
MATHEMATICA
4/2013



STUDIA 
UNIVERSITATIS BABEŞ-BOLYAI 

MATHEMATICA 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 / 2013 



EDITORIAL BOARD OF  
STUDIA UNIVERSITATIS BABEŞ -BOLYAI MATHEMATICA 

 

 

EDITORS: 
Radu Precup, Babeş-Bolyai University, Cluj-Napoca, Romania (Editor-in-Chief)  
Octavian Agratini, Babeş-Bolyai University, Cluj-Napoca, Romania  
Simion Breaz, Babeş-Bolyai University, Cluj-Napoca, Romania  
Csaba Varga, Babeş-Bolyai University, Cluj-Napoca, Romania 
 
MEMBERS OF THE BOARD: 
Ulrich Albrecht, Auburn University, USA 
Francesco Altomare, University of Bari, Italy 
Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca, Romania 
Silvana Bazzoni, University of Padova, Italy 
Petru Blaga, Babeş-Bolyai University, Cluj-Napoca, Romania 
Wolfgang Breckner, Babeş-Bolyai University, Cluj-Napoca, Romania 
Teodor Bulboacă, Babeş-Bolyai University, Cluj-Napoca, Romania 
Gheorghe Coman, Babeş-Bolyai University, Cluj-Napoca, Romania 
Louis Funar, University of Grenoble, France 
Ioan Gavrea, Technical University, Cluj-Napoca, Romania 
Vijay Gupta, Netaji Subhas Institute of Technology, New Delhi, India 
Nicolae Jităraşu, State University of Moldova, Chişinău, Moldova 
Gábor Kassay, Babeş-Bolyai University, Cluj-Napoca, Romania 
Mirela Kohr, Babeş-Bolyai University, Cluj-Napoca, Romania 
Iosif Kolumbán, Babeş-Bolyai University, Cluj-Napoca, Romania 
Alexandru Kristály, Babeş-Bolyai University, Cluj-Napoca, Romania 
Andrei Mărcuş, Babeş-Bolyai University, Cluj-Napoca, Romania 
Waclaw Marzantowicz, Adam Mickiewicz, Poznan, Poland 
Giuseppe Mastroianni, University of Basilicata, Potenza, Italy 
Mihail Megan, West University of Timişoara, Romania 
Gradimir V. Milovanović, Megatrend University, Belgrade, Serbia 
Petru Mocanu, Babeş-Bolyai University, Cluj-Napoca, Romania 
Boris Mordukhovich, Wayne State University, Detroit, USA 
András Némethi, Rényi Alfréd Institute of Mathematics, Hungary 
Rafael Ortega, University of Granada, Spain 
Adrian Petruşel, Babeş-Bolyai University, Cluj-Napoca, Romania 
Cornel Pintea, Babeş-Bolyai University, Cluj-Napoca, Romania 
Patrizia Pucci, University of Perugia, Italy 
Ioan Purdea, Babeş-Bolyai University, Cluj-Napoca, Romania 
John M. Rassias, National and Capodistrian University of Athens, Greece 
Themistocles M. Rassias, National Technical University of Athens, Greece 
Ioan A. Rus, Babeş-Bolyai University, Cluj-Napoca, Romania 
Grigore Sălăgean, Babeş-Bolyai University, Cluj-Napoca, Romania 
Mircea Sofonea, University of Perpignan, France  
Anna Soós, Babeş-Bolyai University, Cluj-Napoca, Romania 
Dimitrie D. Stancu, Babeş-Bolyai University, Cluj-Napoca, Romania 
András Stipsicz, Rényi Alfréd Institute of Mathematics, Hungary  
Ferenc Szenkovits, Babeş-Bolyai University, Cluj-Napoca, Romania 
Michel Théra, University of Limoges, France 
 
BOOK REVIEWS: 
Ştefan Cobzaş, Babeş-Bolyai University, Cluj-Napoca, Romania 
 
SECRETARIES OF THE BOARD: 
Teodora Cătinaş, Babeş-Bolyai University, Cluj-Napoca, Romania 
Hannelore Lisei, Babeş-Bolyai University, Cluj-Napoca, Romania 
 
TECHNICAL EDITOR: 
Georgeta Bonda, Babeş-Bolyai University, Cluj-Napoca, Romania 



YEAR (LVIII) 2013
MONTH DECEMBER
ISSUE 4

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI
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Vasile Bulgărean, The group of isometries of the French rail ways metric . . . 445
Andrei Neag, Barycentric and trilinear coordinates of some remarkable

points of a hyperbolic triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Liviu Ornea and Victor Vuletescu, Oeljeklaus-Toma manifolds and

locally conformally Kähler metrics. A state of the art . . . . . . . . . . . . . . . . . . . . . 459
Vasile Revnic, Exact discrete Morse functions on surfaces . . . . . . . . . . . . . . . . . . . . 469
Paul A. Blaga, Symplectic connections on supermanifolds:

Existence and non-uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Dorin Andrica, Dana Mangra and Cornel Pintea, The minimum

number of critical points of circular Morse functions . . . . . . . . . . . . . . . . . . . . . . 485
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Primes of the form ±a2 ± qb2

Eugen J. Ionascu and Jeff Patterson

To the memory of Professor Mircea-Eugen Craioveanu (1942-2012)

Abstract. Representations of primes by simple quadratic forms, such as ±a2±qb2,
is a subject that goes back to Fermat, Lagrange, Legendre, Euler, Gauss and many
others. We are interested in a comprehensive list of such results, for q ≤ 20. Some
of the results can be established with elementary methods and we exemplify
that in some instances. We are introducing new relationships between various
representations.

Mathematics Subject Classification (2010): 11E25, 11A41, 11A67.

Keywords: Quadratic reciprocity, Pigeonhole principle.

1. Introduction

Let us consider the following three types of representations for a natural number:

E(q) := {n ∈ N|n = a2 + qb2, with a, b ∈ Z}, (1.1)

H1(q) := {n ∈ N|n = qb2 − a2, with a, b ∈ Z}, and (1.2)

H2(q) := {n ∈ N|n = a2 − qb2, with a, b ∈ Z}. (1.3)

We are going to denote by P the set of prime numbers. In this paper we want to
exemplify how standard elementary methods can be used to obtain the representations
stated in the next three theorems:

Theorem 1.1. For a prime p we have p ∈ E(q) if and only if
(I) (Fermat) (q = 1) p = 2 or p ≡ 1 (mod 4)
(II) (Fermat) (q = 2) p = 2 or p ≡ 1 or 3 (mod 8)
(III) (Fermat-Euler) (q = 3) p = 3 or p ≡ 1 (mod 6)
(IV) (q = 4) p ≡ 1 (mod 4)
(V) (Lagrange) (q = 5) p = 5 or p ≡ j2 (mod 20) for some j ∈ {1, 3}
(VI) (q = 6) p ≡ 1 or 7 (mod 24)
(VII) (q = 7) p = 7 or p ≡ j2 (mod 14) for some j ∈ {1, 3, 5}
(VIII) (q = 8) p ≡ 1 (mod 8)
(IX) (q = 9) p ≡ j2 (mod 36) for some j ∈ {1, 5, 7}
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(X) (q = 10) p ≡ j (mod 40) for some j ∈ {1, 9, 11, 19}
(XI) (q = 12) p ≡ j (mod 48) for some j ∈ {1, 13, 25, 37}
(XII) (q = 13) p ≡ j2 (mod 52) for some j ∈ {1, 3, 5, 7, 9, 11}
(XIII) (q = 15) p ≡ j (mod 60) for some j ∈ {1, 19, 31, 49}
(XIV) (q = 16) p ≡ 1 (mod 8)

We are going to prove (VII), in order introduce the method that will be employed
several times. One may wonder what is the corresponding characterization for q = 11
or q = 14. It turns out that an answer cannot be formulated only in terms of residue
classes as shown in ([19]). We give in Theorem 1.4 possible characterizations whose
proofs are based on non-elementary techniques which are described in [6].

Theorem 1.2. For a prime p we have p ∈ H1(q) if and only if
(I) (q = 1) p 6= 2
(II) (q = 2) p = 2 or p ≡ ±1 (mod 8) (i.e. p ≡ 1 or p ≡ 1 (mod 8))
(III) (q = 3) p ∈ {2, 3} or p ≡ 11 (mod 12)

(IV) (q = 4) p ≡ 3 (mod 4)
(V) (q = 5) p = 5 or p ≡ ±j2 (mod 20) for some j ∈ {1, 3}
(VI) (q = 6) p = 2 or p ≡ j (mod 24) for some j ∈ {5, 23}
(VII) (q = 7) p = 7 or p ≡ j (mod 14) for some j ∈ {3, 5, 13}
(VIII) (q = 8) p = 7 or p ≡ −j2 (mod 32) for some j ∈ {1, 3, 5, 7}
(IX) (q = 9) p ≡ −1 (mod 6)
(X) (q = 10) p ≡ j (mod 40) for some j ∈ {1, 9, 31, 39}
(XI) (q = 11) p ∈ {2, 11} or p ≡ −j2 (mod 44) for some j ∈ {1, 3, 5, 7, 9}

In this case, for exemplification, we show (V).

Theorem 1.3. For a prime p we have p ∈ H2(q) if and only if
(I) (q = 1) p 6= 2
(II) (q = 2) p = 2 or p ≡ ±1 (mod 8)
(III) (q = 3) p ≡ 1 (mod 12)
(IV) (q = 4) p ≡ 1 (mod 4)
(V) (q = 5) p = 5 or p ≡ ±j2 (mod 20) for some j ∈ {1, 3}
(VI) (q = 6) p = 3 or p ≡ j (mod 24) for some j ∈ {1, 19}
(VII) (q = 7) p = 2 or p ≡ j (mod 14) for some j ∈ {1, 9, 11}
(VIII) (q = 8) p = 7 or p ≡ j2 (mod 32) for some j ∈ {1, 3, 5, 7}
(IX) (q = 9) p ≡ 1 (mod 6)
(X) (q = 10) p ≡ j (mod 40) for some j ∈ {1, 9, 31, 39}
(XI) (q = 11) p ≡ j2 (mod 44) for some j ∈ {1, 3, 5, 7, 9}

We observe that for q = 2, q = 5, q = 10 the same primes appear for both
characterizations in Theorem 1.2 and Theorem 1.3. There are several questions that
can be raised in relation to this observation:

Problem 1. Determine all values of q, for which we have

H1(q) ∩ P = H2(q) ∩ P . (1.4)
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Problem 2. If the equality (1.4) holds true for relatively prime numbers q1 and q2,
does is it hold true for q1q2?

In [6], David Cox begins his classical book on the study of (1.1), with a detailed
and well documented historical introduction of the main ideas used and the difficulties
encountered in the search of new representations along time. The following abstract
characterization in [6] brings more light into this subject:

(Theorem 12.23 in [6]) Given a positive integer q, there exists an irreducible
polynomial with integer coefficients fq of degree h(−4q), such that for every
odd prime p not dividing q,

p = a2 + qb2 ⇔ the equations











x2 ≡ −q (mod p)

fq(x) ≡ 0 (mod p)

have integer solutions. An algorithm for computing fq exists. (h(D) is the
number of classes of primitive positive definite quadratic forms of discrim-
inant D).

While some of the representations included here are classical, others may be more
or less known. We found some of the polynomials included here by computational
experimentations. For more details in this direction see [1], [2], [5], [6], [7], [15] and
[19].

Theorem 1.4. For an odd prime p we have p = a2 + qb2 for some integers a, b if and
only if

(I) (q = 11) p > 2 and the equation

(X3 + 2X)2 + 44 ≡ 0 (mod p) has a solution,

(II) (Euler’s conjecture) (q = 14) the equations

X2 + 14 ≡ 0 and (X2 + 1)2 − 8 ≡ 0 (mod p) have solutions

(III) (q = 17) the equations X2 + 17 ≡ 0 and (X2 − 1)2 + 16 ≡ 0 (mod p)
have solutions

(IV) (q = 18) the equation (X2 − 3)2 + 18(22) ≡ 0 (mod p) has a solution
(V) (q = 19) the equation (X3 − 4x)2 + 19(42) ≡ 0 (mod p) has a solution
(VI) (q = 20) the equation (X4 − 4)2 + 20X4 ≡ 0 (mod p) has a solution
(XXI) (q = 21) the equation (X4 + 4)2 + 84X4 ≡ 0 (mod p) has a solution
(XXII) (q = 22) p > 22 and the equation (x2 + 3)2 + 22(42) ≡ 0 (mod p)

has a solution
(XXIII) (q = 23) the equation (X3 + 15X)2 + 23(192) ≡ 0 (mod p) has a solution
(XXIV ) (q = 24) the equation (X4 + 4)2 + 24(2X)4 ≡ 0 (mod p) has a solution
(XXV ) (q = 25) p > 25 the equation X4 + 100 ≡ 0 (mod p) has a solution
(XXVI ) (q = 26)
(XXVII) (Gauss) (q = 27) p ≡ 1 (mod 3) and the equation X3 ≡ 2 (mod p)

has a solution
(XXVIII) (q = 28)
(XXVIV) (q = 29) p ≡ 1 (mod 4) and the equation (X3 − X)2 + 116 = 0 (mod p)
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has a solution

(XXX) (q = 30)

(XXXI) (q = 31) (L. Kronecker, pp. 88 [6]) the equation

(X3 − 10X)2 + 31(X2 − 1)2 ≡ 0 (mod p) has a solution

(XXXII) (q = 32) p ≡ 1 (mod 8) and the equation

(X2 − 1)2 ≡ −1 (mod p) has a solution.

(XXXVII) (q = 37) the equation X4 + 31X2 + 9 = 0 (mod p) has a solution

(LXIV) (Euler’s conjecture) (q = 64) p ≡ 1 (mod 4) and the equation

X4 ≡ 2 (mod p) has a solution.

Our interest in this subject came from studding the problem of finding all equi-
lateral triangles, in the three dimensional space, having integer coordinates for their
vertices (see [3], [8], [9], and [12]). It turns out that such equilateral triangles exist
only in planes Pa,b,c,f := {(x, y, z) ∈ R3 : ax + by + cz = f, f ∈ Z} where a, b, and c
are in such way

a2 + b2 + c2 = 3d2 (1.5)

for some integer d and side-lengths of the triangles are of the form

ℓ = d
√

2(m2 − mn + n2)

for some integers m and n. Let us include here a curious fact that we ran into at that
time.

Proposition 1.5. [8] An integer t which can be written as t = 3x2 − y2 with x, y ∈ Z is
the sum of two squares if and only if t is of the form t = 2(m2 − mn + n2) for some
integers m and n.

If we introduce the sets

A := {t ∈ Z|t = 3x2 − y2, x, y ∈ Z},

B := {t ∈ Z|t = x2 + y2, x, y ∈ Z}
and

C := {t ∈ Z|t = 2(x2 − xy + y2), x, y ∈ Z}
then we actually have an interesting relationship between these sets.

Theorem 1.6. For the sets defined above, one has the inclusions

A ∩ B $ C, B ∩ C & A, and C ∩ A & B. (1.6)

We include a proof of this theorem in the Section 4. The inclusions in (1.6) are
strict as one can see from Figure 1.

Let us observe that there are primes p with the property that 2p is in all three
sets A, B and C. We will show that these primes are the primes of the form 12k + 1
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Figure 1. “God created the integers, all else is the work of man.”
Leopold Kronecker

for some integer k. Some representations for such primes are included next:

13 = (12 + 52)/2 = 32 − 3(4) + 42 = [3(32) − 1]/2

37 = (52 + 72)/2 = 32 − 3(7) + 72 = [3(5)2 − 1]/2

61 = (12 + 112)/2 = 42 − 4(9) + 92 = [3(92) − 112]/2.

(1.7)

It is natural to ask whether or not the next forms in the Theorem 1.1 aren’t
related to similar parameterizations for regular or semi-regular simplices in Zn for
bigger values of n. In [20], Isaac Schoenberg gives a characterization of those n’s for
which a regular simplex exists in Zn. Let us give the restatement of Schoenberg’s
result which appeared in [16]: all n such that n + 1 is a sum of 1, 2, 4 or 8 odd
squares.

As interesting corollaries of these statements we see that if one prime p has some
representation it must have some other type of representation(s). Let us introduce a
notation for these classes of primes:

Pq := {p odd prime|p = a2 + qb2 for some a, b ∈ N}.
So we have P1 = P4, P8 = P16 (Gauss, see [21]), P5 ⊂ P1, P10 ⊂ P2, . . . In the
same spirit, we must bring to reader’s attention, that in the case q = 32 there exists
a characterization due to Barrucand and Cohn [1], which can be written with our
notation as

P32 = {p | p ≡ 1 (mod 8), there exists x such that x8 ≡ −4 (mod p)}.
We observe that (xxxii) in Theorem 1.4 implies this characterization because

x8 +4 = (x4 − 2x2 +2)(x4 +2x2 +2) and clearly (x2 − 1)2 +1 = x4 − 2x2 +2. In fact,
the two statements are equivalent. Indeed, if a is a solution of x8 + 4 ≡ 0 (mod p)
then we either have x4 − 2x2 +2 ≡ 0 (mod p ) or x4 +2x2 +2 ≡ 0 (mod p). We know
that there exists a solution b of x2 +1 ≡ 0 (mod p). Hence if a4 +2a2 +2 ≡ 0 (mod p)
then (ab)4 − 2(ab)2 + 2 ≡ 0 (mod p) which shows that the equation x4 − 2x2 + 2 ≡ 0
(mod p ) always has a solution.

Also, another classical result along these lines is Kaplansky’s Theorem ([14]):

Theorem 1.7. A prime of the form 16n+9 is in P32 \P64 or in P64 \P32. For a prime
p of the form 16n + 1 we have p ∈ P32 ∩ P64 or p 6∈ P64 ∪ P32.
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For further developments similar to Kaplansky’s result we refer to [2]. One can
show that the representations in Theorem 1.1 are unique (see Problem 3.23 in [6]).

2. Case (vii)

We are going to use elementary methods in the next three sections and the well
known Law of Reciprocity.

Theorem 2.1. [Gauss] For every p and q odd prime numbers we have

(

p

q

) (

q

p

)

= (−1)
p−1
2

q−1
2 . (2.1)

with notation
(

·

p

)

, defined for every odd prime p and every a coprime with p known

as the Legendre symbol:

(

a

p

)

=











1 if the equation x2 ≡ a (mod p) has a solution,

−1 if the equation x2 ≡ a (mod p) has no solution

(2.2)

We think that this method can be used to prove all the statements in Theo-
rem 1.1, Theorem 1.3 and Theorem 1.2. We learned about this next technique from
[17] and [18].
Necessity. If p = x2 + 7y2 then p ≡ x2 (mod 7). Clearly we may assume p > 7.
Therefore, x may be assumed to be different of zero. Then the residues of p (mod 7)
are 1, 2, or 4. Let us suppose that p ≡ r (mod 14) with r ∈ {0, 1, 2, ..., 13}. Because
p is prime, r must be an odd number, not a multiple of 7 and which equals 1, 2 or 4
(mod 7). This leads to only three such residues, i.e. r ∈ {1, 9, 11}, which are covered
by the odd squares j2, j ∈ {1, 3, 5}.
Sufficiency. We may assume that p > 2. Let us use the hypothesis to show that the
equation x2 = −7 has a solution. Let p be a prime of the form 14k + r, r ∈ {1, 9, 11},
k ∈ N ∪ {0}. By the Quadratic Reciprocity, we have ( 7

p
)
(

p

7

)

= (−1)
3(p−1)

2 . Since
(

−1

p

)

= (−1)
p−1
2 , then

(−7

p

)

= (−1)
p−1
2

(

7

p

)

= (−1)
p−1
2 +

3(p−1)
2

(p

7

)

=

(

r′

7

)

,

where p = 7(2k′) + r′, r′ ∈ {0, 1, .., 6}. This shows that if r′ ∈ {1, 2, 4} we have a
solution x0 for the equation x2 ≡ −7 (mod p).

Let us now apply the Pigeonhole Principle: we let m ∈ N be in such a way that
m2 < p < (m + 1)2. We consider the function g : {0, 1, 2, ..., m} × {0, 1, 2, ..., m} →
{0, 1, 2, ...., p − 1} defined by g(u, v) ≡ u + vx0 (mod p). Since (m + 1)2 > p, we
must have two distinct pairs (a′′, b′′) and (a′, b′) such that g(a′′, b′′) = g(a′, b′). Then
a′′ − a′ ≡ (b′ − b′′)x0 (mod p). Then, if we let a = a′′ − a′, and b = b′ − b′′ we get
that 0 < q := a2 + 7b2 ≡ b2(x2

0 + 7) ≡ 0 (mod p). But, q = a2 + 7b2 ≤ m2 + 7m2 =
8m2 < 8p. It follows that q ∈ {p, 2p, 3p, 4p, 5p, 6p, 7p}. We need to eliminate the cases
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q ∈ {2p, 3p, 4p, 5p, 6p, 7p}. If q = 7p then 7p = a2 + 7b2 which implies that a is a
multiple of 7, or a = 7a′, which gives p = b2 + 7a′2 as wanted.

If q = 3p, then q = 3(14k′+r) = 7ℓ+s where s ∈ {3, 5, 6}. But this is impossible
because q ≡ a2 (mod 7). The same argument works if q = 6p, because r′ ∈ {1, 2, 4} if
and only if 6r′ ∈ {3, 5, 6} (mod 7). Similarly, the case p = 5p is no difference.

If q = 2p or a2 +7b2 = 2p implies that a and b cannot be both odd, since in this
case a2 + 7b2 is a multiple of 8 and 2p is not. Therefore a and b must be both even,
but that shows that 2p is a multiple of 4. Again this is not the case.

Finally, if q = 4p then the argument above works the same way but in the end
we just simplify by a 4.

3. Cases q ∈ {11, 17, 19}
Given a big prime p, the characterizations in Theorem 1.4 cannot be easily

checked. Instead, one can show a similar result that is slightly less but in the same
spirit of Theorem 1.1.

Theorem 3.1. (i) A prime p > 17 is of the form a2 +17b2 or 2p = a2 +17b2, for some
a, b ∈ N if and only if p ≡ (2j + 1)2 (mod 68) for some j = 0, ..., 7.

(ii) The representation of a prime as in part (a) is exclusive, i.e. a prime p
cannot be of the form a2 + 17b2 and at the same time 2p = x2 + 17y2, for some
x, y ∈ N.

Proof. (i)
“ ⇒ ” If the prime p can be written p = a2 + 17b2 then p ≡ a2 (mod 17) with a not
divisible by 17. We observe that a and b cannot be both odd or both even. Then p ≡ 1
(mod 4). If p = 68k+r with r ∈ {0, 1, 2, ..., 67} then r ≡ 1 (mod 4), not a multiple of 17
and a quadratic residue modulo 17, i.e. r = 17ℓ + r′ with r′ ∈ {1, 2, 4, 8, 9, 13, 15, 16}.
This gives r ∈ {1, 9, 13, 21, 25, 33, 49, 53}. One can check that these residues are cov-
ered in a one-to-one way by the odd squares j2, j ∈ {1, 3, 5, 7, 9, 11, 13, 15}.

If 2p = a2 + 17b2 then 2p ≡ a2 (mod 17) with a not divisible by 17. In this case
a and b must be both odd and then 2p = a2 + 17b2 ≡ 2 (mod 8). This implies, as
before, that p ≡ 1 (mod 4). If p = 68k + r with r ∈ {0, 1, 2, ..., 67} then r ≡ 1 (mod
4), not divisible by 17 and 2r is a quadratic residue modulo 17. Interestingly enough,
we still have r ∈ {1, 9, 13, 21, 25, 33, 49, 53}.
“ ⇐ ” We have p ≡ j2 (mod 17) and so ( p

17
) = 1. By the Theorem 2.1, we have

(17

p
)( p

17
) = (−1)8

(p−1)
2 = 1 which implies (17

p
) = 1.

Since (−1

p
) = (−1)

p−1
2 , we get that (−17

p
) = (−1)

p−1
2 . If p = 68k + j2 with

j ∈ {1, 3, 5, 7, 9, 11, 13, 15}, we see that (−17

p
) = 1. Therefore x2 ≡ −17 (mod p) has

a solution x0. As in the case q = 7, if we use the same idea of the Pi Pigeonhole
Principle we obtain that q = a2 + 17b2 < 18p for some a, b ∈ Z and q ≡ 0 (mod p).
Hence q = ℓp with ℓ ∈ {1, 2, ..., 17}. We may assume that gcd(a, b) = 1, otherwise we
can simplify the equality q = ℓp by gcd(a, b) which cannot be p. Clearly if ℓ = 1, ℓ = 2
or ℓ = 17 we are done. Since q ≡ 0, 1 or 2 (mod 4) and p ≡ 1 (mod 4) we cannot
have ℓ ∈ {3, 7, 11, 15}. If ℓ ∈ {4, 8, 12, 16}, ℓ = 4ℓ′, we can simplify the equality by a
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4 and reduce this case to ℓ′ ∈ {1, 2, 3, 4}. Each one of these situations leads to either
the conclusion of our claim or it can be excluded as before or reduced again by a 4.

(Case ℓ = 5 or ℓ = 10) Hence q = ℓp = a2 + 17b2 ≡ a2 + 2b2 ≡ 0 (mod 5). If
b is not a multiple of 5 then this implies x2 ≡ −2 (mod 5) which is not true. Hence
b must be a multiple of 5 and then so must be a. Then the equality ℓp = a2 + 17b2

implies that ℓp is a multiple of 25 which is not possible.
(Case ℓ = 6 or ℓ = 14) In this case we must have a and b odd and then q =

2(4s + 1) = ℓp which is not possible.
(Case ℓ = 13) In this case 4q = (2a)2 + 17(2b)2 = 2p(32 + 17(1)2). We will

use Euler’s argument ([6], Lemma 1.4, p. 10) here. If we calculate M = (2b)2[32 +
17(1)2] − 4q = [3(2b)− 2a][3(2b) + 2a], we see that 2(13) divides M and so it divides
either 3(2b)− 2a or 3(2b) + 2a. Without loss of generality we may assume that 2(13)
divides 3(2b)− 2a. Hence, we can write 3(2b)− 2a = 2(13)d for some d ∈ Z. Next, we
calculate

2a + 17d = 3(2b)− 2(13)d + 17d = 3(2b) − 9d,

which implies that 2a + 17d = 3e for some e ∈ Z. Also, from the above equality we
get that 2b = e + 3d. Then

2p(26) = 4q = (2a)2 + 17(2b)2 = (3e − 17d)2 + 17(e + 3d)2 = 26(e2 + 17d2) ⇒
2p = e2 + 17d2.

(Case ℓ = 9) We have 4q = (2a)2 + 17(2b)2 = 2p(12 + 17(1)2). We calculate
M = (2b)2[12 + 17(1)2] − 4q = (2b − 2a)(2b + 2a), we see that 2(9) divides M and
so it divides either 2b − 2a or 2b + 2a. We need to look into two possibilities now.
First 2(9) divides one of the factors 2b − 2a or 2b + 2a, or 2(3) divides each one of
them. In the second situation we can see that 3 divides 4a = 2b + 2a − (2b − 2a)
and so 3 must divide b too. This last possibility is excluded by the assumption that
gcd(a, b) = 1. Without loss of generality we may assume that 2(9) divides 2b − 2a.
Hence, we can write 2b−2a = 2(9)d for some d ∈ Z. We set, 2a = e−17d and observe
that 2b = 2a + 18d = e − 17d + 18d = e + d. Then

2p(18) = 4q = (2a)2 + 17(2b)2 = (e − 17d)2 + 17(e + d)2 = 18(e2 + 17d2) ⇒
2p = e2 + 17d2.

(ii) To show this claim, we may use Euler’s argument as above. �

For primes q which are multiples of four minus one, the patterns suggest that
we have to change the modulo but also there are more trickier changes. Let us look
at the cases q = 11 and q = 19. In case q = 11, we have seen that the quadratic form
a2 + 11b2 in Theorem 1.1 can be separated by a polynomial from the other possible
forms of representing primes which are quadratic residues of odd numbers modulo 22.

Theorem 3.2. (i) A prime p > 11 is of the form a2 +11b2 or 3p = a2 +11b2, for some
a, b ∈ N if and only if p ≡ (2j + 1)2 (mod 22) for some j = 0, ..., 4.

(ii) A prime p > 19 satisfies 4p = a2 + 19b2, for some a, b ∈ N if and only if
p ≡ (2j + 1)2 (mod 38) for some j = 0, ..., 8.

(iii) The representations of a prime as in part (i) are exclusive, i.e. a prime p
cannot be in both representations.
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We leave these proofs for the interested reader.

4. Proof of Theorem 1.6

Clearly the inclusions A∩B ⊂ C and C ∩A ⊂ B are covered by Proposition 1.5.
To show B ∩C ⊂ A we will first prove it for t = 2p with p a prime. Since 2p = a2 + b2

we have a2 ≡ −b2 (mod p). Because p > 2, a cannot be divisible by p and so it has
an inverse (mod p) say a−1. This shows that x0 = ba−1 is a solution of the equation
x2 ≡ −1 (mod p). Similarly since 2p = 2(x2 − xy + y2) we get that 4(x2 − xy + y2) =
(2x − y)2 + 3y2 ≡ 0 (mod p). This gives a solution y0 of the equation x2 ≡ −3 (mod
p). So, we have z0 = x0y0 satisfying z2

0 ≡ 3 (mod p). Let us now apply the Pigeonhole
Principle as before: we let m ∈ N be in such a way that m2 < p < (m + 1)2. We
consider the function g : {0, 1, 2, ..., m}×{0, 1, 2, ..., m}→ {0, 1, 2, ...., p−1} defined by
g(u, v) ≡ u+vz0 (mod p). Since (m+1)2 > p, we must have two distinct pairs (a′′, b′′)
and (a′, b′) such that g(a′′, b′′) = g(a′, b′). Then a′′−a′ ≡ (b′−b′′)z0 (mod p). Then, if
we let r = a′′−a′, and s = b′− b′′ we get that q := r2 −3s2 ≡ s2(z2

0 −3) ≡ 0 (mod p).

So, q needs to be a multiple of p. If q = 0 then r = ±s
√

3 which is not possible because
r and s are integers not both equal to zero. If q > 0 then 0 < q ≤ r2 < p, which
is again impossible. It remains that q < 0, and so 0 < −q = 3s2 − r2 ≤ 3s2 < 3p.
This leaves only two possibilities for q: either q = −p or q = −2p. Hence, we need
to exclude the case 3s2 − r2 = p. This implies 4p = 12s2 − 4r2 = (2x − y)2 + 3y2.
Then 4r2 + (2x − y)2 ≡ 0 (mod 3). Since −1 is not a quadratic residue modulo 3 we
must have r divisible by 3 which is gives p = 3 but we cannot have 6 = a2 + b2. It
remains that 2p = 3s2 − r2. Let us observe that in this case s and r cannot be both
even or of different parities since p must be of the form 4k + 1. Hence, we have the
representation p = (3s+r

2
)2 − 3( s+r

2
)2.

To prove the inclusion in general we just need to observe that for any number
t ∈ B ∩C and a prime p > 2 dividing t, then if p is of the form 4k + 3 then it divides
a and b and so p2 divides t. The same is true if p is of the form 6k− 1. Clearly all the
primes that appear in the decomposition of t to an even power they can be factored
out and reduce the problem to factors of the form 12k + 1 but for these factors we
can apply the above argument and use the identities:

(y2 − 3x2)(v2 − 3u2) = (3ux + vy)2 − 3(xv + uy)2,

2(x2 − 3y2) = 3(x + y)2 − (x + 3y)2.
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Poincaré disc of hyperbolic geometry.

Mathematics Subject Classification (2010): 30F45, 20N99, 51B10, 51M10.

Keywords: Hyperbolic geometry, hyperbolic triangle, gyrovector.

1. Introduction

Hyperbolic Geometry appeared in the first half of the 19th century as an at-
tempt to understand Euclid’s axiomatic basis of Geometry. It is also known as a type
of non-Euclidean Geometry, being in many respects similar to Euclidean Geometry.
Hyperbolic Geometry includes similar concepts as distance and angle. Both these
geometries have many results in common but many are different.

There are known many models for Hyperbolic Geometry, such as: Poincaré disc
model, Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc. The
hyperbolic geometry is a non-Euclidean geometry. Here, in this study, we present a
proof of Desargues theorem in the Poincaré disc model of hyperbolic geometry. The
well-known Desargues theorem states that if the three straight lines joining the corre-
sponding vertices of two triangles and all meet in a point, then the three intersections
of pairs of corresponding sides lie on a straight line [1]. This result has a simple state-
ment but it is of great interest. We just mention here few different proofs given by N.
A. Court [2], H. Coxeter [3], C. Durell [4], H. Eves [5], C.Ogilvy [6], W. Graustein [7].

We begin with the recall of some basic geometric notions and properties in the
Poincaré disc. Let D denote the unit disc in the complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.
The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),
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which induces the Möbius addition ⊕ in D, allowing the Möbius transformation of
the disc to be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the complex
conjugate of z0. Let Aut(D,⊕) be the automorphism group of the grupoid (D,⊕). If
we define

gyr : D × D → Aut(D,⊕), gyr[a, b] =
a ⊕ b

b ⊕ a
=

1 + ab

1 + ab
,

then is true gyro-commutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group (G,⊕) that
obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.
(2) G admits a scalar multiplication, ⊗, possessing the following properties. For

all real numbers r, r1, r2 ∈ R and all points a ∈G:
(G1) 1 ⊗ a = a

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a)

(G4) |r|⊗a

‖r⊗a‖
= a

‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one-dimensional

”vectors”
‖G‖ = {± ‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and
a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a ⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Definition 1.1. The hyperbolic distance function in D is defined by the equation

d(a, b) = |a ⊖ b| =

∣

∣

∣

∣

a − b

1 − ab

∣

∣

∣

∣

.

Here, a ⊖ b = a ⊕ (−b), for a, b ∈ D.

For further details we refer to the recent book of A. Ungar [8].

Theorem 1.2. (The Menelaus’s Theorem for Hyperbolic Gyrotriangle) Let ABC be
a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗) with vertices A, B, C ∈ Vs,
sides a,b, c ∈ Vs, and side gyrolengths a, b, c ∈ (−s, s), a = ⊖B ⊕ C, b = ⊖C ⊕ A,
c = ⊖A ⊕ B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ . If l is a gyroline not through any vertex of
a gyrotriangle ABC such that l meets BC in D, CA in E, and AB in F, then

(AF )γ

(BF )γ

· (BD)γ

(CD)γ

· (CE)γ

(AE)γ

= 1,
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where vγ = v

1− v2

s2

.

(See [9])

Theorem 1.3. (Converse of Menelaus’s Theorem for Hyperbolic Gyrotriangle) If D
lies on the gyroline BC, E on CA, and F on AB such that

(AF )γ

(BF )γ

· (BD)γ

(CD)γ

· (CE)γ

(AE)γ

= 1,

then D, E, and F are collinear.

(See [9])

2. Main results

In this section we prove the Desargues theorem in the Poincaré disc model of
hyperbolic geometry.

Theorem 2.1. The Desargues Theorem for Hyperbolic Gyrotriangle If ABC, A′B′C′

are two gyrotriangles such that the gyrolines AA′, BB′, CC′ meet in O, and BC and
B′C′ meet at L, CA and C′A′ at M , AB and A′B′ at N , then L, M, and N are
collinear.

Proof. If we use Menelaus’s theorem in the gyrotriangle OBC, cut by the gyroline
B′C′ (See Theorem 1.2, Figure 1), we get

(LC)γ

(LB)γ

· (B′B)γ

(B′O)γ

· (C′O)γ

(C′C)γ

= 1. (2.1)

Figure 1

If we use Menelaus’s theorem in the gyrotriangle OCA, cut by the gyroline C′A′,
we get

(MA)γ

(MC)γ

· (C′C)γ

(C′O)γ

· (A′O)γ

(A′A)γ

= 1. (2.2)
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If we use Menelaus’s theorem in the gyrotriangle OAB, cut by the gyroline A′B′, we
get

(NB)γ

(NA)γ

· (A′A)γ

(A′O)γ

· (B′O)γ

(B′B)γ

= 1. (2.3)

Multiplying the relations (2.1), (2.2) and (2.3), we obtain

(LC)γ

(LB)γ

· (MA)γ

(MC)γ

· (NB)γ

(NA)γ

= 1, (2.4)

and by Theorem 1.3 we get that the gyropoints L, M, and N are collinear. �

Naturally, one may wonder whether the converse of the Desargues theorem exists.
Indeed, a partially converse theorem does exist as we show in the following theorem.

Theorem 2.2. (Converse of Desargues Theorem for Hyperbolic Gyrotriangle) Let
ABC, A′B′C′ are two gyrotriangles such that the gyrolines BC and B′C′ meet at
L, CA and C′A′ at M , AB and A′B′ at N , and the gyropoints L, M, and N are
collinear. If two of the gyrolines AA′, BB′, CC′ meet, then all three are concurrent.

Proof. Let O be a point of intersection of gyrolines AA′ and BB′. Then N is the
point of intersection of gyrolines AB, A′B′, and MN. If we use Desargues theorem
for gyrotriangles LB′B and MAA′ we obtain that the points of intersection of the
gyrolines AA′ and BB′, LB and MA, MA′ and LB′ respectively, are collinear. So,
the gyropoints O, C, and C′ are collinear, the conclusion follows. �

Many of the theorems of Euclidean geometry are relatively similar form in the
Poincaré model of hyperbolic geometry, Desargues theorem is an example in this re-
spect. In the Euclidean limit of large s, s → ∞, vγ reduces to v, so Desargues theorem
for hyperbolic triangle reduces to the Desargues theorem of Euclidean geometry.
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Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
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1. Introduction

The theory of canonoid transformations is, by now, a well-known approach in
geometrical dynamics. Introduced by Saletan in his famous book [20] as a generaliza-
tion of classical notion of canonical transformation, the concept of canonoid diffeo-
morphism has its roots in the work of Sophus Lie [16] as it is pointed out by P. Havas
in the MR review of [7]: ”the most general canonoid transformation for a particular
Hamiltonian is given in Lie Theorem III.” Important contributions to this theory are
given by Cariñena and co-workers [2]-[5], Negri and co-workers [18], [21] as well as in
[9] and [15]. A careful analysis of this concept was performed recently in [11] and for
Nambu mechanics in [8].

The aim of the present paper is to point out new features of canonoid transfor-
mations, for example in order to obtain conservation laws (first integrals) of a given
dynamical system. The framework consists in a pair (M,X) with M a smooth mani-
fold of even dimension, dimM = 2n, and X ∈ X (M) a vector field on M generating
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the ODE system:
.
x

i =
dxi

dt
= Xi

(
x1, ..., x2n

)
(1.1)

where
(
xi

)
i=1,2n

are local coordinates on M and X has the local expression

X = Xi ∂

∂xi
.

We call X a locally Hamiltonian vector field if there exists a symplectic form ω ∈
Ω2 (M) such that:

LXω = 0, (1.2)
in other words, ω is a symplectic structure associated to X. Then, φ ∈ Diff (M)
is called canonoid with respect to the pair (X,ω) (conform [1, p. 155]) if the new
vector field Y = φ∗ (X) is locally Hamiltonian with the same associated symplectic
structure i.e. LY ω = 0. It follows n first integrals α0, ..., αn−1 ∈ C∞ (M) for X, or
for the system (1), given by [3]:

(φ∗ω)n−k ∧ ωk = αkω
n. (1.3)

An important remark here is that α’s can be independent or not, trivial or not.
A canonoid transformation may be locally found in the classical way [4] by

solving the system of partial differential equations which results from projecting both
sides of the equality:

LX (θ − φ∗θ) = dF (1.4)
on the canonical-Darboux base (dqa, dpa)a=1,n; here θ is a local potential of ω, i.e.
ω = dθ, and F ∈ C∞ (M) is called the generating function of the diffeomorphism φ.

Let us recall that in [5] a coordinate-free description of canonoid transformations
is included, but we prefer here local computations in order to handle concrete exam-
ples. More precisely, in the following section we set a pair (M,X) and build, using
the Helmholtz method of integrating factor in solving the inverse problem, a local
symplectic form associated to X. In the next section, using the obtained geometrical
framework, we study the existence of a canonoid transformation and corresponding
first integrals. In the last section, the theory is applied to a four dimensional differen-
tial system, considered by Whittacker, and to a two dimensional system, namely the
damped harmonic oscillator.

Another important remark here is that for n = 1 the unique (non-null) coefficient
of the associated symplectic structure, which appears as integrating factor in the
Helmholtz conditions, is solution of the celebrated Liouville equation [17], [10]. This
equation is a main tool in statistical mechanics where a solution is called probability
density function [22], while in mathematics is called last multiplier [12], [19]. A feature
of this equation is that it does not always admits solutions [13].

2. The inverse problem

Let M be a real, smooth and orientable, 2n-dimensional manifold, C∞ (M) the
real algebra of smooth real functions on M , X (M) the Lie algebra of vector fields
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and Ωk (M) the C∞ (M)-module of k-differential forms, 0 ≤ k ≤ n. Fix X ∈ X (M)
which we suppose that it is not locally Hamiltonian with respect to the 2-form

ω0 =
n∑

a=1

dxa ∧ dxn+a.

In order to build a symplectic structure associated to X we follows the approach
of Helmholtz based on the notion of integrating factor namely a set cij = cij (t, x) ∈
C∞ (R×M) such that the equivalent to (1.1) system cij

(
.
x

j −Xj
)

= 0 is self-adjoint.
The self-adjoint conditions are given by:

cij + cji = 0
∂cij

∂xh + ∂cjh

∂xi + ∂chi

∂xj = 0
∂cij

∂t = ∂Di

∂xj − ∂Dj

∂xi , Di = −cijXj .

(2.1)

A global formulation of the Helmholtz conditions can be derived in terms of differential
forms; namely if we consider the time-dependent 2-forms:{

ω = 1
2cijdx

i ∧ dxj

Ω = ω + iXω ∧ dt = 1
2cijdx

i ∧ dxj +Didx
i ∧ dt

(2.2)

then the Helmholtz conditions reduce to the closedeness of Ω: dΩ = 0.
The following result is straightforward: The vector fieldX admits a locally Hamil-

tonian description if and only if the system (2.1) admits an autonomous, i.e. time-
independent, and non-degenerate, i.e. det (cij) 6= 0, solution. In this case, the associ-
ated symplectic form is ω given by (2.2).

Actually, the determination of the form ω comes from the integration of the
system formed by the first two equations of (2.1) and by the equation:

Xh ∂cij
∂xh

+ cih
∂Xh

∂xj
+ chj

∂Xh

∂xi
= 0 (2.3)

which may be obtained from self-adjointness conditions (2.1).

3. Canonoid transformations and associated first integrals

Suppose that we found a symplectic 2-form ω such that X is locally Hamiltonian
with respect to ω. If θ = Ajdx

j ∈ Ω1 (M) is a local potential of ω, i.e. dθ = ω, and
F ∈ C∞ (M) is a given function then the canonoid transformation φ having F as
generating function is determined by the relation:

LXφ
∗θ = dF. (3.1)

Searching φ with local expression xi = ϕi
(
x1, ..., x2n

)
the previous equation

becomes:

cij
∂ϕi

∂xh

∂ϕj

∂xr
Xh +

∂

∂xr

(
AjX

s ∂ϕ
j

∂xs

)
=
∂F

∂xr
, (3.2)
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with cij (x) = cij (φ (x)) and Aj (x) = Aj (φ (x)). Considering the vector field Y =
φ∗ (X), the equation (3.2) may be rewritten as:

cij
∂ϕj

∂xr
Y

r
+

∂

∂xr

(
AjX

j
)

=
∂F

∂xr
(3.3)

if Y has the expression Y = Y i ∂
∂xi and Y

i
(x) = Y i (φ (x)).

Now, let us consider the Hamiltonian function H [6] defined by iXω = dH and
the Poisson structure [6] defined by the symplectic form ω. The associated Poisson
bracket is expressed as {f, g} = cjk ∂f

∂xj
∂f
∂xk and the local components of the vector

field X = XH are Xk = ckj ∂H
∂xj where

(
cjk

)
is the inverse matrix of the matrix (cjk).

Taking into account that Y
i
= {ϕi,H} the last equation reads:

cij
∂ϕj

∂xr
{ϕi,H}+

∂

∂xr

(
Aj

{
ϕj ,H

})
=
∂F

∂xr
. (3.4)

A straightforward computation give us the first integral:

αn−1 = cij
{
ϕi, ϕj

}
. (3.5)

There is also another way to find a canonoid transformation. If X is locally
Hamiltonian with respect to ω, a vector field Y = Y i ∂

∂xi is locally Hamiltonian with
respect to the same 2-form ω if and only if

(
Y 1, ..., Y 2n

)
is a solution of the system

(2.3). If we find such a solution we have to look for a transformation ψ such that
ψ∗Y = X. This equality becomes:

∂ψi

∂xj
Y j = Xi (ψ (x)) (3.6)

where xi = ψi
(
x1, ..., x2n

)
is the local expression of the diffeomorphism ψ. Obviously,

if ψ is canonoid with respect to Y then φ = ψ−1 is canonoid with respect to X.
In the particular case n = 2 let α0, α1 be determined from the pair (X,φ) and

β0, β1 similarly found and related to the pair (Y, ψ). A direct computation shows that:

α0 =
1

φ∗β0
, α1 =

φ∗β1

φ∗β0
. (3.7)

Another particular case is n = 1. The equation (2.3) is reduced to:

X (ξ) + ξdivX = 0 (3.8)

where ξ is the integrating factor and divX is the divergence of the vector field X
which is locally Hamiltonian with respect to ω = ξdx1 ∧ dx2. But (3.8) is exactly
the Liouville equation discussed at the end of Introduction. The unique first integral
associated to the pair (X,φ) in this case is α0 = ξ

{
ϕ1, ϕ2

}
with ξ (x) = ξ (φ (x)).

4. Examples

Let us consider the system of second-order ODE of Whittaker, [23]:{
..
q
1 − q1 = 0

..
q
2 − .

q
1 = 0

(4.1)
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which does not admit a classical Lagrangian formulation [14]. If we use the notation
q1 = x1, q2 = x2,

.
q
1 = x3,

.
q
2 = x4, we get the first-order equivalent system:

.
x

1 = x3

.
x

2 = x4

.
x

3 = x1

.
x

4 = x3

(4.2)

An admissible symplectic structure for the vector field

X = x3 ∂

∂x1
+ x4 ∂

∂x2
+ x1 ∂

∂x3
+ x3 ∂

∂x4

is:
ω = dx1 ∧ dx2 + dx1 ∧ dx3 + dx2 ∧ dx4 − dx3 ∧ dx4. (4.3)

The Hamiltonian function H and the potential θ are respectively given by: H =
(
x3

)2 + 1
2

[(
x4

)2 −
(
x1

)2
]
− x1x4

θ = −
(
x2 + x3

)
dx1 +

(
x2 − x3

)
dx4.

(4.4)

Another vector field which is locally Hamiltonian with respect to the same symplectic
form is, for example, Y = ∂

∂x1 . The canonoid transformation φ with Y = φ∗(X) and
its generating function F are given respectively by:

ϕ1 = ln
(
x1 + x3

)
ϕ2 = sin

[(
x3

)2 −
(
x1

)2
]

ϕ3 = x4 − x1

ϕ4 = cos
[
x2 − x3 +

(
x1 − x4

)
ln

(
x1 + x3

)]
(4.5)

and:
F = sin

[(
x3

)2 −
(
x1

)2
]
− x1 − x2 − x3 + x4. (4.6)

The first integral (3.5) is:

α1 = cos
[(
x3

)2 −
(
x1

)2
]

+ sin
[
x2 − x3 +

(
x1 − x4

)
ln

(
x1 + x3

)]
×

×
[(
x1 − x4

)
cos

((
x3

)2 −
(
x1

)2
)
− 1

]
. (4.7)

Now, let us consider the equation of the damped harmonic oscillator:
..
x+ c

.
x+ kx = 0 (4.8)

for which we assume that c > 0, k > 0 and c2 − 4k > 0. The vector field

X = x2 ∂

∂x1
−

(
kx1 + cx2

) ∂

∂x2

where we have used the notations x = x1 and
.
x = x2 has the integrating factor:

ξ =
(
a1x

1 + x2
)− c

a2 (4.9)
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where:

a1 =
c+

√
c2 − 4k
2

, a2 =
c−

√
c2 − 4k
2

. (4.10)

The Hamiltonian function has the form:

H =

(
a1x

1 + x2
)a1σ

σ (a1σ + 1)
(
σx2 − x1

)
, σ = − 1

a2
. (4.11)

A canonoid transformation for the vector field X is :{
ϕ1 = σ

a1
ln

(
a1x

1 + x2
)

ϕ2 = −σ ln
(
a1x

1 + x2
)

+
(
a1x

1 + x2
)A (

a2x
1 + x2

)B
(4.12)

with:

A =
2a1√
c2 − 4k

,B =
−2a2√
c2 − 4k

. (4.13)

The vector fields X and Y = φ∗X = 1
a1

∂
∂x1 − ∂

∂x2 are locally Hamiltonian with respect
to the same symplectic form ω = ξdx1 ∧ dx2. Finally, the first integral is α0 = Hβ

with β = c√
c2−4k

.

5. Conclusions

0) The canonoid transformations provides useful information about the geometrical
(symplectic structures and therefore volume forms) and dynamical (first integrals and
bi-Hamiltonian description) objects which can be naturally associated to a given dy-
namical system.
1) The theory of these transformations has deep connections with other fundamental
theoretical and applied constructions namely the theory of inverse problem and the
Liouville equation.
2) The important structures generated by a canonoid transformation can be essen-
tial steps toward two remarkable approaches: the complete integrability of Liouville-
Arnold type and the numerical integrators.
3) From the previous remarks it seems that this type of transformations to be more
adapted than the canonical maps to some ”in present” complicated or strange dy-
namical systems.
4) Due to the connection with the Liouville equation we can call the Helmholtz con-
ditions of self-adjointness as generalized Liouville equations or Liouville equations of
higher even dimension and maybe this fact opens a new way to connect the classical
(Newtonian) mechanics to statistical physics.

Acknowledgements. The authors would like to thank to the anonymous referee for
useful remarks and helpful comments concerning this paper.
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[2] Cariñena, J. F., Marmo, G., Rañada, M. F., Non-symplectic symmetries and bi-
Hamiltonian structures of the rational harmonic oscillator, J. Phys. A, 35(2002), no.
47, L679-L686.
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Abstract. In this paper we study the isometry groups IsodF,p(Rn), where dF,p is
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IsodF,p(Rn) and we discuss the particular situation when X = Rn and d = d2 is
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1. Introduction

Let (X, d) be a metric space. The map f : X → X is called an isometry with re-
spect to the metric d (or a d-isometry), if it is surjective and it preserves the distances.
That is for any points x, y ∈ X the relation d(f(x), f(y)) = d(x, y) holds. From this
relation it follows that f is injective, hence it is bijective. Denote by Isod(X) the set of
all isometries of the metric space (X, d). It is clear that (Isod(X), ◦) is a subgroup of
(S(X), ◦), where S(X) denotes the group of all bijective transformations f : X → X.
We will call (Isod(X), ◦) the group of isometries of the metric space (X, d). A gen-
eral, important and complicated problem is to described the group (Isod(X), ◦). This
problem was formulated in the paper [2] for metric spaces with a metric that is not
given by a norm defined by an inner product.

Some results in direction to solve this problem for some particular metrics are the
following. D.J. Schattschneider [17] found an elementary proof for the property that
group Isod1(R2) is the semi-direct product of D4 and T (2), where d1 is the ”taxicab
metric” defined by (1.2) (for p = 1 and n = 2) and D4 and T (2) are the symmetry
group of the square and the translations group of R2, respectively. A similar result
holds for the group Isod1(R3), i.e. this group is isomorphic to the semi-direct product
of groups Dh and T (3), where Dh is the symmetry group of the Euclidean octahedron
and T (3) is the translations group of R3. This was recently proved by O. Gelisgen,
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R. Kaya [7]. In fact the ”taxicab metric” generates many interesting non-Euclidean
geometric properties (see the book of E.F. Krause [10] or the thesis of G. Chen [4]).
Another result concerning the isometry group of the plane R2 with respect to the
”Chinese checker metric” dC , where

dC(x, y) = max{|x1 − x2|, |y1 − y2|}+ (
√

2− 1)min{|x1 − x2|, |y1 − y2|}, (1.1)

was recently obtained by R. Kaya, O. Gelisgen, S. Ekmekci, A. Bayar [9].They have
showed that this group is isomorphic to the semi-direct product the Dihedral group
D8, the Euclidean symmetry group of the regular octagon and T (2).

In the paper [1] we have considered X = Rn, and for any real number p ≥ 1 the
metric dp defined by

dp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

, (1.2)

where x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn. If p = ∞, then the metric d∞ is defined
by

d∞(x, y) = max{|x1 − y1|, ..., |xn − yn|}. (1.3)
In the case p = 2, we get the well-known Euclidean metric on Rn. In this case we
have the Ulam’s Theorem which states that Isod2(Rn) is isomorphic to the semi-direct
product of orthogonal group O(n) and T (n), where T (n) is the group of translations
of Rn (see for instance the references [5], [16]). The situation p 6= 2 is very interesting.
The main result of [1] consists in a complete description of the groups Isodp(Rn) for p ≥
1, p 6= 2, and p = ∞. We have proved that in case p 6= 2 all these groups are isomorphic
and consequently, they are not depending on number p. The main ingredient in the
proof of the above result is the Mazur-Ulam Theorem about the isometries between
normed linear spaces (see the original reference [12], the monograph [6], the references
[14], [15] for some extensions, and [18], [19] for new proofs).

In this paper we study some properties of the isometry group of the so called
French railroad metric.

2. The main results

Let (X, d) be a metric space and let f : X → X be a map. The minimal
displacement of f , denoted by λ(f), is the greatest lower bound of the displacement
function of f , that is

λ(f) = inf
x∈X

d(x, f(x)).

The minimal set of f , denoted by Min(f), is the subset of X defined as

Min(f) = {x ∈ X : d(x, f(x)) = λ(f)}.
According to the monograph of A. Papadopoulos [13], we have the following

general classification of the isometries of a metric space X in terms of the invariants
λ(f) and Min(f). Consider f : X → X to be an isometry. Then f is said to be

1. Parabolic if Min(f) = Φ.
2. Elliptic if Min(f) 6= Φ and λ(f) = 0. Thus, f is elliptic if and only if Fix(f) 6= Φ.
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3. Hyperbolic if Min(f) 6= Φ and λ(f) > 0.

France is a centralized country: every train that goes from one French city to
another has to pass through Paris. This is slightly exaggerated, but not too much.
This motivates the name French railroad metric for the following construction. Let
(X, d) be a metric space, and fix p ∈ X. Define a new metric dF,p on X by letting

dF,p(x, y) =
{

0, if and only if x = y
d(x, p) + d(p, y), if x 6= y

(2.1)

The French railroad metric generates a very poor geometry. In fact, the geometric
properties are concentrated at the point p. For instance, consider X to be the plane
R2, p = O, the origin, and d is the standard Euclidean metric d2. Then for two distinct
points A and B the perpendicular bisector of the segment [AB] exists if and only if
AO = BO. Similarly, the Menger segment [AB] (see the monograph of W. Benz [3,
p.43]) has a midpoint, if and only if AO = BO. In the case AO 6= BO, the segment
[AB] consists only in the points A and B.

The main purpose of this paper is to derive some general properties of the group
IsodF,p

(X). We will give an equivalent property for IsodF,0(Rn), the isometry group
of the space Rn with the fixed point the origin p = 0, and the Euclidean metric d2,
and we will discuss the complexity of an effective description in the cases n = 1 and
n = 2.

Let Iso(p)
d (X) be the subgroup of Isod(X) consisting in all isometries fixing the

point p, i.e.
Iso(p)

d (X) = {h ∈ Isod(X) : h(p) = p}.

Theorem 2.1. The following relation Iso(p)
d (X) ⊆ IsodF,p

(X) holds, that is Iso(p)
d (X)

is a subgroup of IsodF,p
(X).

Proof. Let f ∈ Iso(p)
d (X). For every x, y ∈ X, x 6= y, we have

dF,p(f(x), f(y)) = d(f(x), p) + d(p, f(y)) = d(f(x), f(p)) + d(f(p), f(y))

= d(x, p) + d(p, y) = dF,p(x, y),

hence, f belongs to IsodF,p
(X). �

For x 6= y, the relation dF,p(f(x), f(y)) = dF,p(x, y) is equivalent to

d(f(x), p) + d(p, f(y)) = d(x, p) + d(p, y). (2.2)

Theorem 2.2. For every isometry f ∈ IsoF,p(X), the point p is fixed, that is f(p) = p.
Proof. Let start to investigate the topology generated by metric dF,p. Consider the
ball of radius r and centered in the point C, that is the set

BF,p(C; r) = {x ∈ X : dF,p(C, x) ≤ r}.

The inequality dF,p(C, x) ≤ r is equivalent to d(C, p) + d(p, x) ≤ r. If C 6= p, then
we obtain d(p, x) ≤ r − d(C, p). This means that BF,p(C; r) = Bd(p; r − d(C, p) if
d(C, p) < r and BF,p(C; r) = {C} if d(C, p) ≥ r. Therefore, the neighborhoods basis
at the point p generated by dF,p coincides with the the neighborhoods basis at the
point p generated by the metric d.
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For every x, y ∈ X, x 6= y, we have dF,p(x, y) = d(x, p) + d(p, y) ≥ d(x, y), hence

dF,p(x, y) ≥ d(x, y). (2.3)

Because f is a dF,p-isometry, from (2.3) it follows

d(f(x), f(y)) ≤ dF,p(f(x), f(y)) = dF,p(x, y).

Take y = p in relation (2.2) and obtain

d(f(x), p) + d(p, f(p)) = d(x, p). (2.4)

Clearly, f is continuous in the topology generated by the metric dF,p. According to the
result from the beginning of the proof, we have x → p in the topology of dF,p if and
only if x → p in the topology of d. That is dF,p(x, p) → 0 if and only if d(x, p) → 0,
hence the relation (2.4) implies d(f(p), p) = 0, hence f(p) = p. �

From the result in Theorem 2.2, it follows :
Corollary 2.3. For every metric space (X, d) and for every point p ∈ X, the metric
space (X, dF,p) is of elliptic type, that is every its isometry is elliptic.

3. Comments on the case X = Rn and d = d2

Let consider X = Rn with the Euclidean metric d = d2, and the point p to
be the origin of Rn. If f is an isometry with respect to the induced French railroad
metric, then f satisfies relation (2.4) hence, for every x, y ∈ Rn, we have

||f(x)||+ ||f(y)|| = ||x||+ ||y||. (3.1)

According to Theorem 2.2, the origin of Rn is a fixed point of f , i.e. we have f(0) = 0.
Therefore, the relation (3.1) is equivalent to

||f(x)|| = ||x||, x ∈ Rn. (3.2)

Therefore, f ∈ IsodF,0(Rn) if and only if it is bijective and it satisfies the functional
equation (3.2). The equation (3.2) ensures the continuity of f only at the point 0.
For the sake of simplicity, let us denote by Gn the isometry group IsodF,0(Rn). If f
is linear, then the equation (3.2) means that it is an orthogonal transformation of
Rn. It follows that the real orthogonal group O(n, R) is a subgroup of Gn. The group
{−1Rn , 1Rn} is a normal subgroup of Gn.

Also, if we impose some smoothness conditions we obtain interesting situations.
Denote by Gk

n, k = 0, 1, · · · ,∞, the subgroup of Gn consisting in all dF,0-isometries
of class Ck. Clearly, we get

G∞n ⊂ · · · ⊂ Gk
n ⊂ . . . ⊂ G1

n ⊂ G0
n ⊂ Gn.

On the other hand, if f ∈ Gk
n, then the restriction f |Sn−1 is an element of the group

Diffk(Sn−1) of the Ck- diffeomorphisms of the unity (n−1)-dimensional sphere of the
space Rn. As we expect, a bijective extension of a Ck- diffeomorphism h : Sn−1 →
Sn−1 to the space Rn, preserving the property to satisfy (3.2), is not unique. This
means that it is very possible that the group Gk

n is larger than Diffk(Sn−1).
In the case n = 1, the group G1 is defined by all bijective maps f : R → R,

continuous at 0, and satisfying the functional equation |f(x)| = |x|, x ∈ R. The
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relation |f(x)| = |x| is equivalent to f2(x) − x2 = 0, i.e. (f(x) − x)(f(x) + x) = 0.
Therefore, the general possible form of the maps in G1 is

fA(x) =

{
x if x ∈ R \A

−x if x ∈ A

where A is an arbitrary subset of R. For all real number a 6= 0, the map

fa(x) =


x if x 6= −a, a

−a if x = a

a if x = −a

belongs to G1. Moreover, we have fa ◦ fa = 1R hence {1R, fa} is a subgroup of
G1. This means that the group G1 has infinitely many subgroups isomorphic to Z2.
Another subgroup isomorphic to Z2 is G∞1 = {−1R, 1R}, and it contains all smooth
diffeomorphisms of the real line satisfying the functional equation |f(x)| = |x|, x ∈
R. It is a normal subgroup of G1. Clearly, 1R preserves the orientation of the 0-
dimensional sphere S0 = {−1, 1}, and −1R reverses the orientation of S0 = {−1, 1}.

In the case n = 2, we can identify R2 with the complex plane C, and then the
group G2 is defined by all bijective maps f : C → C, continuous at 0, and satisfying
the functional equation |f(z)| = |z|, z ∈ C. The orthogonal group O(2, R) is the
symmetry group of the circle S1 = {z ∈ C : |z| = 1}. It is isomorphic (as a real Lie
group) to the circle group (S1, ·), also known as U(1). In this case, the circle group
(S1, ·) is a subgroup of G2. Consequently, all subgroups of (S1, ·) are subgroups of G2.
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Abstract. In this paper we establish the barycentric and trilinear equations of the
altitudes and perpendicular bisectors of a hyperbolic triangle and we compute
the barycentric and trilinear coordinates of the orthocenter and circumcenter.
We, also, indicate necessary and sufficient conditions for these two points to be
ordinary points.
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1. Introduction

The purpose of this paper is to give some methods to compute the barycentric
and trilinear coordinates for some important points in the hyperbolic triangle. For
this, we will use the Cayley-Klein model, also called the projective model.

In the following, we shall consider the hyperbolic triangle ABC in which the
trilinear coordinates are defined in a natural way, as the hyperbolic distances from
an arbitrary point M in the plane of the triangle to the sides of the triangle. The
barycentric coordinates are obtained from trilinear coordinates, multiplying the values
by the hyperbolic sines of the hyperbolic lengths of the sides of the triangle.

The definition of these coordinates can be given, also, by specifying a particular
choice of the polarity that defines the Absolute. This is reflected in the definition
of the polarity matrices [cµν ] and [Cµν ]. We remind these matrices for both of the
coordinates systems:

For the trilinear coordinates system:

[cµν ] =
1
Γ

 sin2 a sinA sinB cosh c sinA sinC cosh b
sinA sinB cosh c sin2 B sinB sinC coshA
sinA sinC cosh b sinB sinC cos a sin2 C
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and

[Cµν ] =

 −1 cos C cos B
cos C −1 cos A
cos B cos A −1


For barycentric coordinates system:

[cµν ] =

 1 cosh c cosh b
cosh c 1 cosh a
cosh b cosh a 1


and

[Cµν ] =
1
Γ

 − sinh2 a sinh a sinh b cos C sinh a sinh c cos B

sinh a sinh b cos C − sinh2 b sinh b sinh c cos A

sinh a sinh c cos B sinh b sinh c cos A − sinh2 c

 .

We can pass from point coordinates to line coordinates (and the other way around)
by using the relations: {

xµ = cµν · ξν

ξµ = Cµνxµ.

where xµ are the point coordinates and ξν are the line coordinates.
See [1, 2] for details.

Remark 1.1. A different approach to barycentric coordinates, using the Poincaré disk
model, was taken by A. Ungar (see [4]).

2. Barycentric and trilinear equation of the altitudes.
Coordinates of the Orthocenter

In the following we will present the coordinates in barycentric coordinates. Hav-
ing the result in barycentric coordinates system, the reader can easily obtain at any
time the coordinates in trilinear coordinate system by dividing each component with
the hyperbolic sinus of corresponding side length of the triangle.

Having ABC a hyperbolic triangle, we denote by A′ the orthogonal projection
of the vertex A on the side BC, B′ the orthogonal projection of the vertex B on the
side AC and C ′ the orthogonal projection of the vertex C on the side AB.

For start, we want to obtain the equation of the line AA′. We know that in
barycentic coordinates, A is defined by (1, 0, 0).

A general equation of a line, both in barycentric and trilinear coordinates, is of
the form:

α0X0 + α1X1 + α2X2 = 0. (2.1)
Because AA′ passes through A, this means that AA′ is of the form: α1x1 + α2x2 = 0,
or, to put it another way, the line coordinates of AA′, denoted by ξ are:

ξ = [0, α1, α2]. (2.2)

We also know that the side BC, denoted by η has the line coordinates

η = [1, 0, 0] (2.3)
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As AA′ ⊥ BC, we have the relation

[ξ, η] = 0. (2.4)

By definition,

[ξ, η] = C00 · ξ0ν0 + C01 · ξ0ν1 + C02 · ξ0ν2+
C10 · ξ1ν0 + C11 · ξ1ν1 + C12 · ξ1ν2+
C20 · ξ2ν0 + C21 · ξ2ν1 + C22 · ξ2ν2.

From 2.2 and 2.3 we have:
[ξ, η] = C00 · 0 · 1 + C01 · 0 · 1 + C02 · 0 · 0+

C10 · α1 · 1 + C11 · α1 · 0 + C12 · α1 · 1+
C20 · α2 · 1 + C21 · α2 · 0 + C22 · α2 · 0 =
= C10 · α1 + C20 · α2.

If we use the matrix [Cµν ] for barycentric coordinate, we obtain:

[ξ, η] = sinh a · sinh b · cos C · α1 + sinh a · sinh c · cos B · α2.

By using the condition (2.4), we have:

sinh a · sinh b · cos C · α1 + sinh a · sinh c · cos B · α2 = 0

thus, the relation between α1 and α2 is:

α2 = −α1
sinh b · cos C

sinh c · cos B
.

In conclusion we have the following coordinates for ξ

ξ =
[
0, 1,− sinh b · cos C

sinh c · cos B

]
(2.5)

or, more simplified:
ξ = [0, sinh c · cos B,− sinh b · cos C].

Thus the equation of the altitude AA′ is:

AA′ : X1 sinh c cos B −X2 sinh b · cos C = 0.

By performing the same computation for the other two altitudes, we obtain the
following

Theorem 2.1. The equations of the altitudes of the hyperbolic triangle ABC, written
in the barycentric coordinates determined by the triangle, are:

AA′ : X1 sinh c cos B −X2 sinh b · cos C = 0,

BB′ : X0 sinh c · cos A−X2 sinh a · cos C = 0,

CC ′ : X0 sinh b · cos A−X1 sinh a · cos B = 0.

(2.6)

By solving the system (2.6), we obtain:
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Consequence 2.2. The barycentric coordinates of the orthocenter of the hyperbolic
triangle ABC are given by:

H

(
1

sinh b sinh c cos A
,

1
sinh c sinh a cos B

,
1

sinh a sinh b cos C

)
. (2.7)

The orthocenter is a real point (i.e. the altitudes do intersect), iff we have (H,H) > 0,
i.e. iff(

sinh2 a cos2 B + 2 sinh a sinh b cosh c cos A cos B + sinh2 b cos2 A
)
cos2 C+

+
(
2 sinh a cosh b sinh c cos A cos2 B + 2 cosh a sinh b sinh c cos2 A cos B

)
cos C+

+ sinh2 c cos2 A cos2 B > 0
(2.8)

If we want to use trilinear coordinates, instead, we simple apply a coordinate
change to the equations from the Theorem 2.1 and the Consequence 2.2 and we get:

Theorem 2.3. The equations of the altitudes of the hyperbolic triangle ABC, written
in the trilinear coordinates determined by the triangle, are:

AA′ : x1 cos B − x2 cos C = 0,

BB′ : x0 cos A− x2 cos C = 0,

CC ′ : x0 cos A− x1 cos B = 0

(2.9)

Corollary 2.4. The trilinear coordinates of the orthocenter of the hyperbolic triangle
ABC are given by:

H

(
1

cos A
,

1
cos B

,
1

cos C

)
. (2.10)

The orthocenter is an ordinary point iff (H,H) > 0, i.e. iff

cos2 A cos2 B sin2 C+

+
(
2 cosh a cos2 A cos B sinB + 2 cosh b cos A sinA cos2 B

)
cos C sinC+(

cos2 A sin2 B + 2 cosh c cos A sinA cos B sinB + sin2 A cos2 B
)
cos2 C > 0.

(2.11)

It can be proved that the equations (2.8) and (2.11) are equivalent.

3. Barycentric and trilinear equation of the perpendicular bisectors.
Coordinates of the Circumcenter

In order to obtain the line coordinates of the perpendicular bisectors, we use the
already known coordinates of the midpoints of the sides of the triangle (see [1]).
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If we consider A′′ to be the midpoint of BC, B′′ – the midpoint of AC and C ′′

– the midpoint of AB, we have their coordinates in trilinear coordinates:

A′′
(
0, sinh

a

2
sinC, sinh

a

2
sinB

)
;

B′′
(

sinh
a

2
sinC, 0, sinh

b

2
sinA

)
;

C ′′
(
sinh

c

2
sinB, sinh

c

2
sinA, 0

)
;

or
A′′ (0, sinC, sinB) ;

B′′ (sinC, 0, sinA) ;

C ′′ (sinB, sinA, 0) .

(3.1)

From these, we can easily obtain the barycentric coordinates (see [1]).
We denote by ξ the line perpendicular to BC at the point A′′. Then the general

equation of ξ (in trilinear coordinates) is:

ξ : α0x0 + α1x1 + α2x2.

We also know that the equation of BC is η : x0 = 0. So we have:

ξ = [α0, α1.α2],

η = [1, 0, 0].

Because we know that A′′ is on ξ we have:

α1 sinh
a

2
sinC + α2 sinh

a

2
sinB = 0

α2 = −α1 ·
sinC

sinB
If we replace in the quation of ξ we get:

ξ : α0 sinBx0 + α1 sinBx1 − α1 sinCx2 = 0;

We know that ξ ⊥ η, which implies that [ξ, η] = 0.
Using the relation (2.4), we obtain:

[ξ, η] = C00ξ0η0 + C10ξ1η1 + C20ξ2η0

= C00α0 sinB + C10α1 sinB − C20α1 sinC

= −α0 sinB + cos C sinBα1 − cos B sinCα1

= 0

Thus

α0 = α1
sinC cos C − cos B sinC

sinB
= α1

sin (B − C)
sinB

If we replace in the general equation for AA′′, we have the form for the perpen-
dicular bisector AA′′:

ξAA′′ = [sinB cos C − cos B sinC, sinB,− sinC]. (3.2)

After similar computations, we obtain the theorem:
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Theorem 3.1. The trilinear line coordinates of the perpendicular bisectors of the sides
of the hyperbolic triangle ABC are

ξAA′′ = [sin B cos C − cos B sinC, sinB,− sinC],

ξBB′′ = [sin A, sinC cos A− cos C sinA,− sinC],

ξCC′′ = [sin A,− sinB, cos B sinA− cos A sinB].
(3.3)

or
ξAA′′ = [sin(B − C), sinB,− sinC],

ξBB′′ = [sin A, sin(C −A),− sinC],

ξCC′′ = [sin A,− sinB, sin(A−B)].
(3.4)

After solving the system of equations of the perpendicular bisectors, we get

Corollary 3.2. The trilinear coordinates of the circumcenter of the hyperbolic triangle
ABC are

O (sinB − sin(C −A), sin(C −B) + sinA,

sin(C −A) sin(C −B) + sinA sinB) .
(3.5)

O is an ordinary point iff (O,O) > 0, i.e. iff(
sin2 C sin2 (C −A) + 2 cosh a sinB sinC sin (C −A) + sin2 B

)
·

· sin2 (C −B) +
(
−2 cosh b sinA sinC sin2 (C −A) +(

2 sinA sinB sin2 C + (2 cosh b + cosh a) sinA sinB sinC−
−2 cosh c sinA sinB) sin (C −A) + 2 cosh a sinA sin2 B sinC+

+(2 cosh c + 2) sinA sin2 B
)
sin (C −B) + sin2 A sin2 (C −A) +

+
(
(−2 cosh c− 2) sin2 A sinB − 2 cosh b sin2 A sinB sinC

)
sin (C −A) +

+ sin2 A sin2 B sin2 C + (2 cosh b + 2 cosh a) sin2 A sin2 B sinC+

+ (2 cosh c + 2) sin2 A sin2 B > 0.

(3.6)

If we pass to the barycentric coordinates, we get immediately, from the Theo-
rem (3.1):

Theorem 3.3. The barycentric line coordinates of the perpendicular bisectors of the
sides of the hyperbolic triangle ABC are

ξAA′′ = [sinh b sinh c sin(B − C), sinh a sinh c sinB,− sinh a sinh b sinC],

ξBB′′ = [sinh b sinh c sinA, sinh a sinh c sin(C −A),− sinh a sinh b sinC],

ξCC′′ = [sinh b sinh c sinA,− sinh a sinh c sinB, sinh a sinh b sin(A−B)].
(3.7)

Also, the consequence (3.2) gives rise to the consequence

Consequence 3.4. The barycentric coordinates of the circumcenter of the hyperbolic
triangle ABC are

O (sinh a(sinB − sin(C −A)), sinh b(sin(C −B) + sin A),

sinh c(sin(C −A) sin(C −B) + sin A sinB)) .
(3.8)
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The point O is ordinary iff (O, O) > 0, i.e. iff(
sinh2 c sin2 (C −A) + 2 cosh a sinh b sinh c sin (C −A) + sinh2 b

)
·

· sin2 (C −B) +
(
−2 sinh a cosh b sinh c sin2 (C −A)+

+
((

2 sinh2 c sinA + 2 sinh a cosh b sinh c
)
sinB+

+2 cosh a sinh b sinh c sinA− 2 sinh a sinh b cosh c) sin (C −A) +

+ (2 cosh a sinh b sinh c sinA + 2 sinh a sinh b cosh c) sinB+

+2 sinh2 b sinA
)
sin (C −B) + sinh2 a sin2 (C −A) +

+
((
−2 sinh a cosh b sinh c sinA− 2 sinh2 a

)
sinB−

−2 sinh a sinh b cosh c sinA) sin (C −A) +
(
sinh2 c sin2 A+

+2 sinh a cosh b sinh c sinA + sinh2 a
)
sin2 B+

+
(
2 cosh a sinh b sinh c sin2 A + 2 sinh a sinh b cosh c sinA

)
sinB+

+ sinh2 b sin2 A > 0.

(3.9)
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1. Introduction

The idea of associating compact complex manifolds to number fields is present
since the very beginnings of complex geometry. If one was to write a history of this
ideas, he would probably start from elliptic curves, which subtle links to number
theory were felt by L. Kronecker and K. Weierstrass, would then include H. Weyl,
whose research on complex tori have roots in the study of number fields units, and
would then arrive to A. Weil who extended this line of research to Kähler manifolds.

The goal of the present paper is to give an account on the recent progress in a
highly interesting class of compact complex manifolds associated to certain number
fields introduced by K. Oeljeklaus & M. Toma in 2005. Despite being a relatively new
topic, this kind of manifolds already provided a number of surprising results in the
non-Kähler geometry, as we shall see below.

2. Basic facts from algebraic number theory

We recall (cf. e.g. [7]) that an (abstract) number field is a finite extension K of
Q; it follows that K is isomorphic (as Q−algebras) to Q[X]/(f) where f ∈ Z[X] is a
(monic) irreducibile polynomial. An abstract number field K can be embedded into C

Partially supported by CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0118.
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by mapping X(modf) ∈ K to α, where α is a root of f. It follows that K has exactly
n embeddings into C, where n = deg(f). Usually, one divides the roots of f into two
subsets: the real ones, and call the corresponding embeddings real embeddings of K,
and the complex, non-real ones, that come in pairs of conjugate numbers (and call
the resulting embeddings accordingly, complex embeddings). We shall denote by s the
number of real embeddings and by 2t the number of complex ones; hence n = s+ 2t.

An algebraic integer of K is an element a ∈ K satisfying a monic equation with
integer coefficients. The set of all algebraic integers of K forms a ring, usually denoted
by OK . For instance, if p > 2 is some prime number and K = Q(ζp) (where ζp is a
primitive root of unity of order p) then OK = Z[ζp]. But in the general case, such nice
descriptions of the ring of integers are no longer available. Eventually, let us recall
that seen as Z−module, OK is free of rank n.

The invertible elements of OK are called units, and the (multiplicative) group
of units is denoted O∗

K . By the celebrated Dirichlet’s units theorem, O∗
K is a group

of rank s+ t− 1. For instance, if K = Q(
√

3) then any solution (a, b) ∈ Z2 of the Pell
equation

x2 − 3y2 = 1
will define a unit a+ b

√
3 ∈ O∗

K . By contrast, in K = Q(i
√

3) the only units are ±1
and ±ε, where ε is a non-real root of unity of order 3. Again, in the general case, there
are no immediate descriptions of the group of units.

3. Oeljeklaus-Toma manifolds

3.1. The construction

The following construction was done in [8].
Fix a number field K with s real embeddings and 2t > 0 complex embeddings.

Suppose the embeddings σ1, . . . , σn of K are labelled in such a way that the first s
ones are real, and σs+k = σs+t+k for all k, 1 ≤ k ≤ t.

We say that a unit u ∈ O∗
K is totally positive if σi(u) > 0 for all real embeddings

σi, 1 ≤ i ≤ s. The set O∗,+
K , of totally positive units form a subgroup of O∗

K , obviously
of finite index - since for any unit u, its square u2 is totally positive.

Let H = {z ∈ C ; Im z > 0} be the upper half-plane. For any a ∈ OK denote by
Ta the automorphism of Hs × Ct given by

Ta(z1, . . . , zt+s) = (z1 + σ1(a), . . . , zs+t + σs+t(a)) .

Similary, for any totally positive unit u, let Ru be the automorphism of Hs × Ct
defined by

Ru(z1, . . . , zt+s) = (σ1(u)z1, . . . , σs+t(u)zt+s) .
Note that the totally positivity of u is needed for Ru to act on Hs × Ct.

The above maps define for any subgroup U ⊂ O∗,+
K a fixed-point-free action of

the semidirect product U n OK on Hs × Ct. The main point is that one can always
find subgroups U such that the above action is also discrete and cocompact; such
subgroups are called admissible subgroups. Note that if U is an admissible subgroup
then necessarily one has rankZ(U)+ rankZ(OK) = 2(s+ t), hence rankZ(U) = s. This
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explains why the condition t > 0 is needed: otherwise we would have that the rank of
O∗
K is s− 1, strictly less than s, and hence admissible subgroups could not exist.

By definition, if U is an admissible subgroup, the compact quotient

Hs × Ct/U nOK
is called an Oeljeklaus-Toma manifold and is usually denoted by X(K,U).

Remark 3.1. For s = t = 1, one recovers the familiar Inoue surface SM , [5]. This
is known to be (real) homogeneous, indeed a solvmanifold. Accordingly, H. Kasuya
proved the following:

Proposition 3.2. [6, §6] Oeljeklaus-Toma manifolds are solvmanifolds.

Indeed, Kasuya proved that

X(K,U) = G/U nOK , with G = Rs nφ (Rs × Ct).

Here φ acts as follows:

φ(t1, . . . , ts) = diag
(
et1 , . . . , ets , eψ1+

√
−1φ1 , . . . , eψt+

√
−1φt

)
,

where ψk = 1
2

∑s
1 bikti, ϕk =

∑s
1 cikti, with the coefficients bik, cik given by expressing

|σs+k(a)| = e
1
2

∑s
1 bikti , and hence σs+k(a) = e

1
2

∑s
1 bikti+

∑s
1 cikti .

The natural complex structure on Rs nφ (Rs × Ct) is seen to descend to the
quotient and to be integrable, but the induced complex structure is G left-invariant
and not G right-invariant, and hence X(K,U) is not a complex Lie group. This is in
accordance with the result proven in [8] (that we also recall below, see 3.5) that the
biholomorphism group of X(K,U) is discrete.

3.2. Basic invariants

We next investigate the basic invariants of Oeljeklaus-Toma manifolds. We start
by looking at their Betti numbers.

Theorem 3.3. ([8]) If K is a number field with s real embeddings and t complex em-
beddings, and if U is an admissible subgroup of O∗

K , then:
a) b1 (X(K,U)) = s;
b) if, in addition, there is no proper subfield L ⊂ K such that U ⊂ O∗

L, then

b2 (X(K,U)) =
(
s

2

)
.

Sketch of proof. The basic idea to compute Hi(X(K,U),Q) is as follows. Since the
universal cover of X(K,U) is contractible, one is reduced to compute the group co-
homology Hi(U n OK ,Q). Next, as U n OK is a semidirect product of two abelian
groups, and since the cohomology of abelian groups is well-known, one can simply use
the Lyndon-Hochschild-Serre spectral sequence

Ep,q2 = Hp(U,Hq(OK ,Q)) ⇒ Hp+q(U nOK ,Q).

Now the claims of a) and b) follow by a careful inspection of the differentials in the
above spectral sequence.
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Alternatively, one can prove a) directly, along the following lines. An immediate
computation shows that

TaRuT
−1
a R−1

u = T(1−u)a

for any u ∈ U and any a ∈ OK . Now one can check that the subgroup of OK generated
by elements of the form (1−u)a is of finite index, so U is a quotient of H1(X(K,U),Z)
by a finite subgroup; consequently, the first Betti number will equal the rank of U.

Remark 3.4. In fact, one can explicitely exhibit s linearly independent closed 1-forms
on X(K,U). Indeed, if we let zk = xk + iyk for all k, then the differential forms

ωk =
1
yk
dyk, k = 1, . . . , s (3.1)

defined on Hs × Ct are U nOK−invariant, hence descending to forms on X(K,U).

Next, we look at some analytical invariants.

Theorem 3.5. ([8]) On any Oeljelkaus-Toma manifold X = X(K,U) the holomorphic
vector bundles: Ω1

X , the holomorphic tangent bundle TX and any positive power KnX of
the canonical bundle have no global holomorphic sections. Consequently, H1,0(X) =
H0(X,Ω1

X) = 0, X has finitely many automorphisms and its Kodaira dimension is
−∞.

By contrast, h0,1(X) = dimC H
1(X,OX) ≥ s. In particular, since h0,1 6= h1,0, it

follows that for s > 0 the manifold X cannot carry Kähler metrics.

Sketch of proof. The assertions on the absence of global sections of all the vector bun-
dles in the statement follow in a rather direct way: one shows that the corresponding
bundles on the universal cover have no non-zero global sections which are invariant
under U nOK . The key ingredient is the following fact: if one factors Hs×Ct by OK
only (hence getting a non-compact manifold, which covers X), the quotient has no
global non-constant holomorphic function (exactly as in the compact case).

4. Oeljeklaus-Toma manifolds and locally conformally Kähler
geometry

4.1. LCK geometry

At this point, we recall the notion of locally conformally Kähler manifold, LCK
for short, see [3]. By definition, a hermitian metric g on a complex manifold X is LCK
if X can be covered by open subsets

X =
⋃
α∈A

Uα

with the property that on each Uα there exists a Kähler metric gα wich is conformal
to the restriction of g to Uα,

gα = e−fαg|Uα

for some smooth function fα defined on Uα. If one of the Uα equals the whole X, we
say that g is globally conformally Kähler, GCK for short.
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There are at least two different, equivalent ways, of saying that a hermitian
metric g is LCK. One of them is as follows. Let g be a hermitian metric on the
complex manifold X and let ω be its associated Kähler form,

ω(X,Y ) = g(XJY )

where J is the almost-complex structure of X. Then g is LCK if and only if there
exists a closed 1-form θ (called the Lee form of g) such that

dω = θ ∧ ω.
Notice that g is GCK if and only if θ is exact.

An equivalent definition is as follows. Let X̃ be the universal cover of X. Then
X has an LCK metric iff X̃ has a Kähler metric Ω upon which the fundamental group
of X (seen as the group of deck transforms of X̃) acts by homotheties,

γ∗(Ω) = χ(γ)Ω,∀γ ∈ π1(X) (4.1)

for some χ(γ) ∈ R>0. Notice that in order to obtain non-GCK metrics on X, at least
one χ(γ) above should be different from 1.

This last way of characterizing LCK manifolds is particularly useful in exhibiting
examples. For instance, we can see that the so-called diagonal Hopf manifolds are
LCK. Recall that such a manifold is by definition the quotient of Cn \ {0} under the
action of Z generated by the map

(z1, . . . , zn) 7→ (αz1, . . . , αzn)

where α ∈ C, |α| 6= 1. Clearly, in this way, the action of Z is by homotheties with
respect to the standard flat metric on Cn \ {0},

ωflat = dz1 ∧ dz1 + · · ·+ dzn ∧ dzn.
In fact, all Hopf manifolds Cn \ {0}/〈A〉, with A being a linear operator with eigen-
values of strictly smaller than 1 absolute values are LCK, see [11].

Locally conformally Kähler metrics were introduced for the first time by I. Vais-
man in the mid 80’s. Since then, by the effort of many people, it was shown that
almost all non-Kähler compact complex surfaces have LCK metrics, see [1], [2]. Still,
in higher dimensions, until the paper of Oeljeklaus-Toma appeared, the only known
LCK structures known were basically Hopf manifolds (and their complex submani-
folds).

Theorem 4.1. ([8]) Let K be a number field with t = 1 complex embeddings. Then, for
any admissible group of totally positive units U, the manifold X(K,U) has an LCK
metric.

Proof. Let H : Hs × C → C be the map

H(z1, . . . , zs, zs+1) =
s∏
i=1

1
Im(zi)

+ |zs+1|2.

By direct computation, one checks that H is a Kähler potential, that is, its associated
(1, 1)− form

ω =
√
−1∂∂H
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is a Kähler metric. Clearly, any translation Ta (a ∈ OK) leaves ω invariant, while for
any u ∈ U we have

R∗
u(ω) = |σ(u)|2ω

where σ is the only (up to complex conjugation) complex embedding of K.
We see that U n OK acts by homotheties upon ω, hence X(K,U) has a LCK

metric. On the other hand, this metric will not be GCK, as X(K,U) cannot carry
Kähler metrics.

Remark 4.2. 1. For s = t = 1, the above metric coincides with the one found by F.
Tricerri in [13] on the Inoue surfaces of type SM .

2. We stress that, unlike
√
−1∂∂H, the above potential H is not acted on by

homotheties. Moreover, no potential with this automorphy property can exist on
Oeljeklaus-Toma manifolds, as this would impose the deck group to be isomorphic to
Z, [10].

Remark 4.3. A very important subclass of LCK manifolds is defined in terms of the
Lee form. Namely, if (X, g) is an LCK manifold with Lee form θ, then (X, g) is called
a Vaisman manifold if

∇θ = 0
where ∇ is the Levi-Civita connection of the metric g. Typical examples are the
diagonal Hopf manifolds (see [4] for Hopf surfaces or [11] for higher dimensions);
other examples appear on surfaces, [1]. Compact Vaisman manifolds have very good
geometric properties and are intimately related to Sasakian manifolds.

It is easily seen that the LCK metric in [8] is not Vaisman. Moreover:

Proposition 4.4. ([6]) Oeljeklaus-Toma manifolds cannot carry any Vaisman metric.

This is again consistent with the result in [1] that no Inoue surface can carry
Vaisman metrics. Kasuya’s proof uses the homogeneous presentation of the Oeljeklaus-
Toma manifold and a characterization of the existence of Vaisman metrics on certain
types of solvmanifolds in terms of cohomology of Lie algebras.

4.2. The Vaisman conjecture

The Vaisman conjecture. In [14], it was asserted that any compact LCK manifold
X should have at least one odd Betti number of odd degree:

b2k+1(X) = 1(mod 2)

for some k. The conjecture was a long-standing one, until the paper of [8] appeared.
The counter-example given there is as follows. Take any number field with s = 2, t = 1
and any admissible subgroup U ⊂ O∗,+

K . Then the manifold X(K,U) will carry an
LCK metric, by the above 4.1. On the other hand, X(K,U) is of (complex) dimension
s+t = 3 and its first Betti number is b1(X) = s = 2 by 3.3, a). Consequently, one also
has b5(X) = b1(X) = 2 from Poincaré duality. As X(K,U) carries a global, nowhere
vanishing 1-form (recall the forms defined in (3.1)), its Euler-Poincaré characteris-
tic vanishes, so b3(X) is also even. We see X(K,U) is indeed a counter-example to
Vaisman’s conjecture.
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4.3. Submanifolds of Oeljelkaus-Toma manifolds

As noticed already, in the case s = t = 1, the Oeljeklaus-Toma manifolds are
Inoue surfaces of type SM . This particular kind of surfaces are remarkable, as they
carry no closed analytic curve. It is thus a natural question to ask about submanifolds,
or more general, closed analytic subspaces of Oeljeklaus-Toma manifolds. Of course,
for convenient choices of the number field K and for the admissible subgroup U, the
corresponding manifold X(K,U) will contain proper submanifolds. For instance, if
K is a proper extension of another number field L and if U ⊂ O∗

L, then X(L,U) ⊂
X(K,U), see [8] for details. It is thus reasonable to restrict our attention to the cases
with “nice geometry”, more exactly to the case t = 1, where the existence of LCK
metrics holds. In this case, one has:

Theorem 4.5. ([9]) Let K be a number field with t = 1 and let X = X(K,U) be an
associated Oeljeklaus-Toma manifold. If Y ⊂ X is a closed connected reduced analytic
subspace, then either Y = X or Y is a point. In other words, X carries no proper
closed analytic subspaces, i.e. it is a simple manifold, in the sense of Campana. In
particular, LCK Oeljeklaus-Toma manifolds do not admit non-constant meromorphic
functions.

The proof relies on two deep facts. One is of purely geometrico-differential nature:
the LCK metric leads to a “highly-positive” (1, 1)−form, derived from the Lee form of
the metric. The positivity of this form implies that a certain, very naturally defined
foliation Σ on X has a very intriguing property: if a closed connected analytical
subspace Y of X contains a point z sitting on the leaf Σx, then the whole Σz is
contained in Y. Now, if Y ⊂ X is a proper analytic subspace (i.e. dim(Y ) > 0) one
shows that the closure of the leaves is the whole X; but to achieve this, one has
to use a deep result in algebraic number theory, namely the so-called “strong adelic
approximation theorem”.

In the very general case (hence without restricting to t = 1, i.e. to LCK geome-
try), one can show

Theorem 4.6. ([15]) Let X be an Oeljeklaus-Toma manifold. Then X carries no closed
1-dimensional analytic subspaces.

Recently the same author obtained an extension of this theorem, to

Theorem 4.7. ([16]) Let X be an Oeljeklaus-Toma manifold. If S ⊂ X is a smooth
compact surface, then S is a Inoue surface.

An interesting (and apparently rather difficult) question imposes by itself:

Question 4.8. Is it true that if X = X(K,U) is an Oeljeklaus-Toma manifold and
if X ′ ⊂ X is a connected, closed, reduced, analytical space, then X ′ is of the form
X ′ = X(K ′, U) with K ′ ⊂ K and U ⊂ U (i.e X ′ is obtained by the procedure
described at the beginning of the section)?

Note that an affirmative answer would imply all theorems above, as fields with
tK = 1 complex embeddings have no proper subfields K ′ with tK′ > 0, thus we would
get Theorem 4.5, and also Theorem 4.6, since in quadratic imaginary fields the rank
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of the group of units is zero and Theorem 4.7, as OT-surfaces are Inoue surfaces,
according to Remark 3.1.

4.4. LCK rank of Oeljeklaus-Toma manifolds

The deep interplay between geometry and number theory, emphasized in the
skecth of proof of 4.5 is actually much more extended. We illustrate this in the fol-
lowing.

Recall that one of the possible definitions of an LCK metric on a manifold X
involves the homothety factors described by relation (4.1). Note that if γ ∈ π1(X) is
a deck-transformation with χ(γ) = 1, then actually γ is an isometry of the Kähler
metric Ω. Hence, a natural question occurs: “how many” of the elements γ ∈ π1(X)
are “honest homotheties”, i.e. with χ(γ) 6= 1? Put in a more rigourous setup:

Question 4.9. Determine how large can be the rank of the group

{χ(γ) ; γ ∈ π1(X)}. (4.2)

Of course, for LCK, non-GCK manifolds, this LCK rank is bounded from below
by 1 (as at least one of the γ′s must not be an isometry) and from above by the first
Betti number of X. Until the Oeljeklaus-Toma manifolds appeared, in all examples
known, the rank above actually had only these two extremal values: either 1, or b1(X).
Some Oeljeklaus-Toma manifolds are -so far- the only known examples when this rank
is non-trivial; more precisely, we have:

Theorem 4.10. ([12]) Let K be a number field with t = 1 and X = X(K,U) be an
Oeljeklaus-Toma manifold. Then, the rank of the above group (defined in (4.2)) is
different form 1 and b1(X) if and only if K is a quadratic extension of a (totally real)
number field. In this last case, the rank equals b1(X)

2 , and this possibility occurs for
Oeljeklaus-Toma manifolds of arbitrary high dimensions.

The basic idea behind the proof is as follows. For any u ∈ U (seen as an element
in π1(X)), the automorphy factor χ(u) is actually |σ(u)|, where σ is the only (up to
complex conjugation) complex embedding of K. Now, if the rank is different from
b1(X), then at least one u ∈ U must have |σ(u)| = 1. This forces u to be a reciprocal
unit, i.e. its minimal polynomial over Q to be a reciprocal one. But if u is a reciprocal
unit, then the field K ′ = Q(u+ 1

u ) is a subfield of K, of relative degree 2, and it can be
easily shown that K ′ must actually be totally real. Eventually, to produce infinitely
many examples of Oeljeklaus-Toma manifolds with non-trivial rank, one reverses the
process. One starts with a totally real number field K ′ (for instance with cyclotomic
fields) and extend it to a field K ⊃ K ′ with [K : K ′] = 2, taking care to ramify
precisely one real embedding of K ′.

4.5. Oeljeklaus-Toma manifolds with t > 1
As already noticed, the main ingredient (apart from the number-theoretical ones)

in most of the results above is the existence of LCK metrics. So far, existence of such
metrics is known to hold on Oeljeklaus-Toma manifoldsX(K,U) for which the number
field K has precisely t = 1 complex embeddings. It is thus natural to ask whether this
condition can be dropped.
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Actually, as already noticed in [8], in the other “extreme case”, i.e. if K is a
number field with s = 1 real embedings (and t > 1 complex ones) then for any choice
of the admissible group of units U, the resulting Oeljeklaus-Toma manifold X(K,U)
has no LCK metric.

There are (so far) at least two results showing that probably, if K is a number
field with t > 1 complex embedings, then no Oeljeklaus-Toma manifold X(K,U)
carries an LCK metric.

The first one was already recalled (4.4): an Oeljeklaus-Toma manifold cannot
carry Vaisman metrics. But this does not rule out the possibility of existence of non-
Vaisman, LCK metrics. However, when there are “too many” complex embeddings,
this is not true. More exactly, we have:

Theorem 4.11. ([17]) let K be a number field with t > 2s. then for any admissible
group of units U , the Oeljeklaus-Toma manifold X(K,U) carries no LCK metric.

The proof relies again on the interplay between differential geometry and number
theory. Namely, first one shows that if an LCK metric exists on X(K,U) then, by
looking at the automorphy factors χ(u) of any unit u ∈ U one gets that |σ(u)| is the
same for any complex embedding σ of K. But then, one exploits a nice fact about
algebraic integers with “many” Galois conjugates of the same absolute value: their
minimal polynomial f must actually be of the form f(X) = g(Xt), and from here one
easily derives a contradiction.
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Stud. Univ. Babeş-Bolyai Math. 58(2013), No. 4, 469–476

Exact discrete Morse functions on surfaces

Vasile Revnic

To the memory of Professor Mircea-Eugen Craioveanu (1942-2012)

Abstract. In this paper, we review some basic facts about discrete Morse theory,
we introduce the Morse-Smale characteristic for a finite simplicial complex, and
we construct Z2-exact discrete Morse functions on the torus with two holes T2

and on the dunce hat DH.

Mathematics Subject Classification (2010): 57Q99, 57R70, 58E05.

Keywords: Finite simplicial complex, discrete Morse function, exact discrete
Morse function, discrete Morse-Smale characteristic, torus of genus 2, dunce hat.

Let K be a finite simplicial complex. A function f : K → R is a discrete Morse
function if for every simplex α(p) ∈ K we have simultaneously :

#{β(p+1) > α(p) | f(β) ≤ f(α)} ≤ 1, #{γ(p+1) < α(p) | f(γ) ≥ f(α)} ≤ 1,

where #A denotes the cardinality of the set A.
Note that a discrete Morse function is not a continuous function on the complex

K since we did not considered any topology on K. Rather, it is an assignment of a
single number to each simplex.

The other main ingredient in discrete Morse theory is the notion of a critical
simplex of discrete function. A p-dimensional simplex α(p) is critical if the following
relations hold simultaneously :

#{β(p+1) > α(p) | f(β) ≤ f(α)} = 0, #{γ(p+1) < α(p) | f(γ) ≥ f(α)} = 0.

The study of the discrete version of the Morse theory was initiated by R.Forman [9],
[10].

If K is a m-dimensional simplicial complex with a discrete Morse function, then
let µj = µj(f) denote the number of critical simplices of dimension j of the function
f . For any field F , let βj = dim Hj(K, F ) be the j-th Betti number with respect to
F , j = 0, 1, . . . ,m.

Let K be a m-dimensional simplicial complex with a discrete Morse function f .
Then the following relations also hold in the discrete context.
(1) The weak discrete Morse’s inequalities.

(i) µj ≥ βj , j = 0, 1, . . . ,m;
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(ii) µ0 − µ1 + µ2 − · · ·+ (−1)mµm = β0 − β1 + β2 − · · ·+ (−1)mβm = χ(K).
The last relation is called Euler’ s relation.

(2) Also, the strong discrete Morse’s inequalities are valid in this context, that is for
each j = 0, 1, . . . ,m− 1, we have

µj − µj−1 + · · ·+ (−1)jµ0 ≥ βj − βj−i + · · ·+ (−1)jβ0.

Let K be a m-dimensional simplicial complex containing exactly cj simplices
of dimension j, for each j = 0, 1, . . . ,m. Let Cj(K, Z) denote the space Zcj . More
precisely, Cj(K, Z) denotes the free Abelian group generated by the j-simplices of
K, each endowed with an orientation. Then for each j, there are boundary maps
∂j : Cj(K, Z) → Cj−1(K, Z), such that ∂j−1 ◦ ∂j = 0.

The resulting differential complex

0 −→ Cm(K, Z) ∂m−→ Cm−1(K, Z)
∂m−1−→ . . .

∂1−→ C0(K, Z) −→ 0

calculates the singular homology of K. That is, if we define the quotient space

Hj(C, ∂) = Ker(∂j)/Im(∂j+1),

then for each j we have the isomorphism

Hj(C, ∂) ∼= Hj(K, Z),

where Hj(K, Z) denotes the singular homology of K.
The discrete Morse theory is the main tool in studying some geometric properties

of finite simplicial complexes. In this respect we refer to the papers of D.Andrica and
I.C.Lazăr [3]-[6], K.Crowley [8], and I.C. Lazăr [11], [12].

1. The discrete Morse-Smale characteristic

Consider Km to be a m-dimensional finite simplicial complex.
The discrete Morse-Smale characteristic of K was considered in paper [13], and

it is a natural extension of the well-known Morse-Smale characteristic of a manifold
(see the monograph [2]).

Let Ω(K) be the set of all discrete Morse functions defined on K. It is clear
that Ω(K) is nonempty, because, for instance, the trivial example of discrete Morse
function defined by f(σ) = dim σ, σ ∈ K.

For f ∈ Ω(K), let µj(f) be the number of j-dimensional critical simplices of f ,
j = 0, 1, . . . ,m.

Let µ(f) be the number defined as follows:

µ(f) =
m∑

j=0

µj(f),

i.e. µ(f) is the total number of critical simplices of f . The number

γ(K) = min{µ(f) : f ∈ Ω(K)}
is called the discrete Morse Smale characteristic of the simplicial complex K. So,
the discrete Morse-Smale characteristic represents the minimal number of critical
simplices for all discrete Morse functions defined on K.
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In analogous way, one can define the numbers γj(K), j = 0, 1, . . . ,m, by

γj(K) = min{µj(f) : f ∈ Ω(K)},
that is the minimal numbers of critical of j-dimensional simplices, for all discrete
Morse functions defined on K.

The effective computation of these numbers associated to a finite simplicial com-
plex is an extremely complicated problem in combinatorial topology. A finite algo-
rithm for the determination of these numbers for any simplicial complex is not yet
known.

2. Exact discrete Morse functions and F -perfect Morse functions

Consider the finite m-dimensional simplicial complex K. For j = 0, 1, . . . ,m, let
Hj(K, F ) be the singular homology groups with the coefficients in the field F , and let
βj(K, F ) = rankHj(K, F ) = dimF Hj(K, F ) be the Betti numbers with respect to F .

For every f ∈ Ω(K), we have the discrete weak Morse inequalities :

µj(f) ≥ βj(K, F ), j = 0, 1, . . . ,m.

The discrete Morse function f ∈ Ω(K) is called exact (or minimal) if µj(f) = γj(K),
for all j = 0, 1, . . . ,m. So, an exact discrete Morse function has a minimal number of
critical simplices in each dimension.

The discrete Morse function f ∈ Ω(K) is called F -perfect if µj(f) =
βj(K, F ), j = 0, 1, . . . ,m.

Using the discrete weak Morse inequalities and the definition of the discrete
Morse-Smale characteristic, we obtain the inequalities:

µj(f) ≥ min{µj(f) : f ∈ Ω(K)} = γj(K) ≥ βj(K, F ).

Theorem. The simplicial complex K has F -perfect discrete Morse functions if and
only if γ(K) = β(K, F ), where

β(K, F ) =
m∑

j=0

βj(K, F )

is the total Betti number of K with respect to the field F .
Proof. To prove the direct implication, let f ∈ Ω(K) be a fixed F -perfect discrete
Morse function. Using the weak Morse inequalities, it follows:

µ(f) =
m∑

j=0

µj(f) ≥
m∑

j=0

βj(K, F ) = β(K, F ),

hence µ(f) ≥ β(K, F ). Using the definition of the discrete Morse-Smale characteristic
of K, we get

γ(K) = min{µ(f) : f ∈ Ω(K)} ≥ β(K, F ).
Because f is a discrete F -perfect Morse function on K, we have µ(f) = β(K, F ). On
the other hand, clearly we have the inequality

γ(K) = min{µ(g) : g ∈ Ω(K)} ≤ β(K, F ).
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Therefore, we get γ(K) ≤ β(K, F ) and the desired relation follows.
For the converse implication, let f ∈ Ω(K) be a discrete Morse function. From

the relations

µ(f) =
m∑

j=0

µj(f) and β(K, F ) =
m∑

j=0

βj(K, F ),

using the hypothesis γ(K) = β(K, F ), it follows
m∑

j=0

[µj(f)− βj(K, F )] = 0.

From the discrete weak Morse inequalities, we get µj(f) − βj(K, F ) ≥ 0, j =
0, 1, . . . ,m. All in all, the following relations hold µj(f) = βj(K, F ), j = 0, 1, . . . ,m.
Therefore, f is a discrete F -perfect Morse function. �

If K is a simplicial complex of dimension m, one knows that Cj(K, Z), j =
0, 1, . . . ,m, is a finitely generated free Abelian group generated by the j-simplices
in K. Since subgroups and quotient groups of finitely generated groups are again
finitely generated, it follows that the homology group Hj(K, Z) is finitely generated.
Therefore, by the fundamental theorem about such groups, we can write Hj(K, Z) '
Aj ⊕Bj , where Aj is a free group and Bj is the torsion subgroup of Hj(K, Z).

Therefore, the singular homology groups Hj(K, Z), j = 0, 1, . . . ,m, are finitely
generated. For every j = 0, 1, . . . ,m, we can write

Hj(K, Z) ' (Z⊕ · · · ⊕ Z)⊕ (Znj1
⊕ · · · ⊕ Znjβ(j)

),

where Z is taken βj times in the free group, j = 0, 1, . . . ,m. Here βj represents the
Betti numbers of K with respect to the group (Z,+), that is we have βj(K, Z) =
rankHj(K, Z), j = 0, 1, . . . ,m.

3. A Z2-exact Morse function on the two holes torus T2

The torus with two holes T2 is the connected sum of two copies of torus T2,
that is T2 = T2#T2. In this section we consider the triangulation of T2 represented
in Figure 1. The singular homology of the torus with two holes T2 is given by

H0(T2) = Z, H1(T2) = Z⊕ Z⊕ Z⊕ Z, H2(T2) = Z.

Then, using the universal coefficients formula, we easily obtain

H0(T2, Z2) ' Z2, H1(T2, Z2) ' Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, H2(T2, Z2) ' Z2.

This implies that the Z2-Betti numbers of T2 are given by

β0(T2, Z2) = 1, β1(T2, Z2) = 4, β2(T2, Z2) = 1,

hence the Z2- total Betti number of T2 is

β(T2, Z2) =
2∑

j=0

βj(T2, Z2) = 1 + 4 + 1 = 6.

We obtain γ(T2) = β(T2, Z2) = 6, and this relation implies that we can define on the
simplicial complex given by the triangulation of torus with two holes T2 in Figure 1,
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a discrete Morse function with exactly six critical simplices. This function is Z2-exact
and is defined in Figure 1, where the critical simplices are encircled.

Figure 1.
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4. A Z2-exact Morse function on the dunce hat DH

In topology, the dunce hat DH is a compact topological space formed by taking
a solid triangle and gluing all three sides together, with the orientation of one side
reversed. Simply gluing two sides oriented in the same direction would yield a cone
much like the layman’s dunce cap, but the gluing of the third side results in identifying
the base of the cap with a line joining the base to the point.

The space DH is contractible, but not collapsible. Contractibility can be easily
seen by noting that the dunce hat embeds in the 3-ball and the 3-ball deformation
retracts onto the dunce hat. Alternatively, note that the dunce hat is the CW-complex
obtained by gluing the boundary of a 2-cell onto the circle. The gluing map is homo-
topic to the identity map on the circle and so the complex is homotopy equivalent to
the disc. By contrast, it is not collapsible because it does not have a free face.

Figure 2.
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The name is due to E. C. Zeeman [15], who observed that any contractible 2-
complex (such as the dunce hat) after taking the Cartesian product with the closed
unit interval seemed to be collapsible. This observation became known as the Zeeman
conjecture and was shown by Zeeman to imply the Poincaré conjecture.

We consider the triangulation of the dunce hat DH which is shown in Figure 2.
The singular homology of the dunce hat DH is

H0(DH) = Z, H1(DH) = Z, H2(DH) = Z.

Then, using again the universal coefficients formula, we obtain

H0(DH, Z2) ' Z2, H1(DH, Z2) ' Z2, H2(DH, Z2) ' Z2.

This implies that the Z2-Betti numbers of DH are given by

β0(DH, Z2) = 1, β1(DH, Z2) = 1, β2(DH, Z2) = 1,

and the total Betti number is

β(DH, Z2) =
2∑

j=0

βj(DH, Z2) = 1 + 1 + 1 = 3.

We obtain γ(DH) = β(DH, Z2) = 3, and this property implies that we can define on
the simplicial complex given by the triangulation of DH in Figure 2 a discrete Morse
function with exactly three critical simplices. This function is Z2-exact and is defined
in Figure 2, the critical simplices are encircled.
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1. Introduction

The connections compatible with a symplectic form have been studied for several
decades, by now. They were introduced by Ph. Tondeur, in 1961 (see [12]), for the
more general situation of an almost-symplectic manifold. Nevertheless, they became
really important lately, in the early ninetieth, when Fedosov ([7]) discovered that they
may be useful in the deformation quantization. Therefore, a symplectic manifold en-
dowed with a symmetric connection, compatible with the symplectic form, has been
baptized with the name of Fedosov manifold. A recent review of the theory of sym-
plectic connections can be found in [5]. A few years later, the notion of symplectic
connection has been extended to symplectic supermanifolds and the corresponding
objects (namely symplectic supermanifolds, even or odd, endowed with a symplectic
connection) have been named Fedosov supermanifolds (see [9]). It is the aim of this
note to show that, as in the case of symplectic manifolds, on a symplectic supermani-
fold (odd or even, it doesn’t matter), symplectic connections exist in abundance. The
language we use is slightly different from that used in the original papers, because we
use a coordinate-free approach (see [2], [3], [4]).

As it is well-known, there are several approaches to supermanifolds, not entirely
equivalent. The differences are not very important for this paper. Nevertheless, to
avoid ambiguities, we state from the very beginning that for us “supermanifold”
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means “supermanifold in the sense of Berezin and Leites”1. For details, see [1], [6],
[10], [11].

2. Symplectic connections on supermanifolds

Definition 2.1. LetM be an arbitrary, finite dimensional, supermanifold. A connection
(a covariant derivative) on this supermanifold is a mapping ∇ : X (M) × X (M) →
X (M) for which the following conditions are fulfilled:
(i) ∇ is additive in both arguments:

∇X1+Y2Y = ∇X1Y +∇X2Y, ∇X(Y1 + Y2) = ∇XY1 +∇XY2;

(ii) ∇fXY = f∇XY ;
(iii) ∇X(fY ) = X(f) · Y + (−1)|X|·|f |∇XY ,
where in the first two relations X, Y,X1, X2, Y1, Y2 are arbitrary vector fields and f
an arbitrary superfunction, while in the last equality all the entries are assumed to be
homogeneous.

The torsion tensor can be defined here in a similar manner to the corresponding
tensor for connections on ordinary (ungraded) manifolds:

Definition 2.2. Let ∇ be a connection on a supermanifold. The torsion of the connec-
tion is the tensor field (twice covariant and once contravariant) defined by

T (X, Y ) = ∇XY − (−1)|X|·|Y |∇Y X − [X, Y ],

for any homogeneous vector fields X and Y . Also by analogy with the classical case, a
connection on a supermanifold is called symmetric if its torsion vanishes. Thus, the
connection is symmetric iff for any homogeneous vector fields X and Y we have

∇XY − (−1)|X|·|Y |∇Y X = [X, Y ].

It can be shown easily that, using the same methods from the classical differential
geometry, the covariant derivative on supermanifolds can be extended to arbitrary
tensor fields, not just vector fields. The interesting case for us is the one of twice
covariant tensor fields. Thus, if g is a twice covariant homogeneous tensor field on a
supermanifold M, then we have

(∇Xg)(Y, Z) ≡ ∇Xg(Y, Z) = X(g(Y, Z))− (−1)|X|·|g|g(∇XY, Z)−

− (−1)|X|·(|Y |+|g|)g(Y,∇XZ).

We are interested, in this paper, in the particular case of a homogeneous symplectic
supermanifold, i.e. a supermanifold endowed with a homogeneous 2-form ω, which is
both closed and non-degenerate.

Definition 2.3. Let (M, ω) be a homogeneous symplectic supermanifold (hereafter, it
will be called, simply, symplectic supermanifold). A connection ∇ onM is called sym-
plectic it is both symmetric and compatible to the symplectic form. Thus, a symplectic
connection on a symplectic supermanifold is a connection ∇ for which:

1These supermanifolds are also called “graded manifolds”, especially in the Western literature.
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(i) the torsion tensor vanishes, i.e.

∇XY − (−1)|X|·|Y |∇Y X = [X, Y ]

and
(ii) it is compatible to the symplectic form, i.e.

∇Xω(Y, Z) = X(ω(Y,Z))− (−1)|X|·|ω|ω(∇XY,Z)−

− (−1)|X|·(|Y |+|ω|)ω(Y,∇XZ) = 0,

for any homogeneous vector fields X, Y, Z.

3. Existence and uniqueness results for symplectic connections

Theorem 3.1 (Existence). Let (M, ω) be a symplectic supermanifold. Then on M
there is at least a symplectic connection.

Proof. The proof we are going to give is an adaptation of the proof from the classical
symplectic geometry of manifolds. Namely, we notice, first of all, that on M there
is at least a symmetric connection, ∇0. To proof this, it is enough to consider a
Riemannian metric on M (which we know we can find) and take ∇0 to be the Levi-
Civita connection associated to this metric, which, we also know, exists (and it is even
unique). Of course, ∇0 is not a symplectic connection, in most situations, and what
we shall do is to “correct” this connection to get a symplectic one.

We define now a twice covariant and once contravariant tensor field N through
the relation

∇0
Xω(Y, Z) = (−1)|ω|·|X|ω(N(X, Y ), Z). (3.1)

We shall proof some properties of N , for later use. First, we claim that

ω(N(X, Y ), Z) = −(−1)|Y |·|Z|ω(N(X, Z), Y ). (3.2)

Indeed, we have

ω(N(X, Y ), Z) = (−1)|ω|·|X|∇0
Xω(Y, Z) =

= −(−1)|ω|·|X|(−1)|Y |·|Z|∇0
X(Z, Y ) = −(−1)|Y |·|Z|ω(N(X, Z), Y ).

Another important property of N , which follows, this time, from the closeness of the
symplectic form, is the following:

ω(N(X, Y ), Z) + (−1)|X|(|Y |+|Z|)ω(N(Y,Z), X)+

+ (−1)|Z|(|X|+|Y |)ω(N(Z,X), Y ) = 0
(3.3)

As mentioned before, to prove (3.3), we shall start from the closeness of the symplectic
form and we shall use the symmetry of the connection ∇0, as well as the definition of
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the tensor N . Thus, we have

0 = dω(X, Y, Z) = (−1)|ω|·|X|X(ω(Y,Z))−

− (−1)|Y |(|ω|+|X|)Y (ω(X, Z)) + (−1)|Z|(|ω|+|X|+|Y |)Z(ω(X, Y ))−

− ω([X, Y ], Z) + (−1)|Y |·|Z|ω([X, Z], Y )− (−1)|X|(|Y |+|Z|)ω([Y, Z], X) =

= (−1)|ω|·|X|X(ω(Y,Z))− (−1)|Y |(|ω|+|X|)Y (ω(X, Z))+

+ (−1)|Z|(|ω|+|X|+|Y |)Z(ω(X, Y ))− ω
(
∇0

XY − (−1)|X|·|Y |∇0
Y X, Z

)
+

+ (−1)|Y |·|Z|ω
(
∇0

XZ − (−1)|X|·|Z|∇0
ZX, Y

)
−

− (−1)|X|(|Y |+|Z|)ω
(
∇0

Y Z − (−1)|Y |·|Z|∇0
ZY, X

)
=

= (−1)|ω|·|X|X(ω(Y, Z))− (−1)|Y |(|ω|+|X|)Y (ω(X, Z))+

+ (−1)|Z|(|ω|+|X|+|Y |)Z(ω(X, Y ))− ω
(
∇0

XY, Z
)
+

+ (−1)|X|·|Y |ω
(
∇0

Y X, Z
)

+ (−1)|Y |·|Z|ω
(
∇0

XZ, Y
)
−

− (−1)(|X|+|Y |)|Z|ω
(
∇0

ZX, Y
)
− (−1)|X|(|Y |+|Z|)ω

(
∇0

Y Z,X)
)
+

+ (−1)|X|(|Y |+|Z|)+|Y |·|Z|ω
(
∇0

ZY, X
)

= (−1)|ω|·|X| [X(ω(Y,Z))−

−(−1)|ω|·|X|ω
(
∇0

XY,Z
)
− (−1)|X|(|ω|+|Y |ω

(
Y,∇0

XZ
)]
−

− (−1)|Y |(|ω|+|X|
[
Y (ω(X, Z))− (−1)|ω|·|Y |ω

(
∇0

Y X, Z
)
−

− (−1)|Y |(|ω|+|X|ω
(
X,∇0

Y Z
) ]

+ (−1)|Z|(|ω|+|X|+|Y |
[
Z(ω(X, Y ))−

− (−1)|ω|·|Z|ω
(
∇0

ZX, Y
)
− (−1)|Z|(|ω|+|X|ω

(
X,∇0

ZY
) ]

=

= (−1)|ω|·|X|∇0
Xω(Y, Z)− (−1)|Y |(|ω|+|X|∇0

Y ω(X, Z)+

+ (−1)|Z|(|ω|+|X|+|Y |)∇0
Zω(X, Y )

We define now a new connection, ∇, by letting

∇XY = ∇0
XY +

1
3
N(X, Y ) +

(−1)|X|·|Y |

3
N(Y,X). (3.4)

We start by proving that this is, indeed, a connection. ∇ is, obviously, bi-additive and
homogeneous in the first variable. Moreover, we have

∇X(fY ) = ∇0
X(fY ) +

1
3
N(X, fY ) +

(−1)|X|·|Y |

3
N(fY, X) =

= f∇0
XY + (−1)|f |·|X|X(f) · Y + f

(
1
3
N(X, Y )+

+
(−1)|X|·|Y |

3
N(Y, X)

)
= f∇XY + (−1)|f |·|X|X(f) · Y,

hence ∇ is a connection.
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We claim that∇ is a symplectic connection. Let’s check first that∇ is symmetric.
Indeed, we have

∇XY − (−1)|X|·|Y |∇Y X = ∇0
XY +

1
3
N(X, Y ) +

(−1)|X|·|Y |

3
N(Y,X)−

− (−1)|X|·|Y |
(
∇0

Y X +
1
3
N(Y,X) +

(−1)|Y |·|X|

3
N(X, Y )

)
=

= ∇0
XY − (−1)|X|·|Y |∇0

Y X = [X, Y ],

where we used the fact that the connection ∇0 is symmetric. Finally, we show that
the connection is compatible with the symplectic form. We have

∇Xω(Y, Z) = X(ω(Y, Z))− (−1)|ω|·|X|ω (∇XY, Z)−

− (−1)|X|(|ω|+|Y |ω (Y,∇XZ) = X(ω(Y, Z))− (−1)|ω|·|X|ω
(
∇0

XY +

+
1
3
N(X, Y ) +

(−1)|X|·|Y |

3
N(Y, X), Z

)
− (−1)|X|(|ω|+|Y |ω

(
Y,∇0

XZ+

+
1
3
N(X, Z) +

(−1)|X|·|Z|

3
N(Z,X)

)
= X(ω(Y, Z))−

− (−1)|ω|·|X|ω
(
∇0

XY, Z
)
− (−1)|X|(|ω|+|Y |)ω

(
Y,∇0

XZ
)
−

− 1
3
(−1)|ω|·|X|ω(N(X, Y ), Z)− 1

3
(−1)|X|(|ω|+|Y |)ω(N(Y, X), Z)−

− 1
3
(−1)|X|(|ω|+|Y |)ω(Y, N(X, Z))− 1

3
(−1)|X|(|ω|+|Y |+Z|)ω(Y, N(Z,X)) =

= ∇0
Xω(Y, Z)− 1

3
(−1)|ω|·|X|ω(N(X, Y ), Z)+

+
1
3
(−1)|X|(|ω|+|Y |+|Z|)ω(N(Y, Z), X)− 1

3
(−1)|ω|·|X|ω(N(X, Y ), Z)+

+
1
3
(−1)|ω|·|X|+|Z|(|X|+|Y |ω(N(Z,X), Y ) = (−1)|ω|·|X|ω(N(X, Y ), Z)−

− 2
3
(−1)|ω|·|X|ω(N(X, Y ), Z)+

+
1
3
(−1)|ω|·|X|

(
(−1)|X|(|Y |+|Z|)ω(N(Y, Z), X)+

+ (−1)|Z|(|X|+|Y |)ω(N(Z,X), Y )
)

=
1
3
(−1)|ω|·|X|

(
ω(N(X, Y ), Z)+

+ (−1)|X|(|Y |+|Z|)ω(N(Y, Z), X) + (−1)|Z|(|X|+|Y |)ω(N(Z,X), Y )
)

= 0,

which proves that, indeed, ∇ is a symplectic connection.
Thus, on any symplectic supermanifold there is at least a symplectic connection.

As we shall prove next, there are, actually, infinitely many.
We notice, first of all, that the difference of two symplectic connections is allways

a symplectic connection. Let now ∇ be a symplectic connection. Any other connection
on M should be of the form

∇′
XY = ∇XY + S(X, Y ),
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where S is a (2, 1) tensor field on M. If we want ∇′ to be symplectic, first of all it
should be symmetric, which means:

∇′
XY − (−1)|X|·|Y |∇′

Y X = [X, Y ],

i.e.
∇XY + S(X, Y )− (−1)|X|·|Y |∇Y X − (−1)|X|·|Y |S(Y,X) = [X, Y ].

As ∇ is symmetric, it follows that S should verify the relation

S(X, Y ) = (−1)|X|·|Y |S(Y, X),

meaning that S is supersymmetric. Now we should ask that ∇′ should, also, be com-
patible to the symplectic form. We have:

∇′
Xω(Y, Z) = X (ω(Y,Z))− (−1)|ω|·|X|ω (∇′

XY, Z)−

− (−1)|X|(|ω|+|Y |ω (Y,∇′
XZ) =

= X (ω(Y,Z))− (−1)|ω|·|X|ω (∇XY, Z)− (−1)|X|(|ω|+|Y |ω (Y,∇XZ)︸ ︷︷ ︸
=0

−

− (−1)|ω|·|X|ω (S(X, Y ), Z)− (−1)|X|(|ω|+|Y |ω (Y, S(X, Z)) =

= (−1)|ω|·|X|
[
ω (S(X, Y ), Z) + (−1)|X|·|Y |ω (Y, S(X, Z))

]
=

= (−1)|ω|·|X|
[
ω (S(X, Y ), Z)− (−1)|Y |·|Z|ω (S(X, Z), Y )

]
.

Thus, ∇′ is a symplectic connection if and only if

ω (S(X, Y ), Z) = (−1)|Y |·|Z|ω (S(X, Z), Y ) ,

i.e. the 3-covariant tensor field ω (S(X, Y ), Z) is totally graded symmetric. The con-
clusion is, as in the classical, ungraded, case, that the set of all symplectic connections
on a given symplectic supermanifold is an infinite dimensional affine space. �
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1. Introduction

In this paper we show that the circular Morse-Smale characteristic of a closed
connected surface Σ is, except for the projective plane, the absolute value |χ(Σ)| of
its Euler-Poincaré characteristic.

Definition 1.1. If M is a differential manifold, then the circular Morse-Smale charac-
teristic of M is defined by

γ
S1 (M) := min{card(C(f)) : f ∈ F(M,S1)}, (1.1)

where F(M,S1) stands for the set of all circular Morse functions f :M→S1.

Note that the Morse-Smale characteristic of a manifold M is defined by

γ(M) = min{card(C(f)) : f ∈ F(M)},
where F(M) denotes the set of all real-valued Morse functions defined on M , and it
was studied by Andrica in [1, pp.106-129]. The circular Morse-Smale characteristic
was defined by Andrica and Mangra [2, 3].

Proposition 1.1. ([4]) If M̃ is a k-fold cover of M , then γ
S1 (M̃) ≤ k · γ

S1 (M).
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Constructing a circular Morse function on the closed connected orientable surface
Σg, of genus g, with exactly 2(g− 1) critical points is part of the strategy to compute
the circular Morse-Smale characteristic of the surface Σg. We achieve this goal by
producing a suitable embedding of Σg in R3 \ Oz, where Oz stands for the z-axis
{(x, 0, 0) : x ∈ R}, alongside a submersion f : R3 \Oz −→ S1, whose restriction f

∣∣
Σg

is a circular Morse function with exactly 2(g − 1) critical points. In fact the suitable
submersion is

f(x, y, z) =
1√

x2 + y2
(x, y, 0). (1.2)

In this respect we need to characterize somehow the critical points of such a restriction.

Proposition 1.2. Let Σ ⊆ R3 be a regular surface and f : R3 −→ N be a submersion,
where N is either the real line or the circle S1. The point p = (x0, y0, z0) ∈ Σ is
critical for the restriction f |Σ if and only if the tangent plane of Σ at p is the tangent
plane at p to the fiber Fp := f−1(f(p)) of the submersion (1.2) through p.

Proposition 1.2 follows from the following more general statement.

Proposition 1.3. Let Mm, Nn, P p, m ≥ n > p be differential manifolds, let f :M→N
be a differential map and g : N → P be a submersion. Then x ∈M is a regular point
of g ◦ f if and only if f tx Fx, where Fx stands for the fiber g−1(g(x)) of g through
x.

Proof. Recall that we have the transversality property f tx Fx if and only
if Im(df)x + ker(dg)f(x) = Tf(x)(N), i.e. Im(df)x + ker(dg)f(x) = Tf(x)(N), as
Tf(x) (Fx) = ker(dg)f(x).

Assume that x ∈ R(g ◦f), i.e. Imd(g ◦f)x = T(g◦f)(x)(N). We only need to show
that Tf(x)(N) ⊆ Im(df)x + ker(dg)f(x), as the opposite inclusion is obvious. Consider
v ∈ Tf(x)(N) and observe that there exists u ∈ Tx(M) such that (dg)f(x)(v) =
d(g ◦ f)x(u), since Im[d(g ◦ f)x] = T(g◦f)(x)(N). Consequently we obtain successively:

(dg)f(x)(v) = d(g ◦ f)x(u) ⇔ (dg)f(x)(v) = (dg)f(x) ((dfx)(u))
⇔ (dg)f(x)(v)− (dg)f(x) ((dfx)(u)) = 0
⇔ (dg)f(x) (v − (dfx)(u)) = 0
⇔ v − (dfx)(u) ∈ ker(dg)f(x)

⇔ v∈(dfx)(u)+ker(dg)f(x)⊆ Im(df)x+ker(dg)f(x).

In order to prove the opposite inclusion, we use the property of g to be a sub-
mersion and observe that we have successively:

Im(df)x + ker(dg)f(x) = Tf(x)(N) ⇒
(dg)f(x)

[
Im(df)x + ker(dg)f(x)

]
= (dg)f(x)

[
Tf(x)(N)

]
⇔

(dg)f(x) [Im(df)x] + (dg)f(x)

[
ker(dg)f(x)

]
= Tg(f(x))(N) ⇔

(dg)f(x) [Im(df)x] = T(g◦f)(x)(N) ⇔
Im

(
(dg)f(x) ◦ df)x

)
= T(g◦f)(x)(N) ⇔

Im (d(g ◦ f)x) = T(g◦f)(x)(N) ⇔ x ∈ R(g ◦ f).

�
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2. The circular Morse-Smale characteristic of closed surfaces

According to [4, Corollary 1.3], γ
S1 (S2) = γ(S2) = 2 and γ

S1 (RP2) = γ(RP2) =
3. Also γ

S1 (Σ1) = γ
S1 (T 2) = 0, as the projection T 2 = S1×S1 → S1 is a submersion

and it has no critical points. More generally, we shall prove the following:

Theorem 2.1. The circular Morse-Smale characteristic of a closed surface Σ 6=RP2 is

γ
S1 (Σ) = |χ(Σ)| (2.1)

2.1. The case of the closed orientable surfaces

In this case we only need to prove Theorem 2.1 for the compact orientable surface
Σg of genus g ≥ 1, as it is obvious for Σ = S2 (see [4, Corollary 1.3]). In this respect
we need:

1. to show that µ(F ) := µ0(F )+µ1(F )+µ2(F ) ≥ 2(g−1) for every circular Morse
function F : Σg −→ S1, where µj(F ) stands for the number of critical of index
j of F and µ(F ) for the total number card(C(F )) of critical points of F ;

2. to produce a circular Morse function on Σg with exactly 2(g− 1) critical points.
In order to do so, we first observe that

2− 2g = µ0(F )− µ1(F ) + µ2(F ). (2.2)

Indeed, by using the Poincaré-Hopf Theorem one obtains

2− 2g = χ(Σg) =
∑

p∈C(F )

indp(∇F ),

where ∇F is the gradient vector field of F with respect to some Riemann metric on
Σg. To finish the proof of relation 2.2, we just need to observe that the index of the
gradient vector field ∇F at a critical point of index one is −1 and the index of ∇F at
the critical points of index zero and two is 1. Indeed the local behavior of F around
the critical points of index one is F = x2− y2 and its gradient behaves locally around
such a point like the vector field (x,−y). The degree of its normalized restriction to
the circle S1 is −1 as the normalized restriction is a diffeomorphism which reverses the
orientation. Similarly, the index of ∇F at a critical point of index zero or two is one
as the local behavior of F around such a critical point is F = x2 +y2 or F = −x2−y2

and its gradient behaves locally around such a point like the vector field (x, y) or
(−x,−y) respectively. The normalized restrictions of these vector fields to the circle
S1 are diffeomorphisms preserving the orientation and their degree is therefore one.
Thus, the relation (2.2) is now completely proved via the Poincaré-Hopf Theorem.

For the second item of the above observation we prove the following

Lemma 2.2. The surface Σg can be suitably embedded into the three dimensional space
R3 \ Oz such that the restriction f

∣∣
Σg

: Σg −→ S1 is a circular Morse function with
exactly 2(g − 1) critical points, where f : R3 \Oz −→ S1 is the submersion given by

f(x, y, z) =
1√

x2 + y2
(x, y, 0).
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2.1.1. The embedding of Σg into R3 \ Oz. Recall that Σ1 = T 2 = S1 × S1 is being
usually identified with the surface of revolution in R3 obtained by rotating a circle
in the plane xOz centered at a point on the x-axis around the z-axis. The radius of
the circle is supposed to be strictly smaller than the distance from the origin to its
center. A certain embedding of the surface Σg in R3, obtained from the one of Σ1 on
which we perform some surgery, will be useful in our approach. However the above
mentioned embedding of Σ1 in R3 has one circle on ’its top’ and one circle on ’its
bottom’, where the Gauss curvature vanishes. The two circles form the critical set of
the height function f~k in the direction of the z-axis, on the embedded copy of T 2 in
R3. Thus, this height function is not a Morse function.

In order to construct our suitable embedding of Σg we need to rotate around
the z-axis a closed convex curve of nonconstant curvature with a unique center of
symmetry, on the x-axis, which lies in the plane xOz and has no overlaps with the
z-axis, rather than a circle with the same properties except the requirement on the
curvature. This curve is also required to contain two segments mutually symmetric
with respect to the x-axis, one on ’its top’ and the other on ’its bottom’. These two
segments form the critical set of the height function f~k restricted to the curve itself.

Instead of rotating a circle within the plane xOz, we consider the embedding of
Σ1 obtained by rotating, around the z-axis a closed convex curve described above. The

� �
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Figure 1. An embedded copy of Σ6 constructed out of an embedded
copy of Σ1

obtained copy of Σ1 is flat on the two annuli A and A′ generated by the two symmetric
segments of the generating curve, which lie in two horizontal parallel planes. Consider
the points p1, . . . pg−1 ∈ A and q1, . . . , qg−1 ∈ A′ such that the lines piqi, i = 1, . . . , g−
1 are vertical, i.e. parallel to the z-axis. In order to obtain a topological copy of the
surface Σg we next remove some small open discs D1, . . . , Dg−1 ⊆ A centered at
p1, . . . pg−1 and D′

1, . . . , D
′
g−1 ⊆ A′ centered at q1, . . . , qg−1 respectively. The radii of

the disks Di and D′
i are supposed to be the same. We next consider suitable planar

curves
γi : [0, 1] −→ cl (B) ∩ πi, i = 1, . . . , g − 1
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such that γi(0) ∈ ∂Di and γi(1) ∈ ∂D′
i, wherepiqi∩xOy = {(xi, yi, 0)}, πi is the plane

parallel to xOz through the point (xi, yi, 0) (i.e. πi : y = yi) and B is the bounded
component of the complement of the embedded copy of Σ1. The curves γi are chosen
in such a way to complete, by their rotation around the axes piqi, the embedded copy
of Σ1 \ [D1 ∪ . . . ∪Dg−1 ∪D′

1 ∪ . . . ∪D′
g−1] up to a smooth embedded copy of Σg.

2.1.2. The cardinality of the set C
(
f
∣∣
Σg

)
and the nondegeneracy of its points. Since

our embedded copy of Σg is constructed out of several surfaces of revolutions, we are
going to investigate the critical set of the restriction of the submersion (1.2) to such
a surface, by using the geometric interpretation coming from Proposition 1.2.

Proposition 2.3. card
(
C(f |Σg

)
)

= 2(g − 1).

Proof. Every surface of revolution Σ around a vertical line of equations x = x0, y = y0
can be parametrized as follows: x = x0 + α(v) cosu

y = y0 + α(v) sinu
z = β(v)

u ∈ (0, 2π), v ∈ [0, 1].

In our considerations the function α is supposed to be strictly positive. Recall that
a point p(u, v) = (x(u, v), y(u, v), z(u, v)) is, according to Proposition 1.3, critical for
the restriction f |Σ if and only if the tangent plane of Σ at p(u, v) contains the fiber
of f through p(u, v), i.e. its equation is y(u, v)x = x(u, v)y. On the other hand the
equation of the tangent plane of Σ at p(u, v) is

(x− x(u, v))α(v)β′(v) cosu+ (y − y(u, v))α(v)β′(v) sinu (2.3)

− α(v)α′(v)(z − z(u, v)) = 0

The two planes are equal, i.e. p(u, v) ∈ C (f |Σ), if and only if{
α(v)β′(v) cosu · x(u, v) + α(v)β′(v) sinu · y(u, v) = 0
α(v)α′(v) = 0,

or equivalently {
x0 cosu+ y0 sinu+ α(v) = 0
α′(v) = 0. (2.4)

The equation x0 cosu+ y0 sinu+ α(v) = 0 is equivalent to cos(u− α) = −α(v)
x0

cosx,
and has two solutions on the interval (−x, 2π−x), where tanx = y0

x0
and x0 is assumed

to be nonzero. Since cosx = x0√
x2
0+y2

0

, the condition |α(v)
x0

cosx| < 1 is equivalent to

α(v) <
√
x2

0 + y2
0 . Up to now we use the fact that x2

0 +y2
0 > 0 several times. Note that

for x0 = y0 = 0 the restriction f |Σ has no critical points at all, as the first equation of
the system (2.4) has no solutions in such a case. In particular the restriction f |Σ1 has
no critical points at all as the embedded copy of Σ1 is a surface of revolution around
the z-axis, i.e. x0 = y0 = 0.

We now recall that piqi ∩ xOy = (xi, yi, 0) and choose

γi : [0, 1] −→ cl (B) ∩ πi, γi(t) = (αi(t), yi, βi(t)).
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such that αi(0) = αi(1), the equations α′i(v) = 0 has one solution in (0, 1), α′′i > 0
and lim

v→0
β′i(v) = −∞, lim

v→1
g′i(v) = +∞. With such choices of the functions αi and βi,

the revolution surfaces of the curves γi around the axes piqi completes the surface
Σ1\ [D1∪ . . .∪Dg−1∪D′

1∪ . . .∪D′
g−1] up to a smooth embedded copy of Σg. Moreover

the restriction of f to each of these revolution surfaces has exactly two critical points.
Thus, the restriction f |Σg

has precisely 2(g − 1) critical points. �

Proposition 2.4. The restriction f |Σg
is a circular Morse function, i.e. its critical

points are nondegenerated. Moreover the critical points of f |Σg
have all index 1.

Proof. The local representations of the restriction f |Σg
have one of the following form:

ϕ(u, v) = x0 + α(v) cosu or ψ(u, v) = y0 + α(v) sinu.

The nodegeneracy of a critical point (u0, v0), via the local representations ϕ or ψ, is
quite obvious as det

(
Hess(u0,v0)ϕ

)
or det

(
Hess(u0,v0)ψ

)
is either

−α(v0)α′′(v0) cos2 u0 − (α′(v0))2 sin2 u0 < 0

or
−α(v0)α′′(v0) sin2 u0 − (α′(v0))2 cos2 u0 < 0

respectively.
Thus the critical point (u0, v0) of the local representation ϕ or ψ of the restriction

f |Σg
is, indeed, non-degenerate of index one. �

Proof of Theorem 2.1 in the orientable case. We only need to treat the case g ≥ 2
as for g ∈ {0, 1} we obviously have γ

S1 (Σ0) = γ
S1 (S2) = γ(S2) = 2 and γ

S1 (Σ1) =
γ

S1 (T 2) = 0. For the inequality γ
S1 (Σg) ≥ 2(g − 1) we just need to use relation (2.2)

that is 2− 2g = µ0(F )− µ1(F ) + µ2(F ) ≥ −µ1(F ), for every circular Morse function
F : Σg −→ S1. This shows that 2(g−1) ≤ µ1(F ) ≤ µ0(F )+µ1(F )+µ2(F ) = µ(F ), for
every circular Morse function F : Σg −→ S1, and the inequality 2(g − 1) ≤ γ

S1 (Σg)
therefore. The opposite inequality is proved by the existence of the circular Morse
function f

∣∣
Σg

which has exactly 2(g − 1) critical points.

Remark 2.5. No real valued Morse function defined on a compact manifold Mm

(m ≥ 2) can merely have critical points of index one, as the global minimum of such
a function has index zero and its global maximum has index m. Thus the restriction
f |Σg

cannot be lifted to any map f̃ : Σg −→ R, i.e. exp ◦f̃ = f and the induced group
homomorphism f∗ : π(Σg) −→ Z = π(S1) is nontrivial therefore.

Proof of Theorem 2.1 in the non-orientable case. In this case we rely on Proposition
1.1 in order to prove the inequality

γ
S1

(
gRP2

)
≥ |χ

(
gRP2

)
|,

for g ≥ 2, where kRP2 stands for the connected sum RP2#RP2# · · ·#RP2 of k copies
of the projective plane. Indeed, by applying Proposition 1.1 to the orientable double
cover

Σg−1 → gRP2
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we obtain successively:

γ
S1

(
gRP2

)
≥ 1

2γS1

(
Σg−1

)
= 1

2 |χ
(
Σg−1

)
|

= 1
2 |2− 2(g − 1)| = |2− g| = |χ

(
gRP2

)
|.

For the opposite inequality we first recall that

f : RP2 −→ R, f([x1 , x2 , x3 ]) =
x2

1 + 2x2
2 + 3x2

3

x2
1 + x2

2 + x2
3

,

is a perfect Morse function with exactly three critical points of indices 0, 1, 2, i.e a
minimum point p, a maximum point q and a saddle point s. If ε > 0 is small enough,
then the inverse images D := f−1(−∞, f2(p)+ε) and D′ := f−1(f(q)−ε,∞) are open
disks and the inverse image f−1[f(p) + ε, f(q) − ε] = RP2 \ (D1 ∪D2) is a compact
surface with two circular boundary components f−1(f(p) + ε) and f−1(f(q) − ε).
Observe that the restriction

f
∣∣
RP2\(D∪D′)

: RP2 \ (D1 ∪D2) −→ [f(p) + ε, f(q)− ε]

has one critical point of index one, i.e the saddle point s. We next glue successively g
copies of RP2 \ (D ∪D′), say

M1 :=RP2\(D1∪D′
1), . . . ,Mg :=RP2\(Dg ∪D′

g),

along the circular boundaries

∂D′
i := f−1

i (fi(q)− ε)⊂Mi and ∂Di+1 := f−1
i+1(fi+1(p) + ε) ⊂Mi+1

of
D′

i := f−1
i (fi(q)− ε,∞) and Di+1 := f−1

i+1(−∞, fi+1(p) + ε),
where

fi := f + iL : RP2 −→ R, (i = 1, . . . , g − 1)
and

L := length([f(p) + ε, f(q)− ε]) = f(q)− f(p)− 2ε.
The obtained surface is gRP2 \ (D1 ∪D′

g). Note that fi is a Morse function with one
saddle point which is constant on each of the circular boundaries ∂Di = f−1

i (fi(p)+ε)
and ∂D′

i = f−1
i (fi(q) − ε) of Mi. Moreover, the equalities fi

∣∣
∂D′

i

= fi+1

∣∣
∂Di+1

hold
for every i = 1, . . . , g − 1, which shows that the function

F : gRP2 \ (D1 ∪D′
g) −→ R, F

∣∣
Mi

:= fi

is well defined. In fact, F is a Morse function with g saddle points which is constant
on the circle boundaries

∂D1 = f−1
1 (f1(p) + ε) ⊂M1 and ∂D′

g = f−1
g (fg(q)− ε) ⊂Mg.

Identifying the circle boundaries ∂D1 and ∂D′
g of gRP2 \ (D1 ∪ D′

g), via a suitable
diffeomorphism ϕ : ∂D1 −→ ∂D′

g, we get the non-orientable surface (g + 2)RP2.
Identifying minF with maxF in Im(F ) we obtain the circle S1. Also, the Morse
function

gRP2 \ (D1 ∪D′
g) −→ Im(F ), x 7→ F (x)
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descends to a circular Morse function

f0 : (g + 2)RP2 =gRP2 \ (D1 ∪D′
g)
/
{x = ϕ(x)}→S1 =Im(F )

/
{minF = maxF}

with g saddle points. This shows that the inequality γ
S1

(
(g + 2)RP2

)
≤ g holds for

all g ≥ 1.
Therefore, we provided the second proof of Theorem 2.1 in the non-orientable

cases gRP2 with g ≥ 3. On the other hand the Klein Bottle 2RP2 is a fibration over
S1 with fiber S1, which shows that γ

S1

(
2RP2

)
= 0 = |χ(2RP2)|. �

3. On the number of characteristic points

The horizontal distribution of the first Heisenberg group H1 = (R3, ∗) is H =
span(X,Y ) = {Hp := span(Xp, Yp)}p∈H1 , where X = ∂x + 2yi∂t and Y = ∂y − 2x∂t.
Let us consider a surface S ⊆ R3 which is C1 smooth. The characteristic set [5, 6] of
S with respect to H is defined as

C(S,H) := {p ∈ S : TpS = Hp}.

Definition 3.1. If S is a C1 smooth surface which can be embedded into R3, then the
minimum characteristic number of S relative to H on R3 is defined as

mcn(S,H) := min{card (C(f(S),H)) : f ∈ Embed(S,R3)},

where Embed(S,R3) stands for the set of all embeddings of S into R3.

Theorem 3.2. If g ≥ 2, then 2g − 2 ≤ mcn(Σg,H) ≤ 4g − 4.

For the lower bound 2g − 2 of mcn(Σg,H) we refer the reader to [4] and for the
upper bound 4g − 4 we need to construct an embedding of Σg in R3 with 4g − 4
characteristic points with respect to the horizontal distribution of the first Heisenberg
group H1 = (R3, ∗). In this respect we shall use the possibility to embed Σ1 in R3 as a
revolution surface and construct a suitable embedding of Σg out of Σ1 by performing
some surgery on Σ1. The handles we plan to glue are surfaces of revolution as well.
In fact, we shall use the embedding of Σg described in the previous section. Therefore
we need to investigate the size of the characteristic sets of revolution surfaces S ⊂ R3

with respect to the horizontal distribution of the first Heisenberg group H1 = (R3, ∗).

3.1. Revolution surfaces in H1 with low number of horizontal points

Every revolution surface S obtained by rotating a plane curve x = α(v), z = v (α > 0)
around the vertical line x = x0, y = y0 admits a local parametrization of type

x = x0 + α(v) cosu
y = y0 + α(v) sinu
z = v

, u ∈ I, v ∈ J,

where I is an open interval of length 2π and J will be symmetric with respect to the
origin, i.e. J = (−a, a). The function f is subject to the following requirements:

α is bounded , α′′ > 0 and lim
v→±a

α′(v) = ±∞. (3.1)
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The vector equation of our revolution surface is

~r = (x0 + α(v) cosu)∂x + (x0 + α(v) sinu)∂y + v∂t

and
~ru = −(α(v) sinu)∂x + (α(v) cosu)∂y

~r
v

= (α′(v) cosu)∂x + (α′(v) sinu)∂y + ∂t

~r
u
∧ ~r

v
= (α(v) cosu)∂x + (α(v) sinu)∂y − α(v)α′(v)∂

t
.

On the other hand the horizontal vector fields of the distributionH are X = ∂x+2y∂t ,
Y = ∂y − 2x∂t and their vector product is

X ∧ Y = −2y∂
x

+ 2x∂
y

+ ∂
t
.

Thus, the point r(u, v) := (x(u, v), y(u, v), z(u, v)) ∈ S is a horizontal point if and
only if the vectors ~r

u
∧ ~r

v
, X ∧ Y are linearly dependent at r(u, v), i.e.

sinu + 2α(v)α′(v) cosu = −2x0α
′(v)

2α(v)α′(v) sinu − cosu = −2y0α′(v).

Thus

sinu = −2α′(v)
x0 + 2y0α(v)α′(v)
1 + 4α2(v)(α′(v))2

cosu = −2α′(v)
2x0α(v)α′(v)− y0
1 + 4α2(v)(α′(v))2

.

(3.2)

Remark 3.3. No revolution surface around the z-axis has H-tangency points, as the
equations (3.2) have no solutions at all for x0 = y0 = 0.

The identity sin2 u+ cos2 u = 1 leads us to the equation

(α′(v))2 =
1

4 (||(x0, y0)||2 − α2(v))
, (3.3)

which has at least two solutions on the interval J = (−a, a), as the right hand side of
(3.3) is bounded and (α′)2 covers the positive real half line [0,∞) twice, once on the
interval (−a, o] and once on the interval [0, a). For suitable choices of the function α,
the equation (3.3) has precisely two solutions. Such a choice is

α(v) = 2−
√

2− v2

2
(3.4)

for a =
√

2 and ||(x0, y0)|| = 3. Indeed, for the choice (3.4) of the function α the
equation (3.3) becomes:

4v2
√

2(2− v2) = −v4 − 9v2 + 2. (3.5)

Note that the equation (3.5) has precisely two solutions, as can be easily checked.
Proof of Theorem 3.2. The closed convex curve in the plane xOz described at the
beginning of the section (2.1.1) is supposed to have its unique center at the point
(3, 0, 0). The coordinates of the points pi and qi have the forms (xi, yi, zi) and
(xi, yi,−zi) respectively, for i = 1, . . . , g − 1. Moreover ||(xi, yi)||2 := x2

i + y2
i = 3
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for all i = 1, . . . , g − 1. The handles we use within our surgery process are revolution
surfaces around the vertical lines x = xi, y = yi of parametrized equations

x = xi + α(v) cosu
y = yi + α(v) sinu
z = v

, u ∈ I, v ∈ J,

We denote by vi and v′i the roots of the equations

(α′(v))2 =
1

4(||(xi, yi)||2 − α2(v))
, (3.6)

with the choice (3.4) for the function f . The equations which corresponds to (3.2)
sinu = −2α′(vi)

xi + 2yiα(vi)α′(vi)
1 + 4α2(vi)(α′(vi))2

cosu = −2α′(vi)
2xiα(vi)α′(vi)− yi

1 + 4α2(vi)(α′(vi))2
,

(3.7)


sinu = −2α′(v′i)

xi + 2yiα(v′i)α
′(v′i)

1 + 4α2(v′i)(α′(v
′
i))2

cosu = −2α′(v′i)
2xiα(v′i)α

′(v′i)− yi

1 + 4α2(v′i)(α′(v
′
i))2

.

(3.8)

Since the graphs of the sine and cosine functions on each interval of length 2π are
intersected at most twice by any straight line parallel to the u-axis, it follows that the
equations (3.7) as well as (3.8) have at most two roots for each i = 1, . . . , g−1. On the
other hand the surface Σg embedded in H1 the way described right after Theorem 3.2
has no other H-characteristic points. Indeed, on the two annuli A and A′ the tangent
planes to Σg are parallel to the xOy plane, a parallelism relation which happens for
the planes of the distribution H just along the z-axis. This shows that Σg, embedded
in R3\Oz as described before, has no extra characteristic points as two annuli have no
common points with the z-axis. The remaining part of our embedded Σg is completely
contained in Σ1 which is, in its turn, a revolution surface around the z-axis and has
no H-tangency points, as we saw in Remark 3.3. Thus, our embedded surface Σg has
at most 4(g − 1) H-tangency points. �
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1. Introduction

In the following lines, we will present some well known results about Bézier
curves.

A Bézier curve is defined using the classical Bernstein polynomials, in the fol-
lowing way:

P (t) =
n∑

i=0

Bi,n(t)pi (1.1)

where pi with i = 0, n, represent the control points attached to Bézier curve and

Bi,n(t) =
(

n

i

)
ti(1− t)n−i

with t ∈ [0, 1] represent the Bernstein polynomials.
A cubic Bézier curve can be obtained for n = 3 and have the following form:

P (t) =
(

3
0

)
(1− t)3p0 +

(
3
1

)
t(1− t)2p1 +

(
3
2

)
t2(1− t)p2 +

(
3
3

)
t3p3

or, for short:

P (t) = (1− t)3p0 + 3t(1− t)2p1 + 3t2(1− t)p2 + t3p3
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A rational Bézier curve is given by:

x(t) =
w0p0B0,n(t) + ... + wnpnBn,n(t)

w0B0,n(t) + ... + wnBn,n(t)
(1.2)

Here, wi with i = 0, n represent the weights of the control points pi. We can rewrite
(1.2) in the following way:

x(t) =

n∑
i=0

wipiBi,n(t)

n∑
i=0

wiBi,n(t)

(1.3)

The authors of paper [6], H. Liu, L. Li and Z. Daming, have replaced the classical
Bernstein base of the cubic Bézier curve with a new one which has 2 parameters λ
and µ.

The trigonometric base choosed by the authors of paper [6] for the cubic TC
Bézier curve, is: 

B0,3(t) = 1− (1 + λ) sin t + λ sin2 t

B1,3(t) = (1 + λ) sin t− (1 + λ) sin2 t

B2,3(t) = (1 + µ) cos t− (1 + µ) cos2 t

B3,3(t) = 1− (1 + µ) cos t + µ cos2 t

(1.4)

where t ∈
[
0, π

2

]
and λ, µ ∈ [−1, 1].

Other results concerning classical and trigonometric Bézier curves are obtained
in the following papers:[1], [2], [3], [4], [5], [7] and [8].
Next, we will present some important results obtained in paper [6].

Theorem 1.1. ([6]) The basis functions (1.4) have the following properties:
(1) Nonnegativity and partition of unity: Bi,3(t) ≥ 0, i ∈ {0, 1, 2, 3}.
(2) Monotonicity: For a given parameter t, B0,3(t) and B3,3(t) are monotonically
decreasing for the shape parameters λ and µ; respectively; B1,3(t) and B2,3(t) are
monotonically increasing for the shape parameters λ and µ; respectively;
(3) Symmetry: Bi,3(t;λ, µ) = B3−i,3(π

2 − t;λ, µ) for i = 0, 3.

Definition 1.2. ([6]) Given points pi, (i = 0, 3) in R2, R3, then

r(t) =
3∑

i=0

piBi,3(t) (1.5)

t ∈
[
0, π

2

]
; λ, µ ∈ [0, 1], is called a cubic trigonometric Bézier curve with two shape

parameters, i.e. the TC-Bézier curve for short.

Theorem 1.3. ([6]) (partial enounce) The cubic TC-Bézier curves (1.5) have the fol-
lowing properties:
(1) Terminal properties:{

r(0) = p0

r
(

π
2

)
= p3;

{
r′(0) = (1 + λ)(p1 − p0)
r′
(

π
2

)
= (1 + µ)(p3 − p2);
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r′′(0) = 2λp0 − 2(1 + λ)p1 + (1 + µ)p2 + (1− µ)p3

r′′
(

π
2

)
= (1− λ)p0 + (1 + λ)p1 − 2(1 + µ)p2 + 2µp3;

(2) Symmetry: p0, p1, p2, p3 and p3, p2, p1, p0 define the same TC-Bézier curve in dif-
ferent parametrizations.
(3) Convex hull property: The entire TC-Bézier segment must lie inside its control
polygon spanned by p0, p1, p2, p3.

For more details on TC-Bézier curves, please see [6].

2. Main results

Using the TC-Bézier curve presented before in this paper, we can introduce the
cubic rational TC-Bézier curves, as follows:

r(t) =

3∑
i=0

wipiBi,3(t)

3∑
i=0

wiBi,3(t)

(2.1)

with λ, µ ∈ [−1, 1] and wi are the weights of the control points pi with i = 0, 3 and
Bi,3(t) represent the trigonometric basis introduced in (1.4).

We can rewrite (2.1) in the following way:

r(t) = (1−(1+λ) sin t+λ sin2 t)w0p0+(1+λ)(sin t−sin2 t)w1p1+(1+µ)(cos t−cos2 t)w2p2+(1−(1+µ) cos t+µ cos2 t)w3p3
(1−(1+λ) sin t+λ sin2 t)w0+(1+λ)(sin t−sin2 t)w1+(1+µ)(cos t−cos2 t)w2+(1−(1+µ) cos t+µ cos2 t)w3

where λ, µ ∈ [−1, 1], t ∈
[
0, π

2

]
.

Theorem 2.1. The curvature in t = 0 for the rational TC-Bézier curve (2.1), is:

K(0) =
(

1 + µ

1 + λ

)
w0

w2
1

(
w3

‖p0p1 × p0p3‖
‖p0p1‖3 − w2

‖p0p1 × p0p2‖
‖p0p1‖3

)
Proof. We start with r(t) defined in (2.1). After tedious computations for r′(t) and
r′′(t), one obtains for t = 0, the following result:

r′(0) = −w1

w0
(p0λ− p1λ + p0 − p1) = −(λ + 1)

w1

w0
p0p1

Then, we obtain:

r′′(0) = − 1
w2

0

[w0w2(1 + µ)p0p2−

−2
(
w2

1 + 2w2
1λ + w2

1λ
2 − w0w1λ− w0w1λ

2
)
p0p1 − w0w3(1 + µ)p0p3]

From the curvature definition, for t = 0, we know that:

K(0) =

∥∥∥r′(0)× r′′(0)
∥∥∥∥∥∥r′(0)

∥∥∥3
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Now, we compute:

r′(0)× r′′(0) = −λ2 w1

w3
0

[w0w2(1 + µ)(p0p1 × p0p2 − w0w3(1 + µ)(p0p1 × p0p3)] =

λ2 w1

w2
0

[w3(p0p1 × p0p3)− w2(p0p1 × p0p2)]

Also, one obtains: ∥∥∥r′(0)
∥∥∥3

= λ3 w3
1

w3
0

‖p0p1‖3

Finally, we get:

K(0) =
λ2 w0w1

w3
0

[w3(1 + µ) ‖p0p1 × p0p3‖ − w2(1 + µ) ‖p0p1 × p0p2‖]

λ3 w3
1

w3
0
‖p0p1‖3

=
(

1 + µ

1 + λ

)
w0

w2
1

(
w3

‖p0p1 × p0p3‖
‖p0p1‖3 − w2

‖p0p1 × p0p2‖
‖p0p1‖3

)
and this complete the proof. �

Remark 2.2. For the particular case, when we have the same weights w0 = w1, one
obtains one of the well known results from Theorem 1.3, which was:

r′(0) = (1 + λ)(p1 − p0).

Next, we will reparametrizate the TC-Bézier rational curve and we take t = arcsin (u)
with t ∈ [0, 1] ⊂

[
0, π

2

]
.

After reparametrization, we get:

r(t) = (1−(1+λ)u+λu2)w0p0+(1+λ)(u−u2)w1p1+(1+µ)(
√

1−u2−1+u2)w2p2+(1−(1+µ)
√

1−u2+µ(1−u2))w3p3

(1−(1+λ)u+λu2)w0+(1+λ)(u−u2)w1+(1+µ)(
√

1−u2−1+u2)w2+(1−(1+µ)
√

1−u2+µ(1−u2))w3
(2.2)

Remark 2.3. For λ = µ = 1, in the above expression (2.2), one obtains the following
TC-Bézier rational curve:

r(t) = (1−u)2w0p0+2(u−u2)w1p1+2(
√

1−u2−1+u2)w2p2+(1−
√

1−u2)2w3p3

(1−u)2w0+2(u−u2))w1+2(
√

1−u2−1+u2)w2+(1−
√

1−u2)2w3
(2.3)

Theorem 2.4. The hodograph of the TC-Bézier rational curve (2.3), for u = 0, is

2
w1

w0
(p1 − p0).

Proof. We start with the above expression of the TC-Bézier rational curve (2.3), and
we compute:

r′(u) =
−2(1−u)w0p0+(2−4u)w1p1+

(
− 2u√

(1−u2)
+4u

)
w2p2+

2(1−
√

1−u2)w3p3u√
1−u2

(1−u)2w0+(2u−2u2)w1+(2
√

1−u2+2u2−2)w2+(1−
√

1−u2)2w3

− (1−u)2w0p0+(2u−2u2)w1p1+(2
√

1−u2+2u2−2)w2p2+(1−
√

1−u2)2w3p3

(1−u)2w0+(2u−2u2)w1+(2
√

1−u2+2u2−2)w2+(1−
√

1−u2)2w3
·

·
(
−2(1− u)w0p0 + (2− 4u)w1p1 +

(
− 2u√

(1−u2)
+ 4u

)
w2p2 + 2(1−

√
1−u2)w3p3u√
1−u2

)



About a class of rational TC-Bézier curves 501

Replacing in the above expression u = 0, we get:

2
w1

w0
(p1 − p0). (2.4)

and this end the proof of the theorem. �

Remark 2.5. The hodograph of the classical rational Bézier curve for u = 0 is

3
w1

w0
(p1 − p0),

and this is a closed result obtained by us in (2.4).

Conclusion. In this paper we proved that the two shape parameters of one TC-Bézier
rational curve have a key role when we compute the curvature of the curve. The
computation of the torsion for this class of TC-Bézier rational curve is not an easy
task. In a future paper we will try to continue our investigations on TC-Bézier rational
curves.

References

[1] Farin, G.E., Curves and surfaces for computer-aided geometric design: a practical code,
Academic Press Inc., 1996

[2] Han, X., Quadratic trigonometric polynomial curves with a shape parameter, Computer
Aided Geometric Design, 19(7)(2002), 479-502.

[3] Han, X., Cubic Trigonometric Polynomial Curves with a Shape parameter, Computer
Aided Geometric Design, 21(6)(2004), 535-548.

[4] Han, X., C2 Quadratic trigonometric polynomial curves with local bias, Journal of Com-
putational and Applied Math., 180(1)(2005), 161-172.

[5] Han, X., Ma, Y., Huang, L., The cubic trigonometric Bézier curve with two shape pa-
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1. Introduction

The Rössler dynamical system [12] has been widely investigated over the last
years, mainly from the chaotic dynamics perspective. In this work we are concerned
with the analysis of the conservative properties of this system. Among the studied
topics related to the conservative properties of the Rössler dynamical system, one can
mention various types of integrability, namely Darboux integrability ([8], [13]), formal
and analytic integrability [7], the description of the global dynamics in the Poincaré
sphere [6] and a dynamical analysis from the Hamiltonian point of view [14].

The aim of this work is to analyze further the Rössler dynamical system from
the stability theory point of view. More exactly, we present a method to associate
to each Lyapunov stable equilibrium state of the Rössler system, a special type of
dissipative system in such a way that each Lyapunov stable equilibrium state of the
Rössler system generates a one dimensional attracting neighborhood for the dissipa-
tive system.

The structure of the paper is as follows. In the second section of this work, we
recall from [14] the geometric framework adopted in our study, namely a Hamiltonian
realization of the Rössler system. In the third section of the paper we recall from [14]
the main results regarding the Lyapunov stability analysis of the equilibrium states
of the Rössler system. In the fourth section, we recall the definition of a metriplectic
system and construct explicitly a metriplectic perturbation associated to the Rössler
system. The metriplectic perturbation of the Rössler system, prove to have all the
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equilibrium states of the Rössler system. The last part of the paper contains the main
results, namely it describes explicitly the method of associating, to each Lyapunov
stable equilibrium state of the Rössler system, a special type of metriplectic system,
in such a way that each Lyapunov stable equilibrium of the unperturbed system
generates a one dimensional attracting neighborhood for the dissipative system.

For details on Hamiltonian dynamics, and respectively metriplectic dissipative
systems, see, e.g. [1], [2], [11], [3], [4], [9].

2. Setting of the problem from the Poisson geometry point of view

As the purpose of this paper is to study a special type of perturbations of a
Hamiltonian system from the Poisson dynamics and geometry point of view, the first
step in this approach is to prepare the geometric framework of the problem. The
results from this chapter are from [14].

The Rössler system we consider for our study, is governed by the equations: ẋ = −y − z
ẏ = x
ż = xz.

(2.1)

Note that in the article [13] it is proved that the above system it is the only case when
the Rössler system it is completely integrable.

Let us recall now some results from [14] concerning the geometric framework of
the problem. The following proposition from [14] provides a Hamiltonian formulation
of the Rössler system on an appropriate Poisson manifold.

Theorem 2.1. The dynamics (2.1) admit the following Hamilton-Poisson realization:

(R3, νΠC ,H) (2.2)

where

ΠC(x, y, z) =

 0 e−y ze−y

−e−y 0 0
−ze−y 0 0


is the Poisson structure generated by the smooth function C(x, y, z) := ze−y, the
rescaling ν is given by ν(x, y, z) = −ey, and the Hamiltonian H ∈ C∞(R3, R) is given

by H(x, y, z) :=
1
2
(x2 + y2) + z.

Note that, by Poisson structure generated by the smooth function C, we mean
the Poisson structure generated by the Poisson bracket

{f, g}C := ∇C · (∇f ×∇g),

for any smooth functions f, g ∈ C∞(R3, R).

Next remark from [14] provides a class of first integrals for all the Hamiltonian
dynamical systems modeled on the Poisson manifold (R3, νΠC).

Remark 2.2. By definition we have that the center of the Poisson algebra
(C∞(R3, R), {·, ·}C) is generated by the Casimir invariant C(x, y, z) = ze−y.
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3. Equilibrium states and Lyapunov stability

In this short section, we recall some results from [14] regarding the Lyapunov
stability of the equilibrium states of the Rössler system (2.2). As our main purpose is
to perturb the Rössler system in such a way that, each Lyapunov stable equilibrium
of the unperturbed system, turnes to an asymptotically stable equilibrium for the
perturbed system, we do not consider here the unstable equilibrium states of the
unperturbed system.

Note that the set of equilibrium states of the Rössler system is given by

E := {(0,−M,M) : M ∈ R}.
Let us recall from [14], the following theorem describing the stability properties of the
equilibrium states of the Rössler system.

Theorem 3.1. Let eM = (0,−M,M) ∈ E be an arbitrary equilibrium state of the
Rössler system (2.1). The equilibrium eM ∈ E is Lyapunov stable for M > −1 and
unstable for M ≤ −1.

Proof. See [14]. �

4. Metriplectic perturbations of the system (2.2)

The purpose of this section is to associate to the Rössler system (2.2), a class
of metriplectic systems (parameterized by a smooth real function ϕ ∈ C∞(R, R))
in such a way that the equilibrium states of the Hamilton-Poisson system (2.2) are
also equilibrium states for all the associated metriplectic systems. By metriplectic
system we mean a dynamical system consisting of a compatible pair consisting of a
conservative system (modeled by a Hamiltonian system), together with a dissipative
(nonconservative) system (modeled by a gradient system with respect to a symmetric
tensor G). For details regarding the properties of metriplectic systems, see e.g. [10], [3].

Let us give first the definition of a general metriplectic perturbation of a Hamil-
tonian system on the Poisson manifold (R3, νΠC).

Definition 4.1. A metriplectic perturbation of a Hamiltonian system on (R3, νΠC) is
a dynamical system of the type:

u̇ = ν(u)ΠC(u) · ∇H(u) + G(u) · ∇(ϕ ◦ C)(u), uT = (x, y, z) ∈ R3,

where ν, H, C ∈ C∞(R3, R), C(x, y, z) = ze−y, ν(x, y, z) = −ey, G is a symmetric
covariant tensor, and ϕ ∈ C∞(R, R), such that the following compatibility conditions
hold:
(i) G · ∇H = 0̄,
(ii) (∇(ϕ ◦ C))T ·G · ∇(ϕ ◦ C) ≤ 0.

Let us now construct a metriplectic perturbation of the Rössler system (2.2).
In order to do that, we associate to the Hamiltonian H ∈ C∞(R3, R), H(x, y, z) =
1
2
(x2+y2)+z, of the system (2.2), a second order covariant symmetric tensor, given by
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G = ∇H⊗∇H−‖∇H‖2 Id, in order to get a candidate for a metriplectic perturbation
of the system (2.2).

Note that, in coordinates:

G(x, y, z) =

 −y2 − 1 xy x
xy −x2 − 1 y
x y −x2 − y2

 .

Next proposition gives a family of metriplectic perturbations of the Rössler system,
parameterized by a smooth real function ϕ ∈ C∞(R, R).

Proposition 4.2. The system:

u̇ = ν(u)ΠC(u) · ∇H(u) + G · ∇(ϕ ◦ C)(u), uT = (x, y, z), (4.1)

is a metriplectic perturbation of the Rössler system, where ν, H, C ∈ C∞(R3, R) are

given by ν(x, y, z) = −ey, H(x, y, z) =
1
2
(x2 + y2) + z, and respectively C(x, y, z) =

ze−y.

Proof. In order to obtain the conclusion, we need to check the condition (i) and
respectively (ii) from the above definition. The condition (i) follows by straightforward
computations. To verify the condition (ii), note that:

(∇(ϕ ◦ C)(x, y, z))T ·G(x, y, z) · ∇(ϕ ◦ C)(x, y, z) =

= −
[
ϕ′

(
ze−y

)]2 · e−2y
[
x2 + x2z2 + (y + z)2

]
≤ 0.

�

Before analyzing the equilibrium states of the metriplectic system, let us write
the system in coordinates.

Remark 4.3. The metriplectic system (4.1) is given in coordinates by: ẋ = −y − z + ϕ′ (ze−y) · xe−y(1− yz),
ẏ = x + ϕ′ (ze−y) · e−y(y + z + x2z),
ż = xz − ϕ′ (ze−y) · e−y(x2 + y2 + yz).

(4.2)

Next remark gives a relation between the equilibrium states of the Hamilton-
Poisson system (2.2) and the associated metriplectic perturbation (4.1).

Remark 4.4. All of the equilibrium states of the Rössler system (2.2) are also equilib-
rium states for the perturbed metriplectic system (4.1), for any smooth real function
ϕ ∈ C∞(R, R).

5. Asymptotically stabilizing the metriplectically perturbed system

The aim of this section is to discuss the asymptotic stability of some special
equilibrium states of the metriplectic system (4.1). In the previous section we ob-
tained that for any smooth real function ϕ ∈ C∞(R, R), all the equilibrium states
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of the Rössler system (2.1) are also equilibrium states of his metriplectic perturba-
tion (4.1). The aim of this section is to make use of this important property in order
to metriplectically perturb the Rössler system in such a way that each Lyapunov
stable equilibrium of the unperturbed system, generates a one-dimensional attracting
neighborhood for the associated metriplectically perturbed system.

Before stating the main results of this paper, let us recall the principle of
LaSalle [5].

Theorem 5.1. Let x0 ∈ Rn be an equilibrium state of the dynamical system ẋ = f(x),
where f ∈ C∞(Rn, Rn), and let U be a compact neighborhood around x0. Suppose
there exists L : U → R a C1 function with L(x) > 0 for x 6= x0, L(x0) = 0 and
L̇(x) ≤ 0. Let E := {x ∈ U : L̇(x) = 0} and M ⊂ E be the largest dynamically
invariant subset of E. Then there exists V ⊂ U a neighborhood of x0 such that the
ω-limit set ω(x) ⊂ M for all x ∈ V .

Let us now state the main result of this article.

Theorem 5.2. Let eM ∈ E be a Lyapunov stable equilibrium state of the Rössler
systems (2.1), and respectively (4.1). Then there exists a smooth function ϕeM

∈
C∞(R, R), a compact neighborhood K around eM and a neighborhood U ⊂ K such
that any solution of the metriplectic system (4.1) (corresponding to ϕeM

) starting in
U approaches K ∩ E.

Proof. Let eM = (0,−M,M) ∈ E be a Lyapunov stable equilibrium state of the
Rössler system (2.1). Recall from Theorem (3.1) that eM is a Lyapunov stable equi-
librium state for the system (2.1) if and only if M > −1. Recall that eM it is also
an equilibrium state for the system (4.1) for any smooth real function ϕ. In order to
prove the theorem, we construct a Lyapunov type function that verifies the hypothesis
of LaSalle’s principle. Let

(x, y, z) ∈ R3 7→ LϕeM
(x, y, z) =

1
2
(x2 + y2) + z + ϕeM

(
ze−y

)
∈ R

be a smooth real function, where ϕeM
∈ C∞(R, R) is given by

ϕeM
(t) = e−2M · M + 2

M + 1
· t2

2
− e−M ·

[
M(M + 2)

M + 1
+ 1

]
· t.

Using these functions, we construct a candidate for a Lyapunov type function
that verifies LaSalle’s principle.

Let LeM
∈ C∞(R3, R) be the smooth function given by

LeM
(x, y, z) = LϕeM

(x, y, z)− LϕeM
(0,−M,M).

Note that the condition LeM
(eM ) = 0 is automatically satisfied, and also we have

that dLeM
(eM ) = 0. Hence, to check the first condition of LaSalle’s principle, i.e.,

LeM
(x, y, z) > LeM

(eM ) = 0, locally for (x, y, z) 6= eM = (0,−M,M), it is enough to
prove that d2LeM

(eM ) is positive definite.
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This is true indeed, because

d2LeM
(eM ) =

 1 0 0
0 M2 + (M + 1)−1 1−M(M + 2)(M + 1)−1

0 1−M(M + 2)(M + 1)−1 (M + 2)(M + 1)−1


is positive definite, since M > −1.

To check the last condition of LaSalle’s principle we compute first L̇eM
.

L̇eM
(x, y, z) = [∇H(x, y, z) +∇(ϕeM

◦ C)(x, y, z)]T (ẋ, ẏ, ż)T

= [∇H(x, y, z) +∇(ϕeM
◦ C)(x, y, z)]T [ν(x, y, z)ΠC(x, y, z)∇H(x, y, z)

+ G(x, y, z)∇(ϕeM
◦ C)(x, y, z)]

= −
[
ϕ′eM

(
ze−y

)]2 · e−2y ·
[
x2 + x2z2 + (y + z)2

]
≤ 0.

Using the above relation and the analytic expression of ϕ′eM
, we get that

EeM
:= {(x, y, z) ∈ R3 | L̇eM

(x, y, z) = 0} = E ∪ ΣM ,

where ΣM :=
{
(x, y, z) ∈ R3 | ze−y = eM [M + (M + 1)(M + 2)−1]

}
is a symplectic

leaf of the Poisson manifold (R3, νΠC), and consequently a dynamically invariant set.
Hence, the largest dynamically invariant subset MeM

⊆ EeM
coincides with EeM

.
Now the conclusion follows from LaSalle’s principle together with the remark that
eM = (0,−M,M) ∈ E . �
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1. Introduction

Operads are algebraic structures that model various kinds of algebras such as
commutative, associative, Lie, Poisson, etc. They were introduced by J. P. May in [9]
as a tool to study the algebraic structures inherent in iterated loop spaces. May’s work
was continued by J. M. Boardman and R. M. Vogt on homotopy invariant algebraic
structures in topological spaces, where operads played a central role. Starting from
the nineties, operads had their renaissance, due to the works of M. Kontsevich on
graph homology, of Ginzburg an Kapranov on generalized Koszul duality, and of P.
Deligne on the structure of Hochschild cohomology among others (see [6, 4]).

In the literature there are mainly two equivalent definitions of operads that are
used: the first one is the classical definition of May ([9]), and the second is the “◦i-
definition”, that also appears in the reference book of M. Markl, S. Shnider and J.
Stasheff ([8]). It is folklore that these two definitions are equivalent (and an outline
of the proof can be found in [8]).

If one examines any of these two definitions of operads, one can see that the role
of the natural numbers is to keep track of the arity of the abstract operations as well as
to label the inputs of these operations. This approach has certain disadvantages which
become apparent when we compose two abstract operations. For example, to get the
labels of the resulting operation right, one has to adjust the labels of the composed
operations accordingly. This adjustment gives rise to not wanted technicalities in
many cases, for instance when proving that something is an operad: one will need to
use block permutations to prove equivariance and associativity for example.

A possible remedy to this problem can be given by labeling our operations in
P with finite sets, and when a composition occurs just take the disjoint union of the
reoccurring labels for the new operation. This approach has been used in the past for
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example by V. Hinich and A. Vaintrob in [5]. They credit P. Deligne and J. S. Milne
for the formalism (see [2]). The “finite pointed sets” approach to operads was used
also by P. van der Laan in his thesis [7]. None of these sources prove that the finite
pointed set approach to operads is equivalent to the classical one.

The aim of this paper is to prove that the definition of operads in terms of finite
pointed sets is equivalent to the classical definitions.

The paper is organised as follows. In Section 2 we describe operads intuitively.
The goal here is to have a picture about operads in general, hence the technical details
are omited (although the ◦i-definition of operads in symmetrical monodal categories
appears in all detail as a consequence of our constructions in Section 4). The reader
interested in the technical details can find these in the work of J. P. May ([9]) and in
the reference book of M. Markl, S. Shnider and J. Stasheff ([8]). In Section 3 we define
operads in terms of finite pointed sets. In Section 4 we prove that this definition is
equivalent to the definition in terms of the ◦i operations, hence to any of the two
classical definitions, in the categorical sense.

2. An intuitive description of operads

Intuitively, an operad in the classical sense consists of a “space”(vector space
over a field k, topological space, or more generally, an object in a symmetric monoidal
category) P (n) together with a right action of the symmetric group Σn on P (n) for
every n ∈ N, an identity element id ∈ P (1) and composition maps

◦i : P (n)⊗ P (m) −→ P (n + m− 1), i = 1, 2, . . . , n

for all n and m. The nature of the axioms this data has to satisfy comes from the
intuition that the space P (n) is thought of as a space of operations with n inputs and
one output:

1

MMMMMMMMMMMM 2

<<
<<

<<
<< ...

n−1

��
��

��
�� n

qqqqqqqqqqqq

•p∈P (n)

The action of the groups Σn permutes the inputs and the composition p ◦i q of two
operations gives a new operation by using the output of q as the i-th input of p. This
operation can be visualised as grafting the tree for q on the i-th leaf of the tree for p:
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The unit id ∈ P (1) can be thought of as an operation which takes one input and gives
it back as output.

The axioms that the operad P has to satisfy are the formal consequences of
the above intuition. In fact, the intuition can be made to a rigourous example of an
operad: if the underlying category is the category of vector spaces over a field k and
if V is such a vector space, define

EndV (n) := Vectk(V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

, V )

and follow the description above to define the rest of the structure. This operad is
called the endomorphism operad on V . It has a prominent role in the theory of oper-
ads not only because it models the abstract definition of operads, but also because it
can “realize” on the space V the algebraic structure encoded in an operad P . To be
more precise, note that any map of operads α : P −→ EndV takes an “abstract” n-ary
operation of P (n) to a “concrete” n-ary operation V ⊗ · · · ⊗ V −→ V and the vari-
ous compatibility conditions for α impose algebraic relations between these concrete
operations on the EndV side. For particular operads in Vectk one can describe in this
way various kinds of k-algebras (e.g. associative, commutative, Lie, Poisson, Leibnitz,
etc). This provides a justification for the following terminology: in the literature a
vector space V together with an operad map α : P −→ EndV is called a P -algebra.

A rigourous definition of an operad that follows the intuition given above can be
found in [8], although the original definition (the one by J.P. May in [9]) differs from
this approach. May’s definition collects the ◦i composition maps for a given P (n),
i = 1, 2, . . . , n under one big composition map

P (n)⊗
(
P (m1)⊗ P (m2)⊗ · · · ⊗ P (mn)

) γ // P (m1 + m2 + · · ·+ mn) .

An n + 1-tuple of operations (p, q1, q2, . . . , qn) is sent by γ to a new operation which
we usually write as p(q1, q2, . . . , qn) and visualise as n trees corresponding to the
operations qi, grafted upon the leaves of the tree corresponding to the operation p.
The equivalence of the two definitions follows from the existence of the unit-operation
id ∈ P (1), and a proof of this can be found in [8]. For example, the operation

◦i : P (n)⊗ P (m) −→ P (n + m− 1)
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can be obtained from

γ : P (n)⊗
(
P (1)⊗ · · ·P (1)⊗ P (m)

i-th
⊗P (1)⊗ · · · ⊗ P (1)

)
−→ P (m + n− 1).

3. Operads in terms of finite pointed sets

Denote by Fin∗ the category of finite pointed sets (X, x0) and basepoint-
preserving bijections. To any ordered pair ((X, x0), (Y, y0)) ∈ Fin∗×Fin∗ and x ∈ X,
x 6= x0 we render (XtxY, x0) ∈ Fin∗, defined as

XtxY = X t Y \ {x, y0}.
The following properties of the tx operations are going to be important for the
definition of operads:
Associativity. If (X, x0), (Y, y0), (Z, z0) ∈ Fin∗ and x, x′ ∈ X, y ∈ Y such that x0 6=
x 6= x′ 6= x0 and y 6= y0 then

(XtxY )tyZ = Xtx(YtyZ),

(XtxY )tx′Z = (Xtx′Z)txY.

Equivariance. If σ : (X, x0) −→ (X ′, x′0) and τ : (Y, y0) −→ (Y ′, y′0) are maps in Fin∗
and x ∈ X, x 6= x0 then σ and τ induce a map

σ ◦x τ : (XtxY, x0) −→ (X ′tσ(x)Y
′, x′0)

in Fin∗, defined as

σ ◦x τ |X\{x} = σ|X\{x},

σ ◦x τ |Y \{y0} = τ |Y \{y0}.

Unit. For any pointed set with two elements (U, u0) = ({u, u0}, u0) and any other
pointed set (X, x0) together with an element x ∈ X \ {x0} there are maps

eux0 : (X, x0) −→ (UtuX, u0) and eux : (X, x0) −→ (XtxU, x0),

where eux0 sends x0 to u0 and is the identity elsewhere, and eux sends x to u and is
the identity elsewhere.

Let (E ,⊗, I, a, l, r, s) be a symmetric monoidal category.

Definition 3.1. A contravariant functor P : Finop
∗ −→ E is called a collection or a

Fin∗-module in E.

If P is a collection in E then for any map σ : (X, x0) −→ (X ′, x′0) in Fin∗ the
induced map P (σ) : P (X ′, x′0) −→ P (X, x0) can be considered as acting on the right
on P (X ′, x′0). We will write instead of P (σ) just σ.

Definition 3.2. An operad in E is a collection P : Finop
∗ −→ E with structure maps

◦x : P (X, x0)⊗ P (Y, y0) −→ P (XtxY, x0)

for any (X, x0), (Y, y0) ∈ Fin∗ and x ∈ X, x 6= x0, which satisfy the following three
conditions:
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Associativity. For any (X, x0), (Y, y0) and (Z, z0) ∈ Fin∗, and any x, x′ ∈ X, y ∈ Y
such that x0 6= x 6= x′ 6= x0 and y 6= y0 the following diagrams commute:

P (X, x0)⊗ P (Y, y0)⊗ P (Z, z0)
◦x⊗id //

id⊗◦y

��

P (XtxY, x0)⊗ P (Z, z0)

◦y

��
P (X, x0)⊗ P (YtyZ, y0)

◦x // P (XtxYtyZ, x0)

P (X, x0)⊗ P (Y, y0)⊗ P (Z, z0)
◦x⊗id //

id⊗s

��

P (XtxY, x0)⊗ P (Z, z0)

◦x′

��

P (X, x0)⊗ P (Z, z0)⊗ P (Y, y0)

◦x′⊗id

��
P (Xtx′Z, x0)⊗ P (Y, y0)

◦x // P (XtxYtx′Z, x0),

where s : P (Y, y0)⊗ P (Z, z0) −→ P (Z, z0)⊗ P (Y, y0) is the symmetry of E.
Equivariance. For any σ : (X, x0) −→ (X ′, x′0), τ : (Y, y0) −→ (Y ′, y′0) maps in Fin∗
and x ∈ X, x 6= x0 the following diagram commutes:

P (X ′, x′0)⊗ P (Y ′, y′0)
◦σ(x) //

σ⊗τ

��

P (X ′tσ(x)Y
′, x′0)

σ◦xτ

��
P (X, x0)⊗ P (Y, y0)

◦x // P (XtxY, x0).

Unit. For any set with two elements (U, u0) = ({u, u0}, u0) ∈ Fin∗ there is a map
η(U,u0) : I −→ P (U, u0), for which the compositions

I ⊗ P (X, x0)
ηU⊗id //P (U, u0)⊗ P (X, x0)

◦u //P (UtuX, u0)
eux0 //P (X, x0) ,

P (X, x0)⊗ I
id⊗ηU //P (X, x0)⊗ P (U, u0)

◦x //P (XtxU, x0)
eux //P (X, x0)

are the left and right identities in the monoidal category E for any (X, x0) ∈ Fin∗.
The following diagram commutes for any two-point sets (X, x0) and (X ′, x′0):

I
ηX // P (X, x0)

α

��
I

ηX′ // P (X ′, x′0)

where α : (X ′, x′0) −→ (X, x0) is the obvious (unique) map.

Definition 3.3. Let P and Q be operads in E. A morphism of operads µ : P −→
Q is an equivariant natural transformation from P to Q which is compatible with
all the operations ◦x and unit maps ηU . Explicitly, such a µ is a family of maps
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µ(X,x0) : P (X, x0) −→ Q(X, x0), such that the following diagrams commute for any
possible choice of x, σ and η:

P (X ′, x′0)
µX′ //

σ

��

Q(X ′, x′0)

σ

��

P (X, x0)⊗ P (Y, y0)
◦x //

µX⊗µY

��

P (XtxY, x0)

µXtxY

��
P (X, x0)

µX // Q(X, x0) Q(X, x0)⊗Q(Y, y0)
◦x // Q(XtxY, x0)

I
ηU // P (U, u0)

µU

��
I

ηU // Q(U, u0)

With these maps, operads in E form the category of Fin∗-operads OpFin∗ .

4. Equivalence with the classical definition

In this Section we are going to prove that the category of Fin∗-operads arising
from our definition is equivalent to the classical one, given in terms of the ◦i operations
(see [8], pp. 46) which in turn is equivalent to the original definition of May [9].

In the following we are going to denote the pointed set ({0, 1, . . . , n}, 0) ∈ Fin∗
by 〈n〉. Instead of P (〈n〉) let us write P (n). If P is an operad in E then any composition
map ◦x : P (X, x0) ⊗ P (Y, y0) −→ P (X tx Y, x0) gives rise to a new one ◦i : P (m) ⊗
P (n) −→ P (〈m〉ti 〈n〉) via the actions of some pointed bijections σ : 〈m〉 −→ (X, x0)
with σ(i) = x and τ : 〈n〉 −→ (Y, y0), because of the equivariance condition:

◦x = (σ ◦i τ)−1(◦i)(σ ⊗ τ)).

This property suggests to study more the structures induced by the operad axioms
on the objects P (m). Define the renumbering map ϕi : 〈m + n− 1〉 −→ 〈m〉 ti 〈n〉,

ϕi(k) :=


k ∈ 〈m〉 if k < i,

(k − n + 1) ∈ 〈m〉 if k > i + n− 1,

(k − i + 1) ∈ 〈n〉 if i ≤ k ≤ i + n− 1.

(4.1)

We can infer that the composition of ϕi with ◦i defines a new operation, denoted by
•i which is written only in terms of the sets 〈m〉:

•i := ϕi◦i : P (m)⊗ P (n) −→ P (m + n− 1).

In the following we look at the axioms – induced by the associativity, equivariance
and unit axioms for P – that this new operations satisfy.
Associativity. Let ◦i : P (m) ⊗ P (n) −→ P (〈m〉 tu 〈n〉) and ◦j : P (n) ⊗ P (p) −→
P (〈n〉 tj 〈p〉) be two operations. To avoid confusion we write j〈n〉 instead of j, when
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it is necessary to indicate the set from which j is taken.
The squares of the following diagram commute:

P (m)⊗ P (n)⊗ P (p)
◦i⊗id //

id⊗◦j

��

P (〈m〉 ti 〈n〉)⊗ P (p)
ϕi⊗id //

◦j〈n〉

��

P (m + n− 1)⊗ P (p)

k

��
P (m)⊗ P (〈n〉 tj 〈p〉)

◦i //

id⊗ϕj

��

P (〈m〉 ti 〈n〉 tj〈n〉 〈p〉)
ϕi◦kid //

id ◦iϕj

��

P (〈m + n− 1〉 tk 〈p〉)

ϕk

��
P (m)⊗ P (n + p− 1)

◦i // P (〈m〉 ti 〈n + p− 1〉)
ϕi // P (m + n + p− 2),

where k = ϕ−1
i (j〈n〉). Indeed, the commutativity of the first square is just an asso-

ciativity condition of the operad P , the second and third squares are equivariance
conditions of P . The commutativity of the last square follows from a straightforward
computation. With the use of the •i operations the bordering square of the diagram
above can be written as

P (m)⊗ P (n)⊗ P (p)
•i⊗id //

id⊗•j

��

P (m + n− 1)⊗ P (p)

•j+i−1

��
P (m)⊗ P (n + p− 1)

•i // P (m + n + p− 2).

We proceed similarly for operations ◦i : P (m)⊗P (n) −→ P (〈m〉ti〈n〉) and ◦j : P (m)⊗
P (p) −→ P (〈m〉 tj 〈p〉), where i 6= j. In this case we use the second axiom for
associativity of the operad P . We obtain the diagram

P (m)⊗ P (n)⊗ P (n)
◦i⊗id //

id⊗s

��

P (〈m〉 ti 〈n〉)⊗ P (p)
ϕi⊗id //

◦j〈m〉

��

P (m + n− 1)⊗ P (p)

◦k

��

P (m)⊗ P (p)⊗ P (n)

◦j⊗id

��
P (〈m〉 tj 〈p〉)⊗ P (n)

◦i〈m〉//

ϕj⊗id

��

P (〈m〉 ti〈m〉 〈n〉 tj〈m〉 〈p〉)
ϕi◦kid//

ϕj◦lid

��

P (〈m + n− 1〉 tk 〈p〉)

ϕk

��
P (m + p− 1)⊗ P (n)

◦l // P (〈m + p− 1〉 tl 〈n〉)
ϕl // P (m + n + p− 2),

where l = ϕ−1
j (i〈m〉) and k = ϕ−1

i (j〈m〉). Again, only the commutativity of the last
square must be checked, because the other squares are commutative from the asso-
ciativity and equivariance properties of P . If we write the bordering square with the
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operations •i, then we have

P (m)⊗ P (n)⊗ P (p)
•i⊗id //

id⊗s

��

P (m + n− 1)⊗ P (p)

•j+n−1

��

P (m)⊗ P (p)⊗ P (n)

•j⊗id

��
P (m + p− 1)⊗ P (n)

•i // P (m + n + p− 2)

if i < j: in this case l = i and k = j + n− 1;

P (m)⊗ P (n)⊗ P (p)
•i⊗id //

id⊗s

��

P (m + n− 1)⊗ P (p)

•j

��

P (m)⊗ P (p)⊗ (n)

•j⊗id

��
P (m + p− 1)⊗ P (n)

•i+p−1 // P (m + n + p− 2)

if i > j: in this case l = i + p− 1 and k = j.
The obtained three commutative diagrams are the associativity axioms for the •i oper-
ations. After a suitable renumbering, they can be expressed in the following equations:

•j(•i ⊗ id) =

 •i(id⊗•j−i+1), if 1 ≤ i ≤ j ≤ n ≤ m + n− 1;
•i(•j+n−1 ⊗ id)(id⊗s), if n ≤ i + n− 1 < j ≤ m + n− 1;
•i+p−1(•j ⊗ id)(id⊗s), if 1 ≤ j < i ≤ m.

(4.2)

Equivariance. Let σ : 〈m〉 −→ 〈m〉, τ : 〈n〉 −→ 〈n〉 be two maps in Fin∗. The equiv-
ariance property of P induces the commutative diagram

P (m)⊗ P (n)
◦i //

σ⊗τ

��

P (〈m〉 ti 〈n〉)
ϕi //

σ◦kτ

��

P (m + n− 1)

σ•kτ

��
P (m)⊗ P (n)

◦k // P (〈m〉 tk 〈n〉)
ϕk // P (m + n− 1),

where σ(k) = i and σ •k τ : 〈m + n− 1〉 −→ 〈m + n− 1〉,

σ •k τ = (ϕi)−1(σ ◦k τ)(ϕk).

A straightforward computation shows that

σ •k τ = σ(1,...,1,n,1,...,1) ◦ (id× · · · × id×τ × id× · · · × id), (4.3)



On operads in terms of finite pointed sets 519

where on the right hand side of the equation, n and τ occur at the kth position.
We infer that the equivariance property induces the commutativity of the diagram

P (m)⊗ P (n)
•σ(k) //

σ⊗τ

��

P (m + n− 1)

σ•kτ

��
P (m)⊗ P (n)

•k // P (m + n− 1)

or
(σ •k τ)•σ(k) = (•k)(σ ⊗ τ). (4.4)

Unit. Let us take in the unit condition for an operad P the two-element pointed set
(X, x0) = 〈1〉. It follows that for any n ∈ N∗ we have

exy0 = ϕ1 = id: 〈n〉 −→ 〈1〉 t1 〈n〉,

exy = ϕi : 〈n〉 −→ 〈n〉 ti 〈1〉,
hence the unit conditions for the •i operations say that the following compositions
must be the corresponding left and right identities in E :

I ⊗ P (n)
η⊗id // P (1)⊗ P (n)

•1 // P (n); (4.5)

P (n)⊗ I
id⊗η // P (n)⊗ P (1)

•i // P (n). (4.6)

These properties imply the following definition:

Definition 4.1. Let Σ denote the symmetric groupoid (i.e. the category whose objects
are the finite sets [n] = {1, 2, . . . , n} for every n ∈ N∗ and the maps are permutations
σ : [n] −→ [n]). A Σ-operad in a symmetric monoidal category E is a contravariant
functor P : Σop −→ E with operations

•i : P (m)⊗ P (n) −→ P (m + n− 1)

for every 1 ≤ i ≤ m ( here we denote P ([m]) by P (m)), which satisfy the conditions
given in equations (4.2), (4.4), (4.5) and (4.6).

This definition agrees with Markl, Shinder and Stasheff’s definition of an operad
in [8], and it is equivalent to the definition given by May [9]. Morphisms of Σ-operads
are defined as that of operads: they are collections of maps µm : P (m) −→ Q(m), for
which the following diagrams commute:

P (m)
µm //

σ
��

Q(m)

σ
��

P (m)⊗ P (n)
•i //

µm⊗µn

��

P (m + n− 1)

µm+n−1
��

I
η // P (1)

µ1
��

P (m)
µm // Q(m) Q(m)⊗Q(n)

•i // Q(m + n− 1) I
η // Q(1)

It follows that we have a category of Σ-operads in E , which we denote by OpΣ.
We turn to prove that OpΣ and OpFin∗ are equivalent categories. For this,

first observe that the usual restriction and extension functors R : Fin∗ −→ Σ and
E : Σ −→ Fin∗ are equivalences and even RE = id is satisfied. Denote the in-
duced functors on the categories of E-collections by R# : EΣop −→ EFinop

∗ and
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E# : EFinop
∗ −→ EΣop

. By a slight abuse of notation, we will not distinguish between
the finite set [n] and the finite pointed set (〈n〉, 0) in what follows.

Lemma 4.2. P : Finop
∗ −→ E defines a Fin∗-operad if and only if E#(P ) : Σop −→ E

defines a Σ-operad.

Proof. If P is a Fin∗-operad, then (by the abuse of notation mentioned above)
E#(P )(n) = P (n) and E#(P )(σ) = P (σ) for any n ∈ N∗ and σ ∈ Σn. The con-
struction of the •i operations as above gives a Σ-operad structure to E#(P ).
Conversely, suppose that E#(P ) is a Σ-operad. Then we have operations

•i : P (m)⊗ P (n) −→ P (m + n− 1)

which satisfy the respective associativity, equivariance and unit conditions.
First, define the operations

◦i : P (m)⊗ P (n) −→ P (〈m〉 ti 〈n〉)

with the composition: ◦i := ϕ−1
i •i where the maps ϕi are defined by (4.1). It follows

from the Σ-equivariance condition that the diagram

P (m)⊗ P (n)
◦σ(i) //

σ⊗τ

��

P (〈m〉 ti 〈n〉)

σ◦iτ

��
P (m)⊗ P (n)

◦i // P (〈m〉 ti 〈n〉)

(4.7)

also commutes.
Second, define the operations ◦x : P (X) ⊗ P (Y ) −→ P (X tx Y ) by requiring the
diagram

P (X)⊗ P (Y )
◦x //

σ⊗τ

��

P (X tx Y )

σ◦iτ

��
P (m)⊗ P (n)

◦i // P (〈m〉 ti 〈n〉)

to be commutative. Here σ : 〈m〉 −→ X, τ : 〈n〉 −→ Y are chosen maps in Fin∗ with
the property that σ(i) = x. The operations ◦x do not depend on the choice of σ and
τ , because of the commutative square (4.7). Indeed, if σ′ and τ ′ define an operation
(◦x)′ 6= ◦x by

P (X)⊗ P (Y )
(◦x)′ //

σ′⊗τ ′

��

P (X tx Y )

σ′◦iτ
′

��
P (m)⊗ P (n)

◦i // P (〈m〉 ti 〈n〉)

then patching together the last two diagrams follows that the diagram (4.7) is not
commutative with the maps σ′σ−1 and τ ′τ−1, which is contradiction.
Thus the operations ◦x are well defined. The axioms for the Fin∗-operad are easily
verified: we just have to do the diagram-chasing with •i and ◦x backwards. �
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Lemma 4.3. µ : P −→ Q is a map of Fin∗-operads if and only if E#(µ) is a map of
Σ-operads.

Proof. A straightforward check, using the maps ϕi and that E#(µ)n = µ〈n〉. �

Theorem 4.4. The categories OpFin∗ and OpΣ are equivalent.

Proof. For any Σ-operad Q we have E#R#(Q) = Q. We infer by Lemma 4.2 that
R#(Q) is an operad. This and Lemma 4.2 again show that E# is an essentially
surjective functor when viewed between the operad-categories.
On the other hand, because E# is fully faithful, Lemma 4.3 implies that E# is also
fully faithful between the operad-categories. Hence OpFin∗ and OpΣ are equivalent. �
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Some remarks on restriction maps between
cohomology of fusion systems

Constantin-Cosmin Todea

Abstract. We define a restriction map between two cohomology algebras of some
saturated fusion systems which are chosen in a particular situation. We find
conditions for this map to induce an injective map between the varieties which
can be associated to these finitely generated graded commutative cohomology
algebras. Some minimal examples for which we can apply our results are also
given.
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1. Preliminaries

Saturated fusion systems on finite p-groups are intensively studied in the last
years by mathematicians from different areas such as: modular representation theory,
algebraic topology and finite groups. A saturated fusion system F on a finite p-group
P is a category whose objects are the subgroups of P and whose morphisms satisfy
certain axioms mimicking the behavior of a finite group G having P as a Sylow
subgroup. The axioms of saturated fusion systems were invented by Puig in early
1990’s. See [1] for a detailed exposition of results and definitions involving fusion
systems.

The cohomology algebra of a p-local finite group with coefficients in Fp is intro-
duced in [3, §5] and is equal with cohomology algebra of a saturated fusion system.
Let k be an algebraically closed field of characteristic p. We denote by H∗(G, k) the
cohomology algebra of the group G with trivial coefficients. As in [6] we will use the
language of homotopy classes of chain maps (see [6, 2.8]). We denote by H∗(F) the
algebra of stable elements of F , i.e. the cohomology algebra of the saturated fusion
system F , which is the subalgebra of H∗(P, k) consisting of elements [ζ] ∈ H∗(P, k)
such that

resP
Q([ζ]) = resϕ([ζ]),



524 Constantin-Cosmin Todea

for any ϕ ∈ HomF (Q,P ) and any subgroup Q of P . This is the main object of study in
this paper. Moreover Broto, Levi and Oliver showed that any saturated fusion system
F has a non-unique P−P -biset X with certain properties formulated by Linckelmann
and Webb (see [3, Proposition 5.5]). Such a P − P -biset X is called a characteristic
biset. Using this biset, S. Park noticed in [8] a result which says that a saturated fusion
system can be realized by a finite group. This finite group is G = Aut(XP ), that is
the group of bijections of the characteristic biset X, preserving the right P -action.
So, by [8, Theorem 3], we identify F with FP (G) which is the fusion system on P
such that for every Q,R ≤ P we have

HomFP (G)(Q,R) = {ϕ : Q → R | ∃x ∈ G s.t. ϕ(u) = xux−1,∀u ∈ Q}.

Using this identification we will define a restriction map from the cohomology algebra
of the group G with coefficients in the field k to the cohomology algebra of the fusion
system, H∗(F). We denote this map by ρF,G, and we have the following proposition.

Proposition 1.1. Let F be a saturated fusion system on P and let X be a character-
istic P − P -biset. Let G = Aut(XP ) and then we identify F with FP (G). We have
resG

P (H∗(G, k)) ⊆ H∗(F), hence there is a homomorphism of algebras

ρF,G : H∗(G, k) → H∗(F),

given by ρF,G([ζ]) = resG
P ([ζ]), for any [ζ] ∈ H∗(G, k).

Next we will define the main restriction map of this article, between the co-
homology algebras of two saturated fusion systems. This is done by considering the
following situation:
Situation (∗). Let Q be a finite p-subgroup of a finite p-group P . Let G be a finite group
which realizes a saturated fusion system G on P (i.e. G = FP (G)) and F a fusion
subsystem (i.e subcategory and fusion system) of G on Q. We assume that there is H
which realizes F and Q ≤ H ≤ G.

The next example assure us that there are cases of saturated fusion systems in
Situation (∗).

Example 1.2. Let H be a finite subgroup of a finite group G with P a Sylow p-
subgroup of G such that P ∩ H 6= {1}. Then F = FP∩H(H) and G = FP (G) are in
Situation (∗).

It is easy to verify that in Situation (∗) the restriction map resP
Q induces a

well-defined homomorphism of algebras

resG,F : H∗(G) → H∗(F),

given by resG,F ([ζ]) = resP
Q([ζ]) for any [ζ] ∈ H∗(G).

Now we set some notations, which are known to appear in the Quillen stratifi-
cation of VG ([4, Definition 8.4.4, Theorem 8.5.2]) of group cohomology ring. Let E
be a p-subgroup of G. The restriction map resG

E : H∗(G, k) → H∗(E, k) induces a map
on varieties, which we denote

r∗G,E : VE → VG.
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As usual we define the subvariety of VE

V +
E = VE \

⋃
F<E

(resE
F )∗(VF ),

and denote the subvarieties of VE

VG,E = r∗G,E(VE), V +
G,E = r∗G,E(V +

E ).

Finally we set WG(E) = NG(E)/CG(E), the Weyl group. Similarly to the group
cohomology ring case, since H∗(F) is a graded commutative finitely generated k-
algebra we can associate the spectrum of maximal ideals, i.e. the variety denoted VF .
Varieties for cohomology algebras of particular cases of saturated fusion systems were
studied in [7], for fusion systems associated to block algebras of finite groups. See also
[2, Chapter 5] for more results regarding varieties.

Theorem 1.3. We assume that we are in Situation (∗).
(i) The following diagram is commutative

H∗(G, k)
ρG,G //

resG
H

��

H∗(G)

resG,F

��
H∗(H, k)

ρF,H // H∗(F)

(ii) If Ker(resG,F ) has a nilpotent ideal then resG,F induces a finite surjective map

res∗G,F : VF → VG .

In Situation (∗) if Q = P then the restriction resG,F becomes the inclusion
map, hence Ker(resF,G) is a nilpotent ideal. Therefore exist cases for which Theorem
1.3, (ii) is true. The next definitions allow us to find conditions for which res∗G,F is
injective.

Definition 1.4. Let G,F be two saturated fusion systems in Situation (∗). We say that
the pair (F ,H) is weakly elementary embedded in (G, G) if:
(1) Whenever E is an elementary abelian p-subgroup of H then WG(E) ∼= WH(E);
(2) If two elementary abelian p-subgroups of H are G-conjugate then they are also

H-conjugate.

The main result of this article is the following theorem.

Theorem 1.5. In Situation (∗) we assume that ρ∗F,H is injective. If (F ,H) is weakly
elementary embedded in (G, G) then res∗G,F is injective.

Using Theorem 1.3, (ii) and Theorem 1.5 it is easy to check the following corol-
lary. The proof is left for the reader.

Corollary 1.6. We assume that we are under the hypothesis of Theorem 1.5 such that
Q = P . Then res∗G,F is a bijective map.

We notice from Example 1.2 that there are some minimal examples for which
the above theorem and corollary can be applied.
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2. Proofs of the results

Proof of Proposition 1.1. Let Q be a subgroup of P , ϕ ∈ HomF (Q,P ) and let [ζ] ∈
H∗(G, k). We have to prove that

resP
Q(resG

P ([ζ])) = resϕ(resG
P ([ζ])).

We denote by ϕ = i1 ◦ ϕ, where i1 : P → G is the inclusion. Then we will prove that

resG
Q([ζ]) = resϕ([ζ]).

We consider S a Sylow p-subgroup of G such that P ≤ S. Then FP (G) is a full
subcategory of FS(G), hence ϕ ∈ HomFS(G)(Q, P ). If we take ϕ′ = i2 ◦ ϕ, where
i2 : P → S is the inclusion, then ϕ′ ∈ HomFS(G)(Q,S). By Cartan-Eilenberg stable
elements theorem ([5, XII, Theorem 10.1]) we have that

resS
Q(resG

S ([ζ])) = resϕ′(resG
S ([ζ])).

Since ϕ = i3 ◦ ϕ′, where i3 : S → G is the inclusion, we get the above, desired
condition.
Proof of Theorem 1.3. (i) is easy to check since we have compositions of restric-
tions. For (ii) we have that H∗(F) is a ρF,H(H∗(H, k))-submodule of H∗(Q, k).
Since H∗(Q, k) is noetherian as resH

Q (H∗(H, k))-module it follows that H∗(F) is
a finitely generated ρF,H(H∗(H, k))-module. Now H∗(H, k) is a finitely generated
resG

H(H∗(G, k))-module. Then we obtain that H∗(F) is finitely generated as (ρF,H ◦
resG

H)(H∗(G, k))-module, hence by (i) we get that H∗(F) is finitely generated as
(resG,F ◦ ρG,G)(H∗(G, k))-module. Since (resG,F ◦ ρG,G)(H∗(G, k)) is a subalgebra of
resG,F (H∗(G)) we obtain that H∗(F) is finitely generated as resG,F (H∗(G))-module,
thus resG,F is a finite map. Now resG,F is also a dominant map (see [2, Section 5.4]),
because Ker(resG,F ) is a nilpotent ideal. We conclude that it is surjective, see [2,
Theorem 5.4.7].
Proof of Theorem 1.5. Let m1,m2 ∈ VF such that res∗G,F (m1) = res∗G,F (m2). By
Theorem 1.3, (i) we have that

ρ∗G,G ◦ res∗G,F = (resG
H)∗ ◦ ρ∗F,H ;

From [4, Theorem 8.5.2] (Quillen stratification) applied to VH there is E1 ≤ H an
elementary abelian p-subgroup and γ1 ∈ V +

E1
such that ρ∗F,H(m1) = r∗H,E1

(γ1). Sim-
ilarly there is E2 ≤ H an elementary abelian p-subgroup and γ2 ∈ V +

E2
such that

ρ∗F,H(m2) = r∗H,E2
(γ2), hence

((resG
H)∗ ◦ ρ∗F,H)(m1) = ((resG

H)∗ ◦ r∗H,E1
)(γ1),

((resG
H)∗ ◦ ρ∗F,H)(m2) = ((resG

H)∗ ◦ r∗H,E2
)(γ2).

From the above relations it follows that

((resG
H)∗ ◦ r∗H,E1

)(γ1) = ((resG
H)∗ ◦ r∗H,E2

)(γ2),

that is
r∗G,E1

(γ1) = r∗G,E2
(γ2) ∈ V +

G,E1
∩ V +

G,E2
,

thus E1, E2 are G-conjugate, and by Definition 1.4, (2) we get that they are H-
conjugate. From this we can choose now E1 = E2 = E and r∗G,E(γ1) = r∗G,E(γ2) ∈
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V +
G,E . By the Quillen stratification for H∗(G, k) we have V +

G,E
∼= V +

E /WG(E) and this
inseparable isogeny is given by rG,E . We obtain that γ1, γ2 are in the same orbit of
the action of WG(E) on V +

E . By Definition 1.4, (1) it follows that γ1, γ2 are in the
same orbit of the action of WH(E) on V +

E , then r∗H,E(γ1) = r∗H,E(γ2). We conclude
that ρ∗F,H(m1) = ρ∗F,H(m2), hence m1 = m2 since ρ∗F,H is injective.
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Integral operator defined by q-analogue
of Liu-Srivastava operator

Huda Aldweby and Maslina Darus

Abstract. In this paper, we shall give an application of q-analogues theory in
geometric function theory. We introduce an integral operator for meromorphic
functions involving the q-analogue of differential operator. We also investigate
several properties for this operator.

Mathematics Subject Classification (2010): 30C45.

Keywords: q-analogue, meromorphic function, Liu-Srivastava operator, integral
operator.

1. Introduction

The theory of q-analogues or q-extensions of classical formulas and functions
based on the observation that

lim
q→1

1− qα

1− q
= α, |q| < 1,

therefore the number (1−qα)/(1−q) is sometimes called the basic number [α]q. In this
work we derive q-analogue of Liu-Srivastava operator and employ this new differential
operator to define an integral operator for meromorphic functions.

Let Σ denote the class of functions of the form

f(z) =
1
z

+
∞∑

k=1

akz
k, (1.1)

which are analytic in the punctured open unit disk

U∗ = {z : z ∈ C, 0 < |z| < 1} = U\{0}.

For complex parameters αi, βj (i = 1, . . . , r, j = 1, . . . , s, αi ∈ C, βj ∈
C\{0,−1,−2, . . .}) the basic hypergeometric function (or q- hypergeometric function)
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is the q-analogue of the familiar hypergeometric function and it is defined as follows:

ψ(α1, . . . , αr;β1, . . . , βs, q, z) =
∞∑

k=0

(α1, q)k . . . (αr, q)k

(q, q)k(β1, q)k . . . (βs, q)k

(−1)kq

(
k
2

)
1+s−r

zk,

(1.2)

with
(
k
2

)
= k(k − 1)/2, where q 6= 0 when r > s + 1, (r, s ∈ N0 = N ∪ {0}), and

(α, q)k is the q-analogue of the Pochhammer symbol (α)k defined by

(α, q)k =
{

1, k = 0;
(1− α)(1− αq)(1− αq2) . . . (1− αqk−1), k ∈ N.

It is clear that

lim
q→1

(qα; q)k

(1− q)k
= (α)k.

The radius of convergence ρ of the basic hypergeometric series (1.2) for |q| < 1 is
given by

ρ =

 ∞, if r < s+ 1;
1, if r = s+ 1;
0, if r > s+ 1.

The basic hypergeometric series defined by (1.2) was first introduced by Heine
in 1846. Therefore it is sometimes called Heine’s series. For more details concerning
the q-theory the reader may refer to (see [1],[2]).

Now for z ∈ U, |q| < 1, and r = s+1, the basic hypergeometric function defined
in (1.2) takes the form

rΦs(α1, . . . , αr;β1, . . . , βs, q, z) =
∞∑

k=0

(α1; q)k . . . (αr; q)k

(q; q)k(β1; q)k . . . (βs; q)k
zk

which converges absolutely in the open unit disk U.
Corresponding to the function rΦs(α1, . . . , αr;β1, . . . , βs, q, z), consider

rGs(α1, . . . , αr;β1, . . . , βs, q, z) =
1
z

rΦs(α1, . . . , αr;β1, . . . , βs, q, z)

=
1
z

+
∞∑

k=1

(α1, q)k+1 . . . (αr, q)k+1

(q, q)k+1(β1, q)k+1 . . . (βs, q)k+1
zk.

Next, we define the linear operator Lr
s(α1, . . . , αr;β1, . . . , βs; q) : Σ → Σ by

Lr
s(α1, . . . , αr;β1, . . . , βs; q)f(z) =r Gs(α1, . . . , αr;β1, . . . , βs, q, z) ∗ f(z)

=
1
z

+
∞∑

k=1

∇r
s(α1, q, k)akz

k (1.3)

where

∇r
s(α1, q, k) =

(α1, q)k+1 . . . (αr, q)k+1

(q, q)k+1(β1, q)k+1 . . . (βs, q)k+1
.
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For the sake of simplicity we write

Lr
s(α1, . . . , αr;β1, . . . , βs; q)f(z) = Lr

s[α1, q]f(z).

Remark 1.1. i. For αi = qαi , βj = qβj , αi > 0, βj > 0, (i = 1, . . . , r; j =
1, . . . , s, r = s + 1), q → 1 the operator Lr

s[α1, q]f(z) = Hr
s[α1]f(z) which was

investigated by Liu and Srivastava [3].
ii. For r = 2, s = 1, α2 = q, q → 1, the operator L2

1[α1, q, β1, q]f(z) = L[α1;β1]f(z)
was introduced and studied by Liu and srivastava [4]. Further, we note in passing
that this operator L[α1;β1]f(z) is closely related to the Carlson-Shaffer operator
L[α1;β1]f(z) defined on the space of analytic univalent functions in U.

iii. For r = 1, s = 0, α1 = λ + 1, q → 1, the operator L1
0[λ + 1, q]f(z) = Dλf(z) =

1
z((1−z)λ+1 ∗ f(z)(λ > −1), where Dλ is the differential operator which was in-
troduced by Ganigi and Uralegadi [5], and then it was generalized by Yang [6].

Analogue to the integral operator defined in [7] which involving q-hypergeometric
functions on the normalized analytic functions, we now define the following integral
operator on the space of meromorphic functions in the class Σ using the differential
operator Lr

s[α1, q] defined in (1.3).

Definition 1.2. Let n ∈ N, i ∈ {1, 2, . . . , n}, γi > 0. We define the integral operator
H(f1, f2, . . . , fn)(z) : Σn → Σ by

H(f1, f2, . . . , fn)(z) =
1
z2

∫ z

0

(u Lr
s[α1, q]f1(u))γ1 . . . (u Lr

s[α1, q]fn(u))γndu. (1.4)

For the sake of simplicity, we write H(z) instead of H(f1, f2, . . . , fn)(z).

We observe that in (1.4) for r = 1, s = 0, a1 = q, we obtain the integral operator
introduced and studied by Mohammed and Darus [8], see also ([9],[10],[11]).

The following definitions introduce subclasses of Σ which are of meromorphic
starlike functions.

Definition 1.3. Let a function f ∈ Σ be analytic in U∗. Then f is in the class
Σ∗r,s(α1, q, δ, b) if and only if, f satisfies

R

{
1− 1

b

(
z(Lr

s[α1, q]f)′(z)
Lr

s[α1, q]f(z)
+ 1
)}

> δ,

where Lr
s[α1, q]f defined in (1.3) and b ∈ C\{0}, 0 ≤ δ < 1.

Definition 1.4. Let a function f ∈ Σ be analytic in U∗. Then f is in the class
Σ∗r,sU(α1, q, α, δ, b) if and only if, f satisfies

R

{
1− 1

b

(
z(Lr

s[α1, q]f)′(z)
Lr

s[α1, q]f(z)
+ 1
)}

> α

∣∣∣∣1b
(
z(Lr

s[α1, q]f)′(z)
Lr

s[α1, q]f(z)
+ 1
)∣∣∣∣+ δ,

where Lr
s[α1, q]f defined in (1.3) and α ≥ 0,−1 ≤ δ < 1, α+ δ ≥ 0, b ∈ C\{0}.
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Definition 1.5. Let a function f ∈ Σ be analytic in U∗. Then f is in the class
Σ∗r,sUH(α1, q, α, b) if and only if, f satisfies∣∣∣∣1− 1

b

(
z(Lr

s[α1, q]f)′(z)
Lr

s[α1, q]f(z)
+ 1
)
− 2α(

√
2− 1)

∣∣∣∣
< R

{√
2
(

1− 1
b

(
z(Lr

s[α1, q]f)′(z)
Lr

s[α1, q]f(z)
+ 1
))}

+ 2α(
√

2− 1),

where Lr
s[α1, q]f defined in (1.3) and α > 0, b ∈ C\{0}.

For r = 1, s = 0 and α1 = q in Definitions 1.3, 1.4 and 1.5, we obtain
Σ∗b(δ),Σ

∗U(α, δ, b) and Σ∗UH(α, b) the classes of meromorphic functions, introduced
and studied by Mohammed and Darus [12].

Now, let us introduce the following families of subclasses of meromorphic func-
tions ΣF1(δ, b),ΣF2(α, δ, b) and ΣF3(α, b) as follows.

Definition 1.6. Let a function f ∈ Σ be analytic in U∗. Then f is in the class ΣF1(δ, b)
if and only if, f satisfies

R

{
1− 1

b

(
z(zf ′′(z) + 3f ′(z))
zf ′(z) + 2f(z)

+ 1
)}

> δ, (1.5)

where b ∈ C\{0}, 0 ≤ δ < 1.

Definition 1.7. Let a function f ∈ Σ be analytic in U∗. Then f is in the class
ΣF2(α, δ, b) if and only if, f satisfies

R

{
1− 1

b

(
z(zf ′′(z) + 3f ′(z))
zf ′(z) + 2f(z)

+ 1
)}

> α

∣∣∣∣1b
(
z(zf ′′(z) + 3f ′(z))
zf ′(z) + 2f(z)

+ 1
)∣∣∣∣+ δ, (1.6)

where α ≥ 0,−1 ≤ δ < 1, α+ δ ≥ 0, b ∈ C\{0}.

Definition 1.8. Let a function f ∈ Σ be analytic in U∗. Then f is in the class ΣF3(α, b)
if and only if, f satisfies∣∣∣∣1− 1

b

(
z(zf ′′(z) + 3f ′(z))
zf ′(z) + 2f(z)

+ 1
)
− 2α(

√
2− 1)

∣∣∣∣
< R

{√
2
(

1− 1
b

(
z(zf ′′(z) + 3f ′(z))
zf ′(z) + 2f(z)

+ 1
))}

+ 2α(
√

2− 1), (1.7)

where α > 0, b ∈ C\{0}.

2. Main results

In this section, we investigate some properties for the integral operator H(z)
defined by (1.4)of the subclasses given by Definitions 1.3, 1.4 and 1.5

Theorem 2.1. For i ∈ {1, 2, . . . , n}, let γi > 0 and fi ∈ Σ∗r,s(α1, q, δi, b)(0 ≤ δ < 1)
and b ∈ C\{0}. If

0 <
n∑

i=1

γi(1− δi) ≤ 1,
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then H(z) is in the class ΣF1(µ, b), µ = 1−
∑n

i=1 γi(1− δi)

Proof. A differentiation of H(z) which is defined by (1.4), we obtain

z2H′(z) + 2zH(z) = (z Lr
s[α1, q]f1(z))γ1 . . . (z Lr

s[α1, q]fn(z))γn , (2.1)

z2H′′(z) + 4zH′(z) + 2H(z)

=
n∑

i=1

γi

(z(Lr
s[α1, q]f)′i(z) + Lr

s[α1, q]fi(z)
zLr

s[α1, q]fi(z)

)
[(z Lr

s[α1, q]f1(z))γ1 . . . (z Lr
s[α1, q]fn(z))γn ] (2.2)

Then from (2.1) and (2.2),we obtain

z2H′′(z) + 4zH′(z) + 2H(z)
z2H′(z) + 2zF(z)

=
n∑

i=1

γi

(
(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+

1
z

)
. (2.3)

By multiplying (2.3) with z we have

z2H′′(z) + 4zH′(z) + 2Hγi(z)
zH′γi(z) + 2Hγi(z)

=
n∑

i=1

γi

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)
.

That is equivalent to

z (zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+ 1 =
n∑

i=1

γi

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)
. (2.4)

Equivalently, (2.4) can be written as

1−1
b

{
z(zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+1
}

=
n∑

i=1

γi

{
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+1
)}

+1−
n∑

i=1

γi.

Taking the real part of both sides of the last expression, we have

R

{
1− 1

b

(
z(zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+ 1
)}

=
n∑

i=1

γiR

{
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)}

+ 1−
n∑

i=1

γi.

Since fi ∈ Σ∗r,s(α1, q, δi, b), hence

R

{
1− 1

b

(
z(zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+ 1
)}

>
n∑

i=1

γiδi + 1−
n∑

i=1

γi.

Therefore

R

{
1− 1

b

(
z(zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+ 1
)}

> 1−
n∑

i=1

γi(1− δi).

Then H(z) ∈ ΣF1(µ, b), µ = 1−
∑n

i=1 γi(1− δi) �
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Theorem 2.2. For i ∈ {1, 2, . . . , n}, let γi > 0 and fi ∈ Σ∗r,sU(α, δ, b)(α ≥ 0,−1 ≤ δ <
1, α+ δ ≥ 0) and b ∈ C\{0}. If

n∑
i=1

γi ≤ 1,

then H(z) is in the class ΣF2(α, δ, b).

Proof. Since fi ∈ Σ∗r,sU(α1, q, α, δ, b), it follows from Definition 1.3 that

R

{
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)}

> α

∣∣∣∣1b
(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)∣∣∣∣+ δ. (2.5)

Considering (2.2) and (2.5) we obtain

R

{
1− 1

b

(
z(zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+ 1
)}

− α

∣∣∣∣1b
(
z(zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+ 1
)∣∣∣∣− δ.

= 1−
n∑

i=1

γi +
n∑

i=1

γiR

{
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)}

− α

∣∣∣∣∣
n∑

i=1

γi
1
b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)∣∣∣∣∣− δ

> 1−
n∑

i=1

γi +
n∑

i=1

γi

{
α

∣∣∣∣1b
(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)∣∣∣∣+ δ

}

− α
n∑

i=1

γi

∣∣∣∣1b
(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)∣∣∣∣− δ

= (1− δ)(1−
n∑

i=1

γi) ≥ 0.

This completes the proof. �

Theorem 2.3. For i ∈ {1, 2, . . . , n}, let γi > 0 and fi ∈ Σ∗UH(α, b) (α > 0 and b ∈
C\{0}). If

n∑
i=1

γi ≤ 1,

then H(z) is in the class ΣF3(α, b).

Proof. Since fi ∈ Σ∗r,sUH(α1, q, α, b), it follows from Definition 1.4 that

R

{√
2
(

1− 1
b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
))}

+ 2α(
√

2− 1)

−
∣∣∣∣1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)
− 2α(

√
2− 1)

∣∣∣∣ > 0. (2.6)
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Considering (2.2) and (2.6), we obtain

R

{√
2
(

1− 1
b

(
z(zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+ 1
))}

+ 2α(
√

2− 1)

−
∣∣∣∣1− 1

b

(
z(zH′′(z) + 3H′(z))
zH′(z) + 2H(z)

+ 1
)
− 2α(

√
2− 1)

∣∣∣∣ (2.7)

= R

{
√

2

[
1−

n∑
i=1

γi
1
b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)]}

+ 2α(
√

2− 1)

−

∣∣∣∣∣1−
n∑

i=1

γi
1
b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)
− 2α(

√
2− 1)

∣∣∣∣∣
=
√

2−
√

2
n∑

i=1

γiR
1
b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)

+ 2α(
√

2− 1)

−

∣∣∣∣∣1−
n∑

i=1

γi
1
b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)
− 2α(

√
2− 1)

∣∣∣∣∣
=
√

2 +
√

2
n∑

i=1

γiR

{
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)}

−
√

2
n∑

i=1

γi + 2α(
√

2− 1)

−
∣∣∣1 +

n∑
i=1

γi

[
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)
− 2α(

√
2− 1)

]
−

n∑
i=1

γi

+ 2α(
√

2− 1)
n∑

i=1

γi − 2α(
√

2− 1)
∣∣∣

=
√

2

(
1−

n∑
i=1

γi

)
+ 2α(

√
2− 1) +

√
2

n∑
i=1

γiR

{
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)}

−
∣∣∣[1− 2α(

√
2− 1)]

(
1−

n∑
i=1

γi

)
+

n∑
i=1

γi

[
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)

− 2α(
√

2− 1)
]∣∣∣

≥
√

2

(
1−

n∑
i=1

γi

)
+ 2α(

√
2− 1) +

√
2

n∑
i=1

γiR

{
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)}

−
n∑

i=1

γi

∣∣∣∣1− 1
b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)
− 2α(

√
2− 1)

∣∣∣∣−|1−2α(
√

2−1)|

(
1−

n∑
i=1

γi

)
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=
n∑

i=1

γi

{
R
√

2
[
1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)]

+ 2α(
√

2− 1)

−
∣∣∣∣1− 1

b

(
z(Lr

s[α1, q]fi)′(z)
Lr

s[α1, q]fi(z)
+ 1
)
− 2α(

√
2− 1)

∣∣∣∣
}

+
√

2

(
1−

n∑
i=1

γi

)

+ 2α(
√

2− 1)− 2α(
√

2− 1)
n∑

i=1

γi − |1− 2α(
√

2− 1)|

(
1−

n∑
i=1

γi

)

>
[√

2 + 2α(
√

2− 1)− |1− 2α(
√

2− 1)|
](

1−
n∑

i=1

γi

)

>

(
1−

n∑
i=1

γi

)
min

{
(
√

2− 1)(1 + 4α),
√

2 + 1
}
≥ 0.

This completes the proof. �
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iste de Roumanie. Nouvelle Série, 33(1989), no. 1, 9-13.

[6] Yang, D., On a class of meromorphic starlike multivalent functions, Bulletin of the
Institute of Mathematics. Academia Sinica, 24(1996), no. 2, 151-157.

[7] Aldweby, H., Darus, M., Univalence of a New General Integral Operator Associated with
the q-Hypergeometric Function, International Journal of Mathematics and Mathematical
Sciences, 2013, Article ID 769537, 5 pages.

[8] Mohammed, A., Darus, M., A new integral operatorfor meromorphic functions, Acta
Universitatis Apulensis, 2010, no. 24, 231-238.

[9] Mohammed, A., Darus, M., Starlikeness properties of a new integral operator for mero-
morphic functions, Journal of Applied Mathematics, 2011, Article ID 804150, 8 pages.

[10] Mohammed, A., Darus, M., Some properties of certain integral operators on new sub-
classes of analytic functions with complex order, Journal of Applied Mathematics, 2012,
Article ID 161436, 9 pages.



Integral operator defined by q-analogue of Liu-Srivastava operator 537

[11] Mohammed, A., Darus, M., The order of starlikeness of new p-valent meromorphic
functions, International Journal of Mathematical Analysis, 6(2012), no. 27, 1329-1340.

[12] Mohammed, A., Darus, M., Integral operators on new families of meromorphic functions
of complex order, Journal of Inequalities and Applications, 121(2012), 12 pages.

Huda Aldweby
Universiti Kebangsaan Malaysia
School of Mathematical Sciences
43600, Bangi, Selangor, Malaysia
e-mail: h.aldweby@yahoo.com

Maslina Darus
Universiti Kebangsaan Malaysia
School of Mathematical Sciences
43600, Bangi, Selangor, Malaysia
e-mail: maslina@ukm.my
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Book reviews

Will H H. Moore & David A. Siegel, A Mathematical Course for Political & and
Social Research, Princeton University Press, Princeton and Oxford, 2013, xix+430
pp, ISBN 978-0-691-15995-9 (hardback), ISBN 978-0-691-15917-1 (paperback).

The aim of the present book is to introduce the political scientists to some math-
ematical tools used in their discipline. In spite of its abstract character, mathematics
helps them to develop rigorous theories based on the observed data and phenomena
and, at the same time, gives them rigorous tests on the implications of developed
theories. As the book is addressed to an audience with little prior knowledge of math-
ematics (usually at the high school level), the formal mathematics rigor is sacrificed in
the favor of intuition, compensated by some footnotes and comments providing formal
formalism. The book is divided into five main parts: I. Building blocks, II. Calculus in
one dimension, III. Probability, IV. Linear algebra, and V. Multivariate calculus and
optimization.

The first part is concerned with basic tools used in mathematics: notation, basic
results on computation in arithmetic and algebra, functions, relations and utility
(closely related to the subject matter of the book). This part ends with some notions
from calculus – sequences and series, continuous functions – completed in the second
part with differentiation and integration of functions of one variable, with applications
to extrema. The third part of the book is concerned with an important topic for
political sciences, namely probability theory. Although statistics is an essential tool
in political sciences, the stretch is here on probability, including only a brief discussion
on statistical inference. The fourth part discusses vector, matrices, vector spaces, and
ends with a brief discussion of some more advanced topics – eigenvalues and Markov
chains. The last part of the book contains some results on calculus in several variables
with applications to optimization – unconstrained, and constrained both with equality
and inequality constraints.

The text is completed with many worked examples, exercises, and applications
to various topics in political and social sciences. Written in an intuitive and accessible
way, this book can be used as a primer for math novices in the social sciences as well
as a handy reference for the researchers in this area.

Nicolae Popovici
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Igor Kriz and Aleš Pultr, Introduction to Mathematical Analysis, Birkhäuser-
Springer, Basel, 2013, ISBN 978-3-0348-0635-0; ISBN 978-3-0348-0636-7 (eBook);
DOI 10.1007/978-3-0348-0636-7, xx+510 pp.

As the authors mention in the Preface, their aim is “to write a book which the
students may want to keep after the course is over, and which could serve them as a
bridge to higher mathematics”. With this aim in mind the authors included in their
book some topics from topology, calculus of real functions of one and several real
variables, elements of complex analysis, some differential and Riemannian geometry,
elements of functional analysis, as well as some applications.

Some basic tools from topology, viewed as a background of the whole analysis
(understood in a large sense), are treated in Chapters 2 and 7, Metric and topological
spaces, I and II, respectively. Calculus of real functions of one or several real vari-
ables is treated in chapters 1. Preliminaries, 3. Multivariable differential calculus, 4.
Integration I: Multivariable Riemann integral and basic ideas toward the Lebesgue in-
tegral, 5. Integration II: Measurable functions, measure and the techniques of Lebesgue
integration, 8. Line integrals and Green’s theorem. The authors treat first Riemann’s
integral and then the Lebesgue integral is introduced via Daniel’s method. The basics
of complex analysis are developed in Chapters 10. Complex analysis I: Basic concepts,
and 13. Complex analysis II: Further topics. The chapters concerned with differential
geometry are: 12. Smooth manifolds, differential forms and Stokes’ theorem, and 14.
Tensor calculus and Riemannian geometry. Two final chapters are devoted to some
results from functional analysis: 16. Banach and Hilbert spaces: Elements of functional
analysis, and 17. A few applications of Hilbert spaces, (including a Hilbert space proof
of the Radon-Nikodym theorem). Other applications included in the book are to dif-
ferential equations, in Chapters 6. Systems of ordinary differential equations, and 7.
Systems of linear differential equations, and to calculus of variations in Chapter 14.
Calculus of variations and the geodesic equation.

Some supplementary material is included in Chapter 11. Multilinear algebra (ten-
sor products and the exterior Grassmann algebra are presented by the means of ho-
mological algebra), and in two appendices, A. Linear algebra I: Vector spaces, and B.
Linear algebra II: More about matrices.

Each chapter ends with a set of well chosen exercises completing the main text.
Treating in a unified and coherent way several topics from mathematical analysis,
both real and complex, differential and Riemannian geometry, functional analysis,
and their applications, the present well written book is a valuable addition to the
existing ones on similar topics. It can be used by graduate students in mathematics
and researchers in mathematics and other areas (physics, chemistry, economics) to
find a rigorous foundations and details on several topics in analysis. The instructors
can recommend the book as a supplementary material for their courses.

S. Cobzaş
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Niels Lauritzen, Undergraduate Convexity – From Fourier and Motzkin to Kuhn
and Tucker, World Scientific, London - Singapore - Beijing, 2013, xiv + 283 pages,
ISBN: 978-981-4412-51-3 and 978-981-4452-76-2 (pbk).

As the author says in the Preface – “Convexity is a key concept in modern
mathematics with rich applications in economics and optimization”. The aim of this
book is to present at an elementary level (the prerequisites are some familiarity with
calculus and linear algebra) the basic results on convexity in the finite dimensional
setting, i.e. in the space Rn. The book can be divided into three main parts – Chapters
1–6 are devoted to convex sets, Chapters 7–9 to convex functions, and the last chapter,
Chapter 10, Convex optimization, to applications. In spite of its elementary level
some consistent applications are included as well. A special attention is paid to the
algorithmic questions as, e.g., to find whether a point belongs to the convex hull of a
finite set of points.

The first two chapters of the book present some results on Fourier-Motzkin
elimination method (a generalization of Gauss’ method) to solve systems of linear
inequalities and some results on affine spaces and subspaces, affine independence,
affine hulls.

The study of convexity starts in the third chapter, 3. Convex subsets, with some
elemenatray properties, convex hulls (Carathéodori’s theorem), faces, extreme points,
and a presentation of an algorithm, based on Carathéodori’s theorem and on Bland’s
rule from the simplex method, to decide if a point is in the convex hull of a finite
subset of Rd.

Chapter 4, Polyhedra, is devoted to this important class of convex sets. Ap-
plications are given to Farkas’ lemma and Gordan’s theorem, Markov chains, dou-
bly stochastic matrices, and to Hall’s marriage problem. This study is continued in
Chapter 5, Computation with polyhedra, where two important algorithms – the double
description method for polyhedra and the simplex algorithm – are presented. Other
properties of the convex subsets of Rd, as the existence and characterization of pro-
jections onto closed convex sets, supporting hyperplanes, separation of convex sets,
are treated in the sixth chapter, Closed convex subsets and separating hyperplanes,
the last of the first part.

The study of convex functions begins in Chapter 7, Convex functions, with con-
vex functions of one variable (continuity and differentiability properties, local min-
ima), the case of functions of several variables being postponed to Chapter 9, Convex
functions of several variables. For reader’s convenience a chapter, 8. Differentiable
functions of several variables, contains a presentation (with full proofs) of basic re-
sults from the differential calculus for vector functions. Note that the corresponding
results for functions of one variable were proved in the seventh chapter as well. Chap-
ter 9 contains characterizations of the convexity of differentiable functions of several
variables in terms of the monotony of the first differential and positivity of the second
differential. For this last result nice and simple proofs of Sylvester’s criterium of the
positive definiteness of matrices, as well as of the more delicate question of positive
semidefiniteness, are included . This chapter contains also a discussion on the spectral
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properties of symmetric matrices and a study of quadratic forms (Sylvester’s law of
inertia).

As we yet mentioned the last chapter of the book is dedicated to applications –
Karush-Kuhn-Tuccker optimality conditions, Lagrangians and saddle points, duality.

Two appendices, A. Analysis, and B. Linear (in)dependence and the rank of a
matrix, complete the main text with some useful notions and results.

The book, based on one quarter courses, Konvekse Mœngder and Konvekse Funk-
tioner, taught for several years to undergraduate students in mathematics, economics
and computer science at Aarhus University, is didactically written in a pleasant and
alive style, with careful motivation of the considered notions, illuminating examples
and pictures, and relevant historical remarks. The front cover contains a picture of
Johan Ludvig William Valdemar Jensen, the creator of convex functions, some quota-
tions from his papers being included in the book. As a matter of fact, Jensen worked
as a telephone engineer in København and never acquired a formal degree in mathe-
matics or held an academic position, and has done mathematics for its beauty and his
own enjoyment. The author dedicates this book to him “as a tribute to the joyful and
genuine pursuit of mathematics”. All in all, this is a remarkable book, a readable and
attractive introduction to the multi-faced domain of convexity and its applications.

Nicolae Popovici

Ioannis Farmakis and Martin Moskowitz, Fixed Point Theorems and Their Applica-
tions, World Scientific, London - Singapore - Beijing, 2013, xi + 234 pages, ISBN:
978-981-4458-91-7.

The book presents some classical fixed point theorems, with emphasis on those
with an algebraic or geometric flavor and their applications. For instance, Brouwer’s
fixed point theorem, proved in the first chapter via Milnor’s approach, is applied to
the existence of positive eigenvalues and positive proper vectors of positive matrices
(the Perron-Frobenius theorem) and to a glimpse of Google research engine. Similarly,
in Chapter 2, Fixed point theorems in analysis, Schauder-Tychonoff’s fixed point the-
orem is applied to Peano’s existence theorem for differential equations. This chapter
contains also a proof of the Markov-Kakutani fixed point theorem for families of affine
mappings, with applications to Lie and amenable groups.

Chapter 3, The Lefcshetz fixed point theorem, presents the algebraic-topological
fixed point theorem of S. Lefschetz, including a brief discussion on manifolds, Lie
groups, transversality and a proof of the Atiyah and Singer fixed point theorem that
led them to the Fields Medal index theorem for elliptic operators.

Chapter 4, Fixed point theorems in geometry, is devoted to the fixed point theo-
rem of E. Cartan on compact groups of isomorphisms on Hadamard manifolds. and to
the theorems of Preissmann and Weinstein on fixed points on manifolds with negative,
respectively positive, curvature.

Chapter 5, Fixed point theorems of volume preserving maps, starts with a proof
of Poincaré’s recurrence theorem for volume preserving maps and includes also fixed
point theorem in symplectic geometry, a discussion on Arnold’s conjecture on the
number of fixed points of maps on such manifolds, Poincaré’s last geometric theorem
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on fixed points on tori, and a study of Anosov diffeomorphisms. The chapter con-
cludes with a presentation of Lefschetz zeta function and its applications. Chapter 6,
Borel’s fixed point theorem in algebraic geometry, treats Borel’s fixed point theorem
for solvable algebraic groups acting on a complex projective variety.

The seventh chapter, Miscellaneous fixed point theorems, is concerned with appli-
cations to number theory (little Fermat’s theorem and Fermat’s two square theorem),
Jordan’s theorem on fixed points of finite groups of transformations and a fixed point
for the holomorphic mappings in the unit disc, due to the second named author.
The last chapter of the book, Chapter 8, A fixed point theorem in set theory, con-
tains a proof of Knaster-Tarski theorem on fixed points of order preserving functions
on Banach lattices with application to Schröder-Cantor-Bernstein theorem from set
theory.

The book presents interest mainly by some more special fixed point theorems
in algebraic topology, algebraic geometry, and differential and symplectic geometry,
as well as by the interesting applications of fixed point results to various areas of
mathematics. Written in a way that the chapters can be used independently, it appeals
to a large audience.

Adrian Petruşel
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