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Some extensions on Fan Ky’s inequality

Gao Mingzhe and Mihaly Bencze

Abstract. In this paper we study the inequalities of the determinants of the posi-
tive definite matrices and the invertible matrices by applying the integral method
and matrix theory such that extensions of Fan Ky’s inequality are established.
And then an improvement of Fan Ky’s inequality is given by using the positive
definiteness of Gram matrix.

Mathematics Subject Classification (2010): 15A15, 26D15.

Keywords: Fan Ky’s inequality, Gram matrix, positive definite matrix, invertible
matrix, characteristic root.

1. Introduction

In view of the importance of the inequality in theory and applications (see [1],
[2]), it has been absorbing much interest of mathematicians. The various ways of
proving inequalities appear in a great deal of papers. In particular, Kuang enumerated
more than 50 methods in the paper [3]. It is obvious that these methods have the
characteristic of themselves, technique, theory and applications. The purpose of the
present paper is to study the discrete inequalities by applying a thought way on the
proof of the inequality of the continuous function, and to try for a new path and to play
to throw out a minnow to catch whale role in research and development. Explicitly,
the extensions and improvement on the famous Fan Ky inequality are established by
applying this method.

For convenience, we introduce some notations and functions.
The determinant of matrix X of order n is denoted by |X| and a unit-matrix of

order n is denoted by I. Let x = (x1, x1, · · · , xn ) be an n-dimension vector, f(x)
and g(x) be functions with n variables. Let E be an inner product space, f and g be
elements of E. Then the inner product of f and g is defined by the following n-ple
integral:

(f, g) =

+∞∫
−∞

· · ·
+∞∫
−∞

f(x)g(x)dx,

where dx = dx1dx2 · · ·dxn. And the norm of f is given by ‖f‖ =
√

(f, f).
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Let f(x), g(x) > 0 and r, s > 0. We stipulate that

(fr, gs) =

+∞∫
−∞

· · ·
+∞∫
−∞

fr(x)gs(x)dx, ‖f‖r =

 +∞∫
−∞

· · ·
+∞∫
−∞

fr(x)dx


1
r

, ‖f‖2 = ‖f‖,

Sr(f, h) =
(
f

r
2 , h
)
‖f‖−

1
r

r .

where h is a variable unit-vector with n variables, i.e. ‖h‖ = 1, and it can be chosen
in accordance with our requirements. In particular, Sr(f, h) = 0 if h is orthogonal to
f

r
2 .

Throughout this paper, we shall frequently use these notations.

2. Statement of main results

Let A,B be two positive definite matrices of order n, 0 ≤ λ ≤ 1. Then

|A|λ|B|1−λ ≤ |λA + (1− λ)B|. (2.1)

This is the famous Fan Fy’s inequality (see [3]). Recently, this inequality has been
studied in some papers (such as [4, 5] etc.) Below we will build some extensions and
a refinement of (2.1) by using the integral method and matrix theory.

First, we establish some extensions of (2.1).

Theorem 2.1. Let m be a positive integer greater than 1, Ai(i = 1, 2, · · · ,m) be positive

definite matrix of order n,
m∑

i=1

1
p

i
= 1 and p

i
> 1. Then

m

Π
i=1

|Ai|
1

p
i ≤

∣∣∣∣∣
m∑

i=1

1
pi

Ai

∣∣∣∣∣ . (2.2)

In particular, for case m = 2, we have

|A|
1
p |B|

1
q ≤

∣∣∣∣1pA +
1
q
B

∣∣∣∣ ,
where 1

p + 1
q = 1 and p > 1. Clearly, it is the inequality (2.1). It follows that the

inequality (2.2) is an extension of (2.1).

Remark 2.2. Inequality (2.1) shows that the function f : PD → (0,∞) defined by
f(A) = |A|, where PD is the set of positive defined matrices of order n is log-concave.
So, Theorem 2.1 is Jensen ’s inequality for f .

If p < 1, applying the reverse Hölder inequality, then the following reverse Fan
Ky inequality is obtained:

|A|
1
p |B|

1
q > |1

p
A +

1
q
B|.

If Ai (i = 1, 2, · · · ,m) is invertible matrix of order n and A′
i is a transform of Ai, then

AiA
′
i is a positive definite matrix of order n and |AiA

′
i| = |Ai|2. Based on Theorem

2.1, the following result is obtained.
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Corollary 2.3. If Ai(i = 1, 2, · · · ,m) is a invertible matrix of order n,then

m

Π
i=1

|A2
i |

1
p

i ≤

∣∣∣∣∣
m∑

i=1

1
pi

AiA
′
i

∣∣∣∣∣ . (2.3)

Let Ai(i = 1, 2, · · · ,m) is a symmetrical matrix of order n. Then there exists
a sufficiently big ki such that kiI + Ai is a positive definite matrix. Let k =
max{k1, k2, · · · km}. Then we have the following result.

Corollary 2.4. With the assumptions as the above-mentioned, then

m

Π
i=1

|kI + Ai|
1

p
i ≤

∣∣∣∣∣
m∑

i=1

1
p

i

(kI + Ai)

∣∣∣∣∣ . (2.4)

Next, we shall establish a refinement of (2.1).

Theorem 2.5. Let A,B be two positive definite matrices of order n. If 1
p + 1

q = 1 and
p > 1, then

|A|
1
p |B|

1
q ≤

∣∣∣∣1pA +
1
q
B

∣∣∣∣ (1−R)
2
r , (2.5)

where

R = (4π)
n
2

( |A| 12
| A + πI|

) 1
2

−

(
|B| 12

|B + πI|

) 1
2
2

, r = max{p, q}.

Remark 2.6. In fact, Theorem 2.5 establishes a refinement of Fan Ky inequality.

If A and B are two invertible matrices of order n, A′ and B′ are respectively transforms
of A and B, then AA′ and BB′ are positive definite matrices of order n. And notice
that |AA′| = |A|2 and |BB′| = |B|2. Based on Theorem 2.5, the following result is
obtained.

Corollary 2.7. With the assumptions as the above-mentioned, then

|A|
1
p |B|

1
q ≤

∣∣∣∣1pAA′ +
1
q
BB′

∣∣∣∣ 12 (1− R̃
) 1

r

, (2.6)

where

R̃ = (4π)
n
2

((
|A |

|AA′ + πI|

) 1
2

−
(

|B |
|BB′ + πI|

) 1
2
)2

, r = max{p, q}

3. Proofs of main results

In order to apply the integral method and matrix theory to prove our assertions,
we need the following lemmas.
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Lemma 3.1. Let D be a positive definite matrix of order n. Then
+∞∫
−∞

· · ·
+∞∫
−∞

exp (−xDx′) dx =
(

πn

|D|

) 1
2

, (3.1)

where the vector x = (x1, x2, · · · , xn),x′ is transform of x and dx = dx1dx2 · · ·dxn.
This result is the well known. Its proof is omitted here.

Lemma 3.2. Let 1
p + 1

q = 1 and p > 1. If 0 < ‖f‖p < +∞ and 0 < ‖g‖q < +∞, then

(f, g) ≤ ‖f‖p‖g‖q(1−R)
1
r , (3.2)

where R = (Sp(f, h)− Sq(g, h))2, r = max{p, q}, ‖h‖ = 1 and (fp/2, h)(gq/2, h) ≥ 0.

And the equality in (3.2) holds if and only if fp/2 and gq/2 are linearly dependent;
or h is a linear combination of fp/2 and gq/2, and (f

p
2 , h)(g

q
2 , h) = 0 but h is not

simultaneously orthogonal to f
p
2 and g

q
2 .

Proof. First, we consider the case p = 2. Let f, g and h be three arbitrary functions
with n variables. If ‖h‖ = 1, then

(f, g)2 ≤ ‖f‖2‖g‖2 − (‖f‖u− ‖g‖v)2, (3.3)

where u = (g, h), v = (f, h), uv ≥ 0. And the equality in (3.3) holds if and only
if f, g and h are linearly dependent; or h is a linear combination of f and g, and
uv = 0 but h is not simultaneously orthogonal to f and g. In fact, consider the Gram
determinant constructed by the functions f, g and h:

G(f, g, h) =

∣∣∣∣∣∣
(f, f) (f, g) (f, h)
(g, f) (g, g) (g, h)
(h, f) (h, g) (h, h)

∣∣∣∣∣∣ .
According to the positive definiteness of the Gram matrix, we have G(f, g, h) ≥ 0,
and G(f, g, h) = 0 if and only if f, g and h are linearly dependent.

Expanding this determinant and using the condition ‖h‖ = 1, we obtain

G(f, g, h) = ‖f‖2‖g‖2 − (f, g)2 − {‖f‖2u2 − 2(f, g))uv + ‖g‖2v2}
≤ ‖f‖2‖g‖2 − (f, g)2 − {‖f‖2u2 − 2(f, g))|uv|+ ‖g‖2v2}
≤ ‖f‖2‖g‖2 − (f, g)2 − (‖f‖|u| − ‖g‖|v|)2

≤ ‖f‖2‖g‖2 − (f, g)2 − (‖f‖u− ‖g‖v)2

where u = (g, h), v = (f, h) and uv ≥ 0. And the equality holds if and only if f, g and
h are linearly dependent; or h is a linear combination of f and g, and uv = 0 but h
is not simultaneously orthogonal to f and g.
The inequality (3.3) can be written in the following form:

(f, g)2 ≤ ‖f‖2‖g‖2(1− r2), (3.4)

where r2 = (S2(f, h)− S2(g, h))2. Namely, when p = 2, the inequality (3.2) is valid.
It is obvious that the inequality (3.4) is a refinement of the Cauchy inequality and
that it is also extensions of the corresponding results of the papers [3, 6, 7].



Some extensions on Fan Ky’s inequality 321

Next, consider the case p 6= 2. Not loss generality, let p > q > 1. Since 1
p + 1

q = 1,
we have p > 2. Let α = p

2 , β = p
p−2 . Then 1

α + 1
β = 1. By applying Hölder’s inequality,

we have

(f, g) =

+∞∫
−∞

· · ·
+∞∫
−∞

f(x)g(x)dx =

+∞∫
−∞

· · ·
+∞∫
−∞

{
f(x)(g(x))q/p

}
(g(x))1−q/pdx

≤


+∞∫
−∞

· · ·
+∞∫
−∞

(
f(x)(g(x))q/p

)α

dx


1/α

+∞∫
−∞

· · ·
+∞∫
−∞

{
(g(x))1−q/p

}β

dx


1/β

=
(
fp/2, gq/2

)2/p

‖g‖q(1−2/p)
q . (3.5)

And the equality in (3.5) holds if and only if fp/2 and gq/2 are linearly dependent.
In fact, The equality in (3.5) holds if and only if for any a positive integer k, there
exists a positive number c1, such that (fgq/p)α = c1(g1−q/p)β . After simplifications,
we obtain fp/2 = c1g

q/2.
If f and g in (3.4) are replaced by f

p
2 and g

q
2 respectively, then we have

(fp/2, gq/2)2 ≤ ‖f‖p
p‖g‖q

q(1−R), (3.6)

where R = (Sp(f, h)− Sq(g, h))2. Substituting (3.6) into(3.5), we obtain after simpli-
fications

(f, g) ≤ ‖f‖p‖g‖q(1−R)
1
p . (3.7)

It is known from (3.4) that the equality in (3.7) holds if and only if fp/2 and gq/2 are
linearly dependent; or h is a linear combination of fp/2 and gq/2, and (f

p
2 , h)(g

q
2 , h) =

0 but h is not simultaneously orthogonal to f
p
2 and g

q
2 . Notice that the symmetry of

p and q, it follows that the inequality (3.2) is valid.
It is very easy to prove Theorem 2.1, it is omitted here.
Proof of Theorem 2.5. Let f(x) = exp(− 1

p (xAx′)) and g(x) = exp(− 1
q (xBx′), where

1
p + 1

q = 1 and p > 1. Based on (3.2) and (3.1), we have

π
n
2∣∣∣ 1pA + 1
q B
∣∣∣ 12 =

+∞∫
−∞

· · ·
+∞∫
−∞

f(x)g(x)dx

≤


+∞∫
−∞

· · ·
+∞∫
−∞

fp(x)dx


1
p


+∞∫
−∞

· · ·
+∞∫
−∞

gq(x)dx


1
q

(1−R)
1
r

=
π

n
2(

|A|
1
p |B|

1
q

) 1
2
(1−R)

1
r . (3.8)

We attain from (3.8) after simplifications

|A|
1
p |B|

1
q ≤ |1

p
A +

1
q
B|(1−R)

1
r (3.9)
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where r = max{p, q}.
We only need to compute R in (3.9). It is known from (3.2) that

R = (Sp(f, h)− Sq(g, h))2 =

((
fp/2, h

)
‖f‖p/2

p

−
(
gq/2, h

)
‖g‖q/2

q

)2

,

where h = exp
(
− 1

2xCx′
)
, Let C = πI. Then |C| = πn, Based on (3.1),we have

‖h‖ =


+∞∫
−∞

· · ·
+∞∫
−∞

h2(x)dx


1/2

= 1. (3.10)

It is easy to deduce that(
f

p
2 , h

)
=

+∞∫
−∞

· · ·
+∞∫
−∞

f
p
2 (x)h (x) dx

=
π

n
2∣∣ 1

2 (A + πI)
∣∣n

2
= (2π)

n
2

(
1

|A + πI|

) 1
2

,

‖f‖
p
2
p =


+∞∫
−∞

· · ·
+∞∫
−∞

fp(x)dx


1
2

=
{

πn

|A|

} 1
4

,

Sp (f, h) =
(
f

p
2 , h

)
‖f‖−

1
p

p = (2π)
n
2

(
1

|A + πI|

) 1
2
{
|A|
πn

} 1
4

= (4π)
n
4

(
|A|

1
2

| A + πI|

) 1
2

.

Similarly, we have Sq(g, h) = (4π)
n
4

(
|B|

1
2

| B + πI|

) 1
2

.

It follows that

R = (Sp(f, h)− Sq(g, h))2

= (4π)
n
2

( |A|
1
2

| A + πI|

) 1
2

−

(
|B|

1
2

| B + πI|

) 1
2
2

.
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A remark on the proof of Cobzaş-Mustăţa
theorem concerning norm preserving extension
of convex Lipschitz functions

Iulian Ĉımpean

Abstract. In this paper we present an alternative proof of a result concerning
norm preserving extension of convex Lipschitz functions due to Ştefan Cobzaş and
Costică Mustăţa (see Norm preserving extension of convex Lipschitz functions,
Journal of Approximation Theory,24(3)(1987),236-244). Our proof is based on
the Choquet Topological lemma, (see J.L.Doob, Classical potential theory and
its probabilistic counterpart, Springer Verlag 2001).

Mathematics Subject Classification (2010): 26A16, 26A51.

Keywords: Extension of Lipschitz functions, convex functions, Choquet topolog-
ical lemma.

1. Introduction

Taking into account a famous result due to Rademacher which states that a
Lipschitz function f : U = Ů ⊆ Rm → Rn is differentiable outside of a Lebesgue null
subset of U , one can say that, from the point of view of real analysis the condition of
being Lipschitz should be viewed as a weakened version of differentiability. Therefore,
the class of Lipschitz functions has been intensively studied. The paper [9] is a very
good introduction to the study of Lipschitz topology. One can also consult [16] and
[22] for further details about Lipschitz functions.

The problem of the extension of a Lipschitz function is a central one in the theory
of Lipschitz functions. Let us mention here just a phrase due to Earl Mickle (see [11])
which sustains our statement: ”In a problem on surface area the writer and Helsel
were confronted with the following question: Can a Lipschitz function be extended
to a Lipschitz transformation defined in the whole space?” Consequently, there is no
surprise that there exist a lot of results in this direction (see for example [1]-[5], [7],
[8], [10]-[15], [17]-[21]).
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2. Preliminaries

Let (X, d) be a metric space. A function f : X → R is called Lipschitz if there
exist a constant number M ≥ 0 such that

|f(x)− f(y)| ≤ Md(x, y) (2.1)

for all x, y ∈ X.
The smallest constant M verifying (2.1) is called the norm of f and is denoted

by ‖f‖X .
Denote by LipX the linear space of all Lipschitz functions on X.
Now let Y be a nonvoid subset of X. A norm preserving extension of a function

f ∈ LipY to X is a function F ∈ LipX such that

F |Y = f

and

‖f‖Y = ‖F‖X .

By a result of McShane [10], every f ∈ LipY has a norm preserving extension
F ∈ LipX. Two of these extensions are given by:

F1 (x) = sup {f (y)− ‖f‖Y d (x, y) | y ∈ Y } (2.2)

F2 (x) = inf {f (y) + ‖f‖Y d (x, y) | y ∈ Y } (2.3)

Every norm preserving extension F of f satisfies:

F1 (x) ≤ F (x) ≤ F2 (x) ,

for all x ∈ X (see [4]).
It turns out that these results remain true for convex norm preserving extensions.
More precisely, given a normed linear space X and a nonvoid convex subset Y

of X, Ş. Cobzaş and C. Mustăţa proved the following two results:

Theorem 2.1. (see [4]) Every convex function f ∈ LipY has a convex norm preserving
extension F in LipX.

Theorem 2.2. (see [4]) For every convex function f in LipY , there exist two convex
functions F1, F2, which are norm preserving extensions of f , such that:

F1 (x) ≤ F (x) ≤ F2 (x) ,

for all x ∈ X and for every convex norm preserving extension F .

The proof for the last theorem focuses on the existence of F1, the existence of
F2 following from the fact that the function defined in (3) is also convex.

We will present an alternative proof for the existence of F1, which is based on
the Choquet topological lemma.
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3. The result

Lemma 3.1. (Choquet topological lemma) (see [6], Appendix VIII) Let U =
{uβ , β ∈ I} be a family of functions from a second countable Hausdorff space into
R, and if J ⊆ I, define

uJ = inf {uβ | β ∈ J} .

Then there is a countable subset J of I such that

uJ
+ = uI

+.

In particular, if U is directed downward, then there is a decreasing sequence
(uβn

)n≥1 ⊆ U with limit v such that

v+ = uI
+.

By f+, where f is a function from a Hausdorff space into R, we denote the lower
semicontinuous minorant of f , which majorizes every lower semicontinuous minorant
of f . That is

f+ (x0) = f (x0) ∧ lim inf
x→x0

f (x) .

Proof. The first assertion of the lemma is proved in [6] (Appendix VIII), so we will
prove only the last assertion:

The first conclusion of the lemma assures us of the existence of a countable
subset J of I such that

uJ
+ = uI

+, (3.1)

which allows us to rewrite the family {uβ | β ∈ J} as a sequence (un)n≥1.
In order to complete the proof, we construct a decreasing sequence (uαn

)n≥1 ⊆ U

with limit v such that v+ = uI
+, as follows:

Let uα1 = u1. For each n ≥ 2, let uαn
be a function from U such that

uαn ≤ min
(
uαn−1 , un

)
.

This construction is possible because U is supposed downward directed. Let v be
the limit of this decreasing sequence. Since uαn

≤ un, we have that v ≤ inf
n≥1

un = uJ ,

so that:
v+ ≤ uJ

+. (3.2)

On the orher hand, uαn
≥ uI , for all n ≥ 1 , so that

v+ ≥ uI
+. (3.3)

Now, from (3.1), (3.2) and (3.3) it follows that

v+ = uJ
+ = uI

+. �

We need another lemma, also used and proved by Ş. Cobzaş and C. Mustăţa:

Lemma 3.2. (see [4]) The set Ec
Y (f) of all convex norm preserving extensions of f is

downward directed (with respect to the pointwise ordering).
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Now, to prove the existence of F1, combine the two lemmas as follows:
In Lemma 3.1 take I = Ec

Y (f) and uβ = β, for each β ∈ I. Define

F1 = uI
+.

According to the same lemma, there is a decreasing sequence (uβn
)n≥1 with limit

v, such that v+ = uI
+. Since uβn

∈ Ec
Y (f), then v is also in Ec

Y (f), so that

v = v+ = uI
+ = F1 ∈ Ec

Y (f) .

Clearly F1 minimizes any other F ∈ Ec
Y (f), which ends the proof.
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Fractional approximation by Cardaliaguet-
Euvrard and Squashing neural network operators

George A. Anastassiou

Abstract. This article deals with the determination of the fractional rate of con-
vergence to the unit of some neural network operators, namely, the Cardaliaguet-
Euvrard and ”squashing” operators. This is given through the moduli of continu-
ity of the involved right and left Caputo fractional derivatives of the approximated
function and they appear in the right-hand side of the associated Jackson type
inequalities.

Mathematics Subject Classification (2010): 26A33, 41A17, 41A25, 41A30, 41A36.

Keywords: Neural network fractional approximation, Carda- liaguet-Euvrard op-
erator, fractional derivative, modulus of continuity.

1. Introduction

The Cardaliaguet-Euvrard (3.1) operators were first introduced and studied ex-
tensively in [7], where the authors among many other things proved that these op-
erators converge uniformly on compacta, to the unit over continuous and bounded
functions. Our ”squashing operator” (see [1]) (3.53) was motivated and inspired by
the ”squashing functions” and related Theorem 6 of [7]. The work in [7] is qualitative
where the used bell-shaped function is general. However, our work, though greatly
motivated by [7], is quantitative and the used bell-shaped and ”squashing” functions
are of compact support. We produce a series of Jackson type inequalities giving close
upper bounds to the errors in approximating the unit operator by the above neural
network induced operators. All involved constants there are well determined. These
are pointwise, uniform and Lp, p ≥ 1, estimates involving the first moduli of continu-
ity of the engaged right and left Caputo fractional derivatives of the function under
approximation. We give all necessary background of fractional calculus.

Initial work of the subject was done in [1], where we involved only ordinary
derivatives. Article [1] motivated the current work.
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2. Background

We need

Definition 2.1. Let f ∈ C (R) which is bounded or uniformly continuous, h > 0.
We define the first modulus of continuity of f at h as follows

ω1 (f, h) = sup{|f (x)− f (y)| ;x, y ∈ R, |x− y| ≤ h} (2.1)

Notice that ω1 (f, h) is finite for any h > 0, and

lim
h→0

ω1 (f, h) = 0.

We also need

Definition 2.2. Let f : R → R, ν ≥ 0, n = dνe (d·e is the ceiling of the number),
f ∈ ACn ([a, b]) (space of functions f with f (n−1) ∈ AC ([a, b]), absolutely continuous
functions), ∀ [a, b] ⊂ R. We call left Caputo fractional derivative (see [8], pp. 49-52)
the function

Dν
∗af (x) =

1
Γ (n− ν)

∫ x

a

(x− t)n−ν−1
f (n) (t) dt, (2.2)

∀ x ≥ a, where Γ is the gamma function Γ (ν) =
∫∞
0

e−ttν−1dt, ν > 0. Notice
Dν
∗af ∈ L1 ([a, b]) and Dν

∗af exists a.e.on [a, b], ∀ b > a. We set D0
∗af (x) = f (x), ∀

x ∈ [a,∞).

Lemma 2.3. ([5]) Let ν > 0, ν /∈ N, n = dνe, f ∈ Cn−1 (R) and f (n) ∈ L∞ (R). Then
Dν
∗af (a) = 0, ∀ a ∈ R.

Definition 2.4. (see also [2], [9], [10]). Let f : R → R, such that f ∈ ACm ([a, b]), ∀
[a, b] ⊂ R, m = dαe, α > 0. The right Caputo fractional derivative of order α > 0 is
given by

Dα
b−f (x) =

(−1)m

Γ (m− α)

∫ b

x

(J − x)m−α−1
f (m) (J) dJ, (2.3)

∀ x ≤ b. We set D0
b−f (x) = f (x), ∀ x ∈ (−∞, b]. Notice that Dα

b−f ∈ L1 ([a, b]) and
Dα

b−f exists a.e.on [a, b], ∀ a < b.

Lemma 2.5. ([5]) Let f ∈ Cm−1 (R), f (m) ∈ L∞ (R), m = dαe, α > 0. Then
Dα

b−f (b) = 0, ∀ b ∈ R.

Convention 2.6. We assume that

Dα
∗x0

f (x) = 0, for x < x0, (2.4)

and
Dα

x0−f (x) = 0, for x > x0, (2.5)
for all x, x0 ∈ R.

We mention

Proposition 2.7. (by [3]) Let f ∈ Cn (R), where n = dνe, ν > 0. Then Dν
∗af (x) is

continuous in x ∈ [a,∞).

Also we have



Cardaliaguet-Euvrard and Squashing neural network operators 333

Proposition 2.8. (by [3]) Let f ∈ Cm (R), m = dαe, α > 0. Then Dα
b−f (x) is contin-

uous in x ∈ (−∞, b].

We further mention

Proposition 2.9. (by [3]) Let f ∈ Cm−1 (R), f (m) ∈ L∞ (R), m = dαe, α > 0 and

Dα
∗x0

f (x) =
1

Γ (m− α)

∫ x

x0

(x− t)m−α−1
f (m) (t) dt, (2.6)

for all x, x0 ∈ R : x ≥ x0.
Then Dα

∗x0
f (x) is continuous in x0.

Proposition 2.10. (by [3]) Let f ∈ Cm−1 (R), f (m) ∈ L∞ (R), m = dαe, α > 0 and

Dα
x0−f (x) =

(−1)m

Γ (m− α)

∫ x0

x

(J − x)m−α−1
f (m) (J) dJ, (2.7)

for all x, x0 ∈ R : x0 ≥ x.
Then Dα

x0−f (x) is continuous in x0.

Proposition 2.11. ([5]) Let g ∈ Cb (R) (continuous and bounded), 0 < c < 1, x, x0 ∈ R.
Define

L (x, x0) =
∫ x

x0

(x− t)c−1
g (t) dt, for x ≥ x0, (2.8)

and L (x, x0) = 0, for x < x0.
Then L is jointly continuous in (x, x0) ∈ R2.

We mention

Proposition 2.12. ([5]) Let g ∈ Cb (R), 0 < c < 1, x, x0 ∈ R. Define

K (x, x0) =
∫ x0

x

(J − x)c−1
g (J) dJ, for x ≤ x0, (2.9)

and K (x, x0) = 0, for x > x0.
Then K (x, x0) is jointly continuous in (x, x0) ∈ R2.

Based on Propositions 2.11, 2.12 we derive

Corollary 2.13. ([5]) Let f ∈ Cm (R), f (m) ∈ L∞ (R), m = dαe, α > 0, α /∈ N,
x, x0 ∈ R. Then Dα

∗x0
f (x), Dα

x0−f (x) are jointly continuous functions in (x, x0)
from R2 into R.

We need

Proposition 2.14. ([5]) Let f : R2 → R be jointly continuous. Consider

G (x) = ω1 (f (·, x) , δ)[x,+∞) , δ > 0, x ∈ R. (2.10)

(Here ω1 is defined over [x,+∞) instead of R.)
Then G is continuous on R.
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Proposition 2.15. ([5]) Let f : R2 → R be jointly continuous. Consider

H (x) = ω1 (f (·, x) , δ)(−∞,x] , δ > 0, x ∈ R. (2.11)

(Here ω1 is defined over (−∞, x] instead of R.)
Then H is continuous on R.

By Propositions 2.14, 2.15 and Corollary 2.13 we derive

Proposition 2.16. ([5]) Let f ∈ Cm (R),
∥∥f (m)

∥∥
∞ < ∞, m = dαe, α /∈ N, α > 0, x ∈

R. Then ω1 (Dα
∗xf, h)[x,+∞), ω1

(
Dα

x−f, h
)
(−∞,x]

are continuous functions of x ∈ R,
h > 0 fixed.

We make

Remark 2.17. Let g be continuous and bounded from R to R. Then

ω1 (g, t) ≤ 2 ‖g‖∞ < ∞. (2.12)

Assuming that (Dα
∗xf) (t),

(
Dα

x−f
)
(t), are both continuous and bounded in (x, t)

∈ R2, i.e.
‖Dα

∗xf‖∞ ≤ K1, ∀ x ∈ R; (2.13)∥∥Dα
x−f

∥∥
∞ ≤ K2, ∀ x ∈ R, (2.14)

where K1,K2 > 0, we get

ω1 (Dα
∗xf, ξ)[x,+∞) ≤ 2K1;

ω1

(
Dα

x−f, ξ
)
(−∞,x]

≤ 2K2, ∀ ξ ≥ 0, (2.15)

for each x ∈ R.
Therefore, for any ξ ≥ 0,

sup
x∈R

[
max

(
ω1 (Dα

∗xf, ξ)[x,+∞) , ω1

(
Dα

x−f, ξ
)
(−∞,x]

)]
≤ 2 max (K1,K2) < ∞. (2.16)

So in our setting for f ∈ Cm (R),
∥∥f (m)

∥∥
∞ < ∞, m = dαe, α /∈ N, α > 0, by Corollary

2.13 both (Dα
∗xf) (t),

(
Dα

x−f
)
(t) are jointly continuous in (t, x) on R2. Assuming

further that they are both bounded on R2 we get (2.16) valid. In particular, each of
ω1 (Dα

∗xf, ξ)[x,+∞), ω1

(
Dα

x−f, ξ
)
(−∞,x]

is finite for any ξ ≥ 0.
Clearly here we have that sup

x∈R
ω1 (Dα

∗xf, ξ)[x,+∞) → 0, as ξ → 0+, and

sup
x∈R

ω1

(
Dα

x−f, ξ
)
(−∞,x]

→ 0, as ξ → 0 + .

Let us now assume only that f ∈ Cm−1 (R), f (m) ∈ L∞ (R), m = dαe, α > 0,
α /∈ N, x ∈ R. Then, by Proposition 15.114, p. 388 of [4], we find that Dα

∗xf ∈
C ([x,+∞)), and by [6] we obtain that Dα

x−f ∈ C ((−∞, x]) .

We make

Remark 2.18. Again let f ∈ Cm (R), m = dαe, α /∈ N, α > 0; f (m) (x) = 1, ∀ x ∈ R;
x0 ∈ R. Notice 0 < m− α < 1. Then

Dα
∗x0

f (x) =
(x− x0)

m−α

Γ (m− α + 1)
, ∀ x ≥ x0. (2.17)
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Let us consider x, y ≥ x0, then∣∣Dα
∗x0

f (x)−Dα
∗x0

f (y)
∣∣ =

1
Γ (m− α + 1)

∣∣∣(x− x0)
m−α − (y − x0)

m−α
∣∣∣

≤ |x− y|m−α

Γ (m− α + 1)
. (2.18)

So it is not strange to assume that∣∣Dα
∗x0

f (x1)−Dα
∗x0

f (x2)
∣∣ ≤ K |x1 − x2|β , (2.19)

K > 0, 0 < β ≤ 1, ∀ x1, x2 ∈ R, x1, x2 ≥ x0 ∈ R, where more generally it is∥∥f (m)
∥∥
∞ < ∞. Thus, one may assume

ω1

(
Dα

x−f, ξ
)
(−∞,x]

≤ M1ξ
β1 , and (2.20)

ω1 (Dα
∗xf, ξ)[x,+∞) ≤ M2ξ

β2 ,

where 0 < β1, β2 ≤ 1, ∀ ξ > 0, M1,M2 > 0; any x ∈ R.
Setting β = min (β1, β2) and M = max (M1,M2), in that case we obtain

sup
x∈R

{
max

(
ω1

(
Dα

x−f, ξ
)
(−∞,x]

, ω1 (Dα
∗xf, ξ)[x,+∞)

)}
≤ Mξβ → 0, as ξ → 0 + .

(2.21)

3. Results

3.1. Fractional convergence with rates of the Cardaliaguet-Euvrard neural network
operators

We need the following (see [7]).

Definition 3.1. A function b : R → R is said to be bell-shaped if b belongs to L1

and its integral is nonzero, if it is nondecreasing on (−∞, a) and nonincreasing on
[a,+∞), where a belongs to R. In particular b (x) is a nonnegative number and at a
b takes a global maximum; it is the center of the bell-shaped function. A bell-shaped
function is said to be centered if its center is zero. The function b (x) may have jump
discontinuities. In this work we consider only centered bell-shaped functions of compact
support [−T, T ], T > 0. Call I :=

∫ T

−T
b (t) dt. Note that I > 0.

We follow [1], [7].

Example 3.2. (1) b (x) can be the characteristic function over [−1, 1] .
(2) b (x) can be the hat function over [−1, 1], i.e.,

b (x) =

 1 + x, − 1 ≤ x ≤ 0,
1− x, 0 < x ≤ 1
0, elsewhere.

These are centered bell-shaped functions of compact support.
Here we consider functions f : R → R that are continuous.
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In this article we study the fractional convergence with rates over the real line,
to the unit operator, of the Cardaliaguet-Euvrard neural network operators (see [7]),

(Fn (f)) (x) :=
n2∑

k=−n2

f
(

k
n

)
I · nα

· b
(

n1−α ·
(

x− k

n

))
, (3.1)

where 0 < α < 1 and x ∈ R, n ∈ N. The terms in the sum (3.1) can be nonzero iff∣∣∣∣n1−α

(
x− k

n

)∣∣∣∣ ≤ T , i.e.
∣∣∣∣x− k

n

∣∣∣∣ ≤ T

n1−α

iff
nx− Tnα ≤ k ≤ nx + Tnα. (3.2)

In order to have the desired order of numbers

−n2 ≤ nx− Tnα ≤ nx + Tnα ≤ n2, (3.3)

it is sufficient enough to assume that

n ≥ T + |x| . (3.4)

When x ∈ [−T, T ] it is enough to assume n ≥ 2T which implies (3.3).

Proposition 3.3. Let a ≤ b, a, b ∈ R. Let card (k) (≥ 0) be the maximum number of
integers contained in [a, b]. Then

max (0, (b− a)− 1) ≤ card (k) ≤ (b− a) + 1. (3.5)

Remark 3.4. We would like to establish a lower bound on card (k) over the interval
[nx− Tnα, nx + Tnα]. From Proposition 3.3 we get that

card (k) ≥ max (2Tnα − 1, 0) .

We obtain card (k) ≥ 1, if

2Tnα − 1 ≥ 1 iff n ≥ T−
1
α .

So to have the desired order (3.3) and card (k) ≥ 1 over [nx− Tnα, nx + Tnα], we
need to consider

n ≥ max
(
T + |x| , T− 1

α

)
. (3.6)

Also notice that card (k) → +∞, as n → +∞. We call b∗ := b (0) the maximum of
b (x) .

Denote by [·] the integral part of a number.
Following [1] we have

[nx+Tnα]∑
k=dnx−Tnαe

1
I · nα

· b
(

n1−α ·
(

x− k

n

))

≤ b∗

I · nα
·

[nx+Tnα]∑
k=dnx−Tnαe

1

≤ b∗

I · nα
· (2Tnα + 1) =

b∗

I
·
(

2T +
1

nα

)
. (3.7)
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We will use

Lemma 3.5. It holds that

Sn (x) :=
[nx+Tnα]∑

k=dnx−Tnαe

1
I · nα

· b
(

n1−α

(
x− k

n

))
→ 1, (3.8)

pointwise, as n → +∞, where x ∈ R.

Remark 3.6. Clearly we have that

nx− Tnα ≤ nx ≤ nx + Tnα. (3.9)

We prove in general that

nx− Tnα ≤ [nx] ≤ nx ≤ dnxe ≤ nx + Tnα. (3.10)

Indeed we have that, if [nx] < nx−Tnα, then [nx]+Tnα < nx, and [nx]+[Tnα] ≤ [nx],
resulting into [Tnα] = 0, which for large enough n is not true. Therefore nx− Tnα ≤
[nx]. Similarly, if dnxe > nx+Tnα, then nx+Tnα ≥ nx+[Tnα], and dnxe− [Tnα] >
nx, thus dnxe− [Tnα] ≥ dnxe, resulting into [Tnα] = 0, which again for large enough
n is not true.

Therefore without loss of generality we may assume that

nx− Tnα ≤ [nx] ≤ nx ≤ dnxe ≤ nx + Tnα. (3.11)

Hence dnx− Tnαe ≤ [nx] and dnxe ≤ [nx + Tnα] . Also if [nx] 6= dnxe, then dnxe =
[nx] + 1. If [nx] = dnxe, then nx ∈ Z; and by assuming n ≥ T−

1
α , we get Tnα ≥ 1

and nx + Tnα ≥ nx + 1, so that [nx + Tnα] ≥ nx + 1 = [nx] + 1.

We present our first main result

Theorem 3.7. We consider f : R → R. Let β > 0, N = dβe, β /∈ N, f ∈ ACN ([a, b]),
∀ [a, b] ⊂ R, with f (N) ∈ L∞ (R). Let also x ∈ R, T > 0, n ∈ N : n ≥
max

(
T + |x| , T− 1

α

)
. We further assume that Dβ

∗xf, Dβ
x−f are uniformly continu-

ous functions or continuous and bounded on [x,+∞), (−∞, x], respectively.
Then
1)

|Fn (f) (x)− f (x)| ≤ |f (x)| · (3.12)∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

b∗

I

(
2T +

1
nα

) N−1∑
j=1

∣∣f (j) (x)
∣∣ T j

j!n(1−α)j


+

b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·{

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
,
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above
∑0

j=1 · = 0,

2) ∣∣∣∣∣∣(Fn (f)) (x)−
N−1∑
j=0

f (j) (x)
j!

(
Fn

(
(· − x)j

))
(x)

∣∣∣∣∣∣ ≤ (3.13)

b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
·{

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
=: λn (x) ,

3) assume further that f (j) (x) = 0, for j = 0, 1, ..., N − 1, we get

|Fn (f) (x)| ≤ λn (x) , (3.14)

4) in case of N = 1, we obtain

|Fn (f) (x)− f (x)| ≤ |f (x)| · (3.15)∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
·{

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
.

Here we get fractionally with rates the pointwise convergence of (Fn (f)) (x) → f (x),
as n →∞, x ∈ R.

Proof. Let x ∈ R. We have that

Dβ
x−f (x) = Dβ

∗xf (x) = 0. (3.16)

From [8], p. 54, we get by the left Caputo fractional Taylor formula that

f

(
k

n

)
=

N−1∑
j=0

f (j) (x)
j!

(
k

n
− x

)j

+ (3.17)

1
Γ (β)

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ,

for all x ≤ k
n ≤ x + Tnα−1, iff dnxe ≤ k ≤ [nx + Tnα], where k ∈ Z.

Also from [2], using the right Caputo fractional Taylor formula we get

f

(
k

n

)
=

N−1∑
j=0

f (j) (x)
j!

(
k

n
− x

)j

+ (3.18)

1
Γ (β)

∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ,
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for all x− Tnα−1 ≤ k
n ≤ x, iff dnx− Tnαe ≤ k ≤ [nx], where k ∈ Z.

Notice that dnxe ≤ [nx] + 1.
Hence we have

f
(

k
n

)
b
(
n1−α

(
x− k

n

))
Inα

=
N−1∑
j=0

f (j) (x)
j!

(
k

n
− x

)j b
(
n1−α

(
x− k

n

))
Inα

+ (3.19)

b
(
n1−α

(
x− k

n

))
InαΓ (β)

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ,

and

f
(

k
n

)
b
(
n1−α

(
x− k

n

))
Inα

=
N−1∑
j=0

f (j) (x)
j!

(
k

n
− x

)j b
(
n1−α

(
x− k

n

))
Inα

+ (3.20)

b
(
n1−α

(
x− k

n

))
InαΓ (β)

∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ.

Therefore we obtain ∑[nx+Tnα]
k=[nx]+1 f

(
k
n

)
b
(
n1−α

(
x− k

n

))
Inα

= (3.21)

N−1∑
j=0

f (j) (x)
j!

∑[nx+Tnα]
k=[nx]+1

(
k
n − x

)j
b
(
n1−α

(
x− k

n

))
Inα

 +

[nx+Tnα]∑
k=[nx]+1

b
(
n1−α

(
x− k

n

))
InαΓ (β)

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ,

and ∑[nx]
k=dnx−Tnαe f

(
k
n

)
b
(
n1−α

(
x− k

n

))
Inα

= (3.22)

N−1∑
j=0

f (j) (x)
j!

∑[nx]
k=dnx−Tnαe

(
k
n − x

)j
b
(
n1−α

(
x− k

n

))
Inα

+

∑[nx]
k=dnx−Tnαe b

(
n1−α

(
x− k

n

))
InαΓ (β)

∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ.

We notice here that

(Fn (f)) (x) :=
n2∑

k=−n2

f
(

k
n

)
Inα

b

(
n1−α

(
x− k

n

))
= (3.23)

[nx+Tnα]∑
k=dnx−Tnαe

f
(

k
n

)
Inα

b

(
n1−α

(
x− k

n

))
.

Adding the two equalities (3.21) and (3.22) we obtain

(Fn (f)) (x) =
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N−1∑
j=0

f (j) (x)
j!

∑[nx+Tnα]
k=dnx−Tnαe

(
k
n − x

)j
b
(
n1−α

(
x− k

n

))
Inα

 + θn (x) , (3.24)

where

θn (x) :=

∑[nx]
k=dnx−Tnαe b

(
n1−α

(
x− k

n

))
InαΓ (β)

·∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ+

[nx+Tnα]∑
k=[nx]+1

b
(
n1−α

(
x− k

n

))
InαΓ (β)

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ. (3.25)

We call

θ1n (x) :=

∑[nx]
k=dnx−Tnαe b

(
n1−α

(
x− k

n

))
InαΓ (β)

·∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ, (3.26)

and

θ2n (x) :=
[nx+Tnα]∑
k=[nx]+1

b
(
n1−α

(
x− k

n

))
InαΓ (β)

·

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ. (3.27)

I.e.
θn (x) = θ1n (x) + θ2n (x) . (3.28)

We further have

(Fn (f)) (x)− f (x) = f (x)

∑[nx+Tnα]
k=dnx−Tnαe b

(
n1−α

(
x− k

n

))
Inα

− 1

 + (3.29)

N−1∑
j=0

f (j) (x)
j!

∑[nx+Tnα]
k=dnx−Tnαe

(
k
n − x

)j
b
(
n1−α

(
x− k

n

))
Inα

 + θn (x) ,

and

|(Fn (f)) (x)− f (x)| ≤ |f (x)|

∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

N−1∑
j=1

∣∣f (j) (x)
∣∣

j!

∑[nx+Tnα]
k=dnx−Tnαe

∣∣x− k
n

∣∣j b
(
n1−α

(
x− k

n

))
Inα

 + |θn (x)| ≤

|f (x)|

∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ + (3.30)
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N−1∑
j=1

∣∣f (j) (x)
∣∣

j!
T j

n(1−α)j

∑[nx+Tnα]
k=dnx−Tnαe b

(
n1−α

(
x− k

n

))
Inα

 + |θn (x)| =: (∗) .

But we have
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
≤ b∗

I

(
2T +

1
nα

)
, (3.31)

by (3.7).
Therefore we obtain

|(Fn (f)) (x)− f (x)| ≤ |f (x)|

∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

b∗

I

(
2T +

1
nα

) N−1∑
j=1

∣∣f (j) (x)
∣∣ T j

j!n(1−α)j

 + |θn (x)| . (3.32)

Next we see that

γ1n :=
1

Γ (β)

∣∣∣∣∣
∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ

∣∣∣∣∣ ≤ (3.33)

1
Γ (β)

∫ x

k
n

(
J − k

n

)β−1 ∣∣∣Dβ
x−f (J)−Dβ

x−f (x) dJ
∣∣∣ ≤

1
Γ (β)

∫ x

k
n

(
J − k

n

)β−1

ω1

(
Dβ

x−f, |J − x|
)

(−∞,x]
dJ ≤

1
Γ (β)

ω1

(
Dβ

x−f,

∣∣∣∣x− k

n

∣∣∣∣)
(−∞,x]

∫ x

k
n

(
J − k

n

)β−1

dJ ≤

1
Γ (β)

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

(
x− k

n

)β

β
≤

1
Γ (β + 1)

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

T β

n(1−α)β
.

That is

γ1n ≤
T β

Γ (β + 1)n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

. (3.34)

Furthermore

|θ1n (x)| ≤
[nx]∑

k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
Inα

γ1n ≤ (3.35)

 [nx]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
Inα

 T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

≤
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k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
Inα

 T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

≤

b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

.

So that

|θ1n (x)| ≤ b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

. (3.36)

Similarly we derive

γ2n :=
1

Γ (β)

∣∣∣∣∣
∫ k

n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ

∣∣∣∣∣ ≤ (3.37)

1
Γ (β)

∫ k
n

x

(
k

n
− J

)β−1 ∣∣Dβ
∗xf (J)−Dβ

∗xf (x)
∣∣ dJ ≤

ω1

(
Dβ
∗xf, T

n1−α

)
[x,+∞)

Γ (β + 1)

(
k

n
− x

)β

≤

ω1

(
Dβ
∗xf, T

n1−α

)
[x,+∞)

Γ (β + 1)
T β

n(1−α)β
.

That is

γ2n ≤
T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

. (3.38)

Consequently we find

|θ2n (x)| ≤

[nx+Tnα]∑
k=[nx]+1

b
(
n1−α

(
x− k

n

))
Inα

 ·

T β

Γ (β + 1)n(1−α)β
ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

≤ (3.39)

b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

.

So we have proved that

|θn (x)| ≤ b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
· (3.40){

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
.

Combining (3.32) and (3.40) we have (3.12). �

As an application of Theorem 3.7 we give
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Theorem 3.8. Let β > 0, N = dβe, β /∈ N, f ∈ CN (R), with f (N) ∈ L∞ (R). Let also
T > 0, n ∈ N : n ≥ max

(
2T, T−

1
α

)
. We further assume that Dβ

∗xf (t), Dβ
x−f (t) are

both bounded in (x, t) ∈ R2. Then
1)

‖Fn (f)− f‖∞,[−T,T ] ≤ ‖f‖∞,[−T,T ] · (3.41)∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
∞,[−T,T ]

+

b∗

I

(
2T +

1
nα

) N−1∑
j=1

∥∥f (j)
∥∥
∞,[−T,T ]

T j

j!n(1−α)j

 +
b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·

{
sup

x∈[−T,T ]

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ sup
x∈[−T,T ]

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
,

2) in case of N = 1, we obtain

‖Fn (f)− f‖∞,[−T,T ] ≤ ‖f‖∞,[−T,T ] · (3.42)∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
∞,[−T,T ]

+

b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
·{

sup
x∈[−T,T ]

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ sup
x∈[−T,T ]

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
.

An interesting case is when β = 1
2 .

Assuming further that
∥∥∥∑[nx+Tnα]

k=dnx−Tnαe
1

Inα b
(
n1−α

(
x− k

n

))
− 1

∥∥∥
∞,[−T,T ]

→ 0,

as n → ∞, we get fractionally with rates the uniform convergence of Fn (f) → f , as
n →∞.

Proof. From (3.12), (3.15) of Theorem 3.7, and by Remark 2.17.
Also by

[nx+Tnα]∑
k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
≤ b∗

I
(2T + 1) , (3.43)

we get that∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
∞,[−T,T ]

≤
(

b∗

I
(2T + 1) + 1

)
. (3.44)

�
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One can also apply Remark 2.18 to the last Theorem 3.8, to get interesting and
simplified results.

We make

Remark 3.9. Let b (x) be a centered bell-shaped continuous function on R of com-
pact support [−T, T ], T > 0. Let x ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N : n ≥
max

(
T + T ∗, T−

1
α

)
, 0 < α < 1. Consider p ≥ 1.

Clearly we get here that∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣
p

≤
(

b∗

I
(2T + 1) + 1

)p

, (3.45)

for all x ∈ [−T ∗, T ∗], for any n ≥ max
(
T + T ∗, T−

1
α

)
.

By Lemma 3.5, we obtain that

lim
n→∞

∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣
p

= 0, (3.46)

all x ∈ [−T ∗, T ∗].
Now it is clear, by the bounded convergence theorem, that

lim
n→∞

∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
p,[−T∗,T∗]

= 0. (3.47)

Let β > 0, N = dβe, β /∈ N, f ∈ CN (R), f (N) ∈ L∞ (R). Here both Dα
∗xf (t),

Dα
x−f (t) are bounded in (x, t) ∈ R2.

By Theorem 3.7 we have

|Fn (f) (x)− f (x)| ≤ ‖f‖∞,[−T∗,T∗] · (3.48)∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

b∗

I

(
2T +

1
nα

) N−1∑
j=1

∣∣f (j) (x)
∣∣ T j

j!n(1−α)j


+

b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·{

sup
x∈[−T∗,T∗]

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ sup
x∈[−T∗,T∗]

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
.

Applying to the last inequality (3.48) the monotonicity and subadditive property of
‖·‖p, we derive the following Lp, p ≥ 1, interesting result.
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Theorem 3.10. Let b (x) be a centered bell-shaped continuous function on R of com-
pact support [−T, T ], T > 0. Let x ∈ [−T ∗, T ∗], T ∗ > 0, and n ∈ N : n ≥
max

(
T + T ∗, T−

1
α

)
, 0 < α < 1, p ≥ 1. Let β > 0, N = dβe, β /∈ N, f ∈ CN (R),

with f (N) ∈ L∞ (R). Here both Dβ
∗xf (t), Dβ

x−f (t) are bounded in (x, t) ∈ R2. Then
1)

‖Fnf − f‖p,[−T∗,T∗] ≤ ‖f‖∞,[−T∗,T∗] · (3.49)∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
p,[−T∗,T∗]

+

b∗

I

(
2T +

1
nα

) N−1∑
j=1

∥∥f (j)
∥∥

p,[−T∗,T∗]
T j

j!n(1−α)j

 +

2
1
p T ∗

1
p b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·{

sup
x∈[−T∗,T∗]

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ sup
x∈[−T∗,T∗]

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
,

2) When N = 1, we derive

‖Fnf − f‖p,[−T∗,T∗] ≤ ‖f‖∞,[−T∗,T∗] · (3.50)∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
p,[−T∗,T∗]

+

2
1
p T ∗

1
p b∗

I

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·{

sup
x∈[−T∗,T∗]

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ sup
x∈[−T∗,T∗]

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
.

By (3.49), (3.50) we derive the fractional Lp, p ≥ 1, convergence with rates of Fnf to
f .

3.2. The ”Squashing operators” and their fractional convergence to the unit with
rates

We need (see also [1], [7]).

Definition 3.11. Let the nonnegative function S : R → R, S has compact support
[−T, T ], T > 0, and is nondecreasing there and it can be continuous only on either
(−∞, T ] or [−T, T ]. S can have jump discontinuities. We call S the ”squashing func-
tion”.
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Let f : R → R be continuous. Assume that

I∗ :=
∫ T

−T

S (t) dt > 0. (3.51)

Obviously
max

x∈[−T,T ]
S (x) = S (T ) . (3.52)

For x ∈ R we define the ”squashing operator” ([1])

(Gn (f)) (x) :=
n2∑

k=−n2

f
(

k
n

)
I∗ · nα

· S
(

n1−α ·
(

x− k

n

))
, (3.53)

0 < α < 1 and n ∈ N : n ≥ max
(
T + |x| , T− 1

α

)
. It is clear that

(Gn (f)) (x) =
[nx+Tnα]∑

k=dnx−Tnαe

f
(

k
n

)
I∗ · nα

· S
(

n1−α ·
(

x− k

n

))
. (3.54)

Here we study the fractional convergence with rates of (Gnf) (x) → f (x), as n → +∞,
x ∈ R.

Notice that
[nx+Tnα]∑

k=dnx−Tnαe

1 ≤ (2Tnα + 1) . (3.55)

From [1] we need

Lemma 3.12. It holds that

Dn (x) :=
[nx+Tnα]∑

k=dnx−Tnαe

1
I∗ · nα

· S
(

n1−α ·
(

x− k

n

))
→ 1, (3.56)

pointwise, as n → +∞, where x ∈ R.

We present our second main result

Theorem 3.13. We consider f : R → R. Let β > 0, N = dβe, β /∈ N, f ∈ ACN ([a, b]),
∀ [a, b] ⊂ R, with f (N) ∈ L∞ (R). Let also x ∈ R, T > 0, n ∈ N : n ≥
max

(
T + |x| , T− 1

α

)
. We further assume that Dβ

∗xf , Dβ
x−f are uniformly continu-

ous functions or continuous and bounded on [x,+∞), (−∞, x], respectively.
Then
1)

|Gn (f) (x)− f (x)| ≤ |f (x)| · (3.57)∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

S (T )
I∗

(
2T +

1
nα

) N−1∑
j=1

∣∣f (j) (x)
∣∣ T j

j!n(1−α)j


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+
S (T )

I∗

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
·{

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
,

above
∑0

j=1 · = 0,

2) ∣∣∣∣∣∣(Gn (f)) (x)−
N−1∑
j=0

f (j) (x)
j!

(
Gn

(
(· − x)j

))
(x)

∣∣∣∣∣∣ ≤ (3.58)

S (T )
I∗

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·{

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
=: λ∗n (x) ,

3) assume further that f (j) (x) = 0, for j = 0, 1, ..., N − 1, we get

|Gn (f) (x)| ≤ λ∗n (x) , (3.59)

4) in case of N = 1, we obtain

|Gn (f) (x)− f (x)| ≤ |f (x)| · (3.60)∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

S (T )
I∗

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·{

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
.

Here we get fractionally with rates the pointwise convergence of (Gn (f)) (x) → f (x),
as n →∞, x ∈ R.

Proof. Let x ∈ R. We have that

Dβ
x−f (x) = Dβ

∗xf (x) = 0.

From [8], p. 54, we get by the left Caputo fractional Taylor formula that

f

(
k

n

)
=

N−1∑
j=0

f (j) (x)
j!

(
k

n
− x

)j

+ (3.61)

1
Γ (β)

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ,

for all x ≤ k
n ≤ x + Tnα−1, iff dnxe ≤ k ≤ [nx + Tnα], where k ∈ Z.
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Also from [2], using the right Caputo fractional Taylor formula we get

f

(
k

n

)
=

N−1∑
j=0

f (j) (x)
j!

(
k

n
− x

)j

+ (3.62)

1
Γ (β)

∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ,

for all x− Tnα−1 ≤ k
n ≤ x, iff dnx− Tnαe ≤ k ≤ [nx], where k ∈ Z.

Hence we have

f
(

k
n

)
S

(
n1−α

(
x− k

n

))
I∗nα

=
N−1∑
j=0

f (j) (x)
j!

(
k

n
− x

)j S
(
n1−α

(
x− k

n

))
I∗nα

+ (3.63)

S
(
n1−α

(
x− k

n

))
I∗nαΓ (β)

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ,

and

f
(

k
n

)
S

(
n1−α

(
x− k

n

))
I∗nα

=
N−1∑
j=0

f (j) (x)
j!

(
k

n
− x

)j S
(
n1−α

(
x− k

n

))
I∗nα

+ (3.64)

S
(
n1−α

(
x− k

n

))
I∗nαΓ (β)

∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ.

Therefore we obtain ∑[nx+Tnα]
k=[nx]+1 f

(
k
n

)
S

(
n1−α

(
x− k

n

))
I∗nα

= (3.65)

N−1∑
j=0

f (j) (x)
j!

∑[nx+Tnα]
k=[nx]+1

(
k
n − x

)j
S

(
n1−α

(
x− k

n

))
I∗nα

 +

[nx+Tnα]∑
k=[nx]+1

S
(
n1−α

(
x− k

n

))
I∗nαΓ (β)

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ,

and ∑[nx]
k=dnx−Tnαe f

(
k
n

)
S

(
n1−α

(
x− k

n

))
I∗nα

= (3.66)

N−1∑
j=0

f (j) (x)
j!

∑[nx]
k=dnx−Tnαe

(
k
n − x

)j
S

(
n1−α

(
x− k

n

))
I∗nα

+

∑[nx]
k=dnx−Tnαe S

(
n1−α

(
x− k

n

))
I∗nαΓ (β)

∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ.

Adding the two equalities (3.65) and (3.66) we obtain

(Gn (f)) (x) =
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N−1∑
j=0

f (j) (x)
j!

∑[nx+Tnα]
k=dnx−Tnαe

(
k
n − x

)j
S

(
n1−α

(
x− k

n

))
I∗nα

 + Mn (x) , (3.67)

where

Mn (x) :=

∑[nx]
k=dnx−Tnαe S

(
n1−α

(
x− k

n

))
I∗nαΓ (β)

·

∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ+

[nx+Tnα]∑
k=[nx]+1

S
(
n1−α

(
x− k

n

))
I∗nαΓ (β)

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ. (3.68)

We call

M1n (x) :=
[nx]∑

k=dnx−Tnαe

S
(
n1−α

(
x− k

n

))
I∗nαΓ (β)

·

∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ, (3.69)

and

M2n (x) :=
[nx+Tnα]∑
k=[nx]+1

S
(
n1−α

(
x− k

n

))
I∗nαΓ (β)

·

∫ k
n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ. (3.70)

I.e.
Mn (x) = M1n (x) + M2n (x) . (3.71)

We further have

(Gn (f)) (x)− f (x) = f (x)

∑[nx+Tnα]
k=dnx−Tnαe S

(
n1−α

(
x− k

n

))
I∗nα

− 1

 + (3.72)

N−1∑
j=0

f (j) (x)
j!

∑[nx+Tnα]
k=dnx−Tnαe

(
k
n − x

)j
S

(
n1−α

(
x− k

n

))
I∗nα

 + Mn (x) ,

and

|(Gn (f)) (x)− f (x)| ≤ |f (x)|

∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ + (3.73)

N−1∑
j=1

∣∣f (j) (x)
∣∣

j!

∑[nx+Tnα]
k=dnx−Tnαe

∣∣x− k
n

∣∣j S
(
n1−α

(
x− k

n

))
I∗nα

 + |Mn (x)| ≤
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|f (x)|

∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

N−1∑
j=1

∣∣f (j) (x)
∣∣

j!
T j

n(1−α)j

∑[nx+Tnα]
k=dnx−Tnαe S

(
n1−α

(
x− k

n

))
I∗nα

 + |Mn (x)| =: (∗) . (3.74)

Therefore we obtain

|(Gn (f)) (x)− f (x)| ≤ |f (x)|

∣∣∣∣∣∣
[nx+Tnα]∑

k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
− 1

∣∣∣∣∣∣ +

S (T )
I∗

(
2T +

1
nα

) N−1∑
j=1

∣∣f (j) (x)
∣∣ T j

j!n(1−α)j

 + |Mn (x)| . (3.75)

We call

γ1n :=
1

Γ (β)

∣∣∣∣∣
∫ x

k
n

(
J − k

n

)β−1 (
Dβ

x−f (J)−Dβ
x−f (x)

)
dJ

∣∣∣∣∣ . (3.76)

As in the proof of Theorem 3.7 we have

γ1n ≤
T β

Γ (β + 1)n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

. (3.77)

Furthermore

|M1n (x)| ≤
[nx]∑

k=dnx−Tnαe

S
(
n1−α

(
x− k

n

))
I∗nα

γ1n ≤ (3.78)

 [nx]∑
k=dnx−Tnαe

S
(
n1−α

(
x− k

n

))
I∗nα

 T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

≤

 [nx+Tnα]∑
k=dnx−Tnαe

S
(
n1−α

(
x− k

n

))
I∗nα

 T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

≤

S (T )
I∗

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

.

So that

|M1n (x)| ≤ S (T )
I∗

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

. (3.79)

We also call

γ2n :=
1

Γ (β)

∣∣∣∣∣
∫ k

n

x

(
k

n
− J

)β−1 (
Dβ
∗xf (J)−Dβ

∗xf (x)
)
dJ

∣∣∣∣∣ . (3.80)
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As in the proof of Theorem 3.7 we get

γ2n ≤
T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

. (3.81)

Consequently we find

|M2n (x)| ≤

[nx+Tnα]∑
k=[nx]+1

S
(
n1−α

(
x− k

n

))
I∗nα

 ·

T β

Γ (β + 1)n(1−α)β
ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

≤ (3.82)

S (T )
I∗

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

.

So we have proved that

|Mn (x)| ≤ S (T )
I∗

(
2T +

1
nα

)
T β

Γ (β + 1) n(1−α)β
· (3.83){

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
.

Combining (3.75) and (3.83) we have (3.57). �

As an application of Theorem 3.13 we give

Theorem 3.14. Let β > 0, N = dβe, β /∈ N, f ∈ CN (R), with f (N) ∈ L∞ (R). Let
also T > 0, n ∈ N : n ≥ max

(
2T, T−

1
α

)
. We further assume that Dβ

∗xf (t), Dβ
x−f (t)

are both bounded in (x, t) ∈ R2. Then
1)

‖Gn (f)− f‖∞,[−T,T ] ≤ ‖f‖∞,[−T,T ] · (3.84)∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
∞,[−T,T ]

+

S (T )
I∗

(
2T +

1
nα

) N−1∑
j=1

∥∥f (j)
∥∥
∞,[−T,T ]

T j

j!n(1−α)j

 +

S (T )
I∗

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·{

sup
x∈[−T,T ]

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ sup
x∈[−T,T ]

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
,

2) in case of N = 1, we obtain

‖Gn (f)− f‖∞,[−T,T ] ≤ ‖f‖∞,[−T,T ] · (3.85)
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[nx+Tnα]∑

k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
∞,[−T,T ]

+

S (T )
I∗

(
2T +

1
nα

)
T β

Γ (β + 1)n(1−α)β
·{

sup
x∈[−T,T ]

ω1

(
Dβ
∗xf,

T

n1−α

)
[x,+∞)

+ sup
x∈[−T,T ]

ω1

(
Dβ

x−f,
T

n1−α

)
(−∞,x]

}
.

An interesting case is when β = 1
2 .

Assuming further that
∥∥∥∑[nx+Tnα]

k=dnx−Tnαe
1

I∗nα S
(
n1−α

(
x− k

n

))
− 1

∥∥∥
∞,[−T,T ]

→ 0,

as n →∞, we get fractionally with rates the uniform convergence of Gn (f) → f , as
n →∞.

Proof. From (3.57), (3.60) of Theorem 3.13, and by Remark 2.17.
Also by

[nx+Tnα]∑
k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
≤ S (T )

I∗
(2T + 1) , (3.86)

we get that∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
I∗nα

S

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
∞,[−T,T ]

≤
(

S (T )
I∗

(2T + 1) + 1
)

.

(3.87)
�

One can also apply Remark 2.18 to the last Theorem 3.14, to get interesting and
simplified results.

Note 3.15. The maps Fn, Gn, n ∈ N, are positive linear operators.

We finish with

Remark 3.16. The condition of Theorem 3.8 that∥∥∥∥∥∥
[nx+Tnα]∑

k=dnx−Tnαe

1
Inα

b

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
∞,[−T,T ]

→ 0, (3.88)

as n →∞, is not uncommon.

We give an example related to that.
We take as b (x) the characteristic function over [−1, 1], that is χ[−1,1] (x). Here

T = 1 and I = 2, n ≥ 2, x ∈ [−1, 1] .
We get that

[nx+nα]∑
k=dnx−nαe

1
2nα

χ[−1,1]

(
n1−α

(
x− k

n

))
(3.2)
=

[nx+nα]∑
k=dnx−nαe

1
2nα

=
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1
2nα

 [nx+nα]∑
k=dnx−nαe

1

 =
([nx + nα]− dnx− nαe+ 1)

2nα
. (3.89)

But we have
[nx + nα]− dnx− nαe+ 1 ≤ 2nα + 1,

hence
([nx + nα]− dnx− nαe+ 1)

2nα
≤ 1 +

1
2nα

. (3.90)

Also it holds

[nx + nα]− dnx− nαe+ 1 ≥ 2nα − 2 + 1 = 2nα − 1,

and
([nx + nα]− dnx− nαe+ 1)

2nα
≥ 1− 1

2nα
. (3.91)

Consequently we derive that

− 1
2nα

≤

 [nx+nα]∑
k=dnx−nαe

1
2nα

χ[−1,1]

(
n1−α

(
x− k

n

))
− 1

 ≤ 1
2nα

, (3.92)

for any x ∈ [−1, 1] and for any n ≥ 2.
Hence we get∥∥∥∥∥∥

[nx+nα]∑
k=dnx−nαe

1
2nα

χ[−1,1]

(
n1−α

(
x− k

n

))
− 1

∥∥∥∥∥∥
∞,[−1,1]

→ 0, as n →∞. (3.93)
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Looking for an exact difference formula
for the Dini-Hadamard-like subdifferential

Alina-Ramona Baias and Delia-Maria Nechita

Abstract. We use in this paper a new concept of a directional subdifferential,
namely the Dini-Hadamard-like ε-subdifferential, recently introduced in [29], in
order to provide a subdifferential formula for the difference of two directionally
approximately starshaped functions (a valuable class of nonsmooth functions, see
for instance [32]), under weaker conditions than those presented in [7]. As a conse-
quence, we furnish necessary and sufficient optimality conditions for a nonsmooth
optimization problem having the difference of two functions as objective.

Mathematics Subject Classification (2010): 26B25, 49J52, 90C56.

Keywords: Fréchet ε-subdifferential, Dini-Hadamard ε-subdifferential, Dini-
Hadamard-like ε-subdifferential, directionally convergent sequence, sponge, di-
rectional lower limit, approximately starshaped functions, directionally approxi-
mately starshaped functions, spongiously local blunt minimizer.

1. Introduction

Since the early 1960’s there has been a good amount of interest in generalizations
of the pointwise derivative for the purposes of optimization. This has lead to many
definitions of generalized gradients, subgradients and other kind of objects under var-
ious names. And all this work in order to solve optimization problems where classical
differentiability assumptions are no longer appropriate. One of the most widely used
subdifferential (set of subgradients) is the one who first appeared for convex functions
in the context of convex analysis (see for more details [28, 38, 39] and the references
therein). It has found many significant theoretical and practical uses in optimization,
economics, mechanics and has proven to be a very interesting mathematical construct.
But the attempt to extend this success to functions which are no more convex has
proven to be more difficult. We mention here two main approaches.

The authors wish to thank for the financial support provided from programs co-financed by The
Sectoral Operational Programme Human Resources Development, Contract POSDRU 6/1.5/S/3 -

”Doctoral studies: through science towards society”.
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The first one uses a generalized directional derivative f∂ of f : X → R ∪ {+∞}
of some type and then defines the subdifferential via the formula

∂f(x) := {x∗ ∈ X∗ : x∗ ≤ f∂(x, ·)}, (1.1)

where X∗ is the topological dual of X. It is worth mentioning here that any subdiffer-
ential construction generated by a polarity relation like (1.1) is automatically convex
regardless of the convexity of the generating directional derivative. As an example, the
Clarke subdifferential, who in fact uses a positively homogeneous directional deriva-
tive, was the first concept of a subdifferential defined for a general nonconvex function
and has been introduced in 1973 by Clarke (see for instance [9, 10]) who performed a
real pioneering work in the field of nonsmooth analysis, spread far beyond the scope
of convexity. But unfortunately, as stated in [4], at some abnormal points of certain
even Lipschitzian nonsmooth functions, the Clarke subdifferential may include some
extraneous subgradients. And this because, in general, a convex set often provides a
subdifferential that is too large for a lot of optimization problems.

The second approach to define general subdifferentials satisfying useful calculus
rules is to take limits of some primitive subdifferential constructions which do not
possess such calculus. It is important that limiting constructions depend not only on
the choice of the primitive objects but also on the character of the limit: topological
or sequential.

The topological way allows one to develop useful subdifferentials in general in-
finite dimensional settings, but the biggest drawback is the fact that it may lead to
broad constructions and in general they have an intrinsically complicated structure,
usually following a three-step procedure. Namely, the definition of ∂f for a Lipschitz
function which requires considering restrictions to finite-dimensional (or separable)
subspaces with intersections over the collection of all such subspaces, then the defi-
nition of a normal cone of a set C at a given point x as the cone generated by the
subdifferential of the distance function to C and finally the definition of ∂f for an
arbitrary lower semicontinuous function by means of the normal cone to the epigraph
of f . In this line of development, many infinite dimensional extensions of the non-
convex constructions in [23, 24] were introduced and strongly developed by Ioffe in a
series of many publications starting from 1981 (see [17, 18, 19] for the bibliographies
and commentaries therein) on the basis of topological limits of Dini-Hadamard ε-
subdifferentials. Such constructions, called also approximate subdifferentials, are well
defined in more general spaces, but all of them (including also their nuclei) may be
broader than the Kruger-Mordukhovich extension, even for Lipshictz functions on
Banach spaces with Fréchet differentiable renorms.

The sequential way usually leads to more convenient objects, but it requires some
special geometric properties of spaces in question (see for instance [5]). Thus, because
the convexity is no longer inherent in the procedure, we are able to define smaller
subdifferentials and also to exclude some points from the set of stationary points.
The sequential nonconvex subdifferential constructions in Banach spaces were first
introduced by Kruger and Mordukhovich [20, 21] on the basis of sequential limits of
Fréchet ε-normals and subdifferentials. Such limiting normal cone and subdifferential
appeared as infinite dimensional extensions of the corresponding finite dimensional
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constructions in Mordukhovich [23, 24], motivated by applications to optimization and
control. Useful properties of those and related constructions were revealed mainly for
Banach spaces with Fréchet differentiable renorms. Let us also emphasize that while
the subdifferential theory in finite dimensions has been well developed, there still exist
many open questions in infinite dimensional spaces.

While the Fréchet epsilon-subdifferential is as a building block for the Mor-
dukhovich subdifferential in Banach spaces, the Dini-Hadamard one lies at the heart
of the so called A-subdifferential introduced by Ioffe. Generated with the help of
the lower Dini (or Dini-Hadamard) directional derivative, one of the most attrac-
tive construction appeared in the 1970’s, the Dini-Hadamard subdifferential and its
epsilon enlargement are well known in variational analysis and generalized differen-
tiation but they are not widely used due to the lack of calculus. However, as it has
been recently observed in [7], an exact difference formula holds for such subdiffer-
entials under natural assumptions (see also [35]). Moreover, necessary and sufficient
optimality conditions for cone-constrained optimization problems having a difference
of two functions as objective are established, in case the difference function is calm
and some additional conditions are fulfilled. Our main goal in this paper is to provide
the same formula as mentioned above, but without any calmness assumption. To this
end we employ the Dini-Hadamard-like ε-subdifferential [29], which is defined by the
instrumentality of a different kind of lower limit. Our analysis relies also on the notion
of spongiously pseuso-dissipativity of set-valued mappings and involves the notion of
a spongiously local blunt minimizer.

The reminder of the paper is organized as follows. After introducing in Section
2 some preliminary notions and results especially related to the Dini-Hadamard-like
subdifferential, we study in Section 3 some generalized convexity notions in order to
provide in the final part of the paper some necessary and sufficient conditions for
a point to be a spongiously local blunt minimizer. Finally, we employ the achieved
results to the formulation of optimality conditions for a nonsmooth optimization prob-
lem having the difference of two functions as objective.

2. Preliminary notions and results

Consider a Banach space X and its topological dual space X∗. We denote the
open ball with center x ∈ X and radius δ > 0 in X by B(x, δ), while BX and SX

stand for the closed unit ball and the unit sphere of X, respectively. Having a set
C ⊆ X, δC : X → R ∪ {+∞}, defined by δC(x) = 0 for x ∈ C and δC(x) = +∞,
otherwise, denotes its indicator function.

Let f : X → R ∪ {+∞} be a given function. As usual, we denote by dom f =
{x ∈ X : f(x) < +∞} the effective domain of f and by epi f = {(x, α) ∈ X × R :
f(x) ≤ α} the epigraph of f . Dealing with functions that may take infinite values, we
adopt the following natural conventions (+∞)− (+∞) = +∞ and 0(+∞) = +∞.
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For ε ≥ 0 the Fréchet ε-subdifferential (or the analytic ε-subdifferential) of f at
x ∈ dom f is defined by

∂F
ε f(x) :=

{
x∗ ∈ X∗ : lim inf

‖h‖→0

f(x + h)− f(x)− 〈x∗, h〉
‖h‖

≥ −ε

}
,

which means that one has
x∗ ∈ ∂F

ε f(x) ⇔ for all α > 0 there exists δ > 0 such that for all x ∈ B(x, δ)
f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖.

(2.1)
The following constructions

d−f(x;h) := lim inf
u→h
t↓0

f(x + tu)− f(x)
t

= sup
δ>0

inf
u∈B(h,δ)
t∈(0,δ)

f(x + tu)− f(x)
t

and (see [17, 18])

∂−ε f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f(x;h) + ε‖h‖ for all h ∈ X}, where ε ≥ 0,

are called the Dini-Hadamard directional derivative of f at x in the direction h ∈ X
and the Dini-Hadamard ε-subdifferential of f at x, respectively.

Similarly, following the two steps procedure of constructing the Dini-Hadamard
ε-subdifferential we can define (see [29])

DS
d f(x;h) := sup

δ>0
inf

u∈B(h,δ)∩(h+[0,δ]·B(d,δ))
t∈(0,δ)

f(x + tu)− f(x)
t

,

the Dini-Hadamard-like directional derivative of f at x in the direction h ∈ X through
d ∈ X \ {0} and also, for a given ε ≥ 0, the Dini-Hadamard-like ε-subdifferential of f
at x

∂S
ε f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ DS

d f(x;h) + ε‖h‖ for all h ∈ X and all d ∈ X \ {0}}.

In case ε = 0, ∂−f(x) := ∂−0 f(x) is nothing else than the Dini-Hadamard subd-
ifferential of f at x, while ∂Sf(x) := ∂S

0 f(x) simply denotes the Dini-Hadamard-like
subdifferential of f at x. When x 6∈ dom f we set ∂F

ε f(x) = ∂−ε f(x) = ∂S
ε f(x) := ∅

for all ε ≥ 0. It is worth emphasizing here that for x ∈ dom f the following func-
tions d−f(x; ·) and DS

d f(x; ·) are in general not convex, while ∂−ε f(x) and ∂S
ε f(x) are

always convex sets. Moreover, we notice that d−f(x; 0) is either 0 or −∞ (see [16]).
The function f : X → R ∪ {+∞} is said to be calm at x ∈ dom f if there

exists c ≥ 0 and δ > 0 such that f(x) − f(x) ≥ −c‖x − x‖ for all x ∈ B(x, δ). As a
characterization, for x ∈ dom f one has (see, for instance, [14]) that f is calm at x if
and only if d−f(x; 0) = 0.

Further, for any ε ≥ 0

∂F
ε f(x) ⊆ ∂−ε f(x) ⊆ ∂S

ε f(x).

It is interesting to observe that both inclusions can be even strict (see Exam-
ple 2.9 belllow and [7] for further remarks and links between the Dini-Hadamard
subdifferential and the Fréchet one).
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The essential idea behind defining the Dini-Hadamard-like constructions is to
employ a directional convergence in place of a usual one. To this aim we say that
a sequence (xn) of X converges to x in the direction d ∈ X \ {0} (and we write
(xn)−→

d
x) if there exist sequences (tn) → 0, tn ≥ 0 and (dn) → d such that xn =

x+tndn for each n ∈ N. Further, a sequence (xn) is said to converge directionally to x
if there exists d ∈ X \ {0} such that (xn)−→

d
x. Our definition, slightly different from

the one proposed by Penot in [33], allows us to consider also the constants sequences
among the ones which are directionally convergent. Motivated by this observation, we
call the directional lower limit of f at x in the direction d ∈ X \ {0} the following
limit

lim inf
x−→

d
x

f(x) := sup
δ>0

inf
x∈B(x,δ)∩(x+[0,δ]·B(d,δ))

f(x).

Consequently, since

lim inf
u−→

d
h

t−→
1

0

f(x + tu)− f(x)
t

:= sup
δ>0

δ
′
>0

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ
′
)∩[0,δ

′
]·(1−δ

′
,1+δ

′
)

f(x + tu)− f(x)
t

= sup
δ>0

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ)

f(x + tu)− f(x)
t

,

we may (formally) write

DS
d f(x;h) = lim inf

u−→
d

h

t−→
1

0

f(x + tu)− f(x)
t

= lim inf
u−→

d
h

t↓0

f(x + tu)− f(x)
t

.

Similarly one can define the directional upper limit of f at x in the direction
d ∈ X \{0}, since the lower properties symmetrically induce the corresponding upper
ones

lim sup
x−→

d
x

f(x) := − lim inf
x−→

d
x
(−f)(x) = inf

δ>0
sup

x∈B(x,δ)∩(x+[0,δ]·B(d,δ))

f(x).

Moreover, one can easily observe that

lim inf
x→x

f(x) ≤ lim inf
x−→

d
x

f(x) ≤ lim sup
x−→

d
x

f(x) ≤ lim sup
x→x

f(x) for all d ∈ X \ {0}. (2.2)

The next subdifferential notion we need to recall is the one of G-subdifferential
and we describe in the following the procedure of constructing it (see [19]). To this
aim we consider first the A-subdifferential of f at x ∈ dom f , which is defined via
topological limits as follows

∂Af(x) :=
⋂

L∈F(X)

Limsup
x

f−→ x
ε>0

∂−ε (f + δx+L)(x),

where F(X) denotes the collection of all finite dimensional subspaces of X and
Limsup stands for the topological counterpart of the sequential Painlevé-Kuratowski
upper/outer limit of a set-valued mapping with sequences replaced by nets and where
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x
f−→x means x−→x and f(x)−→ f(x). More precisely, for a set-valued mapping

F : X ⇒ X∗, we say that x∗ ∈ Limsupx→x F (x) if for each weak∗-neighborhood
U of the origin of X∗ and for each δ > 0 there exists x ∈ B(x, δ) such that
(x∗ + U) ∩ F (x) 6= ∅.

The G-normal cone to a set C ⊆ X at x ∈ C is defined as

NG(C, x) := cl∗
(⋃

λ>0

λ∂Ad(x,C)

)
,

where d(x,C) := inf
c∈C

‖x− c‖ denotes the distance from x to C and cl∗ stands for the

weak∗-closure of a set in X∗, while the G-subdifferential of f at x ∈ dom f can be
defined now as follows

∂Gf(x) :=
{
x∗ ∈ X∗ : (x∗,−1) ∈ NG(epi f, (x, f(x)))

}
.

When x 6∈ dom f we set ∂Af(x) = ∂Gf(x) := ∅. Thus, by taking into account [19,
Proposition 4.2] one has the inclusion

∂F f(x) ⊆ ∂−f(x) ⊆ ∂Gf(x) for all x ∈ X. (2.3)

One can notice that when f is a convex function it holds ∂F f(x) = ∂−f(x) =
∂Gf(x) = ∂f(x) for all x ∈ X, where ∂f(x) := {x∗ ∈ X∗ : f(x) − f(x) ≥ 〈x∗, x −
x〉 ∀x ∈ X}, for x ∈ dom f , and ∂f(x) := ∅, otherwise, denotes the subdifferential of
f at x in the sense of convex analysis.

It is also worth mentioning that both G- and A-subdifferentials reduce to the
basic/limiting/Mordukhovich one whenever X is a finite dimensional space or X is
an Asplund weakly compactly generated (WCG) space and f is locally Lipschitz at
the point in discussion (see [27] and [25, Subsection 3.2.3]).

In what follows, in order to study the behavior of the Dini-Hadamard-like sub-
differential we especially need the following result.

Lemma 2.1. Let f : X → R ∪ {+∞} be a given function and x, h ∈ X. Then the
following statements are true:

(i) DS
d f(x;h) ≤ lim inf

n→+∞
f(x+tnun)−f(x)

tn
, whenever (un)−→

d
h and (tn ↓ 0), with

d ∈ X \ {0}.
(ii) If for some d ∈ X \ {0}, DS

d f(x;h) = l ∈ R ∪ {−∞}, then there exist
sequences (un)−→

d
h and (tn ↓ 0) such that lim

n→+∞
f(x+tnun)−f(x)

tn
= l.

Proof. To justify (i), since

lim inf
n→+∞

f(x + tnun)− f(x)
tn

:= sup
n≥1

inf
k≥n

f(x + tkuk)− f(x)
tk

,

we only have to show that

sup
δ>0

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ)

f(x + tu)− f(x)
t

≤ sup
n≥1

inf
k≥n

f(x + tkuk)− f(x)
tk

.
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Let δ > 0 be fixed. Since (un)−→
d

h, there exist sequences (t
′

n) → 0, t
′

n ≥ 0 and

(dn) → d such that un = h + t
′

n · dn for all n ∈ N and thus there exists k0 ∈ N with
the property that for each natural number k ≥ k0, uk ∈ B(h, δ) ∩ (h + [0, δ] ·B(d, δ))
and tk ∈ (0, δ). Hence

DS
d f(x;h) ≤ inf

k≥k0

f(x + tkuk)− f(x)
tk

≤ sup
n≥1

inf
k≥n

f(x + tkuk)− f(x)
tk

.

Taking now the supremum as δ > 0, we obtain the desired conclusion.
(ii) First we study the case l ∈ R. Using the definition of the directional lower

limit, it follows that for any n ∈ N∗

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ)

f(x + tu)− f(x)
t

≤ l < l +
1
n

and consequently, there exists un ∈ B(h, 1
n )∩(h+[0, 1

n ] ·B(d, 1
n )) and tn ∈ (0, 1

n ) with
f(x+tnun)−f(x)

tn
< l + 1

n . Further, for each n ∈ N we find t
′

n ∈ [0, 1
n ] and dn ∈ B(d, 1

n )
(with t

′

0 := 0 and d0 := d) such that un = h + t
′

n · dn, which means nothing else that
(un)−→

d
h. Moreover, since lim

n→+∞
f(x+tnun)−f(x)

tn
≤ l and due to assertion (i) we get

l = DS
d f(x;h) ≤ lim inf

n→+∞

f(x + tnun)− f(x)
tn

≤ lim
n→+∞

f(x + tnun)− f(x)
tn

≤ l.

The special case l = −∞ yields for any n ∈ N∗, un ∈ B(h, 1
n )∩(h+[0, 1

n ]·B(d, 1
n ))

and tn ∈ (0, 1
n ) with the property that f(x+tnun)−f(x)

tn
< −n. Thus, we obtain two

sequences (un)−→
d

h and tn ↓ 0 so that lim
n→+∞

f(x+tnun)−f(x)
tn

= −∞ and finally, the

proof of the lemma is complete. �

Remark 2.2. In fact, this result is particularly helpful to conclude that the Dini-
Hadamard subdifferential coincide with the Dini-Hadamard-like one in finite dimen-
sions. Indeed, since d−f(x;h) ≤ DS

d f(x;h) for all d ∈ X \ {0} and consequently
∂−f(x) ⊆ ∂Sf(x), we only have to prove that the opposite inclusion holds too. To this
end, consider x∗ ∈ ∂Sf(x), h ∈ X and let us denote for convenience d−f(x;h) := l,
l ∈ R. Then, in view of Lemma 2.1 above, there exist sequences (un) → h and (tn) ↓ 0
such that lim

n→+∞
f(x+tnun)−f(x)

tn
= l. Now, due to the finiteness assumption made, we

can find u
′ ∈ SX and a subsequence (unk

) such that

(unk
)−→

u′
h and lim

k→+∞

f(x + tnk
· unk

)− f(x)
tnk

= l. (2.4)

To justify this claim, suppose first that (un) has an infinite number of terms not
equal to h. Then we can choose a subsequence (unk

) of (un), unk
6= h for all k ∈ N and

we may write unk
= h + ‖unk

− h‖ · dnk
with dnk

= unk
−h

‖unk
−h‖ . Further, since (dnk

) is

bounded, there exist u
′ ∈ SX and (dnkl

) so that (dnkl
) → u

′
, and hence (unkl

)−→
u′

h.

If on the contrary un has an infinite number of terms equal to h, then we choose a
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subsequence (unk
) of (un) such that unk

= h for all k ∈ N. In this particular case
(unk

)−→
u′

h for every u
′ ∈ SX .

Consequently, relation (2.4) above holds true and hence l ≥ DS
u′ f(x;h), which

in turn implies 〈x∗, h〉 ≤ d−f(x;h) and finally x∗ ∈ ∂−f(x).

As it was first observed by Penot [33], the concept of a directionally convergent
sequence is clearly related to the following notion introduced by Treiman [40].

Definition 2.3. A set S ⊆ X is said to be a sponge around x ∈ X if for all h ∈ X \{0}
there exist λ > 0 and δ > 0 such that x + [0, λ] ·B(h, δ) ⊆ S.

Furthermore, the sponges enjoy a nice relationship with the so-called cone-porous
sets (see [13, 41] for definition and further remarks). Indeed, accordingly to [11], if S
is a sponge around x then the complementary set (X \S)∪{x} is cone porous in any
direction v ∈ SX . Let us recall also that every neighborhood of a point x ∈ X is also a
sponge around x and that the converse is not true (see for instance [7, Example 2.2]).
However, in case S is a convex set or X is a finite dimensional space (here one can
make use of the fact that the unit sphere is compact), then S is also a neighborhood
of x.

Remark 2.4. Trying to answer the question how further can we go with the replace-
ment of a neighborhood by a sponge, it is worth emphasizing that every sponge S
around a point x ∈ X has the property (A) and moreover it verifies also (B).

(A) : for all h ∈ X \ {0} there exist λ > 0 and a sponge S
′
around h such that

for all u ∈ S
′
, x + [0, λ] · u ⊆ S.

(B) : for all h ∈ X \ {0} and all d ∈ X \ {0} there exists δ > 0 such that
for all u ∈ B(h, δ) ∩ (h + [0, δ] ·B(d, δ)), x + [0, δ] · u ⊆ S.

Finally, every set S which satisfies property (B) is a sponge around x.
Indeed, suppose that S verifies the above property and take an arbitrary h ∈

X \{0}. Then there exists δ > 0 such that for all u ∈ B(h, δ)∩(h+[0, δ] ·B(h, δ)), x+
[0, δ] ·u ⊆ S. On the other hand, there exists α > 0 (α < δ) so that h+[0, α] ·B(h, δ) ⊆
B(h, δ)∩(h+[0, δ]·B(h, δ)) and therefore x+[0, δ]·B((α+1)h, αδ) ⊆ S. Consequently,
there exist α′ := δ(α + 1) > 0 and δ′ := α

α+1 · δ > 0 such that x + [0, α′] ·B(h, δ′) ⊆ S
and the conclusion follows easily.

Now we are ready to illustrate the aforementioned relationship between sponges
and directionally convergent sequences.

Lemma 2.5. ([40, Lemma 2.1]) A subset S of X is a sponge around x if and only if
for any sequence (xn) which converges directionally to x there exists n0 ∈ N such that
for all n ∈ N, n ≥ n0, xn ∈ S.

In what follows we mainly focus on the properties of the Dini-Hadamard-like
ε-subdifferential. But first, following the lines of the proof of [7, Lemma 2.1] and tak-
ing into account relation (2.2), let us remark that Lemma 2.6 bellow holds true not
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only for the Dini-Hadamard-like subdifferential but also for the Fréchet subdifferen-
tial (which is a building block for the basic/limiting/Mordukhovich subdifferential in
Banach spaces. We refer the reader to the books [25, 26] for a systematic study) and
for the Dini-Hadamard one, as well.

Lemma 2.6. ([29, Lemma 2.3]) Let f : X → R ∪ {+∞} be a given function and
x ∈ dom f . Then for all ε ≥ 0 it holds

∂S
ε f(x) = ∂S(f + ε‖ · −x‖)(x). (2.5)

Thus, using a classical subdifferential formula provided by the convex analysis,
one can easily see that, in case f is convex, ∂S

ε f(x) = ∂f(x) + εBX∗ for all ε ≥ 0.

The following notion, introduced by Treiman [40], it turns out to be essential
also when characterizing the Dini-Hadamard-like subdifferential.

Definition 2.7. Let f : X → R∪{+∞} be a given function, x ∈ dom f and ε ≥ 0. We
say that x∗ ∈ X∗ is an Hε-subgradient of f at x if there exists a sponge S around x
such that for all x ∈ S

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖.

Unlike the one obtained in the case of the Dini-Hadamard subdifferential (we
refer to [7, Lemma 2.2] for more details and a similar proof), the following lemma
does not require any calmness condition (take into account also here the Remark 2.4
above). As a direct consequence, we mention that for any γ ≥ ε ≥ 0 and x ∈ X

∂S
ε f(x) ⊆ ∂S

γ f(x). (2.6)

Lemma 2.8. Let f : X → R ∪ {+∞} be a given function, x ∈ dom f and ε ≥ 0. The
following statements are true:

(i) If x∗ ∈ ∂S
ε f(x), then x∗ is an Hγ-subgradient of f at x for all γ > ε.

(ii) If x∗ is an Hε-subgradient of f at x, then x∗ ∈ ∂S
ε f(x).

Moreover, one can even conclude that whenever x ∈ dom f , ε ≥ 0 and γ > ε the
following set

S := {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − γ‖x− x‖} (2.7)

is a sponge around x not only for those elements x∗ ∈ ∂−ε f(x) (like in [7, Remark
2.3]) but also for x∗ ∈ ∂S

ε f(x).

Example 2.9. Although in finite dimensions the Dini-Hadamard ε-subdifferential coin-
cide with the corresponding Dini-Hadamard-like one (see for this Remark 2.2, Lemma
2.6 and [7, Lemma 2.1]) this is in general not the case. Indeed, let us consider the
function f : X → R as being

f(x) =
{

0, if x ∈ S,
a, otherwise,

where a < 0 and S is a sponge around x ∈ X which is not a neighborhood of x (for
such an example we refer to [7, Example 2.2]). Then taking into account the second
assertion of Lemma 2.8, one can easily conclude that for all ε ≥ 0, 0 ∈ ∂S

ε f(x)\∂−ε f(x),
since 0 is an Hε-subgradient of f at x, but f is not calm at x.
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To justify this last assertion, we suppose on the contrary that f is calm at x.
Further, using the aforementioned property of the set S, one can even conclude that
for all n ∈ N there exists an element yn ∈ B(x, 1

n )\S such that ‖yn−x‖ ≤ 1
n . But since

we may write yn = x+t
′

n ·u
′

n with t
′

n :=
√
‖yn − x‖ and u

′

n := yn−x
‖yn−x‖ ·

√
‖yn − x‖ and

moreover lim
n→+∞

f(yn)−f(x)

t′n
= −∞, we get the following relation lim inf

u→0
t↓0

f(x+tu)−f(x)
t =

−∞, and consequently d−f(x, 0) = −∞, a contradiction which completes the proof.

The following result provides a variational description for the Dini-Hadamard-
like ε-subdifferential, with no additional calmness assumptions. For the reader conve-
nient we list bellow also the proof.

Theorem 2.10. ([29, Theorem 3.1]) Let f : X → R ∪ {+∞} be an arbitrary function
and x ∈ dom f . Then for all ε ≥ 0 one has

x∗ ∈ ∂S
ε f(x) ⇔ ∀α > 0 there exists S a sponge around x such that

∀x ∈ S f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖. (2.8)

Proof. Consider an ε ≥ 0 fixed.
In order to justify the inclusion “⊆”, let x∗ ∈ ∂S

ε f(x) and α > 0. Now just
observe that using Lemma 2.8 above we can easily obtain the existence of a sponge
S around x such that for all x ∈ S

f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖.

For the second inclusion “⊇”, let us consider an arbitrary element x∗ fulfilling
the property in the right-hand side of (2.8). Our goal is to show that

DS
d f(x;h) ≥ 〈x∗, h〉 − ε‖h‖ ∀h ∈ X,∀d ∈ X \ {0}. (2.9)

Let first h ∈ X \ {0} and d ∈ X \ {0} be fixed. Then for all k ∈ N, by taking
αk := 1

k , there exists Sk a sponge around x such that for all x ∈ Sk

f(x)− f(x) ≥ 〈x∗, x− x〉 −
(

1
k

+ ε

)
‖x− x‖.

Thus, for all k ∈ N there exists δk > 0 such that for all t ∈ (0, δk) and all
u ∈ B(h, δk) ∩ (h + [0, δk] ·B(d, δk)) one has x + tu ∈ Sk and

f(x + tu)− f(x) ≥ 〈x∗, tu〉 −
(

1
k

+ ε

)
‖tu‖,

which implies in turn that for all 0 < δ
′

k ≤ δk, all t ∈ (0, δ
′

k) and all u ∈ B(h, δ
′

k) ∩
(h + [0, δ

′

k] ·B(d, δ
′

k))

f(x + tu)− f(x)
t

≥ 〈x∗, u〉 −
(

1
k

+ ε

)
‖u‖
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and consequently, for all k ∈ N there exists δk > 0 such that for all 0 < δ
′

k ≤ δk

DS
d f(x;h) ≥ inf

u∈B(h,δ
′
k)∩(h+[0,δ

′
k]·B(d,δ

′
k))

t∈(0,δ
′
k)

f(x + tu)− f(x)
t

≥ inf
u∈B(h,δ

′
k)∩(h+[0,δ

′
k]·B(d,δ

′
k))

t∈(0,δ
′
k)

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]

≥ inf
u∈B(h,δ

′
k)

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]
.

On the other hand, for all k ∈ N, all 0 < δ
′

k ≤ δk and all δ
′ ≥ δ

′

k

inf
u∈B(h,δ

′
k)

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]
≥ inf

u∈B(h,δ
′
)

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]

and hence, for all k ∈ N

DS
d f(x;h) ≥ lim inf

u→h

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]

= 〈x∗, h〉 −
(

1
k

+ ε

)
‖h‖.

Finally, passing to the limit as k → +∞, we obtain

DS
d f(x;h) ≥ 〈x∗, h〉 − ε‖h‖

and thus, the relation (2.9) holds true for all h ∈ X \ {0} and all d ∈ X \ {0}.
For the particular case h = 0, let d ∈ X\{0} be an arbitrary element. To complete

the proof of the theorem we only have to show that DS
d f(x; 0) ≥ 0. Assuming the

contrary, accordingly to Lemma 2.1, one gets two sequences (un)−→
d

0 and (tn) ↓ 0

such that

lim
n→+∞

f(x + tnun)− f(x)
tn

< 0, (2.10)

where (un)−→
d

0 means that there exist sequences (t
′

n) → 0 (t
′

n ≥ 0 ∀n ∈ N) and

(dn) → d such that un = t
′

n · dn for all n ∈ N .
On the other hand, there exists a sponge S around x such that

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖

for all x ∈ S and consequently, we can find a natural number n0 such that for all
n ∈ N, n ≥ n0, x + tn · un ∈ S and hence

f(x + tn · un)− f(x) ≥ 〈x∗, tn · un〉 − ε‖tn · un‖.

Therefore, passing to the limit as k → +∞, we observe that

lim
n→+∞

f(x + tnun)− f(x)
tn

≥ 0,

which in fact contradicts the relation (2.10). �
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A similar result to Theorem 2.10, by means of the Dini-Hadamard ε-
subdifferential, was given in [7], but in a more restrictive framework.

To a more careful look we can see that also in the case of the Dini-Hadamard-
like subdifferential it is a sort of calmness condition that is hiding behind. So, we say
that a function f : X → R ∪ {+∞} is weakly calm at x ∈ dom f if DS

d f(x; 0) ≥ 0
for all d ∈ X \ {0}. Actually, unlike the case of the Dini-Hadmamard subdifferential,
this last assumption is automatically fulfilled. It is worth mentioning also here that
although the weakly calmness assumption is a more general one, it does coincide with
the classical calmness condition in finite dimensions.

Proposition 2.11. Let f : X → R∪ {+∞} be a given function and x ∈ dom f . If X is
finite dimensional then f is calm at x if and only if f is weakly calm at x.

Proof. Since one can easily check the ”if” part of the proposition, it remains us to
show just the ”only” if one. Suppose on the contrary that f is not calm at x. Then
d−f(x; 0) = −∞ and hence there exist sequences (un) → 0 and (tn) ↓ 0 such that
lim

n→+∞
f(x+tnun)−f(x)

tn
= −∞. Using now the finiteness property of X, the latter clearly

yields an element s ∈ SX and a subsequence (unk
)−→

s
0 with the property that

lim
k→+∞

f(x+tnk
·unk

)−f(x)

tnk
= −∞. Consequently −∞ ≥ DS

s f(x; 0), which is a contradic-

tion. �

Finally, to conclude this section, let us present a direct consequence of Theorem
2.10 and [7, Theorem 2.3], interesting in itself.

Corollary 2.12. Let f : X → R ∪ {+∞} be a given function, x ∈ dom f and ε ≥ 0.
If ∂S

ε f(x) 6= ∅ then f is calm at x if and only if ∂−ε f(x) = ∂S
ε f(x).

3. Some generalized convexity notions

Let us mention in the beginning of this section that the Dini-Hadamard-like
subdifferential coincides with the Dini-Hadamard one not only in finite dimensional
spaces but also in arbitrarily Banach spaces on some particular classes of functions.
Furthermore, these classes of functions, which are in fact larger than the one of convex
functions, will reveal themselves to be useful in the sequel. We introduce them now.

Definition 3.1. Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . The
function f is said to be

(i) approximately convex at x, if for any ε > 0 there exists δ > 0 such that for
every x, y ∈ B(x, δ) and every t ∈ [0, 1] one has

f((1− t)y + tx) ≤ (1− t)f(y) + tf(x) + εt(1− t)‖x− y‖. (3.1)

(ii) approximately starshaped at x, if for any ε > 0 there exists δ > 0 such that
for every x ∈ B(x, δ) and every t ∈ [0, 1] one has

f((1− t)x + tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (3.2)
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(iii) directionally approximately starshaped at x, if for any ε > 0 and any
u ∈ SX there exists δ > 0 such that for every s ∈ (0, δ), every v ∈ B(u, δ) and every
t ∈ [0, 1], when x := x + sv, one has

f((1− t)x + tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (3.3)

While the class of approximately convex functions was initiated and strongly
developed by H.V. Ngai, D.T. Luc and M. Théra in [30] (see also [3, 31]), the ones of
approximately starshaped and directionally approximately stashaped were introduced
and studied in [32]. Actually, they enjoy nice properties and, for instance, the approx-
imate convex functions are stable under finite sums and finite suprema, and moreover
the most of the well-known subdifferentials coincide and share several properties of
the convex subdifferential (see [30]) on this particular class of functions. Observe also
that the class of approximately convex functions is strictly included into the class of
approximately starshaped functions, which in turn is contained into the one of direc-
tionally approximately starshaped functions (for some examples we refer to [7]). In
fact, the last two classes of functions coincide on finite dimensional spaces, as one can
easily deduce from the following result.

Proposition 3.2. ([7, Proposition 3.1]) Let f : X → R ∪ {+∞} be a given function
and x ∈ dom f . Then f is directionally approximately starshaped at x if and only if
for any ε > 0 there exists a sponge S around x such that for every x ∈ S and t ∈ [0, 1]
one has

f((1− t)x + tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (3.4)

It is worth emphasizing here that in view of Remark 2.4, the above characteri-
zation via sponges it is also equivalent with the following one.

Proposition 3.3. Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . Then
f is directionally approximately starshaped at x if and only if for any ε > 0, h ∈
X \ {0} and any d ∈ X \ {0} there exists δ > 0 such that for every s ∈ (0, δ),
v ∈ B(h, δ) ∩ (h + [0, δ] · B(d, δ)) and every t ∈ [0, 1], with x := x + sv, the relation
(3.4) above holds true.

In fact the class of directionally approximately starshaped functions enjoys also
the following property, which is more general then the one obtained in [7, Lemma
3.2], or in [1, Lemma 1].

Lemma 3.4. Let the function f : X → R ∪ {+∞} be directionally approximately
starshaped at x ∈ dom f . Then for every α > 0 and every ε ≥ 0 there exists a sponge
S around x such that for every x ∈ S one has

f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖ ∀x∗ ∈ ∂S
ε f(x), (3.5)

f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖ ∀x∗ ∈ ∂S
ε f(x). (3.6)

Proof. Fix α > 0, ε ≥ 0 and consider the set

S := {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖ ∀x∗ ∈ ∂S
ε f(x)}.

In order to complete the proof of the first inequality, our strategy is to show that S
is a sponge around x.
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Indeed, let h ∈ X \ {0} and d ∈ X \ {0} be arbitrary elements and take δ > 0
so that the relation (3.4) above holds true with x := x + sv, for any s ∈ (0, δ),
v ∈ B(h, δ) ∩ (h + [0, δ] ·B(d, δ)) and any t ∈ (0, 1]. Then,

f(x + tsv)− f(x) ≤ t[f(x + sv)− f(x)] + αt(1− t)‖sv‖

and hence, after dividing by t, we take the limit inferior as t ↓ 0 and we obtain

lim inf
t↓0

f(x + tsv)− f(x)
t

≤ f(x + sv)− f(x) + α‖sv‖.

But

DS
d f(x; sv) ≤ sup

δ>0
inf

u∈{sv}
t∈(0,δ)

f(x + tu)− f(x)
t

= lim inf
t↓0

f(x + tsv)− f(x)
t

and consequently,

DS
d f(x; sv) ≤ f(x + sv)− f(x) + α‖sv‖.

In other words, for any h ∈ X \ {0} and d ∈ X \ {0} there exists δ > 0 such that for
every s ∈ (0, δ) and v ∈ B(h, δ) ∩ (h + [0, δ] · B(d, δ)), x + sv ∈ S, i.e. S is a sponge
around x, by virtue of Remark 2.4.

Similarly, with x := x + sv and t′ := 1− t one has

f(x− t′sv)− f(x) ≤ t′[f(x− sv)− f(x)] + αt′(1− t′)‖sv‖

which implies in turn (following the steps bellow)

DS
d f(x;−sv) ≤ f(x− sv)− f(x) + α‖sv‖

and finally one obtains that

S
′
:= {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖ ∀x∗ ∈ ∂S

ε f(x)}

is a sponge around x, which completes the proof of the second inequality. �

Now we state our main result of this section, thanks to which, the Dini-
Hadamard-like subdifferential as well as the Dini-Hadamard one agrees with a great
number of well-known subdifferentials such as the Clarke-Rockafellar, the Mor-
dukhovich, the Fréchet and the Ioffe approximate subdifferential on lower semicon-
tinuous and approximately convex functions at a given point of the domain (see for
more details [30, Theorem 3.6]).

Proposition 3.5. Let the function f : X → R ∪ {+∞} be approximately starshaped at
x ∈ dom f . Then for all ε ≥ 0 it holds

∂F
ε f(x) = ∂−ε f(x) = ∂S

ε f(x).

Proof. In view of [32, Lemma 2.6] and [7, Lemma 2.1] the first equality is clearly
verified. For the second one, accordingly to Lemma 2.6 above and [7, Lemma 2.1] it
is enough to show that it holds true only for ε = 0. To this end we argue why for any
ε > 0 there exists δ > 0 such that for any x ∈ B(x, δ) and any d ∈ X \ {0}

DS
d f(x;x− x) ≤ f(x)− f(x) + ε‖x− x‖.
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This will complete the proof, since given an arbitrary x∗ ∈ ∂Sf(x), the above inequal-
ity would provide us the following estimate

〈x∗, x− x〉 ≤ f(x)− f(x) + ε‖x− x‖,

i.e. the inclusion ∂Sf(x) ⊆ ∂F f(x) (due to relation (2.1)) and hence the equality.
So, fix an arbitrary ε > 0. Then, since f is approximately starshaped at x, we

choose δ > 0 so that for any x ∈ B(x, δ) and any t ∈ (0, 1]

f(x + t(x− x))− f(x) ≤ t[f(x)− f(x)] + εt(1− t)‖x− x‖.

Then, dividing by t and taking limit inferior as t ↓ 0, one obtains

lim inf
t↓0

f(x + t(x− x))− f(x)
t

≤ f(x)− f(x) + ε‖x− x‖

and finally, the desired inequality. �

On the other hand, while [7, Example 3.1] ensures us that the equality ∂F f(x) =
∂−f(x) does not hold in case f is only directionally approximately starshaped at x ∈
dom f , Example 2.9 above guarantees the same with the equality ∂−f(x) = ∂Sf(x),
since f is directionally approximately starshaped at x, but 0 ∈ ∂Sf(x) \ ∂−f(x).
Moreover, the function in Example 2.9 shows that in general the class of approximately
starshaped functions does not coincide with the one of directionally approximately
starshaped functions.

4. Optimality conditions

In what follows we mostly confine ourselves to the study of a subdifferential
formula for the difference of two functions. To this end, let us recall first that for two
subsets A,B ⊆ X the star-difference between them is defined as

A
∗
B := {x ∈ X : x + B ⊆ A} =

⋂
b∈B

{A− b}.

We adopt here the convention A∗B := ∅ in case A = ∅, B 6= ∅ and A∗B := X if
B = ∅. One obviously have A∗B +B ⊆ A and A∗B ⊆ A−B if B 6= ∅. Introduced by
Pontrjagin [36] in the context of linear differential games, this notion has been widely
used in the field of nonsmooth analysis (see, for instance, [1, 2, 8, 12, 15, 22, 27, 37]).

When dealing with the difference of two functions g, h : X → R ∪ {+∞} we
assume throughout the paper that dom g ⊆ dom h. This guarantees that the function
f = g − h : X → R ∪ {+∞} is well-defined. Moreover, one can easily observe that
g = f + h and dom f = dom g.

The following simple result yields easily from Theorem 2.10 and due to the fact
that the intersection of two sponges around a point is a sponge around that point.

Proposition 4.1. Let g, h : X → R ∪ {+∞} be given functions and f := g − h. Then
for all ε, η ≥ 0 and all x ∈ X one has

∂S
ε f(x) ⊆ ∂S

ε+ηg(x)
∗
∂S

η h(x). (4.1)
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In particular, if x ∈ dom f is a local minimizer of the function f := g − h, then

0 ∈ ∂Sg(x)
∗
∂Sh(x)

or, equivalently,
∂Sh(x) ⊆ ∂Sg(x).

For similar characterizations to the difference of two functions via the Fréchet
subdifferential, by means of the Mordukhovich (basic/limiting) subdifferential and in
terms of the Dini-Hadamard one we refer to [27], [25, 26] and [7], respectively.

Although the inclusion (4.1) holds true without no supplementary assumptions
on the functions involved, in order to guarantee the reverse one we need to introduce
also the following notion.

Definition 4.2. A set-valued mapping F : X ⇒ X∗ is said to be spongiously pseudo-
dissipative at x ∈ X if for any ε > 0 there exists S a sponge around x such that for
any x ∈ S there exist x∗ ∈ F (x) and x∗ ∈ F (x) so that

〈x∗ − x∗, x− x〉 ≤ ε‖x− x‖

or, equivalently, if for any ε > 0 and any u ∈ SX there exists δ > 0 such that for any
t ∈ (0, δ) and v ∈ B(u, δ) there exist x∗ ∈ F (x) and x∗ ∈ F (x) so that

〈x∗ − x∗, v〉 ≤ ε‖v‖.

Actually, there are two ways of extending the approximately pseudo-dissipativity
introduced by Penot [35]. While the first one was described above by replacing a
neighborhood with a sponge, the second one will be presented bellow.

Definition 4.3. A set-valued mapping F : X ⇒ X∗ is said to be directionally approx-
imately pseudo-dissipative at x ∈ X if for any ε > 0 and u ∈ SX one can find some
δ > 0 such that for any v ∈ B(u, δ) and any t ∈ (0, δ) there exist x∗ ∈ F (x + tv) and
x∗ ∈ F (x) so that

〈x∗ − x∗, x− x〉 ≤ ε.

In fact this later conditions are not very restrictive ones, since the follow-
ing coarse continuity (which has been introduced in [1]) ensures the approximately
pseudo-dissipativity and the spongiously gap-continuity studied in [7], as well. Let us
formulate now this concept.

Definition 4.4. A set-valued mapping F : X ⇒ Y between a topological space X and
a metric space Y is said to be gap-continuous at x ∈ X if for any ε > 0 one can find
some δ > 0 such that for every x ∈ B(x, δ)

gap(F (x), F (x)) < ε,

where for two subsets A and B of Y

gap(A,B) := inf{d(a, b) : a ∈ A, b ∈ B},

with the convention that if one of the sets is empty, then gap(A,B) := +∞.
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When defining a spongiously gap-continuous mapping one only has to replace
in the above definition the neighborhood B(x, δ) of x with a sponge S around x.
Therefore, every gap-continuous mapping at a point is spongiously gap-continuous
and moreover it is also spongiously pseudo-dissipative and directionally approximately
pseudo-dissipative at that point, too. Furthermore, every set-valued mapping which is
either Hausdorff upper semicontinuous or lower semicontinuous at a given point is gap-
continuous at that point (see [34]). Thus, the gap-continuity is a sort of semicontinuity
notion which is satisfied in many situations when no other semicontinuity notion
holds. Moreover, in case the mapping is single-valued, it coincides with the classical
continuity. Clearly, when X is a finite dimensional space then the gap-continuity
coincides with the spongiously gap-continuity as well as the approximately pseudo-
dissipativity property agrees with the spongiously pseudo-dissipativity and with the
directionally approximately pseudo-dissipativity one. It is worth emphasizing also here
that the notion of spongiously gap-continuity [7] is equivalent to that of directionally-
gap continuity introduced later by Penot [35] (we refer the reader to the papers of
Penot [35, 34] for more discussions and some criteria ensuring the gap-continuity
and also the directionally approximately pseudo-dissipativity). Finally, the following
property holds.

Proposition 4.5. Let F,G : X ⇒ Y be two set-valued mappings. If F is spongiously
pseudo-dissipative at x ∈ X and there exists a sponge S around x such that F (x) ⊆
G(x) for all x ∈ S, then G is spongiously pseudo-dissipative at x, too.

Accordingly to relation (2.6) and the above property, we conclude that for f :
X → R∪{+∞} a given function and x ∈ dom f , ∂S

η f is spongiously pseudo-dissipative
at x for all η > 0, whenever ∂Sf is spongiously pseudo-dissipative at x. Hence,
following the lines of the proof of [7, Theorem 3.4, Theorem 3.5] we can furnish
a formula for the difference of two functions in terms of the Dini-Hadamard-like
subdifferential.

Theorem 4.6. Let g, h : X → R∪{+∞} be two directionally approximately starshaped
functions at x ∈ dom g and f := g− h. If for some η ≥ 0 the set-valued mapping ∂S

η h
is spongiously pseudo-dissipative at x, then for all ε ≥ 0 it holds

∂S
ε f(x) = ∂S

ε+ηg(x)
∗
∂S

η h(x). (4.2)

In case the function f is calm at x one obtains the result in [7, Theorem 3.5],
where the subdifferential in question is the Dini-Hadamard one. For a similar state-
ment in the particular setting ε = η = 0, we refer to [35, Theorem 28]. There the
function h is assumed to be directionally approximately starshaped, directionally con-
tinuous, directionally stable and tangentially convex at x, a point from core(dom h).
Similar results expressed by means of the Fréchet subdifferential can be found in
[1, Theorem 3] and [35, Theorem 26], where the functions are supposed to be ap-
proximately starshaped and a very mild assumption on ∂F h is required. But taking
into account the fact that f may not be calm at x, or the functions g and h may
not be approximately starshaped, or even core(dom h) could be empty (for instance,
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core(`p
+) = ∅ for any p ∈ [1,+∞), see [6]), motivates us to formulate results like

Theorem 4.6.
Let us mention now some corollaries whose proofs follows the ideas from [7,

Corollary 3.7, Corollary 3.8]. Take also into account Proposition 3.5 above.

Corollary 4.7. Let g, h : X → R∪{+∞} be two directionally approximately starshaped
functions at x ∈ dom g such that ∂Sh is spongiously pseudo-dissipative at x and
f := g − h. Then the following statements are equivalent:

(i) there exists η ≥ 0 such that ∂S
η h(x) ⊆ ∂S

η g(x);
(ii) 0 ∈ ∂Sf(x);
(iii) for all η ≥ 0 ∂S

η h(x) ⊆ ∂S
η g(x).

Corollary 4.8. Let g, h : X → R ∪ {+∞} be two given functions, x ∈ dom g and
f := g − h. Then the following assertions are true:

(i) If g and h are convex at x and ∂h is spongiously pseudo-dissipative at x, then
it holds

∂Sf(x) = ∂g(x)
∗
∂h(x).

(ii) If g is convex, h is directionally approximately starshaped at x and ∂Sh is
spongiously pseudo-dissipative at x, then for all ε ≥ 0 it holds

∂S
ε f(x) = (∂g(x) + εBX∗)

∗
∂Sh(x).

(iii) If g is lower semicontinuous, approximately convex at x, h is directionally
approximately starshaped at x and ∂Sh is spongiously pseudo-dissipative at x, then
for all ε ≥ 0 it holds

∂S
ε f(x) = (∂Sg(x) + εBX∗)

∗
∂Sh(x).

The following result, which significantly improves the statement in [7, Corollary
3.6], due to Theorem 4.6 and [35, Theorem 26] (see also Proposition 3.5), is meant to
reveal that the Dini-Hadamard-like subdifferential coincides with the Dini-Hadamard
subdifferential and with the Fréchet one not only on approximately starshaped func-
tions but also on some particular differences of approximately starshaped functions.

Corollary 4.9. Let g, h : X → R ∪ {+∞} be two approximately starshaped functions
at x ∈ dom g with the property that there exists η ≥ 0 such that ∂S

η h is approximately
pseudo-dissipative at x and f := g−h. Then for all ε ≥ 0 ∂F

ε f(x) = ∂−ε f(x) = ∂S
ε f(x).

Moreover, in case x ∈ core(dom h) and ∂−h is only directionally approximately
pseudo-dissipative at x, then one can guarantee that for any ε ≥ 0, ∂−ε f(x) = ∂S

ε f(x)
(see for this [35, Lemma 22, Lemma 24, Lemma 27] and Lemma 4.1).

Finally, we characterize the Dini-Hadamard-like subdifferential by means of the
so-called spongiously local ε-blunt minimizers. Introduced in [7], they came as a gen-
eralization to local ε-blunt minimizers studied by Amahroq, Penot and Syam in [1].

Definition 4.10. Let C ⊆ X be a nonempty set, f : X → R∪{+∞} be a given function,
x ∈ dom f ∩ C and ε > 0. We say that x is a spongiously local ε-blunt minimizer of
f on the set C if there exists a sponge S around x such that for all x ∈ S ∩ C

f(x) ≥ f(x)− ε‖x− x‖.
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In case C = X, we simply call x a spongiously local ε-blunt minimizer of f .

Proposition 4.11. Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . Then:

0 ∈ ∂Sf(x) ⇔ x is a spongiously local ε− blunt minimizer of f for all ε > 0.

In the situation when f is calm at x one obtains the result in [7, Proposition
3.9], as a particular case. Similarly, in view of the above discussions and results, we
can even furnish optimality conditions for the cone-constrained optimization problem
(P) studied in [7], by means of the Dini-Hadamard-like subdifferential and without
additional calmness assumptions. For the reader convenient we state this result bellow.
To this end, let us consider the following optimization problem

(P) inf
x∈A

f(x).

A = {x ∈ C : k(x) ∈ −K},
where C ⊆ X is a convex and closed set, K, a subset of a Banach space Z, is a
nonempty convex and closed cone with K∗ := {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0 for all z ∈ K}
its dual cone, k : X → Z, a given function, is assumed to be K-convex, meaning that
for all x, y ∈ X and all t ∈ [0, 1], (1− t)k(x)+ tk(y)−k((1− t)x+ ty) ∈ K, and K-epi
closed, meaning that the K-epigraph of k, epiK k := {(x, z) ∈ X×Z : z ∈ k(x)+K}, is
a closed set and finally f := g−h, where g, h : X → R∪{+∞} are two given functions
with dom g ⊆ dom h. For z∗ ∈ K∗, by (z∗k) : X → R we denote the function defined
by (z∗k)(x) = 〈z∗, k(x)〉 and we also emphasize that in case Z = R and K = R+ the
notion of K-epi closedness coincide with the classical lower semicontinuity.

Theorem 4.12. Let be x ∈ int(dom g)∩A. Suppose that g is lower semicontinuous and
approximately convex at x and that

⋃
λ>0 λ(k(C) + K) is a closed linear subspace of

Z. Then the following assertions are true:
(a) If x is a spongiously local ε-blunt minimizer of f on A for all ε > 0, then

the following relation holds

∂Sh(x) ⊆ ∂Sg(x) +
⋃

z∗∈K∗

(z∗k)(x)=0

∂((z∗k) + δC)(x). (4.3)

(b) Conversely, if h is directionally approximately starshaped at x, ∂Sh is spon-
giously pseudo-dissipative at x and (4.3) holds, then x is a spongiously local ε-blunt
minimizer of f on A for all ε > 0.

It is worth mentioning that accordingly to [35, Lemma 22, Lemma 24 and
Lemma 27], our final result remains also true in case ∂Sh is directionally approxi-
mately pseudo-dissipative at x. Moreover, in the particular instance when K = {0},
k(x) = 0 for any x ∈ X, g is lower semicontinuous and approximately convex at
x ∈ int(dom g)∩A and h is convex on C and continuous at x, and hence directionally
approximately pseudo-dissipative at x (due to the remarkable dissipativity property
of the subdifferential in the sense of convex analysis, see [35, Theorem 6]) then x is a
spongiously local ε-blunt minimizer of f on A for all ε > 0 if and only if

∂h(x) ⊆ ∂Sg(x) + N(A, x).
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Abstract. In this paper, we establish several weighted inequalities for some dif-
ferantiable mappings that are connected with the celebrated Hermite-Hadamard
Fejér type integral inequality. The results presented here would provide extensions
of those given in earlier works.
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1. Introduction

The following inequality is well known in the literature as the Hermite-Hadamard
integral inequality (see, [12]):

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

(1.1)

where f : I ⊂ R → R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b.

The most well-known inequalities related to the integral mean of a convex func-
tion f are the Hermite Hadamard inequalities or its weighted versions, the so-called
Hermite Hadamard Fejér inequalities. In [4], Fejer gave a weighted generalizatinon of
the inequalities (1.1) as the following:

Theorem 1.1. f : [a, b] → R, be a convex function, then the inequality

f

(
a + b

2

)∫ b

a

w(x)dx ≤ 1
b− a

∫ b

a

f(x)w(x)dx ≤ f(a) + f(b)
2

∫ b

a

w(x)dx (1.2)

holds, where w : [a, b] → R is nonnegative, integrable, and symmetric about x = a+b
2 .
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For some results which generalize, improve, and extend the inequalities (1.1) and
(1.2), (see [1]-[3], [5]-[11], [13], [15] and [16]).

In [2] in order to prove some inequalities related to Hadamard’s inequality
Dragomir and Agarwal used the following lemma.

Lemma 1.2. Let f : I ⊂ R → R, be a differentiable mapping on I◦, a, b ∈ I (I◦ is the
interior of I) with a < b. If f ′ ∈ L ([a, b]), then we have

f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x)dx =
b− a

2

∫ 1

0

(1− 2t) f ′(ta + (1− t)b)dt. (1.3)

Theorem 1.3. ([2]) Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦

with a < b, f ′ ∈ L(a, b) and p > 1. If the mapping |f ′|p/(p−1) is convex on [a, b], then
the following inequality holds:∣∣∣∣∣f(a)+f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣≤ b− a

2(p + 1)1/p

(
|f ′(a)|p/(p−1) + |f ′(b)|p/(p−1)

2

)(p−1)/p

.

(1.4)

In [9] some inequalities of Hermite-Hadamard type for differentiable convex map-
pings were proved using the following lemma.

Lemma 1.4. Let f : I◦ ⊂ R → R, be a differentiable mapping on I◦, a, b ∈ I◦ (I◦ is
the interior of I) with a < b. If f ′ ∈ L ([a, b]), then we have

1
b− a

∫ b

a

f(x)dx− f

(
a + b

2

)
=(b− a)

[∫ 1
2

0

tf ′(ta + (1− t)b)dt +
∫ 1

1
2

(t− 1) f ′(ta + (1− t)b)dt

]
. (1.5)

One more general result related to (1.5) was established in [10]. The main result
in [9] is as follows:

Theorem 1.5. Let f : I ⊂ R → R, be a differentiable mapping on I◦, a, b ∈ I with
a < b. If the mapping |f ′| is convex on [a, b], then∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f

(
a + b

2

)∣∣∣∣∣ ≤ b− a

4

(
|f ′(a)|+ |f ′(b)|

2

)
. (1.6)

In this article, using functions whose derivatives absolute values are convex, we
obtained new inequalities of weighted Hermite-Hadamard type. The results presented
here would provide extensions of those given in earlier works.

2. Main results

We will establish some new results connected with the left-hand side of (1.2)
used the following Lemma. Now, we give the following new Lemma for our results:
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Lemma 2.1. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b, and w : [a, b] → [0,∞) be a differentiable mapping. If f ′ ∈ L[a, b], then the
following equality holds:

1
b− a

∫ b

a

f(x)w(x)dx− 1
b− a

f

(
a + b

2

)∫ b

a

w(x)dx = (b− a)
∫ 1

0

k(t)f ′(ta+(1−t)b)dt

(2.1)
for each t ∈ [0, 1], where

k(t) =


∫ t

0
w(as + (1− s)b)ds, t ∈ [0, 1

2 )

−
∫ 1

t
w(as + (1− s)b)ds, t ∈ [ 12 , 1].

Proof. It suffices to note that

I =
∫ 1

0

k(t)f ′(ta + (1− t)b)dt

=
∫ 1

2

0

(∫ t

0

w(as + (1− s)b)ds

)
f ′(ta + (1− t)b)dt

+
∫ 1

1
2

(
−
∫ 1

t

w(as + (1− s)b)ds

)
f ′(ta + (1− t)b)dt

= I1 + I2.

By integration by parts, we get

I1 =
(∫ t

0

w(as + (1− s)b)ds

)
f(ta + (1− t)b)

a− b

∣∣∣∣
1
2

0

−
∫ 1

2

0

w(ta + (1− t)b)
f(ta + (1− t)b)

a− b
dt

=

(∫ 1
2

0

w(as + (1− s)b)ds

)
f(a+b

2 )
a− b

−
∫ 1

2

0

w(ta + (1− t)b)
f(ta + (1− t)b)

a− b
dt,

and similarly

I2 =

(∫ 1

1
2

w(as + (1− s)b)ds

)
f(a+b

2 )
a− b

−
∫ 1

1
2

w(ta + (1− t)b)
f(ta + (1− t)b)

a− b
dt.

Thus, we can write

I = I1+I2 =
(∫ 1

0

w(as + (1− s)b)ds

)
f(a+b

2 )
a− b

−
∫ 1

0

w(ta+(1−t)b)
f(ta + (1− t)b)

a− b
dt.

Using the change of the variable x = ta + (1 − t)b for t ∈ [0, 1], and multiplying the
both sides by (b− a) , we obtain (2.1) which completes the proof. �

Remark 2.2. If we take w(x) = 1 in Lemma 2.1, then (2.1) reduces to (1.5).
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Now, by using the above lemma, we prove our main theorems:

Theorem 2.3. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b, and w : [a, b] → [0,∞) be a differentiable mapping and symmetric to a+b

2 . If
|f ′| is convex on [a, b] , then the following inequality holds:∣∣∣∣∣ 1

b− a

∫ b

a

f(x)w(x)dx− 1
b− a

f

(
a + b

2

)∫ b

a

w(x)dx

∣∣∣∣∣
(2.2)

≤

(
1

(b− a)2

∫ b

a+b
2

w(x)
[
(x− a)2 − (b− x)2

]
dx

)(
|f ′(a)|+ |f ′(b)|

2

)
Proof. From Lemma 2.1 and the convexity of |f ′|, it follows that∣∣∣∣ 1

b− a

∫ b

a
f(x)w(x)dx− 1

b− a
f

(
a + b

2

)∫ b

a
w(x)dx

∣∣∣∣
≤ (b− a)

{∫ 1
2

0

(∫ t

0
w(as + (1− s)b)ds

)
[t |f ′(a)|+ (1− t) |f ′(b)|] dt

+
∫ 1

1
2

(∫ 1

t
w(as + (1− s)b)ds

)
[t |f ′(a)|+ (1− t) |f ′(b)|] dt

}
= Q1 + Q2.

(2.3)

By change of the order of integration, we have

Q1 =
∫ 1

2
0

∫ t

0
w(as + (1− s)b) (t |f ′(a)|+ (1− t) |f ′(b)|) dsdt

=
∫ 1

2
0

∫ 1
2

s
w(as + (1− s)b) (t |f ′(a)|+ (1− t) |f ′(b)|) dtds

=
∫ 1

2
0

w(as + (1− s)b)
[(

1
8 −

s2

2

)
|f ′(a)|+

(
(1−s)2

2 − 1
8

)
|f ′(b)|

]
ds.

and using the change of the variable x = as + (1− s)b for s ∈ [0, 1],

Q1 =
1

8(b− a)3
∫ b

a+b
2

w(x)
[(

(b− a)2 − 4(b− x)2
)
|f ′(a)|

+
(
4(x− a)2 − (b− a)2

)
|f ′(b)|

]
dx

(2.4)

Similarly, by change of order of the integration, we obtain

Q2 =
∫ 1

1
2

w(as + (1− s)b)
[(

s2

2 −
1
8

)
|f ′(a)|+

(
1
8 −

(1−s)2

2

)
|f ′(b)|

]
ds

=
1

8(b− a)3
∫ a+b

2
a

w(x)
[(

4(b− x)2 − (b− a)2
)
|f ′(a)|

+
(
(b− a)2 − 4(x− a)2

)
|f ′(b)|

]
dx.
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Since w(x) is symmetric to x = a+b
2 , for w(x) = w(a + b− x), we write

Q2 = Q1 (2.5)

A combination of (2.3), (2.4) and (2.5), we get (2.2). This completes the proof. �

Remark 2.4. If we take w(x) = 1 in Theorem 2.3, then (2.2) reduces to (1.6).

Theorem 2.5. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b, and w : [a, b] → [0,∞) be a differentiable mapping and symmetric to a+b

2 . If
|f ′|q is convex on [a, b] , q > 1, then the following inequality holds:∣∣∣∣ 1

b− a

∫ b

a
f(x)w(x)dx− 1

b− a
f

(
a + b

2

)∫ b

a
w(x)dx

∣∣∣∣
≤ (b− a)

(
1

(b− a)2
∫ b

a+b
2

(
x− a + b

2

)
wp(x)dx

) 1
p

×

[(
|f ′(a)|q + 2 |f ′(b)|q

24

) 1
q

+
(

2 |f ′(a)|q + |f ′(b)|q

24

) 1
q

]
.

(2.6)

where 1
p + 1

q = 1.

Proof. From Lemma 2.1 and using change of the order of integration, we get∣∣∣∣ 1
b− a

∫ b

a
f(x)w(x)dx− 1

b− a
f

(
a + b

2

)∫ b

a
w(x)dx

∣∣∣∣
≤ (b− a)

{[∫ 1
2

0

(∫ t

0
w(as + (1− s)b)ds

)
|f ′(ta + (1− t)b)| dt

]
+
[∫ 1

1
2

(∫ 1

t
w(as + (1− s)b)ds

)
|f ′(ta + (1− t)b)| dt

]}
= (b− a)

{[∫ 1
2

0

∫ 1
2

s
w(as + (1− s)b) |f ′(ta + (1− t)b)| dtds

]
+
[∫ 1

1
2

∫ s
1
2

w(as + (1− s)b) |f ′(ta + (1− t)b)| dtds
]}

.

By Hölder’s inequality, it follows that∣∣∣∣ 1
b− a

∫ b

a
f(x)w(x)dx− 1

b− a
f

(
a + b

2

)∫ b

a
w(x)dx

∣∣∣∣
≤ (b− a)

{(∫ 1
2

0

∫ 1
2

s
wp(as + (1− s)b)dtds

) 1
p
(∫ 1

2
0

∫ 1
2

s
|f ′(ta + (1− t)b)|q dtds

) 1
q

+
(∫ 1

1
2

∫ s
1
2

wp(as + (1− s)b)dtds
) 1

p
(∫ 1

1
2

∫ s
1
2
|f ′(ta + (1− t)b)|q dtds

) 1
q

}
.
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Since |f ′|q is convex on [a, b] , we know that for t ∈ [0, 1]

|f ′(ta + (1− t)b)|q ≤ t |f ′(a)|q + (1− t) |f ′(b)|q ,

hence∣∣∣∣ 1
b− a

∫ b

a
f(x)w(x)dx− 1

b− a
f

(
a + b

2

)∫ b

a
w(x)dx

∣∣∣∣
≤(b−a)

{(∫ 1
2

0

∫ 1
2

s
wp(as+(1−s)b)dtds

) 1
p
(∫ 1

2
0

∫ 1
2

s

(
t |f ′(a)|q+(1−t) |f ′(b)|q

)
dtds

) 1
q

+
(∫ 1

1
2

∫ s
1
2

wp(as + (1− s)b)dtds
) 1

p
(∫ 1

1
2

∫ s
1
2

(
t |f ′(a)|q + (1− t) |f ′(b)|q

)
dtds

) 1
q

}
= R1 + R2.

(2.7)
where 1

p + 1
q = 1. Now, solving the above integrals with the elementary integrals,

respectively, we obtain

R1 =

(
1

2(b− a)2

∫ b

a+b
2

(2x− a− b) wp(x)dx

) 1
p ( |f ′(a)|q + 2 |f ′(b)|q

24

) 1
q

(2.8)

and

R2 =

(
1

2(b− a)2

∫ a+b
2

a

(a + b− 2x) wp(x)dx

) 1
p (2 |f ′(a)|q + |f ′(b)|q

24

) 1
q

. (2.9)

Since w(x) is symmetric to x = a+b
2 , we write

R2 =

(
1

2(b− a)2

∫ a+b
2

a

(a + b− 2x) wp(a + b− x)dx

) 1
p

= R1 (2.10)

Using (2.8), (2.9) and (2.10), we get (2.6). Hence, the inequality (2.6) is proved. �

Now, we will give some new results connected with the right-hand side of (1.2)
used the following Lemma:

Lemma 2.6. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b, and w : [a, b] → [0,∞) be a differentiable mapping. If f ′ ∈ L[a, b], then the
following equality holds:

1
b− a

f (a) + f(b)
2

∫ b

a

w(x)dx− 1
b− a

∫ b

a

f(x)w(x)dx =
(b− a)

2

∫ 1

0

p(t)f ′(ta+(1−t)b)dt

(2.11)
for each t ∈ [0, 1], where

p(t) =
∫ 1

t

w(as + (1− s)b)ds−
∫ t

0

w(as + (1− s)b)ds.
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Proof. It suffices to note that

J =
∫ 1

0
p(t)f ′(ta + (1− t)b)dt

=
∫ 1

0

(∫ 1

t
w(as + (1− s)b)ds

)
f ′(ta + (1− t)b)dt

+
∫ 1

0

(
−
∫ t

0
w(as + (1− s)b)ds

)
f ′(ta + (1− t)b)dt

= J1 + J2.

By integration by parts, we get

J1 =
(∫ 1

t

w(as + (1− s)b)ds

)
f(ta + (1− t)b)

a− b

∣∣∣∣1
0

+
∫ 1

0

w(ta + (1− t)b)
f(ta + (1− t)b)

a− b
dt

= −
(∫ 1

0

w(as + (1− s)b)ds

)
f(b)
a− b

+
∫ 1

0

w(ta + (1− t)b)
f(ta + (1− t)b)

a− b
dt,

and similarly

J2 = −
(∫ 1

0

w(as + (1− s)b)ds

)
f(a)
a− b

+
∫ 1

0

w(ta + (1− t)b)
f(ta + (1− t)b)

a− b
dt.

Thus, we can write
J = J1 + J2

= 2
∫ 1

0

w(ta + (1− t)b)
f(ta + (1− t)b)

a− b
dt−

(∫ 1

0

w(as + (1− s)b)ds

)
f(a) + f(b)

a− b
.

Using the change of the variable x = ta + (1 − t)b for t ∈ [0, 1], and multiplying the
both sides by (b−a)

2 , we obtain (2.11), which completes the proof. �

Remark 2.7. If we take w(x) = 1 in Lemma 2.6, then (2.11) reduces to (1.3).

Theorem 2.8. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b, and w : [a, b] → [0,∞) be a differentiable mapping and symmetric to a+b

2 . If
|f ′| is convex on [a, b] , then the following inequality holds:∣∣∣∣∣ 1

b− a

f (a) + f(b)
2

∫ b

a

w(x)dx− 1
b− a

∫ b

a

f(x)w(x)dx

∣∣∣∣∣
≤ 1

2

[∫ 1

0

(g(x))p
dt

] 1
p
(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

(2.12)

where g(x) =

∣∣∣∣∣
∫ b−(b−a)t

a+(b−a)t

w(x)dx

∣∣∣∣∣ for t ∈ [0, 1].
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Proof. From Lemma 2.6, we get∣∣∣∣∣ 1
b− a

f (a) + f(b)
2

∫ b

a

w(x)dx− 1
b− a

∫ b

a

f(x)w(x)dx

∣∣∣∣∣
≤(b− a)

2

[∫ 1

0

∣∣∣∣∫ 1

t

w(as + (1− s)b)ds−
∫ t

0

w(as + (1− s)b)ds

∣∣∣∣ |f ′(ta + (1− t)b)| dt

]
≤1

2

[∫ 1

0

∣∣∣∣∣
∫ b−(b−a)t

a

w(x)dx−
∫ b

b−(b−a)t

w(x)dx

∣∣∣∣∣ |f ′(ta + (1− t)b)| dt

]
. (2.13)

Since w(x) is symmetric to x = a+b
2 , we write∫ b−(b−a)t

a

w(x)dx−
∫ b

b−(b−a)t

w(x)dx =
∫ b−(b−a)t

a+(b−a)t

w(x)dx, (2.14)

for t ∈ [0, 1
2 ] and∫ b−(b−a)t

a

w(x)dx−
∫ b

b−(b−a)t

w(x)dx = −
∫ a+(b−a)t

b−(b−a)t

w(x)dx, (2.15)

for t ∈ [ 12 , 1]. If we write (2.14) and (2.15) in (2.13), we have∣∣∣∣∣ 1
b− a

f (a) + f(b)
2

∫ b

a

w(x)dx− 1
b− a

∫ b

a

f(x)w(x)dx

∣∣∣∣∣
≤ 1

2

[∫ 1

0

g(x) |f ′(ta + (1− t)b)| dt

]
.

where g(x) =
∣∣∣∫ b−(b−a)t

a+(b−a)t
w(x)dx

∣∣∣ . By Hölder’s inequality, it follows that∣∣∣∣∣ 1
b− a

f (a) + f(b)
2

∫ b

a

w(x)dx− 1
b− a

∫ b

a

f(x)w(x)dx

∣∣∣∣∣
≤ 1

2

[∫ 1

0

(g(x))p
dt

] 1
p
[∫ 1

0

|f ′(ta + (1− t)b)|q dt

] 1
q

.

Since |f ′|q is convex on [a, b] , we know that for t ∈ [0, 1]

|f ′(ta + (1− t)b)|q ≤ t |f ′(a)|q + (1− t) |f ′(b)|q ,

hence ∣∣∣∣ 1
b− a

f (a) + f(b)
2

∫ b

a
w(x)dx− 1

b− a

∫ b

a
f(x)w(x)dx

∣∣∣∣
≤ 1

2

[∫ 1

0
(g(x))p

dt
] 1

p
(∫ 1

0

(
t |f ′(a)|q + (1− t) |f ′(b)|q

)
dt
) 1

q

=
1
2

[∫ 1

0
(g(x))p

dt
] 1

p

(
|f ′(a)|q + |f ′(b)|q

2

) 1
q
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which completes the proof. �

Remark 2.9. If we take w(x) = 1 in Theorem 2.8, since∫ 1

0

(∣∣∣∣∣
∫ b−(b−a)t

a+(b−a)t

dx

∣∣∣∣∣
)p

dt = (b− a)p

∫ 1

0

|1− 2t|p dt =
(b− a)p

(p + 1)
,

(2.12) reduces to (1.4).

3. An application

Let d be a division a = x0 < x1 < ... < xn−1 < xn = b of the interval [a, b] and
ξ = (ξ0, ..., ξn−1) a sequence of intermediate points, ξi ∈ [xi, xi+1], i = 0, n− 1. Then
the following result holds:

Theorem 3.1. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b, f ′ ∈ L[a, b] and w : [a, b] → [0,∞) be a differentiable mapping. If |f ′| is convex
on [a, b] then we have∫ b

a

f(u)w(u)du = A(f, w, d, ξ) + R(f, w, d, ξ)

where

A(f, w, d, ξ) :=
n−1∑
i=0

1
(xi+1 − xi)

f(
xi + xi+1

2
)
(∫ xi+1

xi

w(u)du

)
.

The remainder R(f, w, d, ξ) satisfies the estimation:

|R(f, f ′, d, ξ)|

≤
n−1∑
i=0

[
1

(xi+1 − xi)

∫ xi+1

xi+xi+1
2

w(u)
[
(u− xi)2 − (xi+1 − u)2

]
du

](
|f ′(xi)|+ |f ′(xi+1)|

2

)
(3.1)

for any choice ξ of the intermediate points.

Proof. Apply Theorem 2.3 on the interval [xi, xi+1], i = 0, n− 1 to get∣∣∣∣∫ xi+1

xi

f(u)w(u)du− f(
xi + xi+1

2
)
(∫ xi+1

xi

w(u)du

)∣∣∣∣
≤

[
1

(xi+1 − xi)

∫ xi+1

xi+xi+1
2

w(u)
[
(u− xi)

2 − (xi+1 − u)2
]
du

](
|f ′(xi)|+ |f ′(xi+1)|

2

)
.

�

Summing the above inequalities over i from 0 to n− 1 and using the generalized
triangle inequality, we get the desired estimation (3.1).
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Approximation in statistical sense by n−multiple
sequences of fuzzy positive linear operators

Kamil Demirci and Sevda Karakuş

Abstract. Our primary interest in the present paper is to prove a Korovkin-
type approximation theorem for n−multiple sequences of fuzzy positive linear
operators via statistical convergence. Also, we display an example such that our
method of convergence is stronger than the usual convergence.
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operators, fuzzy Korovkin theory.

1. Introduction

Anastassiou [3] first introduced the fuzzy analogue of the classical Korovkin the-
ory (see also [1], [2], [5], [12]). Recently, some statistical fuzzy approximation theorems
have been obtain by using the concept of statistical convergence (see, [6], [8]). The
main motivation of this work is the paper introduced by Duman [9]. In this paper,
we prove a Korovkin-type approximation theorem in algebraic and trigonometric case
for n−multiple sequences of fuzzy positive linear operators defined on the space of all
real valued n-variate fuzzy continuous functions on a compact subset of the real n-
dimensional space via statistical convergence. Also, we display an example such that
our method of convergence is stronger than the usual convergence.

We now recall some basic definitions and notations used in the paper.
A fuzzy number is a function µ : R → [0, 1], which is normal, convex, upper

semi-continuous and the closure of the set supp(µ) is compact, where

supp(µ) := {x ∈ R : µ(x) > 0} .

The set of all fuzzy numbers are denoted by RF . Let

[µ]0 = {x ∈ R : µ(x) > 0} and [µ]r = {x ∈ R : µ(x) ≥ r} , (0 < r ≤ 1) .

Then, it is well-known [13] that, for each r ∈ [0, 1], the set [µ]ris a closed and bounded
interval of R. For any u, v ∈ RF and λ ∈ R, it is possible to define uniquely the sum
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u⊕ v and the product λ� u as follows:

[u⊕ v]r = [u]r + [v]r and [λ� u]r = λ [u]r , (0 ≤ r ≤ 1) .

Now denote the interval [u]r by
[
u

(r)
− , u

(r)
+

]
, where u

(r)
− ≤ u

(r)
+ and u

(r)
− , u

(r)
+ ∈ R for

r ∈ [0, 1]. Then, for u, v ∈ RF , define

u � v ⇔ u
(r)
− ≤ v

(r)
− and u

(r)
+ ≤ v

(r)
+ for all 0 ≤ r ≤ 1.

Define also the following metric D : RF × RF → R+ by

D(u, v) = sup
r∈[0,1]

max
{∣∣∣u(r)

− − v
(r)
−

∣∣∣ , ∣∣∣u(r)
+ − v

(r)
+

∣∣∣}
(see, for details [3]). Hence, (RF , D) is a complete metric space [18].

The concept of statistical convergence was introduced by ([10]). A sequence
x = (xm) of real numbers is said to be statistical convergent to some finite number
L, if for every ε > 0,

lim
k→∞

1
k
|{m ≤ k : |xm − L| ≥ ε}| = 0,

where by m ≤ k we mean that m = 1, 2, ..., k; and by |B| we mean the cardinality of
the set B ⊆ N, the set of natural numbers. We recall ([16], p. 290) that “natural (or
asymptotic) density” of a set B ⊆ N is defined by

δ(B) := lim
k→∞

1
k
|{m ≤ k : m ∈ B}| ,

provided that the limit on the right-hand side exists. It is clear that a set B ⊆ N
has natural density 0 if and only if complement Bc := N \ B has natural density 1.
Some basic properties of statistical convergence may be found in ([7], [11], [17]). These
basic properties of statistical convergence were extended to n−multiple sequences by
([14], [15]). Let Nn be the set of n−tuples m := (m1,m2, ...,mn) with non-negative
integers for coordinates mj , where n is a fixed positive integer. Two tuples m and
k := (k1, k2, ..., kn) are distinct if and only if mj 6= kj for at least one j. Nn is partially
ordered by agreeing that m ≤ k if and only if mj ≤ kj for each j.

We say that a n−multiple sequence (xm) = (xm1,m2,...,mn
) of real numbers is

statistically convergent to some number L if for every ε > 0,

lim
min kj→∞

1
|k|

|{m ≤ k : |xm − L| ≥ ε}| = 0,

where |k| :=
n∏

j=1

(kj). In this case, we write st− lim xm = L. The “natural (or asymp-

totic) density” of a set B ⊆ Nn can be defined as follows:

δ(B) := lim
min kj→∞

1
|k|

|{m ≤ k : m ∈B} | ,

provided that this limit exists ([14]).
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2. Statistical fuzzy Korovkin theory

Let the real numbers ai; bi so that ai < bi, for each i = 1, n and

U := [a1; b1]× [a2; b2]× ...× [an; bn] .

Let C (U) denote the space of all real valued continuous functions on U endowed with
the supremum norm

‖f‖ = sup
x∈U

|f (x)| , (f ∈ C(U)) .

Assume that f : U → RF be a fuzzy number valued function. Then f is said to
be fuzzy continuous at x0 := (x0

1
, x0

2
, x0

3
, ..., x0

n
) ∈ U whenever limm xm = x0, then

limm D(f(xm), f(x0)) = 0. If it is fuzzy continuous at every point x ∈ U , we say that
f is fuzzy continuous on U . The set of all fuzzy continuous functions on U is denoted
by CF (U). Now let L : CF (U) → CF (U) be an operator. Then L is said to be fuzzy
linear if, for every λ1, λ2 ∈ R having the same sing and for every f1, f2 ∈ CF (U), and
x ∈ U,

L(λ1 � f1 ⊕ λ2 � f2;x) = λ1 � L(f1;x)⊕ λ2 � L(f2;x)

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear and, the
condition L(f ;x) � L(g;x) is satisfied for any f, g ∈ CF (U) and all x ∈ U with
f(x) � g(x). Also, if f, g : U → RF are fuzzy number valued functions, then the
distance between f and g is given by

D∗(f, g) = sup
x∈U

sup
r∈[0,1]

max
{∣∣∣f (r)

− − g
(r)
−

∣∣∣ , ∣∣∣f (r)
+ − g

(r)
+

∣∣∣}
(see for details, [1], [2], [3], [5], [9], [12]). Throughout the paper we use the test
functions given by

f0(x) = 1, fi(x) = xi, fn+i(x) = x2
i , i = 1, n.

Theorem 2.1. Let {Lm}m∈Nn be a sequence of fuzzy positive linear operators from

CF (U) into itself. Assume that there exists a corresponding sequence
{
∼
Lm

}
m∈Nn

of

positive linear operators from C (U) into itself with the property

{Lm (f ;x)}(r)± =
∼
Lm

(
f

(r)
± ;x

)
(2.1)

for all x ∈ U , r ∈ [0, 1], m ∈ Nn and f ∈ CF (U). Assume further that

st− lim
m

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ = 0 for each i = 0, 2n. (2.2)

Then, for all f ∈ CF (U), we have

st− lim
m

D∗ (Lm (f) , f) = 0.
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Proof. Let f ∈ CF (U), x =(x1, ..., xn) ∈ U and r ∈ [0, 1]. By the hypothesis, since
f

(r)
± ∈ C (U), we can write, for every ε > 0, that there exists a number δ > 0 such

that
∣∣∣f (r)
± (u)− f

(r)
± (x)

∣∣∣ < ε holds for every u = (u1..., un) ∈ U satisfying

|u− x| :=

√√√√ n∑
i=1

(ui − xi)
2

< δ.

Then we immediately get for all u ∈ U, that∣∣∣f (r)
± (u)− f

(r)
± (x)

∣∣∣ ≤ ε +
2M

(r)
±

δ2

n∑
i=1

(ui − xi)
2
,

where M
(r)
± :=

∥∥∥f (r)
±

∥∥∥ . Now, using the linearity and the positivity of the operators
∼
Lm, we have, for each m ∈ Nn, that∣∣∣∣∼Lm

(
f

(r)
± ;x

)
− f

(r)
± (x)

∣∣∣∣
≤ ε +

(
ε + M

(r)
± +

2M
(r)
±

δ2

n∑
i=1

x2
i

)∣∣∣∣∼Lm (f0;x)− f0 (x)
∣∣∣∣

+
2M

(r)
±

δ2

n∑
i=1

{∣∣∣∣∼Lm

(
u2

i ;x
)
− x2

i

∣∣∣∣+ 2c

∣∣∣∣∼Lm (ui;x)− xi

∣∣∣∣}
where c := max

1≤i≤n
{|ai| , |bi|}. The last inequality gives that

∣∣∣∣∼Lm

(
f

(r)
± ;x

)
− f

(r)
± (x)

∣∣∣∣ ≤ ε + K
(r)
± (ε)

2n∑
i=0

∣∣∣∣∼Lm (fi;x)− fi(x)
∣∣∣∣

where K
(r)
± (ε) := max

{
ε + M

(r)
± +

2M
(r)
±

δ2 A,
4M

(r)
±

δ2 c,
2M

(r)
±

δ2

}
and A :=

n∑
i=1

x2
i for xi ∈

[ai, bi], (i = 1, 2, ...n). Also taking supremum over x =(x1..., xn) ∈ U , the above
inequality implies that∥∥∥∥∼Lm

(
f

(r)
±

)
− f

(r)
±

∥∥∥∥ ≤ ε + K
(r)
± (ε)

2n∑
i=0

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ (2.3)

Now, it follows from (2.1) that

D∗ (Lm (f) , f)

= sup
x∈U

sup
r∈[0,1]

max
{∣∣∣∣∼Lm

(
f

(r)
− ;x

)
− f

(r)
− (x)

∣∣∣∣ , ∣∣∣∣∼Lm

(
f

(r)
+ ;x

)
− f

(r)
+ (x)

∣∣∣∣}
= sup

r∈[0,1]

max
{∥∥∥∥∼Lm

(
f

(r)
−

)
− f

(r)
−

∥∥∥∥ ,

∥∥∥∥∼Lm

(
f

(r)
+

)
− f

(r)
+

∥∥∥∥} .
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Combining the above equality with (2.3), we have

D∗ (Lm (f) , f) ≤ ε + K (ε)
2n∑
i=0

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ (2.4)

where K (ε) := sup
r∈[0,1]

max
{

K
(r)
− (ε) ,K

(r)
+ (ε)

}
.

Now, for a given r > 0, choose ε > 0 such that 0 < ε < r, and also define the
following sets:

G : = {m ∈ Nn : D∗ (Lm (f) , f) ≥ r} ,

Gi : =
{
m ∈ Nn :

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ ≥ r − ε

(2n + 1) K (ε)

}
, i = 0, 2n.

Hence, inequality (2.4) yields that

G ⊂
2n⋃
i=0

Gi

which gives,

lim
min kj→∞

1
|k|

|{m ≤ k : D∗ (Lm (f) , f) ≥ r}|

≤ lim
min kj→∞

1
|k|

∣∣∣∣{m ≤ k :
∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ ≥ r − ε

(2n + 1) K (ε)

}∣∣∣∣ , i = 0, 2n.

From the hypothesis (2.2), we get

lim
min kj→∞

1
|k|

|{m ≤ k : D∗ (Lm (f) , f) ≥ r}| = 0.

So, the proof is completed. �

If n = 1, then Theorem 2.1 reduces to result of [6].

Theorem 2.2. Let {Lm}m∈N be a sequence of fuzzy positive linear operators from

CF (U) into itself. Assume that there exists a corresponding sequence
{
∼
Lm

}
m∈N

of

positive linear operators from C (U) into itself with the property (2.1). Assume further
that

st− lim
m

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ = 0 for each i = 0, 1, 2.

Then, for all f ∈ CF (U), we have

st− lim
m

D∗ (Lm (f) , f) = 0.

If n = 2, then Theorem 2.1 reduces to new result in classical case.

Theorem 2.3. Let {Lm}m∈N2 be a sequence of fuzzy positive linear operators from

CF (U) into itself. Assume that there exists a corresponding sequence
{
∼
Lm

}
m∈N2

of
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positive linear operators from C (U) into itself with the property (2.1). Assume further
that

lim
m

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ = 0 for each i = 0, 1, 2, 3, 4.

Then, for all f ∈ CF (U), we have

lim
m

D∗ (Lm (f) , f) = 0.

We now show that Theorem 2.1 stronger than Theorem 2.3.

Example 2.4. Let n = 2, U := [0, 1] × [0, 1] and define the double sequence (um) by

um =
{ √

m1m2, if m1 and m2 are square,
0, otherwise.

We observe that, st− lim
m

um = 0 . But (um) is neither convergent nor bounded. Then
consider the Fuzzy Bernstein-type polynomials as follows:

B
(F)
m (f ;x) = (1 + um)�

m1⊕
s=0

�
m2⊕
t=0

(
m1
s

)(
m2
t

)
xs

1x
t
2 (1− x1)

m1−s (1− x2)
m2−t

�f
(

s
m1

, t
m2

)
,

(2.5)
where f ∈ CF (U), x = (x1, x2) ∈ U , m ∈ N2. In this case, we write{

B(F)
m (f ;x)

}(r)

±
=

∼
Bm

(
f

(r)
± ;x

)
= (1 + um)

m1∑
s=0

m2∑
t=0

(
m1

s

)(
m2

t

)
xs

1x
t
2 (1− x1)

m1−s (1− x2)
m2−t

f
(r)
±

(
s

m1
,

t

m2

)
,

where f
(r)
± ∈ C (U). Then, we get

∼
Bm (f0;x) = (1 + um) f0 (x) ,
∼
Bm (f1;x) = (1 + um) f1 (x) ,
∼
Bm (f2;x) = (1 + um) f2 (x) ,

∼
Bm (f3;x) = (1 + um)

(
f3 (x) +

x1 − x2
1

m1

)
∼
Bm (f4;x) = (1 + um)

(
f4 (x) +

x2 − x2
2

m2

)
.

So we conclude that

st− lim
m

∥∥∥∥∼Bm (fi)− fi

∥∥∥∥ = 0 for each i = 0, 1, 2, 3, 4.

By Theorem 2.1, we obtain for all f ∈ CF (U), that

st− lim
m

D∗
(
B(F)

m (f) , f
)

= 0.
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However, since the sequence (um) is not convergent, we conclude that Theorem 2.3 do
not work for the operators

{
B

(F)
m (f ;x)

}
in (2.5) while our Theorem 2.1 still works.

Remark 2.5. Let C2π(Rn) denote the space of all real valued continuous and 2π-
periodic functions on Rn, (n ∈ N). By CF2π (Rn) we denote the space of all fuzzy
continuous and 2π-periodic functions on Rn. (see for details [4]). If we use the following
test functions

f0(x) = 1, fi(x) = cos xi, fn+i(x) = sin xi, i = 1, n,

then the proof of Theorem 2.1 can easily be modified to trigonometric case.
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Generalized Salagean-type harmonic univalent
functions

Elif Yaşar and Sibel Yalçın

Abstract. The main purpose of this paper is to introduce a generalization of
modified Salagean operator for harmonic univalent functions. We define a new
subclass of complex-valued harmonic univalent functions by using this opera-
tor ,and we investigate necessary and sufficient coefficient conditions, distortion
bounds, extreme points and convex combination for the above class of harmonic
univalent functions.

Mathematics Subject Classification (2010): 30C45, 30C50.

Keywords: Harmonic, univalent, starlike, convex, modified Salagean operator.

1. Introduction

Let H denote the family of continuous complex valued harmonic functions which
are harmonic in the open unit disk U = {z : |z| < 1} and let A be the subclass of
H consisting of functions which are analytic in U. A function harmonic in U may
be written as f = h + g, where h and g are members of A. In this case, f is sense-
preserving if |h′(z)| > |g′(z)| in U. See Clunie and Sheil-Small [2]. To this end, without
loss of generality, we may write

h(z) = z +
∞∑

k=2

akzk, g(z) =
∞∑

k=1

bkzk. (1.1)

One shows easily that the sense-preserving property implies that |b1| < 1.
Let SH denote the family of functions f = h+ g which are harmonic, univalent,

and sense-preserving in U for which f(0) = fz(0)− 1 = 0.
For the harmonic function f = h + g, we call h the analytic part and g the

co-analytic part of f. Note that SH reduces to the class S of normalized analytic
univalent functions in U if the co-analytic part of f is identically zero.

In 1984 Clunie and Sheil-Small [2] investigated the class SH as well as its geo-
metric subclasses and obtained some coefficient bounds. Since then, there has been

The corresponding author is Elif Yaşar.
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several related papers on SH and its subclasses such as Avcı and Zlotkiewicz [1],
Silverman [7], Silverman and Silvia [8], Jahangiri [3] studied the harmonic univalent
functions.

The differential operator Dn (n ∈ N0) was introduced by Salagean [6]. For
f = h + g given by (1.1), Jahangiri et al. [4] defined the modified Salagean operator
of f as

Dnf(z) = Dnh(z) + (−1)nDng(z),
where

Dnh(z) = z +
∞∑

k=2

knakzk and Dng(z) =
∞∑

k=1

knbkzk.

For f = h + g given by (1.1), we define generalization of the modified Salagean
operator of f :

D0
λf(z) = D0f(z) = h(z) + g(z),

D1
λf(z) = (1− λ)D0f(z) + λD1f(z), λ ≥ 0, (1.2)

Dn
λf(z) = D1

λ

(
Dn−1

λ f(z)
)
. (1.3)

If f is given by (1.1) , then from (1.2) and (1.3) we see that

Dn
λf(z) = z +

∞∑
k=2

[λ(k − 1) + 1]n akzk + (−1)n
∞∑

k=1

[λ(k + 1)− 1]n bkzk. (1.4)

When λ = 1, we get modified Salagean differential operator [4]. If we take the
co-analytic part of f = h + g of the form (1.1) is identically zero, Dn

λf reduces to the
Al-Oboudi operator [5].

Denote by SH(λ, n, α) the subclass of SH consisting of functions f of the form
(1.1) that satisfy the condition

Re
(

Dn+1
λ f(z)
Dn

λf(z)

)
≥ α, 0 ≤ α < 1 (1.5)

where Dn
λf(z) is defined by (1.4).

We let the subclass SH(λ, n, α) consisting of harmonic functions fn = h + gn

in SH so that h and gn are of the form

h(z) = z −
∞∑

k=2

akzk, gn(z) = (−1)n
∞∑

k=1

bkzk, ak, bk ≥ 0. (1.6)

By suitably specializing the parametres, the classes SH(λ, n, α) reduces to the
various subclasses of harmonic univalent functions. Such as,

(i) SH(1, 0, 0) = SH∗(0) (Avcı [1], Silverman [7], Silverman and Silvia [8]),
(ii) SH(1, 0, α) = SH∗(α) (Jahangiri [3]),
(iii) SH(1, 1, 0) = KH(0) (Avcı [1], Silverman [7], Silverman and Silvia [8]),
(iv) SH(1, 1, α) = KH(α) (Jahangiri [3]),
(v) SH(1, n, α) = H(n, α) (Jahangiri et al. [4]).
The object of the present paper is to investigate the various properties of har-

monic univalent functions belonging to the subclass SH(λ, n, α). We extend the results
of [4], by generalizing the operator.
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2. Main results

Theorem 2.1. Let f = h + g be so that h and g are given by (1.1). Furthermore, let
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α] |ak|

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α] |bk| ≤ 1− α, (2.1)

where λ ≥ 1, n ∈ N0, 0 ≤ α < 1. Then f is sense-preserving, harmonic univalent in
U and f ∈ SH(λ, n, α).

Proof. If z1 6= z2,

∣∣∣∣f(z1)− f(z2)
h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)
h(z1)− h(z2)

∣∣∣∣ = 1−

∣∣∣∣∣∣∣∣∣∣

∞∑
k=1

bk

(
zk
1 − zk

2

)
(z1 − z2) +

∞∑
k=2

ak

(
zk
1 − zk

2

)
∣∣∣∣∣∣∣∣∣∣

> 1−

∞∑
k=1

k |bk|

1−
∞∑

k=2

k |ak|
≥ 1−

∞∑
k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

|bk|

1−
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

|ak|
≥ 0,

which proves univalence. Note that f is sense preserving in U. This is because

|h′(z)| ≥ 1−
∞∑

k=2

k |ak| |z|k−1
> 1−

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

|ak|

≥
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

|bk| >
∞∑

k=1

k |bk| |z|k−1 ≥ |g′(z)| .

Using the fact that Rew ≥ α if and only if |1− α + w| ≥ |1 + α− w|, it suffices to
show that∣∣(1− α)Dn

λf(z) + Dn+1
λ f(z)

∣∣− ∣∣(1 + α)Dn
λf(z)−Dn+1

λ f(z)
∣∣ ≥ 0. (2.2)

Substituting for Dn+1
λ f(z) and Dn

λf(z) in (2.2), we obtain∣∣(1− α)Dn
λf(z) + Dn+1

λ f(z)
∣∣− ∣∣(1 + α)Dn

λf(z)−Dn+1
λ f(z)

∣∣
≥ 2(1− α) |z| −

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 2− α] |ak| |z|k

−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 2 + α] |bk| |z|k

−
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1)− α] |ak| |z|k
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−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1) + α] |bk| |z|k

≥ 2(1− α) |z|

(
1−

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

|ak|

−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

|bk|

)
.

This last expression is non-negative by (2.1), and so the proof is complete. �

Theorem 2.2. Let fn = h + gn be given by (1.6). Then fn ∈ SH(λ, n, α) if and only
if

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α] ak

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α] bk ≤ 1− α, (2.3)

where λ ≥ 1, n ∈ N0, 0 ≤ α < 1.

Proof. The ”if” part follows from Theorem 2.1 upon noting that SH(λ, n, α) ⊂
SH(λ, n, α). For the ”only if” part, we show that f /∈ SH(λ, n, α) if the condition
(2.3) does not hold. Note that a necessary and sufficient condition for fn = h + gn

given by (1.6), to be in SH(λ, n, α) is that the condition (1.5) to be satisfied. This is
equivalent to

Re


(1− α)z −

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α] akzk

z −
∞∑

k=2

[λ(k − 1) + 1]n akzk +
∞∑

k=1

[λ(k + 1)− 1]n bkzk

−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α] bkzk

z −
∞∑

k=2

[λ(k − 1) + 1]n akzk +
∞∑

k=1

[λ(k + 1)− 1]n bkzk

 ≥ 0. (2.4)
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The above condition must hold for all values of z, |z| = r < 1. Upon choosing the
values of z on the positive real axis where 0 ≤ z = r < 1 we must have

(1− α)−
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α] akrk−1

1−
∞∑

k=2

[λ(k − 1) + 1]n akrk−1 +
∞∑

k=1

[λ(k + 1)− 1]n bkrk−1

−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α] bkrk−1

1−
∞∑

k=2

[λ(k − 1) + 1]n akrk−1 +
∞∑

k=1

[λ(k + 1)− 1]n bkrk−1

≥ 0. (2.5)

If the condition (2.3) does not hold, then the numerator in (2.5) is negative for r
sufficiently close to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient in
(2.5) is negative. This contradicts the required condition for fn ∈ SH(λ, n, α) and so
the proof is complete. �

Theorem 2.3. Let fn be given by (1.6). Then fn ∈ SH(λ, n, α) if and only if

fn(z) =
∞∑

k=1

(Xkhk(z) + Ykgnk
(z)) ,

where h1(z) = z,

hk(z) = z − 1− α

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
zk (k = 2, 3, ...),

gnk
(z) = z + (−1)n 1− α

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
zk (k = 1, 2, 3, ...),

∞∑
k=1

(Xk + Yk) = 1, Xk ≥ 0, Yk ≥ 0.

In particular, the extreme points of SH(λ, n, α) are {hk} and {gnk
}.

Proof. For functions fn of the form (1.6) we have

fn(z) =
∞∑

k=1

(Xkhk(z) + Ykgnk
(z))

=
∞∑

k=1

(Xk + Yk) z −
∞∑

k=2

1− α

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
Xkzk

+(−1)n
∞∑

k=1

1− α

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
Ykzk.
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Then
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

(
1− α

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
Xk

)

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

(
1− α

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
Yk

)

=
∞∑

k=2

Xk +
∞∑

k=1

Yk = 1−X1 ≤ 1, and so fn ∈ SH(λ, n, α).

Conversely, if fn ∈ SH(λ, n, α), then

ak ≤
1− α

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

and

bk ≤
1− α

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
.

Set

Xk =
[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

1− α
ak, (k = 2, 3, ...)

Yk =
[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]

1− α
bk, (k = 1, 2, 3, ...)

and

X1 = 1−

( ∞∑
k=2

Xk +
∞∑

k=1

Yk

)
where X1 ≥ 0. Then, as required, we obtain

fn(z) = X1z +
∞∑

k=2

Xkhk(z) +
∞∑

k=1

Ykgnk
(z).

�

Theorem 2.4. Let fn ∈ SH(λ, n, α). Then for |z| = r < 1 and λ ≥ 1 we have

|fn(z)| ≤ (1 + b1) r

+
(

(1− α)
(λ + 1)n (λ + 1− α)

− (2λ− 1)n (2λ− 1 + α)
(λ + 1)n (λ + 1− α)

b1

)
r2,

and

|fn(z)| ≥ (1− b1) r

−
(

(1− α)
(λ + 1)n (λ + 1− α)

− (2λ− 1)n (2λ− 1 + α)
(λ + 1)n (λ + 1− α)

b1

)
r2.
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Proof. We only prove the right hand inequality. The proof for the left hand inequality
is similar and will be omitted. Let fn ∈ SH(λ, n, α) and λ ≥ 1. Taking the absolute
value of fn we have

|fn(z)| ≤ (1 + b1) r +
∞∑

k=2

(ak + bk) rk

≤ (1 + b1) r +
∞∑

k=2

(ak + bk) r2

= (1 + b1) r +
(1− α) r2

(λ + 1)n (λ + 1− α)

∞∑
k=2

(λ + 1)n (λ + 1− α)
(1− α)

[ak + bk]

≤ (1 + b1) r +
(1− α) r2

(λ + 1)n (λ + 1− α)

×
∞∑

k=2

(
[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

1− α
ak

+
[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

1− α
bk

)
≤ (1 + b1) r +

(1− α) r2

(λ + 1)n (λ + 1− α)

×
∞∑

k=2

(
[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

1− α
ak

+
[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]

1− α
bk

)
≤ (1 + b1) r +

(1− α)
(λ + 1)n (λ + 1− α)

(
1− (2λ− 1)n (2λ− 1 + α)

1− α
b1

)
r2

≤ (1 + b1) r +
(

(1− α)
(λ + 1)n (λ + 1− α)

− (2λ− 1)n (2λ− 1 + α)
(λ + 1)n (λ + 1− α)

b1

)
r2.

The following covering result follows from the left hand inequality in Theorem 2.4. �

Corollary 2.5. Let fn of the form (1.6) be so that fn ∈ SH(λ, n, α). Then{
w : |w| < (λ + 1)n (λ + 1− α)− 1 + α

(λ + 1)n (λ + 1− α)

− (λ + 1)n (λ + 1− α)− (2λ− 1)n (2λ− 1 + α)
(λ + 1)n (λ + 1− α)

b1

}
⊂ fn(U).

Theorem 2.6. The class SH(λ, n, α) is closed under convex combinations.

Proof. Let fni
∈ SH(λ, n, α) for i = 1, 2, ..., where fni

is given by
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fni(z) = z −
∞∑

k=2

akiz
k + (−1)n

∞∑
k=1

bkiz
k. Then by (2.3),

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

aki+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

bki ≤1.

(2.6)

For
∞∑

i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fni
may be written as

∞∑
i=1

tifni
(z) = z −

∞∑
k=2

( ∞∑
i=1

tiaki

)
zk + (−1)n

∞∑
k=1

( ∞∑
i=1

tibki

)
zk.

Then by (2.6),
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

( ∞∑
i=1

tiaki

)

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

( ∞∑
i=1

tibki

)

=
∞∑

i=1

ti

( ∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

aki

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

bki

)
≤

∞∑
i=1

ti = 1.

This is the condition required by (2.3) and so
∞∑

i=1

tifni(z) ∈ SH(λ, n, α). �
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On n-weak amenability of a non-unital Banach
algebra and its unitization

Mohammad Reza Yegan

Abstract. In [2] the authors asked if a non-unital Banach Algebra A is weakly
amenable whenever its unitization A] is weakly amenable and whether A] is 2-
weakly amenable whenever A is 2-weakly amenable. In this paper we give a partial
solutions to these questions.

Mathematics Subject Classification (2010): 46B99, 16E40.

Keywords: n-weak amenability, self-induced, unitization.

1. Introduction

The notion of n-weak amenability for a Banach algebra was introduced by Dales,
Ghahramani and Gronbæk in [2]. The Banach algebra A is called n-weakly amenable
if H1(A,A(n)) = (0), where A(n) refers to the n-th dual of A . Also A is permanently
weakly amenable if A is n-weakly amenable for each nεN. In [2] the authors proved
the following(Proposition 1.4):
Let A be a non-unital Banach algebra, and nεN.

(i) Suppose A] is 2n-weakly amenable. Then A is 2n-weakly amenable.
(ii) Suppose that A is (2n − 1)-weakly amenable. Then A] is (2n − 1)-weakly

amenable.
(iii) Suppose that A is commutative. Then A] is n-weakly amenable if and only

if A is n-weakly amenable.
In this paper we consider the converses to (i) and (ii) and give partial solutions to
them. Let us recall some definitions.

Definition 1.1. ([6]) A Banach A-module X is called neo-unital if for each xεX there
are a, a′εA and y, y′εX with x = ay = y′a′.

Definition 1.2. ([3]) A Banach algebra A is called self-induced if A and A
⊗̂

AA are
naturally isomorphic.
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Here ˆA
⊗

A A =
ˆA

⊗
A

K where K is the closed linear span of {ab ⊗ c − a ⊗ bc :
a, b, c εA}.
Now we proceed to state and prove our theorem.

Theorem 1.3. Let A be a non-unital Banach algebra and suppose that A is self-induced.
(i) If A] is (2n− 1)-weakly amenable then A is (2n− 1)-weakly amenable.
(ii) If A is 2n-weakly amenable then A] is 2n-weakly amenable.
(iii) H2(A,A(2n)) ∼= H2(A],A](2n))

Proof. Clearly A is a closed two-sided ideal in A] with codimension one. We consider
the corresponding short exact sequence and its iterated duals. That is,

0 −→ A
i−→ A] ϕ−→ C −→ 0

where i : A −→ A] defined by a 7→ (a, 0) and ϕ : A] −→ C defined by (a, λ) 7→ λ.

0 −→ C −→ A](2n−1) −→ A(2n−1) −→ 0 (1.1)

0 −→ A(2n) −→ A](2n) −→ C −→ 0 (1.2)

It is easy to see that i is an isometric isomorphism and ϕ is a character on A]

with kerϕ = A. Then we make C a module over A]. Indeed,

z · (a, λ) = (a, λ) · z = ϕ(a, λ)z = λz

where (a, λ)εA] and zεC.
Now consider the long exact sequence of cohomology groups concerning to (1.1). That
is,

. . . −→ Hm(A], C) −→ Hm(A],A](2n−1)
)

−→ Hm(A],A(2n−1)) −→ H(m+1)(A], C) −→ . . . . (1.3)

Obviously A, A(n) and C are unital Banach A]-bimodules. So by [4, Theorem 2.3] we
have,

Hm(A], C) ∼= Hm(A, C) and Hm(A],A(2n−1)) ∼= Hm(A,A2n−1). (1.4)

Therefore by substituting (1.4) in (1.3) we get,

. . . −→ Hm(A, C) −→ Hm(A],A](2n−1)
)

−→ Hm(A,A(2n−1)) −→ H(m+1)(A, C) −→ . . . . (1.5)

Since A is self-induced then H1(A, C) = H2(A, C) = (0) [4,Lemma 2.5](note that C
is an annihilator A-bimodule). Hence by sequence (1.5) we obtain,

H1(A],A](2n−1)
) ∼= H1(A,A(2n−1)).
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Obviously (i) holds.
For (ii) consider the long exact sequence of cohomology groups corresponding to the
short exact sequence (1.2). That is,

. . . −→ Hm(A],A(2n)) −→ Hm(A],A](2n)
)

−→ Hm(A], C) −→ Hm+1(A],A(2n)) −→ . . . . (1.6)

Like before we have,

Hm(A], C) ∼= Hm(A, C) and Hm(A],A(2n)) ∼= Hm(A,A(2n)). (1.7)

By substituting (1.7) in (1.6) we get,

. . . −→ Hm(A,A(2n)) −→ Hm(A],A](2n)) −→ Hm(A, C) −→

Hm+1(A,A(2n)) −→ Hm+1(A],A](2n)
) −→ Hm+1(A, C) −→ . . . . (1.8)

Now if A is 2n-weakly amenable then self-inducement of A and (1.8) imply

H1(A],A](2n)
) = (0).

So (ii) holds.
For (iii) self-inducement of A and (1.8) imply

H2(A,A(2n)) ∼= H2(A],A](2n)
)

�

A special case occurs when the Banach algebra A has a left(right) bounded
approximate identity. In this case we have the following result.

Proposition 1.4. If the Banach algebra A has a left(right) bounded approximate iden-
tity then the theorem holds.

Proof. By [5, Proposition II.3.13] A
⊗

A A → A2 given by a⊗ b 7→ ab is a topological
isomorphism. By [1,§11,corollary 11] A2 = A. So A

⊗
A A ∼= A. That is A is self-

induced. Hence the theorem holds. �
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Approximate character amenability of Banach
algebras

Ali Jabbari

Abstract. New notion of character amenability of Banach algebras is introduced.
Let A be a Banach algebra and ϕ ∈ ∆(A). We say A is approximately ϕ-amenable
if there exist a bounded linear functional m on A∗ and a net (mα) in A∗∗, such
that m(ϕ) = 1 and

m(f.a) = lim
α

mα(f.a) = lim
α

ϕ(a)mα(f)

for all a ∈ A and f ∈ A∗. The corresponding class of Banach algebras is larger
than that for the classical character amenable (ϕ-amenable) algebras. General
theory is developed for this notion, and we show that this notion is different from
that character amenability and ϕ-amenability.

Mathematics Subject Classification (2010): 46H20, 43A20.

Keywords: Amenability, approximate amenability, approximate identity, Banach
algebras, character amenability.

1. Introduction

The concept of amenable Banach algebra was introduced by Johnson in 1972
[16], and has proved to be of enormous importance in Banach algebra theory. Johnson
showed that locally compact group G is amenable if and only if L1(G) is amenable as
a Banach algebra.

Let A be a Banach algebra, and let X be a Banach A-bimodule. A derivation is
a linear map D : A −→ X such that

D(ab) = a.D(b) + D(a).b (a, b ∈ A).

Throughout this paper, unless otherwise stated, by a derivation we means that
a continuous derivation. For x ∈ X, set adx : a 7→ a.x − x.a, A −→ X. Then adx is
the inner derivation induced by x.

Denote the linear space of bounded derivations from A into X by Z1(A, X) and
the linear subspace of inner derivations by N1(A, X), we consider the quotient space
H1(A, X) = Z1(A, X)/N1(A, X), called the first Hochschild cohomology group of A
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with coefficients in X. The Banach algebra A is said to be amenable if H1(A, X∗) =
{0} for all Banach A-bimodules X.

The concept of approximate amenability of Banach algebras was introduced by
F. Ghahramani and R. J. Loy in 2004 [11]. They showed that locally compact group
G is amenable if and only if L1(G) is approximately amenable as a Banach algebra.

The derivation D : A −→ X is approximately inner if there is a net (xα) in X
such that

D(a) = lim
α

(a.xα − xα.a) (a ∈ A),

so that D = limα adxα in the strong-operator topology of B(A, X). The Banach
algebra A is approximately amenable if for any A-bimodule X, every derivation D :
A −→ X∗ is approximately inner. There are many alternative formulations of the
notion of amenability, of which we note the following, for further details see [6, 5,
9, 12, 13, 14]. Of course, amenable Banach algebra is approximately amenable. Some
approximately amenable Banach algebras, which are not amenable constructed in [11].
Further examples have been shown by Ghahramani and Stokke in [13]: the Fourier
algebra A(G) is approximately amenable for each amenable, discrete group G, but it
is known that these algebras are not always amenable.

The notion of character amenability of Banach algebras was defined by Sangani
Monfared in [21]. This notion improved by Kaniuth, Lau, and Pym in [18, 19] and
some new results were presented by Azimifard in [2]. Let A be an arbitrary Banach
algebra and ϕ be a homomorphism from A onto C. We denote that the space of
all non-zero multiplicative linear functionals from A onto C by ∆(A) (∆(A) is the
maximal ideal space of A). If ϕ ∈ ∆(A) ∪ {0} and X is an arbitrary Banach space,
then X can be viewed as Banach left or right A-module by the following actions

a.x = ϕ(a)x and x.a = ϕ(a)x (a ∈ A, x ∈ X).

The Banach algebra A is said to be left character amenable (LCA) if for all
ϕ ∈ ∆(A) ∪ {0} and all Banach A-bimodules X for which the right module action is
given by a.x = ϕ(a)x (a ∈ A, x ∈ X), every continuous derivation D : A −→ X∗ is
inner. Right character amenability (RCA) is defined similarly by considering Banach
A-bimodules X for which the left module action is given by x.a = ϕ(a)x, and A is
called character amenable (CA) if it is both left and right character amenable.

Also, according to [18], the Banach algebra A is ϕ-amenable (ϕ ∈ ∆(A)) if
there exists a bounded linear functional m on A∗ satisfying m(ϕ) = 1 and m(f.a) =
ϕ(a)m(f) for all a ∈ A and f ∈ A∗. Therefore the Banach algebra A is character
amenable if and only if A is ϕ-amenable, for every ϕ ∈ ∆(A) ∪ {0}.

It is clear that if A is amenable then A is ϕ-amenable for every ϕ ∈ ∆(A), but
converse is not true, because for example let G be a locally compact group and A(G)
is a Fourier algebra on G. Fourier algebra A(G) is character amenable (Example 2.6,
[18]), but it is not amenable even when G is compact (see [17]).

Recently in [25], authors defined and studied approximate character amenability
of Banach algebras. The Banach algebra A is said to be approximately left character
amenable if for all ϕ ∈ ∆(A)∪{0} and all Banach A-bimodules X for which the right
module action is given by a.x = ϕ(a)x (a ∈ A, x ∈ X), every continuous derivation
D : A −→ X∗ is approximately inner. Approximately right character amenability is
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defined similarly by considering Banach A-bimodules X for which the left module
action is given by x.a = ϕ(a)x, and A is called approximately character amenable if
it is both approximately left and right character amenable.

In this work, after establishing some background definition (our definition is def-
erent from [25]) and notation, we discuss some results for general Banach algebras.
We generalize the character amenability (ϕ-amenability) of Banach algebras to ap-
proximate character amenability (approximate ϕ-amenability) of Banach algebras. By
approximate character amenability, we provide some results, which they concluded by
character amenability. A Banach algebra A is ϕ-amenable, if and only if there exists
a bounded net (uα) in A such that ‖a.uα−ϕ(a).uα‖ → 0 for all a ∈ A and ϕ(uα) = 1
for all α (Theorem 1.4 of [18]). By this notion, we construct such net and by this
net, we give some results about existing of bounded approximate identity for Banach
algebra A.

Also by giving an example, we show that there exists an approximately char-
acter amenable non-character amenable Banach algebra. Finally we consider some
hereditary properties of approximate ϕ-amenability.

2. Main results

Definition 2.1. Let A be a Banach algebra and ϕ ∈ ∆(A). We say A is approximately
ϕ-amenable if there exist a bounded linear functional m on A∗ and a net (mα) in A∗∗,
such that m(ϕ) = 1 and

m(f.a) = lim
α

mα(f.a) = lim
α

ϕ(a)mα(f)

for all a ∈ A and f ∈ A∗.

When A is ϕ-amenable, then it is approximately ϕ−amenable. In [18, 19], authors
showed that the relation between ϕ-amenability and amenability of Banach algebras
in special case. Banach algebra A is ϕ-amenable if and only if H1(A, X∗) = {0} for
each Banach A-bimodule X such that a.x = ϕ(a)x, for all x ∈ X and a ∈ A. In the
following Theorem, we generalize the Theorem 1.1 of [18] as follows:

Theorem 2.2. Let A be a Banach algebra, and ϕ ∈ ∆(A). Then the following state-
ments are equivalent.

(i) A is approximately ϕ-amenable.
(ii) If X is a Banach A-bimodule such that a.x = ϕ(a).x for all x ∈ X and

a ∈ A, then every derivation from A into X∗ is approximately inner.

Proof. (ii) → (i), let ϕ ∈ ∆(A). It is clear that A∗ is a Banach A-bimodule by
following action

a.f = ϕ(a).f,

for all f ∈ A∗ and a ∈ A. Also since ϕ ∈ A∗, so we have

a.ϕ = ϕ.a = ϕ(a)ϕ. (2.1)

Therefore Cϕ is a closed A-submodule of A∗. Take X = A∗\Cϕ, and consider
i : A∗ −→ X that is a canonical mapping. Let δ be a derivation from A into A∗∗.
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Since every derivation from A into each Banach A-bimodule is approximately inner,
then there exists a net (vα)α in A∗∗, such that

δ(a) = lim
α

a.vα − vα.a.

According to (2.1) for given a ∈ A, we have

δ(a)(ϕ) = lim
α

(a.vα)ϕ− (vα.a)ϕ = lim
α

vα(ϕ.a)− vα(ϕ.a) = 0.

Therefore δ(a) ∈ i∗X∗, and since i∗ is a monomorphism, thus there exists a
unique element D(a) ∈ X∗, such that i∗(D(a)) = δ(a). This shows that D is a
derivation from A into X∗. Therefore there exists a net (ξβ)β in X∗ such that

D(a) = lim
β

a.ξβ − ξβ .a,

for all a ∈ A. Then we have

lim
β

a.(i∗ξβ)− (i∗ξβ).a = lim
β

i∗(a.ξβ − ξβ .a)

= i∗(D(a)) = δ(a) = lim
α

a.vα − vα.a.

Let mα,β = vα − i∗ξβ , then mα,β ∈ A∗∗, mα,β(ϕ) = 1 and a.mα,β = mα,β .a.
Therefore we have

mα,β(f.a) = mα,β(a.f) = ϕ(a)mα,β(f) (a ∈ A, f ∈ A∗).

Let I and J be the index sets for nets (vα) and (ξβ), respectively. We construct
the required net (mk) using an iterated limit construction (see [20]). Our indexing
directed set is defined to be K = I × Πα∈IJ , equipped with the product ordering,
and for each k = (α, f) ∈ K, we define mk = mα,f(α). Now let m = limk mk and this
complete the proof.

For (i) → (ii), let (mα) and m be as in Definition 2.1. Let D : A −→ X∗ be
a derivation, and let D′ = D∗|X : X −→ A∗ and gα = (D′)∗(mα) ∈ X∗, such that
limα gα = limα(D′)∗(mα) = (D′)∗(m). Then, for all a, b ∈ A and x ∈ X,

〈b, D′(a.x)〉 = 〈a.x,D(b)〉 = ϕ(a)〈x, D(b)〉 = ϕ(a)〈b, D′(x)〉,

and, hence D(a.x) = ϕ(a)D′(x). This implies that

〈x, gα.a〉 = 〈a.x, gα〉 = 〈D′(a.x),mα〉
= ϕ(a)〈D′(x),mα〉 = ϕ(a)〈x, gα〉.

Since D is a derivation, so we have

〈b, D′(x.a)〉 = 〈x.a,D(b)〉 = 〈x, a.D(b)〉 = 〈ab,D′(x)〉 − 〈b.x, D(x)〉
= 〈b, D′(x).a〉 − ϕ(b)〈x, D(a)〉

for all a, b ∈ A and x ∈ X. Thus

D′(x.a) = D′(x).a− 〈x, D(a)〉ϕ,
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for all a ∈ A and x ∈ X. Consequently

〈D′(x.a),m〉 = 〈x.a, (D′)∗(m)〉 = lim
α
〈x, a.gα〉 = lim

α
〈x.a, gα〉 = lim

α
〈D′(x.a),mα〉

= lim
α
〈D′(x).a, mα〉 − lim

α
〈x,D(a)〉〈ϕ, mα〉

= lim
α

ϕ(a)〈x, gα〉 − 〈x, D(a)〉,

and hence D(a) = limα ϕ(a)gα − a.gα. Therefore we have

D(a) = lim
α

a.(−gα)− (−gα).a,

for all a ∈ A. �

According to the Theorem 1.4 of [18], the Banach algebra A is ϕ-amenable if
and only if there exists a bounded net (uα) in A such that ‖a.uα − ϕ(a).uα‖ → 0 for
all a ∈ A and ϕ(uα) = 1 for all α. Now, by using of technique of Theorem 1.4 of [18],
we have the following Theorem.

Theorem 2.3. Let A be a Banach algebra and ϕ ∈ ∆(A). If A is approximately ϕ-
amenable then there exists a bounded net (uα) in A such that ‖a.uα − ϕ(a).uα‖ → 0
for all a ∈ A.

Proof. Suppose that A is approximately ϕ-amenable. Let m ∈ A∗∗ and net (mα) ∈ A∗∗

be as in Definition 2.1.
Fix α, then by the Goldstaine Theorem (Theorem A.3.29 of [7]) there exists a

net (να,β) ⊂ A, such that να,β
w∗

−→ mα, and ‖να,β‖ ≤ ‖mα‖ + 1 for all β. Consider
the product space AA endowed with the product of the norm topologies. Then AA is
a locally convex topological vector space. Define a linear map T : A −→ AA by

T (u) = (au− ϕ(a)u)a∈A (u ∈ A),

and a subset Cα of A by

Cα = {u ∈ A : ‖u‖ ≤ ‖mα‖+ 1}.

Then Cα is convex and hence T (Cα) is a convex subset of AA. The fact that
〈aνα,β − ϕ(a)να,β , f〉 −→ 0, for all f ∈ A∗ and a ∈ A. This shows that the zero
element of AA is contained in the closure of T (Cα) with respect to the product of the
weak topologies. Now this product of the weak topologies coincides with the weak
topology on AA and since AA is a locally convex space and T (Cα) is convex, the weak
closure of T (Cα) equals the closure of T (Cα) in the given topology on AA, that is, the
product of the norm topologies (see [24, 23]). It follows that there exists a bounded
net (uγ) in A such that ‖a.uγ − ϕ(a).uγ‖ → 0 for all a ∈ A. �

Note that according to the proof of the above Theorem, existence of such net
is not unique. for given character amenable Banach algebra A, set the character
amenability constant C(A) of A to be infimum of the norms of nets which obtained
by Theorem 1.4 of [18]. We will say A is K- character amenable if its character
amenability constant is at most K.
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We should show that approximate character amenability of Banach algebras is
different from character amenability of Banach algebras. To showing this difference,
by using of technique of Example 6.1 of [11], we consider the following Example.

Example 2.4. Let (An) be a sequence of character amenable Banach algebras such that
C(An) → ∞. Then B = c0(A]

n) is approximately character amenable non-character
amenable Banach algebra.

Proof. Let B be character amenable, and let (Um)m be the sequence in B which
obtained by Theorem 1.4 of [18]. By restricting of (Um)m to the nth coordinate of
this sequence of bound K yields a sequence (um)m in An with bound at most K, and
since C(An) →∞ then B can not be character amenable. Define

Bk = {(xn) ∈ c0(A]
n) : xn = 0 for n > k}.

For n ∈ N, let Pn : c0(A]
n) −→ Bn be the natural projection of multiplication by

En = (e1, e2, ..., en, 0, 0, ...) onto the first n coordinate. Then Pn(En) is the identity of
Bn, and (En) is a central approximate identity for B bounded by 1. Let X be a Banach
B-bimodule such that b.x = ϕ(b)x, and x.b = ϕ(b)x for all b ∈ B, x ∈ X (ϕ ∈ ∆(B)).
Now suppose that D : B −→ X∗ is a continuous derivation. By restricting D to some
Bn we have a derivation Dn : Bn −→ X∗. Then there exists a bounded sequence (ξn)
in X∗ such that Dn(b) = b.ξn− ξn.b. Then by module actions defined above for b ∈ B
and x ∈ X we have

〈bEn.ξn, x〉 = 〈b.ξn, x〉 and 〈ξn.Enb, x〉 = 〈ξn.b, x〉.

Since (En) is central, so

D(b) = D(lim
n

Enb) = lim
n

D(Enb) = lim
n

Dn(Enb)

= lim
n

bEn.ξn − ξn.Enb = lim
n

b.ξn − ξn.b.

Then D is approximately inner, and hence B is approximately character
amenable. �

One of the famous open problems in the amenability and approximate amenabil-
ity of Banach algebras is: Does amenability or approximate amenability of Banach
algebra such as A implies that amenability or approximate amenability of A∗∗? This
problem in the case of ϕ-amenability in Proposition 3.4 of [18] is considered and
authors proved that the Banach algebra A is ϕ-amenable if and only if A∗∗ is ϕ̃-
amenable, where ϕ̃ is the extension of ϕ to A∗∗. Now, we generalize this statement in
to approximate ϕ-amenability of Banach algebras.

Theorem 2.5. Let A be a Banach algebra, let ϕ ∈ ∆(A), and let ϕ̃ denote the extension
of ϕ to A∗∗. Then A is approximately ϕ-amenable if and only if A∗∗ is approximately
ϕ̃-amenable.

Proof. Let m(f.a) = limα ϕ(a)mα(f), where m ∈ A∗∗ and (mα)α ⊆ A∗∗. Suppose
that m̂ is the Gelfand transform of m and m̂α is the Gelfand transform of mα, for all
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α. Let a
′′ ∈ A∗∗ and u ∈ A∗∗∗, then there exist nets (aγ) ⊆ A and (uβ) ⊆ A∗, such

that aγ
w∗

−→ a
′′

and uβ
w∗

−→ u. Therefore

〈u.a
′′
, m̂〉 = 〈m,u.a

′′
〉 = lim

β
〈m,uβ .a

′′
〉 = lim

β
lim
γ
〈m,uβ .aγ〉

= lim
β

lim
γ

lim
α

ϕ(aγ)〈uβ ,mα〉 = lim
β

lim
α

ϕ̃(a
′′
)〈uβ ,mα〉

= lim
α

ϕ̃(a
′′
)m̂α(u).

Conversely, let A∗∗ be approximately ϕ̃-amenable, then there sexist an element
M and net (Mα)α in A∗∗∗∗, such that M(f.a) = limα ϕ̃(a)Mα(f). Now with restriction
of M and Mα to A∗∗, we conclude that A is approximately ϕ-amenable. �

In Theorem 2.3 of [21], Monfared showed that character amenability of Banach
algebras similarly to amenability of Banach algebras implies that existence of bounded
approximate identity for them. By the following Proposition, we show approximate
ϕ-amenability of Banach algebra similar to approximate amenability implies existence
of approximate identity for it’s.

Proposition 2.6. Let A be a Banach algebra and ϕ ∈ ∆(A). If A is approximately
ϕ-amenable, then A have right and left approximate identity.

Proof. In Theorem 2.1 (ii), take X = A∗, with right action a.x = ϕ(a).x and zero left
action. Remain of proof is exactly similar to proof of Lemma 2.2 of [11]. �

Let A be an approximately amenable Banach algebra and∑
: 0 −→ X∗ f−→ Y

g−→ Z −→ 0

be an admissible short exact sequence of left A-modules. Then by Theorem 2.2 of
[11],

∑
approximately splits. Proof of the following Theorem is similar to proof of

Theorem 2.2 of [11].

Theorem 2.7. Let A be a Banach algebra, and let ϕ ∈ ∆(A). Let∑
: 0 −→ X∗ f−→ Y

g−→ Z −→ 0

be an admissible short exact sequence of Banach A-bimodules such that a.x = ϕ(a).x,
for all a ∈ A and x is in X, Y and Z. If A is approximately ϕ-amenable, then

∑
is

approximately splits. That is, there is a net Gν : Z −→ Y of right inverse maps to g
such that limν(a.Gν − Gν .a) = 0 for a ∈ A, and a net Fν : Y −→ X∗ of left inverse
maps to f such that limν(a.Fν − Fν .a) = 0 for a ∈ A.

The following Proposition is similar to Proposition 3.3 of [25], but since our
proof is different, so we do not remove the proof.

Proposition 2.8. Let A be a Banach algebra, and let J be a closed ideal of A. Let ϕ ∈
∆(A) such that ϕ|J 6= 0. If A is approximately ϕ-amenable, then J is approximately
ϕ|J−amenable.
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Proof. Let m ∈ A∗∗ and net (mα)α in A∗∗ be as in Definition 2.1. Fix α, then there
exists a net (να,β) in A such that να,β −→ mα in w∗−topology. For each f ∈ J⊥ and
any a ∈ J , we have

m(f.a) = lim
α

mα(f.a) = lim
β

lim
α
〈f.a, να,β〉

= lim
β

lim
α
〈f, a.να,β〉 = 0.

Suppose that m′ ∈ J∗∗, such that m ∈ A∗∗ is the extending of m′. Without loss
of generality, we can suppose that ϕ(a) = 1, then

m(f.a) = lim
α

mα(f.a) = lim
α

mα(f) = 0,

for all f ∈ J⊥. Therefore net (mα)α is a net of bounded linear functional on J∗. For
each α there exists m′

α in J∗∗ such that m′
α(g) = mα(f), where f is extending of g

from J∗ into A∗. By definition of m′
α we have m′

α(ϕ|J) = mα(ϕ) = 1 and

ϕ(a)m′
α(g) = ϕ(a)mα(f) = mα(f.a) = m′

α(g.a),

for all g ∈ J∗ and a ∈ J . Thus

m′(g.a) = m(f.a) = lim
α

mα(f.a) = lim
α

m′
α(g.a)

= lim
α

ϕ(a)m′
α(g).

�

Proposition 2.9. Let A be a Banach algebra, let J be a closed two-sided ideal in A,
and let ϕ ∈ ∆(A). If A is approximately ϕ-amenable, then A/J is approximately
ϕ̃-amenable, where ϕ̃ is the induction of ϕ on A/J .

Proof. Let T : A −→ A/J be a continuous epimorphism. Suppose that X is a Banach
A−bimodule, where a.x = ϕ(a).x, for all a ∈ A, x ∈ X. Let D : A/J −→ X∗ be a
derivation. Then D ◦ T : A −→ X∗ is a derivation. Define ϕ̃ = ϕ ◦ T , thus ϕ̃ is a
homomorphism on A/J .

Since A is approximately ϕ-amenable, then by Theorem 2.1 (ii), there exists a
net (ξα)α ⊂ X∗ such that

(D ◦ T )(a) = lim
α

T (a).ξα − ξα.T (a),

this shows that D is an approximately inner derivation, by Theorem 2.1, A/J is
approximately ϕ̃-amenable. �

Let G be a locally compact group, and let A(G) be the Fourier algebra on G.
Ghahramani and Stokke in [13], studied approximate amenability of Fourier algebras
on locally compact group G. Character amenability of A(G) is equivalent to amenabil-
ity of G as a group (Corollary 2.4 of [21]). By Proposition 2.9, we have the following
result for A(G).

Corollary 2.10. Let G be a locally compact group, and H be a closed subgroup of G.
If A(G) is approximately character amenable, then A(H) is approximately character
amenable.
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Proof. By Lemma 3.8 of [10], A(H) is a quotient of A(G). Then by Proposition 2.9,
A(H) is approximately character amenable. �

Proposition 2.11. Let A be a Banach algebra and ϕ ∈ ∆(A). Let J be an ideal in
A with J ⊆ ker ϕ and let ϕ̃ : A/J −→ C be the homomorphism induced by ϕ. If J
has a right identity and A/J is approximately ϕ̃-amenable then A is approximately
ϕ-amenable.

Proof. Let T : A −→ A/J be a epimorphism, such that ϕ = ϕ̃ ◦ T . Suppose m ∈ A∗∗,
such that T (m)∗∗ = n and there exists a net (nα)α ⊂ (J⊥)∗, such that n(a.f) =
limα ϕ̃(a)nα(f), for all a ∈ A/J and f ∈ J⊥. For each α there exists mα ∈ A∗∗, such
that T (mα) = nα. For all x ∈ A we have

T (x)T ∗∗(m−me) = T ∗∗(x)T ∗∗(m) = T ∗∗(x)n = lim
α

ϕ̃∗∗(T ∗∗(x))nα

= lim
α

ϕ̃(T (x))T ∗∗(mα −mαe)

= lim
α

ϕ(x)T ∗∗(mα −mαe),

therefore
T ∗∗(x(m−me)− lim

α
ϕ(x)(mα −mαe)) −→ 0,

Since for each a ∈ J , (x(m − me) − limα ϕ(x)(mα − mαe))a = 0, thus x(m −
me)− limα ϕ(x)(mα −mαe) = 0. Hence

x(m−me) = lim
α

ϕ(x)(mα −mαe).

�

Let A be a non-unital Banach algebra. We denoted the forced unitization of
A with A] and the adjoined identity element usually be denoted by e unless stated
otherwise. Banach algebra A is an ideal of A] and A] = A⊕Ce. Like as A], for (A])∗

and (A])∗∗, we have (A])∗ = A∗ ⊕ Cf0 and (A])∗∗ = A∗∗ ⊕ Cm0, where f0(e) = 1,
f |A = 0, m0(f0) = 1 and m0|A∗∗ = 0.

Proposition 2.12. Let A be a non-unital Banach algebra. Let ϕ ∈ ∆(A) and let ϕe

be the unique extension of ϕ to an element of ϕ : A] −→ C be a continuous homo-
morphism. Then A is approximately ϕ-amenable if and only if A] is approximately
ϕe-amenable.

Proof. See Theorem 3.7 of [25]. �

Proposition 2.13. Let A be a Banach algebra and let ϕ ∈ ∆(A). If A is approximately
ϕ-amenable and J is a weakly complemented left ideal of A. Then J has a right
approximate identity and thereupon J2 = J .

Proof. Without loss of generality by Proposition 2.12, we can suppose that A is unital.
Consider the following sequence of left A-modules∑

: 0 −→ J
i−→ A −→ A/J −→ 0
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since (A/J)∗ ∼= J⊥, then we have∑∗∗
: 0 −→ J∗∗ i∗∗−→ A∗∗ −→ (J⊥)∗ −→ 0.

Since J is a weakly complemented left ideal of A, then
∑∗∗ is admissible, and

so by Theorem 2.7, there is a net of maps (Qα) such that a.Qα −Qα.a −→ 0, for all
a ∈ A.

Since A is unital, then A∗∗ has right identity E, then

〈E,Qα.a〉 = 〈i∗∗â.E, Qα〉 = 〈i∗∗â, Qα〉 = â.

for all a ∈ J , and thereby we have

〈E, a.Qα〉 = 〈a.Qα −Qα.a, E〉+ â −→ â,

and this show that 〈E,Qα.a〉 −→ â, for all a ∈ J . Therefore by Proposition 2.6, J
has a right approximate identity. �

Example 2.14. In Corollary 2.5 of [21], Monfared showed that the measure algebra
M(G) is character amenable if and only if G is a discrete amenable group. Now,
by Proposition 2.13, M(G) is approximately character amenable if and only if G is
discrete and amenable (see [8]).

Let G be a locally compact group. A linear subspace S1(G) of L1(G) is said to
be a Segal algebra, if it satisfies the following conditions:

(i) S1(G) is a dense in L1(G);
(ii) If f ∈ S1(G), then Lxf ∈ S1(G), i.e. S1(G) is left translation invariant;
(iii) S1(G) is a Banach space under some norm ‖.‖S and ‖Lxf‖s = ‖f‖s, for all

f ∈ S1(G) and x ∈ G;
(iv) Map x 7→ Lxf from G into S1(G) is continuous.
For more details about Segal algebras see [22]. Character amenability of Segal

algebras studied in [1], and many useful results about approximate amenability of
such algebras considered in [6]. For amenable locally compact group G, S1(G) is ϕ-
amenable for all ϕ ∈ ∆(S1(G)), and also S1(G) is character amenable if and only if
S1(G) = L1(G) (Proposition 3.1 of [1]). Now, we consider the following Corollary for
Segal algebras (for prove, we use technique of proof of Theorem 5.5 of [6]).

Corollary 2.15. Let G be a locally compact group, and let S1(G) be a Segal algebra on
G. If S1(G) is approximate character amenable then G is an amenable group.

Proof. Let G be a non-amenable locally compact group. Then by Theorem 5.2 of [26],
There is no finite codimensional, closed, left ideal in L1(G) has right approximate
identity. Let I0 = {f ∈ L1(G) :

∫
G

f(x)dx = 0} be the augmentation ideal in L1(G).
Let J be an ideal of S1(G) such that J = S1(G) ∩ I0. Ideal J is a 1-codimension
two-sided closed ideal in S1(G). If S1(G) is approximate character amenable, then
by Proposition 2.13, J has a right approximate identity. By Proposition 5.4 of [6],
I0 have a right approximate identity, and this is a contradiction. Therefore G is an
amenable group. �

By following Proposition, we show that in which condition the approximate
character amenability can be transfer.
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Proposition 2.16. Let A and B be Banach algebras, and let h : A −→ B be a contin-
uous homomorphism with dense range. If ϕ ∈ ∆(B) and A is approximately ϕ ◦ h-
amenable, then B is approximately ϕ-amenable.

Proof. Let A be approximately ϕ◦h−amenable, then there exist there exist a bounded
linear functional m on A∗ and a net (mα) in A∗∗, such that mα(ϕ ◦ h) = 1 and
m(f.a) = limα ϕ(h(a))mα(f) for all a ∈ A and f ∈ A∗.

Given n ∈ B∗∗ such that n(g) = m(g.h), g ∈ B∗. For each a, a′ ∈ A, we have

〈(g.h(a) ◦ h, a′〉 = 〈g.h(a), h(a′)〉 = 〈g, h(a)h(a′)〉
= 〈g, h(aa′)〉 = 〈g ◦ h, aa′〉 = 〈(g ◦ h).a, a′〉.

Therefore (g.h(a)◦h = (g◦h).a, for all a ∈ A. Let mα(g◦h) = nα(g), for g ∈ B∗,
then

n(g.h(a)) = m((g.h(a)) ◦ h) = m((g ◦ h).a)
= lim

α
ϕ ◦ h(a)mα(g ◦ h) = lim

α
ϕ(h(a))nα(g),

where (nα)α is in B∗∗. �
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spacelike biharmonic curves with timelike
binormal in the dual Lorentzian D3
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Abstract. In this paper, we study dual focal curves of spacelike biharmonic curves
with timelike binormal in the dual Lorentzian 3-space D3

1. We characterize dual
focal curves in terms of their dual focal curvatures.
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1. Introduction

The application of dual numbers to the lines of the 3-space is carried out by
the principle of transference which has been formulated by Study and Kotelnikov.
It allows a complete generalization of the mathematical expression for the spherical
point geometry to the spatial line geometry by means of dual-number extension, i.e.
replacing all ordinary quantities by the corresponding dual-number quantities.

Harmonic maps f : (M, g) −→ (N,h) between Riemannian manifolds are the
critical points of the energy

E (f) =
1
2

∫
M

|df |2 vg, (1.1)

and they are therefore the solutions of the corresponding Euler–Lagrange equation.
This equation is given by the vanishing of the tension field

τ (f) = trace∇df. (1.2)

Bienergy of a map f by

E2 (f) =
1
2

∫
M

|τ (f)|2 vg, (1.3)

and say that is biharmonic if it is a critical point of the bienergy.
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Jiang derived the first and the second variation formula for the bienergy in [13],
showing that the Euler–Lagrange equation associated to E2 is

τ2 (f) = −J f (τ (f)) = −∆τ (f)− traceRN (df, τ (f)) df (1.4)
= 0,

where J f is the Jacobi operator of f . The equation τ2 (f) = 0 is called the biharmonic
equation. Since J f is linear, any harmonic map is biharmonic. Therefore, we are
interested in proper biharmonic maps, that is non-harmonic biharmonic maps.

In this paper, we study dual focal curves in the dual 3-space D3. We characterize
dual focal curves in terms of their focal curvatures.

2. Preliminaries

If a and a∗ are real numbers, the combination

A = a+ εa∗ (2.1)

is called a dual number. Here ε is the dual unit. Dual numbers are considered as
polynomials in ε, subject to the rules ε 6= 0, ε2 = 0, ε.1 = 1.ε = ε. W. K. Clifford
defined the dual numbers, the set of dual numbers forms a commutative ring having
the numbers εa∗(a∗ real) as divisors of zero, not a field. No number εa∗ has an inverse
in the algebra. But the other laws of the algebra of dual numbers are the same as the
laws of algebra of complex numbers. For example, two dual numbers A and B = b+εb∗

are added componentwise.

A+B = (a+ b) + ε(a∗ + b∗), (2.2)

and they are multiplied by

AB = ab+ ε(a∗b+ ab∗). (2.3)

For the equality of A and B we have

A = B ⇔ a = b, and a∗ = b∗. (2.4)

An oriented line in E3 may be given by two points x and y on it. If µ is any
non-zero constant [2], the parametric equation of the line is:

y = x+ µa, (2.5)

a is a unit vector along the line. The moment of a with respect to the origin is

a∗ = x× a = y × a. (2.6)

This means that a and a∗ are not independent of the choice of the points on the line
and these vectors are not independent of one another; satisfy the following equations:

< a, a >= 1, < a, a∗ >= 0. (2.7)

The six components ai, a
∗
i (i = 1, 2, 3) of the vectors a and a∗ are known to

be Plücker homogeneous line coordinates. These two vectors a and a∗ determine an
oriented line in E3. A point z lies on this line if and only if

z × a = a∗. (2.8)
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The set of oriented lines in E3 is in one-to-one correspondence with pairs of
vectors subject to the conditions (2.7), and so we may expect to represent it as a
certain fourdimensional set in <6 of sixtuples of real numbers; we may take the space
D3 of triples of dual numbers with coordinates:

Xi = xi + εx∗
i (i = 1, 2, 3). (2.9)

Each line in E3 may be represented by a dual unit vector

A = a+ εa∗; (2.10)

in D3. It is clear that this dual unit vector has the property

< A,A >=< a, a > +2ε < a, a∗ >= 1. (2.11)

The Lorentzian inner product of dual vectors ϕ̂ and ψ̂ in D3 is defined by〈
Ω̂, ψ̂

〉
= 〈Ω, ψ〉+ ε (〈Ω, ψ∗〉+ 〈Ω∗, ψ〉) , (2.12)

with the Lorentzian inner product ϕ and ψ

〈Ω, ψ〉 = −Ω1ψ1 + Ω2ψ2 + Ω3ψ3, (2.13)

where Ω= (Ω1,Ω2,Ω3) and ψ=(ψ1, ψ2, ψ3) .
Theorem 2.1. (E. Study) The oriented lines in E3 are in one-to-one correspon-

dence with points of the dual unit sphere < X,X >= 1 in D3.

3. Dual spacelike biharmonic curves with timelike binormal in the
dual Lorentzian space D3

1

Let γ̂ = γ + εγ∗ : I ⊂ R → D3
1 be a C4 dual spacelike curve with arc length

parameter s. Then the unit tangent vector γ̂′ = T̂ is defined, and the principal normal
is N̂ = 1

κ̂T̂′, where κ̂ is never a pure-dual. The function κ̂ =
∥∥∥T̂′

∥∥∥ = κ+ εκ∗ is called
the dual curvature of the dual curve γ̂. Then the binormal of γ̂ is given by the dual
vector b̂ = T̂× N̂. Hence, the triple

{
T̂, N̂, B̂

}
is called the Frenet frame fields and

the Frenet formulas may be expressed T̂′

N̂′

B̂′

 =

 0 κ̂ 0
−κ̂ 0 τ̂
0 τ̂ 0

 T̂
N̂
B̂

 , (3.1)

where τ̂ = τ + ετ∗ is the dual torsion of the spacelike dual curve γ̂. Here, we suppose
that the dual torsion τ̂ is never pure-dual.

Theorem 3.1. (see [5]) Let γ̂ : I −→ D3
1 be a dual spacelike biharmonic curves

with timelike binormal parametrized by arc length. γ̂ is a dual timelike biharmonic
curve if and only if

κ = constant and κ∗ = constant,
τ = constant and τ∗ = constant,
κ2 − τ2 + ε (2κκ∗ − 2ττ∗) = 0.

(3.2)
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Corollary 3.2. (see [5]) Let γ̂ : I −→ D3
1 be a dual spacelike biharmonic curves

with timelike binormal parametrized by arc length. γ̂ is a dual spacelike elastic bihar-
monic curves with timelike binormal if and only if

κ2 = τ2, (3.3)

κκ∗ = ττ∗. (3.4)

4. Dual focal curves of dual spacelike biharmonic curves with timelike
binormal in the dual Lorentzian space D3

1

Denoting the dual focal curve by ℘̂ we can write

℘̂(s) = (γ̂ + m̂1N̂ + m̂2B̂)(s), (4.1)

where the coefficients m̂1, m̂2 are smooth functions of the parameter of the curve γ̂,
called the first and second dual focal curvatures of γ̂, respectively.

The formula (4.1) is separated into the real and dual part, we have

℘(s) = (γ + m1N + m2B)(s),
℘∗(s) = (γ∗ + m1N∗ + m∗

1N + m2B∗ + m∗
2B) (s). (4.2)

Theorem 4.1. Let γ̂ : I −→ D3
1 be a unit speed dual spacelike curve and ℘̂ its dual

focal curve on D3
1. Then,

℘ = γ +
1
κ
N, (4.3)

℘∗ = γ∗ +
1
κ
N∗ − κ∗

κ2
N+

κ′

κ2τ
B∗ (4.4)

+
(

(κ∗)′κ2 − 2κκ∗κ′

κ4τ
− τ∗κ′

κ2τ2

)
B.

Proof. Assume that γ̂ is a unit speed dual spacelike curve and ℘̂ its dual focal curve
on D3

1.

So, by differentiating of the formula (4.1), we get

℘̂(s)′ = (1− κ̂m̂1)T̂ + (m̂′
1 + τ̂m̂2)N̂ + (τ̂m̂1 + m̂′

2)B̂. (4.5)

Using above equation, the first 2 components vanish, we have using above equa-
tion,

κm1 = 1,
κm∗

1 + κ∗
1m = 0,

m′
1 + τm2 = 0,

(m∗
1)

′ + τm∗
2 + τ∗m2 = 0.
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Considering equations above system, we have

m1 =
1
κ
,

m∗
1 = −κ

∗

κ2
,

m2 =
κ′

κ2τ
,

m∗
2 =

(κ∗)′κ2 + 2κκ∗κ′

κ4τ
− τ∗κ′

κ2τ2
.

By means of obtained equations, we express (4.3) and (4.4). This completes the
proof.

Corollary 4.2. Let γ̂ : I −→ D3
1 be a unit speed dual spacelike curve and ℘̂ its dual

focal curve on D3
1. Then, the dual focal curvatures of ℘̂ are

m1 =
1
κ
,

m∗
1 = −κ

∗

κ2
,

m2 =
κ′

κ2τ
,

m∗
2 =

(κ∗)′κ2 + 2κκ∗κ′

κ4τ
− τ∗κ′

κ2τ2
.

In the light of Theorem 4.1, we express the following corollary without proof:

Corollary 4.3. Let γ̂ : I −→ D3
1 be a unit speed dual spacelike biharmonic curve and

℘̂ its dual focal curve on D3
1. Then,

κ = ∓ 1
m1

,

τ = ∓ 1
m1

,

κ∗ = ∓m∗
1

m2
1

,

τ∗ = ∓m∗
1

m2
1

.
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Variational analysis of a contact problem
with friction between two deformable bodies

Tedjani Hadj Ammar and Benabderrahmane Benyattou

Abstract. This paper deals with the study of a nonlinear problem of friction
contact between two deformable bodies. The elastic constitutive law is a assumed
to be nonlinear and the contact is modeled with Signorini’s conditions and version
of Coulomb’s law of dry friction. We present two variational formulations, noted
P1, P2, of the considered problem, where P1 depends on the displacement field
and P2 depends on the stress field. We establish existence and uniqueness results,
using arguments of elliptic variational inequalities and a fixed point property and
Lions, Stampachia theorem.

Mathematics Subject Classification (2010): 54AXX.

Keywords: Signorini’s conditions, elastic material, nonlinear constitutive law,
Coulomb’s law of friction, contact problems, fixed point.

1. Introduction

Frictional contact between deformable bodies can be frequently found in indus-
try and everyday life such as train wheels with the rails, a shoe with the floor, tectonic
plates, the car’s braking system, etc. Considerable progress has been made with the
modeling and analysis of static contact problems. The mathematical, mechanical and
numerical state of the art can be found in the recent proceedings Raous [21]. Only
recently, however, have the quasistatic and dynamic problems been considered. The
reason lies in the considerable difficulties that the process of frictional contact presents
in the modeling and analysis because of the complicated surface phenomena involved.
General models for thermoelastic frictional contact, derived from thermodynamical
principles, have been obtained in [25]. Quasistatic contact problems with normal com-
pliance and friction have been considered in [3], where the existence of weak solutions
has been proven. The existence of a weak solution to the, technically very complicated,
problem with Signorini’s contact condition has been established recently in [10]. The
quasistatic frictional contact problem for viscoelastic materials can be found in [23]
and the one for elastoviscoplastic materials in [22]. Dynamic problems with normal
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compliance were first considered in [19]. The existence of weak solutions to dynamic
thermoelastic contact problems with frictional heat generation have been proven in
[1] and when wear is taken into account in [2].

In this work we consider the process of frictional contact which is acted upon
by volume forces and surface tractions, between two elastics bodies. The material’s
constitutive law is assumed to be nonlinear elastic. The contact is modeled with a
normal compliance and the friction with the associated Coulomb’s law of dry friction.
The normal compliance contact condition was proposed in [19] and used in [1] and
[15]. This condition allows the interpenetration of the body’s surface into the founda-
tion. In [19] normal compliance was justified by considering the interpenetration and
deformation of surface asperities. It was assumed to have the form of a power law. We
refer to [18] for the existence of static problems with Signorini’s and Coulomb’s condi-
tions. We use a general expression for the normal compliance, similarly to the one in
[2]. In part, the introduction of the normal compliance contact condition, in evolution
problems, is motivated by the observation that Signorini’s condition, while elegant
and easy to explain, leads to discontinuous surface velocities which are associated
with infinite tractions on the contact surface. This clearly is physically unrealistic;
it leads to severe mathematical and numerical difficulties which do not necessarily
represent the physical process. The normal compliance condition predicts large, but
finite, contact forces. At any rate, we do not have a completely satisfactory contact
condition yet, and maybe it is unrealistic to expect one single condition to model the
wide variety of phenomena encountered in frictional contact.

The paper is organized as follows. Section 2 contains the notations and some
preliminary material. In Section 3 we describe the model for the process, set it in a
variational form, list the assumptions on the problem data and state our main results.
In Section 4, basing on the theory of elliptic variational inequalities and application
of fixed point theorems, we show the existence and uniqueness of a solution.

2. Notations and preliminaries

In this short section we present the notations and some preliminary material.
For further details we refer the reader to [11] or [15]. We denote by SN the space of
second order symmetric tensors on RN , or equivalently, the space of the symmetric
matrices of order N . The inner products and the corresponding norms on RN and SN

are

u`.v` = u`
i .v

`
i , ‖v`‖ = (v`.v`)

1
2 ∀u`, v` ∈ RN ,

σ`.τ ` = σ`
ij .τ

`
ij , ‖τ `‖ = (τ `.τ `)

1
2 ∀σ`, τ ` ∈ SN .

Here and below, i, j = 1, 2, ..., N , and the summation convention over repeated indices
is adopted. Let two bounded domains Ω`, ` = 1, 2 of the space RN (N = 2, 3) be a
bounded domain with a Lipschitz boundary Γ` and let η` = (η`

i ) denote the normal
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unit outward vector on Γ`. We shall use the notations

H` = {u` = (u`
i)/ u`

i ∈ IL2(Ω`)} , H` = {σ` = (σ`
ij)/σ`

ij = σ`
ji ∈ IL2(Ω`)},

H`
1 = {u` = (u`

i)/ u`
i ∈ H1(Ω`)} , H`

1 = {σ` ∈ H`/σ`
ij,j ∈ H`},

H = H1 ×H2 , H1 = H1
1 ×H2

1 , H = H1 ×H2 , H1 = H1
1 ×H2

1.

The spaces H`,H`
1,H` andH`

1 are real Hilbert spaces endowed with the inner products
given by

〈u`, v`〉H` =
∫

Ω`

u`
iv

`
idx , 〈u`, v`〉H`

1
= 〈u`, v`〉H` + 〈ε(u`), ε(v`)〉H` ,

〈σ`, τ `〉H` =
∫

Ω`

σ`
ijτ

`
ijdx , 〈σ`, τ `〉H`

1
= 〈σ`, τ `〉H` + 〈divσ`, divτ `〉H` ,

respectively. Here ε : H`
1 → H` and div : H`

1 → H` are the deformation and divergence
operators, defined by

ε(u`) =
1
2
(
∇u` + (∇u`)T

)
, divσ` = (σ`

ij,j).

The associated norms on the spaces H`, H`
1, H` and H`

1 are denoted by
‖.‖H` , ‖.‖H`

1
, ‖.‖H` and ‖.‖H`

1
, respectively.

Let HΓ` = H
1
2 (Γ`)N and let γ` : H`

1 → HΓ` be the trace map. For every element
v` ∈ H`

1, we also use the notation v` for the trace γ`v` of v` on Γ` and we denote by
v`

η and v`
τ the normal and tangential components of v` on Γ` given by

v`
η = v`.η`, v`

τ = v` − v`
ηη`. (2.1)

Let H ′
Γ` be the dual of HΓ` and let 〈., .〉 denote the duality pairing between H ′

Γ` and
HΓ` . For every element σ` ∈ H`

1 let σ`η` be the element of H ′
Γ` given by

〈σ`η`, γ`v`〉 = 〈σ`, ε(v`)〉
H`

+ 〈divσ`, v`〉
H`

∀v` ∈ H`
1. (2.2)

We also denote by σ`
η and σ`

τ the normal and tangential traces of σ`, respectively. If

σ` is continuously differentiable on Ω
`
, then

σ`
η = (σ`η`).η`, σ`

τ = σ`η` − σ`
ηη`, (2.3)

〈σ`η`, γ`v`〉 =
∫
Γ` σ`η`.γ`v`da (2.4)

for all v` ∈ H`
1, where da is the surface measure element.

3. The model and statement of results

In this section we describe a model for the process, present its variational for-
mulation, list the assumptions on the problem data and state our main results.

Let us consider two elastic bodies, occupying two bounded domains Ω1, Ω2 of the
space RN (N = 2, 3). The boundary Γ` = ∂Ω` is assumed piecewise continuous, and
composed of three complementary parts Γ`

1,Γ
`
2 and Γ`

3. The body Ω
`
is fixed on the set

Γ`
1 of positive measure. The Γ`

2 boundary is submitted to a density of forces noted g`.
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In the initial configuration, both bodies have a common contact portion Γ1
3 = Γ2

3 = Γ3.
The Ω` body is submitted to f ` forces. The normal unit outward vector on Γ` is de-
noted η` = (η`

i ). On the contact zone the normal vector η = η1 = −η2 is assumed to
be constant.
We denot by u` = (u`

i)1≤i≤N
the displacement fields of the body Ω`, σ` = (σ`

ij)1≤i,j≤N

the stress field of the body Ω` and ε` = ε(u`) the linearized strain tensor. The elastic
constitutive law of the material is assumed to be

σ` = F `
(
ε(u`)

)
in Ω` (3.1)

in which F ` is a given nonlinear function. The elastic equilibrium condition can be
written as  divσ` + f ` = 0 in Ω`,

u` = 0 on Γ`
1, ` = 1, 2

σ`η` = g` on Γ`
2,

(3.2)

where u = (u1, u2). In addition to (3.2) and σ1η1 = σ2η2 on Γ3, we have to satisfy the
linearized non-penetration condition. The conditions on the boundary part Γ3 con-
strained by Coulomb friction unilateral contact conditions incorporate the Signorini
conditions :

[uη] ≤ 0, ση ≤ 0, ση[uη] = 0, (3.3){
|στ | ≤ −µση if [uτ ] = 0,

στ = µση
[uτ ]∣∣[uτ ]

∣∣ if [uτ ] 6= 0 (3.4)

where ση and στ is the normal and tangential component, respectively, of the bound-
ary stress, and [uη] = u1

η + u2
η stands for the jump of the displacements in normal

direction: either contact (i.e. [uη] = 0 )or separation (i.e. [uη] < 0 )are allowed.in
other word ( [uη] ≤ 0 ) is the nonpenetration condition, [uτ ] = u1

τ + u2
τ stands for the

jump of the displacements in tangential direction and µ ≥ 0 is the friction coefficient.
This is a static version of Coulomb’s law of dry friction and should be seen either as a
mechanical model suitable for the proportional loadings case or as a first approxima-
tion of a more realistic model, based on a friction law involving the time derivative of
u1, u2

(
see for instance Shillor and Sofonea(1997), Rochdi(1998)

)
. The friction law

(3.4) states that the tangential shear cannot exceed the maximum frictional resistance
−µση. Then, if the inequality holds, the surfaces adheres and is so-called stick state,
and the equality holds there is relative sliding, the so-called slip state. Therefore,
the contact surface Γ3 is divided into three zones: the stick zone, the slip zone and
the zone of separation in which [uη] < 0, i.e, there is no contact. The boundaries of
these zones are free boundaries since they are unknown a priori, and are part of the
problem. There is virtually no literature dealing with these free boundaries.

It is possible to express equivalently the contact and friction conditions consid-
ering the two following multivalued functions:

Jη(ξ) =

 {0} if ξ < 0,
[0,+∞[ if ξ = 0,
∅ if ξ > 0,
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Dirτ (v) =
{
{ v
|v|} if v ∈ RN−1 and v 6= 0,
{ω ∈ RN−1 /|ω| ≤ 1 ; ωη = 0} if v = 0.

Jη and Dirτ are maximal monotone maps representing sub-gradients of the indicator
function of interval ]−∞, 0] and the function v 7→ |vT | respectively. With these maps,
unilateral contact and Coulomb friction conditions can be rewritten as:{

−ση ∈ Jη([uη]),
−στ ∈ µσηDirτ ([uτ ]).

Using (3.1)-(3.4), the mechanical problem non linear of the unilateral contact with
Coulomb friction between two deformable bodies may be formulated as classically as
follows:

ProblemP: For ` = 1, 2, find the displacement field u` : Ω` −→ RN and the stress
field σ` : Ω` −→ SN such that

σ` = F `(ε(u`)) in Ω`, (3.5)

divσ` + f ` = 0 in Ω`, (3.6)

u` = 0 on Γ`
1, (3.7)

σ`η` = g` on Γ`
2, (3.8)

(a) σ1η1 = σ2η2,
(b) [uη] ≤ 0, ση ≤ 0, ση[uη] = 0,
(c) |στ | ≤ −µση,
(d) |στ | < −µση ⇒ [uτ ] = 0,

(e) |στ | = −µση ⇒ ∃λ̇ ≥ 0; στ = −λ̇[uτ ],

on Γ3. (3.9)

To obtain a variational formulation for problem (3.5)-(3.9) we need the following
additional notations. Let V denote the closed subspace of H1 given by

V = V (Ω1)× V (Ω2) (3.10)

where

V (Ω`) =
{
v` ∈ H`

1

∣∣ v` = 0 on Γ`
1

}
(3.11)

and let denote the closed subspace of H1 given by

Ĥ1 =
{

σ = (σ1, σ2) ∈ H1

∣∣ σ1η1 = σ2η2 on Γ3

}
. (3.12)

Since measΓ`
1 > 0, the following Korn’s inequality holds:

‖ε(v`)‖H` ≥ c‖v`‖H`
1
, ∀v` ∈ V (Ω`) ` = 1.2. (3.13)

Here c denotes a positive constant which may depends only on Ω`,Γ`
1, ` = 1, 2. We

equip V with the scalar product

〈ν, ω〉
V

= 〈ε(ν1), ε(ω1)〉
H1 + 〈ε(ν2), ε(ω2)〉

H2 (3.14)

and ‖.‖V is the associated norm. It follows from Korn’s inequality (3.13) that the
norms ‖.‖H1 and ‖.‖V are equivalent on V . Then (V, ‖.‖V ) is a real Hilbert space.
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Moreover, by the Sobolev’s trace theorem and (3.13)we have a positive constant c0

depending only on the domain Ω`,Γ`
1, ` = 1, 2 and Γ3 such that

‖v`‖IL2(Γ3)N ≤ c0‖v`‖V ∀v ∈ V. (3.15)

In the study of the mechanical problem (3.5)-(3.9) we assume that operators F ` :
Ω` × SN → SN satisfy

(a) There exists m > 0 such that
(F `(x, ε1)− F `(x, ε2)).(ε1 − ε2) ≥ m|ε1 − ε2|2
∀ε1, ε2 ∈ SN , a.e. x ∈ Ω`.

(b) There exists L > 0 such that
|F `(x, ε1)− F `(x, ε2)| ≤ L|ε1 − ε2|
∀ε1, ε2 ∈ SN , a.e. x ∈ Ω`.

(c) For any ε ∈ SN , x → F `(x, ε) is Lebesgue measurable on Ω`.
(d) The mapping x 7→ F `(x, 0) ∈ H`.

(3.16)

Remark 3.1. Using (3.16) we obtain that for all ε` ∈ H` the function x 7→ F `(x, ε`(x))
belongs to H` and hence we may consider F ` as an operator defined on H` with the
range on H`. Moreover, F ` : H` → H` is a strongly monotone Lipschitz continuous
operator and therefore F ` is invertible and its inverse (F `)

−1
: H` → H` is also a

strongly monotone Lipschitz continuous operator.

We also suppose that the forces and the tractions have the regularity

f ` ∈ H`, g` ∈ IL2(Γ`
2)

N (3.17)

while the coefficient of friction µ is such that

µ ∈ L∞(Γ3), µ ≥ 0 on Γ3. (3.18)

For (u, v) ∈ V , we define the bilinear form of virtual works produced by the displace-
ment u by

a(u, v) =
2∑

`=1

∫
Ω`

F `ε(u`).ε(v`)dΩ` (3.19)

and the linear form of virtual works due to volume forces and surface traction by

〈ϕ`, v`〉
V (Ω`)

=
∫

Ω`

f `.v`dΩ`+
∫

Γ`
2

g`.v`η`dΓ`
2 , ∀v`∈V (Ω`) (3.20)

where ϕ = (ϕ1, ϕ2) ∈ V .
and let j : H`

1 × V −→ R be the functional

j(σ, v) = −
∫

Γ3

µση|[vτ ]|dΓ3 (3.21)

where |.| denotes the Euclidean norm. Let σ ∈ H`
1, the functional j(σ, .) is continuous,

convex and non-differentiable. Thus, j(σ, .) is convex and lower semi-continuous on V .
Finally, we denote in the sequel by Uad the set of geometrically admissible displacement
fields defined by

Uad =
{
v = (v1,v2) ∈ V | [vη] ≤ 0 on Γ3

}
(3.22)
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The set Uad is nonempty (0 ∈ Uad), closed and convex.
For all g ∈ Ĥ1, let Σad(g) denote the set of statically admissible stress fields given by:

Σad(g) =
{

τ ∈ Ĥ1

∣∣ 2∑
`=1

〈τ `, ε(v`)〉
H`

+ j(g, v) ≥ 〈g, v〉, ∀v ∈ Uad

}
(3.23)

also, for all g ∈ Ĥ1 with g1
η

∣∣
Γ3
≤ 0, the set Σad(g) is nonempty

(
g ∈ Σad(g)

)
, closed

and convex.
Using (2.1)-(2.4) we have the following result.

Lemma 3.2. If (u, σ) are sufficiently regular functions satisfying (3.5)-(3.9), then:

u ∈ Uad, σ ∈ Σad(σ), (3.24)
2∑

`=1

〈σ`, ε(v`)− ε(u`)〉
H`

+ j(σ, v)− j(σ, u) ≥ 〈ϕ, v − u〉
V

∀v ∈ Uad, (3.25)

2∑
`=1

〈τ ` − σ`, ε(u`)〉
H`
≥ 0 ∀τ ∈ Σad(σ). (3.26)

Proof. The regularity u ∈ Uad follows from (3.7) and (3.9). By applying Green formula
in (3.6) and from (3.7),(3.8),(3.20), (3.21) we have (3.25). Choosing now v = 2u ∈ Uad

and v = 0 ∈ Uad in (3.25), we find
2∑

`=1

〈σ`, ε(u`)〉
H`

+ j(σ, u)= 〈ϕ, u〉
V
. (3.27)

Using (3.25) we deduce
2∑

`=1

〈σ`, ε(v`)〉
H`

+ j(σ, v)≥ 〈ϕ, v〉
V

∀v ∈ Uad. (3.28)

The regularity σ ∈ Σad(σ) is now a consequence of (3.23) and (3.28). Moreover, from
(3.23) and (3.27) we obtain

2∑
`=1

〈τ `−σ`, ε(u`)〉
H`
≥〈ϕ, u〉

V
−〈ϕ, u〉

V
= 0 ∀τ ∈ Σad.

Therefore (3.26). �

Lemma 3.2 and (3.5) lead us to consider the following two variational problems.
Problem P1: For ` = 1, 2, find the displacement fields u` : Ω` −→ RN , such that{

u ∈ Uad, F 1(ε(u1)).η1 =F 2(ε(u2)).η2 on Γ3,

a(u, v − u) + j(F (ε(u)), v)− j(F (ε(u)), u)≥ 〈ϕ, v − u〉
V
, ∀v ∈ Uad

(3.29)

where
F (ε(u)) = F 1(ε(u1)) or F (ε(u)) = F 2(ε(u2)).
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Problem P2: For ` = 1, 2, find the stress fields σ` : Ω` −→ SN , such that

σ ∈ Σad(σ),
2∑

`=1

〈τ ` − σ`,
(
F `

)−1
(σ`)〉

H`
≥ 0 , ∀τ ∈ Σad(σ). (3.30)

Details of such correspondences can be found in [13]. So, problem (3.29) can be rewrit-
ten as the following direct hybrid formulation:

Problem P1: For ` = 1, 2, find the displacement fields u` : Ω` −→ RN , such that

u ∈ Uad, F 1(ε(u1))η1 = F 2(ε(u2))η2 ≡ ση on Γ3, (3.31)
a(u, v) = 〈ϕ, v〉+ 〈ση, [vη]〉

− 1
2 , 1

2 ,Γ3
+ 〈στ , [vτ ]〉

− 1
2 , 1

2 ,Γ3
∀v ∈ V, (3.32)

〈ση, [vη]− [uη]〉
− 1

2 , 1
2 ,Γ3

≥ 0 ∀v ∈ Uad, (3.33)

〈στ , [vτ ]− [uτ ]〉
− 1

2 , 1
2 ,Γ3

− 〈µση, |[vτ ]| − |[uτ ]|〉
− 1

2 , 1
2 ,Γ3

≥ 0 ∀v ∈ V. (3.34)

For each body Ω`, we define the total potential energy functional J` by

J`(v`) =
1
2
a(v`, v`)− 〈ϕ`, v`〉

V `
, ∀v` ∈ V `

and we set

J(v) = J1(v1) + J2(v2) , ∀v ∈ V (3.35)

the total potential energy of the two-body system. With the assumption mes(Γ`
1) > 0,

the functional J is convex, G-differentiable and coercive on V . The following theorem(
see e.g. [15], Theorem 3.8

)
allows us to replace the variational inequality (3.29) by a

minimization problem.

Theorem 3.3. Let θ ∈ Ĥ1 and suppose G : Uad → R is of the form G(v) = J(v) +
j(θ, v), where J(.) and j(θ, .) are convex and lower semi-continuous and J(.) is G-
differentiable on Uad. Then, if uθ is a minimizer of G on Uad,

〈DJ(uθ), v − uθ〉+ j(θ, v)− j(θ, uθ) ≥ 0, ∀v ∈ Uad. (3.36)

Conversely, if (3.36 ) holds for uθ ∈ Uad, then uθ is a minimizer of G.

In (3.36 ), DJ(uθ) is the gradient of J . Since J is a quadratic functional, (3.36
) is precisely

uθ ∈ Uad, a(uθ, v − uθ) + j(θ, v)− j(θ, uθ) ≥ 〈ϕ, v − uθ〉V
, ∀v ∈ Uad. (3.37)

With the assumption mes(Γ`
1) > 0, the functional J(.) + j(θ, .) is strictly convex and

coercive, then there exists a unique solution to (3.36).
With the above preparations, the unilateral contact problem with Coulomb friction
can be formulated as the constrained minimization problem.
Problem P̂1: For ` = 1, 2, find the displacement fields u` : Ω` −→ RN , such that{

u ∈ Uad, F 1(ε(u1)).η1 =F 2(ε(u2)).η2 on Γ3,

J(u) + j(F (ε(u)), u) ≤ J(v) + j(F (ε(u)), v) ∀v ∈ Uad.
(3.38)
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Theorem 3.4. Assume the hypothesis (3.16), (3.17). Let u = (u1, u2) ∈ V be a solution
of the variational problem P1 and σ = (σ1, σ2) is defined by σ` = F `

(
ε(u`)

)
, ` = 1, 2,

then (u, σ) is a solution of the problem P.

Proof. For all Φ` ∈ D` ≡ (D(Ω`))N be arbitrary, v = u ± Φ ∈ Uad, where Φ =
(Φ1,Φ2), and Φ3−` = 0, then using (3.29) and σ` = F `

(
ε(u`)

)
we have:

0 ≤
∫

Ω`

σ`.ε(v` − u`)dΩ` −
∫

Ω`

f `.(v` − u`)dΩ` −
∫

Γ`
2

g`(v` − u`)dΓ`
2

=
∫

Γ`

σ`.(v` − u`)dΓ` −
∫

Ω`

(divσ` + f `).(v` − u`)dΩ`

= ±
∫

Ω`

(divσ` + f `).Φ`dΩ`

which implies (3.6).
By applying Green’s formula and using (3.29) (3.6), we have

2∑
`=1

〈σ`η`, (v` −u`)η`〉
H′

Γ`
×H

Γ`
+j(σ, v)− j(σ, u) ≥

∑2
`=1〈g`, (v` − u`)η`〉

H′
Γ`
2
×H

Γ`
2

, ∀v ∈ Uad. (3.39)

Taking v = u ± (ω1, ω2) ∈ Uad, with ω` ∈ D(Ω` ∪ Γ`
2)

N

and ω3−` = 0 in (3.39), it
follows that

〈σ`η`, ω`η`〉
H′

Γ`
2
×H

Γ`
2

= 〈g`, ω`η`〉
H′

Γ`
2
×H

Γ`
2

which implies (3.8).
Let (ω1, ω2) ∈ H1 with ω`

η = 0, ω`
∣∣
Γ`

1∪Γ`
2

= 0 and ω1
τ

∣∣
Γ3

= −ω2
τ

∣∣
Γ3

.

Then v = u± (ω1, ω2) ∈ Uad and (3.39) gives:
2∑

`=1

∫
Γ3

σ`
τ .ω`

τdΓ3 = 0.

From where, it follows ∫
Γ3

σ1
τ .ω1

τdΓ3 =
∫

Γ3

σ2
τ .ω1

τdΓ3.

This implies σ1
τ

∣∣
Γ3

= σ2
τ

∣∣
Γ3

and from (3.29), we have (3.9.a).

Taking v = u ± (ω1, ω2) ∈ Uad, with ω` ∈ D(Ω` ∪ Γ3)
N

, ω`
τ = 0 on Γ3 and ω3−` = 0

in (3.39), it follows that
〈σ`

η, ω`
η〉H′Γ3

×HΓ3
≥ 0.

Furthermore σ`
η ≤ 0 on Γ3.

Now, by u ∈ Uad, we have [uη] ≤ 0 on Γ3.
Taking now v ∈ Uad such that vτ = uτ and vη = 0 in (3.39), we obtain:∫

Γ3

ση[uη]dΓ3 ≤ 0
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and from ση ≤ 0, [uη] ≤ 0 on Γ3, we deduce ση[uη] = 0 on Γ3. Therefore, (3.9.b)
holds.
Suppose that v ∈ Uad, with vη = uη on Γ3, and using (3.8),(3.9.a.b) in (3.39), we
obtain: ∫

Γ3

(στ [vτ ]− µση|[vτ ]|)dΓ3 −
∫

Γ3

(στ [uτ ]− µση|[uτ ]|)dΓ3 ≥ 0 (3.40)

and choosing vτ = 2uτ

(
resp. vτ = 0

)
in (3.40), we deduce∫

Γ3

(στ [uτ ]− µση|[uτ ]|)dΓ3 = 0. (3.41)

Compining (3.40) and (3.41), we have∫
Γ3

(στ [vτ ]− µση|[vτ ]|)dΓ3 ≥ 0 ∀v ∈ Uad (3.42)

and let N =
{

x ∈ Γ3/|στ | > −µση

}
. From v ∈ Uad with [vτ ]|Γ3−N

= 0 and [vτ ]|
N

=
−στ in (3.42), we deduce:∫

N

(−|στ |2 − µση|στ |)dΓ3 ≥ 0. (3.43)

Since |στ | > −µση and ση ≤ 0 on N , then −|στ | −µση < 0 and |στ | 6= 0 on N , which
implies

−|στ |2 − µση|στ | > 0 on N. (3.44)

Using (3.43) and (3.44), we obtain mes(N) = 0, we deduce

|στ | ≤ −µση p.p on Γ3

and hence (3.9.c) holds.
Using now (3.9.c) and (3.41) we deduce

στ [uτ ]− µση

∣∣[uτ ]
∣∣ = 0 p.p on Γ3. (3.45)

Moreover, from (3.9.c) we obtain

0 = στ .[uτ ]− µ|[uτ ]|ση ≥ −|στ |.|[uτ ]| − µ|[uτ ]|ση ≥ −|[uτ ]|(|στ |+ µση) ≥ 0.

Therefore,

−|[uτ ]|(|στ |+ µση) = 0. (3.46)

For |στ | < −µση: from (3.46), we deduce [uτ ] = 0, hence (3.9.d) holds.
For |στ | = −µση: from (3.45),we deduce

στ .[uτ ] = µ|[uτ ]|ση = −|στ |.|[uτ ]|.

So we deduce that there exists a constant λ ≥ 0 such that [uτ ] = −λστ , hence (3.9.e)
holds. �

Theorem 3.5. Assume the hypothesis (3.16),(3.17). Let σ = (σ1, σ2) be a solution of
the variational problem P2, and u = (u1, u2) ∈ V is given by σ` = F `

(
ε(u`)

)
, ` = 1, 2,

then u is a solution of the variational problem P1.
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Proof. Firstly we prove u ∈ Uad. Supposing that u 6∈ Uad, and let u∗ the projection
of u on Uad, we have the existence of α ∈ R such that

〈u∗ − u, v〉
V

> α > 〈u∗ − u, u〉
V

∀v ∈ Uad.

We introduce the functional τ∗ defined by: τ∗ = (ε(u1
∗ − u1), ε(u2

∗ − u2)) ∈ H, and we
use inner products defined by (3.14), we deduce:

2∑
`=1

〈τ `
∗ , ε(v

`)〉
H`

> α >
2∑

`=1

〈τ `
∗ , ε(u

`)〉
H`

∀v ∈ Uad. (3.47)

Taking v = 0 ∈ Uad in (3.47), we obtain α < 0, it is easy to verify that

〈τ1
∗ , ε(v1)〉H1 + 〈τ2

∗ , ε(v2)〉H2 ≥ 0 ∀v ∈ Uad. (3.48)

Really, we suppose the existence of v∗ = (v1
∗, v

2
∗) ∈ Uad where

〈τ1
∗ , ε(v1

∗)〉H1 + 〈τ2
∗ , ε(v2

∗)〉H2 < 0. (3.49)

As βv∗ ∈ Uad, ∀β > 0, if we replace v = βv∗ in (3.47) we obtain

β
(
〈τ1
∗ , ε(v1

∗)〉H1 + 〈τ2
∗ , ε(v2

∗)〉H2

)
> α, ∀β > 0.

And making β → +∞ with (3.49), we have α ≤ −∞, this constitutes a contradiction
with the fact that α is real. So we deduce (3.48). Now, using (3.30), (3.23) we deduce

2∑
`=1

〈σ`, ε(v`)〉H` + j(σ, v) ≥ 〈ϕ, v〉
V

∀v ∈ Uad (3.50)

and, using (3.48) we obtain
2∑

`=1

〈τ `
∗ + σ`, ε(v`)〉H` + j(σ, v) ≥ 〈ϕ, v〉

V
∀v ∈ Uad

saying

τ∗ + σ ∈ Σad(σ). (3.51)

Choosing τ = τ∗ + σ ∈ Σad(σ) in (3.30), and σ` = F `(ε(u`)) we obtain
2∑

`=1

〈τ `
∗ , ε(u

`)〉H` ≥ 0. (3.52)

Using now (3.47) and α < 0, we find
2∑

`=1

〈τ `
∗ , ε(u

`)〉H` < 0. (3.53)

The relations (3.52) and (3.53) constitute a contradiction, so we deduce that u ∈ Uad.
It remains to prove the inequality given in (3.29).
Using Riesz’s representation theorem we define the nonlinear operator R : V → V by

〈Rv,w〉
V

=
2∑

`=1

〈F `(ε(v`)), ε(w`)〉H` .
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Then hypotheses (3.16) on F ` imply that R is strictly monotone, coercive and lips-
chitzian operator, on the other hand the functional j(σ, .) is proper, convex and lower
continuous on V. Then results from the theory of elliptic variational inequalities [4]
of the second kind, we have the existence of barτ = (τ̄1, τ̄2) ∈ H such that

2∑
`=1

〈τ̄ `, ε(v`)− ε(u`)〉H` + j(σ, v)− j(σ, u) ≥ 〈ϕ, v − u〉
V
, ∀v ∈ V. (3.54)

Taking v = 2u and v = 0 in (3.54), then
2∑

`=1

〈τ̄ `, ε(u`)〉H` + j(σ, u) = 〈ϕ, u〉
V
. (3.55)

Subtracting (3.55) from (3.54), this means that τ̄ ∈ Σad(σ).
Therefore, from (3.30), (3.55) and σ` = F `(ε(u`)), we derive

〈ϕ, u〉
V
≥

2∑
`=1

〈σ`, ε(u`)〉H` + j(σ, u).

The converse inequality follows from (3.23) since σ ∈ Σad(σ) and u ∈ Uad.
Therefore, we conclude that

〈ϕ, u〉
V

=
2∑

`=1

〈σ`, ε(u`)〉H` + j(σ, u). (3.56)

Using again (3.23), we have
2∑

`=1

〈σ`, ε(v`)− ε(u`)〉H` + j(σ, v)− j(σ, u) ≥ 〈ϕ, v − u〉
V
, ∀v ∈ Uad (3.57)

and σ` = F `(ε(u`)), σ = (σ1, σ2) ∈ Ĥ1 it results that u is a solution of the problem
P1. �

Theorem 3.4 and Theorem 3.5, allow to deduce the following results

Corollary 3.6. Assume the hypothesis (3.16),(3.17). Let σ = (σ1, σ2) be a solution of
the variational problem P2, and u = (u1, u2) ∈ V is given by σ` = F `

(
ε(u`)

)
, ` = 1, 2.

then (u, σ) is a solution of the problem P.

Also Theorem 3.4 and Lemma 3.2, allow to deduce the following results

Corollary 3.7. Assume the hypothesis (3.16),(3.17). Let u = (u1, u2) ∈ V is a solution
of the problem P1, and setting σ` = F `

(
ε(u`)

)
, ` = 1, 2 we have σ = (σ1, σ2) a solution

of the problem P2.

Theorem 3.8. Under the hypotheses (3.16)-(3.17). Then there exists Co > 0 which
depends only on Ω`, Γ` and F `, ` = 1, 2 such that if ‖µ‖L∞(Γ3) ≤ Co then there exists
a unique solution (u, σ) of problem P. Moreover, the solution satisfies

u ∈ V, σ ∈ H1.
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Proposition 3.9. Let θ ∈ Ĥ1 and let (u1
θ, u

2
θ) be the solution of (3.37), then:(

F 1(ε(u1
θ)), F

2(ε(u2
θ))

)
∈ Ĥ1. (3.58)

Proof. Let ω = (ω1, ω2) where ω` ∈ D(Ω` ∪ Γ3)
N

and [ωη] = 0 on Γ3. Then v =
u± ω ∈ Uad in (3.37) gives:

2∑
`=1

〈F `(ε(u`
θ)), ε(ω

`)〉
H`

= 〈ϕ, ω〉

and using (3.20), with ω`η` = −ω3−`η3−` on Γ3, we have∫
Γ3

{F 1(ε(u1
θ))η

1 − F 2(ε(u2
θ))η

2}.ω1η1dΓ3 = 0.

Therefore, we conclude that F 1(ε(u1
θ))η

1 = F 2(ε(u2
θ))η

2 on Γ3

Then (3.58). �

Let us consider now the operator A : Ĥ1 −→ Ĥ1 defined by

A(θ) = (F 1(ε(u1
θ)), F

2(ε(u2
θ)). (3.59)

We have the following result.

Proposition 3.10. There exists C0 > 0, such that, ‖µ‖
L∞(Γ3) ≤ C0, The operator A

has a unique fixed point θ∗ ∈ Ĥ1.

Proof. Let θi ∈ Ĥ1, for i = 1, 2, and let ui the solutions of (3.37), we have a(u1, u2 − u1) + j(θ1, u2)− j(θ1, u1) ≥ 〈ϕ, u2 − u1〉,

a(u2, u1 − u2) + j(θ2, u1)− j(θ2, u2) ≥ 〈ϕ, u1 − u2〉.
Thus, using (3.19),we deduce that

∑2
`=1

∫
Ω`(F `(ε(u`

1))− F `(ε(u`
2))(ε(u

`
1)− ε(u`

2))dΩ` ≤

j(θ1, u2)− j(θ1, u1) + j(θ2, u1)− j(θ2, u2).
(3.60)

From the Korn’s inequality and (3.16), yields
2∑

`=1

〈F `(ε(u`
1)− F `(ε(u`

2)) , ε(u`
1)− ε(u`

2)〉 ≥ C1‖u1 − u2‖2V . (3.61)

Using (3.21), we obtain

j(θ1, u2)− j(θ1, u1) + j(θ2, u1)− j(θ2, u2) = −
∫

Γ3

µ(θ1η − θ2η)(|[u1τ ]| − |[u2τ ]|)dΓ3.

So that

j(θ1, u2)−j(θ1, u1)+j(θ2, u1)−j(θ2, u2) ≤ C2‖µ‖L∞(Γ3)‖θ1−θ2‖H1
.‖u1−u2‖V

and using (3.60),(3.61) and using the trace theorem, we have

‖u1 − u2‖V
≤ C3‖µ‖L∞(Γ3)‖θ1 − θ2‖H1

. (3.62)
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Putting (3.16) and (3.60), it yields:

‖Aθ1 −Aθ2‖2H1
≤ C4

2∑
`=1

‖ε(u`
1)− ε(u`

2)‖2H`
1
. (3.63)

Moreover, from (3.62) and (3.63), we obtain:

‖Aθ1 −Aθ2‖H1 ≤ C5‖µ‖L(Γ3)∞ ‖θ1 − θ2‖H1 .

We conclude that the operator A is a contradiction if ‖µ‖
L(Γ3)∞ < 1

C5
. By the Banach

fixed point theorem, we obtain that this operator has a unique fixed point θ∗ ∈ Ĥ1. �

Proposition 3.11. For each θ ∈ Ĥ1, there exists a unique σθ ∈ Ĥ1, such that

σθ ∈ Σad(θ),
2∑

`=1

〈(F `)−1(σθ), τ ` − σ`
θ〉H`

≥ 0 ∀τ ∈ Σad(θ). (3.64)

Proof. Let σ ∈ Ĥ1, it is easy to check that the application

τ 7−→
2∑

`=1

〈(F `)−1(σ`), τ `〉
H`

is a continuous linear form on Ĥ1 ( for σ fixe ). Moreover, using Riesz’s representation
theorem we may define the operator E : Ĥ1 −→ Ĥ1 by the relation

〈Eσ, τ〉H1
=

2∑
`=1

〈(F `)−1(σ`), τ `〉
H`

∀σ, τ ∈ Ĥ1. (3.65)

Keeping in mind (3.16) and Korn’s inequality, we deduce that the operator E is
strongly monotone and Lipschitz contiunous on E. Also , Σad(θ) is a closed, convex
and nonempty subset of Ĥ1.
According to the Lions, Stampacchia theorem, we obtain the existence and unique-
ness of the element σθ ∈ Ĥ1 such that

σθ ∈ Σad(θ), 〈Eσθ, τ − σθ〉V
≥ 0 ∀τ ∈ Σad.

Then

σθ ∈ Σad(θ),
2∑

`=1

〈(F `)−1(σθ), τ ` − σ`
θ〉H`

≥ 0 ∀τ ∈ Σad(θ).

�

Let us consider now the operator B : Ĥ1 −→ Ĥ1 defined by

Bθ = σθ : ∀θ ∈ Ĥ1. (3.66)
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4. Proof of Theorem 3.8

Proof. Existence. Let u∗ = (u∗1, u∗2) ∈ V the solutions of (3.37) with θ = θ∗.
Taking v = 0 ∈ V and v = 2u∗ ∈ V in (3.37) we obtain

a(u∗, u∗) + j(θ∗, u∗) = 〈ϕ, u∗〉 (4.1)

and from (3.37), (4.1), we have

a(u∗, v∗) + j(θ∗, v∗) ≥ 〈ϕ, v∗〉 ∀v ∈ Uad. (4.2)

From (3.23), (4.2) and θ∗ = A(θ∗) , it follows that

θ∗ ∈ Σad(θ∗). (4.3)

Taking now v = u± φ ∈ V with φ = (φ1, φ2) and φ` ∈ (D(Ω`))N , φ3−` = 0 in (3.37),
it follows that

〈F `(ε(u`
θ)), ε(φ

`)〉
H`

= 〈ϕ`, φ`〉. (4.4)

Moreover, from (3.20), (4.4) and applying Green’s formula, we have

−div(F `(ε(u`
θ))) = f ` in Ω`. (4.5)

Using (4.1) and (3.20), we deduce that
2∑

`=1

∫
Ω`

div(F `(ε(u∗`))).u∗`dΩ` +
2∑

`=1

∫
Γ`

F `(ε(u∗`))η`.u∗`η`dΓ` + j(θ∗, u∗)

=
2∑

`=1

∫
Ω`

f `.u∗`dΩ` +
2∑

`=1

∫
Γ`

2

g`.u∗`η`dΓ`
2.

Using now (4.5) and u∗|
Γ`
1
≡ 0, we have∫

Γ3

θ∗η.[u∗η]dΓ3 + j(θ∗, u∗) =
2∑

`=1

∫
Γ`

2

g`.u∗`η`dΓ`
2 −

2∑
`=1

∫
Γ`

2

F `(ε(u∗`))η`.u∗`η`dΓ`. (4.6)

Taking v = u ± φ ∈ V with φ = (φ1, φ2) ∈ V , φ3−` = 0 and φ`η` = 0 on Γ`
1 ∪ Γ3 in

(3.37), it follows that∫
Ω`

F `(ε(u∗`)).ε(φ`)dΩ` =
∫

Ω`

f `.φ`dΩ` +
∫

Γ`
2

g`.φ`η`dΓ`
2. (4.7)

By applying Green’s formula in (4.7) and using (4.5), we obtain

F `(ε(u∗`))η` = g` on Γ`
2. (4.8)

Combining (4.6) and (4.8), it follows that∫
Γ3

θ∗η.[u∗η]dΓ3 = −j(θ∗, u∗) (4.9)
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and, for any τ ∈ Σad(θ∗)
2∑

`=1

∫
Ω`

τ `.ε(u∗`)dΩ` ≥ 〈ϕ, u∗〉 − j(θ∗, u∗). (4.10)

Using (4.5) and (4.8) with F 1(ε(u∗1))η1 = F 2(ε(u∗2))η2 on Γ3 , we deduce that
2∑

`=1

∫
Ω`

F `(ε(u∗`)).ε(u∗`)dΩ` = 〈ϕ, u∗〉+
∫

Γ3

θ∗η.[u∗η]dΓ3. (4.11)

Moreover, from (4.10), (4.11) and (4.9), we deduce the inequality in (3.30) witch
proves that θ∗ is a solution of problem P2.
It follows from Corollary3.6 that (u∗, θ∗) is a solution to problemP.
Uniqueness. To prove the uniqueness of the solution let (u∗, θ∗) be the solution of
problemP obtained above and let (u, σ) be another solution such that u ∈ V and
σ ∈ Ĥ1.
for all θ ∈ Ĥ1. Therefore, choosing σ̃θ = Aθ and using (3.37) and (3.59), we get

2∑
`=1

〈σ̃`
θ, ε(v

`)− ε(u`
θ)〉H` + j(θ, v)− j(θ, uθ) ≥ 〈ϕ, v − uθ〉V

, ∀v ∈ V. (4.12)

Taking v = 2uθ and v = 0 in (4.12), we obtain
2∑

`=1

〈σ̃`
θ, ε(u

`
θ)〉H` + j(θ, uθ) = 〈ϕ, uθ〉V

. (4.13)

Using now (4.12) and (4.13), we have

σ̃θ ∈ Σad(θ) (4.14)

and from (3.59), (4.13) and (3.23) it follows that
2∑

`=1

〈(F `)−1(σ̃`
θ), τ

` − σ̃`
θ〉H`

≥ 0 ∀τ ∈ Σad(θ). (4.15)

Moreover, from (4.14) and (4.15), it results that σ̃θ is a solution of problem (3.64).
and by the uniqueness of the solution, we deduce σ̃θ = σθ, then we have

Aθ = Bθ : ∀θ ∈ Ĥ1. (4.16)

Using now Lemma 3.2, with

θ∗ = (F 1(ε(u∗
1
)), F 2(ε(u∗

2
)))

and
σ = (F 1(ε(u1)), F 2(ε(u2))),

such that
θ∗ ∈ Σad(θ∗),

∑2
`=1〈τ ` − θ∗

`

, (F `)−1(θ∗
`

)〉
H`
≥ 0, ∀τ ∈ Σad(θ∗),

σ ∈ Σad(σ),
∑2

`=1〈τ ` − σ`, (F `)−1(σ`)〉
H`
≥ 0, ∀τ ∈ Σad(σ)

(4.17)
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and from (3.64) and (3.66), we obtain

Bθ∗ = θ∗, Bσ = σ. (4.18)

Moreover, from (4.18) and (4.16) and proposition3.10, it follows that

θ∗ = σ. (4.19)

Hence

F `(ε(u∗
`

)) = F `(ε(u`)) ` = 1, 2. (4.20)

Therefore, by (3.16) and (4.20), we have

u∗ = u.

The proof of Theorem 3.8 is complete. �
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Abstract. In [1] the authors, introduced the notion of pairwise extremally dis-
connected spaces and investigated its fundamental properties. In this paper, we
investigate some more properties of pairwise extremally disconnected spaces.

Mathematics Subject Classification (2010): 54D20.

Keywords: Bitopological spaces, pairwise extremally disconnected spaces.

1. Introduction

The concept of bitopological spaces was first introduced by Kelly [4]. After the
introduction of the definition of a bitopological space by Kelly, a large number of
topologists have turned their attention to the generalization of different concepts of
a single topological space in this space. In [1] the authors, introduced the notion of
pairwise extremally disconnected spaces and investigated its fundamental properties.
In this paper, we investigate some more properties of pairwise extremally disconnected
spaces. Throughout this paper, the triple (X, τ1, τ2) where X is a set and τ1 and τ2

are topologies on X, will always denote a bitopological space. The τi-closure (resp.
τi-interior) of a subset A of a bitopological space (X, τ1, τ2) is denoted by τi-Cl(A)
(resp. τi-Int(A)).

2. Preliminaries

Definition 2.1. Let A be a subset of a bitopological space (X, τ1, τ2). Then A is called
1. (τi, τj)-regular open [7] if A = τi-Int(τj-Cl(A)),
2. (τi, τj)-semiopen [2] if A ⊂ τj-Cl(τi-Int(A)),
3. (τi, τj)-preopen [5] if A ⊂ τi-Int(τj-Cl(A)),
4. (τi, τj)-semipreopen [5] if A ⊂ τj-Cl(τi-Int(τj-Cl(A))),

On each definition above, i, j = 1, 2 and i 6= j.

The complement of an (i, j)-regular open (resp. (τi, τj)-semiopen, (τi, τj)-
preopen, (τi, τj)-semipreopen) set is called an (i, j)-regular closed (resp. (τi, τj)-
semiclosed, (τi, τj)-preclosed, (τi, τj)-semipreclosed) set.
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Definition 2.2. [2] Let A be a subset of a bitopological space (X, τ1, τ2). Then
1. The intersection of all (i, j)-semiclosed sets of X containing A is called the (i, j)-

semiclosure of A and is denoted by (i, j)-sCl(A).
2. The union of all (i, j)-semiopen sets of X contained in A is called the (i, j)-

semiinterior of A and is denoted by (i, j)-s Int(A).

Theorem 2.3. For a subset A of a bitopological space (X, τ1, τ2), the following are
equivalent:

1. A is (τi, τj)-semiopen,
2. A ⊂ τj-Cl(τi-Int(A)),
3. τj-Cl(A) = τj-Cl(τi-Int(A)).

Theorem 2.4. [2] For a set A of a bitopological space (X, τ1, τ2), the following are
equivalent:

1. A is (τi, τj)-semiclosed,
2. τj-Int(τi-Cl(A)) ⊂ A,
3. τj-Int(A) = τj-Int(τi-Cl(A)).

Theorem 2.5. [2] For a subset A of a bitopological space (X, τ1, τ2),
1. a point x ∈ (i, j)-sCl(A) if and only if U ∩A 6= ∅ for every U ∈ (i, j)-SO(X, x).
2. (τi, τj)-s Int(A) = X\(τi, τj)-sCl(X\A),
3. (τi, τj)-sCl(A) = X\(τi, τj)-s Int(X\A).

Definition 2.6. A bitopological space (X, τ1, τ2) is said to be
1. (τi, τj)-extremally disconnected [1] if τj-closue of every τi-open set is τi-open in

X,
2. pairwise extremally disconnetcted if (X, τ1, τ2) is (τ1, τ2)-extremally disconnected

and (τ2, τ1)-extremally deisconnected.

Theorem 2.7. [1] A bitopological space (X, τ1, τ2) is pairwise extremally disconnected
if and only if for each τi-open set A and each τj-open set B such that A ∩B = ∅, τj-
Cl(A) ∩ τi-Cl(B) = ∅.

3. Extremally disconnected bitopological spaces

Theorem 3.1. The following are equivalent for a bitopological space (X, τ1, τ2):
1. (X, τ1, τ2) is pairwise extremally disconnected.
2. For each (τj , τi)-semiopen set A in X, τj-Cl(A) is τi-open set.
3. For each (τi, τj)-semiopen set A in X, (τj , τi)-sCl(A) is τi-open set.
4. For each (τi, τj)-semiopen set A and each (τj , τi)-semiopen set B with A∩B = ∅,

τj-Cl(A) ∩ τi-Cl(B) = ∅.
5. For each (τj , τi)-semiopen set A in X, τj-Cl(A) = (τj , τi)-sCl(A).
6. For each (τi, τj)-semiopen set A in X, (τj , τi)-sCl(A) is τj-closed set.
7. For each (τi, τj)-semiclosed set A in X, τj-Int(A) = (τj , τi)-s Int(A).
8. For each (τi, τj)-semiclosed set A in X, (τj , τi)-s Int(A) is τj-open set.
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Proof. (1) ⇒ (2): Follows from Theorem 2.3. (1) ⇒ (5): Since (τj , τi)-sCl(A) ⊂ τj-
Cl(A) for any set A of X, it is sufficient to show that (τj , τi)-sCl(A) ⊃ τj-Cl(A) for
any (τi, τj)-semiopen set A of X. Let x /∈ (τj , τi)-sCl(A). Then there exists a (τj , τi)-
semiopen set W with x ∈ W such that W ∩A = ∅. Thus τj-Int(W ) and τi-Int(A) are,
respectively, τj-open and τi-open such that τj-Int(X) ∩ τi-Int(A) = ∅. By Theorem
2.7, τi-Cl(τj-Int(W )) ∩ τj-Cl(τi-Int(A)) = ∅ and then by Theorem 2.4, x /∈ τj-Cl(τi-
Int(A)) = τj-Cl(A). Hence τj-Cl(A) ⊂ (τj , τi)-sCl(A). (5) ⇒ (6): Obvious. (6) ⇒ (5):
For any set A in X, A ⊂ (τj , τi)-sCl(A) ⊂ τj-Cl(A). Then τj-Cl(A) = τj-Cl((τj , τi)-
sCl(A)). Since A is (τi, τj)-semiopen, by (6), (τj , τi)-sCl(A) is τj-closed. Hence, τj-
Cl(A) = (τj , τi)-sCl(A). (6) ⇔ (8): Follows from Theorem 2.5. (7) ⇒ (8): Obvious.
(8) ⇒ (7): For any subset A of X, τj-Int(A) ⊂ (τj , τi)-s Int(A) ⊂ A and hence
τj-Int(A) = τj-Int((τj , τi)-s Int(A)). Since A is (τi, τj)-semiclosed, by (8), (τj , τi)-
s Int(A) is τj-open. Hence τj-Int(A) = (τj , τi)-s Int(A). (1) ⇒ (4): Let A be a (τi, τj)-
open set and B a (τj , τi)-semiopen set such that A ∩ B = ∅. Then τi-Int(A) ∩ τj-
Int(B) = ∅ and thus by Theorem 2.7, τj-Cl(τj-Int(A)) ∩ τi-Cl(τj-Int(B)) = ∅. Hence,
by Theorem 2.3, τj-Cl(A) ∩ τi-Cl(B) = ∅. (4) ⇒ (2): Let A be a (τi, τj)-semiopen
subset of X. Then X\τj-Cl(A) is (τj , τi)-semiopen and A ∩ (X\τj-Cl(A)). Thus, by
(4), τj-Cl(A) ∩ τi-Cl(X\τj-Cl(A)) = ∅ which implies τj-Cl(A) ⊂ τi-Int(τj-Cl(A)).
Hence, τj-Cl(A) = τi-Int(τj-Cl(A)) and consequently τj-Cl(A) is τi-open in X. (5)
⇒ (4): Let A be a (τi, τj)-semiopen set and B be a (τj , τi)-semiopen set such that
A ∩ B = ∅. Then (τj , τi)-sCl(A) is (τi, τj)-semiopen and (τi, τj)-sCl(B) is (τj , τi)-
semiopen in X and hence (τj , τi)-sCl(A)∩ (τj , τi)-sCl(B) = ∅. By (5), τj-Cl(A)∩ τi-
Cl(B) = ∅. (1) ⇒ (3): Follows from Theorem 2.3 using the same method as (1) ⇒
(5). (3) ⇒ (1): Let A be a τi-open set in (X, τ1, τ2). It is sufficient to prove that
τj-Cl(A) = (τj , τi)-sCl(A). Obviously, (τj , τi)-sCl(A) ⊂ τj-Cl(A). Let x /∈ (τj , τi)-
sCl(A). Then there exists a (τj , τi)-semiopen set U with x ∈ U such that A ∩U = ∅.
Hence (τi, τj)-sCl(U) ⊂ (τi, τj)-sCl(X\A) = X\A and thus (τi, τj)-sCl(U) ∩ A = ∅.
Since (τi, τj)-sCl(U) is a τj-open set with x ∈ (τi, τj)-sCl(U), x /∈ τj-Cl(A). Hence
τj-Cl(A) ⊂ (τj , τi)-Cl(A). �

Definition 3.2. [3] A point x in a bitoplogical space (X, τ1, τ2) is said to be (τi, τj)-θ-
cluster point of a set A if for every τi-open, say, U containing x, τj-Cl(U) ∩ A 6= ∅.
The set of all (τi, τj)-θ-closure of A and will be denoted by (τi, τj)-Clθ(A). A set A is
called (τi, τj)-θ-closed if A = (τi, τj)-Clθ(A).

Lemma 3.3. For any (τj , τi)-preopen set A in a bitopological space (X, τ1, τ2), τi-
Cl(A) = (τi, τj)-Clθ(A).

Proof. It is obvious that τi-Cl(A) ⊂ (τi, τj)-Clθ(A), for any subset A of (X, τ1, τ2).
Thus, it remains to be shown that (τi, τj)-Clθ(A) ⊂ τi-Cl(A). If x /∈ τi-Cl(A), then
there exists a τi-open set U containing x such that U∩A = ∅ and thus U∩τi-Cl(A) = ∅.
But U ∩ τj-Int(τi-Cl(A)) = ∅ which implies τj-Cl(U)∩ τj-Int(τi-Cl(A)) = ∅ and so τj-
Cl(U)∩A = ∅ since A is (τj , τi)-preopen. Hence x /∈ (τj , τi)-Clθ(A) and consequently
(τj , τi)-Clθ(A) ⊂ τi-Cl(A). �

Theorem 3.4. The following are equivalent for a bitopological space (X, τ1, τ2):
1. (X, τ1, τ2) is pairwise extremally disconnected.
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2. The τj-closure of every (τi, τj)-semipreopen set of X is τi-open set.
3. The (τj , τi)-θ-closure of every (τi, τj)-preopen set of X is τi-open set.
4. The τj-closure of every (τi, τj)-preopen set of X is τi-open set.

Proof. (1)⇒ (2): Let A be a (τi, τj)-semipreopen set. Then τj-Cl(A) = τj-Cl(τi-Int(τj-
Cl(A))). Since (X, τ1, τ2) is pairwise extremally disconnected. τj-Cl(A) is a τi-open set.
(2)⇒ (4): Follows from the fact that every (τi, τj)-preopen set is (τi, τj)-semipreopen.
(4) ⇒ (1): Clear. (3) ⇔ (4): Follows from Lemma 3.3. �

Theorem 3.5. A bitopological space (X, τ1, τ2) is pairwise extremally disconnected if
and only if every (τi, τj)-semiopen set is a (τi, τj)-preopen set.

Proof. Let A be a (τi, τj)-semiopen set. Then A ⊂ τj-Cl(τi-Int(A)). Since X is pairwise
extremally disconnected, τj-Cl(τi-Int(A)) is a τi-open set and then A ⊂ τj-Cl(τi-
Int(A)) = τi-Int(τj-Cl(τi-Int(A))) ⊂ τi-Int(τj-Cl(A)). Hence A is a (τi, τj)-preopen
set. Conversely, let A be a τi-open set. Since τj-Cl(A) = τj-Cl(τi-Int(A)), we have
τj-Cl(A) = τj-Cl(τi-Int(τj-Cl(A))). Then τj-Cl(A) is (τj , τi)-regular closed and hence
A is (τi, τj)-semiopen. By hypothesis, A is (τi, τj)-propen so that τj-Cl(A) = τi-
Int(τj-Cl(A)). Then τj-Cl(A) is τi-open in X and hence X is pairwise extremally
disconnected. �

Lemma 3.6. For a subset A of a bitopological space (X, τ1, τ2),

1. τj-Int(τi-Cl(A)) ⊂ (τi, τj)-sCl(A),[6]
2. τj-Int((τi, τj)-sCl(A)) = τj-Int(τi-Cl(A)).

Proof. (2) Follows easily from (1). �

Theorem 3.7. Let A be a subset of a bitopological space (X, τ1, τ2). Then A is (τi, τj)-
regular open if and only if A is τi-open and τj-closed.

Proof. Let A be a (τi, τj)-regular open set of a bitoplogical space (X, τ1, τ2). Then
τi-Int(τj-Cl(A)) = A. Now, X\τj-Cl(A) and A are, respectively, τj-open and τi-open
such that (X\τj-Cl(A))∩A = ∅. Since (X, τ1, τ2) is pairwise extremally disconnected,
by Theorem 2.7, τi-Cl(X\τj-Cl(A))∩ τj-Cl(A) = ∅. Then τi-Cl(X\τj-Cl(A)) = X\τj-
Cl(A) and X\τj-Cl(A) is τi-closed. Hence, τj-Cl(A) is τi-open, so that τj-Cl(A) = τi-
Int(τj-Cl(A)) = A is τi-open and τj-closed. The converse is clear. �

Lemma 3.8. Let A be a subset of a bitopological space (X, τ1, τ2). Then we have

1. A is (τi, τj)-preopen if and only if (τj , τi)-sCl(A) = τi-Int(τj-Cl(A)).
2. A is (τi, τj)-preopen if and only if (τj , τi)-sCl(A) is (τi, τj)-regular open.
3. A is (τi, τj)-regular open if and only if A is (τi, τj)-preopen and (τj , τi)-

semiclosed.

Proof. (1) Let A b e a (τi, τj)-preopen set. Then (τj , τi)-sCl(A) ⊂ (τj , τi)-sCl(τi-
Int(τj-Cl(A))). Since τi-Int(τj-Cl(A)) is (τj , τi)-semiclosed, (τj , τi)-sCl(A) ⊂ τi-
Int(τj-Cl(A)). Hence, by Lemma 3.6 (1), (τj , τi)-sCl(A) = τi-Int(τj-Cl(A)). The con-
verse is obvious. (2) Let (τj , τi)-sCl(A) be a (τi, τj)-regular open set. Then we have
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(τj , τi)-sCl(A) = τi-Int(τj-Cl(τj , τi)-sCl(A)) and hence (τj , τi)-sCl(A) ⊂ τi-Int(τj-
Cl(τj-Cl(A))) = τi- Int(τj-Cl(A)). By Lemma 3.6 (1), we have (τj , τi)-sCl(A) = τi-
Int(τj-Cl(A)). Hence, A is a (τi, τj)-preopen set from (1). The converse follows from
(1). (3) Let A be a (τi, τj)-preopen and a (τj , τi)-semiclosed set. Then by (2), A
is (τi, τj)-regular open in X. Conversely, let A be a (τi, τj)-regular open set. Then
A = τi-Int(τj-Cl(A)) and thus τi-Int(τj-Cl(A)) = (τj , τi)-sCl(A) = A. Hence A is
(τi, τj)-preopen and (τj , τi)-semiclosed. �

Theorem 3.9. In a bitopological space (X, τ1, τ2), the following are equivalent:
1. X is pairwise extremally disconnected.
2. (τj , τi)-sCl(A) = (τj , τi)-Clθ(A) for every (τi, τj)-preopen (or (τi, τj)-semiopen)

set A in X.
3. (τj , τi)-sCl(A) = τj-Cl(A) for every (τi, τj)-semipreopen set A in X.

Proof. (1) ⇒ (2): Since (τj , τi)-sCl(A) ⊂ (τj , τi)-Clθ(A) for any subset A of X, it
is sufficient to show that (τj , τi)-Clθ(A) ⊂ (τj , τi)-sCl(A) for any (τi, τj)-preopen or
(τi, τj)-semiopen set A of X. Let x /∈ (τj , τi)-sCl(A). Then there exists a (τj , τi)-
semiopen set U with x ∈ U such that U ∩ A = ∅ and thus there exists a τj-open set
V such that V ⊂ U ⊂ τj-Cl(V ) with V ∩ A = ∅ which implies V ∩ τj-Cl(A) = ∅.
This means V ∩ τi-Int(τj-Cl(A)) = ∅ and hence τi-Cl(V )∩ τi-Int(τj-Cl(A)) = ∅. Now,
if A is (τi, τj)-preopen, then A ⊂ τi-Int(τj-Cl(A)) and hence τi-Cl(V ) ∩ A = ∅. If
A is (τi, τj)-semiopen, since X is pairwise extremally disconnected, τi-Cl(V ) is τj-
open and thus τi-Cl(V )∩ τj-Cl(τi-Int(τj-Cl(A))) = ∅ which implies τi-Cl(V )∩A = ∅.
Hence, in any case, x /∈ (τj , τi)-Clθ(A). (2) ⇒ (1): First let A be a (τi, τj)-preopen set
in X. By Lemmas 3.8 and 3.3, we have τi-Int(τj-Cl(A)) = (τj , τi)-sCl(A) = (τj , τi)-
Clθ(A) = τj-Cl(A). Then τj-Cl(A) is τi-open and hence by Theorem 3.4, X is pairwise
extremally disconnected. Next, let A be a (τi, τj)-semiopen set in X. Then (τj , τi)-
Cl(A) ⊂ τj-Cl(A) ⊂ (τj , τi)-Clθ(A) = (τj , τi)-sCl(A) and thus (τj , τi)-sCl(A) = τj-
Cl(A). Hence, X is pairwise extremally disconnected from Theorem 3.4. (1) ⇒ (3):
Let A be a (τi, τj)-semipreopen set in X. Since X is pairwise extremally disconnected,
by Theorem 3.4, τj-Cl(A) is τi-open in X. Hence, by Lemma 3.8, (τj , τi)-sCl(A) = τj-
Cl(A). (3) ⇒(1): Let U and V , respectively, be τi-open and τj-open sets such that
U∩V = ∅. Then U ⊂ X\V which implies (τj , τi)-sCl(U) ⊂ (τj , τi)-sCl(X\V ) = X\V
and hence (τj , τi)-sCl(U) ∩ V = ∅. Since (τj , τi)-sCl(U) is (τi, τj)-semiopen in X,
(τj , τi)-sCl(U) ∩ (τi, τj)-sCl(V ) = ∅. Then by (3) τj-Cl(U) ∩ τi-Cl(V ) = ∅ and hence
by Theorem 2.7, X is pairwise extremally disconnected. �

Theorem 3.10. In a bitopological space (X, τ1, τ2), the following are equivalent:
1. X is pairwise extremally disconnected.
2. For each (τi, τj)-semipreopen set A in X and each (τj , τi)-semiopen set B in X

such that A ∩B = ∅, τi-Cl(A) ∩ τj-Cl(B) = ∅
3. For each (τi, τj)-preopen set A in X and each (τj , τi)-semiopen set B in X such

that A ∩B = ∅, τi-Cl(A) ∩ τ − j-Cl(B) = ∅.

Proof. (1)⇒ (2): Let A be a (τi, τj)-semipreopen set and B a (τj , τi)-semiopen set
such that A∩B = ∅. Then A∩ τj-Int(B) = ∅ and hence τj-Cl(A)∩ τj-Int(B) = ∅. By
Theorem 3.4, τj-Cl(A) is a τi-open set in X and hence τj-Cl(A)∩τi-Cl(τj-Int(B)) = ∅.
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Since B is (τj , τi)-semiopen in X, by Theorem 2.3, τi-Cl(B) = τi-Cl(τj-Int(B)). Thus
τj-Cl(A) ∩ τi-Cl(B) = ∅. (2) ⇒ (3): Straightforward. (3) ⇒ (1): Let A be a τi-open
set and B a τj-open set such that A ∩ B = ∅. Since every τi-open set is a (τi, τj)-
semiopen set and every τj-open set is a (τi, τj)-semiopen set and every τj-open set is
a (τj , τi)-preopen set, τj-Cl(A) ∩ τi-Cl(B) = ∅. Hence by Theorem 2.7, X is pairwise
extremally disconnected. �

Definition 3.11. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be

1. pairwise semicontinuous [2] if f−1(V ) is a (τi, τj)-semiopen set in X for each
σi-open set V in Y .

2. pairwise almost open if f(U) is a σi-open set in Y for each (τi, τj)-regular open
set U in X.

Lemma 3.12. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise almost open if and
only if for each (τj , τi)-semiclosed set A in X, f(τi-Int(A)) ⊂ σi-Int(f(A)).

Proof. Let A be a (τj , τi)-semiclosed set in X. Then τi-Int(τj-Cl(A)) is (τi, τj)-
regular open and hence f(τ − i-Int(τj-Cl(A))) is σi-open in Y . Now by Theorem
2.4, τi-Int(A) = τi-Int(τj-Cl(A)) ⊂ A which implies that f(τi-Int(A)) = f(τi-Int(τj-
Cl(A))) = σi-Int(f(τi-Int(τj-Cl(A)))) ⊂ σi-Int(f(A)). Hence f(τi-Int(A)) ⊂ σi-
Int(f(A)). Conversely, let A be a (τi, τj)-regular open set in X. Then A is (τj , τi)-
semiclosed and hence f(τi-Int(A)) ⊂ σi-Int(f(A)). Now, A = τi-Int(A) and thus
f(A) = f(τi-Int(A)) ⊂ σi-Int(f(A)), so that f(A) is σi-open in Y . Hence f is pair-
wise almost open. �

Lemma 3.13. If f : (X, τ1, τ2) → (Y, σ1, σ2) is a pairwise semicontinuous and a pair-
wise almost open mapping, then f(A) is a (σi, σj)-preopen set in Y for each (τi, τj)-
preopen set A in X.

Proof. Let A be a (τi, τj)-preopen set in X. Since f is pairwise semicontinuous,
f(A) ⊂ f((τj , τi)-sCl(A)) ⊂ σj-Cl(f(A)). By Lemma 3.8 (2), (τj , τi)-sCl(A) is
(τj , τi)-regular open set in X and thus f((τj , τi)-sCl(A)) is a (σi, σj)-preopen set
in Y because f is pairwise almost open. By Lemma 3.8 (1), (σj , σi)-sCl(f((τj , τi)-
sCl(A))) = σi-Int(σj-Cl(f((τj , τi)-sCl(A)))). Hence, (σj , σi)-sCl(f(A)) ⊂ (σj , σi)-
sCl(f((τj , τi)-sCl(A))) = σi-Int(σj-Cl(f((τj , τi)-sCl(A)))) ⊂ σj-Cl(f(A)). Since
σi-Int(σj-Cl(f(A))) = σi-Int(σj-Cl(f((τj , τi)-sCl(A)))), we have f(A) ⊂ (σj , σi)-
sCl(f(A)) ⊂ σi-Int(σj-Cl(f(A))). Hence f(A) is (σi, σj)-preopen in Y . �

Lemma 3.14. If f : (X, τ1, τ2) → (Y, σ1, σ2) is a pairwise semicontinuous and a pair-
wise almost open mapping we have

1. f−1(B) is a (τi, τj)-semiclosed set in X for each (σi, σj)-semiclosed set in B in
Y .

2. f−1(B) is a (τi, τj)-semiopen set in X for each (σi, σj)-semiopen set in B in Y .

Proof. (1) Let B be a (σi, σj)-semiclosed set in Y . Since f is pairwise semicontinuous
and σi-Cl(B) is a σi-closed set, f−1(σi-Cl(B)) is (τi, τj)-semiclosed in X. Hence, τi-
Int(τj-Cl(f−1(σi-Cl(B)))) ⊂ τj- Int(f−1(σi-Cl(B))). Since f is pairwise almost open
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by Lemma 3.12 f(τj-Int(f−1(σi-Cl(B)))) ⊂ τj-Int(f(f−1(σi-Cl(B)))) ⊂ σj-Int(σi-
Cl(B)) ⊂ B. Which implies that τj-Int(f−1(σi-Cl(B))) ⊂ f−1(B). Now, τj-Int(τi-
Cl(f−1(B))) ⊂ τj-Int(τi- Cl(f−1(σi-Cl(B)))) ⊂ τj-Int(f−1(σi- Cl(B))) ⊂ f−1(B).
Hence f−1(B) is a (τi, τj)-semiclosed set in X. (2) Follows easily from (1) by taking
the complement. �

Theorem 3.15. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a pairwise semicontinuous and a
pairwise almost open surjection. If (X, τ1, τ2) is pairwise extremally disconnected, then
(Y, σ1, σ2) is also pairwise extremally disconnected.

Proof. Let B be a (σi, σj)-semiopen set in Y . By Lemma 3.14, f−1(B) is (τi, τj)-
semiopen in X. Since X is pairwise extremally disconnected, by Theorem 3.5, f−1(B)
is (τi, τj)-preopen in X. By Lemma 3.13, B is (σi, σj)-preopen in Y and hence by
Theorem 3.5, Y is pairwise extremally disconnected. �
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Book reviews

Joram Lindenstrauss, David Preiss and Jaroslav Tǐser, Fréchet differentiability
of Lipschitz functions and porous sets in Banach spaces, Annals of Mathematics
Studies, vol. 179, Princeton University Press, Princeton, NJ, 2012, ix+425 pp. ISBN:
978-0-691-15355-1 (hardcover) – ISBN: 978-0-691-15356-8 (pbk.).

A classical result proved by Henri Lebesgue in his thesis (around 1900) asserts
that every monotone function f : R → R is almost everywhere (a.e.) differentiable. As
consequence, the functions with bounded variation and, in particular, the Lipschitz
functions have this property. The result was extended in 1919 to Lipschitz functions
f : Rn → R by Hans Rademacher. The case of the function t 7→ χ[0,t] from the interval
[0, 1] to L1[0, 1], which is nowhere differentiable, shows that some restrictions have to
be imposed to the range space Y in order to extend this result to vector functions
f : U → Y, U ⊂ Rn an open subset and Y a Banach space: if the Banach space Y
has the Radon-Nikodým Property (RNP), then the differentiability result is true. In
fact, this property is equivalent to the RNP: if every Lipschitz function f : R → Y is
a.e. differentiable, then the Banach space Y has the RNP. The next step is to extend
further the result to Lipschitz functions f : U → Y , where U is an open subset of
a Banach space X. It is clear that one needs first an appropriate notion of ”almost
everywhere” in an infinite dimensional Banach space. Since it is impossible to define
a measure µ on an infinite dimensional Banach space X such that the class of sets of
µ-measure 0 be a useful class of negligible sets, these must be defined by other means.
There are several nonequivalent ways to define negligible sets in infinite dimension,
leading to different classes – Haar null sets (J. P. R. Christensen, 1972), cube null
sets (P. Mankiewicz, 1973) Gauss null sets (R. R. Phelps, 1978), Aronszajn null sets
(N. Aronszajn, 1976), a.o., each of them forming a proper σ-ideal of Borel subsets of
the Banach space X. Later, M. Csörnyei (1999) has shown that the classes of Gauss
null, cube null and Aronszajn null sets agree and are properly contained in the class
of Haar null sets. A good presentation of these result as well as of the a.e. Gâteaux
differentiability of Lipschitz functions is given in the sixth chapter of the book by
Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Analysis, Colloq. Publ. vol
48, AMS 2000. A brief presentation of these results is contained also in the second
chapter of the present book. Supposing the space X separable and Y an RNP space,
then every Lipschitz function f : U → Y, U ⊂ X open, is Gâteaux differentiable on
U, excepting an Aronszajn null set.
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The question of a.e. Fréchet differentiability is more delicate and the results are
far from being complete. The norm ‖ · ‖ of `1 is nowhere Fréchet differentiable and
a similar situation appears when X is separable with nonseparable conjugate, so a
natural requirement on the domain space X is to be with separable conjugate (such a
space is called an Asplund space). As the authors show in Section 3.6, some results can
be extended to the nonseparable case by using separable reduction techniques. The
first result, with an involved proof, in this direction was obtained by D. Preiss (1990)
– any real-valued Lipschitz function on an Asplund space has a dense set of points
of Fréchet differentiability. Another proof, simpler but still involved, was given by
Lindenatrauss and Preiss in 2000. The authors consider a general conjecture, namely
that for every Asplund space X there exists a nontrivial notion of negligible sets such
that every locally Lipschitz function f defined on an open subset G of X and with
values in an RNP space Y satisfies the conditions:

(C1) f is a.e. Gâteaux differentiable on G;
(C2) if S ⊂ G has null complement and f is Gâteaux differentiable on S, then

Lip(f) = supS ‖f ′(x)‖;
(C3) if for some E ⊂ G the set {f ′(x) : x ∈ E} is separable (in L(X, Y )), then

f is a.e. differentiable on E.
As the authors do mention, a challenging problem in this area is whether a

countable family of Lipschitz functions defined on an Asplund space has a common
point of Fréchet differentiability. In this book one shows that any Lipschitz mapping
from a Hilbert space to Y = R2 is a.e. differentiable and satisfies a multi-dimensional
mean value estimate (which is stronger that (C2)), the first known result of this kind.
The result is obtained as a consequence of some more general results, but in the last
chapter of the book, Chapter 16, a direct proof, essentially self-contained, based on
specific properties of Hilbert spaces, is given. The differentiability result does not hold
for Y = R3, or, more generally, for maps on `p to Rn with n > p.

Since the distance function d(·, E) to a subset E of a normed space X is nowhere
F -differentiable iff the set E is porous, a natural requirement would be the contain-
ment of porous sets in these σ-ideals of negligible sets. Lindenstrauss and Preiss (2003)
considered Γ-null sets, whose definition involves both Baire category and Lebesgue
measure, and proved that each Lipschitz function from a separable Banach space X to
an RNP space Y is G-differentiable excepting a Γ-null set, and that such a function is
regularly G-differentiable (a notion stronger than Gâteaux differentiability) excepting
a σ-porous set. Since a function is a.e. Fréchet differentiable on the set on which it
is regularly Gâteaux differentiable, it follows that (C1)–(C3) hold for every Banach
space X for which σ-porous sets are Γ-null. Example of such spaces are C(K) with K
countable and compact, subspaces of c0, the Tsirelson space, but not Hilbert spaces.

In the present book, one considers also a more refined concept, namely Γn-null
sets, which can be viewed as finite dimensional versions of Γ-null sets, one studies the
relations between these classes and one presents new classes of Banach spaces for which
strong Fréchet differentiability results hold. Of course, some geometric properties of
the space X are involved, among which the notions of asymptotic uniform smoothness,
asymptotic uniform convexity and their moduli, as well as the modulus of asymptotic
smoothness associated to a function. The relevance of these geometric properties for
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the existence of bump functions with controlled moduli of asymptotic smoothness is
discussed in detail in Chapter 8.

Most of the results in this book (Chapters 7–14) are new, leading to a better
understanding of this difficult problem - the a.e. Fréchet differentiability of Lipschitz
functions. The book is very well organized – each chapter starts with a brief infor-
mation about its content, followed by an introductory section containing the most
important results of the chapter and the proofs of some relevant corollaries. Also the
authors explain the intuitive ideas behind the proofs (most of them long and difficult)
and to the abstract notions considered in the book.

In conclusion, this is a remarkable book, opening new ways for further inves-
tigation of the Fréchet differentiability of Lipschitz functions. It is of great interest
for researchers in functional analysis, mainly those interested in the applications of
Banach space geometry.

S. Cobzaş

William J. Cook, In Pursuit of the Traveling Salesman Problem: Mathematics at the
Limits of Computation, Princeton University Press, 2012, xiii + 228 pp., ISBN13:
978-0-691-15270-7

The Traveling Salesman Problem (TSP for short) is simply to formulate but very
hard to solve. We are given a collection of cities and the distance to travel between each
pair of them and one ask to find the shortest route to visit each city and to return
to the starting point. The problem has many practical applications, presented in
Chapter 3, The salesman in action - first of all routes for traveling salesmen (the GPS
system often includes a TSP solver for small instances having a dozen of cities, which
usually suffices for daily trips), the routing of buses and vans to pick up or deliver
people and packages, to genome study, X-ray crystallography, computer chips, tests
for microprocessors, organizing data, and even to music (organizing vast collections
of computer-encoded music), speeding up video games, etc.

The difficulty of the problem arises from the big amount of possibilities to be
examined in order to find the optimal one. For instance, the 33 cities problem, for
which Procter & Gamble offered in 1962 a $10 000 prize for its solution, the number
of possibilities are of the order of 1035, for 50 cities the order is 1062. A breakthrough
in the field was made in 1954 by an ingenious application by George Dantzig, Ray
Fulkerson and Selmer Johnson from RAND Corporation of linear programming to
calculate (in a few weeks ”by hand”) the shortest route for 49 cities. This record lasted
until 1975 when Panagiotis Miliotis solved the problem for 80 cities, followed in 1977
by Grötschel with 120 and Padberg and Crowder with 318 cities. In 1987 Grötschel
and Padberg raised this number to 2392 cities. The author and Vašek Chvátal, assisted
by the computational mathematicians David Applegate and Robert Bixby, started to
work on the problem in 1988 and obtained astonishing results, culminating in 2006
with the solution for 85 900 cities, representing locations of the connections that
must be cut by a laser to create a customized computer chip. The computer code
used to solve the problem, called Concorde, is available on the internet. Some of these
results are presented in the book by David L. Applegate, Robert E. Bixby, Vasek
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Chvátal and William J. Cook, The Traveling Salesman Problem: A Computational
Study, Princeton University Press, 2007.

It is unknown whether the the complexity of the TSP is polynomial (i.e. if it
belongs to the class P), the best estimation being n2 ·2n. It is known that it belongs to
the class NP (non-deterministic polynomial-time algorithms), and the TSP is NP-
complete, meaning that finding a good algorithm for TSP will prove the equality
P = NP, one of the $1 000 000 worth problems from Clay Mathematics Institute.
An amusing discussion on the catastrophical consequences of this equality for the
mankind, with quotations from the Charles Stross’s story ”Antibodies” and from
Lance Fortnow (Comm. ACM, 2009), can be founded on page 10.

The author presents in a live and entertaining style the historical evolution of the
problem and its interaction with other mathematical problems – linear programming
(in Ch. 5), the cutting planes method (Ch. 6) and the branch-and-bound method (in
Ch. 7) for integer programming – and computational ones – big computing and TPS
on large scale (in Ch. 8), and the complexity problem in Chapter 9.

There are a lot of good quotations spread through the book, nice pictures, per-
sonal reminiscences and anecdotes. By its non-formal and amazing style, the book
addresses a large audience interested to know something about the long and hard
chest of generations of mathematicians and computer scientists to solve hard prob-
lems and how their solutions will influence our lives.

Liana Lupşa
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