the deﬁmtlon (1.8) that

2(13(a,0)f(2)) = (a—DI(a—1,0)f(2) + (p+1—a)}(a,0)f(2) . (1.9)
The operator I)(a, ¢) was recently introduced by Cho et al. [6].

We observe also that: ,

(i) I (p+1,1)f(2) = f(2) and I} (p,1) f(2) = 2LEL,

(ii) I} (a, a) f(z) = D™P~1 f(2) (n > —p), where D"~ f(z) is the (n+p—1)—th
order Ruscheweyh derivative of a function f(z) € A(p) (see Kumar and Shukla [15]);

(iii) I3(6+p+1,1) f(2) = Fs,(f)(2) (6 > —p), where Fs,(f)(z) is the generalized
Bernardi-Livingston operator (see [7]), defined by

oo

S4p [ 5+
Fsp(f)(2) = Z(;p t0 lf(t)dt =2+ Z <p> ap+kzp+k(5 > —p;p € N);
5 k=1

d+p+k
(1.10)
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(iv) Iy(n + p,1)f(2) = I.pf(z) (n > —p), where the operator I, is the
(n+p—1) — th Noor operator, considered by Liu and Noor [16];

V) (p+1—p1)f(z) = QUP) f(2)(—00 < p < p + 1), where Q)
(=00 < < p+1) is the extended fractional differential integral operator (see [26]),
defined by

(k+p+)l(p+1—p)
up) — P p+k
1z +§:Fp+1 T(k+p+1—p) e
Fp+1—p) ,
=== Honph - 1.zeU 1.11
T+l - f(z) (moo<p<p+1;2€U), (1.11)

where D! f(z) is, respectively, the fractional integral of f(z) of order —u when —oo <
1 < 0 and the fractional derivative of f(z) of order p when 0 < p < p+ 1 (see, for
details [23], [25] and [26]). The fractional differential operator Q%" with 0 < p < 1
was investigated by Srivastava and Aouf [29].

Making use of the operator I))(a,c), we now introduce a subclass of A(p) as
follows:

Definition 1.1. A function f(z) € A(p) is said to be in the class @g(A,a,c,A,B)
(8>0,a,ce RANZ;,a>1; A>—-p,pe N, -1 < B < A<1) if and only if it
satisfies

L(a,)f(z)  Ipa—10f(x) 1+ Az

1— p p
( f) 2P +6 2P = 1+ Bz

(z€U). (1.12)

By specializing the parameters 8, A, a,c, A and B, we obtain the following sub-
classes of analytic functions studied by various authors:

(i) @h(L,p+1,1,1, 5 — 1) = S,(M) (M > 3) (Sohi [28]);

(i1) <I>113(17p+1, 1,8[B+(A-B)(p—«)],B) = Sp(a,3,A4,B),0<a<p,p€eN,
0< B <1 (see Aouf [2]);

(iii) ®L(1,p+1,1,[B+ (A= B)(p— a)],B) = Sp(A,B,a), 0 < a<p, pe N
(see Aouf and Chen [4]);

(iv) ®1(1,2,1,1,4; — 1) = R(M) (M > %) (see Goel [9));

(v) ®1(1,2,1,2083 — 1,28 — 1) = Ri(a, ) (0 <a <1, 0 < B < 1) (see Mogra
[20]);

(vi) ®1(1,2,1,(1 = 20)8,-8) = R(a,B) (0 < a <1, 0 < B < 1) (see Juneja
and Mogra [12]),

(vii) ®1(1,2,1,(1 — 20)3,—3) = Sp(a,8) (0 < a <1, 0 <3 < 1) (see Owa
(24]);

(viii) ®1(n+1,a,a—1, A, B) = V,,(A, B) (n € Ng = NU{0}) (see Kumar [14]);

(iz) ®1(n+1,a,a—1,[B+(A-B)(1-a)],B) = V,(A,B,a) (n € Ny, 0 < a < 1)
(see Aouf [3]);

(x) ®5(N\,a,c, 1,47 — 1) = @O\, a,c, M] (M > 3), where ®5[X, a, ¢, M] denotes

the class of functions f(z) € A(p) satisfying the condition:
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(1-p3)-2 + 82 -M| <M (M>%;zeU);

zP zP

‘ l DNayo)f(z)  IMa—1,¢)f(z)

(zi) ©p(Lp+1—p,1,1, 57 — 1) = @[, M] (M > 3,—00 < pu < p), where

D, [u, M] denotes the class of functions f(z) € A(p) satisfying the condition:

lel«,l-ﬂ?)f(z)

zp

1
-M| <M (M>§;—oo<u<p;z€U).

2. Preliminaries

To establish our main results, we shall need the following lemmas.

Lemma 2.1. [11] Let h be a convez (univalent) in U with h(0) = 1 and let the function
p given by
0(2) =1+dyz+de2® + ..., (2.1)

s analytic in U. If
o(2) + %ch/(z) <h(z) (z€U), (2.2)

where v # 0 and Re(y) > 0, then

z

olz) < () = - /t”’_lh(t)dt Sh(x) (e,
0

and 1 is the best dominant of (2.2).

Lemma 2.2. [27] Let ®(z) be analytic in U with

| —

®(0) =1 and Re {®(2)} > (z€U).

—~ N

Then, for any F(z) analytic in U, the set (D x F)
of F(U), i.e., (®x F)U C co F(U).

U) is contained in the convex hull

For complex numbers a,b and ¢(c # 0, —1, -2, ...), the Gaussian hypergeometric
function is defined by
abz ala+1)bb+1) 2>

oFi(a,bye2) =14+ —— +

o 1l W?Jr? zeU. (23)

We note that the above series converges absolutely for z € U and hence represents an
analytic function in U (see, for details, [30, Chapter 14]).

Each of the identities (asserted by Lemmas below) is well-known (cf., e.g., [30,
Chapter 14]).
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Lemma 2.3. [30] For complex numbers a,b and ¢ (c # 0,—1, =2, ...), the next equalities
hold:

/tb_l(l — 1)1 — t2) "%t = LOIr(c=b) 2o F1(a, b;¢; z), (2.4)
J I
(Re(c) > Re(b) > 0),
oF(a,b;¢;,2) =(1—2)"%aF 1 (a,c—b;c sz), (2.5)
and
(b+1) 2F1(L,b;0+1;2) = (b+1) +bz oF1(1,b+1;0+2;2) . (2.6)

Lemma 2.4. [13] Let w(z) = Z dp2* € Q, if v is any complex number, then
k=1

|dy — vd}| < max {1, |v|}. (2.7)

Equality may be attained with the functions w(z) = 2% and w(z) = 2.

3. Main results

Unless otherwise mentioned, we assume throughout of this paper that g > 0,
a,c€ R\Zy,A>—-p,pe Nand -1<B<A<1.

Theorem 3.1. Let the function f defined by (1.1) be in the class ®5 (X, a,c, A, B).
Then

IMa,c)f(2) 1+ Az
p AT ST
por < Q(z) =< T B, (z€U), (3.1)
where the function Q(z) given by
A A a—1 Bz
—+(1-=)(1+B2) L, Fi(1,1 1 B
Q(Z)_ B+( B)(+ Z) 21(77 6 + ’BZ+1), #07
B a—1
+ a—1 +ﬂ Z 07
is the best dominant of (3.1). Furthermore,
IMa,
I%{ijﬂ”}>mmmAB> (zev), (32)
where
A A -1 B
L a-50-B) " LR1,LY " +1,—-=—), B#£o0,
B B é] B-1
77(/87Q’A7B): a*]_
— A B =0.
a—14+p38" 0

The estimate in (3.2) is the best possible.
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Proof. Consider the function ¢(z) defined by

Ma,c)f(z
p(z) = M (z€U). (3.3)

zp

Then ¢(z) is of the form (2.1) and is analytic in U. Differentiating (3.3) logarithmically
with respect to z and using the identity (1.9) in the resulting equation, we obtain

Na,e)f(z)  IMa—1,¢)f(2) 2p (2) 14 Az
1- )2 e ’ = :
(1-5) o +0 o @(Z)+(a_1)/ﬁ<1+Bz (z€U)
Now, by using Lemma 2.1 for v = “Tgl, we deduce that
Ma, o) f(2) a—1 120 [ aor_, (14 At
p\% _ 1oe -1
o < Q(z) 3 z P /t g <1+Bt) dt
0
A A a—1 Bz
Z 4+ (1->3)1+Bx) LER((1,1 1; B
_ B+( 1B)( =+ Z) 2 1( s Ly ﬂ =+ ’Bz—i—l)’ #Oa
a—
T B=0

by change of variables followed by use of the identities (2.4), (2.5) and (2.6) (with
a=1¢c=b+1, b= “Tgl) This proves the assertion (3.1) of Theorem 3.1.

Next, in order to prove the assertion (3.2) of Theorem 3.1, it suffices to show
that

inf {Re(Q(z)} = Q(-1) . (34)

|z|<1
Indeed we have, for |z| < r < 1,

1+ Az 1—Ar
> .
Re<1+Bz> ~—1-DBr

Upon setting

g(s, 2)

1

—1\ o
a )sﬁds(Ogsgl),

B

which is a positive measure on the closed interval [0, 1], we get

1+ Asz
1+ Bsz

and du(s) = (

so that

1
Re(Q)) 2 [ (15 ) o) = Q) (=7 <),
0
Letting » — 1~ in the above inequality, we obtain the assertion (3.2) of Theorem
3.1. Finally, the estimate in (3.2) is the best possible as the function Q(z) is the best
dominant of (3.1).
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Corollary 3.2. For 0 < (82 < 1, we have
B
<I>§1(/\,a7 c,A,B) C ®2(\a,c,A,B) .
Proof. Let f € <I>£1()\, a,c, A, B). Then by Theorem 3.1, we have
A
I}a,c)f(z) . 1+ Az

o B> (ze€U).
Since
A Ao —
SRLACLHC PR ACRI (6
(1-2) Bledte) o { o R@ASE) | T Lc)f(Z)}
B zP B 2P 2P
14+ Az
1+ Bz (z€U),

we see that f € <I>§2 (A, a,c, A, B). This proves Corollary 3.2.
Taking 6=c=1,a=0+p+1 (6 >—p), A=4, 14:1—27’JK (0 <a<p)and
B = —1 in Theorem 3.1, we obtain the the following corollary.

Corollary 3.3. If f € A(p) satisfies
Re{f(z)}>a 0<a<pzel),

zP p
then the function Fs,(f)(z) defined by (1.10) satisfies

Re{F‘S”’g)(Z)}>Z+ (1—;‘) [2F1(1,1;p+5+1;;)—1 (zeU) .

The result is the best possible.

Remark 3.4. We note that Corollary 3.3 improves the corresponding result obtained
by Obradovic [22] for p = 1.

Taking A= =c=1,a=p+1—p, foo<,u<p,A:1—27a (0<a<p)
B = —1 in Theorem 3.1, we obtain the following corollary.

Corollary 3.5. Let the function f(z) given by (1.1) satisfy

Q(lJrM’P)
Re{zzpf(z) >% (—oo<u<p0<a<ppeN;zeU).
Then
qu,p) 1
Re 7“2) >a+(1_a> [2F1(1a1§p+1—ﬂ;)—1 (z€U).
zP p p 2

The result is the best possible.

Taking p = 0 in Corollary 3.5, we obtain the following corollary.
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Corollary 3.6. Let the function f(z) given by (1.1) satisfy

Re{f/(z)}>a 0<a<pzel),

zp—1

Then
Re{f(z)} >34 (1— ‘;) [2F1(1,1;p+ 1;%) - 1} (zeU).

2P p
The result is the best possible.

Remark 3.7. We note that Corollary 3.6 improves the corresponding result obtained
by Lee and Owa [17, Theorem 1] with n = 1.

Remark 3.8. If f € A(p) satisfies Re {f'(z)/zpfl} >a(0<a<p;zel), then with
the aid of Corollaries 2 and 4, we deduce that

Re{F5’Pi£)(Z)} > %-i- (1 - 2) [(2F1(1,1;p+1;;) - 1)

Flnprs 1) (- (nnen )]

which improve the result of Fukui et al. [8] for p = 1.
Corollary 3.9. Let the function f(z) given by (1.1) satisfy

Re{[;(n —1,n)f(z)

a
o }> 0<a<pzel),

p
Then

2P

Re{wlf(z)} >%+ (1—;“) [2F1(1,1;n;;)—1 (zeU).

The result is the best possible.

Theorem 3.10. Let f(z) € ®)(X,a,¢, A, B) and let the function Fs,(f)(z) defined by
(1.10). Then

I} (a,0)Fsp(f)(2) 1+ Az
P\ P
po <q(z) < 7B (3.5)
where the function q(z) given by
A A _1 Bz
4 PO 4 B=0.
p+d+1
is the best dominant of (3.5). Furthermore,
1 (a, ¢)F.
Re{ oo C)ij(f)(z)} >¢ (zel), (3.6)
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where
A A » B
C*: E+(1_§)(1_B) 2F1(1717p+6+1aﬁ)a 3#07
1o POy B=0.
p+o+1
The estimate in (3.6) is the best possible.
Proof. From (1.10) it follows that
2 (1)(a,0)Fs,(f)(2)) = (8 +p)Ip(a,0)f(2) = 0L, (a, ) Fsp(f)(2) - 3.7)
By setting
a, ¢)F.

2P
we note that ¢(z) is of the form (2.1) and is analytic in U. Differentiating (3.8) with
respect to z and using the identity (3.7) in the resulting equation, we get

20 (2 IMa,o)f(2) 1+ Az
d+p ZP 1+ Bz
which with the aid of Lemma 2.1 with v = § 4 p, yields

Ié\(a» C)Fé,p(f)(z)

(z€eU),

(3.9)

1+At>dt

— —(6+p) d+p—1
<q(z)=(6+p)z /t (1+Bt
0

Now the remaining part of Theorem 3.10 follows by employing the techniques that
we used in proving Theorem 3.1 above.
Taking A =1 — Qf (0 < a < p)and B = —1 in Theorem 3.10, we obtain the

following corollary.

Corollary 3.11. If f € A(p) satisfies

Re{W}>Z 0<a<pzel),

zp
then
A
Re{f,, (a,c)l;f,p(f)(Z)} - % N (1 _ Z) {2F1(1,1;p+6+ L; %) - 1} (z€U).

The result is the best possible.

Taking A = ¢ = 1 and a = p in Corollary 3.11, we get the following corollary
which in turn improves the corresponding result of Fukui et al. [8] for p = 1.

Corollary 3.12. If f € A(p) satisfies

Re{fl(z)}>oz 0<a<pzel),

zp—1
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then

F; z 1
Re{‘s’zg)l()} >a+(p—a){2F1(1,1;p+5+1;2)—1} (z€U).
The result is the best possible.

TakingA=c=1landa=p+1—p (—o0o < p<p+1,p € N) in Corollary 3.11,
we obtain the following corollary.

Corollary 3.13. If f(z) € A(p) satisfies

qu,p)
%{a“”}>§ Osa<p-oo<p<ptLpeNizel),
then
Q(Zum)F 1
Re M >Oé+(10l> {QFl(l,l,p+§+17)1} (ZGU)
2P p p 2

The result is the best possible.
Theorem 3.14. We have

fe @g(a, ¢, A,B) s Fopo1(f)(2) € <I>117(a7c,A7B)
Proof. Using the identity (3.7) and

z (I (a, C)Fﬁ,p(f>(z))/ = (a=DI(a—1,0)F5,(f)(2) + (0 + 1= a) I} (a,¢) F5(f)(2)
for 6 = a — p— 1, we deduce that

L(a,e)f(2) = Ij(a = 1,6) Fap1(f)(2)
and the assertion of Theorem 3.14 follows by using the definition of the class
@g(a,c,A,B).

Theorem 3.15. If f, given by (1.1), belongs to the class @g(a,c,A,B), then

(A= B)a— (1
@1t Do 2 (310)

lap+i| <
The result is sharp.
Proof. Since f € @g(a,c,A,B), we have

Aac z )‘a— c z
I( ;p)f( )+51p( le’ )f(2) = p(2) (3.11)

(1—-5)

where p(z) = 1+ Zpkzk € P(A, B). Substituting the power series expansion of
k=1
I)a,0)f(2), I}(a—1,¢)f(2) and p(2) in (3.11) and equating the coefficients of z* on
both sides of the resulting equation, we obtain
(a =1+ BE)A+ Kk (k

(@ = Dit1 malﬂ'k =pe (k=1). (3.12)
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Using the well-known [1] coefficient estimates
el <(A=B) (k=1

in (3.12), we get the required estimate (3.10).
In order to establish the sharpness of (3.10), consider the functions fj(z) defined
by
(1-p) I;‘(a,c)f(z) +ﬁ]§(a —1,0)f(2) _ 14 AzF
2P 2P 1+ Bzk
Clearly, fi(z) € @g(/\, a,c, A, B) for each k > 1. Tt is easy to see that the functions
frx(2) have the expansion

(k>1).

(A-B)a—Drtr Dk _pyx
z) =2F + SLE PR
&) = 24 T B0+ e
showing that the estimates in (3.10) are sharp.
Takingf=A=c=A=1 a=p+1—pu, —oo<u<pandB:$—1 (M > %)
in Theorem 3.15, we obtain the following corollary.

Corollary 3.16. If f, given by (1.1), belongs to the class ®,[u, M], then

(2AF) (0 — )

(p+ i (hz1).

laptk| <

The result is sharp.

Theorem 3.17. Let f, given by (1.1), belongs to the class @g()\,a,c,A,B) and ¢ is
any complex number. Then

2 (A - B)(a—1)3(1)s
tp12 = o] < i phata— 1+ 23 ™

(A-=B)a—1)oA+p+1)(c+1)(a—1+20)
B+¢ 2c(a+1)(A+p)la—1+p5)? ‘} ’ (3.13)
The result is sharp.
Proof. From (1.12), we have
1= RO Bl 1OM6)
Ja_p {(1 _5 Iﬁ(a,z A | gl -L 0)f(2) H o) (314)

where
w(z) = dezk € Q.
k=1

Substituting the power series expansion of I)(a,c) f(2), I, (a —1,¢)f(z) and w(z) in
(3.14), and equating the coefficients of z and 22 we obtain
__(A=B)la—1),
ap4+1 =
(@ =1+ p8)(c)(A+p)

dq (3.15)
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and
o 2(A—B)(a—1)3
T a=1420)(0200 +p)2
Using (2.7), (3.15) and (3.16), we get:
|a _ ¢a? |: (A= B)(a—1)3
PE2STH T (g (A 4 p)ala — 1+ 26)

(dy — Bd7) . (3.16)

|@7Vf,
where

(A-B)la—1+28)(c+1)(A+p+1)(a—1)
2e(at 1)(a—1+ BRO\+p)
Since (2.7) is sharp, (3.13) is also sharp.
Taking3=A=c=A=1,a=p+l—p(-o<p<p)and B=5;—1(M > 1)
in Theorem 3.17, we obtain the following corollary.

v=B+(

Corollary 3.18. If f, given by (1.1), belongs to the class ®,[u, M|, then

lapss — a2y < ) 0 =ms (1) (p— p)(p +2)
p+ p+1 —(1+p) (p+27 ) ’ (p+17 )(p+1) .

1
——1
Mo

The result is sharp.

Theorem 3.19. Let f € @g(a,c,A,B) and g € A(p) with Re (g(i)) > % (z € U).
z

Then h= fxg € ®£(a,c,A,B).

Proof. We have

I)a, c)h(z) IMa—1,c)h(2)

(1-p)-" + 6"

zP zP

{(l_mma,c)f(z) N( 1C)f()}*g(z) . 517)

2P 2P 2P

1+ A4
Since Re 9(z) > 1 (2 € U) and the function + A
zP 14+ Bz

it follows from (3.17) and Lemma 2.2 that h(z) = (f * g)(z) € @g(a,c,A,B). This
completes the proof of Theorem 3.19.

is convex (univalent) in U,

Corollary 3.20. Let f € ®F(a,c, A, B) and g(z) € A(p) satisfy

' 3-2.R(L,L;24+1;1
Re{<1_m9<z>+ug<z>}> 2P 1§+ 155)
2[2— 2F1(171;§+1§§)

o " , (L>0; zeU). (3.18)

Then f*g € @g(a,c,A,B).
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2F1(a7u+1a%) 1
2= LA (LLE+ 11

I

Proof. From Theorem 3.1 (fora =p+1,¢c=1,80=p>0,A=
and B = —1), condition (3.18) implies

Re{g(z)}>1 (z€U).

zP 2
Using this, it follows from Theorem 3.19, that (f * g)(2) € @g(a, ¢, A, B).
Theorem 3.21. If each of the functions f(z) given by (1.1) and

g(z) = P + pr+kzp+k
k=1
belongs to the class @g(/\, a,c, A, B), then so does the function
h(z) = (1= )L (a,0)(f * 9)(2) + BL(a — 1,¢)(f * g)(2) -

Proof. Since f € ®(a,c, A, B), it follows from (3.14) that
I} (a,0)f(2) ﬁfﬁ(a—l 0)f(2)

zP 2P

B { AL R {C c)f(Z)}

(1-0) -1

<

b

which is equivalent to

IMa,c)f(z IMa—1,¢)f(z
(1_5)1,( () ﬁp( >f()—§ <n (z€U), (3.19)
2P yA4
1-AB A B

where £ = 1T 2 and n = 1 Tt is known [21] that H(z kzo 2" is analytic

in U and |H(2)| < M, then
(oo}
> Il < M2 (3.20)
k=0

Applying (3.18) to (3.19), we get

1+5k)( k(A + Pk
T Z { (@a—=Drr1(Dr

2
} lapril® <7,

that is, that

% ((a—14BE)()ph+E)x ) > . (4B
; { (a — 1)k+1(1)k¢ } ‘ap+k| < ﬁ . (3_21)
Similarly, we have
= (a1 IO+ R, o (A= B
{ (a— 1)k+1121)k k } bpti]” < Tz (3.22)

k=1
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Now, for |z| = r < 1, by applying Cauchy-Schwarz inequality, we find that
a,)h(2) ﬁfg(a— 1,¢)h(2) 52

zP zP

a— 1 + Bk)( A+ 2
+ { BE) )il p)k} ap+kbp+k2k
— (a—1) k+1( k

s<1—5>2+2<1—5>2{ oo P 2 o } (gl By

(@—1)p41(

1-p)-=+

2

2

[ { et }
<= g [S{ LG ]
DR e e A
S {eorem o,

[E ey, e
<07 s [S{p e ]
| i flemte B0 Y, o tL

o {(a—l+ﬁk)(c)k()\+p)k}2|a o2
= (@ = D1 (D)k " .

1
5 { (a— 1+ BE)(c)r(A +p)k} |b,,+k|2]

BF= (a—=1Drr1(Dx
(A-B)*  (A-B)
§(1_§)2+2(1_£) 1— B2 (1_32)2

B(A—B)\> _B(A-B)® (A-B)* A2(A- B)?

1-B2)2  (1- B2)? (1 - B?)?
by using (3.21) and (3.22).
Thus, again with the aid of (3.20), we have h € @g()\, a,c, A, B).
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Theorem 3.22. Let f € @g(A,a,c,A,B) (8>0) and
n—1

Sp(z) = 2P + Z apir2PE (n > 2).
k=1

Then for z € U, we have

z

/ tP(I)(a,c)Sy(t))dt

Re 0 B >n(ﬁ,a,A,B) )

where n(B,a, A, B) is defined as in Theorem 3.1.
Proof. Singh and Singh [27] prove that

n—1 k
z 1
Re{1+zk+1}>2 (zel). (3.23)

Writing

I)\ , n—1 k
_ p(ac)f(z)* 1+Z z
z zP k+1
and making use of (3.23), Theorem 3.1 and Lemma 2.2, the assertion of Theorem 3.22
follows at once.

Taking =A=c=1, a=p+1, A:l—%‘" (0 <a<p) and B=—-1in
Theorem 3.22, we obtain the following corollary.

Corollary 3.23. Let f € A(p) satisfies Re {{;p(_zl)} >a (0<a<p)inU, then

z

/ tPS, (t)dt

1
Re Of >z+<1—z>{2F1<1,1;p+1;2)—1} (zeU).
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On analytic functions with generalized bounded
variation

Ningegowda Ravikumar and Satyanarayana Latha

Abstract. In this paper we study a class introduced by Bhargava and Nanjunda
Rao which unifies a number of classes studied previously by Mocanu and others.
This class includes several known classes of analytic functions such as convex and
starlike functions of order 3, a-convex functions, functions with bounded bound-
ary rotation, bounded radius rotation and bounded Mocanu variation. Several
interesting properties like inclusion results, arclength problem, coefficient bounds
and distortion results of this class are discussed.

Mathematics Subject Classification (2010): 30C45, 30C50.

Keywords: Univalent functions with positive real part, bounded boundary and
bounded radius rotation, arc length problems, convex functions starlike functions,
alpha-convex function.

1. First section (Introduction)

Let A denote the class of analytic functions of the form
(oo}
f(z) :Z+Zanzna (1.1)
n=2

in the unit disc £ = {z;|z| < 1}. Let P designate the class of functions p which are
analytic, have positive real part in £ and satisfy p(0) = 1. Let M}, denote the class of
real-valued functions p(t) of bounded variation on [0, 27r] which satisfy the conditions,

27 27
/ du(t) = 2, and / [du(t)] < k. (1.2)
0 0

M, is clearly the class of nondecreasing functions on [0, 27] satisfying

2T

du(t) = 2.
0
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If pu(t) € My, with k& > 2 we can write p(t) = a(t) — 8(t) where a(t) and B(t) are
both nondecreasing functions on [0, 27] and satisfy

2m k 2m k
/0 da(t) < 5 +1,and /0 dp(t) < 5~ 1. (1.3)

Let P, denote the class of functions p analytic in £ such that p(0) =1, z = re®.
and having the representation

1 (%™ 1+ ze it
= - —_— 14
ORE Y = 0] (14)

where p(t) € M, . This class has been studied by Pinchuk [5] .
Clearly P, = P. We can write for p(z) € Py as

p(z) = % <’; + 1) Py(z) — % (]; - 1) Py(2)

Definition 1.1. Let f € A with f(%f,(z) 75 0 in &, and let

Jr = Jg(a,be) = (1 - ){ zj;(( ))] e { +b§/’/((j”

where Py, P, € P.

where o, b # 0andc # 0 are complex numbers.

Let By(a,b,c) be the class of all fuctions f in &, such that if J; € Py for
ze E,k>2.

This class is a particular case of the class studied earlier by Bhargava and Nan-
junda Rao [1] which unifies and generalizes various classes studied earlier by Robert-
son [6], Moulis [3], Pinchuk [5], Padmanabhan and Parvatham [4], and Khalida Inayat
Noor and Ali Muhammad [2 ]

For f,g € Agivenby f(z) = Z+Z anz", and g(z) = Z+Z b, 2" the Hardmard
n=2

product is given by (f x g)(z) =z + Z Gpbp 2"

Let T' denote the Gamma functlon of Euler and G(I,m,n;z) be the analytic
function for z in £ defined by

. — F(n) ! -1 n—I{—1 —n
G(l,m,n;z) = TOTm=1) /0 w1 —w) (1 = zu)™"du, (1.5)
where R{l} > 0, and, R{l —n} > 0. Also we define
2b M
N(ogb,c,r):r{G <OZC7M7M—|—1,T>} . (1.6)
and ;
fo(a,b,c, 2) = [M/ tM1(] — gy " dt} (1.7)
0

where M =1+ 1=2% 1 20,0 < 6 < 27
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2. Second section

We use the following lemmas to prove the main results.

Lemma 2.1. Let p be analytic in € and p(0) =1, then a« > 0,z € &, (p + %p/) e P
implies p € Pg.

Lemma 2.2. [7] Let f € A with f(z)f ;é 0 in &, then f is univalent in & if and
only if for 0 < 01 < 0y <27 and0<r<1 we have

[ {58 s 605} -aadB] e

6>0 and « real

with z = re“’

Theorem 2.3. f € Bi(a,b,c), a#0,b# 0,c # 0, if and only if there is a function
g € Bi(0,b,1) = Ry, such that

f(z) = [M /0 Ty (%f’) ; dt] " (2.1)

where M = 1+ %.
Proof. Using ( 2.1) we get,

@) e ) _loa ()
- 570 ~ o e

z (= )] [ 2 (= )] 9'(2)
1- +o|l+— =2z
o[- Le iR eI e
If J; belongs to Py, so does the left hand side and conversely. O

Putting ¢ =1 and b = 1 — § in above Theorem we get the following corollary.

Corollary 2.4. [2] f € Bp(a,B) , a # 0, if and only if there is a function g €
By(0,8) = Ry, such that

f(z) = lM/O tM=1 (git))wdt] :

wherele—i—(l_o‘)aM.

Theorem 2.5. Let f € By(a,b,c) then the function

s == (1) et (2.2

z

belongs to Ry, for all z € E£.
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Proof. Logarithmic differentiation of ( 2.2) yields
’ - / o 7
4E) -0 [ (-0 a ['G)

9(2) c f(2) ¢ T
N A S iC 2 1'(2)
—t-a |- e S a1
Since f € Bg(a,b,c) the result follows. d

For the parametric values c=1 and b = 1 — § we get the following result.

Corollary 2.6. [2] Let f € By(a, ) then the function
e’
o =+(12) v

z
belongs to Ry, for all z € £.

Remark 2.7. The above Theorem can also be obtained as a particular case of Theorem
3.1 by Bhargava and Nanjunda Rao [1].

Theorem 2.8. By (a,b,c) C Ry, for a > 0,b # 0.

Proof. Let 2Ll = p(z), p analytic in &, with p(0) = 1. Now
fa-an- Zj}éziha[b“}”fﬁ?}}
:Ob‘{(l;co‘)b[(c—l +p(z { f" H

:% (M =D)f(c—1)+p()] + [b+ LE L py 1
p(z)

S =

o zp'(2) }
=— |Mp(z) + +(M-1)(c—-1)+ (-1
)+ - e- 1+ -
— e+ LFEO o ye—ny+p-v]ep
b M p(z) ¢ b
Therefore {p(z) + & Zgég)} € Py, and by using Lemma 2.1. it follows that p € P,
z € &. This proves that f € Ry. d

Corollary 2.9. [2] Bi(o,3) C Ry, fora>0,0< 5 < 1.

Theorem 2.10.  i. By(a,b,¢) C By, (a1,b,¢), 0 < a < ay, and ky =k (%‘%O‘)
il. Bi(a,b,¢) C Bi(aq,b,c), 0 < ag < a.

Proof. (i) Let f € By(a,b,c) then
- -2 25 o S5 )
_ c;l{(l a)b {1_+zf’<z)] e {H zf”(z)}}_(al—a)b[l_1+zf’(z)}

¢ f(z) f'(z) o ¢ cf2)
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(a

=b [O;jhl(z) - 1a_a)h2(z)} ., hi,hy € Py (2.3)

by using Definition 1.1 and Theorem 2.8. From ( 2.3) it follows that

27 o o
/ RJ;|d6 < {0‘1 G )] O‘)] ke = (20‘1 O‘) k.
0 (6% (0%

(67

(#i) Let f € Bg(a,b,c). Then

A
-t o] )
= (1—9) Hy(2)+%Hy(2), Hi,Hy € Py, z € £, since Py is a convex set. Therefore
f € Bir(ag,b,c), for z € €. O

Corollary 2.11. [2]

i. Bi(a,8) C By, (a1,8), 0 < < ay, and ky = k (2241=2)
il. Bi(a,B) C Br(a1,8), 0 <oy < a.

Theorem 2.12. Let f € By(a,b,c). Then f is univalent in € for k < w.

Proof. Since f € By(a,b,c), also we have z =re?, 0 <r <1,0<6; <0y <27
[ {2 i) e s e (G- 5 (5
Ll ] o

> — Kgl) 2+2(b1)+2(1_a)(c_1)b]w

ac

by using Lemma 2.2, that f is univalent in £ if k < w. O

Corollary 2.13. Let f € By(a,3). Then f is univalent in € for k < %
Theorem 2.14. Let f € By(w,b,c), a > 0 and L.(f) denote the length of the curve

C = f(re?),0<60<2r and N(r )*Og’ax |f(re?)| , then for 0 <r <1,

Ln(f) < Ng)b {k MGty [(c—1)24 K + %(1 - b)2} m,  a>0.

c

Proof. We have, z = re*

2m 2m
Lif)= [ s = [ e e as

On integration we get,
2

L(h= | f(z)e_iarg(zf'(Z))%{(Z;{l/((zZ)))/}de
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= S /027T ¢ f(z) b

Ao (-2 2] e
37

< N(T)b{m(a;l)[( — 124 K]+ (1 b)2 }

RJp + (o —1) [1— Zf%z)] a—l—a’dﬁ

- @
O

Corollary 2.15. [2] Let f € Bg(a,3), @ > 2 and L,.(f) denote the length of the curve
C = f(re??),0<60<2r and N(r) = max |f(re’9)| , then for 0 <r <1,

0<0<
20
1-p

Theorem 2.16. Let f given by ( 1.1) belongs to Bx(a,b,c) for a > 0. Then for n > 2,
na, = O(1)N (2=1), where O(1) is a constant depending on o, b,c, k only.

Proof. We have,

L <a-0N0) i+ 2|7 aso

1 27 ) )

nap = 5 /0 2f' (2)e”"0dl, z=re

< oo [ s = )

nan < 5o ; 2f (2)]d0 = oL (f)-
By using Theorem 2.14 and r = "T_l, we get the required result. O
Corollary 2.17. [2] Let f given by ( 1.1) belongs to By(«,3) for a > 0. Then for

n—1

n > 2, na, = O(1)N (T), where O(1) is a constant depending on a, B,k only.

Theorem 2.18. Let f € Ba(a,b,¢), a#0,0#0,c#0and |zl =7 (0 <7r <1).
Then

(1) N(a,b,¢c,—r) <|f(2)] < N(a,b,¢,7), fora>0.

(#) N(a,b,c,7) <|f(2)] < N(o,b,¢,—r), fora<O.
This result is sharp and equality occurs, for the function fo(a,b, ¢, z) defined by (1.7),
with suitably chosen 6.
Proof. We consider a > 0. From Theorem 2.3, certifies the existence of f € Ba(a, b, c)
if and only if there exists a g € Rs = S™* such that

1
b

£() = lM /O M1 (g(t)) : dt] Y herear =14 L9 (2.4)

t ac

Taking z = r, t = pe’® and integrating , we get from( 2.4),

Since g is starlike , we have

T Sl gt (2.6)
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Using (2.6) in (2.5), we get

T 1
|F)M < M/o pM 1= p) = dp = MTM/O w1 = ru) = du. (2.7)

Therefore |f(r)| < N(«a,b,c,7), «a>0.

It remains only to prove that the left-hand inequality. We consider the straight
line I'* joining 0 to f(z) = Re'. I'* is the image of a Jordan arc v in £ connecting 0
and z = 7. If 2 is a point on the circumference |z| = 7 such that

|f(z0)l = min [f(re).

0<0<27
Using (2.5) and (2.6), we get

r 1
|f(zo)|M2M/ pM*1(1+p)szdp:MrM/ qul(lJrru)T%du.
0 0

|f(2)| ZN(OZ,b,C,-T), a> 0.

Proof of (ii) is analogous to proof of (7). O
Corollary 2.19. [2] Let f € Ba(a,8), a#0,0<f<land|z]=7r (0<r <]1).
Then

(1) N(e, 3, =) < [f(2)| < N(a, B,7), fora > 0.
(#) N(a, B,7) <|f(2)] < N(a, 8, =), fora < 0.

This result is sharp and equality occurs, for the function fg(c, b, ¢, z) defined by ( 1.7),
with suitably chosen 6.

Remark 2.20. The above Theorem can be obtained as a particular case of Corollary
3.2 by Bhargava and Nanjunda Rao [1].

Theorem 2.21. Let f € Ba(a,1,¢), @ > 0. Then, for |z| =r (0 <r < 1), we have
r+|a—1)(1+7r)2N(a,1,¢ —1) r+|a—1|(1 -7r)2N(a,1,¢ —1)
ar(l+r7)?2 2 '
This result is sharp.

Theorem 2.22. Let f € Ba(a,b,c), a #0, b#0. and be given by ( 1.1). Then

<G < ar(l—r)

las| < 2b
a2l = (1 — )b+ 2ac|
Proof. By using Theorem 2.18, we have
2b
N(a,b = — 24003
(a,bye,r) =1+ (1foz)b+2o¢cr + O(r°),

and
If(r)] =7+ aor® + O(r®).
Therefore, we have

2b
as <

,m (a > 0). O
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Corollary 2.23. [2] Let f € Ba(a,3) ,a#0, 0 < 8 < 1. and be given by ( 1.1). Then
|CL2| 2(1 - ﬂ) )
(1 —a)(1 =5+ 20|

Remark 2.24. The above Theorem can be obtained as a particular case of Corollary
3.1 by Bhargava and Nanjunda Rao [1].

Theorem 2.25. Let f € By(1,b,c). Then, with |z| =r, r1 = = we have

1+7r
2m—1 .
I [G(l,m,n,—l)—?‘ lG(lvmvna —7’1)] < |f(Z)‘
2m—1 . 1
S [G(laman7_1) - G(lam7n7 -1y )]

l
where l= (£ —1)b+1, m=21-1b), n= (7—1)b+2

Proof. Since f € Bg(1,b,¢). we have from ( 2.
b
f(z) = (9”) . ge R

z
Since g € Ry,
+ 22 — |23
Therefore, we have
iz LoD
CEREDICARY

Let d, denote the radius of the largest Schlicht disc centered at the origin contained
in the image |z| < r under f(z).

(1— |25 12 (1 - 5)(5-1)0
f(z0) \_/|f |dz>/( T |dz|>/0 o
_/z {1—8](5+1)b ds
=) i+ T

1—|z|

S ;2 /1+\z\ t(%_l)b(l +t)2b—2dt
1

Replacing }_T_i =t we get

Z
17: 0
— _21—2b/1+ t(g_l)b(l+t)2(b—1)dt+21—2b/ t(%—l)b(l_i_t)Z(b—l)dt:Il_"_12.
0 1
Taking {7= = r1, ¢ = r1u, we have

1
L = —21_2brll/ u(g_l)b(l + )2 Yy
0
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using ( 1.5) we obtain,

2m71

where [ = (5 —1)b+1, m=2(1-b), n=(f-1)b+2.

Therefore
2m—1 2m—1
|f(z)] > ( > G(l,m,n,—1) —r} ( i ) G(l,m,n,—r1).

On the other hand we have
, 1+ |z (5-1)p
(1= )

Therefore

—1)b 1-|=]

(g gy(5-1)
|f<z>\s/0 A-s 7

(11 ) (E ds < —21721)/1?2‘ c(5=1b(q 4 ¢y20-1g¢
S

—
(TR ST

= 27’;_1 [G(l,m,n,—1) —r{'G(l,m,n, —r] 1)),
where = (5§ —1)b+1, m=2(1-0b), n=(5-1)b+2. O
Corollary 2.26. Let f € Bg(1,8). Then, with |z| =r, 1 = % we have

2"71 (G(l,m,n, —1) = LGl m,n, —m)] < | £(2)]
< 2! [G(1,m,n, —1) —r{'G(l,m,n, —rTY)]

l
where 1= (§ —1) (1=p)+1, m=26, n=(5-1)(1-p)+2
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A note on universally prestarlike functions

Tirunelveli Nellaiappan Shanmugam and Joseph Lourthu Mary

Abstract. Universally prestarlike functions of order a@ < 1 in the slit domain
A = C\ [1,00) have been recently introduced by S. Ruscheweyh. This notion
generalizes the corresponding one for functions in the unit disk A (and other cir-
cular domains in C). In this paper, we discuss the universally prestarlike functions
defined through fractional derivatives.

Mathematics Subject Classification (2010): 30C45.

Keywords: Prestarlike functions, universally prestarlike functions, Fekete-Szego
inequality, fractional derivatives, Salagean derivative.

1. Introduction

Let H(Q) denote the set of all analytic functions defined in a domain €. For
domain Q containing the origin Hy(Q2) stands for the set of all function f € H(Q)
with f(0) = 1. We also use the notation H1(Q) = {zf : f € Ho(2)}. In the special
case when  is the open unit disk A = {z € C:|z| <1}, we use the abbreviation
H, Hy and H; respectively for H(Q2), Hy(Q2) and H1(2). A function f € Hj is called
starlike of order o with (0 < « < 1) satisfying the inequality

Zf’(Z)}
R > o z€eA 1.1
§© e d) .
and the set of all such functions is denoted by S,. The convolution or Hadamard
Product of two functions

flz) = i anz™ and g(z) = ibnz"
n=0 n=0

is defined as -
(f*xg9)(z) = Za”bnz".
n=0
A function f € H; is called prestarlike of order o (with a < 1) if

e ) €5 (12)
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The set of all such functions is denoted by R,. (see [4]) The notion of prestarlike
functions has been extended from the unit disk to other disk and half planes containing

the origin. Let €2 be one such disk or half plane.Then there are two unique parameters
v € C\ {0} and p € [0, 1] such that

Oy, ={wy,(2) 1 2 € A} (1.3)
where,
vz
w'Y:P(Z) = 1 _ pz' (14)

Note that 1 ¢ Q, , if and only if |y + p| < 1.

Definition 1.1. (see [2], [3], [4]) Let a < 1, and Q = Q, , for some admissible pair
(7, p)- A function f € Hi(Qy,,) is called prestarlike of order o in S, , if

1
fryp(2) = ;f(w%p(z)) € Ra (1.5)
The set of all such functions f is denoted by R ().
Let A be the slit domain C \ [1, c0)(the slit being along the positive real axis).

Definition 1.2. (see [2], [3], [4]) Let a < 1. A function f € Hy(A) is called universally
prestariike of order o if and only if f is prestarlike of order a in all sets €2 , with
|7+ p| < 1. The set of all such functions is denoted by R.

Definition 1.3. (see [4]) Let ¢(z) be an analytic function with positive real part on A,
which satisfies ¢(0) = 1, ¢'(0) > 0 and which maps the unit disc A onto a region
starlike with respect to 1 and symmetric with respect to the real axis. Then the class
RY(p) consists of all analytic function f € Hi(A) satisfying
D372af
D272o¢f

where, (DA f)(z) = =z * [, for 20 and < denotes the subordination.
In particular, for 3 =n € N, we have D" f = Z(z"=1 f)(),

n!
Remark 1.4. We let R%(A, B) denote the class R%(¢) where
1+ Az
9(z) = 1+ Bz

For suitable choices of A,B,a the class RY (A, B) reduces to several well known classes
of functions. RY (1, —1) is the class S* of starlike univalent functions.
2

< ¢(2) (1.6)

(-1<B<ALI).

Lemma 1.5. (see [1]) If Pi(2) = 1+ c12 + 222 + ... is an analytic function with
positive real part in A, then

dw+2, ©<0
leo —vet| < 2, 0<v<1
v+2, v>1
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when v < 0, or v > 1, the equality holds if and only if Pi(z) is }f‘z or one of its

rotations. When 0 < v < 1, then the equality holds if and only if Py(z)is 1+z or

one of its rotations. If v =0, the equality holds if and only if P(z) = (3 + 3) H= +
(% — A) 1+z’ 0 < X <1 or one of its rotations. If v =1, the equality holds if and only
if P1(2) is the reciprocal of one of the function for which the equality holds in the case

of v =0. Also the above upper bound can be improved as follows when 0 < v < 1

1
lea —ved| +vle|? <2 (0<ov< 5) (1.7)
1
lca —vet| + (1 —v)|e > < 2 (5 <v<1). (1.8)

Lemma 1.6. (see [5]) If Pi(2) = 1 + c1z + c22? + ... is an analytic function with
positive real part in A, then |co —ve?| < 2max{l,|2v — 1|} the inequality is sharp for
the function Pi(z) = 12

1—=z°
Remark 1.7. Let

where .
akz/ thdu(t),
0

u(t) is a probability measure on [0,1]. Let T denote the set of all such functions F'
which are analytic in the slit domain A.

To Prove our main result we need the following definition.

Definition 1.8. Let f be analytic in a simply connected region of the z-plane containing
the origin. The fractional derivative of f of order \ is defined by

Ld [
D2 f(z) = — d 0<A<1 1.9
MO s | ek (0<a<y (19)
where the multiplicity of (z — ¢)* is removed by requiring that log(z — () is real for
z — ¢ > 0. Using the above definition and its known extensions involving fractional
derivatives and fractional integrals, Owa and Srivastava introduced the operator Q* :
A — A for X any positive real number # 2,3,4, ... defined by

(D f)(2) =T(2 = N)=*D2f(2) (1.10)

and A = Hy(A). The class (RY)*(¢) consists of function f € A for which Q f €
(RY)(¢). Note that (RL)*(¢) is the special case of the class (R%)9(¢) when

o) =2+ S am

Let
—z—i—Zgn (gn > 0),
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g be analytic in A and f x g # 0. Since

f2) =2+ Y ans" € (RE)(9)

n=2

if and only if
(f*9)(2) =2+ Y gnanz" € (RY)(9), (1.12)

n=2
we obtain the coefficient estimate for functions in the class (R%)9(¢), from the corre-
sponding estimate for functions in the class (RY)(¢)

2. Main Result
Theorem 2.1. Let the function ¢ given by ¢(z) =1+ Bz + Baz? +.... If

_z+Zan (Ra2)4(9),

then
_ . 2
M(BQJFB%(Q—QQ)Jr%)’ 4< o
|(13 7#’0’%' S ﬁa o1 S 7] S o)
—2a B%
oz (B2 — Bi(2 - 20) + 2palil) >0y,
where )
By — B 2—-2a)B
01:[( 2= B1) 42— 20) 1}, (2.1)
93 (3 —2a)B?
2[(Bo+B 2 — 20/) B2
0'2:‘972 ( 2+ 1)+( 20[) 1 (22)
93 (3 — 2a)B?

the result is sharp.

Proof. If f %+ g € RY, then there is a schwartz function w(z), analytic in A with

w(0) = 0 and |w(z)| < 1 in A such that ngg; = ¢(w(2)). Define the function
Py(z) by,
1
Pi(z) = 11—222 =1+4c1z+c2+...
Since w(z) is a schwartz function, we see that ReP;(z) > 0 and P;(0) = 1. Define the
function s
D=~ a(f*g) 9

P(Z):DQTM:1+b12+bQZ + ... (23)

Therefore,
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Now,

Pi(z)—1 c1z+ e+ ...
Pi(z)+1 T 24 ciz+ 22+,

1 [ C%]2 [ C:% 3]
=—lciz+|cg— —=—|z"+|cg —ci1ca + —=2°| + ...
9 1 2 9 3 162 |

Hence upon simplification, we get,

Biciz | By i Baci] »
P(z)=1 — - = — 2.4
(2) + 5 + [ 5 (02 5 + 1 + (2.4)
Therefore,
B B 2 Byc?
Tdbiztbo?4.. =1+ 202 (20, G 224 2, (2.5)
2 2 2 4
Equating the like coefficients we get,
Bic
b=~ (2.6)
Bl C% BQC%
B a 2.
ba 5 <C2 9 ) + 1 (2.7)
Therefore, from the equation (2.3) we have
14+ A1z4+ A2+ ... =14 bz +by2?+ ... (2.8)
where,
Ay = [C'(a,2)azgs — Cla, 2)asgs)
Ay = [C'(a,3)azg — C(, 2)C'(a,2)a3 — C(ev, 3)az + (C(a, 2)as)?]
sk —20) e (k+1—20a)
Clan) = =0y Clan) = ===
1
b, = / t"du(t)
0
for n=2,3,... and u(t) a probability measure on [0, 1].
Equating the coefficients of z and z? respectively and simplifying we get,
b b 2 —2a)b?
as=—: a ——2+( a)1. (2.9)

T T gs(3-20)
Applying the equations(2.6) and (2.7) in(2.9) , we get,

3101 1 Bl C% BQC% B%C%
= . = — —_— _—— 2 —_ 2
az 295 as [ 5 (275 + 1 + ( @) 1
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Now,
1 B c? Byc? B2c? B?¢?
2 1 1 261 1% 1¢1
T 1 kA Gt ) e SRR U S
1 By o (1 B By g3B1
- - P2 (-2 220y (32
9:(3—2a) 2 {CQ Cl(z op, (2205 (B 20 292
_ By 2
2953 2y 12~ 1Y)
where,
1 B By g93B1
— -2 2202 (32 2.1
5 - o B ool (2.10)

Now an application of lemma (1.5) (see [1]) yields the inequalities stated in the
theorem under the respective conditions. For the sharpness of the results in the above
theorem we have the following:

1. If u = o1, then the equality holds in the lemma (1.1) if and only if

Pl(z)=<1+A>1+Z+<1—A>1_ZOSA§1

2 2)1—=z 2 2)14=z

or one of its rotations.
2. If u = o9, then

3. If o1 < n < og Pl(Z) = 11_?;2
To show that the bounds are sharp, we define the function K¢» (n =2,3,...) by
D32 [ én

DBTQKZ%R =¢(z") (2.11)
K2(0) =0, (K2)'(0) = 1 and function F> and G (0 < A < 1) by
(D372F)) (z)  (2(z+))
oy () 212

F2(0) =0, (F2)'(0) = 1 and similarly
D372O¢G>\ A
(D763 (=) _ a) (2) _ (2242 (2.13)
(D?=22G)) (2) 1+ Az
GA(0) = 0, (G2)'(0) = 1. Clearly, the functions K¢, F} G2 € R%. Also we write
K¢ := K22 1If i < 01 or 1 < 09, then the equality holds if and only if f is K¢ or one
of its rotations. When o1 < p < 09, then the equality holds if and only if f is K23 or
one of its rotations. If ;1 = o, then the equality holds if and only if f is F?> or one
of its rotations If 1 = o9 then the equality holds if and only if f is G2 or one of its
rotations. Hence the result. O

Corollary 2.2. If g(z) = 1% € RY in Theorem 2.1 we get our earlier result viz.,
Theorem 3.1 of (see [7]).
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Corollary 2.3. Taking

n + 1 /\) n
o(2) = (@ +Z r T e
(f x g) denotes the fractional derivative off and hence if
f(2) =2+ anz" € (RY)%(9) (2.14)
n=2
then,
BRC (B, 4 BY(2 — 20) + 2Bl ) p< o
las — pa| < | EEZ o1 <p<o
2
e (*32 - B{(2-2a) + %) , 1> o2,
where,
23—-X) [(B.—B 2 —2a)B?
oy = 28N (B2 = Bu) # (2 20)B; | (2.15)
3(2-X) (3 —2a) B3
23=X) [(B2+ B 2 — 2a)B?
oy = 282 [(Bot B) + (2 20)By (2.16)
32—\ (3 — 20)B2

the result is sharp.

Proof. This corollary follows from the observations

CT3)rE2-) 2
92="FE %)~ 3N (2.17)

and

g3 = =5 . (2.18)

Corollary 2.4. Taking
—z—l—an" meN,={0}UN,
(f * g) denotes the Salagean derivative of f (see [6]) and hence if

f2) =2+ anz" € (RL ()

n=2
then,
3M(3-2 B2
3""(3172(1) (B2 + B%(Q - 2&) + ( 225)# s ) ; w <o
las — pa3] < < FEmay o1 < <oy

3™ (3—2a)uB?
smmy (—B2 — BH2 - 20) + OB > o,
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where,
22m [(By — By) + (2 — 2a) B?
= 2.19
717 3m [ (3—20)B? ’ (2.19)
22m [(By + By) + (2 — 2a) B?
= — 2.20
727 gm [ (3 —20)B? (2.20)
the result is sharp.
Proof. This corollary follows from the observations go = 2™ and g3 = 3™. O
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A nonsmooth sublinear elliptic problem in RY
with perturbations

Andrea-Eva Molnér

Abstract. We study a differential inclusion problem in RY involving the p-Laplace
operator and a (p—1)-sublinear term, p > N > 1. Our main result is a multiplicity
theorem; we also show the non-sensitivity of our problem with respect to small
perturbations.

Mathematics Subject Classification (2010): 34A60, 58K05, 47J22, 47J30, 58E05.

Keywords: nonsmooth critical point, p-Laplace operator, locally Lipschitz func-
tion, differential inclusion, elliptic problem, radially symmetric solution.

1. Introduction

Very recently, Kristdly, Marzantowicz and Varga (see [5]) studied a quasilinear
differential inclusion problem in RY involving a suitable sublinear term. The aim of the
present paper is to show that under the same assumptions, a more precise conclusion
can be concluded by exploiting a recent result of Iannizzotto (see [3]). To be more
precise, we recall the assumptions and the relevant results from [5].

Let p > 2 and F': R — R be a locally Lipschitz function such that
max{|¢|: £ € OF ()}

(Fl) 150 ‘t|p_1 = Oa
- F(t
(F2) limsup £ < 05
[t|—+o0 | |

(F3) There exists ¢ € R such that F(f) > 0, and F(0) = 0.
Here and in the sequel, 0 stands for the generalized gradient of a locally Lipschitz
function; see for details Section 2. We consider the differential inclusion problem

{ —Apu+ |ulP~2u € Aa(z)0F (u(z)) + uB(z)0G (u(x))  on RY,

u(z) — 0 as |z| — oo,

(PA,M)

where p > N > 2, the numbers A, u are positive, and G : R — R is any locally
Lipschitz function. Furthermore, we assume that 3 € L*(RY) is any function, and
(@) aeL*RY)NLYE (RY), a >0, and supg. g essinf ;< ga(z) > 0.

loc
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The functional space where the solutions of (}5& 1) are sought is the usual Sobolev
space WLP(RY), endowed with its standard norm

= ([ rvuer s [ wer)

The main application in Kristdly, Marzantowicz and Varga [5] is as follows.

Theorem A. Assume that p > N > 2. Let o, 3 € L*(RY) be two radial functions, a
fulfilling (@), and let F,G : R — R be two locally Lipschitz functions, F satisfying
the conditions (F1)-(F3).Then there exists a non-degenerate compact interval
[a,b] C]O,4+00[ and a number ¥ > 0, such that for every A\ € [a,b] there exists
tio €]0,\ + 1] such that for each p € [0, o], the problem (Px,) has at least three
distinct, radially symmetric solutions with L™ -norms less than 7.

To be more precise, (weak) solutions for (P ,) are in the following sense: We say
that u € WHP(RY) is a solution of problem (P ), if there exist {p(z) € OF (u(z))
and £g(x) € 0G(u(x)) for a. e. € RY such that for all v € WHP(RY) we have

/ (|VulP 2 VuVo + |[u|’ *uv)de = )\/ a(z)érpvdr + u/ B(z)éqvdz. (1.1)
RN RN RN

Our main result reads as follows:

Theorem 1.1. Assume that p > N > 2. Let o € L*(RY) be a radial function fulfilling
(&), and let F : R — R be a locally Lipschitz function satisfying the conditions (F1)-
(f‘3) Then there exists A\g > 0 such that for each non-degenerate compact interval
[a,b] C]Ao, 00| there exists a number r > 0 with the following property: for every
A € [a,b], every radially symmetric function 3 € L*(RYN) and every locally Lipschitz
function G : R — R, there exists 6 > 0 such that for each p € [0,0], the problem
(IE’)\,,L) has at least three distinct, radially symmetric solutions with L*°-norms less
than r.

Remark 1.2. (a) Note that since p > N, any element u € W P(RY) is homoclinic,
i.e., u(x) — 0 as |z| — oo. This is a consequence of Morrey’s embedding theorem.

(b) The terms in the right hand side of (1.1) are well-defined. Indeed, due to
Morrey’s embedding theorem, i.e., WHP(RY) — L°°(RY) is continuous (p > N), we
have u € L>(RY). Thus, there exists a compact interval I, C R such that u(z) € I,
for a.e. x € RY. Since the set-valued mapping OF is upper-semicontinuous, the set
OF(I,) C R is bounded; let Cp = sup |0F(I,)|. Therefore,

| a@lépuds] < Cellal o] < oc.
R

Similar argument holds for the function G.
(c) Note that no hypothesis on the growth of G is assumed; therefore, the last
term in (P ,) may have an arbitrary growth.
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The paper is organized as follows. In Section 2 we recall some basic elements
from the theory of locally Lipschitz functions, a recent non-smooth three critical
points result of Ricceri-type proved by Iannizzotto [3], and a compactness embedding
theorem. In Section 3 we prove Theorem 1.1.

2. Preliminaries

2.1. Locally Lipschitz functions

Let (X, || -||) be a real Banach space and X* its dual. A function h: X — R is
called locally Lipschitz if each point © € X possesses a neighborhood U, of u such
that

|h(u1) — h(uz)| < Ll|uy — usal|, Yui,ug € Uy,
for a constant L > 0 depending on U,. The generalized gradient of h at u € X is
defined as being the subset of X*
Oh(u) = {z* € X* : (2*,2) < h%(u;2) forall z € X},

which is nonempty, convex and w*-compact, where (-, -) is the duality pairing between
X* and X, h°(u; 2) being the generalized directional derivative of h at the point u € X
along the direction z € X, namely

hY(u; 2) = limsup hw +t2) = h(w)

w—u t
t—0t

)

see [2]. Moreover, h¥(u; z) = max{(xz*,2) : * € Oh(u)}, Vz € X. It is easy to verify
that (—h)%(u; 2) = h°(u; —2), and for locally Lipschitz functions hy, hs : X — R one
has
(h1 + ho)®(u; 2) < hY(u;2) + hS(u; 2), Vu,z € X,

and
The Lebourg’s mean value theorem says that for every u,v € X there exist 6 €]0, 1]
and zj; € Oh(Ou+ (1 — @)v) such that h(u) — h(v) = (z;, v — v). If hy is continuously
Gateaux differentiable, then Oha(u) = hj(u); h9(u; 2) coincides with the directional
derivative h%(u; 2) and the above inequality reduces to (hy + ho)?(u; 2) = hY(u; 2) +
hy(u; ), Yu,z € X.

A point u € X is a critical point of h if 0 € Oh(u), i.e. h°(u,w) > 0, Vw € X, see
[1]. We define A\j,(u) = inf{||z*|| : 2* € Oh(u)}. Of course, this infimum is attained,
since Oh(u) is w*-compact.

2.2. A nonsmooth Ricceri-type critical point theorem

We recall a non-smooth version of a Ricceri-type (see [7]) three critical point
theorem proved by Iannizzotto [3]. Before to do that, we need a notion: let X be a
Banach space; a functional I; : X — R is of type (N) if I1(u) = ¢(||u|]) for every
u € X, where ¢ : Ry — Ry is a continuous differentiable, convex, increasing mapping
with ¢(0) = ¢’(0) = 0.
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Theorem 2.1. [3, Corollary 7] Let X be a separable and reflexive real Banach space
with uniformly convex topological dual X*, let I; : X — R be functional of type
(N), I : X — R be a locally Lipschitz functional with compact derivative such that
Ir(ug) = 0. Setting the numbers

I I
T = max {0, lim sup 2(u) lim sup 2(u) } , (2.1)

[|u||— o0 Il(u)7 u—0 Il(u)

X = Ssup IQ (U)
L(uwyso T1(u)’

assume that T < x.

Then, for each compact interval [a,b] C (1/x,1/T) (with the conventions 1/0 =
oo and 1/oo = 0) there exists k > 0 with the following property: for every X € [a,b]
and every locally Lipschitz functional I3 : X — R with compact derivative, there exists
d > 0 such that for each p € [0, 6], the inclusion

0 € 011 (u) — MOz (u) — pdls(u)
admits at least three solutions in X having norm less than k.

2.3. Embeddings

The embedding W1P(RY) — L>(RY) is continuous (due to Morrey’s theorem
(p > N)) but it is not compact. As usual, we may overcome this gap by introducing the
subspace of radially symmetric functions of W?(R™). The action of the orthogonal
group O(N) on W1P(RY) can be defined by

(gu)(z) = u(g~ '),

for every g € O(N), u € WHP(RN), € RN, It is clear that this compact group
acts linearly and isometrically; in particular ||gu|| = ||u|| for every g € O(N) and
u € WHP(RY). The subspace of radially symmetric functions of W1P(RY) is defined
by

WhP(RNY = {u € WHP(RY) : gu = u for all g € O(N)}.

rad

Proposition 2.2. [6] The embedding era’g(RN) — L®(RY) is compact whenever 2 <
N <p<o0.

3. Proof of Theorem 1.1

Let I : WHP(RY) — R be defined by
1
I (u) = —||ul|?,
1(u) p|| I
and let I, I3 : L°(RY) — R be
Ir(u) = / a(x)F(u(z))dz and I3(u) = B(x)G(u(x))dz.
RN

RN
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Since a, 3 € L'(RY), the functionals I, I3 are well-defined and locally Lipschitz, see
Clarke [2, p. 79-81]. Moreover, we have

0I(u) C /RN a(x)0F (u(x))dz, 0lz(u) C - B(x)0G (u(x))dz.

The energy functional &, ,, : W1P(RY) — R associated to problem (PA,#), is given by
Exp(u) = Ii(u) — AMa(u) — pls(u), uve whp(RN).

It is clear that the critical points of the functional &, , are solutions of the problem
(Py,.) in the sense of relation (1.1).

Since a, § are radially symmetric, then &£, is O(NV)-invariant, i.e. & ,(gu) =
Exu(u) for every g € O(N) and u € WHP(RY). Therefore, we may apply a non-smooth
version of the principle of symmetric criticality, proved by Krawcewicz-Marzantowicz
[4], whose form in our setting is as follows.

Proposition 3.1. Any critical point of 5;?3 = SA’M\WTZE;(RN) will be also a critical point

Ofg)\,#.

Therefore, it remains to find critical point for the functional Sﬁf‘g; here, we will

check the assumptions of Theorem 2.1 with the choice X = eraig (RM).
It is standard that X is a reflexive, separable Banach space with uniformly convex
topological dual X*. The functional I is of type (N) on X since I (u) = ¢(]|u||) where

— 2
p(s) ==, 5=0.
Proposition 3.2. 0I5 is compact on X = era’g (RN).

Proof. Let {u,} be a bounded sequence in X and let u} € dl2(uy). It is clear that
u’ is also bounded in X* by exploiting Remark 1.2 (b) and hypothesis (&). Thus,
up to a subsequence, we may assume that u) — u* weakly in X* for some u* € X*.
By contradiction, let us assume that ||u) — v*||. > M, Vn € N, for some M > 0. In
particular, there exists v, € X with |jv,]| < 1 such that

(uy, —u*)(vyn) > M.

n
Once again, up to a subsequence, we may suppose that v, — v weakly in X for some
v € X. Now, applying Proposition 2.2, we may also assume that

[l — v]|pe — 0.

Combining the above facts, we obtain that

M < (ug, = u")(vn) = (uy, — u") () + up (v — ) + u" (v — vn)
< (uy, —u”)(v) + Cllon — vz +u" (v — vn)
for some C > 0. Since all the terms from the right hand side tend to 0, we get a
contradiction. O

s iy L2(w)
Proposition 3.3. i% It = 0.
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Proof. Due to (F1), for every € > 0 there exists d(g) > 0 such that
€] < el Ve e [<8(2), 6(e)], Y € OF (1), (3.1)

For any 0 <t < % (%)p define the set

Sy = { ue Wh(RY) : [[ul]” < pt},

rad

where ¢, > 0 denotes the best constant in the embedding WP (RY) — L>(RN).
Note that u € Sy implies that ||ul|e < d(g); indeed, we have |Julco < coollul| <

Coo(pt)/P < §(€). Fix u € Sy; for a.e. z € RN, Lebourg’s mean value theorem and
(3.1) imply the existence of &, € IF (0 u(x)) for some 0 < 6, < 1 such that

IF(a(2))] = |[F(u(@)) — FO)] = [&u(2)] < elu(z)P.
Consequently, for every u € S; we have
Bl = | [ o@F@)dd < [ o)

el llullés < ellallLreflull?.

IN

P
Therefore, for every u € S; \ {0} with 0 <t < % (@) we have

|£2(u)]
Il (’LL)
Since € > 0 is arbitrary, we obtain the required limit. O

0<

<cellallzrcEp-

Proposition 3.4. limsup,_ ﬁ'gzg <0.

Proof. By (F2), for every e > 0 there exists d(¢) > 0 such that
F(t) < eltP, ¥it] € [5(c), o, (3.2)

Consequently, for every u € Wi;g (RY) we have
Ir(u) :/ a(z)F (u(x))dx
RN

a(x)F(u(x))dz + / a(x)F (u(x))dz
{zeRN:Ju(z)|<é(e)}

B /{xERN:u(ac)>6(s)}

gs/ a(x)|u(x)|Pde + max |F(t)|/ a(z)dz
{€RN:|u(x)|>5(c) } It1<d(e) {zERN:|u(x)|<5(<)}
<ellaflpreglull” + ol L e |E(t)].

Therefore, for every u € WoF(RV) \ {0}, we have

ra
Ir(u) _
< P4 m F(t P,
Ti(u) = epllallpiel, + pllallz \tls%é)| O[]

Once |Ju|| — oo, the claim is proved, taking into account that € > 0 is arbitrary. O
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Due to hypothesis (&), one can fix R > 0 such that ar = essinf|,j<ga(x) > 0.
For o €]0, 1] define the function

, if xeRN\By(0,R);
~ it x€ By(0,0R);
ﬁ(R—M), if z€By(0,R)\ By(0,0R),

O

wey(x) =

where By (0,7) denotes the N —dimensional open ball with center 0 and radius r > 0,
and t comes from (F3). Since a € L. (R"Y), then M (a, R) = sup,c g, (0,r) @(x) < 0.
A simple estimate shows that
I(wy) > wy RN [apF(f)o™ — M(a, R) max |F(t)|(1 — o™)].
I¢1<I]

When o — 1, the right hand side is strictly positive; choosing oy close enough to 1,
for ug = we, we have Iz(ug) > 0.

Proof of Theorem 1.1. It remains to combine Theorem 2.1 with Propositions 3.1-3.4.
The definitions of the number 7 and Y, see relations (2.2)-(2.1), show that 7 = 0 and

Il(u)

Aoi=x"1=
0 =X I (IB)>0 Ir(u)

is well-defined, positive which is the number appearing in the statement of Theorem
1.1. O
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Non-isomorphic contact structures
on the torus 7°

Saad Aggoun

Abstract. In this paper, we prove the existence of infinitely many number non-
isomorphic contact structures on the torus T°. Moreover, this structures are ex-
plicitly given by w, = cosnfsdf, + sinnfsdf2, (n € N).
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1. Introduction

In the acts of Colloquium of Brussels in 1958, P. Libermann [3] addressed the
study of the automorphisms of the contact structures on a differentiable manifold M.
She has proved that these automorphisms correspond bijectively to functions on this
manifold. This allows to transport the Lie algebra structure on the vector space F'(M)
of the functions on M. We obtain, for two given functions f,g € F(M), a Poisson
bracket [f, g] that depends of the contact form w. The study of the infinite dimensional
Lie algebras obtained is far from being advanced. Thus, in 1973 A. Lichnerowicz [4]
who hoped to distinguish the contact structures by their Lie algebras, has given
a series of results that are all however of general caracter. Some works that have
appeared after have emphasis on the similarities of these algebras. In 1979, R. Lutz
[7] has proved the existence of infinitely many non-isomorphic contact structures on
the sphere S®. In 1989, as reported by R. Lutz [7] himself, I have opened in my
thesis [1] new perspectives in the other direction by studying the sub-algebras of
finite dimension of these algebras. We know that if two contact structures |[w;] and
[we] are isomorphic then their Lie algebras (of infinite dimension of course) A([w1])
and A([ws]) are also isomorphic.

Given an n-dimensional smooth manifold M, and a point p € M, a contact
element of M with contact point p is an (n — 1)-dimensional linear subspace of the
tangent space to M at p. A contact contact element can be given by the zeros of a
1-form on the tangent space to M at p. However, if a contact element is given by the
zeros of al-form w, then it will also be given by the zeros of Aw where A # 0. thus
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{Aw : A # 0} all give the same contact element. It follows that the space of all contact
elemnts of M can be identified with a quotient of the cotangent bundle PT™* M, where
PT*M =T*M/R, where, for w,; € Ty M, wiRws iff there exists A # 0 : w1 = Awa.

A contact structure on an odd dimensional manifold M, of dimension 2k + 1,
is a smooth distribution of contact elements, denoted by &, which is generic at each
point. The genericity condition is that £ is non-integrable.

Assume that we have a smooth distribution of contact elements £ given locally
by a differential 1-form «; i.e. a smooth section of the cotangent bundle. The non-
integrability condition can be given explicitly as a A (cloz)]c #0.

Notice that if £ is given by the differential 1-form «, then the same distribution
is given locally by 8 = fa, where f is a non-zero smooth function. If £ is co-orientable
then « is defined globally.

If a is a contact form for a given contact structure, the Reeb vector field R can
be defined as the unique element of the kernel of da such that a(R) = 1.

For more details, we can consult the references [5, 6, 8] .

2. The main result
The main result is contained in the following theorem:

Theorem 2.1. On the torus T3 the contact structures defined by the contact forms
wy, = cosnbzdly + sinnbsdhy, (n € N) are non-isomorphic.

To establish this result, we need the following lemma.
Lemma 2.2. Let f a C™—function on the torus T® and R,, the Reeb field of w, defined
by

0
R, = cosnfs3—— + sinnfs—

06, 00,
If R, (f) =0, then [ depends only on 5.

Proof. R,(f) = 0 means that f is constant along the integral curves of R, whose
equations are:

d—el = cosnf
dt - 3
df
cTtQ = sinnbs,
dfs
— = 0.
dt
So, we have
0, = tcosnks+ ky,
02 = sin ?’Lkg + kQ,
03 = ks,

where k1, ko and k3 are real constants.
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When tan ks is irrational, the trajectories are dense on a torus 72, so by continuity f

0 0]
is constant on this torus. Hence, we get (%"f GTf = 0 for 61,0, arbitrary and 63 in
1 2
a dense subset of the circle. It follow that f is constant with respect to 6; and 6s.
This completes the proof of the lemma. O

Proof of the theorem. It suffices to prove that the structures [wi] and [ws] are non-
isomorphic.

From [1] we recall that the Poisson brackets associated to [w1] and [ws] are given
respectively by:

_ (499 _ Of Of 99 Of dg\
/4] _< 90, 50, T 90, 90, ~ 005 96, ) %

+(8g— f+afag_afag>sin03
004 592 001 005 005 96, ’
o9 Of 10f dg 10f g
[f, 9] :< ﬁ_gaﬁ 2393692_2802803> cos 203
NEORRTIE YY)
00, (992 2001 005 2005 004

Suppose that [w1] and [ws] are isomorphic that is F*w; = Awg, where \ is a
function on T without zeros and F' be this diffeomorphism defined from 72 into T3
by:

F(01,02,05) = (u(b1,02,03),v(01,02,03), w(b1,02,03) ).

We obtain the two equations

a—elcosw—&— 8—91smw = A cos 265. (2.1)
% cosw + 5—02 sinw = Asin 26s. (2.2)

Let (I)(Gl, 92, 03) = COS 03, (01, 92, 93) = COS 91 and 9(917 92, 03) = —sin 01. Thus
we have [, U], = Q,[¥,Q], = ® and [, ], = —VT.

Then ®, ¥ and ) generate a three dimensiononal sub-algebra of A [w;] isomor-
phic to SLs(R) and consequently, we deduce that the functions o F, Wo F and Qo F
generate a three dimensional sub-algebra of A [ws] isomorphic to SLz(R).
Thus, we have by analogy

[cosw,cosul, = —sinu,
[cosu,—sinul, =  cosw,
[-sinu,cosw], = —cosu.

From this equations, it follows that

ou ou
20, cos 203 + — 26, sin 203 = — cosw. (2.3)

If @(91,92,93) = sin93, (91,92,93) = COSHQ and 9(91,92,93) = —sin02.
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We obtain similarly

5—01 cos 205 + 8892 sin 2603 = —sinw. (2.4)

We take now
(13(91, 02, 93) =1 and \11(01, 02, 03) — — COS 03,

we get
0 (cosw) 0 (cosw)
8791 COS 293 + 8702

From (5) and lemma 2, it follows that the function cos w and consequently the function
w depend only on 63.

Differentiating (3) and (4) with respect to 6, and 02, we get after taking into account
the form of Reeb field R,, the four equations

ou ou ov ov
m(55) = (55:) = (35:) = 7 (5:) =
3—9“1, 88—9“2, 889“ and 7> depend only on 6.

sin 263 = 0. (2.5)

from those, we deduce that the functions
The diffeomorphism F' can now be completly caracterized in the following way :

w (61,02,03) = 01a1(03) + 02081 (63) + 71(63),
v (01,02,03) = 0102(03) + 0252(63) + 72(03),

w (01, 02,03) = v3(03),

where the functions oy, 3,75, ¢ = 1,2 and j = 1,2, 3 are defined on the torus T3,
So F' is a diffeomorphism iff the functions «; and 3; take only integer values and
subject to the condition

a1 — apffy = £1.

We return now to the equations (1) and (2),we obtain
(a1 — B2) sin (w + 203) — (a1 + B2) sin (w — 263)

+ (a2 — B1) cos (w — 203) — (a2 + (1) cos (w + 2603) = 0.

Thus if w = #2603, F is not invertible. In the contrary case, the quantities
sin (w + 263) , sin (w — 263) , cos (w — 263) and cos (w + 203) are linearly independant,
so a; = (3; = 0.
In all cases this diffeomorphism do not exist and the contact structures [wq] and [ws]
are not isomorphic.
Consequently, there are infinitely many non-isomorphic contact structues [wy] on the
torus T° given by

wy, = cosnbzdb; + sinnbzdby, (n € N) .

This completes the proof of the theorem. O
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3. Conclusion

The technics used in this work to find non-isomorphic contact structures can
be extended to the sphere S2 in a first steep and may be to other manifolds suitably
choosen. It is also interesting to find the group of diffeomorphisms that leaves the
contact structure invariante.

Aknowledgements. The author is indebted to the referee for pointing out some
errors and his carrefull reading of the first version of this work.
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Strongly almost summable sequence spaces in
2-normed spaces defined by ideal convergence
and an Orlicz function

Ayhan Esi

Abstract. In this paper we introduce some certain new sequence spaces via ideal
convergence and an Orlicz function in 2-normed spaces and examine some prop-
erties of the resulting these spaces.
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1. Introduction

Let X be a non-empty set, then a family of sets I C 2% (the class of all subsets
of X) is called an ideal if and only if for each A, B € I, we have AU B € I and for
each A € I and each B C A, we have B € I. A non-empty family of sets FF C 2%
is a filter on X if and only if & ¢ F, for each A,B € F, we have AN B € F and
each A € F and each A C B, we have B € F. An ideal I is called non-trivial
ideal if I # @ and X ¢ I. Clearly I C 2% is a non-trivial ideal if and only if
F=F()={X/A: AcI} is a filter on X. A non-trivial ideal I C 2% is called
admissible if and only if {{z} : 2 € X} C I. Further details on ideals of 2% can be
found in Kostyrko, et.al [3]. The notion was further investigated by Salat, et.al [4],
Tripathy and Hazarika [13 — 15], Tripathy and Mahanta [16] and others.

Recall in [5,7] that an Orlicz function M is continuous, convex, nondecreasing
function define for > 0 such that M(0) = 0 and M(z) > 0. If convexity of Orlicz
function is replaced by M (z+y) < M (x)+ M (y) then this function is called the mod-
ulus function and characterized by Ruckle [6]. An Orlicz function M is said to satisfy
Ag—condition for all values u, if there exists K > 0 such that M (2u) < KM (u),u > 0.
Subsequently, the notion of Orlicz function was used to defined sequence spaces by
Altin et al [8], Tripathy and Mahanta [9], Et et al [10], Tripathy et al [11], Tripathy
and Sarma [12] and many others.
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Lemma. Let M be an Orlicz function which satisfies Ay — condition and let 0 < § < 1.
Then for each t > &, we have M (t) < K6~1M (2) for some constant K > 0.

A sequence space X is said to be solid or normal if (axxr) € X, and for all
sequences o = () of scalars with |ag| <1 for all k£ € N.

Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm on X
is a function ||.,.|| : X x X — R which satisfies;

(i) ||z, y|| = 0 if and only if  and y are linearly dependent,

(i) 1o yll = 1y,

(ii) oz, yll = lo |1z, € R,

(V) [,y + 2l < llz, yll + ||z, 2] -

The pair (X, ||.,.]|]) is called a 2-normed space [2]. As an example of a 2-normed
space we may take X = R being equipped with the 2-norm |z,y|| =the area of
paralelogram spanned by the vectors x and y, which may be given explicitly by the
formula

T11 T12 )
Y11 Y12 .

wwE=m(

2. Main results

In this section we introduce the notion of different types of I-convergent se-
quences.

Let I be an ideal of 2Y, M be an Orlicz function, p = (px) be a bounded se-
quence of strictly positive real numbers and (X, ||, ., ||) be an 2-normed space. Further
w (2 — X) denotes X-valued sequence space. Now, we define the following sequence
spaces:

@’ [M,p, 11,

:{x:(mk) ew2-X):ve>0,{neN: Ly, [M( WZH)]” >} 61}7

for some p > 0, m € N and each z € X

@' (M, p, ||, I
:{x:(xk)ew(Q—X) Ve > 0, {neN; iy [M( tmip(“zu)]m 25} e 1}7

for some p > 0,L € X,m € N and each z € X

@ [M,p, [, 1]

P
_ x:(xk)Ew(Q—X):EIK>0,{n€N:%ZZ=1 [M( %z‘m sz}eI
for some p > 0,m € N and each z € X

and

w[M,p, II,-,IHOO={

— . 1 n tem () Pk
r=(zp)€w(2—X):IK>0,7 370 M (|75, 2 <K
for some p > 0,m € N and each z € X ,
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where
1
If pr =1 for all k£ € N, we denote
@ [M,p, ||, 1] = @ [M, ||, ] @" [M,p, |, 1), = @ [M, ], - [1],
w' [Mvpa Hv 2 ||]oo =W [Mv ”7 ° ||]oo
and
w[M,p, |, oo =W [M,]], - [l

respectively.

If for k = 0, we get tgm, () = x4y, for all m € N. We denote these three classes of
sequences as w! [M,p, ||, [[],w’ [M,p, |, [[l,,w" [M,p, ||, ][], and w [M,p, |, ]«
respectively.

The following well-known inequality will be used for establishing some results of
this article. If 0 < infy, py (= h) < pr, < supy, (= H) < 0o, D = max (1,2%71) | then

|2k + yel™ < D {lzl™ + |yel™}

for all k € N and z,yx € C. Also |z |"* < max (1, \xk|H) for all x) € C.

Theorem 2.1. The sets W! [M,p, ||,., |||, . @ [M,p,],.,|]] and @' [M,p, |, ., |, are lin-
ear spaces over the complez field C.
Proof. We w111 prove only for @! [M,p, ||, ., ], and the others can be proved similarly.
Let z,y € ! [M,p,|,.,|], and o, 3 € C. Then
1 — thm €
{n€N:n;[ (‘ k H)] 2}e[,forsomep1>0

and

t\')\m

}GI, for some pa > 0 .

e 2 ()"

for all m € N. Since ||,.,| is a 2-norm and M is an Orlicz function, the following
inequality holds:
a

tim (o + By) H)}

| —
-
—

ns |04|p1+\ﬁ|P2
el (et N
<h 2 [Ialp1+|6p2
3l (\ )
o ,; Lapl + |8l p2

=24

SIS

k=1

IR
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for all m € N. From the above inequality we get

frem 18 o (fimomem )"}
fren A5 (e )] )
u{neN:iAk_l{ (’tkm Hﬂ ;}

Two sets on the right hand side belong to I and this completes the proof.
It is also easy verify that the space @ [M,p, ||, ., |||, is also a linear space.
Theorem 2.2. For fited n € N, w [M,p, ||, ., |||, paranormed space with respect to the

paranorm defined by
1
En n trm (T Pr\ H
1=t { 090 (om0 [ (25 ) <
for each z € X

N ™

\ \/

Proof. g () = 0 and g (—x) = g (z) are easy to prove, so we omit them. Let us take

xayeﬁ)\[Map’“waH]oo'Let
I tem (@
A(I){p>0:supZ{M<‘ H)} <1,VZEX}
nm =
Ay) = >0:su li tkm <1Vz6X
y)=4p -nﬁnk:1 , :
LetpleA(x)andpgeA().pr:p1+p2,thenwehave
tem (
s (=)
p
n
<m0 (5 A)
p1+p2nmnk1 P1

1 & tkem (V)
a2 [ ()
pl‘i’anmnkg

)] s
p1+ P2

g(a:—l—y):inf{(pl—ka)% >0:p; € A(z) and po eA(y)}

and

Thus

sup;i[M(‘

and
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<inf{(p)# >0:pr e A(@) f+inf{(p2)¥ >0:p€A@)}
=g(x)+g(y).

Now, let A\, — A, where A\g, A € C and g (¢} — zx) — 0 as u — oo. We have to
show that g (A\gz} — Azg) — 0 as u — oo. Let

A r tkm(xz) Pk,
(@) =14 pu>0: sup Z M||—==,z2 <1,Vze X

Pu
Pk
)} < 1,‘v’zeX}.

and

n,m P

[ tnL v —
A(x“—x):{pu>0 sup — Z M( M,z

If p, € A(z") and p!, € A (2" — ) then we observe that

M ( tem (/\kxk )\l‘k) )
(2

, tim ()\Z‘k — Al‘k) H)
Pu|)\k*)\|+%|)\|’ Pu|)\k*)\|+l3u\)\|

=t
p
Py || (‘

)
Pu
From this inequality, it follows that
(=Dl =
and consequently

Pu | Ak —>\|+Pu|>\|
gzl —AzR) = { pu Ak — A+ ol |>\|)L“? >0:p, € A(z") and p}, € A(z" — x)}
<

Pu |)‘k ‘ (
T Pu |)‘l~c - )“ +PZ |>“

tkm

(I =) inf {(pu) # > 0: py € A(a") }
() inf {(0l) # > 02t € Al —2) }

< max {\L (1N } g (o — ).

Hence by our assumption the right hand side tends to zero as u — oo. This completes
the proof.
Theorem 2.3. Let M, M, and My be Orlicz functions. Then we have

(i) @' [My,p,]|,.|]], € @' [MoMi,p,|,.,|l], provided that p = (px) is such that
h > 0.

(it) @' [My,p, |, ], N @' [Mz,p, |, ], € @' [My + Ma,p, ||, Ill, -
Proof. (i). For given € > 0, we first choose €, > 0 such that max {Ef,eHO} < e. Now
using the continuity of M, choose 0 < ¢ < 1 such that 0 <t < ¢ implies M (t) < &,.
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Let z € @' [My,p,|,.,|l], - Now from the definition of the space @' [My, p,||,.,]l], , for
some p > 0

A(é):{neN: ig{M1 (’

Thus if n ¢ A (J) then
=) -

)] e

k=
¢§:[ (1
k=1
t
km ( H) < 6" for all k,m = 1,2, ...,

[ |
= (]

Hence from above inequality and ublng continuity of M, we must have

(|

which consequently implies that

o (o (=] ))] <ttt <=1,
o 3 o (o ([ )] <2

This shows that
Dk
%“@ADH zs}cA@
p

fren 13 or (o

and so belongs to I. This completes the proof.
(ii) Let = € @ [Mq,p, ], [|], N @! [Mg,p7 ||, 4|1, - Then the fact that

oo 2]

b (2 H)} >5H}el,meN

a2 ([

1

tkm H><5f0rallkm—12

tkm

D) <ég, forall k,m=1,2,...

o et | A K st

n P

gives us the result.

Theorem 2.4. (i) If 0 < h < py < 1, then @' [M,p, |-, ], C @' [M,]],..]]],-
(ii) If 1 < pp < H < oo, then @' [M, ||,.,|[], € @' [M,p, ], ],

(iii) If 0 < pr < qr < 0o and g—’; is bounded, then
' [M,p, |, 1], € @' [M,q, I, ],
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Proof. The proof is standard, so we omit it.

Theorem 2.5. The sequence spaces @' [M,p, |, ., |1, ,@" [M,p, ||,-, ], @ [M,p, |, -, |l
and w [M,p, |, ., ||| are solid.

Proof. We give the proof for only @! [M,p, ||, ., ||],. The others can be proved similarly.
Let z € @w! [My,p,|,.,|]], and o = () be a sequence of scalars such that |oy| < 1

for all k£ € N. Then we have

[ron 18 o

k=1

e )

T tem e
c {neN: ) [M(‘ ’“(””’“)z’m <e } el
n p
k=1
where T' = supy, {1, |ak\H} . Hence ax € @' [My,p,||,.,||], for all sequences o = (o)

with |ay| <1 for all k € N whenever « € @' [My,p, |,., ], -
Acknowledgement. The author is grateful to the referee for corrections and sugges-
tions, which have greatly improved the readability of the paper.
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On the Conjecture of Cao, Gonska and Kacso

Gancho T. Tachev

Abstract. We consider the question if lower estimates in terms of the second or-
der Ditzian-Totik modulus are possible, when we measure the pointwise approx-
imation of continuous function by Bernstein operator. In this case we confirm
the conjecture made by Cao, Gonska and Kacs6. To prove this we first estab-
lish sharp upper and lower bounds for pointwise approximation of the function
g(z) =xIn(z) + (1 — x)In(1 — z), = € [0, 1] by Bernstein operator.

Mathematics Subject Classification (2010): 41A10, 41A15, 41A25, 41A36.

Keywords: Bernstein operator, lower bounds, Ditzian-Totik moduli of smooth-
ness.

1. Introduction
In [6] Cao, Gonska and Kacsé formulated the following

Conjecture 1.1. Let T), : Cla,b] — Cla,b] be a sequence of linear operators and
en >0, lim e, =0, () = @(T)[ap) = V(- a)(b—x), and 0 < B < XA <1 fived. If
for every f € Cla,b] one has

ITa(f,2) = F(2)] < C(Nws (Frenp' (@), (1.1)
then lower pointwise estimates
() (frenp' (@) < |Tulfo2) - f()], f € Cla,b], (1.2)

do not hold in general.

The case § = 0 was already solved by the same authors in Theorem 3.1 in [5].
The aim of this note is to confirm conjecture above for the case when T;, is replaced
by the Bernstein operator B,,. Instead of T, we consider further only the classical
Bernstein operator B,, applied to a continuous on [0, 1] function f(z) and defined by

Bo(f;z) = éj’ <fl> : <Z>zk(1 —2)" 2 e [0, 1]. (1.3)
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By usual translation all considerations over the interval [0,1] could be transformed
into the interval [a, b]. Let us define the function

gx)=zlnz+ (1 —2)In(l —z), z € (0,1) (1.4)

and ¢(0) = g(1) = 0. This function was studied and used by many authors in dif-
ferent problems in approximation theory - see [1,2,5,6,9,10,11,12,13,14]. For example
the function g(x) was used to establish Theorem 3.1 in [5]. Also g was studied to ob-
tain direct pointwise estimates for approximation of a continuous function by linear
positive operator L in [13-Lemma 3.2]. V.Maier considered the function g to establish
the saturation order of Kantorovich operator (see [11,12] and Ch. 10 in [3]). The first
uniform estimate for approximation of g(x) by B,, was given by Berens and Lorentz
in [1]:

B, (g,z) — g(x) < z, for all z € [0,1].
n

Different problems in approximation and learning theory, connected with approxima-
tion of g by B,, are also studied in [2]. The problem to evaluate in a pointwise form
the remainder term

R (g, %) := Bn(g, ) — g(x), x € [0,1] (1.5)
was formulated by the author in [14] as open problem during the fifth Romanian-
German seminar on approximation theory, held in Sibiu, Romania in 2002. More
precisely, we propose to find (best) bounds of the type

221 (1 — z)*2 (1 — x)?2
kl'T < Rn(g,7) SKQ'Tv (1.6)
for every z € [0, 1], where k1, K; are positive numbers, independent of z and n.
Some days after the conference prof. A.Lupag sent to me the proof of inequality (1.6)

Withoq:ag:ﬁ:l,kj:%andalzagzb:%,KQ:\/i,i.e.

Theorem 1.2. (see [10]) For all x € [0, 1] the following holds true

z(1—z) < Ry(g.2) < V3 x(l—x).

2n n (1.7)

Our first statement is motivated by the result of Lupag and considerations, made
in [5,6,13]. We prove that the values of a1 = ap = 1 and a1 = ap = % in (1.7) are
optimal , namely

1
27

Theorem 1.3. It is not possible to find a1 > %,

that

oras > s, ora; <1, oray <1, such

(] — a2 ar(] — az
cal z) SRn(g>$)§K2'm ( 2) )
n \/ﬁ
holds true for all x € [0, 1] with some positive numbers ki, Ko, independent of x and

n.

ey - (1.8)

Our next result confirms the conjecture of Cao, Gonska, Kacsé in [6] and states
the following
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Theorem 1.4. Let p(x) = /x(1 —z), z € [0,1] and 0 < 3 < A < 1 be fized. For the
function g(x), defined in (1.4) one has

[Bu(g.2) — 9(a)] < Clo)e (s —=9' (@) (1.9)
n\Jg» — 2 ) \/ﬁ ) .
but the lower pointwise estimate
& (g o)) < = 1.1
o5 (5 @) < 1B (002) sl (1.10)

18 not valid.

In Section 2 we give the proof of Theorem 1.3. In Section 3 we establish the
proof of Theorem 1.4.

2. Proof of Theorem 1.3

Proof. Due to symmetry it is enough to consider in (1.8) only x € [0, ] and to study
the possible values of the parameters oy and a;. It is easy to compute that

1
! = — 0,1 2.1
(@) = s 7 € (0.1, (21)
i.e. g is a convex function on [0, 1]. Therefore
B, (g,z) > g(x),for allz € [0, 1]. (2.2)
If S, (g, ) is the piecewise linear interpolant for g at the points 0, %, ..., 1, then
Bn(Sngv x) = Bn(97 l‘),
B (Sng; ) > Sn(g, x), (2.3)
due to the fact that S,,g is also convex function. Consequently from (2.2)-(2.3) we get
Bu(g,2) — g(x) 2 Sn(g,x) — g(x). (2.4)

First let us consider the r.h.s. of (1.8). We suppose that (1.8) holds with a; > 1. Then
from (2.4) it follows that

(1 — x)?2 1
We compute for 0 < z < % that
Salga) =ne-g(D)=me[Im)+A-Dwa-D]

— 2 [n(2) + (- Din(L - 1)].
Also we verify that for € [0, 1],
glx)=azlnz+ (1 —2)In(l —z) <zlnz. (2.7)
Consequently (2.5) and (2.7) yield

1 (1 —x)*
—Inn+n—-1n(l-=) —azhas <Ky ————
nn+ (n—1)In( n) zlnz < Ky Tn
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forO0<z< % Therefore

1 (1 —x)%
—xl —1)In(l——)| <Ky ————— 2.9
ein(ne) + o (0= D1 - )] < g6y 202 (2.9)
Hence we get
1 1 a1(] — g)a2
oln {(1 Lyn, ] <K, " (1—2x)
n nx Vvn
Consequently
_ Ko (1 —x)*
lman < ——2 2.10
We set © = 51— in (2.10) and take n — oco. Then we arrive at
1 Ky
= lim nm "2 < —= 2.11
+oo = Jim T < 1 240

when a; > %, which is a contradiction.

To study the best possible value of a; in (1.8) we may use the following estimate,

proved firstly by Cao in 1964 for all continuous functions, and in particular for g(x)-see
[4]:
z(1—x)
|Bn(g,2) — g(2)| < Cuwz(g,\| ——
This nice estimate can not help us to establish the impossibility of the first inequality
n (1.8). We suppose that (1.8) holds with oy < 1. It is easy to observe that

). (2.12)

Rn(g,x) < lg(x)]. (2.13)
Then we would have
1—z)* o
L ]
which for x — 0 gives
LI
n
a contradiction. The proof of Theorem 1.3 is completed. O

3. Proof of Theorem 1.4

Proof. We recall the definition of the moduli wy A, 0 < X <1, which is in complete
analogy to those of wa(f,-), (A =0) and w3 (f,-), (A =1), (see [8], Chap.2):

A
wg (f,t) = sup A7 flloos (3.1)
0<h<t

where
fl@ = hpMz)) = 2f(2) + f(2 + hp?(2)),
A,QWA f(z):= ¢ if [x — ho*(2), 2 + he*(2)] C [0,1]; (3.2)

0, otherwise.
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The direct pointwise estimate (1.9) was proved by Ditzian in [7] for all continuous
functions, defined in [0,1] and in particular it holds for g(z) too. We suppose that
(1.10) holds true. Setting = § in (3.2) we obtain

1 1 1 1
A2 S) o2 2B(D) . () > R ()2 T p2.920-8)
o (3) =) 1O 20 G s
Hence by
1
t:= %@17A(x), x € [0, 1] — fixed
it follows 1
W (g, 1) > 2. 220-P) = ~(a(1 - )= . 220-8), (3.3)

From our supposition and (3.3) we get

=21 — )
) T B (g, — o) (3.4)

for 0 < 8 < X < 1. It is clear that for A =1 (3.4) is not possible, because due to (1.7)

it would lead to
1 _
c(g) - 220-8) < /2. 1/%, for allz € [0, 1], (3.5)

which is a contradiction.

Consequently for 0 < g < A < 1 (3.4) would imply, that (1.8) is valid with
a1 =1 — X < 1, which contradicts the statement of Theorem 1.3. Thus the proof of
Theorem 1.4 is completed. O

c(g) - 22F
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Kantorovich type ¢g-Bernstein-Stancu operators

Aysegiil Erengin, Giilen Bagcanbaz-Tunca and Fatma Tagdelen

Abstract. In this paper, we construct a Kantorovich type generalization of g-
Bernstein-Stancu operators by means of the Riemann type g-integral. We inves-
tigate some approximation properties and also establish a local approximation
theorem for these operators.

Mathematics Subject Classification (2010): 41A25, 41A36.

Keywords: Kantorovich type operator, Riemann type g-integral, Lipschitz class,
local approximation.

1. Introduction

Let ¢ > 0 be a fixed real number. For any nonnegative integer n, the g-integer
[n], and the g-factorial [n],! are respectively defined by (see [2])

n

ifg#1
[nlg =4 1—4 )
n ifg=1

and

,{[11q[21q---[n]q o> 1
' 1 ifn=0"

For the integers n > k > 0, the ¢-binomial coefficients are defined by

W,

Now suppose that 0 < a < b, 0 < ¢ < 1 and f is a real-valued function. The
g-Jackson integral of f over the interval [0,b] and a general interval [a, b] are defined
by (see [11])

b [e%s)
| @ =a-apy s )0
=0
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/: fz)dyx = /Ob f(z)dyx — /Oa f(x)dgx

respectively, provided the series converge.

It is clear that g-Jackson integral of f over an interval [a, b] contains two infinite
sums, so some problems are encountered in deriving the g-analogues of some well-
known integral inequalities which are used to compute order of approximation of linear
positive operators containing g-Jackson integral. To solve this problem Marinkovié
et.al. (see [12]) defined the Riemann type g-integral as

and

Ry(f;a,b) = /f Vi = (1— g)b—a) S f (a+ (b—a)?)

7=0

which contains only points within the interval of integral.
Dalmanoglu and Dogru [4] proved that Riemann type g-integral is a linear positive
operator and satisfies the Holder inequality

Ry(|fglia,b) < (Ry(|f™5a,b)™1 (Ry(|g|™;a,b)) 7

where — r— + =

In 2009 Nowak [13], for f € C[0,1], ¢ > 0, @ > 0 and each n € N defined the
g-Bernstein-Stancu operators

Zpﬁ’k ( k}q) . xel0,1] (1.1)

with

POC () — [n} 1) (4 afi }q)_l—l[::é“ 1= ¢z + als]y) (1.2)
’ & q Hi:o (14 afily)

and investigated Korovkin type approximation properties of these operators. Note
that in (1.2) an empty product is taken to be equal to 1. In [10], the authors studied
the rate of convergence and proved a Voronovskaya type theorem for the operator
defined by (1.1). After that Agratini [1] introduced some estimates for the rate of
convergence to the sequence B%“(f;x) by means of the modulus of continuity and
Lipschitz type maximal function and also explored a probabilistic approach.

It is clear that for o = 0, B2*(f;x) reduces to ¢g-Bernstein polynomials defined
by Phillips [15]

Bn,q(f;w)zzn:Hq f[ (1—q°z)f (m‘;) ze[0,1].

k=0

For ¢ = 1, BL®(f;x) turns out to be the Bernstein- Stancu polynomials proposed by
Stancu in [16]

o= () B v (1)
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For « = 0 and ¢ = 1, BL?(f; ) represents the classical Bernstein polynomials given

by
Bou(f;z) = kiof <fl> <Z>zk(1 —2)" k2 e(0,1].

The following identities hold [13]

BI%(1;2) =1 (1.3)
B (tiz) =z (1.4)
B (t?z) = H% (m(x +a) + x(%n]—qx)) (L.5)

for all x € [0,1] and n € N.

Generalization of Bernstein polynomials based on g¢-integers was studied by a
number of authors. We now mention some papers related to integral modification of
the ¢-Bernstein polynomials. Gupta [7] constructed Durrmeyer type modification of
the g-Bernstein polynomials by means of the g-Jackson integral and studied their some
approximation properties. Thereafter, Finta and Gupta [6] obtained some local and
global direct results and also established a simultaneous approximation theorem for
these operators. In [8], Gupta and Heping defined another Durrmeyer type g-Bernstein
polynomials and obtained some approximation properties of such operators. Later
in [9], Gupta and Finta proved some direct local and global approximation theorems
for the operators given in [8]. Dalmanoglu [3] presented Kantorovich type ¢-Bernstein
polynomials via g-Jackson integral and investigated their approximation properties
and the rate of convergence. Very recently, by introducing the following Kantorovich
type generalization of ¢g-Bernstein polynomials by means of the g-Riemann type inte-
gral

n—k—1 [kt1]g

* & — n 5 [n+1lq
Bifaa) =+ 1, ot 7] o TL a-eo) [0 sodfn o)
k=0 q s=0 Tn+ilq

where z € [0,1] and 0 < ¢ < 1, Dalmanoglu and Dogru [4] studied statistical Korovkin
type approximation properties of these operators. The authors derived the formulas

B (1;¢;7) = 1,
B (tiq;x) = 12+qq[n[i]q1}q$ liq[nil]q7
B (% q;2) = (1q+2q T +q)(?quq+q2)) [H%Z[Zi;qﬁ
+ (H 12+qq * 1fq_+1q2> [n[i}ql]%x+ 1+ql+q2 [niﬂ?

In this paper, for f € C[0,1], 0 < ¢ < 1 and each n € N, we consider the
Kantorovich type generalization of the ¢g-Bernstein Stancu operators defined by (1.1)
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with the help of the Riemann type g-integral as follows:

" [+ 1], [T
n nt+llgq
By(figo) =) Py ———" |
k=0 q CE=ipt

fydit, xeo,1] (1.7)

where P/ () is given by (1.2).

In the case a = 0 the operator B2(f;q¢;x) turns into the operator B (f;q;x)
defined by (1.6).

2. Estimation of moments

Lemma 2.1. Let m be a nonnegative integer. Then we have

e
n+1
I, ,(t") = e mdft
[n+1]q
k m m m—l
q [k]
= Cm ) )
[”"‘”q(”"’l ) zz< )(nq> Ham)
where
m—I1
(1-g)°
Cmalg,n —1)s
Han qls_o( ) [+ s+1]

Proof. By definition of Riemann type ¢-integral and Binomial formula, we get

Imk(tm)

—1-ag . i(nJrl [nfuqu)mqj

]

=(1—q)(n mHZ +(1-Q1-9lkl)e)" ¢

TS B W ’“( ) (- (- k) )

1=0 j=0

Using the following fact

o0

S (g = L1 1
= 1t (g it
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and Binomial formula again, we can write

L™
~Tr iy ; (7)1 - oo (-
“Grr i (1) 5, 3 () - am
- ﬁl)mﬂ E (Mt _ () ey — g
“Grr i o (1) () e G
Gt ii e CTEE e =
:([n—&—(il)m‘*l éiﬁ (m _Wz”_ s)'l'ls'([ Jo)™ ! )S[z(is_i):]q
T i)mﬂ ém_ol l!(mm! il sl(T(nm_l l)!s)! ([l
x (=17 [z(+1 s_f)iq
T +i>’”“ lf:m_l (Do gy
o (Fer) mlim: (M) Gﬁ)w om
X (=1)° [z(is_i);]q
o (rer) mé (7) (%)ml ol m_l (")
x (= )s[z(is_f)f}q

Thus, if we take

1 m—I1 mfl 1 s
([n]q)lZ()( S >(1)S ( q) *CmJ(q,n),

then the proof is completed. O
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In the light of Lemma 2.1, we can state the following lemma.

Lemma 2.2. Let m be a nonnegative integer. Then for the operator BE(f;q;x) defined
by (1.7), we have

spemsan) = () S () omitwmse et

where B is given by (1.1) and C., 1(¢,n) is defined as in Lemma 2.1.

Proof. Indeed, by using Lemma 2.1 we can write

"™ Zpgg ";Lkl] L (6™
<[n[i]q1]q)m ;PZ,?@) é (”;) (ﬁz)nﬂ Cont(a,7)
) ([n[fql])mé (7)07”1(%”);%% (“ﬂz)ml
- <[n[i]ql]q)m§; (”;)cm’l(q,n)B;{’“(tm L)
0
Corollary 2.3. The operator By(f;q;x) defined by (1.7) satisfies

By(lig;z) =1 (2.1)
BO(t: gs ) = 2 []g 1 1 02)

X
1+g¢gn+1], 14+¢g[n+1],

B (1 q; @)
_ 1 4 +* +¢*  [nlgln — l]qu
l+a(l+q9(1+qg+¢) [n+1]2
a 4¢3 +¢* +¢q [n]? < 1 42+ ¢* +¢q (2.3)
I+a(l+q)(1+q+q?) [n+1)2 I+a(l+q)(1+q+4q?)

4¢* +2¢q >[n]q P 1
(1+q)1+q+¢>) /) [n+1]2 I+q+¢ [n+1)2

With the help of Lemma 2.2 and identities (1.3)- (1.5) it can be easily proved.
So we omit it.
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Lemma 2.4. For the operator BS(f;q;x) defined by (1.7), we have

o 2. . 1 4q° [n]3 _4q  [n]g 2
Balt—a)lsqw) < <1+a(1+q)2 n+1]2  1+qn+1] +1> v
o [nlg L1 2.4
+<1+am+ﬂg+1+aMAlh>x 24
1 1

+ .
I+q+q° [n+1]3
Proof. From the linearity of B and the equalities (2.1)- (2.3), we may write

By ((t — )% ¢; )

_{ 1 4 + ¢ + ¢ [n]q[n_l]q_ 4q [nlq —|—1}x2
Cll+a(l+90+g+¢?) [n+12  14+qn+1],

a 4P+ +q 0]
l+a(l+q)(l+qg+¢?) [n+1]7 (2.5)
( 1 4 +¢* +4q 4q* +2q ) [nlq
l+a(l+q)(1+q+¢®)  (1+q)(1+q+q2)) n+1]2
2 L O 1
1+qn+1] L+g+q¢[n+1)2
In [4], for 0 < ¢ < 1 and n € N it was showed that
'S 3¢* 4 + ¢ + ¢ 4q°

1+q+ I+q)1+g+¢*) (1+q(1+q+q) = (1+q)?

Since [n — 1], < [n], this leads to

( 4 + ¢* + ¢° ) [n]q[n —1]q < 4q* [n]i (2.6)
(I+q)(1+qg+g¢*)/) [p+1] (I+¢q)?[n+1]3
On the other hand, for 0 < ¢ < 1 we have
4¢° +¢* +¢ (3¢* +2g +1)(¢ — 1)
o~ — 1= 5 <0
(1+9)1+q+4¢) I+9)(1+q+q¢)
which gives
4 3 2
" +q +4q (2.7)

I+ +qg+4q?)
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[n]q

Hence using (2.6), (2.7) and the inequality —% < —L— into (2.5), one gets

12 < T,
BY((t— )% q;2)

s( 1 4 [ 4q Wb]+1>ﬁ

l+a(l+¢?n+12 1+q[n+1

2 2
o n 1 4% +2 2 1
N []q2+< N it B ) .
1+ a[n+1]2 Il+a (A+q)(l+qg+q?) 1+q/) n+1]
1 1
+ 2 2°
1+q+¢*[n+1]
Finally, for 0 < ¢ < 1 by means of the fact
4¢% 4+ 2q 2 2(¢%> — 1) -
1+¢(1+qg+¢*) 1+q (I+9(1+q+q?)

we get
1 4¢®  [nlf 4 [n]
BY((t —z)% q;z) < _ _ 4 11 2?
n((t =) )<1+a(1+q)2[n+1]g L4+q[n+1],
a  [n]2 1 1
+ s+ x
I+an+12 1+an+1],
. 1 1
1+q+q?[n+1]2
which is the required result. O

3. Main results

In this part, we study some approximation properties of the operator B%(f; ¢; )
defined by (1.7).

Theorem 3.1. Let ¢ = ¢, € (0,1) and a« = «,, > 0 such that lim g, = 1 and

n—oo

lim a, = 0. Then for each f € C[0,1], Be"(f;qn;x) converges uniformly to f on

n—oo

[0,1].
Proof. By the Bohman-Korovkin Theorem it is sufficient to show that
i [[BS (75 g0i ) — 2" ooy =0, m = 0,1,2
By (2.1), it is clear that
Jim 1B (15 gns ) — 1 |cjo,) = 0

Since B (t; qn; x) = B (t; qn; x), where B is defined by (1.6), from the formula (22)
in [4] we have
Jloa 3 1

l+q¢n  1+4gnn+1]g,

[[Bom (t; gn; ) — || cpo,1)
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which implies that

lim (B3 (t; gns @) — 2llcpo,y = 0.

Now using (2.3), (2.7) and the inequality [n[i]f]g <m +11] we get

| B (% qus ) — |

<' 1 495 + 45 + qp []q, [n — 1]q, 1|22
1t an (1+g)(1+ g +q3) [n+1]2
N { an 4¢3 + ¢2 + qn [n]3,
L4 an (1+¢n)(1+gn +¢2) [n+1]2
1 443 + q7 + Gn 49 + 24 [lg.
<1—|—o¢n (1+ )1+ g0+ ¢2) (1+qn)<1+qn+q%>> [n+1]3n}x
) ) (3.1)
"Trera [n+1]3,
<' 1 4qp + 43 + g2 [n]g, [n — 1]q, — 1] 22
Tt an T+ g)1+ g, +4q2) [n+1]2

2 2
o, n 1 4n—|—2n 1
N []qn2 +< N q q 2) .
I+a,[n+12 1+a, (Q+g)14+g,+¢2)/) [n+1],,
1 1
+ 2 2 "
L4 qn+q2 n+1]2,

Since (see [4]),

[n]g. [0 — 1]q, _1<1_ 24+ qn 1+gn >
[n+1]2 q n+1]g, [n+1]2,

the inequality (3.1) takes the form
| B (8% gn; ) — 2°|
<{‘ 1 4y + gn +1 - '

1+a, Qn(l + Qn)(l +qn+ qu)

1 42 +qn + 1

1+ gy 2+ qn
+ 2
1+a, Qn(l + Qn)(l + gn + qn)

n+1]2  [n+1]g,

}xZ (3.2)

2 2
Qg n 1 4n+2n 1
N []qn2+ N q q i .
L+an[n+1]2 ITtan (I+¢)0+g+4¢2)) n+1],,
N 1 1
1+ gn+q2n+12°

dn
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Taking maximum of both sides of (3.2) on [0, 1], we find

B (% g @) — x2||0[0,1]
S|t 42 +qn + 1 B
1+ ay, Qn(l + Qn)(l + gn + q727,)
1 42 + qn + 1 l+g. 2+
1+a, qn(l'i‘qn)(l"‘qn"‘qgl) [n"_l]?;n [n+1]qn
a, (]2 1 442 + 2q,, 1
+ 2 + 2
T+ a, [n+1}qn 1+ ap (1+Qn>(1+Qn+Qn) [n+1]qn
1 1
+ 2 2
l+gn+q;[n+1]5,
which yields
nhjgo |[By" (tz;(In;x) - $2HC[0,1] = 0.
Thus the proof is completed. O
Remark 3.2. If we choose ¢, = HL_H, it is easily seen that lim ¢, =1 and lim ¢, =
e, Hence we guarantee that lim [n], = oo. Since [n + 1],, = gn[n],, + 1 and
[n]qn _ 1 : 1 _ . [n]Qn _
e, = 7.7 wlq" we have nlirgo 7[71 1, =0 and nh_)n;o 7[71 1], =1

1
For ¢ € (0,1) it is obvious that lim [n], = T In order to reach to conver-

n—oo —

gence results of the operator B3 we take a sequence g, € (0,1) such that lim ¢, = 1.
n—oo
So we get that lim [n],, = oco.
n—oo
By the above explanation, Remark 3.2 provides an example that such a sequence can
always be found.

Next, we compute the approximation order of the operator B(f;¢;x) in terms
of the elements of the usual Lipschitz class.

Let f € C[0,1], M > 0 and 0 < 8 < 1. We recall that f belongs to the class
Lipp(8) if the inequality

F(t) — f@)| < Mt —al” 52t €[0,1]
holds.
Theorem 3.3. Let ¢ = ¢, € (0,1) and a« = «,, > 0 such that lim g, = 1 and

lim a, =0. Then for each f € Lipp(5) we have

n— oo

1B (f3 an32) = f(@)llepy < M6,
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where

5 {( L A )[[n]ﬁn 4y [l

1+a,1+g,)? 1+a, n+1]§n 14 ¢ [n+1]g,

1

+ ! ! + ! ! +1 '
Ttan[n+lly,  14+a.+a; n+1 '
Proof. By the monotonicity of Bo» , we can write

|By™ (fians ) — f(x)] < By (|f(t) = f(2)]5 qn; )

n [ i 1] [["'Jrllltm
n n+llgy,
<MY Pinon () t—z|®dl ¢,
n,k qk: *lgp dn
k=0 " n+lq,,

On the other hand, by using the Holder inequality for the Riemann type g-integral

with mq = % and mo = we have

2
2-3°
By (f5qns ) — f(2)]
- Gn0n [n+1]g, [[f‘iﬂzz 2 iR
<MY P () | i (t—=)%df t

B
2

k
k=0 In [ii]fﬂn
Now applying the Holder inequality for the sum with p; = % and py = ﬁ and
taking into consideration (1.3) and (2.4), one may write
|By" (fiqn; ) — [ ()]
B 2-8
n (kt+1lgn 2 n =
o oy [0 F g, [T Tan 2 IR
car (Ym0 ey (S
k=0 n tile, k=0

g 2—
2 =

=M (BE((t — 2)% qn; 7)) * (BEo(1;2)) 7

2
M 1 4@% [n]qn _ 4Qn [n] qn + 1 $2
T+a, (I+q.)*[n+ ”Zn 1+4qn [”Jrl]qn

IA

+ Qp [n]gn 1 1 n 1 1 2
x :
Ltann+12  14+a,[n+1],, L+gn+qin+12

This implies that

1 4q? « ]
Bon (f:qn: 1) — <M - = o
” n (qu ,l') f(x)”C[O,l] = { (1+an (1+qn)2 1+04n) [n+1]gn
Agn  [nlq, 1 1

- 1+qn [n"'uqn 1+ ay, [n+1]qn
B8

+ L L ’
T+gn+q2[n+1]2 '
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Hence if we choose § := ¢,,, then we arrive at the desired result. O

Finally, we establish a local approximation theorem for the operator B%(f;¢; x)
defined by (1.7).
Let W2 = {g € C[0,1] : ¢’,¢" € C[0,1]}. For any § > 0, Peetre’s K-functional
is defined by
Ka(f:8) = inf {If — gll+5lg" I}
geW?

where ||.|| is the uniform norm on C]0, 1] (see [14]). From ( [5], p.177, Theorem 2.4)
there exists an absolute constant C' > 0 such that

K> (f36) < Cun(f5V9), (33)
where the second order modulus of smoothness of f € C[0, 1] is denoted by

wa(fiVo) = sup  sup [+ 2h) = 2f(x+h) + (o).
0<h<+/$ z,24+2h€[0,1]

The usual modulus of continuity of f € C]0, 1] is defined by
w(f;Vo)= sup  sup ]lf($+h)—f($)|-

0<h<v/5 z,x+h€e(0,1

Now consider the following operator

N pare 2q [n]q 1 1
L"(f’q’x)_Bn(f’q’m)_f<1+q[n+1]q +1+q[n+1
for f € C[0,1].

Lemma 3.4. Let g € W?2. Then we have

o 24+« 4q2 [nﬁ 3¢ [n]q 2
« [nE 1 1
+<1+O¢[n+1]3+1+(1[ﬂ+1]q>$ (3.5)

} llg”Il-

Proof. From (3.4), (2.1) and (2.2) it is immediately seen that

2 [n]g 1 1
Ln(t —a;q;2) =B, (t — 2;q;7) — -
(t—a;q32) (t— =z q;2) (1+q[n+1]qx+1+q[n+1]q x

=By (t;¢;x) — 2By (1;¢; )

}q) + f(x) (3.4)

2% +3q +2 1
(1+qg+¢)(1+q)?n+1]2

_< 2¢  [n], . 1 1 —m)
1+g¢n+1], 1+gn+1]
=0.

For z € [0,1] and g € W2, using the Taylor formula
t

ot) — g(z) = (t - 2)g' () + / (t — u)g” (u)du

x
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and (3.6) we have

Ln(g;¢; %) — g(x)

Lt~ zi0i0) + L [ (0= 0 (s o)

=Ly (/:(t —u)g” (u)du; g; x)

=By ( ;(f - U)g”(U)dU;q;x)

2q _[nlq

Ha L T T Ay [ 2 [n] 1 1
—/ T_x+ —u ) g"(u)du.
x 1+gq[n+1] 1+q[n+1]

By means of the monotonicity of BY this gives

|Ln(g; 45 %) — g()|

t
<Byp ( / (t —u)g" (u)du ;q;x>
- (3.7)
2¢ Inlg 1 1
Rt T (2 [n), 1 1 ) "
+ T+ —u u)du
/w <1+q[n+1]q 1+qn+1], g'(w)
On the other hand, it is clear that
t
[ =g @i < £~ 02" (3.8)
Now let
2q Inlq 1 1
Trq nrilg * Y Thqg nrilg [/ 2 1 1
I:= ( a__[nlg x —u) g" (u)du.
. l+qn+1]y  1+qn+1]

Then we may write

I< [(qu [n[fﬁql]q - 1> ot @[njl]} lg”

_ 2q [n]q ? 2 4q [n]q 2 1
‘{ <1+q[n+1]q‘1> ! +(<1+q>2 [n+1]3‘1+q[n+11q)z

IR S
(1+q)2[n+1]g g
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2 _ 2(g—1)

Use of the facts 4[71[1]10]3— < 7[71_:1](1 and for 0 < g < 1, 7(11‘2)2 ~Th T A+ < 0 yields
2
re(2 b Y (e 2yt
1+gn+1] 1+¢)? 1+gq) [n+1],
1 1
+ - "
(3.9)

2q [n]q ? 2 1 1 "
S{ (1—|-q[n+1]q _1> t +(1+q)2[n+1]3}llg |
_ a2 [n)? g  [n], 1 1 )
_{ ((1+q)2 m+12 1+qn+1], +1> 2+ e [n+1]3} lg"1l-

Substituting (3.8) and (3.9) into (3.7), we have

|Ln(g;q;2) — g()]

(i)« [ T e Y
S{Bn((t )5 @ )+<(1+q)2[n+1]§ 1+q[n+1}q+1> (3.10)

P S
(1+q)2[n+1]g g

Using (2.4), from (3.10) it follows that

|Ln<g;q;x>—g<x>|<{<““ i [l 8 [”]q] +2>x2

l+a(l+g2n+12 1l+gn+1

a  [n)2 1 1
- s+ x
l+am+12  1+an+1],

} g1l

This completes the proof. O

2¢% +3q+2 1
(I+g+¢*)(1+q)? [n+1]3

Theorem 3.5. Let f € C[0,1]. Then for each x € [0,1] we have
1By (f3¢52) = f(2)] <Cwa(f; v/ dn(2))

. 2q [n] 1 1
*“’(f"<1+q[n+ql1q ‘1)“1+q[n+11q

).



Kantorovich type g-Bernstein-Stancu operators 103

where

- 24+« 4(]2 [n]g 8q [n]q
= <1+a(1+Q)2 417 T+ +2> g

a  [n2 1 1
+ s+ x
l+ap+12  1+an+1]
2 + 3q + 24> 1
(1+g¢+¢*)(1+q)?n+1]

and C' is a positive constant.
Proof. From (3.4), we have
Lo (f;:2)| < [BR(fsa o)+ 2(IfI < [fI BR (Lgsz) + 2 (1| =3[ fl  (3.11)
and
Bu(fiq;@) — f(@) =Ln(f — g:¢:2) — (f — 9)(2) + Ln(g;¢57) — g(x)

2q [”]q
+f<1+q[n+1]qx+1+q[n+l]q) - f(@).

In the light of (3.5) and (3.11), this equality implies that

1By (f;q;@) — f(2)]
S|Ln(f = g5 ;)| + |(f = 9) (@) + | Ln(g; ¢;2) — g(z)|

2¢ [n]g 1 1
f(1+qm+whx+1+qm+¢h)‘””

<] — gl + |Lnlgig:2) — o)
vo (1| (PG mem ) )

2+a 44  [n]; 8¢ [ng
<4||f—9|+{<1+a(1+q)2[n+1]g_1+q[n+1]q+2 "

_|_

a [n]2 1 1
\THapr T Tram+1, )"
}Ilg”ll

J( 20 Wl ), 1 1
+w(f7’<1+q[n+1]q 1) T+,

=MU—9M+%@HWW+w<ﬁ

2% +3q + 2 1
(I+q+¢)(1+¢q)?[n+1]2

)

2q [n]y 1 1
<1+qm+4b‘ )x+1+qm+uq

).
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Hence taking infimum on the right-hand side over all g € W2 and considering (3.3),
we get

1B (f;q;2) — f(x)]

. (20 [l L1
s4Kn(f,6n<w)>+w(f”(1+q[n+q1]q 1)“ T+qn+1], )
. T 11
SC“’Q(f’m)W(f”(1+q[n+1]q 1)x+1+q[n+1]q)
which is the desired result. 0
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Note on a property of the Banach spaces

Nuno C. Freire and Maria Fernanda Veiga

Abstract. We show that we may consider a partial ordering < in an infinite
dimensional Banach space (X, ||.||), which we obtain through any normed Hamel
base of the space, such that (X, ||.||, <) is a Banach lattice.

Mathematics Subject Classification (2010): 46B20, 46B30.

Keywords: Order, norm, lattice.

1. Introduction

Why trying to see, concerning a Banach space X, whether there exists or not a
partial ordering in X that is compatible with the topology? The particular geometric
properties of Banach lattices and, the contrast concerning the continuity properties
of the coodinate linear functionals associated either to a Schauder basis or to a Hamel
base in a Banach space ([2], Chapter 4 and [3]), we decided to consider these matters
altogether. We prove in Theorem 3.1 that (X, |.||) being an infinite dimensional real
Banach space and the normed vectors z, (a € A) detemining a Hamel base H of X,
we may consider a partial order <3, in X such that the triple (X, ||.[[,,,<x) is a
Banach lattice where |.||,, is an equivalent norm to [.|| in X. In the Preliminaries,
paragraph 2., we briefly set the notations. We consider real Banach spaces X and we
say that a linear isomorphism which is a homeomorphism between two topological
vector spaces is a linear homeomorphism ([4], II.1, p. 53 in a definition ). Also in [4],
we can find the algebraic Hamel base of a vector space X not reducing to {0} namely
(p- 42), H = {xq : @ € A} is Hamel base of X if H is an infinite linearly independent
set which spans X, as we consider in paragraph 2.

2. Preliminaries

In what follows we consider a real Banach space (X, ||.||). Recall that (X, <) is
a Riesz space through a partial order < in X if and only if < is compatible with the
linear stucture that is, z+ 2 < y+ 2z whenever z < y, x,y, z € X, we have that az > 0
for each x > 0, @ > 0 where x € X and « is a scalar and, further, there exist z Vy =
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sup{z,y},x Ay = inf {z,y} for each z,y € X. .We write (X, ||.||, <) meaning that
(X, ||-I) is a Banach space, (X, <) is a Riesz space and ||z|| < ||y|| whenever | z |<| y |
so that (X, .||, <) (or just X) is a Banach lattice. Here, we put | z |= 2 V (—z) We
write 7 = 2V 0, = = x A 0. We see easily that 2= = (—z) V0 = —(x A 0).More
generally, z Ay = —((—z) V (—y)). We have that v = ¥ — 27, | 2 |= 27 +2~. Notice
that 2Vy =z +y—((—2)V(-y)) = (" —27 )+ " —y7) = ((—2)V(-y) +y—y =
(at4+yt—27 —y7)—((y—2)v0)—y ([2], Theorem 1.1.1. i), ii), p. 3) hence for < a
partial order compatible with the linear structure of X, X is a Riesz space provided
that o exists for each z in X.

Definition 2.1. (Following [4]) For A a nonempty set of indices, we say that the
Jamily (Aa) in RA is summable, > 4 Ao = s if it holds that |3, c4 Aa — 5| < € for
each finite superset A of some set A, € F(A), the class of all nonempty finite subsets
of A, € > 0 a priori given. The family (Ay) is said to be absolutely summable if (|Aa|)
18 a summable family.

Notation 2.2. We let [x(A) = {(\o) € RA: A\, = 0 for all @ ¢ A and some A €
F(A)}.

Notation 2.3. We write [;(A) for the Banach space determined by the absolutely
summable families (A\y) equipped with the norm [|(Aa)|l1 = > 4 [Aal-

Remark 2.4. The space l1(A) is a Banach lattice when equipped with the partial
ordering (Ay) < (pe) if and only if Ay < po (o € A). 11(A) is the completion of

(e (A)-[I-[1)-

Proof. This follows from [4]. The partial ordering is extended the obvious way. O

Letting {z, : @ € A} be a normed Hamel base of X, ||z.]] = 1, a € A,
putting >, SaZa <H D 4taTe if and only if s, < to (o € A, the finite sms are
understood)), we have that (X, <) is a Riesz space. Notice that the linear operator
T(Aa) =D Aazo on lx(A) to (X, ||.||, <#) is injective, continous of norm 1. We may
consider the linear homeomorphism (T/K) : (I;(A)/K,|. : L (A)/K]|)) — (X,|.]), T
for the linear extension to 1 (A) of T, where K = Ker(T).

3. The results

Following [1], (X,].||, <) being a Banach lattice we say that a subspace Y of X
has the solid property if © € Y whenever | 2 |<| y | and y € Y. Y being closed, we
then may consider the partial ordering [z] < [y] in the quotient X/Y if and only if
y—x € P where P = U{n(z) : ® > 0},n(xz) = [z], = for the canonical map. Clearly
that < is compatible with the linear structure Also [z]T = [x7], (X/Y, <) is a Riesz
space such that [z]V [y] = [t V], [z] Aly] = [z Ay] and [| = |] =] [z] | ([1], 14G, p. 13).
We have that [0] =< [z] if and only if for each v € [z] there is some w € [0], w < x hence
also [z] < [y] if and only if for each v € [y], there is some w € [z] such that w < v. It
follows that | [x] |<]| [y] | imples that for each v € [y] there exists w € [z],| w |<] v |
hence ||[z] : X/Y|| < ||[y] : X/Y|| and (Y/X, <) is a Banach lattice. We see easily
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that K = Ker(T) as above in the Preliminaries is a closed subspace of I (A) having
the solid property, hence (1;(A)/K, <) is a Banach lattice where we keep denoting
the ordering in the quotient by the same symbol <.

Clearly that 6 : (E,|. : E|,<g) — (F,||. : F||) being a linear homeomorphism
between Banach spaces such that F is a Banach lattice, putting 6(a) <g 6(b) if
and only if a <g b in E we obtain that (F,<y) is a Riesz space. We have that
O(aVb) =60(a)VO(b) and, more generally, 6 preserves the lattice operations. Further,
if we put ||0(a)|le = ||a : E|| for 6(a) € F we have that (F,||.||¢) is a Banach space and
it follows from the open mapping theorem that the norms ||. : F||,||.||s are equivalent
in F. Also for | 6(a) |<e| 0(b) | we find that | a |[<g| b | hence ||a : E| < ||b: EJ|,
10(a)]le < 1|6(b)|lo, we obtain that (F,||.]|¢, <¢) is a Banach lattice.

Denoting 0 = T/K : (11 (A)/K,||. : 11(A)/K]|) — (X,].]|) in the above sense (we
have that each x € X is a unique image 6 [(A, (2))], (Aq (z)) € l1(A)) we have

Theorem 3.1. The elements 0 [(\y (x))] = = determine the Banach space (X, ||.|lo)
where the norm |.||g is equivalent to the original norm of X.

Proof. This follows from above. O

Corollary 3.2. Given an infinite dimensional real Banach space (X, ||.||) and a normed
Hamel base H = {x : o € A} of X, there exist an equivalent norm ||.||» in X and
a partial ordering <3 in X associated to H such that the triple (X,|.||n, <x) is a
Banach lattice.

Proof. This follows from above theorem where we denote ||.||x = ||.|lg, <n=<p fol-
lowing the above definition. O
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Abstract. In this paper, a characterization of the non-singular measurable trans-
formations T from X into itself and complex-valued measurable functions u on X
inducing weighted composition operators is obtained and subsequently their com-
pactness and closedness of the range on the weighted Lorentz-Karamata spaces
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space and 1 < p < o0, 1 < g < o0
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1. Introduction

A new generalization of Lebesgue, Lorentz, Zygmund, Lorentz-Zygmund and
generalized Lorentz-Zygmund spaces was studied by J.S.Neves in [13]. By using the
Karamata Theory, he introduced Lorentz-Karamata (simply LK) spaces and gave
Bessel and Riesz potentials and emmedings of these spaces. In that paper, he studied
the LK spaces Ly, . (R, 1) where p, ¢ € (0, 0], bis a slowly varying function on (0, o)
and (R, ) is a measure space. These spaces give the generalized Lorentz-Zygmund
spaces Ly g.a....an (R), Lorentz-Zygmund spaces LP (log L) (R), Zygmund spaces
LP (log L)* (R) (introduced in [3,16]), Lorentz spaces LP9 (R) and Lebesgue spaces
L? (R) under convenient choices of slowly varying functions.

In [5,13], it is proved that LK spaces Ly 4. (R, 1) endowed with a convenient
norm, is a rearrangment-invariant Banach function spaces with associate spaces
Ly gp-1 (R, p) if (R, ) is a resonant measure space, p € (1,00) and ¢ € [1,00].
Also it is showed that when p € (1,00) and ¢ € [1,00), LK spaces have absolutely
continuous norm.
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2. Preliminaries

Throughout the paper (X, Y, 1) will stand for a o-finite measure space. We will
use weight function w, i.e. a measurable, locally bounded function on X, satisfying
w(z) > 1 for all x € X and x4 for characteristic function of a set A. For any two
non-negative expressions (i.e. functions or functionals), A and B, the symbol A X B
means that A < ¢B, for some positive constant ¢ independent of the variables in the
expressions A and B. If A X B and B X A, we write A ~ B and say that A and B are
equivalent. Certain well-known terms such as Banach function space, rearrangement
invariant Banach function space, associate space, absolutely continuous norm, etc.
will be used frequently in the sequel without their definitions. However, the reader
may be found their definitions e.g., in [3,5,8,13] and [16].

A positive measurable function L, defined on some neighborhood of infinity, is
said to be slowly varying if, for every s > 0,

L (st)

L(t)
These functions were introduced by Karamata [10] (see also [14] for more information).
Also another definition for slowly varying functions can be found in [13] such as:

-1 (t—+400). (2.1)

Definition 2.1. A positive and Lebesque measurable function b is said to be slowly

varying (s.v.) on (0,00) in the sense of Karamata if, for each e > 0, t°b (t) is equivalent

to a non-decreasing function and t=¢b(t) is equivalent to a non-increasing function
n (0, 00).

The detailed study of Karamata Theory, properties and examples of slowly vary-
ing functions can be found in [5,10,14] and [16,Chap.V, p.186]. For example, let m € N
and o = (aq, ..., a) € R™. If we denote by 97" the real function defined by

9 (t) = Hi:l I3 (t) forall ¢t € (0,00)
where l1, ..., l,,, are positive functions defined on (0, c0) by
ll (t) =1+ ‘logt‘ ) Zi (t) =1 +10gli71 (t)a i>2,m2=2,
then the following functions are s.v. on [1,00):

b(t) w(t) with m € N and o € R™;
b(t) = exp (log™t) with 0 < @ < 1
)
)

b(t) =ex ( ())Wlth0<a<1,meN;
b(t) =l (t) with m € N.

leen a s.v. functlon b on (0,00), we denote by 7, the positive function defined by

Y (t) =b <max {t, 1}) for all £ > 0.

It is known that any slowly varying function b on (0,00) is equivalent to a slowly

varying continuous function b on (0, 00). Consequently, without loss of generality, we
assume that all slowly varying functions in question are continuous functions in (0, co)
[6]. We shall need the following property of s.v. functions, for which we refer to [13,
Lemma 3.1].
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Lemma 2.2. Let b be a slowly varying function on (0,00).

(i) Letr € R. Then b is a slowly varying function on (0,00) and v; (t) = vpr (t)
for allt > 0.

(i) Given positive numbers € and K, vp(kt) /= vp(t),i.e., there are positive constants
ce and C. such that

cemin{k ™%, K%}y (t) < Y(kt) < Cemax{r™ %, K%} (1) (2.2)
for allt > 0.
(i) Let o > 0. Then
t o0
/ Ly (r)dr ~ 1%, (t) and / oy (n)dr () (2.3)
0 ¢
for allt > 0.

Now, let us take the measure as wdu. Let f be a complex-valued measurable
function defined on a o-finite measure space (X, X, wdy). Then the distribution func-
tion of f is defined as

Prw(s)=w{r e X: |f(x)] >s}= / w(z)dp(x), s >0. (2.4)
{zeX: [f(z)[>s}

The nonnegative rearrangement of f is given by
Jo @) =inf{s >0: pup,(s) <t} =sup{s>0:pr,(s)>t}, t>0 (2.5)

where we assume that inf ¢ = co and sup ¢ = 0. Also the average(maximal) function

of f on (0,00) is given by
1 t
= 7/ fu(s)ds. (2.6)
t Jo

Note that Ay, (), fo (-) and f3* (-) are nonincreasing and right continuous functions.

Definition 2.3. Let p,q € (0,00] and let b be a slowly varying function on (0,00). The
weighted Lorentz-Karamata (WLK) space L) (X, ¥, wdp) is defined to be the set of
all functions such that

1115,

-1 (1 H 2.7
EAOYI0)] . (2.7

) stands for the usual Ly (quasi-) norm over the interval (0, cc).

p,q;

is finite. Here [|-|| ..

OO

After this point, for the convenience, we will use L;” . (X) for L), (X, ¥, wdp).
It is easy to show that (by the same arguments in [5, Theorem 3.4. 41] [ 3]) the WLK
spaces L), (X) endowed with a convenient norm (2.7), is a rearrangment-invariant
Banach function spaces and have absolutely continuous norm when p € (1,00) and
€ [1,00). It is clear that, for 0 < p < oo, the WLK space Ly, (X) contains the
characteristic function of every measurable subset of X with finite measure and hence,
by linearity, every wdu—simple function. In this case, with a little thought, it is easy
to see that the set of simple functions is dense in the W LK space as the W LK spaces
have absolutely continuous norm for p € (1, 00) and ¢ € [1, 00).
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Let T : X — X be a measurable (T~! (E) € X, for any E € ¥) and non-singular
transformation (w (T~ (E)) = 0 whenever w (E) = 0) and u a complex-valued func-
tion defined on X. We define a linear transformation W = W, r on the W LK space
Ly o (X) into the linear space of all complex-valued measurable functions by

War (f) (2) = u(T (2)) f (T (2)) (2.8)

forallz € X and f € Ly, (X). If W is bounded with range in L' ., (X), then it is

called a weighted composition operator on Ly, (X). Ifu=1,then W=Cr: f —
foT is called a composition operator induced by T. If T is the identity mapping,
then W = M, : f — w- f is a multiplication operator induced by u. The study of
these operators acting on Lebesgue and Lorentz spaces has been made in [4,9,15] and
[1,2,11,12], respectively.

In the next part of this paper, we will characterize the boundedness, compactness
and closedness of the range of the weighted composition operators on W LK spaces

Lzzv,q;b(X) for 1 <p<oo,1<qg< 0.

3. Results

Theorem 3.1. Let (X, X, wdpy) be a o-finite measure space andu : X — C a measurable
function. Let T : X — X be a non-singular measurable transformation such that the
Radon-Nikodym derivative fr = wdp (T~) /wdp is in L™ (u). Then

Wur:f—uoT- -foT (3.1)

; w
1s bounded on Lp,q;b

(X),1<p<oo,1<g<o0ifueL™®(u).
Proof. Suppose that || fr||,, = k. The distribution function of
Wf=War(f)=uoT-fol
is found that
pwiw (8) = w{reX: |u(T () f(T(x)]> s}

w () dp ()
{zeX: [u(T(2))f(T(x))|>s}
= wl ' {zeX: |u(x)f(z)>s}
wl Nz e X :|lully, If (z)] > s} (3.2)
kw{z e X : |l If (@) > s} = k) o (5)-

Hence for each ¢t > 0, by (3.2) we get

<
<

{8 >0 fijju) . fao () < ZJ} C{s>0:pwyrw(s) <t} (3.3)
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and

(W1, @)

inf{s > 0: pwyw(s) <t}

t
inf {S >0 pull L fow (s) < k}

IN

inf{s>0:w{x€X Al |f (@)] > s} < Z} (3.4)

ol 2 (7)-

Also, we write that (W )" (t) < |Jul, f&* (£) by (3.4). Therefore,

1 1
WrY = |[tP "oy () (WF)L (¢
|| f|p,q;b r}/b( )( f)u) () 4:(0,00)
1_1 e [ T
< |t (3)
;(0,00)
1|,1_1 fx 1 w
S Ml kP[0 5 @ =l I (35)

can be written by (2.2). Consequently, W is a bounded operator on Ly, (X) with
l<p<oo,1<g<ooand ||W||§kp lull . by (3.5). O

Remark 3.2. The above theorem is also valid for u € L= (w (T71)), i.e.

uoT € L= (u).
Theorem 3.3. Let u be a complex-valued measurable function and T : X — X be a
non-singular measurable transformation such that T (E.) C E. for all ¢ > 0, where
E.={r € X :|u(x)| >e}. If Wy T is bounded on Ly ., (X), 1 <p<oo,1<gq< o0,
then uw € L™ ().

Proof. Let us assume that u ¢ L™ (u). Then the set E, = {z € X : |u(z)| > n} has
a positive measure for all n € N. Since T'(E),) C E,, or equivalently xg, < x7-1(g,)
we write that

{zeX:|xp, ()] >s} C{ze€X:|xr1(p, ()] > s}
C{oeX:|u(T(®)xr-1(8,) ()] > ns} (3.6)
and so
(Wxg, ), (t) =inf {s>0: pwyy, w(s) <t}

inf{s>0:w{reX: [Wxg, ()] >s} <t}
inf{s>0:w{xeX: |[u(T(x)xe, (T ()| >s} <t} (3.7)
ninf {s >0:w{zr e X: ‘u (%)) X7-1(E0) (a:)’ >ns} <t}
ninf{s >0:w{z € X : |xg, (z)| > s} <t} =n(xg,), (1).

Thus we have (Wxg, ). (t) > n (XE )ur (t) for all t > 0 by (3.7). This gives us the
contradiction that |Wxg, ||p o = nlxe, Hp ab O

v
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If we combine Theorem 3.1 and Theorem 3.3, then we have the following theorem.

Theorem 3.4. Let u be a complex-valued measurable function and T : X — X be
a non-singular measurable transformation such that the Radon-Nikodym derivative
fr = wdp (T71) Jwdp is in L (u) and T (E.) C E. for all e > 0, where E. =
{z € X :|u(z)| >e}.Then Wy r is bounded on Ly, (X), 1 <p<o0,1<q<o0if
and only if w € L™ (u).

Now, we are ready to discuss the compactness and the closed range of the
weighted composition operator W = Wy, r : f — uoT - f oT on the WLK spaces

Ly »(X), 1 <p<oo,1<q<oo Let T: X — X be a non-singular measur-

able transformation with the Radon-Nikodym derivative fr = wdu (T‘l) Jwdp. If
fr € L™ (u) with || fr||,, = k, then we get

(W17, (kt) = inf {5 > 0 o g0 (5) < Kt}
=inf{s>0:w{re X :|u(T () f(T(z))|>s}<kt}
=inf{s>0:wl " {z X |(u-f)(z) >s}<kt}
<inf{s>0:w{zreX:|(u-f)(x)|>s}<t}=(Mf), () (3.8)
and similarly (W ). (kt) < (M,[),, (t) for all f € LY . (X) and ¢ > 0. Therefore,
by (2.2), we obtain
W ==t n @ WDy @

= ety 0 (k) w7 )| (3.9)

¢;(0,00)

< kv

tr "y, () (Myf)ey (t)Hq‘(O o) 6 I Al -

Now, if fr is bounded away from zero on S, i.e. fr > ¢ almost everywhere for some
0 > 0, then

w (T~ (E)) :/ frwdp > dw (E) (3.10)
E
forall E € ¥, E C S, where S = {x : u(z) # 0}. Therefore, we have
w 1 w
||Wf||p,q;b 2 ov HMuf”p,q;b . (311)

Hence for each f e LY ., (X),1<p<oo,1<¢q< o0, we have

p,q;b
IW fll g = 1 Mufl

;b (3.12)

R HY
whenever fr € L* (i) and bounded away from zero. By [7, Theorem 2.4] and (3.12),
we can write the following theorem:

Theorem 3.5. Let T : X — X be a non-singular measurable transformation such that
fr € L™ (n) and is bounded away from zero. Let u be a complex-valued measurable
function and W, 1 is bounded on the WLK space L, (X),1<p<o0,1<q< 0.
Then the followings are equivalent:

(i) Wy, is compact,
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(ii) M, is compact,

(iii) L) .1, (u,€) are finite dimensional for each € > 0, where

Ly (u,€) = {fx(uﬁ) cfely (X)} and (u,e) ={x € X : |u(z)| >e}.
We know that W, r = CrM, and wdp is atomic. Therefore, if we use [11,

Theorem 3.1] for Wy, r on the WLK space Ly, (X), 1 <p < o0, 1 < ¢ < oo, then
get the following theorem:

Theorem 3.6. Let T : X — X be a non-singular measurable transformation such that
fr € L () and u be a complex-valued measurable function with w € L* (u). Let
{An},en be all the atoms of X with w (A,) > 0 for all n € N. Then Wy is compact
on the WLK space L, (X), 1 <p < o0, 1< q < oo if wdy is purely atomic and

p,q;b
w (T (A,))
T T (A
Theorem 3.7. If wdyu is non-atomic and W, r is bounded on the WLK space

Ly, (X), 1 <p<oo,1<q< oo, then Wyt is compact if and only if u- fr =0

almost everywhere.

— 0.

Proof. Let us assume that W = W, r is compact. If u - fr # 0 a.e., then there exist
¢ > 1, such that the set

B {a: € X :Ju(2)| and fr(z) > i} (3.13)

has positive measure. Since wdy is non- atomic, we can find a decreasing sequence
{En}, ey of measurable subsets of E such that w(E,) = 5%, 0 < a < w (E). Now, if

we construct a sequence such that e, = ”XX#@7 then it is easy to see that {e,}
is bounded in L

Eﬂrlp,q;b
D,q;b

(X). For m,n € N, let m = 2n. Then we have
« [T
(Wen — Wem)w <c>

neN

t
= inf {s >0 piwe, —Wepw () < c}

:inf{s>0:w{x€X:|u(T(ac))en(T(as))—u(T(az))em(T(m))| > s} < Z}
:inf{s>0:wT‘1{z€En N (2)] en (2) — em (2)] > s} < Z}
>inf{s>0:w{z € E, :|e,(2) —em (2)| > sc} <t}

1
= Einf{s>0:w{z€En den (2) —em (2)] > s} < t}

Y]

%inf{s>O:w{Z€En\Em Cen (2) —em (2)| > s} <t}

for all £ > 0. This gives us that

t) 5 xeaea), ) (3.14)

(We,, — Wem)fu (
c cllxe,

w
p,q;b
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and so

quN 2 w(En)

for some € > 0 and large values of n by (ii) and (iii) of Lemma 2.2. Thus the sequence
{Wen}, ey doesn’t admit a convergent subsequence which conradicts the compactness
of W. Hence u - fr =0 a.e.

The converse of the proof is obvious. O

Wen — Wenll”, ) > ~ (“’(E”\Em)) > e (3.15)

Theorem 3.8. Let T : X — X be a non-singular measurable transformation with fr in
L (p) and bounded away from zero. Let u be a complex-valued measurable function
such that Wy is bounded on the WLK space Ly, (X),1<p<oo,1<gq< oo
Then Wy r has closed range if and only if there exists a § > 0 such that |u (z)| > ¢
a.e. on the support of u.

Proof. Suppose that W = W, ¢ has closed range. Therefore there exists an € > 0
such that ||Wf||p @b =€ ||pr g forall fe LY (S) where S is the support of u and

Ly . (S) = {fXS FeLy ., (X)} Now, let us choose > 0 such that k¥ 5 < e where

k= fr|l.- Assume that the set £ = {z € X : |u(x)| < §} has positive measure, i.e.
0<w(E) < oo. Then xg € L}, (5) and

IWxEly g S k7 e xsllY g < k2O lxally 4
< €||XE||p,q;b

by (3.9). This conradiction says that |u (x)| > § a.e. on the support of wu.
Conversely, assume that there exists a § > 0 such that |u (x)| > § a.e. on S. Since fr
is bounded away from zero, we can write that fr > m for some m > 0. By using this
fact and (3.11), we get
1
W fllpg =m0 llu- £II,

> med | £l (3.16)

(X\9). O

qu— P,q;b = p,q;b

forall f € L, (S). Therefore W has closed range being ker(W) = L
Corollary 3.9. If T-1 (E.) C E. for each € > 0 and W, r has closed range, then
|u(x)] > 8 a.e. on S, the support of u for some § > 0.

Using the equivalence (3.12) and [1, Theorem 4.1], we can say the following
theorem:

Theorem 3.10. LetT : X — X be a non-singular measurable transformation such that
fr € L™ (n) and is bounded away from zero. Let u be a complex-valued measurable
function such that W, r is bounded on the WLK space Lg’qb(X), 1 < p < oo
1 < g < oo. Then the followings are equivalent:

(i) Wy, has closed range,

(i) M, has closed range,

(i) |u (x)] > 6 a.e. for some § >0 on S, the support of u.
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On transformations groups of N —linear

connections on the dual bundle of k—tangent
bundle

Monica Purcaru and Mirela Tarnoveanu

Abstract. In the present paper we study the transformations for the coefficients
of an N—linear connection on dual bundle of k—tangent bundle, T**M, by a
transformation of a nonlinear connection on T** M. We prove that the set 7 of
these transformations together with the composition of mappings isn’t a group.
But we give some groups of transformations of 7, which keep invariant a part of
components of the local coefficients of an N—linear connection.

Mathematics Subject Classification (2010): 53B05.

Keywords: Dual bundle of k—tangent bundle, nonlinear connection, N-linear con-
nection, transformations group, subgroup.

1. Introduction

The notion of Hamilton space was introduced by Acad. R. Miron in [7],[8]. The
Hamilton spaces appear as dual via Legendre transformation, of the Lagrange spaces.

The differential geometry of the dual bundle of k—osculator bundle was intro-
duced and studied by Acad. R. Miron [13].

The importance of Lagrange and Hamilton geometries consists in the fact that
the variational problems for important Lagrangians or Hamiltonians have numerous
applications in various fields, as: Mathematics, Mecanics, Theoretical Physics, Theory
of Dynamical Systems, Optimal Control, Biology, Economy etc.

In the present section we keep the general setting from Acad. R. Miron [13], and
subsequently we recall only some needed notions. For more details see [13].

Let M be a real n—dimensional C*° —manifold and let (T*kM, Tk M) , (k> 2),
k € N) be the dual bundle of k—osculator bundle (or k—cotangent bundle), where the
total space is:

T*M = T**=1M x T* M. (1.1)
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Let (2,yMi, .. y*=Di p) (i=1,..,n), be the local coordinates of a point
U = (aﬁ,y(l), ey y(k 1),p) S T*kM in a local chart on T** M.
The change of coordinates on the manifold T*F M is:

5= (2l a"), det(axj) £ 0,

..................................... (1.2)
~(k—1)i s(k—2)i . (k 2)i
(k— 1) gDt = Q=i 4 (k= 1) Sl y =1,
~ I
pbi = amzpja
where the following relations hold:
ag(a)i ag(a-{-l)i 8g(k—1)i ©)

T** M is a real differential manifold of dimension (k + 1) n
With respect to (1.1) the natural basis of the vector space T, (T**M) at the
point u € T*FM :

{ 0 0 0 0 } (1.4)
P Pl 71 PR ﬁ Pl 7 .
dxt|,  oyi|, Qyk=1t| 7 Op; |,
is transformed as follows:
) ) gg(l)j F) (k 1)j ) 8p]
0z |y — 0z %7 u"" ozt ogMi |, +..4+ 2 ozt 9gk—Di u"' Dzt ap
9 _ 8@(1)j ) 8y (’€ 1)j
By |, = oy agg |, T O v L
.............................................................. (1.5)
) - ag(’“*l)j 9
Ay F=1)i v oy(F—1Di ggk—1)j u’
0 | — 0z 0
Op; oz* Opj |,

the conditions (1.3) being satisfied.
The null section 0 : M — T**M of the projection 7** is defined by 0 (v) € M —

(7,0,...,0) € T** M. We denote T**M = T**M \ {0} .

Let wus consider the tangent bundle of the differentiable manifold
Tk M (TT*]’CM7 dw*k,T*kM) , where dn** is the canonical projection and the ver-
tical distribution V : u € T**M — V (u) € T, T**M, locally generated by the vector

fields: {a Gy ,ﬁ, P } at every point u € T*¥ M.
The following F (T*"”‘M ) — linear mapping:

Jix (T*"M) — x (T M),

9 9 9 9 9
! (&r) = oy’ <8y(1)i> =gy’ (ayu«—m> -

0 0 9
- Oy(k—1)¢’ U (ay(km) =0,J (ap) =0, (1.6)

defined by:
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—_~—

at every point u € T**M is a tangent structure on T** M.
We denote with N a nonlinear connection on the manifold T**M, with the
coefficients:

NJZ (x7 y(1)7 "'7y(k_1)7p) PR N J'L (x’ y(1)7 "'7y(k_1)’p) )
1) (k—1)

N’L] (a’,"y(l)7 ,..7y(k_1)7p>> 7(i7j = 1727 .“7n) .

The tangent space of T*¥M in the point u € T**M is given by the direct sum
of vector spaces:

Ty (T*"M) = Nou & N1,y @ ... ® Ni—2,0 @ Vim1,u ® Wi, Yu € TM (1.7)

A local adapted basis to the direct decomposition (1.7) is given by:

4] ] 4] 0 )
{(Sl‘i’ (Sy(l)l PR ] (Sy(k_l)z ) 5]71} ’ (Z - ]-7 23 ,TL) ) (18)
where:
6 _ 0 j o) j 12} 1o}
5t = 907 (JY)%W e (kfyl)%m + Nijgps
d 9 j 9 j o)
oy = ay(l)i - g;/;jiay(’z)j e T (kJYZ)]im’

sy
Sy(k—Di — Fyk—Dis
3 o Y

3p; — Opi-
Under a change of local coordinates on T** M, the vector fields of the adapted
basis transform by the rule:

606 60w S 0w & 5 _dw
St Ozt 039 sy Oxt syViT T Sylk=Di gt sgk=13" §p; 67 0p;
(1.10)
The dual basis of the adapted basis (1.8) is given by:
{6$i,6y(1)i, ...,5y<k*1)i,5pi} , (1.11)
where:
dat = 62,
Ayt = §y D _ Nt §pd
Y Y m 7 Ty
...................................................................... (1.12)
dy=1i = oy (k=1 _ Nt 5 (k=2)F _ N i §yMi — N i§d
Y Y m % (6-2) 77 TR

dp,' = 5pi + Nji(SZ‘j.
With respect to (1.2) the covector fields (1.11) are transformed by the rules:
§7* = 9T 50 65" = BT 6y (13, 5(h=Di = 22 5y (k=1)j

. G (1.13)
5pi = 9% 6p;.
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Let D be an N—linear connection on T**M, with the local coefficients in the
adapted basis (1.8) :

DT (N) = (Hijh, (c)ijh, Cﬁh) (a=1,..,k-1). (1.14)

An N—linear connection D is uniquely represented in the adapted basis in the
following form:

D Jii = Hsijéis’DJ%% = Heystoe (=1, k1),

D% i ) _szsép ; ) s B

Dot 8o = ) 05 Vet o = &) o (1.15)
Dsy%w o = —(C)lsjﬁ,(a B=1,..k—1), .
DWW_C” iwDﬁ;jay = Ci e (a =1,k = 1),

D5y = O3

2. The set of the transformations of N —linear connections

Let N be another nonlinear connection on T**M, with the local coefficients

((Jvl)j’t (1’7 9(1)7 "'7y(k71)7p)a ’(k]YI)JL (33, y(l)a "'ay(kil)ap> ) NZJ (1’7 y(1)7 sy y(k71)7p>>

(i,7=1,2,...,n).
Then there exists the uniquely determined tensor fields

(A)ji e (T*M),(a=1,...k—1)

and A;; € 79 (T*F M) , such that:

N =N - At (a=1,2,...k—1),
@’ (w’ <a>]( )
Nij = Nij — Aij, (1,5 =1,2,...,n).

(2.1)
Conversely, if (N)ij and (A)ij, (o =1,2,....,k — 1), respectively N;; and A;; are
given, then (N;j, (a=1,2,...,k — 1), respectively N;;, given by (2.1) are the coeffi-

cients of a nonlinear connection.
Theorem 2.1. Let N and N be two nonlinear connections on T**M, (k>2,keN)
with local coefficients:

((Zlv)ji<x7y(1)7"'7y(k_l)7p>7"' (kNl)JZ ( y(1)7"'7y(k_1)’p)’N1] <m7y(1)7"'7y(k_1)7p>)7

<(J}/;]i(x7y(1)7 "'7y(k71)7p)7 "'7(k]Y1)Ji <$,y(1), ..-,y(kil)ap),ﬁij (‘T, y(l), veey y(kl),p)>’

(i, =1,2,...,n), respectively.
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If D is an N—linear connection on T**M, with local coefficients

(e

DT (N) = (Hijha(c)ijhacijh> y(a=1,.,k—1),

then the transformation: N — N, given by (2.1) of nonlinear connections implies
for the coefficients
@)

br (N) = <Hl]ha(cljh7cl]h> ) (Oé = 1) 7k - 1)

of the Nflineai connection D, the relations (2.2), that is the transformation:
DI’ (N) — DI (N) is given by:

Hij=H'+ A™, {Cism+NlmCisl+...+ N 'Y, C '+ N, N,C +
o 7L S E) (k—2) " (k—1) S COINE)

<Nlm NY+..+ N lmNtl> C'i'y+..+ N.N C

(1) " (k-3) (k=3) (1) ) (k-1 (1) (D) (k—1)
N——
(k—2)

+A™ O+ N O+ o+ N L C g+ .+ N..N C

(2) (2) ® ® (k=3) (k1) (1) (M)(k-1)
~——
(k—3)

fodk A C AN C g AT O — Ay O
(k—2) (k—2) 1 " (k-1) (k—1) 7 (k-1)

éisj: Clyj+ A™; {Cism+NTmCiST+...+ N "y C o+t
(2) 1) 3 (k=3)  (k-1)

(1) (1) (1)
+N-..-N C | +..+ A mj[ C lym+ N C |l + A™ C 'y,
(1) (1) (k—1) (k—3) 7 [(k—2) ) ") (k—2) 7 (k=1)

——
(k—3)
ZS' _ C Zs' Al' i57
w2y Tkl ) T
~ C is‘
(k-1 7 (k=)
C.i =0,
Ahil'_
1 ™ 0

Aih\j = 0, (i,j,h = 1,2...,71) 5

where 1 denotes the h—covariant derivative with respect to DI' (N).
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Proof. Tt follows first of all that the transformations (2.1) preserve the coefficients

(lgﬂhi‘ -

Using the relations (1.9),(1.15) and (2.1) we obtain:

5 _ 46 j 9
dxt T dxt +(‘4)]18y(71)1 +..t

J._ 0 A0
( A ) zay(k—l)j AZ] Bpj’

5
5y(1)z - 5y(1)z + A 26y<2)_] + +( A lay(k 1)j5
(2.3)
5 _ 5
5y(k—1)i - 5y(lc—1)i,7
o _ 6
op; ~ 0p;i°

Using (1.15), (2.3) and (1.9) we get:

_ 5 _ IJs.. 5 _ S .. 5
D% Sy(kF—1i — H 1) §y(k—1)s — H 1) gy(k=T1)s -

D; —2—=D s _
5;57 Sy(F=Di 5 ) Sy(F=D)i

L8 a8
(5,1 A Y ayu)z ) Ly £ Syt Ty I oDt il B

é l é l [
= Hj50ns + ((ff) 3§ e + g G sty +

l s )
(kél) j(kgl) il sy(R—Ds — ]ZC (R 1)5) +
l T )
+AYNT —9 4

5 ‘ 5 Syk—Di
(1) ( ) <6y(2)'r' +(J¥)s oy (3)3"' +(kN3)ér(;y(k—1)S>
—|—Al N",D ] . . s ﬁ + ..
1’2 (mﬂﬁf) 5y P +(kN4)‘Tm>

5
AL N C S 4 ALNTD _9d
T 0 et oy oy ) ! (st 80y bt N, iy ) Oy G D1

l r s 5 B
Tt A (st) l(kgl) ir §y(k—1)s + .=

= (Hoy+ AL+ ALC o+ AL O Sy — A )
( J+(1) (1) l+(2)j(2) Lt +(k—1)j(k_1) l i 5y(k—1)s+

ALNT I C% s + AN O s+ A N T C S
((1> )t vt T ) ) Ty TovY M 7 om2) Ly

L arr s m

5 ALY N",N*.D —98 4+ 4+ AN", N S, is
o) + ((1) i) ) " e T T 0 e ey

0 AL N N®.D — 0 4+ ALNT, N 5. C ™.
57’“"”’"> ((1) (2 <1> syl dyt o T T A L Sy
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[ L arr ER d l. I s S
W) + ...+ ((QA) j(Jvl) l(% ir sy(h—1)s + ...+ (1% j(k]ys) l(kgl) 7,7"5y(k1)s) +

AL NT,N®.D — 0 4 ALNT N 5 O ™t | e
((2) iyt " gt s RRE (1) (=) (k1) POy *

So, we have obtained (2.1;).

T ST SR LI
éy(l)] Sy(h—1)i 0 i §yh—1)s &) i §yh—1)s

D_5 i =
51(1)3 Sy(F—1)i

) _
5 1o 1o 1 5 Sy(k—=1)é
<5y(1>-7' +<’?) T oy +(§) T oy +'”+(ké2) J 5y(’“‘1”>

CS Al OS A Cs A . C s #
<(1) Y +(1)]() +(2) (3) at +( )J(lcfl) Zl) Jy(k—l)s“‘

+(1) (1) ?3)5 Syh—1) + .. (1) (kfg) l(kfl) 6y(k*1)s+

Al N® s et ALY N T O S
+(2) R 1D (84)5 Sy(h—1i + ...+ & ](k_4) l(kgl) Sy(k—TDs +

So, we have obtained (2.22).

5 L = s ; 75 = o S- 75
PR Sy(R=1)i (k=2) 1) gy(k=1)s (k=2) 1) gy(k=1)s
5 ~ S 1 ~ S F)
D 5 = C Y+ AL C “uits.
M(k%m Sy(F=1)i (k=2) 1) §y(F=T)s ) ](k—l) il Sy(F—1Ds
_ 5 ~js__ 6 _ds__ 6§ .
D% Sy(F=1)i Ci Sy(F—Ds — Cl' Sy(F=D)s»
_ 5 _ _ ) _ (' Js
Dai Sy(F=Di — D% Sy(F=Di CZ 5y(k s s
So, we have obtained (2.2;_1).
- 5 Jjs 5 Jjs 5 l [é)
D%j Sy(i—2)3 i Syth-2)s Cl <§y(k2)s + (1?) 5 Dy(k 1)L>

~ 5 _ _ ) . 2] _
D%ﬁ_ Sy(F=2)i — DL_ Sy(F—2)i + A ) —

§A%; _
js 5 (1) l js 5
= Cz (Sy(k 2)s + ( R + 1;4 fLCl ) T —1)s *

So, we have:
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o gi
CllA% =5 —+ AL 2.5
Py Ty (25)
Analogous if we calculate D 5 &/%12” in two manner we obtain:
sy(k—1);
——— .
w2 7T ety W (2.6)
6l,,As—ﬁ+Al,05. (2.7)
(k=1) U(l) = Sy(F=Dj 1) Z(k—l) lj- .

We have:

_ 5 A
Al = -2 +Am H . (A) mH™

Al = o e (0 =1,2, k= 1). (2.8)

Using (2.8), ( .7),(2.6), (2.5), ( 4),(2.25-1), (2.22) in the relation obtained analogous

from D ;5 5 -, we obtain: (A) i; = 0. In the same manner we get A;;; = 0. O
Sxd

Theorem 2.2. Let N and N be two nonlinear connections on T**M, (k > 2, k € N),
with local coefficients

<{}/;J’L (x,y(l)7.“’y(k71)7p>7 (k;Nl)] (1.7 y(1)7"'7y(k71)’p> ’Nlj (x7y(1)7"',y(k1)7p))7

( (l‘ y( ) (k_l)ap)a"'a N ]i<'r7y(1)a"'ay(k_l)ap)7ﬁi]’ (xay(l))"'ay(k_l)7p)>7
(1) (k—1)

(i,j =1,2,...,n), respectively.
If

DT (N) = (Hijh, (C)ijh,cijh)
and
DI (N) = <Hijh, Cla Cijh> ,

(a = 1,....,k — 1) are the local coefficients of two N—, respectively N -linear connec-
tions, D Tespectwely D on the differentiable manifold T**M, (k > 2,k € N), then
there exists only one system of tensor fields

Ay A YA B, Dy, D Yy, D"
<(1)J7 7(1@ 1) K ]ha(l)]hv 7(k—1) Jhs >
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such that:
N'y=N'— At (a=1,...k-1),
@’ @ @’ ( )
Nij = Nij — Ay,
Hig; 7HSJ+Amj Clem+ N Clg+..+ N L C g+ NN Ot
VRN (§5) 1@ (k=2) (k=17 (1) (1) @)

o (Nlm NY+..+ N lmel> C ‘ye+..+ N..N C
1) " (k-3) (k=3) (1) ") (k1) W W) k-1
——

(k—2)

A™. | Cln+ NL, CF N' Ciy+..+N.N C

TG T me T T s medy T T ey
——
(k—3)

te A mj C i5m+Nlm c isl + A m’ c z _Ajmcsim—Bis%
(k—2) (k—2) (1) " (k-1) k—1) T=1)°

Cly=Cly+ A" | Cla + N" Clp ot N "oy C Pt ot

OY T OYTH T e™ o "e (k—3) " (k=1)
N-..-N C et A ™| O N",. C °,
0 Oecn | T ety Lm) R
——
(k-3)
A m, Z5771_-Dis'7
(k-2) (k-1 "~
— Zs-: is. Al,' is _ D is'
12 T T 0y T 2y
2, . \
= C i — D i
k-1 7 -1 Y k-1 ¥
Cs =07 — D,
(2.9)
with:
AMyi =0,
" (2.10)
Aih|j = 0, (Z,j,h = 1,2...,71),

where 717 denotes the h—covariant derivative with respect to DT (N).

Proof. The first equality (2.9) determines uniquely the tensor fields:

(A)lj, (e =1,...,k — 1) .The second equality (2.9) determines uniquely the tensor field
[0

A;j. Since (C)ijh, (a=1,...,k—1) and C’ijh are d—tensor fields, the third equation
(2.9) determines uniquely the tensor field B?;;,. Similarly the fourth,... and the last
equation (2.9) determines the tensor field D;/" respectively. O

We have immediately:
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Theorem 2.3. If DT (N) = (H"j;17 (C)ijh,CZ-jh) (a=1,..,k—1), are the local coeffi-

(e}
cients of an N—linear connection D on T**M and

At ., A Y A B, Dy, ..., Dt DI
((1)3 (hony DT Iy e 2y I )

is a system of tensor fields on T**M, then DT (N) = <ﬁijh,(c_')ijh,(j'ijh> , (a =
L, ..., k—=1), given by (2.9)—(2.10) are the local coefficients of an N —linear connection,
D, on T**M, (k > 2,k € N).
Following the definition given by M. Matsumoto [4,5] in the case of Finsler
spaces, we have:
Definition 2.1. i) The system of tensor fields:
A, A Y A By, Dy, D Py DM k>2keN
((1) YR 7(k71) 'K K ]}“(1) Jhs ,(kfl) Jhs ) ) ( Z 4,k € )
is called the difference tensor fields of DI' (N) to DI’ (N) .
ii) The mapping: DI' (N) — DI (N) given by (2.9) — (2.10) is called a trans-
formation of N —linear connection to N—linear connection on 7** M, and it is noted

by:
t{ A%, ..., A A B, Dy ..., D"y D).
((1>J (hony D T Iy e 2y I )

Theorem 2.4. The set T of the transformations of N —linear connections to N —linear
connections on T** M, (k > 2,k € N) together with the composition of mappings isn’t
a group.

Proof. Let
t{ A% ... A . A B, D' ..., D “.. D) DT(N DT (N
<(1)]a v(kil)]7 YR Jh;(l)jha 3(’671)]}” > ( )*) ( )
and
t(A . A A B, D ... D . D) DT(N DT (N
((1)” Ny I G I gy I ) (M) = < >

be two transformations from 7, given by (2.9) — (2.10).
From (2.9) we have:
Ni, = Ni (Al + Ai), a=1,...k—1), Nij = Nij (Ai-+
Ny o= (A A). ). Niy =N — (4

We obtain for example:

C iy= C AL+ AL ) i, —( D¢ D D i, AL ).
w2y " T (k7 2) jh+<(1>h+(1) h) 1) 7" ((k—2> i Doy G2 I

So (? )ijh hasn’t the form (2.9). It follows that the composition of two trans-
—2

formations from 7 isn’t a transformation from 7, that is 7, together with the com-
position of mappings isn’t a group. O

Ny
<
~——
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Remark 2.1. If we consider Aij =0,(a=1,...,k—1) and 4;; = 0 in (2.10) we

(@)
obtain the set 7y of transformations of N—linear connections corresponding to the
same nonlinear connection N :

Tn=<t 0,...,0,Bijh, Dijh, ey D ijh;Dijh eT
N—— (1) (k—1)
(k)

We have:
Theorem 2.5. The set Ty of the transformations of N—linear connections to N—linear
connections on T**M, (k > 2,k € N), together with the composition of mappings is a
group. This group, acts effectively and transitively on the set of N —linear connections.

Proof. Let t | 0,...,0, B3, Dij;“ wey D ij;“D,-jh : DT'(N) — DT (N) be a trans-
SN——— (1) (k—1)
(k)
formation from 7y ,given by (2.11) :

N =N (a=1,.,k—1),
N (a)J( )

Nig = Nig, ,

Hljh = szh — sz}“ (2.11)
C'ip=0Cl,— D =1,., k-1

(@) jh (@) jh (o) jho (CY 3 eeey )7

Cijh = Cijh - Dijh7 (iuja h = 17 2a sty n) :

The composition of two transformations from 7 is a transformation from 7y, given
by:

t10,..,0,B 0, D" ipyoy D “ip, D" | 0t | 0,...,0, B, Diipyoioy D P, DR
S AR @y I 2y N S A @y I 2y M
) )

—¢(0,...,0,B"), 4B, Dy + Dy D D ... D" 4 Dt
3 reey Uy ]ha+ Jho 1) jh + 1) jhs 7(k71) jh + (k=1) Jhy i + D;
(k)

The inverse of a transformation from 7y is the following transformation from 7y :

t(o,o,o, —Bijh,—(%ijh,..., D ijh,—Dijh) :DI'(N) — DL (N).

(k1)

The transformations (2.11) preserve all N—linear connections D if:

B'y=D'=..= D "y=D"=0,3,j,h=1,2,...,n).
jh 0 Jh (k=1 jh 7(27.75 ) &y an)

Therefore 7Ty acts effectively on the set of N—linear connections. From the Theorem
2.2 results that 7y acts transitively on this set. O
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Let us consider:

Tng=1<1t]0,..,0, Dijh, ey, D ijh,Dijh €Ty
—— (1) (k—1)

)

(k+1)

TNC = t O,...,O,Bij}uo’ Dijh7~-~ D ijh7Dijh c TN

)

M — 2) "(k—1)
(k)
Ivn ¢ =<K1t]0, ,O,th,Dijh,..., D ijh,O,Dijh ey p,
(k—1) —— (1) (k—2)

)

Inc =Kt 0,...,0,Bijh,Dijh,..., D ijh,O eIy
S~—— (1) (k—1)
(k)

Inc.. c c={t]0,..,0,B%4,0,..,0 | € Ty 3 , (k> 2,k € N).
M (k1) ~— L
(k) (k)
Proposition 2.1. The sets: Iy, Inc,--sIN ¢ ..o INc,Inc.. ¢ ¢ are Abelian sub-
&%) (k=1) k=)

groups of Tn.

Proposition 2.2. The group Ty preserves the monlinear connection N,Tnpy pre-
serves the nonlinear connection N and the component H';;, of the local coefficients

DT (N);TIn ¢ preserves the nonlinear connection N and the component (C)ijh of the
(1) 1
local coefficients DT’ (N),..,In ¢ preserves the nonlinear connection N and the
(k=1)

component (kC )ijh of the local coefficients DT (N ), Tnc preserves the nonlinear con-
-1

nection N and the component C;i" of the local coefficients DT (N) and Inc... ¢ ¢
M (k=)

preserves the nonlinear connection N and the components (%ijhv ey C ijh, CiM of

(k=1)
the local coefficients DI' (N) .
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Abstract. In this paper, totally supra b-continuity and slightly supra b-continuity
are introduced and studied. Furthermore, basic properties and preservation theo-
rems of totally supra b-continuous and slightly supra b-continuous functions are
investigated and the relationships between these functions and their relationships
with some other functions are investigated.
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1. Introduction and preliminaries

In 1983, A. S. Mashhour et al. [11] introduced the supra topological spaces. In
1996, D. Andrijevic [1] introduced and studied a class of generalized open sets in a
topological space called b-open sets. This type of sets discussed by El-Atike [10] under
the name of y—open sets. Also, in recent years, Ekici has studied some relationships
of y—open sets [5, 6, 8, 9]. In 2010, O. R. Sayed et al. [12] introduced and studied
a class of sets and a class of maps between topological spaces called supra b-open
sets and supra b-continuous functions, respectively. Now we introduce the concepts of
totally supra b-continuous and slightly supra b-continuous functions and investigate
several properties for these concepts.

Throughout this paper (X, 7), (Y, p) and (Z, ) (or simply X, Y and Z) denote
topological spaces on which no separation axioms are assumed unless explicitly stated.
For a subset A of (X,7), the closure and the interior of A in X are denoted by
Cl(A) and Int(A), respectively. The complement of A is denoted by X — A. In the
space (X, 7), a subset A is said to be b-open [1] if A C Cl(Int(A)) U Int(CIi(A)). A
subcollection p C 2% is called a supra topology [11] on X if X, ¢ € p and p is closed
under arbitrary union. (X, ) is called a supra topological space. The elements of

Jamal M. Mustafa did this research in Jerash University during the sabbatical leave which was given
from the Department of Mathematics, Al al-Bayt University, Mafraq, Jordan.
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are said to be supra open in (X, u) and the complement of a supra open set is called a
supra closed set. The supra closure of a set A, denoted by CI#(A), is the intersection
of supra closed sets including A. The supra interior of a set A, denoted by Int*(A), is
the union of supra open sets included in A. The supra topology p on X is associated
with the topology 7 if 7 C p.

Definition 1.1. [12] Let (X, u) be a supra topological space. A set A is called a supra
b-open set if A C Cl*(Int*(A)) U Int#(CI*(A)). The complement of a supra b-open
set is called a supra b-closed set.

Definition 1.2. [2] Let (X, ) be a supra topological space. A set A is called a supra a-
open set if A C Intt(CI*(Int*(A))). The complement of a supra a-open set is called
a supra a-closed set.

Theorem 1.3. [12]. (i) Arbitrary union of supra b-open sets is always supra b-open.
(i) Finite intersection of supra b-open sets may fail to be supra b-open.

Lemma 1.4. [12] The intersection of a supra a-open set and a supra b-open set is a
supra b-open set.

Definition 1.5. [12] The supra b-closure of a set A, denoted by Cl(A), is the inter-
section of supra b-closed sets including A. The supra b-interior of a set A, denoted by
Int}!(A), is the union of supra b-open sets included in A.

Definition 1.6. [7] A function f: X — Y is called:
(1) slightly ~v-continuous at a point x € X if for each clopen subset V in'Y
containing f(x), there exists a y-open subset U of X containing x such that f(U) C V.
(2) slightly ~v-continuous if it has this property at each point of X.

Definition 1.7. [3, 7] A function f: X — Y is called:
(i) y-irresolute if for each v-open subset G of Y, f~1(G) is ~v-open in X.
(ii) ~y-open if for every v-open subset A of X, f(A) is y-open inY .

Definition 1.8. [7] A space X s called y-connected provided that X is not the union
of two disjoint nonempty ~y-open sets.

Definition 1.9. [3] A space X is said to be:

(i) v — T4 if for each pair of distinct points x and y of X, there exist v-open sets
U and V containing x and y, respectively such that y ¢ U and x ¢ V.

(ii) v — Ty (v-Hausdorff) if for each pair of distinct points x and y of X, there
ezist disjoint y-open sets U and V in X such that x € U andy € V.

Definition 1.10. [3, 7] A space X is said to be:

(i) v—Lindelof if every y-open cover of X has a countable subcover.

(i) v— closed-compact if every ~v-closed cover of X has a finite subcover.

(iii) y— closed-Lindeldf if every cover of X by y-closed sets has a countable sub-
cover.



Totally and slightly supra b—continuous functions 137

2. Totally supra b—continuous functions

In this section, the notion of totally supra b-continuous functions is introduced.
If A is both supra b-open and supra b-closed, then it is said to be supra b-clopen.

Definition 2.1. [12] Let (X, 7) and (Y, p) be two topological spaces and pn be an as-
sociated supra topology with . A function f : (X,7) — (Y,p) is called a supra
b-continuous function if the inverse image of each open set in Y is supra b-open
mn X.

Definition 2.2. Let (X, 7) and (Y, p) be two topological spaces and p be an associated
supra topology with 7. A function [ : (X,7) — (Y, p) is called a totally supra b-
continuous function if the inverse image of each open set in'Y is supra b-clopen in X .

Remark 2.3. Every totally supra b-continuous function is supra b-continuous but the
converse need not be true as it can be seen from the following example.

Example 2.4. Let X = {a,b,c} and 7 = {X, ¢, {a,b}} be a topology on X. The supra
topology 4 is defined as follows: u = {X, ¢, {a}, {a,b}}. Let f: (X,7) — (X,7) be
a function defined as follows: f(a) = a, f(b) = ¢, f(c) = b. The inverse image of the
open set {a,b} is {a,c} which is supra b-open but it is not supra b-clopen. Then f is
supra b-continuous but it is not totally supra b-continuous.

Definition 2.5. A supra topological space (X, ) is called supra b — connected if it is
not the union of two nonempty disjoint supra b-open sets.

Theorem 2.6. A supra topological space (X, p) is supra b — connected if and only if
X and ¢ are the only supra b-clopen subsets of X.

Proof. Obvious. 0

Theorem 2.7. Let (X, 7) be a topological spaces and p be an associated supra topology
with 7. If f : (X, 7) — (Y, p) is a totally supra b-continuous surjection and (X, p) is
supra b — connected, then (Y, p) is an indiscrete space.

Proof. Suppose that (Y, p) is not an indiscrete space and let V' be a proper nonempty
open subset of (Y, p). Since f is a totally supra b-continuous function, then f~1(V) is
a proper nonempty supra b-clopen subset of X. Therefore X = f~1(V)U(X —f~%(V))
and X is a union of two nonempty disjoint supra b-open sets, which is a contradiction.
Therefore X must be an indiscrete space. O

Theorem 2.8. Let (X, 7T) be a topological space and i be an associated supra topology
with 7. The supra topological space (X, ) is supra b — connected if and only if every
totally supra b-continuous function from (X, 1) into any To—space (Y, p) is a constant
map.

Proof. =) Suppose that f: (X,7) — (Y, p) is a totally supra b-continuous function,
where (Y] p) is a Tp—space. Assume that f is not constant and z,y € X such that
f(z) # f(y). Since (Y, p) is Tp, and f(x) and f(y) are distinct points in Y, then there
is an open set V in (Y, p) containing only one of the points f(z), f(y). We take the
case f(x) € V and f(y) ¢ V. The proof of the other case is similar. Since f is a totally
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supra b-continuous function, f~1(V) is a supra b-clopen subset of X and z € f~(V),
but y ¢ f~1(V). Since X = f~1(V) U (X — f~1(V)), X is a union of two nonempty
disjoint supra b-open subsets of X. Thus (X, u) is not supra b — connected, which is
a contradiction.

<) Suppose that (X, 1) is not a supra b— connected space, then there is a proper
nonempty supra b-clopen subset A of X. Let Y = {a,b} and p = {Y, ¢, {a}, {b}},
define f : (X,7) — (Y, p) by f(z) = a for each € A and f(z) = b for x € X — A.
Clearly f is not constant and totally supra b-continuous where Y is Ty, and thus we
have a contradiction. d

Definition 2.9. A supra topological space X is said to be:

(i) supra b — T if for each pair of distinct points x and y of X, there exist supra
b-open sets U and V containing « and y, respectively such that y ¢ U and « ¢ V.

(ii) supra b — Ty if for each pair of distinct points x and y in X, there exist
disjoint supra b-open sets U and V in X such that x € U and y € V.

Theorem 2.10. Let (X,7) and (Y, p) be two topological spaces and p be an associ-
ated supra topology with 7. Let [ : (X,7) — (Y, p) be a totally supra b-continuous
injection. If Y is Ty then (X, u) is supra b — Ts.

Proof. Let x,y € X with x # y. Since f is injection, f(z) # f(y). Since Y is Ty,
there exists an open subset V of Y containing f(x) but not f(y), or containing f(y)
but not f(z). Thus for the first case we have, z € f~1(V) and y ¢ f~'(V). Since f
is totally supra b-continuous and V is an open subset of Y, f~1(V) and X — f=1(V)
are disjoint supra b-clopen subsets of X containing x and y, respectively. The second
case is proved in the same way. Thus X is supra b — T. O

Definition 2.11. Let (X, 7) be a topological space and 1 be an associated supra topology
with 7. A function f : (X,7) — Y s called a strongly supra b-continuous function
if the inverse image of every subset of Y is a supra b-clopen subset of X.

Remark 2.12. Every strongly supra b-continuous function is totally supra b-con-
tinuous, but the converse need not be true as the following example shows.

Example 2.13. Let X = {a,b,c} and 7 = {X, ¢} be a topology on X. The supra
topology u is defined as follows: u = {X, ¢, {a,c}}. Let f: (X,7) — (X, 7) be the
identity function, then f is totally supra b-continuous but it is not strongly supra
b-continuous.

3. Slightly supra b—continuous functions

In this section, the notion of slightly supra b-continuous functions is introduced
and characterizations and some relationships of slightly supra b-continuous functions
and basic properties of slightly supra b-continuous functions are investigated and
obtained.
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Definition 3.1. Let (X, 7) and (Y, p) be two topological spaces and p be an associated
supra topology with 7. A function f : (X,7) — (Y, p) is called a slightly supra b-
continuous function at a point x € X if for each clopen subset V in'Y containing
f(x), there exists a supra b-open subset U in X containing x such that f(U) C V.
The function f is said to be slightly supra b-continuous if it has this property at each
point of X.

Remark 3.2. Every supra b-continuous function is slightly supra b-continuous but the
converse need not be true as it can be seen from the following example.

Example 3.3. Let R and N be the real numbers and natural numbers, respectively.
Take two topologies on R as 7 = {R,¢} and p = {R,¢,R — N} and p be the
associated supra topology with 7 defined as u = {R, ¢, N}. Let f : (R,7) — (R, p)
be an identity function. Then, f is slightly supra b-continuous, but it is not supra
b-continuous.

Remark 3.4. Since every totally supra b-continuous function is supra b-continuous
then every totally supra b-continuous function is slightly supra b-continuous but the
converse need not be true. The function f in Example 3.3 is slightly supra b-continuous
but it is not totally supra b-continuous.

Remark 3.5. Since every strongly supra b-continuous function is totally supra b-
continuous then every strongly supra b-continuous function is slightly supra b-
continuous but the converse need not be true. The function f in Example 2.13 is
slightly supra b-continuous but it is not strongly supra b-continuous.

Theorem 3.6. Let (X, 7) and (Y, p) be two topological spaces and u be an associated
supra topology with 1. The following statements are equivalent for a function f :
(X,7) — (Y, p):

(1) f is slightly supra b-continuous;

(2) for every clopen set V.CY, f=1(V) is supra b-open;

(3) for every clopen set V.CY, f~Y(V) is supra b-closed;

(4) for every clopen set V.CY, f~Y(V) is supra b-clopen.

Proof. (1) = (2): Let V be a clopen subset of Y and let x € f~(V). Since f is slightly
supra b-continuous, by (1) there exists a supra b-open set U, in X containing z such
that f(U. ) C V; hence U, C f~1(V). We obtain that f=}(V) =U{U, : x € f~1(V)}.
Thus, f L(V) is supra b-open.

(3): Let V be a clopen subset of Y. Then Y — V is clopen. By (2)
=X — f~1(V) is supra b-open. Thus f~1(V) is supra b-closed.
(4): It can be shown easily.
(1): Let z € X and V be a clopen subset in Y with f(z) € V. Let
V). By assumption U is supra b-clopen and so supra b-open. Also z € U
cV. O

Corollary 3.7. [7] Let (X, 7) and (Y, p) be topological spaces. The following statements
are equivalent for a function f: X — Y :

(1) f is slightly ~y-continuous;

(2) for every clopen set V.C Y, f=1(V) is y-open;
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(3) for every clopen set V.C Y, f~Y(V) is y-closed;
(4) for every clopen set V.C Y, f=Y(V) is vy-clopen.

Theorem 3.8. FEwvery slightly supra b-continuous function into a discrete space is
strongly supra b-continuous.

Proof. Let f: X — Y be a slightly supra b-continuous function and Y be a discrete
space. Let A be any subset of Y. Then A is a clopen subset of Y. Hence f~1(A) is
supra b-clopen in X. Thus f is strongly supra b-continuous. O

Definition 3.9. Let (X, 7) and (Y, p) be two topological spaces and u, 1 be associated
supra topologies with T and p, respectively. A function f : (X,7) — (Y, p) is called
a supra b-irresolute function if the inverse image of each supra b-open set in'Y is a
supra b-open set in X.

Theorem 3.10. Let (X, 7), (Y, p) and (Z, o) be topological spaces and u, 1 be associated
supra topologies with T and p, respectively. Let f : (X,7) — (Y,p) and g : (Y,p) —
(Z,0) be functions. Then, the following properties hold:

(1) If f is supra b-irresolute and g is slightly supra b-continuous, then gof is
slightly supra b-continuous.

(2) If f is slightly supra b-continuous and g is continuous, then gof is slightly
supra b-continuous.

Proof. (1) Let V be any clopen set in Z. Since g is slightly supra b-continuous, g=1(V)
is supra b-open. Since f is supra b-irresolute, f=1(g=*(V)) = (gof)~*(V) is supra
b-open. Therefore, gof is slightly supra b-continuous.

(2) Let V be any clopen set in Z. By the continuity of g, g~*(V) is clopen.
Since f is slightly supra b-continuous, f~1(g=*(V)) = (gof)~*(V) is supra b-open.
Therefore, gof is slightly supra b-continuous. O

Corollary 3.11. Let (X, 1), (Y, p) and (Z,0) be topological spaces and p, n be associated
supra topologies with T and p, respectively. If f : (X, 1) — (Y, p) is a supra b-irresolute
function and g : (Y, p) — (Z,0) is a supra b-continuous function, then gof is slightly
supra b-continuous.

Corollary 3.12. [7] Let f : X — Y and g: Y — Z be functions. Then, the following
properties hold:

(1) If f is y-irresolute and g is slightly y-continuous, then gof : X — Z s
slightly ~v-continuous.

(2) If f is y-irresolute and g is y-continuous, then gof : X — Z s slightly
Y-continuous.

Definition 3.13. A function f: (X,7) — (Y, p) is called a supra b-open function if the
image of each supra b-open set in X is a supra b-open set in Y.

Theorem 3.14. Let (X, 7), (Y, p) and (Z, o) be topological spaces and u, 1 be associated
supra topologies with T and p, respectively. Let f : (X,7) — (Y,p) be a supra b-
irresolute, supra b-open surjection and g : (Y,p) — (Z,0) be a function. Then g is
slightly supra b-continuous if and only if gof is slightly supra b-continuous.
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Proof. =) Let g be slightly supra b-continuous. Then by Theorem 3.10, gof is slightly
supra b-continuous.

<) Let gof be slightly supra b-continuous and V be clopen set in Z.
Then (gof)~'(V) is supra b-open. Since f is a supra b-open surjection, then
f((gof)~1(V)) = g~ 1(V) is supra b-open in Y. This shows that g is slightly supra
b-continuous. O

Corollary 3.15. [7] f : X — Y be surjective, y-irresolute and y-open and g : Y — Z
be a function. Then gof : X — Z s slightly ~-continuous if and only if g is slightly
y-continuous.

Theorem 3.16. Let (X, 7) be a topological space and p be an associated supra topology
with 7. If f: (X, 7) — (Y, p) is a slightly supra b-continuous function and (X, p) is
supra b — connected, then Y is connected.

Proof. Suppose that Y is a disconnected space. Then there exist nonempty disjoint
open sets U and V such that Y = U U V. Therefore, U and V are clopen sets in
Y. Since f is slightly supra b-continuous, f~1(U) and f~'(V) are supra b-open in
X. Moreover, f~1(U) and f~1(V) are disjoint and X = f~H(U) U f~1(V). Since f is
surjective, f~1(U) and f~1(V) are nonempty. Therefore, X is not supra b—connected.
This is a contradiction and hence Y is connected. 0

Corollary 3.17. [7] If f : X — Y is slightly v-continuous surjective function and X is
y-connected space, then Y is a connected space.

Corollary 3.18. The inverse image of a disconnected space under a slightly supra b-
continuous surjection is supra b — disconnected.

Recall that a space X is said to be (1) locally indiscrete if every open set of X
is closed in X, (2) O-dimensional if its topology has a base consisting of clopen sets.

Theorem 3.19. Let (X, ) be a topological space and p be an associated supra topology
with 7. If f : (X,7) — (Y, p) is a slightly supra b-continuous function and Y is
locally indiscrete, then f is supra b-continuous.

Proof. Let V be any open set of Y. Since Y is locally indiscrete, V' is clopen and
hence f~!(V) are supra b-open in X. Therefore, f is supra b-continuous. O

Theorem 3.20. Let (X, 7) be a topological space and p be an associated supra topology
with 7. If f : (X,7) — (Y, p) is a slightly supra b-continuous function and Y is
0-dimensional, then f is supra b-continuous.

Proof. Let ©+ € X and V C Y be any open set containing f(z). Since Y is 0-
dimensional, there exists a clopen set U containing f(z) such that U C V. But f
is slightly supra b-continuous then there exists a supra b-open set GG containing x
such that f(z) € f(G) CU C V. Hence f is supra b-continuous. O

Corollary 3.21. [7] If f : X — Y s slightly v-continuous and Y is 0-dimensional,
then f is y-continuous.
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Theorem 3.22. Let (X, 7) be a topological space and p be an associated supra topology
with 7. Let f : (X,7) — (Y, p) be a slightly supra b-continuous injection and Y is
0-dimensional. If Y is Ty (resp. Tz), then X is supra b — Ty (resp. supra b—Ts).

Proof. We prove only the second statement, the prove of the first being analogous.
Let Y be T5. Since f is injective, for any pair of distinct points z,y € X, f(z) # f(y).
Since Y is Ty, there exist open sets Vi, V5 in Y such that f(z) € Vi, f(y) € Vs
and V3 NV, = ¢. Since Y is 0-dimensional, there exist clopen sets Uy, Us in Y such
that f(z) € Uy C Vi and f(y) € Uy C Vu. Consequently z € f~1(Uy) C f~1(W),
y € f~HUy) C f~1(Va) and f~Y(U1) N f~Y(Us) = ¢. Since f is slightly supra b-
continuous, f~*(U;) and f~1(Us) are supra b-open sets and this implies that X is
supra b — Ts. O

Definition 3.23. A space X is said to be:
(i) clopen Ty [4,7] if for each pair of distinct points x and y of X, there exist
clopen sets U and V' containing x and y, respectively such thaty ¢ U and x ¢ V.
(i) clopen Ty (clopen Hausdorff or ultra-Hausdorff) [13] if for each pair of dis-
tinct points x and y in X, there exist disjoint clopen sets U and V in X such that
zeUandyeV.

Theorem 3.24. Let (X, 7T) be a topological space and p be an associated supra topology
with . Let f : (X,7) — (Y, p) be a slightly supra b-continuous injection and Y is
clopen Ty, then X is supra b—"Ty.

Proof. Suppose that Y is clopen T3. For any distinct points  and y in X, there exist
clopen sets V' and W such that f(z) € V, f(y) ¢ V and f(y) € W, f(z) ¢ W. Since
f is slightly supra b-continuous, f~1(V) and f~!(W) are supra b-open subsets of X
such that z € f~1(V),y ¢ f~Y(V) and y € f~Y (W), z ¢ f~1(W). This shows that
X is supra b —T7. O

Corollary 3.25. [7] If f : X — Y s slightly y-continuous injection and Y is clopen
Ty, then X is v —Ty.

Theorem 3.26. Let (X, 7) be a topological space and p be an associated supra topology
with . Let f : (X,7) — (Y, p) be a slightly supra b-continuous injection and Y is
clopen Ty, then X is supra b —T5.

Proof. For any pair of distinct points z and y in X, there exist disjoint clopen sets U
and V in Y such that f(z) € U and f(y) € V. Since f is slightly supra b-continuous,
f~YU) and f~1(V) are supra b-open subsets of X containing z and y, respectively.
Therefore f~2(U) N f~1(V) = ¢ because U NV = ¢. This shows that X is supra
b—1Ts. O

Definition 3.27. [13] A space X is said to be mildly compact (resp. mildly Lindeldf)
if every clopen cover of X has a finite (resp. countable) subcover.

Definition 3.28. A supra topological space (X, 1) is called supra b-compact (resp. supra
b-Lindeldf) if every supra b-open cover of X has a finite (resp. countable) subcover.
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Theorem 3.29. Let (X, 7) be a topological space and p be an associated supra topology
with 7. Let f : (X,7) — (Y, p) be a slightly supra b-continuous surjection, then the
following statements hold:

(1) if (X, u) is supra b-compact, then'Y is mildly compact.

(2) if (X, u) is supra b-Lindeldf, then Y is mildly Lindeldf.

Proof. We prove (1), the proof of (2) being entirely analogous.

Let {V, : « € A} be a clopen cover of Y. Since f is slightly supra b-continuous,
{f~%(V,) : a € A} is a supra b-open cover of X . Since X is supra b-compact, there
exists a finite subset Ag of A such that X = U{f~*(V,) : @ € Ag}. Thus we have
Y = U{V, : @ € Ap} which means that Y is mildly compact. O

Definition 3.30. A supra topological space (X, ) is called supra b-closed compact (resp.
supra b-closed Lindeldf) if every cover of X by supra b-closed sets has a finite (resp.
countable) subcover.

Theorem 3.31. Let (X, 7) be a topological space and u be an associated supra topology
with 7. Let f : (X,7) — (Y, p) be a slightly supra b-continuous surjection, then the
following statements hold:

(1) if (X, p) is supra b-closed compact, then'Y is mildly compact.

(2) if (X, u) is supra b-closed Lindeldf, then'Y is mildly Lindeldf.

Proof. Tt can be obtained similarly as Theorem 3.29. O

Corollary 3.32. [7] Let f : X — Y be a slightly v-continuous surjection. Then the
following statements hold:

(1) if X is y-Lindeldf, then Y is mildly Lindelof.

(2) if X is y-compact, then'Y is mildly compact.

(8) if X is y—closed-compact, then'Y is mildly compact.

(4) if X is y-closed-Lindeldf, then Y is mildly Lindelof.
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