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Power Pompeiu’s type inequalities for absolutely
continuous functions with applications to
Ostrowski’s inequality

S. S. Dragomir

Abstract. In this paper, some power generalizations of Pompeiu’s inequality for
complex-valued absolutely continuous functions are provided. They are applied
to obtain some new Ostrowski type results.

Mathematics Subject Classification (2010): 25D10, 25D10.

Keywords: Ostrowski’s inequality, Pompeiu’s mean value theorem, integral
inequalities, special means.

1. Introduction

In 1946, Pompeiu [6] derived a variant of Lagrange’s mean value theorem, now
known as Pompeiu’s mean value theorem (see also [8, p. 83]).

Theorem 1.1. (Pompeiu, 1946 [6]) For every real valued function f differentiable on
an interval [a, b] not containing 0 and for all pairs x1 6= x2 in [a, b] , there exists a
point ξ between x1 and x2 such that

x1f (x2)− x2f (x1)

x1 − x2
= f (ξ)− ξf ′ (ξ) . (1.1)

In 1938, A. Ostrowski [4] proved the following result in the estimating the integral
mean:

Theorem 1.2. (Ostrowski, 1938 [4]) Let f : [a, b] → R be continuous on [a, b] and
differentiable on (a, b) with |f ′ (t)| ≤M <∞ for all t ∈ (a, b) . Then for any x ∈ [a, b] ,
we have the inequality∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
M (b− a) . (1.2)
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The constant 1
4 is best possible in the sense that it cannot be replaced by a smaller

quantity.

In order to provide another approximation of the integral mean, by making use of the
Pompeiu’s mean value theorem, the author proved the following result:

Theorem 1.3. (Dragomir, 2005 [3]) Let f : [a, b] → R be continuous on [a, b] and
differentiable on (a, b) with [a, b] not containing 0. Then for any x ∈ [a, b] , we have
the inequality ∣∣∣∣∣a+ b

2
· f (x)

x
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ (1.3)

≤ b− a
|x|

1

4
+

(
x− a+b

2

b− a

)2
 ‖f − `f ′‖∞ ,

where ` (t) = t, t ∈ [a, b] .

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller

constant.

In [7], E. C. Popa using a mean value theorem obtained a generalization of (1.3) as
follows:

Theorem 1.4. (Popa, 2007 [7]) Let f : [a, b] → R be continuous on [a, b] and dif-
ferentiable on (a, b) . Assume that α /∈ [a, b] . Then for any x ∈ [a, b] , we have the
inequality ∣∣∣∣∣

(
a+ b

2
− α

)
f (x) +

α− x
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ (1.4)

≤

1

4
+

(
x− a+b

2

b− a

)2
 (b− a) ‖f − `αf ′‖∞ ,

where `α (t) = t− α, t ∈ [a, b] .

In [5], J. Pečarić and S. Ungar have proved a general estimate with the p-norm,
1 ≤ p ≤ ∞ which for p =∞ give Dragomir’s result.

Theorem 1.5. (Pečarić & Ungar, 2006 [5]) Let f : [a, b] → R be continuous on [a, b]
and differentiable on (a, b) with 0 < a < b. Then for 1 ≤ p, q ≤ ∞ with 1

p + 1
q = 1 we

have the inequality∣∣∣∣∣a+ b

2
· f (x)

x
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ PU (x, p) ‖f − `f ′‖p , (1.5)
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for x ∈ [a, b] , where

PU (x, p) : = (b− a)
1
p−1

[(
a2−q − x2−q

(1− 2q) (2− q)
+
x2−q − a1+qx1−2q

(1− 2q) (1 + q)

)1/q

+

(
b2−q − x2−q

(1− 2q) (2− q)
+
x2−q − b1+qx1−2q

(1− 2q) (1 + q)

)1/q
]
.

In the cases (p, q) = (1,∞) , (∞, 1) and (2, 2) the quantity PU (x, p) has to be taken
as the limit as p→ 1,∞ and 2, respectively.

For other inequalities in terms of the p-norm of the quantity f − `αf ′, where
`α (t) = t− α, t ∈ [a, b] and α /∈ [a, b] see [1] and [2].

In this paper, some power Pompeiu’s type inequalities for complex valued ab-
solutely continuous functions are provided. They are applied to obtain some new
Ostrowski type inequalities.

2. Power Pompeiu’s type inequalities

The following inequality is useful to derive some Ostrowski type inequalities.

Corollary 2.1. (Pompeiu’s Inequality) With the assumptions of Theorem 1.1 and if
‖f − `f ′‖∞ = supt∈(a,b) |f (t)− tf ′ (t)| <∞ where ` (t) = t, t ∈ [a, b] , then

|tf (x)− xf (t)| ≤ ‖f − `f ′‖∞ |x− t| (2.1)

for any t, x ∈ [a, b] .

The inequality (2.1) was stated by the author in [3].

We can generalize the above inequality for the power function as follows.

Lemma 2.2. Let f : [a, b] → C be an absolutely continuous function on the interval
[a, b] with b > a > 0. If r ∈ R, r 6= 0, then for any t, x ∈ [a, b] we have

|trf (x)− xrf (t)| (2.2)

≤



1
|r| ‖f

′`− rf‖∞ |tr − xr| , if f ′`− rf ∈ L∞ [a, b] ,

‖f ′`− rf‖p

×


1

|1−q(r+1)|
∣∣ tr

x1−q(r+1)−r − xr

t1−q(r+1)−r

∣∣ , for r 6= − 1
p

trxr |lnx− ln t| , for r = − 1
p

if f ′`− rf ∈ Lp [a, b] ,

‖f ′`− rf‖1
trxr

min{xr+1,tr+1}
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or, equivalently

∣∣∣∣f (x)

xr
− f (t)

tr

∣∣∣∣ (2.3)

≤



1
|r| ‖f

′`− rf‖∞
∣∣ 1
xr − 1

tr

∣∣ , if f ′`− rf ∈ L∞ [a, b] ,

‖f ′`− rf‖p

×


1

|1−q(r+1)|
∣∣ 1
x1−q(r+1) − 1

t1−q(r+1)

∣∣ , for r 6= − 1
p

|lnx− ln t| , for r = − 1
p

if f ′`− rf ∈ Lp [a, b] ,

‖f ′`− rf‖1
1

min{xr+1,tr+1} ,

where p > 1, 1p + 1
q = 1.

Proof. If f is absolutely continuous, then f/ (·)r is absolutely continuous on the in-
terval [a, b] and ∫ x

t

(
f (s)

sr

)′
ds =

f (x)

xr
− f (t)

tr

for any t, x ∈ [a, b] with x 6= t.

Since

∫ x

t

(
f (s)

sr

)′
ds =

∫ x

t

f ′ (s) sr − rsr−1f (s)

s2r
ds =

∫ x

t

f ′ (s) s− rf (s)

sr+1
ds,

then we get the following identity

trf (x)− xrf (t) = xrtr
∫ x

t

f ′ (s) s− rf (s)

sr+1
ds (2.4)

for any t, x ∈ [a, b] .

Taking the modulus in (2.4) we have

|trf (x)− xrf (t)| = xrtr
∣∣∣∣∫ x

t

f ′ (s) s− rf (s)

sr+1
ds

∣∣∣∣ (2.5)

≤ xrtr
∣∣∣∣∫ x

t

|f ′ (s) s− rf (s)|
sr+1

ds

∣∣∣∣ := I
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and utilizing Hölder’s integral inequality we deduce

I ≤ xrtr


sups∈[t,x]([x,t]) |f ′ (s) s− rf (s)|

∣∣∫ x
t

1
sr+1 ds

∣∣ ,
∣∣∫ x
t
|f ′ (s) s− rf (s)|p ds

∣∣1/p ∣∣∫ x
t

1
sq(r+1) ds

∣∣1/q ,∣∣∫ x
t
|f ′ (s) s− rf (s)| ds

∣∣ sups∈[t,x]([x,t])
{

1
sr+1

}
,

(2.6)

≤ xrtr



1
|r| ‖f

′`− rf‖∞
∣∣ 1
xr − 1

tr

∣∣ ,
‖f ′`− rf‖p

×


1

|1−q(r+1)|
∣∣ 1
x1−q(r+1) − 1

t1−q(r+1)

∣∣ , r 6= − 1
p

|lnx− ln t| , r = − 1
p ,

‖f ′`− rf‖1
1

min{xr+1,tr+1} ,

where p > 1, 1p + 1
q = 1, and the inequality (2.2) is proved. �

3. Some Ostrowski type results

The following new result also holds.

Theorem 3.1. Let f : [a, b] → C be an absolutely continuous function on the interval
[a, b] with b > a > 0. If r ∈ R, r 6= 0, and f ′`− rf ∈ L∞ [a, b] , then for any x ∈ [a, b]
we have ∣∣∣∣∣br+1 − ar+1

r + 1
f (x)− xr

∫ b

a

f (t) dt

∣∣∣∣∣ (3.1)

≤ 1

|r|
‖f ′`− rf‖∞

×


2rxr+1−xr(a+b)(r+1)+br+1+ar+1

r+1 , if r > 0

xr(a+b)(r+1)−2rxr+1−br+1−ar+1

r+1 , if r ∈ (−∞, 0)� {−1} .

Also, for r = −1, we have∣∣∣∣∣f (x) ln
b

a
− 1

x

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 2 ‖f ′`+ f‖∞

(
ln

x√
ab

+
a+b
2 − x
x

)
(3.2)

for any x ∈ [a, b] , provided f ′`+ f ∈ L∞ [a, b] .

The constant 2 in (3.2) is best possible.
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Proof. Utilising the first inequality in (2.2) for r 6= −1 we have∣∣∣∣∣br+1 − ar+1

r + 1
f (x)− xr

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
∫ b

a

|trf (x)− xrf (t)| dt (3.3)

≤ 1

|r|
‖f ′`− rf‖∞

∫ b

a

|tr − xr| dt.

Observe that∫ b

a

|tr − xr| dt

=


∫ x
a

(xr − tr) dt+
∫ b
x

(tr − xr) dt, if r > 0,∫ x
a

(tr − xr) dt+
∫ b
x

(xr − tr) dt, if r ∈ (−∞, 0)� {−1} .

Then for r > 0 we have∫ x

a

(xr − tr) dt+

∫ b

x

(tr − xr) dt

= xr (x− a)− xr+1 − ar+1

r + 1
+
br+1 − xr+1

r + 1
− xr (b− x)

= 2xr+1 − xr (a+ b) +
br+1 + ar+1 − 2xr+1

r + 1

=
2rxr+1 + 2xr+1 − xr (a+ b) (r + 1) + br+1 + ar+1 − 2xr+1

r + 1

=
2rxr+1 − xr (a+ b) (r + 1) + br+1 + ar+1

r + 1

and for r ∈ (−∞, 0)� {−1} we have∫ x

a

(tr − xr) dt+

∫ b

x

(xr − tr) dt

= −2rxr+1 − xr (a+ b) (r + 1) + br+1 + ar+1

r + 1
.

Making use of (3.3) we get (3.1).
Utilizing the inequality (2.2) for r = −1 we have∣∣t−1f (x)− x−1f (t)

∣∣ ≤ ‖f ′`+ f‖∞
∣∣t−1 − x−1∣∣

if f ′`+ f ∈ L∞ [a, b].
Integrating this inequality, we have∣∣∣∣∣f (x) ln

b

a
− x−1

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
∫ b

a

∣∣t−1f (x)− x−1f (t)
∣∣ dt (3.4)

≤ ‖f ′`+ f‖∞
∫ b

a

∣∣t−1 − x−1∣∣ dt.
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Since ∫ b

a

∣∣∣∣ 1x − 1

t

∣∣∣∣ dt =

[∫ x

a

(
1

t
− 1

x

)
dt+

∫ b

x

(
1

x
− 1

t

)
dt

]

=

(
ln
x

a
− x− a

x
+
b− x
x
− ln

b

x

)
= ln

x2

ab
+
a+ b− 2x

x

= 2

(
ln

x√
ab

+
a+b
2 − x
x

)
,

then by (3.4) we get the desired inequality (3.2).
Now, assume that (3.2) holds with a constant C > 0, i.e.∣∣∣∣∣f (x) ln

b

a
− x−1

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ C ‖f ′`+ f‖∞

(
ln

x√
ab

+
a+b
2 − x
x

)
(3.5)

for any x ∈ [a, b] .
If we take in (3.5) f (t) = 1, t ∈ [a, b] , then we get∣∣∣∣ln b

a
− b− a

x

∣∣∣∣ ≤ C
(

ln
x√
ab

+
a+b
2 − x
x

)
(3.6)

for any for any x ∈ [a, b] .
Making x = a in (3.5) produces the inequality∣∣∣∣ln b

a
− b− a

a

∣∣∣∣ ≤ C (b− a2a
− 1

2
ln
b

a

)
which implies that C ≥ 2.

This proves the sharpness of the constant 2 in (3.2). �

Remark 3.2. Consider the r-Logarithmic mean

Lr = Lr (a, b) :=

[
br+1 − ar+1

(r + 1) (b− a)

]1/r
defined for r ∈ R� {0,−1} and the Logarithmic mean, defined as

L = L (a, b) :=
b− a

ln b− ln a
.

If A = A (a, b) := a+b
2 , then from (3.1) we get for x = A the inequality∣∣∣∣∣Lrr (b− a) f (A)−Ar

∫ b

a

f (t) dt

∣∣∣∣∣ (3.7)

≤ 2

|r|
‖f ′`− rf‖∞


A(br+1,ar+1)−Ar+1

r+1 , if r > 0,

Ar+1−A(br+1,ar+1)
r+1 , if r ∈ (−∞, 0)� {−1} ,
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while from (3.2) we get∣∣∣∣∣L−1 (b− a) f (A)−A−1
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 2 ‖f ′`+ f‖∞ ln
A

G
. (3.8)

The following related result holds.

Theorem 3.3. Let f : [a, b] → C be an absolutely continuous function on the interval
[a, b] with b > a > 0. If r ∈ R, r 6= 0, then for any x ∈ [a, b] we have∣∣∣∣∣f (x)

xr
(b− a)−

∫ b

a

f (t)

tr
dt

∣∣∣∣∣ (3.9)

≤ 1

|r|
‖f ′`− rf‖∞

×


2x1−r−a1−r−b1−r

1−r + 1
xr (b+ a− 2x) , r ∈ (0,∞)� {1}

a1−r+b1−r−2x1−r

1−r + 1
xr (2x− a− b) , if r < 0.

Also, for r = 1, we have∣∣∣∣∣f (x)

x
(b− a)−

∫ b

a

f (t)

t
dt

∣∣∣∣∣ ≤ 2 ‖f ′`− f‖∞

(
ln

x√
ab

+
a+b
2 − x
x

)
(3.10)

for any x ∈ [a, b] , provided f ′`− f ∈ L∞ [a, b] .

The constant 2 is best possible in (3.10).

Proof. From the first inequality in (2.3) we have∣∣∣∣f (x)

xr
− f (t)

tr

∣∣∣∣ ≤ 1

|r|
‖f ′`− rf‖∞

∣∣∣∣ 1

xr
− 1

tr

∣∣∣∣ , (3.11)

for any t, x ∈ [a, b] , provided f ′`− rf ∈ L∞ [a, b] .

Integrating over t ∈ [a, b] we get∣∣∣∣∣f (x)

xr
(b− a)−

∫ b

a

f (t)

tr
dt

∣∣∣∣∣ ≤
∫ b

a

∣∣∣∣f (x)

xr
− f (t)

tr

∣∣∣∣ dt (3.12)

≤ 1

|r|
‖f ′`− rf‖∞

∫ b

a

∣∣∣∣ 1

xr
− 1

tr

∣∣∣∣ dt
for r ∈ R, r 6= 0.
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For r ∈ (0,∞)� {1} we have∫ b

a

∣∣∣∣ 1

xr
− 1

tr

∣∣∣∣ dt
=

∫ x

a

(
1

tr
− 1

xr

)
dt+

∫ b

x

(
1

xr
− 1

tr

)
dt

=
x1−r − a1−r

1− r
− 1

xr
(x− a) +

1

xr
(b− x)− b1−r − x1−r

1− r

=
2x1−r − a1−r − b1−r

1− r
+

1

xr
(b+ a− 2x)

for any x ∈ [a, b] .

For r < 0, we also have∫ b

a

∣∣∣∣ 1

xr
− 1

tr

∣∣∣∣ dt =
a1−r + b1−r − 2x1−r

1− r
+

1

xr
(2x− a− b)

for any x ∈ [a, b] .

For r = 1 we have∫ b

a

∣∣∣∣ 1x − 1

t

∣∣∣∣ dt = 2

(
ln

x√
ab

+
a+b
2 − x
x

)

for any x ∈ [a, b] , and the inequality (3.10) is obtained.

The sharpness of the constant 2 follows as in the proof of Theorem 3.1 and the
details are omitted. �

Remark 3.4. If we take x = A in Theorem 3.3, then we we have∣∣∣∣∣f (A)

Ar
(b− a)−

∫ b

a

f (t)

tr
dt

∣∣∣∣∣ (3.13)

≤ 2

|r|
‖f ′`− rf‖∞


A1−r−A(a1−r,b1−r)

1−r , r ∈ (0,∞)� {1} ,

A(a1−r,b1−r)−A1−r

1−r , if r < 0.

Also, for r = 1, we have∣∣∣∣∣f (A)

A
(b− a)−

∫ b

a

f (t)

t
dt

∣∣∣∣∣ ≤ 2 ‖f ′`− f‖∞ ln
A

G
. (3.14)

Remark 3.5. The interested reader may obtain other similar results in terms of the p-
norms ‖f ′`− rf‖p with p ≥ 1. However, since some calculations are too complicated,
the details are not presented here.
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Abstract. In this note, semi-ϕh-convexity as a generalization of h-convexity and
semi ϕ-convexity, and strongly log-ϕ convex functions have been introduced and
studied. Some properties of semi-ϕh-convex functions are proved. Also, some new
results of Hemite-Hadamard type inequalities for semi-ϕh-convex functions, semi
log- ϕ and strongly log-ϕ convex functions are obtained.
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1. Introduction

In 1883, Hermite proved an inequality, rediscovered by Hadamard in 1893, that
for a convex function f on [a, b] ∈ R, also continuous at the endpoints, one has that

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

This is known as Hermite-Hadamard inequality. In the literature, many modi-
fications, generalizations and extensions of this inequality has been obtained for last
few years.

Let I be an interval in R. A function f : I → R, is said to be convex on I if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y),

for all x, y ∈ I and t ∈ (0, 1).
Let I be an interval in R and h : (0, 1) → (0,∞) be a given function. Then a

function f : I → R is said to be h-convex if

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y),

for all x, y ∈ I and t ∈ (0, 1).
If h(t) = ts; s ∈ (0, 1), then f is said to be s-convex in second sense [2], if f is

non-negative and h(t) = 1
t then f is said to be Godunova-Levin function [6] and if f

is non-negative with h(t) = 1 then f is P -convex function [7].
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In [14], Youness introduced a new class of functions called ϕ-convex functions
and he established some results about these sets and functions. Later on, the result
by Youness [14] were improved by Yang [13], Duca et al. [4] and Chen [3]. Throughout
this paper, we assume that ϕ : I → I, where I is a real interval and h : (0, 1)→ (0,∞)
are given maps.

Definition 1.1. A function f : I → R is said to be ϕ-convex on I if

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(ϕ(x)) + (1− t)f(ϕ(y)),

for all x, y ∈ I and t ∈ (0, 1).

In [11], Sarikaya has studied ϕh- convexity and obtained some new inequalities.

Definition 1.2. Let I be an interval in R. We say that a function f : I → [0,∞) is a
ϕh-convex if

f(tϕ(x) + (1− t)ϕ(y)) ≤ h(t)f(ϕ(x)) + h(1− t)f(ϕ(y)),

for all t ∈ (0, 1) and x, y ∈ I.

Theorem 1.3. (Th. 2, [11]) Let h : (0, 1)→ (0,∞) be a given function. If f : I → [0,∞)
is Lebesgue integrable on I and ϕh-convex for continuous function ϕ : [a, b] → [a, b],
with ϕ(a) 6= ϕ(b), then the following inequality holds:

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)f(ϕ(b) + ϕ(a)− x)dx

≤
[
f2(ϕ(x)) + f2(ϕ(y))

] ∫ 1

0

h(t)h(1− t)dt+ 2f(ϕ(x))f(ϕ(y))

∫ 1

0

h2(t)dt.

Hu at al [8] studied firstly the notion of semi-ϕ-convexity. Chen in [3] modified
their results and defined the following class of functions.

Definition 1.4. The function f : I → R is semi-ϕ-convex, if for every x, y ∈ I and
t ∈ (0, 1) we have

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(x) + (1− t)f(y).

Toader [12] defined the following function:

Definition 1.5. Let be b > 0 and m ∈ (0, 1]. A function f : [0, b]→ [0,∞) is said to be
m-convex if

f(tx+m(1− t)y) ≤ tf(x) + (1− t)f(y),

for all x, y ∈ [0, b], t ∈ [0, 1].

In [5], Dragomir and Pec̆arić showed that the following result holds for m-convex
functions.

Theorem 1.6. (Th. 197, [5]) If f : [0,∞) → [0,∞) is a m-convex function with
m ∈ (0, 1) and Lebesgue integrable on [ma, b] where 0 ≤ a ≤ b and mb 6= a, then

1

m+ 1

[
1

mb− a

∫ mb

a

f(x)dx+
1

b−ma

∫ b

ma

f(x)dx

]
≤ f(a) + f(b)

2
.
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The rest of the paper is organized as follows: In section 2, semi-ϕh-convexity
has been defined and some properties are studied. In section 3, some new results of
Hadamard type inequalities are proved. In the last section, semi log-ϕ and strongly
log-ϕ convex functions are discussed and some inequalities are obtained.

2. Semi-ϕh-Convexity

In this section, we define the following function:

Definition 2.1. Let ϕ : [a, b]→ [a, b] and I be an interval in R such that [a, b] ⊆ I. Let
h : (0, 1) → (0,∞) be a given function. We say that a function f : I → [0,∞) is a
semi-ϕh-convex if for all t ∈ (0, 1) and x, y ∈ I, we have

f(tϕ(x) + (1− t)ϕ(y)) ≤ h(t)f(x) + h(1− t)f(y).

Remark 2.2. 1. If h(t) = t, f is a semi-ϕ-convex function on I.
2. If h(t) = ts, f is a semi-ϕs-convex function on I.
3. If h(t) = 1

t , f is a semi-ϕ Gudunova-Levin convex function on I.
4. If h(t) = 1, f is a semi-ϕP -convex function on I.
5. If ϕ(x) = x, f is a h-convex function on I.
6. If ϕ(x) = x and h(t) = t, f is a convex function on I.

Example 2.3. [3] Let ϕ : R→ R such that

ϕ(x) =

 1, 1 ≤ x ≤ 4
1 + 2

π arctan(1− x), x < 1
2 + π

4 arctan(x− 4), x > 4.

and f : R→ R

f(x) =


7, x < 1 or x > 4
x− 3, 1 ≤ x < 2
3− x, 2 ≤ x ≤ 3
x− 3, 3 < x ≤ 4.

Here f is a semi-ϕh-convex function on R for h(t) = t.

Example 2.4. Let h(t) = 1 for all t ∈ R, ϕ(x) = −x2, for all x ∈ R, and

f(x) =

{
1, x ≥ 0
2, x ≤ 0.

Then f is a semi-ϕ P -convex function on R.

Now we prove some properties of semi-ϕh-convex functions.

Theorem 2.5. If f, g : I → [0,∞) are semi-ϕh-convex functions, where h : (0, 1) →
(0,∞) is a given function, and α > 0 then f+g and αf are semi-ϕh-convex functions.

Proof. Since f, g are semi-ϕh convex functions then for x, y ∈ I and t ∈ (0, 1),

(f + g)(tϕ(x) + (1− t)ϕ(y)) = f(tϕ(x) + (1− t)ϕ(y)) + g(tϕ(x) + (1− t)ϕ(y))
≤ h(t)(f + g)(x) + h(1− t)(f + g)(y),
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and
(αf)(tϕ(x) + (1− t)ϕ(y)) ≤ α[h(t)f(x) + h(1− t)f(y))]

= h(t)(αf)(x) + h(1− t)(αf)(y).

�

Lemma 2.6. If f : I → [0,∞) is a semi-ϕ convex function and g is an increasing
h-convex function, where range of f is contained in the domain of g and h : (0, 1)→
(0,∞), then g ◦ f is a semi-ϕh- convex function.

Proof. Since f is semi-ϕ-convex function then for x, y ∈ I and t ∈ (0, 1),

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(x) + (1− t)f(y).

Since g is increasing and h-convex we have

(g ◦ f)(tϕ(x) + (1− t)ϕ(y)) ≤ g(tf(x) + (1− t)f(y))
≤ h(t)(g ◦ f)(x) + h(1− t)(g ◦ f)(y).

This completes the proof. �

Lemma 2.7. If f is semi-ϕ-convex and h(t) ≥ t then f is semi-ϕh-convex.

Proof.

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(x) + (1− t)f(y) ≤ h(t)f(x) + h(1− t)f(y).

This completes the proof. �

Lemma 2.8. If f is semi-ϕh convex and h(t) ≤ t then f is semi-ϕ-convex.

Proof.

f(tϕ(x) + (1− t)ϕ(y)) ≤ h(t)f(x) + h(1− t)f(y) ≤ tf(x) + (1− t)f(y).

This completes the proof. �

Lemma 2.9. Let h1, h2 : (0, 1) → (0,∞) such that h2(t) ≤ h1(t). If f is semi-ϕh2

convex then f is semi-ϕh1
convex.

Proof. Since f is semi-ϕh2
convex then for x, y ∈ I and t ∈ (0, 1) we have

f(tϕ(x) + (1− t)ϕ(y)) ≤ h2(t)f(x) + h2(1− t)f(y) ≤ h1(t)f(x) + h1(1− t)f(y).

This completes the proof. �

3. Hermite-Hadamard Type Inequalities

Theorem 3.1. If [a, b] ⊆ I, ϕ : [a, b] → [a, b] is a continuous function such that
ϕ(a) 6= ϕ(b) and the function f : I → [0,∞) is Lebesgue integrable on I and semi-ϕh
convex, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤
(
f(a) + f(b)

)∫ 1

0

h(t)dt.
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Proof. Since f is semi-ϕh convex, we have for t ∈ (0, 1),

f(tϕ(a) + (1− t)ϕ(b)) ≤ h(t)f(a) + h(1− t)f(b).

Integrating the above inequality over the interval (0, 1),∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))dt ≤ (f(a) + f(b))

∫ 1

0

h(t)dt.

Substituting x = tϕ(a) + (1− t)ϕ(b) we get the required inequality. �

Corollary 3.2. Under the assumptions of Theorem 3.1 with h(t) = t for all t ∈ (0, 1),
we have

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤ f(a) + f(b)

2
.

Corollary 3.3. Under the assumptions of Theorem 3.1 with s ∈ (0, 1) and h(t) = ts

for all t ∈ (0, 1), we have

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤ f(a) + f(b)

s+ 1
.

Corollary 3.4. Under the assumptions of Theorem 3.1 with h(t) = 1 for t ∈ (0, 1), we
have

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤ f(a) + f(b).

Remark 3.5. If h(t) = t for t ∈ (0, 1) and ϕ(x) = x we have

1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Theorem 3.6. If [a, b] ⊆ I, ϕ : [a, b] → [a, b] is a continuous function such that
ϕ(a) 6= ϕ(b) and the function f : I → [0,∞) is Lebesgue integrable on I and semi-ϕh
convex, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)f(ϕ(a) + ϕ(b)− x)dx

≤ (f2(a) + f2(b))(

∫ 1

0

h(t)h(1− t)dt+ 2f(a)f(b)

∫ 1

0

h2(t)dt).

Proof. Since f is semi-ϕh convex we have for t ∈ (0, 1)

f(tϕ(a) + (1− t)ϕ(b)) ≤ h(t)f(a) + h(1− t)f(b),

and

f((1− t)ϕ(a) + (tϕ(b)) ≤ h(1− t)f(a) + h(t)f(b).

By multiplying both inequalities, we get

f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + tϕ(b))

≤ h(1− t)h(t)(f2(a) + f2(b)) + f(a)f(b)(h2(t) + h2(1− t)).
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We obtain ∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + (tϕ(b))dt

≤ (f2(a) + f2(b))

∫ 1

0

h(1− t)h(t)dt+ 2f(a)f(b)

∫ 1

0

h2(t)dt.

Substituting x = tϕ(a) + (1− t)ϕ(b), we get the required inequality. �

Corollary 3.7. Under the assumptions of Theorem 3.6 with h(t) = t for all t ∈ (0, 1),
we have

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)f(ϕ(b) + ϕ(a)− x)dx

≤ f2(a) + f2(b)

6
+

2f(a)f(b)

3
.

Theorem 3.8. If [a, b] ⊆ I, ϕ : [a, b] → [a, b] is a continuous function such that
ϕ(a) 6= ϕ(b) and the functions f, g : I → [0,∞) is Lebesgue integrable on I and
semi-ϕh convex, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)g(x)dx

≤M(a, b)

∫ 1

0

h2(t)dt+N(a, b)

∫ 1

0

h(t)h(1− t)dt.

where
M(a, b) = f(a)g(a) + f(b)g(b),

N(a, b) = f(a)g(b) + f(b)g(a).

Proof. Since f, g are semi-ϕh-convex we have for t ∈ (0, 1)

f(tϕ(a) + (1− t)ϕ(b)) ≤ h(t)f(a) + h(1− t)f(b),

and
g(tϕ(a) + (1− t)ϕ(b)) ≤ h(t)g(a) + h(1− t)g(b).

By multiplying both sides, we get

f(tϕ(a) + (1− t)ϕ(b))g(tϕ(a) + (1− t)ϕ(b))

≤ h2(t)f(a)g(a) + h2(1− t)f(b)g(b) + h(t)h(1− t)f(a)g(b) + h(t)h(1− t)f(b)g(a).

Integrating over the interval (0, 1), we obtain∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))g(tϕ(a) + (1− t)ϕ(b))dt

≤ (f(a)g(a) + f(b)g(b))

∫ 1

0

h2(t)dt+ (f(a)g(b) + f(b)g(a))

∫ 1

0

h(t)h(1− t)dt.

Replacing x = tϕ(a) + (1− t)ϕ(b), we get the required inequality. �

Definition 3.9. Let be m ∈ (0, 1]. A function f : [0, b]→ [0,∞) is said to be semi-ϕm-
convex if

f(tϕ(x) +m(1− t)ϕ(y)) ≤ tf(x) +m(1− t)f(y),

for all x, y ∈ [0, b], t ∈ [0, 1].
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Remark 3.10. If m = 1, then f is semi-ϕ-convex, and if m = 1, ϕ(x) = x for all
x ∈ [0, b], then f is convex on [0, b].

Theorem 3.11. If f : [0,∞)→ [0,∞) is a semi- ϕm-convex function, with m ∈ (0, 1)
such that mϕ(b) 6= ϕ(a) and mϕ(a) 6= ϕ(b) and f is Lebesgue integrable on [ma, b]
then

1

m+ 1
[

1

mϕ(b)− ϕ(a)

∫ mϕ(b)

ϕ(a)

f(x)dx+
1

ϕ(b)−mϕ(a)

∫ ϕ(b)

mϕ(a)

f(x)dx] ≤ f(a) + f(b)

2
.

Proof. Since f is semi- ϕm-convex we have following inequalities

f(tϕ(a) +m(1− t)ϕ(b)) ≤ tf(a) +m(1− t)f(b),

f((1− t)ϕ(a) +mtϕ(b)) ≤ (1− t)f(a) +mtf(b),

f(mtϕ(a) + (1− t)ϕ(b)) ≤ mtf(a) + (1− t)f(b),

f(m(1− t)ϕ(a) + tϕ(b)) ≤ m(1− t)f(a) + tf(b).

Adding the above four inequalities, we get

f(tϕ(a) +m(1− t)ϕ(b)) + f((1− t)ϕ(a) +mtϕ(b))

+f(mtϕ(a) + (1− t)ϕ(b)) + f(m(1− t)ϕ(a) + tϕ(b))

≤ (m+ 1)(f(a) + f(b)).

Now, integrating over the interval (0, 1), we have∫ 1

0

f(tϕ(a) +m(1− t)ϕ(b))dt+

∫ 1

0

f((1− t)ϕ(a) +mtϕ(b))dt+

∫ 1

0

f(mtϕ(a) + (1− t)ϕ(b))dt+

∫ 1

0

f(m(1− t)ϕ(a) + tϕ(b))dt

≤ (m+ 1)(f(a) + f(b)).

Using the substitution x = tϕ(a) + (1− t)ϕ(b), we have∫ 1

0

f(tϕ(a) +m(1− t)ϕ(b))dt =

∫ 1

0

f((1− t)ϕ(a) +mtϕ(b))dt

=
1

mϕ(b)− ϕ(a)

∫ mϕ(b)

ϕ(a)

f(x)dx,

and using the substitution x = tϕ(a) + (1− t)ϕ(b), we have

f(mtϕ(a) + (1− t)ϕ(b))dt = f(m(1− t)ϕ(a) + tϕ(b))dt

=
1

ϕ(b)−mϕ(a)

∫ ϕ(b)

mϕ(a)

f(x)dx.

Using the above equations, we get the required inequality. �
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4. Semi-ϕ and strongly log-ϕ convexity

Definition 4.1. [3] A function f : I → [0,∞) is a semi log-ϕ convex if, for all t ∈ (0, 1)
and x, y ∈ I, one has

f(tϕ(x) + (1− t)ϕ(y)) ≤ f(x)tf(y)1−t.

Polyak [9] introduced strongly convex functions which plays an important role
in optimization theory and mathematical economics.

A function f : I → R is said to be strongly convex with modulus c > 0 on I if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ct(1− t)(x− y)2,

for all x, y ∈ I and t ∈ (0, 1).
Sarikaya [11] defined strongly log-convex functions as:

Definition 4.2. A positive function f : I → (0,∞) is said to be strongly log-convex
with respect to c > 0 if

f(tx+ (1− t)y) ≤ f(x)tf(y)1−t − ct(1− t)(x− y)2,

for all x, y ∈ I and t ∈ (0, 1).

In this section we relate Hermite Hadamard type inequalities to some special
means. Firstly, let us recall the following means for positive a, b ∈ R:
Arithmetic mean:

A(a, b) =
a+ b

2
,

Geometric mean:
G(a, b) =

√
ab,

Logarithmic mean:

L(a, b) =
b− a

log(b)− log(a)
.

Theorem 4.3. If the positive function f : I → (0,∞) is semi log-ϕ convex function
and Lebesgue integrable on I, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

G(f(x), f(ϕ(a) + ϕ(b)− x))dx ≤ G(f(a), f(b)),

for all a, b ∈ I, a < b.

Proof. Since f is semi log-ϕ convex, we have

f(tϕ(a) + (1− t)ϕ(b)) ≤ f(a)tf(b)1−t, ∀ t ∈ (0, 1)

and
f((1− t)ϕ(a) + tϕ(b)) ≤ f(a)1−tf(b)t, ∀ t ∈ (0, 1).

By multiplying both inequalities, we get

f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + tϕ(b)) ≤ f(a)f(b).

Now, taking square root, we get

G(f(tϕ(a) + (1− t)ϕ(b)), f((1− t)ϕ(a) + tϕ(b))) ≤ G(f(a), f(b)).
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By integrating over the interval (0, 1) and replacing x = tϕ(a) + (1 − t)ϕ(b), we get
the required inequality. �

Theorem 4.4. If the positive function f : I → (0,∞) is semi log-ϕ convex function
and Lebesgue integrable on I, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤ L(f(b), f(a)) ≤ f(a) + f(b)

2
,

for all a, b ∈ I, a < b.

Proof. Since f is semi log-ϕ convex, we have

f(tϕ(a) + (1− t)ϕ(b)) ≤ f(a)tf(b)1−t, ∀ t ∈ (0, 1).

Integrating over the interval (0, 1), we get∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))dt ≤
∫ 1

0

f(a)tf(b)1−tdt

=
f(b)− f(a)

log f(b)− log f(a)
= L(f(b), f(a)) ≤ f(a) + f(b)

2
.

Substituting x = tϕ(a) + (1− t)ϕ(b), we get the required result. �

Theorem 4.5. If the functions f, g : I → (0,+∞) are semi log-ϕ convex and Lebesgue
integrable on I, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)g(x)dx ≤ L(f(b)g(b), f(a)g(a))

≤ 1

4
{(f(b) + f(a))L(f(b), f(a)) + (g(a) + g(b))L(g(b), g(a))},

for all a, b ∈ I, a < b.

Proof. Since f, g are semi log-ϕ convex, we have

f(tϕ(a) + (1− t)ϕ(b)) ≤ f(a)tf(b)1−t, ∀ t ∈ (0, 1)

and
g(tϕ(a) + (1− t)ϕ(b)) ≤ g(a)tg(b)1−t, ∀ t ∈ (0, 1).

Multiplying both inequalities and integrating over the interval (0, 1), we get∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))g(tϕ(a) + (1− t)ϕ(b))dt

≤
∫ 1

0

f(a)tf(b)1−tg(a)tg(b)1−tdt

=
f(b)g(b)− f(a)g(a)

log(f(b)g(b))− log(f(a)g(a))

= L(f(b)g(b), f(a)g(b)). (4.1)

By Young’s inequality, we have∫ 1

0

f(a)tf(b)1−tg(a)tg(b)1−tdt
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≤ 1

2

∫ 1

0

{[f(a)tf(b)1−t]2 + [g(a)tg(b)1−t]2}dt

=
1

4

[
(f(b))2 − (f(a))2

log(f(b))− log(f(a))
+

(g(b))2 − (g(a))2

log(g(b))− log(g(a))

]
=

1

4

{
(f(a) + f(b))L(f(b), f(a)) + (g(a) + g(b))L(g(b), g(a))

}
. (4.2)

Using (4.1) and (4.2) and substituting x = tϕ(a)+(1−t)ϕ(b), we get the required
result. �

Definition 4.6. Let f : I → (0,∞) be a positive function. We say that f is strongly
log-ϕ convex with respect to c > 0 if

f(tϕ(x) + (1− t)ϕ(y)) ≤ f(ϕ(x))tf(ϕ(y))1−t − ct(1− t)(ϕ(x)− ϕ(y))2,

for all x, y ∈ I and t ∈ (0, 1).

Remark 4.7. From the above inequality, using arithmetic mean- geometric mean, we
have

f(tϕ(x) + (1− t)ϕ(y)) ≤ f(ϕ(x))tf(ϕ(y))1−t − ct(1− t)(ϕ(x)− ϕ(y))2

≤ tf(ϕ(x)) + (1− t)f(ϕ(y))− ct(1− t)(ϕ(x)− ϕ(y))2

≤ max{f(ϕ(x)), f(ϕ(y))} − ct(1− t)(ϕ(x)− ϕ(y))2.

Example 4.8. Let

ϕ(x) =

{
1, x ≥ 0
−1, x < 0.

Then for c = 1
4 the function

f(x) =

{
0, −1 < x < 1
1, otherwise

is strongly log-ϕ convex function with respect to c on R.

Theorem 4.9. Let ϕ : [a, b]→ [a, b] be a continuous function and f : I → (0,∞) be a
positive strongly log-ϕ convex function with respect to c > 0, where a, b ∈ I. If f is
Lebesgue integrable on I then

f

(
ϕ(a) + ϕ(b)

2

)
+
c

2
(ϕ(a)−ϕ(b))2 ≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

G(f(x), f(ϕ(a)+ϕ(b)−x))dx

≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx

≤ L(f(ϕ(b)), f(ϕ(a)))− c

6
(ϕ(a)− ϕ(b))2

≤ f(ϕ(a)) + f(ϕ(b))

2
− c

6
(ϕ(a)− ϕ(b))2.
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Proof. Since f is strongly log-ϕ convex, we have for t ∈ (0, 1)

f(
ϕ(a) + ϕ(b)

2
)

≤
√
f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + tϕ(b))− c

4
(ϕ(a)− ϕ(b))2(1− 2t)2

≤ f(tϕ(a) + (1− t)ϕ(b))

2
+
f((1− t)ϕ(a) + tϕ(b))

2
− c

4
(ϕ(a)− ϕ(b))2(1− 2t)2.

Integrating the above inequality over (0, 1) and substituting x = tϕ(a) + (1 − t)ϕ(b)
we get

f

(
ϕ(a) + ϕ(b)

2

)
+

c

12
(ϕ(a)− ϕ(b))2

≤
∫ ϕ(b)

ϕ(a)

G(f(x), f(ϕ(a) + ϕ(b)− x))dx (4.3)

≤
∫ ϕ(b)

ϕ(a)

A(f(x), f(ϕ(a) + ϕ(b)− x))dx. (4.4)

Using
∫ ϕ(b)
ϕ(a)

f(x)dx =
∫ ϕ(b)
ϕ(a)

f(ϕ(a) + ϕ(b)− x)dx, (4.3) becomes

f

(
ϕ(a) + ϕ(b)

2

)
+

c

12
(ϕ(a)− ϕ(b))2

≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

G(f(x), f(ϕ(a) + ϕ(b)− x))dx

≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx.

Again, using strongly log-ϕ convexity of f , we get

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx =

∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))dt

≤
∫ 1

0

[f(ϕ(a)]t[f(ϕ(b)]1−tdt−
∫ 1

0

ct(1− t)(ϕ(a)− ϕ(b))2dt

=
f(ϕ(b))− f(ϕ(a))

log(f(ϕ(b)))− log(f(ϕ(a)))
− c

6
(ϕ(a)− ϕ(b))2

= L(f(ϕ(b)), f(ϕ(a)))− c

6
(ϕ(a)− ϕ(b))2

≤ A(f(ϕ(b)), f(ϕ(a)))− c

6
(ϕ(a)− ϕ(b))2

=
f(ϕ(b)) + f(ϕ(a))

2
− c

6
(ϕ(a)− ϕ(b))2.

�
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Theorem 4.10. Let ϕ : [a, b]→ [a, b] be a continuous function, where a, b ∈ I, and let
f : I → (0,∞) be a positive strongly log-ϕ convex function with respect to c > 0. If f
is Lebesgue integrable on I then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)f(ϕ(b) + ϕ(a)− x)dx

≤ f(ϕ(a))f(ϕ(b)) +
c2

30
(ϕ(b)− ϕ(a))4

−4c
(ϕ(b)− ϕ(a))2

(log(f(ϕ(b)))− log(f(ϕ(a))))2
[A(f(ϕ(b)), f(ϕ(a)))− L(f(ϕ(b)), f(ϕ(a)))].

Proof. Since f is strongly log-ϕ convex, we have for t ∈ (0, 1)

f(tϕ(a) + (1− t)ϕ(b)) ≤ f(ϕ(a))tf(ϕ(b))1−t − ct(1− t)(ϕ(a)− ϕ(b))2,

and

f((1− t)ϕ(a) + tϕ(b)) ≤ f(ϕ(a))1−tf(ϕ(b))t − ct(1− t)(ϕ(a)− ϕ(b))2.

Multiplying both inequalities and integrating over (0, 1), we get

∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + tϕ(b))dt

≤ f(ϕ(a))f(ϕ(b))− (ϕ(a)− ϕ(b))2
∫ 1

0

ct(1− t)
{
f(ϕ(b))

[
f(ϕ(a))

f(ϕ(b))

]t

+f(ϕ(a))

[
f(ϕ(b))

f(ϕ(a))

]t}
dt+ c2(ϕ(a)− ϕ(b))4

∫ 1

0

t2(1− t)2dt. (4.5)

Since ∫ 1

0

t(1− t)
[
f(ϕ(a))

f(ϕ(b))

]t
dt

=
2

f(ϕ(b))(log(f(ϕ(a)))− log(f(ϕ(b))))2
[A(f(ϕ(b)), f(ϕ(a)))− L(f(ϕ(b)), f(ϕ(a)))].

(4.6)
Similarly, ∫ 1

0

t(1− t)
[
f(ϕ(a))

f(ϕ(b))

]t
dt

=
2

f(ϕ(a))(log(ϕ(b))− log(ϕ(a)))2

[
A(f(ϕ(b)), f(ϕ(a)))− L(f(ϕ(b)), f(ϕ(a)))

]
.

(4.7)
Substituting (4.6) and (4.7) in (4.5) and replacing x = tϕ(a) + (1− t)ϕ(b), we get the
required inequality. �
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Theorem 4.11. Let ϕ : [a, b]→ [a, b] be a continuous function, where a, b ∈ I, and let
f, g : I → (0,∞) be a positive strongly log-ϕ convex functions with respect to c > 0.
If f and g are Lebesgue integrable, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)g(x)dx

≤ L(f(ϕ(b))g(ϕ(b)), f(ϕ(a))g(ϕ(a))) +
c2

30
(ϕ(a)− ϕ(b))4 − 2c(ϕ(b)− ϕ(a))2

×
[
A(f(ϕ(b)), f(ϕ(a))) − L(f(ϕ(b)), f(ϕ(a)))

(log(f(ϕ(b))) − log(f(ϕ(a))))2
+

A(g(ϕ(b)), g(ϕ(a))) − L(g(ϕ(b)), g(ϕ(a)))

(log(g(ϕ(b))) − log(g(ϕ(a))))2

]

≤ 1

4

[
{f(ϕ(a))+f(ϕ(b))}L(f(ϕ(b)), f(ϕ(a)))+{g(ϕ(a))+g(ϕ(b))}L(g(ϕ(b)), g(ϕ(a)))

]
+
c2

30
(ϕ(a)− ϕ(b))4 − 2c(ϕ(b)− ϕ(a))2

×
[
A(f(ϕ(b)), f(ϕ(a))) − L(f(ϕ(b)), f(ϕ(a)))

(log(f(ϕ(b))) − log(f(ϕ(a))))2
+

A(g(ϕ(b)), g(ϕ(a))) − L(g(ϕ(b)), g(ϕ(a)))

(log(g(ϕ(b))) − log(g(ϕ(a))))2

]
.

Proof. The proof is similar to Theorem 4.10 �
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On vector variational-like inequalities and
vector optimization problems in Asplund spaces

Mihaela Miholca

Abstract. In this paper, we consider different kinds of generalized invexity for vec-
tor valued functions and a vector optimization problem. Some relations between
some vector variational-like inequalities and a vector optimization problem are
established using the properties of Mordukhovich limiting subdifferentials under
C − η−strong pseudomonotonicity.
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dukhovich limiting subdifferentials, Asplund space, C − η−strong pseudomono-
tonicity.

1. Introduction

In 1998, Giannessi [9] first used, so called, Minty type vector variational inequal-
ity (in short, MV V I) to establish the necessary and sufficient conditions for a point to
be an efficient solution of a vector optimization problem (in short, (V OP )) for differ-
entiable and convex functions. Since then, several researchers have studied (V OP ) by
using different kinds of MV V I under different assumptions, see [1, 2, 10, 15, 19] and
the references therein. Consequently, vector variational inequalities have been gener-
alized in various directions, in particular, vector variational-like inequality problems,
see [1, 13, 14, 20, 23, 28] and the references therein. The vector variational-like in-
equalities are closely related to the concept of the invex and preinvex functions which
generalize the notion of the convexity of functions . The concept of the invexity was
first introduced by Hanson [12]. More recently, the characterization and applications
for generalized invexity were studied by many authors, see [11, 13, 19, 21, 24, 25, 27]
and the references therein.

The relation between the vector variational inequality and the smooth vector
optimization problem has been studied by many authors (see, for example, [9, 23, 26]
and the references therein). Yang et al. [26] extended the result of Giannessi [9, 10]
for differentiable but pseudoconvex functions. Yang and Yang [23] gave some relations
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between Minty variational-like inequalities and the vector optimization problems for
differentiable but pseudo-invex vector-valued functions. Yang et al. [25, 26] and Gar-
zon et al. [6, 7] studied the relations between generalized invexity of a differentiable
function and generalized monotonicity of its gradient mapping. Very recently, Rezaie
and Zafarani [20] showed some relations between the vector variational-like inequali-
ties and vector optimization problems for nondifferential functions under generalized
monotonicity. Al-Homidan and Ansari [1] studied the relation among the generalized
Minty vector variational-like inequality, generalized Stampacchia vector variational-
like inequality and vector optimization problems for nondifferential and nonconvex
functions with Clarke’s generalized directional derivative and then, Ansari and Lee
[2] showed that for pseudoconvex functions with upper Dini directional derivative,
similar results holds. Ansari, Rezaie and Zafarani [3] considered generalized Minty
vector variational-like inequality problems, Stampacchia vector variational-like in-
equality problems and nonsmooth vector optimization problems under nonsmooth
pseudo-invexity assumptions. They also considered the weak formulations of gener-
alized Minty vector variational-like inequality problems and generalized Stampacchia
vector variational-like inequality problems in a very general setting and established
the existence results for their solutions. The main results in [1] and [20] were ob-
tained in the setting of Clarke subdifferential. Since the class of Clarke subdifferential
is larger than the class of Mordukhovich subdifferential, it is necessary to study the
vector variational-like inequalities and vector optimization problems in the setting of
Mordukhovich subdifferential (see [5, 16, 17]). Oveisiha and Zafarani [18] established
some properties of pseudo-invex functions and Mordukhovich limiting subdifferen-
tial and relations between vector variational-like inequalities and vector optimization
problems. Chen and Huang [4] considered the Minty vector variational-like inequal-
ity, Stampacchia vector variational-like inequality and the weak formulations of these
inequalities, defined by means of Mordukhovich limiting subdifferentials in Asplund
spaces. They established some relations between the vector variational-like inequali-
ties and vector optimization problems using the properties of Mordukhovich limiting
subdifferential. Farajzadeh et al. [8] considered generalized variational-like inequali-
ties with set-valued mappings in topological spaces, which include as a special case
the strong vector variational-like inequalities. Motivated and inspired by the work
mentioned above, in this paper we consider the Minty vector variational-like inequal-
ity, Stampacchia vector variational-like inequality and the weak formulations of these
inequalities, defined by means of Mordukhovich limiting subdifferentials in Asplund
spaces. Some relations between vector variational-like inequalities and a vector opti-
mization problem (respectively, between Minty vector variational-like inequality and
Stampacchia vector variational-like inequality) are established using the properties of
Mordukhovich limiting subdifferentials under different kinds of generalized invexity
(respectively, C − η−strong pseudomonotonicity).
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2. Preliminaries

Let X be a Banach space endowed with a norm ‖.‖ and X∗ its dual space with a
norm ‖.‖∗. Denote 〈., .〉, [x, y], ]x, y[ the dual pair between X and X∗, the line segment
for x, y ∈ X and [x, y]\{x, y}, respectively. Let Ω be a nonempty open subset of X.

When functions are not differentiable, we use the concept of subdifferential:
Fréchet subdifferential, Limiting subdifferential and Clarke-Rockafellar subdifferen-
tial.

Definition 2.1. Let X be a Banach space and f : X → R ∪ {∞} a proper l.s.c.
function. We say that f is Fréchet-subdifferentiable and ξ∗ is Fréchet-subderivative of
f at x (ξ∗ ∈ ∂F f(x)) if x ∈ dom f and

lim inf
‖h‖→0

f(x+ h)− f(x)− 〈ξ∗, h〉
‖h‖

≥ 0.

Definition 2.2. [16] Let x ∈ Ω and ε ≥ 0. The set of ε− normals to Ω at x is defined
by

N̂ε(x,Ω) = {x∗ ∈ X∗ | lim sup
u

Ω→x

〈x∗, u− x〉
‖u− x‖

≤ ε}.

If x /∈ Ω, we put N̂ε(x,Ω) = ∅ for all ε ≥ 0.

Definition 2.3. [16] Let x ∈ Ω. Then x∗ ∈ X∗ is a limiting normal to Ω at x if there

are sequences εk ↘ 0, xk
Ω→ x and x∗k

w∗→ x∗ such that x∗k ∈ N̂ε(xk,Ω), for all k ∈ N.
The set of such normals

N(x,Ω) = lim sup
x→x
ε↘0

N̂ε(x,Ω)

is the limiting normal cone to Ω at x. If x /∈ Ω, we put N(x,Ω) = ∅.

Remark 2.4. Note that the symbol u
Ω→ x means that u→ x with u ∈ Ω. The symbol

w∗→ stands for convergence in weak∗ topology.

Definition 2.5. [16] Considering the extended-real-valued function ϕ : X → R =
[−∞,+∞] we say that ϕ is proper if ϕ(x) > −∞ for all x ∈ X and its domain,
domϕ = {x ∈ X : ϕ(x) <∞}, is nonempty. The epigraph of ϕ is defined as

epiϕ = {(x, a) ∈ X ×R/ϕ(x) ≤ a}.

Definition 2.6. [16] Considering a point x ∈ X with | ϕ(x) |<∞, the set

∂Lϕ(x) = {x∗ ∈ X∗ | (x∗,−1) ∈ N((x, ϕ(x)), epi ϕ)}
is the limiting subdifferential of ϕ at x and its elements are limiting subdifferentials
of ϕ at this point. If | ϕ(x) |=∞, we put ∂Lϕ(x) = ∅.

Remark 2.7. [16] It is well known that

∂F f(x) ⊆ ∂Lf(x) ⊆ ∂Cf(x),

where ∂Cf is the Clarke subdifferential.
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Definition 2.8. A Banach space X is Asplund, or it has the Asplund property, if every
convex continuous function ϕ : U → R defined on an open convex subset U of X is
Fréchet differentiable on a dense subset of U.

Remark 2.9. One of the most popular Asplund spaces is any reflexive Banach space
[16].

Theorem 2.10. [16] Let X be an Asplund space and ϕ : X → R be proper and l.s.c.
around x ∈ domϕ, then

∂Lϕ(x) = lim sup
x→x
ε↘0

∂Fϕ(x).

For more details and applications, see [16].

Definition 2.11. Let η : X ×X → X. A subset Ω of X is said to be invex with respect
to η if for any x, y ∈ Ω and λ ∈ [0, 1], we have y + λη(x, y) ∈ Ω.

Hereafter, unless otherwise specified, we assume that X is an Asplund space and
Ω ⊆ X is a nonempty open invex set with respect to the mapping η : Ω× Ω→ X.

Definition 2.12. A mapping η : Ω× Ω→ X is said to be skew if for any x, y ∈ Ω,

η(x, y) + η(y, x) = 0.

Definition 2.13. Let x0 ∈ Ω. A mapping η : Ω×Ω→ X is said to be skew at x0 if for
any x ∈ Ω, x 6= x0,

η(x, x0) + η(x0, x) = 0.

Definition 2.14. [21] Let f : Ω→ R be a function. f is said to be

1. weakly − quasi− invex with respect to η on Ω if for any x, y ∈ Ω,

f(x) ≤ f(y)⇒ ∃ ξ∗ ∈ ∂Lf(y) 〈ξ∗, η(x, y)〉 ≤ 0;

2. quasi− invex with respect to η on Ω if for any x, y ∈ Ω,

f(x) ≤ f(y)⇒ ∀ ξ∗ ∈ ∂Lf(y) 〈ξ∗, η(x, y)〉 ≤ 0;

3. pseudo− invex with respect to η on Ω if for any x, y ∈ Ω,

〈ξ∗, η(x, y)〉 ≥ 0, ∃ ξ∗ ∈ ∂Lf(y)⇒ f(x) ≥ f(y).

In some results of the paper we need to consider some further assumptions on η.
These assumptions are known in invexity literature (Jabarootian and Zafarani (2006)
[13]).
Condition C. Let η : Ω× Ω→ X. Then for any x, y ∈ Ω, λ ∈ [0, 1],{

C1 : η(x, y + λη(x, y)) = (1− λ)η(x, y);
C2 : η(y, y + λη(x, y)) = −λη(x, y).

Remark 2.15. Yang et al. [27] have shown that if η : Ω × Ω → X satisfies condition
C, then for all x, y ∈ Ω, λ ∈ [0, 1],

η(y + λη(x, y), y) = λη(x, y).
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Definition 2.16. Let η : Ω × Ω → X, x0 ∈ Ω . We say that η : Ω × Ω → X satisfies
condition C at x0 if for all x ∈ Ω, λ ∈ [0, 1],

η(x0 + λη(x, x0), x0) = λη(x, x0).

Definition 2.17. Let f = (f1, ..., fn) : Ω→ Rn be a vector-valued function and x0 ∈ Ω.
f is said to be

1. pseudo− invex with respect to η on Ω if for any x, y ∈ Ω,

f(x)− f(y) ∈ −Rn
+\{0} =⇒ 〈∂Lf(y), η(x, y)〉 ⊆ −Rn

+\{0};

2. quasi− invex with respect to η on Ω if for any x, y ∈ Ω,

〈ξ∗, η(x, y)〉 ∈ Rn
+\{0}, ∃ ξ∗ ∈ ∂Lf(y) =⇒ f(x)− f(y) ∈ Rn

+\{0};

3. weakly − quasi− invex with respect to η on Ω if for any x, y ∈ Ω,

〈∂Lf(y), η(x, y)〉 ⊆ Rn
+\{0} =⇒ f(x)− f(y) ∈ Rn

+\{0};

4. weakly − quasi− invex at x0 with respect to η if for any x ∈ Ω,

〈∂Lf(x0), η(x, x0)〉 ⊆ Rn
+\{0} =⇒ f(x)− f(x0) ∈ Rn

+\{0}.

Remark 2.18. Next, we provide an example which shows that a function f =
(f1, ..., fn) it can be pseudo-invex with respect to η on Ω and there exists k, 1 ≤ k ≤ n,
such that fk is not pseudo-invex with respect to η on Ω.

Example 2.19. Let us consider X = R, Ω = [−1, 1], f = (f1, f2) : Ω→ R2 defined as

f1(x) =

{ √
x, x ≥ 0,

x, x < 0,

f2(x) = x

and η : Ω× Ω→ R defined as

η(x, y) = x− y.
We have

∂Lf(x) =


( 1

2
√
x
, 1) x > 0,

[0,∞[×{1}, x = 0,
(1, 1), x < 0.

It is not difficult to see that f is pseudo-invex with respect to η. Function f1 is
not pseudo-invex with respect to η on Ω because for x = −1, y = 0 there exists
ξ∗ = 0 ∈ ∂Lf(y) such that 〈ξ∗, η(x, y)〉 = 0 and f(x) < f(y).

Definition 2.20. [8] A set valued mapping F : Ω → 2X
∗

is said to be C − η−strong
pseudomonotone if for any x, y ∈ Ω,

〈Fx, η(x, y)〉 * −C(x)\{0} =⇒ 〈Fy, η(y, x)〉 ⊆ −C(y).

Definition 2.21. A set valued mapping F : Ω → 2X
∗

is said to be (C,K) − η−strong
pseudomonotone if for any x, y ∈ Ω,

〈Fx, η(x, y)〉 * C =⇒ 〈Fy, η(y, x)〉 ⊆ K.
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Definition 2.22. A set valued mapping F : Ω → 2X
∗

is said to be strictly (C,K) −
η−strong pseudomonotone if for any x, y ∈ Ω, x 6= y,

〈Fx, η(x, y)〉 * C =⇒ 〈Fy, η(y, x)〉 ⊆ K.

Let f = (f1, ..., fn) : Ω → Rn be a vector-valued function, where fi : Ω → R
(i = 1, ..., n) is non-differentiable locally Lipschitz function.

In this paper, we consider the following vector optimization problem:
(V OP ) Minimize f(x) = (f1(x), ..., fn(x))

subject to x ∈ Ω.

Definition 2.23. A point x0 ∈ Ω is said to be an efficient (or Pareto) solution (respec-
tively, weak efficient solution) of (V OP ) if for all x ∈ Ω,

f(x)− f(x0) = (f1(x)− f1(x0), ..., fn(x)− fn(x0)) /∈ −Rn
+\{0},

(respectively, f(x)− f(x0) = (f1(x)− f1(x0), ..., fn(x)− fn(x0)) /∈ −intRn
+),

where Rn
+ is the nonnegative orthant of Rn and 0 is the origin of the nonnegative

orthant.

3. Characterization

We consider the following Minty vector variational-like inequality problems and
Stampacchia vector variational-like inequality problems.
(GGMV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω and all ξi ∈ ∂Lfi(x) (i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −Rn
+\{0}.

(GMV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω there exists ξi ∈ ∂Lfi(x)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −Rn
+\{0}.

(WGGMV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω and all ξi ∈ ∂Lfi(x)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −intRn
+.

(WGMV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω there exists ξi ∈ ∂Lfi(x)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −intRn
+.

(SV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω there exists ξi ∈ ∂Lfi(x0)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −Rn
+\{0}.

(WSV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω there exists ξi ∈ ∂Lfi(x0)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −intRn
+.
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Theorem 3.1. If x0 is a solution of (SV V LIP ), ∂Lf is strictly (intRn
+, intR

n
+) −

η−strong pseudomonotone, η is skew at x0 and 〈 ∂Lf(x0), η(x0, x0)〉 ⊆ Rn
+, then x0

is a solution of (GGMV V LIP ).

Proof. Suppose that x0 is not a solution of (GGMV V LIP ).
Since 〈∂Lf(x0), η(x0, x0)〉 ⊆ Rn

+ it follows that there exist x ∈ Ω, x 6= x0, ζ ∈ ∂Lf(x)
such that

〈ζ, η(x, x0)〉 ∈ −Rn
+\{0}.

Therefore,

〈ζ, η(x, x0)〉 /∈ intRn
+. (3.1)

Since ∂Lf is strictly (intRn
+, intR

n
+)−η−strong pseudomonotone, by (3.1) we obtain

〈∂Lf(x0), η(x0, x)〉 ⊆ intRn
+. (3.2)

Since η is skew at x0, by (3.2) it follows that

〈∂Lf(x0), η(x, x0)〉 ⊆ −intRn
+,

which contradicts the fact that x0 is a solution of (SV V LIP ). Therefore, it follows
that x0 is a solution of (GGMV V LIP ). �

Example 3.2. Let us consider X = R, Ω = [−1, 1], f : Ω→ R defined as

f(x) =

{ √
x, x ≥ 0,
−x, x < 0.

and η : Ω× Ω→ R defined as

η(x, y) = x− y.
We have

∂Lf(x) =


1

2
√
x
, x > 0,

[0,∞[∪{−1}, x = 0,
−1, x < 0.

and ∂Lf is strictly (intR+, intR+)− η−strong pseudomonotone. It is not difficult to
see that x0 = 0 is a solution of (SV V LIP ) and η is skew at x0. Therefore, x0 is a
solution of (GGMV V LIP ).

Corollary 3.3. If x0 is a solution of (SV V LIP ), ∂Lf is strictly (intRn
+, intR

n
+) −

η−strong pseudomonotone and η is skew at x0, then x0 is a solution of (GMV V LIP ).

Corollary 3.4. If x0 is a solution of (WSV V LIP ), ∂Lf is strictly (intRn
+, intR

n
+)−

η−strong pseudomonotone, η is skew at x0 and 〈 ∂Lf(x0), η(x0, x0)〉 ⊆ Rn
+\{0}, then

x0 is a solution of (GGMV V LIP ).

Corollary 3.5. If x0 is a solution of (WSV V LIP ), ∂Lf is strictly (intRn
+, intR

n
+)−

η−strong pseudomonotone and η is skew at x0, then x0 is a solution of
(WGMV V LIP ).

Theorem 3.6. If x0 is a solution of (V OP ), f is quasi-invex with respect to η on Ω
and η is skew, then x0 is a solution of (GGMV V LIP ).
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Proof. Suppose that x0 is not a solution of (GGMV V LIP ). It follows that there exist
x ∈ Ω, ζ ∈ ∂Lf(x) such that we have

〈ζ, η(x, x0)〉 ∈ −Rn
+\{0}. (3.3)

Since η is skew, by (3.3) we obtain

〈ζ, η(x0, x)〉 ∈ Rn
+\{0}.

Since f is quasi-invex, it follows that

f(x0)− f(x) ∈ Rn
+\{0},

which contradicts the fact that x0 is a solution of (V OP ). Therefore, x0 is a solution
of (GGMV V LIP ). �

Remark 3.7. In [4] (Theorem 3.1) the authors obtained this result by assuming that
fi(i = 1, ..., n) are invex with respect to η on Ω. Next, we provide an example which
shows that a function f = (f1, ..., fn) it can be quasi-invex with respect to η on Ω
and there exists k, 1 ≤ k ≤ n, such that fk is not invex with respect to η on Ω.

Example 3.8. Let us consider X = R, Ω = [− 1
5 ,

1
5 ], f = (f1, f2) : Ω→ R2 defined as

f1(x) =

{
x2 + 2x, x > 0,
−x, x ≤ 0,

f2(x) =

{
x3 − 2x2 + x, x ≥ 0,
−x, x < 0,

and η : Ω× Ω→ R defined as

η(x, y) = x− y.
We have

∂Lf(x) =

 (2x+ 2, 3x2 − 4x+ 1), x > 0,
(k, t), k ∈ {2,−1}, t ∈ {1,−1}, x = 0.
(−1,−1), x < 0.

It is easy to observe that x0 = 0 is a solution of (V OP ), η is skew and function f is
quasi-invex with respect to η on Ω. Function f2 is not invex with respect to η on Ω
because for x = 1, y = 0 we obtain

f2(1)− f2(0) < 〈ξ∗, η(1, 0)〉,

for ξ∗ = 1.

Corollary 3.9. If x0 is a solution of (V OP ), f is quasi-invex with respect to η on Ω
and η is skew, then x0 is a solution of (GMV V LIP ).

Theorem 3.10. If x0 is a solution of (V OP ), f is weakly quasi-invex at x0 with respect
to η on Ω and η is skew at x0, then x0 is a solution of (GMV V LIP ).

Proof. Suppose that x0 is not a solution of (GMV V LIP ). Therefore, there exists
x ∈ Ω such that for all ξ∗ ∈ ∂Lf(x) we have

〈ξ∗, η(x, x0)〉 ∈ −Rn
+\{0}. (3.4)
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Hence,

〈∂Lf(x), η(x, x0)〉 ⊆ −Rn
+\{0}. (3.5)

Since η is skew at x0 we obtain

〈∂Lf(x), η(x0, x)〉 ⊆ Rn
+\{0}.

Since f is weakly quasi-invex at x0 with respect to η on Ω it follows that

f(x0)− f(x) ∈ Rn
+\{0},

which contradicts the fact that x0 is a solution of (V OP ). Therefore, x0 is a solution
of (GMV V LIP ). �

Remark 3.11. In [18] (Theorem 13) the authors obtained this result by assuming that
fi(i = 1, ..., n) are pseudo-invex with respect to η on Ω. Next, we provide an example
which shows that a function f = (f1, ..., fn) it can be weakly quasi-invex with respect
to η on Ω and there exists k, 1 ≤ k ≤ n, such that fk is not pseudo-invex with respect
to η on Ω.

Example 3.12. Let us consider X = R, Ω = [−1, 1], f = (f1, f2) : Ω→ R2 defined as

f1(x) =

{ √
x, x ≥ 0,

x, x < 0,

f2(x) =

{
1
2

√
x, x ≥ 0,

−x, x < 0,

x0 = 0 and η : Ω× Ω→ R defined as

η(x, y) = x− y.
We obtain that

∂Lf1(x) =


( 1

2
√
x
, 1

4
√
x

), x > 0,

[0,∞[×([0,∞[∪{−1}), x = 0,
(1,−1), x < 0.

It is not difficult to verify that f is weakly quasi-invex at x0 with respect to η, x0 = 0
is solution of (V OP ), η is skew at x0 and f1 is not pseudo-invex with respect to η on
Ω because for x = −1, y = 0 there exists ξ∗ = 0 ∈ ∂Lf(y) such that 〈ξ∗, η(x, y)〉 = 0
and f(x) < f(y).

Theorem 3.13. Suppose that x0 is a solution of (SV V LIP ) and f is pseudo-invex
with respect to η on Ω. Then, x0 is a solution of (V OP ).

Proof. Suppose that x0 is not a solution of (V OP ). Therefore, there exists x ∈ Ω such
that

f(x)− f(x0) ∈ −Rn
+\{0}.

Since f is pseudo-invex with respect to η on Ω, it follows that

〈∂Lf(x0), η(x, x0)〉 ⊆ −Rn
+\{0},

which contradicts the fact that x0 is a solution of (SV V LIP ). Therefore, x0 is a
solution of (V OP ).



164 Mihaela Miholca

Remark 3.14. In [4] (Theorem 3.2) the authors obtained this result by assuming that
fi(i = 1, ..., n) are invex with respect to η on Ω. Next, we provide an example which
shows that a function f = (f1, ..., fn) it can be pseudo-invex with respect to η on Ω
and there exists k, 1 ≤ k ≤ n, such that fk is not invex with respect to η on Ω.

Example 3.15. Let us consider X = R, Ω = [−1, 1], f = (f1, f2) : Ω→ R2 defined as

f1(x) =

{ √
x, x ≥ 0,
−x, x < 0,

f2(x) = x

and η : Ω× Ω→ R defined as
η(x, y) = x− y.

We have

∂Lf1(x) =


( 1

2
√
x
, 1), x > 0,

([0,∞[∪{−1})× {1}, x = 0,
(−1, 1), x < 0.

It is not difficult to see that x0 = 0 is solution of (SV V LIP ), f is pseudo-invex with
respect to η. Function f1 is not invex with respect to η on Ω because for x = 1, y = 0
we obtain

f(1)− f(0) < 〈ξ∗, η(1, 0)〉,
for ξ∗ = 2.
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Stud. Univ. Babeş-Bolyai Math. 59(2014), No. 2, 167–176

New univalence criteria for some integral
operators

Virgil Pescar

Abstract. In this work we consider some integral operators for analytic functions
in the open unit disk and we obtain new univalence criteria for these integral
operators, using Mocanu’s and Şerb’s Lemma, Pascu’s Lemma.
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1. Introduction

Let A be the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n,

normalized by f(0) = f ′(0)− 1 = 0, which are analytic in the open unit disk

U = {z ∈ C : |z| < 1} .
We denote S the subclass of A consisting of functions f ∈ A, which are univalent

in U . We consider the integral operators

Hn(z) =

{
γ

∫ z

0

uγ−1
(
f1(u)

u

)α1

· · ·
(
fn(u)

u

)αn
du

} 1
γ

, (1.1)

Tn(z) =

{
γ

∫ z

0

uγ−1
(
f1(u)

u

)α1

· · ·
(
fn(u)

u

)αn
(f ′1(u))

β1 · · · (f ′n(u))
βn du

} 1
γ

, (1.2)

for the functions fj ∈ A and the complex numbers γ, αj , βj , γ 6= 0, j = 1, n.
In this work we define a new general integral operator Vn given by

Vn(z) =

{
δ

∫ z

0

uδ−1
(
f1(u)

g1(u)

)α1

· · ·
(
fn(u)

gn(u)

)αj (f ′1(u)

g′1(u)

)β1

· · ·
(
f ′n(u)

g′n(u)

)βn
du

} 1
δ

(1.3)

for fj , gj ∈ A and the complex numbers αj , βj , δ, δ 6= 0, j = 1, n.
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The integral operator Vn is the most general integral operator.

Remarks. For different particular cases for parameters δ, αj , βj ,
j = 1, n, we obtain the integral operators which have been defined and studied by
Kim-Merkes, Pfaltzgraff, Pascu, Pescar, Owa, D. Breaz and N. Breaz, Frasin, Ovesea.

i1) For n = 1, δ = 1, β1 = 0, g1(z) = z we obtain the integral operator which was
introduced and studied by Kim-Merkes [4].

i2) For n = 1, δ = 1, α1 = 0 we have the integral operator that was introduced and
studied by Pfaltzgraff [10].

i3) For n = 1, β1 = 0, g1(z) = z we obtain the integral operator which was defined
and studied by Pescar and Pascu [8].

i4) For n = 1, α1 = 0, g1(z) = z we have the integral operator, which was defined
and studied by Pescar and Owa [9].

i5) For gi(z) = z, i = 1, n, δ = γ and β1 = · · · = βn = 0 we obtain the integral
operator Hn, (1.1), which was defined and studied by D. Breaz and N. Breaz [1],
and this integral operator is a generalization of the integral operator defined by
Pescar and Pascu [8].

i6) For α1 = α2 = · · · = αn = 0, δ = γ, gi(z) = z, i = 1, n we have the integral
operator which was defined and studied by D. Breaz, N. Breaz [2] and this
integral operator is a generalization of the integral operator defined by Pescar
and Owa [9].

i7) For n = 1, g1(z) = z we obtain the integral operator which is defined and studied
by Ovesea [6].

i8) For gi(z) = z, i = 1, n, δ = γ we obtain the integral operator Tn that was defined
and studied by Frasin [3], and this integral operator is a generalization of the
integral operator defined by Ovesea [6].

In this paper we derive certain sufficient conditions of univalence for the integral
operators Hn, Tn, Vn, using Mocanu’s and Şerb’s Lemma, Pascu’s Lemma.

2. Preliminary results

In order to prove main results we will use the lemmas.

Lemma 2.1. Mocanu and Şerb [5]. Let M0 = 1, 5936... the positive solution of equation

(2−M)eM = 2. (2.1)

If f ∈ A and ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤M0, (z ∈ U), (2.2)

then ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1, (z ∈ U). (2.3)

The edge M0 is sharp.
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Lemma 2.2. Pascu [7]. Let α be a complex number, Re α > 0 and the function f ∈ A.
If

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, (2.4)

for all z ∈ U , then for any complex number β, Re β ≥ Re α, the function

Fβ(z) =

[
β

∫ z

0

uβ−1f ′(u)du

] 1
β

(2.5)

is regular and univalent in U .

3. Main results

Theorem 3.1. Let β, γ, αj be complex numbers, j = 1, n, Re β > 0,M0 the positive
solution of the equation (2.1), M0 = 1, 5936... and fj ∈ A,
fj(z) = z + a2jz

2 + a3jz
3 + . . ., j = 1, n.

If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.1)

Re β ≥ |α1|+ · · ·+ |αn|, (3.2)

then for all γ be complex numbers, Re γ ≥ Re β, the integral operator Hn given by
(1.1) is in the class S.

Proof. Let’s consider the function

hn(z) =

∫ z

0

(
f1(u)

u

)α1

· · ·
(
fn(u)

u

)αn
du, (z ∈ U), (3.3)

which is regular in U and hn(0) = h′n(0)− 1 = 0.
We have

zh′′n(z)

h′n(z)
= α1

(
zf ′1(z)

f1(z)
− 1

)
+ · · ·+ αn

(
zf ′n(z)

fn(z)
− 1

)
and hence, we obtain

1− |z|2Re β

Re β

∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ ≤ 1− |z|2Re β

Re β

n∑
j=1

[
|αj |

∣∣∣∣zf ′j(z)fj(z)
− 1

∣∣∣∣] , (3.4)

for all z ∈ U .
From (3.1) and Lemma Mocanu and Şerb we obtain∣∣∣∣zf ′j(z)fj(z)

− 1

∣∣∣∣ < 1, (z ∈ U ; j = 1, n). (3.5)

By (3.4) and (3.5) we get

1− |z|2Re β

Re β

∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ ≤ |α1|+ · · ·+ |αn|
Re β

, (z ∈ U). (3.6)
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From (3.2) and (3.6) we have

1− |z|2Re β

Re β

∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ ≤ 1, (z ∈ U). (3.7)

From (3.3) we get h′n(z) =
(
f1(z)
z

)γ1
· · ·
(
fn(z)
z

)γn
and by Lemma Pascu it results

that Hn ∈ S. �

Corollary 3.2. Let α, β be complex numbers, Re β > 0, M0 the positive solution of
the equation (2.1), M0 = 1, 5936... and fj ∈ A,
fj(z) = z + a2jz

2 + . . ., j = 1, n.
If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U ; j = 1, n), (3.8)

Re [n(α− 1) + 1] ≥ Re β ≥ n|α− 1|, (n ∈ N− {0}), (3.9)

then the integral operator Gα,n defined by

Gα,n =

{
[n(α− 1) + 1]

∫ z

0

(f1(u))
α−1 · · · (fn(u))

α−1
du

} 1
n(α−1)+1

(3.10)

is in the class S.

Proof. From (3.10) we have

Gα,n(z) =

{
[n(α− 1) + 1]

∫ z

0

un(α−1)
(
f1(u)

u

)α−1
· · ·
(
fn(u)

u

)α−1
du

} 1
n(α−1)+1

(3.11)
We take γ = n(α− 1) + 1, α1 = α2 = · · · = αn = α− 1 in Theorem 3.1 and we obtain
the Corollary 3.2. �

Theorem 3.3. Let δ, αj , βj be complex numbers, j = 1, n, Re δ > 0,M0 the positive
solution of the equation (2.1), M0 = 1, 5936... and fj ∈ A,
fj(z) = z + a2jz

2 + . . ., j = 1, n.
If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.12)

 n∑
j=1

|αj |

 (2Re δ + 1)
2Re δ+1
2Re δ + 2M0

 n∑
j=1

|βj |

Re δ ≤
≤ (2Re δ + 1)

2Re δ+1
2Re δ Re δ, (3.13)

then for all γ be complex numbers, Re γ ≥ Re δ > 0 the integral operator Tn given by
(1.2) is in the class S.
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Proof. We consider the function

gn(z) =

∫ z

0

(
f1(u)

u

)α1

· · ·
(
fn(u)

u

)αn
· (f ′1(u))

β1 · · · (f ′n(u))
βn du. (3.14)

The function gn is regular in U and we have gn(0) = g′n(0)− 1 = 0.
From (3.14) we obtain

zg′′n(z)

g′n(z)
=

n∑
j=1

[
αj

(
zf ′j(z)

fj(z)
− 1

)]
+

n∑
j=1

[
βj
zf ′′j (z)

f ′j(z)

]
(3.15)

and hence, we get

1− |z|2Re δ

Re δ

∣∣∣∣zg′′n(z)

g′n(z)

∣∣∣∣ ≤
≤ 1− |z|2Re δ

Re δ

n∑
j=1

[
|αj |

∣∣∣∣zf ′j(z)fj(z)
− 1

∣∣∣∣+ |βj ||z|

∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣
]
, (3.16)

for all z ∈ U .
From (3.12), Lemma Mocanu and Şerb, by (3.16) we have

1− |z|2Re δ

Re δ

∣∣∣∣zg′′n(z)

g′n(z)

∣∣∣∣ ≤
≤ 1− |z|2Re δ

Re δ

n∑
j=1

|αj |+
1− |z|2Re δ

Re δ
|z|M0

n∑
j=1

|βj |. (3.17)

Since

max
|z|≤1

1− |z|2Re δ

Re δ
|z| = 2

(2Re δ + 1)
2Re δ+1
2Re δ

,

from (3.17) we obtain

1− |z|2Re δ

Re δ

∣∣∣∣zg′′n(z)

g′n(z)

∣∣∣∣ ≤
≤ 1

Re δ

n∑
j=1

|αj |+
2M0

(2Re δ + 1)
2Re δ+1
2Re δ

n∑
j=1

|βj |, (3.18)

for all z ∈ U .
From (3.13) and (3.18) we get

1− |z|2Re δ

Re δ

∣∣∣∣zg′′n(z)

g′n(z)

∣∣∣∣ ≤ 1, (z ∈ U). (3.19)

From (3.14) we have g′n(z) =
(
f1(z)
z

)α1

· · ·
(
fn(z)
z

)αn
·(f ′1(z))

β1 · · · (f ′n(z))
βn and

by Lemma Pascu we obtain that Tn ∈ S. �

Remark 3.4. For β1 = β2 = · · · = βn = 0, δ = β, from Theorem 3.3 we obtain the
Theorem 3.1.
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Corollary 3.5. Let δ, αj , βj be complex numbers, j = 1, n, 0 < Re δ ≤ 1,M0 the
positive solution of the equation (2.1), M0 = 1, 5936... and fj ∈ A,
fj(z) = z + a2jz

2 + . . ., j = 1, n.
If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.20)

(2Re δ + 1)
2Re δ+1
2Re δ

n∑
j=1

|αj |+ 2(Re δ)M0

 n∑
j=1

|βj |

 ≤
≤ (2Re δ + 1)

2Re δ+1
2Re δ Re δ, (3.21)

then the integral operator In defined by

In(z) =

∫ z

0

(
f1(u)

u

)α1

· · ·
(
fn(u)

u

)αn
· (f ′1(u))

β1 · · · (f ′n(u))
βn du. (3.22)

belongs to the class S.

Proof. We take γ = 1 in the Theorem 3.3. �

Theorem 3.6. Let γ, αj , βj be complex numbers, j = 1, n, Re γ > 0,M0 the positive
solution of the equation (2.1), M0 = 1, 5936... and fj , gj ∈ A,
fj(z) = z + a2jz

2 + . . ., gj(z) = z + b2jz
2 + . . ., j = 1, n.

If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.23)

∣∣∣∣∣g′′j (z)

g′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.24)

(2Re γ + 1)
2Re γ+1
2Re γ

n∑
j=1

|αj |+ 2(Re γ)M0

n∑
j=1

|βj | ≤

≤ (2Re γ + 1)
2Re γ+1
2Re γ Re γ

2
, (3.25)

then for every complex number δ , Re δ ≥ Re γ the integral operator Vn defined by
(1.3) is in the class S.

Proof. We consider the function

pn(z) =

∫ z

0

(
f1(u)

g1(u)

)α1

· · ·
(
fn(u)

gn(u)

)αn
·
(
f ′1(u)

g′1(u)

)β1

· · ·
(
f ′n(u)

g′n(u)

)βn
du (3.26)

The function pn is regular in U and pn(0) = p′n(0)− 1 = 0.
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We have

zp′′n(z)

p′n(z)
=

n∑
j=1

[
αj

(
zf ′j(z)

fj(z)
−
zg′j(z)

gj(z)

)
+ βj

(
zf ′′j (z)

f ′j(z)
−
zg′′j (z)

g′j(z)

)]
,

and hence, we get

zp′′n(z)

p′n(z)
=

n∑
j=1

{
αj

[(
zf ′j(z)

fj(z)
− 1

)
−
(
zg′j(z)

gj(z)
− 1

)]
+ βj

(
zf ′′j (z)

f ′j(z)
−
zg′′j (z)

g′j(z)

)}
(3.27)

for all z ∈ U .
From (3.27) we obtain

1− |z|2Re γ

Re γ

∣∣∣∣zp′′n(z)

p′n(z)

∣∣∣∣ ≤ (3.28)

≤ 1− |z|2Re γ

Re γ


n∑
j=1

[
|αj |

(∣∣∣∣zf ′j(z)fj(z)
− 1

∣∣∣∣+

∣∣∣∣zg′j(z)gj(z)
− 1

∣∣∣∣)+

+ |βj |

(∣∣∣∣∣zf ′′j (z)

f ′j(z)

∣∣∣∣∣+

∣∣∣∣∣zg′′j (z)

g′j(z)

∣∣∣∣∣
)]}

for all z ∈ U .
From (3.23), (3.24) and Lemma Mocanu and Şerb we have∣∣∣∣zf ′j(z)fj(z)

− 1

∣∣∣∣ < 1, (3.29)

∣∣∣∣zg′j(z)gj(z)
− 1

∣∣∣∣ < 1, (3.30)

for all z ∈ U , j = 1, n and hence, we get

1− |z|2Re γ

Re γ

∣∣∣∣zp′′n(z)

p′n(z)

∣∣∣∣ ≤
≤ 1− |z|2Re γ

Re γ
· 2

n∑
j=1

|αj |+
1− |z|2Re γ

Re γ
|z| · 2M0

n∑
j=1

|βj |. (3.31)

Since

max
|z|≤1

1− |z|2Re γ

Re γ
|z| = 2

(2Re γ + 1)
2Re γ+1
2Re γ

, (3.32)

from (3.31) we obtain

1− |z|2Re γ

Re γ

∣∣∣∣zp′′n(z)

p′n(z)

∣∣∣∣ ≤ 2

Re γ

n∑
j=1

|αj |+
4M0

(2Re γ + 1)
2Re γ+1
2Re γ

n∑
j=1

|βj |, (3.33)
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for all z ∈ U .
From (3.25) and (3.33) we get

1− |z|2Re γ

Re γ

∣∣∣∣zp′′n(z)

p′n(z)

∣∣∣∣ ≤ 1, (z ∈ U). (3.34)

From (3.26) we obtain

p′n(z) =

(
f1(z)

g1(z)

)α1

· · ·
(
fn(z)

gn(z)

)αn
·
(
f ′1(z)

g′1(z)

)β1

· · ·
(
f ′n(z)

g′n(z)

)βn
and by Lemma Pascu it results that Vn ∈ S. �

Corollary 3.7. Let γ, αj be complex numbers, j = 1, n, Re γ > 0,M0 the positive
solution of the equation (2.1), M0 = 1, 5936... and fj , gj ∈ A,

fj(z) = z + a2jz
2 + . . . , gj(z) = z + b2jz

2 + . . . , j = 1, n.

If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.35)

∣∣∣∣∣g′′j (z)

g′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.36)

and
n∑
i=1

|αj | ≤
Re γ

2
(3.37)

then for all complex numbers δ , Re δ ≥ Re γ the integral operator Kn defined by

Kn(z) =

{
δ

∫ z

0

uδ−1
(
f1(u)

g1(u)

)α1

· · ·
(
fn(u)

gn(u)

)αn
du

} 1
δ

, (3.38)

is in the class S.

Proof. We take β1 = β2 = · · · = βn = 0 in Theorem 3.6. �

Corollary 3.8. Let γ, αj , βj be complex numbers, j = 1, n, 0 < Re γ ≤ 1,M0 the
positive solution of the equation (2.1), M0 = 1, 5936... and fj , gj ∈ A,

fj(z) = z + a2jz
2 + . . . , gj(z) = z + b2jz

2 + . . . , j = 1, n.

If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.39)

∣∣∣∣∣g′′j (z)

g′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.40)
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and

(2Re γ + 1)
2Re γ+1
2Re γ

n∑
j=1

|αj |+ 2M0(Re γ)

n∑
j=1

|βj | ≤

≤ (2Re γ + 1)
2Re γ+1
2Re γ ·Re γ

2
, (3.41)

then the integral operator Jn defined by

Jn(z) =

∫ z

0

(
f1(u)

g1(u)

)α1

· · ·
(
fn(u)

gn(u)

)αn
·
(
f ′1(u)

g′1(u)

)β1

· · ·
(
f ′n(u)

g′n(u)

)βn
du (3.42)

is in the class S.

Proof. For δ = 1 in Theorem 3.6, we obtain Corollary 3.8. �

Corollary 3.9. Let γ, βj be complex numbers, j = 1, n, Re γ > 0,M0 the positive
solution of the equation (2.1), M0 = 1, 5936... and fj , gj ∈ A,
fj(z) = z + a2jz

2 + . . ., gj(z) = z + b2jz
2 + . . ., j = 1, n.

If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.43)

∣∣∣∣∣g′′j (z)

g′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.44)

and
n∑
j=1

|βj | ≤
(2Re γ + 1)

2Re γ+1
2Re γ

4M0
, (3.45)

then for all complex number δ, Re δ ≥ Re γ, the integral operator Qn defined by

Qn(z) =

{
δ

∫ z

0

uδ−1
(
f ′1(u)

g′1(u)

)β1

· · ·
(
f ′n(u)

g′n(u)

)βn
du

} 1
δ

(3.46)

is in the class S.

Proof. For α1 = α2 = · · · = αn = 0 in Theorem 3.6, we obtain Corollary 3.9. �

Corollary 3.10. Let γ, βj be complex numbers, j = 1, n, 0 < Re γ ≤ 1,M0 the positive
solution of the equation (2.1), M0 = 1, 5936... and fj , gj ∈ A,
fj(z) = z + a2jz

2 + . . ., gj(z) = z + b2jz
2 + . . ., j = 1, n.

If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.47)
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g′j(z)

∣∣∣∣∣ ≤M0, (z ∈ U , j = 1, n), (3.48)

and
n∑
j=1

|βj | ≤
(2Re γ + 1)

2Re γ+1
2Re γ

4M0
, (3.49)

then the integral operator Ln defined by

Ln(z) =

∫ z

0

(
f ′1(u)

g′1(u)

)β1

· · ·
(
f ′n(u)

g′n(u)

)βn
du (3.50)

is in the class S.

Proof. We take δ = 1 and α1 = α2 = · · · = αn = 0 in Theorem 3.6. �
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Mathematica, 47(2002), no. 3, 13-21.

[2] Breaz, D., Breaz, N., Univalence conditions for certain integral operators, Studia Univ.
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Abstract. In this paper we introduce and study a subclass of harmonic univalent
functions defined by convolution and integral convolution. Coefficient bounds, ex-
treme points, distortion bounds, convolution conditions and convex combinations
are determined for functions in this family. Consequently, many of our results are
either extensions or new approaches to those corresponding to previously known
results.
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1. Introduction

A continuous function f = u + iv is a complex- valued harmonic function in
a complex domain Ω if both u and v are real and harmonic in Ω. In any simply-
connected domain D ⊂ Ω, we can write f = h+ g, where h and g are analytic in D.
We call h the analytic part and g the co-analytic part of f. Moreover,

h′ = fz =

∂f
∂x − i

∂f
∂y

2
and ḡ′ = fz̄ =

∂f
∂x + i∂f∂y

2

are always analytic functions in D. A necessary and sufficient condition for f to be
locally univalent and orientation-preserving in D is that |h′(z)| > |g′(z)| in D (see
[13]).

Denote by SH the family of functions f = h+ g which are harmonic, univalent
and orientation-preserving in the open unit disc U = {z ∈ C : |z| < 1} so that f is
normalized by f(0) = h(0) = fz(0)− 1 = 0. Thus, for f = h+ g ∈ SH, the functions
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h and g analytic in U can be expressed in the following forms:

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k (|b1| < 1), (1.1)

and f is then given by

f(z) = z +

∞∑
k=2

akz
k +

∞∑
k=1

bkzk (|b1| < 1). (1.2)

We note that the family SH reduces to the well known class S of normalized
univalent functions if the co-analytic part of f is identically zero (g ≡ 0).

Also, we denote by TSH the subfamily of SH consisting of harmonic functions
f = h+ g such that

h(z) = z −
∞∑
k=2

|ak|zk, g(z) =

∞∑
k=1

|bk|zk. (1.3)

In [3] Clunie and Sheil-Small investigated the class SH as well as its geometric
subclasses and their properties. Since then, there have been several studies related
to the class SH and its subclasses. Following Clunie and Sheil-Small [3], Frasin [7],
Jahangiri [9, 10], Silverman [17], Silverman and Silvia [18], Dixit and Porwal [4], Dixit
et al. [5, 6] and others have investigated various subclasses of SH and its properties.

Recently, Yalçin and Öztürk [20] introduced a new class of harmonic starlike
functions of complex order TS∗H(b) subclass of TSH consisting functions of the form
(1.3) and satisfying the condition

Re

(
1 +

1

b

(
zh′(z)− zg′(z)
h(z) + g(z)

− 1

))
> 0, z ∈ U , b ∈ C\{0}

and settled a conjecture. Further, Halim and Janteng [8] extended the study by intro-
ducing a new class S∗H(b, α), 0 ≤ α < 1 of SH consisting functions of the form (1.2)
and satisfying the condition

Re

(
1 +

1

b

(
zh′(z)− zg′(z)
h(z) + g(z)

− 1

))
> α, z ∈ U , b ∈ C\{0}, 0 ≤ α < 1

and obtained following sufficient condition. If f = h+ ḡ is given by (1.2) and if

∞∑
n=2

(
n− 1 + (1− α)|b|

(1− α)|b|

)
|an|+

∞∑
n=1

(
n+ 1− (1 + α)|b|

(1− α)|b|

)
|bn| ≤ 1

then f ∈ S∗H(b, α). Also, they proved that the coefficient condition

∞∑
n=2

(
n− 1 + (1− α)|b|

(1− α)|b|

)
|an|+

∞∑
n=2

(
n+ 1− (1 + α)|b|

(1− α)|b|

)
|bn| ≤ 1, b1 = 0

is necessary for f = h+ ḡ is given by (1.3) and belongs to TS∗H(b, α).
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The convolution of two power series

Φ(z) = z +

∞∑
k=2

λkz
k, and Ψ(z) = z +

∞∑
k=2

µkz
k (1.4)

is defined by

(Φ ∗Ψ)(z) = z +

∞∑
k=2

λkµkz
k, (1.5)

where λk ≥ 0 and µk ≥ 0. Also the integral convolution is defined by

(Φ �Ψ)(z) = z +

∞∑
k=2

λkµk
k

zk. (1.6)

Motivated by the works of Yalçin and Öztürk [20], Halim and Janteng [8], Jan-
teg and Halim [11] and Magesh and Mayilvaganan [14], we consider the subclass
GH(Φ,Ψ;β, γ, b; t) of functions of the form (1.2) satisfying the condition

Re

(
1 +

1

b

(
(1 + βeiα)

h(z) ∗ Φ(z)− g(z) ∗Ψ(z)

ht(z) � Φ(z) + gt(z) �Ψ(z)
− βeiα − 1

))
> γ, z ∈ U , (1.7)

where b ∈ C\{0}, β ≥ 0, 0 ≤ γ < 1, α ∈ R, ht(z) = (1 − t)z + th(z), gt(z) = tg(z),
0 ≤ t ≤ 1, Φ and Ψ are of the form (1.4). We further let GH(Φ,Ψ;β, γ, b; t) denote
the subclass of GH(Φ,Ψ, β, γ, b; t) consisting of functions f = h+ g ∈ SH such that h
and g are of the form (1.3).

We note that by specializing the functions Φ, Ψ and parameters β, γ and t we
obtain well-known harmonic univalent functions as well as many new ones.

For example,

GH(
z

(1− z)2
,

z

(1− z)2
; 0, 0, b; 1) = TS∗H(b)

was introduced by Yalçin and Öztürk [20] and studied by Halim and Janteng [8],

GH(
z

(1− z)2
,

z

(1− z)2
; 1, γ, b; 1) = TS∗H(γ, b)

was introduced by Stephen et al. [19]. Furthermore,

GH(
z + z2

(1− z)3
,
z + z2

(1− z)3
; 1, γ, 1; 1) = HC(γ)

was studied by Kim et al. [12] and

GH(z +

∞∑
k=2

kn+1zk, z +

∞∑
k=2

kn+1zk; 1, γ, 1; 1) = RS(γ)

was studied by Yalcin et al. [21]. Also,

GH(
z

(1− z)2
,

z

(1− z)2
; 1, γ, 1; 1) = GH(γ)
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was studied by Rosy et al. [16],

GH(
z

(1− z)2
,

z

(1− z)2
;β, γ, 1; t) = GH(β, γ; t)

was considered by Ahuja et al. [1]. Also, the class

GH(Φ,Ψ, β, γ, 1; t) = GH(Φ,Ψ;β, γ, t)

was studied by Magesh and Porwal [15],

GH(Φ,Ψ; 0, γ, 1; 1) = HS(Φ,Ψ; γ)

was studied by Dixit et al. [5],

GH(
z

(1− z)2
,

z

(1− z)2
; 0, γ, 1; 1) = S∗H(γ)

and

GH(
z + z2

(1− z)3
,
z + z2

(1− z)3
; 0, γ, 1; 1) = K(γ)

were introduced and studied by Jahangiri [10]. For γ = 0 the classes S∗H(γ) and K(γ)
were studied by Silverman and Silvia [18], for γ = 0 and b1 = 0 see [2, 17].

If we set β = 1 and α = 0 in the above definition we define the unified class of
harmonic starlike functions of complex order satisfying the following analytic criteria:

Re

(
1 +

2

b

(
h(z) ∗ Φ(z)− g(z) ∗Ψ(z)

ht(z) � Φ(z) + gt(z) �Ψ(z)
− 1

))
> γ, z ∈ U ,

where b ∈ C\{0}, 0 ≤ γ < 1, ht(z) = (1− t)z + th(z), gt(z) = tg(z), 0 ≤ t ≤ 1, Φ and
Ψ are of the form (1.4).

In this paper we give a sufficient condition for f = h+ ḡ given by (1.2) to be in
GH(Φ,Ψ;β, γ, b; t) and it is shown that this condition is also necessary for functions
to be in GH(Φ,Ψ;β, γ, b; t). We also obtain extreme points, distortion bounds, convo-
lution and convex combination properties. Further, we obtain the closure property of
this class under integral operator. We remark that the results so obtained for these
general families can be viewed as extensions and generalizations for various subclasses
of SH as listed previously in this section.

2. Coefficient bounds

Our first theorem gives a sufficient condition for functions to be in GH(Φ,Ψ;β, γ, b; t).

Theorem 2.1. Let f = h+ ḡ be so that h and g are given by (1.1). If
∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

|ak|

+

∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

|bk| ≤ 1, (2.1)

where β ≥ 0, 0 ≤ γ < 1, 0 ≤ t ≤ 1, k2(1 − γ) ≤ [(k − t)(1 + β) + (1 − γ)t|b|]λk and
k2(1− γ) ≤ [(k + t)(1 + β)− (1− γ)t|b|]µk for k ≥ 2. Then f ∈ GH(Φ,Ψ;β, γ, b; t).
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Proof. To prove that f ∈ GH(Φ,Ψ;β, γ, b; t), we only need to show that if (2.1) holds,
then the required condition (1.7) is satisfied. For (1.7), we can write

Re

(
1 +

1

b

(
(1 + βeiα)

h(z) ∗ Φ(z)− g(z) ∗Ψ(z)

ht(z) � Φ(z) + gt(z) �Ψ(z)
− βeiα−1

))
= Re

A(z)

B(z)
>γ, z∈ U .

Using the fact that Re{ω} ≥ γ if and only if |1 − γ + ω| ≥ |1 + γ − ω|, it suffices to
show that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0, z ∈ U , (2.2)

where

A(z) = (1 + βeiα)[h(z) ∗ Φ(z)− g(z) ∗Ψ(z)]

+ [b− (1 + βeiα)][ht(z) � Φ(z) + gt(z) �Ψ(z)]

and

B(z) = b[ht(z) � Φ(z) + gt(z) �Ψ(z)].

Substituting A and B in (2.2) and making use of (2.1), we obtain

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

=
∣∣∣(1 + βeiα)[h(z) ∗ Φ(z)− g(z) ∗Ψ(z)]

+[b− (1 + βeiα)][ht(z) � Φ(z) + gt(z) �Ψ(z)]

+(1− γ)b
(
ht(z) � Φ(z) + gt(z) �Ψ(z)

)∣∣∣
−
∣∣∣(1 + βeiα)[h(z) ∗ Φ(z)− g(z) ∗Ψ(z)]

+[b− (1 + βeiα)][ht(z) � Φ(z) + gt(z) �Ψ(z)]

−(1 + γ)b
(
ht(z) � Φ(z) + gt(z) �Ψ(z)

)∣∣∣
≥ 2(1− γ)|b||z| −

∞∑
k=2

2

[
(k − t)(1 + β) + (1− γ)t|b|

k

]
λk|ak||z|k

−
∞∑
k=1

2

[
(k + t)(1 + β)− (1− γ)t|b|

k

]
µk|bk||z|k

= 2(1− γ)|b||z|

{
1−

∞∑
k=2

[
(k − t)(1 + β) + (1− γ)t|b|

k(1− γ)|b|

]
λk|ak||z|k−1

−
∞∑
k=1

[
(k + t)(1 + β)− (1− γ)t|b|

k(1− γ)|b|

]
µk|bk||z|k−1

}

> 2(1− γ)|b|

{
1−

∞∑
k=2

[
(k − t)(1 + β) + (1− γ)t|b|

k(1− γ)|b|

]
λk|ak|

−
∞∑
k=1

[
(k + t)(1 + β)− (1− γ)t|b|

k(1− γ)|b|

]
µk|bk|

}
≥ 0
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which implies that f ∈ GH(Φ,Ψ;β, γ, b; t).

The harmonic function

f(z) = z +

∞∑
k=2

k(1− γ)|b|
[(k − t)(1 + β) + (1− γ)t|b|]λk

xkz
k

+
∞∑
k=1

k(1− γ)|b|
[(k + t)(1 + β)− (1− γ)t|b|]µk

ykzk,

where

∞∑
k=2

|xk|+
∞∑
k=1

|yk| = 1,

shows that the coefficient bound given by (2.1) is sharp. �

Next, we will show that the sufficient condition (2.1) is also necessary for func-
tions to be in the class GH(Φ,Ψ;β, γ, b; t).

Theorem 2.2. Let f = h+ ḡ be so that h and g are given by (1.3).
Then f ∈ GH(Φ,Ψ;β, γ, b; t) if and only if

∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

ak

+

∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

bk ≤ 1, (2.3)

where β ≥ 0, 0 ≤ γ < 1, 0 ≤ t ≤ 1, k2(1 − γ) ≤ [(k − t)(1 + β) + (1 − γ)t|b|]λk and
k2(1− γ) ≤ [(k + t)(1 + β)− (1− γ)t|b|]µk for k ≥ 2.

Proof. Since GH(Φ,Ψ;β, γ, b; t) ⊂ GH(Φ,Ψ;β, γ, b; t), we only need to prove the only
if part of the theorem. To this end, for functions f of the form (1.3), we notice that
the condition (1.7) is equivalent to

Re



(1 + βeiα)[h(z) ∗ Φ(z)− g(z) ∗Ψ(z)]

+[(1− γ)b− (1 + βeiα)][ht(z) � Φ(z) + gt(z) �Ψ(z)]

b[ht(z) � Φ(z) + gt(z) �Ψ(z)]


≥ 0, z ∈ U .
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Upon choosing the values of z on the positive real axis where 0 ≤ |z| = r < 1, the
above inequality reduces to

Re



(1− γ)b−
∞∑
k=2

[(k − t) + (1− γ)bt]λk

k |ak|r
k−1

−
∞∑
k=1

[(k + t)− (1− γ)bt]µk

k |bk|r
k−1

b

[
1−

∞∑
k=2

tλk

k |ak|rk−1 +
∞∑
k=1

tµk

k |bk|rk−1

]


−Re

βeiα
∞∑
k=2

(k − t)λk

k |ak|r
k−1 +

∞∑
k=1

(k + t)µk

k |bk|r
k−1

b

[
1−

∞∑
k=2

tλk

k |ak|rk−1 +
∞∑
k=1

tµk

k |bk|rk−1

]
 ≥ 0.

Since Re(−eiα) ≥ −|eiα| = −1, the above inequality reduces to

(1− γ)|b| −
∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk

k |ak|r
k−1

−
∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk

k |bk|r
k−1

|b|
[
1−

∞∑
k=2

tλk

k |ak|rk−1 +
∞∑
k=1

tµk

k |bk|rk−1

]


≥ 0. (2.4)

If the condition (2.3) does not hold then the numerator in (2.4) is negative for
r sufficiently close to 1. Thus there exists z0 = r0 in (0, 1) for which the quotient in
(2.4) is negative. This contradicts the condition for f ∈ GH(Φ,Ψ;β, γ, b; t), hence the
proof is complete. �

3. Extreme points and distortion bounds

In this section, our first theorem gives the extreme points of the closed convex
hulls of GH(Φ,Ψ;β, γ, b; t).

Theorem 3.1. Let f be given by (1.3). Then f ∈ GH(Φ,Ψ;β, γ, b; t) if and only if

f(z) =

∞∑
k=1

(Xkhk(z) + Ykgk(z)), (3.1)

where

h1(z) = z, hk(z) = z − k(1− γ)|b|
[(k − t)(1 + β) + (1− γ)t|b|]λk

zk (k = 2, 3, ...),
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gk(z) = z +
k(1− γ)|b|

[(k + t)(1 + β)− (1− γ)t|b|]µk
zk (k = 1, 2, 3, ...),

∞∑
k=1

(Xk + Yk) = 1, Xk ≥ 0, Yk ≥ 0.

In particular, the extreme points of GH(Φ,Ψ;β, γ, b; t) are {hk} and {gk}.

Proof. For functions f of the form (3.1), we have

f(z) =

∞∑
k=1

(Xkhk(z) + Ykgk(z))

=

∞∑
k=1

(Xk + Yk) z −
∞∑
k=2

k(1− γ)|b|
[(k − t)(1 + β) + (1− γ)t|b|]λk

Xkz
k

+

∞∑
k=1

k(1− γ)|b|
[(k + t)(1 + β)− (1− γ)t|b|]µk

Ykz
k.

Then
∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

(
k(1− γ)|b|

[(k − t)(1 + β) + (1− γ)t|b|]λk

)
Xk

+

∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

(
k(1− γ)|b|

[(k + t)(1 + β)− (1− γ)t|b|]µk

)
Yk

=

∞∑
k=2

Xk +

∞∑
k=1

Yk = 1−X1 ≤ 1

and so f ∈ clco GH(Φ,Ψ;β, γ, b; t).
Conversely, suppose that f ∈ clcoGH(Φ,Ψ;β, γ, b; t) and set

Xk =
[(k − t)(1 + β) + (1− γ)t|b|]λk

k(1− γ)|b|
|ak|, k = 2, 3, . . . ,

and

Yk =
[(k + t)(1 + β)− (1− γ)t|b|]µk

k(1− γ)|b|
|bk|, k = 1, 2, . . . ,

where
∞∑
k=1

(Xk + Yk) = 1.

Then, by Theorem 2.2, we have 0 ≤ Xk ≤ 1 (k = 2, 3, . . . ) and 0 ≤ Yk ≤ 1 (k =
1, 2, 3, . . . ). We define

X1 = 1−
∞∑
k=2

Xk −
∞∑
k=1

Yk

and use Theorem 2.2 again to get X1 ≥ 0. Consequently, we obtain

f(z) =

∞∑
k=1

(Xkhk(z) + Ykgk(z)) .
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Another application of Theorem 2.2 shows that GH(Φ,Ψ;β, γ, b; t) is convex and
closed, so clco GH(Φ,Ψ;β, γ, b; t) = GH(Φ,Ψ;β, γ, b; t). In other words, the statement
of Theorem 3.1 holds. �

The following theorem gives the distortion bounds for functions in GH(Φ,Ψ;β, γ, b; t)
which yields a covering result for this class.

Theorem 3.2. Let f ∈ GH(Φ,Ψ;β, γ, b; t) and

A ≤ [(k − t)(1 + β) + (1− γ)t|b|]λk
k
,

A ≤ [(k + t)(1 + β)− (1− γ)t|b|]µk
k

for k ≥ 2, where

A = min

{
[(2− t)(1 + β) + (1− γ)t|b|]λ2

2
, [(2 + t)(1 + β)− (1− γ)t|b|]µ2

2

}
then

|f(z)| ≤ (1 + |b1|)r +

(
1− γ
A
− (1 + t)(1 + β)− (1− γ)t|b|

A
|b1|
)
r2

and

|f(z)| ≥ (1− |b1|)r −
(

1− γ
A
− (1 + t)(1 + β)− (1− γ)t|b|

A
|b1|
)
r2.

Proof. Let f ∈ GH(Φ,Ψ;β, γ, b; t). Taking the absolute value of f , we obtain

|f(z)| ≤ (1 + |b1|)r +

∞∑
k=2

(|ak|+ |bk|)rk

≤ (1 + |b1|)r + r2
∞∑
k=2

(|ak|+ |bk|)

= (1 + |b1|)r +
1− γ
A

r2
∞∑
k=2

(
A

1− γ
|ak|+

A

1− γ
|bk|)

≤ (1 + |b1|)r +
1− γ
A

r2
∞∑
k=2

(
[(k − t)(1 + β) + (1− γ)t|b|]λk

k(1− γ)|b|
|ak|

+
[(k + t)(1 + β)− (1− γ)t|b|]µk

k(1− γ)|b|
|bk|
)

≤ (1 + |b1|)r +
1− γ
A

(
1− (1 + t)(1 + β)− (1− γ)t|b|

(1− γ)
|b1|
)
r2

= (1 + |b1|)r +

(
1− γ
A
− (1 + t)(1 + β)− (1− γ)t|b|

A
|b1|
)
r2

and similarly,

|f(z)| ≥ (1− |b1|)r −
(

1− γ
A
− (1 + t)(1 + β)− (1− γ)t|b|

A
|b1|
)
r2.
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The upper and lower bounds given in Theorem 3.2 are respectively attained by the
following functions:

f(z) = z + |b1|z̄ +

(
1− γ
A
− (1 + t)(1 + β)− (1− γ)t|b|

A
|b1|
)
z̄2

and

f(z) = (1− |b1|)z −
(

1− γ
A
− (1 + t)(1 + β)− (1− γ)t|b|

A
|b1|
)
z2. �

The next covering result follows from the left hand inequality in Theorem 3.2.

Corollary 3.3. Let f of the form (1.3) be so that f ∈ GH(Φ,Ψ;β, γ, b; t) and

A ≤ [(k − t)(1 + β) + (1− γ)t|b|]λk
k
,

A ≤ [(k + t)(1 + β)− (1− γ)t|b|]µk
k

for k ≥ 2, where

A = min

{
[(2− t)(1 + β) + (1− γ)t|b|]λ2

2
, [(2 + t)(1 + β)− (1− γ)t|b|]µ2

2

}
.

Then {
ω ∈ C : |ω| < A+ 1− γ

A
+
A− 1 + γ

A
|b1|
}
⊂ f(U).

4. Convolution and convex combinations

In this section we show that the class GH(Φ,Ψ;β, γ, b; t) is closed under convo-
lution and convex combinations. Now we need the following definition of convolution
of two harmonic functions. For

f(z) = z −
∞∑
k=2

|ak|zk +

∞∑
k=1

|bk|zk

and

F (z) = z −
∞∑
k=2

|Ak|zk +

∞∑
k=1

|Bk|zk,

we define the convolution of two harmonic functions f and F as

(f ∗ F )(z) = f(z) ∗ F (z) = z −
∞∑
k=2

|ak||Ak|zk +

∞∑
k=1

|bk||Bk|zk. (4.1)

Using the definition, we show that the class GH(Φ,Ψ;β, γ, b; t) is closed under convo-
lution.

Theorem 4.1. For 0 ≤ γ < 1, let f ∈ GH(Φ,Ψ;β, γ, b; t) and F ∈ GH(Φ,Ψ;β, γ, b; t).
Then f ∗ F ∈ GH(Φ,Ψ;β, γ, b; t).
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Proof. Let

f(z) = z −
∞∑
k=2

|ak|zk +

∞∑
k=1

|bk|zk

and

F (z) = z −
∞∑
k=2

|Ak|zk +

∞∑
k=1

|Bk|zk

be in GH(Φ,Ψ;β, γ, b; t). Then the convolution f ∗ F is given by (4.1). We wish to
show that the coefficient of f ∗ F satisfy the required condition given in Theorem
2.2. For F ∈ GH(Φ,Ψ;β, γ, b; t), we note that |Ak| ≤ 1 and |Bk| ≤ 1. Now for the
convolution function f ∗ F, we obtain

∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

|ak||Ak|

+

∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

|bk||Bk|

≤
∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

|ak|

+

∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

|bk|

≤ 1,

since f ∈ GH(Φ,Ψ;β, γ, b; t). Therefore f ∗ F ∈ GH(Φ,Ψ;β, γ, b; t). �

Next, we show that the class GH(Φ,Ψ;β, γ, b; t) is closed under convex combina-
tion of its members.

Theorem 4.2. The class GH(Φ,Ψ;β, γ, b; t) is closed under convex combination.

Proof. For i = 1, 2, 3, . . . let fi(z) ∈ GH(Φ,Ψ;β, γ, b; t), where fi is given by

fi(z) = z −
∞∑
k=2

|aik|zk +

∞∑
k=1

|bik|zk.

For
∞∑
i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑
k=2

( ∞∑
i=1

ti|aik|

)
zk +

∞∑
k=1

( ∞∑
i=1

ti|bik|

)
zk.

Since,
∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

|aik|

+

∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

|bik| ≤ 1,
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from the above equation we obtain

∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

∞∑
i=1

ti|aik|

+

∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

∞∑
i=1

ti|bik|

=

∞∑
i=1

ti

{ ∞∑
k=2

[(k − t)(1 + β) + k(1− γ)|b|t]
k(1− γ)|b|

|aik|

+

∞∑
k=1

[(k + t)(1 + β)− k(1− γ)|b|t]
k(1− γ)|b|

|bik|

}

≤
∞∑
i=1

ti = 1.

This is the condition required by (2.3) and so

∞∑
i=1

tifi(z) ∈ GH(Φ,Ψ;β, γ, b; t). �

5. Class preserving integral operator

Finally, we consider the closure property of the class GH(Φ,Ψ;β, γ, b; t) under
the generalized Bernardi-Libera-Livingston integral operatorLc which is defined by

Lc[f(z)] =
c+ 1

zc

z∫
0

ξc−1f(ξ)dξ (c > −1).

Theorem 5.1. If f ∈ GH(Φ,Ψ;β, γ, b; t), then Lc[f(z)] ∈ GH(Φ,Ψ;β, γ, b; t).

Proof. From the representation of Lc[f(z)], it follows that

Lc[f(z)] =
c+ 1

zc

z∫
0

ξc−1h(ξ)dξ +
c+ 1

zc

z∫
0

ξc−1g(ξ)dξ

=
c+ 1

zc

z∫
0

ξc−1

(
ξ −

∞∑
k=2

|ak|ξk
)
dξ +

c+ 1

zc

z∫
0

ξc−1

( ∞∑
k=1

|bk|ξk
)
dξ

= z −
∞∑
k=2

Akz
k +

∞∑
k=1

Bkz
k,
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where Ak = c+1
c+k |ak| and Bk = c+1

c+k |bk|. Hence

∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

(
c+ 1

c+ k
|ak|
)

+

∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

(
c+ 1

c+ k
|bk|
)

≤
∞∑
k=2

[(k − t)(1 + β) + (1− γ)t|b|]λk
k(1− γ)|b|

|ak|+
∞∑
k=1

[(k + t)(1 + β)− (1− γ)t|b|]µk
k(1− γ)|b|

|bk|

≤ 1,

since f ∈ GH(Φ,Ψ;β, γ, b; t), therefore by Theorem 2.2, Lc(f(z)) ∈ GH(Φ,Ψ;β, γ, b; t).
�
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Differential inequalities and criteria for
starlike and convex functions

Sukhwinder Singh Billing

Abstract. We, here, study a differential inequality involving a multiplier transfor-
mation. In particular, we obtain certain new criteria for starlikeness and convexity
of normalized analytic functions. We also show that our results generalize some
known results.

Mathematics Subject Classification (2010): 30C80, 30C45.

Keywords: Multiplier transformation, analytic function, starlike function, convex
function.

1. Introduction

Let A be the class of all functions f which are analytic in the open unit disk
E = {z ∈ C : |z| < 1} and normalized by the conditions that f(0) = f ′(0) − 1 = 0.
Thus, f ∈ A has the Taylor series expansion

f(z) = z +

∞∑
k=2

akz
k.

Let Ap denote the class of functions of the form

f(z) = zp +

∞∑
k=p+1

akz
k, p ∈ N = {1, 2, 3, · · · },

analytic and multivalent in the open unit disk E. Note that A1 = A. For f ∈ Ap,
define the multiplier transformation Ip(n, λ) as

Ip(n, λ)f(z) = zp +

∞∑
k=p+1

(
k + λ

p+ λ

)n
akz

k, (λ ≥ 0, n ∈ N0 = N ∪ {0}).
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The operator Ip(n, λ) has been recently studied by Aghalary et al. [1]. I1(n, 0) is the
well-known Sălăgean [6] derivative operator Dn, defined for f ∈ A as under:

Dnf(z) = z +

∞∑
k=2

knakz
k.

A function f ∈ Ap is said to be p-valent starlike of order α (0 ≤ α < p) in E, if
it satisfies the inequality

<
(
zf ′(z)

f(z)

)
> α, z ∈ E.

Let S∗p (α) denote the class of all such functions. A function f ∈ Ap is said to be
p-valent convex of order α (0 ≤ α < p) in E, if it satisfies the inequality

<
(

1 +
zf ′′(z)

f ′(z)

)
> α, z ∈ E.

We denote by Kp(α), the class of all functions f ∈ Ap that are p-valent convex of
order α (0 ≤ α < p) in E. Note that S∗(α) = S∗1 (α) and K(α) = K1(α) are the usual
classes of univalent starlike functions (w.r.t. the origin) of order α (0 ≤ α < 1) and
univalent convex functions of order α (0 ≤ α < 1).

For two analytic functions f and g in the unit disk E, we say that f is subordinate
to g in E and write as f ≺ g if there exists a Schwarz function w analytic in E with
w(0) = 0 and |w(z)| < 1, z ∈ E such that f(z) = g(w(z)), z ∈ E. In case the function
g is univalent, the above subordination is equivalent to: f(0) = g(0) and f(E) ⊂ g(E).

Liu [3], studied the differential operator (1−λ)

(
f(z)

zp

)α
+λ

zf ′(z)

pf(z)

(
f(z)

zp

)α
to

make certain estimates on

(
f(z)

zp

)α
where α > 0, λ ≥ 0 are some real numbers and

f ∈ Ap. As special cases of our main results, we also obtain the differential operators

of above nature, but our estimations are on
zf ′(z)

f(z)
and 1 +

zf ′′(z)

f(z)
, consequently we

get certain new criteria for starlikeness and convexity of f ∈ Ap.
To prove our main result, we shall make use of following lemma of Hallenbeck

and Ruscheweyh [2].

Lemma 1.1. Let G be a convex function in E, with G(0) = a and let γ be a complex
number, with <(γ) > 0. If F (z) = a + anz

n + an+1z
n+1 + · · · , is analytic in E and

F ≺ G, then

1

zγ

∫ z

0

F (w)wγ−1 dw ≺ 1

nzγ/n

∫ z

0

G(w)w
γ
n−1 dw.
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2. Main results

Theorem 2.1. Let α, β, δ be real numbers such that α >
2

1− δ
, 0 ≤ δ < 1, β > 0

and let

0 < M ≡M(α, β, λ, δ, p) =
[α+ β(p+ λ)][α(1− δ)− 2]

α[1 + β(1− δ)(p+ λ)]
, (2.1)

If f ∈ Ap satisfies the differential inequality∣∣∣∣∣
(
Ip(n, λ)f(z)

zp

)β [
1− α+ α

Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

]
− 1

∣∣∣∣∣ < M(α, β, λ, δ, p), z ∈ E, (2.2)

then

<
(
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

)
> δ, z ∈ E.

Proof. Let us define (
Ip(n, λ)f(z)

zp

)β
= u(z), z ∈ E.

Differentiate logarithmically, we obtain

zI ′p(n, λ)f(z)

Ip(n, λ)f(z)
− p =

zu′(z)

βu(z)
(2.3)

In view of the equality

zI ′p(n, λ)f(z) = (p+ λ)Ip(n+ 1, λ)f(z)− λIp(n, λ)f(z),

(2.3) reduces to
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)
= 1 +

zu′(z)

β(p+ λ)u(z)

Therefore, in view of (2.2), we have

u(z) +
α

β(p+ λ)
zu′(z) ≺ 1 +Mz. (2.4)

The use of Lemma 1.1

(
taking γ =

β(p+ λ)

α

)
in (2.4) gives

u(z) ≺ 1 +
β(p+ λ)Mz

α+ β(p+ λ)
,

or

|u(z)− 1| < β(p+ λ)M

α+ β(p+ λ)
< 1,

therefore, we obtain

|u(z)| > 1− β(p+ λ)M

α+ β(p+ λ)
(2.5)

Write
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)
= (1− δ)w(z) + δ, 0 ≤ δ < 1 and therefore (2.2) reduces to

|(1− α)u(z) + αu(z)[(1− δ)w(z) + δ]− 1| < M.
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We need to show that <(w(z)) > 0, z ∈ E. If possible, suppose that <(w(z)) ≯ 0, z ∈
E, then there must exist a point z0 ∈ E such that w(z0) = ix, x ∈ R. To prove the
required result, it is now sufficient to prove that

|(1− α)u(z0) + αu(z0)[(1− δ)ix+ δ]− 1| ≥M. (2.6)

By making use of (2.5), we have

|(1− α)u(z0) + αu(z0)[(1− δ)ix+ δ]− 1|

≥ |[1− α(1− δ) + α(1− δ)ix]u(z0)| − 1

=
√

[1− α(1− δ)]2 + α2(1− δ)2x2 |u(z0)| − 1

≥ |1− α(1− δ)| |u(z0)| − 1

≥ |1− α(1− δ)|
(

1− β(p+ λ)M

α+ β(p+ λ)

)
− 1 ≥M. (2.7)

Now (2.7) is true in view of (2.1) and therefore, (2.6) holds. Hence <(w(z)) > 0 i.e.

<
(
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

)
> δ, 0 ≤ δ < 1, z ∈ E.

�

Remark 2.2. From Theorem 2.1, it follows, if α, β, δ are real numbers such that

α >
2

1− δ
, 0 ≤ δ < 1, β > 0 and if f ∈ Ap satisfies∣∣∣∣∣

(
Ip(n, λ)f(z)

zp

)β [
1

α
− 1 +

Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

]
− 1

α

∣∣∣∣∣ < [α+ β(p+ λ)][α(1− δ)− 2]

α2[1 + β(1− δ)(p+ λ)]
,

then

<
(
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

)
> δ, z ∈ E.

Letting α→∞ in above remark, we get the following result.

Theorem 2.3. Let β, δ be real numbers such that β > 0, 0 ≤ δ < 1 and let f ∈ Ap
satisfy ∣∣∣∣∣

(
Ip(n, λ)f(z)

zp

)β (
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)
− 1

)∣∣∣∣∣ < 1− δ
1 + β(1− δ)(p+ λ)

,

then

<
(
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

)
> δ, z ∈ E.

For p = 1 and λ = 0 in Theorem 2.1, we get the following result involving
Sălăgean operator.
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Theorem 2.4. If α, β, δ are real numbers such that α >
2

1− δ
, 0 ≤ δ < 1, β > 0

and if f ∈ A satisfies the differential inequality∣∣∣∣∣
(
Dnf(z)

z

)β [
1− α+ α

Dn+1f(z)

Dnf(z)

]
− 1

∣∣∣∣∣ < (α+ β)[α(1− δ)− 2]

α[1 + β(1− δ)]
, z ∈ E,

then

<
(
Dn+1f(z)

Dnf(z)

)
> δ, z ∈ E.

Select p = 1 and λ = 0 in Theorem 2.3, we obtain:

Theorem 2.5. If β, δ are real numbers such that β > 0, 0 ≤ δ < 1 and f ∈ A satisfies∣∣∣∣∣
(
Dnf(z)

z

)β (
Dn+1f(z)

Dnf(z)
− 1

)∣∣∣∣∣ < 1− δ
1 + β(1− δ)

, z ∈ E,

then

<
(
Dn+1f(z)

Dnf(z)

)
> δ, z ∈ E.

3. Criteria for starlikeness and convexity

Setting λ = n = 0 in Theorem 2.1, we obtain the following result.

Corollary 3.1. Let α, β, δ be real numbers such that α >
2

1− δ
, 0 ≤ δ < 1, β > 0

and let f ∈ Ap satisfy the differential inequality∣∣∣∣∣(1− α)

(
f(z)

zp

)β
+ α

zf ′(z)

pf(z)

(
f(z)

zp

)β
− 1

∣∣∣∣∣ < (α+ pβ)[α(1− δ)− 2]

α[1 + pβ(1− δ)]
, z ∈ E,

then

<
(
zf ′(z)

f(z)

)
> pδ = γ, z ∈ E,

i.e. f ∈ S∗p (γ), 0 ≤ γ < p.

Writing β = 1 in above corollary, we obtain:

Corollary 3.2. Suppose that α, δ are real numbers such that α >
2

1− δ
, 0 ≤ δ < 1

and suppose that f ∈ Ap satisfies∣∣∣∣(1− α)
f(z)

zp
+ α

f ′(z)

pzp−1
− 1

∣∣∣∣ < (α+ p)[α(1− δ)− 2]

α[1 + p(1− δ)]
, z ∈ E,

then

<
(
zf ′(z)

f(z)

)
> pδ = γ, z ∈ E,

i.e. f ∈ S∗p (γ), 0 ≤ γ < p.

Setting n = 1 and λ = 0 in Theorem 2.1, we obtain the following result.
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Corollary 3.3. Let α, β, δ be real numbers such that α >
2

1− δ
, 0 ≤ δ < 1, β > 0

and let f ∈ Ap satisfy the differential inequality∣∣∣∣∣(1− α)

(
f ′(z)

pzp−1

)β
+
α

p

(
1 +

zf ′′(z)

f ′(z)

)(
f ′(z)

pzp−1

)β
− 1

∣∣∣∣∣ < (α+ pβ)[α(1− δ)− 2]

α[1 + pβ(1− δ)]
,

then

<
(

1 +
zf ′′(z)

f ′(z)

)
> pδ = γ, z ∈ E,

i.e. f ∈ Kp(γ), 0 ≤ γ < p.

Writing β = 1 in above corollary, we obtain:

Corollary 3.4. If α, δ are real numbers such that α >
2

1− δ
, 0 ≤ δ < 1 and if f ∈ Ap

satisfies∣∣∣∣(1− α)
f ′(z)

pzp−1
+
α

p2
f ′(z)

zp−1

(
1 +

zf ′′(z)

f ′(z)

)
− 1

∣∣∣∣ < (α+ p)[α(1− δ)− 2]

α[1 + p(1− δ)]
, z ∈ E,

then

<
(

1 +
zf ′′(z)

f ′(z)

)
> pδ = γ, z ∈ E,

i.e. f ∈ Kp(γ), 0 ≤ γ < p.

Writing λ = n = 0 in Theorem 2.3, we get:

Corollary 3.5. If β, δ are real numbers such that β > 0, 0 ≤ δ < 1 and if f ∈ Ap
satisfies ∣∣∣∣∣

(
f(z)

zp

)β (
zf ′(z)

pf(z)
− 1

)∣∣∣∣∣ < 1− δ
1 + pβ(1− δ)

, z ∈ E,

then

<
(
zf ′(z)

f(z)

)
> pδ = γ, z ∈ E,

i.e. f ∈ S∗p (γ), 0 ≤ γ < p.

Note that for β = p = 1, the above corollary gives the result of Oros [5].
Setting λ = 0 and n = 1 in Theorem 2.3, we obtain:

Corollary 3.6. Assume that β, δ be real numbers such that β > 0, 0 ≤ δ < 1 and
assume that f ∈ Ap satisfies∣∣∣∣∣

(
f ′(z)

pzp−1

)β [
1

p

(
1 +

zf ′′(z)

f ′(z)

)
− 1

]∣∣∣∣∣ < 1− δ
1 + pβ(1− δ)

, z ∈ E,

then

<
(

1 +
zf ′′(z)

f ′(z)

)
> pδ = γ, z ∈ E,

i.e. f ∈ Kp(γ), 0 ≤ γ < p.
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Note that for β = p = 1 and δ = 0, the above corollary deduces to the result of
Mocanu [4].

Taking p = 1 in Corollary 3.1, we get:

Corollary 3.7. If α, β, δ are real numbers such that α >
2

1− δ
, 0 ≤ δ < 1, β > 0

and if f ∈ A satisfies∣∣∣∣∣(1− α)

(
f(z)

z

)β
+ α

(f(z))β−1f ′(z)

zβ−1
− 1

∣∣∣∣∣ < (α+ β)[α(1− δ)− 2]

α[1 + β(1− δ)]
, z ∈ E,

then

<
(
zf ′(z)

f(z)

)
> δ, z ∈ E,

i.e. f ∈ S∗(δ).

Setting p = 1 in Corollary 3.3, we get:

Corollary 3.8. If α, β, δ are real numbers such that α >
2

1− δ
, 0 ≤ δ < 1, β > 0

and if f ∈ A satisfies∣∣∣∣(f ′(z))β [1− α+ α

(
1 +

zf ′′(z)

f ′(z)

)]
− 1

∣∣∣∣ < (α+ β)[α(1− δ)− 2]

α[1 + β(1− δ)]
, z ∈ E,

then

<
(

1 +
zf ′′(z)

f ′(z)

)
> δ, z ∈ E,

i.e. f ∈ K(δ).

Put λ = p = 1 and n = 0 in Theorem 2.1, we get:

Corollary 3.9. Suppose that α, β, δ are real numbers such that α >
2

1− δ
, 0 ≤ δ <

1, β > 0 and suppose that f ∈ A satisfies∣∣∣∣∣(1− α

2

)(f(z)

z

)β
+
α

2

(f(z))β−1f ′(z)

zβ−1
− 1

∣∣∣∣∣ < (α+ 2β)[α(1− δ)− 2]

α[1 + 2β(1− δ)]
, z ∈ E,

then

<
(
zf ′(z)

f(z)

)
> 2δ − 1, z ∈ E.

Put λ = p = 1 and n = 0 in Theorem 2.3, we obtain the following result.

Corollary 3.10. If f ∈ A satisfies∣∣∣∣∣
(
f(z)

z

)β (
zf ′(z)

f(z)
− 1

)∣∣∣∣∣ < 2(1− δ)
1 + 2β(1− δ)

, z ∈ E,

then

<
(
zf ′(z)

f(z)

)
> 2δ − 1, z ∈ E,

where β, δ are real numbers such that β > 0, 0 ≤ δ < 1.
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Abstract. The recent results of Precup [6] on the variational characterization of
the fixed points of contraction-type operators are applied in this paper to semilin-
ear operator equations and systems with linear parts given by positively defined
operators, and nonlinearities of potential-type. Mihlin’s variational theory is also
involved. Applications are given to elliptic semilinear equations and systems.
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1. Introduction

In this paper, firstly we are concerning with semilinear operator equation of the
type:

Au = J ′(u), (1.1)

where A is a positively defined linear operator and the nonlinear term is the Fréchet
derivative of a functional J . Secondly we discuss the semilinear operator system{

A1u = J11(u, v)

A2v = J22(u, v),
(1.2)

associated to two positively defined linear operators A1, A2 and to two functionals
J1, J2 where by J11(u, v), J22(u, v) we mean the Fréchet derivatives of J1(., v), J2(u, .),
respectively. Our special interest in such kind of equations and systems is represented
by semilinear elliptic equations of the type

−∆u = f(x, u), (1.3)

and correspondingly, by the following elliptic system{
−∆u = f(x, u, v)

−∆v = g(x, u, v).
(1.4)
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Recently in Precup [6], it was shown that the unique fixed point of a contraction T
on a Hilbert space, in case that T has the variational form

Tu = u− E′(u),

minimizes the functional E. Also, the unique fixed point (u∗, v∗) of a Perov contraction
(T1(u, v), T2(u, v)) with {

T1(u, v) = u− E11(u, v)

T2(u, v) = u− E22(u, v),

under some conditions, is a Nash-type equilibrium of the pair of functionals (E1, E2),
that is:

E1(u∗, v∗) = min
u
E1(u, v∗)

E2(u∗, v∗) = min
v
E2(u∗, v).

The goal of this paper is to apply the above results to the semilinear equa-
tion (1.1) and to the system (1.2). To this aim, we fully exploit Mihlin’s theory [4],
on linear operator equations. In particular we shall derive variational characteriza-
tions of the weak solutions of the Dirichlet problem for the equation (1.3) and the
system (1.4).

The paper is organized as follows: Section 2 is devoted to preliminaires, and
Section 3 contains the main results. More exactly, in Section 3.1 we discuss the case
of the equation (1.1), while in Section 3.2 we obtain theoretical results for the sys-
tem (1.2). Furthermore, in Section 3.3 we apply our first result to an elliptic equation
of the type (1.3) and in Section 3.4 we apply our second result to the system (1.4).

2. Preliminaries

2.1. Variational theory of linear operator equations

In this section we sketch Mihlin’s variational theory [4] (see also [5]) for linear
equations associated to positively defined operators. Let H be a Hilbert space with
the inner product denoted by (., .)H and the norm ‖.‖H . Let A : D(A) → H be a
symmetric, linear and densely defined operator. The operator A is said to be positively
defined, if for some γ > 0,

(Au, u)H ≥ γ2‖u‖2H , (2.1)

for every u ∈ D(A). For such a linear operator, we endow the linear subspace D(A)
of H with the bilinear functional:

(u, v)HA
= (Au, v)H ,

for every u, v ∈ D(A). One can verify that (., .)HA
is an inner product. Consequently,

D(A) endowed with the inner product (., .)HA
is a pre-hilbertian space. This space

may not be complete. The completion HA of (D(A), (., .)HA
) is called the energetic

space of A. By the construction, D(A) ⊂ HA ⊂ H with dense inclusions. We use the
same symbol (., .)HA

to denote the inner product of HA. The corresponding norm

‖u‖HA
=
√

(u, u)HA
,
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is called the energetic norm associated to A.
If u ∈ D(A), then ‖u‖HA

=
√

(Au, u)H and in view of (2.1) one has the Poincaré
inequality

‖u‖H ≤
1

γ
‖u‖HA

, (2.2)

for every u ∈ D(A). By density the above inequality extends to HA. We use this
inequality in order to identify the elements of HA with elements from H.

Let H ′A be the dual space of HA. If we identify H with its dual, then from
HA ⊂ H we have H ⊂ H ′A.

We attach to the operator A the following problem:

Au = f, u ∈ HA, (2.3)

where f ∈ H ′A. By a weak solution of (2.3) we mean an element u ∈ HA with:

(u, v)HA
= (f, v) (2.4)

for every v ∈ HA, where the notation (f, v) stands for the value of the functional f
on the element v. In case that f ∈ H, then (f, v) = (f, v)H . Notice that if u ∈ D(A),
then (2.4) becomes (Au, v)H = (f, v).

Theorem 2.1. For every f ∈ H ′A there exists a unique weak solution u ∈ HA of the
problem (2.3).

Proof. Consider the functional F : HA → R given by F (v) = (f, v), for v ∈ HA.
Obviously, F is linear. Also

|F (v)| = |(f, v)| ≤ ‖f‖H′
A
‖v‖HA

.

Hence, F is a linear and continuous functional. By Riesz’s theorem, there exists a
unique u ∈ HA such that F (v) = (u, v)HA

for all v ∈ HA. Clearly, u is the unique
weak solution of (2.3). �

This result allows us to define the solution operator A−1 associated to operator
A. Thus

A−1 : H ′A → HA ,

A−1f = u, (2.5)

where u is the unique weak solution of problem (2.3). The operator A−1 is well defined
by the above theorem and one has

(A−1f, v)HA
= (f, v) (2.6)

for all v ∈ HA and f ∈ H ′A.
The operator A−1 is an isometry between H ′A and HA, i.e:

‖A−1f‖HA
= ‖f‖H′

A
(2.7)

for all f ∈ H ′A. Indeed, in order to show that the inequality ‖A−1f‖HA
≤ ‖f‖H′

A
holds,

we replace v with A−1f in (2.6), to obtain (A−1f,A−1f)HA
= (f,A−1f). Therefore

‖A−1f‖2HA
= (f,A−1f) ≤ ‖f‖H′

A
‖A−1f‖HA

.
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Hence, ‖A−1f‖HA
≤ ‖f‖H′

A
. On the other hand, we have that

‖f‖H′
A

= sup
v∈HA

v 6=0

|(f, v)|
‖v‖HA

= sup
v∈HA

v 6=0

|(A−1f, v)HA
|

‖v‖HA

≤ sup
v∈HA

v 6=0

‖A−1f‖HA
‖v‖HA

‖v‖HA

= ‖A−1f‖HA
.

From the above inequalities, (2.7) follows.

We also mention Poincaré’s inequality for the inclusion H ⊂ H ′A,

‖u‖H′
A
≤ 1

γ
‖u‖H , u ∈ H. (2.8)

This can be proved as follows:

‖u‖H′
A

= sup
v∈HA

v 6=0

|(u, v)H |
‖v‖HA

≤ sup
v∈HA

v 6=0

‖u‖H‖v‖H
‖v‖HA

.

Now, using (2.2) we have:

sup
v∈HA

v 6=0

‖u‖H‖v‖H
‖v‖HA

≤ 1

γ
‖u‖H .

Therefore (2.8) holds.

Using (2.7) and (2.8) we see that if f ∈ H, then

‖A−1f‖HA
= ‖f‖H′

A
≤ 1

γ
‖f‖H . (2.9)

For a fixed f ∈ H ′A, one considers the functional:

E : HA → R,

E(u) =
1

2
‖u‖2HA

− (f, u).

The functional E is Fréchet differentiable and for any u, v ∈ HA, we have:

(E′(u), v) = lim
t→0

E(u+ tv)− E(u)

t
= (u, v)HA

− (f, v) = (u−A−1f, v)HA
. (2.10)

Now (2.10) shows that u ∈ HA is a weak solution of (2.3) if and only if u is a critical
point of E, i.e E′(u) = 0.

2.2. Variational properties for contraction-type operators

In this section and in the next one, we summarize the abstract results from the
paper Precup [6], concerning the variational characterization of the fixed points of
contraction-type operators. The first result refers to usual contractions on a Hilbert
space.
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Theorem 2.2. ( [6]) Let X be a Hilbert space and T : X → X be a contraction with
the unique fixed point u∗ (guaranteed by Banach contraction theorem). If there exists
a C1 functional E bounded from below such that

E′(u) = u− T (u) (2.11)

for all u ∈ X, then u∗ minimizes the functional E, i.e

E(u∗) = inf
X
E.

2.3. Nash-type equilibrium for Perov contractions

The next result from [6] is about systems of the type{
u = T1(u, v)

v = T2(u, v),
(2.12)

where u ∈ X1, v ∈ X2. In this case, instead of Lipschitz constants in the definition of
contractions, we use matrices.

A square matrix M ∈Mn×n(Rn) with nonnegative entries is said to be conver-
gent to zero if

Mk → 0, as k →∞.

There are known the following characterizations of the convergent to zero ma-
trices (see, e.g [7], [2]).

The following statements are equivalents:
(i) M is a matrix that is convergent to zero;
(ii) I −M is nonsingular and (I −M)−1 = I +M +M2 + . . . (where I stands for the
unit matrix of the same order as M);
(iii) the eigenvalues of M are located inside the unit disc of the complex plane;
(iv) I −M is nonsingular and (I −M)−1 has nonnegative entries.

Refering to the system (2.12), we assume that (Xi, |.|i) , i = 1, 2, are Hilbert
spaces identified to their duals and we denote by X = X1 × X2. Also, assume that
each equation of the system has a variational form, i.e. that there exist the continuous
functionals E1, E2 : X → R such that E1(., v) is Fréchet differentiable for every
v ∈ X2, E2(u, .) is Fréchet differentiable for every u ∈ X1, and{

E11(u, v) = u− T1(u, v)

E22(u, v) = v − T2(u, v).
(2.13)

Here E11(., v), E22(u, .) are the Fréchet derivatives of E1(., v) and E2(u, .), respec-
tively.

We say that the operator T : X → X, T (u, v) = (T1(u, v), T2(u, v)) is a Perov
contraction if there exists a matrix M = [mij ] ∈ M2,2 (R+) which is convergent to
zero such that the following matricial Lipschitz condition is satisfied[

|T1(u, v)− T1(u, v)|1
|T2(u, v)− T2(u, v)|2

]
≤M

[
|u− u|1
|v − v|2

]
(2.14)

for every u, u ∈ X1 and v, v ∈ X2.
The next theorem gives us a variational characterization of the unique fixed

point of a Perov contraction.
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Theorem 2.3. ( [6]) Assume that the above conditions are satisfied. In addition
assume that E1(., v) and E2(u, .) are bounded from below for every u ∈ X1, v ∈ X2,
and that there are R, c > 0 such that one of the following conditions holds:

E1(u, v) ≥ inf
X1

E1(., v) + c for |u|1 ≥ R and v ∈ X2, (2.15)

E2(u, v) ≥ inf
X2

E2(u, .) + c for |v|2 ≥ R and u ∈ X1.

Then the unique fixed point (u∗, v∗) of T (guaranteed by Perov’s fixed point theorem)
is a Nash-type equilibrium of the pair of functionals (E1, E2), i.e.

E1(u∗, v∗) = inf
X1

E1(., v∗)

E2(u∗, v∗) = inf
X2

E2(u∗, .).

3. Main results

The main results of the paper are concerning with variational properties of the
solutions of semilinear equations having the form

Au = J ′(u),

with a positively defined linear operator A, and of semilinear systems of the type:{
A1u = J11(u, v)

A2v = J22(u, v).

We shall benefit of Mihlin’s variational theory for linear operator equations and we
shall apply the general results presented in Sections 2.2 and 2.3.

3.1. Semilinear operator equations with potential-type nonlinearities

First we consider the case of semilinear equations.

Let A be a symmetric, linear and densely defined operator as in Section 2.1 and
let J : H → R be a C1(H) functional. We look for weak solutions u ∈ HA for the
semilinear equation

Au = J ′(u). (3.1)

This equation is equivalent to

u = A−1J ′(u), (3.2)

this is, to the fixed point equation:

u = T (u), (3.3)

where T := A−1J ′. We associate to the equation (3.1) the functional

E : HA → R, E(u) =
1

2
‖u‖2HA

− J(u). (3.4)

The main result of this section is the following theorem.
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Theorem 3.1. Under the above conditions on A and J , if in addition
J ′ : H → H satisfies the following conditions:

‖J ′(u)− J ′(v)‖H ≤ α‖u− v‖H (3.5)

for all u, v ∈ H, and

J(u) ≤ a‖u‖2HA
+ b, (3.6)

for all u ∈ HA, some α < γ2, a ≤ 1

2
and b ≥ 0, then there is a unique weak solution

u∗ ∈ HA of equation (3.1) such that

E(u∗) = inf
HA

E.

Proof. We apply Theorem 2.2 to X = HA, to the operator T : HA → HA, T := A−1J ′

and to the functional given by (3.4). Since J is of class C1 on H, it follows that E is
of class C1 on HA. Indeed,

(E′(u), v) = lim
t→0

E(u+ tv)− E(u)

t
= (u, v)HA

− (J ′(u), v)

= (u−A−1J ′(u), v)HA
.

Therefore, if we identify H ′A to HA, we have

E′(u) = u− T (u).

Hence the assumption (2.11) holds. Using (3.6) and a ≤ 1

2
, we obtain

E(u) =
1

2
‖u‖2HA

− J(u) ≥
(

1

2
− a
)
‖u‖2HA

− b ≥ −b > −∞,

for all u ∈ HA. Thus, E is bounded from below. It remains to show that T is a
contraction on HA. Using the hypothesis (3.5) and the Poincaré’s inequality (2.2),
for every u, v ∈ HA, we have

‖J ′(u)− J ′(v)‖H ≤ α‖u− v‖H

≤ α

γ
‖u− v‖HA

.

Since A−1 is an isometry between H ′A and HA, we then deduce that

‖T (u)− T (v)‖HA
= ‖A−1(J ′(u)− J ′(v))‖HA

= ‖J ′(u)− J ′(v)‖H′
A

≤ 1

γ
‖J ′(u)− J ′(v)‖H

≤ α

γ2
‖u− v‖HA

.

This shows that T is a contraction on HA, since α was assumed less than γ2.
Thus Theorem 2.2 applies and the result follows. �
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3.2. Semilinear operator systems with potential-type nonlinearities

This subsection is devoted to the study of systems of the type:{
A1u = J11(u, v)

A2v = J22(u, v),
(3.7)

where A1, A2 are symmetric, linear and densely defined operators on two Hilbert
spaces H1, H2. Denote H = H1×H2. Also, J1, J2 : H → R are two C1(H) functionals
and by J11(u, v) we mean the partial derivative of J1 with respect to u and by J22(u, v)
the partial derivative of J2 with respect to v. We express the above system as a fixed
point equation of the type

w = T (w) (3.8)

for the nonlinear operator T = (T1, T2), where w = (u, v), T1 : HA1
× HA2

→ HA1
,

T1(u, v) = A−1
1 J11 and T2 : HA1

×HA2
→ HA2

, T2(u, v) = A−1
2 J22. Hence (3.8) can

be rewritten explicitly as follows{
u = T1(u, v)

v = T2(u, v).
(3.9)

This vectorial structure of (3.8) allows the two terms T1 and T2 to behave differently
one from another and also with respect to the two variables. Also, this requires the
use of matrices instead of constants, when Lipschitz conditions are imposed to T1 and
T2. Each component equation of (3.9) has a variational form. We associate to the
equations of (3.9) the functionals E1, E2 : HA1 ×HA2 → R defined by

E1(u, v) =
1

2
‖u‖2HA1

− J1(u, v) (3.10)

E2(u, v) =
1

2
‖v‖2HA2

− J2(u, v).

One has

E11(u, v) = u− T1(u, v) (3.11)

E22(u, v) = v − T2(u, v),

where E11(., v), E22(u, .) are the Fréchet derivatives of E1(., v) and E2(u, .), respec-
tively.

The main result of this subsection is the following theorem.

Theorem 3.2. Let the above conditions on A1, A2 and J1, J2 hold. In addition assume
that J11 : H1 ×H2 → H1 and J22 : H1 ×H2 → H2 satisfy the following conditions:
(i) there exist mij ∈ R+ (i, j = 1, 2) such that

‖J11(u, v)− J11(ū, v̄)‖H1
≤ m11‖u− ū‖H1

+m12‖v − v̄‖H2
(3.12)

‖J22(u, v)− J22(ū, v̄)‖H2
≤ m21‖u− ū‖H1

+m22‖v − v̄‖H2
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for all u, ū ∈ H1 and v, v̄ ∈ H2, and the matrix

M =


m11

γ2
1

m12

γ2
1m21

γ2
2

m22

γ2
2

 (3.13)

is convergent to zero;
(ii)

J1(u, v) ≤ a1‖u‖2HA1
+ b1 (3.14)

J2(u, v) ≤ a2‖v‖2HA2
+ b2

for all u ∈ HA1
, v ∈ HA2

and some a1, a2 ≤
1

2
and b1, b2 ≥ 0;

(iii) there are R, c > 0 such that one of the following conditions holds:

E1(u, v) ≥ inf
HA1

E1(., v) + c for ‖u‖HA1
≥ R and v ∈ HA2

, (3.15)

E2(u, v) ≥ inf
HA2

E2(u, .) + c for ‖v‖HA2
≥ R and u ∈ HA1 .

Then there is a unique solution (u∗, v∗) ∈ HA1
×HA2

of the system (3.7) which is a
Nash-type equilibrium of the pair of functionals (E1, E2), i.e:

E1(u∗, v∗) = inf
HA1

E1(., v∗) (3.16)

E2(u∗, v∗) = inf
HA2

E2(u∗, .).

Proof. We apply the Theorem 2.3 to X1 = HA1 , and X2 = HA2 . Using (3.12) we
show that T is a Perov contraction. Indeed, for (u, v) ∈ X we have

‖T1(u, v)− T1(ū, v̄)‖HA1
= ‖A−1

1 (J11(u, v)− J11(ū, v̄))‖HA1

= ‖J11(u, v)− J11(ū, v̄)‖H′
A1

≤ 1

γ1
‖J11(u, v)− J11(ū, v̄)‖H1

≤ m11

γ1
‖u− ū‖H1

+
m12

γ1
‖v − v̄‖H2

≤ m11

γ2
1

‖u− ū‖HA1
+
m12

γ2
1

‖v − v̄‖HA2
.

A similar inequality holds for T2. Using (3.14) and a1, a2 ≤
1

2
we deduce that

E1(u, v) =
1

2
‖u‖2HA1

− J1(u, v) ≥
(

1

2
− a1

)
‖u‖2HA1

− b1 ≥ −b1 > −∞.

Thus, E1 is bounded from below. Analogously, E2 is bounded from below. Thus
Theorem 2.3 is applicable and the result yields. �
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3.3. Application to elliptic equations

In this subsection we present an application of Theorem 3.1 to elliptic equations.
More exactly, we deal with the Dirichlet problem:{

−∆u = f(x, u) in Ω

u = 0 on ∂Ω .
(3.17)

Here Ω is a bounded open subset of Rn, f : Ω × R → R and ∆ is the Laplacian.
In this specific case H = L2(Ω) and A = −∆ with D(A) = H2(Ω) ∩ H1

0 (Ω). Also,
HA = H1

0 (Ω) with the inner product

(u, v)H1
0

=

∫
Ω

∇u∇vdx

and the norm

‖u‖H1
0

=

(∫
Ω

|∇u|2dx

) 1
2

.

The functional J : L2(Ω)→ R is given by

J(u) =

∫
Ω

F (x, u(x))dx,

where F (x, t) =

∫ t

0

f(x, s)ds. Also γ =
√
λ1, where λ1 is the first eigenvalue of the

Dirichlet problem for −∆ (see, e.g [8], [1], [3]). Hence the energy functional associated
to (3.17) is the following one:

E : H1
0 (Ω)→ R,

E(u) =

∫
Ω

(
1

2
|∇u|2 − F (x, u(x))

)
dx,

Problem (3.17) is equivalent to the fixed point equation:

u = (−∆)−1Nf (u), (3.18)

where Nf is the Nemytskii superposition operator assumed to act from L2(Ω) to itself,
Nf (u)(x) = f(x, u(x)) ( see, e.g [8], [9]). Notice that the functional J is C1 on L2(Ω),
J ′ = Nf and

E′(u) = u− (−∆)−1Nf (u).

Theorem 3.3. Assume that the folllowing conditions are satisfied:
(i) f satisfies the Carathéodory conditions, i.e
f(., y) : Ω→ R is measurable for each y ∈ R and f(x, .) : R→ R is
continuous for a.e x ∈ Ω;
(ii) f(., 0) = 0 on Ω;
(iii) exists α ∈ [0, λ1) such that

|f(x, u)− f(x, ū)| ≤ α|u− ū|
for all u, ū ∈ R and a.e x ∈ Ω.
Then (3.17) has a unique weak solution u∗ ∈ H1

0 (Ω) and

E(u∗) = inf
H1

0 (Ω)
E.
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Proof. We shall apply Theorem 3.1. From (iii) we deduce that

‖Nf (u)−Nf (v)‖L2 ≤ α‖u− v‖L2

for u, v ∈ L2(Ω). Hence (3.5) holds. Also, since

|f(x, t)| = |f(x, t)− f(x, 0)| ≤ α|t|,

for u ∈ H1
0 (Ω), one has

|J(u)| ≤
∫

Ω

|F (x, u(x))|dx ≤
∫

Ω

∣∣∣∣∣∣∣
u(x)∫
0

f(x, s)ds

∣∣∣∣∣∣∣dx
≤
∫

Ω

∣∣∣∣∣∣∣
u(x)∫
0

|f(x, s)|ds

∣∣∣∣∣∣∣dx ≤
∫

Ω

∣∣∣∣∣∣∣
u(x)∫
0

α|s|ds

∣∣∣∣∣∣∣ dx
=
α

2

∫
Ω

u(x)2dx =
α

2
‖u‖2L2 ≤

α

2λ1
‖u‖2H1

0
.

Therefore (3.6) holds with a =
α

2λ1
≤ 1

2
and b = 0. Thus Theorem 3.1 can be applied

and the result follows. �

3.4. Application to elliptic systems

Let Ω be a bounded open subset of Rn and f, g : Ω× R2 → R. We consider the
following system: 

−∆u = f(x, u, v) in Ω

−∆v = g(x, u, v) in Ω

u = 0 on ∂Ω

v = 0 on ∂Ω .

(3.19)

This problem is equivalent to the system:{
u = (−∆)−1f(., u, v)

v = (−∆)−1g(., u, v).

Also a pair (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) is a solution of (3.19) if and only if{
E11(u, v) = 0

E22(u, v) = 0,
(3.20)

where E1, E2 : H1
0 (Ω)×H1

0 (Ω)→ R are defined by

E1(u, v) =
1

2
‖u‖2

H1
0
−
∫
Ω

F (x, u(x), v(x))dx (3.21)

E2(u, v) =
1

2
‖v‖2

H1
0
−
∫
Ω

G(x, u(x), v(x))dx,
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and

F (x, t, s) =

t∫
0

f(x, τ, s)dτ, G(x, t, s) =

s∫
0

g(x, t, τ)dτ. (3.22)

The functionals E1(., v) and E2(u, .) are C1 for any fixed u and v,
respectively, and

E11(u, v) = u− (−∆)−1f(., u, v) (3.23)

E22(u, v) = v − (−∆)−1g(., u, v).

Here again E11 (., v) , E22 (u, .) are the Fréchet derivatives of E1 (., v) and E2 (u, .) ,
respectively.

We shall say that a function H : Ω×R→ R is of coercive type if the functional
Φ : H1

0 (Ω)→ R,

Φ(v) =
1

2
‖v‖2H1

0
−
∫

Ω

H(x, v(x))dx (3.24)

is coercive, i.e Φ(v)→ +∞ as ‖v‖H1
0
→∞.

The main result of this subsection is the following theorem.

Theorem 3.4. Let f, g : Ω × R2 → R, f = f(x, y, z), g = g(x, y, z) satisfy the
Carathédory conditions, i.e f(., y, z), g(., y, z) are measurable for each (y, z) ∈ R2 and
f(x, .), g(x, .) are continuous for a.e x ∈ Ω. Assume that f(., 0, 0), g(., 0, 0) ∈ L2(Ω)
and that the following conditions hold:
(i) there exist mij ∈ R+ (i, j = 1, 2) with:{

|f(x, u, v)− f(x, ū, v̄)| ≤ m11|u− ū|+m12|v − v̄|
|g(x, u, v)− g(x, ū, v̄)| ≤ m21|u− ū|+m22|v − v̄|,

(3.25)

for all u, ū, v, v̄ ∈ R and a.e x ∈ Ω;
(ii) there exist H,H1 : Ω× R→ R with

H1(x, v) ≤ G(x, u, v) ≤ H(x, v), (3.26)

for all u, v ∈ R and a.e. x ∈ Ω, where H and H1 are of coercive type.
If the matrix

M =
1

λ1

[
m11 m12

m21 m22

]
(3.27)

is convergent to zero, then (3.19) has a unique solution (u∗, v∗) ∈ H1
0 (Ω) × H1

0 (Ω)
which is a Nash-type equilibrium of the pair of energy functionals (E1, E2) associated
to the problem (3.19).

Proof. We shall apply Theorem 3.2. Here H1 = H2 = L2(Ω), A1 = A2 = −∆ and
J1, J2 : H → R are given by

J1(u, v) =

∫
Ω

F (x, u(x), v(x))dx, J2(u, v) =

∫
Ω

G(x, u(x), v(x))dx.
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Also γ1 = γ2 =
√
λ1. Using (3.25), in the same way as for a single equation, we have

that E1(., v) and E2(u, .) are bounded from below for any fixed u and v. In addition,
we use the second inequality from (3.26) to obtain:

E2(u, v) =
1

2
‖v‖2H1

0
−
∫
Ω

G(x, u(x), v(x))dx

≥ 1

2
‖v‖2H1

0
−
∫

Ω

H(x, v(x))dx =: Φ(v).

Since H is of coercive type, Φ is bounded from below. Hence

E2(u, v) ≥ Φ(v) ≥ c > −∞,

for all u, v ∈ H1
0 (Ω), that is E2(., v) is bounded from below uniformly with respect to

v. Denote

Φ1(v) =
1

2
‖v‖2

H1
0
−
∫

Ω

H1(x, v(x))dx.

Since Φ is coercive, for each λ > 0, there is Rλ such that Φ(v) ≥ λ for ‖v‖H1
0
≥ Rλ.

Take c > 0 and λ = inf Φ1 + c. Then for ‖v‖H1
0
≥ Rλ and any u ∈ H1

0 (Ω) we have

E2(u, v) ≥ Φ(v) ≥ inf Φ1 + c.

From the first inequality of (3.26), we have Φ1(v) ≥ E2(u, v). It follows that

E2(u, v) ≥ inf E2(u, .) + c

for ‖v‖H1
0
≥ Rλ and all u ∈ H1

0 (Ω). This shows that E2 satisfies the condition (3.15).
Furthermore,

‖J11(u, v)− J11(ū, v̄)‖L2 = ‖f(., u, v)− f(., ū, v̄)‖L2

≤ m11‖u− ū‖L2
+m12‖v − v̄‖L2

,

and similarly

‖J22(u, v)− J22(ū, v̄)‖L2 = ‖g(., u, v)− g(., ū, v̄)‖L2

≤ m21‖u− ū‖L2
+m22‖v − v̄‖L2

.

Therefore the hypothesis of Theorem 3.2 are fulfilled and the result follows. �
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Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
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Greediness of higher rank Haar wavelet bases in
Lp
w(R) spaces

Ekaterine Kapanadze

Abstract. We prove that higher rank Haar wavelet systems are greedy in
Lp

w(R), 1 < p <∞ if and only if w ∈ AN
p .
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1. Introduction

Let X = {xn : n ∈ N} be a semi-normalized basis in a Banach space X. This
means that {xn}n∈N is a Schauder basis and is semi-normalized i.e. 0 < infn∈N ‖xn‖ ≤
supn∈N ‖xn‖ < ∞. For an element x ∈ X we define the error of the best m−term
approximation as follows

σm(x,X ) = inf{‖x−
∑
n∈A

αnxn‖},

where the inf is taken over all subset A ⊂ N of cardinality at most m and all possible
scalars αn. The main question in approximation theory concerns the construction of
efficient algorithms for m-term approximation. A computationally efficient method to
produce m-term approximations, which has been widely investigated in recent years,
is the so called greedy algorithm. For x ∈ X with x =

∑∞
n=1 anxn and m ∈ N,

consider a subset G(m,x) ⊂ N of cardinality m such that

min
n∈G(m,x)

|an| ≥ max
n∈N\G(m,x)

|an|.

There is some ambiguity in the choice of the set G(m,x), but our considerations do
not depend on the particular choice. Then the m-th greedy approximation of x with
respect to the basis X is defined as

Gm(x,X ) =
∑

n∈G(m,x)

anxn.
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Clearly, σm(x,X ) ≤ ‖x−Gm(x,X )‖. The basis X is called greedy if there is a constant
C > 0, independent of m, such that for each m ∈ N and x ∈ X,

‖x− Gm(x,X )‖ ≤ Cσm(x,X ).

Wavelet systems are well known examples of greedy bases for many function and
distribution spaces. Indeed, V. N. Temlyakov showed in [13] that the classical dyadic
Haar system (and any wavelet system Lp−equivalent to it) is greedy in the Lebesgye
spaces Lp(Rn) for 1 < p <∞.

When wavelets have sufficient smoothness and decay, they are also greedy bases
for the more general Sobolev and Tribel-Lizorkin classes (see [3],[5]). Some example
of greedy bases are given in [13], [14]. In most cases these bases are greedy simply
because they are symmetric (e.g. Riesz bases for a Hilbert space), or because they are
equivalent to the dyadic Haar basis or to a subsequence of the Haar basis (see [7]). S.
V. Konyagin and V. N. Temlyakov [8] gave a very useful abstract characterization of
greedy bases in a Banach spaces X as those which are unconditional and democratic,
the last meaning that for some constant C > 0∥∥∥∥∥∑

n∈A

xn
‖xn‖

∥∥∥∥∥ ≤ C
∥∥∥∥∥∑
n∈A′

xn
‖xn‖

∥∥∥∥∥
holds for all finite sets of indices A, A′ ⊂ N with the same cardinality.

The purpose of this paper is to study the efficiency of greedy algorithms with
respect higher rank Haar wavelet system in the spaces Lpw(R). We recall that, as M.
Izuki proved in [6], that the dyadic Haar wavelet system (N = 2) is greedy in Lp(Rn)
for 1 < p < ∞ if and only if w ∈ A2

p. Characterization of almost greedy uniformly
bounded orthonormal bases in rearrangement invariant Banach function spaces are
given [2].

By an N -adic (N ∈ N, N ≥ 2) lattice D we mean the collection of all N -adic
intervals, i. e. the collection of all intervals of the form [jN−k, (j + 1)N−k), j, k ∈ Z.
If I is an interval, we denote by |I| its length, and by χI its characteristic function.
If I is an N -adic interval [jN−k, (j + 1)N−k) then we denote by I(l) the ”children”
intervals of I : [jN−k + lN−(k+1), jN−k + (l + 1)N−(k+1)), l = 0, 1, · · ·, N − 1.

We denote by L2(R) the Hilbert space of square integrable (with respect to the
Lebesgue measure) complex-valued functions on R. We consider also Lpw(R) (1 ≤ p <
∞) spaces, where w ∈ L1

loc(R) is a positive function called a weight. The norm of a
function f : R→ C from the space Lpw(R) is

‖f‖Lp
w

=

(∫
R
|f(x)|pw(x)dx

)1/p

.

Given a function f, we denote by 〈f〉I its average over the interval I,

〈f〉I =
1

|I|

∫
I

f(x)dx.

We are concerned with a special class of weights, called ANp . We say that w ∈ ANp ,
1 < p <∞ if

Aw = sup
I∈D
〈w〉I〈w−1/(p−1)〉p−1

I <∞.
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We say that an N × N matrix is a Haar wavelet matrix of rank N if it is
unitary and the elements of the first row are all equal to 1/

√
N. Many classical

examples of matrices used in mathematics and signal processing are Haar matrices
of specific types. These include the discrete Fourier transform matrices, the discrete
cosine transform matrices, Hadamard and Walsh matrices, Radmacher matrices, and
Chebyshev matrices (see [12]).

Let H = (gki)
N−1
k,i=0 be a N ×N Haar matrix and ϕ = χ[0,1). Define the functions

ψ(k)(x) =
√
N

N−1∑
l=0

gklϕ(Nx− l) k = 1, · · ·, N − 1. (1.1)

The collection of functions

ψ
(k)
j,n = N j/2ψ(k)(N jx− n), j, n ∈ Z, k = 1, · · ·, N − 1

form an orthonormal basis of L2(R) (see [15]. Bellow we adopt the shorter notation

ψ
(k)
j,n = ψ

(k)
I , where I = [nN−j , (n + 1)N−j). The system X = {ψ(k)

I , I ∈ D, k =

1, · · ·, N − 1}, where the functions ψ(k), k = 1, · · ·, N − 1 are defined by (1.1), is
called the Haar wavelet system of rank N (corresponding to Haar matrix H). An
important example of a higher rank Haar wavelet system is the system obtained by
wavelet functions

ψ(k)(x) =
√
N

N−1∑
l=0

e2πikl/Nϕ(Nx− l), k = 1, · · ·, N − 1, (1.2)

where ϕ is characteristic function of the interval [0, 1).

Note that the wavelet system constructed by functions (1.2) became of interest
in connection with some problems of p-adic (non-Archimedean) mathematical physics
(see [10-11]).

For a Haar wavelet system X and f ∈ L1
loc(R), we define the Littlewood-Paley

operator by

Pf(x) =

(
N−1∑
k=1

∑
I∈D
| < f,ψ

(k)
I > |2||I|−1χI(x)

)1/2

,

where

< f,ψ
(k)
I >=

∫
R
f(x)ψ

(k)
I (x)dx.

The characterization of the spaces Lpw(R) (w ∈ Ap, 1 < p < ∞) using higher
rank Haar wavelet system X was given in [9].

Theorem 1.1. ([9]) Let X be a Haar wavelet system of rank N and 1 < p < ∞. The
following conditions are equivalent: 1) The system X is unconditional basis of space
Lpw(R); 2) There exist positive constants c and C such that c ‖f‖Lp

w
≤ ‖P (f)‖Lp

w
≤

C ‖f‖Lp
w
for all f ∈ Lpw(R); 3) w ∈ ANp .

The purpose of this paper is to prove following theorem.
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Theorem 1.2. Let X = {ψ(k)
I ; I ∈ D, k = 1, · · ·, N − 1} be a Haar wavelet system of

rank N. Suppose w ∈ ANp (1 < p < ∞). Then the system {ψ(k)
I /‖ψ(k)

I ‖p; I ∈ D, k =
1, · · ·, N − 1} forms a greedy basis in the space Lpw(R).

2. Proof of Theorem 1.2

For simplicity we shall denote the normalized characteristic function of a set of
indices Γ ⊂ {1, 2, · · ·, N − 1} × D by

1Γ =
∑

(k,I)∈Γ

ψkI
‖ψkI ‖p

.

Observe that X is democratic in Lpw(R) if and only if there exists a function
h : N→ R+ for which

1

C
h(Card(Γ)) ≤ ‖1Γ‖Lp

w
≤ C h(Card(Γ)), ∀Γ ⊂ {1, 2, · · ·, N − 1} × D (2.1)

for some C ≥ 1.
Observe that from Theorem 1.1 for a single element ψkI

‖ψkI ‖Lp
w
� w(I)1/p

|I|1/2
,

where w(I) =
∫
I
w(x)dx and the constants involved in � are independent of ψkI . Thus,

using again the expression of the norm ‖ · ‖Lp
w

it follows that

‖1Γ‖Lp
w
�

∥∥∥∥∥∥∥
 ∑

(k,I)∈Γ

χI
w(I)2/p

1/2
∥∥∥∥∥∥∥
Lp

w

�

∥∥∥∥∥∥∥
∑
I∈Γ̃

χI
w(I)2/p

1/2
∥∥∥∥∥∥∥
Lp

w

, (2.2)

where Γ̃ = {I : (k, I) ∈ Γ}. Note that Card(Γ̃) � Card(Γ).
Given a finite set of intervals Γ ⊂ D, we shall denote

SΓ(x) =

(∑
I∈Γ

χI(x)

w(I)2/p

)1/2

.

We ”linearize” the square function SΓ(x). Note that this lineralization procedure has
been used by other authors in the context of m−term approximation (see e.g. [3-5]).

For every x ∈ ∪I∈ΓI, we define Ix as the smallest (hence unique) interval in Γ
containing x. It is clear that

SΓ(x) ≥ χIx(x)

w(Ix)1/p
∀ x ∈ ∪I∈ΓI. (2.3)

We now show that the reverse inequality holds with some universal constant.
Note that if w ∈ ANp , then there exist C1, C2 > 0 and δ > 0 such that

C1(|A|/|I|)p ≤ w(A)/w(I) ≤ C2(|A|/|I|)δ (2.4)

for all I ∈ D and all subsets A ⊂ I (see [1]).
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If we enlarge the sum to include all N−adic intervals containing Ix we have

SΓ(x)2 =
∑
I∈Γ

χI(x)

w(I)2/p
≤

∑
I∈D, I⊃Ix

1

w(I)2/p
.

If Ix ⊂ I and |I| = N j |Ix|, then by (2.4) we have, w(I) ≥ C−1
2 w(Ix)N−jδ. Thus,

SΓ(x)2 ≤ C χIx(x)

w(Ix)2/p
.

This and (2.3) show that SΓ(x) � χIx (x)

w(Ix)1/p
.

Observe that SΓ(x) � SΓmin
(x), where Γmin denotes the family of minimal

intervals in Γ, that is, Γmin = {Ix : x ∈ ∪I∈ΓI}. Note that the intervals in Γmin are
not necessarily pairwise disjoint.

Given a fixed Γ ⊂ D, for any I ∈ Γ we define the set S(I) as the union of all
intervals from Γ strictly contained in I. We define also the set L(I) = I\S(I). It is
clear that I ∈ Γmin if and only if L(I) 6= ∅, and moreover ∪I∈ΓI = ∪I∈Γmin

L(I),

where the sets in the last union are pairwise disjoint. Therefore we can write

SΓ(x) �
∑

I∈Γmin

χL(I)(x)

w(I)1/p
(2.5)

where in the last sum there is a most one non-zero term.
Denote by ΓS the collection of all intervals I from Γ with property: |S(I)| >

(1 − 1/N)|I|. Denote by ΓL the collection of all intervals I from Γ with property:
|L(I)| ≥ |I|/N. Observe that ΓL ⊂ Γmin. We have

(1− 1/N)Card(Γ) ≤ Card(ΓL) ≤ Card(Γmin) ≤ Card(Γ), ∀Γ ⊂ D. (2.6)

Clearly Card(ΓL) ≤ Card(Γmin) ≤ Card(Γ). Thus, we need to prove only the in-

equality from the left hand side of (2.6). Given I ∈ D, we write I(k), k = 1, · · ·, N for
the N -adic intervals contained in I of size N−1|I|. For I ∈ ΓS and k = 1, · · ·, N let

I
(k)
0 be the biggest interval from Γ with I

(k)
0 ⊂ I(k). Note that the intervals I

(k)
0 exist

for every I ∈ ΓS ; otherwise, if for some k0 ∈ {1, · · ·, N} there is no interval from Γ
contained in I(k0) we have I(k0) ⊂ L(I) and then

|S(I)| ≤ |I\I(k0)| = (1− 1/N)|I|,
contradicting the definition of ΓS .

We claim that if I,R ∈ ΓS and I 6= R, then we necessarily have I
(k)
0 6= R

(l)
0 for

all 1 ≤ k, l ≤ N. This is trivially true if I ∩ R = ∅. Without loss of generality we

may assume I ⊂ R and also I ⊂ R(1). It follows that I
(k)
0 6= R

(l)
0 for all k = 1, · · ·, N

and all l = 2, · · ·, N. Moreover, as R
(1)
0 is the biggest interval in Γ contained in R(1)

and I ⊂ R1 we have that I ⊂ R
(1)
0 ⊂ R(1). Hence, for all k = 1, · · ·, N we have

I
(k)
0 ⊂ I ⊂ R

(1)
0 and thus I

(k)
0 6= R

(1)
0 . In short, to each I ∈ ΓS we have assigned N

different intervals in Γ and these are not associated to any other interval in ΓS . We
conclude that NCard(ΓS) ≤ Card(Γ). Consequently we have

Card(ΓL) = Card(ΓL)− Card(ΓS) ≥ Card(Γ)− Card(Γ)/N = (1− 1/N)Card(Γ).
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Note that |I|/N ≤ |L(I)| ≤ |I| and by (2.4) we have ‖χL(I)‖Lp
w
� ‖χI‖Lp

w
. Using

this estimate we can write

‖SΓ‖Lp
w
�

∥∥∥∥∥∥
∑

I∈Γmin

χL(I)(x)

w(I)1/p

∥∥∥∥∥∥
Lp

w

� (Card(Γmin))1/p � (Card(Γ))1/p. (2.7)

From (2.2), (2.7) one obtains the estimates (2.1), with h(n) = n1/p. �
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to first order differential systems with nonlocal
conditions
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Abstract. The purpose of the present work is to study the existence and the
localization of positive solutions to nonlocal boundary value problems for first
order differential systems. The localization is established by the vector version of
Krasnosel’skĭı’s fixed point theorem in cones.
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1. Introduction

Nonlocal problems for different classes of differential equations and systems have
been intensively studied in the literature (see, for example, [1], [2], [3], [9] for multi-
point nonlocal conditions, and [13], [14] for nonlocal conditions given by Stieltjes
integrals). One of the most common technique for the existence and localization of
positive solutions to integral and differential equations is based on Krasnosel’skĭı’s
fixed point theorem in cones (see, e.g. [4], [7], [8], [11] and [12]).

Motivated by the article of Li and Sun [6], in this paper, we study systems of first
order equations with integral boundary conditions, using the vector version of Kras-
nosel’skĭı’s fixed point theorem in cones given by Precup [10]. This vectorial method
allows the nonlinear terms of a system to have different behaviors both in compo-
nents and variables. More exactly, in this paper we consider the following first order
differential system with nonlocal boundary conditions given by linear functionals:

u′1 = f1(t, u1, u2)

u′2 = f2(t, u1, u2)

u1(0)− a1u1(1) = g1[u1]

u2(0)− a2u2(1) = g2[u2]

(1.1)
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where f1, f2 ∈ C([0, 1]×R2
+,R+); g1, g2 : C[0, 1]→ R are two linear functionals given

by

gi[u] =

∫ 1

0

u(s) dγi(s), (1.2)

with gi[1] < 1; γi ∈ C1[0, 1] increasing and 0 < ai < 1− gi[1] (i = 1, 2).
We seek nonnegative solutions (u1, u2), u1 ≥ 0, u2 ≥ 0 on [0, 1].

1.1. The integral form of the nonlocal problem

In order to put (1.1) in an operator form, let us first consider the scalar problem:{
Lu := u′ = h(t), 0 ≤ t ≤ 1

u(0)− au(1) = g[u]
(1.3)

where h ∈ C[0, 1]; g : C[0, 1]→ R is a linear functional given by

g[u] =

∫ 1

0

u(s) dγ(s), (1.4)

with g[1] < 1; γ ∈ C1[0, 1] increasing; 0 < a < 1 − g[1]. We shall obtain the integral
equation equivalent to the problem (1.3). To this end, we start with the differential
equation, which by integration gives

u(t) = u(0) +

∫ t

0

h(s) ds. (1.5)

Apply g to (1.5) and use its linearity to obtain

g[u] = u(0)g[1] + g

[∫ t

0

h(s) ds

]
.

Notice that by g

[∫ t

0

h(s) ds

]
we mean the value of functional g on the function

t 7→
∫ t

0

h(s) ds. This together with the boundary condition in (1.3) yields

u(0)− au(1) = u(0)g[1] + g

[∫ t

0

h(s) ds

]
,

and then

u(0)− u(0)g[1] = au(1) + g

[∫ t

0

h(s) ds

]
.

On the other hand,

u(1) = u(0) +

∫ 1

0

h(s) ds.

Therefore

u(0)− u(0)g[1] = au(0) + a

∫ 1

0

h(s) ds+ g

[∫ t

0

h(s) ds

]
.

Hence

u(0) =
1

1− g[1]− a

(
g

[∫ t

0

h(s) ds

]
+ a

∫ 1

0

h(s) ds

)
.
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If we denote c :=
1

1− g[1]− a
and we substitute into (1.5), we obtain

u(t) = cg

[∫ t

0

h(s) ds

]
+ ca

∫ 1

0

h(s) ds+

∫ t

0

h(s) ds.

Next using the expresion (1.4) of g, we find

u(t) = c

∫ 1

0

(∫ s

0

h(r) dr

)
dγ(s) + ca

∫ 1

0

h(s) ds+

∫ t

0

h(s) ds

= c

∫ 1

0

γ
′
(s)

∫ s

0

h(r) dr ds+ ca

∫ 1

0

h(s) ds+

∫ t

0

h(s) ds

=

∫ t

0

(
cγ
′
(s)

∫ s

0

h(r) dr + h(s)

)
ds+ c

∫ 1

t

γ
′
(s)

∫ s

0

h(r) dr ds

+ ca

∫ 1

0

h(s) ds.

Integration by parts gives

u(t) = cγ(s)

∫ s

0

h(r) dr
∣∣∣t
0
−
∫ t

0

cγ(s)h(s) ds+ cγ(s)

∫ s

0

h(r) dr
∣∣∣1
t

−
∫ 1

t

cγ(s)h(s) ds+

∫ t

0

h(s) ds+ ca

∫ 1

0

h(s) ds

= cγ(1)

∫ 1

0

h(s) ds−
∫ 1

0

cγ(s)h(s) ds+

∫ t

0

h(s) ds+ ca

∫ 1

0

h(s) ds

=

∫ 1

0

c (γ(1)− γ(s) + a)h(s) ds+

∫ t

0

h(s) ds

=

∫ t

0

[c(γ(1)− γ(s) + a) + 1]h(s) ds+

∫ 1

t

c(γ(1)− γ(s) + a)h(s) ds. (1.6)

If now, to the nonlocal condition u(0)−au(1) = g[u], we associate the Green function

G(t, s) =

{
c[γ(1)− γ(s) + a] + 1 for 0 ≤ s ≤ t ≤ 1

c[γ(1)− γ(s) + a] for 0 ≤ t < s ≤ 1,
(1.7)

then (1.6) can be written as

u(t) =

∫ 1

0

G(t, s)h(s) ds.

Thus we have obtained the inverse of the operator L, L−1 : C[0, 1]→ C[0, 1],

(L−1h)(t) =

∫ 1

0

G(t, s)h(s) ds.

Based on this, the problem of nonnegative solutions of (1.1) is equivalent to the
integral system: 

u1(t) =

∫ 1

0

G1(t, s)f1(s, u1(s), u2(s)) ds

u2(t) =

∫ 1

0

G2(t, s)f2(s, u1(s), u2(s)) ds,

(1.8)
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where G1(t, s) and G2(t, s) are the Green functions corresponding to the two nonlocal
conditions,

Gi(t, s) =

{
ci[γi(1)− γi(s) + ai] + 1 for 0 ≤ s ≤ t ≤ 1

ci[γi(1)− γi(s) + ai] for 0 ≤ t < s ≤ 1,

where ci =
1

1− gi[1]− ai
(i = 1, 2).

The following properties are essential for the applicability of Krasnosel’skĭı’s
technique:
1) Gi(t, s) ≤ Hi(s), for all t, s ∈ [0, 1], where

Hi(s) = ci[γi(1)− γi(s) + ai] + 1 (i = 1, 2)

2) δiHi(s) ≤ Gi(t, s) for all t, s ∈ [0, 1], where

δi = min
s∈[0,1]

ci[γi(1)− γi(s) + ai]

ci[γi(1)− γi(s) + ai] + 1
(i = 1, 2).

Let N : C([0, 1],R2
+)→ C([0, 1],R2

+), N = (N1, N2) be defined by

Ni(u1, u2)(t) =

∫ 1

0

Gi(t, s)fi(s, u1(s), u2(s)) ds (i = 1, 2).

The above properties of the Green functions imply that for any t, t∗ ∈ [0, 1], one has:

Ni(u1, u2)(t) =

∫ 1

0

Gi(t, s)fi(s, u1(s), u2(s)) ds

≥ δi
∫ 1

0

Hi(s)fi(s, u1(s), u2(s)) ds

≥ δi
∫ 1

0

Gi(t
∗, s)fi(s, u1(s), u2(s)) ds = δiNi(u1, u2)(t∗).

This yields the estimation from below

Ni(u1, u2)(t) ≥ δi|Ni(u1, u2)|∞ for all t ∈ [0, 1] (i = 1, 2) (1.9)

and any nonnegative functions u1, u2 ∈ C[0, 1].
Based on these estimations we define the cones:

Ki = {ui ∈ C[0, 1] : ui(t) ≥ δi|ui|∞, for all t ∈ [0, 1]}(i = 1, 2), (1.10)

and the product cone K := K1 × K2 in C([0, 1],R2). Due to (1.9) we have the
invariance property

N(K) ⊂ K.

Therefore, the problem of nonnegative solutions of (1.1) is equivalent to the fixed
point problem

u = Nu, u ∈ K,

for the self-mapping N of K. Note that the continuity of f1, f2 implies the complete
continuity of N .

Notice that (1.9) represents a weak Harnack type inequality for the nonnegative
super solutions of the problem (1.1) (see [5]).



Existence and localization of positive solutions 225

1.2. The vector version of Krasnosel’skĭı’s fixed point theorem in cones

The main tool of our paper is the following vector version of Krasnosel’skĭı’s fixed
point theorem in cones given by Precup [10].

Theorem 1.1. Let (X, | · |) be a normed linear space; K1,K2 ⊂ X two cones; K :=
K1 × K2; r,R ∈ R2

+, r = (r1, r2), R = (R1, R2) with 0 < r < R if 0 < r1 < R1

and 0 < r2 < R2; (Ki)ri,Ri
= {ui ∈ Ki : ri < |ui| < Ri}, for i = 1, 2; Kr,R :=

(K1)r1,R1
× (K2)r2,R2

and N : Kr,R → K, N = (N1, N2) a compact map. Assume
that for each i ∈ {1, 2}, one of the following conditions is satisfied in Kr,R:

(a) Ni(u1, u2) � ui if |ui| = ri, and Ni(u1, u2) � ui if |ui| = Ri;
(b) Ni(u1, u2) � ui if |ui| = ri, and Ni(u1, u2) � ui if |ui| = Ri.

Then N has a fixed point u := (u1, u2) in K with ri < |ui| < Ri, for i ∈ {1, 2}.

Notice that the condition (a) means compression, while (b) means expansion.
Therefore, in Theorem 1.1, the operators N1, N2 are both compressing, both expand-
ing, or one compressing and the other one expanding.

2. Main results

2.1. Existence and localization

Using the notations from Section 1.1, we can state the main result of this paper.

Theorem 2.1. Assume that there exist αi, βi > 0 with αi 6= βi, i = 1, 2, such that

A1λ1 > α1, B1Λ1 < β1,

A2λ2 > α2, B2Λ2 < β2,
(2.1)

where

Ai =

∫ 1

0

Gi(t
∗, s) ds, for a chosen point t∗ ∈ [0, 1],

Bi = max
0≤t≤1

∫ 1

0

Gi(t, s) ds,

λ1 = min{f1(t, u1, u2) : 0 ≤ t ≤ 1, δ1α1 ≤ u1 ≤ α1, δ2r2 ≤ u2 ≤ R2},
λ2 = min{f2(t, u1, u2) : 0 ≤ t ≤ 1, δ1r1 ≤ u1 ≤ R1, δ2α2 ≤ u2 ≤ α2},
Λ1 = max{f1(t, u1, u2) : 0 ≤ t ≤ 1, δ1β1 ≤ u1 ≤ β1, δ2r2 ≤ u2 ≤ R2},
Λ2 = max{f2(t, u1, u2) : 0 ≤ t ≤ 1, δ1r1 ≤ u1 ≤ R1, δ2β2 ≤ u2 ≤ β2},

and ri = min{αi, βi}, Ri = max{αi, βi} (i = 1, 2). Then (1.1) has at least one positive
solution u = (u1, u2) with ri < |ui|∞ < Ri (i = 1, 2).

Proof. We shall apply Theorem 1.1, with X = C[0, 1], |u| = max
0≤t≤1

|u(t)| and K1,K2

given by (1.10).
If ui ∈ (Ki)ri,Ri

, then ri < |ui|∞ < Ri (i = 1, 2). It follows from the definitions
of Ki that

δiri ≤ ui(t) ≤ Ri (i = 1, 2)

for all t ∈ [0, 1]. Also, if we know for example that |u1|∞ = α1, then



226 Diana-Raluca Herlea

δ1α1 ≤ u1(t) ≤ α1.

We claim that for any ui ∈ (Ki)ri,Ri and i ∈ {1, 2}, the following properties
hold:

|ui|∞ = αi implies Ni(u1, u2) � ui,

|ui|∞ = βi implies Ni(u1, u2) � ui.
(2.2)

Indeed, if |u1|∞ = α1 and we would have N1(u1, u2) ≤ u1, then for the chosen
point t∗ we obtain using (2.1):

α1 ≥ u1(t∗) ≥ N1(u1, u2)(t∗) =

∫ 1

0

G1(t∗, s)f1(s, u1(s), u2(s)) ds

≥ A1λ1 > α1.

This yields the contradiction α1 > α1. Now, if |u1|∞ = β1 and N1(u1, u2) ≥ u1, then
for some t′ ∈ [0, 1] with |u1|∞ = u1(t′) we have

β1 = u1(t′) ≤ N1(u1, u2)(t′) =

∫ 1

0

G1(t′, s)f1(s, u1(s), u2(s)) ds

≤ B1Λ1 < β1

whence we deduce that β1 < β1, a contradiction. Hence (2.2) holds for i = 1. Simi-
lary, (2.2) is true for i = 2. �

In particular, if f1 and f2 do not depend on t, i.e., f1 = f1(u1, u2) and f2 =
f2(u1, u2), and f1, f2 have some monotonicity properties in u1 and u2, then we can
specify the numbers λ1, λ2, Λ1, Λ2 and the conditions (2.1) are expressed by values
of f1, f2 on only four points. Here are five cases from all the sixteen possible:

Case 1) If f1, f2 are nondecreasing in u1 and u2, then

λ1 = f1(δ1α1, δ2r2), Λ1 = f1(β1, R2), λ2 = f2(δ1r1, δ2α2), Λ2 = f2(R1, β2),

and (2.1) becomes

f1(δ1α1, δ2r2)

α1
>

1

A1
,

f1(β1, R2)

β1
<

1

B1
,

f2(δ1r1, δ2α2)

α2
>

1

A2
,

f2(R1, β2)

β2
<

1

B2
.

Case 2) If f1 is nondecreasing in u1 and u2, while f2 is nondecreasing in u1 and
nonincreasing in u2, then

λ1 = f1(δ1α1, δ2r2), Λ1 = f1(β1, R2), λ2 = f2(δ1r1, α2), Λ2 = f2(R1, δ2β2),

and (2.1) reduces to

f1(δ1α1, δ2r2)

α1
>

1

A1
,

f1(β1, R2)

β1
<

1

B1
,

f2(δ1r1, α2)

α2
>

1

A2
,

f2(R1, δ2β2)

β2
<

1

B2
.

Case 3) If f1 is nondecreasing in u1 and nonincreasing in u2, while f2 is nonin-
creasing in u1 and nondecreasing in u2, then

λ1 = f1(δ1α1, R2), Λ1 = f1(β1, δ2r2), λ2 = f2(R1, δ2α2), Λ2 = f2(δ1r1, β2),

and (2.1) reads as
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f1(δ1α1, R2)

α1
>

1

A1
,

f1(β1, δ2r2)

β1
<

1

B1
,

f2(R1, δ2α2)

α2
>

1

A2
,

f2(δ1r1, β2)

β2
<

1

B2
.

Case 4) If f1 and f2 are nondecreasing in u1 and nonincreasing in u2, then

λ1 = f1(δ1α1, R2), Λ1 = f1(β1, δ2r2), λ2 = f2(δ1r1, α2), Λ2 = f2(R1, δ2β2),

and (2.1) becomes

f1(δ1α1, R2)

α1
>

1

A1
,

f1(β1, δ2r2)

β1
<

1

B1
,

f2(δ1r1, α2)

α2
>

1

A2
,

f2(R1, δ2β2)

β2
<

1

B2
.

Case 5) If f1 is nondecreasing in u1 and u2, while f2 is nonincreasing in u1 and
u2, then

λ1 = f1(δ1α1, δ2r2), Λ1 = f1(β1, R2), λ2 = f2(R1, α2), Λ2 = f2(δ1r1, δ2β2),

and (2.1) reduces to

f1(δ1α1, δ2r2)

α1
>

1

A1
,

f1(β1, R2)

β1
<

1

B1
,

f2(R1, α2)

α2
>

1

A2
,

f2(δ1r1, δ2β2)

β2
<

1

B2
.

2.2. Multiplicity

Theorem 2.1 guarantees the existence of solutions in an annular set. Clearly, if the
assumptions of Theorem 2.1 are satisfied for several disjoint annular sets, then multiple
solutions are obtained (see [11]).

Theorem 2.2. (A) Let (rj)1≤j≤k, (Rj)1≤j≤k (k ≤ ∞) be increasing finite or infinite
sequence in R2

+, with 0 ≤ rj < Rj and Rj < rj+1 for all j. If the assumptions of

Theorem 2.1 are satisfied for each couple (rj , Rj), then (1.1) has k (respectively, when
k =∞, an infinite sequence of) distinct positive solutions.

(B) Let (rj)j≥1, (Rj)j≥1 be decreasing infinite sequence with 0 < rj < Rj and
Rj < rj+1 for all j. If the assumptions of Theorem 2.1 are satisfied for each couple
(rj , Rj), then (1.1) has an infinite sequence of distinct positive solutions.

Proof. It is sufficient to see that

Krj ,Rj ∩Krj+1,Rj+1 = ∅ for all j.

To prove this, let us consider two cases. First, if we assume that the sequences (rj),
(Rj) are increasing, then Krj ,Rj ⊂ {u ∈ K : |u| < Rj+1}. Similary, if the sequences

(rj), (Rj) are decreasing, one has Krj+1,Rj+1 ⊂ {u ∈ K : |u| < rj}. �
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2.3. Examples

We conclude by two examples illustrating Theorem 2.1 in the Cases 1) and 5).

Example 2.3. Let

fi(u1, u2) =
1

15

√
u1 + u2 + 1 for i = 1, 2,

γ1(t) =
1

2
t, γ2(t) =

3

4
t, a1 =

1

4
and a2 =

1

8
. Then (1.1) becomes

u′1 =
1

15

√
u1 + u2 + 1

u′2 =
1

15

√
u1 + u2 + 1

u1(0)− 1

4
u1(1) =

1

2

∫ 1

0

u1(t) dt

u2(0)− 1

8
u2(1) =

3

4

∫ 1

0

u2(t) dt,

(2.3)

or equivalently 
u1(t) =

1

15

∫ 1

0

G1(t, s)
√
u1(s) + u2(s) + 1 ds

u2(t) =
1

15

∫ 1

0

G2(t, s)
√
u1(s) + u2(s) + 1 ds,

(2.4)

where G1(t, s) and G2(t, s) are the Green functions

G1(t, s) =

{
6− 4s for 0 ≤ s ≤ t ≤ 1

5− 4s for 0 ≤ t < s ≤ 1,

G2(t, s) =

{
10− 8s for 0 ≤ s ≤ t ≤ 1

9− 8s for 0 ≤ t < s ≤ 1.

In this case, the constants δ1, δ2 > 0 are the following ones:

δ1 = δ2 =
1

2
=: δ.

Now we have to determine Ai and Bi for i ∈ {1, 2}. We have

A1 =

∫ 1

0

G1(t∗, s) ds =

∫ t∗

0

(6− 4s) ds+

∫ 1

t∗
(5− 4s) ds = t∗ + 3.

If we choose t∗ = 0, then A1 = 3. Also

A2 =

∫ 1

0

G2(t∗, s) ds =

∫ t∗

0

(10− 8s) ds+

∫ 1

t∗
(9− 8s) ds = t∗ + 5,

and if we choose t∗ = 0, then A2 = 5. In addition

B1 = max
0≤t≤1

∫ 1

0

G1(t, s) ds = 4, B2 = max
0≤t≤1

∫ 1

0

G2(t, s) ds = 6.
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In this case f1(u1, u2) and f2(u1, u2) are both nondecreasing in u1 and u2 for u1, u2 ∈
R+, so we are in Case 1). We choose α1 = α2 =: α, β1 = β2 =: β, with α < β, then
r1 = r2 = α, R1 = R2 = β and λ1 = f1(δα, δα), Λ1 = f1(β, β), λ2 = f2(δα, δα),
Λ2 = f2(β, β). The values of α and β will be precised in what follows. Since

lim
x→∞

fi(x, x)

x
= 0 and lim

x→0

fi(x, x)

x
=∞,

we may find α small enough and β large enough such that the conditions

fi(δα, δα)

δα
>

1

δAi
,

fi(β, β)

β
<

1

Bi
(i = 1, 2)

are satisfied. For instance, we can choose α = 0, 2 and β = 0, 7.

Hence the following result holds.

Proposition 2.4. The system (2.3) has at least one positive solution u = (u1, u2) with

0, 2 < |ui|∞ < 0, 7 (i = 1, 2).

Example 2.5. Let f1(u1, u2) =
1

15

√
u1 + u2 + 1, f2(u1, u2) =

1

(2 + u21)(4 + u22)
,

γ1(t) =
1

2
t, γ2(t) =

3

4
t, a1 =

1

4
and a2 =

1

8
. Then (1.1) becomes

u′1 =
1

15

√
u1 + u2 + 1

u′2 =
1

(2 + u21)(4 + u22)

u1(0)− 1

4
u1(1) =

1

2

∫ 1

0

u1(t) dt

u2(0)− 1

8
u2(1) =

3

4

∫ 1

0

u2(t) dt,

(2.5)

or equivalently 
u1(t) =

1

15

∫ 1

0

G1(t, s)
√
u1(s) + u2(s) + 1 ds

u2(t) =

∫ 1

0

G2(t, s)
1

(2 + u1(s)2)(4 + u2(s)2)
ds.

(2.6)

The Green functions Gi(t, s) and the values of δi, Ai, Bi (i = 1, 2) are the same from
the Example 2.3. In this case f1(u1, u2) is nondecreasing in u1 and u2, while f2(u1, u2)
is nonincreasing in u1 and u2, for u1, u2 ∈ R+, so now we are in Case 5). We choose
α1 = α2 =: α, β1 = β2 =: β, with α < β. Then r1 = r2 = α, R1 = R2 = β and
λ1 = f1(δα, δα), Λ1 = f1(β, β), λ2 = f2(β, α), Λ2 = f2(δα, δβ), where α and β will
be precised in what follows. Since

lim
y→∞

f1(y, y)

y
= 0 and lim

y→∞

f2(x, y)

y
= 0,

uniformly in x ≥ 0, we may find β > 0 large enough such that

f1(β, β)

β
<

1

B1
,

f2(δα, δβ)

δβ
<

1

δB2
.
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And since

lim
x→0

f1(x, x)

x
=∞ and lim

x→0

f2(y, x)

x
= 0,

with β fixed as above, we choose α small enough such that

f1(δα, δα)

δα
>

1

δA1
,

f2(β, α)

α
>

1

A2
.

For example, we can choose β = 0, 9 and α = 0, 2.

Hence the following result holds.

Proposition 2.6. The system (2.5) has at least one positive solution u = (u1, u2) with

0, 2 < |ui|∞ < 0, 9 (i = 1, 2).
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and elliptic problems, Topol. Methods Nonlinear Anal., 40(2012), 301-313.

[13] Precup, R., Trif, D., Multiple positive solutions of non-local initial value problems for
first order differential systems, Nonlinear Anal., 75(2012), 5961-5970.



Existence and localization of positive solutions 231

[14] Webb, J.R.L., Infante, G., Non-local boundary value problems of arbitrary order, J. Lond.
Math. Soc., 79(2008), 238-258.

Diana-Raluca Herlea
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Abstract. The purpose of this paper is to review some fixed point and strict

fixed point results for Ćirić type operators. The data dependence of the fixed
point set, the well-posedness of the fixed point problem, the limit shadowing
property, as well as, the fractal operator theory associated with these operators
are also considered.
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1. Preliminaries

Fixed points and strict fixed points (also called end-points) are important tools
for the study of equilibrium problems in Mathematical Economics and Game The-
ory. Fixed points and the strict fixed points represent optimal preferences in some
economical models and respectively different Nash type equilibrium points for some
abstract games, see, for example, [1] and [23]. As a consequence, it is important aim
to obtain fixed and strict fixed point theorems for multivalued operators in different
contexts.

We shall begin by presenting some notions and notations that will be used
throughout the paper.

Let us consider the following families of subsets of a metric space (X, d):

P (X) := {Y ∈ P (X) |Y 6= ∅} ;Pb(X) := {Y ∈ P (X)| Y is bounded } ,

Pcl(X) := {Y ∈ P (X)| Y is closed} ;Pcp(X) := {Y ∈ P (X)| Y is compact}
Let us define the gap functional between the sets A and B in the metric space

(X, d) as:

D : P (X)× P (X)→ R+, D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}

and the (generalized) Pompeiu-Hausdorff functional as:

H : P (X)× P (X)→ R+ ∪ {+∞},
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H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(A, b)}.

The generalized diameter functional is denoted by δ : P (X)×P (X)→ R+∪{∞},
and defined by

δ(A,B) = sup{d(a, b) | a ∈ A, b ∈ B}.
Denote by diam(A) := δ(A,A) the diameter of the set A.

Let T : X → P (X) be a multivalued operator and

Graphic(T ) := {(x, y)|y ∈ T (x)}

the graphic of T . An element x ∈ X is called a fixed point for T if and only if x ∈ T (x)
and it is called a strict fixed point if and only if {x} = T (x).

The set Fix(T ) := {x ∈ X| x ∈ T (x)} is called the fixed point set of T , while
SFix(T ) = {x ∈ X| {x} = T (x)} is called the strict fixed point set of T . Notice that
SFix(T ) ⊆ Fix(T ).

We will also denote by

O(x0, n) := {x0, t(x0), t2(x0), · · · , tn(x0)}

the orbit of order n of the operator t corresponding to x0 ∈ X, while

O(x0) := {x0, t(x0), t2(x0), · · · , tn(x0), · · · }

is the orbit of f corresponding to x0 ∈ X.

In this paper we will survey some fixed point and strict fixed point theorems for
singlevalued and multivalued operators satisfying contractive conditions of Ćirić type.
We will also present some new results for general classes of Ćirić type operators.

2. A survey of known results

The basic metric fixed point theorems for singlevalued, respectively multivalued
operators are Banach’s contraction principle (1922), respectively Nadler’s contrac-
tion principle (1969). A lot of efforts were done to extend these results for so called
generalized contractions.

Let (X, d) be a metric space and f : X → X be a singlevalued operator. Then,
by definition (see I.A. Rus [22]), f is called a weakly Picard operator if:

(i) Ff 6= ∅;
(ii) for all x ∈ X, the sequence (fn(x))n∈N → x∗(x) ∈ Ff as n→∞.
In particular, if Ff = {x∗}, then f is called a Picard operator.
Moreover, if f is a weakly Picard operator and there exists c̃ > 0 such that

d(x, x∗(x)) ≤ c̃d(x, f(x)), for all x ∈ X,

then f is called a c̃-weakly Picard operator. Similarly, a Picard operator for which
there exists c̃ > 0 such that

d(x, x∗) ≤ c̃d(x, f(x)), for all x ∈ X,

is called a c̃-Picard operator.
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A nice extension of Banach’s contraction principle was given by Ćirić, Reich and
Rus (independently one to the others) in 1971-1972.

More precisely, if (X, d) is a complete metric space and f : X → X is an operator
for which there exist a, b, c ∈ R+ with a+ b+ c < 1 such that

d(f(x), f(y)) ≤ ad(x, y) + bd(x, f(x)) + cd(y, f(y)), for all x, y ∈ X,

then f is a c̃-Picard operator, with c̃ := 1
1−β , where β := min{a+b1−c ,

a+c
1−b} < 1.

An extension of this result was proved in a paper from 1973 by Hardy and
Rogers. The result, in Picard operators language, is as follows.

If (X, d) is a complete metric space and f : X → X is an operator for which
there exist a, b, c, e, f ∈ R+ with a+ b+ c+ e+ f < 1 such that

d(f(x), f(y)) ≤ ad(x, y) + bd(x, f(x)) + cd(y, f(y)) + ed(x, f(y)) + fd(y, f(x)),

for all x, y ∈ X, then f is a c̃-Picard operator, with c̃ := 1
1−β , where

β := min{a+ b+ e

1− c− e
,
a+ c+ f

1− b− f
} < 1.

The idea of the proof in the above results is to prove that f is a contraction on
the graphic of the operator. i.e.,

d(f(x), f2(x)) ≤ βd(x, f(x)), for all x ∈ X.

Then in 1974, Ćirić proved the following very general result.
If (X, d) is a complete metric space and if f : X → X is an operator for which

there exists q ∈ (0, 1) such that, for all x, y ∈ X, we have

d(f(x), f(y)) ≤ qmax{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))}, (2.1)

then f is a c̃-Picard operator, with c̃ := 1
1−q .

In this last case, the proof is based on some arguments involving the orbit of
order n and the orbit of the operator f .

Remark 2.1. Notice that any Ćirić-Reich-Rus type operator is a Hardy-Rogers type
operator and any Hardy-Rogers type operator is a Ćirić type operator. The reverse
implications do not hold, as we can see from several examples given in [10], [21], [22].

There are also other generalizations of the above theorems. One of the most
general one, was proved by I.A. Rus in 1979.

If (X, d) is a complete metric space and f : X → X is an operator for which
there exists a generalized strict comparison function ϕ : R5

+ → R+ (which means that
ϕ is increasing in each variable and the function Φ : R+ → R+ defined by

Φ(t) := ϕ(t, t, t, t, t)

satisfy the conditions that Φn(t) → 0 as n → +∞, for all t > 0 and t − Φ(t) → +∞
as t→ +∞) such that

d(f(x), f(y))≤ ϕ(d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))), for all x, y∈X,



236 Adrian Petruşel

then f is a Φ-Picard operator (i.e., f is a Picard operator and d(x, x∗) ≤ Φ(d(x, f(x)),
for all x ∈ X).

Notice that if, in particular

ϕ(t1, t2, t3, t4, t5) := at1 + bt2 + ct3 + et4 + ft5,

(with a, b, c, e, f ∈ R+ and a + b + c + e + f < 1), then we obtain the Hardy-Rogers
condition on f . Also, if we consider

ϕ(t1, t2, t3, t4, t5) := qmax{t1, t2, t3, t4, t5},

then we get the Ćirić type condition on f .

Finally, let us recall another nice generalization given, for the case of nonself
operators, by Ćirić in 2006.

More precisely, if (X, d) is a complete metric space and f : X → X is an
operator for which there exist five strict comparison functions ϕi : R+ → R+ (i.e., ϕi
is increasing, ϕni (t) → 0 as n → +∞, for all t > 0 and t − ϕi(t) → +∞ as t → +∞
for each i ∈ {1, 2, 3, 4, 5}) such that, for all x, y ∈ X one have that

d(f(x), f(y)) ≤
≤ max{ϕ1(d(x, y)), ϕ2(d(x, f(x))), ϕ3(d(y, f(y))), ϕ4(d(x, f(y))), ϕ5(d(y, f(x)))},

then f is a Picard operator.
Notice that, in particular if we define ϕi(t) := qt (where q < 1) for i ∈ {1, 2, 3, 4, 5},
then we obtain again the classical condition of Ćirić.

Passing to the multivalued case, let (X, d) be a metric space and let T : X → Pb(X)
be a multivalued operator with nonempty and bounded values. We will be interested
in the study of strict fixed points of multivalued operators satisfying some contractive
type conditions with respect to the functional δ.

In 1972, S. Reich proved the following very interesting strict fixed point theorem
for multivalued operators.

If (X, d) is a complete metric space and if T : X → Pb(X) is a multivalued
operator for which there exist a, b, c ∈ R+ with a+ b+ c < 1 such that

δ(T (x), T (y)) ≤ ad(x, y) + bδ(x, T (x)) + cδ(y, T (y)), for all x, y ∈ X,
then the following conclusions hold:

(i) FT = (SF )T = {x∗};
(ii) for each x0 ∈ X there exists a sequence of successive approximations for T

starting from x0 (which means that xn+1 ∈ T (xn), for each n ∈ N) convergent to x∗;

(iii) d(xn, x
∗) ≤ βn

1−βd(x0, x1), for n ∈ N∗ (where β := min{a+b1−c ,
a+c
1−b} < 1).

An important extension of the above result is the following theorem of Ćirić,
given in 1972.

Let (X, d) be a complete metric space and let T : X → Pb(X) be a multivalued
operator for which there exists q ∈ R+ with q < 1 such that, for all x, y ∈ X the
following condition holds

δ(T (x), T (y)) ≤ qmax{d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))}.
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Then the following conclusions hold:

(i) FT = (SF )T = {x∗};
(ii) for each x0 ∈ X there exists a sequence of successive approximations for T

starting from x0 convergent to x∗;

(iii) d(xn, x
∗) ≤ q(1−a)n

1−q1−a d(x0, x1), for n ∈ N∗ (where a ∈ (0, 1) is an arbitrary

real number).

In the above two results, the approach is based on the construction of a selection
t : X → X of T which satisfies the corresponding fixed point theorem (given by Reich

and respectively by Ćirić) for singlevalued operators.

A relevant generalization of the above theorems was given by I.A. Rus in 1982,
as follows.

Let (X, d) be a complete metric space and let T : X → Pb(X) be a multivalued
operator. Suppose that there exists an increasing function ϕ : R5

+ → R+ for which
there exists p > 1 such that the function ψ : R5

+ → R+ defined by

ψ(t1, t2, t3, t4, t5) := ϕ(t1, pt2, pt3, t4, t5)

is a generalized strict comparison function. If, for all x, y ∈ X the following assumption
takes place:

δ(T (x), T (y)) ≤ ϕ(d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))),

then the following conclusions hold:

(i) FT = (SF )T = {x∗};
(ii) for each x0 ∈ X there exists a sequence of successive approximations for T

starting from x0 convergent to x∗.

Remark 2.2. In none of the above cases, we cannot obtain (without additional as-
sumptions) the conclusion that T is a multivalued Picard operator. Recall that, by
definition, T : X → P (X) is called a multivalued Picard operator (see [15]) if and
only if:

(i) (SF )T = FT = {x∗};
(ii) Tn(x)

Hd→ {x∗} as n→∞, for each x ∈ X.

For example, if, in the case of Reich’ strict fixed point theorem, we additionally
impose the condition that

min

{
a+ b

1− b
,
a+ c

1− c

}
< 1,

then we can prove that T is a multivalued Picard operator, see [14].

Remark 2.3. It is an open question if we can get similar results if we replace, in Ćirić’
result (or more generally in Rus’ theorem) the values D(x, T (y)) and D(y, T (x)) with
δ(x, T (y)) and, respectively δ(y, T (x)).
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3. Strict fixed point theorems in metric spaces endowed with a graph

A new research direction in fixed point theory was recently considered by J.
Jachymski (see [11]) in the context of a metric space endowed with a graph.

Let (X, d) be a metric space and ∆ be the diagonal of X×X. Let G be a directed
graph such that the set V (G) of its vertices coincides with X and ∆ ⊆ E(G), E(G)
being the set of the edges of the graph. Assuming that G has no parallel edges, we
will suppose that G can be identified with the pair (V (G), E(G)).

If x and y are vertices of G, then a path in G from x to y of length k ∈ N is a finite
sequence (xn)n∈{0,1,2,··· ,k} of vertices such that x0 = x, xk = y and (xi−1, xi) ∈ E(G),
for i ∈ {1, 2, · · · , k}.

Let us denote by G̃ the undirected graph obtained from G by ignoring the
direction of edges. Notice that a graph G is connected if there is a path between any
two vertices and it is weakly connected if G̃ is connected.

We will write that E(G) ∈ I(T × T ) if and only if x, y ∈ X with (x, y) ∈ E(G)
implies T (x)× T (y) ⊂ E(G).

For the particular case of a singlevalued operator t : X → X the above notations
should be considered accordingly. In particular, the condition E(G) ∈ I(t× t) means
that the operator t is edge preserving (in the sense of the Jachymski’s definition of a
Banach contraction, see [11]), i.e., for each x, y ∈ X with (x, y) ∈ E(G) we have that
(t(x), t(y)) ∈ E(G).

One of the main result of the paper [2] is a fixed point theorem for a singlevalued

operator of Ćirić type in metric spaces endowed with a graph. An extended version
of that theorem is the following.

Theorem 3.1. Let (X, d) be a complete metric space and G be a directed graph such
that the triple (X, d,G) satisfies the following property:
(P) for any sequence (xn)n∈N ⊂ X xn → x as n→∞, there exists a subsequence

(xkn)n∈N of (xn)n∈N such that (xkn , x) ∈ E(G).
Let t : X → X be a singlevalued operator. Suppose the following assertions hold:

(i) there exists a ∈ [0, 1[ such that

d(t(x), t(y)) ≤ a ·max{d(x, y), d(x, t(x)), d(y, t(y)), d(x, t(y)), d(y, t(x)},
for all (x, y) ∈ E(G).

(ii) there exists x0 ∈ X such that (x0, t(x0)) ∈ E(G);
(iii) E(G) ∈ I(t× t);
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G).

In these conditions we have:

(a) (existence) Fix(t) 6= ∅.
(b) (uniqueness) If, in addition, the following implication holds

x∗, y∗ ∈ Fix(t) ⇒ (x∗, y∗) ∈ E(G),

then Fix(t) = {x∗}.
Moreover, the sequence (tn(x0))n∈N converges to x∗ in (X, d)

Recall now two important stability concepts for the case of fixed point inclusions.
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Definition 3.2. Let (X, d) be a metric space and T : X → Pcl(X) be a multivalued
operator. By definition, the fixed point problem is well-posed for T with respect to H
if:

(i) SFixT = {x∗};
(ii) If (xn)n∈N is a sequence in X such that H(xn, T (xn)) → 0, as n → ∞, then

xn
d→ x∗, as n→∞.

Definition 3.3. Let (X, d) be a metric space and T : X → P (X) be a multivalued
operator. By definition T has the limit shadowing property if for any sequence (yn)n∈N
from X such that D (yn+1, T (yn)) → 0, as n → ∞, there exists (xn)n∈N a sequence
of successive approximation of T, such that d (xn, yn)→ 0, as n→∞.

Another main result in [2] concerns with the case of multivalued operators sat-

isfying a Ćirić type condition with respect to the functional δ. An extended version
of that result is the following theorem.

Theorem 3.4. Let (X, d) be a complete metric space and G be a directed graph such
that the triple (X, d,G) satisfies the following property:

(P) for any sequence (xn)n∈N ⊂ X xn → x as n→∞, there exists a subsequence

(xkn)n∈N of (xn)n∈N such that (xkn , x) ∈ E(G).

Let T : X → Pb(X) be a multivalued operator. Suppose the following assertions hold:

(i) there exists a ∈ [0, 1[ such that

δ(T (x), T (y)) ≤ a ·max{d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))},

for all (x, y) ∈ E(G).
(ii) there exists x0 ∈ X such that, for all y ∈ T (x0) we have (x0, y) ∈ E(G);
(iii) E(G) ∈ I(T × T );
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G).

In these conditions we have:

(a) Fix(T ) = SFix(T ) 6= ∅.
(b) If, in addition, the following implication holds

x∗, y∗ ∈ Fix(T ) ⇒ (x∗, y∗) ∈ E(G),

then Fix(T ) = SFix(T ) = {x∗}. Moreover, there exists a selection t : X → X
of T satisfying the condition (2.1) on E(G), such that the sequence x∗ is a fixed
point for t and (tn(x0))n∈N converges to x∗ as n→ +∞.

(c) If T has closed graphic and if, for any sequence (xn)n∈N in X for which

H(xn, T (xn))→ 0 as n→∞,

we have that

(xn, x
∗) ∈ E(G) for all n ∈ N,

then the fixed point problem is well-posed for T with respect to H.
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(d) If a < 1
3 and if, for all sequences (yn)n∈N in X for which

D (yn+1, T (yn))→ 0 as n→∞,
it follows that

(yn, x
∗) ∈ E(G) for all n ∈ N,

then T has the limit shadowing property.

A data dependence result for the fixed point of a multivalued operator satisfying
a Ćirić type condition with respect to the functional δ is the following.

Theorem 3.5. Let (X, d) be a complete metric space and G be a directed graph such
that the triple (X, d,G) satisfies the following property:
(P) for any sequence (xn)n∈N ⊂ X with xn → x as n→∞, there exists a subsequence

(xkn)n∈N of (xn)n∈N such that (xkn , x) ∈ E(G).
Let T, S : X → Pb(X) be two multivalued operators. Suppose the following assertions
hold:

(i) there exists a ∈ [0, 1[ such that

δ(T (x), T (y)) ≤ a ·max{d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))},
for all (x, y) ∈ E(G).

(ii) there exists x0 ∈ X such that, for all y ∈ T (x0) we have (x0, y) ∈ E(G);
(iii) E(G) ∈ I(T × T );
(iv) if (x, y) ∈ E(G) and (y, z) ∈ E(G), then (x, z) ∈ E(G).
(v) if x∗, y∗ ∈ Fix(T ) then (x∗, y∗) ∈ E(G).

(vi) Fix(S) 6= ∅.
(vii) if x∗ ∈ Fix(T ), then (x∗, y) ∈ E(G), for each y ∈ Fix(S).
(viii) there exists η > 0 such that δ(T (x), S(x)) ≤ η, for all x ∈ X.

Then

δ(x∗, F ix(S)) ≤ η

1− a
,

where x∗ is the unique fixed point of T .

Proof. By Theorem 3.4 the operator T has a unique fixed point, i.e.,

Fix(T ) = SFix(T ) = {x∗}.
Let y ∈ Fix(S) be arbitrary. Denote by t the selection of T which exists as in the
text of Theorem 3.4. Then, we have

d(x∗, y) ≤ d(x∗, t(y)) + d(t(y), y)) ≤ d(t(x∗), t(y)) + δ(T (y), S(y))

≤ a ·max{d(x∗, y), d(x∗, t(x∗)), d(y, t(y)), d(x∗, t(y)), d(y, t(x∗))}+ η

= a ·max{d(x∗, y), d(y, t(y)), d(x∗, t(y))}+ η

≤ a ·max{d(x∗, y), δ(S(y), T (y)), d(x∗, t(y))}+η ≤ a ·max{d(x∗, y), η, d(x∗, t(y))}+η.

We have the following cases:
1) If the above maximum is d(x∗, y), then we obtain that

d(x∗, y) ≤ η

1− a
.
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2) If the above maximum is η, then we obtain that

d(x∗, y) ≤ η(1 + a).

3) If the above maximum is d(x∗, t(y)), then

d(x∗, y) ≤ ad(x∗, t(y)) + η = ad(t(x∗), t(y)) + η ≤ ad(x∗, y) + η.

Hence

d(x∗, y) ≤ η

1− a
.

As a conclusion, from the above cases we get that

δ(x∗, F ix(S)) ≤ η

1− a
. �

For other results in the context of metric spaces endowed with a graph or the
case of ordered metric spaces we refer to [2], [3], [8], [9], [13], [12], [16], [19], etc.

4. A fractal operator theory for Ćirić-type operators

We will present now an existence and uniqueness result for the multivalued
fractal operator generated by a multivalued operator of Ćirić type.

Let (X, d) be a metric space and F : X → P (X) be a multivalued operator.

The multi-fractal operator generated by F is denoted by F̂ : Pcp (X)→ Pcp (X) and
is defined by Y 7→ F (Y )

F (Y ) :=
⋃
x∈Y

F (x) , for each Y ∈ Pcp (X)

A fixed point for F̂ is a fixed set for F , i.e., a nonempty compact set A∗ with
the property F̂ (A∗) = A∗.

Concerning the above problem, we have the following result.

Theorem 4.1. Let (X, d) be a complete metric space and let F : X → Pcl(X) be an
upper semicontinuous multivalued operator. Suppose that there exists a continuous
and increasing (in each variable) function ϕ : R3

+ → R+ such that the function
Ψ : R+ → R+ defined by

Ψ(t) := ϕ(t, t, t)

satisisfies the following properties:
(i) Ψn(t)→ 0 as n→ +∞, for all t > 0;
(ii) t−Ψ(t)→ +∞ as t→ +∞.
Suppose also that

H(F (x), F (y)) ≤ ϕ(d(x, y), D(x, F (y)), D(y, F (x))), for all x, y ∈ X.

Then the multi-fractal F̂ : Pcp (X)→ Pcp (X) generated by F has a unique fixed point,
i.e., there exists a unique A∗ ∈ Pcp(X) such that

F̂ (A∗) = A∗.
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Proof. We will prove that F̂ satisfies the assumptions of Rus’ Theorem for singlevalued
operators, i.e.,

H(F̂ (A), F̂ (B)) ≤ ϕ(H(A,B), H(A,F (B)), H(B,F (A))), for all A,B ∈ Pcp (X) .

Indeed we have:

ρ(F (A), F (B)) = sup
a∈A

ρ(F (a), F (B)) = sup
a∈A

( inf
b∈B

ρ(F (a), F (b))) ≤

≤ sup
a∈A

( inf
b∈B

H(F (a), F (b))) ≤ sup
a∈A

( inf
b∈B

(ϕ(d(a, b), D(a, F (b)), D(b, F (a)))))

≤ sup
a∈A

ϕ( inf
b∈B

d(a, b), inf
b∈B

D(a, F (b)), inf
b∈B

D(b, F (a)))

= sup
a∈A

ϕ(D(a,B), D(a, F (B)), D(F (a), B))

= ϕ(sup
a∈A

D(a,B), sup
a∈A

D(a, F (B)), sup
a∈A

D(F (a), B))

= ϕ(ρ(A,B), ρ(A,F (B)), ρ(F (A), B)) ≤ ϕ(H(A,B), H(A,F (B)), H(B,F (A))).

By the above inequality and the similar one for ρ(F (A), F (B)), we obtain that

H(F (A), F (B)) ≤ ϕ(H(A,B), H(A,F (B)), H(B,F (A))).

As a consequence, by Rus’ theorem applied for F̂ , we get that F̂ has a unique fixed
point in Pcp(X), i.e., there exists a unique A∗ ∈ Pcp(X) such that F̂ (A∗) = A∗. �

Moreover, if (X, d) is a metric space and F1, ..., Fm : X → P (X) are multivalued
operators, then the system F = (F1, ..., Fm) is called an iterated multifunction system
(IMS).

If the system F = (F1, ..., Fm) is such that, for each i ∈ {1, 2, · · ·m}, the mul-
tivalued operators Fi : X → Pcp (X) are upper semicontinuos, then the operator TF
defined as

TF (Y ) =

m⋃
i=1

Fi (Y ) , for each Y ∈ Pcp (X)

has the property that TF : Pcp (X) → Pcp (X) and it is called the multi-fractal
operator generated by the IMS F = (F1, ..., Fm) .

A nonempty compact subset A∗ ⊂ X is said to be a multivalued fractals with
respect to the iterated multifunction system F = (F1, ..., Fm) if and only if it is a
fixed point for the associated multifractal operator, i.e., TF (A∗) = A∗.

In particular, if Fi are singlevalued continuous operators from X to X, then
f = (f1, ..., fm) is called an iterated function system (briefly IFS) and the operator
Tf : Pcp (X)→ Pcp (X) given by

Tf (Y ) =

m⋃
i=1

fi (Y ) , for each Y ∈ Pcp (X)

is called the fractal operator generated by the IFS f . A fixed point of Tf is called a
fractal generated by the IFS f .

An existence and uniqueness result for the multivalued fractal is the following.
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Theorem 4.2. Let (X, d) be a complete metric space and let Fi : X → Pcl(X)
(i ∈ {1, 2, · · · ,m}) be upper semicontinuous multivalued operators. Suppose that
there exists continuous and increasing (in each variable) functions ϕi : R3

+ → R+

(i ∈ {1, 2, · · · ,m}) such that the functions Ψi : R+ → R+ defined by

Ψi(t) := ϕi(t, t, t), (i ∈ {1, 2, · · · ,m})
satisfy, for each i ∈ {1, 2, · · · ,m}, the following properties:

(i) Ψn
i (t)→ 0 as n→ +∞, for all t > 0;

(ii) t−Ψi(t)→ +∞ as t→ +∞.
Suppose also that, for each i ∈ {1, 2, · · · ,m}, we have that

H(Fi(x), Fi(y)) ≤ ϕi(d(x, y), D(x, F (y)), D(y, F (x))), for all x, y ∈ X.
Then the multi-fractal TF : Pcp (X)→ Pcp (X) generated by IMS F := (F1, ..., Fm) has
a unique fixed point, i.e., there exists a unique A∗ ∈ Pcp(X) such that TF (A∗) = A∗.

Proof. For A,B ∈ Pcp(X) and using the proof of the previous theorem, we have

H(TF (A), TF (B)) = H(

m⋃
i=1

Fi (A) ,

m⋃
i=1

Fi (B)) ≤ max
i∈{1,2,··· ,m}

H(Fi(A), Fi(B))

≤ max
i∈{1,2,··· ,m}

ϕi(H(A,B), H(A,Fi(B)), H(B,Fi(A)))

≤ max
i∈{1,2,··· ,m}

ϕi(H(A,B), H(TF (B), A), H(TF (A), B))

= ϕ̄(H(A,B), H(TF (B), A), H(TF (A), B)),

where ϕ̄(t1, t2, t3) := max
i∈{1,2,··· ,m}

ϕi(t1, t2, t3). The conclusion follows again by Rus’s

Theorem applied for TF . �

It is an open question to prove a similar result to Theorem 4.1 or Theorem 4.2
for the multifractal operator TF generated by an IMS F = (F1, ..., Fm) of multivalued

operators of Ćirić type.
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[3] Chifu, C., Petruşel, G., Bota, M., Fixed points and strict fixed points for multivalued
contractions of Reich type on metric spaces endowed with a graph, Fixed Point Theory
and Applications 2013, 2013:203, doi:10.1186/1687-1812-2013-203.
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Iterative regularization methods for ill-posed
Hammerstein-type operator equations in
Hilbert scales
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Abstract. In this paper we report on a method for regularizing a nonlinear Ham-
merstein type operator equation in Hilbert scales. The proposed method is a com-
bination of Lavrentieve regularization method and a Modified Newton’s method
in Hilbert scales . Under the assumptions that the operator F is continuously
differentiable with a Lipschitz-continuous first derivative and that the solution
of (1.1) fulfills a general source condition, we give an optimal order convergence
rate result with respect to the general source function.

Mathematics Subject Classification (2010): 65J20, 65J10, 65R30, 47A52.

Keywords: Nonlinear ill-posed Hammerstein type equations, iterative regulariza-
tion, adaptive choice, Hilbert scales.

1. Introduction

Let X and Y be Hilbert spaces. In this study we are concerned with the problem
of approximately solving the operator equation

KF (x) = y, (1.1)

where K : X → Y is a bounded linear operator with its range R(K) not closed in Y
and F : D(F ) ⊆ X → X is a nonlinear monotone operator (i.e., 〈F (u)−F (v), u−v〉 ≥
0, ∀u, v ∈ D). We shall use the notations 〈., .〉X , 〈., .〉Y and ‖.‖X , ‖.‖Y for the inner
product and the corresponding norm in the Hilbert spaces X,Y, respectively. The
equation (1.1) is, in general, ill-posed, in the sense that a unique solution that depends
continuously on the data does not exist.

A typical example of a Hammerstein type operator is the nonlinear integral
operator

(KF (x))(t) :=

∫ 1

0

k(s, t)f(s, x(s))ds
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where k(s, t) ∈ L2([0, 1] × [0, 1]), x ∈ L2[0, 1] and t ∈ [0, 1]. Here K : L2[0, 1] →
L2[0, 1] is a linear integral operator with kernel k(t, s) : defined as

Kx(t) =

∫ 1

0

k(t, s)x(s)ds

and F : D(F ) ⊆ L2[0, 1] → L2[0, 1] is a nonlinear superposition operator (cf. [16])
defined as

Fx(s) = f(s, x(s)). (1.2)

In [14], George and Nair studied a Modified NLR method for obtaining an ap-
proximation for the x0-minimum norm solution (x0-MNS) of the equation (1.1). Recall
that a solution x̂ ∈ D(F ) of (1.1) is called an x0-MNS of (1.1), if

‖F (x̂)− F (x0)‖X = min{‖F (x)− F (x0)‖X : AF (x) = y, x ∈ D(F )}. (1.3)

In the following, we always assume the existence of an x0-MNS for exact data
y, i.e.,

KF (x̂) = y.

Note that, due to the nonlinearity of F, the above solution need not be unique. The
element x0 ∈ X in (1.3) plays the role of a selection criterion.

Further we assume throughout that X is a real Hilbert space, yδ ∈ Y are the
available noisy data with

‖y − yδ‖Y ≤ δ (1.4)

and ‖F ′(x)‖X→X ≤M for all x ∈ D.
Since (1.1) is ill-posed, regularization methods are to be employed for obtaining

a stable approximate solution for (1.1). See, for example [18], [24], [7], [9], [10] for
various regularization methods for ill-posed operator equations.

In [6], we considered the sequence {xδn,αk} defined iteratively by

xδn+1,αk
= xδn,αk −Rβ(x0)−1[F (xδn,αk)− zδαk + αk(xδn,αk − x0)] (1.5)

where xδ0,αk := x0 is an initial guess and Rβ(x0) := F ′(x0) + βI, with β > αk for

obtaining an approximation of x̂. Here zδαk = (K∗K+αkI)−1K∗(yδ−KF (x0))+F (x0)
and αk is the regularization parameter chosen appropriately depending on the inexact
data yδ and the error level δ satisfying (1.4). For this we used the adaptive parameter
selection procedure suggested by Pereverzev and Schock [20]. In order to improve the
error estimate available in [14], in this paper we consider the Hilbert scale variant of
(1.5).

Let L : D(L) ⊂ X → X, be a linear, unbounded, self-adjoint, densely defined
and strictly positive operator on X. We consider the Hilbert scale (Xr)r∈< (see [12],
[13], [17] and [18]) generated by L for our analysis. Recall (c.f.[12])that the space Xt

is the completion of D := ∩∞k=0D(Lk) with respect to the norm ‖x‖t, induced by the
inner product

〈u, v〉t := 〈Ltu, Ltv〉, u, v ∈ D. (1.6)

Moreover, if β ≤ γ, then the embedding Xγ ↪→ Xβ is continuous, and therefore the
norm ‖.‖β is also defined in Xγ and there is a constant cβ,γ such that

‖x‖β ≤ cβ,γ‖x‖γ , x ∈ Xγ .
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In this paper we consider the sequence {xδn,αk} in order to obtain stable approx-
imate solution to (1.1), defined iteratively by

xδn+1,αk,s
= xδn,αk,s −Rβ(x0)−1[F (xδn,αk,s)− z

δ
αk,s

+ αkL
s/2(xδn,αk,s − x0)], (1.7)

where xδ0,αk,s := x0 is an initial guess and Rβ(x0) := F ′(x0) +βLs/2, with β > αk for

obtaining an approximation for x̂. Here zδαk,s be as in (2.2) with α = αk and αk is

the regularization parameter chosen appropriately depending on the inexact data yδ

and the error level δ satisfying (1.4). For this we use the adaptive parameter selection
procedure suggested by Pereverzev and Schock [20].

This paper is organized as follows. Preparatory results are given in section 2 and
section 3 comprises the proposed iterative method. Numerical examples are given in
section 4. Finally the paper ends with a conclusion in section 5.

2. Preliminaries

We assume that the ill-posed nature of the operator K is related to the Hilbert
scale {Xt}t∈R according to the relation

c1‖x‖−a ≤ ‖Kx‖Y ≤ c2‖x‖−a, x ∈ X,
for some real numbers a, c1, and c2.

Observe that from the relation 〈Kx, y〉Y = 〈x,K∗y〉X = 〈x, L−sK∗y〉s for all
x ∈ X and y ∈ Y, we conclude that L−sK∗ : Y → X is the adjoint of the operator K
in X. Consequently L−sK∗K : X → X is self-adjoint. Further we note that

(A∗sAs + αI)−1Ls/2 = Ls/2(L−sK∗K + αI)−1

where As = KL−s/2.
One of the crucial results for proving the results in this paper is the following

proposition, where f and g are defined by

f(t) = min{ct1, ct2}, g(t) = max{ct1, ct2}, t ∈ R, |t| ≤ 1.

Proposition 2.1. (See [23], Proposition 2.1) For s ≥ 0 and |ν| ≤ 1,

f(ν)‖x‖−ν(s+a) ≤ ‖(A∗sAs)ν/2x‖X ≤ g(ν)‖x‖−ν(s+a), x ∈ H.

We make use of the relation

‖(As + αI)−1Aps‖X ≤ αp−1, p > 0, 0 < p ≤ 1, (2.1)

which follows from the spectral properties of the positive self-adjoint operator As,
s > 0.

In this section we consider Tikhonov regularized solution zδα,s defined by

zδα,s = (L−sK∗K + αI)−1L−sK∗(yδ −KF (x0)) + F (x0) (2.2)

and obtain an a priori and an a posteriori error estimate for ‖F (x̂)− zδα,s‖X . The fol-
lowing assumption on source condition is based on a source function ϕ and a property
of the source function ϕ. We will be using this assumption to obtain an error estimate
for ‖F (x̂)− zδα,s‖X .
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Assumption 2.2. There exists a continuous, strictly monotonically increasing function
ϕ : (0, ‖A∗sAs‖]→ (0,∞) such that the following conditions hold:

• lim
λ→0

ϕ(λ) = 0,

• sup
λ>0

αϕ(λ)
λ+α ≤ ϕ(α), ∀λ ∈ (0, ‖A∗sAs‖] and

• there exists v ∈ X with ‖v‖ ≤ E, E > 0 such that

(A∗sAs)
s

2(s+a)Ls/2(F (x̂)− F (x0)) = ϕ(A∗sAs)v.

Remark 2.3. Note that if F (x̂) − F (x0) ∈ Xt i.e., ‖F (x̂) − F (x0)‖t ≤ E, for some
0 < t ≤ 2s+ a, then the above assumption is satisfied. This can be seen as follows.

(A∗sAs)
s

2(s+a)Ls/2(F (x̂)− F (x0)) = (A∗sAs)
t

2(s+a) (A∗sAs)
(s−t)

(2s+2a)Ls/2(F (x̂)− F (x0)),

= ϕ(A∗sAs)v

where ϕ(λ) = λ
t

2(s+a) and v = (A∗sAs)
(s−t)

(2s+2a)Ls/2(F (x̂)− F (x0)).
Further note that

‖v‖X ≤ g(
s− t
s+ a

)‖Ls/2(F (x̂)− F (x0))‖t−s

≤ g(
s− t
s+ a

)‖(F (x̂)− F (x0))‖t

≤ E

where E = g( s−ts+a )E.

Theorem 2.4. ([22, Theorem 2.4]) Suppose that Assumption 2.2 holds and let zα,s :=
z0α,s. Then

1.

‖zδα,s − zα,s‖X ≤ ψ(s)α
−a

2(s+a) δ, (2.3)

2.
‖F (x̂)− zα,s‖X ≤ φ(s)ϕ(α), (2.4)

3.
‖F (x0)− zα,s‖X ≤ ψ1(s)‖F (x̂)− F (x0)‖X , (2.5)

where ψ(s) = 1
f( s
s+a )

, φ(s) = E
f( s
s+a )

and ψ1(s) =
g( s
s+a )

f( s
s+a )

.

2.1. Error bounds and parameter choice in Hilbert scales

Let Cs = max{φ(s), ψ(s)}, then by (2.3), (2.4) and triangle inequality, we have

‖F (x̂)− zδα,s‖X ≤ Cs(ϕ(α) + α
−a

2(s+a) δ). (2.6)

The error estimate ϕ(α) + α
−a

2(s+a) δ in (2.6) attains minimum for the choice

α := α(δ, s, a) which satisfies ϕ(α) = α
−a

2(s+a) δ. Clearly α(δ, s, a) = ϕ−1(ψ−1s,a(δ)),
where

ψs,a(λ) = λ[ϕ−1(λ)]
a

2(s+a) , 0 < λ ≤ ‖As‖2 (2.7)

and in this case
‖F (x̂)− zδα,s‖X ≤ 2Csψ

−1
s,a(δ),
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which has at least optimal order with respect to δ, s and a (cf. [20]).

2.2. Adaptive scheme and stopping rule

In this paper we consider the adaptive scheme suggested by Pereverzev and
Schock in [20] modified suitably, for choosing the parameter α which does not involve
even the regularization method in an explicit manner.
Let i ∈ {0, 1, 2, · · · , N} and αi = µiα0 where µ = η2(1+s/a), η > 1 and α0 = δ2(1+s/a).
Let

l := max{i : ϕ(αi) ≤ α
−a

2(s+a)

i δ} < N (2.8)

and

k := max{i : ‖zδαi,s − z
δ
αj,s‖X ≤ 4α

−a
2(s+a)

j δ, j = 0, 1, 2, · · · , i}. (2.9)

Analogous to the proof of Theorem 4.3 in [11], we have the following Theorem.

Theorem 2.5. ([22, Theorem 2.5]) Let l be as in (2.8), k be as in (2.9), ψs,a be as in
(2.7) and zδαk,s be as in (2.2) with α = αk. Then l ≤ k; and

‖F (x̂)− zδαk,s‖X ≤ Cs(2 +
4η

η − 1
)ηψ−1s,a(δ)

where Cs is as in (2.6).

3. The method and convergence analysis

In the earlier papers [11, 15] the authors used the following Assumption:

Assumption 3.1. (cf. [21], Assumption 3 (A3)) There exists a constant K ≥ 0 such
that for every x, u ∈ D(F ) and v ∈ X there exists an element Φ(x, u, v) ∈ X such
that [F ′(x)− F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖X ≤ K‖v‖X‖x− u‖X .
Assumption 3.2. For each x ∈ Br(x0) there exists a bounded linear operator G such
that

F ′(x) = F ′(x0)G(x, x0)

with ‖G(x, x0)‖ ≤ k where k is a constant.

One of the advantages of the proposed method is that we do not need the above
assumption.

The hypotheses of Assumption 3.1 may not hold or may be very expensive or
impossible to verify in general (see the numerical examples). In particular, as it is the
case for well-posed nonlinear equations the computation of the Lipschitz constant K
even if this constant exists is very difficult. Moreover, there are classes of operators
for which Assumption 3.1 is not satisfied but the iterative method converges.

In the present paper, we expand the applicability of the method in [6] under
less computational cost. We achieve this goal by introducing the following weaker
Assumption.

Assumption 3.3. There exists a constant k0 ≥ 0 such that for every x ∈ D(F ) and
v ∈ X there exists an element Φ(x, x0, v) ∈ X such that

[F ′(x)− F ′(x0)]v = F ′(x0)Φ(x, x0, v), ‖Φ(x, x0, v)‖X ≤ k0‖v‖X‖x− x0‖X .
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Note that

k0 ≤ K
holds in general and K

k0
can be arbitrary large (see Example 4.3). The advantages of

the new approach are:

(1) Assumption 3.3 is weaker than Assumption 3.1. Notice that there are classes of
operators that satisfy Assumption 3.3 but do not satisfy Assumption 3.1 (see
the numerical examples);

(2) The computational cost of finding the constant k0 is less than that of constant
K, even when K = k0;

(3) The sufficient convergence criteria are weaker;
(4) The computable error bounds on the distances involved (including k0) are less

costly and more precise than the old ones (including K);
(5) The information on the location of the solution is more precise;

and

(6) The convergence domain of the iterative method is larger.

These advantages are also very important in computational mathematics since
they provide under less computational cost a wider choice of initial guesses for iterative
method and the computation of fewer iterates to achieve a desired error tolerance.
Numerical examples for (1)-(6) are presented in Section 4.

In this section, we consider the method defined as (1.7) with αk in place of α
for approximating the zero xδαk,s of the equation,

F (x) + αkL
s/2(x− x0) = zδαk,s (3.1)

and then we show that xδαk,s is an approximation to the solution x̂ of (1.1).
Let F ′(x0) ∈ L(X) be a bounded positive self-adjoint operator on X and

Bs := L−s/4F ′(x0)L−s/4.Usually, for the analysis of regularization methods in Hilbert
scales, an assumption of the form (cf.[8], [19])

‖F ′(x̂)x‖X ∼ ‖x‖−b, x ∈ X (3.2)

on the degree of ill-posedness is used. In this paper instead of (3.2) we require only a
weaker assumption;

d1‖x‖−b ≤ ‖F ′(x0)x‖X ≤ d2‖x‖−b, x ∈ D(F ), (3.3)

for some reals b, d1, and d2.
Note that (3.3) is simpler than that of (3.2). Next, we define f1 and g1 by

f1(t) = min{dt1, dt2}, g1(t) = max{dt1, dt2}, t ∈ R, |t| ≤ 1.

One of the crucial result for proving the results in this paper is the following Propo-
sition.

Proposition 3.4. (See. [12], Proposition 3.1) For s > 0 and |ν| ≤ 1,

f1(ν/2)‖x‖−ν(s+b)
2
≤ ‖Bν/2s x‖X ≤ g1(ν/2)‖x‖−ν(s+b)

2
, x ∈ H.

Let ψ2(s) :=
g1(

−s
2(s+b)

)

f1(
s

2(s+b)
) , ψ2(s) :=

g1(
s

2(s+b)
)

f1(
s

2(s+b)
) .
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Lemma 3.5. Let Proposition 3.4 hold. Then for all h ∈ X, the following hold:

(a) ‖(F ′(x0) + βLs/2)−1F ′(x0)h‖X ≤ ψ2(s)‖h‖X
(b) ‖(F ′(x0) + βLs/2)−1Ls/2h‖X ≤ ψ2(s)

β ‖h‖X
(c) ‖(F ′(x0) + βLs/2)−1h‖X ≤ ψ2(s)β

−b
(s+b) ‖h‖X

Proof. Observe that by Proposition 3.4,

‖(F ′(x0) + βLs/2)−1F ′(x0)h‖X = ‖L−s/4(L−s/4F ′(x0)L−s/4 + βI)−1L−s/4

F ′(x0)L−s/4Ls/4h‖X

≤ 1

f1( s
2(s+b) )

‖B
s

2(s+b)
s (Bs + βI)−1BsL

s/4h‖X

≤ 1

f1( s
2(s+b) )

‖(Bs + βI)−1Bs‖‖B
s

2(s+b)
s Ls/4h‖X

≤
g1( s

2(s+b) )

f1( s
2(s+b) )

‖Ls/4h‖−s/2

≤
g1( s

2(s+b) )

f1( s
2(s+b) )

‖h‖X .

This proves (a). To prove (b) and (c) we observe that

‖(F ′(x0) + βLs/2)−1Ls/2h‖X ≤ ‖L−s/4(L−s/4F ′(x0)L−s/4 + βI)−1Ls/4h‖X

≤ 1

f1( s
2(s+b) )

‖B
s

2(s+b)
s (Bs + βI)−1Ls/4h‖X

≤ 1

f1( s
2(s+b) )

‖(Bs + βI)−1B
s

2(s+b)
s Ls/4h‖X

≤
g1( s

2(s+b) )

f1( s
2(s+b) )

β−1‖h‖X

≤ ψ2(s)β−1‖h‖X (3.4)

and

‖(F ′(x0) + βLs/2)−1h‖X ≤ ‖L−s/4(L−s/4F ′(x0)L−s/4 + βI)−1L−s/4h‖X

≤ 1

f1( s
2(s+b) )

‖B
s

2(s+b)
s (Bs +

αk
c
I)−1L−s/4h‖X

≤ 1

f1( s
2(s+b) )

‖(Bs + βI)−1B
s

(s+b)
s B

−s
2(s+b)
s L−s/4h‖X

≤
g1( −s

2(s+b) )

f1( s
2(s+b) )

β
−b

(s+b) ‖h‖X

≤ ψ2(s)β
−b

(s+b) ‖h‖X . (3.5)

�
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Let

G(x) = x−Rβ(x0)−1[F (x)− zδαk,s + αkL
s/2(x− x0)]. (3.6)

Note that with the above notation G(xδn,αk,s) = xδn+1,αk,s
.

First we prove that xδn,αk,s converges to the zero xδαk,s of

F (x) + αkL
s/2(x− x0) = zδαk,s (3.7)

and then we prove that xδαk,s is an approximation for x̂.

Hereafter we assume that ‖x̂− x0‖X < ρ where

ρ <
1

ψ1(s)M

β
b
s+b [1− ψ2(s)(β−αkβ )]2

4k0ψ2(s)
2 − ψ(s)

δ0

α
a

2(s+a)

0


with δ0 <

β
b
s+b [1−ψ2(s)(

β−αk
β )]2

4k0ψ(s)ψ2(s)
2 α

−a
2(s+a)

0 . Let

γρ := ψ2(s)β
−b

(s+b) [ψ1(s)Mρ+ ψ(s)α
−a

2(s+a)

0 δ0].

and we define

q = ψ2(s)[k0r +
β − αk
β

], r ∈ (r1, r2) (3.8)

where

r1 =
[1− ψ2(s)(β−αkβ )]−

√
[1− ψ2(s)(β−αkβ )]2 − 4k0ψ2(s)γρ

2k0ψ2(s)

and

r2 = min

{
1− (1− c)ψ2(s)

k0ψ2(s)
,

1

k0
[

1

ψ2(s)
− β − αk

β
],

[1− ψ2(s)(β−αkβ )] +
√

[1− ψ2(s)(β−αkβ )]2 − 4k0ψ2(s)γρ

2k0ψ2(s)

}
where 0 < c < αk < 1 is a constant.

Remark 3.6. Note that for r ∈ (r1, r2) we have q < 1 and γρ <
γρ
1−q ≤ r.

Theorem 3.7. Let r ∈ (r1, r2) and Assumption 3.3 be satisfied. Then the sequence
(xδn,α,s) defined in (1.7) is well defined and xδn,α,s ∈ Br(x0) for all n ≥ 0. Further

(xδn,α,s) is Cauchy sequence in Br(x0) and hence converges to xδαk,s ∈ Br(x0) and

F (xδαk,s) + αkL
s/2(xδαk,s − x0) = zδαk .

Moreover, the following estimate holds for all n ≥ 0,

‖xδn,α,s − xδαk,s‖X ≤
γρq

n

1− q
. (3.9)



Iterative regularization methods 255

Proof. Let G be as in (3.6). Then for u, v ∈ Br(x0),

G(u)−G(v) = u− v −Rβ(x0)−1[F (u)− zδαk + αkL
s/2(u− x0)]

+Rβ(x0)−1[F (v)− zδαk,s + αkL
s/2(v − x0)]

= Rβ(x0)−1[Rβ(x0)(u− v)− (F (u)− F (v))]

+αkRβ(x0)−1Ls/2(v − u)

= Rβ(x0)−1[F ′(x0)(u− v)− (F (u)− F (v)) + βLs/2(u− v)]

+αkRβ(x0)−1Ls/2(v − u)

= Rβ(x0)−1[F ′(x0)(u− v)− (F (u)− F (v)) + (β − αk)Ls/2(u− v)]

= Rβ(x0)−1
∫ 1

0

[F ′(x0)− F ′(v + t(u− v)]dt(u− v)

+Rβ(x0)−1(β − αk)Ls/2(u− v)].

Thus by Assumption 3.3 and Lemma 3.5 we have

‖G(u)−G(v)‖X ≤ q‖u− v‖X . (3.10)

Now we shall prove that xδn,αk,s ∈ Br(x0), for all n ≥ 0. Note that

‖xδ1,αk,s − x0‖X = ‖(F ′(x0) + βLs/2)−1(F (x0)− zδαk,s)‖X
≤ ‖L−s/4(L−s/4F ′(x0)L−s/4 + βI)−1L−s/4

(F (x0)− zδαk,s)‖X

≤ 1

f1( s
2(s+b) )

‖B
s

2(s+b)
s (Bs +

αk
c
I)−1L−s/4

(F (x0)− zδαk,s)‖X

≤ 1

f1( s
2(s+b) )

‖(Bs + βI)−1B
s

(s+b)
s B

−s
2(s+b)
s

L−s/4(F (x0)− zδαk,s)‖X

≤
g1( −s

2(s+b) )

f1( s
2(s+b) )

β
−b

(s+b) ‖F (x0)− zδαk,s‖X

≤ ψ2(s)β
−b

(s+b) [‖F (x0)− zαk,s‖X
+‖zαk,s − zδαk,s‖X ] (3.11)

Now using (2.3) and (2.5) in (3.5), one can see that

‖xδ1,αk,s − x0‖X ≤ ψ2(s)β
−b

(s+b) [ψ1(s)‖F (x̂)− F (x0)‖X + ψ(s)α
−a

2(s+a) δ]

≤ ψ2(s)β
−b

(s+b) [ψ1(s)Mρ+ ψ(s)α
−a

2(s+a)

0 δ0] = γρ.
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Assume that xδk,αk,s ∈ Br(x0), for some k. Then

‖xδk+1,αk,s
− x0‖X = ‖xδk+1,αk,s

− xδk,αk,s + xδk,αk,s − x
δ
k−1,αk,s

+ · · ·+ xδ1,αk,s − x0‖X
≤ ‖xδk+1,αk,s

− xδk,αk,s‖X + ‖xδk,αk,s − x
δ
k−1,αk,s‖X

+ · · ·+ ‖xδ1,αk,s − x0‖X
≤ (qk + qk−1 + · · ·+ 1)γρ

≤ γρ
1− q

≤ r.

So xδk+1,αk,s
∈ Br(x0) and hence, by induction xδn,αk,s ∈ Br(x0), ∀n ≥ 0. Next we

shall prove that (xδk+1,αk,s
) is a Cauchy sequence in Br(x0).

‖xδn+m,αk,s − x
δ
n,αk,s

‖X ≤
m∑
i=0

‖xδn+i+1,αk,s
− xδn+i,αk,s‖X (3.12)

≤
m∑
i=0

qn+iγρ

≤ qn

1− q
γρ. (3.13)

Thus (xδn,αk,s) is a Cauchy sequence in Br(x0) and hence converges to some xδαk,s ∈
Br(x0). Now by n→∞ in (1.7) we obtain F (xδαk,s) + αkL

s/2(xδαk,s − x0) = zδαk,s.
This completes the proof of the Theorem.

In addition to the Assumption 2.2, we use the following assumption to obtain
the error estimate for ‖x̂− xδαk,s‖.

Assumption 3.8. There exists a continuous, strictly monotonically increasing function
ϕ1 : (0, ‖Bs‖]→ (0,∞) such that the following conditions hold:

• lim
λ→0

ϕ1(λ) = 0,

• supλ>0
αϕ1(λ)
λ+α ≤ ϕ1(α) ∀λ ∈ (0, ‖Bs‖] and

• there exists w ∈ X with ‖w‖X ≤ E2, such that

B
s

2(s+b)
s Ls/4(x0 − x̂) = ϕ1(Bs)w

Remark 3.9. If x0 − x̂ ∈ Xt1 i.e., ‖x0 − x̂‖t1 ≤ E1 for some positive constant E1 and

0 ≤ t1 ≤ s+b. Then as in Remark 2.3, we have B
s

2(s+b)
s Ls/4(x0− x̂) = ϕ1(Bs)w where

ϕ1(λ) = λt1/(s+b), w = B
s−2t1
2(s+b)
s Ls/4(x̂− x0) and ‖w‖ ≤ g1( s−2t12(s+b) )E1 := E2.

Hereafter we assume that ϕ1(αk) ≤ ϕ(αk).

Theorem 3.10. Suppose xδαk,s is the solution of (3.1) and Assumptions 3.3 and 3.8
hold. Then

‖x̂− xδαk,s‖X = O(ψ−1(δ)).
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Proof. Note that (F (xδαk,s)− z
δ
αk,s

) + αkL
s/2(xδαk,s − x0) = 0, so

(F ′(x0) +
αk
c
Ls/2)(xδαk,s − x̂) = (F ′(x0) +

αk
c
Ls/2)(xδαk,s − x̂)

−(F (xδαk,s)− z
δ
αk,s

)− αkLs/2(xδαk,s − x0)

= (
αk
c
− αk)Ls/2(xδαk,s − x̂) + αkL

s/2(x0 − x̂)

+F ′(x0)(xδαk,s − x̂)− [F (xδαk,s)− z
δ
αk,s

]

= (
αk
c
− αk)Ls/2(xδαk,s − x̂) + αkL

s/2(x0 − x̂)

+F ′(x0)(xδαk,s − x̂)− [F (xδαk,s)− F (x̂) + F (x̂)− zδαk,s]

= (
αk
c
− αk)Ls/2(xδαk,s − x̂) + αkL

s/2(x0 − x̂)− (F (x̂)− zδαk,s)

+F ′(x0)(xδαk,s − x̂)− [F (xδαk,s)− F (x̂)].

Thus

‖xδαk,s − x̂‖X ≤ ‖(
αk
c
− αk)(F ′(x0 +

αk
c
Ls/2)−1Ls/2(xδαk,s − x̂)‖X

+‖αk(F ′(x0 +
αk
c
Ls/2)−1Ls/2(x0 − x̂)‖X + ‖(F ′(x0) +

αk
c
Ls/2)−1

(F (x̂)− zδαk,s)‖X + ‖(F ′(x0) +
αk
c
Ls/2)−1[F ′(x0)(xδαk,s − x̂)

−(F (xδαk,s)− F (x̂))]‖X

≤ ‖(αk
c
− αk)(F ′(x0 +

αk
c
Ls/2)−1Ls/2(xδαk,s − x̂)‖X

+‖αk(F ′(x0) +
αk
c
Ls/2)−1Ls/2(x0 − x̂)‖X

+ψ2(s)(
αk
c

)−1‖F (x̂)− zδαk,k‖X + Γ (3.14)

where Γ := ‖(F ′(x0) + αk
c L

s/2)−1
∫ 1

0
[F ′(x0) − F ′(x̂ + t(xδαk,s − x̂)](xδαk,s − x̂)dt‖X .

Note that

‖(αk
c
− αk)(F ′(x0 +

αk
c
Ls/2)−1Ls/2(xδαk,s − x̂)‖X

≤
αk
c − αk
αk
c

ψ2(s)‖xδαk,s − x̂‖X

≤ (1− c)ψ2(s)‖xδαk,s − x̂‖X , (3.15)
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and by Assumption 3.8, we obtain

‖αk(F ′(x0) +
αk
c
Ls/2)−1Ls/2(x0 − x̂)‖X

= ‖αkL−s/4(Bs +
αk
c

)−1Ls/4(x0 − x̂)‖X

≤ 1

f1( s
2(s+b)

‖αk(Bs +
αk
c

)−1B
s

2(s+b)
s Ls/4(x0 − x̂)‖X

≤ 1

f1( s
2(s+b)

sup
λ∈σ(F ′(x0))

αkϕ1(λ)

λ+ αk
c

≤ sup
λ∈σ(F ′(x0))

αkϕ1(λ)

λ+ αk

≤ ϕ1(αk) (3.16)

and by Assumption 3.3, and Lemma 3.5 we obtain

Γ ≤ ‖(F ′(x0) +
αk
c
Ls/2)−1

∫ 1

0

[F ′(x0)− F ′(x̂+ t(xδαk,s − x̂)]

(xδαk,s − x̂)dt‖X
≤ ψ2(s)k0r‖xδαk,s − x̂‖X (3.17)

and hence by (3.15), (3.16), (3.17) and (3.14) we have

‖xδαk,s − x̂‖X ≤
ϕ1(αk) + Csψ2(s)(2 + 4η

η−1 )ηψ−1s,a(δ)

1− (1− c)ψ2(s)− ψ2(s)k0r

= O(ψ−1s,a(δ)).

This completes the proof of the Theorem.
The following Theorem is a consequence of Theorem 3.7 and Theorem 3.10.

Theorem 3.11. Let xδn,αk,s be as in (1.7) with α = αk and δ ∈ (0, δ0], assumptions in
Theorem 3.7 and Theorem 3.10 hold. Then

‖x̂− xδn,αk,s‖X ≤
γρ

1− q
qn +O(ψ−1s,a(δ)).

Theorem 3.12. Let xδn,αk,s be as in (1.7) with α = αk and δ ∈ (0, δ0], and assumptions
in Theorem 3.11 hold. Let

nk := min{n : q̃n ≤ α
−a

2(s+a)

k δ}.

Then

‖x̂− xδnk,αk,s‖X = O(ψ−1s,a(δ)).

4. Numerical examples

In the next two cases, we present examples for nonlinear equations where
Assumption 3.3 is satisfied but not Assumption 3.1.
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Example 4.1. Let X = Y = R, D = [0,∞), x0 = 1 and define function F on D by

F (x) =
x1+

1
i

1 + 1
i

+ c1x+ c2, (4.1)

where c1, c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i + c1 is
not Lipschitz on D. Hence, Assumption 3.1 is not satisfied. However central Lipschitz
condition Assumption 3.3 holds for k0 = 1.

Indeed, we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x1/i0 |

=
|x− x0|

x
i−1
i

0 + · · ·+ x
i−1
i

so

‖F ′(x)− F ′(x0)‖ ≤ k0|x− x0|.

Example 4.2. We consider the integral equations

u(s) = f(s) + λ

∫ b

a

G(s, t)u(t)1+1/ndt, n ∈ N. (4.2)

Here, f is a given continuous function satisfying f(s) > 0, s ∈ [a, b], λ is a real number,
and the kernel G is continuous and positive in [a, b]× [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral equa-
tion is equivalent to the boundary value problem

u′′ = λu1+1/n

u(a) = f(a), u(b) = f(b).

These type of problems have been considered in [1]- [5].

Equation of the form (4.2) generalize equations of the form

u(s) =

∫ b

a

G(s, t)u(t)ndt (4.3)

studied in [1]-[5]. Instead of (4.2) we can try to solve the equation F (u) = 0 where

F : Ω ⊆ C[a, b]→ C[a, b],Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},

and

F (u)(s) = u(s)− f(s)− λ
∫ b

a

G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.

The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ(1 +
1

n
)

∫ b

a

G(s, t)u(t)1/nv(t)dt, v ∈ Ω.



260 Ioannis K. Argyros, Santhosh George and M. Kunhanandan

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in Ω. Let us
consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then F ′(y)v(s) = v(s)
and

‖F ′(x)− F ′(y)‖ = |λ|(1 +
1

n
)

∫ b

a

x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖,
or, equivalently, the inequality∫ 1

0

x(t)1/ndt ≤ L2 max
x∈[0,1]

x(s), (4.4)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for
example, the functions

xj(t) =
t

j
, j ≥ 1, t ∈ [0, 1].

If these are substituted into (4.4)

1

j1/n(1 + 1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1 + 1/n), ∀j ≥ 1.

This inequality is not true when j →∞.
Therefore, condition (4.4) is not satisfied in this case. Hence Assumption 3.1 is

not satisfied. However, condition Assumption 3.3 holds. To show this, let x0(t) = f(t)
and γ = mins∈[a,b] f(s), α > 0 Then for v ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖ = |λ|(1 +
1

n
) max
s∈[a,b]

|
∫ b

a

G(s, t)(x(t)1/n − f(t)1/n)v(t)dt|

≤ |λ|(1 +
1

n
) max
s∈[a,b]

Gn(s, t)

where Gn(s, t) = G(s,t)|x(t)−f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+···+f(t)(n−1)/n ‖v‖.

Hence,

‖[F ′(x)− F ′(x0)]v‖ =
|λ|(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

∫ b

a

G(s, t)dt‖x− x0‖

≤ k0‖x− x0‖,

where k0 = |λ|(1+1/n)
γ(n−1)/n N and N = maxs∈[a,b]

∫ b
a
G(s, t)dt. Then Assumption 3.3 holds

for sufficiently small λ.

In the last example, we show that K
k0

can be arbitrarily large in certain nonlinear
equation.

Example 4.3. Let X = D(F ) = R, x0 = 0, and define function F on D(F ) by

F (x) = d0x+ d1 + d2 sin ed3x, (4.5)

where di, i = 0, 1, 2, 3 are given parameters. Then, it can easily be seen that for d3
sufficiently large and d2 sufficiently small, K

k0
can be arbitrarily large.
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5. Conclusion

In this paper we present an iterative regularization method for obtaining an
approximate solution of an ill-posed Hammerstein type operator equation KF (x) = y
in the Hilbert scale setting where K is a bounded linear operator and F is a nonlinear
monotone operator. It is assumed that the available data is yδ in place of exact data
y. We considered the Hilbert space (Xt)t∈R generated by L for the analysis where
L : D(L) → X is a linear, unbounded, self-adjoint, densely defined and strictly
positive operator on X. For choosing the regularization parameter α we used the
adaptive scheme of Pereverzev and Schock (2005).
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Book reviews

 Lukasz Piasecki, Classification of Lipschitz Mappings, CRC Press, Taylor & Francis
Group, Boca Raton 2014, x + 224 pp, ISBN: 13: 978-1-4665-9521-7.

The book is concerned with the study of Lipschitz mappings on metric spaces in
connection to fixed point theory. One denotes by L(k) the class of Lipschitz mappings
with constant k > 0 on a metric space (M,ρ), that is mappings T : M →M satisfying
the condition ρ(Tx, Ty) ≤ kρ(x, y) for all x, y ∈ M . The smallest Lipschitz constant
of the mapping T is denoted by k(T ) (or by kρ(T ), if necessary). The mapping T is
called uniformly Lipschitz if there exists k > 0 such that ρ(Tnx, Tny) ≤ kρ(x, y) for
all x, y ∈ M and all n ∈ N. This class is characterized by the condition k∞(T ) :=

lim supn→∞
n
√
k(Tn) <∞.

It follows that k(Tm+n) ≤ k(Tm)k(Tn) so that one can define the characteristic

k0(T ) = limn→∞
n
√
k(Tn) = inf{ n

√
k(Tn) : n ∈ N} – the analog of the spectral radius

of a continuous linear operator on a Banach space. It turns up that k0(T ) = infd kd(T ),
where the infimum is taken over all metrics d on M that are Lipschitz equivalent to
ρ. An important class of Lipschitz mappings is formed by the nonexpansive ones, i.e.
Lipschitz mappings with k = 1. The fixed point theory for this class of mappings
acting on a Banach space X is tightly connected with the geometric properties of the
underlying Banach space X (uniform rotundity, superreflexivity, uniform nonsquare-
ness) as well as with those of the convex set C ⊂ X on which they act (having normal
structure, for instance). Some basic results along with some recent ones in this domain
are presented in the seventh chapter of the book.

The main class studied by the author is that of mean Lipschitz functions. A
multi-index is an n-tuple α = (α1, . . . , αn) with α1, αn > 0, αi ≥ 0 and

∑n
i=1 αi = 1. A

mapping T : M →M is called α-Lipschitzian with constant k if
∑n
i=1 αiρ(ix, T iy) ≤

kρ(x, y) for all x, y ∈ M. The class of these mappings is denoted by L(α, k). Any
α-Lipschitz mapping is Lipschitz and k(T ) ≤ k(α, T )/α1. Uniformly k-Lipchitzian
mappings are (α, k)-Lipschitz for any multi-index α. Another class is that of the
mappings satisfying, for p ≥ 1 and some k ≥ 0, the condition(

n∑
i=1

αiρ(ix, T iy)p

)1/p

≤ kρ(x, y), ∀x, y ∈M ,

called (α, p)-Lipschitz mappings with constant k.
The bulk of the book is formed by the chapters 4. On Lipschitz constants for it-

erates of mean lipschitzian mappings, 5. Subclasses determined by p-averages, 6. Mean
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contractions, 8. Mean nonexpansive mappings, and 9. Mean lipschitzian mappings with
k > 1. These chapters are concerned with the behavior of the quantities k0(T ), k(Tn)
and k∞(T ), including some numerical experiments, for mappings T in these classes of
mean-Lipschitz mappings, and are essentially based on results obtained by the author
alone or in cooperation with Vı́ctor Pérez Garćıa.

The first two chapters 1. The Lipschitz condition and 2. Basic facts on Banach
spaces, contain some preliminary notions and results.

The book is well written and contains new interesting results along with some
classical ones in metric fixed point theory. The prerequisites are modest – some basic
results in topology and functional analysis – so it can be used by advanced undergrad-
uate and graduate students for an introduction to this domain and by researchers as
a reference text. Experts in other areas, as differential equations, dynamical systems,
will find it useful as well.

S. Cobzaş

Ioannis M. Roussos, Improper Riemann Integrals, CRC Press, Taylor & Francis
Group, Boca Raton 2014, xiv + 675 pp, ISBN: 978-1-4665-8807-3.

The book contains a detailed presentation of the main improper Riemann inte-
grals (with or without parameter) at the master level for students in mathematics,
statistics, applied sciences and engineering. As it is well known, the improper Riemann
integrals are important tools in various areas of mathematics (differential equations,
probability theory) as well as in its applications to physics, mechanics, engineering.
New classes of functions (e.g. Euler’ Beta and Gamma functions) are introduced as
improper Riemann integrals depending on a parameter as well as the integral trans-
forms of Fourier and Laplace.

The presentation is restricted to Riemann integral (including double Riemann
integral) and in order to make the book self-contained the principal theorems used
in the calculations are included, some with proofs other without. In some cases these
results are presented under some restricted conditions, accessible to the undergraduate
but sufficient for applications.

The book is divided into two main parts 2. Real analysis techniques, and 3.
Complex analysis techniques. An introductory chapter contains the definition of an
improper integral, convergence criteria and some motivating examples.

Chapter 2 contains a detailed study of the properties of improper Riemann
integrals depending on a parameter – continuity, differentiability, integrability. The
treatment is based on a version of Lebesgue dominated convergence theorem for the
Riemann integral. Applications are given to Frullani integrals, the functions Beta and
Gamma, and to the Laplace transform.

For reader’s convenience Chapter 3 contains a quick introduction to complex
analysis with emphasis on the elementary holomorphic functions - the exponential,
the trigonometric functions, and the multivalued holomorphic functions - the com-
plex logarithm log z, the power function zα = eα log z. Here the powerful and relatively
simple method of residues is applied to the calculation of some improper Riemann in-
tegrals, including a relatively complete treatment of the Fourier transform – definition,
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Riemann-Lebesgue Lemma, calculus rules, the inversion formula – and a reconsider-
ation of the Laplace transform in the complex case.

The last chapter of the book is 4. List of non-elementary integrals and sums in
text, contains a record of the most important integrals and sum calculated in the text,
with exact reference to the places where they appear.

By collecting a lot of important improper integrals and sums used in various
domains, and presenting their calculation in an accessible but rigorous way, the book
will be of great use to students in mathematics and related areas and for applied
scientists (statisticians, engineers, physicists) as well. A small personal objection –
the presentation of some examples is too detailed, and so the abundance of these
details hide to some extent the ideas behind.

T. Trif

Miroslav Pavlović, Function Classes on the Unit Disc, Studies in Mathematics, Vol.
52, xiii + 449 pp, Walter de Gruyter, Berlin - New York, 2014, ISBN: 978-3-11-
028123-1, e-ISBN: 978-3-11-028190-3, ISSN: 0179-0986.

The book is concerned with spaces of harmonic and of analytic functions in the
unit disc D – Hardy, Bergman, Besov, Lipschitz, Bloch, Hardy-Sobolev, BMO, etc.
The approach proposed by the author differs from those contained in the classical
books of Zygmund, Duren, Koosis, Garnett, allowing him to present new results and
to give simpler and clearer proofs to some known facts (e.g. Fefferman-Stein theorem
on subharmonic functions, theorems on conjugate harmonic functions, etc).

The first three chapters, 1. The Poisson integral and Hardy spaces, 2. Subhar-
monic functions and Hardy spaces, and 3. Subharmonic behavior and mixed norm
spaces, are devoted to the spaces h(D) and H(D) of harmonic, respectively analytic,
functions in the unit disc D.

In Chapter 4. Taylor coefficients with applications, the approach to the mixed-
norm Bergman spaces is based on a class of functions, called quasi-nearly subhar-
monic, introduced by the author. Besov spaces are studied in Chapter 5, while the
sixth chapter, The dual of H1 and some related spaces, is concerned with the dual-
ity between H1 and BMO spaces. Chapter 7. Littlewood-Paley theory, contains some
deep characterizations of Hp, p > 0, spaces as well as of hyperbolic Hardy classes.

The Lipschitz classes Λpω of analytic functions are studied in chapters 8. Lips-
chitz spaces of first order, and 9. Lipschitz spaces of higher order, defined by ordinary
moduli of continuity, respectively by higher order moduli of smoothness. Chapter
10. One-to-one mappings, is devoted to the problem of membership of univalent and
quasiconformal harmonic mappings in some classical spaces, while Chapter 11. Co-
efficients multipliers, some multiplier results are presented following some ideas of
Kalton and of the author, including compact multipliers and multipliers on spaces
with non-normal weight.

Chapter 12. Toward a theory of vector-valued spaces, presents some results on
spaces of harmonic and analytic functions with values in a Banach or a quasi-Banach
space X.
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Author’s booklet, Introduction to the Function Spaces on the Disk, Matematićki
Institut SANU, Special Publications, vol. 20, Belgrade 2004, contains some material
included in the present book, although, as the author mentions in the Preface, this
new book can not be considered as an expanded version of the former one – they have
only nonempty intersection.

The reading of the book assumes familiarity with real, complex and functional
analysis (at the level of Rudin’s Real and Complex Analysis). For reader’s convenience,
two appendices, A. Quasi-Banach spaces, and B. Interpolation and maximal functions,
are added to the main text. Sixteen research problems are included, and each chapter
ends with a section of historical notes and references to further results.

The book is well written and contains a lot of deep and interesting results,
including personal contributions of the author. It can be recommended to specialists
as a reference text and to post-graduate students for study.

Gabriela Kohr
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