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Multivariate weighted fractional representation
formulae and Ostrowski type inequalities

George A. Anastassiou

Abstract. Here we derive multivariate weighted fractional representation formu-
lae involving ordinary partial derivatives of first order. Then we present related
multivariate weighted fractional Ostrowski type inequalities with respect to uni-
form norm.

Mathematics Subject Classification (2010): 26A33, 26D10, 26D15.

Keywords: Multivariate fractional integral, weighted representation formula, mul-
tivariate weighted Ostrowski inequality.

1. Introduction

Let f : [a, b] → R be differentiable on [a, b], and f ′ : [a, b] → R be integrable on
[a, b] . Suppose now that w : [a, b]→ [0,∞) is some probability density function, i.e. it

is a nonnegative integrable function satisfying
∫ b
a
w (t) dt = 1, and W (t) =

∫ t
a
w (x) dx

for t ∈ [a, b], W (t) = 0 for t ≤ a and W (t) = 1 for t ≥ b. Then, the following identity
(Pecarić, [5]) is the weighted generalization of the Montgomery identity ([4])

f (x) =

∫ b

a

w (t) f (t) dt+

∫ b

a

Pw (x, t) f ′ (t) dt, (1.1)

where the weighted Peano Kernel is

Pw (x, t) :=

{
W (t) , a ≤ t ≤ x,
W (t)− 1, x < t ≤ b. (1.2)

In [1] we proved

Theorem 1.1. Let w : [a, b]→ [0,∞) be a probability density function, i.e.
∫ b
a
w (t) dt =

1, and set W (t) =
∫ t
a
w (x) dx for a ≤ t ≤ b, W (t) = 0 for t ≤ a and W (t) = 1 for

t ≥ b, α ≥ 1, and f is as in (1.1). Then the generalization of the weighted Montgomery
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identity for fractional integrals is the following

f (x) = (b− x)
1−α

Γ (α) Jαa (w (b) f (b))

− Jα−1a (Qw (x, b) f (b)) + Jαa (Qw (x, b) f ′ (b)) , (1.3)

where the weighted fractional Peano Kernel is

Qw (x, t) :=

{
(b− x)

1−α
Γ (α)W (t) , a ≤ t ≤ x,

(b− x)
1−α

Γ (α) (W (t)− 1) , x < t ≤ b,
(1.4)

i.e. Qw (x, t) = (b− x)
1−α

Γ (α)Pw (x, t) .

When α = 1 then the weighted generalization of the Montgomery identity for
fractional integrals in (1.3) reduces to the weighted generalization of the Montgomery
identity for integrals in (1.1).

So for α ≥ 1 and x ∈ [a, b) we can rewrite (1.3) as follows

f (x) = (b− x)
1−α

∫ b

a

(b− t)α−1 w (t) f (t) dt

− (b− x)
1−α

(α− 1)

∫ b

a

(b− t)α−2 Pw (x, t) f (t) dt

+ (b− x)
1−α

∫ b

a

(b− t)α−1 Pw (x, t) f ′ (t) dt. (1.5)

In this article based on (1.5), we establish a multivariate weighted general frac-
tional representation formula for f (x), x ∈

∏m
i=1 [ai, bi] ⊂ Rm, and from there we

derive an interesting multivariate weighted fractional Ostrowski type inequality. We
finish with an application.

2. Main Results

We make

Assumption 2.1. Let f ∈ C1 (
∏m
i=1 [ai, bi]) .

Assumption 2.2. Let f :
∏m
i=1 [ai, bi]→ R be measurable and bounded, such that there

exist ∂f
∂xj

:
∏m
i=1 [ai, bi] → R, and it is xj-integrable for all j = 1, ...,m. Furthermore

∂f
∂xi

(t1, ..., ti, xi+1, ..., xm) it is integrable on
∏i
j=1 [aj , bj ], for all i = 1, ...,m, for any

(xi+1, ..., xm) ∈
∏m
j=i+1 [aj , bj ] .

Convention 2.3. We set
0∏
j=1

· = 1. (2.1)

Notation 2.4. Here x = −→x = (x1, ..., xm) ∈ Rm, m ∈ N − {1}. Likewise t =
−→
t =

(t1, ..., tm), and d
−→
t = dt1dt2...dtm. Here wi, Wi correspond to [ai, bi], i = 1, ...,m,

and are as w, W of Theorem 1.1.

We need
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Definition 2.5. (see [2] and [3]) Let
∏m
i=1 [ai, bi] ⊂ Rm, m ∈ N− {1}, ai < bi, ai, bi ∈

R. Let α > 0, f ∈ L1 (
∏m
i=1 [ai, bi]). We define the left mixed Riemann-Liouville

fractional multiple integral of order α:

(
Iαa+f

)
(x) :=

1

(Γ (α))
m

∫ x1

a1

...

∫ xm

am

(
m∏
i=1

(xi − ti)

)α−1
f (t1, ..., tm) dt1...dtm, (2.2)

where xi ∈ [ai, bi], i = 1, ...,m, and x = (x1, ..., xm), a = (a1, ..., am), b = (b1, ..., bm) .

We present the following multivariate weighted fractional representation formula

Theorem 2.6. Let f as in Assumption 2.1 or Assumption 2.2, α ≥ 1, xi ∈ [ai, bi),
i = 1, ...,m. Here Pwi

corresponds to [ai, bi], i = 1, ...,m, and it is as in (1.2). The
probability density function wj is assumed to be bounded for all j = 1, ...,m. Then

f (x1, ..., xm) =

 m∏
j=1

(bj − xj)

1−α

(Γ (α))
m

Iαa+
 m∏
j=1

wj

 f

 (b)

+

m∑
i=1

Ai (x1, ..., xm) +

m∑
i=1

Bi (x1, ..., xm) , (2.3)

where for i = 1, ...,m:

Ai (x1, ..., xm) := − (α− 1)

 i∏
j=1

(bj − xj)

1−α ∫
∏i

j=1[aj ,bj ]

i−1∏
j=1

(bj − tj)

α−1

(2.4)

· (bi − ti)α−2
i−1∏
j=1

wj (tj)

Pwi
(xi, ti) f (t1, ..., ti, xi+1, ..., xm) dt1...dti,

and

Bi (x1, ..., xm) :=

 i∏
j=1

(bj − xj)

1−α ∫
∏i

j=1[aj ,bj ]

 i∏
j=1

(bj − tj)

α−1

(2.5)

·

i−1∏
j=1

wj (tj)

Pwi (xi, ti)
∂f

∂xi
(t1, ..., ti, xi+1, ..., xm) dt1...dti.

Proof. We have that

f (x1, x2, ..., xm)
(1.5)
= (b1 − x1)

1−α
∫ b1

a1

(b1 − t1)
α−1

w1 (t1) f (t1, x2, ..., xm) dt1

+A1 (x1, ..., xm) +B1 (x1, ..., xm) . (2.6)

Similarly it holds

f (t1, x2, ..., xm)
(1.5)
= (b2 − x2)

1−α
∫ b2

a2

(b2 − t2)
α−1

w2 (t2) f (t1, t2, x3, ..., xm) dt2
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− (α− 1) (b2 − x2)
1−α

∫ b2

a2

(b2 − t2)
α−2

Pw2 (x2, t2) f (t1, t2, x3, ..., xm) dt2

+ (b2 − x2)
1−α

∫ b2

a2

(b2 − t2)
α−1

Pw2
(x2, t2)

∂f

∂x2
(t1, t2, x3, ..., xm) dt2. (2.7)

Next we plug (2.7) into (2.6).
We get

f (x1, ..., xm) = ((b1 − x1) (b2 − x2))
1−α

·
∫ b1

a1

∫ b2

a2

((b1 − t1) (b2 − t2))
α−1

w1 (t1)w2 (t2) f (t1, t2, x3, ..., xm) dt1dt2 (2.8)

+A2 (x1, ..., xm) +B2 (x1, ..., xm) +A1 (x1, ..., xm) +B1 (x1, ..., xm) .

We continue as above.
We also have

f (t1, t2, x3, ..., xm)
(1.5)
= (b3 − x3)

1−α

·
∫ b3

a3

(b3 − t3)
α−1

w3 (t3) f (t1, t2, t3, x4, ..., xm) dt3

− (α− 1) (b3 − x3)
1−α

∫ b3

a3

(b3 − t3)
α−2

Pw3
(x3, t3) f (t1, t2, t3, x4, ..., xm) dt3 (2.9)

+ (b3 − x3)
1−α

∫ b3

a3

(b3 − t3)
α−1

Pw3
(x3, t3)

∂f

∂x3
(t1, t2, t3, x4, ..., xm) dt3.

We plug (2.9) into (2.8). Therefore it holds

f (x1, ..., xm) =

 3∏
j=1

(bj − xj)

1−α ∫
∏3

j=1[aj ,bj ]

 3∏
j=1

(bj − tj)

α−1

·

 3∏
j=1

wj (tj)

 f (t1, t2, t3, x4, ..., xm) dt1dt2dt3

+

3∑
j=1

Aj (x1, ..., xm) +

3∑
j=1

Bj (x1, ..., xm) . (2.10)

Continuing similarly we finally obtain

f (x1, ..., xm) =

 m∏
j=1

(bj − xj)

1−α

·
∫
∏m

j=1[aj ,bj ]

 m∏
j=1

(bj − tj)

α−1 m∏
j=1

wj (tj)

 f
(−→
t
)
d
−→
t

+

m∑
i=1

Ai (x1, ..., xm) +

m∑
i=1

Bi (x1, ..., xm) , (2.11)
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that is proving the claim. �

We make

Remark 2.7. Let f ∈ C1 (
∏m
i=1 [ai, bi]), α ≥ 1, xi ∈ [ai, bi), i = 1, ...,m. Denote by

‖f‖sup∞ := sup
x∈

∏m
i=1[ai,bi]

|f (x)| . (2.12)

From (1.2) we get that

|Pw (x, t)| ≤
{
W (x) , a ≤ t ≤ x,
1−W (x) , x < t ≤ b

}

≤ max {W (x) , 1−W (x)} =
1 + |2W (x)− 1|

2
. (2.13)

That is

|Pw (x, t)| ≤ 1 + |2W (x)− 1|
2

, (2.14)

for all t ∈ [a, b], where x ∈ [a, b] is fixed.

Consequently it holds

|Pwi (xi, ti)| ≤
1 + |2Wi (xi)− 1|

2
, i = 1, ...,m. (2.15)

Assume here that

wj (tj) ≤ Kj , (2.16)

for all tj ∈ [aj , bj ], where Kj > 0, j = 1, ...,m.

Therefore we derive

|Bi (x1, ..., xm)| ≤

 i∏
j=1

(bj − xj)

1−αi−1∏
j=1

Kj


·
(

1 + |2Wi (xi)− 1|
2

)∥∥∥∥ ∂f∂xi
∥∥∥∥sup
∞

i∏
j=1

(∫ bj

aj

(bj − tj)α−1 dtj

)
. (2.17)

That is

|Bi (x1, ..., xm)| ≤

 i∏
j=1

(bj − xj)

1−α(∏i
j=1 (bj − aj)α

αi

)i−1∏
j=1

Kj


·
(

1 + |2Wi (xi)− 1|
2

)∥∥∥∥ ∂f∂xi
∥∥∥∥sup
∞

, (2.18)

for all i = 1, ...,m.

Based on the above and Theorem 2.6 we have established the following multi-
variate weighted fractional Ostrowski type inequality.
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Theorem 2.8. Let f ∈ C1 (
∏m
i=1 [ai, bi]), α ≥ 1, xi ∈ [ai, bi), i = 1, ...,m. Here Pwi

corresponds to [ai, bi], i = 1, ...,m, and it is as in (1.2). Assume that wj (tj) ≤ Kj,
for all tj ∈ [aj , bj ], where Kj > 0, j = 1, ...,m. And Ai (x1, ..., xm) is as in (2.4),
i = 1, ...,m. Then∣∣∣∣∣f (x1, ..., xm)−

 m∏
j=1

(bj − xj)

1−α

(Γ (α))
m

Iαa+
 m∏
j=1

wj

 f

 (b)

−
m∑
i=1

Ai (x1, ..., xm)

∣∣∣∣∣ ≤
m∑
i=1


 i∏
j=1

(bj − xj)

1−α(∏i
j=1 (bj − aj)α

αi

)

·

i−1∏
j=1

Kj

(1 + |2Wi (xi)− 1|
2

)∥∥∥∥ ∂f∂xi
∥∥∥∥sup
∞

 . (2.19)

3. Application

Here we operate on [0, 1]
m

, m ∈ N− {1}. We notice that∫ 1

0

(
e−x

1− e−1

)
dx = 1, (3.1)

and
e−x

1− e−1
≤ 1

1− e−1
, for all x ∈ [0, 1] . (3.2)

So here we choose as wj the probability density function

w∗j (tj) :=
e−tj

1− e−1
, (3.3)

j = 1, ...,m, tj ∈ [0, 1] .

So we have the corrsponding Wj as

W ∗j (tj) =
1− e−tj
1− e−1

, tj ∈ [0, 1] , (3.4)

and the corresponding Pwj
as

P ∗wj
(xj , tj) =

{
1−e−tj

1−e−1 , 0 ≤ tj ≤ xj ,
e−1−e−tj

1−e−1 , xj < tj ≤ 1,
(3.5)

j = 1, ...,m.

Set
−→
0 = (0, ..., 0) and

−→
1 = (1, ..., 1).

First we apply Theorem 2.6.

We have
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Theorem 3.1. Let f ∈ C1 ([0, 1]
m

), α ≥ 1, xi ∈ [0, 1), i = 1, ...,m. Then

f (x1, ..., xm) =

 m∏
j=1

(1− xj)

1−α(
Γ (α)

1− e−1

)m (
Iα−→
0 +

(
e−

∑m
j=1 tjf (·)

))(−→
1
)

+

m∑
i=1

A∗i (x1, ..., xm) +

m∑
i=1

B∗i (x1, ..., xm) , (3.6)

where for i = 1, ...,m :

A∗i (x1, ..., xm) :=
− (α− 1)

(1− e−1)
i−1

 i∏
j=1

(1− xj)

1−α ∫
[0,1]i

i−1∏
j=1

(1− tj)

α−1

(3.7)

· (1− ti)α−2 e−
∑i−1

j=1 tjP ∗wi
(xi, ti) f (t1, ..., ti, xi+1, ..., xm) dt1...dti,

and

B∗i (x1, ..., xm) :=

(∏i
j=1 (1− xj)

)1−α
(1− e−1)

i−1

∫
[0,1]i

 i∏
j=1

(1− tj)

α−1

(3.8)

·e−
∑i−1

j=1 tjP ∗wi
(xi, ti)

∂f

∂xi
(t1, ..., ti, xi+1, ..., xm) dt1...dti.

Above we set
∑0
i=1 · = 0.

Finally we apply Theorem 2.8.

Theorem 3.2. Let f ∈ C1 ([0, 1]
m

), α ≥ 1, xi ∈ [0, 1), i = 1, ...,m. Here P ∗wi
is as in

(3.5) and A∗i (x1, ..., xm) as in (3.7), i = 1, ...,m. Then∣∣∣∣∣f (x1, ..., xm)−

 m∏
j=1

(1− xj)

1−α(
Γ (α)

1− e−1

)m (
Iα−→
0 +

(
e−

∑m
j=1 tjf (·)

))(−→
1
)

−
m∑
i=1

A∗i (x1, ..., xm)

∣∣∣∣∣ ≤
m∑
i=1

{(∏i
j=1 (1− xj)

)1−α
αi (1− e−1)

i−1

·
(

1 + |2W ∗i (xi)− 1|
2

)∥∥∥∥ ∂f∂xi
∥∥∥∥sup
∞

}
. (3.9)
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On some integral inequalities for twice
differentiable mappings
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Abstract. In this paper, we establish several new inequalities for some twice dif-
ferantiable mappings. Then, we apply these inequalities to obtain new midpoint,
trapezoid and perturbed trapezoid rules. Finally, some applications for special
means of real numbers are provided.
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1. Introduction

In 1938 Ostrowski obtained a bound for the absolute value of the difference of
a function to its average over a finite interval. The theorem is well known in the
literature as Ostrowski’s integral inequality [14]:

Theorem 1.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose deriva-
tive f ′ : (a, b)→ R is bounded on (a, b), i.e., ‖f ′‖∞ = sup

t∈(a,b)
|f ′(t)| < ∞. Then, the

inequality holds:∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(x− a+b
2 )2

(b− a)2

]
(b− a) ‖f ′‖∞ (1.1)

for all x ∈ [a, b]. The constant 1
4 is the best possible.

In 1976, Milovanović and Pečarić proved a generalization of the Ostrowski in-
equality for n-times differentiable mappings (see for example [13, p.468]). Dragomir
and Wang ([10], [11]) extended the result (1.1) and applied the extended result to nu-
merical quadrature rules and to the estimation of error bounds for some special means.
Also, Sofo and Dragomir [18] extended the result (1.1) in the Lp norm. Dragomir ([6]-
[8]) further extended the (1.1) to incorporate mappings of bounded variation, Lips-
chitzian and monotonic mappings. For recent results and generalizations conserning
Ostrowski’s integral inequality see [1]-[13], [18], [19], and the references therein.
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In [4], Cerone and Dragomir find the following perturbed trapezoid inequalities:

Theorem 1.2. Let f : [a, b]→ R be such that the derivative f ′ is absolutely continuous
on [a, b]. Then, the inequality holds:∣∣∣∣∣∣

b∫
a

f(t)dt− b− a
2

[f(b) + f(a)] +
(b− a)

2

8
[f ′(b)− f ′(a)]

∣∣∣∣∣∣
(1.2)

≤



(b−a)3
24 ‖f ′′‖∞ if f ′′ ∈ L∞[a, b]

(b−a)2+
1
q

8(2q+1)
1
q
‖f ′′‖p if f ′′ ∈ Lp[a, b], p > 1, 1

p + 1
q = 1

(b−a)2
8 ‖f ′′‖1 if f ′′ ∈ L1[a, b]

for all t ∈ [a, b].

In recent years a number of authors have considered an error analysis for some
known and some new quadrature formulas. They used an approach from the in-
equalities point of view. For example, the midpoint quadrature rule is considered
in [4],[15],[17], the trapezoid rule is considered in [4],[16],[20]. In most cases estima-
tions of errors for these quadrature rules are obtained by means of derivatives and
integrands.

In this article, we first derive a general integral identity for twice derivatives
functions. Then, we apply this identity to obtain our results and using functions
whose twice derivatives in absolute value at certain powers are convex, we obtained
new inequalities related to the Ostrowski’s type inequality. Finally, we gave some
applications for special means of real numbers.

2. Main results

In order to prove our main results, we need the following Lemma:

Lemma 2.1. Let f : I ⊂ R → R be a twice differentiable function on I◦ with f ′′ ∈
L1[a, b], then

1

b− a

∫ b

a

f(u)du− 1

2
[f(x) + f(a+ b− x)]

+
1

2
(x− a+ 3b

4
) [f ′(x)− f ′(a+ b− x)]

=
(b− a)

2

2

∫ 1

0

k (t) f ′′(ta+ (1− t)b)dt (2.1)
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where

k(t) :=



t2, 0 ≤ t < b−x
b−a(

t− 1
2

)2
, b−x

b−a ≤ t <
x−a
b−a

(t− 1)
2
, x−a

b−a ≤ t ≤ 1

for any x ∈
[
a+b
2 , b

]
.

Proof. It suffices to note that

I =

∫ 1

0

k (t) f ′′(ta+ (1− t)b)dt

=

∫ b−x
b−a

0

t2f ′′(ta+ (1− t)b)dt+

∫ x−a
b−a

b−x
b−a

(
t− 1

2

)2

f ′′(ta+ (1− t)b)dt

+

∫ 1

x−a
b−a

(t− 1)
2
f ′′(ta+ (1− t)b)dt

= I1 + I2 + I3.

By inegration by parts, we have the following identity

I1 =

∫ b−x
b−a

0

t2f ′′(ta+ (1− t)b)dt

=
t2

(a− b)
f ′(ta+ (1− t)b)

b−x
b−a

|
0
− 2

a− b

∫ b−x
b−a

0

tf ′(ta+ (1− t)b)dt

=
1

(a− b)

(
b− x
b− a

)2

f ′(x)

− 2

a− b

 t

(a− b)
f(ta+ (1− t)b)

b−x
b−a

|
0
− 1

a− b

∫ b−x
b−a

0

f(ta+ (1− t)b)dt


= − (b− x)

2

(b− a)
3 f
′(x)− 2 (b− x)

(b− a)
3 f(x) +

2

(b− a)
2

∫ b−x
b−a

0

f(ta+ (1− t)b)dt.

Similarly, we observe that

I2 =

∫ x−a
b−a

b−x
b−a

(
t− 1

2

)2

f ′′(ta+ (1− t)b)dt

=
(a+ b− 2x)

2

4 (b− a)
3 [f ′(x)− f ′(a+ b− x)] +

(a+ b− 2x)

(b− a)
3 [f(x) + f(a+ b− x)]
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+
2

(b− a)
2

∫ x−a
b−a

b−x
b−a

f(ta+ (1− t)b)dt

and

I3 =

∫ 1

x−a
b−a

(t− 1)
2
f ′′(ta+ (1− t)b)dt

=
(b− x)

2

(b− a)
3 f
′(a+ b− x)− 2 (b− x)

(b− a)
3 f(a+ b− x) +

2

(b− a)
2

∫ 1

x−a
b−a

f(ta+ (1− t)b)dt.

Thus, we can write

I = I1 + I2 + I3 =
1

(b− a)2

(
x− a+ 3b

4

)
[f ′(x)− f ′(a+ b− x)]

− 1

(b− a)2
[f(x) + f(a+ b− x)] +

2

(b− a)2

∫ 1

0

f(ta+ (1− t)b)dt.

Using the change of the variable u = ta+ (1− t)b for t ∈ [0, 1] and by multiplying the

both sides by (b− a)
2
/2 which gives the required identity (2.1). �

Now, by using the above lemma, we prove our main theorems:

Theorem 2.2. Let f : I ⊂ R → R be a twice differentiable function on I◦ such that
f ′′ ∈ L1[a, b] where a, b ∈ I, a < b. If |f ′′| is convex on [a, b], then the following
inequality holds:∣∣∣∣ 1

b− a

∫ b

a

f(u)du− 1

2
[f(x) + f(a+ b− x)] +

1

2
(x− a+ 3b

4
) [f ′(x)− f ′(a+ b− x)]

∣∣∣∣
≤ 1

(b− a)

[
(b− x)

3
+

(
x− a+ b

2

)3
](
|f ′′(a)|+ |f ′′(b)|

6

)
(2.2)

for any x ∈
[
a+b
2 , b

]
.

Proof. From Lemma 2.1 and by the definition k(t), we get∣∣∣∣ 1

b− a

∫ b

a

f(u)du− 1

2

[
f(x) + f(a+ b− x)

]
+

1

2

(
x− a+ 3b

4

)
[f ′(x)− f ′(a+ b− x)]

∣∣∣∣
≤ (b− a)2

2

∫ 1

0

|k(t)||f ′′(ta+ (1− t)b)|dt

=
(b− a)2

2

{∫ b−x
b−a

0

t2|f ′′(ta+ (1− t)b)|dt+

∫ x−a
b−a

b−x
b−a

(
t− 1

2

)2
|f ′′(ta+ (1− t)b)|dt

+

∫ 1

x−a
b−a

(t− 1)2|f ′′(ta+ (1− t)b)|dt
}

=
(b− a)2

2
{J1 + J2 + J3} (2.3)

Investigating the three separate integrals, we may evaluate as follows:
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By the convexity of |f ′′|, we arrive at

J1 ≤
∫ b−x

b−a

0

(
t3 |f ′′(a)|+ (t2 − t3) |f ′′(b)|

)
dt

=
(b− x)

4

4(b− a)4
|f ′′(a)|+

(
(b− x)

3

3(b− a)3
− (b− x)

4

4(b− a)4

)
|f ′′(b)| ,

J2 ≤
∫ x−a

b−a

b−x
b−a

[(
t− 1

2

)2

t |f ′′(a)|+
(
t− 1

2

)2

(1− t) |f ′′(b)|

]
dt

=
1

3(b− a)3

(
x− a+ b

2

)3

|f ′′(a)|+ 1

3(b− a)3

(
x− a+ b

2

)3

|f ′′(b)| ,

J3 ≤
∫ 1

x−a
b−a

[
(t− 1)

2
t |f ′′(a)|+ (1− t)3 |f ′′(b)|

]
dt

=

(
(b− x)

3

3(b− a)3
− (b− x)

4

4(b− a)4

)
|f ′′(a)|+ (b− x)

4

4(b− a)4
|f ′′(b)| .

By rewrite J1, J2, J3 in (2.3), we obtain (2.2) which completes the proof. �

Corollary 2.3 (Perturbed Trapezoid inequality). Under the assumptions Theorem 2.2
with x = b, we have∣∣∣∣ 1

b− a

b∫
a

f(u)du− f(b) + f(a)

2
+

(b− a)

8
[f ′(b)− f ′(a)]

∣∣∣∣ ≤ (b− a)2

48
(|f ′′(a)|+ |f ′′(b)).

Remark 2.4. We choose |f ′′(x)| ≤ M, M > 0 in Corollary 2.3, then we recapture
the first part of the inequality (1.2).

Corollary 2.5 (Trapezoid inequality). Under the assumptions Theorem 2.2 with x = b
and f ′(a) = f ′(b) in Theorem 2.2, we have∣∣∣∣∣ 1

b− a

∫ b

a

f(u)du− f (a) + f (b)

2

∣∣∣∣∣ ≤ (b− a)2

48
(|f ′′ (a)|+ |f ′′ (b)|). (2.4)

Corollary 2.6 (Midpoint inequality). Under the assumptions Theorem 2.2 with x =
a+b
2 in Theorem 2.2, we have∣∣∣∣∣ 1

b− a

∫ b

a

f(u)du− f
(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)2

48
(|f ′′ (a)|+ |f ′′ (b)|). (2.5)

Another similar result may be extended in the following theorem
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Theorem 2.7. Let f : I ⊂ R → R be a twice differentiable function on I◦ such that
f ′′ ∈ L1[a, b] where a, b ∈ I, a < b. If |f ′′|q is convex on [a, b], q > 1 and 1

p + 1
q = 1,

then ∣∣∣∣ 1

b− a

∫ b

a

f(u)du− 1

2
[f(x) + f(a+ b− x)]

+
1

2

(
x− a+ 3b

4

)
[f ′(x)− f ′(a+ b− x)]

∣∣∣∣ (2.6)

≤ 2
1
p−1

(2p+ 1)
1
p (b− a)

1
p

[
(b− x)2p+1

+
(
x− a+ b

2

)2p+1
] 1

p
(
|f ′′(a)|q + |f ′′(b)|q

2

) 1
q

for any x ∈
[
a+b
2 , b

]
.

Proof. From Lemma 2.1, by the definition k (t) and using Hölder’s inequality, it follows
that ∣∣∣∣ 1

b− a

∫ b

a

f(u)du− 1

2
[f(x) + f(a+ b− x)]

+
1

2

(
x− a+ 3b

4

)[
f ′(x)− f ′(a+ b− x)

]∣∣∣∣ (2.7)

≤ (b− a)2

2

∫ 1

0

|k(t)||f ′′(ta+ (1− t)b)|dt

≤ (b− a)2

2

(∫ 1

0

|k(t)|pdt
) 1

p
(∫ 1

0

|f ′′(ta+ (1− t)b)|qdt
) 1

q

.

Since |f ′′|q is convex on [a, b] , we know that for t ∈ [0, 1]

|f ′′(ta+ (1− t)b)|q ≤ t |f ′′(a)|q + (1− t) |f ′′(b)|q ,

hence, a simple computation shows that∫ 1

0

|f ′′(ta+ (1− t)b)|q dt ≤ |f
′′(a)|q + |f ′′(b)|q

2
(2.8)

also, ∫ 1

0

|k (t)|p dt =

∫ b−x
b−a

0

t2pdt+

∫ x−a
b−a

b−x
b−a

∣∣∣∣t− 1

2

∣∣∣∣2p dt+

∫ 1

x−a
b−a

(1− t)2p dt

(2.9)

=
2

(2p+ 1) (b− a)
2p+1

[
(b− x)

2p+1
+

(
x− a+ b

2

)2p+1
]
.

Using (2.8) and (2.9) in (2.7), we obtain (2.6). �
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Corollary 2.8 (Perturbed Trapezoid inequality). Under the assumptions Theorem 2.7
with x = b, we have∣∣∣∣ 1

b− a

b∫
a

f(u)du− f(b) + f(a)

2
+

(b− a)

8
[f ′(b)− f ′(a)]

∣∣∣∣
≤ (b− a)2

8(2p+ 1)
1
p

(
|f ′′(a)|q + |f ′′(b)|q

2

) 1
q

.

Corollary 2.9 (Trapezoid inequality). Under the assumptions Theorem 2.7 with x = b
and f ′(a) = f ′(b) in Theorem 2.7, we have∣∣∣∣ 1

b− a

∫ b

a

f(u)du− f(a) + f(b)

2

∣∣∣∣ (2.10)

≤ (b− a)2

8(2p+ 1)
1
p

(
|f ′′(a)|q + |f ′′(b)|q

2

) 1
q

.

Corollary 2.10 (Midpoint inequality). Under the assumptions Theorem 2.7 with x =
a+b
2 in Theorem 2.7, we have∣∣∣∣∣ 1

b− a

∫ b

a

f(u)du− f
(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)2

8 (2p+ 1)
1
p

(
|f ′′(a)|q + |f ′′(b)|q

2

) 1
q

. (2.11)

Theorem 2.11. Let f : I ⊂ R → R be a twice differentiable function on I◦ such that
f ′′ ∈ L1[a, b] where a, b ∈ I, a < b. If |f ′′|q is convex on [a, b] and q ≥ 1, then∣∣∣∣ 1

b− a

∫ b

a

f(u)du− 1

2
[f(x) + f(a+ b− x)]

+
1

2
(x− a+ 3b

4
)[f ′(x)− f ′(a+ b− x)]

∣∣∣∣ (2.12)

≤ 1

3(b− a)

[
(b− x)3 +

(
x− a+ b

2

)3]( |f ′′(a)|q + |f ′′(b)|q

2

) 1
q

for any x ∈
[
a+b
2 , b

]
.

Proof. From Lemma 2.1, by the definition k (t) and using power mean inequality, it
follows that ∣∣∣∣ 1

b− a

∫ b

a

f(u)du− 1

2
[f(x) + f(a+ b− x)]

+
1

2
(x− a+ 3b

4
)[f ′(x)− f ′(a+ b− x)]

∣∣∣∣ (2.13)

≤ (b− a)2

2

∫ 1

0

|k(t)||f ′′(ta+ (1− t)b)|dt

≤ (b− a)2

2
(

∫ 1

0

|k(t)|dt)1−
1
q (

∫ 1

0

|k(t)||f ′′(ta+ (1− t)b)|qdt)
1
q .



18 Mehmet Zeki Sarıkaya, Erhan Set and M. Emin Ozdemir

Since |f ′′|q is convex on [a, b] , we know that for t ∈ [0, 1]

|f ′′(ta+ (1− t)b)|q ≤ t |f ′′(a)|q + (1− t) |f ′′(b)|q ,

hence, by simple computation∫ 1

0

|k (t)| dt =

∫ b−x
b−a

0

t2dt+

∫ x−a
b−a

b−x
b−a

∣∣∣∣t− 1

2

∣∣∣∣2 dt+

∫ 1

x−a
b−a

(1− t)2 dt

(2.14)

=
2

3 (b− a)
3

[
(b− x)

3
+

(
x− a+ b

2

)3
]
,

and ∫ 1

0

|k (t)| |f ′′(ta+ (1− t)b)|q dt

≤
∫ 1

0

|k (t)|
(
t |f ′′(a)|q + (1− t) |f ′′(b)|q

)
dt

=

∫ b−x
b−a

0

(
t3 |f ′′(a)|q + (t2 − t3) |f ′′(b)|q

)
dt

+

∫ x−a
b−a

b−x
b−a

[(
t− 1

2

)2

t |f ′′(a)|q +

(
t− 1

2

)2

(1− t) |f ′′(b)|q
]
dt

(2.15)

+

∫ 1

x−a
b−a

[
(t− 1)

2
t |f ′′(a)|q + (1− t)3 |f ′′(b)|q

]
dt

=
(b− x)

4

4(b− a)4
|f ′′(a)|q +

(
(b− x)

3

3(b− a)3
− (b− x)

4

4(b− a)4

)
|f ′′(b)|q

+
1

3(b− a)3

(
x− a+ b

2

)3

|f ′′(a)|q +
1

3(b− a)3

(
x− a+ b

2

)3

|f ′′(b)|q

+

(
(b− x)

3

3(b− a)3
− (b− x)

4

4(b− a)4

)
|f ′′(a)|q +

(b− x)
4

4(b− a)4
|f ′′(b)|q

=
1

3 (b− a)
3

[
(b− x)

3
+

(
x− a+ b

2

)3
] (
|f ′′(a)|q + |f ′′(b)|q

)
.

Using (2.14) and (2.15) in (2.13), we obtain (2.12). �
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Corollary 2.12. Under the assumptions Theorem 2.11 with x = b, we have∣∣∣∣ 1

b− a

b∫
a

f(u)du− f(b) + f(a)

2
+

(b− a)

8
[f ′(b)− f ′(a)]

∣∣∣∣
≤ (b− a)2

24

(
|f ′′(a)|q + |f ′′(b)|q

2

) 1
q

.

Corollary 2.13. Under the assumptions Theorem 2.11 with x = b and f ′(a) = f ′(b)
in Theorem 2.11, we have∣∣∣∣∣ 1

b− a

∫ b

a

f(u)du− f (a) + f (b)

2

∣∣∣∣∣ ≤ (b− a)2

24

(
|f ′′(a)|q + |f ′′(b)|q

2

) 1
q

. (2.16)

Corollary 2.14. Under the assumptions Theorem 2.11 with x = a+b
2 in Theorem 2.11,

we have∣∣∣∣∣ 1

b− a

∫ b

a

f(u)du− f
(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)2

24

(
|f ′′(a)|q + |f ′′(b)|q

2

) 1
q

. (2.17)

Remark 2.15. When considering that 24 > 8(2p+ 1)
1
p , p > 1, the bounded of Corro-

laries 2.12-2.14 are better than Corrolaries 2.8-2.10 respectively.

Open Problem. Under what conditions that the result of Theorem 2.7 and Theorem
2.11 is comparable.

3. Applications for special means

Recall the following means:

(a) The arithmetic mean

A = A(a, b) :=
a+ b

2
, a, b ≥ 0;

(b) The geometric mean

G = G(a, b) :=
√
ab, a, b ≥ 0;

(c) The harmonic mean

H = H (a, b) :=
2ab

a+ b
, a, b > 0;

(d) The logarithmic mean

L = L (a, b) :=


a if a = b

b−a
ln b−ln a if a 6= b

, a, b > 0;
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(e) The identric mean

I = I(a, b) :=


a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b

, a, b > 0;

(f) The p−logarithmic mean:

Lp = Lp(a, b) :=


[
bp+1−ap+1

(p+1)(b−a)

] 1
p

if a 6= b

a if a = b

, p ∈ R� {−1, 0} ; a, b > 0.

It is also known that Lp is monotonically nondecreasing in p ∈ R with L−1 := L and
L0 := I. The following simple relationships are known in the literature

H ≤ G ≤ L ≤ I ≤ A.
Now, using the results of Section 2, some new inequalities are derived for the above
means.

Proposition 3.1. Let p ≥ 2 and 0 < a < b. Then we have the inequality:∣∣Lp
p(a, b)−A (ap, bp)

∣∣ ≤ p (p− 1)
(b− a)

2

24
A
(
ap−2, bp−2

)
.

Proof. The assertion follows from (2.4) applied for f(x) = xp, x ∈ [a, b] .We omitted
the details. �

Proposition 3.2. Let 0 < a < b. Then we have the inequality:∣∣L−1(a, b)−A−1(a, b)
∣∣ ≤ (b− a)

2

12
A
(
a−3, b−3

)
.

Proof. The assertion follows from (2.5) applied for f(x) = 1
x , x ∈ [a, b] . We omitted

the details. �

Proposition 3.3. Let q > 1 and 0 < a < b. Then we have the inequality:

|ln I(a, b)− lnG(a, b)| ≤ (b− a)
2

8 (2p+ 1)
1
p

[
A
(
a−2q, b−2q

)]1/q
.

Proof. The assertion follows from (2.10) applied for f(x) = − lnx, x ∈ [a, b] . �

Proposition 3.4. Let p ≥ 2 and 0 < a < b. Then we have the inequality:∣∣Lp
p(a, b)−Ap(a, b)

∣∣ ≤ p (p− 1)
(b− a)

2

8 (2p+ 1)
1/p

[
A
(
aq(p−2), bq(p−2)

)]1/q
.

Proof. The assertion follows from (2.11) applied for f(x) = xp, x ∈ [a, b] . �

Proposition 3.5. Let p > 1 and 0 < a < b. Then we have the inequality:∣∣L−1(a, b)−H−1(a, b)
∣∣ ≤ (b− a)

2

12

[
A
(
a−3q, b−3q

)]1/q
.
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Proof. The assertion follows from (2.16) applied for f(x) = 1
x , x ∈ [a, b] . �

Proposition 3.6. Let q > 1, and 0 < a < b. Then we have the inequality:

|ln I(a, b)− lnA(a, b)| ≤ (b− a)
2

24

[
A
(
a−2q, b−2q

)]1/q
.

Proof. The assertion follows from (2.17) applied for f(x) = − lnx, x ∈ [a, b] . �

4. Applications for composite quadrature formula

Let d be a division a = x0 < x1 < ... < xn−1 < xn = b of the interval [a, b] and
ξ = (ξ0, ..., ξn−1) a sequence of intermediate points, ξi ∈ [xi, xi+1], i = 0, n− 1. Then
the following result holds:

Theorem 4.1. Let f : I ⊂ R → R be a twice differentiable function on I◦ such that
f ′′ ∈ L1[a, b] where a, b ∈ I, a < b. If |f ′′| is convex on [a, b] then we have∫ b

a

f(u)du = A(f, f ′, d, ξ) +R(f, f ′, d, ξ)

where

A(f, f ′, d, ξ) : =

n−1∑
i=0

hi
2

[f(ξi) + f(xi + xi+1 − ξi)]

−
n−1∑
i=0

hi
2

(
ξi −

xi + 3xi+1

4

)
[f ′(ξi)− f ′(xi + xi+1 − ξi)] .

The remainder R(f, f ′, d, ξ) satisfies the estimation:

|R(f, f ′, d, ξ)| ≤
n−1∑
i=0

[
(xi+1 − ξi)3 +

(
ξi −

xi + xi+1

2

)3
](
|f ′′(xi)|+ |f ′′(xi+1)|

6

)
(4.1)

for any choice ξ of the intermediate points.

Proof. Apply Theorem 2.2 on the interval [xi, xi+1], i = 0, n− 1 to get∣∣∣∣hi2 [f(ξi) + f(xi + xi+1 − ξi)]−
hi
2

(
ξi −

xi + 3xi+1

4

)

× [f ′(ξi)− f ′(xi + xi+1 − ξi)]−
∫ b

a

f(u)du

∣∣∣∣∣
≤

[
(xi+1 − ξi)3 +

(
ξi −

xi + xi+1

2

)3
](
|f ′′(xi)|+ |f ′′(xi+1)|

6

)
.

�
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Summing the above inequalities over i from 0 to n− 1 and using the generalized
triangle inequality, we get the desired estimation (4.1).

Corollary 4.2. The following perturbed trapezoid rule holds:∫ b

a

f(u)du = T (f, f ′, d) +RT (f, f ′, d)

where

T (f, f ′, d) :=

n−1∑
i=0

hi
2

[f(xi) + f(xi+1)]−
n−1∑
i=0

(hi)
2

8
[f ′(xi+1)− f ′(xi)]

and the remainder term RT (f, f ′, d) satisfies the estimation,

RT (f, f ′, d) ≤
n−1∑
i=0

(hi)
3

48
(|f ′′(xi)|+ |f ′′(xi+1)|).

Corollary 4.3. The following midpoint rule holds:∫ b

a

f(u)du = M(f, d) +RM (f, d)

where

M(f, d) :=

n−1∑
i=0

hi

[
f(
xi + xi+1

2
)

]
and the remainder term RM (f, d) satisfies the estimation,

RM (f, d) ≤
n−1∑
i=0

(hi)
3

48
(|f ′′(xi)|+ |f ′′(xi+1)|).
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Düzce University
Department of Mathematics
Faculty of Science and Arts
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Fekete-Szegő problem for a new class of analytic
functions with complex order defined by certain
differential operator

Rabha M. El-Ashwah, Mohammed K. Aouf and Alaa H. Hassan

Abstract. In this paper, we obtain Fekete-Szegő inequalities for a new class of

analytic functions f ∈ A for which 1+
1

b
[(1− γ)

Dnλ (f∗g)(z)
z

+γ(Dn
λ(f ∗g)(z))′−1]

(γ, λ ≥ 0; b ∈ C∗ = C\ {0} ;n ∈ N0; z ∈ U) lies in a region starlike with respect
to 1 and is symmetric with respect to the real axis.

Mathematics Subject Classification (2010): 30C45.

Keywords: Analytic function, Fekete-Szegő problem, differential subordination.

1. Introduction

Let A denote the class of functions f of the form:

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disc U = {z ∈ C and |z| < 1}. Further let S
denote the family of functions of the form (1.1) which are univalent in U , and g ∈ A
be given by

g(z) = z +

∞∑
k=2

gkz
k. (1.2)

A classical theorem of Fekete-Szegő [8] states that, for f ∈ S given by (1.1), that

∣∣a3 − µa22∣∣ ≤


3− 4µ, if µ ≤ 0,

1 + 2 exp

(
−2µ

1− µ

)
, if 0 ≤ µ ≤ 1,

4µ− 3, if µ ≥ 1.

(1.3)

The result is sharp.
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Given two functions f and g, which are analytic in U with f(0) = g(0), the function
f is said to be subordinate to g if there exists a function w, analytic in U, such
that w(0) = 0 and |w(z)| < 1 (z ∈ U) and f(z) = g(w(z)) (z ∈ U). We denote this
subordination by f(z) ≺ g(z) ([10]).

Let ϕ be an analytic function with positive real part on U, which satisfies ϕ(0) =
1 and ϕ′(0) > 0, and which maps the unit disc U onto a region starlike with respect
to 1 and symmetric with respect to the real axis. Let S∗(ϕ) be the class of functions
f ∈ S for which

zf ′(z)

f(z)
≺ ϕ(z), (1.4)

and C(ϕ) be the class of functions f ∈ S for which

1 +
zf ′′(z)

f ′(z)
≺ ϕ(z). (1.5)

The classes of S∗(ϕ) and C(ϕ) were introduced and studied by Ma and Minda [9].
The familier class S∗(α) of starlike functions of order α and the class C(α) of convex
functions of order α (0 ≤ α < 1) are the special cases of S∗(ϕ) and C(ϕ), respectively,

when ϕ(z) = 1+(1−2α)z
1−z (0 ≤ α < 1).

Ma and Minda [9] have obtained the Fekete-Szegő problem for the functions in the
class C(ϕ).

Definition 1.1. (Hadamard Product or Convolution) Given two functions f and g in
the class A, where f is given by (1.1) and g is given by (1.2) the Hadamard product
(or convolution) of f and g is defined (as usual) by

(f ∗ g)(z) = z +

∞∑
k=2

akgkz
k = (g ∗ f)(z). (1.6)

For the functions f and g defined by (1.1) and (1.2) respectively, the linear operator
Dn
λ : A −→ A (λ ≥ 0;n ∈ N0 = N ∪ {0} ,N = {1, 2, 3, ...}) is defined by(see [4], see

also [7, with p = 1]):

D0
λ(f ∗ g)(z) = (f ∗ g)(z),

Dn
λ(f ∗ g)(z) = Dλ(Dn−1

λ (f ∗ g)(z))

= z +

∞∑
k=2

[1 + λ(k − 1)]nakgkz
k (λ ≥ 0;n ∈ N0). (1.7)

Remark 1.2. (i) Taking g(z) =
z

1− z
, then operator Dn

λ(f ∗ z

1− z
)(z) = Dn

λf(z), was

introduced and studied by Al-Oboudi [2];

(ii) Taking g(z) =
z

1− z
and λ = 1, then operator Dn

1 (f ∗ z

1− z
)(z) = Dnf(z), was

introduced by Sălăgean [12].

Using the operator Dn
λ we introduce a new class of analytic functions with complex

order as following:
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Definition 1.3. For b ∈ C∗ = C\ {0} let the class Mn
λ (f, g; γ, b;ϕ) denote the subclass

of A consisting of functions f of the form (1.1) and g of the form (1.2) and satisfying
the following subordination:

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
≺ ϕ(z), (1.8)

(γ, λ ≥ 0; n ∈ N0) .

Specializing the parameters γ, λ, b, n, g and ϕ, we obtain the following subclasses
studied by various authors:

(i) M0
λ

(
f, z +

∞∑
k=2

knzk; γ, b;
1 +Az

1 +Bz

)
= Mn

1

(
f,

z

1− z
; γ, b;

1 +Az

1 +Bz

)
= Gn (γ, b, A,B) (γ, λ ≥ 0,−1 ≤ B < A ≤ 1, b ∈ C∗, n ∈ N0) (Sivasubramanian et al.
[14]);

(ii) M0
λ

(
f, g; γ, b;

1 + (1− 2α)z

1− z

)
= S (f, g; γ, α, b) (0 ≤ α < 1, γ ≥ 0, b ∈ C∗) (Aouf

et al. [5]);

(iii) M0
λ

(
f, z +

∞∑
k=2

knzk; γ, b;
1 + z

1− z

)
= Mn

1

(
f,

z

1− z
; γ, b;

1 + z

1− z

)
= Gn (γ, b)

(γ ≥ 0, b ∈ C∗, n ∈ N0) (Aouf [3]);

(iv) M0
λ

(
f,

z

1− z
; 1, b; (1− `) 1 +Az

1 +Bz
+ `

)
= Rb` (A,B) (b ∈ C∗, 0 ≤ ` < 1,

−1 ≤ B < A ≤ 1) (Reddy and Reddy [11]);

(v) M0
λ

(
f,

z

1− z
; 1, b;ϕ

)
= Rb (ϕ) (b ∈ C∗) (Ali et al. [1]).

Also we note that:

(i) If g(z) = z +
∞∑
k=2

Ψk(α1)zk (or gk = Ψk(α1)), where

Ψk(α1) =
(α1)k−1 ..... (αq)k−1

(β1)k−1 ..... (βs)k−1 (k − 1)!
(1.9)

(αi > 0, i = 1, ..., q;βj > 0, j = 1, ..., s; q ≤ s + 1; q, s ∈ N = {1, 2, ...}), where (ν)k is
the Pochhammer symbol defined in terms to the Gamma function Γ, by

(ν)k =
Γ(ν + k)

Γ(ν)
=

{
1, if k = 0,
ν(ν + 1)(ν + 2)...(ν + k − 1), if k ∈ N,

then the class Mn
λ (f, z +

∞∑
k=2

Ψk(α1)zk; γ, b;ϕ) reduces to the class

Mn
λ,q,s([α1]; γ, b;ϕ)

=

{
f ∈ A : 1 +

1

b

[
(1− γ)

Dn
λ(α1, β1)f(z)

z
+ γ(Dn

λ(α1, β1)f(z))′ − 1

]
≺ ϕ(z),

γ, λ ≥ 0; b ∈ C∗;n ∈ N0

}
,
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where, the operator Dn
λ(α1, β1) was defined as (see Selvaraj and Karthikeyan [13], see

also El-Ashwah and Aouf [6]):

Dn
λ(α1, β1)f(z) = z +

∞∑
k=2

[1 + λ(k − 1)]n
(α1)k−1 ... (αq)k−1

(β1)k−1 ... (βs)k−1 (1)k−1
akz

k

(ii) Mn
λ (f, g; 1, b;ϕ) = Gnλ (f, g; b;ϕ) = {f(z) ∈ A : 1 +

1

b
[(Dn

λ(f ∗ g)(z))
′ − 1] ≺ ϕ(z)

(λ ≥ 0; b ∈ C∗;n ∈ N0)};

(iii) Mn
λ (f, g; 0, b;ϕ) = Rnλ (f, g; b;ϕ) = {f(z) ∈ A : 1 +

1

b
[
Dn
λ(f ∗ g)(z)

z
− 1] ≺ ϕ(z)

(λ ≥ 0; b ∈ C∗;n ∈ N0)};

(iv) Mn
λ

(
f, g; γ, (1− ρ) cos ηe−iη;ϕ

)
= En,ηλ,ρ (f, g; γ;ϕ) = {f(z ∈ A : eiη[(1− γ)

·D
n
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′
] ≺ (1 − ρ) cos ηϕ(z) + i sin η + ρ cos η (|η| ≤ π

2
;

γ, λ ≥ 0; 0 ≤ ρ < 1; b ∈ C∗;n ∈ N0)}.

In this paper, we obtain the Fekete-Szegő inequalities for functions in the class
Mn
λ (f, g; γ, b;ϕ) .

2. Fekete-Szegő problem

Unless otherwise mentioned, we assume in the reminder of this paper that λ ≥ 0,
b ∈ C∗ and z ∈ U.
To prove our results, we shall need the following lemmas:
Lemma 2.1. [9] If p(z) = 1 + c1z + c2z

2 + ..... (z ∈ U) is a function with positive real
part in U and µ is a complex number, then∣∣c2 − µc21∣∣ ≤ 2 max{1; |2µ− 1|}. (2.1)

The result is sharp for the functions given by

p(z) =
1 + z2

1− z2
and p(z) =

1 + z

1− z
(z ∈ U) . (2.2)

Lemma 2.2. [9] If p1(z) = 1 + c1z + c2z
2 + ..... is a function with positive real part in

U, then ∣∣c2 − νc21∣∣ ≤
 −4ν + 2, if ν ≤ 0,

2, if 0 ≤ ν ≤ 1,
4ν − 2, if ν ≥ 1.

When ν < 0 or ν > 1, the equality holds if and only if p1(z) =
1 + z

1− z
or one of its

rotations. If 0 < ν < 1, then the equality holds if and only if p1(z) =
1 + z2

1− z2
or one

of its rotations. If ν = 0, the equality holds if and only if

p1(z) =

(
1

2
+

1

2
γ

)
1 + z

1− z
+

(
1

2
− 1

2
γ

)
1− z
1 + z

(0 ≤ γ ≤ 1),
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or one of its rotations. If ν = 1, the equality holds if and only if

1

p1(z)
=

(
1

2
+

1

2
γ

)
1 + z

1− z
+

(
1

2
− 1

2
γ

)
1− z
1 + z

(0 ≤ γ ≤ 1).

Also the above upper bound is sharp and it can be improved as follows when 0 < ν < 1 :∣∣c2 − νc21∣∣+ ν |c1|2 ≤ 2 (0 < ν <
1

2
),

and ∣∣c2 − νc21∣∣+ (1− ν) |c1|2 ≤ 2 (
1

2
< ν < 1).

Using Lemma 2.1, we have the following theorem:

Theorem 2.3. Let ϕ(z) = 1+B1z+B2z
2+B3z

3+ ..., where ϕ(z) ∈ A and ϕ
′
(0) > 0. If

f(z) given by (1.1) belongs to the class Mn
λ (f, g; γ, b;ϕ) and if µ is a complex order,

then∣∣a3 − µa22∣∣ ≤ B1 |b|
(1 + 2λ)

n
(1 + 2γ) g3

max

{
1,

∣∣∣∣∣B2

B1
− (1 + 2λ)

n
(1 + 2γ) g3

(1 + λ)
2n

(1 + γ)
2
g22
µbB1

∣∣∣∣∣
}
.

(2.3)
The result is sharp.
Proof. If f ∈ Mn

λ (f, g; γ, b;ϕ) , then there exists a Schwarz function w analytic in
U with w(0) = 0 and |w(z)| < 1 in U and such that

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= ϕ(w(z)). (2.4)

Define the function p1 by

p1(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + ... . (2.5)

Since w is a Schwarz function, we see that Rep1(z) > 0 and p1(0) = 1.
Let define the function p by:

p(z) = 1+
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= 1+b1z+b2z

2+... (2.6)

In view of the equations (2.4), (2.5) and (2.6), we have

p(z) = ϕ

(
p1(z)− 1

p1(z) + 1

)
= ϕ

(
c1z + c2z

2 + ...

2 + c1z + c2z2 + ...

)
= ϕ

(
1

2
c1z +

1

2

(
c2 −

c21
2

)
z2 + ...

)
= 1 +

1

2
B1c1z +

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + ... (2.7)

Thus

b1 =
1

2
B1c1 and b2 =

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1. (2.8)
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Since

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= 1 +

(
1

b
(1 + λ)

n
(1 + γ) a2g2

)
z +

(
1

b
(1 + 2λ)

n
(1 + 2γ) a3g3

)
z2 + ...,

from (2.6) and (2.8), we obtain

a2 =
B1c1b

2 (1 + λ)
n

(1 + γ) g2
, (2.9)

and

a3 =
B1c2b

2 (1 + 2λ)
n

(1 + 2γ) g3
+

c21
4 (1 + 2λ)

n
(1 + 2γ) g3

[(B2 −B1) b] . (2.10)

Therefore, we have

a3 − µa22 =
B1b

2 (1 + 2λ)
n

(1 + 2γ) g3

[
c2 − νc21

]
, (2.11)

where

ν =
1

2

[
1− B2

B1
+

(1 + 2λ)
n

(1 + 2γ) g3µ

(1 + λ)
2n

(1 + γ)
2
g22

B1b

]
. (2.12)

Our result now follows by an application of Lemma 2.1. The result is sharp for the
functions f satisfying

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= ϕ(z2), (2.13)

and

1 +
1

b

[
(1− γ)

Dn
λ(f ∗ g)(z)

z
+ γ (Dn

λ(f ∗ g)(z))
′ − 1

]
= ϕ(z). (2.14)

This completes the proof of Theorem 2.3.

Remark 2.4. (i) Taking γ = 1, n = 0 and g(z) =
z

1− z
in Theorem 2.3, we obtain the

result obtained by Ali et al. [1, Theorem 2.3, with k = 1];

(ii) Taking γ = 1, n = 0, g(z) =
z

1− z
and ϕ(z) = (1 − `) 1 +Az

1 +Bz
+ ` (0 ≤ ` < 1,

−1 ≤ B < A ≤ 1) in Theorem 2.3, we obtain the result obtained by Reddy and Reddy
[11, Theorem 4].

Also by specializing the parameters in Theorem 2.3, we obtain the following new sharp
results.

Putting n = 0, g(z) = z +

∞∑
k=2

knzk (n ∈ N0) and ϕ(z) = 1+Az
1−Bz (−1 ≤ B < A ≤ 1)

(or equivalently, B1 = A − B and B2 = −B(A − B)) in Theorem 2.3, we obtain the
corollary:
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Corollary 2.5. If f given by (1.1) belongs to the class Gn (γ, b;A,B) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ (A−B) |b|

(1 + 2γ) 3n
max

{
1,

∣∣∣∣∣ (1 + 2γ) 3n

(1 + γ)
2

22n
µ (A−B) b+B

∣∣∣∣∣
}
. (2.15)

The result is sharp.

Putting n = 0 and ϕ(z) = 1+(1−2α)z
1−z (0 ≤ α < 1) in Theorem 2.3, we obtain the

following corollary:
Corollary 2.6. If f given by (1.1) belongs to the class S (f, g; γ, α, b) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ 2 (1− α) |b|

(1 + 2γ) g3
max

{
1,

∣∣∣∣∣1− 2 (1 + 2γ) g3

(1 + γ)
2
g22

µ (1− α) b

∣∣∣∣∣
}
. (2.16)

The result is sharp.

Putting n = 0, g(z) = z +

∞∑
k=2

knzk (n ∈ N0) and ϕ(z) = 1+z
1−z in Theorem 2.3, we

obtain the following corollary:
Corollary 2.7. If f given by (1.1) belongs to the class Gn (γ, b) , then for any complex
number µ, we have∣∣a3 − µa22∣∣ ≤ 2 |b|

(1 + 2γ) 3n
max

{
1,

∣∣∣∣∣1− (1 + 2γ) 3n

(1 + γ)
2

22n−1
µb

∣∣∣∣∣
}
. (2.17)

The result is sharp.

Putting γ = 1 in Theorem 2.3, we obtain the following corollary:
Corollary 2.8. If f given by (1.1) belongs to the class Gnλ (f, g; b;ϕ) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ B1 |b|

3 (1 + 2λ)
n
g3

max

{
1,

∣∣∣∣∣B2

B1
− 3 (1 + 2λ)

n
g3

4 (1 + λ)
2n
g22
µB1b

∣∣∣∣∣
}
. (2.18)

The result is sharp.

Putting γ = 0 in Theorem 2.3, we obtain the following corollary:
Corollary 2.9. If f given by (1.1) belongs to the class Rnλ (f, g; b;ϕ) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ B1 |b|

(1 + 2λ)
n
g3

max

{
1,

∣∣∣∣∣B2

B1
− (1 + 2λ)

n
g3

(1 + λ)
2n
g22
µB1b

∣∣∣∣∣
}
. (2.19)

The result is sharp.

Putting (1−ρ) cos ηe−iη
(

0 ≤ ρ < 1; |η| ≤ π

2

)
in Theorem 2.3, we obtain the following

corollary:
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Corollary 2.10. If f given by (1.1) belongs to the class En,ηλ,ρ (f, g; γ;ϕ) , then for any
complex number µ, we have∣∣a3 − µa22∣∣ ≤ (1−ρ)B1 cos η

(1+2λ)n(1+2γ)g3
max

{
1,

∣∣∣∣B2

B1
eiη − (1+2λ)n(1+2γ)(1−ρ) cos η

(1+λ)2n(1+γ)2g22
g3µB1

∣∣∣∣} .
(2.20)

The result is sharp.

Using Lemma 2.2, we have the following theorem:
Theorem 2.11. Let ϕ(z) = 1 +B1z+B2z

2 +B3z
3 + ..., (b > 0;Bi > 0; i ∈ N) . Also let

σ1 =
(1 + λ)2n (1 + γ)

2
g22 (B2 −B1)

(1 + 2λ)n (1 + 2γ) g3bB2
1

,

and

σ2 =
(1 + λ)2n (1 + γ)

2
g22 (B2 +B1)

(1 + 2λ)n (1 + 2γ) g3bB2
1

.

If f is given by (1.1) belongs to the class Mn
λ (f, g; γ, b;ϕ) , then we have the following

sharp results:
(i) If µ ≤ σ1, then∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3

[
B2 −

(1 + 2λ)n (1 + 2γ) g3b

(1 + λ)2n (1 + γ)
2
g22

µB2
1

]
; (2.21)

(ii) If σ1 ≤ µ ≤ σ2, then ∣∣a3 − µa22∣∣ ≤ bB1

(1 + 2λ)n (1 + 2γ) g3
; (2.22)

(iii) If µ ≥ σ2, then∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3

[
−B2 +

(1 + 2λ)n (1 + 2γ) g3b

(1 + λ)2n (1 + γ)
2
g22

µB2
1

]
. (2.23)

Proof. For f ∈ Mn
λ (f, g; γ, b;ϕ) , p(z) given by (2.6) and p1 given by (2.5), then a2

and a3 are given as in Theorem 2.3. Also

a3 − µa22 =
B1b

2 (1 + 2λ)
n

(1 + 2γ) g3

[
c2 − νc21

]
, (2.24)

where

ν =
1

2

[
1− B2

B1
+

(1 + 2λ)
n

(1 + 2γ) g3µ

(1 + λ)
2n

(1 + γ)
2
g22

B1b

]
. (2.25)

First, if µ ≤ σ1, then we have ν ≤ 0, and by applying Lemma 2.2 to equality (2.24),
we have∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3

[
B2 −

(1 + 2λ)n (1 + 2γ) g3b

(1 + λ)2n (1 + γ)
2
g22

µB2
1

]
,

which is evidently inequality (2.21) of Theorem 2.11.



Fekete-Szegő problem for a new class of analytic functions 33

If µ = σ1, then we have ν = 0, therefore equality holds if and only if

p1(z) = (1+γ
2 )

1 + z

1− z
+ ( 1−γ

2 )
1− z
1 + z

(0 ≤ γ ≤ 1; z ∈ U).

Next, if σ1 ≤ µ ≤ σ2, we note that

max

{
1

2

[
1− B2

B1
+

(1 + 2λ)
n

(1 + 2γ) g3µ

(1 + λ)
2n

(1 + γ)
2
g22

B1b

]}
≤ 1, (2.26)

then applying Lemma 2.2 to equality (2.24), we have∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3
,

which is evidently inequality (2.22) of Theorem 2.11.
If σ1 < µ < σ2, then we have

p1(z) =
1 + z2

1− z2
.

Finally, If µ ≥ σ2, then we have ν ≥ 1, therefore by applying Lemma 2.2 to (2.24),
we have∣∣a3 − µa22∣∣ ≤ b

(1 + 2λ)n (1 + 2γ) g3

[
(1 + 2λ)n (1 + 2γ) g3b

(1 + λ)2n (1 + γ)
2
g22

µB2
1 −B2

]
,

which is evidently inequality (2.23) of Theorem 2.11.
If µ = σ2, then we have ν = 1, therefore equality holds if and only if

1

p1(z)
=

1 + γ

2

1 + z

1− z
+

1− γ
2

1− z
1 + z

(0 ≤ γ ≤ 1; z ∈ U).

To show that the bounds are sharp, we define the functions Ks
ϕ(s ≥ 2) by

1 +
1

b

[
(1− γ)

Dnλ(K
s
ϕ∗g)(z)
z + γ

(
Dn
λ(Ks

ϕ ∗ g)(z)
)′ − 1

]
= ϕ(zs−1), (2.27)

Ks
ϕ(0) = 0 = K

′s
ϕ (0)− 1,

and the functions Ft and Gt (0 ≤ t ≤ 1) by

1 +
1

b

[
(1− γ)

Dnλ(Ft∗g)(z)
z + γ (Dn

λ(Ft ∗ g)(z))
′ − 1

]
= ϕ

(
z(z+t)
1+tz

)
, (2.28)

Ft(0) = 0 = F ′t (0)− 1,

and

1 +
1

b

[
(1− γ)

Dnλ(Gt∗g)(z)
z + γ (Dn

λ(Gt ∗ g)(z))
′ − 1

]
= ϕ

(
− z(z+t)1+tz

)
, (2.29)

Gt(0) = 0 = G′t(0)− 1.

Cleary the functions Ks
ϕ, Ft and Gt ∈Mn

λ (f, g; γ, b;ϕ) . Also we write Kϕ = K2
ϕ.

If µ < σ1 or µ > σ2, then the equality holds if and only if f is Kϕ or one of
its rotations. When σ1 < µ < σ2, then the equality holds if f is K3

ϕ or one of its
rotations. If µ = σ1, then the equality holds if and only if f is Ft or one of its
rotations. If µ = σ2, then the equality holds if and only if f is Gt or one of its
rotations.
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Remark 2.12. Taking γ = 1, b = 1, n = 0 and g(z) =
z

1− z
in Theorem 2.11, we

obtain the result obtained by Ali et al. [1, Corollary 2.5, with k = 1].

Also, using Lemma 2.2 we have the following theorem:
Theorem 2.13. For ϕ(z) = 1 + B1z + B2z

2 + B3z
3 + ..., (b > 0;Bi > 0; i ∈ N) and

f(z) given by (1.1) belongs to the class Mn
λ (f, g; γ, b;ϕ) and σ1 ≤ µ ≤ σ2, then in

view of Lemma 2.2, Theorem 2.11 can be improved. Let

σ3 =
(1 + λ)2n (1 + γ)

2
g22B2

(1 + 2λ)n (1 + 2γ) g3bB2
1

,

(i) If σ1 ≤ µ ≤ σ3, then∣∣a3 − µa22∣∣+
(1+λ)2n(1+γ)2g22

(1+2λ)n(1+2γ)g3bB1

[
1− B2

B1
+ (1+2λ)n(1+2γ)g3

(1+λ)2n(1+γ)2g22
µbB1

]
|a2|2

≤ B1b

(1 + 2λ)n (1 + 2γ) g3
; (2.30)

(ii) If σ3 ≤ µ ≤ σ2, then∣∣a3 − µa22∣∣+
(1+λ)2n(1+γ)2g22

(1+2λ)n(1+2γ)g3bB1

[
1 +

B2

B1
− (1+2λ)n(1+2γ)g3

(1+λ)2n(1+γ)2g22
µbB1

]
|a2|2

≤ B1b

(1 + 2λ)n (1 + 2γ) g3
. (2.31)

Proof. For the values of σ1 ≤ µ ≤ σ3, we have∣∣a3 − µa22∣∣+ (µ− σ1) |a2|2

= B1b
2(1+2λ)n(1+2γ)g3

∣∣c2 − νc21∣∣+
(
µ− (1+λ)2n(1+γ)2g22(B2−B1)

(1+2λ)n(1+2γ)g3bB2
1

)
B2

1b
2

4(1+2λ)2n(1+γ)2g22
|c1|2

=
B1b

(1 + 2λ)
n

(1 + 2γ) g3

{
1

2

(∣∣c2 − νc21∣∣+ ν |c1|2
)}

. (2.32)

Now applying Lemma 2.2 to equality (2.32), we have∣∣a3 − µa22∣∣+ (µ− σ1) |a2|2 ≤
B1b

(1 + 2λ)n (1 + 2γ) g3
,

which is the inequality (2.30) of Theorem 2.13.
Next, for the values of σ3 ≤ µ ≤ σ2, we have∣∣a3 − µa22∣∣+ (σ2 − µ) |a2|2

= bB1

2(1+2λ)n(1+2γ)g3

∣∣c2 − νc21∣∣+
(

(1+λ)2n(1+γ)2g22(B2+B1)

(1+2λ)n(1+2γ)g3bB2
1
− µ

)
· B2

1b
2

4(1+2λ)2n(1+γ)2g22
|c1|2

=
B1b

(1 + 2λ)
n

(1 + 2γ) g3

{
1

2

( ∣∣c2 − νc21∣∣+ (1− ν) |c1|2
)}

. (2.33)

Now applying Lemma 2.2 to equality (2.33), we have∣∣a3 − µa22∣∣+ (σ2 − µ) |a2|2 ≤
B1b

(1 + 2λ)n (1 + 2γ) g3
,
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which is the inequality (2.31). This completes the proof of Theorem 2.13.

Remark 2.14. (i) Specializing the parameters γ, λ, b, n, g and ϕ in Theorem 2.11
and Theorem 2.13, we obtain the corresponding results of the classes Gn (γ, b, A,B) ,
S (f, g; γ, α, b) , Gn (γ, b) , Rb` (A,B) , Mn

λ,q,s([α1]; γ, b;ϕ), Gnλ (f, g; b;ϕ) , Rnλ (f, g; b;ϕ)

and En,ηλ,ρ (f, g; γ;ϕ) , as special cases as defined before.
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Improvement of a result due to P.T. Mocanu

Róbert Szász

Abstract. A result concerning the starlikeness of the image of the Alexander
operator is improved in this paper. The techniques of differential subordinations
are used.
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1. Introduction

Let U = {z ∈ C : |z| < 1} be the open unit disk in in the complex plane. Let
A be the class of analytic functions f, which are defined on the unit disk U and have
the properties f(0) = f ′(0) − 1 = 0. The subclass of A, consisting of functions for
which the domain f(U) is starlike with respect to 0 is denoted by S∗. An analytic
characterization of S∗ is given by

S∗ =

{
f ∈ A : Re

zf ′(z)

f(z)
> 0, z ∈ U

}
.

Another subclass of A we deal with is the class of close-to-convex functions denoted by
C. A function f ∈ A belongs to the class C if and only if there is a starlike function

g ∈ S∗, so that Re zf ′(z)
g(z) > 0, z ∈ U. We note that C and S∗ contain univalent

functions. The Alexander integral operator is defined by the equality:

A(f)(z) =

∫ z

0

f(t)

t
dt.

The authors of [1] pp. 310− 311 proved the following result:

Theorem 1.1. Let A be the Alexander operator and let g ∈ A satisfy

Re
zg′(z)

g(z)
≥
∣∣∣∣Im z(zg′(z))′

g(z)

∣∣∣∣ , z ∈ U. (1.1)

If f ∈ A and

Re
zf ′(z)

g(z)
> 0, z ∈ U,
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then F = A(f) ∈ S∗.

Improvements of this result can be found in [3], [4] and [6]. In this paper we put
the problem to determine the smallest c1 such that the following theorems hold.

Theorem 1.2. Let A be the Alexander operator and let g ∈ A satisfy

Re
zg′(z)

g(z)
≥ c1

∣∣∣∣Im z(zg′(z))′

g(z)

∣∣∣∣ , z ∈ U. (1.2)

If f ∈ A and

Re
zf ′(z)

g(z)
> 0, z ∈ U,

then F = A(f) ∈ S∗.

In [5] it has been proved that A(C) * S∗, and this result shows that c1 > 0. We
are not able to determine the the best value of c1, but we will give a new improvement
for Theorem 1.1 in the present paper. In order to do this, we need some lemmas, which
are exposed in the next section.

2. Preliminaries

Let f and g be analytic functions in U. The function f is said to be subordinate
to g, written f ≺ g, if there is a function w analytic in U, with w(0) = 0, |w(z)| <
1, z ∈ U and f(z) = g(w(z)), z ∈ U. Recall that if g is univalent, then f ≺ g if and
only if f(0) = g(0) and f(U) ⊂ g(U).

Lemma 2.1. [1] (Miller-Mocanu) Let p(z) = a+
∞∑
k=n

akz
k be analytic in U with p(z) 6≡

a, n ≥ 1 and let q : U → C be an analytic and univalent function with q(0) = a. If p
is not subordinate to q, then there are two points z0 ∈ U, |z0| = r0 and ζ0 ∈ ∂U and
a real number m ∈ [n,∞), so that q is defined in ζ0, p(U(0, r0)) ⊂ q(U), and:

(i) p(z0) = q(ζ0)
(ii) z0p

′(z0) = mζ0q
′(ζ0)

and

(iii) Re
(

1 + z0p
′′(z0)

p′(z0)

)
≥ mRe

(
1 + ζ0q

′′(ζ0)
q′(ζ0)

)
.

We note that z0p
′(z0) is the outward normal to the curve p(∂U(0, r0)) at the point

p(z0), while ∂U(0, r0) denotes the border of the disc U(0, r0).

In [6] the following result is proved:

Lemma 2.2. [6] Let g ∈ A be a function, which satisfies the condition∣∣∣∣Im zg′(z)

g(z)

∣∣∣∣ ≤ 1, z ∈ U. (2.1)

If f ∈ A and

Re
zf ′(z)

g(z)
> 0, z ∈ U,

then F = A(f) ∈ S∗.



Improvement of a result due to P.T. Mocanu 39

3. The main result

Theorem 3.1. Let g ∈ A be a function such that

Re
zg′(z)

g(z)
≥ 2

5

∣∣∣∣Im z(zg′(z))′

g(z)

∣∣∣∣ , z ∈ U. (3.1)

If f ∈ A and

Re
zf ′(z)

g(z)
> 0, z ∈ U,

then F = A(f) ∈ S∗.

Proof. If we denote p(z) = zg′(z)
g(z) , then (3.1) becomes

Re p(z) >
2

5

∣∣ Im[zp′(z) + p2(z)]
∣∣, z ∈ U. (3.2)

We will prove that

p ≺ q where q(z) = 1 +
2

π
log

1 + z

1− z
, z ∈ U.

If the subordination p ≺ q does not hold, then according to Lemma 2.1, there are two
points z2 ∈ U, ζ2 = eiθ2 and a real number m2 ∈ [1,∞) such that

p(z2) = q(ζ2) = 1 +
2

π
log

1 + ζ2
1− ζ2

= 1 +
2

π
(ln | cot

θ2
2
| ± iπ

2
)

and

z2p
′(z2) = m2ζ2q

′(ζ2) =
2m2i

π sin θ2
.

We discuss the case θ2 ∈ (0, π), the other case θ2 ∈ [−π, 0) is similar. If θ2 ∈ [0, π]
and x = cot θ22 , then

p(z2) = 1 +
2

π

(
ln | cot

θ2
2
|+ i

π

2

)
and we get ∣∣ Im[z2p

′(z2) + p2(z2)]
∣∣− 5

2
Re p(z2)

=
2m2

π sin θ2
+ 2

[
1 +

2

π
ln

(
cot

θ2
2

)]
− 5

2

[
1 +

2

π
ln

(
cot

θ2
2

)]
≥ 1 + x2

πx
− 1

2

[
1 +

2

π
ln(x)

]
=

1 + x2

πx
− 1

2
− 1

π
ln(x) ≥ 0, x ∈ (0,∞).

This contradicts (3.2), and consequently the subordination

zg′(z)

g(z)
= p(z) ≺ q(z) = 1 +

2

π
log

1 + z

1− z

holds. This subordination implies
∣∣∣ Im zg′(z)

g(z)

∣∣∣ ≤ 1, z ∈ U and so according to Lemma

2.2 we have F = A(f) ∈ S∗. �
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A comprehensive class of harmonic functions
defined by convolution and its connection with
integral transforms and hypergeometric functions

Sumit Nagpal and V. Ravichandran

Abstract. For given two harmonic functions Φ and Ψ with real coefficients in the
open unit disk D, we study a class of harmonic functions

f(z) = z −

∞∑

n=2

Anz
n +

∞∑

n=1

Bnz̄
n (An, Bn ≥ 0)

satisfying Re
(f ∗ Φ)(z)

(f ∗ Ψ)(z)
> α (0 ≤ α < 1, z ∈ D); ∗ being the harmonic convo-

lution. Coefficient inequalities, growth and covering theorems, as well as closure
theorems are determined. The results obtained extend several known results as
special cases. In addition, we study the class of harmonic functions f that satisfy
Re f(z)/z > α (0 ≤ α < 1, z ∈ D). As an application, their connection with
certain integral transforms and hypergeometric functions is established.

Mathematics Subject Classification (2010): Primary: 30C45; Secondary: 31A05,
33C05.

Keywords: Harmonic mappings; convolution; hypergeometric functions; integral
transform; convex and starlike functions.

1. Introduction

Let H denote the class of all complex-valued harmonic functions f in the open
unit disk D = {z ∈ C : |z| < 1} normalized by f(0) = 0 = fz(0) − 1. Such functions
can be written in the form f = h+ ḡ, where

h(z) = z +

∞
∑

n=2

Anz
n and g(z) =

∞
∑

n=1

Bnz
n (1.1)

are analytic in D. We call h the analytic part and g the co-analytic part of f . Let SH

be the subclass of H consisting of univalent and sense-preserving functions. In 1984,
Clunie and Sheil-Small [5] initiated the study of the class SH and its subclasses.
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For analytic functions φ(z) = z+
∑

∞

n=2
Anz

n and ψ(z) = z+
∑

∞

n=2
A′

nz
n, their

convolution (or Hadamard product) is defined as (φ ∗ ψ)(z) = z +
∑

∞

n=2
AnA

′

nz
n,

z ∈ D. In the harmonic case, with f = h + ḡ and F = H + Ḡ, their harmonic
convolution is defined as f ∗F = h∗H+g ∗G. Harmonic convolutions are investigated
in [7, 8, 10, 15, 16].

Let T H be the subclass of H consisting of functions f = h+ ḡ so that h and g
take the form

h(z) = z −

∞
∑

n=2

Anz
n , g(z) =

∞
∑

n=1

Bnz
n (An, Bn ≥ 0). (1.2)

Making use of the convolution structure for harmonic mappings, we study a new
subclass T H(Φi,Ψj;α) introduced in the following:

Definition 1.1. Suppose that i, j ∈ {0, 1}. Let the functions Φi,Ψj given by

Φi(z) = z +

∞
∑

n=2

pnz
n + (−1)i

∞
∑

n=1

qnz̄
n

and

Ψj(z) = z +

∞
∑

n=2

unz
n + (−1)j

∞
∑

n=1

vnz̄
n

are harmonic in D with pn > un ≥ 0 (n = 2, 3, . . .) and qn > vn ≥ 0 (n = 1, 2, . . .).
Then a function f ∈ H is said to be in the class H(Φi,Ψj;α) if and only if

Re
(f ∗ Φi)(z)

(f ∗Ψj)(z)
> α (z ∈ D), (1.3)

where ∗ denotes the harmonic convolution as defined above and 0 ≤ α < 1. Further
we define the class T H(Φi,Ψj;α) by

T H(Φi,Ψj ;α) = H(Φi,Ψj;α) ∩ T H.

The family T H(Φi,Ψj ;α) includes a variety of well-known subclasses of har-
monic functions as well as many new ones. For example

T H

(

z

(1 − z)2
−

z̄

(1− z̄)2
,

z

1− z
+

z̄

1− z̄
;α

)

≡ T S∗

H(α);

and

T H

(

z + z2

(1− z)3
+

z̄ + z̄2

(1− z̄)3
,

z

(1 − z)2
−

z̄

(1− z̄)2
;α

)

≡ T KH(α)

are the classes of sense-preserving harmonic univalent functions f which are fully
starlike of order α (0 ≤ α < 1) and fully convex of order α (0 ≤ α < 1) respectively
(see [11, 12, 16]). These classes were studied by Silverman and Silvia [19] for the case
α = 0. Recall that fully starlike functions of order α and fully convex functions of
order α are characterized by the conditions

∂

∂θ
arg f(reiθ) > α (0 ≤ θ < 2π, 0 < r < 1)
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and
∂

∂θ

(

arg

{

∂

∂θ
f(reiθ)

})

> α, (0 ≤ θ < 2π, 0 < r < 1)

respectively. In the similar fashion, it is easy to see that the subclasses of T H intro-
duced by Ahuja et al. [2, 3], Dixit et al. [6], Frasin [9], Murugusundaramoorthy et al.

[14] and Yalçin et al. [20, 21] are special cases of our class T H(Φi,Ψj ;α) for suitable
choice of the functions Φi and Ψj .

In Section 2, we obtain the coefficient inequalities, growth and covering theorems,
as well as closure theorems for functions in the class T H(Φi,Ψj;α). In particular, the
invariance of the class T H(Φi,Ψj;α) under certain integral transforms and connection
with hypergeometric functions is also established.

The study of harmonic mappings defined by using hypergeometric functions is
a recent area of interest [1, 4, 17]. Let F (a, b, c; z) be the Gaussian hypergeometric
function defined by

F (a, b, c; z) :=
∞
∑

n=0

(a)n(b)n
(c)n(1)n

zn, z ∈ D (1.4)

which is the solution of the second order homogeneous differential equation

z(1− z)w′′(z) + [c− (a+ b+ 1)z]w′(z)− abw(z) = 0,

where a, b, c are complex numbers with c 6= 0,−1,−2, . . ., and (θ)n is the Pochham-
mer symbol: (θ)0 = 1 and (θ)n = θ(θ + 1) . . . (θ + n − 1) for n = 1, 2, . . .. Since the
hypergeometric series in (1.4) converges absolutely in D, it follows that F (a, b, c; z)
defines an analytic function in D and plays an important role in the theory of univa-
lent functions. We have obtained necessary and sufficient conditions for a harmonic
function associated with hypergeometric functions to be in the class T H(Φi,Ψj ;α).
The well-known Gauss’s summation theorem: if Re(c− a− b) > 0 then

F (a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, c 6= 0,−1,−2, . . .

will be frequently used in this paper.
For γ > −1 and −1 ≤ δ < 1, let Lγ : H → H and Gδ : H → H be the integral

transforms defined by

Lγ [f ](z) :=
γ + 1

zγ

∫ z

0

tγ−1h(t) dt+
γ + 1

zγ

∫ z

0

tγ−1g(t) dt, (1.5)

and

Gδ[f ](z) :=

∫ z

0

h(t)− h(δt)

(1− δ)t
dt+

∫ z

0

g(t)− g(δt)

(1− δ)t
dt. (1.6)

where f = h + g ∈ H and z ∈ D. It has been shown that the class T H(Φi,Ψj ;α) is
preserved under these integral transforms.

For 0 ≤ α < 1, let

T UH(α) := T H

(

z

1− z
+

z̄

1− z̄
, z;α

)
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The last section of the paper investigates the properties of functions in the class
T UH(α). Moreover, inclusion relations are obtained between the classes T UH(α),
T S∗

H(α) and T KH(α) under certain milder conditions.

2. The Class T H(Φi,Ψj;α)

The first theorem of this section provides a sufficient coefficient condition for a
function to be in the class H(Φi,Ψj ;α).

Theorem 2.1. Let the function f = h + ḡ be such that h and g are given by (1.1).
Furthermore, let

∞
∑

n=2

pn − αun
1− α

|An|+
∞
∑

n=1

qn − (−1)j−iαvn
1− α

|Bn| ≤ 1 (2.1)

where 0 ≤ α < 1, i, j ∈ {0, 1}, pn > un ≥ 0 (n = 2, 3, . . .) and qn > vn ≥ 0
(n = 1, 2, . . .). Then f ∈ H(Φi,Ψj;α).

Proof. Using the fact that Rew > α if and only if |w − 1| < |w + 1 − 2α|, it suffices
to show that

|C(z) + (1 − 2α)D(z)| − |C(z)−D(z)| ≥ 0, (2.2)

where

C(z) = (f ∗ Φi)(z) = z +

∞
∑

n=2

Anpnz
n + (−1)i

∞
∑

n=1

Bnqnz̄
n

and

D(z) = (f ∗Ψj)(z) = z +

∞
∑

n=2

Anunz
n + (−1)j

∞
∑

n=1

Bnvnz̄
n.

Substituting for C(z) and D(z) in (2.2) and making use of (2.1) we obtain

|C(z) + (1− 2α)D(z)| − |C(z)−D(z)|

=

∣

∣

∣

∣

∣

2(1− α)z +

∞
∑

n=2

(pn + (1− 2α)un)Anz
n+(−1)i

∞
∑

n=1

(qn + (−1)j−i(1− 2α)vn)Bnz̄
n

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∞
∑

n=2

(pn − un)Anz
n + (−1)i

∞
∑

n=1

(qn − (−1)j−ivn)Bnz̄
n

∣

∣

∣

∣

∣

≥ 2(1− α)|z| −
∞
∑

n=2

(pn + (1− 2α)un)|An||z|
n −

∞
∑

n=1

(qn + (−1)j−i(1 − 2α)vn)|Bn||z|
n

−

∞
∑

n=2

(pn − un)|An||z|
n −

∞
∑

n=1

(qn − (−1)j−ivn)|Bn||z|
n

= 2(1− α)|z|

[

1−
∞
∑

n=2

pn − αun
1− α

|An||z|
n−1 −

∞
∑

n=1

qn − (−1)j−iαvn
1− α

|Bn||z|
n−1

]

> 2(1− α)|z|

[

1−

∞
∑

n=2

pn − αun
1− α

|An| −

∞
∑

n=1

qn − (−1)j−iαvn
1− α

|Bn|

]

≥ 0.
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The harmonic mappings

f(z) = z +
∞
∑

n=2

1− α

pn − αun
xnz

n +
∞
∑

n=1

1− α

qn − (−1)j−iαvn
ȳnz̄

n,

where
∑

∞

n=2
|xn| +

∑

∞

n=1
|yn| = 1, show that the coefficient bound given by (2.1) is

sharp. �

Remark 2.2. In addition to the hypothesis of Theorem 2.1, if we assume that pn ≥ n
(n = 2, 3, . . .) and qn ≥ n (n = 1, 2, . . .) then it is easy to deduce that n(1 − α) ≤
pn − αun (n = 2, 3, . . .) and n(1− α) ≤ qn − (−1)j−iαvn (n = 1, 2, . . .) so that

∞
∑

n=2

n|An|+

∞
∑

n=1

n|Bn| ≤

∞
∑

n=2

pn − αun
1− α

|An|+

∞
∑

n=1

qn − (−1)j−iαvn
1− α

|Bn| ≤ 1.

By [12, Theorem 1, p. 472], f ∈ SH and maps D onto a starlike domain.

Theorem 2.1 gives a sufficient condition for the harmonic function φ1 +φ
2
to be

in the class H(Φi,Ψj;α) where φ1(z) ≡ φ1(a1, b1, c1; z) and φ2(z) ≡ φ2(a2, b2, c2; z)
are the hypergeometric functions defined by

φ1(z) := zF (a1, b1, c1; z) and φ2(z) := F (a2, b2, c2; z)− 1. (2.3)

Corollary 2.3. Let ak, bk, ck > 0 for k = 1, 2. Furthermore, let

∞
∑

n=2

pn − αun
1− α

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

+

∞
∑

n=1

qn − (−1)j−iαvn
1− α

(a2)n(b2)n
(c2)n(1)n

≤ 1 (2.4)

where 0 ≤ α < 1, i, j ∈ {0, 1}, pn > un ≥ 0 (n = 2, 3, . . .) and qn > vn ≥ 0
(n = 1, 2, . . .). Then φ1 + φ

2
∈ H(Φi,Ψj;α), φ1 and φ2 being given by (2.3).

The next corollary provides a sufficient condition for ψ1 + ψ
2
to belong to the

class H(Φi,Ψj;α) where ψ1(z) ≡ ψ1(a1, b1, c1; z) and ψ2(z) ≡ ψ2(a2, b2, c2; z) are
analytic functions defined by

ψ1(z) :=

∫ z

0

F (a1, b1, c1; t) dt and ψ2(z) :=

∫ z

0

(F (a2, b2, c2; t)− 1) dt. (2.5)

Corollary 2.4. Suppose that ak, bk, ck > 0 for k = 1, 2 and

∞
∑

n=2

pn − αun
1− α

(a1)n−1(b1)n−1

(c1)n−1(1)n
+

∞
∑

n=2

qn − (−1)j−iαvn
1− α

(a2)n−1(b2)n−1

(c2)n−1(1)n
≤ 1 (2.6)

where 0 ≤ α < 1, i, j ∈ {0, 1}, pn > un ≥ 0 (n = 2, 3, . . .) and qn > vn ≥ 0
(n = 2, 3, . . .). Then ψ1 + ψ

2
∈ H(Φi,Ψj ;α), ψ1 and ψ2 being given by (2.5).

It is worth to remark that Theorems 2.2, 2.4 and 2.11 of [4] are particular cases
of Corollary 2.3, while [4, Theorem 2.8] follows as a special case of Corollary 2.4.
We next show that the coefficient condition (2.1) is also necessary for functions in
T H(Φi,Ψj;α).
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Theorem 2.5. Let the function f = h + ḡ be such that h and g are given by (1.2).
Then f ∈ T H(Φi,Ψj;α) if and only if

∞
∑

n=2

pn − αun
1− α

An +
∞
∑

n=1

qn − (−1)j−iαvn
1− α

Bn ≤ 1 (2.7)

where 0 ≤ α < 1, i, j ∈ {0, 1}, pn > un ≥ 0 (n = 2, 3, . . .) and qn > vn ≥ 0
(n = 1, 2, . . .).

Proof. The sufficient part follows by Theorem 2.1 upon noting that T H(Φi,Ψj;α) ⊂
H(Φi,Ψj ;α). For the necessary part, let f ∈ T H(Φi,Ψj ;α). Then (1.3) yields

Re

(

(f ∗ Φi)(z)

(f ∗Ψj)(z)
− α

)

= Re

(

(1− α)z +
∑

∞

n=2
(pn − αun)Anz

n + (−1)i
∑

∞

n=1
(qn − (−1)j−iαvn)Bnz̄

n

z +
∑

∞

n=2
Anunzn + (−1)j

∑

∞

n=1
Bnvnz̄n

)

≥
(1− α) −

∑

∞

n=2
(pn − αun)An|z|

n−1 −
∑

∞

n=1
(qn − (−1)j−iαvn)Bn|z|

n−1

1 +
∑

∞

n=2
Anun|z|n−1 +

∑

∞

n=1
Bnvn|z|n−1

> 0.

The above inequality must hold for all z ∈ D. In particular, choosing the values of z on
the positive real axis and letting z → 1− we obtain the required condition (2.7). �

Theorem 2.5 immediately yields the following three corollaries.

Corollary 2.6. For f = h + ḡ ∈ T H(Φi,Ψj ;α) where h and g are given by (1.2), we
have

An ≤
1− α

pn − αun
(n = 2, 3, . . .) and Bn ≤

1− α

qn − (−1)j−iαvn
(n = 1, 2, . . .);

the result being sharp, for each n.

Corollary 2.7. Let ak, bk, ck > 0 for k = 1, 2 and φ1, φ2 be given by (2.3). Then a

necessary and sufficient condition for the harmonic function Φ(z) = 2z−φ1(z)+φ2(z)
to be in the class T H(Φi,Ψj ;α) is that (2.4) is satisfied.

Corollary 2.8. If ak, bk, ck > 0 for k = 1, 2, then Ψ(z) = 2z − ψ1(z) + ψ2(z) ∈
T H(Φi,Ψj;α) if and only if condition (2.6) holds, where ψ1, ψ2 are given by (2.5).

Note that [4, Theorem 2.6] is a particular case of Corollary 2.7. By making use
of Theorem 2.5, we obtain the following growth estimate for functions in the class
T H(Φi,Ψj;α).

Theorem 2.9. Let f ∈ T H(Φi,Ψj ;α), σn = pn − αun (n = 2, 3, . . .) and Γn =
qn − (−1)j−iαvn (n = 1, 2, . . .). If {σn} and {Γn} are non-decreasing sequences, then

|f(z)| ≤ (1 +B1)|z|+
1− α

η

(

1−
q1 − (−1)j−iαv1

1− α
B1

)

|z|2,

and

|f(z)| ≥ (1 −B1)|z| −
1− α

η

(

1−
q1 − (−1)j−iαv1

1− α
B1

)

|z|2

for all z ∈ D, where η = min{σ2,Γ2} and B1 = fz̄(0).
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Proof. Writing f = h+ ḡ where h and g are given by (1.2), we have

|f(z)| ≤ (1 +B1)|z|+

∞
∑

n=2

(An +Bn)|z|
n

≤ (1 +B1)|z|+
1− α

η

∞
∑

n=2

(

η

1− α
An +

η

1− α
Bn

)

|z|2

≤ (1 +B1)|z|+
1− α

η

∞
∑

n=2

(

pn − αun
1− α

An +
qn − (−1)j−iαvn

1− α
Bn

)

|z|2

≤ (1 +B1)|z|+
1− α

η

(

1−
q1 − (−1)j−iαv1

1− α
B1

)

|z|2

using the hypothesis and applying Theorem 2.5.

The proof of the left hand inequality follows on lines similar to that of the right
hand side inequality. �

The covering result for the class T H(Φi,Ψj;α) follows from the left hand in-
equality of Theorem 2.9.

Corollary 2.10. Under the hypothesis of Theorem 2.9, we have
{

w ∈ C : |w| <
1

η
(η − 1 + α+ (q1 − (−1)j−iαv1 − η)B1)

}

⊂ f(D).

Using Theorem 2.5 it is easily seen that the class T H(Φi,Ψj;α) is convex and
closed with respect to the topology of locally uniform convergence so that the closed
convex hull of T H(Φi,Ψj;α) equals itself. The next theorem determines the extreme
points of T H(Φi,Ψj;α).

Theorem 2.11. Suppose that 0 ≤ α < 1, i, j ∈ {0, 1}, pn > un ≥ 0 (n = 2, 3, . . .) and

qn > vn ≥ 0 (n = 1, 2, . . .). Set

h1(z) = z, hn(z) = z −
1− α

pn − αun
zn (n = 2, 3, . . .) and

gn(z) = z +
1− α

qn − (−1)j−iαvn
z̄n (n = 1, 2, . . .).

Then f ∈ T H(Φi,Ψj;α) if and only if it can be expressed in the form

f(z) =
∞
∑

n=1

(Xnhn + Yngn)(z), Xn ≥ 0, Yn ≥ 0 and

∞
∑

n=1

(Xn + Yn) = 1. (2.8)

In particular, the extreme points of T H(Φi,Ψj;α) are {hn} and {gn}.

Proof. Let f = h+ ḡ ∈ T H(Φi,Ψj ;α) where h and g are given by (1.2). Setting

Xn =
pn − αun
1− α

An (n = 2, 3, . . .) and Yn =
qn − (−1)j−iαvn

1− α
Bn (n = 1, 2, . . .),
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we note that 0 ≤ Xn ≤ 1 (n = 2, 3, . . .) and 0 ≤ Yn ≤ 1 (n = 1, 2, . . .) by Corollary
2.6. We define

X1 = 1−
∞
∑

n=2

Xn −
∞
∑

n=1

Yn.

By Theorem 2.5, X1 ≥ 0 and f can be expressed in the form (2.8).
Conversely, for functions of the form (2.8) we obtain

f(z) = z −

∞
∑

n=2

µnz
n +

∞
∑

n=1

νnz̄
n,

where µn = (1−α)Xn/(pn−αun) (n = 2, 3, . . .) and νn = (1−α)Yn/(qn−(−1)j−iαvn)
(n = 1, 2, . . .). Since

∞
∑

n=2

pn − αun
1− α

µn +

∞
∑

n=1

qn − (−1)j−iαvn
1− α

νn =

∞
∑

n=2

Xn +

∞
∑

n=1

Yn = 1−X1 ≤ 1,

it follows that f ∈ T H(Φi,Ψj ;α) by Theorem 2.5. �

For harmonic functions of the form

f(z) = z −

∞
∑

n=2

Anz
n +

∞
∑

n=1

Bnz̄
n and F (z) = z −

∞
∑

n=2

A′

nz
n +

∞
∑

n=1

B′

nz̄
n, (2.9)

where An, Bn, A
′

n, B
′

n ≥ 0, we define the product ∗̂ of f and F as

(f ∗̂F )(z) = z −
∞
∑

n=2

AnA
′

nz
n +

∞
∑

n=1

BnB
′

nz̄
n = (F ∗̂f)(z), z ∈ D.

Suppose that I and J are subclasses of T H. We say that a class I is closed under
∗̂ if f ∗̂F ∈ I for all f , F ∈ I. Similarly, the class I is closed under ∗̂ with members
of J if f ∗̂F ∈ I for all f ∈ I and F ∈ J . In general, the class T H(Φi,Ψj;α) is not
closed under the product ∗̂. The analytic function f(z) = z − 2z2 (z ∈ D) belongs to
T H(z + z2/2, z; 0), but (f ∗̂f)(z) = z − 4z2 6∈ T H(z + z2/2, z; 0). However, we shall
show that the class T H(Φi,Ψj;α) is closed under ∗̂ with certain members of T H.

Theorem 2.12. Suppose that f, F ∈ T H are given by (2.9) with A′

n ≤ 1 and B′

n ≤ 1.
If f ∈ T H(Φi,Ψj;α) then f ∗̂F ∈ T H(Φi,Ψj;α).

Proof. In view of Theorem 2.5, it suffices to show that the coefficients of f ∗̂F satisfy
condition (2.7). Since

∞
∑

n=2

pn − αun
1− α

AnA
′

n +

∞
∑

n=1

qn − (−1)j−iαvn
1− α

BnB
′

n

≤

∞
∑

n=2

pn − αun
1− α

An +

∞
∑

n=1

qn − (−1)j−iαvn
1− α

Bn ≤ 1,

the result follows immediately. �

By imposing some restrictions on the coefficients of Φi, it is possible for the class
T H(Φi,Ψj;α) to be closed under the product ∗̂, as seen by the following corollary.
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Corollary 2.13. If f, F ∈ T H(Φi,Ψj ;α) with pn ≥ 1 (n = 2, 3, . . .) and qn ≥ 1
(n = 1, 2, . . .) then f ∗̂F ∈ T H(Φi,Ψj ;α).

Proof. Suppose that f and F are given by (2.9). Using the hypothesis and Corollary
2.6 it is easy to see that A′

n ≤ 1 (n = 2, 3, . . .) and B′

n ≤ 1 (n = 1, 2, . . .). The result
now follows by Theorem 2.12. �

In view of Corollary 2.13, it follows that the classes T S∗

H(α) and T KH(α) are
closed under the product ∗̂. The next corollary shows that the class T H(Φi,Ψj;α) is
preserved under certain integral transforms.

Corollary 2.14. If f ∈ T H(Φi,Ψj;α) then Lγ [f ] and Gδ[f ] belong to T H(Φi,Ψj;α),
where Lγ and Gδ are integral transforms defined by (1.5) and (1.6) respectively.

Proof. From the representations of Lγ [f ] and Gδ[f ], it is easy to deduce that

Lγ [f ](z) = f(z)∗̂

(

z −
∞
∑

n=2

γ + 1

γ + n
zn +

∞
∑

n=1

γ + 1

γ + n
z̄n

)

,

and

Gδ[f ](z) = f(z)∗̂

(

z −

∞
∑

n=2

1− δn

1− δ

zn

n
+

∞
∑

n=1

1− δn

1− δ

zn

n

)

,

where z ∈ D. The proof of the corollary now follows by invoking Theorem 2.12. �

The next two theorems provide sufficient conditions for the product ∗̂ of f ∈
T H(Φi,Ψj;α) with certain members of T H associated with hypergeometric functions
to be in the class T H(Φi,Ψj;α).

Theorem 2.15. Let f ∈ T H(Φi,Ψj ;α) and Φ(z) = 2z−φ1(z)+φ2(z); φ1 and φ2 being

given by (2.3). If ak, bk > 0, ck > ak + bk for k = 1, 2 and if

F (a1, b1, c1; 1) + F (a2, b2, c2; 1) ≤ 3,

then f ∗̂Φ ∈ T H(Φi,Ψj;α).

Proof. Writing f = h+ g where h and g are given by (1.2), note that

(f ∗̂Φ)(z) = z −

∞
∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

Anz
n +

∞
∑

n=1

(a2)n(b2)n
(c2)n(1)n

Bnz
n, z ∈ D.

Applying Corollary 2.6, we deduce that

∞
∑

n=2

pn − αun
1− α

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

An +

∞
∑

n=1

qn − (−1)j−iαvn
1− α

(a2)n(b2)n
(c2)n(1)n

Bn

≤

∞
∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n−1

+

∞
∑

n=1

(a2)n(b2)n
(c2)n(1)n

= F (a1, b1, c1; 1) + F (a2, b2, c2; 1)− 2 ≤ 1.

Theorem 2.5 now gives the desired result. �
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Theorem 2.16. Let f ∈ T H(Φi,Ψj ;α), ak, bk > 0 and ck > ak + bk for k = 1, 2.
Furthermore, if

F (a1, b1, c1; 1) + F (a2, b2, c2; 1) ≤ 4,

then f ∗̂Ψ ∈ T H(Φi,Ψj;α) where Ψ(z) = 2z − ψ1(z) + ψ2(z); ψ1 and ψ2 being given

by (2.5).

Proof. For f = h+ g where h and g are given by (1.2), we have

(f ∗̂Ψ)(z) = z −

∞
∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n
Anz

n +

∞
∑

n=2

(a2)n−1(b2)n−1

(c2)n−1(1)n
Bnz

n, z ∈ D.

A simple calculation shows that

∞
∑

n=2

pn − αun
1− α

(a1)n−1(b1)n−1

(c1)n−1(1)n
An +

∞
∑

n=2

qn − (−1)j−iαvn
1− α

(a2)n−1(b2)n−1

(c2)n−1(1)n
Bn

≤
∞
∑

n=2

(a1)n−1(b1)n−1

(c1)n−1(1)n
+

∞
∑

n=2

(a2)n−1(b2)n−1

(c2)n−1(1)n

≤
1

2

∞
∑

n=2

n
(a1)n−1(b1)n−1

(c1)n−1(1)n
+

1

2

∞
∑

n=2

n
(a2)n−1(b2)n−1

(c2)n−1(1)n

=
1

2
(F (a1, b1, c1; 1) + F (a2, b2, c2; 1))− 1 ≤ 1,

using the hypothesis and Corollary 2.6. Hence f ∗̂Ψ ∈ T H(Φi,Ψj ;α) by Theorem
2.5. �

We close this section by determining the convex combination properties of the
members of the class T H(Φi,Ψj;α).

Theorem 2.17. The class T H(Φi,Ψj ;α) is closed under convex combinations.

Proof. For k = 1, 2, . . . suppose that fk ∈ T H(Φi,Ψj;α) where

fk(z) = z −

∞
∑

n=2

an,kz
n +

∞
∑

n=1

bn,kz̄
n, z ∈ D.

For
∑

∞

k=1
tk = 1, 0 ≤ tk ≤ 1, the convex combination of fk’s may be written as

f(z) =

∞
∑

k=1

tkfk(z) = z −

∞
∑

n=2

γnz
n +

∞
∑

n=1

δnz̄
n, z ∈ D
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where γn =
∑

∞

k=1
tkan,k (n = 2, 3, . . .) and δn =

∑

∞

k=1
tkbn,k (n = 1, 2, . . .). Since

∞
∑

n=2

pn − αun
1− α

γn +

∞
∑

n=1

qn − (−1)j−iαvn
1− α

δn

=

∞
∑

k=1

tk

(

∞
∑

n=2

pn − αun
1− α

an,k +

∞
∑

n=1

qn − (−1)j−iαvn
1− α

bn,k

)

≤
∞
∑

k=1

tk = 1,

it follows that f ∈ T H(Φi,Ψj ;α) by Theorem 2.5. �

3. A particular case

For 0 ≤ α < 1, set UH(α) := H(z/(1− z) + z̄/(1− z̄), z;α). Then UH(α) denote
the set of all harmonic functions f ∈ H that satisfy Re f(z)/z > α for z ∈ D and let
T UH(α) := UH(α)∩T H. Applying Theorem 2.5 with pn− 1 = 0 = un (n = 2, 3, . . .),
qn − 1 = 0 = vn (n = 1, 2, . . .) and using the results of Section 2, we obtain

Theorem 3.1. Let the function f = h+ ḡ be such that h and g are given by (1.2) and
0 ≤ α < 1. Then f ∈ T UH(α) if and only if

∞
∑

n=2

An

1− α
+

∞
∑

n=1

Bn

1− α
≤ 1.

Furthermore, if f ∈ T UH(α) then An ≤ 1−α (n = 2, 3, . . .), Bn ≤ 1−α (n = 1, 2, . . .)
and

(1−B1)|z| − (1 − α−B1)|z|
2 ≤ |f(z)| ≤ (1 +B1)|z|+ (1− α−B1)|z|

2 (3.1)

for all z ∈ D. In particular, the range f(D) contains the disk |w| < α.
Moreover, the extreme points of the class T UH(α) are {hn} and {gn} where

h1(z) = z, hn(z) = z−(1−α)zn (n = 2, 3, . . .) and gn(z) = z+(1−α)z̄n (n = 1, 2, . . .).

Theorem 3.2. Let ak, bk > 0, ck > ak + bk for k = 1, 2. Then a necessary and

sufficient condition for the harmonic function Φ(z) = 2z − φ1(z) + φ2(z) to be in the

class T UH(α) is that

F (a1, b1, c1; 1) + F (a2, b2, c2; 1) ≤ 3− α,

where φ1 and φ2 are given by (2.3).

The upper bound given in (3.1) for f ∈ T UH(α) is sharp and equality occurs
for the function f(z) = z+B1z̄+(1−α−B1)z̄

2 for B1 ≤ 1−α. In a similar fashion,
comparable results to Corollary 2.8 and Theorems 2.15, 2.16 for the class T UH(α)
may also be obtained. For further investigation of results regarding T UH(α), we need
to prove the following simple lemma.

Lemma 3.3. Let f = h+ ḡ ∈ H where h and g are given by (1.1) with B1 = g′(0) = 0.
Suppose that λ ∈ (0, 1].
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(i) If
∑

∞

n=2
(|An|+ |Bn|) ≤ λ then f ∈ UH(1− λ);

(ii) If
∑

∞

n=2
n(|An| + |Bn|) ≤ λ then f ∈ UH(1 − λ/2) and is starlike of order

2(1− λ)/(2 + λ).

The results are sharp.

Proof. Part (i) follows by Theorem 3.1. For the proof of (ii), note that

∞
∑

n=2

(|An|+ |Bn|) ≤
1

2

∞
∑

n=2

n(|An|+Bn|) ≤
λ

2
.

By part (i) of the lemma, f ∈ UH(1− λ/2). The order of starlikeness of f follows by
[15, Theorem 3.6]. The functions z + λz̄2 and z + λz̄2/2 show that the results in (i)
and (ii) respectively are best possible. �

Using Corollary 2.13, Theorem 3.1 and Lemma 3.3(i), we obtain the following
corollary.

Corollary 3.4. The class T UH(α) is closed under the product ∗̂. In fact

T UH(α)∗̂T UH(β) ⊂ T UH(1 − (1− α)(1 − β))

for α, β ∈ [0, 1).

A well-known classical result involving differential inequalities in univalent func-
tion theory is Marx Strohhäcker theorem [13, Theorem 2.6(a), p. 57] which states that
if f is an analytic function in D with f(0) = 0 = f ′(0)− 1 then

Re

(

1 +
zf ′′(z)

f ′(z)

)

> 0 ⇒ Re
zf ′(z)

f(z)
>

1

2
⇒ Re

f(z)

z
>

1

2
(z ∈ D).

The function f(z) = z/(1− z) shows that all these implications are sharp. However,
this theorem does not extend to univalent harmonic mappings, that is, if f ∈ SH

maps D onto a convex domain then it is not true in general that Re f(z)/z > 0 for
all z ∈ D.. To see this, consider the harmonic half-plane mapping

L(z) =
z − 1

2
z2

(1 − z)2
+

− 1

2
z2

(1− z)2
, z ∈ D

which maps the unit disk D univalently onto the half-plane Rew > −1/2. Figure 1
shows that the function L(z)/z does not have a positive real part in D.

Denote by T S∗0

H (α), T K0

H(α) and T U0

H(α), the classes consisting of functions
f in T S∗

H(α), T KH(α) and T UH(α) respectively, for which fz̄(0) = 0. The next
theorem connects the relation between these three classes.

Theorem 3.5. For 0 ≤ α < 1, the following sharp inclusions hold:

T K0

H(α) ⊂ T U0

H

(

3− α

2(2− α)

)

; (3.2)

and

T S∗0

H (α) ⊂ T U0

H

(

1

2− α

)

. (3.3)
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Proof. Let f = h+ ḡ ∈ T H where h and g are given by (1.2). If f ∈ T K0

H(α) then

∞
∑

n=2

n(An +Bn) ≤
1

2− α

∞
∑

n=2

n(n− α)(An +Bn) ≤
1− α

2− α

using [11]. By Lemma 3.3(ii) f ∈ T U0

H((3 − α)/(2(2 − α))). Regarding the other
inclusion, note that if f ∈ T S∗0

H (α) then

∞
∑

n=2

(An +Bn) ≤
1

2− α

∞
∑

n=2

(n− α)(An +Bn) ≤
1− α

2− α

by [12, Theorem 2, p. 474]. This shows that f ∈ T U0

H(1/(2−α)) by Lemma 3.3(i) as
desired. The analytic functions z − (1 − α)z2/(2(2 − α)) and z − (1 − α)z2/(2 − α)
show that inclusions in (3.2) and (3.3) respectively are sharp. �

Remark 3.6. The proof of Theorem 3.5 shows that if f ∈ T K0

H(α) then f is starlike
of order 2/(5− 3α) by applying Lemma 3.3(ii). This gives the inclusion

T K0

H(α) ⊂ T S∗0

H

(

2

5− 3α

)

.

It is not known whether this inclusion is sharp for α ∈ (0, 1). However, if α = 0 then
the inclusion T K0

H(0) ⊂ T S∗0

H (2/5) is sharp with the extremal function as f(z) =
z + z̄2/4.

-2 -1 0 1 2
-2

-1

0

1

2

Figure 1. Graph of the function L(z)/z.
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The functions in the class T UH(α) need not be univalent in D. The last theorem
of this section determines the radius of univalence, starlikeness and convexity of the
class T U0

H(α).

Theorem 3.7. The radius of univalence of the class T U0

H(α) is 1/(2(1 − α)). This

bound is also the radius of starlikeness of T U0

H(α). The radius of convexity of the

class T U0

H(α) is 1/(4(1− α)).

Proof. Let f = h+ ḡ ∈ T U0

H(α) where h and g are given by (1.2) and let r ∈ (0, 1)
be fixed. Then r−1f(rz) ∈ T U0

H(α) and we have

∞
∑

n=2

n(An +Bn)r
n−1 ≤

∞
∑

n=2

(

An

1− α
+

Bn

1− α

)

≤ 1

provided nrn−1 ≤ 1/(1−α) which is true if r ≤ 1/(2(1−α)). In view of [18, Theorem
1, p. 284], f is univalent and starlike in |z| < 1/(2(1 − α)). Regarding the radius of
convexity, note that

∞
∑

n=2

n2(An +Bn)r
n−1 ≤

∞
∑

n=2

(

An

1− α
+

Bn

1− α

)

≤ 1

provided n2rn−1 ≤ 1/(1 − α) which is true if r ≤ 1/(4(1− α)). The function f(z) =
z + (1 − α)z̄2 shows that these bounds are sharp. This completes the proof of the
theorem. �
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On the global uniform asymptotic stability
of time-varying dynamical systems
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Abstract. The objective of this work is twofold. In the first part, we present
sufficient conditions for global uniform asymptotic stability and/or practical sta-
bility in terms of Lyapunov-like functions for nonlinear time varying systems.
Furthermore, an illustrative numerical example is presented.
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bility.

1. Introduction

The problem of stability analysis of nonlinear time-varying systems has attracted
the attention of several researchers and has produced a vast body of important results
[1, 2, 13, 11] and the references therein.

This fact motivated to study systems whose desired behavior is asymptotic sta-
bility about the origin of the state space or a close approximation to this, e.g., all state
trajectories are bounded and approach a sufficiently small neighborhood of the origin
[5] and references therein. Quite often, one also desires that the state approaches the
origin (or some sufficiently small neighborhood of it) in a sufficiently fast manner. To
this end, the authors of [6] introduce a concept of exponential rate of convergence and
for a specific class of uncertain systems they present controllers which guarantee this
behavior. This property is referred to us as practical stability (see [4] for the more
explanation and [3]).

On the other hand, the asymptotic stability is more important than stability,
also the desired system may be unstable and yet the system may oscillate sufficiently
near this state that its performance is acceptable, thus the notion of practical stability
is more suitable in several situations than Lyapunov stability (see [9], [10]).

This paper aims, as first objective, to provide sufficient conditions that ensure the
global uniform practical stability of system (2.1). A new quick proof for the results
of [4] is also presented. Next, sufficient conditions for the GUPAS are presented.
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Moreover, an example in dimensional two is given to illustrate the applicability of the
result.

2. Definitions and tools

Consider the time varying system described by the following:

ẋ = f(t, x) + g(t, x) (2.1)

where f : R+×Rn −→ Rn and g : R+×Rn −→ Rn are piecewise continuous in t and
locally Lipschitz in x on R+ × Rn. We consider also the associated nominal system

ẋ = f(t, x) (2.2)

For all x0 ∈ Rn and t0 ∈ R, we will denote by x(t; t0, x0), or simply by x(t), the
unique solution of (2.1) at time t0 starting from the point x0.

Unless otherwise stated, we assume throughout the paper that the functions
encountered are sufficiently smooth. We often omit arguments of functions to simplify
notation, ‖.‖ stands for the Euclidean norm vectors. We recall now some standard
concepts from stability and practical stability theory; any book on Lyapunov stability
can be consulted for these; particularly good references are [7, 8]: K is the class of
functions R+ → R+ which are zero at the origin, strictly increasing and continuous.
K∞ is the subset ofK functions that are unbounded. L is the set of functions R+ → R+

which are continuous, decreasing and converging to zero as their argument tends to
+∞. KL is the class of functions R+ × R+ −→ R+ which are class K on the first
argument and class L on the second argument. A positive definite function R+ → R+

is one that is zero at the origin and positive otherwise. We define the closed ball

Br :=
{
x ∈ Rn : ‖x‖ ≤ r

}
.

In order to simplify the notation, we use the following notation.

∇tV +∇>x V · f(t, x) =
∂V

∂t
+
∂V

∂x
· f(t, x) (2.3)

where V : R× Rn −→ R.

Next, we need the definitions given below.

Definition 2.1 (uniform stability of Br).

1. The solutions of system (2.1) are said to be uniformly bounded if for all α and
any t0 ≥ 0 there exists a β(α) > 0 so that ‖x(t)‖ < β for all t ≥ t0 whenever
‖x0‖ < α.

2. The ball Br is said to be uniformly stable if for all ε > r, there exists δ := δ(ε)
such that for all t0 ≥ 0

‖x0‖ < δ =⇒ ‖x(t)‖ < ε, ∀t ≥ t0. (2.4)

3. Br is globally uniformly stable if it is uniformly stable and the solutions of system
(2.1) exist and are globally uniformly bounded.
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Definition 2.2 (uniform attractivity of Br). Br is globally uniformly attractive if for
all ε > r and c > 0, there exists T =: T (ε, c) > 0 such that for all t0 ≥ 0,

‖x(t)‖ < ε ∀t ≥ t0 + T, ‖x0‖ < c.

System (2.2) is globally uniformly practically asymptotically stable (GUPAS) if there
exists r ≥ 0 such that Br is globally uniformly stable and globally uniformly attrac-
tive.

Sufficient condition for GUPAS is the existence of a class KL function β and a
constant r > 0 such that, given any initial state x0, ensuing trajectory x(t) satisfies:

‖x(t)‖ ≤ r + β(‖x0‖, t), ∀t ≥ t0. (2.5)

If the class KL function β on the above relation (2.5) is of the form β(r, t) = kr−λt,
with λ, k > 0 we say that the system (2.2) is globally uniformly practically exponen-
tially stable (GUPES). It is also, worth to notice that if in the above definitions, we
take r = 0, then one deals with the standard concept of GUAS and GUES. Moreover,
in the rest of this paper, we study the asymptotic behavior of a small ball centered
at the origin for 0 ≤‖ x(t) ‖ −r, so that if r = 0 in the above definitions we find
the classical definition of the uniform asymptotic stability of the origin viewed as an
equilibrium point (see [8] for more details).

In the sequel and in the order to solve the problem of GUAS and uniform ex-
ponential convergence to the ball Br of the perturbed system (2.1), we introduce two
technical lemmas, where the proof of the second one is given in appendixes, that will
be crucial in establishing the main result of this work.

Lemma 2.3. [12] Let ϕ : [0,+∞) −→ [0,+∞) be a continuous function, ε is a positive
real number and λ is a strictly positive real number. Assume that for all t ∈ [0,+∞)
and 0 ≤ u ≤ t, we have

ϕ(t)− ϕ(u) ≤
∫ t

u

(−λϕ(s) + ε) ds. (2.6)

Then

ϕ(t) ≤ ε

λ
+ ϕ(0) exp (−λt) . (2.7)

Lemma 2.4. Let y : [0,+∞[−→ [0,+∞[ be a differentiable function, α be a class K∞
function and c be a positive real number. Assume that for all t ∈ [0,+∞[ we have,

ẏ(t) ≤ −α
(
y(t)

)
+ c. (2.8)

Then, there exists a class KL function βα such that

y(t) ≤ α−1(2c) + βα

(
y(0), t

)
. (2.9)

Proof. Let α of class K∞ and c be such that (2.8) holds.
Since α is a class K∞ function, then there exists some constant d such that α(d) = 2c.
Using this, one sees that

ẏ(t) ≤ −α(y(t))

2
, whenever y(t) ≥ d. (∗)
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Let us introduce the set

S = {y : y(t) ≤ d}.
We claim that the set S is forward invariant. That is to say that if x(t0) ∈ S for some
t0 ≥ 0, then x(t) ∈ S for all t ≥ t0. Indeed, suppose to the contrary that there exists
a > t0 such that y(a) > d.
Consider the set

∆ = {x < a ∈ R+ such that y(t) > d, ∀t ∈]x, a[}
Since t1 ∈ ∆ and the continuity of y on R+, we have ∆ 6= ∅. Also, since ∆ is lower
bounded by t0 then, m = inf ∆ is finite.
We know that m ∈ ∆̄, where ∆̄ denotes the closure of ∆. So that, we get by
continuity y(m) ≥ d, m ≥ t0 moreover, we have y(t) > d for t ∈]m, a[. It follows that
the inequality in the left hand side of (∗) holds for each t ∈]m, a[, and therefore that
the absolutely continuous function y(t) has a negative derivative almost everywhere
on the interval ]m, a[. Thus y(a) ≤ y(t0) ≤ d. This contradicts the fact that y(a) > d.
So S must indeed be forward invariant, as claimed.
We continue now the proof of the Lemma. We distinguish the two possible cases:

• If y(0) ≤ d, then y(t) ≤ d for all t ≥ 0 as claimed above.
• If y(0) > d, then there exists t1 > 0 (possibly t1 = +∞) such that y(t) > d, for

all t ∈ [0, t1[ and y(t) ≤ d, for all t ≥ t1, with the understanding that the second
case does not happen if t1 = +∞.
Now we apply Lemma 2.2 in [14], to obtain a class KL function βα such that
y(t) ≤ βα(y(0), t),∀t ∈ [0, t1[.

So every where we have,

y(t) ≤ d+ βα

(
y(0), t

)
= α−1(2c) + βα

(
y(0), t

)
.

which completes the proof.

3. Main results

In what follows, with the aid of the previous Lemmas we give some new results
on GUAS and practical stability.

3.1. Global uniform asymptotic stability

In this section we suppose that the origin x = 0 is equilibrium point for system (2.2)
and the perturbation g vanishes, that is g(t, 0) = 0,∀t ≥ 0.
Consider the nonlinear system (2.2) and introduce a set of assumptions.
Assume that:

(A1). There exists continuously differentiable V : [0,+∞[×Rn −→ [0,+∞[, such
that

c1‖x‖c ≤ V (t, x) ≤ c2‖x‖c (3.1a)

∇tV +∇>x V f(t, x) ≤ −c3‖x‖c (3.1b)∣∣∇>x V g(t, x)
∣∣ ≤ a(‖x‖)b(t) (3.1c)
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where c1, c2, c3 and c are strictly positive constants, a : [0,+∞[−→ R and
b : [0,+∞[−→ R are continuous functions satisfying:∫ ∞

0

b(s) ds ≤ b∞ lim
t→∞

b(t) = 0 (3.2)

for some constant b∞.
(A2). There exist some constants k > 0 and r ≥ 0, such that

a(‖x‖) ≤ k‖x‖c, for all ‖x‖ ≥ r. (3.3)

We state the following result.

Proposition 3.1. Under assumptions (A1) and (A2), the equilibrium point x = 0 of
(2.1) is globally uniformly asymptotically stable.

Proof. We first prove the forward completeness of system (2.1) by proving that the
finite escape time phenomenon does not occur, secondly we prove global uniform
asymptotic stability in the sense of Lyapunov.

No finite escape time:
The time derivative of V (t, x) along the trajectories of system (2.1) is given by:

V̇ (t, x) = ∇tV +∇>x V.f(t, x) +∇>x .g(t, x) (3.4)

From inequalities (3.1a), (3.1b) and (3.1c), we have

‖x(t)‖c ≤ 1

c1
V (0, x(0)) +

1

c1

∫ t

0

V̇ (s, x(s)) ds

≤ c2
c1
‖x(0)‖c +

1

c1

∫ t

0

b(s)a(‖x(s)‖) ds.

Let

αr = sup
‖x‖≤r

a(‖x‖)

and

αb = sup
t≥0

b(t).

From (3.2) and the continuity of a and b we have αr and αb are finite.
It yields, by taking into account assumption (A2),

‖x(t)‖c ≤ c2
c1
‖x(0)‖c +

αb
c1

∫ t

0

(αr + k ‖x(s)‖c) ds.

An application of Gronwall’s Lemma shows that the solutions exist for all t ≥ 0.

Global uniform asymptotic stability:
Since lim

t→∞
b(t) = 0, there exists a time t1 ≥ 0, such that b(t) ≤ c3

2k for all t ≥ t1.

Hence, by (3.3), we obtain for all ‖x‖ ≥ r and for all t ≥ t1,

V̇ ≤ −c3 ‖x‖c +
c3
2k

a(‖x‖) ≤ −c3
2
‖x‖c.
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So,

V̇ (t, x) ≤ −c3
2
V (t, x).

This implies that the sphere S = {x : ‖x‖ ≤ r} is globally attractive, that is,
lim
t→∞

d(x(t), S) = 0 (d is the distance1 between x and S). Thus, boundedness of solu-

tions follows.
We invoke now Lemma 2.3 to show that the solution x(t) goes to zero. Put x0 = x(t0).
Since the solutions are bounded, given any c′ > 0, there exists β1 > 0, such that for
all |x0| < c′ we have |x(t)| < β1 for all t ≥ t0. From now on, we fix an arbitrary
constant c′ > 0 and x0 such that |x0| < c′.
Define:

Ma = sup
|x|<β1

a(‖x‖).

By continuity of a(.) on R+, Ma is finite. Observe also that Ma is independent of x0
for |x0| < c′.
Using (3.1) and (3.4), we obtain

V̇ (t, x) ≤ −c3
c2
V (t, x) +Mab(t). (3.5)

Let ε > 0 be arbitrary. We shall prove that there exists a time T > 0 such that
‖x(t)‖ < ε, for all t ≥ T + t0.
First notice that, since lim

t→∞
b(t) = 0, there exists a time T1, such that

Mab(t) ≤ 1

2

c3c1
c2

εc, ∀t ≥ T1. (3.6)

Integrating inequality (3.5) from u ∈ [T1, t] to t ≥ T1, on both sides of the inequality,
we get

V (t, x(t))− V (u, x(u)) ≤
∫ t

u

c3
c2

(
−V (s, x(s)) +

εcc1
2

)
ds (3.7)

Using Lemma 2.3, the inequality above implies that,

V (t, x(t)) ≤ εcc1
2

+ V (T1, x(T1)) exp

(
−c3
c2

(t− T1)

)
(3.8)

≤ εcc1
2

+ c2‖x(T1)‖c exp

(
−c3
c2

(t− T1)

)
(3.9)

≤ εcc1
2

+ c2β
c
1 exp

(
−c3
c2

(t− T1)

)
. (3.10)

with β1 = ‖x(T1)‖.
This is because x(t) is bounded by β1 for all t ≥ t0 ≥ 0.

On the other hand, there exists a time T2 (which is independent of x0), such that

c2β
c
1 exp

(
−c3
c2

(t− T1)

)
≤ 1

2
εcc1, ∀t ≥ T2. (3.11)

1d(x, S) = inf
s∈S
‖x− s‖
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Using inequalities (3.8) and (3.11), we obtain

V (t, x(t)) ≤ εcc1, ∀t ≥ T = max (T1, T2) .

Using the fact that,

c1‖x(t)‖c ≤ V (t, x(t)), ∀t ≥ T + t0.

We have,

‖x(t)‖ ≤ ε, ∀t ≥ T + t0.

Therefore, the present proof is complete.
Following the same analysis as above one can prove the following proposition in the
case when we replace ci‖x‖c, i = 1, 2, 3 by some K∞ functions.

Proposition 3.2. Under assumptions (A’1) below and (A2), the origin x = 0 of (2.1)
is globally uniformly asymptotically stable equilibrium point,

where

(A’1). There exists continuously differentiable V : R+ × Rn −→ R+ such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (3.12a)

∇tV +∇>x V f(t, x) ≤ −α3(‖x‖) (3.12b)∣∣∇>x V g(t, x)
∣∣ ≤ a(‖x‖)b(t) (3.12c)

for some class K∞ functions αi, i = 1, 2, 3 and a, b satisfying (3.2).

3.2. Global uniform practical stability

In this section, it is worth to notice that the origin is not required to be an equi-
librium point for the system (2.2). This may be in many situations meaningful from a
practical point of view specially, when stability for uncertain systems is investigated.
As pointed out in [3], necessary conditions for system (2.2) to be globally uniformly
practically exponentially stable have been derived in [4] as follows.

Theorem 3.3. [4] Consider system (2.2). Let V : R+ × Rn −→ R be a continuously
differentiable function, such that

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2 (3.13a)

∇tV +∇>x V f(t, x) ≤ −c3V (t, x) + r (3.13b)

for all t ≥ 0, x ∈ Rn, with c1, c2, c3 are positive constants and r non negative
constant. Then the ball Bα is globally uniformly exponentially stable, with α = r

c1c3
.

The proof proposed in [4] is very clever but here, using lemma 2.3, we can give a
shorter proof.
Proof. Indeed, the time derivative of V along the trajectories of system (2.1) is

V̇ (t, x) = ∇tV +∇>x V f(t, x). (3.14)

Using equation (3.13b) we get

V̇ (t, x) ≤ −c3V (t, x) + r. (3.15)
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Now, integrating both sides the above inequality from t ≥ 0 to u ∈ [0, t], we obtain

V (t, x(t))− V (u, x(u)) ≤
∫ t

u

(−c3V (s, x(s)) + r) ds. (3.16)

By applying lemma 2.3 with λ = c3 and ε = r, it yields

V (t, x(t)) ≤ r

c3
+ V (0, x(0)) exp (−λt) (3.17)

Which implies that,

‖x(t)‖ ≤
(

r
c1c3

+
1

c1
V (0, x(0)) exp (−λt)

) 1
2

≤
√

r
c1c3

+

√
1

c1
V (0, x(0)) exp

(
−λ2 t

)
,

≤
√

r
c1c3

+

√
1

c1
c2 ‖x(0))‖ exp

(
−λ2 t

)
.

This completes the proof.
The previous theorem can be generalized as follows.

Theorem 3.4. Consider system (2.2). Let V : R+ × Rn −→ R be a continuously
differentiable function, such that

c1‖x‖c ≤ V (t, x) ≤ c2‖x‖c (3.18a)

∇tV +∇>x V f(t, x) ≤ −c3V (t, x) + r (3.18b)

for all t ≥ 0, x ∈ Rn, with c, c1, c2, c3 are positive constants and r a non negative
constant. Then,

1. if c ≥ 1, the ball Bα1 , where α1 =
(

r
c1c3

) 1
c

, is globally uniformly exponentially

stable.

2. if c ≤ 1, the ball Bα2
, where α2 = 2

1
c−1

(
r

c1c3

) 1
c

, is globally uniformly exponen-

tially stable.

Proof. Following a similar reasoning as above, one can prove easily that

‖x(t)‖ ≤
(

r

c1c3
+ c2c

−1
1 ‖x(0)‖c exp (−λt)

) 1
c

(3.19)

1. If c ≥ 1, by using the fact that (a+ b)ε ≤ aε + bε, for all a, b ≥ 0 and ε ∈]0, 1],
one obtains

‖x(t)‖ ≤
(

r

c1c3

) 1
c

+ (c2c
−1
1 )

1
c ‖x(0)‖ exp

(
−λ
c
t

)
(3.20)

2. If c ≤ 1. Since (a+ b)p ≤ 2p−1 (ap + bp) , for all a, b ≥ 0 and p ≥ 1, one can get
the conclusion by using a similar reasoning as above. This completes the proof.

Another interesting result relying upon the notion of global uniform asymptotic prac-
tical stability is the following theorem.



On the global uniform asymptotic stability 65

Theorem 3.5. Consider the nonlinear system (2.2). Assume that there exists a con-
tinuously differentiable function V : R+ × Rn −→ R satisfying

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖), (3.21a)

∇tV +∇>x V f(t, x) ≤ −α3(V (t, x)) + c (3.21b)

for some class K∞ functions α1, α2, α3, α4 and c ≥ 0. Then the ball Br is globally
uniformly asymptotically practically stable, where r = α−11

(
α−13 (2c)

)
.

Proof. Let x0 ∈ Rn and consider the trajectory x(t) with the initial condition x(0) =
x0 and define y(t) = V (t, x(t)).
Equation (3.21b) implies that

ẏ(t) ≤ −α3(y(t)) + c (3.22)

Hence, from lemma 2.4 one one can deduce the existence of a class KL function β
such that

V (t, x(t)) ≤ α−13 (2c) + β
(
V (0, x0), t

)
. (3.23)

Put βd(r, s) = β(α2(r), s) which is a class K∞ function. Thus, using (3.21a), the
inequality above implies that

‖x(t)‖ ≤ α−11

(
α−13 (2c) + βd

(
‖x0‖, t

))
(3.24)

≤ α−11

(
α−13 (2c)

)
+ α−11

(
2βd

(
‖x0‖, t

))
. (3.25)

Here, we use the following general fact, a weak form of the triangle inequality which
holds for any function γ of class K and any a, b ≥ 0 (see Lemma 3):

γ(a+ b) ≤ γ(2a) + γ(2b). (3.26)

It then holds that the GUPAS is fulfilled with r = α−11

(
α−13 (2c)

)
and

β
(
s, t
)

= α−11

(
βd

(
s, t
))
.

Lemma 3.6. let γ : [0,+∞[→ [0,+∞[ a function of class K. Then, for all x, y ≥ 0,
we have:

γ(x+ y) ≤ γ(2x) + γ(2y).

Proof. Clearly, if x = 0 or y = 0, then (3.26) holds. Let x > 0 and y > 0 and define
the sets Ix = [0, x], Iy = [0, y] which are compact for every fixed x and y (since they
are closed and bounded subsets of [0,+∞[⊂ R). If y ≤ x, the point y ∈ Ix. As a
consequence, we have

γ(x+ y) ≤ max
s∈Ix

γ(x+ s) := γ1(x).

γ1 is well defined due to the continuity of γ and the compactness of Ix. But, if s ∈ Ix,
we have s+x ≤ 2x. Since γ is a non decreasing function, then γ1(x) = γ(2x). If x ≤ y,
the point x ∈ Iy. By using the same argument as above, we conclude that

γ(x+ y) ≤ max
t∈Iy

γ(y + t) := γ2(y) = γ(2y).
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So, for all x ≥ 0 and y ≥ 0,

γ(x+ y) ≤ γ(2x) + γ(2y).

Example 3.7. We present now an example that implement the previous theorem.
Consider the following planar system:

ẋ =

(−x1 + ε x1

1+x2
1

exp(−x21)

−x2 + ε x2

1+x2
2

exp(−t2)

)
+

(
−x2
x1

)
a(t)

where x = (x1, x2)> ∈ R2, a(t) is a continuous bounded function and ε > 0 .
Choosing the quadratic Lyapunov function V (t, x) = 1

2x
2
1 + 1

2x
2
2. The time derivative

of V along the trajectories of the system is bounded by

V̇ (t, x) ≤ −2V (t, x) + ε.

Let ε = 1
2 , by application of theorem 3.3, this planar system is globally practically

exponentially stable. Moreover, the ball B 1
2

is globally uniformly practically expo-

nentially stable. Now, for ε small enough, the state approaches the origin (or some
sufficiently small neighborhood of it) in a sufficiently fast manner.

Conclusion. In this paper new sufficient conditions are established to prove the global
uniform practical stability of a certain class of time-varying dynamical system. More-
over, a new proof for the result of [4] is presented. The effectiveness of the conditions
obtained in this paper is verified in a numerical example.

Acknowledgement. The authors wish to thank the reviewer for his valuable and careful
comments.
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Szasz-Mirakyan-Baskakov operators
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Abstract. In this paper, we discuss the generalization of Szasz-Mirakyan-
Baskakov type operators defined in [7], using the iterative combinations in or-
dinary and simultaneous approximations. We have better estimates in higher
order modulus of continuity for these operators in simultaneous approximation.
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1. Introduction

Lebesgue integrable functions f on [0,∞) are defined by

H[0,∞) =

{
f :

∫ ∞
0

|f(t)|
(1 + t)n

dt <∞, n ∈ N
}

A new sequence of linear positive operators was introduced by Gupta-Srivastava [4]
in 1995. They combined Szasz-Mirakyan and Baskakov operators as

Sn(f ;x) = (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)f(t)dt, ∀x ∈ [0,∞), (1.1)

where

pn,v(t) =
(n+ v − 1)!

v!(n− 1)!

tv

(1 + t)n+v
,

qn,v(x) =
e−nx(nx)v

v!
, 0 ≤ x <∞.

We define the norm ‖.‖ on Cγ [0,∞) by

‖f‖γ = sup
0≤t<∞

|f(t)|t−γ ,
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where Cγ [0,∞) = {f ∈ C[0,∞) : |f(t)| ≤ Mtγ , γ > 0}. It can be noticed that
the order of approximation by these operators (1.1) is at best of O(n−1), howsoever
smooth the function may be. So in order to improve the rate of convergence, we
consider the iterative combinations Rn,v : H[0,∞) → C∞[0,∞) of the operators
Sn(f, x) described as below

Rn,v(f(t), x) = (I − (I − Sn)v) (f ;x) =
v∑
r=1

(−1)r+1

(
v
r

)
Srn(f(t);x), (1.2)

where S0
n = I and Srn = Sn(Sr−1n ) for r ∈ N.

The purpose of this paper is to obtain the corresponding general results in terms
of (2k+ 2)th order modulus of continuity by using properties of linear approximating
method, namely Steklov Mean. In the present paper, we use the notations

I ≡ [a, b], 0 < a < b <∞,
Ii ≡ [ai, bi], 0 < a1 < a2 < ... < b2 < b1 <∞; i = 1, 2, . . .

Also ‖.‖C(I) is sup-norm on the interval I and having not same value in different
cases by constant C. Some approximation properties for similar type operators were
discussed in [3] and [7]. Very recently D. Sharma et al [8] obtained some results on
similar type of operators.

2. Auxiliary results

In this section, we obtain some important lemmas which will be useful for the
proof of our main theorem.

Lemma 2.1. [6] For m ∈ N0, we define

Un,m(x) =

∞∑
v=0

pn,v(x)
( v
n
− x
)m

,

then Un,0 = 1, Un,1 = 0. Further, there holds the recurrence formula

nUn,m+1(x) = x
[
U ′n,m(x) +mUn,m−1(x)

]
, m ≥ 1.

Consequently

1. Un,m(x) is a polynomial in x of degree ≤ m.

2. Un,m(x) = O(n−[m+1]/2), where [ζ] is integral part of ζ.

Lemma 2.2. [4] There exists the polynomials φi,j,r(x) independent of n and v such
that

xr(1 + x)r
dr

dxr
pn,v(x) =

∑
2i+j≤r;
i,j≥0

ni(v − nx)jφi,j,r(x)pn,v(x);

xr
dr

dxr
qn,v(x) =

∑
2i+j≤r;
i,j≥0

ni(v − nx)jφi,j,r(x)qn,v(x).
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Lemma 2.3. [3] We assume that 0 < a1 < a2 < b2 < b1 < ∞, for sufficiently
small δ > 0, then (2k + 2)th ordered Steklov mean g2k+2,δ(t) which corresponds to
g(t) ∈ Cγ [0,∞), is defined as

g2k+2,δ(t) = δ−(2k+2)

∫ δ/2

−δ/2

∫ δ/2

−δ/2
...

∫ δ/2

−δ/2
[g(t)−∆2k+2

η g(t)]

2k+2∏
i=1

dti,

where

η =
1

2k + 2

2k+2∑
i=1

ti, ∀t ∈ [a, b].

It is easily checked in [1], [2] and [5] that

1. g2k+2,δ has continuous derivatives upto order (2k + 2) on [a, b];

2. ‖g(r)2k+2,δ‖C[a1,b1] ≤ Kδ−rωr(g, δ, a, b), r = 1, 2, ...(2k + 2);

3. ‖g − g2k+2,δ‖C[a1,b1] ≤ Kω2k+2(g, δ, a, b);
4. ‖g2k+2,δ‖C[a1,b1] ≤ K‖g‖γ .

Here K is a constant not necessarily same at different places.

Lemma 2.4. For the mth order moment Tn,m(x),m ∈ N0 defined by

Tn,m(x) = (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)(t− x)mdt, ∀x ∈ [0,∞)

we obtain

Tn,0(x) = 1 (2.1)

Tn,1(x) =
1 + 2x

n− 2
, n > 2 (2.2)

Tn,2(x) =
(n+ 6)x2 + 2x(n+ 3) + 2

(n− 2)(n− 3)
, n > 3 (2.3)

and the recurrence relation for n > (m+ 2)

(n−m−2)Tn,m+1(x) = x[T ′n,m(x)+m(2+x)Tn,m−1(x)]+(m+1)(1+2x)Tn,m(x) (2.4)

Further, for all x ∈ [0,∞), we have Tn,m(x) = O(n−[m+1]/2).

Proof. Obviously (2.1)-(2.3) can be easily proved by using the definition of Tn,m(x).
To prove the recurrence relation (2.4), we proceed by taking

T ′n,m(x) = (n− 1)

∞∑
v=0

q′n,v(x)

∫ ∞
0

pn,v(t)(t− x)mdt−mTn,m−1(x)
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Multiplying by x on both sides and then using identity xq′n,v(x) = (v − nx)qn,v(x),
we have

x[T ′n,m(x) +mTn,m−1(x)] = (n− 1)

∞∑
v=0

(v − nx)qn,v(x)

∫ ∞
0

pn,v(t)(t− x)mdt

= (n− 1)

∞∑
v=0

(v − nx)qn,v(x)

∫ ∞
0

pn,v(t)(t− x)mdt

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

(v − nx)pn,v(t)(t− x)mdt

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

(v − nt)pn,v(t)(t− x)mdt

+(n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

npn,v(t)(t− x)m+1dt

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

(v − nt)pn,v(t)(t− x)mdt

+nTn,m+1(x).

Again, using identity t(1 + t)p′n,v(t) = (v − nt)pn,v(t) in RHS, we get

x[T ′n,m(x) +mTn,m−1(x)]

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

t(1 + t)p′n,v(t)(t− x)mdt+ nTn,m+1(x)

= (n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

[(1 + 2x)(t− x) + (t− x)2 + x(1 + x)]p′n,v(t)

×(t− x)mdt+ nTn,m+1(x)

= −(m+ 1)(1 + 2x)Tn,m(x)− (m+ 2)Tn,m+1(x)−mx(1 + x)Tn,m−1(x)

+nTn,m+1(x).

This leads to our required result (2.4).

Further, for every m ∈ N0, the mth order moment T
(p)
n,m for the operator Spn is

defined by

T (p)
n,m(x) = Spn((t− x)m, x).

If we adopt the convention T
(1)
n,m(x) = Tn,m(x), obviously T

(p)
n,m(x) is of degree m.

Theorem 2.5. Let f ∈ Cγ [0,∞), if f (2v+p+2) exists at a point x ∈ [0,∞), then

lim
n→∞

nv+1[R(p)
n,v(f ;x)− f (p)(x)] =

2v+p+2∑
k=p

Q(k, v, p, x)f (k)(x), (2.5)

where Q(k, v, p, x) are certain polynomials in x. Further if f (2v+p+2) is continuous on
(a− η, b+ η) ⊂ [0,∞) and η > 0, then this theorem holds uniformly in [a, b].
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Proof will be along the similar lines [4].

3. Main results

In this section, we establish the direct theorem.

Theorem 3.1. Let f ∈ H[0,∞) be bounded on every finite subinterval of [0,∞) and
f(t) = O(tα) as t→∞ for some α > 0.

If f (p) exists and is continuous on (a− η, b+ η) ⊂ [0,∞), for some η > 0. Then

‖R(p)
n,v(f(t);x)− f (p)(x)‖C(I2) ≤ K{n

−v‖f‖C(I1) + ω2v+2(f (p), n−1/2, I1)}
where constant K is independent of f and n.

Proof. We can write∥∥∥Rpn,v(f(t);x)− f (p)(x)
∥∥∥
C(I2)

≤ ‖R(p)
n,v(f − fη,2v+2;x)‖C(I2) +

∥∥∥R(p)
n,v(fη,2v+2;x)− f (p)η,2v+2(x)

∥∥∥
C(I2)

+
∥∥∥f (p)(x)− f (p)η,2v+2(x)

∥∥∥
C(I2)

=: P1 + P2 + P3.

By the property of Steklov Mean and f
(p)
η,2v+2(x) = (f (p))η,2v+2(x), we get

P3 ≤ Kω2v+2(f (p), η, I1).

To estimate P2, applying Theorem 2.5 and interpolation property from [2], we have

P2 ≤ Kn−(v+1)

2v+p+2∑
i=p

‖f (i)η,2v+2(x)‖C(I2)

≤ Kn−(v+1)
(
‖fη,2v+2‖C(I2) + ‖(f (p)η,2v+2)(2v+2)‖C(I2)

)
.

Hence by using properties (2) and (4) of Steklov Mean, we get

P2 ≤ Kn−(v+1)[‖f‖C(I1) + (η)−2v−2ω2v+2(f (p), η, I1)].

Suppose a∗ and b∗ be such that

0 < a1 < a∗ < a2 < b2 < b∗ < b1 <∞.
In order to estimate P1, let F = f − fη,2v+2. Then, by hypothesis, we have

F (t) =

p∑
i=0

F (i)(x)

i!
(t− x)i +

F (p)(ξ)− F (p)(x)

p!
(t− x)pψ(t) + h(t, x)(1−ψ(t)), (3.1)

where ξ lies between t and x, and ψ is the characteristic function of the interval
[a∗, b∗]. For t ∈ [a∗, b∗] and x ∈ [a2, b2], we get

F (t) =

p∑
i=0

F (i)(x)

i!
(t− x)i +

F (p)(ξ)− F (p)(x)

p!
(t− x)p,
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and for t ∈ [0,∞) \ [a∗, b∗], x ∈ [a2, b2], we define

h(t, x) = F (t)−
p∑
i=0

F (i)(x)

i!
(t− x)i.

Now operating Rpn,v on both the sides of (3.1), we have the three terms on right side
namely E1, E2 and E3 respectively. By using (1.2) and Lemma 2.4, we get

E1 =

p∑
i=0

F (i)(x)

i!

v∑
r=1

(−1)r+1

(
v
r

)
Dp
(
Srn((t− x)i;x

)
, D ≡ d

dx

=
F (p)(x)

p!

v∑
r=1

(−1)r+1

(
v
r

)
Dp (Srn(tp;x))

→ F (p)(x),

when n→∞ uniformly in I2. Therefore

‖E1‖C(I2) ≤ K
∥∥∥f (p) − f (p)η,2v+2

∥∥∥
C(I2)

.

To obtain E2, we have

‖E2‖C(I2) ≤ 2

p!

∥∥∥f (p) − f (p)η,2v+2

∥∥∥
C[a∗,b∗]

v∑
r=1

(n− 1)

(
v
r

) ∞∑
v=0

|q(p)n,v(x)|

×
∫ ∞
0

pn,v(t)S
r−1
n (|t− x|p, x) dt.

Using Lemma 2.2, Cauchy Schwartz Inequality and Lemma 2.1

(n− 1)

∞∑
v=0

|q(p)n,v(x)|
∫ ∞
0

pn,v(t)S
r−1
n (|t− x|p, x)dt

≤ K
∑

2r+j≤p;
r,j≥0

nrφr,j,p(x)x−p(n− 1)

∞∑
v=0

qn,v(x)(v − nx)j

×
∫ ∞
0

pn,v(t)S
r−1
n (|t− x|p, x)dt

≤ K
∑

2r+j≤p;
r,j≥0

nr

( ∞∑
v=0

qn,v(x)(v − nx)2j

)1/2

×

(
(n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)S
r−1
n (|t− x|2p, x)dt

)1/2

= K
∑

2r+j≤p;
r,j≥0

nrO(nj/2)O(n−p/2)

= O(1)
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as n→∞ uniformly in I2. Therefore,

‖E2‖ ≤ K‖f (p) − f (p)η,2v+2‖C(a∗,b∗).

Since t ∈ [0,∞) \ [a∗, b∗] and x ∈ [a2, b2], we can choose a δ > 0 in such a way that
|t − x| ≥ δ. If β ≥ max{α, p} be an integer, we can find a positive constant Q such
that |h(t, x)| ≤ Q|t − x|β whenever |t − x| ≥ δ. Again applying Lemma 2.2, Cauchy
Schwartz Inequality three times, Lemma 2.1 and Lemma 2.4, we get

|E3| ≤ K

v∑
r=0

(
v
r

) ∑
2r+j≤p;
r,j≥0

nr

( ∞∑
v=0

qn,v(x)(v − nx)2j

)1/2

×

(
(n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)S
r−1
n ((1− ψ(t))(t− x)2β ; t)dt

)1/2

≤ K

v∑
r=0

(
v
r

) ∑
2r+j≤p;
r,j≥0

nr

( ∞∑
v=0

qn,v(x)(v − nx)2j

)1/2

×

(
(n− 1)

∞∑
v=0

qn,v(x)

∫ ∞
0

pn,v(t)S
r−1
n (

(t− x)2m

δ2m−2β
; t)dt

)1/2

≤ K
∑

2r+j≤p;
r,j≥0

nrO(nj/2)O(n−m/2), m > β, ∀m ∈ I.

Hence ‖E3‖ = O(1), as n → ∞, uniformly in I2. Combining the estimates of E1, E2

and E3, we get

P1 ≤ K‖f (p) − f (p)η,2v+2‖C(a∗,b∗) ≤ Kω2v+2(f (p), η, I1).

Substituting η = n−1/2, we get the required theorem.
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Approximation with an arbitrary order
by generalized Szász-Mirakjan operators

Sorin G. Gal

Abstract. By using two given arbitrary sequences αn > 0, βn > 0, n ∈ N with
the property that limn→∞ βn/αn = 0, in this very short note we modify the
generalized Szász-Mirakjan operator based on the Sheffer polynomials in such a
way that on each compact subinterval in [0,+∞) the order of uniform approx-

imation is ω1(f ;
√
βn/αn). These modified generalized operators can uniformly

approximate a Lipschitz 1 function, on each compact subinterval of [0,∞) with

an arbitrary good order of approximation
√
βn/αn.
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Keywords: Generalized Szász-Mirakjan operator, Sheffer polynomials, order of
approximation.

1. Introduction

In [8], Szász introduced and investigated the approximation properties of the
linear and positive operators attached to continuous functions f : [0,∞)→ R,

Sn(f)(x) = e−nx
∞∑
k=0

(nx)k

k!
f(k/n).

Generalizing the above operators, in [5] Jakimovski and Leviatan introduced and
studied the qualitative approximation properties of the operators given by

Pn(f)(x) =
e−nx

A(1)

∞∑
k=0

pk(nx)f(k/n),

where pk are the Appell polynomials defined by the generating function

A(t)etx =

∞∑
k=0

pk(x)tk, A(z) =

∞∑
k=0

ckz
k, c0 6= 0,

is an analytic function in a disc |z| < R, (R > 1) and A(1) 6= 0. For A(z) = 1, one
recapture the Szász-Mirakjan operators.
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In [4], Ismail introduced and studied the qualitative approximation properties
of a generalization of the Jakimovski-Leviatan operators, given by

Tn(f)(x) =
e−nxH(1)

A(1)

∞∑
k=0

pk(nx)f(k/n),

where pk are the Sheffer polynomials (more general than the Appell polynomials)
defined by

A(t)exH(t) =

∞∑
k=0

pk(x)tk, x ≥ 0, |t| < R, (1.1)

with A(z) =

∞∑
k=0

ckz
k, H(z) =

∞∑
k=1

hkz
k, analytic functions in a disk |z| < R, (R > 1),

A(1) 6= 0, H ′(1) = 1, ck, hk ∈ R, for all k ≥ 1, c0 ∈ R, c0 6= 0, h1 6= 0, and supposing
that pk(x) ≥ 0 for all x ∈ [0,∞), k ≥ 0.

Quantitative estimate of the order ω1(f ; 1/
√
n) in approximation by the Tn(f)(x)

operators were obtained by Sucu-Ibikli in [7].

By using two sequences of real numbers, (αn)n, (βn)n with the properties that

limn→∞
βn
αn

= 0, in [1] Cetin and Ispir introduced a remarkable generalization of the
Szász-Mirakjan operators attached to analytic functions f of exponential growth in a
compact disk of the complex plane, |z| < R,

Sn(f ;αn, βn)(z) = e−αnz/βn
∞∑
k=0

1

k!

(
αnz

βn

)k
· f
(
kβn
αn

)
, z ∈ C, |z| < R,

which approximate f in any compact disk |z| ≤ r, r < R, with the approximation

order βn
αn

.

The main aim of this short note is to consider the Ismail’s kind generalization of
the above operator, but attached to a real function of real variable defined on [0,+∞),

Tn(f ;αn, βn)(x) =
e−αnxH(1)/βn

A(1)

∞∑
k=0

pk

(
αnx

βn

)
· f
(
kβn
αn

)
, x ∈ [0,∞),

under the above hypothesis on A, H and pk, obtaining the order of approximation
ω1(f ;

√
βn/αn) which, for example, in the case of Lipschitz 1 functions on [0,∞)

gives the order of uniform approximation O(
√
βn/αn) on each compact subinterval

of [0,∞).

Notice that for αn = n, βn = 1 for all n ∈ N, we recapture the above Ismail’s
generalization of the Szász-Mirakjan operators. Also, evidently that Tn(f ;αn, βn)(z)
generalize the operators introduced in [1].

Since the sequence βn/αn, n ∈ N, can evidently be chosen to converge to zero
with an arbitrary small order, it seems that in the class of Szász-Mirakjan type opera-
tors, the generalization Tn(f ;αn, βn), n ∈ N, represents the best possible construction
and the most general.
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2. Main results

Since Tn(f ;αn, βn), n ∈ N are positive linear operators, we will follow the stan-
dard line of study. Firstly, we need the following lemma.

Lemma 2.1. Denoting ek(x) = xk, for all x ∈ [0,∞) and n ∈ N we have:
(i) Tn(e0;αn, βn)(x) = 1;

(ii) Tn(e1;αn, βn)(x) = x+ βn
αn
· A
′(1)
A(1) ;

(iii) Tn(e2;αn, βn)(x) = x2 + x βnαn

(
2A′(1)
A(1) +H ′′(1) + 1

)
+

β2
n

α2
n

(
A′′(1)+A′(1)

A(1)

)
;

(iv) Tn((· − x)2;αn, βn)(x) = x βnαn (H ′′(1) + 1) +
β2
n

α2
n
· A
′(1)+A′′(1)
A(1) .

Proof. (i) If in (1.1) we take t = 1 and replace x by xαn
βn

then we obtain

A(1) · exH(1)αn/βn =

∞∑
k=0

pk(xαn/βn),

which evidently is equivalent to Tn(e0;αn, βn)(x) = 1.
(ii) Differentiating with respect to t the generation formula (1.1), we get

A′(t) · exH(t) +A(t) · x ·H ′(t) · exH(t) =

∞∑
k=1

pk(x) · k · tk−1.

Taking above t = 1 and replacing x by xαnβn , it follows

A′(1) · exH(1)αn/βn +A(1) · xαn
βn
· exH(1)αn/βn =

∞∑
k=1

pk(xαn/βn) · k.

Multiplying both sides by e−xH(1)αn/βn

A(1) · βnαn , it follows

A′(1)

A(1)
· βn
αn

+ x =
e−x(1)αn/βn

A(1)
·
∞∑
k=1

pk(xαn/βn) · kβn
αn

= Tn(e1;αn, βn)(x).

(iii) Differentiating (1.1) twice with respect to t, we get

A′′(t)exH(t) + x[2A′(t) ·H ′(t) +A(t)H ′′(t)]exH(t) + x2A(t)[H ′(t)]2 · exH(t)

=

∞∑
k=0

pk(x)k(k − 1)tk−2.

Taking here t = 1, replacing x by x · αnβn and then multiplying both sides by

e−xH(1)αn/βn

A(1) · β
2
n

α2
n

, it follows

A′′(1)

A(1)
· β

2
n

α2
n

+ x · βn
αn

(
2A′(1)

A(1)
+H ′′(1)

)
+ x2

=
e−xH(1)αn/βn

A(1)
·
∞∑
k=0

pk(xαn/βn)
k2β2

n

α2
n

− e−xH(1)αn/βn

A(1)
· βn
αn
·
∞∑
k=0

pk(xαn/βn)
kβn
αn

= Tn(e2;αn, βn)(x)− βn
αn
· Tn(e1;αn, βn)(x),
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which by using (ii) too implies

Tn(e2;αn, βn)(x)

=
A′′(1)

A(1)
· β

2
n

α2
n

+ x · βn
αn

(
2A′(1)

A(1)
+H ′′(1)

)
+ x2 +

βn
αn

(
x+

βn
αn
· A
′(1)

A(1)

)
,

leading to the required formula.
(iv) It is an immediate consequence of (i)-(iii) and of the linearity of Tn(·;αn, βn).

�

The main result of this section is the following.

Theorem 2.2. Let f : [0,∞) → R be uniformly continuous on [0,∞). Denote
ω1(f ; δ) = sup{|f(x)− f(y)|; |x− y| ≤ δ, x, y ∈ [0,∞)}. For all x ∈ [0,∞), n ∈ N we
have

|Tn(f ;αn, βn)(x)− f(x)|

≤

(
1 +

√
(H ′′(1) + 1)x+

βn
αn
· A
′(1) +A′′(1)

A(1)

)
· ω1(f ;

√
βn/αn).

Proof. By the standard theory (see e.g. Shisha-Mond [6] where although the results
are obtained for continuous functions on compact intervals, the reasonings remain the
same if the functions are (uniformly) continuous on [0,+∞)), we have

|Tn(f ;αn, βn)(x)− f(x)| ≤ (1 + δ−1
√
Tn((· − x)2;αn, βn)(x))ω1(f ; δ).

Replacing δ =
√

βn
αn

and using Lemma 2.1, (iv), we arrive at the desired estimate. �

As an immediate consequence of Theorem 2.2 we get the following.

Corollary 2.3. Suppose that there exists L > 0 such that |f(x)− f(y)| ≤ L|x− y|, for
all x, y ∈ [0,∞). We have

|Tn(f ;αn, βn)(x)− f(x)|

≤ L

(
1 +

√
(H ′′(1) + 1)x+

βn
αn
· A
′(1) +A′′(1)

A(1)

)
·
√
βn/αn.

Remark 2.4. In order to get uniform convergence in the above results, the expression
under the square root in the above estimations must be bounded, fact which holds
when x belong to a compact subinterval of [0,+∞).

Remark 2.5. The optimality of the estimates in Theorem 2.2 and Corollary 2.3 consists
in the fact that given an arbitrary sequence of strictly positive numbers (γn)n, with

limn→∞ γn = 0, we always can find the sequences αn, βn satisfying ω1(f ;
√
βn/αn) ≤

γn for all n ∈ N in the case of Theorem 2.2 and
√

βn
αn
≤ γn for all n ∈ N, in the case

of Corollary 2.3.

Remark 2.6. For αn = n and βn = 1 we recapture the results in [7], but the estimates
there are essentially weaker than those in the present results.
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Remark 2.7. If f is uniformly continuous on [0,+∞) then it is well known that its
growth on [0,+∞) is linear, i.e. there exist α, β > 0 such that |f(x)| ≤ αx+β, for all
x ∈ [0,+∞) (see e.g. [2], p. 48, Problème 4, or [3]).

Acknowledgement. The author thanks the referee for pointing out the linear growth
of the uniformly continuous functions on [0,+∞).
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Some properties of Sobolev algebras modelled
on Lorentz spaces

İlker Eryılmaz and Birsen Saḡır Duyar

Abstract. In this paper, firstly Lorentz-Sobolev spaces W k
L(p,q) (Rn) of integer or-

der are introduced and some of their important properties are emphasized. Also,
the Banach spaces Ak

L(p,q) (Rn) = L1 (Rn) ∩W k
L(p,q) (Rn) (Lorentz-Sobolev alge-

bras in the sense of H.Reiter) are studied. Then, using a result due to H.C.Wang,
it is showed that Banach convolution algebras Ak

L(p,q) (Rn) do not have weak fac-

torization. Lastly, it is found that the multiplier algebra of Ak
L(p,q) (Rn) coincides

with the measure algebra M (Rn) for 1 < p <∞ and 1 ≤ q <∞.

Mathematics Subject Classification (2010): Primary 46E25, 46J10; Secondary
46E35.

Keywords: Sobolev spaces, Lorentz spaces, weak derivative, FP−algebras, weak
factorization, multipliers.

1. Introduction

Let Rn denote the n-dimensional real Euclidean space. If α = (α1, ..., αn) is an
n-tuple of nonnegative integers αj , then we call α a multi-index and denote by xα

the monomial xα1
1 xα2

2 · · ·xαnn , which has degree |α| =
∑n
j=1 αj . Similarly, if Dj = ∂

∂xj

for 1 ≤ j ≤ n, then

Dα = Dα1
1 Dα2

2 ...Dαn
n

denotes a differential operator of order |α|. For given two locally integrable functions

f and g on Rn, we say that ∂|α|f
∂xα = g (weak derivative of f) if∫

Rn
f (x)

∂|α|ϕ

∂xα
(x) dx = (−1)

|α|
∫
Rn
g (x)ϕ (x) dx

for all ϕ ∈ C∞0 (Rn), where C∞0 (Rn) is the space of all smooth functions with compact
support.
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If we define a functional ‖·‖k,p, where k is a nonnegative integer and 1 ≤ p ≤ ∞,
as follows:

‖f‖k,p =
∑

0≤|α|≤k

‖Dαf‖p if 1 ≤ p ≤ ∞, (1.1)

for any function f ∈ Lp (Rn), then we can consider two vector spaces on which ‖·‖k,p
is a norm:

(i) W k,p (Rn) := {f ∈ Lp (Rn) : Dαf ∈ Lp (Rn) for 0 ≤ |α| ≤ k}, where Dαf is the
weak partial derivative of f ,

(ii) W k,p
0 (Rn) := the closure of C∞0 (Rn) in the space W k,p (Rn).

Equipped with the appropriate norm (1.1), these are called Sobolev spaces over

Rn. Clearly, W 0,p (Rn) = Lp (Rn), and if 1 ≤ p < ∞, W 0,p
0 (Rn) = Lp (Rn) since

C∞0 (Rn) is dense in Lp (Rn). Also, W k,p (Rn) is a Banach space for 1 ≤ p ≤ ∞ and

a reflexive space with its associate space W−k,p
′
(Rn) if 1 < p < ∞ and 1

p + 1
p′ = 1.

For any k, one can see the obvious chain of imbeddings

W k,p
0 (Rn) ↪→W k,p (Rn) ↪→ Lp (Rn) .

Sobolev spaces of integer order were introduced by S.L. Sobolev in [15,16]. These
spaces are defined over an arbitrary domain Ω ⊂ Rn by using subspaces of Lebesgue
spaces. Many generalizations and specializations of these spaces have been constructed
and studied in years. In particular, there are extensions that allow arbitrary real values
of k, weighted spaces that introduce weight functions into the Lp−norms and other
generalizations involve different orders of differentiation and different Lp−norms in
different coordinate directions and Orlicz-Sobolev spaces. Finally, there has been much
work on Sobolev spaces and its related areas. To an interested reader, we can suggest
our main reference book [1] and the references therein.

2. Preliminaries

Definition 2.1. Let G be a locally compact abelian group, and (B (G) , ‖·‖B) be a Ba-
nach space of complex-valued measurable functions on G. B (G) is called a homoge-
neous Banach space if the following are satisfied:
H1. Lsf ∈ B (G) and ‖Lsf‖B = ‖f‖B for all f ∈ B (G) and s ∈ G, where
Lsf (x) = f (x− s) .
H2. s→ Lsf is a continuous map from G into (B (G) , ‖·‖B) .

Definition 2.2. A homogeneous Banach algebra on G is a subalgebra B (G) of L1 (G)
such that B (G) is itself a Banach algebra with respect to a norm ‖·‖B ≥ ‖·‖1 and
satisfies H1 and H2.

Definition 2.3. A homogeneous Banach algebra B (G) is called a Segal algebra if it is
dense in L1 (G).

Definition 2.4. Let G be a locally compact abelian group with character group Γ. A
Segal algebra B (G) is called isometrically character-invariant if for every character
κ and every f ∈ B (G) one has κf ∈ B (G) and ‖κf‖B = ‖f‖B. In other words, if
f → κf is an isometry of B (G), for all κ ∈ Γ.
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Definition 2.5. Let G be a locally compact abelian group with character group Γ, and
µ be a positive Radon measure on Γ. A Banach algebra (B (G) , ‖·‖B) in L1 (G) is an

Fµ−algebra if B̂ (G) ⊂ Lp (G) for some p ∈ (0,∞) where ”̂” denotes the Fourier
transform.

Definition 2.6. Let G be a locally compact abelian group with character group Γ, and
µ be a positive Radon measure on Γ. A Banach algebra (B (G) , ‖·‖B) in L1 (G) is
a Pµ−algebra if there exist two sequences (∆n) and (θn) of subsets of Γ, a sequence
(fn) in B (G) and a sequence cn ≥ 1 satisfying
p1. ∆i ∩ ∆j = ∅ if i 6= j, θn ⊂Int(∆n), µ (θn) = α > 0, µ (∆n) = β < ∞ for
n=1,2,· · · .(Int:=Interior)

p2. 0 ≤ f̂n ≤ 1, Suppf̂n ⊂ ∆n, f̂n (θn) = 1 for each n=1,2,· · · .
p3. ‖fn‖B ≤ cn,

∑∞
n=1

(
1
can

)
<∞,

∑∞
n=1

(
1
cbn

)
=∞ for some a, b ∈ (0,∞).

An algebra is an FµPµ−algebra if it is both Fµ and Pµ−algebra. It is simply
called FP−algebra if µ is the Haar measure on Γ.

Definition 2.7. Let B be a Banach algebra. B is said to have weak factorization if,
given f ∈ B, there are f1, · · · , fn, g1, · · · , gn ∈ B such that f =

∑n
i=1 figi.

Theorem 2.8. ([18, p.42]) A homogeneous Banach space (B (G) , ‖·‖B) is a homo-
geneous Banach algebra if and only if B (G) is a linear subspace of L1 (G) with
‖·‖B ≥ ‖·‖1.

Definition 2.9. Let G be a (noncompact) locally compact abelian group. The translation
coefficient KE of a homogeneous Banach space E on G is the infimum of the constants
K such that

lim sup
s→∞

‖f + Lsf‖E ≤ K ‖f‖E , ∀f ∈ E.

For the convenience of the reader, we now review briefly what we need from the
theory of Lorentz spaces. Let (G,Σ, µ) be a measure space and let f be a measurable
function on G. For each y > 0, the rearrangement of f is defined by

f∗ (t) = inf {y > 0 : µ {x ∈ G : |f (x)| > y} ≤ t } , t > 0,

where inf ∅ =∞. Also the average function of f is defined by

f∗∗(t) =
1

t

t∫
0

f∗ (s) ds , t > 0.

Note that f∗ (·) and f∗∗(·) are non-increasing and right continuous functions on (0,∞)
[3, 10] .For p, q ∈ (0,∞), we define

‖f‖∗p,q =

q
p

∞∫
0

[f∗ (t)]
q
t
q
p−1dt

 1
q

, ‖f‖p,q =

q
p

∞∫
0

[f∗∗ (t)]
q
t
q
p−1dt

 1
q

. (2.1)

Also, if 0 < p ≤ ∞ and q =∞, we define

‖f‖∗p,∞ = sup
t>0

t
1
p f∗ (t) and ‖f‖p,∞ = sup

t>0
t
1
p f∗∗ (t) .
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For 0 < p < ∞ and 0 < q ≤ ∞, Lorentz spaces are denoted by L (p, q) (G)
and defined to be the vector spaces of all measurable functions f on G such that
‖f‖∗p,q < ∞. We know that ‖f‖∗p,p = ‖f‖p and so Lp (G) = L (p, p) (G). It is also
known that if 1 < p <∞ and 1 ≤ q ≤ ∞, then

‖f‖∗p,q ≤ ‖f‖p,q ≤
p

p− 1
‖f‖∗p,q (2.2)

for each f ∈ L (p, q) (G) and
(
L (p, q) (G) , ‖·‖p,q

)
is a Banach space [3,10].

In [19], it is found that B (p, q) (G) := L1 (G) ∩ L (p, q) (G) is a normed space
with the norm ‖·‖B = ‖·‖1 + ‖·‖p,q and a Segal algebra for 1 < p < ∞, 1 ≤ q < ∞.

Nevertheless, some other properties of B (p, q) (G) spaces are showed in [7].

3. The W k
L(p,q) (Rn) and Ak

L(p,q) (Rn) spaces

If one looks for ”Sobolev algebras” in literature, one sees that there are a lot of
published papers about Sobolev algebras obtained by using different function spaces
that are defined over different groups or sets. These spaces have been investigated un-
der several respects, and mostly applied to the study of strongly nonlinear variational
problems and partial differential equations.

In the sense of our study, we attach importance to [4-6,17]. In [5], Orlicz-Sobolev
spaces that are multiplicative Banach algebras are characterized. In [6], it is showed
that the space Lpα (G)∩L∞ (G) is an algebra with respect to pointwise multiplication,
where G is a connected unimodular Lie group. Also, sufficient conditions for the
Sobolev spaces to form an algebra under pointwise multiplication have been given in
[17].

In [4], Chu defined Apk (Rn) = L1 (Rn) ∩ W k,p (Rn) spaces and showed some
algebraic properties of these spaces (Segal algebras). In this section, we will generalize
his results to Lorentz-Sobolev spaces and Lorentz-Sobolev algebras.

Definition 3.1. Lorentz-Sobolev spaces are defined by

W k
L(p,q) (Rn) = {f ∈ L (p, q) (Rn) : Dαf ∈ L (p, q) (Rn)} (3.1)

for all α ∈ Nn0 with |α| ≤ k where k is a nonnegative integer, p ∈ (1,∞) and q ∈ [1,∞).
Also they are equipped with the norm

‖f‖Wk
L(p,q)

(Rn) =
∑
|α|≤k

‖Dαf‖p,q . (3.2)

Clearly, if k = 0, then W k
L(p,q) (Rn) = L (p, q) (Rn). Besides this, if we define

W k,0
L(p,q) (Rn) as the space of the closure of C∞0 (Rn) in the space W k

L(p,q) (Rn), then it

is easy to see that W 0,0
L(p,q) (Rn) = L (p, q) (Rn) where p ∈ (1,∞) and q ∈ [1,∞). For

any k, the chain of imbeddings

W k,0
L(p,q) (Rn) ↪→W k

L(p,q) (Rn) ↪→ L (p, q) (Rn) (3.3)
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is also clear. Instead of dealing with Lorentz-Sobolev spaces W k
L(p,q) (Rn), we can pay

attention to the completion of the set{
f ∈ Ck (Rn) : ‖f‖Wk

L(p,q)
(Rn) <∞

}
with respect to the norm in (3.2). Because, it is easy to show that these spaces are
equal.

Now, we are going to give two propositions without their (easy) proofs . One can
prove them by using the same methods as those used for abstract Sobolev spaces.

Proposition 3.2. W k
L(p,q) (Rn) is a (homogeneous) Banach space with ‖·‖Wk

L(p,q)
(Rn).

Proposition 3.3. If p, q ∈ (1,∞), then W k
L(p,q) (Rn) spaces are reflexive. In other

words, the associate space of W k
L(p,q) (Rn) is W−kL(p′,q′) (Rn) where 1

p + 1
p′ = 1 and

1
q + 1

q′ = 1.

After this point, we are going to deal with the algebraic structures of L1 (Rn) ∩
W k
L(p,q) (Rn) spaces. For this reason, we will call this intersection space as AkL(p,q) (Rn)

and endow it with the sum norm

‖f‖A := ‖f‖1 + ‖f‖Wk
L(p,q)

(Rn) (3.4)

for all f ∈ AkL(p,q) (Rn).

Proposition 3.4. AkL(p,q) (Rn) is a Segal algebra on Rn if p ∈ (1,∞) and q ∈ [1,∞).

Proof. Let p ∈ (1,∞) and q ∈ [1,∞). Since W k
L(p,q) (Rn) and L1 (Rn) are homoge-

neous Banach spaces, it is easy to see that AkL(p,q) (Rn) is also a homogeneous Banach

space under the sum norm ‖·‖A ≥ ‖·‖1 by [11]. By a result of Theorem 2.8, we get
AkL(p,q) (Rn) is a homogeneous Banach algebra. By [1, 2.19.Theorem], we know that

C∞0 (Rn) is dense in L1 (Rn) and is contained in W k
L(p,q) (Rn). Therefore, AkL(p,q) (Rn)

is a Segal algebra on Rn. �

Theorem 3.5. AkL(p,q) (Rn) is an FP-algebra for p ∈ (1,∞) and q ∈ [1,∞).

Proof. Firstly, we are going to show the P−algebra property of AkL(p,q) (Rn) spaces.

(i) Let

∆m =

[
m− 1

4
,m+

1

4

]
× · · · ×

[
m− 1

4
,m+

1

4

]
(n− times)

Ωm =

[
m− 1

8
,m+

1

8

]
× · · · ×

[
m− 1

8
,m+

1

8

]
(n− times)

and

∆′m =

[
m− 1

4
,m+

1

4

]
, Ω′m =

[
m− 1

8
,m+

1

8

]
for m ≥ 1. By [18, 1.8.Theorem], there exists a generalized trapezium function f1 ∈
L1 (R) such that 0 ≤ f̂1 ≤ 1, suppf̂1 ⊂ ∆′1 and f̂1 (Ω′1) = 1.
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If we let fm (t) = ei(m−1)tf1 (t), then it is easy to see that 0 ≤ f̂m ≤ 1, suppf̂m ⊂
∆′m and f̂m (Ω′m) = 1 form ≥ 2. If we define Fm by Fm (x1, ..., xn) = fm (x1)···fm (xn)

form = 1, 2, ..., then Fm ∈ L1 (Rn), F̂m (t1, ..., tn) = f̂m (t1)···f̂m (tn) and 0 ≤ F̂m ≤ 1,

suppF̂m ⊂ ∆m, F̂m (Ωm) = 1. If P
(
L1 (Rn)

)
is the set of all f in L1 (Rn) whose

Fourier transform f̂ has compact support, then it is seen that Fm ∈ P
(
L1 (Rn)

)
.

Since P
(
L1 (Rn)

)
is dense in every homogeneous Banach algebra [18, 3.7.Theorem],

we have Fm ∈ AkL(p,q) (Rn). For 1 ≤ j ≤ k and m ≥ 2, the equality

f (j)m (t) =
(
ei(m−1)t

)(j)
f1 (t) +

(
j

1

)(
ei(m−1)t

)(j−1)
f ′1 (t) +

+

(
j

2

)(
ei(m−1)t

)(j−2)
f ′′1 (t) + ...+

(
j

j

)(
ei(m−1)t

)
f

(j)

1 (t)

= ij (m− 1)
j
ei(m−1)tf1 (t) +

(
j

1

)
ij−1 (m− 1)

j−1
ei(m−1)tf ′1 (t)

+

(
j

2

)
ij−2 (m− 1)

j−2
ei(m−1)tf ′′1 (t) + ...+

(
j

j

)(
ei(m−1)t

)
f

(j)

1 (t)

is written. Since fm ∈ P
(
L1 (R)

)
⊂ AkL(p,q) (R), if

M = max

{
‖f1‖p,q , ‖f

′
1‖p,q , ...,

∥∥∥f (j)1

∥∥∥
p,q

}
then, we get∥∥∥f (j)m

∥∥∥
p,q

=
∥∥∥ij (m− 1)

j
ei(m−1)tf1 (t) + ...+

(
ei(m−1)t

)
f

(j)

1 (t)
∥∥∥
p,q

≤ (m− 1)
j ‖f1‖p,q + (m− 1)

j−1
(
j

1

)
‖f ′1 (t)‖p,q + ...+

∥∥∥f (j)

1 (t)
∥∥∥
p,q

≤ 2j (m− 1)
j
M. (3.5)

Again, for 1 ≤ |α| = j ≤ k and 0 ≤ ji ≤ j, j1 + · · · + jn = j, it can be written by
(3.5) that

‖DαFm (x1, · · ·, xn)‖p,q =
∥∥∥f (j1)m (x1) f (j2)m (x2) · · · f (jn)m (xn)

∥∥∥
p,q

≤
(

2j (m− 1)
j
M
)n
≤
(

2k (m− 1)
k
M
)n

and so

‖Fm‖A = ‖Fm‖1 + ‖Fm‖Wk
L(p,q)

(Rn) = ‖Fm‖1 +
∑
|α|≤k

‖DαFm‖p,q

= ‖Fm‖1 + ‖Fm‖p,q +
∑
|α|=1

‖DαFm‖p,q +
∑
|α|=2

‖DαFm‖p,q + . . .+
∑
|α|=k

‖DαFm‖p,q

≤ ‖Fm‖1 + ‖Fm‖p,q +

[(
k

1

)
+

(
k

2

)
+ ...+

(
k

k

)](
2k (m− 1)

k
M
)n

≤ B (m− 1)
kn

(3.6)
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for m ≥ 2 and some constant B > 0. Since we can take B and C1 large enough such

that Cm = B (m− 1)
kn ≥ 1 for m = 2, 3, ..., C1 > ‖F1‖A and C1 > 1, we have∑∞

m=1

1

Ck+1
m

<∞ but
∑∞

m=1

1

C
1/kn
m

=∞, for k ≥ 1.

Thus we get the result.
Now let k = 0. Then A0

L(p,q) (Rn) = L1 (Rn) ∩ W 0
L(p,q) (Rn) = L1 (Rn) ∩

L (p, q) (Rn) = B (p, q) (Rn). Since B (p, q) (Rn) is a character invariant Segal alge-
bra and every character Segal algebra is a P−algebra by [7] and [18, 4.9.Theorem],
we get that A0

L(p,q) (Rn) is a P−algebra.

(ii) It is obvious from (3.3) that AkL(p,q) (Rn) ⊂ B (p, q) (Rn). Since B (p, q) (Rn)

is a Segal algebra with ̂B (p, q) (Rn) ⊂ L (p, q) (Rn) for p ∈ (1,∞) and q ∈ [1,∞) by
[3, Lemma 3.8], we get B (p, q) (Rn) is an F−algebra for p ∈ (1,∞) and q ∈ [1,∞)
by [18, 4.5.Definition]. It is known from [18, Theorem 4.6] that F−algebra property
is a going-down property. In other words, if B is an F−algebra and A is a subalgebra
of B, then A is also an F−algebra. Therefore, AkL(p,q) (Rn) is an F−algebra due to

AkL(p,q) (Rn) ⊂ B (p, q) (Rn).

(i) and (ii) give the result. �

In [18, Theorem 8.8], it is proved that an FP−algebra does not admit the weak
factorization property. So, we can write the following theorem.

Theorem 3.6. AkL(p,q) (Rn) does not admit the weak factorization property.

Remark 3.7. We know that a character invariant Segal algebra on the locally com-
pact abelian group G has weak factorization if and only if it is equal to L1 (G), by
[8, Theorem 2.2]. For p ∈ (1,∞) and q ∈ [1,∞), we have AkL(p,q) (Rn) $ L1 (Rn).

Therefore, an alternative proof for the preceding theorem may be done by showing
character invariance of AkL(p,q) (Rn).

Theorem 3.8. [2] Suppose S is a Segal algebra in L1 (G) of the form L1 (G) ∩ E,
where G is a noncompact locally compact abelian group, E is a homogeneous Banach
space on G. If the translation coefficient KE of E is less than 2, then the multipliers
space of S is isometrically isomorphic to the space M (G) of all bounded regular Borel
measures on G.

Theorem 3.9. The multipliers space of AkL(p,q) (Rn) is isometrically isomorphic to

M (Rn) for p ∈ (1,∞) and q ∈ [1,∞).

Proof. Let f ∈ AkL(p,q) (Rn). Then,

‖f + Lsf‖Wk
L(p,q)

(Rn) =
∑
|α|≤k

‖Dα (f + Lsf)‖p,q

≤ ‖f + Lsf‖p,q +
∑

1≤|α|≤k

‖Dαf‖p,q +
∑

1≤|α|≤k

‖LsDαf‖p,q

= ‖f + Lsf‖p,q + 2
∑

1≤|α|≤k

‖Dαf‖p,q
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can be written. If f = 0 (a.e.), then it is trivial that

lim sup
|s|→∞

‖f + Lsf‖Wk
L(p,q)

(Rn) = 0.

Now let f 6= 0. Gürkanlı showed in [9, Lemma 4.1] that KL(p,q)(G) = 2
1
p for p ∈ (1,∞)

and q ∈ [1,∞). Then, we get

lim sup
|s|→∞

‖f + Lsf‖Wk
L(p,q)

(Rn) ≤ lim sup
|s|→∞

‖f + Lsf‖p,q + 2
∑

1≤|α|≤k

‖Dαf‖p,q

= 2
1
p ‖f‖p,q + 2

∑
1≤|α|≤k

‖Dαf‖p,q

= 2
1
p ‖f‖p,q + 2 ‖f‖p,q − 2 ‖f‖p,q + 2

∑
1≤|α|≤k

‖Dαf‖p,q

=
(

2
1
p − 2

)
‖f‖p,q + 2

∑
|α|≤k

‖Dαf‖p,q

= ‖f‖Wk
L(p,q)

(Rn)

2−

(
2− 2

1
p

)
‖f‖p,q

‖f‖Wk
L(p,q)

(Rn)

 .

Since 0 < ‖f‖p,q ≤ ‖f‖Wk
L(p,q)

(Rn) , 0 < 2 − 2
1
p < 1 and 0 < 2 −

(
2−2

1
p

)
‖f‖p,q

‖f‖
Wk
L(p,q)

(Rn)
< 2

for all p ∈ (1,∞), we see that KWk
L(p,q)

(Rn) < 2. Therefore, the multipliers space

of AkL(p,q) (Rn) is isometrically isomorphic to M (Rn) by the preceding theorem for

p ∈ (1,∞) and q ∈ [1,∞). �
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A note on Zamfirescu’s operators in Kasahara
spaces

Alexandru-Darius Filip

Abstract. The aim of this paper is to give local and global fixed point results
for Zamfirescu’s operators in Kasahara spaces. Since the domain invariance for
Zamfirescu’s operators is not always satisfied, we use in our proofs the successive
approximations method. Our local results extend and generalize Krasnoselskii’s
local fixed point theorem by replacing the context of metric space with a more
general one: the Kasahara space. On the other hand, instead of contractions we
use Zamfirescu’s operators. As application, a homotopy result on large Kasahara
spaces is given.

Mathematics Subject Classification (2010): 47H10, 54H25.

Keywords: Fixed point, Zamfirescu’s operator, Kasahara space, large Kasahara
space, premetric, sequence of successive approximation.

1. Introduction and preliminaries

In 1972, T. Zamfirescu gives in [10] several fixed point theorems for single-valued
mappings of contractive type in metric spaces, obtaining generalizations for Banach-
Caccioppoli’s contraction principle, Kannan’s, Edelstein’s and Singh’s theorems. Four
years later, S. Kasahara gives in [4] some generalizations of the Banach-Caccioppoli’s
contraction principle showing that this principle holds even if the functional d of the
metric space (X, d) does not necessarily satisfy all of the axioms of the metric. In this
sense S. Kasahara replaces the context of metric spaces and proves his theorems in
d-complete L-spaces. In 2010, I.A. Rus introduces in [8] the notion of Kasahara space
and gives similar fixed point results to those given by S. Kasahara.

In order to give the notion of Kasahara space, we recall first the notion of L-space
which was given by M. Fréchet in [2].

Definition 1.1. Let X be a nonempty set. Let

s(X) :=
{

(xn)n∈N | xn ∈ X, n ∈ N
}
.
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Let c(X) be a subset of s(x) and Lim : c(X) → X be an operator. By definition
the triple (X, c(X), Lim) is called an L-space (denoted by (X,→)) if the following
conditions are satisfied:

(i) if xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) if (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences (xni

)i∈N of
(xn)n∈N we have that (xni

)i∈N ∈ c(X) and

Lim(xni)i∈N = x.

Remark 1.2. For examples and more considerations on L-spaces, see [9].

We recall now the notion of Kasahara space, introduced by I.A. Rus in [8].

Definition 1.3. Let (X,→) be an L-space and d : X ×X → R+ be a functional. The
triple (X,→, d) is a Kasahara space if and only if the following compatibility condition
between → and d holds: for all (xn)n∈N ⊂ X with∑

n∈N
d(xn, xn+1) < +∞ ⇒ (xn)n∈N converges in (X,→).

Some examples of Kasahara spaces are presented bellow.

Example 1.4 (The trivial Kasahara space). Let (X, d) be a complete metric space.

Let
d→ be the convergence structure induced by the metric d on X. Then (X,

d→, d) is
a Kasahara space.

Example 1.5 (I.A. Rus [8]). Let (X, ρ) be a complete semimetric space (see [5], [7])
with ρ : X×X → R+ continuous. Let d : X×X → R+ be a functional such that there

exists c > 0 with ρ(x, y) ≤ cd(x, y), for all x, y ∈ X. Then (X,
ρ→, d) is a Kasahara

space.

Example 1.6 (I.A. Rus [8]). Let (X, ρ) be a complete quasimetric space (see [7]) with
ρ : X ×X → R+. Let d : X ×X → R+ be a functional such that there exists c > 0

with ρ(x, y) ≤ cd(x, y), for all x, y ∈ X. Then (X,
ρ→, d) is a Kasahara space.

Example 1.7 (S. Kasahara [4]). Let X denote the closed interval [0, 1] and → be the
usual convergence structure on R. Let d : X ×X → R+ be defined by

d(x, y) =

{
|x− y|, if x 6= 0 and y 6= 0

1, otherwise .

Then (X,→, d) is a Kasahara space.

We recall also a very useful tool which helps us to prove the uniqueness of the
fixed point for operators defined on Kasahara spaces.

Lemma 1.8 (Kasahara’s lemma [4]). Let (X,→, d) be a Kasahara space. Then

d(x, y) = d(y, x) = 0 ⇒ x = y, for all x, y ∈ X.

Remark 1.9. For more considerations on Kasahara spaces, see [4], [8] and the refer-
ences therein.
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In [10], T. Zamfirescu gives several fixed point theorems in metric spaces (X, d)
for a specific contractive type operator f : X → X which satisfies at least one of the
following conditions:

(i) there exists α ∈ [0, 1[ such that

d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ X;

(ii) there exists β ∈ [0, 12 [ such that

d(f(x), f(y)) ≤ β[d(x, f(x)) + d(y, f(y))], for all x, y ∈ X;

(iii) there exists γ ∈ [0, 12 [ such that

d(f(x), f(y)) ≤ γ[d(x, f(y)) + d(y, f(x))], for all x, y ∈ X.

Remark 1.10. If f : X → X is a Zamfirescu operator defined on a metric space (X, d)

then there exists a number δ ∈ [0, 1[, δ := max{α, β
1−β ,

γ
1−γ } such that at least one of

the above conditions (i), (ii) and (iii) holds, where α, β and γ are replaced with δ.

In our results, the considered Zamfirescu’s operators, are defined as follows.

Definition 1.11. Let (X,→, d) be a Kasahara space. The mapping f : X → X is called
Zamfirescu operator if there exists δ ∈ [0, 12 [ such that for each x, y ∈ X at least one
of the following conditions is true:

(1z) d(f(x), f(y)) ≤ δd(x, y);
(2z) d(f(x), f(y)) ≤ δ[d(x, f(x)) + d(y, f(y))];
(3z) d(f(x), f(y)) ≤ δ[d(x, f(y)) + d(y, f(x))].

Throughout this paper we give some fixed point results for Zamfirescu’s operators
in the Kasahara space (X,→, d), where d : X × X → R+ is a premetric. We recall
the notion of premetric in the following definition.

Definition 1.12. Let X be a nonempty set. A distance functional d : X ×X → R+ is
called premetric if and only if the following conditions hold:

(1) d(x, x) = 0, for all x ∈ X;
(2) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

Lemma 1.13. Let (X,→, d) be a Kasahara space, where d : X×X → R+ is a premetric.
If f : X → X is a Zamfirescu operator, then f has at most one fixed point.

Proof. Let x∗, y∗ ∈ X be two fixed points for the Zamfirescu operator f .
Then x∗ = f(x∗) and y∗ = f(y∗).
Suppose that f satisfies the condition (1z). Then we have

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ δd(x∗, y∗)⇒ d(x∗, y∗) = 0.

Similarly, we get d(y∗, x∗) = 0. By Kasahara’s lemma 1.8, it follows that x∗ = y∗.
Assume that f satisfies the condition (2z). We get that

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ δ[d(x∗, f(x∗)) + d(y∗, f(y∗))]⇒ d(x∗, y∗) = 0.

Similarly, we get d(y∗, x∗) = 0 and by Kasahara’s lemma 1.8, it follows that x∗ = y∗.
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Finally, if f satisfies the condition (3z), we have

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ δ[d(x∗, y∗) + d(y∗, x∗)].

Similarly, we have d(y∗, x∗) ≤ δ[d(y∗, x∗) + d(x∗, y∗)].
Hence, we obtain d(x∗, y∗) + d(y∗, x∗) ≤ 2δ[d(x∗, y∗) + d(y∗, x∗)] and we have

further that (1−2δ)[d(x∗, y∗)+d(y∗, x∗)] ≤ 0. It follows that d(x∗, y∗) = d(y∗, x∗) = 0
and by Kasahara’s lemma 1.8, we get x∗ = y∗. �

Let (X,→) be an L-space and f : X → X be an operator. The following nota-
tions and notions will be needed in the sequel of this paper:

• Ff := {x ∈ X | x = f(x)} the set of all fixed points for f .
• Graph(f) := {(x, y) ∈ X × X | y = f(x)} the graph of f . We say that f has

closed graph with respect to → or Graph(f) is closed in X ×X with respect to
→ if and only if for any sequences (xn)n∈N, (yn)n∈N ⊂ X with yn = f(xn) for
all n ∈ N and xn → x ∈ X, yn → y ∈ X, as n→∞, we have that y = f(x).

• B̃(x0, r) :=
{
x ∈ X | d(x0, x) ≤ r

}
the right closed ball centered in x0 ∈ X with

radius r ∈ R+.
• A sequence (xn)n∈N ⊂ X is called sequence of successive approximations for f

starting from a given point x0 ∈ X if xn+1 = f(xn), for all n ∈ N. Notice that
xn = fn(x0), for all n ∈ N.

The aim of this paper is to give local and global fixed point results for Zam-
firescu’s operators in Kasahara spaces. Since the domain invariance for Zamfirescu’s
operators is not always satisfied, we use in our proofs the successive approximations
method. Our local results extend and generalize Krasnoselskii’s local fixed point the-
orem by replacing the context of metric space with a more general one: the Kasahara
space. On the other hand, instead of contractions we use Zamfirescu’s operators. As
application, a homotopy result on large Kasahara spaces is given.

2. Fixed point results in Kasahara spaces

We begin this section by presenting our main local fixed point result which
extends and generalizes Krasnoselskii’s theorem.

Theorem 2.1 (Krasnoselskii (see e.g. [3])). Let (X, d) be a complete metric space. Let

x0 ∈ X, r ∈ R+ and f : B̃(x0, r)→ X be an operator.
If there exists α ∈ [0, 1[ such that d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ X and

d(x0, f(x0)) < (1− α)r then f has at least one fixed point in B̃(x0, r).

Remark 2.2. Let (X,→, d) be a Kasahara space, where d : X×X → R+ is a premetric.
Let x0 ∈ X and r ∈ R+. If d is continuous on X with respect to the second argument,
then

(i) the right closed ball B̃(x0, r) is a closed set in X with respect to →, i.e., for

any sequence (zn)n∈N ⊂ B̃(x0, r), with zn → z ∈ X, as n → ∞, we get that

z ∈ B̃(x0, r);

(ii) (B̃(x0, r),→, d) is a Kasahara space.
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Our first main result is the following.

Theorem 2.3. Let (X,→, d) be a Kasahara space, where d : X × X → R+ is a

premetric. Let x0 ∈ X, r ∈ R+ and f : B̃(x0, r) → X be a Zamfirescu operator. We
assume that:

(i) Graph(f) is closed in X ×X with respect to →;
(ii) d(x0, f(x0)) ≤ (1− δ)r;

(iii) d is continuous with respect to the second argument.

Then

(1◦) f has at most one fixed point x∗ ∈ B̃(x0, r) and fn(x0)→ x∗, as n→∞.
(2◦) at least one of the following estimations holds:

d(xn, x
∗) ≤ δnr, for all n ∈ N, (2.1)

d(xn, x
∗) ≤ δnr

(1− 2δ)(1− δ)n−2
, for all n ∈ N, (2.2)

where x∗ ∈ Ff and (xn)n∈N is the sequence of successive approximations for f
starting from x0.

Proof. (1◦). Let us consider the sequence of successive approximations (xn)n∈N, xn =
fn(x0), for all n ∈ N, starting from x0 ∈ X. By the assumption (ii) it follows that

the Zamfirescu operator f is a graphic contraction on B̃(x0, r).
Indeed, if f satisfies (1z) in Definition 1.11, then by choosing y = f(x0) we have

d(f(x0), f2(x0)) ≤ δd(x0, f(x0)).

If condition (2z) is satisfied, then

d(f(x0), f2(x0)) ≤ δ[d(x0, f(x0)) + d(f(x0), f2(x0))]

which implies that d(f(x0), f2(x0)) ≤ δ
1−δd(x0, f(x0)).

If condition (3z) is satisfied, then

d(f(x0), f2(x0)) ≤ δ[d(x0, f
2(x0)) + d(f(x0), f(x0))]

≤ δ[d(x0, f(x0)) + d(f(x0), f2(x0))].

So we obtain again that d(f(x0), f2(x0)) ≤ δ
1−δd(x0, f(x0)).

By the same assumption (ii) we have that f(x0) ∈ B̃(x0, r).
On the other hand, d(x0, f

2(x0)) ≤ d(x0, f(x0))+d(f(x0), f2(x0)) which implies

further that d(x0, f
2(x0)) ≤ (1− δ2)r or d(x0, f

2(x0)) ≤ r, i.e., f2(x0) ∈ B̃(x0, r).

By mathematical induction, we get that for all n ∈ N, fn(x0) ∈ B̃(x0, r) and
that at least one of the following chains of estimations holds:

d(fn(x0), fn+1(x0)) ≤ δd(fn−1(x0), fn(x0)) ≤ . . . ≤ δnd(x0, f(x0)),

or

d(fn(x0), fn+1(x0)) ≤ δ

1− δ
d(fn−1(x0), fn(x0)) ≤ . . . ≤

( δ

1− δ
)n
d(x0, f(x0)).
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Knowing that δ ∈ [0, 12 [, the series
∑
n∈N

δn and
∑
n∈N

( δ

1− δ
)n

are convergent. It follows

that ∑
n∈N

d(xn, xn+1) =
∑
n∈N

d(fn(x0), fn+1(x0)) < +∞.

Since (X,→, d) is a Kasahara space, by (iii) we get that (B̃(x0, r),→, d) is also a

Kasahara space. Hence, the sequence (xn)n∈N is convergent in B̃(x0, r), so there exists

an element x∗ ∈ B̃(x0, r) such that xn → x∗, as n→∞.

Knowing that Graph(f) is closed in X × X with respect to →, we get that
x∗ ∈ Ff . The uniqueness of the fixed point is assured by Lemma 1.13.

(2◦). Let p ∈ N, p ≥ 1. Since

d(fn(x0), fn+p(x0)) ≤
n+p−1∑
k=n

d(fk(x0), fk+1(x0))

we have at least one of the following two estimations:

d(fn(x0), fn+p(x0)) ≤ δn
( ∞∑
k=0

δk
)
d(x0, f(x0)) ≤ δn

1− δ
d(x0, f(x0)),

or

d(fn(x0), fn+p(x0)) ≤
( δ

1− δ
)n[ ∞∑

k=0

( δ

1− δ
)k]

d(x0, f(x0)),

that is

d(fn(x0), fn+p(x0)) ≤
( δ

1− δ
)n 1− δ

1− 2δ
d(x0, f(x0)).

By letting p → ∞ and by the assumption (ii), we get the estimations (2.1) and
(2.2). �

We have also a global variant for Theorem 2.3.

Corollary 2.4. Let (X,→, d) be a Kasahara space where d : X×X → R+ is a premet-
ric, continuous with respect to the second argument. Let f : X → X be a Zamfirescu
operator, having closed graph with respect to →. Then

(1◦) f has at least one fixed point x∗ ∈ X and fn(x0)→ x∗, as n→∞;
(2◦) for all n ∈ N, at least one of the following estimations holds:

d(xn, x
∗) ≤ δn

1− δ
d(x0, x1) or d(xn, x

∗) ≤
(

δ

1− δ

)n
1− δ
1− 2δ

d(x0, x1)

where x∗ ∈ Ff and (xn)n∈N is the sequence of successive approximations for f
starting from x0.

Proof. Fix x0 ∈ X and choose r ∈ R+ such that d(x0, f(x0)) ≤ (1− δ)r. The conclu-
sions follow from Theorem 2.3. �
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Remark 2.5. Regarding the Corollary 2.4, notice that the functional d must not nec-
essarily be a premetric in order to prove the existence of fixed points for an operator
f : X → X satisfying one of the conditions (1z) or (2z) from the Definition 1.11.
However, the functional d must be at least a premetric in the case when f satisfies
condition (3z).

Remark 2.6. The global fixed point result given in Corollary 2.4 extends and gener-
alizes Maia’s fixed point theorem (see Theorem 1 in M.G. Maia [6]) in the sense that
the set X endowed with two metrics is replaced by a Kasahara space. On the other
hand, Zamfirescu’s operators are used instead of contractions.

The following result is a generalization of Theorem 2.3.

Corollary 2.7. Let (X,→, d) be a Kasahara space, where d : X × X → R+ is a

premetric. Let x0 ∈ X, r ∈ R+ and f : B̃(x0, r) → X be an operator. We consider
the function δ : R2

+ → [0, 12 [ with lim sup
s→t+

δ(s) < 1
2 , for all t ∈ R2

+.

Assume that:

(i) Graph(f) is closed in X ×X with respect to →;

(ii) for all x, y ∈ B̃(x0, r), f satisfies at least one of the following conditions:
(1′z) d(f(x), f(y)) ≤ δ

(
d(x, y), d(y, x)

)
· d(x, y);

(2′z) d(f(x), f(y)) ≤ δ
(
d(x, f(x)), d(y, f(y))

)
· [d(x, f(x)) + d(y, f(y))];

(3′z) d(f(x), f(y)) ≤ δ
(
d(x, f(y)), d(y, f(x))

)
· [d(x, f(y)) + d(y, f(x))];

(iii) d(x0, f(x0)) ≤ (1− δ(·, ·))r;
(iv) d is continuous on X with respect to the second argument.

Then the following statements hold:

(1◦) f has at least one fixed point x∗ ∈ B̃(x0, r) and fn(x0)→ x∗, as n→∞.
(2◦) at least one of the relations (2.1) and (2.2) holds.

Proof. We follow the proof of Theorem 2.3. �

3. An extension to large Kasahara spaces

The aim of this section is to present an extension of our fixed point results
to large Kasahara spaces. As application, a homotopy result is given. To reach our
purpose, we recall first the notion of large Kasahara space.

Definition 3.1 (I.A. Rus, [8]). Let (X,→) be an L-space, (G,+,≤, G→) be an L-space
ordered semigroup with unity, 0 be the least element in (G,≤) and dG : X ×X → G
be an operator. The triple (X,→, dG) is a large Kasahara space if and only if the
following compatibility condition between → and dG holds:

• if (xn)n∈N ⊂ X is a Cauchy sequence (in a certain sense) with respect to dG
then (xn)n∈N converges in (X,→).

As in the previous section, we will consider the Kasahara space (X,→, d) where
d : X ×X → R+ is a premetric.
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In order to obtain a large Kasahara space, we need to define a certain notion of
Cauchy sequence with respect to the premetric d. We must take also into account the
fact that d is not symmetric.

Definition 3.2. Let (X, d) be a premetric space with d : X ×X → R+ and let (xn)n∈N
be a sequence in X. Then (xn)n∈N is a right-Cauchy sequence with respect to d if and
only if

lim
n→∞
m→∞

d(xn, xm) = 0,

i.e., for any ε > 0, there exists k ∈ N such that d(xn, xm) < ε, for every m,n ∈ N
with m ≥ n ≥ k.

The following notion of large Kasahara space arises.

Definition 3.3. Let (X,→) be an L-space. Let d : X ×X → R+ be a premetric on X.
The triple (X,→, d) is a large Kasahara space if and only if the following compatibility
condition between → and d holds:

if (xn)n∈N ⊂ X with lim
n→∞
m→∞

d(xn, xm) = 0 then (xn)n∈N converges in (X,→).

Remark 3.4. Let (X,→, d) be a large Kasahara space in the sense of Definition 3.3.
Then (X,→, d) is a Kasahara space.

Indeed, let (xn)n∈N be a sequence in X with
∑
n∈N

d(xn, xn+1) < +∞.

By following S. Kasahara (see [4]), for all ε > 0, there exists k ∈ N such that for all

n,m ∈ N, with m > n ≥ k, we have d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) < ε.

Hence lim
n→∞
m→∞

d(xn, xm) = 0 and since (X,→, d) is a large Kasahara space, we get

that (xn)n∈N is convergent in (X,→). The conclusion follows from Definition 1.3.

Remark 3.5. Let (X,→, d) be a large Kasahara space in the sense of Definition 3.3.
Then Theorem 2.3 and Corollaries 2.4 and 2.7 hold.

As application of Theorem 2.3 in large Kasahara spaces in the sense of Definition
3.3, we present a homotopy result which extends some similar homotopy results given
on a set endowed with two metrics by A. Chiş in [1].

In our application, the following notion need to be defined.

Definition 3.6. Let (X,→, d) be a large Kasahara space in the sense of Definition
3.3. A subset U of X is an open set with respect to d if there exists a right ball
B(x0, r) := {x ∈ X | d(x0, x) < r}, r > 0, x0 ∈ U such that B(x0, r) ⊂ U .

Theorem 3.7. Let (X,
ρ→, d) be a large Kasahara space in the sense of Definition 3.3,

where ρ : X × X → R+ is a complete metric on X,
ρ→ is the convergence structure

induced by ρ on X and d : X ×X → R+ is a continuous premetric on X.
Let Q ⊂ X be a closed set with respect to ρ. Let U ⊂ X be an open set with

respect to d and assume that U ⊂ Q.
Suppose H : Q× [0, 1]→ X satisfies the following properties:
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(i) x 6= H(x, λ) for all x ∈ Q \ U and all λ ∈ [0, 1];
(ii) for all λ ∈ [0, 1] and x, y ∈ Q, there exist α ∈ [0, 1[ and β ∈ [0, 12 [ such that one

of the following conditions holds:
(ii1) d(H(x, λ), H(y, λ)) ≤ αd(x, y);
(ii2) d(H(x, λ), H(y, λ)) ≤ β[d(x,H(x, λ)) + d(y,H(y, λ))];

(iii) H(x, λ) is continuous in λ with respect to d, uniformly for x ∈ Q;
(iv) H is uniformly continuous from U × [0, 1] endowed with the metric d on U into

(X, ρ);
(v) H is continuous from Q× [0, 1] endowed with the metric ρ on Q into (X, ρ).

In addition, assume that H0 has a fixed point. Then for each λ ∈ [0, 1] we have that
Hλ has a fixed point xλ ∈ U . (here Hλ(·) = H(·, λ))

Proof. Let A :=
{
λ ∈ [0, 1] | there exists x ∈ U such that x = H(x, λ)

}
.

Since H0 has a fixed point and (i) holds, we have that 0 ∈ A so the set A is
nonempty. We will show that A is open and closed in [0, 1] and so, by the connectedness
of [0, 1], we will have A = [0, 1] and the proof will be complete.

First we show that A is closed in [0, 1].
Let (λk)k∈N be a sequence in A with λk → λ ∈ [0, 1[ as k →∞. By the definition

of A, for each k ∈ N, there exists xk ∈ U such that xk = H(xk, λk). Now we have

d(xk, xj) = d(H(xk, λk), H(xj , λj))

≤ d(H(xk, λk), H(xk, λ)) + d(H(xk, λ), H(xj , λ))

+ d(H(xj , λ), H(xj , λj))

(3.1)

• If H satisfies (ii1) then by (3.1) we get

d(xk, xj) ≤ d(H(xk, λk), H(xk, λ)) + αd(xk, xj) + d(H(xj , λ), H(xj , λj))

⇔ (1− α)d(xk, xj) ≤ d(H(xk, λk), H(xk, λ)) + d(H(xj , λ), H(xj , λj))

• If H satisfies (ii2) then by (3.1) we have

d(xk, xj) ≤ d(H(xk, λk), H(xk, λ)) + d(H(xj , λ), H(xj , λj))

+ β[d(xk, H(xk, λ)) + d(xj , H(xj , λ))]

= (d(H(xk, λk), H(xk, λ)) + d(H(xj , λ), H(xj , λj))

+ β[d(H(xk, λk), H(xk, λ)) + d(H(xj , λj), H(xj , λ))].

By (iii), letting k, j → ∞ we get that the sequence (xk)k∈N is a Cauchy sequence

with respect to d. Since (X,
ρ→, d) is a large Kasahara space, we get that (xk)k∈N

is convergent in (X,
ρ→). Moreover, since Q ⊂ X is a closed set with respect to the

complete metric ρ, there exists x ∈ Q such that lim
k→∞

ρ(xk, x) = 0.

We show next that x = H(x, λ). Indeed, we have

ρ(x,H(x, λ)) ≤ ρ(x, xk) + ρ(xk, H(x, λ))

= ρ(x, xk) + ρ(H(xk, λk), H(x, λ)).

By (v) and letting k → ∞, we have ρ(x,H(x, λ)) = 0, so x = H(x, λ) and by (i) we
get that x ∈ U . Hence λ ∈ A and so A is closed in [0, 1].
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We show next that A is open in [0, 1].
Let λ0 ∈ A and x0 ∈ U such that x0 = H(x0, λ0). Since U is open with respect

to d, by Definition 3.6 there exists a right ball B(x0, r) := {x ∈ X | d(x0, x) < r},
r > 0 such that B(x0, r) ⊂ U . By (iii), H is uniformly continuous on B(x0, r).

Let ε =
(
1 − max

{
α, β

1−β
})
r > 0. By the uniform continuity of H, there

exists η = η(r) > 0 such that for each λ ∈ [0, 1] with |λ − λ0| ≤ η we have
d(H(x, λ0), H(x, λ)) < ε for any x ∈ B(x0, r). Since this property holds for x = x0, we

get d(x0, H(x0, λ)) = d(H(x0, λ0), H(x0, λ)) <
(
1−max

{
α, β

1−β
})
r for any λ ∈ [0, 1]

with |λ− λ0| ≤ η.
By (ii), (iv) and (v) together with Theorem 2.3 in the context of large Kasahara

spaces defined as in Definition 3.3, (in this case δ := max
{
α, β

1−β
}

and f = Hλ) we

obtain the existence of xλ ∈ B(x0, r) such that xλ = Hλ(xλ) for any λ ∈ [0, 1] with
|λ− λ0| ≤ η. Consequently A is open in [0, 1]. �
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[1] Chiş, A., Fixed point theorems for generalized contractions, Fixed Point Theory, 4(2003),
no. 1, 33–48.
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Abstract. In this paper we study a system of operatorial equations in terms of
some vectorial measures of noncompactness. The basic tools are the cartesian
hull of a subset of a cartesian product and some classical fixed point principle.
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1. Introduction

Let Xi, i = 1,m, be some nonempty sets, X :=
m∏
i=1

Xi and f : X → X be an

operator. In this case the fixed point equation

x = f (x) ,

where x = (x1, . . . , xm) and f = (f1, . . . , fm) takes the following form
x1 = f1 (x1, . . . , xm)
...
xm = fm (x1, . . . , xm)

In this paper we shall study the above system of operatorial equation in the case
when Xi, i = 1,m, are metric spaces. In order to do this, we introduce the cartesian
hull and vectorial measure of noncompactness.

2. Preliminaries

Let (X, d) be a metric space. In this paper we shall use the following notations:
P (X) = {Y | Y ⊂ X}
P (X) = {Y ⊂ X| Y is nonempty}, Pb(X) := {Y ∈ P (X)| Y is bounded},
Pcl(X) := {Y ∈ P (X)| Y is closed}, Pb,cl(X) := Pb(X) ∩ Pcl(X),
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Pcp(X) := {Y ∈ P (X)| Y is compact}.
If X is a Banach space then Pcv(X) := {Y ∈ P (X)| Y is convex}
Let f : X → X is an operator. Then, we denote by Ff := {x ∈ X| x = f (x)} the
fixed point set of the operator f .

Definition 2.1. A matrix S ∈ Rm×m
+ is called a matrix convergent to zero iff Sk → 0

as k → +∞.

Theorem 2.2. (see [2], [16], [18], [20], [23]) Let S ∈ Rm×m
+ . The following statements

are equivalent:

(i) S is a matrix convergent to zero;
(ii) Skx→ 0 as k → +∞, ∀x ∈ Rm;
(iii) Im − S is non-singular and

(Im − S)
−1

= Im + S + S2 + . . .

(iv) Im − S is non-singular and (Im − S)
−1

has nonnegative elements;
(v) λ ∈ C, det (S − λIm) = 0 imply |λ| < 1;
(vi) there exists at least one subordinate matrix norm such that ‖S‖ < 1.

The matrices convergent to zero were used by A. I. Perov [15] to generalize the
contraction principle in the case of generalized metric spaces with the metric taking
values in the positive cone of Rm. For fixed point principle in such spaces see [16],
[20], [22], [23].

3. Closure operators. Cartesian hull of a subset of a cartesian product

Let X be a nonempty set. By definition an operator η : P (X) → P (X) is a
closure operator if:

(i) Y ⊂ η (Y ), ∀Y ∈ P (X);
(ii) Y,Z ∈ P (X), Y ⊂ Z =⇒ η (Y ) ⊂ η (Z);
(iii) η ◦ η = η.

In a real linear space X, the following operators are closure operators:

η : P (X)→ P (X) , η (Y ) := linear hull of Y ;

η : P (X)→ P (X) , η (Y ) := affine hull of Y ;

η : P (X)→ P (X) , η (Y ) := coY := convex hull of Y ;

In a topological space X, the operator η : P (X)→ P (X) defined by η (Y ) := Y
is a closure operator. In a linear topological space X, the operator η : P (X)→ P (X)
defined by η (Y ) := coY := coY is a closure operator.

The main property of a closure operator is given by:

Lemma 3.1. Let X be a nonempty set and η : P (X)→ P (X) a closure operator. Let
(Yi)i∈I be a family of subsets of X such that η (Yi) = Yi for all i ∈ I. Then

η

(⋂
i∈I

Yi

)
=
⋂
i∈I

Yi.
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In our considerations, in this paper, we need the following example of closure
operator.

LetXi, i = 1,m, be some nonempty sets andX :=
m∏
i=1

Xi their cartesian product.

Let us denote by πi, i = 1,m, the canonical projection on Xi, i.e.,

πi : X → Xi, (x1, . . . , xm) 7→ xi, i = 1,m.

Definition 3.2. Let Y ⊂ X be a subset of X. By the cartesian hull of Y we understand
the subset

caY := π1 (Y )× . . .× πm (Y ) .

Remark 3.3. In the paper [11] the set caY is denoted by [Y ].

Lemma 3.4. The operator

ca : P (X)→ P (X) , Y 7→ caY

is a closure operator.

Proof. We remark that:

1) Y ⊂ caY , for all Y ∈ P (X);
2) Y,Z ∈ P (X), Y ⊂ Z then caY ⊂ caZ;
3) ca (caY ) = caY , for all Y ∈ P (X).

So, ca : P (X)→ P (X) is a closure operator. �

Remark 3.5. caY = Y if and only if Y is a cartesian product, i.e., there exists Yi ⊂ Xi,

i = 1,m, such that Y =
m∏
i=1

Yi.

We denote by Pca(X) := {Y ∈ P (X)| Y is cartesian set }.

Remark 3.6. From Lemma 3.1 and 3.4 it follows that the intersection of an arbitrary
family of cartesian sets is a cartesian set.

Lemma 3.7. Let Y ⊂ X be a nonempty cartesian product subset of X and f : Y → Y
an operator. Then f (caf (Y )) ⊂ caf (Y ).

Proof. We remark that f (Y ) ⊂ ca f (Y ) ⊂ Y . �

The above lemmas will be basic for our proofs.

4. Measures of noncompactness. Examples

Let (X, d) be a complete metric space and δ : Pb (X)→ R+

δ(Y ) := sup{d(a, b)| a, b ∈ Y }.
be the diameter functional on X. The Kuratowski measure of noncompactness on X
is defined by αK : Pb (X)→ R+

αK (Y ) := inf

{
ε > 0| Y =

m⋃
i=1

Yi, δ(Yi) ≤ ε, m ∈ N∗
}
.
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The Hausdorff measure of noncompactness on X is defined by αH : Pb (X)→ R+

αH (Y ) := inf {ε > 0| Y can be covered by a finitely many balls of radius ≤ ε} .
If we denote by α one of the functionals αK and αH then we have (see [1], [3], [5], [8],
[19], [22], [4], ...):

Theorem 4.1. The functional α has the following properties:

(i) α (A) = 0 =⇒ A is compact;
(ii) α (A) = α

(
A
)
, ∀A ∈ Pb (X);

(iii) A ⊂ B, A,B ∈ Pb (X) =⇒ α (A) ≤ α (B);
(iv) If An ∈ Pb,cl (X), An+1 ⊂ An and α (An) → 0 as n → +∞ then A∞ :=⋂

n∈N
An 6= ∅ and α (A∞) = 0.

In the case of a Banach space we have that

(v) α (coA) = α (A), ∀A ∈ Pb (X).

Let (X, d) be a complete metric space. By definition (see [19]), a functional

α : Pb (X)→ R+

is called an abstract measure of noncompactness on X iff:

(i) α (A) = 0 =⇒ Ā is compact;
(ii) α (A) = α

(
Ā
)
, for all A ∈ Pb (X);

(iii) A ⊂ B, A,B ∈ Pb (X) =⇒ α (A) ≤ α (B);
(iv) If An ∈ Pb,cl (X), An+1 ⊂ An and α (An)→ 0 as n→ +∞ then

A∞ :=
⋂

n∈N
An 6= ∅ and α (A∞) = 0.

In the case of a Banach space we add to these axioms the following:

(v) α (coA) = α (A), for all A ∈ Pb (X).

We remark that the Kuratowski’s measure of noncompactness, αK , the Haus-
dorff’s measure of noncompactness, αH and the diameter functional, δ, are examples
of measure of noncompactness in the sense of the above definition (see [3], [7], [8], [9],
[12], [19], ...). For other notions of abstract measures of noncompactness see [5], [14],
[19] ...

5. Vectorial measures of noncompactness on a cartesian product of
some metric spaces

Let (Xi, di), i = 1,m, be some complete metric spaces and let X :=
m∏
i=1

Xi their

cartesian product. We consider on X the cartesian product topology. By definition a
subset Y of X is a bounded subset if πi (Y ) ∈ Pb (Xi), i = 1,m. Let αi be a measure
of noncompactness on Xi, i = 1,m. We consider on Pb (X) the following vectorial
functional

α : Pb (X)→ Rm
+ , α (Y ) :=

(
α1 (π1 (Y )) , . . . , αm (πm (Y ))

)T
.

We have:
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Lemma 5.1. The functional α has the following properties:

(i) Y ∈ Pb (X), α (Y ) = 0 =⇒ caY is compact;
(i’) α (caY ) = α (Y ), for all Y ∈ Pb (X);
(ii) α

(
Ȳ
)

= α (Y ), for all Y ∈ Pb (X);
(iii) Y ⊂ Z, Y,Z ∈ Pb (X) =⇒ α (Y ) ≤ α (Z);
(iv) Yn ∈ Pb,cl,ca (X), Yn+1 ⊂ Yn , α (Yn) → 0 as n → +∞ then Y∞ :=

⋂
n∈N

Yn 6= ∅,

Y∞ ∈ Pb,cl,ca (X) and α (Y∞) = 0.

If (Xi, |·|i), i = 1,m, are Banach spaces then we have

(v) α (coY ) = α (Y ), for all Y ∈ Pb (X).

Proof. The proof follows from the definition of α and from the definition of αi. �

If we take αi := αi
K , i = 1,m, we have, by definition, the Kuratowski vectorial

measure of noncompactness and if we take αi := αi
H , i = 1,m, we have the Hausdorff

vectorial measure of noncompactness.

6. Fixed point theorems in terms of vectorial measures of
noncompactness

Definition 6.1. Let S ∈ Rm×m
+ be a matrix convergent to zero and (Xi, di), i = 1,m,

complete metric spaces. Let αi be a measure of noncompactness on Xi, i = 1,m,

and α the corresponding vectorial measure of noncompactness on X :=
m∏
i=1

Xi. An

operator f : X → X is by definition an (α, S)-contraction iff:

(i) A ∈ Pb (X) =⇒ f (A) ∈ Pb (X);
(ii) α (f (A)) ≤ Sα (A), for all A ∈ Pb,ca (X) such that f (A) ⊂ A.

If the condition (ii) is satisfied for all A ∈ Pb,ca (X) then f is called a strict (α, S)-
contraction.

Lemma 6.2. Let Y ∈ Pb,cl,ca (X). Let f : Y → Y be an operator such that:

(i) f is continuous;
(ii) f is an (α, S)-contraction.

Then, there exists A∗ ∈ Pb,cl,ca (Y ) such that f (A∗) ⊂ A∗ and α (A∗) = 0.

Proof. Let Y1 := caf (Y ), Y2 := caf (Y1), ..., Yn+1 := caf (Yn), . . .. It is clear that
Yn ∈ Pb,cl,ca (Y ), Yn+1 ⊂ Yn and f (Yn) ⊂ Yn. Moreover, from Lemma 5.1 and (ii) we
have

α (Yn) = α
(
caf (Yn−1)

)
= α (f (Yn−1)) ≤ Sα (Yn−1) ≤ . . . ≤ Snα (Y ) ,

therefore, α (Yn)→ 0 as n→ +∞. From these we have that

Y∞ :=
⋂
n∈N

Yn 6= ∅, Y∞ ∈ Pb,cl,ca (Y ) , f (Y∞) ⊂ Y∞ and α (Y∞) = 0.

So, A∗ := Y∞. �
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In the case of Banach spaces, if Y ∈ Pb,cl,ca,co (Y ) then we have in addition
that coY∞ = Y∞. In the construction of the sequence set (Yn)n∈N∗ we take Yn+1 :=

co (caf (Yn)).
From Lemma 6.2 we have the following basic fixed point principle in the case of

metric spaces:

Theorem 6.3. Let (Xi, di), i = 1,m, be some complete metric spaces and let

X :=
m∏
i=1

Xi their cartesian product. Let Y ∈ Pb,cl,ca (X) and f : Y → Y such that:

(i) f is continuous;
(ii) f is an (α, S)-contraction;
(iii) A ∈ Pb,cl,ca (Y ), α (A) = 0 and f (A) ⊂ A implies that Ff ∩A 6= ∅.

Then

(a) Ff 6= ∅;
(b) α (Ff ) = 0.

Proof. (a) From Lemma 6.2, there exists A∗ ∈ Pb,cl,ca (Y ) such that f (A∗) ⊂ A∗ and
α (A∗) = 0 and from condition (iii) it follows that Ff ∩A∗ 6= ∅, i.e., Ff 6= ∅.

(b) We remark that Ff ⊂ A∗ = Y∞ (see the proof of Lemma 6.2) and

0 ≤ α (Ff ) ≤ α (Y∞) = 0.

�

If we take α := δ, the vectorial diameter functional, then from Theorem 6.3 we
have:

Theorem 6.4. Let (Xi, di), i = 1,m, be some complete metric spaces and X :=
m∏
i=1

Xi.

Let Y ∈ Pb,cl,ca (X) and f : Y → Y such that:

(i) f is continuous;
(ii) f is an (δ, S)-contraction.

Then Ff = {x∗}.

Proof. From Lemma 6.2, there exists A∗ ∈ Pb,cl,ca (Y ) such that f (A∗) ⊂ A∗ and
δ (A∗) = 0. From δ (A∗) = 0 we have that A∗ = {x∗} and f (A∗) ⊂ A∗ implies that
x∗ ∈ Ff . Also, from Theorem 6.3 we have that δ (Ff ) = 0, so Ff = {x∗}. �

In the case of Banach spaces we have:

Theorem 6.5. Let (Xi, |·|i), i = 1,m, be Banach spaces, X :=
m∏
i=1

Xi and Y ∈

Pb,cl,cv,ca (X). Let f : Y → Y be such that:

(i) f is continuous;
(ii) f is an (α, S)-contraction.

Then

(a) Ff 6= ∅;
(b) α (Ff ) = 0.
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Proof. Let Y1 := co (caf (Y )), Y2 := co (caf (Y1)), ..., Yn+1 := co (caf (Yn)), n ∈ N∗.
We remark that Yn ∈ Pb,cl,cv,ca (Y ), f (Yn) ⊂ Yn, Yn+1 ⊂ Yn and

α (Yn) = α
(
co (caf (Yn−1))

)
= α (f (Yn−1)) ≤ Sα (Yn−1) ≤ . . . ≤ Snα (Y ) ,

therefore, α (Yn)→ 0 as n→ +∞. These imply that

Y∞ :=
⋂
n∈N

Yn 6= ∅, Y∞ ∈ Pb,cl,cv,ca (Y ) , f (Y∞) ⊂ Y∞ and α (Y∞) = 0.

Since Y∞ is a compact convex subset in the Banach space X =
m∏
i=1

Xi (we take, for

example, on X the norm |x|∞ = max {|x1| , . . . |xm|}, which generates the cartesian
product topology on X), from Schauder’s fixed point theorem we have that Ff 6= ∅.
But Ff ⊂ Y∞ is a closed subset of the compact subset Y∞, so, Ff is a nonempty
compact subset. �

For the operator f :
m∏
i=1

Xi →
m∏
i=1

Xi, in the terms of vectorial norm, we have:

Theorem 6.6. Let (Xi, |·|i), i = 1,m, be Banach spaces, X :=
m∏
i=1

Xi, ‖x‖ :=

(|x1|1 , . . . , |xm|m)
T

, and f : X → X such that:

(i) f is continuous;
(ii) f is an (α, S)-contraction;
(iii) there exists T ∈ Rm×m

+ and a vector M ∈ Rm
+ such that:

(1) T is a matrix convergent to zero;
(2) ‖f (x)‖ ≤ T ‖x‖+M , for all x ∈ X.

Then

(a) Ff 6= ∅;
(b) α (Ff ) = 0.

Proof. Let R = (R1, . . . , Rm)
T ∈ Rm

+ , with Ri > 0, i = 1,m. We denote by

DR := {x ∈ X | ‖x‖ ≤ R} .
It is clear that DR ∈ Pb,cl,ca,co (X).

First we shall prove that there exists R0 ∈ Rm
+ such that

f (DR) ⊂ DR, ∀R ∈ Rm
+ , R ≥ R0.

Let R ∈ Rm
+ and x ∈ DR, from (iii)(2) we have

‖f (x)‖ ≤ TR+M.

To prove that f (DR) ⊂ DR it is sufficient to have an R such that

TR+M ≤ R⇔M ≤ (Im − T )R⇔ (Im − T )
−1
M ≤ R.

So, we can take R0 := (Im − T )
−1
M . We remark that

f |DR
: DR → DR, ∀R ≥ R0,
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satisfies the conditions from the Theorem 6.5 with Y = DR. �

Remark 6.7. The above results generalize some results given in [7], [16], [17], [21],
[24].

Remark 6.8. For the vector-valued norm versus scalar norms see [16], [17], [20].

Remark 6.9. For the condition (iii) in the scalar case see [3], [8], [9], [10], [12], [13].
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[22] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj University Press, Cluj-
Napoca, 2008.
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Coupled fixed point theorems for mixed
monotone operators and applications

Cristina Urs

Abstract. In this paper we present some existence and uniqueness results for a
coupled fixed point problem associated to a pair of singlevalued satisfying the
mixed monotone property. We also provide an application to a first-order differ-
ential system with periodic boundary value conditions.

Mathematics Subject Classification (2010): 47H10, 54H25, 34B15.

Keywords: Coupled fixed point, mixed monotone operator, periodic boundary
value problem.

1. Introduction

In the study of the fixed points for an operator, it is sometimes useful to con-
sider a more general concept, namely coupled fixed point. The concept of coupled
fixed point for nonlinear operators was introduced and studied by Opoitsev (see V.I.
Opoitsev [7]-[9]) and then, in 1987, by D. Guo and V. Lakshmikantham (see [4]) in
connection with coupled quasisolutions of an initial value problem for ordinary dif-
ferential equations. Later, a new research direction for the theory of coupled fixed
points in ordered metric space was initiated by T. Gnana Bhaskar and V. Laksh-
mikantham in [3] and by V. Lakshmikantham and L. Ćirić in [5]. T. Gnana Bhaskar
and V. Lakshmikantham [3] introduced the notion of the mixed monotone property
of a given operator. Furthermore, they proved some coupled fixed point theorems for
operators which satify the mixed monotone property and presented as an application,
the existence and uniqueness of a solution for a periodic boundary value problem.
Their approach is based on some contractive type conditions on the operator.

This work was possible with the financial support of the Sectoral Operational Programme for Human

Resources Development 2007 − 2013, co-financed by the European Social Fund, under the project
number POSDRU/107/1.5/S/76841 with the title ,,Modern Doctoral Studies: Internationalization

and Interdisciplinarity”.
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For more applications see for example A. C. M. Ran, M. C. B. Reurings [12], J.
J. Nieto and R. R. López [6], W. Sintunavarat, P. Kumam, and Y. J. Cho [15], V.

Lakshmikantham and L. Ćirić [5], C. Urs [17].
Let X be a nonempty set. A mapping d : X ×X → Rm is called a vector-valued

metric on X if the following properties are satisfied:
(a) d(x, y) ≥ 0 for all x, y ∈ X; if d(x, y) = 0, then x = y;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ X.
A set endowed with a vector-valued metric d is called generalized metric space.

The notions of convergent sequence, Cauchy sequence, completeness, open subset and
closed subset are similar to those for usual metric spaces.

We denote by Mmm (R+) the set of all m ×m matrices with positive elements
and by I the identity m×m matrix. If x, y ∈ Rm, x = (x1, ..., xm) and y = (y1, ..., ym),
then, by definition:

x ≤ y if and only if xi ≤ yi for i ∈ {1, 2, ...,m}.

Notice that we will make an identification between row and column vectors in Rm.
For the proof of the main results we need the following theorems. A classical

result in matrix analysis is the following theorem (see G. Allaire and S. M. Kaber [1],
I. A. Rus [13], R. S. Varga [18]).

Theorem 1.1. Let A ∈Mmm (R+). The following assertions are equivalents:
(i) A is convergent towards zero;
(ii) An → 0 as n→∞;
(iii) The eigenvalues of A are in the open unit disc, i.e |λ| < 1, for every
λ ∈ C with det (A− λI) = 0;
(iv) The matrix (I −A) is nonsingular and

(I −A)
−1

= I +A+ ...+An + ...; (1.1)

(v) The matrix (I −A) is nonsingular and (I −A)
−1

has nonnegative
elements;
(vi) Anq → 0 and qAn → 0 as n→∞, for each q ∈ Rm.

In the second section of this paper, the aim is to present in the setting of an or-
dered metric space, a Gnana Bhaskar-Lakshmikantham type theorem for the coupled
fixed point problem of a pair of singlevalued operators satisfying a generalized mixed
monotone assumption. In the third section we study the existence and uniqueness of
the solution to a periodic boundary value system, as an application to the coupled
fixed point theorem.

2. Existence and uniqueness results for coupled fixed point

Let X be a nonempty set endowed with a partial order relation denoted by ≤.
Then we denote

X≤ := {(x1, x2) ∈ X ×X : x1 ≤ x2 or x2 ≤ x1}.



Coupled fixed point theorems and applications 115

If f : X → X is an operator then we denote the cartesian product of f with itself as
follows:

f × f : X ×X → X ×X, given by (f × f)(x1, x2) := (f(x1), f(x2)).

Definition 2.1. Let X be a nonempty set. Then (X, d,≤) is called an ordered general-
ized metric space if:

(i) (X, d) is a generalized metric space in the sense of Perov;
(ii) (X,≤) is a partially ordered set;

The following result will be an important tool in our approach.

Theorem 2.2. Let (X, d,≤) be an ordered generalized metric space and let f : X → X
be an operator. We suppose that:
(1) for each (x, y) /∈ X≤ there exists z(x, y) := z ∈ X such that (x, z), (y, z) ∈ X≤;
(2) X≤ ∈ I(f × f);
(3) f : (X, d)→ (X, d) is continuous;
(4) the metric d is complete;
(5) there exists x0 ∈ X such that (x0, f(x0)) ∈ X≤;
(6) there exists a matrix A ∈Mmm(R+) which converges to zero, such that

d(f(x), f(y)) ≤ Ad(x, y), for each (x, y) ∈ X≤.
Then f : (X, d)→ (X, d) is a Picard operator.

Proof. Let x ∈ X be arbitrary. Since (x0, f(x0)) ∈ X≤, by (6) and (4), we get that
there exists x∗ ∈ X such that (fn(x0))n∈N → x∗ as n → +∞. By (3) we get that
x∗ ∈ Fix(f).

If (x, x0) ∈ X≤, then by (2), we have that (fn(x), fn(x0)) ∈ X≤, for each n ∈ N.
Thus, by (6), we get that (fn(x))n∈N → x∗ as n→ +∞.

If (x, x0) /∈ X≤, then by (1), it follows that there exists z(x, x0) := z ∈ X≤
such that (x, z), (x0, z) ∈ X≤. By the fact that (x0, z) ∈ X≤, as before, we get that
(fn(z))n∈N → x∗ as n → +∞. This together with the fact that (x, z) ∈ X≤ implies
that (fn(x))n∈N → x∗ as n→ +∞.

Finally, the uniqueness of the fixed point follows by the contraction condition
(6) using again the assumption (1). �

Remark 2.3. The conclusion of the above theorem holds if instead the hypothesis (2)
we put:
(2’) f : (X,≤)→ (X,≤) is monotone increasing

or
(2”) f : (X,≤)→ (X,≤) is monotone decreasing.

Of course, it is easy to remark that assertion (2) in Theorem 2.2 is more gen-
eral. For example, if we consider the ordered metric space (R2, d,≤), then f : R2 →
R2, f(x1, x2) := (g(x1, x2), g(x1, x2)) satisfies (2), for any g : R2 → R.

Remark 2.4. Condition (5) from the above theorem is equivalent with:

(5′) f has a lower or an upper fixed point in X.
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Remark 2.5. For some similar results see Theorem 4.2 and Theorem 4.7 in A. Petruşel,
I.A. Rus [10].

We will apply the above result for the coupled fixed point problem generated by
two operators.

Let X be a nonempty set endowed with a partial order relation denoted by ≤.
If we consider z := (x, y), w := (u, v) two arbitrary elements of Z := X ×X, then, by
definition

z � w if and only if (x ≥ u and y ≤ v).

Notice that � is a partial order relation on Z.

We denote

Z� = {(z, w) := ((x, y), (u, v)) ∈ Z × Z : z � w or w � z}.

Let T : Z → Z be an operator defined by

T (x, y) :=

(
T1 (x, y)
T2 (x, y)

)
= (T1 (x, y) , T2 (x, y)) (2.1)

The cartesian product of T and T will be denoted by T × T and it is defined in
the following way

T × T : Z × Z → Z × Z, (T × T )(z, w) := (T (z), T (w)).

We recall the following existence and uniqueness theorem for the coupled fixed
point of a pair of singlevalued operators which satisfy the mixed monotone property
(see A. Petrusel, G. Petrusel, and C. Urs [11]).

Theorem 2.6. Let (X, d,≤) be an ordered and complete metric space and let T1, T2 :
X ×X → X be two operators. We suppose:

(i) for each z = (x, y), w = (u, v) ∈ X × X which are not comparable with
respect to the partial ordering � on X ×X, there exists t := (t1, t2) ∈ X ×X (which
may depend on (x, y) and (u, v)) such that t is comparable (with respect to the partial
ordering �) with both z and w, i.e.,

((x ≥ t1 and y ≤ t2) or (x ≤ t1 and y ≥ t2) and

((u ≥ t1 and v ≤ t2) or (u ≤ t1 and v ≥ t2));

(ii) for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y) we have{
T1(x, y) ≥ T1(u, v)
T2(x, y) ≤ T2(u, v)

or

{
T1(u, v) ≥ T1(x, y)
T2(u, v) ≤ T2(x, y)

(iii) T1, T2 : X ×X → X are continuous;

(iv) there exists z0 := (z10 , z
2
0) ∈ X ×X such that{

z10 ≥ T1(z10 , z
2
0)

z20 ≤ T2(z10 , z
2
0)

or

{
T1(z10 , z

2
0) ≥ z10

T2(z10 , z
2
0) ≤ z20
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(v) there exists a matrix A =

(
k1 k2
k3 k4

)
∈ M2(R+) convergent toward zero

such that

d(T1(x, y), T1(u, v)) ≤ k1d(x, u) + k2d(y, v)

d(T2(x, y), T2(u, v)) ≤ k3d(x, u) + k4d(y, v)

for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y).
Then there exists a unique element (x∗, y∗) ∈ X ×X such that

x∗ = T1(x∗, y∗) and y∗ = T2(x∗, y∗)

and the sequence of the succesive aproximations (Tn1 (w1
0, w

2
0), Tn2 (w1

0, w
2
0)) converges

to (x∗, y∗) as n→∞, for all w0 = (w1
0, w

2
0) ∈ X ×X.

3. An application to periodic boundary value system

We study now the existence and uniqueness of the solution to a periodic bound-
ary value system, as an application to coupled fixed point Theorem 2.6 for mixed
monotone type singlevalued operators in the framework of partially ordered metric
space.

In a similar context M. D. Rus [14] investigated the fixed point problem for a
system of multivariate operators which are coordinate-wise uniformly monotone, in
the setting of quasi-ordered sets. As an application, a new abstract multidimensional
fixed point problem was studied. Additionally an application to a first-order differ-
ential system with periodic boundary value conditions was presented (see M. D. Rus
[14]). V. Berinde and M. Borcut studied in [2] also the existence and uniqueness of
solutions to a tripled fixed point problem.

We denote the partial order relation by � on C(I) × C(I). If we consider z :=
(x, y) and w := (u,w) two arbitrary elements of C(I)× C(I), then by definition

z � w if and only if (x ≥ u and y ≤ v),

where x ≥ u means that x(t) ≥ u(t), for all t ∈ I.
We consider the first-order periodic boundary value system:

x′(t) = f1(t, x(t), y(t))
y′(t) = f2(t, x(t), y(t))
x(0) = x(T )
y(0) = y(T )

for all t ∈ I := [0, T ] (3.1)

where T > 0 and f1, f2 : I × R2 → R under the assumptions:
(a1) f1, f2 are continuous;
(a2) there exist λ > 0 and µ1, µ2, µ3, µ4 > 0 such that

0 ≤ f1(t, x, y)− f1(t, u, v) + λ(x− u) ≤ λ[µ1(x− u) + µ2(y − v)]

−λ [µ3(x− u) + µ4(y − v)] ≤ f2(t, x, y)− f2(t, u, v) + λ(y − v) ≤ 0

for all t ∈ I and x, y, u, v ∈ R.
(a3) for each z := (x, y), w := (u,w) ∈ C(I) × C(I) which are not comparable

with respect to the partial ordering � on C(I) × C(I) there exists p := (p1, p2) ∈
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C(I)× C(I) such that p is comparable (with respect to the partial ordering �) with
both z and w, i.e.

((x ≥ p1 and y ≤ p2) or (x ≤ p1 and y ≤ p2) and

(u ≥ p1 and v ≤ p2) or (u ≤ p1 and v ≤ p2)).

(a4) for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y) we have{
f1(t, x, y) ≥ f1(t, u, v)
f2(t, x, y) ≤ f1(t, u, v)

or

{
f1(t, u, v) ≥ f1(t, x, y)
f2(t, u, v) ≤ f2(t, x, y)

.

(a5) there exists z0 := (z10 , z
2
0) ∈ C(I) × C(I) such that the following relations

hold:

(a5’)

{
z10(t) ≥ f1(t, z10(t), z20(t))

z20(t) ≥ f2(t, z10(t), z20(t))
or

{
f1(t, z10(t), z20(t)) ≥ z10(t)

f2(t, z10(t), z20(t)) ≤ z20(t)

(a5”) (1 + λ)

∫ T

0

Gλ(t, s)z10(s)ds ≥ z10(t)

(1 + λ)

∫ T

0

Gλ(t, s)z20(s)ds ≤ z20(t)

for all t ∈ I.
(a6) the matrix S :=

(
µ1 µ2

µ3 µ4

)
is convergent to zero.

Lemma 3.1. Let x ∈ C1(I) be such that it satisfies the periodic boundary value problem{
x′(t) = h(t)
x(0) = x(T )

t ∈ I,

with h ∈ C(I). Then for some λ 6= 0 the above problem is equivalent to

x(t) =

∫ T

0

Gλ(t, s)(h(s) + λx(s))ds, for all t ∈ I,

where

Gλ(t, s) =


eλ(T+s−t)

eλT−1 , if 0 ≤ s < t ≤ T
eλ(s−t)

eλT−1 , if 0 ≤ t < s ≤ T
.

The problem (3.1) is equivalent to the coupled fixed point problem{
x = F1(x, y)
y = F2(x, y)

,

with X = C(I) and F1, F2 : X2 → X defined by

F1(x, y)(t) =

∫ T

0

Gλ(t, s) [f1(s, x(s), y(s)) + λx(s)] ds

F2(x, y)(t) =

∫ T

0

Gλ(t, s) [f2(s, x(s), y(s)) + λy(s)] ds
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We consider the complete metric d induced by the sup-norm on X,

d(x, y) = sup
t∈I
|x(t)− y(t)| , for x, y ∈ C(I)

For x, y, u, v ∈ X, we also denote d̃((x, y), (u, v)) :=

(
d(x, u)
d(y, v)

)
.

Note that if (x, y) ∈ X ×X is a coupled fixed point of F , then we have

x(t) = F1(x, y)(t) and y(t) = F2(x, y)(t) for all t ∈ I,
where F (x, y)(t) := (F1(x, y)(t), F2(x, y)(t)).

Our main result in this section is the following theorem regarding the existence
and uniqueness of the solution to a periodic boundary value system.

Theorem 3.2. Consider the problem (3.1) under the assumptions (a1)-(a6). Then
there exists a unique solution (x∗, y∗) of the first-order boundary value problem 3.1.

Proof. We verify the conditions of Theorem 2.6.

F1(x, y)(t)− F1(u, v)(t)

=

∫ T

0

Gλ(t, s) [f1(s, x(s), y(s)) + λx(s)] ds−
∫ T

0

Gλ(t, s) [f1(s, u(s), v(s)) + λu(s)] ds

=

∫ T

0

Gλ(t, s)[f1(s, x(s), y(s))− f1(s, u(s), v(s)) + λ(x(s)− u(s))]ds

for all t ∈ I.
From the first condition in (a2) and the positivity of Gλ (for λ > 0) it follows

that
F1(x, y)(t)− F1(u, v)(t) ≥ 0.

We get that
F1(x, y)(t) ≥ F1(u, v)(t).

In a similar way we obtain

F2(x, y)(t)− F2(u, v)(t)

=

∫ T

0

Gλ(t, s) [f2(s, x(s), y(s)) + λy(s)] ds−
∫ T

0

Gλ(t, s) [f2(s, u(s), v(s)) + λv(s)] ds

=

∫ T

0

Gλ(t, s)[f2(s, x(s), y(s))− f2(s, u(s), v(s)) + λ(y(s)− v(s))]ds

From the second inequality in (a2) and the positivity of Gλ (for λ > 0) we have

F2(x, y)(t)− F2(u, v)(t) ≤ 0.

Hence it follows that

F2(x, y)(t) ≤ F2(u, v)(t).

So we get that for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y) we have{
F1(x, y)(t) ≥ F1(u, v)(t)
F2(x, y)(t) ≤ F2(u, v)(t)

or

{
F1(u, v)(t) ≥ F1(x, y)(t)
F2(u, v)(t) ≤ F2(x, y)(t)

Hence the second hypothesis of Theorem 2.6 is satisfied.
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We know that

F1(z10 , z
2
0)(t) =

∫ T

0

Gλ(t, s)[f1(s, z10(s), z20(s)) + λz10(s)]ds,

and we have from condition (a5’) that

f1(t, z10(t), z20(t)) ≥ z10(t).

So we get that

F1(z10 , z
2
0)(t) ≥

∫ T

0

Gλ(t, s)[z10(s) + λz10(s)]ds

= (1 + λ)

∫ T

0

Gλ(t, s)z10(s)ds ≥ z10(t)

for all t ∈ I.
Finally we obtain that

F1(z10 , z
2
0)(t) ≥ z10(t), for all t ∈ I.

F2(z10 , z
2
0)(t) =

∫ T

0

Gλ(t, s)[f2(s, z10(s), z20(s)) + λz20(s)]ds

From condition (a5’) we know that

f2(t, z10(t), z20(t)) ≤ z20(t).

It follows that

F2(z10 , z
2
0)(t) ≤

∫ T

0

Gλ(t, s)[z20(s) + λz20(s)]ds

= (1 + λ)

∫ T

0

Gλ(t, s)z20(s)ds ≤ z20(t).

Hence we have that

F2(z10 , z
2
0)(t) ≤ z20(t).

We conclude that the fourth hypothesis of Theorem 2.6 is satisfied.

|F1(x, y)(t)− F1(u, v)(t)|

=

∣∣∣∣∣
∫ T

0

Gλ(t, s)[f1(s, x(s), y(s)) + λx(s)]ds−
∫ T

0

Gλ(t, s[f1(s, u(s), v(s)) + λu(s)]ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

Gλ(t, s)[f1(s, x(s), y(s))− f1(s, u(s), v(s)) + λx(s)− λu(s)]ds

∣∣∣∣∣
≤ λ

∫ T

0

Gλ(t, s)(|µ1(x(s)− u(s))|+ |µ2(y(s)− v(s))|)ds

≤ µ1d(x, u) + µ2d(y, v).

Taking the sup
t∈I

in the above relation we have

d(F1(x, y), F1(u, v)) ≤ µ1d(x, u) + µ2d(y, v).
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In a similar way we get that

d(F2(x, y), F2(u, v)) ≤ µ3d(x, u) + µ4d(y, v).

Then we have(
d(F1(x, y), F1(u, v))
d(F2(x, y), F2(u, v))

)
≤

(
µ1d(x, u) + µ2d(y, v)
µ3d(x, u) + µ4d(y, v)

)
=

(
µ1 µ2

µ3 µ4

)(
d(x, u)
d(y, v)

)
= S · d̃((x, y), (u, v)),

where S is a matrix convergent to zero.
Since all the hypotheses of Theorem 2.6 are satisfied we get that the periodic

boundary value problem (3.1) has a unique solution on C(I)× C(I). �
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Book reviews

Simeon Reich and Alexander J. Zaslavski, Genericity in Nonlinear Analysis,
Developments in Mathematics, Vol. 34, Springer New York Heidelberg Dordrecht
London, 2014, ISBN 978-1-4614-9532-1; ISBN 978-1-4614-9533-8 (eBook), xiii + 520
pp.

The book is concerned with generic (in the sense of Baire category) results for
various problems in Nonlinear Analysis. As the authors best explain in the Preface,
one considers a class of problems in some functional space equipped with a complete
metric. It is known that for some elements in this functional space the corresponding
problem possesses a solution (a solution with desirable properties) and for some ele-
ments such solutions do not exist. Under these circumstances it is natural to ask if a
solution (a solution with desirable properties) exists for most (in the sense of Baire
category) elements, meaning that this holds for a dense Gδ subset of the considered
function space. In some cases, “most” is taken in the stronger sense of σ-porousity (a
σ-porous set is of first Baire category and, in finite dimension, of Lebesgue measure
zero too).

The classes of problems to which this general procedure is applied are: fixed point
problems for both single- and set-valued mappings, infinite products of operators, best
approximation, discrete and continuous descent methods for minimization in Banach
spaces, and the structure of minimal energy configurations with rational numbers in
the Aubry-Mather theory.

The first chapter of the book, Introduction, contains an overview of the principal
results on fixed points and infinite products, which are then treated in detail in chap-
ters 2. Fixed Point Results and Convergence of Powers of Operators, 3. Contractive
Mappings, 6. Infinite Products, and 9. Set-Valued Mappings. Some results are pre-
sented in the general framework of a hyperbolic space, meaning a metric space (X, ρ)
endowed with a family M of metric lines (isometric images of R1) such that every
pair of points in X is joined by a unique metric line in M and the metric satisfies an
inequality, expressing, intuitively, the fact that the length of a median in a triangle is
less or equal than half the length of the base. The study of genericity in fixed point
problems was initiated by G. Vidossich (1974) and F. De Blasi and J. Myjak (1976).

For a nonempty, bounded and closed subset K of a Banach space X one denotes
by A the family of all nonexpansive mappings A : K → K (meaning that ‖Ax−Ay‖ ≤
‖x − y‖, for all x, y ∈ K). Equipped with the metric d(A,B) = sup{‖Ax − Bx‖ :
x ∈ K} A is a complete metric space. A strict contraction is a γ-Lipschitz mapping
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with 0 ≤ γ < 1. A contractive mapping (in Rakotch’s sense) is a mapping A ∈ A
such that there exists a decreasing function φA : [0,diam(K)] → [0, 1] such that
‖Ax − Ay‖ ≤ φA(‖x − y‖) ‖x − y‖, for all x, y ∈ K. E. Rakotch (1962) proved that,
under the above hypotheses, every contractive mapping in A has a unique fixed point
xA and that the sequence of iterates (Anx) converges to xA uniformly on K. The
authors show that there exists a Gδ dense subset F of A such that every A ∈ F
is contractive. It is worth to notice that the set of all strict contractions is of first
Baire category in A, even if X is a Hilbert space. Also there exists a subset F of A
such that A \ F is σ-porous and the conclusions of Rakotch’s theorem hold for every
A ∈ F . Similar results, with respect to some Hausdorff-type metrics, are obtained
for contractive set-valued mappings. The more delicate problem of non-expansive set-
valued mappings is considered as well. Other generic results concern Mann-Ishikava
iteration, stability of fixed points and the well-posedness of fixed point problems. The
case of mappings which are non-expansive with respect to the Bergman metric (a topic
of intense study in the recent years) is treated in Chapter 5, Relatively Nonexpansive
Operators with Respect to Bregman Distances.

In Chapter 7, Best Approximation, one obtains generic and porousity results
for generalized problems of best approximation in Banach spaces, or in the more
general context of hyperbolic spaces. These results extend those obtained By S. B.
Stechkin (1963), M. Edelstein (1968), Ka Sing Lau (1978), F. De Blasi and J. Myjak
(1991,1998), Chong Li (2000), and others. The generalizations consist both in replac-
ing the norm by a function f having some appropriate properties (convexity will do)
and admitting that the set A, where the optimal points are checked, can vary. As a
sample I do mention the following result: There exists a set F with σ-porous (with
respect to some Hausdorf-type metric) complement in the space S(X) of nonempty
closed subsets of a complete hyperbolic space X such that the minimization problem
is well posed for all points in X, excepting a subset of first Baire category (Theorem
7.5).

Generic and porousity results are obtained also for other classes of problems in
chapters 4. Dynamical Systems with Convex Lyapunov Functions, 8. Descent Methods,
and 10. Minimal Configurations in the Aubry-Mather Theory.

The book, based almost exclusively on the original results of the authors pub-
lished in the last years, contains a lot of interesting and deep generic existence results
for some classes of problems in nonlinear analysis. By bringing together results spread
through various journals, it will be of great help for researchers in fixed point theory,
optimization, best approximation and dynamical systems. Being carefully written,
with complete proofs and illuminating examples, it can serve also as an introductory
book to this areas of current research.

S. Cobzaş
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Jürgen Appell, Józef Banaś and Nelson Merentes, Bounded Variation and Around,
Series in Nonlinear Analysis and Applications, Vol. 17, xiii + 319 pp, Walter de
Gruyter, Berlin - New York, 2014, ISBN: 978-3-11-026507-1, e-ISBN: 978-3-11-
026511-8, ISSN: 0941-813X.

Functions of bounded variation were defined and studied first by Camille Jor-
dan (1881) in order to extend the Dirichlet convergence criterium for Fourier series,
who proved that these functions can be represented as differences of nondecreasing
functions. Charles De la Vallée Poussin (1915) introduced the functions of bounded
second variation and proved that these functions can be represented as differences of
convex functions. T. Popoviciu (1934) generalized both these results by considering
functions of bounded k-variation and proving that they can be written as differences
of functions convex of order k, another class of functions defined and studied by T.
Popoviciu (in Introduction his name is wrongly mentioned as Mihael T. Popoviciu –
in item [253] the author is M. T. Popoviciu, but M. comes rather from Monsieur than
from Mihael). Later on many extensions of this notion were considered, motivated
mainly by their applications to Fourier series. We shall mention some of them which
are treated in detail in this book.

In what follows f will be a function f : [a, b] → R and P a partition a = t0 <
t1 < · · · < tm = b of the interval [a, b].

F. Riesz (1910) considered the following variation VarRp (f, P ) =
∑m
j=1 |f(tj)−

f(tj−1)|p/(tj − tj−1)p−1, and the total variation VarRp (f) = supP VarRp (f, P ) where
p ≥ 1. He proved that a function f is of bounded Riesz variation iff it is absolutely
continuous and f ′ ∈ Lp([a, b]). In this case VarRp (f) = ‖f ′‖pp . He also used this class
of functions to give representations for the duals of the spaces Lp([a, b]).

N. Wiener (1924) considered the total variation VarWp (f) as the supremum with

respect to P of the variations VarWp (f, P ) =
∑m
j=1 |f(tj) − f(tj−1)|p. This was ex-

tended by L. Young (1934) to variations of the form VarWφ (f, P ) =
∑m
j=1 φ(|f(tj) −

f(tj−1)|), where φ is a Young function. A similar extension to Riesz definition was
given by Yu. T. Medvedev (1953). Daniel Waterman (1976) considered a more general
notion of bounded variation using infinite sequences Λ = (λn) of positive numbers with
λn → 0 and

∑
n λn =∞, and infinite systems of nonoverlapping intervals ([an, bn]) in

[a,b]: VarΛ(f) =
∑∞
j=1 λj |f(tj)− f(tj−1)|. Other generalizations were considered by

M. Schramm (1982) (containing all the above mentioned notions of bounded variation,
but difficult to handle, due to its technicality), B. Korenblum (1975), and others.

The aim of this book is to present a detailed and systematic account of all these
notions of bounded variations, the properties of the corresponding spaces, and re-
lations between various classes of functions with bounded variation. In general, the
authors restrict the treatment to functions of one real variable, excepting the second
chapter, Classical BV-spaces, where functions of several variables of bounded varia-
tions are considered as well. Applications are given to nonlinear composition operator
(in Chapter 5) and to nonlinear superposition operator (in Chapter 6), as well as to
convergence of Fourier series and to integral representations, via Riemann-Stieltjes-
type integrals, of continuous linear functionals on various Banach function spaces.
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Integrals of Riemann-Stieltjes-type, corresponding to various notions of bounded vari-
ation, are treated in detail in Chapter 4, Riemann-Stieltjes integrals.

The book is the first one that presents in a systematic and exhaustive way the
many-faceted aspects of the notion of bounded variation and its applications. Some
open problems are stated throughout the book, and each chapter ends with a set of
exercises, completing the main text (the more difficult ones are marked by *). The
book is very well organized with an index of symbols, a notion index, and a rich
bibliography (329 items). The prerequisites are modest – some familiarity with real
analysis, functional analysis and elements of operator theory – and so it can be used
both for an introduction to the subject or as a reference text as well.

Tiberiu Trif

Lucio Boccardo and Gisella Croce, Elliptic Partial Differential Equations - Existence
and Regularity of Distributional Solutions, Studies in Mathematics, Vol. 55, x + 192
pp, Walter de Gruyter, Berlin - New York, 2014, ISBN: 978-3-11-031540-0, e-ISBN:
978-3-11-031542-4, ISSN: 0179-0986.

The book is concerned with the existence and regularity of weak solutions to
elliptic problems in divergence form (1) −div(a(x, u,∇u) = f in Ω and u = 0 on ∂Ω,
where Ω ⊂ RN is open and bounded, f ∈ H−1(Ω) and a : Ω × R × RN → RN is
elliptic, that is a(x, s, ξ) · ξ ≥ α|ξ|2, ξ ∈ RN . The approach is based on methods from
real and functional analysis. In order to make the book self-contained, many auxiliary
results are proved with full details. Also, for reader’s convenience, other results from
real analysis, functional analysis, and Sobolev spaces, are collected in appendices at
the end of some chapters, with reference to the recent book by H. Brezis, Functional
Analysis, Sobolev Spaces and Partial Differential Equations, Springer 2011.

The second chapter of the book (actually the first, because the Introduction
is numbered as Chapter 1), Some fixed point theorems, contains Banach-Caccioppoli
(called also Banach-Picard, or simply Banach, depending on the nationality of the
author) contraction principle, Brouwer’s fixed point theorem (Milnor’s proof), and
Schauder fixed point theorem. The third chapter, Preliminaries of real analysis, is
concerned with some convergence results in Lp-spaces, other results on Lp-spaces
being collected in an Appendix at the end of the chapter. The second part of this
chapter contains a brief introduction to Marcinkiewicz spaces.

The study of elliptic equations starts in Chapter 4, Linear and semilinear elliptic
equations. The existence results for this kind of equations are proved via Lax-Milgram
and Stampacchia’s theorems, whose full proofs are included. The Appendix to this
chapter reviews some results in functional analysis (projections in Hilbert space and
Riesz’ theorem) and on Sobolev spaces.

The problems treated in Chapter 5, Nonlinear elliptic equations, are more diffi-
cult, due to the nonlinearity F in the equation −div(a(x, u,∇u) = F (x, u,∇u). The
approach is based on some surjectivity results for pseudomonotone coercive operators
on reflexive Banach spaces. The basic result proved here is the Leray-Lions existence
theorem.
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Chapter 6, Summability of the solutions, is concerned with some regularity re-
sults. One shows that the regularity of the solution depends on the regularity of the
source f – if f belongs to a Lebesgue or Marcinkiewicz space, then the solution be-
longs to the same type of space (with modified exponents). This study continues in
Chapter 7, H2 regularity for linear problems. In Chapter 8, Spectral analysis of lin-
ear operators, one studies the eigenvalues of elliptic operators with applications to
semilinear equations.

The last chapter of the first part of the book, 9, Calculus of variations and
Euler’s equation, is concerned with the existence of minimizers of weakly lsc integral
functionals (De Giorgi’s results), Euler’s equation, and Ekeland’s variational principle
with applications.

The second part of the book is devoted to more specialized topics treated in
chapters 10, Natural growth problems, 11, Problems with low summable sources, 12,
Uniqueness (for both monotone and non-monotone elliptic operators), 13, A problem
with polynomial growth, and 14, A problem with degenerate coercivity.

Based on undergraduate and Ph.D. courses, taught by the first author at La
Sapienza University of Rome, this elegant book (dedicated to Bernardo Dacorogna
for his 60th anniversary) presents, in an accessible but rigorous way, some basic results
on elliptic partial differential equations. It can be used for undergraduate or graduate
courses, or for introduction to this active area of investigation.

Radu Precup

Boris S. Mordukhovich and Nguyen Mau Nam, An Easy Path to Convex Analysis
and Applications, Synthesis Lectures on Mathematics and Statistics, Vol. 6, No. 2,
218 pp., Morgan & Claypool, 2014, ISBN-10: 1627052372 ; ISBN-13: 978-1627052375.

The aim of the present book is to prepare the reader for the study of more
advanced topics in nonsmooth and variational analysis. The authors have adopted a
geometric approach, emphasizing the connections of normal and tangent cones with
the subdifferentials of convex functions as well as their relevance for optimization
problems. In this way they offer intuitive and more digestible models for the variety
of cones considered in nonsmooth analysis. The accessibility is further stressed by the
restriction to the framework of finite dimensional Euclidean space Rn.

The first chapter of the book, Convex sets and functions, presents the basic
notions and results in this area – convex hull, operations with convex sets, topological
properties of convex sets, the algebraic interior, convex functions. Applications are
given to the distance functions and to the optimal (or marginal) value function µ,
defined by µ(x) = inf{ϕ(x, y) : y ∈ F (x)}, where F : Rn ⇒ Rp is a set-valued
mapping and ϕ : Rn → R := R ∪ {+∞} is an extended real-valued function.

The development of the subdifferential calculus for convex functions, given in
the second chapter, is based on a general separation theorem for convex subsets of Rn
and on the normal cone N(x̄; Ω) to a convex set Ω. Calculus rules for normal cones are
established and the continuity and differentiability properties of convex functions are
studied. The authors consider two kinds of subdifferentials for a convex function f :
Ω→ R – the singular subdifferential ∂∞f(x̄) = {v ∈ Rn : (v, 0) ∈ N((x̄, f(x̄)); epif)}
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and the usual subdifferential ∂f(x̄), defined as the set of subgradients of f at x̄. As
applications, the subdifferentials of the distance function and of the optimal value
function are calculated. Some connections of the subdifferential of the optimal value
function with the coderivative of the set-valued mapping F , a key tool in variational
analysis, are established.

Chapter 3, Remarkable consequences of convexity, starts with the proof of the
equivalence between the Fréchet and Gâteaux differentiability of convex functions
and continues with Carathéodory’s theorem on the convex hulls of subsets of Rn,
Radon’s theorem, Helly’s intersection theorem, and Farkas lemma on systems of linear
inequalities. One introduces the tangent cone T (x̄; Ω) and one proves the duality
relations N(x̄; Ω) = [T (x̄; Ω)]

◦
and T (x̄; Ω) = [N(x̄; Ω)]

◦
, where K◦ = {v ∈ Rn :

〈v, x〉 ≤ 0, ∀x ∈ K} denotes the polar cone to a cone K ⊂ Rn.
The last chapter, Ch. 4, Applications to optimization and location problems,

contains some recent results of the authors on the Fermat-Torricelli and Sylvester
problems – two problems with geometric flavor, where the methods of convex analysis
proved to be very efficient for their solution.

The book is clearly and carefully written, with elegant and full proofs to almost
all results. Some notions are accompanied by nicely drawn illustrative pictures, and
the exercises at the end of each chapter help the reader to a broader and deeper
understanding of the results from the main text.

The book contains an accessible, with a strong intuitive support but reasonably
complete, introduction to some basic results in convex analysis in Rn. It is recom-
mended as a preliminary (or a companion) lecture to more advanced texts as, for
instance, the monumental treatise of the first named author, B. S. Mordukhovich,
Variational Analaysis and Generalized Differentiation, Vols. I and II, Springer, 2006
(up to now, Google Scholar counts 2015 citations of these volumes). It can be used
also as a textbook for graduate or advanced undergraduate courses.

S. Cobzaş
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