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Mathematics education in Romanian at
Babeş-Bolyai University Cluj-Napoca

Dorel I. Duca and Adrian Petruşel

Abstract. In this paper, we will present the most important moments of the
evolution and development of the mathematical education and research activities
in Romanian at Babeş-Bolyai University Cluj-Napoca. The main figures of the
mathematical university staff are also presented.

Mathematics Subject Classification (2010): 01A72, 01A73, 01A70.

Keywords: University of Cluj, Babeş-Bolyai University, Faculty of Sciences,
Faculty of Mathematics.

1. A short walk through the history of the university education in
Cluj

On May 12, 1581 the prince Ştefan Bathory decided to set up at Cluj a college
with three faculties: Theology, Philosophy and Law. This is the first official attestation
of a higher education institution in our city.

After some climbings and descents and a contradictory evolution of the higher
education in Cluj, on October 12, 1872 the emperor Ferenc József approves a decision
of the Hungarian Parliament for setting up the University of Cluj. This Hungarian
university have had four faculties: Law and State Sciences, Medicine, Philosophy,
Letters and History and, the last one, Mathematics and Natural Sciences. During this
period some pre-eminent mathematicians (such as Gyula Farkas, Lipót Fejér, Frigyes
Riesz or Alfréd Haar) have had essential contributions to the development of the Cluj
mathematical school.

The great wish of the Romanian nation to have their own university with com-
plete studies in Romanian was finally accomplish after the union of the province of
Transylvania with the Romanian principality in 1918. On October 1st 1919, by a de-
cree of the King Ferdinand of Romania, the Romanian University was set up under the
same name as before, the University of Cluj. The faculties of the new university were:

This paper was presented at the 8th Conference on History of Mathematics & Teaching of Mathe-

matics, Cluj-Napoca, May 21-25, 2014.
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Letters and Philosophy, Sciences, Medicine and Law. Professor Dim. Călugăreanu
was appointed the first dean of the Faculty of Sciences, while the first Rector of the
new university was elected Professor Sextil Puşcariu. The official opening of the new
university took place on February 1-3, 1920 in the presence of King Ferdinand and
Queen Mary. The University of Cluj starts its activity with 171 Professors and 2034
students enrolled in four faculties. Meanwhile, the Hungarian University moved to
Szeged, Hungary.

The activities of the university were suddenly interrupted, since in August 1940,
the nord-west part of Romania (including Cluj) was surrended to Hungary, by a
decision took in Vienna under the pression of the German Third Reich. Very fast,
the patrimony of the university was moved to Alba-Iulia and Turda. Moreover, the
Faculty of Sciences was moved to Timişoara, while the rest of the faculties were moved
to Sibiu. All of them start their activities in November 1940.

In 1944, after the defeat of the Third Reich and its allies, the Vienna Dictate was
abolish and the nord-west part was re-integrated to Romania. It was also the time
of a new start of the University of Cluj. Actually, starting with 1945 two universities
will operate in Cluj: a Hungarian university, Bolyai University and a Romanian one,
re-entitled King Ferdinand. In 1948, the Romanian university took its name after the
great Romanian biologist Victor Babeş and, finally, in 1959, the two universities were
unified in a Romanian-Hungarian university called as today Babeş-Bolyai University.
The Faculty of Sciences was divided in four new faculties: Mathematics and Physics,
Chemistry, Geology and Geography and, the last one, Natural Sciences. In 1962,
the Faculty of Mathematics and Physics is separated in two faculties, the Faculty
of Mathematics-Mechanics and the Faculty of Physics. From 1973 our faculty was
re-named the Faculty of Mathematics and, finally, from 1994 it is called the Faculty
of Mathematics and Computer Science.

Despite of the vicissitudes of the life, the university education and the research
activities in Cluj were permanently on an ascendent slope. The Professors of the Cluj
University, regardless of nationality, always worked, with abnegation and responsibil-
ity, on the development of the university and for of the perennial values promoted by
it.

2. The Faculty of Sciences

In 1919, in the moment of its founding, the Romanian university of Cluj have
had five sections:

• Mathematics
• Physics
• Chemistry
• Geography
• Natural Sciences

The Mathematics Section was also divided in several chairs:

• Analytical and Descriptive Geometry
• General Mathematics
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• Mechanics
• Function Theory
• Mathematical Analysis
• Algebra
• Astronomy

Between the professors of the Mathematics Section of that years let us mention
some important names: Dimitrie Pompeiu, Gheorghe Nichifor, Aurel Angelescu, Ghe-
orghe Bratu, Nicolae Abramescu, George Iuga, Theodor Angheluţă, Petre Sergescu,
Dumitru V. Ionescu, Gheorghe Călugăreanu. The Honorary Director of the Mathe-
matical Seminar was Paul Montel, while the Director of the Astronomical Observatory
was Gheorghe Bratu.

During the academic year 1938/39 the Mathematics Section of the Faculty
of Sciences was performed by the following professors: Nicolae Abramescu (Geom-
etry Chair), Dimitrie Pompeiu and Theodor Angheluţă (Algebra Chair), Gheorghe
Bratu (Astronomy Chair), Dumitru V. Ionescu (Rational Mechanics Chair), Petre
Sergescu (Differential and Integral Calculus), Radu Bădescu (Mechanics Chair), Ghe-
orghe Călugăreanu (General Mathematics and Geometry Chair).

From the beginning and up today the mathematical studies in Romanian knew
a continuous development not only because the increasing number of students, but
mainly based on the performing research and scientific achievements of the mathe-
matical school from Babeş-Bolyai University.

3. The research activity in Mathematics

During the years, the most important research actvities in mathematics were
materialized in the following directions:

• Differential and Integral Equations (Gh. Bratu, Th. Angheluţă, P. Sergescu,
D.V. Ionescu, Gh. Micula)

• Functional and Difference Equations (Th. Angheluţă, A. Angelescu, G. Iuga, T.
Popoviciu, F. Radó)

• Function Theory and Topology (D. Pompeiu, Th. Angheluţă, N. Abramescu, P.
Sergescu, G. Călugăreanu, T. Popoviciu)

• Mathematical Analysis and Optimization (T. Popoviciu, E. Popoviciu, I.
Muntean, I. Maruşciac)

• Algebra and Number Theory (Th. Angheluţă, P. Sergescu, A. Angelescu, T.
Popoviciu, Gh. Călugăreanu, Gh. Pic)

• Numerical Analysis and Approximation Theory (T. Popoviciu, D.V. Ionescu,
Gh. Micula, E. Popoviciu, D.D. Stancu)

• Geometry (N. Abramescu, Tib. Mihăilescu, J. Gergely, Gh. Călugăreanu, M.
Ţarină)

• Mechanics (C. Iacob, A. Angelescu, D.V. Ionescu, D. Pompeiu, P. Brădeanu)
• Astronomy and Astrophysics (Gh. Bratu, I. Armeanca, C-tin Pârvulescu, Gh.

Chiş)
• Computer Science (T. Popoviciu, D.D. Stancu, E. Muntean)
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• History and Philosophy of Mathematics (P. Sergescu, V. Marian, D.V. Ionescu,
M. Ţarină, Gh. Micula)

• Didactics of Mathematics (D.V. Ionescu, T. Popoviciu, E. Popoviciu, I. Muntean,
I. Maruşciac)

4. The scientific journals on Mathematics from Cluj

The scientific life of the mathematical section of the University of Cluj was roused
by the publication of several scientific journals on Mathematics. Here are the most
important ones.

1. Mathematica

The first volume of the journal Mathematica appears in 1929. ”MATHEMATICA
est une nouvelle publication scientifique qui a pour bat d’établie des relations entre
l’activité mathématique de la Roumanie et celle des autres pays... it is written in the
Preface of the first issue.

The Editorial board was composed by:

Directors: G. Ţiţeica and D. Pompeiu;

Editors: N. Abramescu (Cluj), A. Angelescu (Cluj), Th. Angheluţă (Cluj),
G. Bratu (Cluj), A. Davidoglu (Bucureşti), D.V. Ionescu (Cluj), O. Onicescu (Bu-
cureşti), C. Popovici (Iaşi), S. Sanielevici (Iaşi), S. Stoilow (Cernăuţi), V. Vâlcovici
(Timişoara)

Secretary of the Board: Petre Sergescu (Cluj)

The first article published in this journbal belongs to Paul Montel, Professeur á
la Faculté des Sciences de Paris.

2. Studia Universitatis Babeş-Bolyai, series Mathematica

The first volume of this journal appears in 1957 under the name Bulletin of the
Victor Babeş and Janos Bolyai Universities Cluj-Natural Sciences Series and then,
from 1958, under the name of Studia Universitatis Babes-Bolyai, Series Mathematica.
Starting to 1996, the new Studia Universitatis Babes-Bolyai, Series Informatica is
edited by the Department of Computer Science.

3. Revue d’Analyse Numérique et de Théorie de l’Approximation (ANTA)

The journal was founded, in 1972, by Tiberiu Popoviciu. The editors-in chief of
the journal were successively Elena Popoviciu, Caius Iacob, Ion Păvăloiu and Dimitrie
D. Stancu.

Today the journal is edited by the Tiberiu Popoviciu Institute on Numerical
Analysis of the Romanian Academy, Cluj branch.

4. Didactica Mathematica

The first volume of this journal appears in 1985 and since 2013 it is an electronic
journal. The editor-in-chief of the journal is Professor Dorel Duca.
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5. Fixed Point Theory – An International Journal on Fixed Point Theory, Computa-
tion and Applications

This specialized journal appeared in 2000 under the coordination of Professor
Ioan A. Rus and from 2007 it is the first mathematical journal from Cluj indexed
Web of Science (ISI) by Thomson-Reuters Products.

5. The Romanian Professors of the University of Cluj

In the last part of this work, we will present (in alphabetical order) short bio-
graphical notes of the most important Romanian mathematicians of the University
of Cluj.

Professor Nicolae Abramescu (1884-1947)

Nicolae Abramescu was born at Târgovişte on March 31, 1884.
University studies: Professor Nicolae Abramescu graduated the study program

Mathematics from the Faculty of Science, University of Bucharest, where he was col-
league with Traian Lalescu. In 1921 Nicolae Abramescu get his Ph.D. in Mathematics
at the same university with a dissertation on the Systematization of the orthogonal
polynomials technique.

Didactical activity : In November 1919 Professor Nicolae Abramescu was ap-
pointed as an Associate Professor at the University of Cluj, following the recom-
mendation of Gheorghe Ţiţeica. Thus, Professor Nicolae Abramescu was a founder
member of the Faculty of Science of our university. Here, together with Aurel Ange-
lescu and Gheorghe Bratu constitute a strong and valuable kernel around Professor
Dimitrie Pompeiu-Director of the Mathematical Seminar.

On October 1st 1926, Nicolae Abramescu is appointed full professor of Descrip-
tive Geoemetry at the University of Cluj, position that he will keep until the end of
his career.

Research activity : Nicolae Abramescu puts a lot of effort in organizing the Cluj
Scientific Society, and the First Congress of Romanian Mathematicians. He was also a
founder member of the journal Mathematica and member of the Romanian Academy.

Professor Abramescu passed away on February 11, 1947 at Cluj.

Professor Aurel Angelescu (1886-1938)

Aurel Angelescu was born at Ploieşti on April 15, 1886.
University studies: Professor Aurel Angelescu graduated his bachelor studies at

Sorbonne, Paris. On April 7, 1916 he get (also at Sorbonne) the Ph.D. in Mathematics,
under the guidance of Paul Appel. The title of his thesis was Sur les polynômes
généralisant les polynômes de Legendre et d’Hermite et sur le calcul approché des
integrals multiples.

Didactical activity : After his return to Romania, Aurel Angelescu is appointed,
in 1919, professor at the Function Theory Chair of the University of Cluj. From now
on, Professor Aurel Angelescu is fully dedicated to the intense work of organizing the
mathematics education, being also one of the mentors of the new journal Mathematica.
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Professor Aurel Angelescu was director of the Geometry and Mechanics Seminar
and, for one year, between 1927 and 1928, he was appointed as Dean of the Faculty
of Sciences at the University of Cluj. Starting to January 1st, 1930 Aurel Angelescu
becomes full professor of Algebra and Number Theory at the University of Bucharest.

Research activity : Professor Aurel Angelescu main interest fields were generating
functions for polynomials, linear differential equations, functional analysis, trigono-
metric series. He published more than 60 research works on the field of Algebra and
Function Theory.

Very young, at the age of almost 52 de ani, Professor Aurel Angelescu tragically
passed away on April 6, 1938.

Professor Theodor Angheluţă (1882-1964)

Professor Theodor Angheluţă was born on April 28, 1882 in the small village
Adam from the (former) Tutova county.

University studies: After the primary and secondary studies at Bârlad, he be-
comes, between 1902-1905, a student of the Faculty of Sciences at the University
of Bucharest getting the bachelor in Mathematics. From 1910, Professor Theodor
Angheluţă is enrolled at Sorbonne, working mainly on the guidance of Emile Picard.
On June 16, 1922 Professor Theodor Angheluţă defended his Ph.D. thesis On a general
class of trigonometric polynomials and the approximation of a continuous function.

Didactical activity : In 1919, Professor Theodor Angheluţă is appointed associate
professor at the Faculty of Sciences from the University of Bucharest, while five years
later he get a full professor position on Algebra at the Faculty of Sciences from the
University of Cluj.

Professor Theodor Angheluţă was the dean of the Faculty of Sciences from the
University of Cluj between 1931 and 1932. He is retired starting to September 1st,
1947, but then, at the end of 1950, Professor Theodor Angheluţă is appointed again as
full professor at the Faculty of Mathematics and Physics from Victor Babeş University
of Cluj.

From October 1st, 1955 to September 1962 Professor Theodor Angheluţă was
full professor at the Math Department of the Technical Institute of Cluj.

Research activity : Theodor Angheluţă has important contributions to the Func-
tion Theory, Differential and Integral Equations, Functional and Algebraic Equations.
A special kind of functional equations carry even today his name: Angheluţă type func-
tional equations.

On May 30, 1964 Professor Theodor Angheluţă passed away at Cluj.

Professor Ion Armeanca (1899-1954)

Ion Armeanca was born at Săcărâmb, Hunedoara county.
University studies: Professor Ion Armeanca took his secondary studies at Deva

and then the university studies at the University of Cluj. His Ph.D. thesis (defended on
July 26, 1933) entitled Photographische und photovisuelle Helligkeiten von pohlnahen
Sternen was written under the guidance of Professor H. Kienle from the Astronomical
Observatory in Göttingen. The thesis was published in one of the issue of the journal
Zeitschrift für Astrophysik, a proof of its incontestable value.
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Research activity : Starting to January 1st 1922, Ion Armeanca was secretary-
librarian at the Astronomical Observatory. Then, from February 1928, he get a re-
search position at the research center of the Astronomical Observatory in Cluj. Profes-
sor Ion Armeanca was an excellent specialist in photoelectronic photometry. Starting
with 1939, Ion Armeanca made systematic observations at the Astronomical Obser-
vatory in Cluj, using the Guthnick photometer. From 1945, Ion Armeanca was the
director of the Astronomical Observatory in Cluj and he made new research activities
on the variable stars problem.

Professor Ion Armeanca was a member of the following societies: Gazeta Matem-
atică, Astronomische Gesellschaft, Société Astronomique de France, National Com-
mittee for Astronomy.

Professor Gheorghe Bratu (1881-1941)

Gheorghe Bratu was born at Bucharest in 1881.

University studies: Gheorghe Bratu graduated the university studies at the Uni-
versity of Iaşi. His Ph.D. thesis Sur l’equilibre des fils soumis á des forces intérieures,
written under the guidance of Professor Paul Appell from the Astronomical Obser-
vatory of Paris, was defended in 1914. Moreover, between 1909 and 1914, Professor
Gheorghe Bratu get an Adamachi fellowship at the Astronomical Observatory of Paris.

Didactical activity : Gheorghe Bratu started his didactical activity in 1914, when
he was appointed as assistent professor at the Astronomical Observatory of Iaşi. In
1918, Professor Gheorghe Bratu was appointed associate professor of Mathematical
Analysis at the University of Iaşi and, then, from 1919 to the end of his life, Gheorghe
Bratu was full professor of Astronomy at the Faculty of Sciences from the University
of Cluj. Professor Gheorghe Bratu also wrote a very interesting course of Astronomy,
published at Cluj.

Professor Gheorghe Bratu was the Dean of the Faculty of Sciences during the
following academic years: 1923/1924, 1938/1939 and 1939/1940.

Research activity : Professor Gheorghe Bratu is the founder of the (modern times)
Astronomical Observatory in Cluj. He was also the Director of the Observatory be-
tween 1920-1923 and 1928-1941.

Professor Gheorghe Bratu was a member of the following societies: Gazeta
Matematică, Société Mathématiques de France, Societé Astronomique de France,
Societa Astronomica Italiana, Circolo Matematica di Palermo, Romanian Scientific
Academy, Astronomical National Committee. Professor Gheorghe Bratu also founded
the Alliance Française, Cluj branch and he was decorate with Legion of Honour at
rank of knight.

Professor Gheorghe Călugăreanu (1902-1976)

Gheorghe Călugăreanu was born at Iaşi, on July 16, 1902.

University studies: Gheorghe Călugăreanu started his studies at Bucharest at
the Gheorghe Lazăr High School. Then, between 1921 and 1924, he was a student at
the Faculty of Science from King Ferdinand University of Cluj, in the Mathematics-
Physics study program.
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In 1926, Gheorghe Călugăreanu leaves Cluj for Paris, with a fellowship of the
Romanian goverment. He get the bachelor in Mathematics and, then, in 1928, the
Ph.D. in Mathematics with a thesis entitled Sur les fonctions polygènes d’une variable
complexe.

Didactical activity : The entire activity of Professor Gheorghe Călugăreanu is
related to our university. Gheorghe Călugăreanu was assistent professor (1930-1934),
associate professor (1934-1942) and then, from 1942, full professor at the University
of Cluj. Later on, as a Dean of the Faculty of mathematics and Physics (1953-1957)
or as a head of the Function Theory Chair, Professor Gheorghe Călugăreanu have had
important contributions to the organization of the mathematics education in Cluj.

Research activity : The scientific activity of Professor Gheorghe Călugăreanu was
focused on the study of the main problems of the theory of complex variable func-
tions, geometry, algebra and topology. His first papers, including the Ph.D. thesis are
valuable contributions to the theory of complex variable functions, in such a way that
Gheorghe Călugăreanu can be seen as a prestigious follower of Dimitrie Pompeiu.
Other remarkable results were obtained in domain of geometric theory of univalent
functions. Professor Gheorghe Călugăreanu also has very important contributions in
knots theory.

In 1963 Professor Gheorghe Călugăreanu becomes a member of the Romanian
Academy. He passed away on November 15, 1976.

Professor Gheorghe Chiş (1913-1981)

Gheorghe Chiş was born in the village of Santău, Satu Mare county, on August
8, 1913.

University studies: Gheorghe Chiş attended the primary and secondary school
in his village and then the high school in Carei, Satu Mare county. In 1935, Gheorghe
Chiş get the bachelor in Mathematics-Physiscs at the University of Cluj. He get the
Ph.D. also from the University of Cluj, in 1949.

Didactical activity : Gheorghe Chiş started his didactical career in 1936 at the
Astronomical Observatory of the University of Cluj. Starting to 1960, Gheorghe Chiş
is full professor of Astronomy and Astrophysics at the same University of Cluj. For six
years, between 1962 and 1968, Professor Gheorghe Chiş was the dean of the Faculty
of Mathematics-Mechanics from the University of Cluj. Moreover, from 1954 he was
the Director of the Astronomical Observatory of the University of Cluj.

Research activity : Professor Gheorghe Chiş published more than 100 scientific
papers and books. He was also the initiator of variable stars observations and of the
permanent observation point of the artificial satellite with the code COASPAR 1132.

Professor Gheorghe Chiş was a member of the International Astronomical Union,
of COSPAR and of the Romanian Astronomical Committee.

Professor Gheorghe Demetrescu (1885-1969)

Gheorghe Demetrescu was born in 1885 at Bucharest.
University studies: Gheorghe Demetrescu attended the courses of the University

of Bucharest and get his Ph.D. also in Bucharest with a thesis On a computation
method to predict the Sun eclipses on March 13, 1915.
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Didactical activity : After a short stage at the Astronomical Observatory in Paris
(1908-1912), Professor Gheorghe Demetrescu is appointed at the Astronomical Ob-
servatory in Bucharest. Starting to the academic year 1922/1923 and until 1927/1928
Professor Gheorghe Demetrescu get a new position at the Astronomical Observatory
of the Faculty of Sciences in Cluj. Later on, Professor Gheorghe Demetrescu moved
agaid to Bucharest, where he was the Director of the Astronomical Observatory.

Research activity : Professor Gheorghe Demetrescu published relevant scientific
works on Astronomy and he was a member of the Romanian Academy.

Professor Caius Iacob (1912-1992)

Caius Iacob was born at Arad on March 29, 1912. His father, Lazăr Iacob,
was a member of the Romanian mission to the Great Assembly from Alba Iulia on
December, 1st, 1918.

University studies: Caius Iacob attended the primary and secondary school in
Arad and Oradea. Then, he attended the university studies at the University of
Bucharest, the Faculty of Mathematics (1928-1931). Caius Iacob get his Ph.D. in
1935, at the Faculty of Sciences of the University of Paris with a thesis entitled Sur
la determination des fonctions harmoniques conjuguees par certaines conditions aux
limites. Applications a l’hydrodynamique, under the guidance of Professor Henri Vil-
lat.

Didactical activity : Professor Caius Iacob starts his didactical career in 1935 as
assistant professor at Technical Institute of Timişoara. From March 15, 1938 Caius
Iacob is appointed as assistent professor at the Mathematical Section of the Faculty
of Sciences from the University of Cluj. In 1939, he moves to Bucharest where he
get a position at the Mechanics Laboratory of the University of Bucharest. In 1942,
Caius Iacob returns to Cluj University as associate professor and, from December 30,
1943 (at the age of 31) Caius Iacob is appointed full professor of Mechanics. Later on,
Professor Caius Iacob worked both in Cluj and in Bucharest University with a special
emphasis on the courses of Fluid Mechanics and Aerodynamics.

Research activity : Professor Caius Iacob organized at Cluj University the re-
search seminar on Fluid Mechanics. Caius Iacob was a laureate of the prize Henri de
Parville - for Mechanics in 1940, awarded by the Science Academy in Paris. At the
age of 43, on July 2, 1955, Professor Caius Iacob was elected correspondent member
of the Romanian Academy, while on March 21, 1963 he becomes full member of the
Romanian Academy. Professor Caius Iacob was the president of the Mathematics Sec-
tion of the Romanian Academy and he was the founder of the Applied Mathematics
Institute of the Romanian Academy which today carries his name. Professor Caius
Iacob is the father of the Romanian School of Mechanics. He published more than 120
scientific works. His main book is A Mathematical Introduction to Fluid Mechanics.

Professor Caius Iacob passed away on February 6, 1992 at Bucharest.

Professor Dumitru V. Ionescu (1901-1985)

Dumitru V. Ionescu was born at Bucharest on May 14, 1901.
University studies: Dumitru V. Ionescu was, between 1919-1922, a student of the

Mathematics study program at the Faculty of Sciences of the University of Bucharest,
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having as professors some very important Romanian mathematicians: Anton Davi-
doglu, David Emmanuel, Gh. Ţiţeica, Traian Lalescu, Dimitrie Pompeiu, . . . Between
1923-1927 Dumitru V. Ionescu attended the courses of the famous École Normale
Supérieure de Paris. Some of his professors were Emile Goursat, H. Lebesque, Paul
Montel, Emile Picard. Between his colleagues: H. Cartan, J. Dieudonné, P. Dubreil
and other great mathematicians of that time. The Ph.D. thesis, entitled Sur une classe
d’équations fonctionnelles was defeated at Paris on June 7, 1927.

Didactical activity : Starting with the academic year 1927/1928, Dumitru V.
Ionescu is appointed as associate professor at the University of Cluj and, then, from
1930 he is appointed professor at the Rational Mechanics Chair of the University of
Cluj. After a short period at the Technical University of Cluj, from 1955 until 1971
(the year of his retirement), Dumitru V. Ionescu is full professor at the Differential
Equations Chair.

Professor Dumitru V. Ionescu took many high scientical level courses, such as:
Ordinary Differential Equations, Partial Differential Equations, Variational Calcu-
lus, Integral Equations, Numerical Analysis. Dumitru V. Ionescu published several
courses, such as:

1. Ecuaţii diferenţiale şi integrale, Editura Didactică şi Pedagogică, Bucureşti
1965; 1972 .

2. (with C. Kalik) Ecuaţii diferenţiale ordinare şi cu derivate parţiale, Editura
Didactică şi Pedagogică, Bucureşti, 1965.

3. (with Gh. Călugăreanu) Curs de Analiză Matematică, Universitatea din Cluj,
1956.

Dumitru V. Ionescu was the Dean of the Faculty of Sciences of the University
of Cluj between 1941-1945) and head of the Chair of Differential Equations (between
1955-1971).

Research activity : The research topics of Professor Dumitru V. Ionescu were Dif-
ferential Equations, Numerical Analysis, History of Mathematics, Didactical Mathe-
matics. Professor Dumitru V. Ionescu published more than 200 scientific papers and
the following monographs:

1. Cuadraturi numerice, Editura Tehnică, Bucureşti, 1957, (340 pp.)

2. Diferenţe divizate, Editura Academiei, Bucureşti, 1978, (303 pp.)

One of the most important achievement in his research activity was the so-called
the method of the function φ.

Professor Dumitru V. Ionescu passed away on January 20, 1985 at Cluj-Napoca.

Professor George Iuga (1871-1958)

George Iuga was born on October 13, 1871 at Braşov.

Professor George Iuga was one of the first Romanian mathematicians who
obtained the Ph.D. in Mathematics (1896) in France at Strasbourg.

He was a professor of the Faculty of Sciences of the University of Cluj between
1923 and 1938.
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Professor Ioan Maruşciac (1925-1987)

Ioan Maruşciac was born at Crăciuneşti, Maramureş county on March 27, 1925.

University studies: After the primary school in his native village, Ioan Maruşciac
attended the secondary school in the city of Sighetul Marmaţiei. Without a financial
support from his family, he must work until 1947, as an ordinary worker at the Rail-
ways Company and then, at the Mayor House of Crăciuneşti. After his military stage,
he is enrolled at the Ukrainean High School in Sighetul Marmaţiei and finally, in
1951 he finish the studies. Between 1951 and 1954, Ioan Maruşciac is a student of the
Faculty of Mathematics and Physics of the Victor Babeş University in Cluj.

Didactical activity : Just after the faculty, Ioan Maruşciac get a didactical posi-
tion in the university, at the Chair of Function Theory. From 1972, Ioan Maruşciac
get a full professor position at the Babeş-Bolyai University Cluj-Napoca. During his
activity in our university, Professor Ioan Maruşciac teached several courses, such as:
Mathematical Analysis, Operational Research, Algorithm Theory, Mathematical Pro-
gramming, Numerical Methods in Optimization.

Research activity : Professor Ioan Maruşciac has important contributions in Ap-
proximation Theory by Polynomials and Infrapolynomials, Optimization Theory. Pro-
fessor Ioan Maruşciac published three monographs and more than 85 scientific papers.
He was also Ph.D. supervisor in Operational Research.

Professor Ioan Maruşciac passed away in 1987.

Professor Gheorghe Micula (1943-2003)

Gheorghe Micula was born in the small village of Delureni, Bihor county on
April 23, 1943.

University studies: After the high school attended at Vadu Crişului, Gheorghe
Micula was a student (between 1960-1965) of the Mathematics specialization of the
Faculty of Mathematics and Physics from Babeş-Bolyai University Cluj. He also get
a Humboldt fellowship in Germany (1974-1976) and a Fulbright fellowship in USA
in 1971. Gheorghe Micula wrote his Ph.D. thesis under the guidance of Professor
Dumitru V. Ionescu and defended it in 1971 at the Faculty of Mathematics-Mechanics
from Babeş-Bolyai University Cluj.

Didactical activity : The entire didactical activity of Professor Gheorghe Micula
took place at the University of Cluj. He was full professor at the Differential Equations
Chair since 1992. Professor Gheorghe Micula teached several courses as: Differential
Equations, Spline Functions, Finite Elements Methods, etc. He also wrote several
books on Differential Equations and Spline Functions.

Research activity : The main research interests of Professor Gheoreghe Micula
were focused on differential equations, numerical analysis and spline functions. He
published more than 90 scientific papers and two monographs on spline functions.
Gheorghe Micula was also invited professor at several important universities from
Germany, USA, China, South Korea, New Zeeland, Israel, Italy, Czech Republik,
Switzerland, etc.

Professor Gheorghe Micula passed away at Cluj-Napoca on December 24, 2003.
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Professor Emil Muntean (1933-2009)

Emil Muntean was born at Măgura, Hunedoara county on July 31, 1933.

University studies: Emil Muntean graduated the Faculty of Mathematics from
the University of Cluj in 1957. Then, he get the Ph.D. in Mathematics in 1964 at the
University of Saint Petersburg, Soviet Union.

Didactical and research activity : Emil Muntean worked for the construction of
the first Romanian computers: MARICA (1959), DACICC-1 (1961) and DACICC-
200 (1969). DACICC-200 was the most efficient Romanian computer of the second
generation, being capable to do more than 200,000 arithmetical operation/second. In
1968 Emil Muntean becomes the Director of the Institute for Computing in Cluj.

Since 1990, Emil Muntean get a full professor position at the Faculty of Mathe-
matics from Babeş-Bolyai University. From 2000 Emil Muntean was full professor of
Computer Science at the Faculty of Economics from Dimitrie Cantemir University of
Cluj-Napoca. He was a fruitful Ph.D. supervisor in the field of Computer Science. He
is also the founder of the publication series ”MicroInformatica”.

Emil Muntean passed away at Cluj-Napoca on November 29, 2009.

Professor Ioan Muntean (1931-1996)

Ioan Muntean was born at the village of Sântimbru, Alba county, on May 27,
1931.

University studies: After the primary school in the village of Sântimbru, Ioan
Munteanu moved at the Petroşani High School, Hunedoara county. Then, Ioan
Muntean started the university studies at the Faculty of Mathematics-Physics of the
Babeş University. After two years of studies in Cluj (1950-1952), Ioan Muntean moved
to the Faculty of Mathematics-Mechanics of the Lomonosov University. Here he grad-
uated the studies in 1955. In 1976, Ioan Muntean get his Ph.D. in Mathematics with
a thesis entitled Contributions to the qualitative study of the nonlinear oscilations,
under the scientific coordinations of academician Tiberiu Popoviciu.

Didactical activity : The didactical activity of Professor Ioan Muntean was en-
tirely sustained at the Faculty of Mathematics from the University of Cluj, between
1976 and 1996. Professor Ioan Muntean teached several courses on Mathematical
Analysis, Optimal Control, Functional Analysis, He was also very much involved in
the Didactic of Mathematics having many presentations in the high schools in Tran-
sylvania and in the Mathematics Didactic Conference. Professor Ioan Muntean was
Vice-Dean of the Faculty of Mathematics and Head of the Chair of Mathematical
Analysis.

Research activity : The research activity of Professor Ioan Muntean was oriented
to several topics as: Qualitative Theory of Differential Equations (he was initiated,
during his stage in Moscow, by the Russian mathematicians Nemytski and Stepanov),
Optimal Control, Approximation Theory, Functional Analysis, Real Analysis. Profes-
sor Ioan Muntean published more than 100 scientific papers. Since 1976, he was the
leader of the Mathematical Analysis research group. Professor Ioan Muntean was a
prolific supervisor in the field of Mathematics.

Professor Ioan Muntean passed away in August 1996 at Cluj-Napoca.
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Professor Constantin Pârvulescu (1890-1945)

Constantin Pârvulescu was born at Ploieşti in 1890, on July 21.
University studies: After the university studies in Romania at Bucharest, Con-

stantin Pârvulescu defended his Ph.D. entitled Sur les amas globulaires d’étoiles et
leurs relations dans l’espace in 1925 at Sorbonne.

Didactical activity : Constantin Pârvulescu started his activity at the Astronomi-
cal Obesrvatory in Paris between 1921 and 1924. Then, he was professor of Astronomy
and Rational Mechanics (1925-1940) at the Faculty od Sciences from the University of
Cernăuţi. After a short period in Bucharest, Constantin Pârvulescu becomes, starting
from 1941, full professor at the University of Cluj.

Research activity : Professor Constantin Pârvulescu was the Director of the As-
tronomical Observatory in Cluj (1941-1945) and founder of the Astronomical National
Committee. Professor Constantin Pârvulescu was decorate with Legion of Honour at
rank of knight and get, post-mortem, a honorary position in the Romanian Academy.

Professor Pârvulescu passed away on July 2, 1945.

Professor Dimitrie Pompeiu (1873-1954)

Dimitrie Pompeiu was born in the village of Broscăuţi, Dorohoi county on Sep-
tember 22, 1873.

University studies: After his primary and secondary schools in Dorohoi and
Bucharest, Dimitrie Pompeiu went (1898) to Paris for the university studies. In 1905,
Dimitrie Pompeiu get his Ph.D. with a thesis entitled Sur la continuité des fonctions
de variables complexes under the guidance of Henri Poincaré. The motivation for
such a study was an open problem concerning the singularities of uniform analytic
functions, open problem posed by Painlevé in 1897.

Ludovic Zoritti wrote, also in 1905, a Ph.D. thesis in which he claimed to have
proved that a uniform analytic function cannot be continuously extended on the set
of its singularities. On the other hand, Pompeiu in his doctoral thesis proved the
existence of certain analytic functions which could be extended continuously on their
set of singularities even though this set had positive measure. Since both results
could not be correct, the problem was ”Where is the mistake ?” The mistery was
resolved in 1909 when Denjoy confirmed that Pompeiu’s results were correct, and he
found the error in Zoritti’s theorems. In 1907, in his paper Sur les fonctions dérivées,
Dimitrie Pompeiu had clarified the whole situation by constructing simpler examples
of functions, functions which are now called ”Pompeiu functions”. There was another
important idea in Pompeiu’s Ph.D. thesis, namely the distance between two sets,
which he called the ”écart” and ”écart mutuel”. Consequently, Dimitrie Pompeiu
could be also considered as one of the founders of the theory of hyperspaces.

Didactical activity : In the autumn of 1905, Dimitrie Pompeiu comes back in
Romania and get a position of associate professor on Mathematical Analysis and
then of Mechanics at the University of Iaşi. In 1912, he moves to the University
of Bucharest, as a successor of Spiru Haret. Starting to 1930, Dimitrie Pompeiu is
appointed as a full professor of Function Theory, after the retirement of Professor
David Emmanuel. Starting from the beginning of the academic year 1920, Dimitrie
Pompeiu was appointed (for two academic years) full professor at the Faculty of
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Sciences of the new Romanian University of Cluj and the Head of the Mathematical
Seminar. Actually, Professor Dimitrie Pompeiu have had an important role in the
organization, not only of the Mathematical Seminar (following the model lauched at
College de France), but also of the whole mathematics education in the University of
Cluj.

Research activity : Concerning the research activity of Professor Pompeiu, his
main contributions were in the field of Complex Analysis. Academician Petru Mo-
canu described very well the contributions of Pompeiu to the field of Function Theory.
”There is no doubt that Pompeiu’s preferred area was Analysis, especially Complex
Analysis, but he achieved remarkable results in other areas such as Mechanics. Pom-
peiu initiated the theory of polygenus functions as a natural extension of analytic
functions. He introduced the notion of a special type of derivative, the areolar deriv-
ative of a complex function, extending the Cauchy formula which today is sometimes
called the Cauchy-Pompeiu formula. In a short paper in 1929 entitled Sur certains
systemes d’équations linéires et sur une propriété intégrale des fonctions de plusieurs
variables, he proved that if the double integral of a continuous function takes the
same value over any square of given side, then the function is constant. This simple
remark has led to many interesting problems in Analysis and it is known today as
the problem of Pompeiu.” Let us also mention that more than 1000 papers cite this
1929 paper by Pompeiu. Among other topics on which Pompeiu published research
articles we mention Interpolation Theory and Mechanics.

Dimitrie Pompeiu published around 150 research papers. In 1929, together with
Petre Sergescu, Dimitrie Pompeiu founded the scientific journal Mathematica (Cluj),
one of the most influential journal of that period. In 1934 Dimitrie Pompeiu was
elected member of the Romanian Academy.

Professor Dimitrie Pompeiu passed away on October 8, 1954 at Bucharest.

Professor Elena Popoviciu (1924-2009)

Elena Moldovan (married Popoviciu in 1974) was born on August 26, 1924 in
Cluj-Napoca.

University studies: All her studies were attended in Cluj. Then, Elena Moldovan
get her Ph.D. in Mathematics in 1965, with a thesis (supervised by academician
Tiberiu Popoviciu) entitled Set of interpolation functions and the concept of convex
function.

Didactical activity : The entire didactical activity of Professor Elena Popoviciu
took place at the Faculty of Mathematics from Babeş-Bolyai University Cluj-Napoca.
From 1969, Elena Popoviciu get a full professor position at the Mathematical Analysis
Chair. She teached several courses such as: Mathematical Analysis, Abstract Alge-
bra, Functional Analysis, Linear Programming, Distribution Theory, Approximation
Theory, Operatorial Calculus.

Research activity : Elena Popoviciu started the research activity under the coor-
dination of academician Grigore Călugăreanu, but then fascinated by the remarkable
personality of Tiberiu Popoviciu, her research topic moved to convex function theory
and interpolation function theory. Starting with 1974, Elena Popoviciu becomes Ph.D.
supervisor and finally she have had 23 doctoral students. Elena Popoviciu founded, in



Mathematics education in Romanian at U.B.B. Cluj-Napoca 413

1960, the research Seminar on Best Approximation and Mathematical Programming
and, in 1974, the Interdisciplinary Research Lab.

Elena Popoviciu was also very much involved in the editorial work of the follow-
ing journals: Revue Numérique et d’Analyse et de Théorie de l’Approximation and
Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation
and Convexity.

Elena Popoviciu passed away on June 24, 2009 at Cluj-Napoca.

Professor Tiberiu Popoviciu (1906-1975)

Tiberiu Popoviciu was born on February 15, 1905 at Arad.
University studies: After the primary and secondary schools in Arad, Tiberiu

Popoviciu attended (between 1924 and 1927) the courses of the Faculty of Sciences,
the specialization Mathematics at the University of Bucharest.

His professors were some famous mathematicians of that time, such as: David
Emmanuel, Gheorghe Ţiţeica, Dimitrie Pompeiu, Anton Davidoglu. In 1927, after a
strong competition, Tiberiu Popoviciu is admitted at École Normale Superieure de
Paris. Between 1927 and 1930, he attended simultaneous the mathematics courses
from Sorbonne. During his stage at Paris, he attended the courses of great mathe-
maticians such as: Emile Picard, Edouard Goursat, Jacques Hadamard, Elie Cartan,
Paul Montel, Emile Vessiot, Gaston Julia, Jean Chazy. In 1928 Tiberiu Popoviciu
get the bachelor in Mathematics and also starts the preparation of his Ph.D. thesis
under the guidance of Paul Montel. On June 12, 1933 Tiberiu Popoviciu defended,
with great success, the Ph.D. thesis Sur quelques propriétes des fonctions d’une ou
de deux variables réelles.

Didactical activity : After his return to Romania, Tiberiu Popoviciu starts his
university activities at Cluj, Cernăuţi and Iaşi. In 1948, Tiberiu Popoviciu comes
back to Cluj and is appointed professor, first at the Chair of Algebra and then at the
Chair of Mathematical Analysis.

Research activity : Professor Tiberiu Popoviciu has important contributions in
Mathematical Analysis, Approximation Theory, Convexity, Numerical Analysis, Func-
tional Equations, Algebra and Number Theory, etc. One of his most important scien-
tific contribution was the concept of convex functions of higher order (as a generaliza-
tion of the notion of convex function) given in his Ph.D. thesis and then published in
Mathematica, 8(1934), pp. 1-85. Most of the results concerning the theory of convex
functions of higher order are contained in his famous book Les fonctions convexes,
Actualitées Scientifique et Industrielles, Paris, 1944.

Professor Tiberiu Popoviciu is the founder of the Cluj School on Numerical
Analysis. Because of his efforts, in 1957 it was created the Computing Institute of Cluj.
In this institute, in 1961 is produced one of the first Romanian computers DACICC-1
(Dispozitiv Automat de Calcul al Institutului de Calcul din Cluj). Then, in 1969, also
in Cluj, it is realized DACICC-200 - one of the most performant Romanian computer
of the Sixties.

Tiberiu Popoviciu was, since 1948, corresponding member and from 1963 full
member of the Romanian Academy. He was also for more than 30 years the president
of the Cluj branch of the Romanian Mathematical Society.
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Some other achievements of Tiberiu Popoviciu were: the reactivation, in 1958, of
the journal Mathematica (Cluj), the founding, in 1972, of the journal Revue d’Analyse
Numerique et de Theorie de l’Approximation, the opening, in 1967, of a research
seminar: The Itinerant Seminar on Functional Equations, later transfomed in The
Itinerant Seminar on Functional Equations, Approximation and Convexity.

Professor Tiberiu Popoviciu was a very active, creative and prolific mathemati-
cian until his unexpected death in 1975, on October 29, after just half year from the
moment of the abolition of his Institute of Computing by the communist regime.

Professor Petre Sergescu (1893-1954)

Petre Sergescu was born at Turnu-Severin in December 17, 1893.

University studies: After the primary and secondary schools attended at Turnu-
Severin, between 1912 and 1916, Petre Sergescu is enrolled at the Mathematics section
of the University of Bucharest.

He attended, in the same period, the courses of Faculty of Philosophy and the
Music Academy from Bucharest. In 1919 Petre Sergescu leaves Romania for doing
studies at Paris. In 1923 Petre Seregescu get his Ph.D. in Mathematics with a thesis
Sur les noyaux symétrisables at the University of Bucharest.

Didactical activity : Professor Petre Sergescu starts his didactical activity in 1924,
as assistent professor in Bucharest. In 1926, he is appointed associate professor and
then, in 1938, full professor at the Analitical Geometry Chair and respectively the
Mathematical Analysis Chair of the Faculty of Sciences from the University of Cluj.
He also was Rector of the Technical University of Bucharest.

Because of the communist regime, he is forced to leave Romania and from 1948,
Professor Petre Sergescu and his wife Marya Kasterska lived in Paris. Working in
Paris, Petre Sergescu was for many years the secretary of the International Academy
of the History of Sciences and founder and general secretary of the International Union
for the History of Sciences. Petre Sergescu was also Director of the journal Archives
Internationales d’Histoire des Sciences.

Research activity : Professor Petre Sergescu was one of the founder of the journal
Mathematica (Cluj) being also the secretary of the editorial staff until 1948. Professor
Petre Sergescu was also the initiator of the first two Congresses of the Romanian
Mathematicians (Cluj 1929 and Turnu-Severin 1932).

In 1940, when the North-West part of Transylvania was surrended to Hungary
and the Faculty of Science moved to Timişoara, Professor Petre Sergescu was an active
member of the Mathematical Seminar. Professor Sergescu published more than 160
scientific papers and took part to numerous international congresses and conferences.
Professor Petre Sergescu was a corresponding member of the Romanian Academy.

Professor Petre Sergescu passed away at Paris on December 21, 1954.

Professor Dimitrie D. Stancu (1927-2014)

Dimitrei D. Stancu was born at the village of Călacea, Timiş county on February
11, 1927.
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University studies: The life and the activity of the academician Dimitrie D.
Stancu overlapped with the life of the Faculty of Mathematics from Babes-Bolyai
University Cluj-Napoca, where he was admitted, in a pre-eminent way, in 1947.

Because of his remarkable results during the faculty, D.D. Stancu is appointed in
1951 assistant professor at the Mathematical Analysis Chair, conducted at that time
by academician Tiberiu Popoviciu. In the same time, D.D. Stancu starts the work
on his Ph.D. thesis and get the Ph.D. in Mathematics in 1956 with a thesis entitled
A study of the polynomial interpolation of several variables functions: applications to
the derivative and the numerical integartion under the guidance of Tiberiu Popoviciu.
During the academic year 1961-1962 Dimitrie D. Stancu gets a fellowship from the
Romanian Ministry of Education for a research stage in U.S.A. at the University of
Wisconsin, research stage which will be very important for the future development of
his career. After his return in Romania, he obtain in 1968, a full professor position at
the Numerical and Statistical Calculus Chair from the Faculty of Mathematics.

Didactical activity : Professor Dimitrie D. Stancu teached high level courses on
Mathematical Analysis, Numerical Analysis, Approximation Theory, Probability The-
ory, etc. Professor Dimitrie D. Stancu was Vice-Dean of the Faculty of Mathematics
and, for many years, Head of the Numerical and Statistical Calculus Chair.

Research activity : Professor Dimitrie D. Stancu research activity was decisive in-
fluenced by his scientific cooperation with academician Tiberiu Popoviciu. His main
research topics were: interpolation theory, derivative and numerical integration, or-
thogonal polynomials, spline functions, approximation of the functions by linear and
positive operators, probabilistic and combinatoric methods in approximation theory.
Professor Dimitrie D. Stancu dedicated part of his research work to Numerical Anal-
ysis in connection to Computer Science. Academician D.D. Stancu was the scientific
coordinator of 41 Ph.D. students in the field of Numerical Analysis and Approxima-
tion Theory. Professor Dimitrie D. Stancu published more than 120 research papers
with a strong nternational impact. More than 50 papers have the name of Dimitrie D.
Stancu in their title and the concept of Stancu operator is nowadays a very well-known
notion in the mathematics literature.

Professor Dimitrie D. Stancu was elected in 1999 honorary member of the Roma-
nian Academy. He also was an active collaborator of the Tiberiu Popoviciu Institute
on Computing of the Romanian Academy and editor-in-chief of the journal Revue
d’Analyse Numérique et de Théorie de l’Approximation.

Professor Dimitrie D. Stancu passed away at Cluj-Napoca on April 17, 2014.

Professor Marian Ţarină (1932-1992)

Marian Ţarină was born at Turda on August 15, 1932.
University studies: Marian Ţarină graduated the high school Regele Ferdinand,

now Mihai Viteazul National Colleage in Turda. Then, he was addimited at the Fac-
ulty of Matehmatics and Physics from the University of Cluj, getting a Magna Cum
Laude Diploma in 1954.

Under the guidance of academician Gheorghe Vrânceanu, he get the Ph.D. In
Mathematics in 1964 with a thesis entitled Partial Projective Spaces with Maximal
Group of Motion at the University of Bucharest.
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Didactical activity : The entire didactical activity of Professor Marian Ţarină was
at the University of Cluj. He obtained a full professor position at the Geometry Chair
in 1990. Professor Marian Ţarină teached several courses such as: Differential Geom-
etry, Foundaments of Algebraic Topology, Symmetric Spaces, Lie Groups, History of
Mathematics, etc.

Research activity : Professor Marian Ţarină published more than 50 research
papers and presented almost 200 scientific communications. His research topics were:
Noneuclidean Geometry, Motion Groups in Riemann Spaces, Recurent Spaces, G-
structures on Differentiable Manifolds, Finsler Spaces.

Professor Marian Ţarină unexpected passed away on May 31, 1992 at Oradea.

Professor Gheorghe Ţiţeica (1873-1939)

Gheorghe Ţiţeica was born at Drobeta Turnu-Severin on October 4, 1873.
University studies: After the secondary school attended in Craiova, Gheorghe

Ţiţeica choose, for the university studies, the University of Bucharest. He get the
bachelor in Mathematics in 1895.

Then, Gheorghe Ţiţeica leaves the country and get another bachelor (on the first

position) in Mathematics at École Normale Supérieure de Paris. Gheorghe Ţiţeica
also get the Ph.D. in Mathematics at Sorbonne (under the scientific coordination of
Professor Gaston Darboux), being the fifth Romanian mathematician with doctoral
studies at Sorbonne (after Spiru Haret, David Emanuel, Constantin Gogu and Nicolae
Coculescu).

Didactical activity : In 1900, after his return to Romania, Gheorghe Ţiţeica was
appointed as a professor of Geometry at the University of Bucharest. Starting with
1913 Gheorghe Ţiţeica becomes a member of the Romanian Academy. He was also the
Dean of the Faculty of Sciences at the University of Bucharest and Doctor Honoric
Causa of the Warsaw University.

Research activity : The scientific work of Professor Gheorghe Ţiţeica counts more
than 400 scientific works, most of then in the area of differential geometry. Professor
Gheorghe Ţiţeica discovered a new category of surfaces and a new category of curves
which now carry his name. He also studied R-networks in the n-dimensional space,
defined through some Laplace type equations. He is today recognized as the founder
of the Romanian School of Differential Geometry.
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Cluj-Sibiu”.
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Abstract. We provide a brief overview of the life and activity of the most remark-
able Hungarian mathematicians who worked at the University of Cluj, from the
beginnings to the present day.
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1. Introduction

The first higher education institution in Cluj (Kolozsvár, Claudiopolis), a Jesuit
colleage with three faculties: Theology, Philosophy and Law, was set up on May 12,
1581 by Stephen Báthory, the prince of Transylvania and king of Poland.

Over the centuries astronomy and mathematics had an important role between
the subjects taught at this catholic school. The most remarkable professors of astron-
omy and mathematics of this school were Miklós Jánosi (1700–1741) and Maximilian
Hell (1720–1792). Jánosi and Hell published the first mathematical textbooks in Cluj:

Miklós Jánosi: Trigonometria plana et sphaerica cum selectis ex geometria et
astronomia problematibus, sinuum canonibus et propositionibus ex Euclide magis nec-
essariis. Claudiopoli, 1737.

Maximilian Hell: Compendia varia praxesque omnium operationum arithmeti-
carum. Claudiopoli, 1755.

Elementa mathematicae naturalis philosophiae ancillantia ad praefixam in scho-
lis normam concinnata. Pars I., Elementa arithmeticae numericae et litteralis seu
algebrae. Claudiopoli, 1755.

Exercitationum mathematicarum Partes Tres. Claudiopoli. 1760.
A new era begins in the Cluj university education on October 12, 1872, when the

emperor Franz Joseph I of Austria approves a decision of the Hungarian Parliament
for setting up the University of Cluj. This Hungarian university was between the

This paper was presented at the 8th Conference on History of Mathematics & Teaching of Mathe-

matics, Cluj-Napoca, May 21-25, 2014.
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first universities which have had in structure a separate Faculty of Mathematics and
Natural Sciences.

At this university, moved to Szeged (Hungary) in 1919, worked world renowned
mathematicians who founded a remarkable mathematical school. In the next section
we present the most outstanding Hungarian mathematicians who contributed to the
development of this important mathematical centre.

2. Hungarian professors of the University of Cluj

Professor Samu Borbély (1907–1884)

Samu Borbély was born in Torda (today Turda in Cluj country, Ramania) on
April 23, 1907.

University studies: After his high school studies in Torda, Kolozsvár and
Kecskemét, Samu Borbély started the university studies in mechanical engineering
and mathematics in Budapest and continued in Berlin where he had personal con-
tacts with Albert Einstein. He graduated as engineer-mathematician the Technical
University of Berlin in 1933, and get his Ph.D. in 1938, at the same university under
the supervision of professor Rudolf Rothe.

Didactical activity : In 1941 Borbély moves from Berlin to Cluj, where he is
assistant professor and associate professor at the Ferenc József University. In 1944
he is taken to Berlin, where refusing to collaborate in the development of the V2
rackets he is incarcerated. He escapes in December 1944 and is hiding in Budapest
until the end of the second World War, when he came back to Cluj, as professor of
the Hungarian Bolyai University. Until 1949, when he moved back to Hungary, he
contributed essential to the scientific developpement of the new university and to the
rise of new generations of mathematicians at the Bolyai University.

After 1949 Samu Borbély activates at the University of Miskolc as head of the
department of mathematics. Starting with 1955 he is the head of the department
of mathematics at the Technical University in Budapest. In 1960 he is moving to
Magdeburg, where he leads the department of mathematics of the Otto von Guericke
University until 1964, when he came back to his position as head of the department of
mathematics at the Technical University in Budapest. He is retired in 31 december,
1977.

Research activity: Between 1933 and 1941 Borbély, as associate researcher at
the German Institute of Aeronautics in Berlin, studied problems of aerodinamics and
technical mathematics.

His researches are oriented toward different problems of the applied mathematics.
Main results concern ballistic problems, aerodynamics and nonlinear heat transfer.

In 1946 professor Samu Borbély becomes a corresponding member and in 1979
full member of the Hungarian Academy of Sciences.

Samu Borbély passed away in Budapest (Hungary) on August 14, 1984 and is
buried in Târgu Mureş (Romania).
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Professor Sámuel Brassai (1800–1897)

The information about the date and place where Sámuel Brassai was born is
uncertain. We can find: June 15, 1800 in Torockószentgyörgy, Hungary (now Colţeşti,
Alba country, Romania), or February 13, 1800, Torockó (Râmetea, Alba, Romania).

University studies: Brassai has never attended any university, he was an auto-
didact. Initiated by his father, a Unitarian minister in the mysteries of knowledge, he
studied from the age of 12 at the Unitarian High School in Cluj. After the high school
he completed his knowledge by traveling through Transylvania and Hungary, and as
tutor in several families.

Didactical activity : After a long teaching experience at the Unitarian High
School of Cluj and at Budapest, Brassai is appointed in 1872 professor of the ele-
mentary mathematics at the new founded University in Cluj (Magyar Királyi Tu-
dományegyetem). Sámuel Brassai gives various courses of the elementary mathemat-
ics, focussing especially on the future teachers training. He also deliver courses on
general linguistics and Sanskrit language. In academic year 1879-80 Brassai holds the
position of rector of the university.

Research activity: Brassai was not a mathematician in the ordinary sense of
the word today. He was a polymath, often remembered as the last Transylvanian
polymath, attracted by mathematics, among many other sciences (history, geography,
astronomy, linguistics, statistics, economy, theory of music, ...).

He published many scientific papers and articles to promote sciences, in vari-
ous journals and newspapers of the time. In the area of mathematics he published
textbooks for school education, articles about didactics of mathematics, and his most
significant result has been the first translation in Hungarian of Euclid’s Elements.

In recognition of his scientific merits, Brassai was received in the Hungarian
Academy of Sciences a corresponding member of the department of mathematics and
natural sciences in 1837, a full member of the department of history and philosophy
in 1865, and honorary member in 1887.

Sámuel Brassai passed away in Kolozsvár on June 24, 1897.

Professor Vilmos Cseke (1915–1983)

Vilmos Cseke was born in Hátszeg, Hungary (now Haţeg, Hunedoara country,
Romania) on May 15, 1915.

University studies: Vilmos Cseke graduated mathematics at the Cluj University
in 1936 and received Ph.D. at the same university in 1947 advised by professor Teofil
Vescan.

Didactical activity : After four years spent in the Catholic High School in Cluj,
Vilmos Cseke is appointed assistant professor at the Cluj University in 1941, where
he activates as associate professor (from 1948) and professor until his retirement.
Professor Cseke contributed (1957–1979) to the development of the mathematical
teaching as member and leader of the editorial board of the mathematical and physical
magazines: Matematikai és Fizikai Lapok, and Matematikai Lapok.

Research activity: His research is focused on problems of the theory of probabil-
ity, mathematical logics, mathematical statistics and applications of the mathematics
in economy.
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Professor Vilmos Cseke passed away in Kolozsvár on March 10, 1983.

Professor Lajos Dávid (1881–1962)

Lajos Dávid was born in Kolozsvár (Cluj) on May 28, 1881.
University studies: Lajos Dávid studied in Cluj, Göttingen and Paris. He at-

tended courses taught by Gyula Farkas, Lajos Schlesinger and Frigyes Riesz in Cluj,
David Hilbert and Felix Klein in Göttingen. He obtained the Ph.D. in mathematics
at the Cluj University, advised by Lajos Schlesinger (1903).

Didactical activity : Gyula Dávid was a tutor at the Cluj University (1910) and
at the Budapest University (1916), privatdozent in Budapest (1919) and professor
from 1925 at the University of Debrecen. He leads a chair of mathematics in Cluj
(1940–1944).

Research activity: Gyula David has published results concerning problems of
algebra, theory of functions and history of mathematics. His research concerning the
life and the activity of the two Bolyai is materialized in two books: A két Bolyai élete
es munkássága (Budapest, 1923), Bolyai-geometria az Appendix alapján (Kolozsvár,
1944).

Professor Lajos Dávid passed away in Budapest on January 9, 1962.

Professor Gyula Farkas (1847–1930)

Gyula Farkas was born in Sárosd, Fejér Country, Hungary on March 28, 1847.
University studies: Gyula Farkas graduated the high school at the Benedictines

gymnasium of the famous Pannonhalma abbey, founded in 969 by Prince Géza. After
completing his schooling by the Benedictines, Farkas went to the Pest University with
the intention of studying law and music. Soon he changed the direction of his studies
and graduated chemistry in 1870. Later he continued his studies in chemistry and
physics, obtaining the doctoral degree in 1876.

Didactical activity : Farkas worked as a private tutor for a while before returning
to university to study physics and chemistry. He then returned to his native county
of Fejér, teaching at the Modern School in the county town of Székesfehérvár. In 1874
he went to work for Géza Batthyány, the Count of Polgárdi, teaching his children
mathematics and physics. Farkas now had time to undertake research both in math-
ematics and physics. Farkas was also given the opportunity to make visits abroad to
broaden his background in mathematics and physics.

By 1880 Farkas had an impressive publication record in Comptes Rendus and was
appointed as a dozent in function theory at the university in Pest. His career continued
to flourish and on January 1887 he was appointed as an extraordinary professor at
the University of Kolozsvár (Cluj), and in the following year he became an ordinary
professor of theoretical physics there. Not only did Farkas serve the University of
Kolozsvár as a professor, but he also served as Dean and as Rector of the University.
In 1915 he resigned his position at the University since his eyesight was deteriorating.
He retired to Budapest where he lived in retirement for 15 years.

Research activity: Gyula Farkas is known in mathematics for Farkas Theorem (or
lemma) which is used in linear programming and also for his work on linear inequal-
ities. In 1881 Gyula Farkas published a paper on Farkas Bolyai’s iterative solution to
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the trinomial equation, making a careful study of the convergence of the algorithm. In
a paper published three years later, Farkas examined the convergence of more general
iterative methods. He also made major contributions to applied mathematics and
physics, particularly in the areas of mechanical equilibrium, thermodynamics, and
electrodynamics.

The Hungarian Academy of Science elected him corresponding member in 1898
and full member in 1914. For his contribution on developing Italian–Hungarian scien-
tific collaborations he was elected member of the Circolo Matematico di Palermo and
awarded with the title of Doctor Honoris Causa of the Padova University (1892).

Professor Gyula Farkas passed away in Pestszentlőrinc (today part of Budapest),
Hungary on December 27, 1930.

The Hungarian professors of the Departmant of Mathematics and Informatics
of the Babeş-Bolyai University of Cluj has named their association, founded in 2001,
the Gyula Farkas Association for Mathematics and Informatics.

Professor Lipót Fejér (1880–1959)

Lipót (Leopold) Fejér was born in Pécs, Hungary on February 9, 1880.
University studies: Fejér graduated from the high school in Pécs in 1897. In the

same year he won second prize in the national Eötvös Mathematics Competition and
entered the Polytechnic University of Budapest. Here he studied mathematics and
physics until 1902, except for the year 1899–1900 which he spent at the University of
Berlin, where he attended courses by Georg Frobenius, Lazarus Fuchs and Hermann
Schwarz.

Fejér presented his doctoral thesis focusing on his fundamental summation theo-
rem for Fourier series to the Eötvös Loránd University in Budapest in 1902. He spent
the winter of 1902-3 on a visit to Göttingen, attending lectures by David Hilbert and
Hermann Minkowski, and the summer of 1903 in Paris where he attended lectures by
Émile Picard and Jacques Hadamard.

Didactical activity : Lipót Fejér started his universitary career at the University
of Budapest (1903-1905) and continued as privatdozent in Kolozsvár (Cluj) from 1905
to 1911.

In the years he spent in Cluj he offered different courses, like: Differential and
integral calculus, Differential equations, Partial differential equations, Theory of func-
tions, Exercises for beginners, New results on integer transcendental functions.

In 1911 Fejér was appointed to the chair of mathematics at the University of
Budapest and he held that post until his death. During his period in the chair at
Budapest, Fejér led a highly successful Hungarian school of analysis. According to
the Mathematics Genealogy Project current on-line database, Leopold Fejér has 20
students and 6336 descendants. Among his PhD students we can find proeminent
mathematiciens as Paul Erdős, George Polya and John von Neumann.

Research activity: Discussions with Hermann Schwarz in Berlin led Fejér to look
at the convergence of Fourier series and prove the highly significant ”Fejér’s theorem”:
The Fourier series is summable (C, 1) to the value of the function at each point of
continuity, result submitted to be published to the Paris Academy of Sciences on 10
December 1900, in a paper titled Sur les fonctions bornées et intégrables. During the
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years spent in Cluj professor Fejér produced many high quality beautifully written
papers: six in 1906, three in 1907, five in 1908, four in 1909 and six in 1910. After
mowing to Budapest Fejér continued tu publish important works such as Über die
Konvergenz der Potenzreihe an der Konvergenzgrenze in Fallen der konformen Ab-
bildung auf die schlichte Ebene (1914), Über Interpolation (1916), and Interpolation
und konforme Abbildung, (1918).

Fejér’s main work was in harmonic analysis. He worked on power series and on
potential theory. Much of his work is on Fourier series and their singularities but
he also contributed to approximation theory. He collaborated to produce important
papers, one with Carathéodory on entire functions in 1907 and another major work
with Riesz in 1922 on conformal mapping.

Lipót Fejér was honoured with election to the Hungarian Academy of Sciences
in 1911 and being a vice-president of the International Congress of Mathematicians
held in Cambridge, England, in August 1912. He was elected to the Göttingen Acad-
emy of Sciences (1925), the Bavarian Academy of Sciences (1954), and the Polish
Academy of Sciences (1957). He was elected an honorary member of the Calcutta
Mathematical Society (1930), and awarded an honorary doctorate by Brown Univer-
sity in Providence, USA (1933) and by Eötvös Loránd University of Budapest (1950).
He also served as an editor of the Rendiconti del Circolo Matematico di Palermo and
of the Mathematische Zeitschrift. In addition, he received the highest state awards:
the Kossuth Prize, first grade (1948), the People’s Order of Merit (1950), and the
Labour Red Flag of Merit (1953).

Professor Lipót Fejér passed away in Budapest, Hungary on October 15, 1959.

Professor Jenő Gergely (1896–1974)

Jenő (Eugen) Gergely was born in Kolozsvár, Hungary on March 4, 1896.

University studies: He attended all studies, from primary to university level in
hometown. He graduated from the Faculty of Science of the University (Hungarian
at the time) in Cluj. Jenő Gergely presented his doctoral thesis entitled: Variations
of double integrals, supervised by of Alfred Haar, in 1921 at the University of Szeged,
Hungary.

Didactical activity : Jenő Gergely served from 1918 to 1948 as professor of math-
ematics at Marianum, the Catholic school for girls, in Cluj, publishing a handbook of
Algebra in 1937. Later, in the last 15 years of his activity, he followed all the steps of
the academic career at universities in Cluj, first Bolyai University (1948–1959), then,
after the unification of the two universities, the Babeş-Bolyai University (1959–1966).
He published two university courses, one of Ordinary Differential Equations (1951),

and another of Differential Geometry, with Árpád Kiss in 1957.

Research activity: Jenő Gergely worked in several areas of geometry and topol-
ogy. He studied the classification of areas based on their intrinsic geometry, the ge-
ometry of Bolyai-Lobacevski, the polar theory of ovals and ovaloids based on their
intrinsic equations and problems related on practical applications of geometry. In
the last period of activity, he was interested in n-dimensional manifolds in separable
Hilbert spaces and their applications in particle physics.
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Professor Jenő Gergely passed away in Kolozvár (Cluj), Romania on May 15,
1974.

Professor Alfréd Haar (1885–1933)

Alfréd Haar was born in Budapest, Hungary on October 11, 1885.
University studies: Alfréd Haar attended the Fasori Evangélikus Gimnázium in

Budapest. When he was a high school student has worked for the magazine for stu-
dents Középiskolai Matematikai Lapok and won Eötvös Loránd national mathematics
contest. Haar has started his universitary studies at the department of chemical engi-
neering at the Technical University of Budapest, but in the same year moved to the
University of Budapest, and after one year he becomes a student at the University
of Göttingen. His professors were Carathéodory, David Hilbert, Felix Klein, Ernest
Zermelo. Alfréd Haar presented his PhD thesis, written under the direction of David
Hilbert, in June 1909.

Didactical activity : At age 24 Alfred Haar was appointed as a privatdozent at the
University of Göttingen. He then moved to Zürich, where he taught mathematics at
the famous technical university. In 1912 he was invited at the Franz Joseph University
in Cluj, in the place of Fejér, called at the University of Budapest. He remains at the
Hungarian University of Cluj until 1919, when he went to the University of Szeged.
Haar, together with Riesz, rapidly made in Szeged a major mathematical centre from
the new university. With support from the Society of Friends of the Franz Joseph
University, they had founded the famous journal Acta Scientiarum Mathematicarum
in 1930.

Research activity: Most of Haar’s work was in analysis. The main results of
his thesis, entitled Zur Theorie der orthogonalen Funktionensysteme appeared in a
paper which he published in Mathematische Annalen in 1910. After the work of his
thesis, he went on to study partial differential equations with applications to elasticity
theory. He also wrote on Chebyshev approximations of functions, linear inequalities,
analytic functions, and discrete groups. Between 1917 and 1919 he worked on the
variational calculus, proving Haar’s Lemma, and applying his results to problems like
Plateau’s problem. Haar introduced a system of orthogonal functions, a measure in
mathematical analysis, with special properties, which today bears his name.

He was honoured in 1931 by election to the Hungarian Academy of Sciences.
Professor Alfréd Haar passed away in Szeged, Hungary on March 16, 1933.

Professor Lipót Klug (1855–1945)

Leopold (in German) or Lipót Klug (the Hungarian version) was born in
Gyöngyös, Hungary on January 23, 1854.

University studies: Lipót Klug attended the gymnasium in his hometown and
entered the University of Budapest in 1872. He graduated from the University on
July 1874 with a teaching diploma. Later he undertook research, first for his diploma
which was awarded in 1882, then for his habilitation (1897).

Didactical activity : After he graduated from the University, he was appointed
on 25 September, 1874 as a high school teacher in the Science High School in Poz-
sony (Bratislava). He taught there between 1874 and 1893, writing his first books on



426 Ferenc Szenkovits

geometry, after which he taught at a secondary school in Budapest. He also taught
as a privatdocent in Synthetic Geometry at the University of Budapest from 1891.
During these years, he was greatly influenced by Gyula Kőnig who taught at the
Technical University of Budapest from the early 1870s. In 1897 Klug was appointed
to the Franz Joseph University of Kolozsvár (now Cluj) as an extraordinary professor
in Descriptive Geometry. After two years he was appointed to the chair of Descriptive
Geometry at the University of Kolozsvár, a position he held for nearly twenty years,
until 1917, when he retired and moved back to Budapest.

Research activity: Research areas: descriptive and synthetic projective geometry.
In this topic has been one of the most influential and prolific Hungarian mathemati-
cian.

Professor Lipót Klug passed away in Budapest, Hungary on March 24, 1945.

Professor Lajos Martin (1827–1897)

Lajos Martin was born in Buda, Hungary on August 30, 1827.
University studies: His school education took place in Buda where he attended

the Roman Catholic Secondary School. He then began studies at the university in
Pest, taking courses in the Faculty of Arts in his first two years of study. However
he then turned towards engineering taking courses at the university’s Institutum
Geometrico-Hydrotechnicum. The revolutions that swept Europe in 1848 disrupted
his studies. Due to his active participation to the revolution, at the end of this, he was
imprisoned and later enrolled to the army of the Austrian Empire, where he continued
his technical studies, graduating in 1854 the military engineering academy in Vienna.

Didactical activity : Starting with 1855 he was teaching in the artillery school.
Leaving the army, he started to work in 1860 as engineer, later being the chief Engineer
of Buda town (1861). Then he taught first in a school in Selmecbnya (now Banská
Štiavnica, Slovakia), and from 1862 at a school in Bratislava. He also worked as the
director of a telegraph office at one stage in his career during the 1860s. During
these years he wrote some textbooks for secondary schools. In 1872 he was appointed
as Professor of Mathematics in the Department of Advanced Mathematics at the
new University of Kolozsvár. Here, Martin took also on the reorganization and the
management of the Observatory of the University, which had been founded by Jesuits
in 1755 but had been very neglected. He served this university until 1897, being rector
in 1895/96.

Research activity: In army Martin started to undertake research in ballistics, an
later continuated this, both making theoretical calculations and carrying out practi-
cal experiments. He became interested in hydraulics, undertaking research on ships
propellers, and giving an early formulation of the principle of the steam turbine. Later
Matrin published his studies of the theory of the best propeller and windmill. Lloyd’s
of London, the shipping insurance firm, were interested in Martin’s screw propellers
which they tested but Martin refused to sell patents for his ideas.

He was honoured with election to the Hungarian Academy of Sciences as a
corresponding member in 1859, becoming a full member in 1861.

Professor Lajos Martin passed away in Kolozsvár, Hungary (now Cluj, Romania)
on March 4, 1897.
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Professor Árpád Pál (1929–2006)

Árpád Pál was born in Hodgya (Hoghia, Harghita country, Romania) on June
25, 1929.

University studies: After finishing elementary school in his native village, he
continued the high school studies in Gyergyószentmiklós (Gheorgheni) and graduated

in 1949 from Udvarhely Mixed High School (now Tamási Áron High School, Odorhei).
In the same year gave admission to Bolyai University, Faculty of Mathematics and
Physics in Cluj. He graduates as chief of promotion in 1952, and was sent to study
in Moscow at the VM Lomonosov Astronomical Institute, Stenberg Department of
Celestial Mechanics. Here he completed post-graduate studies with a thesis entitled
Analytical theory of interpolation of small planets (55) Astrea, advised by professors
Duboshin and Moiseev (1957).

Didactical activity : His entire academic career, starting from 1957, is linked to
the University of Cluj, where he attended all functions of hierarchy even after his
retirement (1995), when he became a consultant professor and continued the work
with his Ph.D. students until his death.

He was particularly well regarded as teacher, as researcher and as manager:
he was Dean of the Faculty of Mathematics (3 legislations), scientific secretary of the
Senate, Vice-Rector of the University. A remarcable result was the construction of the
modern buildings of the Astronomical Observatory (1982). As a doctoral supervisor
gave the country 23 PhDs in astronomy (celestial mechanics) some of which itself
became doctoral supervisors.

Research activity: He wrote (alone or jointly) courses and textbooks and more
than 150 scientific papers in different journals. He founded as editor in chief the Ro-
manian Astronomical Journal. He presented his scientific results at dozens of national
and international scientific conferences. His central theme of research was celestial
mechanis.

He was a member of the International Astronomical Union, the European Astro-
nomical Union, the Romanian National Council of Astronomy, the Romanian Mathe-
matical Society, the Academy of Science of America. As president and later honorary
chairman of the Romanian National Astronomical Committee, represented Romania
at several general assemblies and promoted most valuable Romanian astronomers to
become members of the International Astronomical Union.

Professor Árpád Pál passed away in Kolozsvár, on July 21, 2006. In recogni-
tion for his outstanding scientific results, the international astronomical community
honored him in 2012 by naming an asteroid (Arpadpal, 257,005) in his memory.

Professor Ferenc Radó (1921–1990)

Ferenc (Francisc) Radó was born in Timişoara on May 21, 1921.
University studies: After undergraduate studies in his hometown, he studied at

the Engineering School in Bucharest and at the University of Cluj, where he graduated
mathematics at the end of the second Word War, in 1945. He got his PhD at the same
university in 1959, under the supervision of professor Tiberiu Popoviciu.

Didactical activity : He worked as a teacher in Timisoara, then was appointed
assistant professor in 1950 at the Bolyai University in Cluj. After the unification of
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the Bolyai and Babeş universities, he was associate professor and later full professor
at the Babeş-Bolyai University until his retirement in 1985. For many years he worked
as a researcher at the Institute of Computing of the Academy. In the academic year
1969–70 was a visiting professor at the University of Waterloo (Canada).

Research activity: He has published articles in the country and abroad in the
fields of: functional equations, nomograms transformation, algebraic and geometric
structures, about the foundations of algebraic geometry, isometries in metric spaces,
convex sets, geometries over rings (Barbilian type structures) etc. In 1981 he published
the monograph in Hungarian: ”A geometria mai szemmel” (Geometry seen today -
with Béla Orbán).

Professor Ferenc Radó passed away in Kolozsvár, on November 27, 1990. His
name was given to the Ferenc Rado Mathematical Association (established in 1993),
which publish the mathematical journal for undergraduate students MatLap. Each
year, in Cluj is organized the Ferenc Rado Memorial Mathematical Contest for High
School students.

Professor Mór Réthy (1846–1925)

Mór Réthy was born in Nagykőrös, Hungary on November 9, 1846.

University studies: After following the primary and secondary school in his na-
tive town Nagykőrös, Mór Réthy attended the Technical Universities of Vienna and
Budapest. He graduated with a degree in mathematics and descriptive geometry from
the Technical University of Budapest in 1870.

Thanks to a state bursary suggested by Baron Loránd Eötvös, he had the oppor-
tunity to continue his studies at the famous universities of Göttingen and Heidelberg.
In Heidelberg Kirchhoff, Königsberger and Schering assured him lifelong mental mu-
nition. He obtained his doctoral degree from Heidelberg University in 1874.

Didactical activity : Following his graduation, Réthy worked for two years as a
teacher of mathematics and descriptive geometry at the Modern Technical School
of Körmöcbánya (now Kremnica, Slovakia). Returning home after the award of his
doctorate, he was appointed extraordinary professor at the University of Kolozsvár
(1874). His seminars in mathematics – on elliptic functions, complex functions and
determinants – gave a new colour to contemporary mathematical life. In 1876 he
was promoted professor in the Mathematical and Theoretical Physics Department
at Kolozsvár. He was also promoted as a Dean of the Faculty of Mathematics and
Natural Sciences, serving in this role on two separate occasions. From 1884 to 1886 he
was the Head of the Department of Elementary Mathematics. In 1886 Mór Réthy was
invited to the Technical University of Budapest, where he first lectured on geometry.
Then his interest turned to theoretical problems of physics and mechanics. From 1892
he was professor of the Analytical Mechanics and Theoretical Physics Department.

Research activity: His first paper on the diffraction of light was presented at
Göttingen in 1872. During his stay at Kolozsvár problems concerning of navigation,
including the question of constructing the most efficient propeller, were the focus of
interest. Mór Réthy took part in very fruitful debates between outstanding mathe-
maticians of his age and soon enriched the literature with two papers on the topic. His
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whole life was interwoven with analysing, communicating and developing the work of
the two Bolyais.

In 1878 Professor Mór Réthy was elected a corresponding member of the Hun-
garian Academy of Sciences and in 1900 became a full-member of the Academy. On
24 July 1924, he was awarded with a Jubilee doctorate from Heidelberg University.

Professor Mór Réthy passed away in Budapest, on October 16, 1925.

Professor Frigyes Riesz (1880–1956)

Frigyes Riesz was born in Győr, Hungary on January 22, 1880.

University studies: Frigyes Riesz studied at several universities: Technical Uni-
versity in Zurich (1897–99), Technical University in Budapest (1899–1901) and Uni-
versity of Göttingen (1901–1902). He obtained his doctorate from the Eötvös Loránd
University in Budapest, in 1902. His doctoral dissertation was on geometry, supervised
by Gyula Vályi.

Didactical activity : He spent a few years teaching in high schools in Lőcse (now
Levoča, Slovakia) and Budapest before being appointed to a university post. Riesz
was appointed to a chair in Kolozsvár in 1911. Starting with 1920 he continud to work
at the Franz Joseph University moved to Szeged, Hungary.

In Szeged in 1922 Riesz set up the Bolyai Mathematical Institute in a joint
venture with Haar and founded the journal of the Institute: Acta Scientiarum Math-
ematicarum.

In 1945 Riesz was appointed to the chair of mathematics in the University of
Budapest.

Research activity: Riesz was a founder of functional analysis and his work has
many important applications in physics.

By using Fréchet’s ideas of distance, in his dissertation Riesz constructed a link
between Lebesgue’s work on real functions and the integral equations developed by
Hilbert and his student Schmidt.

Many of Riesz’s fundamental findings in functional analysis were incorporated
with those of Banach. His theorem, now called the Riesz-Fischer theorem, which
he proved in 1907, is fundamental in the Fourier analysis of Hilbert space. It was
the mathematical basis for proving that matrix mechanics and wave mechanics were
equivalent. This is of fundamental importance in early quantum theory.

Riesz made many contributions to other areas including ergodic theory where
he gave an elementary proof of the mean ergodic theorem in 1938. He also studied
orthonormal series and topology.

Frigyes Riesz received many honours for his work. He was elected to the Hun-
garian Academy of Sciences (corresponding member in 1916, full member in 1936)
and, in 1949, he was awarded its Kossuth Prize. He was elected to the Paris Academy
of Sciences and to the Royal Physiographic Society of Lund in Sweden. He received
honorary doctorates from the universities of Szeged, Budapest and Paris.

Professor Frigyes Riesz passed away in Budapest, on February 28, 1956.
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Professor Ludwig Schlesinger (1864–1933)

Ludwig (Lajos) Schlesinger was born in Nagyszombat, Hungary (now Trnava,
Tyrnau, Slovakia) on November 1, 1864.

University studies: Ludwig Schlesinger started elementary school in Trnava and
followed the high school in Presburg, now Bratislava (Slovakia). He then studied
mathematics and physics at the universities of Heidelberg and Berlin, and he received
a doctorate from the University of Berlin in 1887 for a thesis on differential equations,
advised by Lazarus Immanuel Fuchs and Leopold Kronecker.

Didactical activity : In 1889 Schlesinger became an associate professor at the
University of Berlin; in 1897 he was an invited professor at the University of Bonn,
and in the same year he was appointed professor of mathematics at the University of
Kolozsvár, Hungary (now Cluj, Romania). Here he served as head of the department
of higher mathematics and, in 1906–07, he was the dean of the Faculty of Mathemat-
ics and Sciences. At the Franz Joseph University he was one of the most dedicated
organisers of the centenary festivities dedicated to the hundredth anniversary of János
Bolyai (1902). He identified the house in which János Bolyai was born and he held an
excellent conference on the centenary festivity. During his stay in Kolozsvár (Cluj),
Schlesinger contributed significantly – together with Gyula Farkas and Gyula Vályi
– to the advancement of mathematics in the city. They also had a decisive role in the
establishment of an excellent mathematics library within the university. He wrote in
Kolozsvár 16 undergraduate courses in Hungarian, in several areas of mathematics.
In 1911 he left Kolozsvár and moved to the University of Giessen, Germany, where
he continued to teach until he retired in 1930.

Research activity: Like his professor Fuchs, he worked primarily on linear or-
dinary differential equations. His two-volume Handbuch der Theorie der Linearen
Differentialgleichungen was published from 1895 to 1898 in Teubner in Leipzig (Vol.2
in two parts). He also published Einführung in die Theorie der gewöhnlichen Differen-
tialgleichungen auf funktionentheoretischer Grundlage (Auflage, 1922), Vorlesungen
über lineare Differentialgleichungen (1908) and Automorphe Funktionen (Gruyter,
1924). In 1909 he wrote a long report for the annual report of the German Mathemat-
ical Society on the history of linear differential equations since 1865. He also studied
differential geometry, and wrote a book of lectures on Einstein’s general relativity
theory.

Today, his best known work is Über eine Klasse von Differentialsystemen be-
liebiger Ordnung mit festen kritischen Punkten (Crelle’s Journal, 1912). There he
considered the problem of isomonodromy deformations for a certain matrix Fuchsian
equation; this is a special case of Hilbert’s 21st Problem (existence of differential
equations with prescribed monodromy). The paper introduced what are today called
Schlesinger transformations and Schlesinger equations.

Schlesinger was also a historian of mathematics. He wrote an article on the
function theory of Carl Friedrich Gauss and translated René Descartes’ La Géomtrie
into German (1894). From 1904 to 1909 with R. Fuchs he collected the works of his
professor Lazarus Fuchs, who was also his father-in-law.

From 1929 until his death he was co-editor of Crelle’s Journal.
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In 1902 Schlesinger was elected as a corresponding member of the Hungarian
Academy of Sciences, and in 1909 he was honoured with the award of the Lobachevsky
Prize.

Professor Ludwig Schlesinger passed away in Giessen, Germany on December
16, 1933.

Professor Gyula Szőkefalvi-Nagy (1887–1953)

Gyula Szőkefalvi-Nagy was born in Erzsébetváros, Hungary (now Dumbrăveni,
Sibiu country, Romania) on April 11, 1887.

University studies: Gyula Szőkefalvi-Nagy studied mathematics and physics at
the University of Cluj, where he received a doctorate in 1909, for a thesis on arithmetic
properties of algebraic curves, advised by Gyula Schlesinger. In 1911–12, he made
postgraduate studies, supported by a state stipendium in Gottingen, where he had
contacts with the best mathematicians of the moment, like David Hilbert.

Didactical activity : Following his graduation, Gyula Szőkefalvi-Nagy worked
for two years in high schools at Privigye (now Prividza, Slovakia) and Cśıkszereda
(Miercurea-Ciuc, Romania). Returning home after his studies in Germany, he was
appointed extraordinary professor at the University of Kolozsvár (1915) and in the
same year, director at the Catholic School Marianum in Cluj. He left Kolozsvár in
1929, and continued to work at the Ferenc József University moved to Szeged (Hun-
gary). During the second world war he was appointed to the chair of geometry of the
University of Kolozsvár (1940–1945). Starting with 1945 he was leading the chair of
geometry in Szeged, until his death in 1953.

Research activity: The main results of Gyula Szőkefalvi-Nagy are in the geo-
metrical applications of algebra and number theory. His results were published in the
most prestigious journals, like Bulletin of the American Mathematical Society, Archiv
der Mathematic und Physik, Mathematische Annalen, Acta Scientiarum Mathemati-
carum, ...

Professor Gyula Szőkefalvi-Nagy was elected to the Hungarian Academy of Sci-
ences (corresponding member in 1934, full member in 1946). He passed away in Szeged,
Hungary on October 14, 1953.

Professor Gyula Vályi (1855–1913)

Gyula Vályi was born in Marosvásárhely, Hungary (now Târgu-Mureş, Mureş
country, Romania) on January 25, 1855.

University studies: After graduating the high school in his hometown in 1873,
he went to Kolozsvár, the capital of Transylvania, where he attended the recently
established university. After qualifying as a teacher of mathematics and physics in
1877, Vályi was awarded a scholarship to allow him to study for two years at the
University of Berlin, where he attended lectures of Kummer, Borchardt, Weierstrass
and Kronecker. A few months after his return to Cluj, in 1880 Valy receive his Ph.D.,
with a thesis titled: On the theory of partial differential equations of the second order.

Didactical activity : Gyula Vályi become a dozent at the University of Kolozsvár
in 1881, is appointed professor of theoretical physics in 1884, and in the following
year he also became professor of mathematics, lecturing on analysis, geometry and
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number theory. He was lecturing also on non euclidean geometry following the Ap-
pendix of János Bolyai. Vályi remained in Kolozsvár all his life despite being offered
a professorship in Budapest. He retired in 1911 because of his deteriorating eyesight.

Research activity: His research were focused on partial differential equations,
analytic and projective geometry, elementary mathematics and number theory. His
doctoral dissertation on the theory of the propeller, which led to his developing on
the theory of partial differential equations of the second order, published originally
in Hungarian, was republished in 1906 and published also in German in 1909. He
published in Matematikai és Természettudományi Érteśıtő, in Crelle’s Journal, and
other domestic and foreign journals. He also contributed essentially to the research of
the Bolyai-legacy.

Professor Gyula Vályi was elected a corresponding member of the Hungarian
Academy of Sciences in 1891.

Professor Gyula Vályi passed away in Kolozsvár, Hungary (now Cluj-Napoca,
Romania) on October 13, 1913.
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[9] Kása, Z., Negyven éve hunyt el Gergely Jenö matematikus (Forty years after death of
the mathematician Eugen Gergely), Historia Scientiarium, 12(2014), 14-24.
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Szatmárnémeti, 2011.



Remarkable Hungarian mathematicians at the Cluj University 433
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Reconstructibility of trees from subtree size
frequencies

Dénes Bartha and Péter Burcsi

Abstract. Let T be a tree on n vertices. The subtree frequency vector (STF-
vector) of T , denoted by stf(T ) is a vector of length n whose kth coordinate is the
number of subtrees of T that have exactly k vertices. We present algorithms for
calculating the subtree frequencies. We give a combinatorial interpretation for the
first few and last few entries of the STF-vector. The main question we investigate
– originally motivated by the problem of determining molecule structure from
mass spectrometry data – is whether T can be reconstructed from stf(T ). We
show that there exist examples of non-isomorphic pairs of unlabeled free (i.e.
unrooted) trees that are STF-equivalent, i.e. have identical subtree frequency
vectors. Using exhaustive computer search, we determine all such pairs for small
sizes. We show that there are infinitely many non-isomorphic STF-equivalent
pairs of trees by constructing infinite families of examples. We also show that
for special kinds of trees (e.g. paths, stars and trees containing a single vertex of
degree larger than 2), the tree is reconstructible from the subtree frequencies. We
consider a version of the problem for rooted trees, where only subtrees containing
the root are counted. Finally, we formulate some conjectures and open problems
and outline further research directions.

Mathematics Subject Classification (2010): 05C05.

Keywords: Tree reconstruction, subtree size frequencies.

1. Introduction

Reconstruction of combinatorial structures from partial information is a widely
discussed topic in the literature, full of intriguing and notoriously hard problems. Our
present paper falls in the domain of reconstructibility investigations. Similar problems
include reconstructibility of strings from factors or subsequences [2, 4], reconstructibil-
ity of graphs from vertex- or edge-deleted subtrees [6, 7], reconstructibility of matrices
[3, 5], reconstruction of strings from Parikh vectors [1] and others.

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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The problem we investigate is the possibility of reconstruction of an unlabeled
free (i.e. unrooted) tree with n vertices, given the number of subtrees of size 1, 2, . . . , n,
which we call the STF-vector of the tree. The motivation of the questions comes from
the interpretation of mass spectrometry data.

The paper is structured as follows: in Section 2, we give the definition of the
subtree frequency vector, and discuss some of its properties. In Section 3, we introduce
methods for calculating the STF-vectors. Our two main tools are a version of the
STF-vector for rooted trees and a polynomial representation of the STF-vector. In
Section 4, we show that in some cases, the STF-vector uniquely determines the tree
(up to isomorphism). In Section 5, we present examples where the STF information is
insufficient for reconstructing the tree. In the Conclusion we present open questions
and propose new research directions.

All symbols – if not stated otherwise – represent nonnegative integers, x is used
for the variable of univariate polynomials and n usually denotes the number of vertices
in a tree.

2. Basic definitions and properties

Definition 2.1. Let T be a tree on n vertices. The subtree frequency vector (STF-
vector) of T , denoted by stf(T ) is a vector of length n whose entry at position k is the
number of subtrees of T that have exactly k vertices.

Remark 2.2. Note that stf is clearly invariant for isomorphism. Thus in the recon-
struction problem mentioned later, we are only interested in reconstructing the (unla-
beled) tree up to isomorphism. Note however, that in the calculation of the STF-vector,
all subtrees are considered, and isomorphic subtrees are counted with multiplicity.

For example, if P5 denotes a path of length 5 and S4 a star with 4 leaves, then
we have stf(P5) = [6, 5, 4, 3, 2, 1] and stf(S4) = [5, 4, 6, 4, 1].

Proposition 2.3. Let T be a tree on n vertices with stf(T ) = [a1, a2, . . . , an]. Then the
following holds:

i) a1 = n,
ii) a2 = n− 1,

iii) a3 =
∑

v∈V
(
d(v)
2

)
, where V is the set of vertices and d(v) denotes the degree of

v.
iv) an−1 equals the number of leaves,
v) an = 1.

Proof. For iii) note that a tree with 3 vertices is a path, so we can calculate such
subtrees by counting how many of them are centered at each vertex of T , giving the
formula. For iv) note that omitting a vertex v from T is connected if and only if v is
a leaf. The other statements are trivial. �

We also introduce the rooted version of the STF-vector, partly because it is
interesting on its own, but it also helps in calculating the unrooted STF-vector.
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Definition 2.4. Let T be a tree on n vertices and v a vertex of T . The rooted subtree
frequency vector (RSTF-vector) of T with root v, denoted by rstf(T, v) is a vector of
length n whose entry at position k is the number of subtrees of T that contain v and
have exactly k vertices.

For example if T is a path on 5 vertices, and v is its center, then rstf(T, v) =
[1, 2, 3, 2, 1]. If v′ is a leaf in T , then rstf(T, v′) = [1, 1, 1, 1, 1].

Proposition 2.5. Let T be a rooted tree on n vertices, v the root of T , and for all
vertices v′ denote by Tv′ the subtree rooted at v′. Then stf(T ) =

∑
v′ rstf(Tv′ , v′).

Proof. Simply observe that each subtree has a unique node v′ highest up in the tree,
and is thus counted exactly once on the right side. �

3. Methods for calculating subtree frequencies

One possible solution to calculate the STF-vector of an unlabeled free (i.e. un-
rooted) tree with n vertices is to generate all the subtrees of the given tree and count
their sizes in a vector. Since there can be exponentially many subtrees, this is not
always applicable.

Another possibility is to use Proposition 2.5 and apply recursion. The problem
then reduces to calculating RSTF-vectors for arbitrary Tv′ and v′. RSTF vectors can
also be calculated using recursion. We could give a combinatorial description of the
process, but it would be essentially equivalent to the polynomial method given below.
We introduce polynomials for representing STF-vectors. It turns out that they are
useful in both calculation of STF-vectors and in proving results about reconstructibil-
ity.

Definition 3.1. Let T be a tree, v a vertex of T . Let stf(T ) = [a1, a2, . . . , an] and
rstf(T, v) = [b1, b2, . . . , bn]. The STF-polynomial of T , denoted by s(T ) is defined by
s(T ) = a1+a2x+a3x

2+· · ·+anx
n−1. The RSTF-polynomial of T with root v, denoted

by r(T, v) is defined by r(T, v) = b1 + b2x + b3x
2 + · · ·+ bnx

n−1.

Remark 3.2. Note that the degree k coefficient of the polynomial corresponds to the
number of subtrees with k edges rather than k vertices and is a degree n−1 polynomial.
This will yield simpler formulas later.

We prove a few results which together allow a recursive calculation of s and r.

Lemma 3.3. Let T1, T2 be rooted trees with roots v1 and v2 respectively. Let T be the
rooted tree obtained by joining the two trees by identifying v1 and v2 as a new vertex
v. Then r(T, v) = r(T1, v1)r(T2, v2).

Proof. A subtree of T containing v and exactly k edges is obtained by joining a a
subtree of T1 containing v1 and i edges with a subtree of T2 containing v2 and j edges,
where i+j = k. The number of such pairs is

∑
i+j=k rstf(T1, v1)[i+1]·rstf(T2, v2)[j+1],

which is exactly the kth coefficient in the polynomial product. (We denote by v[i] the
ith component of vector v). �



438 Dénes Bartha and Péter Burcsi

Example 3.4. Let T1 and T2 be paths of length 2 with v1 and v2 leaves of T1 and
T2 respectively. Then T is a path of length 4 rooted at its center v. The polynomials
r(T1, v1) = r(T2, v2) = 1 + x + x2, while r(T, v) = 1 + 2x + 3x2 + 2x3 + x4 =
r(T1, v1)r(T2, v2).

Lemma 3.5. Let T1, T2 be rooted trees with roots v1 and v2 respectively. Let T be the
rooted tree obtained by joining the two trees by identifying v1 and v2 as a new vertex
v. Then s(T ) = r(T1, v1)r(T2, v2) + s(T1)− r(T1, v1) + s(T2)− r(T2, v2).

Proof. Observe that a subtree not containing v is either a subtree of T1 not containing
v1, or a subtree of T2 not containing v2. The number of such subtrees is counted by
the polynomials s(T1) − r(T1, v1) and s(T2) − r(T2, v2), respectively. This gives the
desired result. �

This latter statement allows one to calculate r and s of a rooted tree recursively
if the root is not a leaf. Take the subtrees that are obtained by taking the root and
all nodes below one child of the root, and join them at the root. Since these subtrees
are smaller than the original tree, the calculation can proceed recursively using the
following proposition. Note that the base cases of the recursion are trees with 1 or 2
vertices for which the calculation is trivial.

Lemma 3.6. Let T be a tree and v a leaf of T . Denote by v′ the only neighbor of
v and by T ′ the subtree obtained by removing v. Then r(T, v) = 1 + xr(T ′, v′) and
s(T ) = s(T ′) + r(T ).

Proof. Apart from the single-node subtree consisting of v itself, all subtrees containing
v also contain v′, and such subtrees of T of size k are in bijection with subtrees of T ′

containing v′ and of size k− 1. This proves the first statement. The second statement
is trivial. �

4. Reconstructibility results

We present a few results which show that in some cases, stf(T ) uniquely deter-
mines T . The first two are trivial observations, the third one requires deeper analysis.

Proposition 4.1. If stf(T ) = [n, n−1, . . . , 1] for some n, then T is a path on n vertices.

Proof. From the vector we deduce that the tree has n vertices and that it contains(
n
2

)
subtrees. Every tree on n vertices contains at least

(
n
2

)
subtrees, namely the paths

between pairs of vertices. The only tree that does not contain any further subtrees is
a path. �

Proposition 4.2. Let Sk be a star with k ≥ 2 leaves. If stf(T ) = stf(Sk), then T is
isomorphic to Sk.

Proof. By Proposition 2.3, the number of vertices is k + 1 and the number of leaves
is k, which implies the claim. �
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Definition 4.3. Let a1, a2, . . . , ak ≥ 1 and let SL(a1, a2, . . . , ak) denote the star-like
graph obtained by joining paths of length a1, a2, . . . , ak at their endpoints. See Figure
5 for an illustration.

Theorem 4.4. Let k, l ≥ 3, and 1 ≤ a1 ≤ a2 ≤ . . . ≤ ak, 1 ≤ b1 ≤ b2 ≤ . . . ≤ bl.
If stf(SL(a1, a2, . . . , ak)) = stf(SL(b1, b2, . . . , bl)), then k = l and ai = bi for i =
1, 2, . . . , k.

Proof. Let T1 = SL(a1, . . . , ak) and T2 = SL(b1, . . . , bk). By Proposition 2.3, the
number of leaves is the same in the two graphs, which implies k = l. By Lemma 3.5
we obtain for the polynomials (which by the conditions are equal):

s(T1) =

k∏
i=1

(1 + x + x2 + · · ·+ xai) +

k∑
i=1

(
ai + (ai − 1)x + · · ·+ xai−1

)
s(T2) =

k∏
i=1

(1 + x + x2 + · · ·+ xbi) +

k∑
i=1

(
bi + (bi − 1)x + · · ·+ xbi−1

)
Assume by contradiction that for some i, ai 6= bi holds and i is the smallest such
index. Denote by c the constant term in the polynomials and note that c = a1 + a2 +
· · ·+ak+1 = b1+b2+ · · ·+bk+1, thus i < k. Wlog., we may assume ai < bi. Compare
the coefficients of degree c−ai−2 in the expansion of the two polynomials. Note that
c− 1 is the degree of the polynomials. The sums ai + (ai − 1)x + · · ·+ xai−1 do not
contribute to this term (because k ≥ 3 and i < k), so we only have to compare the
expansion of the products. The expansion of the product gives a reciprocal polynomial,
thus it is enough to show that the degree ai + 1 term differs in the products. This
coefficient can be calculated if we consider the products modulo xai+2. Then the first
i − 1 factors coming from s(T1) and s(T2) are identical, but in the ith factor, s(T2)
has the additional term xai+1, which contributes to the product. For the remaining
factors, s(T2) has always at least as many terms as s(T1). �

A similar statement holds for rooted STF-vectors which, however, is easier to
prove.

Proposition 4.5. Let k, l ≥ 3, and 1 ≤ a1 ≤ a2 ≤ . . . ≤ ak, 1 ≤ b1 ≤ b2 ≤ . . . ≤ bl.
Let T1 = SL(a1, a2, . . . , ak) and T2 = SL(b1, b2, . . . , bl), with the vertices of degree
larger than 2: v1 and v2 as roots. If r(T1, v1) = r(T2, v2), then k = l and ai = bi for
i = 1, 2, . . . , k.

Proof. We have

f = r(T1, v1) =

k∏
i=1

(1 + x + x2 + · · ·+ xai)

g = r(T2, v2) =

l∏
i=1

(1 + x + x2 + · · ·+ xbi)

Assume by contradiction that ak 6= bl, say ak > bl. If we look at the polynomials as
complex polynomials, then a primitive (ak)th root of unity is a root of f but not a
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root of g. So ak = bl, and a primitive (ak)th root of unity is a root of both f and
g. We deduce that the factor (1 + x + · · · + xak) is present in both products. After
simplifying, we proceed by induction on max(k, l) and the claim follows. �

5. STF-equivalent trees

Definition 5.1. We say that trees T1 and T2 are STF-equivalent if stf(T1) = stf(T2).

In this section we consider non-isomorphic STF-equivalent trees. We performed
computer experiments in order to determine STF-equivalent pairs of trees for n ≤ 21
(n is the number of vertices). We found that for n ≤ 9 no such pairs exist and for
10 ≤ n ≤ 21, there always exist non-isomorphic STF-equivalent trees. This means
that in general, unique reconstruction from STF-vectors is impossible. We show the
computational results in Table 1.

n #trees #classes largest class #dog’s bone
0 1 0 0 0
...

...
...

...
...

9 47 0 0 0
10 106 1 2 1
11 235 4 2 0
12 551 5 2 1
13 1301 12 2 1
14 3159 32 2 0
15 7741 62 2 0
16 19320 139 3 3
17 48629 298 3 0
18 123867 649 3 0
19 317955 1441 4 2
20 823065 3330 3 2
21 2144505 7932 4 0
22 5623756 ? ? 3
24 39299897 ? ? 2
25 104636890 ? ? 3
28 2023443032 ? ? 7
31 40330829030 ? ? 4

Table 1. The number of STF-equivalence classes containing at least two trees and
the maximal size of a class for n ≤ 21. The last column shows the number of classes

that contain a special kind of graph which we call dog’s bone graphs – all such
examples are shown for n ≤ 31.

Based on computational investigation, we tried to construct general examples
of non-isomorphis STF-equivalent pairs. We present two infinite families of non-
isomorphic STF-equivalent pairs, showing that for sizes n = 3k + 1, there always
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exist such pairs. We introduce a notation for a special kind of graph, which – based
on its shape – we call dog’s bone graphs.

Definition 5.2. Let a, b, c, d, e ≥ 1. The dog’s bone tree DB(a, b, c, d, e) is a tree that
contains two vertices v, v′ of degree 3 connected by a path of length c, and two paths
of length a and b starting at v, and two other paths of length d and e starting at v′.
See Figure 5 for an illustration.

Figure 1. On the left: the star-like graph SL(a1, a2, . . . , ak).
On the right: the dog’s bone DB(a, b, c, d, e).

Theorem 5.3. Let k ≥ 1. The trees T1 = DB(k, 2k + 1, 1, k, 2k + 1) and T2 =
DB(k, k, 1, 2k, 2k + 2) are STF-equivalent.

Proof. Using Lemma 3.5, and applying summation for geometric series, after some
calculation we have the following polynomials f = s(T1), g = s(T2).

f =
x
(
xk+1 − 1

)2 (
x2 k+2 − 1

)2
(x− 1)

4 + 2

(
x
(
x3 k+2 − 1

)
x− 1

− 3 k − 2

)
(x− 1)

−1

g =
x
(
xk+1 − 1

)2 (
x2 k+1 − 1

) (
x2 k+3 − 1

)
(x− 1)

4

+

(
x
(
x2 k+1 − 1

)
x− 1

+
x
(
x4 k+3 − 1

)
x− 1

− 6 k − 4

)
(x− 1)

−1

Their equality would be tedious to check by hand, but can readily be verified on a
computer algebra system: if we replace all occurrences of xk by a new variable y, then
the difference of the resulting bivariate polynomials simplifies to 0. �

The following theorem can be proved similarly.

Theorem 5.4. Let k ≥ 1. The trees T1 = DB(k, 2k + 2, 1, k + 1, 2k + 2) and T2 =
DB(k, k + 1, 1, 2k + 1, 2k + 3) are STF-equivalent.

Corollary 5.5. There exist non-isomorphic pairs of STF-equivalent trees for 6k + 1
and 6k + 4 vertices, for any k ≥ 1.
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6. Summary and further work

In this paper we introduced the concept of STF-vectors and investigated the
problem of reconstructibility of trees from subtree frequencies. We pose some open
questions.

• Find more families of non-isomorphic STF-equivalent pairs and prove that such
pairs exist for all n ≥ 10.

• Find more types of graphs which are reconstructible from their STF-vectors.
• Are STF-equivalence class sizes unbounded as n grows?
• Calculate the STF-vector of a tree together with all RSTF-vectors. Are these
n + 1 vectors already sufficient for reconstruction up to isomorphism?

• Investigate the relationship of STF-vectors with other graph invariants, e.g. spec-
trum.

Besides these, our ongoing research will mainly focus on the labeled version of
the problem, where each vertex or edge of the tree has a label from a finite set of
colors.

Acknowledgement. The research of the second author was partially supported by a
special contract No. 18370-9/2013/TUDPOL with the Ministry of Human Recources.
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Reconstructing graphs from a deck of all distinct
cards

Miklós Bartha and Amitesh S. Shuva

Abstract. The graph reconstruction conjecture is looked at from a new perspec-
tive. Given a graph G, three equivalence relations are considered on V (G): card
equivalence, automorphism equivalence, and the equivalence of having the same
behavior. A structural characterization of card equivalence in terms of automor-
phism equivalence is worked out. Relative degree-sequences of subgraphs of G

are introduced, and a new conjecture aiming at the reconstruction of G from
the multiset of relative degree-sequences of its induced subgraphs is formulated.
Finally, it is shown that graphs having a deck free from duplicate cards are re-
constructible.

Mathematics Subject Classification (2010): 05C60, 18D10.
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relative degree sequences, traced monoidal categories.

1. Introduction

For a graph G and vertex v ∈ V (G), G − v is the graph obtained from G by
deleting the vertex v and its incident edges. We call G− v a vertex-deleted subgraph
of G, or the card associated with vertex v in G. We do not distinguish between
isomorphic cards, though. The multiset of cards collected from G in this way is called
the deck of G, denoted D(G).

Perhaps the most well-known unsolved problem of graph theory asks whether
an arbitrary graph G having at least three vertices can be reconstructed in a unique
way (up to isomorphism) from its deck. The likely positive answer to this question
is commonly known as the Reconstruction Conjecture (R.C., for short), and it was
formulated by Kelly and Ulam as early as 1942. Ever since its inception, this prob-
lem has remained a mystery. Trying to solve it is similar to conducting a criminal
investigation. There is a suspect, the graph G, who leaves plenty of evidence (i.e.,
the deck D(G)) on the crime scene. Yet, no brilliant detective has been able to track

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science
(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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down the suspect for over 70 years, and the number of works on the case is rapidly
decreasing year by year. The reconstruction problem was, however, very popular in
the past. According to [15], more than 300 research papers had been published on
graph reconstruction between 1950 and 2004.

One of the last true champions of graph reconstruction was F. Harary. He sug-
gested a natural analogue [7] of the R.C., which says that every graph having at least
four vertices is uniquely reconstructible from the deck of its edge-deleted subgraphs.
Others have come up with similar conjectures for directed graphs, cf. [14, 16], and
have obtained partial results proving or disproving them. The reader is referred to [8]
and [13] for two excellent surveys on graph reconstruction.

In this paper we propose an original new approach to the study of the recon-
struction problem. This approach is structural, rather than combinatorial. It is deeply
rooted in algebra and category theory, despite the fact that the proofs of our present
results are completely elementary. The results themselves, however, have been dis-
tilled from an entirely independent study focusing on the completeness of the traced
monoidal category axioms [1, 10] in different well-known mathematical structures
satisfying these axioms. We shall elaborate on this study to some extent in Section 4.

2. Definitions, and some easily recoverable data

Let G be a graph having at least three vertices, fixed for the rest of the paper.
As usual, V (G) and E(G) will denote the set of vertices and edges of G, respectively.
We assume that G is simple in the sense that it does not contain loops or multiple
edges. In general, we rely on the terminology of [12] to deal with graphs.

Two vertices u, v ∈ V (G) are called hypomorphic or card-equivalent (c-
equivalent, for short) if the card associated with u is identical with the one associated
with v, i.e., G−u ∼= G−v. (Remember that we do not distinguish between isomorphic
cards.) Clearly, c-equivalence is an equivalence relation on V (G). Two graphs G and
H are hypomorphic if D(G) and D(H) are identical as multisets, that is, each card
appears in D(G) and D(H) the same number of times. (Recall that D(G) denotes
the deck of G.) If G and H are hypomorphic, then a hypomorphism of G onto H is a
bijection φ : V (G) → V (H) such that G − v ∼= H − φ(v) holds for every v ∈ V (G).
A reconstruction of G is a graph G′ such that G and G′ are hypomorphic, or, equiv-
alently, there exists a hypomorphism of G onto G′. Using this terminology, the R.C.
simply says that two graphs G and H are hypomorphic iff they are isomorphic. In
other words, all reconstructions of G are isomorphic (to G, of course). Clearly, every
isomorphism of G onto H is a hypomorphism, but the converse is not true, even if
the R.C. holds.

Graph G is called card-minimal if D(G) is a set, that is, each card is unique in
D(G). Our aim in this paper is to show that the R.C. holds true for all card-minimal
graphs. (Note that any graph on two vertices has two identical cards.) One might
think that this result is trivial, since there is a unique hypomorphism between any
two hypomorphic card-minimal graphs G and H . While this is certainly true, we have
no direct information on E(G) and E(H), therefore the given unique hypomorphism
may not be an isomorphism. Reconstructing G from D(G) is still a very complex issue
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for such graphs. As we shall see, any duplication of cards in D(G) indicates a kind
of symmetry in the internal structure of G. Consequently, the class of card-minimal
graphs is really large. Our result is therefore in accordance with the observation in
[6] saying that the probability that a randomly chosen graph on n vertices is not
reconstructible goes to 0 as n goes to infinity.

In general, it is trivial that |V (G)|, the number of vertices of G, is recoverable
from D(G). It is still easy to see that |E(G)| is also recoverable. Indeed, add up the
numbers of edges appearing on the cards of D(G), and observe that this sum is equal
to

(|V (G)| − 2) · |E(G)|.

See [13, Theorem 2.1] for the details of this simple combinatorial argument.
Once |E(G)| is given, calculating the degree d(v) of vertex v for card G − v is

straightforward:

d(v) = |E(G)| − |E(G− v)|.

Clearly, the degree of any vertex c-equivalent with v is the same as that of v. We
thus have managed to recover the degree-sequence of G from D(G). Recall that the
degree-sequence of G is the sequence of degrees of G’s vertices in a non-decreasing
order.

A similar combinatorial argument leads to the following result, known as Kelly’s
Lemma [11], see also [13, Theorem 2.4].

Proposition 2.1. For any graph Q, let sQ(G) denote the number of subgraphs of G
isomorphic to Q. Then sQ(G) = sQ(H) whenever G and H are hypomorphic and
|V (Q)| < |V (G)|.

Nash-Williams [13] has also shown that the so-called degree-sequence sequence
of G is recoverable from D(G). Essentially this means that, not only d(v) can be read
from the card G−v as above, but also the degrees of the neighbors of v are recoverable
in this way. We shall reformulate Nash-Williams’ proof in Section 4 in terms of relative
degree-sequences. A natural question to ask at this point is whether the degrees of the
neighbors of the neighbors of v are also recoverable, and so on, moving away further
and further from vertex v. This question is already a lot more difficult to answer,
mainly because the desired degrees or degree-sequences are no longer c-equivalence
invariant. In other words, the answer depends on the representant vertex v chosen for
card G− v.

3. Characterizing card equivalence

The simple results discussed in Section 2 are of a strictly combinatorial nature,
and they do not even touch on the structural properties of card equivalence. In this
section we present a real structural characterization of c-equivalence, which is our
first main result. In this characterization, card equivalence is compared to two other
important equivalence relations on V (G), namely automorphism equivalence and the
equivalence of having the same behavior. Card equivalence will be denoted by ∼c.
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Definition 3.1. Two vertices u, v ∈ V (G) are automorphism-equivalent (a-equivalent,
for short) if there exists an automorphism of G taking u to v.

Automorphism equivalence will be denoted by ∼a. It is obvious that ∼a is an
equivalence relation, but its relationship to ∼c is not clear for the first sight.

Example 3.2. Let G be the graph in Fig. 1a, and consider the vertices u1, u2, u3 in G.
It is easy to see that ui ∼c uj and ui ∼a uj both hold for any 1 ≤ i, j ≤ 3.

In general, it is clear by the definitions that ∼a⊆∼c. Example 3.3 below shows, how-
ever, that ∼c 6⊆∼a.

Example 3.3. Let G be the graph of Fig. 2, and consider again the vertices u1, u2, u3.
As it turns out, u1 ∼c u3, but u1 6∼a u3. Furthermore, G has no automorphisms other
than the identity.

u2
u3u1

e

a) b)

Figure 1. The graph of Example 3.2.

u2
u3u1

Figure 2. The graph of Example 3.3.

The reader familiar with flowchart schemes and their behaviors [1, 2, 4, 5] will no-
tice that the graphs in Figures 1a and 2 have been inspired by appropriate flowcharts.
To recover these flowcharts, make each edge bidirectional in the graphs and supply the
degrees with appropriate input-output port distinctions at each vertex. The resulting
flowcharts will have no entry or exit vertices, though. Also, no two lines (edges) will
be joined at any input or output port. The characteristic feature of such connected
“injective” flowcharts is that their proper automorphisms do not have fixed-points.
The automorphisms themselves can be neatly characterized by Ésik’s commutativity
axioms [5, 3] for iteration theories. Regarding the graph G in Fig. 1a this means that
G can be constructed by taking three copies of the minimal graph (scheme) M –
shown in Fig. 1b as a multigraph – and turn the edge e ∈ E(M) into a sequence of
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edges running through the three copies of M − e in an appropriate way, following a
cyclic permutation. This is of course a very simplistic interpretation of the otherwise
truly complex commutativity axioms, but it is right to the point. On the other hand,
graphs that are not scheme-like, e.g. the simple graph in Fig. 3, do have proper au-
tomorphisms with fixed-points, and the concept of minimal graph is meaningless for
them.

u v

v’

Figure 3. A non-scheme-like graph

Yet another important equivalence relation on V (G) closely related to ∼a and
∼c is that of having the same behavior. The reader is referred again to [1, 4, 5] for
the original definition of this concept in flowchart schemes.

Definition 3.4. The relation ∼ of having the same behavior is defined on V (G) as the
largest equivalence having the following two properties.

1. If u ∼ v, then d(u) = d(v).
2. If u ∼ v and {u1, . . . uk} ({v1 . . . vk}) is the set of vertices adjacent to u (re-

spectively, v), then the multiset of ∼-equivalence groups defined by the set of
representants {u1, . . . uk} is the same as the one determined by {v1 . . . vk}.

It is easy to see that two vertices u and v have the same behavior iff G unfolds to
isomorphic infinite rooted trees starting from u and v. For example, any two vertices
of a regular graph have the same behavior.

Clearly, ∼a⊆∼, but ∼6⊆∼a. Indeed, not every two vertices of a regular graph are
a-equivalent in general. On the other hand, ∼c is not comparable with ∼. The regular
graph counterexample shows that ∼6⊆∼c, and vertices u1, u3 in the graph of Fig. 2
demonstrate that ∼c 6⊆∼.

The practical importance of the equivalence ∼ is that it is computable in poly-
nomial time. The algorithm to isolate the equivalence groups of ∼ is completely anal-
ogous to Hopcroft’s [9] well-known algorithm for minimizing finite state automata.
Even though ∼a is a lot more costly to compute because of the isomorphism check
involved, it still helps to know that ∼a is a refinement of ∼.

The above comparison with the relations ∼ and ∼a shows that ∼c is rather
inconvenient to deal with in a direct way. We need to find a characterization of ∼c

that brings it in line with the much better structured equivalence ∼a. The basis of
this characterization is the following lemma.

Lemma 3.5. Let u and v be two distinct vertices of G. Then u ∼c v iff there exists a
sequence of vertices x0, x1, . . . , xn (n ≥ 1) in G satisfying the conditions (i) and (ii)
below.

(i) x0 = v and xn = u;
(ii) there exists an isomorphism φ of G − u onto G − v such that φ(xi) = xi+1 for

every 0 ≤ i < n.
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Proof. Notice first that the graphs G− u and G− v are not separated in the lemma,
they both use the vertices of the common supergraph G. The lemma therefore estab-
lishes a link between two c-equivalent vertices u and v in G through a sequence of
(necessarily distinct) vertices x1, . . . , xn−1 in G−u−v. These vertices, however, need
not be c-equivalent with u or each other in G. For example, in the graph of Fig. 2, if
v = u1 and u = u3, then n = 2, x1 = u2, and φ can be derived from the automorphism
of G−{u1, u2, u3} that determines a cyclic permutation of the four small cycles of G
from left to right. Clearly, u1 6∼c u2.

Sufficiency of condition (ii) alone for having u ∼c v is trivial. Assuming that
u ∼c v, choose an arbitrary isomorphism φ : G−u→ G−v. Let x1 = φ(v), x2 = φ(x1),
and so on, until u = xn = φ(xn−1) is reached. Vertex u must indeed be encountered
at some point along this line, since φ, being an isomorphism, is an injective mapping
V (G) \ {u} → V (G) \ {v}. Consequently, the vertices x1, . . . , xn−1 in V (G) \ {u, v}
will all be different until xn = u stops this necessarily finite sequence. (Mind that
xi+1 = φ(xi) 6= v, since v is not a vertex of G− v.) The proof is complete. �

Theorem 3.6. Let u and v be two distinct vertices of G. Then u ∼c v iff there exists
a sequence of pairwise distinct vertices x0, x1, . . . , xn (n ≥ 1) satisfying the following
conditions.

(i) x0 = v and xn = u;
(ii) for X = {x0, x1, . . . , xn} ⊆ V (G) there exists an automorphism ψ of G−X such

that:
(iia) for every 0 ≤ i < n and vertex wi ∈ V (G − X) adjacent to xi in G (or,

equivalently, in G − u), the vertex wi+1 = ψ(wi) is also in V (G −X) and
is adjacent to xi+1 in G (i.e., in G− v);

(iib) for every 0 ≤ i < j < n,

xi is adjacent to xj iff xi+1 is adjacent to xj+1

(in G, of course).

Vertices u and v are a-equivalent iff the assignments xi 7→ xi+1, u 7→ v extend the
automorphism ψ in (ii) to one of G.

Proof. Intuitively, condition (iia) says that for every 0 ≤ i < n, the neighbors of xi in
G−X are matched up with those of xi+1 in G−X by the automorphism ψ. Condition
(iib) settles the issue of how the vertices xi themselves are connected in G. Notice that
the question whether u is connected to v is irrelevant. Indeed, it can easily happen
that u ∼c v and u ∼c v

′ both hold, while u is adjacent to v but not to v′. See Fig. 3.

The first statement of the theorem is in fact a simple consequence of Lemma 3.5.
Regarding sufficiency, if ψ is an automorphism of G−X satisfying (iia) and (iib), then
it can be extended to an isomorphism φ ofG−u ontoG−v satisfying (ii) of Lemma 3.5.
Thus, u ∼c v. Conversely, if u ∼c v, then the required automorphism ψ can be derived
in a unique way from the isomorphism φ guaranteed by Lemma 3.5. Notice that the
subgraph G−X may turn out to be empty. The second statement of the theorem is
obvious. �
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At this point the reader may want to have a second look at Examples 3.2 and 3.3,
and identify the underlying automorphism ψ in the graphs of Fig. 1 and Fig. 2. One
important point is that, given the fact v ∼a u (and therefore u ∼c v), one must not
jump to the conclusion saying that x0 = v and x1 = u will do for X = {x0, x1} in
(ii) of Theorem 3.6, and then be taken by surprise that the desired automorphism
ψ cannot be located in G − X . For example, in the graph G of Fig. 1, if v = u1
and u = u2, then x1 = u3! Consequently, X = {u1, u2, u3}, and the automorphism
ψ is just the one taking the three small cycles into one another following a cyclic
permutation with offset 2 from left to right.

4. Relative degree-sequences

Recall from Section 2 that the degree-sequence of graph G is the sequence of
degrees of its vertices in a non-decreasing order. Let Q be a subgraph of G. The degree
of a vertex v ∈ V (Q) relative to G is a pair (r, d), where d (r) is the degree of v in G
(respectively, Q). We shall use the notation rd for the pair (r, d), and say that v has
relative degree r out of d. Then the relative degree-sequence of Q (with respect to G)
is the sequence of relative degrees of its vertices in an order that is non-decreasing
regarding the superscripts d and also non-decreasing in r among those degrees that
have the same superscript d.

The degree-sequence of G and the relative degree-sequence of Q with respect to
G will be denoted by ds(G) and rdsG(Q), respectively. In order to ensure that ds(G)
and rdsG(Q) have the same length, we shall include a relative “degree” ∅d in rdsG(Q)
for each vertex v ∈ V (G) \ V (Q) with degree d. The “number” ∅ is treated as 0, but
the notation ∅ will distinguish between a vertex that has been deleted and one that
is still present but isolated. This distinction is purely technical, however, because one
can easily fill in the ∅d relative degrees in rdsG(Q) once ds(G) is known.

Example 4.1. Consider the graph G and its subgraph Q in Fig. 4. The degree-
sequence of G is 2, 2, 3, 3, while the relative degree sequence of Q with respect to G is
12, 12, 13, 33.

.

.

.

.

. ..

.

G:
v2

1v

4v

3v

1v

v2

4v

3v
Q:

Figure 4. Graph G and its subgraph Q

The following simple combinatorial observation is equivalent to Nash-Williams’
result [13, Corollary 3.5] on degree-sequence sequences.

Proposition 4.2. For every vertex v ∈ V (G), rdsG(G− v) is recoverable from D(G).
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Proof. We have seen in Section 2 that d(v) and ds(G) are recoverable from D(G).
Write the sequence ds(G−v) underneath ds(G) by inserting the “degree” ∅ in ds(G−v)
right under the position of the first occurrence of d(v) in ds(G). For example:

ds(G) : 2 2 2 3 3 4 4
ds(G − v)) : 1 1 2 2 3 ∅ 3
rdsG(G− v) : 12 12 22 23 33 ∅4 34

Observe that the “true” degrees in ds(G− v) will lag behind those in ds(G), so that
the difference between two degrees in aligned positions is at most 1. Therefore it is
trivial to fill out the missing superscripts in ds(G− v), so that the resulting sequence
becomes rdsG(G− v). �

Proposition 4.2 basically says that, for every card G − v, the degrees of the
vertices adjacent to v in G are uniquely determined by ds(G) and ds(G− v). Indeed,
these are exactly the degrees r + 1 appearing in rdsG(G − v) as rr+1. Of course, we
still have no information about the actual position of v’s neighbors in G− v.

We immediately generalize Proposition 4.2 to find out the relative degree-
sequence of all 2-vertex-deleted subgraphs of G. Notice that, for two distinct vertices
u, v ∈ V (G), the subgraph G− u− v is no longer determined by the cards G− u and
G−v in a unique way, since the cards themselves do not uniquely identify the vertices
u, v. Moreover, the subgraph G − u − v, too, can be isomorphic to other subgraphs
G− u′ − v′ in which u′ and v′ are associated with some different cards.

Theorem 4.3. Let u and v be two distinct vertices of G. Given the degree-sequence of
the subgraph G − u − v, rdsG(G − u − v) is uniquely determined by the data ds(G),
ds(G− u), and ds(G− v). Moreover, the question whether u and v are adjacent in G
or not turns out from the data ds(G), ds(G− u− v), d(u) and d(v).

Proof. We use the same alignment argument as in the proof of Proposition 4.2. Write
the degree-sequences ds(G), ds(G − u), and ds(G − v) under each other, inserting
the ∅ symbol in the appropriate positions of ds(G − u) and ds(G − v). Furthermore,
insert two ∅’s in ds(G − u − v) aligned with the ones already inserted in ds(G − u)
and ds(G − v). If d(u) = d(v) = d, then insert two consecutive ∅’s aligned with the
beginning of the block marked by degree d in ds(G). For example:

ds(G) : 2 2 2
ds(G − u) : 1 1 2
ds(G − v) : 1 2 2
ds(G − u− v) : 0 1 1

→
rdsG(G− u− v) : 02 12 22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 3
2 3
2 2
2 2
←
13 23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 4 . . . . . . . . . . . .

4 4 . . . ∅ . . . . . .

3 4 . . . . . . ∅ . . .

3 4 . . . ∅ ∅ . . .

34 44 . . . ∅ ∅ . . .

Let nG(d) (nG,Q(r
d)) denote the number of occurrences of d (rd) in ds(G) (respec-

tively, rdsG(Q)). Assume, for simplicity, that the smallest degree in G is d0 ≥ 2. Then,
clearly:

nG,Q((d0 − 2)d0) = nQ(d0 − 2).

It follows that:

nG,Q((d0 − 1)d0) = nG−u(d0 − 1) + nG−v(d0 − 1)− 2 · nQ(d0 − 2), and
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nG,Q(d
d0

0 ) = nG(d0)− nG,Q((d0 − 2)d0)− nG,Q((d0 − 1)d0),

provided that neither of the degrees d(u) and d(v) equals d0. If either or both does,
then the above calculation changes in a straightforward way regarding the numbers
nG,Q((d0 − 1)d0) and nG,Q(d

d0

0 ). One can then carry on in the same way, calculating

the numbers nG,Q((d0 − 1)d0+1), nG,Q(d
d0+1

0 ), nG,Q((d0 +1)d0+1), and so on. Details
are left to the reader.

As to the second statement of the theorem, if

|E(G)| − |E(G− u− v)| = d(u) + d(v),

then u and v are not connected in G, otherwise they are. The numbers |E(G)| and
|E(G − u − v)| are determined by ds(G) and ds(G − u − v), respectively. The proof
is complete. �

Proposition 4.2 and Theorem 4.3 show that the concept of relative degree-
sequence is rather fundamental in the study of graph reconstruction. To provide yet
another evidence for this observation, let Rds(G) denote the multiset

{rdsG(Q)|Q is an induced subgraph of G}.

Thus, relative degree-sequences of subgraphs count with multiplicity in Rds(G). We
put forward the following conjecture, which is very closely related to the R.C..

Conjecture 4.4. For every graph G, Rds(G) identifies G up to isomorphism.

Conjecture 4.4 is especially useful for several reasons.

1. It appears to hold for all graphs with no exceptions.
2. It provides a characterization of graph isomorphism, which has been sought for

a very long time.
3. Algebraically, if G = G1 +G2, then

Rds(G) = Rds(G1)×Rds(G2). (4.1)

In equation 4.1 above, × stands for concatenation of sets of relative degree-sequences
in the formal language sense (taking the quotient of the product by commutativity).
In terms of polynomials, we can think of a relative degree rd as a formal variable.
Let X denote the set of all such variables. Then Rds(G) becomes a polynomial of
the variables X over the integer ring Z, in which all coefficients are non-negative.
(Treat union of multisets as addition in this polynomial.) Let Z[X ] denote the com-
mutative Z-module (in fact algebra) of X-polynomials over Z. (Mind that addition
of polynomials is commutative in Z[X ].) Our fundamental observation is that the
operation × in (4.1) translates naturally into product of polynomials in the algebra
Z[X ]. This product makes the algebra Z[X ] associative and commutative, therefore
a commutative ring.

Conjecture 4.4 was the starting point of the present study, and the fundamental
observation in the previous paragraph served as a motivation for it. In the language
of category theory this observation suggests that the traced monoidal category of
graphs (flowchart schemes), in which tensor is disjoint union and trace is feedback (i.e.,
creating an internal edge by merging two external ones, see [1, 3]) can be embedded in
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a natural way into the compact closed category of free modules over the commutative
algebra (ring) Z[X ], in which tensor and trace are the standard matrix operations.
There is a clear analogy in this statement with the Int construction, cf. [10], for the
“scalar” connection between graphs and polynomials is lifted to the level of traced
monoidal and compact closed categories by observing that the given translation of
graphs into polynomials is compatible with the trace operation at the higher level.

Naturally enough, Conjecture 4.4 also has an “edge” version, in which Rds(G)
is defined as the set of relative degree-sequences of all subgraphs of G. This version,
too, appears to hold for all graphs G with no exceptions, even for multigraphs as one
would expect after the flowchart scheme analogy.

The connection between Conjecture 4.4 and the R.C. is the following. If we
could compute rds(G) from D(G), then Conjecture 4.4 would imply the R.C.. As our
main result in Section 5 shows, however, computing the whole multiset Rds(G) is
far too much work in order to reconstruct G. Therefore this reconstruction argument
probably does not hold much water, indicating that Conjecture 4.4 is even tougher
than the R.C..

On the other hand, if, given Rds(G), we could isolate Rds(G − v) for each
vertex-deleted subgraph of G, then the R.C. would imply Conjecture 4.4 through a
straightforward induction argument. Since our concern is eventually Conjecture 4.4,
and the construction of the multiset of multisets

{Rds(G− v)|v ∈ V (G)}

from Rds(G) looks promising, we definitely must prove the R.C. first.

5. The reconstruction of card-minimal graphs

In this section we present our second main result, which aims at the reconstruc-
tion of card-minimal graphs. Temporarily, we are going to assume a further technical
condition in order to keep the reconstruction simple. Dropping this condition will be
the subject of a forthcoming paper. The condition is formally defined as follows.

Definition 5.1. Graph G is 2-card reconstructible if it is connected, and for every
u, v, x, y ∈ V (G), the isomorphism

G− u− v ∼= G− x− y

implies that u, v, x, and y cannot all be distinct.

To shed some light on the intuition behind Definition 5.1, let G be card-minimal,
and Q be an arbitrary graph having |V (G)| − 2 vertices. Consider the set C of cards
in D(G) in which Q is isomorphic to at least one vertex-deleted subgraph. Construct
the graph GQ which has C as its set of vertices, and any two cards G− u, G− v are
connected in GQ iff G − u − v ∼= Q. (Remember that G is card-minimal, therefore
the definition of GQ is correct.) Then G is 2-card reconstructible iff GQ is either a
triangle or a star graph for every 2-vertex-deleted subgraph Q of G. In other words,
if |C| > 2, then the following two conditions are met:
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1. the subgraph Q occurs k ≥ 2 times as a vertex-deleted subgraph in some card
G− u ∈ C;

2. |C| = k+ 1 and the cards in C different from G− u all have a single occurrence
of Q in them, with the possible exception that k = 2 and all the three cards in
C have two occurrences of Q in them.

See Fig. 5a for a card-minimal graph G which is, and Fig. 5b for one which is not
2-card reconstructible.

u

v

x

y

a) b)

Figure 5. The 2-card reconstructibility condition

Theorem 5.2. Every card-minimal and 2-card reconstructible graph G is recon-
structible.

Proof. Let Q be an arbitrary graph having |V (G)| − 2 vertices, and find the set C
of cards in which Q is isomorphic to at least one vertex-deleted subgraph. If C = ∅,
then drop Q as uninteresting. Otherwise C has at least two elements. If there are
exactly two cards G− u and G− v in C, then conclude that Q ∼= G− u− v, and use
Theorem 4.3 to decide if u and v are adjacent in G or not. If C has more than two
elements, then the condition of 2-card reconstructibility implies that either |C| = 3
and each card in C has two subgraphs isomorphic to Q, or there is exactly one card
G − u ∈ C that contains more than one subgraph isomorphic to Q. In the first case
Q ∼= G − u − v for any pair G − u, G − v of distinct cards in C, while in the latter
Q ∼= G− u − v for all vertices v 6= u such that G − v ∈ C. Furthermore, in this case
Q is not isomorphic to any other 2-vertex-deleted subgraph of G. (In other words,
Q 6∼= G − u1 − u2, where G − u1 and G − u2 are both in C but ui 6= u for either
i = 1 or 2.) Again, use Theorem 4.3 to find out if u is adjacent to v in G, knowing
that Q ∼= G − u − v. It is evident that the above procedure will decide for each pair
of cards G − u, G − v in D(G) if the vertices u and v are adjacent in G or not. The
proof is now complete. �

At this point the reader might have the impression that the condition of 2-card
reconstructibility is overly restrictive. In fact it is not, and a fairly simple analysis
based on the combination of Proposition 2.1 and Theorem 4.3 shows that whenever

G− u− v ∼= G− x− y

holds for four distinct vertices u, v, x, y, then each possible correspondence of these
vertices to appropriate cards in D(G) can be identified in a consistent way. This
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analysis is technically complicated, however, therefore we do not include it in the
present introductory paper.

6. Conclusion

Motivated by an independent research on traced monoidal categories, we have
presented a structural analysis of graphs with the aim of being able to reconstruct
them from some partial information. The basis of the reconstruction of graph G

could either be the classical multiset of G’s vertex-deleted subgraphs, or the multiset
of relative degree-sequences of all induced subgraphs of G.

We have introduced three equivalence relations on V (G) for the better under-
standing of the reconstruction problem. Card equivalence is the one directly related
to the reconstruction conjecture. Our examples have shown, however, that this equiv-
alence is rather inconvenient to deal with. Automorphism equivalence and having
the same behavior have been adopted from the study of flowchart schemes and their
behaviors. These relations have a much more transparent structure, and both have
turned out to be very closely related to card equivalence. For an evidence, we have
worked out a characterization theorem for card equivalence to bring it in line with
automorphism equivalence.

With respect to relative degree sequences, we have provided a generalization of
an earlier observation by Nash-Williams on the degree-sequence sequence of graphs.
As an application of this result we have shown that every card-minimal graph G

satisfying a further simple condition is reconstructible from the deck of G. However,
the condition of 2-card reconstructibility used in the proof of this result appears to be
purely technical, and could be replaced by a thorough analysis of G’s 2-vertex-deleted
subgraphs on the basis of our characterization theorem for card equivalence.
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The largest known Cunningham chain of length 3
of the first kind

Gábor Farkas, Gábor E. Gévay, Antal Járai and Emil Vatai

Abstract. Cunningham chains of length n of the first kind are n long sequences
of prime numbers p1, p2, . . . , pn so that pi+1 = 2pi + 1 (for 1 ≤ i < n). In [3] we
have devised a plan to find large Cunningham chains of the first kind of length
3 where the primes are of the form pi+1 = (h0 + cx) · 2e+i − 1 for some integer
x with h0 = 5 775, c = 30 030 and e = 34 944. The project was executed on the
non-uniform memory access (NUMA) supercomputer of NIIF in Pécs, Hungary.
In this paper we report on the obtained results and discuss the implementation
details. The search consisted of two stages: sieving and the Fermat test. The
sieving stage was implemented in a concurrent manner using lockfree queues,
while the Fermat test was trivially parallel. On the 27th of April, 2014 we have
found the largest known Cunningham chain of length 3 of the first kind which
consists of the numbers 5110664609396115 · 234944+j − 1 for j = 0, 1, 2.

Mathematics Subject Classification (2010): 11Y11.

Keywords: Cunningham chains, primality, computational number theory.

1. Cunningham chain search project

Cunningham chains of length n of the first kind are n long sequences of prime
numbers p1, p2, . . . , pn so that pi+1 = 2pi+1 (for 1 ≤ i < n). In 2013 we set out to find
the largest primes which form a Cunningham chain of the first kind of length 3. The
first stage of the plan was to take a large number of candidates, each representing one
chain, i.e. three primes, and eliminate most of them using a sieve similar to the sieve of
Eratosthenes. In the second stage the Fermat test was used to check if the remaining
candidates are probable primes. Finally, that the numbers were actually primes was
proven using the OpenPFGW open source implementation of the Brillhart-Lehmer-
Selfridge test.

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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The program was looking for primes of the form

pi+1 = pi+1(x) = (h0 + cx) · 2e+i − 1 for i = 0, 1, 2, (1.1)

therefore the parameters of the program were e which determined the magnitude of
the primes and h0 and c which were required to ensure the deterministic Riesel test
would prove primality fast enough.

1.1. The sieve

The candidates were different values of x, and these candidates were represented
by bits in a large sieve table H which was sieved with a set of primes. The size of
the sieve table, denoted by h, and the upper bound of primes P were also parameters
specific to the sieve program, so the values of 0 ≤ x < h were sieved with primes
p < P .

Sieving with a prime p < P means finding the first 0 ≤ xi < h for which p|pi(xi)
and eliminating xi (for i = 1, 2, 3). Then the candidates xi + kp (for any k ∈ Z) can
also be eliminated since

pi(xi + kp) = (h0 + c(xi + kp)) · 2e+i − 1

= (h0 + cxi) · 2e+i − 1 + ckp · 2e+i

= pi(xi) + ckp · 2e+i

that is, p|pi(xi) implies p|pi(xi + kp), therefore pi(xi + kp) is composite (for k ∈ Z
and i = 1, 2, 3). More details can be found in [3].

1.2. Probabilistic and deterministic primality tests

For the probabilistic primality test the Fermat test was used with base 3. For
each candidate x, not eliminated by the sieve, the program checked if

3pi−1 ≡ 1 (mod pi) where pi = pi(x) for i = 1, 2, 3. (1.2)

The probability of a false positive result of the Fermat test for all three pi’s is close
to none, so practically, after finding a candidate x for which (1.2) is true, the search
would be over.

However this would not prove that these numbers were prime, but this was not
a problem, because the Riesel test provides a very fast and efficient way to verify the
primality of the numbers of the form k · 2e − 1 so it can be used for (1.1).

2. Implementation

As described in [3], the above mentioned parameters were chosen as follows:

• the number of initial candidates, i.e. the size of the sieve table H = 237;
• the upper bound of the sieving primes P = 248;
• the parameters for the pi(x) polynomials were h0 = 5 775, c = 30 030 and e =

34 944.
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2.1. The implementation of the sieve

The sieve implementation was written by Gábor E. Gévay in C++ and compiled
with GCC version 4.8.1. To implement concurrent execution of the sieve program,
OpenMP and lock-free queues from the Boost [1] library were used.

The primes up to
√
P = 224 were generated as the initial step, then each CPU

core generated a “chunk” of the remaining sieving primes up to P = 248. The size of
one chunk was 231 bits, without representing the even numbers, so the effective chunk
size was actually 232. Ergo for each chunk a sieve of Eratosthenes was executed on an
interval of 232 numbers and because all the primes up to P = 248 were to be sieved
with, the number of chunks was 216 = 65 536.

After generating the primes for the given chunk, each CPU core proceeded
with sieving the main sieve table H representing the candidates with the primes
found. Thus, several hundred cpu cores were doing bit operations on a shared 16
GB bitset at the same time, which required some synchronization. There were 32
special threads that were actually writing to the bitset. Each of these was respon-
sible for doing operations on a 1/32th chunk of the bitset, and each had a queue
(boost::lockfree::queue) to which the computing threads pushed the bit opera-
tions. Furthermore, each computing thread had a thread-local proxy object of the
bitset, and used a method of this proxy object to request the bit operations. These
objects were responsible for calculating the index of the writer thread to which the
operation is to be forwarded, and also for buffering the operations to prevent the syn-
chronization of the queue from incurring too much overhead. (Note that sequential
consistency of the bit operations was not required.) The supercomputer used has a
NUMA architecture. The above scheme requires remote memory accesses only for the
queue operations, while both writing to the buffers in the proxy objects and executing
the bit operations on the sieve table involves only local memory access. Each prime
sieved three times into H, once for each polynomial pi(xi).

Finally the sieve program converted the sieve table into a vector of 64bit long
long ints and wrote them into a (binary) file.

2.2. The Fermat test

The Fermat test was written as a function with two parameters: x the candidate
and i the index of the polynomial. It calculated the value of p = pi(x), and then
checked if 3p−1 ≡ 1 (mod p). So when 3p−1 mod p = 1 the function returned true,
indicating that p was a probable prime, otherwise it returned false which meant p
was certainly composite.

The output of the sieve program, containing the x candidates as long long

ints, was the input for the Fermat test, which was implemented using the GNU
Multiple Precision (GMP) library. Concurrent execution was not a problem: each
thread read a different candidate x, calculated p = p1(x) and checked if 3p−1 ≡ 1
(mod p), and if the test returned true, the test is executed for p2(x) and if it was
still true then for p3(x) also.
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2.3. Execution

The programs were written for and executed on the supercomputers of NIIF
institute [2] in Pécs. The NIIF institute provided us with access to other super-
computers, including the ones in Budapest, Debrecen and Szeged, but the super-
computer of the University in Pécs was targeted, because of it’s shared memory which
could hold the sieve table of H = 237 bits i.e. 16GiB in size.

To provide us with the advantages of C++11, we used GCC version 4.8.1. Per-
formance of the available GMP library was suboptimal, so we compiled a newer, 5.1.2
version, which provided better performance. We also tried to use the tuneup utility
of GMP to optimize it, but it did not improve performance.

3. Results

3.1. The first run

The sieve was executed on the 8th October 2013 and ran for about 41 hours
with 352 threads. After sieving, 88 573 926 candidates were left. In [3] the number of
remaining candidates after sieving was estimated using the Bateman-Horn conjecture
and was to be approximately 88 570 684. The number of the actual candidates not
eliminated during sieving came very close to this value, the error was only about
0.003%.

The generated output file, fermat in was about 708MB in size. This file was
divided into smaller parts using the split command to be processed by the Fermat
test. The Fermat tests running on these parts of the fermat in file were started
immediately after the sieve program finished on the 10th of October. The estimate of
the time it took to finish the Fermat tests was roughly 4 weeks, however there were
some unanticipated slowdowns in the execution, which were only later solved.

On November 16th 2013. the Fermat test finished, without finding any Cunning-
ham chains and the project came to a temporary halt.

3.2. The second run

The estimated number of Cunningham chains found (based on the above men-
tioned parameters) should have been ≈ 1.3, and it implied that we might have just
been out of luck, i.e. we needed to continue with more candidates, with an extension
of the sieve table. The project was resumed in March of 2014. The program had to
be modified, because in the first run the candidates were 0 ≤ x < 237, and now the
search was to be extended to the candidates 237 ≤ x < 3 · 237. The upper bound
for the primes P was also modified from 248 to 250 to save a little time on the Fer-
mat tests. The number of candidates not eliminated after sieving was 156 743 147.
Using calculations similar to the ones described in [3], this value was expected to be
156 722 877. Again, the actual value was very close to the expected one, the error was
only about 0.013%.

The sieve was again run on the NIIF supercomputer in Pécs, but to find the
primes more quickly, the Fermat test was executed on all available computers of the
NIIF institute, including the ones in Debrecen and Szeged.
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On Friday, April 25th 2014. at 02:59:14 on the supercomputer in Pécs the
Fermat test finished with a positive result. The result was verified with a quick
reimplementation of the Fermat test in the Maple computer algebra system, and
there was no mistake, we have found three probable primes for the candidate
x = 170 185 301 678. Afterward we verified the results using the OpenPFGW pro-
gram, which is an open source implementation of the very fast and, most importantly
deterministic, BrillhartLehmerSelfridge test for primes of the form k · 2e − 1.

So the largest know Cunningham chains of the first kind of length 3, according
to “The Top Twenty: Cunningham Chains (1st kind)” [4], where we submitted our
findings, consist of the following three primes:

pi+1(x) = (5775 + 30030 · x) · 234944−i − 1 for x = 170185301678

for i = 1, 2, 3, that is:

p1(x) = 5110664609396115 · 234944 − 1 10535 digits

p2(x) = 5110664609396115 · 234945 − 1 10536 digits

p3(x) = 5110664609396115 · 234946 − 1 10536 digits
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truktúra fejlesztési Intézet), http://www.niif.hu/

[3] Farkas, G., Vatai, E., Sieving for large Cunningham chains of length 3 of the first kind,
Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae Sectio
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“Eötvös Loránd” University
Faculty of Informatics
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Antal Járai
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Bilateral inequalities for harmonic, geometric and
Hölder means

Mira-Cristiana Anisiu and Valeriu Anisiu

Abstract. For 0 < a < b, the harmonic, geometric and Hölder means satisfy H <
G < Q. They are special cases (p = −1, 0, 2) of power means Mp. We consider
the following problem: find all α, β ∈ R for which the bilateral inequalities

αH(a, b) + (1− α)Q(a, b) < G(a, b) < βH(a, b) + (1− β)Q(a, b)

hold ∀ 0 < a < b. Then we replace in the bilateral inequalities the mean Q by
Mp, p > 0 and address the same problem.

Mathematics Subject Classification (2010): 26E60.

Keywords: Means, power means, bilateral inequalities.

1. Introduction

We consider bivariate means m : R2
+ → R which are symmetric (m (b, a) =

m (a, b) for all a, b > 0) and homogeneous (m (λa, λb) = λm (a, b) for all a, b, λ > 0).
For two means m1 and m2 we write m1 ≤ m2 if and only if m1 (a, b) ≤ m2 (a, b)

for every a, b > 0, and m1 < m2 if and only if m1 (a, b) < m2 (a, b) for all a, b > 0
with a 6= b.

Since we are dealing with strict inequalities, we may and shall assume in the
following that 0 < a < b.

We consider the bivariate means

A (a, b) =
a+ b

2
; G (a, b) =

√
ab; H (a, b) =

2ab

a+ b
; Q(a, b) =

(
a2 + b2

2

)1/2

; (1.1)

Mp(a, b) =


(
ap+bp

2

)1/p
, for p 6= 0

√
ab, for p = 0,

(1.2)

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science
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which are known as the arithmetic, geometric, harmonic, Hölder and power means,
respectively. Properties and comparison of standard means can be found in [3].

The means from (1.1) are comparable:

min < H < G < A < Q < max,

where min and max are the trivial means given by (a, b) 7→ min (a, b) and (a, b) 7→ max
(a, b). The power means are monotonic in p, and M−1 = H, M0 = G, M1 = A, and
M2 = Q.

Recently, many bilateral inequalities between means have been proved ([1], [2],
[4], [5], [6]). We mention one of them, which was the starting point for this paper,
and refers to the means G, A and Q.

Theorem 1.1. [2] The double inequality

αG(a, b) + (1− α)Q(a, b) < A(a, b) < βG(a, b) + (1− β)Q(a, b), ∀ 0 < a < b

holds if and only if α ≥ 1/2 and β ≤ 1−
√

2/2.

In what follows we shall prove a similar result for the means H, G and Q.
Afterwards we consider the more general case of the means H, G and Mp, p > 0. We
show that for p = 5/2 the auxiliary function f is still monotone and we formulate an
open problem.

2. Main result

For 0 < a < b, the geometric, harmonic and Hölder means satisfy H < G < Q.
We shall find all the values of α and β in order that the geometric mean to be strictly
between the combination of H and Q with parameters α, respectively β. Due to the
homogeneity of all the means considered here, we may denote t = b/a, t > 1, and
write in the following m(t) instead of m(1, t) = (1/a)m(a, b). For any three means
m1 < m2 < m3, the double inequality

αm1(t) + (1− α)m3(t) < m2(t) < βm1(t) + (1− β)m3(t) (2.1)

is equivalent to
β < f(t) < α, (2.2)

where

f(t) =
m3(t)−m2(t)

m3(t)−m1(t)
. (2.3)

We shall prove the following result.

Theorem 2.1. The double inequality

αH(t) + (1− α)Q(t) < G(t) < βH(t) + (1− β)Q(t), ∀t > 1

holds if and only if α ≥ 1 and β ≤ 2/3. The function

f1(t) =
Q(t)−G(t)

Q(t)−H(t)

is strictly increasing on (1,∞).
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Proof. The function f1 is given by

f1(t) =
((2t2 + 2)1/2 − 2t1/2)(t+ 1)

(2t2 + 2)1/2t+ (2t2 + 2)1/2 − 4t
. (2.4)

We substitute t = s2, s > 1 and get

f1(s2) =
((2s4 + 2)1/2 − 2s)(s2 + 1)

(2s4 + 2)1/2s2 + (2s4 + 2)1/2 − 4s2
.

The numerator of the derivative of this expression is

4
(
s8 − 4s7 + 2s6 + 2(2s4 + 2)1/2s4 − 2(2s4 + 2)1/2s2 − 2s2 + 4s− 1

)
= 4(s2 − 1)(s6 − 4s5 + 3s4 − 4s3 + 3s2 − 4s+ 1 + 2(2s4 + 2)1/2s2)

and the denominator is obviously positive. We shall prove that

g1(s) = s6 − 4s5 + 3s4 − 4s3 + 3s2 − 4s+ 1 + 2(2s4 + 2)1/2s2

is positive for s > 1, hence f1 is strictly increasing. We write g1(s) = 0 as

s6 − 4s5 + 3s4 − 4s3 + 3s2 − 4s+ 1 = −2(2s4 + 2)1/2s2, (2.5)

square both sides and get

(s8 − 4s7 − 4s5 + 6s4 − 4s3 − 4s+ 1)(s− 1)4 = 0.

Denoting by h1(s) = s8 − 4s7 − 4s5 + 6s4 − 4s3 − 4s+ 1 we get

h1(s+ 4) = s8 + 28s7 + 336s6 + 2236s5 + 8886s4 + 20956s3 + 26640s2 + 12604s− 2831,

which has only one change of sign. We apply Descartes’ rule of signs for h1(s+ 4) and
we obtain that the polynomial h1(s) has a single root greater than 4. We denote by
k1(s) the 6th degree polynomial in the left hand side of (2.5) and get

k1(s+ 4) = s6 + 20s5 + 163s4 + 684s3 + 1523s2 + 1620s+ 545. (2.6)

Then the polynomial (2.6) is positive on s > 4, hence g1(s) = 0 has no solutions on
s > 1. It follows that f1 is strictly increasing on (1,∞). Since limt→1 f1(t) = 2/3 and
limt→∞ f1(t) = 1, the theorem is proved. �

We try to see if a similar result can be obtained by taking instead of M2 = Q
another power mean. For p = 5/2 we can prove

Theorem 2.2. The double inequality

αH(t) + (1− α)M5/2(t) < G(t) < βH(t) + (1− β)M5/2(t), ∀t > 1

holds if and only if α ≥ 1 and β ≤ 5/7. The function

f2(t) =
M5/2(t)−G(t)

M5/2(t)−H(t)

is strictly increasing on (1,∞).
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Proof. We have

f2(t) =
( 1
2 t

5/2 + 1
2 )2/5 − t1/2

( 1
2 t

5/2 + 1
2 )2/5 − 2t

t+1

. (2.7)

By substituting t = s2, s > 1 we get

f2(s2) =
((16s5 + 16)2/5 − 4s)(s2 + 1)

(s2 + 1)(16s5 + 16)2/5 − 8s2
.

We differentiate the above function and obtain its numerator

32(s− 1)(2s8 − 6s7 − 2s6 − 2s5 − 2s3 − 2s2 − 6s+ 2 + s2 (s+ 1) (16s5 + 16)2/5),

the denominator being positive. We denote

g2(s) = 2s8 − 6s7 − 2s6 − 2s5 − 2s3 − 2s2 − 6s+ 2 + s2 (s+ 1) (16s5 + 16)2/5

and we write g2(s) = 0 as

2(s8 − 3s7 − s6 − s5 − s3 − s2 − 3s+ 1)

s2 (s+ 1)
= −(16s5 + 16)2/5. (2.8)

We apply the 5th power to both sides of (2.8) and get h2(s) = 0, where

h2(s) = s30 − 10s29 + 25s28 + 20s27 − 50s26 − 196s25 − 150s24 + 320s23

+1305s22 + 2090s21 + 2439s20 + 2320s19 + 2550s18 + 3460s17 + 4760s16

+5240s15 + 4760s14 + 3460s13 + 2550s12 + 2320s11 + 2439s10 + 2090s9

+1305s8 + 320s7 − 150s6 − 196s5 − 50s4 + 20s3 + 25s2 − 10s+ 1.

Using the Sturm sequence, we obtain that h2(s) has no roots in (1,∞). It follows
that h2(s) > 0 on (1,∞), and the derivative of f2(t) is positive on this interval, hence
f2(t) is strictly increasing. Since limt→1 f2(t) = 5/7, limt→∞ f2(t) = 1, the theorem
is proved. �

Remark 2.3. We can consider the function

f3(t) =
Mp(t)−G(t)

Mp(t)−H(t)

for arbitrary p > 0. It is easy to check that limt→1 f3(t) = p/(p+1) and limt→∞ f3(t) =
1. It remains to study the monotonicity of f3. In the following theorem we prove that,
for p > 5/2, the function f3 is not monotone on (1,∞).

Theorem 2.4. For p > 5/2, the infimum of the function f3 on (1,∞) satisfies the
inequality

inf
t>1

f3(t) <
p

p+ 1
.

Proof. Let p > 5/2. The function f3 is given by

f3(t) =
( 1
2 t

p + 1
2 )1/p − t1/2

( 1
2 t

p + 1
2 )1/p − 2t

t+1

,
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and after the substitution t = s2, s > 1 we get

f3(s2) =
(( 1

2s
2p + 1

2 )1/p − s)(s2 + 1)

(s2 + 1)( 1
2s

2p + 1
2 )1/p − 2s2

.

The Taylor series for s0 = 1 reads

p

p+ 1
− p(2p− 5)

12(p+ 1)
(s− 1)2 +

p(2p− 5)

12(p+ 1)
(s− 1)3 +O((s− 1)4), for s→ 1

and its derivative will be

−p(2p− 5)

6(p+ 1)
(s− 1) +O((s− 1)2).

It follows that the derivative is negative at least for s > 1 close to 1, hence f3 decreases
and inf

t>1
f3(t) < p/(p+ 1). �

Based on the results in theorems 2.1 and 2.2, we formulate the following

Open problem. Prove that the function f3 is strictly increasing on (1,∞) for each
p ∈ (0, 5/2]. Then, for each p ∈ (0, 5/2], the double inequality

αH(t) + (1− α)Mp(t) < G(t) < βH(t) + (1− β)Mp(t), ∀t > 1

will be true if and only if α ≥ 1 and β ≤ p/(p+ 1).
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Stud. Univ. Babeş-Bolyai Math. 59(2014), No. 4, 469–477

A note on elliptic problems on the Sierpinski
gasket

Brigitte E. Breckner and Csaba Varga

Abstract. Using a method that goes back to J. Saint Raymond, we prove the
existence of infinitely many weak solutions of certain nonlinear elliptic problems
defined on the SG.

Mathematics Subject Classification (2010): 35J20, 28A80, 35J25, 35J60, 47J30,
49J52.

Keywords: Sierpinski gasket, weak Laplace operator, nonlinear elliptic equation
on the Sierpinski gasket.

1. Introduction

In the last two decades there has been an increasing interest in studying PDEs
on fractals, also motivated and stimulated by the considerable amount of literature
devoted to the definition of a Laplace-type operator for functions on fractals. A par-
ticular concern has been devoted to PDEs on the Sierpinski gasket. The framework
for the study of elliptic equations on the Sierpinski gasket goes back to J. Kigami’s
pioneering paper [4]. This paper has considerably influenced subsequent papers de-
voted to PDEs on the Sierpinski gasket. A list of them, including also several recent
contributions, may be found in the introduction of [2].

The present paper is devoted to the nonlinear elliptic equation

∆u(x) + γ(x)u(x) = g(x)f(u(x)),

defined on the Sierpinski gasket and with zero Dirichlet boundary condition. By im-
posing that the nonlinearity f : R→ R has an oscillating behavior at∞, the results of
the paper complete those obtained in our previous article [1], where we have studied
the same problem, but under the assumption that f oscillates at 0+. We use, as in
[1], a method that goes back to J. Saint Raymond in order to prove that this prob-
lem has infinitely many weak solutions. This method has also been used to prove, in

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science
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the context of certain Sobolev spaces, the existence of infinitely many solutions for
Dirichlet problems on bounded domains [6], for one-dimensional scalar field equations
and systems [3], and for homogeneous Neumann problems [5]. The aim of the present
paper is to show that the methods used in [3] can be successfully adapted to the
fractal case.

Notations. We denote by N the set of natural numbers {0, 1, 2, . . . }, by N∗ := N\{0}
the set of positive naturals, and by | · | the Euclidean norm on the spaces Rn, n ∈ N∗.
The spaces Rn are endowed, throughout the paper, with the Euclidean topology
induced by | · |.

2. Preliminaries

We briefly recall some notations which will be used in the sequel, and refer to
sections 2–4 in [1] for a more detailed presentation of these aspects. Throughout the
paper, the letter V stands for the the Sierpinski gasket (SG for short) in RN−1, where
N ≥ 2 is a fixed natural number. There are two different approaches that lead to V ,
starting from given points p1, . . . , pN ∈ RN−1 with |pi − pj | = 1 for i 6= j, and from
the similarities Si : RN−1 → RN−1, defined by

Si(x) =
1

2
x+

1

2
pi,

for i ∈ {1, . . . , N}. While in the first approach the set V appears as the unique
nonempty compact subset of RN−1 satisfying the equality

V =

N⋃
i=1

Si(V ),

in the second one V is obtained as the closure of the set V∗ :=
⋃
m∈N Vm, where

V0 := {p1, . . . , pN} and Vm :=

N⋃
i=1

Si(Vm−1), for m ∈ N∗.

In what follows V is considered to be endowed with the relative topology induced
from the topology on RN−1. The set V0 is called the intrinsic boundary of the SG.
The natural measure µ associated with V is the normalized restriction of the lnN

ln 2 -

dimensional Hausdorff measure on RN−1 to the subsets of V . Thus µ(V ) = 1. The
Lebesgue spaces Lp(V, µ), with p ≥ 1, are equipped with the usual || · ||p norm.

The analog, in the case of the SG, of the Sobolev spaces is the real Hilbert space
H1

0 (V ), equipped with the inner product W : H1
0 (V ) × H1

0 (V ) → R which induces
the norm || · || (see Section 3 in [1]). The space H1

0 (V ) can be compactly embedded
in a space of continuous functions. More exactly, if one denotes by C(V ) the space
of real-valued continuous functions on V , by C0(V ) := {u ∈ C(V ) : u|V0 = 0}, and
consider both spaces being endowed with the usual supremum norm || · ||sup, then the
following Sobolev-type inequality holds for H1

0 (V )

||u||sup ≤ c||u||, for every u ∈ H1
0 (V ), (2.1)
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where c is a positive constant depending on N . Moreover, the embedding

(H1
0 (V ), || · ||) ↪→ (C0(V ), || · ||sup) (2.2)

is compact.
As in [1], ∆: D → L2(V, µ) denotes the weak Laplacian on V , whereD is a certain

linear subset of H1
0 (V ) which is dense in L2(V, µ) (and dense also in (H1

0 (V ), || · ||)).
Thus ∆ is bijective, linear, self-adjoint, and satisfies

−W(u, v) =

∫
V

∆u · vdµ, for every (u, v) ∈ D ×H1
0 (V ).

We recall the following useful property of the space H1
0 (V ), stated in Lemma

3.1 of [1].

Lemma 2.1. Let h : R → R be a Lipschitz mapping with Lipschitz constant L ≥ 0
and such that h(0) = 0. Then, for every u ∈ H1

0 (V ), we have h ◦ u ∈ H1
0 (V ) and

||h ◦ u|| ≤ L · ||u||.

3. The main results

Let γ, g ∈ L1(V, µ) and let f : R→ R be continuous. We are concerned with the
following nonlinear elliptic problem, with zero Dirichlet boundary condition, on the
SG

(P )

 ∆u(x) + γ(x)u(x) = g(x)f(u(x)), ∀ x ∈ V \ V0,

u|V0
= 0.

We recall from [1] that a function u ∈ H1
0 (V ) is called a weak solution of (P ) if

W(u, v)−
∫
V

γ(x)u(x)v(x)dµ+

∫
V

g(x)f(u(x))v(x)dµ = 0, ∀ v ∈ H1
0 (V ).

Define F : R→ R by

F (t) =

∫ t

0

f(ξ)dξ. (3.1)

We know from Proposition 5.3 in [1] that the functional T : H1
0 (V ) → R, given, for

every u ∈ H1
0 (V ), by

T (u) =
1

2
||u||2 − 1

2

∫
V

γ(x)u2(x)dµ+

∫
V

g(x)F (u(x))dµ, (3.2)

is Fréchet differentiable on H1
0 (V ), and that it is an energy functional of problem (P ),

i.e., u ∈ H1
0 (V ) is a weak solution of (P ) if and only if u is a critical point of T .

Remark 3.1. Assume that γ ≤ 0 and g ≤ 0 a.e. in V . Consider u ∈ H1
0 (V ) and

d, b ∈ R such that d ≤ u(x) ≤ b for every x ∈ V . According to the fact that g ≤ 0 a.e.
in V , we then have ∫

V

g(x)F (u(x))dµ ≥ max
s∈[d,b]

F (s) ·
∫
V

g(x)dµ. (3.3)
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We state, for later use, the following relations about the functional T : H1
0 (V ) → R

defined by (3.2): The inequalities (3.3) and γ ≤ 0 a.e. in V imply that

T (u) ≥ max
s∈[d,b]

F (s) ·
∫
V

g(x)dµ (3.4)

and
1

2
||u||2 ≤ T (u)− max

s∈[d,b]
F (s) ·

∫
V

g(x)dµ. (3.5)

We recall the definition of the coercivity of a functional, respectively, the sub-
sequent standard result concerning the existence of minimum points of sequentially
weakly lower semicontinuous functionals.

Definition 3.2. Let X be a real normed space and let M be a nonempty subset of X.
A functional L : M → R is said to be coercive if, for every sequence (xn) in M such
that lim

n→∞
||xn|| =∞, it follows that lim

n→∞
L(xn) =∞.

Proposition 3.3. Let X be a reflexive real Banach space, M a nonempty sequentially
weakly closed subset of X, and L : M → R a sequentially weakly lower semicontinuous
and coercive functional. Then L possesses at least one minimum point.

We derive now from Proposition 3.3 the following key result for our approach.

Proposition 3.4. Let γ, g ∈ L1(V, µ) be so that γ ≤ 0 and g ≤ 0 a.e. in V , let
f : R → R be continuous, and let a, b, c, d ∈ R be so that d < c < 0 < a < b.
Furthermore, assume that the map F , defined by (3.1), satisfies the conditions

F (s) ≤ F (c),∀ s ∈ [d, c], (3.6)

and

F (s) ≤ F (a),∀ s ∈ [a, b]. (3.7)

Denoting by

M := {u ∈ H1
0 (V ) | d ≤ u(x) ≤ b, ∀x ∈ V },

there exists an element u ∈ H1
0 (V ) with the properties:

(i) T (u) = inf T (M),
(ii) c ≤ u(x) ≤ a, for every x ∈ V ,

where the functional T : H1
0 (V )→ R is defined by (3.2).

Proof. Obviously the set M is non-empty (it contains the constant 0 function) and
convex. Since the inclusion (2.2) is continuous, M is closed in the norm topology on
H1

0 (V ). It follows that M is also closed in the weak topology on H1
0 (V ), thus M

is sequentially weakly closed. It follows from (3.5) that the restriction of T to M
is coercive. Proposition 3.3 implies now that there exists ũ ∈ M such that T (ũ) =
inf T (M). Define h : R→ R by

h(t) =

 c, t < c
t, t ∈ [c, a]
a, t > a.
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Note that h(0) = 0 and that h is a Lipschitz map with Lipschitz constant L = 1.
According to Lemma 2.1, the map u := h ◦ ũ belongs to H1

0 (V ) and

||u|| ≤ ||ũ||. (3.8)

Moreover, u belongs to M and obviously satisfies condition (ii) to be proved. We next
show that (i) also holds true. For this set

V1 := {x ∈ V | ũ(x) < c}, V2 := {x ∈ V | ũ(x) > a}.
Then

u(x) =

 c, x ∈ V1
ũ(x), x ∈ V \ (V1 ∪ V2)
a, x ∈ V2.

It follows that

u2(x) ≤ ũ2(x), for every x ∈ V. (3.9)

Furthermore, if x ∈ V1, then ũ(x) ∈ [d, c[, hence, by (3.6), F (ũ(x)) ≤ F (c) = F (u(x)).
Analogously, if x ∈ V2, then (3.7) yields F (ũ(x)) ≤ F (a) = F (u(x)). Thus

F (ũ(x)) ≤ F (u(x)), for every x ∈ V. (3.10)

The inequalities (3.8), (3.9) and (3.10) imply, together with the fact that γ ≤ 0 and
g ≤ 0 a.e. in V , that

T (ũ)− T (u) =
1

2
||ũ||2 − 1

2
||u||2 − 1

2

∫
V

γ(x)(ũ2(x)− u2(x))dµ

+

∫
V

g(x)(F (ũ(x))− F (u(x)))dµ ≥ 0.

Thus T (ũ) ≥ T (u). Since T (ũ) = inf T (M) and since u ∈ M , we conclude that
T (u) = inf T (M), thus (i) is also fulfilled. �

The main result of the paper is contained in the following theorem concerning
the existence of multiple weak solutions of problem (P ).

Theorem 3.5. Assume that the following conditions hold:

(C1) γ ∈ L1(V, µ) and γ ≤ 0 a.e. in V .
(C2) f : R→ R is continuous such that

(1*) there exist two sequences (ak) and (bk) in ]0,∞[ with ak < bk < bk+1,
lim
k→∞

bk =∞ and such that f(s) ≤ 0 for every s ∈ [ak, bk],

(2*) there exist reals d < c < 0 with f(s) ≥ 0 for every s ∈ [d, c].
(C3) F : R→ R, defined by (3.1), is such that

(3*) −∞ < lim inf
s→∞

F (s)

s2
,

(4*) lim sup
s→∞

F (s)

s2
=∞.

(C4) g : V → R is continuous, not identically 0, and with g ≤ 0.

Then there exists a sequence (uk) of pairwise distinct weak solutions of problem (P )
such that lim

k→∞
‖uk‖ =∞.
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Remark 3.6. According to Example 4 in [3], the function f : R → R, defined by
f(s) = s2 sin2 s− 1, satisfies the conditions (C2) and (C3) of Theorem 3.5.

In what follows we assume that the conditions (C1)–(C4) in the hypotheses of
Theorem 3.5 are satisfied. For every k ∈ N set now

Mk := {u ∈ H1
0 (V ) | d ≤ u(x) ≤ bk, ∀ x ∈ V }. (3.11)

The proof of Theorem 3.5 includes the following main steps contained in the next
results:

1. we show that the functional T : H1
0 (V ) → R, defined by (3.2), has at least one

critical point in each of the sets Mk,
2. since T is an energy functional of Problem (P ), each of these critical points is a

weak solution of Problem (P ),
3. we show that there are infinitely many pairwise distinct such weak solutions.

Lemma 3.7. For every k ∈ N, there is an element uk ∈ Mk such that the following
conditions hold:

(i) T (uk) = inf T (Mk),
(ii) c ≤ uk(x) ≤ ak, for every x ∈ V .

Proof. Note that, while condition (1∗) in the hypotheses of Theorem 3.5 yields

F (s) ≤ F (ak),∀ s ∈ [ak, bk],

condition (2∗) implies (3.6). Applying Proposition 3.4, we finish the proof. �

Lemma 3.8. For every k ∈ N, let uk ∈ Mk be a function satisfying the conditions (i)
and (ii) of Lemma 3.7. The functional T has then in uk a local minimum (with respect
to the norm topology on H1

0 (V )), for every k ∈ N. In particular, (uk) is a sequence of
weak solutions of problem (P ).

Proof. Fix k ∈ N. Suppose to the contrary that uk is not a local minimum of T .
This implies the existence of a sequence (wn) in H1

0 (V ) converging to uk in the norm
topology such that

T (wn) < T (uk), for every n ∈ N.
In particular, wn /∈Mk, for all n ∈ N. Choose a real number ε such that

0 < ε ≤ 1

2
min{bk − ak, c− d}.

In view of (2.1) the sequence (wn) converges to uk in the supremum norm topology
on C(V ). Hence there is an index m ∈ N such that

||wm − uk||sup ≤ ε.
For every x ∈ V we then have, according to condition (ii) of Lemma 3.7,

wm(x) = wm(x)− uk(x) + uk(x) ≤ ε+ uk(x) ≤ bk − ak
2

+ ak < bk

and

wm(x) = wm(x)− uk(x) + uk(x) ≥ −ε+ uk(x) ≥ d− c
2

+ c > d.
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Thus wm ∈ Mk, a contradiction. We conclude that T has in uk a local minimum, so
uk is a critical point of T . The last assertion of the lemma follows now from the fact
that T is an energy functional of problem (P ). �

Lemma 3.9. For every k ∈ N, put γk := inf T (Mk). Then lim
k→∞

γk = −∞.

Proof. Observe first that the inclusions Mk ⊆ Mk+1, for all k ∈ N, imply that the
sequence (γk) is decreasing.

Condition (C4) in Theorem 3.5 yields the existence of a nonempty open subset
U of V \ V0 such that g|U < 0. By the same arguments as those used in the proof of
statement (2.1) in [1] we may conclude that there exists a compact set K ⊆ U with
µ(K) > 0. Hence we get that ∫

K

g(x)dµ < 0. (3.12)

We show next that we can find a function v ∈ H1
0 (V ) such that

0 ≤ v ≤ 1 and v|K = 1. (3.13)

Indeed, by Urysohn’s Lemma, there exists a continuous function φ : V → [0, 1] such
that φ(x) = 0, for x ∈ V0, and φ(x) = 1, for x ∈ K. According to Theorem 1.4.4 in
[7], there exists a function u ∈ H1

0 (V ) with ||φ − u||sup < 1. In particular, u(x) 6= 0
for all x ∈ K. Hence |u(x)| > 0 for every x ∈ K. Note that |u| ∈ H1

0 (V ), by Lemma
2.1. Let

ξ := min
x∈K
|u(x)|.

Then ξ > 0. Define h : R → R by h(t) = min{t, ξ}. Since h is a Lipschitz map with
h(0) = 0, Lemma 2.1 yields that h ◦ |u| ∈ H1

0 (V ). We have that (h ◦ |u|)(x) = ξ for
every x ∈ K. Thus v := 1

ξ (h ◦ |u|) satisfies (3.13).

By condition (3∗) in the requirements of Theorem 3.5, there exist m ∈ R and
δ > 0 such that

m ≤ F (s)

s2
, for all s > δ.

Denote by m̃ := min{F (s)−ms2 | s ∈ [0, δ]}. In particular, m̃ ≤ 0. So we obtain that

m̃+ms2 ≤ F (s), for all s ≥ 0. (3.14)

Condition (4∗) in the hypotheses of Theorem 3.5 implies the existence of a sequence
(rn) of positive reals with

lim
n→∞

rn =∞ and lim
n→∞

F (rn)

r2n
=∞. (3.15)

Using (3.2) and (3.13), we compute, for every n ∈ N,

T (rnv) =
1

2
r2n||v||2 −

r2n
2

∫
V

γ(x)v2(x)dµ+ F (rn)

∫
K

g(x)dµ

+

∫
V \K

g(x)F (rnv(x))dµ.
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On the other hand, by (3.14) and the fact that g ≤ 0, we get∫
V \K

g(x)F (rnv(x))dµ ≤ m̃
∫
V \K

g(x)dµ+mr2n

∫
V \K

g(x)v2(x)dµ.

Thus

T (rnv)

r2n
≤||v||

2

2
− 1

2

∫
V

γ(x)v2(x)dµ+
F (rn)

r2n

∫
K

g(x)dµ

+
m̃

r2n

∫
V \K

g(x)dµ+m

∫
V \K

g(x)v2(x)dµ.

(3.16)

Involving (3.12) and (3.15), we obtain from (3.16) that lim
n→∞

T (rnv)

r2n
= −∞, so

lim
n→∞

T (rnv) = −∞. (3.17)

Recall from condition (1∗) in the statement of Theorem 3.5 that lim
k→∞

bk = ∞.

Thus we may find a subsequence (bkn) of the sequence (bk) such that rn ≤ bkn , for
every n ∈ N. Since 0 ≤ v ≤ 1, we get that

0 ≤ rnv ≤ bkn , for all n ∈ N.
By (3.11), we hence conclude that rnv ∈Mkn , for every n ∈ N, so

γkn ≤ T (rnv), for all n ∈ N.
In view of (3.17) we thus obtain that lim

n→∞
γkn = −∞. Since (γk) is decreasing we

finally conclude that lim
k→∞

γk = −∞. �

Proof of Theorem 3.5 concluded. From Lemma 3.8 we know that there is a sequence
(uk) of weak solutions of problem (P ) such that uk ∈ Mk and γk = T (uk), where
γk = inf T (Mk), for every natural k. Assume, by contradiction, that lim

k→∞
||uk|| 6=∞.

Then there exists a bounded subsequence (ukn) of the sequence (uk). According to
(2.1) and to the fact that lim

k→∞
bk = ∞, we may find p ∈ N such that ukn ∈ Mp, for

every n ∈ N. This yields that γp ≤ γkn , for every n ∈ N, contradicting the statement
of Lemma 3.9. Thus lim

k→∞
||uk|| = ∞. Hence we can find a subsequence (ukj ) of the

sequence (uk) consisting of pairwise distinct elements. �
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On systems of semilinear hyperbolic functional
equations
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Abstract. We consider a system of second order semilinear hyperbolic functional
differential equations where the lower order terms contain functional dependence
on the unknown function. Existence of solutions for t ∈ (0, T ) and t ∈ (0,∞),
further, examples and some qualitative properties of the solutions in (0,∞) are
shown.
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1. Introduction

In the present work we shall consider weak solutions of initial-boundary value
problems of the form

u′′j (t) +Qj(u(t)) + ϕ(x)Djh(u(t)) +Hj(t, x;u) +Gj(t, x;u, u′) = Fj , (1.1)

t > 0, x ∈ Ω, j = 1, ..., N

u(0) = u(0), u′(0) = u(1) (1.2)

where Ω ⊂ Rn is a bounded domain and we use the notations u(t) = (u1(t), ..., uN (t)),
u(t) = (u1(t, x), ..., uN (t, x)), u′ = (u′1, ..., u

′
N ) = Dtu = (Dtu1, ..., DtuN ), u′′ = D2

t u,
Qj is a linear second order symmetric elliptic differential operator in the variable x;
h is a C1 function having certain polynomial growth, Hj and Gj contain nonlinear
functional (non-local) dependence on u and u′, with some polynomial growth.

There are several papers on semilinear hyperbolic differential equations, see, e.g.,
[3], [4], [10], [14] and the references there. Semilinear hyperbolic functional equations
were studied, e.g. in [5], [6], [7], with certain non-local terms, generally in the form of
particular integral operators containing the unknown function. First order quasilinear
evolution equations with non-local terms were considered, e.g., in [13] and [15], second

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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order quasilinear evolution equations with non-local terms were considered in [11], by
using the theory of monotone type operators (see [2], [9], [16]).

This work was motivated by the classical book [9] of J.L. Lions on nonlinear
PDEs where a single equation was considered in a particular case (semilinear hyper-
bolic differential equation). We shall use ideas of the above work.

Semilinear hyperbolic functional equations were considered in a previous work
of the author (see [12]).

2. Existence in (0, T )

Denote by Ω ⊂ Rn a bounded domain with sufficiently smooth boundary, and
let QT = (0, T )× Ω. Denote by W 1,2(Ω) the Sobolev space with the norm

‖u‖ =

∫
Ω

 n∑
j=1

|Dju|2 + |u|2
 dx

1/2

.

Further, let Vj ⊂W 1,2(Ω) be closed linear subspaces of W 1,2(Ω), V ?j the dual space of

Vj , V = (V1, ..., VN ), V ? = (V ?1 , ..., V
?
N ), H = L2(Ω)× ...×L2(Ω) , the duality between

V ?j and Vj (and between V ? and V ) will be denoted by 〈·, ·〉, the scalar product in

L2(Ω) and H will be denoted by (·, ·). Denote by L2(0, T ;Vj) and L2(0, T ;V ) the
Banach space of measurable functions u : (0, T ) → Vj , u : (0, T ) → V , respectively,
with the norm

‖uj‖L2(0,T ;Vj) =

[∫ T

0

‖uj(t)‖2Vjdt

]1/2

, ‖u‖L2(0,T ;V ) =

[∫ T

0

‖u(t)‖2V dt

]1/2

,

respectively.
Similarly, L∞(0, T ;Vj), L

∞(0, T ;V ), L∞(0, T ;L2(Ω)), L∞(0, T ;H) is the set
of measurable functions uj : (0, T ) → Vj , u : (0, T ) → V , uj : (0, T ) → L2(Ω),
u : (0, T )→ H, respectively, with the L∞(0, T ) norm of the functions t 7→ ‖uj(t)‖Vj ,
t 7→ ‖u(t)‖V , t 7→ ‖uj(t)‖L2(Ω), t 7→ ‖u(t)‖H , respectively.

Now we formulate the assumptions on the functions in (1.1).
(A1). Q : V → V ? is a linear continuous operator defined by

〈Q(u), v〉 =

N∑
j=1

〈Qj(u), vj〉 =

N∑
j=1

[
N∑
k=1

〈Qjk(uk), vj〉

]
,

u = (u1, ..., uN ), v = (v1, ..., vN ),

where Qjk : W 1,2(Ω)→ [W 1,2(Ω)]? are continuous linear operators satisfying

〈Qjk(uk), vj〉 = 〈Qjk(vj), uk〉, Qjk = Qkj , thus 〈Q(u), v〉 = 〈Q(v), u〉
for all u, v ∈ V and

〈Q(u), u〉 ≥ c0‖u‖2V with some constant c0 > 0.

(A2). ϕ : Ω→ R is a measurable function satisfying

c1 ≤ ϕ(x) ≤ c2 for a.a. x ∈ Ω
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with some positive constants c1, c2.
(A3). h : Rn → R is a continuously differentiable function satisfying

h(η) ≥ 0, |Djh(η)| ≤ const|η|λ for |η| > 1 where

1 < λ ≤ λ0 =
n

n− 2
if n ≥ 3, 1 < λ <∞ if n = 2.

(A′3). h : Rn → R is a continuously differentiable function satisfying with some
positive constants c3, c4

h(η) ≥ c3|η|λ+1, |Djh(η)| ≤ c4|η|λ for |η| > 1, n ≥ 3 where λ > λ0 =
n

n− 2
,

|Djh(η)| ≤ c4|η|λ for |η| > 1, n = 2 where 1 < λ <∞.
(A4). Hj : QT × [L2(QT )]N → R are functions for which (t, x) 7→ Hj(t, x;u) is

measurable for all fixed u ∈ H, Hj has the Volterra property, i.e. for all t ∈ [0, T ],
Hj(t, x;u) depends only on the restriction of u to (0, t); the following inequality holds
for all t ∈ [0, T ] and u ∈ H:∫

Ω

|Hj(t, x;u)|2dx ≤ c?
[∫ t

0

∫
Ω

h(u(τ))dxdτ +

∫
Ω

h(u)dx

]
.

Finally, (u(k))→ u in [L2(QT )]N and (u(k))→ u a.e. in QT imply

Hj(t, x;u(k))→ Hj(t, x;u) for a.a. (t, x) ∈ QT .

(A5). Gj : QT × [L2(QT )]N ×L∞(0, T ;H)→ R is a function satisfying: (t, x) 7→
Gj(t, x;u,w) is measurable for all fixed u ∈ [L2(QT )]N , w ∈ L∞(0, T ;H), Gj has the
Volterra property: for all t ∈ [0, T ], Gj(t, x;u,w) depends only on the restriction of
u,w to (0, t) and

Gj(t, x;u, u′) = ϕj(t, x;u)u′j(t) + ψj(t, x;u, u′)

where

ϕj ≥ 0, |ϕj(t, x;u)| ≤ const (2.1)

if (A3) is satisfied.
(A′5) If (A′3) is satisfied, we assume instead of the second inequality in (2.1)∫

Ω

|ϕj(t, x;u)|2dx ≤ const

[∫
Qt

|u|2µdτdx+

∫
Ω

|u|2µdx
]

(2.2)

where µ ≤ n+1
n−1

λ−1
λ+1 .

Further, on ψj we assume∫
Ω

|ψj(t, x;u, u′)|2dx ≤ c1 + c2

∫
Qt

|u′|2dxdτ

with some constants c1, c2.
Further, if (u(ν))→ u in [L2(QT )]N then

ϕj(t, x;u(ν))→ ϕj(t, x;u) for a.a. (t, x) ∈ QT
and if

(u(ν))→ u in [L2(QT )]N and a.e. in QT , (w(ν))→ w
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weakly in L∞(0, T ;H) in the sense that for all fixed g1 ∈ L1(0, T ;H)∫ T

0

〈g1(t), w(ν)(t)〉dt→
∫ T

0

〈g1(t), w(t)〉dt,

then for a.a. (t, x) ∈ QT
ψj(t, x;u(ν), w(ν))→ ψj(t, x;u,w).

Theorem 2.1. Assume (A1), (A2), (A3), (A4), (A5). Then for all F ∈ L2(0, T ;H),
u(0) ∈ V , u(1) ∈ H there exists u ∈ L∞(0, T ;V ) such that

u′ ∈ L∞(0, T ;H), u′′ ∈ L2(0, T ;V ?),

u satisfies the system (1.1) in the sense: for a.a t ∈ [0, T ], all v ∈ V

〈u′′j (t), vj〉+ 〈Qj(u(t)), vj〉+

∫
Ω

ϕ(x)Djh(u(t))vjdx+

∫
Ω

Hj(t, x;u)vjdx+ (2.3)∫
Ω

Gj(t, x;u, u′)vjdx = (Fj(t), vj) j = 1, ..., N

and the initial condition (1.2) is fulfilled.
If (A1), (A2), (A′3), (A4), (A5) are satisfied then for all F ∈ L2(0, T ;H), u(0) ∈

V ∩ [Lλ+1(Ω)]N , u(1) ∈ H there exists u ∈ L∞(0, T ;V ∩ [Lλ+1(Ω)]N ) such that

u′ ∈ L∞(0, T ;H),

u′′ ∈ L2(0, T ;V ?) + L∞(0, T ; [L
λ+1
λ (Ω)]N ) ⊂ L2

(
0, T ; [V ∩ (Lλ+1(Ω))N ]?

)
and u satisfies (1.1) in the sense: for a.a t ∈ [0, T ], all vj ∈ Vj ∩Lλ+1(Ω) (2.3) holds,
further, the initial condition (1.2) is fulfilled.

Proof. We apply Galerkin’s method. Let w
(j)
1 , w

(j)
2 , . . . be a linearly independent sys-

tem in Vj if (A3) is satisfied and in Vj ∩ Lλ+1(Ω) if (A′3) is satisfied such that the
linear combinations are dense in Vj and Vj ∩ Lλ+1(Ω), respectively. We want to find
the m-th approximation of u in the form

u
(m)
j (t) =

m∑
l=1

g
(j)
lm(t)w

(j)
l (j = 1, 2, . . . , N) (2.4)

where g
(j)
lm ∈ W 2,2(0, T ) if (A3) holds and g

(j)
lm ∈ W 2,2(0, T ) ∩ L∞(0, T ) if (A′3) holds

such that

〈(u(m)
j )′′(t), w

(j)
k 〉+ 〈Q(u(m)(t)), w

(j)
k 〉+

∫
Ω

ϕ(x)Djh(u(m)(t))w
(j)
k dx (2.5)

+

∫
Ω

Hj(t, x;u(m))w
(j)
k dx+

∫
Ω

Gj(t, x;u(m), (u(m))′)w
(j)
k dx = 〈Fj(t), w(j)

k 〉,

k = 1, . . . ,m, j = 1, . . . , N

u
(m)
j (0) = u

(m)
j0 , (u

(m)
j )′(0) = u

(m)
j1 (2.6)

where u
(m)
j0 , u

(m)
j1 (j = 1, 2, . . . , N) are linear combinations of w

(j)
1 , w

(j)
2 . . . , w

(j)
m sat-

isfying

(u
(m)
j0 )→ u

(0)
j in Vj and Vj ∩ Lλ+1(Ω), respectively, as m→∞ and (2.7)
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(u
(m)
j1 )→ u

(1)
j in H as m→∞. (2.8)

It is not difficult to show that all the conditions of the existence theorem for a system
of functional differential equations with Carathéodory conditions are satisfied.

Thus, by using the Volterra property of G and H, we obtain that there exists a
solution of (2.5), (2.6) in a neighbourhood of 0 (see [8]). Further, the maximal solution

of (2.5), (2.6) is defined in [0, T ]. Indeed, multiplying (2.5) by [g
(j)
lm ]′(t) and taking the

sum with respect to j, and k we obtain

〈(u(m))′′(t), (u(m))′(t)〉+ 〈Q(u(m)(t)), (u(m))′(t)〉 (2.9)

+

∫
Ω

ϕ(x)
d

dt
[h(u(m)(t))]dx

+

∫
Ω

(H(t, x;u(m)), (u(m))′(t))dx+

∫
Ω

(G(t, x;u(m), (u(m))′), (u(m))′(t))dx

= 〈F (t), (u(m))′(t)〉.
Integrating the above equality over (0, t) we find (see, e.g., [16], [12])

1

2
‖(u(m))′(t)‖2H +

1

2
〈Q(u(m)(t)), u(m)(t)〉+

∫
Ω

ϕ(x)h(u(m)(t))dx (2.10)

+

∫ t

0

[∫
Ω

(H(τ, x;u(m)), (u(m))′)dx

]
dτ+

∫ t

0

[∫
Ω

(G(τ, x;u(m), (u(m))′), (u(m))′)dx

]
dτ

=

∫ t

0

[
〈F (τ), (u(m))′(τ)〉

]
dτ.

Hence, by using Young’s inequality, Sobolev’s imbedding theorem and the assumptions
of our theorem, we obtain

‖(u(m))′(t)‖2H +

∫
Ω

h(u(m)(t))dx+ ‖u(m)(t)‖2V

≤ const

{
1 +

∫ t

0

[
‖(u(m))′(τ)‖2H +

∫
Ω

h(u(m)(τ))dx

]
dτ

}
where the constant is not depending on t and m. Thus by Gronwall’s lemma

‖(u(m))′(t)‖2H +

∫
Ω

h(u(m)(t))dx ≤ const (2.11)

and thus

‖u(m)(t)‖2V ≤ const (2.12)

Further, the estimates (2.11), (2.12) hold for all t ∈ [0, T ] and all m and in the case
λ > λ0, n ≥ 3

‖u(m)(t)‖V ∩[Lλ+1(Ω)]N ≤ const. (2.13)

By (2.11), (2.12), if (A3) is satisfied, there exist a subsequence of (u(m)), again
denoted by (u(m)) and u ∈ L∞(0, T ;V ) such that

(u(m))→ u weakly in L∞(0, T ;V ), (2.14)

(u(m))′ → u′ weakly in L∞(0, T ;H) (2.15)
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in the following sense: for any fixed g ∈ L1(0, T ;V ?) and g1 ∈ L1(0, T ;H)∫ T

0

〈g(t), u(m)(t)〉dt→
∫ T

0

〈g(t), u(t)〉dt,∫ T

0

(g1(t), (u(m))′(t))dt→
∫ T

0

(g1(t), u′(t))dt.

Similarly, in the case λ > λ0, n ≥ 3, (when (A′3) holds) there exist subsequence
of (u(m)) and u ∈ L∞(0, T ;V ∩ [Lλ+1(Ω)]N ) such that

(u(m))→ u weakly in L∞(0, T ;V ∩ [Lλ+1(Ω)]N ), (2.16)

which means: for any fixed g ∈ L1(0, T ; (V ∩ Lλ+1(Ω))?)∫ T

0

〈g(t), u(m)(t)〉dt→
∫ T

0

〈g(t), u(t)〉dt.

Since the imbedding W 1,2(Ω) into L2(Ω) is compact, by (2.14) – (2.16) we have for a
subsequence

(u(m))→ u in L2(0, T ;H) = [L2(QT )]N and a.e. in QT . (2.17)

(see, e.g., [9]). Finally, we show that the limit function u is a solution of problem (1.1),
(1.2).

As Q : V → V ? is a linear and continuous operator, by (2.14) for all v ∈ V and

v ∈ V ∩
[
Lλ+1(Ω)

]N
, respectively we have

〈(Q(u(m)m)(t)), v〉 → 〈(Q(u(t)), v〉 weakly in L∞(0, T ) (2.18)

and by (2.15)

〈(u(m))′′(t), v〉 =
d

dt
〈(u(m))′(t), v〉 → 〈u′′(t), v〉 (2.19)

with respect to the weak convergence of the space of distributions D′(0, T ).
Further, by (2.17) and the continuity of Djh

ϕ(x)Djh(um(t))→ ϕ(x)Djh(u(t)) for a.e. (t, x) ∈ QT . (2.20)

Now we show that for any fixed

v ∈ L2(0, T ;V ), v ∈ L2(0, T ;V ) ∩ L1(0, T ; (Lλ+1(Ω))N ),

respectively, the sequence of functions

ϕ(x)Djh(u(m)(t))v j = 1, . . . , N (2.21)

is equiintegrable in QT . Indeed, if (A3) is satisfied then by Sobolev’s imbedding the-
orem and (2.12) for all t ∈ [0, T ]

‖ϕ(x)Djh(u(m)(t))‖2L2(Ω) ≤ const‖Djh(u(m)(t))‖2L2(Ω)

≤ const

[
1 +

∫
Ω

|u(m)(t)|2λ0dx

]
≤ const

[
1 + ‖um(t)‖2λ0

V

]
≤ const,

because 2λ0 = 2n
n−2 and W 1,2(Ω) is continuously imbedded into L

2n
n−2 (Ω), thus

Cauchy–Schwarz inequality implies that the sequence of functions (2.21) is equiin-
tegrable in QT .
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If (A′3) is satisfied then for all t ∈ [0, T ]∫
Ω

|ϕ(x)Djh(u(m)(t))|
λ+1
λ dx ≤ const

∫
Ω

[h(u(m)(t)) + 1]dx ≤ const

thus Hölder’s inequality implies that the sequence (2.21) is equiintegrable in QT .
Consequently, by (2.20) and Vitali’s theorem we obtain that for any fixed

v ∈ L2(0, T ;V ), v ∈ L2(0, T ;V ) ∩ L1(0, T ;Lλ+1(Ω)),

respectively

lim
m→∞

∫
QT

ϕ(x)Djh(u(m)(t))vjdtdx =

∫
QT

ϕ(x)Djh(u(t))vjdtdx (2.22)

and

ϕ(x)Djh(u(t)) ∈ L2(0, T ;V ?), ϕ(x)Djh(u(t)) ∈ L∞(0, T ;L
λ+1
λ (Ω)) (2.23)

if (A3), (A′3) holds, respectively.
Further, by (2.17) and (A4)

Hj(t, x;u(m))→ Hj(t, x;u) a.e. in QT (2.24)

and by (2.11)∫
QT

|Hj(t, x;um)|2dxdt ≤ const

∫
QT

h(um(t))dxdt ≤ const,

hence, by Cauchy–Schwarz inequality, for any fixed v ∈ L2(0, T ;V ), the sequence of
functions Hj(t, x;u(m))vj is equiintegrable in QT (j = 1, . . . , N), thus by (2.24) and
Vitali’s theorem

lim
m→∞

∫
QT

Hj(t, x;u(m))vjdtdx =

∫
QT

Hj(t, x;u)vjdtdx (2.25)

and
H(t, x;u) ∈ L2(0, T ;V ?).

Similarly, (2.15) – (2.17) and (A5) imply

ψj(t, x;u(m), (u(m))′)→ ψj(t, x;u, u′) a.e. in QT (2.26)

and for arbitrary v ∈ L2(0, T ;V ) the sequence of functions ψj(t, x;u(m), (u(m))′)vj is
equintegrable in QT by Cauchy – Schwarz inequality, because by (2.11)∫

QT

|ψj(t, x;u(m), (u(m))′)|2dtdx ≤ const

[
1 +

∫
QT

|(u(m))′|2dx
]
dt ≤ const.

Consequently, Vitali’s theorem implies that for j = 1, . . . , N

lim
m→∞

∫
QT

ψj(t, x;u(m), (u(m))′)vjdtdx =

∫
QT

ψj(t, x;u, u′)vdtdx (2.27)

and
ψj(t, x;u, u′) ∈ L2(0, T ;V ?).

Further, by using Vitali’s theorem, we show that for arbitrary fixed v ∈ L2(0, T ;V )

ϕj(t, x;u(m))vj → ϕj(t, x;u)vj in L2(QT ), j = 1, . . . , N. (2.28)
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Indeed, by (A5) and (2.17)

ϕj(t, x;u(m))→ ϕj(t, x;u) for a.e. (t, x) ∈ QT , j = 1, . . . , N. (2.29)

Further, by (A5) |ϕj(t, x;u(m)))|2 is bounded and so for fixed v ∈ L2(0, T ;V ) the
sequence ∫

QT

|ϕj(t, x;u(m))vj − ϕj(t, x;u)vj |2dtdx ≤ const|vj |2

is equiintegrable which implies with (2.29) by Vitali’s theorem (2.28). Consequently,
by (2.15) we obtain

lim

∫
QT

ϕj(t, x;u(m))(u(m))′(t)vjdtdx =

∫
QT

ϕj(t, x;u)u′(t)vjdtdx, j = 1, . . . , N

(2.30)
and ϕ(t, x;u)u′ ∈ L2(0, T ;V ?).

If (A′5) (and (A′3)) is satisfied, then for a fixed v ∈ L2(0, T ;V ) ∩ [Lλ+1(QT )]N

we also have

ϕj(t, x;u(m))vj → ϕj(t, x;u)vj in L2(QT ), j = 1, . . . , N. (2.31)

Indeed, by (2.11), (2.12) (u(m)) is bounded in W 1,2(QT ), hence it is bonded in

L
2(n+1)
n−1 (QT ). Thus Hölder’s inequality implies for any measurable M ⊂ QT∫

M

|ϕj(t, x;u(m))vj − ϕj(t, x;u)vj |2dtdx (2.32)

≤ const

{∫
QT

[|u(m)|2µ + |u(m)|2µ]q1dtdx

}1/q1

·
{∫

M

|vj |2p1
}1/p1

≤ const

{∫
M

|vj |2p1
}1/p1

where

2p1 = λ+ 1,
1

p1
+

1

q1
,

thus

2µq1 = 2µ
p1

p1 − 1
= 2µ

λ+ 1

λ− 1
≤ 2(n+ 1)

n− 1

since

µ ≤ n+ 1

n− 1
· λ− 1

λ+ 1
,

hence (2.29), (2.32) and Vitali’s theorem imply (2.31). Consequently, by (2.15) we
obtain (2.30) (when (A′5) holds).

Now let

v = (v1, . . . , vN ) ∈ V and χj ∈ C∞0 (0, T ) (j = 1, . . . , N)

be arbitrary functions. Further, let zMj =
∑M
l=1 bljw

(j)
l , blj ∈ R be sequences of

functions such that

(zMj )→ vj in Vj and Vj ∩ Lλ+1(Ω), j = 1, . . . , N, (2.33)
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respectively, as M →∞ . Further, by (2.5) we have for all m ≥M∫ T

0

〈−(u
(m)
j )′(t), zMj 〉χ′j(t)dt+

∫ T

0

〈Q(u(m)(t)), zMj 〉χj(t)dt (2.34)

+

∫ T

0

∫
Ω

ϕ(x)Djh(u(m)(t))zMj χj(t)dtdx+

∫ T

0

∫
Ω

Hj(t, x;u(m))zMj χj(t)dtdx

+

∫ T

0

∫
Ω

Gj(t, x;u(m), (u(m))′)zMj χj(t)dtdx

=

∫ T

0

〈Fj(t), zMj 〉χj(t)dt.

By (2.15), (2.18), (2.22), (2.25), (2.27), (2.30) we obtain from (2.34) as m→∞

−
∫ T

0

〈u′j(t), zMj 〉χ′j(t)dt+

∫ T

0

〈Qj(u(t)), zMj 〉χj(t)dt (2.35)

+

∫ T

0

∫
Ω

ϕ(x)Djh(u(t))zMj χj(t)dtdx

+

∫ T

0

∫
Ω

Hj(t, x;u)zMj χj(t)dtdx+

∫ T

0

∫
Ω

Gj(t, x;u, u′)zMj χj(t)dtdx

=

∫ T

0

〈Fj(t), zMj 〉χ(t)dt.

From equality (2.35) and (2.33) we obtain as M →∞

−
∫ T

0

〈u′j(t), vj〉χ′j(t)dt+

∫ T

0

〈Qj(u(t)), vj〉χj(t)dt (2.36)

+

∫ T

0

∫
Ω

ϕ(x)Djh(u(t))vjχj(t)dtdx

+

∫ T

0

∫
Ω

Hj(t, x;u)vjχj(t)dtdx+

∫ T

0

∫
Ω

Gj(t, x;u, u′)vjχj(t)dtdx

=

∫ T

0

〈Fj(t), vj〉χj(t)dt.

Since vj ∈ Vj and χj ∈ C∞0 (0, T ) are arbitrary functions, (2.36) means that

u′′j ∈ L2(0, T ;V ?j ) and u′′j ∈ L2(0, T ; (V ∩ Lλ+1(Ω))?), (2.37)

respectively (see, e.g. [16]) and for a.a. t ∈ [0, T ]

u′′j +Qj(u(t)) + ϕ(x)Djh(u(t)) +Hj(t, x;u) +Gj(t, x;u, u′) = Fj , j = 1, . . . , N,
(2.38)

i.e. we proved (1.1).
Now we show that the initial condition (1.2) holds. Since u ∈ L∞(0, T ;V ),

u′ ∈ L∞(0, T ;H), we have u ∈ C([0, T ];H) and for arbitrary χj ∈ C∞[0, T ] with the
properties χj(0) = 1, χj(T ) = 0, all j, k∫ T

0

〈u′j(t), w
(j)
k 〉χj(t)dt = −(uj(0), w

(j)
k )L2(Ω) −

∫ T

0

〈uj(t), w(j)
k 〉χ

′
j(t)dt,
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∫ T

0

〈(u(m)
j )′(t), w

(j)
k 〉χj(t)dt = −(u

(m)
j (0), w

(j)
k )L2(Ω) −

∫ T

0

〈u(m)
j (t), w

(j)
k 〉χ

′
j(t)dt.

Hence by (2.6), (2.7), (2.8), (2.14), (2.15), we obtain as m→∞

(u(0), w
(j)
k )L2(Ω) = lim

m→∞
(u

(m)
j0 , w

(j)
k )L2(Ω)

= lim
m→∞

(u
(m)
j (0), w

(j)
k )L2(Ω) = (uj(0), w

(j)
k )L2(Ω)

for all j and k which implies u(0) = u(0).

Similarly can be shown that u′(0) = u(1).

3. Examples

Let the operator Q be defined by

〈Qjk(uk), vj〉 =

∫
Ω

 n∑
i,l=1

ajkil (x)(Dluk)(Divj) + djk(x)ukvj

 dx
where ajkil , d

jk ∈ L∞(Ω), ajkil = ajkli ,
∑n
i,l=1 a

jj
il (x)ξiξl ≥ c1|ξ|2, dii(x) ≥ c0 with some

positive constants c0, c1; further, ajkil = akjil and for some c̃0 < c1

‖ajkil ‖L∞(Ω) <
c̃0

n− 1
, ‖djk‖L∞(Ω) <

c̃0
n− 1

for j 6= k.

Then assumption (A1) is satisfied.
If h is a C1 function such that h(η) = |η|λ+1 if |η| > 1 then (A3), (A′3), respec-

tively, are satisfied.

Further, let h̃j : RN → R be continuous functions satisfying

|h̃j(η)| ≤ const |η|
λ+1
2 for |η| > 1, j = 1, . . . , N

with some positive constant. It is not difficult to show that operators Hj defined by
one of the formulas

Hj(t, x;u) = χj(t, x)h̃j

(∫
Qt

u1(τ, ξ)dτdξ, . . . ,

∫
Qt

uN (τ, ξ), dτdξ

)
,

Hj(t, x;u) = χj(t, x)h̃j

(∫ t

0

u1(τ, x)dτ, . . . ,

∫ t

0

uN (τ, x)dτ

)
,

Hj(t, x;u) = χj(t, x)h̃j

(∫
Ω

u1(t, ξ)dξ, . . . ,

∫
Ω

uN (t, ξ)dξ

)
,

Hj(t, x;u) = χj(t, x)h̃j(u1(τ1(t), x), . . . , uN (τk(t), x)) where

τk ∈ C1, 0 ≤ τk(t) ≤ t, τ ′k(t) ≥ c1 > 0, k = 1, . . . , N

satisfy (A4) if χj ∈ L∞(QT ).
The operators ϕj , ψj may have forms, similar to the above forms of Hj with

bounded continuous functions h̃j . Then (A5) is fulfilled.
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Remark. One can show uniqueness and continuous dependence of the solution of (1.1),
(1.2) if the following additional conditions are satisfied:

Gj(t, x;u, u′) = ϕ̃j(x)u′j(t)

where ϕ̃j is measurable and 0 ≤ ϕ̃j(x) ≤ const, h is twice continuously differentiable
and

|DiDkh(η)| ≤ const|η|λ−1 for |η| > 1.

Further Hj(t, x;u) satisfy some Lipschitz condition with respect to u.

4. Solutions in (0,∞)

Now we formulate and prove existence of solutions for t ∈ (0,∞). Denote by
Lploc(0,∞;V ) the set of functions u : (0,∞)→ V such that for each fixed finite T > 0,
their restrictions to (0, T ) satisfy u|(0,T ) ∈ Lp(0, T ;V ) and let Q∞ = (0,∞) × Ω,

Lαloc(Q∞) the set of functions u : Q∞ → RN such that uj |QT ∈ Lα(QT ) (j = 1, . . . , N)
for any finite T .

Now we formulate assumptions on Hj and Gj .

(B4) The functions Hj : Q∞ ×
[
L2
loc(Q∞)

]N → R are such that for all fixed

u ∈
[
L2
loc(Q∞)

]N
the functions (t, x) 7→ Hj(t, x;u) are measurable, Hj have the

Volterra property (see (A4)) and for each fixed finite T > 0, the restrictions of Hj to

QT ×
[
L2(QT )

]N
satisfy (A4).

Remark. Since Hj has the Volterra property, this restriction HT
j is well defined by

the formula

HT
j (t, x; ũ) = Hj(t, x;u), (t, x) ∈ QT , ũ ∈ [L2(QT )]N

where u ∈ [L2
loc(Q∞)]N may be any function satisfying u(t, x) = ũ(t, x) for (t, x) ∈

QT .
(B5) The operators

Gj : Q∞ × [L2
loc(Q∞)]N × L∞loc(0,∞;H)→ R

are such that for all fixed u ∈ L2
loc(0,∞;V ), w ∈ L∞loc(0,∞;H) the functions (t, x) 7→

Gj(t, x;u,w) are measurable, Gj have the Volterra property and for each fixed finite
T > 0, the restrictions GTj of Gj to QT × [L2(QT )]N × L∞(0, T ;H) satisfy (A5).

(B′5) It is the same as (B5) but GTj satisfy (A′5).

Theorem 4.1. Assume (A1) – (A3), (B4), (B5). Then for all F ∈ L2
loc(0,∞;H),

u(0) ∈ V , u(1) ∈ H there exists

u ∈ L∞loc(0,∞;V ) such that u′ ∈ L∞loc(0,∞;H), u′′ ∈ L2
loc(0,∞;V ?),

u satisfies (1.1) for a.a. t ∈ (0,∞) (in the sense, formulated in Theorem 2.1) and the
initial condition (1.2).

If (A1), A2), (A′3), (B4), (B5) are fulfilled then for all F ∈ L2
loc(0,∞;H), u(0) ∈

V ∩ [Lλ+1(Ω)]N , u(1) ∈ H there exists

u ∈ L∞loc(0,∞;V ∩ [Lλ+1(Ω)]N ) such that u′ ∈ L∞loc(0,∞;H),
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u′′ ∈ L2
loc(0,∞;V ?) + L∞loc(0,∞; [L

λ+1
λ (Ω)]N ) ⊂ L2

loc(0,∞; [V ∩ (Lλ+1(Ω))N ]?),

u satisfies (1.1) for a.a. t ∈ (0,∞) (in the sense, formulated in Theorem 2.1) and the
initial condition (1.2).

Assume that the following additional conditions are satisfied: there exist T0 and
a function γ ∈ L2(T0,∞) such that for t > T0

|G(t, x;u, u′)| ≤ γ(t), |H(t, x;u)| ≤ γ(t) and ‖F (t)‖V ? ≤ γ(t). (4.1)

Then for the above solution u we have

u ∈ L∞(0,∞;V ), u ∈ L∞(0,∞;V ∩ [Lλ+1(Ω)]N ), respectively and (4.2)

u′ ∈ L∞(0,∞;H).

Further, assume that there exists a positive constant c̃ such that

ϕj(t, x;u) ≥ c̃, (t, x) ∈ Q∞, j = 1, . . . , N (4.3)

and there exist F∞ ∈ H, u∞ ∈ V such that

Q(u∞) = F∞, F − F∞ ∈ L2(0,∞;H), (4.4)

|Hj(t, x;u)| ≤ β(t, x), |ψj(t, x;u, u′)| ≤ β(t, x), |ϕj(t, x;u)| ≤ const (4.5)

with some β ∈ L2(0,∞;L2(Ω)). Then for the above solution we have

u ∈ L∞(0,∞;V ), u ∈ L∞(0,∞; v ∩ [Lλ+1(Ω)]N ), (4.6)

‖u′(t)‖H ≤ const e−c̃t, t ∈ (0,∞) (4.7)

and there exists w(0) ∈ H such that

u(T )→ w(0) in H as T →∞, ‖u(T )− w(0)‖H ≤ const e−c̃T . (4.8)

Finally, w(0) ∈ V and

Q(w(0)) + ϕDh(w(0)) = F∞. (4.9)

Proof. Similarly to the proof of Theorem 2.1, we apply Galerkin’s method and we
want to find the m-th approximation of solution u = (u1, . . . , uN ) for t ∈ (0,∞) in
the form (see (2.4))

u
(m)
j (t) =

m∑
l=1

g
(j)
lm(t)w

(j)
l , j = 1, . . . , N

where g
(j)
lm ∈W

2,2
loc (0,∞) if (A3) is satisfied and g

(j)
lm ∈W

2,2
loc (0,∞)∩L∞loc(0,∞) if (A′3) is

satisfied. Here W 2,2
loc (0,∞) and L∞loc(0,∞) denote the set of functions g : (0,∞) → R

such that for all T the restriction of g to (0, T ) belongs to W 2,2(0, T ), L∞(0, T ),
respectively.

According to the arguments in the proof of Theorem 2.1, there exists a solution
of (2.5), (2.6) in a neighbourhood of t = 0. Further, we obtain estimates (2.11), (2.12)
and (2.13), respectively, for t ∈ [0, T ] with sufficiently small T where on the right
hand side are finite constants (depending on T ). Consequently, the maximal solutions
of (2.5), (2.6) are defined in (0,∞) and the estimates (2.11), (2.12), (2.13) hold for all
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finite T > 0 (if t ∈ [0, T ]), the constants on the right hand sides are depending only
on T .

Let (Tk)k∈N be a monotone increasing sequence, converging to +∞. According
to the arguments in the proof of Theorem 2.1, there is a subsequence (u(m1)) of (u(m))
for which (2.14), (2.15) and (2.16) hold, respectively, with T = T1. Further, there is a
subsequence (u(m2)) of (u(m1)) for which (2.14), (2.15) and (2.16) hold, respectively,
with T = T2, etc. By a diagonal process we obtain a sequence (u(mm))m∈N such that
(2.14), (2.15), (2.16) hold for every fixed T > 0; further,

u ∈ L∞loc(0,∞;V ), u′ ∈ L∞loc(0,∞;H), u′′ ∈ L2
loc(0,∞;V ?) and

u ∈ L∞loc(0,∞;V ∩ [Lλ+1(Ω)]N ), u′ ∈ L∞loc(0,∞;H),

u′′ ∈ L2
loc(0,∞;V ?) + L∞loc(0,∞; [L

λ+1
λ (Ω)]N ),

respectively and (1.1) holds for t ∈ (0,∞).
Now we consider the case when (4.1) holds. Then by (2.10) we obtain for all

t ≥ T1 ≥ T0

1

2
‖(u(m))′(t)‖2H +

1

2
〈(Q(u(m))(t), u(m)(t)〉+ c1

∫
Ω

h(u(m)(t))dx

≤
∫ T1

0

∫
Ω

|〈G(τ, x;u(m), (u(m))′), (u(m))′(τ)〉|dτ+

∫ T1

0

∫
Ω

|〈H(τ, x;u(m)), (u(m))′(τ)〉|dτ

+

∫ T1

0

∫
Ω

|〈F (τ), (u(m))′(τ)〉|dτ + 3λ(Ω)

[∫ ∞
T1

|γ(τ)|dτ
]

sup
τ∈[0,t]

‖(u(m))′(τ)‖H .

Choosing sufficiently large T1 > 0, since limT1→∞
∫∞
T1
|γ(τ)|dτ = 0, we find

1

4
‖(u(m))′(t)‖2H +

1

2
〈Q(u(m)(t)), u(m)(t)〉+ c1

∫
Ω

h(u(m)(t)dx ≤ const

for all t > 0, m which implies (4.2).
Finally, consider the case when (4.3) – (4.5) are satisfied, too. Denoting u(mm)

by u(m), for simplicity, by (2.9), Qu∞ = F∞ we obtain for wm = um − u∞ (since
(w(m))′ = (u(m))′):

〈(w(m))′′(t), (w(m))′(t)〉+ 〈(Qw(m))(t), (w(m))′(t)〉+
∫

Ω

ϕ(x)
d

dt
[h(u(m)(t))]dx (4.10)

+

∫
Ω

(H(t, x;u(m)), (w(m))′(t))dx+

∫
Ω

(G(t, x;u(m), (u(m))′), (w(m))′(t)dx

= 〈F (t)− F∞, (w(m))′(t)〉.
Integrating over [0, t] we find (similarly to (2.10))

1

2
‖(w(m))′(t)‖2H +

1

2
〈Q(w(m)(t)), w(m)(t)〉+ c1

∫
Ω

h(u(m)(t))dx (4.11)

+c̃

∫ t

0

[∫
Ω

|(w(m))′(τ)|2dx
]
dτ

≤ ε
∫ t

0

[∫
Ω

|(w(m))′(τ)|2dx
]
dτ + C(ε)

∫ t

0

‖F (τ)− F∞‖2Hdτ
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+
1

2
‖(u(m))′(0)‖2H +

1

2
〈(Qu(m))(0), u(m)(0)〉+ c2

∫
Ω

h(u(m)(0))dx

+ε

∫ t

0

[∫
Ω

|(w(m))′(τ)|dx
]
dτ + C(ε)‖β‖L2(0,∞;H).

Choosing ε = c̃/4 we obtain∫ t

0

[∫
Ω

|(w(m))′(τ)|2dx
]
dτ ≤ const. (4.12)

Further, from (4.11), (4.12) we obtain

‖(u(m))′(t)‖2H + c̃

∫ t

0

‖(u(m))′(τ)‖2Hdτ ≤ c?

with some positive constant c? not depending on m and t. Thus by Gronwall’s lemma
we find

‖(u(m))′(t)‖2H = ‖(w(m))′(t)‖2H ≤ c?e−c̃t, t > 0

which implies (4.7) as m → ∞ (since (u(m))′ → u′ weakly in L∞(0, T ;H)). Further,
by (A1) one obtains from (4.11) that for all t > 0, m

‖w(m)(t)‖V ≤ const, ‖w(m)(t)‖V ∩[Lλ+1(Ω)]N ≤ const,

respectively, which implies (4.6).
Further, for arbitrary T1 < T2

‖u(T2)− u(T1)‖2H = (u(T2), u(T2)− u(T1))H − (u(T1), u(T2)− u(T1))H

=

∫ T2

T1

〈u′(t), u(T2)− u(T1)〉dt =

∫ T2

T1

(u′(t), u(T2)− u(T1))Hdt

≤ ‖u(T2)− u(T1)‖H
∫ T2

T1

‖u′(t)‖Hdt

which implies

‖u(T2)− u(T1)‖H ≤
∫ T2

T1

‖u′(t)‖Hdt. (4.13)

Hence by (4.7)

‖u(T2)− u(T1)‖H → 0 as T1, T2 →∞
which implies (4.8) and by (4.10), (4.7) we obtain

‖u(T )− w0‖H ≤
∫ ∞
T

‖u′(t)‖Hdt ≤ const e−c̃T .

Now we show w0 ∈ V and (4.9) holds. Since u ∈ L∞(0,∞;V ),

(u(Tk))→ w?0 weakly in V, w?0 ∈ V (4.14)

for some sequence (Tk), lim(Tk) = +∞. Clearly, (4.14) implies

(u(Tk))→ w?0 weakly in H,

thus by (4.8) w0 = w?0 ∈ V and (4.14) holds for arbitrary sequence (Tk) converging
to +∞.
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In order to prove (4.9), consider arbitrary fixed v ∈ V , v ∈ V ∩ [Lλ+1(Ω)]N ,
respectively and

χT (t) = χ(t− T ) where χ ∈ C∞0 (R), suppχ ⊂ [0, 1],

∫ 1

0

χ(t)dt = 1.

Multiply (2.3) by χT (t) and integrate with respect to t on (0,∞) and take the sum
with respect to j, then we obtain∫ ∞

0

〈u′′(t), v〉χT (t)dt+

∫ ∞
0

〈Q(u(t)), v〉χT (t)dt (4.15)

+

∫ ∞
0

[∫
Ω

ϕ(x)((Dh)(u(t)), v)dx

]
χT (t)dt+

∫ ∞
0

[∫
Ω

(H(t, x;u), v)dx

]
χT (t)dt

+

∫ ∞
0

[∫
Ω

(G(t, x;u, u′), v)dx

]
χT (t)dt =

∫ ∞
0

(F (t), v)χT (t)dt.

Let (Tk) be an arbitrary sequence converging to +∞ and consider (4.15) with T = Tk.
For the first term on the left hand side of this equation we have by (4.7) (if Tk > 1)∫ ∞

0

〈u′′(t), v〉χTk(t)dt = −
∫ ∞

0

〈u′(t), v〉(χTk)′(t)dt→ 0 as k →∞. (4.16)

Further, by (A1), (4.14) and Lebesgue’s dominated convergence theorem∫ ∞
0

〈Q(u(t)), v〉χTk(t)dt =

∫ ∞
0

〈Q(v), u(t)〉χTk(t)dt (4.17)

=

∫ 1

0

〈Q(v), u(Tk + τ)〉χ(τ)dτ →
∫ 1

0

〈Q(v), w0〉χ(τ)dτ = 〈Q(v), w0〉

= 〈Q(w0), v〉 as k →∞.
For the third term on the left hand side of (4.15) we have∫ ∞

0

[∫
Ω

ϕ(x)((Dh)(u(t)), v)dx

]
χTk(t)dt (4.18)

=

∫ 1

0

[∫
Ω

ϕ(x)((Dh)(u(Tk + τ)), v)dx

]
χ(τ)dτ

→
∫ 1

0

[∫
Ω

ϕ(x)((Dh)(w0), v)dx

]
χ(τ)dτ =

∫
Ω

ϕ(x)((Dh)(w0), v)dx

as k →∞ since by (4.8)

u(Tk + τ)→ w0 in [L2((0, 1)× Ω)]N as k →∞

and thus for a.a. (τ, x) ∈ (0, 1)× Ω (for a subsequence), consequently

(Dh)(u(Tk + τ, x))→ (Dh)(w0(x)) for a.a. (τ, x) ∈ (0, 1)× Ω. (4.19)

By using Hölder’s inequality, (A3), (A′3), respectively and Vitali’s theorem, we obtain
(4.18) from (4.19).
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The fourth and fifth terms on the left hand side of (4.15) can be estimated by
(4.5) and (4.7) as follows: for sufficiently large k∣∣∣∣∫ ∞

0

[∫
Ω

(H(t, x;u), v)dx

]
χTk(t)dt

∣∣∣∣ =

∣∣∣∣∫ ∞
0

[∫
Ω

(H(Tk + τ, x;u), v)dx

]
χ(τ)dτ

∣∣∣∣
(4.20)

≤
∫ ∞

0

[∫
Ω

β(Tk + τ, x)|v|dx
]
|χ(τ)|dτ → 0 as k →∞,∣∣∣∣∫ ∞

0

[∫
Ω

(G(t, x;u, u′), v)dx

]
χTk(t)dt

∣∣∣∣ (4.21)

≤
∫ 1

0

[∫
Ω

{c5|u′(Tk + τ)|+ β(Tk + τ, x)}|v|dx
]
|χ(τ)|dτ → 0.

Finally, for the right hand side of (4.15) we obtain by using (4.4) and the Cauchy –
Schwarz inequality∫ ∞

0

(F (t), v)χTk(t)dt =

∫ 1

0

(F (Tk + τ), v)χ(τ)dτ →
∫ 1

0

(F∞, v)χ(τ)dτ = (F∞, v).

(4.22)
From (4.15) – (4.18), (4.20) – (4.22) one obtains (4.9).
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Abstract. In the present note we investigate norm and almost everywhere con-
vergence of the inverse continuous wavelet transform in the variable Lebesgue
space.
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1. Introduction

The topic of variable Lebesgue spaces is a new chapter of mathematics and it is
studied intensively nowadays. Instead of the classical Lp-norm, the variable Lp(·)-norm
is defined by

‖f‖p(·) := inf

{
λ > 0 :

∫
Rd

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
and the variable Lp(·) spaces contains all measurable functions f , for which ‖f‖p(·) <
∞. The variable Lebesgue spaces have a lot of common property with the classical
Lebesgue spaces (see Kováčik and Rákosńık [12], Cruz-Uribe and Fiorenza [4], Dien-
ing, Hästö and Růžička [6], Cruz-Uribe, Firorenza and Neugebauer [3], Cruz-Uribe,
Fiorenza, Martell and Pérez [2]).

The so called θ-summation method is studied intensively in the literature (see
e.g. Butzer and Nessel [1], Trigub and Belinsky [15], Gát [9], Goginava [10], Simon
[14] and Weisz [17, 18]). This summability is generated by a single function θ and

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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includes the well known Fejér, Riesz, Weierstrass, Abel, etc. summability methods.
The θ-summation is defined by

σθT f(x) =

∫
Rd

f(x− t)T dθ(Tt) dt.

Feichtinger and Weisz [7, 8, 16] have proved that the θ-means σθT f converge to f
almost everywhere and in norm as T →∞, whenever f is in the Lp(Rd) space or in a
Wiener amalgam space. The points of the set of almost everywhere convergence are
characterized as the Lebesgue points.

Some similar results are known in the variable Lebesgue spaces (see e.g. Cruz-
Uribe and Fiorenza [4]). Under some conditions on the exponent function p(·) and θ,
the θ-means of f converge to f almost everywhere and in norm for all f ∈ Lp(·)(Rd)
as T →∞.

The continuous wavelet transform of f with respect to a wavelet g is defined by
Wgf(x, s) = 〈f, TxDsg〉 (x ∈ Rd, s ∈ R, s 6= 0), where Ds is the dilation operator and
Tx is the translation operator. The inversion formula holds for all f ∈ L2(Rd) (in case
g and γ are suitable): ∫ ∞

0

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
= Cg,γf,

where the equality is understood in a vector-valued weak sense (see Daubechies [5]
and Gröchenig [11]).

Recently Li and Sun [13] have proved that if g and γ are radial, both have a
radial majorant ϕ such that ϕ(·) ln(2 + | · |) ∈ L1(Rd) and

∫
Rd(g∗ ∗ γ)(x) dx = 0, then

for any f ∈ Lp(Rd) (1 ≤ p <∞)

lim
S→0+,T→∞

∫ T

S

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
= C ′g,γf (1.1)

at every Lebesgue point of f , where C ′g,γ is a constant depending on g and γ. If

1 < p < ∞, or if 1 ≤ p < ∞ and T = ∞, then the convergence holds in the Lp(Rd)-
norm for all f ∈ Lp(Rd). Under some other conditions Weisz [19] has proved similar
results.

In this paper we will investigate the norm and almost everywhere convergence
of (1.1) in variable Lebesgue spaces. We lead back the problem to the summability of
Fourier transforms, more exactly, we show that the integral on the left hand side of
(1.1) can be formulated as σθ1/Sf − σ

θ
1/T f , where θ is a given function depending on

g and γ.

2. θ-summability on the classical Lebesgue spaces

Let us fix d ≥ 1, d ∈ N. For a set Y 6= ∅ let Yd be its Cartesian product Y×. . .×Y
taken with itself d-times. The space Lp(Rd) equipped with the norm

‖f‖p :=

(∫
Rd

|f(x)|p dx
)1/p

(1 ≤ p ≤ ∞),
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is the classical Lebesgue space. We use the notation |I| for the Lebesgue measure of
the set I. The set of locally integrable functions is denoted by Lloc1 (Rd).

A measurable function f belongs to the Wiener amalgam space W (Lp, `q)(Rd)
(1 ≤ p, q ≤ ∞) if

‖f‖W (Lp,`q) :=

∑
k∈Zd

‖f(·+ k)‖qLp[0,1)d

1/q

<∞

with the usual modification for q =∞. Note that for all 1 ≤ p ≤ ∞, W (Lp, `p)(Rd) =
Lp(Rd) and Lp(Rd) ⊂W (L1, `∞)(Rd).

Let θ ∈ L1(Rd) be a radial function. The θ-means of f ∈ W (L1, `∞)(Rd) are
defined by

σθT f(x) := (f ∗ θT )(x) =

∫
Rd

f(x− t)θT (t) dt,

where

θT (x) := T dθ(Tx) (x ∈ Rd, T > 0).

It is known that θ(t) = χ̂B(0,1)(t) implies σθT f = sT f , where sT f is the Dirichlet
integral of the Fourier transform of f ,

sT f(x) :=

∫
{‖u‖2<T}

f̂(u)e2πıx·u du (T > 0)

and

B(a, δ) := {x ∈ Rd : ‖x− a‖2 < δ}.
Similarly, if θ(t) = F̂ (t), where F (t) = max(1 − ‖t‖2, 0), then we obtain the Fejér
means of f .

The classical Hardy-Littlewood maximal operator is defined by

M(f)(x) := sup
x∈Q

1

|Q|

∫
Q

|f | dλ,

where f ∈ Lloc1 (Rd) and the supremum is taken over all cube Q ⊂ Rd with sides
parallel to the axes. It is known that

‖Mf‖p ≤ C ‖f‖p (2.1)

for all f ∈ Lp(Rd) (1 < p ≤ ∞) and

sup
t>0

tλ
(
x ∈ Rd : Mf(x) > t

)
≤ C ‖f‖1

for all f ∈ L1(Rd).
A point x ∈ Rd is called a Lebesgue point of f ∈ Lloc1 (Rd) if

lim
h→0+

(
1

|B(0, h)|

∫
B(0,h)

|f(x+ u)− f(x)| du

)
= 0.

It is known that if f ∈ W (L1, `∞)(Rd) (1 ≤ p ≤ ∞), then almost every x ∈ Rd is a
Lebesgue point of f (see Feichtinger and Weisz [7, 8]).
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We say that η is a radial majorant of f if η is radial, non-increasing as a
function on (0,∞), non-negative, bounded, |f | ≤ η and η ∈ L1(Rd). If in addition
η(·) ln (| · |+ 2) ∈ L1(Rd), then we say that η is a radial log-majorant of f .

The following results were proved in Feichtinger and Weisz [7] and [8].

Theorem 2.1. Suppose that θ has a radial majorant η. Then for all T > 0

|σθT f(x)| ≤ C‖η‖1Mf(x) (x ∈ Rd).

Theorem 2.2. Suppose that θ has a radial majorant. Then

(i) for all f ∈W (L1, `∞)(Rd)

lim
T→∞

σθT f(x) =

∫
Rd

θ(y) dy · f(x)

at each Lebesgue points of f .
(ii) for all f ∈ Lp(Rd) (1 ≤ p <∞)

lim
T→0+

σθT f(x) = 0

for all x ∈ Rd.

Proof. The proof of the first statement can be found in Feichtinger and Weisz [8].
Consider (ii). Since θ has a radial majorant, θ ∈ L1(Rd) ∩ L∞(Rd). Therefore

θ ∈ Lp(Rd) (1 ≤ p ≤ ∞). Let q the conjugate exponent of p i.e., 1/p+ 1/q = 1. Using
Hölder’s inequality∣∣σθT f(x)

∣∣ ≤ T d
∫
Rd

|f(x− t)| |θ(Tt)| dt

≤ T d
(∫

Rd

|θ(Tt)|q dt
)1/q (∫

Rd

|f(x− t)|p dt
)1/p

= T d
(∫

Rd

|θ(y)|qT−d dy
)1/q

‖f‖p

= T d(1−1/q)‖θ‖q ‖f‖p → 0,

as T → 0+, because of d(1− 1/q) > 0. �

Almost every point is a Lebesgue point of f ∈W (L1, `∞)(Rd), so (i) holds almost
everywhere.

The next Theorem can be found in Feichtinger and Weisz [7].

Theorem 2.3. Suppose that θ ∈ L1(Rd). Then

(i) for all f ∈ Lp(Rd) (1 ≤ p <∞)

lim
T→∞

σθT f =

∫
Rd

θ(x) dx · f in the Lp(Rd)-norm.

(ii) If in addition θ has a radial majorant, then for all f ∈ Lp(Rd)
(1 < p <∞)

lim
T→0+

σθT f = 0 in the Lp(Rd)-norm.
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Proof. For the proof of (i) see Feichtinger and Weisz [7].
(ii) follows from Theorem 2.2 (ii), Theorem 2.1, (2.1) and Lebesgue dominated

convergence theorem. �

The next lemma can be found in Li and Sun [13].

Lemma 2.4. If g and γ have radial log-majorants, then (g ∗ γ) ln(| · |) ∈ L1(Rd) and
(|g| ∗ |γ|) ln(| · |) ∈ L1(Rd).

3. θ-summability on the variable Lebesgue spaces

For the variable Lebesgue spaces we can state similar theorems. A function p(·)
belongs to P(Rd) if p : Rd → [1,∞] and p(·) is measurable. Then we say that p(·) is
an exponent function. Let

p− := inf{p(x) : x ∈ Rd} and p+ := sup{p(x) : x ∈ Rd}.

Set

Ω∞ := {x ∈ Rd : p(x) =∞}.
The modular generated by p(·) ∈ P(Rd) is defined by

%p(·)(f) :=

∫
Rd\Ω∞

|f(x)|p(x)
dx+ ‖f‖L∞(Ω∞) ,

where f is a measurable function. A measurable function f belongs to the Lp(·)(Rd)
space if there exists λ > 0 such that %p(·) (f/λ) < ∞. We can see that the modular

%p(·) is not a norm. Define the Lp(·)(Rd)-norm by

‖f‖p(·) := inf

{
λ > 0 : %p(·)

(
f

λ

)
≤ 1

}
.

Then ‖ · ‖p(·) is a norm and the space (Lp(·)(Rd), ‖ · ‖p(·)) is a normed space. In case

p(·) = p is a constant, then we get back the usual Lp(Rd) spaces.
We say that r(·) is locally log-Hölder continuous if there exists a constant C0

such that for all x, y ∈ Rd, 0 < ‖x− y‖2 < 1/2,

|r(x)− r(y)| ≤ C0

− log(‖x− y‖2)
.

We denote this set by LH0(Rd).
We say that r(·) is log-Hölder continuous at infinity if there exist constants C∞

and r∞ such that for all x ∈ Rd

|r(x)− r∞| ≤
C∞

log(e+ ‖x‖2)
.

We write briefly r(·) ∈ LH∞(Rd). Let

LH(Rd) := LH0(Rd) ∩ LH∞(Rd).

The following two results were proved in Cruz-Uribe and Fiorenza [4, p.27, p.35].
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Theorem 3.1 (Hölder’s inequality). Let p(·) ∈ P(Rd), 1/p(x) + 1/q(x) = 1. Then for
all f ∈ Lp(·)(Rd) and g ∈ Lq(·)(Rd), fg ∈ L1(Rd) and∫

Rd

|f(x)g(x)| dx ≤ Cp(·) ‖f‖p(·) ‖g‖q(·).

Lemma 3.2. If p(·) ∈ P(Rd) and K ⊂ Rd, |K| <∞, then χK ∈ Lp(·)(Rd) and

‖χK‖p(·) ≤ |K|+ 1.

We need also the next statement.

Theorem 3.3. If p(·) ∈ P(Rd), then Lp(·) ⊂W (L1, `∞)(Rd).

Proof. Let f ∈ Lp(·)(Rd) and q(·) the conjugate function of p(·). Then by Theorem
3.1 and Lemma 3.2,∫

[n,n+1)

|f(x)| dx ≤ Cp(·) ‖f‖p(·) ‖χ[n,n+1)‖q(·) ≤ 2Cp(·) ‖f‖p(·) ,

for n = (n1, . . . , nd) ∈ Zd, where n+ 1 = (n1 + 1, . . . , nd + 1). Hence

‖f‖W (L1,`∞) ≤ 2Cp(·) ‖f‖p(·) <∞,
which implies the theorem. �

The following three theorems can be found in Cruz-Uribe and Fiorenza [4, p.56,
p.44, p.42]

Theorem 3.4. If p(·) ∈ P(Rd), p+ <∞, then the set of bounded functions with compact
support is dense in Lp(·)(Rd).

Theorem 3.5. If p ∈ P(Rd) and p+(Rd \ Ω∞) <∞, then the following properties are
equivalent:

(i) convergence in norm,
(ii) convergence in modular.

Theorem 3.6. If p(·) ∈ P(Rd), then

Lp(·)(Rd) ⊂ Lp+(Rd) + Lp−(Rd),

i.e., for all f ∈ Lp(·)(Rd) there exist f1 ∈ Lp−(R) and f2 ∈ Lp+(R) such that f =
f1 + f2.

The next theorem says that σθT f(x) converges at every Lebesgue point.

Theorem 3.7. If p(·) ∈ P(Rd) and θ has a radial majorant, then
(i) for all Lebesgue points of f ∈ Lp(·)(Rd),

lim
T→∞

σθT f(x) =

∫
Rd

θ(y) dy · f(x).

(ii) If in addition p+ <∞, then

lim
T→0+

σθT f(x) = 0

for all f ∈ Lp(·)(Rd) and for all x ∈ Rd.



Continuous wavelet transform in variable Lebesgue spaces 503

Proof. To prove (i), let f ∈ Lp(·)(Rd) and x ∈ Rd be a Lebesgue point of f . Using

Theorem 3.3, we have f ∈W (L1, `∞)(Rd). By Theorem 2.2 we get that

lim
T→∞

σθT f(x) =

∫
Rd

θ(y) dy · f(x).

Consider (ii). Let f ∈ Lp(·)(Rd) and x ∈ Rd arbitrary. Then by Theorem 3.6

there exist f1 ∈ Lp−(Rd) and f2 ∈ Lp+(Rd) such that f = f1 + f2. Since p+ <∞ we
can use Theorem 2.2 to obtain

lim
T→0+

σθT f(x) = lim
T→0+

σθT f1(x) + lim
T→0+

σθT f2(x) = 0,

which proves the theorem. �

Of course, the convergence in (i) holds almost everywhere (see also Cruz-Uribe
and Fiorenza [4, p.197]). The first and the second statement of the next theorem can
be found in Cruz-Uribe and Fiorenza [4, p.199].

Theorem 3.8. Let p(·) ∈ P(Rd), p+ < ∞, 1/p(x) + 1/q(x) = 1. If θ has a radial
majorant and the maximal operator is bounded on Lq(·)(Rd), then for all f ∈ Lp(·)(Rd)

(i) ∥∥σθT f∥∥p(·) ≤ C ‖f‖p(·) (T > 0). (3.1)

(ii)

lim
T→∞

σθT f =

∫
Rd

θ(x) dx · f in the Lp(·)(Rd)-norm.

(iii) If in addition p− > 1, then

lim
T→0+

σθT f = 0 in the Lp(·)(Rd)-norm

for all f ∈ Lp(·)(Rd).

Proof. To prove (iii), fix ε > 0. By Theorem 3.4 there exists a bounded function g
with compact support, such that ‖f − g‖p(·) < ε. Using (3.1) we have∥∥σθT f∥∥p(·) ≤ ∥∥σθT (f − g)

∥∥
p(·) +

∥∥σθT g∥∥p(·) < Cε+
∥∥σθT g∥∥p(·) .

So it is enough to show that

lim
T→0+

∥∥σθT g∥∥p(·) = 0.

Since p+ <∞, then by Theorem 3.5 we have to show that

lim
T→0+

∫
Rd

|σθT g(x)|p(x) dx = 0.

Let

g0(x) :=
g(x)

‖θ‖1‖g‖∞
.

Then ‖g0‖∞ ≤ 1/‖θ‖1 and

|σθT g0(x)| = |(g0 ∗ θT )(x)| ≤ ‖g0‖∞‖θT ‖1 = ‖g0‖∞‖θ‖1 ≤ 1.



504 Kristóf Szarvas and Ferenc Weisz

Therefore

lim
T→0+

∫
Rd

|σθT g(x)|p(x) dx = lim
T→0+

∫
Rd

(‖θ‖1‖g‖∞)p(x)|σθT g0(x)|p(x) dx

≤ (‖θ‖1‖g‖∞ + 1)p+ lim
T→0+

∫
Rd

|σθT g0(x)|p− dx.

Here 1 < p− <∞ and g0 ∈ Lp−(Rd), therefore by Theorem 2.3 we get that

lim
T→0+

∫
Rd

|σθT g0(x)|p− dx = 0,

which proves the theorem. �

The next theorem about the boundedness of the classical Hardy-Littlewood max-
imal operator in variable Lebesgue spaces can be found in Cruz-Uribe and Fiorenza
[4, p.89].

Theorem 3.9. Let p(·) ∈ P(Rd) and 1/p(·) ∈ LH(Rd).

(i) Then for all f ∈ Lp(·)(Rd) and t > 0∥∥tχ{x∈Rd:Mf(x)>t}
∥∥
p(·) ≤ C ‖f‖p(·) .

(ii) If in addition p− > 1, then for all f ∈ Lp(·)(Rd)

‖Mf‖p(·) ≤ C ‖f‖p(·) .

Remark 3.10. If 1/p(·) ∈ LH(Rd) and p+ <∞, then 1/q(·) ∈ LH(Rd) and q− > 1 so
the maximal operator is bounded on Lq(·)(Rd). Therefore if 1/p(·) ∈ LH(Rd), p+ <∞
and θ has a radial majorant, then the hypotheses of Theorem 3.8 remain true.

4. The continuous wavelet transform

The continuous wavelet transform of f with respect to a wavelet g is defined by

Wgf(x, s) := |s|−d/2
∫
Rd

f(t)g(s−1(t− x)) dt = 〈f, TxDsg〉,

(x ∈ Rd, s ∈ R, s 6= 0) when the integral does exist. We suppose that
g, γ ∈ L2(Rd) and ∫ ∞

0

|ĝ(sω)||γ̂(sω)| ds
s
<∞

for almost ω ∈ Rd with ‖ω‖2 = 1. If

Cg,γ :=

∫ ∞
0

ĝ(sω)γ̂(sω)
ds

s

is independent of ω, then the inversion formula holds for all f ∈ L2(Rd):∫ ∞
0

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
= Cg,γ · f,
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where the equality is understood in a vector-valued weak sense. Consider the operators

ρSf :=

∫ ∞
S

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1

and

ρS,T f :=

∫ T

S

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
,

where 0 < S < T <∞. Let

C ′g,γ := −
∫
Rd

(g∗ ∗ γ)(x) ln (|x|) dx,

where g∗(x) = g(−x) is the involution operator. If g and γ both have radial log-
majorants, then C ′g,γ is finite by Lemma 2.4.

Li and Sun [13] proved that if g and γ radial,
∫
Rd(g∗ ∗ γ)(x) dx = 0, and both

have a radial log-majorant, then for any f ∈ Lp(Rd) (1 ≤ p <∞)

lim
S→0+,T→∞

ρS,T f(x) = lim
S→0+

ρSf(x) = C ′g,γf(x)

at every Lebesgue point of f . Moreover, if 1 < p <∞, then the convergence holds in
the Lp(Rd)-norm for all f ∈ Lp(Rd). If p = 1, then

lim
S→0+

ρSf = C ′g,γf in the L1(Rd)-norm

for all f ∈ L1(Rd). Under some similar conditions Weisz [19] proved similar results.
In this paper we investigate the same questions on the variable Lebesgue spaces and
we will prove similar theorems. Of course, Cg,γ = C ′g,γ under some conditions (see Li
and Sun [13]).

5. Convergence of %S and %S,T

We will denote the surface area of the unit ball in Rd by ωd−1. The next theorem
plays central role in this chapter. Under some conditions we lead back %Sf to a θ-
summation.

Theorem 5.1. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If p(·) ∈ P(Rd) and p+ <∞, then for all f ∈ Lp(·)(Rd)

%Sf = σθ1/Sf (S > 0),

where θ is defined later in the proof.
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Proof. Let y ∈ Rd be arbitrary and decompose %Sf(y)

%Sf(y) =

∫ ∞
S

∫
Rd

1

s2d+1

∫
Rd

f(t)g

(
t− x
s

)
γ

(
y − x
s

)
dtdxds

=

∫ ∞
S

∫
‖y−t‖2<S

1

s2d+1

∫
Rd

f(t)g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

−
∫ S

0

∫
‖y−t‖2≥S

1

s2d+1

∫
Rd

f(t)g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

+

∫ ∞
0

∫
‖y−t‖2≥S

1

s2d+1

∫
Rd

f(t)g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

=: I − II + III.

We can write I and II as a convolution, similarly as in Li and Sun [13]:

I = (f ∗ ϕ1/S)(y),

where

ϕ(t) :=

∫ ∞
1

H

(
t

u

)
1

ud+1
χB(0,1)(t) du

and H := g∗ ∗ γ. Since γ has radial log-majorant, γ ∈ L∞(Rd) and since g ∈ L1(Rd),
H ∈ L∞(Rd). Therefore if t ∈ B(0, 1), then

|ϕ(t)| ≤ ‖H‖∞
∫ ∞

1

1

ud+1
du = C‖H‖∞ <∞.

If t /∈ B(0, 1), then ϕ(t) = 0. Thus C‖H‖∞χB(0,1) is a radial majorant of ϕ.

II = (f ∗ ψ1/S)(y),

where

ψ(t) :=

∫ 1

0

H

(
t

u

)
1

ud+1
χRd\B(0,1)(t) du.

Let G := |g| ∗ |γ|. Then H ≤ G, and since g, γ have radial log-majorants, Lemma
2.4 implies that H, G have radial log-majorants, too. Since G is radial, there exists η
such that G(x) = η(‖x‖2). If t ∈ B(0, 1), then ψ(t) = 0. If t ∈ Rd \B(0, 1), then

|ψ(t)| ≤
∫ 1

0

G

(
t

u

)
1

ud+1
du =

∫ 1

0

η

(
‖t‖2
u

)
1

ud+1
du

=
1

‖t‖d2

∫ ∞
‖t‖2

η(s)sd−1 ds =: ζ(t)

and let

ζ(t) :=

∫ ∞
1

η(s)sd−1 ds ≤ 1

ωd−1
‖G‖1 <∞ (t ∈ B(0, 1)).
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It is easy to see that |ψ| ≤ ζ, ζ is radial, non-increasing on (0,∞) and bounded.
Moreover, ∫

Rd

ζ(t) dt =

∫
B(0,1)

ζ(t) dt+

∫
Rd\B(0,1)

ζ(t) dt

= C +

∫
Rd\B(0,1)

1

‖t‖d2

∫ ∞
‖t‖2

η(s)sd−1 dsdt

≤ C + ωd−1

∫ ∞
1

1

r

∫ ∞
r

η(s)sd−1 dsdr

= C + ωd−1

∫ ∞
1

η(s)sd−1

∫ s

1

1

r
drds

= C +

∫
Rd\B(0,1)

G(t) ln(|t|) dt <∞,

i.e., ζ is integrable so ζ is a radial majorant of ψ.
We will show that III = 0. To apply Fubini’s theorem we will verify that∫ ∞

0

∫
‖y−t‖2≥S

1

sd+1
|f(t)|G

(
y − t
s

)
dtds <∞. (5.1)

Since G is radial ∫
‖y−t‖2≥S

|f(t)|
∫ ∞

0

1

sd+1
η

(
‖y − t‖2

s

)
dsdt

=

∫
‖y−t‖2≥S

|f(t)|
∫ ∞

0

1

‖y − t‖d2
η(u)ud−1 dudt

=
1

ωd−1
‖G‖1

∫
‖y−t‖2≥S

|f(t)| 1

‖y − t‖d2
dt. (5.2)

By Theorem 3.1∫
‖y−t‖2≥S

|f(t)| 1

‖y − t‖d2
dt ≤ Cp(·) ‖f‖p(·)

∥∥∥∥ 1

‖y − ·‖d2
χ{‖y−·‖2≥S}

∥∥∥∥
q(·)

,

where 1/p(x) + 1/q(x) = 1 (x ∈ Rd). Let λ := 1/Sd. Then

1

λ‖y − t‖d2
≤ 1

λSd
= 1 and

(
1

λ‖y − t‖d2

)q(t)
≤
(

1

λ‖y − t‖d2

)q−
.

If p+ <∞, then q− > 1 and∫
Rd

(
χ{‖y−t‖2≥S}

λ‖y − t‖d2

)q(t)
dt ≤

∫
‖y−t‖2≥S

(
1

λ‖y − t‖d2

)q−
dt

= Sdq−
∫
‖y−t‖2≥S

1

‖y − t‖dq−2

dt

= ωd−1S
dq−

∫ ∞
S

u−dq−+d−1 du <∞.
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Moreover,
1

‖y−t‖d2
χ{‖y−t‖2≥S}(t)

λ
≤ 1

λSd
= 1,

in other words, ∥∥∥∥∥
1

‖y−·‖d2
χ{‖y−·‖2≥S}

λ

∥∥∥∥∥
L∞(Ω∞)

≤ 1,

where

Ω∞ = {x ∈ Rd : q(x) =∞}.
So

%q(·)

( 1
‖y−·‖d2

χ{‖y−·‖2≥S}

λ

)
<∞

and ∥∥∥∥ 1

‖y − ·‖d2
χ{‖y−·‖2≥S}

∥∥∥∥
q(·)

<∞.

We get that (5.2) is finite so we can apply Fubini’s theorem. Since H is radial, there
exists ν such that H(x) = ν(‖x‖2) and

III =

∫ ∞
0

∫
‖y−t‖2≥S

f(t)
1

sd+1
H

(
y − t
s

)
dtds

=

∫
‖y−t‖2≥S

f(t)

∫ ∞
0

1

sd+1
ν

(
‖y − t‖2

s

)
dsdt

=

∫
‖y−t‖2≥S

f(t)
1

‖y − t‖d2

∫ ∞
0

ν(u)ud−1 dudt

=
1

ωd−1

∫
‖y−t‖2≥S

f(t)
1

‖y − t‖d2

∫
Rd

H(u) dudt =

=
1

ωd−1

∫
‖y−t‖2≥S

f(t)
1

‖y − t‖d2

∫
Rd

(g∗ ∗ γ)(u) dudt = 0.

We have that

%Sf(y) = (f ∗ ϕ1/S)(y)− (f ∗ ψ1/S)(y) =
(
f ∗ (ϕ1/S − ψ1/S)

)
(y) =: σθ1/Sf(y),

where

θ(y) := ϕ(y)− ψ(y).

Since ϕ and ψ have radial majorants, θ has, too. �

Using the previous theorem we can prove the convergence of %Sf and %S,T f at
Lebesgue points, almost everywhere and in the Lp(·)(Rd)-norm.

Theorem 5.2. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If p(·) ∈ P(Rd), p+ <∞, then for all Lebesgue points of f ∈ Lp(·)(Rd),
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(i)

lim
S→0+

%Sf(x) = C ′g,γ · f(x).

(ii)

lim
S→0+,T→∞

%S,T f(x) = C ′g,γ · f(x).

Proof. By Theorem 5.1 and Theorem 3.7 we have

lim
S→0+

%Sf(x) = lim
S→0+

σθ1/Sf(x) =

∫
Rd

θ(y) dy · f(x),

i.e., it is enough to prove that ∫
Rd

θ(y) dy = C ′g,γ .

We have ∫
Rd

θ(y) dy =

∫
Rd

ϕ(y) dy −
∫
Rd

ψ(y) dy.

Here ∫
Rd

ϕ(y) dy =

∫
B(0,1)

∫ ∞
1

H
(y
u

) 1

ud+1
dudy

= ωd−1

∫ 1

0

rd−1

∫ ∞
1

ν
( r
u

) 1

ud+1
dudr

= ωd−1

∫ 1

0

1

r

∫ r

0

ν(t)td−1 dtdr

= ωd−1

∫ 1

0

td−1ν(t)

∫ 1

t

1

r
drdt

= −
∫
B(0,1)

H(t) ln(|t|) dt

= −
∫
B(0,1)

(g∗ ∗ γ)(t) ln(|t|) dt

and we have similarly that∫
Rd

ψ(y) dy =

∫
Rd\B(0,1)

(g∗ ∗ γ)(t) ln(|t|) dt,

i.e. ∫
Rd

θ(y) dy = −
∫
B(0,1)

(g∗ ∗ γ)(t) ln(|t|) dt−
∫
Rd\B(0,1)

(g∗ ∗ γ)(t) ln(|t|) dt

= −
∫
Rd

(g∗ ∗ γ)(t) ln(|t|) dt = C ′g,γ .

To prove (ii), observe that

%S,T f(x) = %Sf(x)− %T f(x).
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Then use Theorem 5.1 and Theorem 3.7 to get

lim
S→0+,T→∞

%S,T f(x) = lim
S→0+

%Sf(x)− lim
T→∞

σθ1/T f(x) = C ′g,γ · f(x)− 0,

which proves the theorem. �

Corollary 5.3. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If p(·) ∈ P(Rd) and p+ <∞, then for all f ∈ Lp(·)(Rd)
(i)

lim
S→0+

%Sf = C ′g,γf a.e.

(ii)
lim

S→0+,T→∞
%S,T f = C ′g,γf a.e.

Theorem 5.4. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

Let p(·) ∈ P(Rd), p+ < ∞, 1/p(x) + 1/q(x) = 1. If the maximal operator is bounded
on Lq(·)(Rd), then for all f ∈ Lp(·)(Rd),

(i)
lim
S→0+

%Sf = C ′g,γ · f in the Lp(·)(Rd)-norm.

(ii) If in addition p− > 1, then for all f ∈ Lp·(Rd)
lim

S→0+,T→∞
%S,T f = C ′g,γ · f in the Lp(·)(Rd)-norm.

Proof. To prove (i), use Theorem 5.1 and Theorem 3.8

lim
S→0+

%Sf = lim
S→0+

σθ1/Sf =

∫
Rd

θ(x) dx · f in the Lp(·)(Rd)-norm.

We have seen, that
∫
Rd θ(x) dx = C ′g,γ .

We can prove (ii) similarly. Use Theorem 5.1 and Theorem 3.8 to obtain

lim
S→0+,T→∞

%S,T f = lim
S→0+

%Sf − lim
T→∞

%T f = C ′g,γ · f

in the Lp(·)(Rd)-norm. The proof of the theorem is complete. �

By Remark 3.10 if we suppose that 1/p(·) ∈ LH(Rd) and p+ < ∞, then the
maximal operator is bonded on Lq(·)(Rd). Therefore we have

Corollary 5.5. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If 1/p(·) ∈ LH(Rd), p+ <∞, then for all f ∈ Lp(·)(Rd),

(i) lim
S→0+

%Sf = C ′g,γ · f in the Lp(·)(Rd)-norm.
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(ii) If in addition p− > 1, then for all f ∈ Lp(·)(Rd)

lim
S→0+,T→∞

%S,T f = C ′g,γ · f in the Lp(·)(Rd)-norm.
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Abstract. In this note, we introduce a hyperbolic analogue of the isotomic trans-
formation, originally defined for Euclidean triangle and we investigate some of its
properties.
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1. Introduction

The aim of this paper is to introduce the isotomic transformation in the hy-
perbolic geometry and investigate some of its basic properties. There are several ap-
proaches to the geometry of the hyperbolic plane. We found that the approach most
suitable for our purposes is the so-called Cayley-Klein approach (see [4], [9] or [5]). In
this approach, the hyperbolic plane is thought of as being a region of the projective
plane, bounded by a real, nondegenerate projective conic. This conic is defined by a
polarity of the real projective plane,{

xµ = cµνξν ,

ξµ = Cµνxν ,
(1.1)

where we sum after all the possible values of the indices (µ, ν = 0, 1, 2). Here (xµ)
are the point coordinates, while (ξµ) are the line coordinates. As we are given a
hyperbolic polarity, the matrices [c] and [C] are both symmetric and inverse to each
other. Moreover, the conic given by the point equation

cµνxµxν = 0 (1.2)

is a nondegenerate real conic, called the Absolute. The equation of the Absolute,
written in line coordinates, is

Cµνξµξν = 0. (1.3)

We notice that, usually, we prescribe the polarity, therefore the equations (1.1) give,
implicitly, the definition of the coordinates (homogeneous coordinates, of course).
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The system of coordinates we are going to use is the system of barycentric (or areal)
coordinates, introduced by Sommerville, in 1932 ([10]) by another method. For these
coordinates, the two matrices that define the polarity are

[cµν ] =

 1 cosh c cosh b
cosh c 1 cosh a
cosh b cosh a 1

 (1.4)

and

[Cµν ] =
1

γ

 − sinh2 a sinh a sinh b cosC sinh a sinh c cosB

sinh a sinh b cosC − sinh2 b sinh b sinh b cosA

sinh a sinh c cosB sinh b sinh b cosA − sinh2 c

 , (1.5)

where

γ = 1 + 2 cosh a cosh b cosh c− cosh2 a− cosh2 b− cosh2 c > 0

is the determinant of the matrix [cµν ].
It should be clear that the coordinates defined by a polarity are defined for

any point of the projective plane, not just for the ordinary points. In contrast, the
barycentric coordinates, defined by Sommerville by using a triangle and a unit point,
as it is standard in projective geometry, are valid only for ordinary points. Thus, for
Sommerville, the barycentric (point) coordinates are defined by

X0 = sinh a sinhu,

X1 = sinh b sinh v,

X0 = sinh c sinhw,

(1.6)

where a, b, c are the lengths of the sides BC,CA and AB, respectively, of the reference
triangle, while u, v, w are the distances from the current point to these sides. These
definitions are equivalent to those given by polarisation for ordinary points in the
hyperbolic plane, but they don’t make sense for ideal or ultra-infinite points for the
very simple reason that the lengths u, v, w are not defined.

The homogeneous coordinates in the hyperbolic plane have not been very popu-
lar, lately. Most of the works on analytic hyperbolic geometry prefer the use of Carte-
sian or polar coordinates. Nevertheless, if somebody wants to investigate problems
related to a hyperbolic triangle, it is more convenient to use some coordinates related
closely to the triangle itself. Recently, (see [11]) Ungar introduced a set of barycen-
tric coordinates, in the framework of the so-called Einstein velocity space model of
hyperbolic geometry. We feel, however, that the Cayley-Klein (projective) model is
closer to the intuition and, therefore, we use the barycentric coordinates introduced
by Sommerville ([10]) and, afterwards, reformulated by Coxeter ([4]).

We introduce the following notations, that we will use again and again. For more
details, see [2]. First of all, we denote by H2 the hyperbolic plane, as a subset of the
real projective plane. If (x) and (y) are two points, while [ξ] and [η] are two lines
(from the real projective plane!), then

1. (x, y) = cµνxµyν ;
2. [ξ, η] = Cµνξµην ;
3. {x, η} = xµξη;
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4. {ξ, y} = ξµyν ,

where, as usually, we sum after all the possible values of the indices. We mention that,
if the lines [ξ] and [η] are the polars of the points (x) and (y), the all the all four
brackets defined above are equal.

The brackets we introduce are very convenient for describing different entities
related to hyperbolic geometry. We mention only some of them, that will be used in
the paper.

1. The equation of the Absolute is (x, x) = 0 (in point coordinates) or [ξ, ξ] = 0 (in
line coordinates);

2. a point (x) is an ordinary point iff (x, x) > 0;
3. a point (x) is an ultra-infinite point iff (x, x) < 0;
4. a line [ξ] is ultra-infinite (i.e. lies outside the hyperbolic plane) iff [ξ, ξ] > 0;
5. the polar of any ordinary point of the hyperbolic plane is ultra-infinite and the

polar of ultra-infinite point is an ordinary line;
6. the lines [ξ] and [η] are perpendicular iff [ξ, η] = 0;
7. if α is the angle between two lines, [ξ] and [η], then

cos2 α =
[ξ, η]2

[ξ, ξ] · [η, η]
.

Notice that this relations makes sense iff the two lines are either both ordinary,
either both ultra-infinite. We cannot compute, for instance, the angle between
an ordinar line and an ultra-ideal one.

8. If (x) and (y) are two points and d is the distance between them, then

cosh d =
|(x, y)|√

(x, x) cot(y, y)
.

Again, we can only compute distances between two ordinary points or two ultra-
infinite points, but not between an ordinary point and an ultra-infinite point.

9. We can, also, compute the distance d between a point (x) and a line [ξ], by using
the formula

sinh d =
|{x, ξ}|√

(x, x) ·
√
−[ξ, ξ]

.

This distance can be computed iff both (x) and (ξ) are ordinary.

From now on, we shall use exclusively barycentric coordinates and we shall denote
them with capital letters, (X0, X1, X2). In this coordinates, as we saw, we have

(X,X) = (X0)
2

+ (X1)
2

+ (X2)
2

+ 2 cosh c ·X0X1+

+ 2 cosh b ·X0X2 + 2 cosh a ·X1X2.
(1.7)

2. The transformation

The isotomic transformation for Euclidean triangles has been introduced by G.
de Longchamps in 1866 (see [6] and [7]). We shall give here a similar definition, using
the hyperbolic barycentric coordinates.



516 Paul A. Blaga

Definition 2.1. We define, by analogy to the Euclidean case, the isotomic transforma-
tion as being a map

Isot : P2(R) \ T → P2(R),

defined by

Isot (X0, X1, X2) =

(
1

X0
,

1

X1
,

1

X2

)
. (2.1)

Here T is the union of the three sides of the triangle ABC (thought of as projective
lines). We shall say that the points M and M ′ form an isotomic pair. We shall also
say that M ′ is the isotomic conjugate or the isotomic inverse of M . We may, as well,
say, again inspired from the classical case, that the two points are reciprocal (with
respect to the triangle ABC).

As Isot is defined on P2(R) \ T , none of the coordinates Xi vanishes, hence Isot
is well defined.

Remark 2.2. 1. We might have tried, as well, to define the isotomic transformation
just on points of the hyperbolic plane. Nevertheless, as we shall see later, the
image of an ordinary point through the isotomic transformation is not always
an ordinary point, it might be ideal or ultra-infinite.

2. By looking at the formula (2.1), the reader may think that the definition
of the isotomic transformation is identical to the definition from the Eu-
clidean/projective case. This is not the case, however, because the barycentric
coordinates from the hyperbolic case are not the same with the classical barycen-
ter coordinates.

Definition 2.3. We shall say that two points on the side BC of hyperbolic triangle
ABC (ordinary, ideal or ultra-infinite) are isotomically symmetric with respect to the
midpoint A′ of the side BC if they coordinates are A1(0, α1, α2) and A′(0, 1/α1, 1/α2)
or A′

1(0, α2, α1).

The following theorem justifies the name of “isotomic transformation”.

Theorem 2.4. If A1 is an ordinary point on BC, then its isotomic symmetric A′
1 is,

also, ordinary, and A′A1 = A′A′
1 (as hyperbolic lengths). Moreover, is A1 is either

ideal or ultra-infinite, the same holds true for A′
1.

Proof. We notice, first of all, that (A1, A1) = (A′
1, A

′
1), therefore the two numbers

are simultaneously zero, positive or negative. As such, the points A1 and A′
1 have the

same character(ordinary, ideal or ultra-infinite).

Thus, we will consider the particular case when A1 is an ordinary point, and, of
course, the same is true for A′

1. We know, already, that the barycentric coordinates
of A′ are (0, 1, 1). We compute, first, the length of the segment A′A1. We have

coshA′A1 =
|(A′, A1)|√

(A′, A′) · (A1, A1)
.
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On the other hand,

(A′, A′) = 2(1 + cosh a) = 4 cosh2 a

2
,

(A1, A1) = α2
1 + α2

2 + 2α1α2 cosh a,

(A′, A1) = 2(α1 + α2) cosh2 a

2
.

We have, therefore

coshA′A1 =

∣∣∣2(α1 + α2) cosh2 a

2

∣∣∣
2 cosh

a

2

√
α2
1 + α2

2 + 2α1α2 cosh a
=

|α1 + α2| cosh
a

2√
α2
1 + α2

2 + 2α1α2 cosh a
.

Now, it is easy to check that (A′
1, A

′
1) = (A1, A1) and (A′, A′

1) = (A′, A1), therefore
coshA′A′

1 = coshA′A1, hence A′A′
1 = A′A1. �

The previous theorem justifies the following definition:

Definition 2.5. Two cevians of a hyperbolic triangle ABC, starting from the same
vertex, are called isotomic if they cut the opposite side at isotomically symmetric
points. We shall, also, say that the cevians are isotomically conjugated.

Theorem 2.6. If three cevians (starting from different vertices) are concurrent at a
point, then their isotomic conjugates are also concurrent and the intersection points
are, as well, isotomically conjugated.

Proof. Let M
(
X0

0 , X
0
1 , X

0
2

)
be the intersection point of the three given cevians. It is

easy to see that the equations of these cevians are

AM : X0
2X1 −X0

1X2 = 0,

BM : X0
2X0 −X0

0X2 = 0,

CM : X0
1X0 −X0

0X1 = 0.

As such, their intersection points with the sides BC, CA and AB, respectively, will be
A1

(
0, X0

1 , X
0
2

)
, B1

(
X0

0 , 0, X
0
2

)
and C1

(
X0

0 , X
0
1 , 0
)
, respectively. Then, according to

the previous lemma, their symmetrics with respect to the midpoints of the respective
sides will be A′

1

(
0, X0

2 , X
0
1

)
, B′

1

(
X0

2 , 0, X
0
0

)
and C ′

1

(
X0

1 , X
0
0 , 0
)
, respectively.

We are, thus, led to the equations of the isotomically conjugated of the cevians
AM,BM and CM :

AA′
1 : X0

1X1 −X0
2X2 = 0,

BB′
1 : X0

0X0 −X0
2X2 = 0,

CC ′
1 : X0

0X0 −X0
1X1 = 0.

It turns out that the three cevians do intersect, at the point

M ′ (1/X0
0 , 1/X

0
1 , 1/X

0
2

)
,

as we expected. �
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3. The Steiner quadratix

As we mentioned before, one of the advantages of the Cayley-Klein approach to
the hyperbolic plane is that, in this model, the hyperbolic geometry is, in a certain
sense, a “sub-geometry” of the real projective plane. As such, we have access to all
the points of the projective plane, although they are not treated on the same footing.
We can treat any pair of lines as being intersecting lines, but some of them intersect
at ideal or ultra-infinite points. We can write the equation of the line passing through
an arbitrary pair of points, but some of the lines are either ultra-infinite (they don’t
intersect the hyperbolic plane) or lines at infinity (they are tangents to the Absolute).
The downside is that we cannot compute distances and lengths when ideal or ultra-
infinite points and lengths are involved.

We turn, for a while, to the “classical” language of hyperbolic geometry. Then,
for instance, the theorem 2.6 can be reformulated as

Theorem 3.1. Consider three cevians of a given triangle, starting from different ver-
tices. If the three cevians belong to the same pencil of lines (concurrent, ultra-parallel
or parallel), then the their isotomic conjugates also belong to the same pencil.

The point is that we don’t know what kind of pencil.

We ask the following question: When three concurrent cevians of a given hyper-
bolic triangle, starting from different vertices turn, through the isotomic transforma-
tion, into three parallel lines?

We know the answer in the classical Euclidean (or, rather, projective case): when
they intersect on the line at infinity. But the things are similar, here, only that the
line at infinity gets replaced by the Absolute. Indeed, three lines belong to the same
pencil of parallel lines iff they intersect (according to the Cayley-Klein view of the
hyperbolic geometry) on the Absolute. Therefore, we have the following theorem:

Theorem 3.2. Let us assume that the cevians AA1, BB1 and CC1 of the triangle
ABC intersect at a point M(X0

0 , X
0
1 , X

0
2 ) (ordinary, ideal or ultra-infinite). Then the

isotomic conjugates of the cevians are parallel (i.e. they intersect at an ideal point)
iff M belongs to the curve

X2
0X

2
1 +X2

0X
2
2 +X2

1X
2
2 + 2 cosh cX0X1X

2
2+

+ 2 cosh bX0X
2
1X2 + 2 cosh aX2

0X1X2 = 0.
(3.1)

We shall call the curve (3.1) the Steiner quadratix. It is the hyperbolic analogue of
the first Steiner ellipse.

Proof. The isotomic conjugates of the cevians are parallel to each other iff they in-
tersect at a point of the Absolute. But, as we saw earlier, the conjugates intersect at
the point M ′ (1/X0

0 , 1/X
0
1 , 1/X

0
2

)
. M ′ belongs to the Absolute iff

1

(X0
0 )

2 +
1

(X0
1 )

2 +
1

(X0
2 )

2 +
2

X0
0 ·X0

1

cosh c+
2

X0
0 ·X0

2

cosh b+
2

X0
1 ·X0

2

cosh a = 0
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or (
X0

0

)2 · (X0
1

)2
+
(
X0

0

)2 · (X0
2

)2
+
(
X0

1

)2 · (X0
2

)2
+

+ 2 cosh c ·X0
0 ·X0

1 ·
(
X0

2

)2
+ 2 cosh b ·X0

0 ·
(
X0

1

)2 ·X0
2+

+ 2 cosh a ·
(
X0

0

)2 ·X0
1 ·X0

2 = 0,

which shows that the point M belongs to the Steiner quadratix. �

Remark 3.3. Clearly, the vertices of the triangle ABC belong to the Steiner quadratix,
which, thus, is not empty.

4. Some remarkable pairs of isotomic points

As examples, we use the hyperbolic analogs of some classical remarkable points
from the geometry of the Euclidean triangles, the Gergonne group of points and the
Nagel group of points. For the Euclidean points, see [1] and [8].

4.1. The Gergonne and Nagel Points

In [3], we introduced the Gergonne and Nagel points associated to a hyperbolic
triangle. Exactly as it happens for a Euclidean triangle, the Gergonne point is the
point obtained by intersecting the lines connecting the vertices of a hyperbolic triangle
ABC to the points of contact of the incircle with the opposite sides. The incircle is,
for any hyperbolic triangle, a proper circle. For the Nagel point, the definition has to
be a little bit adapted to work for an arbitrary hyperbolic triangle. Thus, the Nagel
point is obtained as intersection of the lines connecting the vertices of the triangle
to the points of contact of the opposite sides to the corresponding excycles. Unlike
the Euclidean case, an arbitrary hyperbolic triangle doesn’t always have excircles. In
some cases, these circles become equidistants or horocycles. We use the term “cycle”
to cover all the possible situations.

In [3], we prove that, for each situation, the three cevians really intersect and,
moreover, the intersection points are always ordinary. More specifically, we were able
to prove that they barycentric coordinates are identical to the barycentric coordinates
of their Euclidean analogues, i.e.

• for the Gergonne point we obtain

Γ = Γ

(
tan

A

2
, tan

B

2
, tan

C

2

)
;

• for the Nagel point, we obtain

N = N

(
cot

A

2
, cot

B

2
, cot

C

2

)
.

Thus, the Gergonne and Nagel points are isotomic to each other.
We can see immediately, without any computation, that the points are ordinary

(as all the coordinates are strictly positive, they are in the interior of the triangle)
and they are isotomic to each other.
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4.2. The adjoint Gergonne and Nagel points

We introduce these points in [3], by analogy to the classical case. Thus, the
adjoint Gergonne points Γa,Γb,Γc are the analogues of the Gergonne points, for the
excycles. Thus, consider, for instance the excycles that is tangent to the side BC in
an interior points. We connect the tangency points with the opposite vertices. We
proved in [3] that they intersect at a point Γa (which is not necessarily ordinary) and
the same happens with the other two vertices of the triangle ABC.

We get, thus, three points

Γa = Γa

(
− tan

A

2
, cot

B

2
, cot

C

2

)
,

Γb = Γb

(
cot

A

2
,− tan

B

2
, cot

C

2

)
,

Γc = Γc

(
cot

A

2
, cot

B

2
,− tan

C

2

)
.

The lines connecting the extremities of a side of the triangle ABC to the contact
points of the excycles lying within the angles adjacent to this side, situated on the
extensions of the opposite sides of the one considered and the line that connects the
third vertex to the contact point of the incircle to the opposite side are concurrent at a
point (ordinary, ideal or ultra-infinite). We get, thus (see [3]), three points Na, Nb, Nc,
called the adjoint Nagel points of the triangle ABC:

Na = Na

(
− cot

A

2
, tan

B

2
, tan

C

2

)
,

Nb = Nb

(
tan

A

2
,− cot

B

2
, tan

C

2

)
,

Nc = Nc

(
tan

A

2
, tan

B

2
,− cot

C

2

)
.

It can be seen that each adjoint Nagel point is the isotomic conjugate of the corre-
sponding adjoint Gergonne point.

Acknowledgments. The author would like to thank Professor Dorin Andrica for the
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1. Introduction

The systematic study of the smooth circular functions defined on a manifold was
initiated by E.Pitcher in the articles [23],[24]. His goal was to extend in this context
the classical Morse theory for real-valued functions. The importance of this study
was pointed out by Novikov in the early 1980s. The Morse - Novikov theory is now a
large and actively developing domain of Differential Topology, with applications and
connections to many geometrical problems (see the monographs [11] and [21]).

The ϕ-category of a manifold M is ϕ(M) = min{µ(f) : f ∈ C∞(M,R)}, and it
represents the ϕ-category of the pair (M,R).

The circular ϕ-category of a manifold M was introduced in the paper [4]. It is
defined as the ϕ-category of the pair (M,S1) corresponding to the family C∞(M,S1),
where S1 is the unit circle. That is

ϕ
S1 (M) = min{µ(f) : f ∈ C∞(M,S1)},

where µ(f) denotes the cardinality of the critical set of mapping f : M → S1.
If we restrict the class of smooth functions to its subclass of Morse functions,

then we obtain, in the real case, the Morse-Smale characteristic

γ(M) = min{µ(f) : f ∈ C∞(M,R), f − Morse},

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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and the circular Morse-Smale characteristic

γ
S1 (M) = min{µ(f) : f ∈ C∞(M,S1), f − circular Morse function}

in the circular case. For the Morse-Smale characteristic of the closed surfaces we refere
the reader to [5]. The inequalities

ϕ
S1 (M) ≤ ϕ(M), γ

S1 (M) ≤ γ(M) (1.1)

rely on the property C(exp ◦g) = C(g) which is quite obvious due to the property of
the exponential map to be a local diffeomorphism. Thus, the quality of a real valued
function g : M −→ R to be Morse is transmited to the function exp ◦g and the second
inequality of (1.1) is also justified. On the other hand, the inequalities

ϕ(M) ≤ γ(M), ϕ
S1 (M) ≤ γ

S1 (M) (1.2)

are obvious.
One of the main goals of this paper is to provide classes of manifolds M satisfying

(1.1) with equality, i.e. ϕS1(M) = ϕ(M) and γ
S1 (M) = γ(M). In the last section we

discuss the situation ϕ
S1 (M) = 1 and we formulate a circular version of the Ganea

conjecture.

2. Manifolds with ϕ
S1 (M) = ϕ(M) and γ

S1 (M) = γ(M)

Let us first observe that the inequality ϕS1(M) ≤ ϕ(M) ensured by (1.1) can be
strict. Indeed, the m-dimensional torus Tm = S1× · · · ×S1 (m times) has, according
to [1, Example 3.6.16], the ϕ-category ϕ(Tm) = m + 1. On the other hand, every
projection Tm → S1 is a trivial differentiable fibration, hence it has no critical points,
implying ϕS1(Tm) = 0. This example is part of the following more general remark.
For a closed manifold M we have ϕS1(M) = 0 if and only if there is a differentiable
fibration M → S1. Indeed, the existence of a differentiable fibration M → S1 ensures
the equality ϕS1(M) = 0, as the fibration itself has no critical points at all. Conversely,
the equality ϕS1(M) = 0 ensures the existence of a submersion M → S1, which is also
proper, as its inverse images of the compact sets in S1 are obviously compact. Thus,
by the well-known Ehresmann’s fibration theorem (see for instance the reference [10,
p. 15]) one can conclude that our submersion is actually a locally trivial fibration.
Note that this property works for arbitrary closed target manifolds, not just for the
circle S1.

Assume that every smooth (Morse) circle valued function f : M −→ S1 can be

lifted to a smooth (Morse) real valued function f̃ : M −→ R, i.e. we have exp◦ f̃ = f .
Since the universal cover exp : R −→ S1 is a local diffeomorphism, it follows that
µ(f) = µ(f̃) ≥ ϕ(M), for every smooth function f : M −→ S1. This shows that the
inequalities ϕ

S1 (M) ≥ ϕ(M), γ
S1 (M) ≥ γ(M) hold, which combined to the general

inequalities (1.1), leads to the following result.

Proposition 2.1. ([6]) Let M be a connected smooth manifold. If M satisfies the lifting
property Hom (π(M),Z) = 0, then ϕ

S1 (M) = ϕ(M) and γ
S1 (M) = γ(M). In particular

ϕ
S1 (M) = ϕ(M) and γ

S1 (M) = γ(M) whenever the fundamental group of M is a
torsion group.
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2.1. On the categories of some Grassmann manifolds

Proposition 2.2. If n ≥ 2 is an integer, then ϕ
S1 (Sn) = ϕ(Sn)=γ

S1 (Sn) = γ(Sn)= 2
and

ϕ
S1 (RPn) = ϕ(RPn) = γ

S1 (RPn) = γ(RPn) = cat(RPn) =

ϕ
S1 (CPn) = ϕ(CPn) = γ

S1 (CPn) = γ(CPn) = cat(CPn) = n+ 1,

where cat(CPn) stands for the Lusternik-Schnirelmann category of the complex pro-
jective space CPn.

Proof. We shall only justify the equalities

ϕ
S1 (CPn) = ϕ(CPn) = γ(CPn) = γ

S1 (CPn) = cat(CPn) = n+ 1,

as the other equalities have been already proved in [6]. The equalities ϕ
S1 (CPn) =

ϕ(CPn) and γ
S1 (CPn) = γ(CPn) follow from Proposition 2.1 taking into account

the simply-connectedness of the complex projective space CPn. On the other hand
the inequality ϕ(CPn) ≤ γ(CPn) follow from the general inequality (1.2). Therefore
ϕ
S1 (CPn) = ϕ(CPn) ≤ γ(CPn) = γ

S1 (CPn). In order to prove the equalities γ(CPn) =
cat(CPn) = n+ 1 we observe that

γ(CPn) ≤ µ(f) = card(C(f)) = n+ 1,

as the function

f : CPn −→ R, f([z1 , . . . , zn+1 ]) =
|z1|2 + 2|z2|2 + · · ·+ n|zn|2 + (n+ 1)|zn+1|2

|z1|2 + |z2|2 + · · ·+ |zn|2 + |zn+1|2
.

is a Morse function with the n+ 1 critical points

[1, 0, . . . , 0], [0, 1, . . . , 0], . . . , [0, 0, . . . , 1] ∈ CPn [19, p. 89].

Thus ϕ(CPn) ≤ γ(CPn) ≤ n+ 1. Finally, we use the well-known inequality ϕ(CPn) ≥
cat(CPn) and the relation cat(CPn) = n+ 1 [9, p. 3, pp. 7-13]. �

Note that the equalities ϕ
S1 (RPn) = ϕ(RPn) = cat(RPn) = n + 1 are being

similarly proved in [6] by using the Z2 structure of the fundamental group of RPn,
the Morse function

Fn : RPn −→ R, Fn([x
1
, . . . , x

n+1
]) =

x21 + 2x22 + · · ·+ nx2n + (n+ 1)x2n+1

x21 + x22 + · · ·+ x2n + x2n+1

,

whose critical set is C(Fn) = {[1, 0, . . . , 0], [0, 1, . . . , 0], . . . , [0, 0, . . . , 1]}, and the well-
known relations ϕ(RPn) ≥ cat(RPn) = n+ 1 [22, pp. 190-192].

Proposition 2.3. If n ≥ 3 and 1 ≤ k ≤ n− 1, then

ϕ
S1 (Gk,n) = ϕ (Gk,n) ≤ γ (Gk,n) = γ

S1 (Gk,n) ≤
(
n+ k
k

)
,

where Gk,n stands for the Grassmann manifold of all k-dimensional subspaces of the
space Rn+k.
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Proof. The equalities ϕ
S1 (Gk,n) = ϕ (Gk,n) and γ

S1 (Gk,n) = γ (Gk,n) follow due
to Proposition 2.1 and the Z2 structure of the fundamental group of Gk,n. Thus
ϕ
S1 (Gk,n) = ϕ (Gk,n) ≤ γ (Gk,n) = γ

S1 (Gk,n). Recall that Gk,n can be embedded into

the projective space RPn+k−1 via the Plücker embedding

p : Gk,n ↪→ P
(
Λk(Rn+k)

)
= RPd(n,k)−1, p(W ) = [w1 ∧ · · · ∧ wk],

where {w1, . . . , wk} is an arbitrary basis of W and d(n, k) stands for the dimension
of Λk(Rn+k), i.e.

d(k, n) =

(
n+ k
k

)
.

The composed function Fd(k,n)−1◦p : Gk,n −→ R is, according to Hangan [15], a Morse

function with d(k, n) critical points and show that γ (Gk,n) ≤ µ
(
Fd(k,n)−1 ◦ p

)
=

d(k, n). �

Corollary 2.4. If n = 1 or k = 1 or (n = 2 and k = 2p− 1 for some p) or (n = 2p− 1

and k = 2), then nk ≤ ϕ
S1 (Gk,n) = ϕ (Gk,n) ≤ γ

S1 (Gk,n) = γ (Gk,n) ≤
(
n+ k
k

)
.

Proof. We only need to use the inequality ϕ (Gk,n) ≥ cat (Gk,n) and the equalities
cat (Gk,n) = nk, proved by Berstein [8], whenever n = 1 or k = 1 or (n = 2 and
k = 2p− 1 for some p) or (n = 2p− 1 and k = 2). �

2.2. On the categories of some classical Lie groups

Proposition 2.5. If n ≥ 3, then the following relations hold

ϕ
S1 (SO(n)) = ϕ (SO(n)) ≤ γ (SO(n)) = γ

S1 (SO(n)) ≤ 2n−1.

Proof. The equalities ϕ
S1 (SO(n)) = ϕ (SO(n)) and γ (SO(n)) = γ

S1 (SO(n)) follow
from Proposition 2.1 by using the fundamental group of SO(n) which is Z2. Thus
ϕ
S1 (SO(n)) = ϕ (SO(n)) ≤ γ (SO(n)) = γ

S1 (SO(n)). In order to prove the inequality

γ (SO(n)) ≤ 2n−1 we observe that

γ (SO(n)) ≤ µ(f) = card(C(f)) = 2n−1,

where f : SO(n) −→ R, f ([aij ]n×n) = a
11

+2a
22

+ · · ·+na
nn

is a Morse function. The
critical set of f consists in all diagonal matrices D with ±1 as diagonal entries and
det(D) = 1 [19, p. 92]. In other words, C(f) is the collection of all diagonal matrices
D with an even number of −1 on the main diagonal. The number of such diagonal

matrices is

(
n
0

)
+

(
n
2

)
+ · · · = 2n−1, i.e. µ(f) = 2n−1. �

Remark 2.6. If n ≥ 3, then the following relations hold

ϕ
S1 (Spin(n)) = ϕ (Spin(n)) ≤ γ (Spin(n)) = γ

S1 (Spin(n)) ≤ 2n.

Moreover, ϕ (Spin(9)) ≥ cat(Spin(9)) = 9 [17]. We only need to justify the inequality
γ
S1 (Spin(n)) ≤ 2n, as the other ones rely on the general inequalities (1.2) and the

simply connectedness of Spin(n). The inequlity γ
S1 (Spin(n)) ≤ 2n follows from the
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general inequality γ
S1 (M̃) ≤ k·γ

S1 (M), where M̃ is a k-fold cover of M [5, Proposition
1.5], taking into account that the universal cover Spin(n) −→ SO(n) is a 2-fold cover.

Corollary 2.7. 9 ≤ ϕ (SO(5)) = ϕ
S1 (SO(5)) ≤ γ

S1 (SO(5)) = γ (SO(5)) ≤ 16.

Proof. The relations ϕ (SO(5)) = ϕ
S1 (SO(5)) ≤ γ

S1 (SO(5)) = γ (SO(5)) ≤ 16 follow
from Proposition 2.5 and the left hand side inequality follows by means of the following
well-known relations ϕ (SO(5)) ≥ cat (SO(5)) and cat (SO(5)) = 9 [9, p. 279], [18].

�

Unfortunately, we do not know at this moment the precise values of these cate-
gories among the values 9, 10, . . . , 16.

Proposition 2.8. The following relations hold:

1. n ≤ ϕ (U(n)) ≤ γ (U(n)) ≤ 2n.
2. n− 1 ≤ ϕ

S1 (SU(n)) = ϕ (SU(n)) ≤ γ (SU(n)) = γ
S1 (SU(n)) ≤ 2n−1.

Proof. (1) In order to prove the inequality γ (U(n)) ≤ 2n we recall that

γ (U(n)) ≤ µ(f) = card(C(f)) = 2n,

where f : U(n) −→ R, f ([zij ]n×n) = Re (z11 + 2z22 + · · ·+ nznn), which is a Morse
function and its critical set consists in all diagonal matrices D with ±1 as diagonal
entries [19, p. 98]. The number of such diagonal matrices is obviously 2n. For the
left-hand-side inequality we have ϕ (U(n)) ≥ cat (U(n)) and cat (U(n)) = n [25].

(2) The equalities ϕ
S1 (SU(n)) = ϕ (SU(n)) and γ

S1 (SU(n)) = γ (SU(n)) fol-
lows from Proposition 2.1 by using the simply conectedness of SU(n). Consequently
ϕ
S1 (SU(n)) = ϕ (SU(n)) ≤ γ (SU(n)) = γ

S1 (SU(n)). In order to prove the inequality

γ (SU(n)) ≤ 2n−1 we observe that

γ (SU(n)) ≤ µ
(
f
∣∣
SU(n)

)
= card

(
C
(
f
∣∣
SU(n)

))
= 2n−1,

as the restricted function f
∣∣
SU(n)

is also a Morse function and its critical set consists

in all diagonal matrices D with ±1 as diagonal entries and det(D) = 1 [19, p. 99].

In other words, C
(
f
∣∣
SU(n)

)
is the collection of all diagonal matrices D with an

even number of −1 on the main diagonal. The number of such diagonal matrices is(
n
0

)
+

(
n
2

)
+ · · · = 2n−1, i.e. µ(f) = 2n−1. The left-hand-side inequality follows

by means of the relations ϕ (SU(n)) ≥ cat (SU(n)) and cat (SU(n)) = n− 1 [25]. �

Remark 2.9. The inequality ϕ (U(n)) ≤ ϕ
S1 (U(n)) might be strict as the unitary

group is diffeomorphic (but not isomorphic) to the product SU(n) × S1 [19, p. 103]
and Proposition 2.1 does not apply, since the fundamental group of U(n) is therefore
Z.
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2.3. On the categories of some products and connected sums

In this subsection we shall rehearse several computations of (circular) ϕ-category
proved in the previous work [6].

If k, l,m1, . . . ,mk ≥ 2, are integers, then the following relations hold:

1. ϕ
S1 (Sm1 × · · · × Smk)=ϕ(Sm1 × · · · × Smk) = k + 1.

2. ϕ
S1 (RPm1× · · · ×RPmk)=ϕ(RPm1× · · · ×RPmk) ≤ m1 +m2 + · · ·+mk + 1.

3. ϕ
S1 (L(7, 1)×S4)=ϕ(L(7, 1)×S4)=ϕ

S1 (L(7, 1)×S4)=ϕ(L(7, 1)×S4)=5, where
L(r, s) is the lens space of dimension 3 of type (r,s).

4. ϕ
S1 (RPk × Sl) = ϕ(RPk × Sl) ≤ k + 2.

The proofs of the equalities

ϕ(Sm1 × · · · × Smk) = k + 1
ϕ(L(7, 1)× S4) = ϕ(L(7, 1)× S4) = 5

have been done by C. Gavrilă [14, Proposition 4.6, Example 4.7] and the estimate
ϕ(RPk × Sl) ≤ k + 2 relies on [14, Proposition 4.19].

An immediate consequence of Proposition 2.1 is the following

Corollary 2.10. If Mn
1 , . . . ,M

n
r , n ≥ 3, are connected manifolds with torsion fun-

damental groups, then ϕ
S1 (M1# · · ·#Mr) = ϕ(M1# · · ·#Mr). In particular the fo-

llowing equality ϕ
S1 (rRPn) = ϕ(rRPn) holds, where rRPn stands for the connected

sum RPn# · · ·#RPn of r copies of RPn.

The following result is mentioned in the monograph [9, p. 221].

Lemma 2.11. If M and N are closed manifolds, then the following inequality holds
ϕ(M#N) ≤ max{ϕ(M), ϕ(N)}. In particular ϕ(X#X) ≤ ϕ(X) for every closed
manifold X.

Recall that Pg denotes the closed connected non-orientable surface
RP2# · · ·#RP2 of genus g, and Σg stands for the closed connected orientable sur-
face T 2# · · ·#T 2 of genus g.

Based on Corollary 2.10 and Lemma 2.11 we were able to prove in [6] the fol-
lowing relations

• ϕ(Σg) = ϕ(Pg) = 3, g ≥ 1;

• 2 ≤ ϕ(rRPn) = ϕS1(rRPn) ≤ n+ 1, r ≥ 1, n ≥ 3.

• If k, l ≥ 2 are positive integers, then

ϕ
S1

(
(Sk × Sl)# · · ·#(Sk × Sl)

)
= ϕ

(
(Sk × Sl)# · · ·#(Sk × Sl)

)
= 3. (2.1)

3. Manifolds with ϕ
S1 (M) = 1 and the circular version of the Ganea

conjecture

We do not have any example of a closed manifold M such that cat(M) <
ϕ(M), and also the equality cat(M) = ϕ(M) is proved only for some isolated
classes of manifolds. An example in this respect is given by the connected sum
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(Sk × Sl)# · · ·#(Sk × Sl), k, l ≥ 2, justified by equality in (2.1). In order to em-
phasize the difficulty of the above mentioned problem, assume that the equality
cat(M) = ϕ(M) holds for every closed manifold. Let us only look to the follow-
ing particular situation: cat(M) = ϕ(M) = 2. From cat(M) = 2 one obtains that
M is a homotopy sphere. Taking into account the well-known Reeb’s result, from the
equality ϕ(M) = 2 it follows that M is a topological sphere. Therefore, the equalities
cat(M) = ϕ(M) = 2 are related to the Poincaré conjecture, proved by Perelmann, it
follows for instance that for any closed manifold with cat(M) = 2 we have ϕ(M) = 2
and therefore cat(M) = ϕ(M) = 2.

Taking into account these comments, in the article [6] we have formulated the
following Reeb type problem for circular functions : Characterize the closed manifolds
Mm with the property ϕ

S1 (M)=1.

When m = 2, one example of such a manifold, suggested to us by L. Funar, is given
by the closed orientable surface Σg of genus g ≥ 2, i.e. we have the following result :

Proposition 3.1. The following relation holds : ϕ
S1 (Σg) = 1, g ≥ 2.

Proof. We will construct a function with one critical point from Σg to S1 by composing
the projection p : T 2 = S1 × S1 → S1, p(x, y) = x, with a map f : Σg → T 2 having
precisely one critical point. The existence of the map f is assured by [2] (see also
[3] and [12]) as ϕ(Σg, T

2) = 1, and the projection p is a fibration, i.e. the critical
set C(p) is empty. Therefore, the composed function p ◦ f has at most one critical
point as C(p ◦ f) ⊆ C(f) and card(C(f)) = 1. This shows that ϕ

S1 (Σg) ≤ 1. For the

opposite inequality, assume that ϕ
S1 (Σg) = 0 and consider a fibration g : Σg → S1,

whose fiber F is a compact one dimensional manifold without boundary, i.e. a circle
or a disjoint union of circles. By applying the product property of the Euler-Poincaré

characteristic associated to the fibration F ↪→ Σg
g→ S1, one obtains 2−2g = χ(Σg) =

χ(F )χ(S1) = 0 as χ(S1) = 0, a contradiction with the initial assumption g ≥ 2. �

In what follows we rely on the following relation

ϕ
S1 (M ×N) ≤ ϕ

S1 (M) · ϕ
S1 (N). (3.1)

(see [6]) in order to produce other examples of closed manifolds X with ϕ
S1 (X) = 1.

In fact, we will prove that the following class of closed manifolds

M1 := {X − closed manifold : ϕ
S1 (X) = 1 and χ(X) 6= 0}

is closed with respect to the cross product. More precisely, we have:

Proposition 3.2. If M,N ∈M1, then M ×N ∈M1.

Proof. If M,N ∈ M1, then, due to inequality 3.1, we conclude that ϕ
S1 (M × N) ≤

ϕ
S1 (M) · ϕ

S1 (N) = 1. We now assume that ϕ
S1 (M × N) = 0, i.e. there exists a

fibration F ↪→M×N −→ S1. Since the Euler-Poincaré characteristic is multiplicative
with respect to fibrations and vanishes on Lie groups, we deduce that χ(M × N) =
χ(F ) · χ(S1), i.e. χ(M)χ(N) = 0, a contradiction with the initial assumption χ(M),
χ(N) 6= 0. �
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The following example shows the existence of even dimensional manifolds X2k

with ϕ
S1 (X) = 1, k = 1, 2, . . . .

Example 3.3. If g1, . . . , gk ≥ 2, then ϕ
S1 (Σg1 × · · · × Σgk) = 1, where Σg stands for

the closed oriented surface of genus g. Moreover, if M is a closed manifold, then

ϕ
S1 (M × Σg1 × · · · × Σgk) ≤ ϕ

S1 (M).

Ganea’s conjecture is a claim in Algebraic Topology, now disproved. It states
that

cat(X × Sn) = cat(X) + 1, n > 0,

where cat(X) is the Lusternik-Schnirelmann category of the topological space X, and
Sn is the n-dimensional sphere. The conjecture was formulated by T. Ganea in 1971
(see the original reference [13]). Many particular cases of this conjecture were proved,
till finally N. Iwase [16] gave a counterexample in 1998. The ϕ-category version of
Ganea’s conjecture has been studied by C. Gavrilă [14]. Now we formulate the ϕ

S1 -
version of this conjecture :
Conjecture. For every closed manifold N with ϕ

S1 (N) = 1, and for every closed
manifold M, the following relation holds :

ϕ
S1 (M ×N) = ϕ

S1 (M).
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“Babeş-Bolyai” University
Faculty of Mathematics and Computer Sciences
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Enclosing the solution set of overdetermined
systems of interval linear equations

Szilvia Huszárszky and Lajos Gergó

Abstract. We describe two methods to bound the solution set of full rank interval
linear equation systems Ax = b where A ∈ IR

m×n, m ≥ n is a full rank interval
matrix and b ∈ IR

m is an interval vector. The methods are based on the concept
of generalized solution of overdetermined systems of linear equations. We use
two type of preconditioning the m × n system: multiplying the system with the
generalized inverse of the midpoint matrix or with the transpose of the midpoint
matrix. It results an n × n system which we solve using Gaussian elimination
or the method provided by J. Rohn in [8]. We give some examples in which we
compare the efficiency of our methods and compare the results with the interval
Householder method [11].

Mathematics Subject Classification (2010): 65G06.

Keywords: Interval linear equation, overdetermined, preconditioning.

1. Introduction

An interval matrix, A, is a matrix whose elements are intervals, an interval
vector, b, is a vector whose components are intervals. Let A = [A,A] be an m × n

interval matrix and b = [b, b] an m-dimensional interval vector. We suppose that
m ≥ n and the interval matrix A has full rank, i.e., all real matrices A ∈ A have full
rank. Consider the set of linear equations

Ax = b. (1.1)

The set of solutions of such problem is given by

∑

(A,b) =

{

x̃ ∈ R
n | ∃A ∈ A, ∃b ∈ b : ‖Ax̃− b‖ = min

x∈Rn

‖Ax− b‖

}

,

i.e., the minimalization of ‖Ax− b‖ for any A ∈ A and any b ∈ b.

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science
(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.



534 Szilvia Huszárszky and Lajos Gergó

In recent years, much attention has been paid to systems of interval linear equa-
tions (1.1) with square interval matrices (see, for example, [1], [3], [4] [5]). Lot of
works were performed to compute an enclosure interval vector of the set

∑

(A,b)
which becomes as follows,

∑

(A,b) = {x ∈ R
n | ∃A ∈ A, ∃b ∈ b : Ax = b} .

The solution set is generally of a complicated non-convex structure. In practical com-
putations, therefore, we look for an enclosure of it, i.e., for an interval vector x satis-
fying

∑

(A,b) ⊆ x.

If A is regular, then the intersection of all enclosures of
∑

(A,b) forms an interval
vector which is called the interval hull of

∑

(A,b). If A is singular, then
∑

(A,b) is
either empty, or unbounded and the interval hull is not defined in this case.

We note that it is especially interest if the matrix of the interval linear equation
system is non-squared. Several papers have been published in this topic. Further de-
tails can be found for example in [4], [11]. In the present paper, we propose additional
methods for the full rank case. The purpose of this work is to give an enclosure interval
vector of the solution set of the overdetermined systems of interval linear equations.
These methods are based on Hansen’s preconditioning and the concept of generalized
solution of full rank overdetermined systems of linear equations.

In the next section, we introduce some notation. In subsection 3.1 we describe
variations of the preconditioning. This preconditioning results an n×n interval linear
equation system. In subsection 3.2 we describe which methods have been used to
solve the square interval linear equation system. In section 4 we give some examples
in which we compare the efficiency of our methods and compare the results with
the preconditioning interval Householder method [11] and with the interval Cholesky
method [12] applied to the symmetric n× n interval linear system A

T
Ax = A

T
b.

2. Notations and operations

We denote the set of real compact intervals by IR whose elements are [a] =
[a, a] = {x ∈ R | a ≤ x ≤ a}, for a ≤ a and a, a ∈ R. The set of m× n matrices over
the real compact intervals is denoted by IR

m×n.

Let [a] = [a, a] and [b] = [b, b] are real compact intervals and let ∗ ∈ {+,−, ·, :}.
Then arithmetic operations on intervals are defined by [1]

[a] ∗ [b] = {x ∗ y | a ≤ x ≤ a, b ≤ y ≤ b}.

It is assumed that 0 /∈ [b] in the case of division. We note that [a]∗ [b] is a real compact
interval and

[a] ∗ [b] = [min{a ∗ b, a ∗ b, a ∗ b, a ∗ b}, max{a ∗ b, a ∗ b, a ∗ b, a ∗ b}].

For A,B ∈ IR
m×n, A ± B is the m × n interval matrix whose elements are

Aij ± Bij . If A ∈ IR
m×n and B ∈ IR

n×r than A · B is the m × r interval matrix
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whose elements are given by

(A ·B)ij =

n
∑

k=1

Aik ·Bkj .

For A ∈ IR
m×n and b ∈ IR

n, A · b is an m-dimensional interval vector whose
components are defined by

(A · b)i =
n
∑

k=1

Aik · bk.

If [a] ∈ IR and b ∈ IR
n, [a] · b is an interval vector whose components are given by

([a] · b)i = [a] · bi.

For an interval matrix A = [A,A] we define

Ac :=
1

2
(A+A)

the midpoint matrix whose each element (Ac)ij corresponds to the midpoint of the
element Aij of A. Let

∆ :=
1

2
(A−A)

denote the radius matrix whose each element ∆ij corresponds to the radius of the

element Aij of A. Then A = Ac − ∆ and A = Ac + ∆, so that we also can write

A = [Ac −∆, Ac +∆]. Similarly, for an interval vector b = [b, b]

bc :=
1

2
(b+ b)

the midpoint vector and

δ :=
1

2
(b− b)

the radius vector thus b = [bc − δ, bc + δ].

3. Solving overdetermined linear interval systems

3.1. Preconditioning

We now describe two ways to obtain the preconditioning matrix. As we have
seen in the square case, when solving the system Ax = b of linear equations using
interval version of methods such as Gaussian elimination, it is generally advisable
to precondition the system. The most commonly used method of preconditioning is
to multiply by an approximate inverse of Ac. The products A−1

c A and A−1
c b are

computed using interval arithmetic. The solution set of the preconditioned equation

A−1
c Ax = A−1

c b

contains the solution set of the original equation (see [1]).
When the interval elements of A and b are narrow, preconditioning increases

the size of the solution set only slightly. When the intervals are wide, preconditioning
can substantially increase the size of the solution set. If preconditioning is not used,
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interval widths generally grow so fast during the solution process that the final results
are of little use. This preconditioning was introduced by E.R. Hansen in [2].

In our case, when the matrix of the interval linear equation is not square, m > n,
two way due to the preconditioning. Our first method of preconditioning is to multiply
by the generalized inverse of the midpoint matrix of A. Since the system we consider
is overdetermined and all A ∈ A has full rank, the generalized inverse of Ac is given
by

A+
c = (AT

c Ac)
−1AT

c .

The products ˜A1 := A+
c A and ˜b1 := A+

c b are computed using interval arithmetic.
After the preconditioning, we get the following n× n interval linear equation system

˜A1x = ˜b1 (3.1)

which we can solve by one of the several existing method.
The second way of preconditioning is comes from the idea of the point (non-

interval) case. Our second method of preconditioning is to multiply by the transpose

of Ac. Just like in the previous case, the products ˜A2 := AT
c A and ˜b2 := AT

c b are
computed using interval arithmetic. After the preconditioning we get the following
n× n interval linear equation system

˜A2x = ˜b2 (3.2)

which we can solve by one of the several existing method.
As we will see in section 4, the bounds on the solution set of (3.1) is usually nar-

rower then the bounds on the solution set of (3.2). On the other hand, the calculation
of the transpose of the midpoint matrix requires fewer arithmetic operations than the
calculation of the generalized inverse of Ac.

3.2. Bounding the solution of interval linear equations

Preconditioning described above results an n×n interval linear equation system.
Several methods were developed to compute an enclosure interval vector of the set
∑

(˜A, ˜b). For detailed we refer to [6], [7], [8].
First algorithm was used to bound the solution set of (3.1) and (3.2) was the

method provided by J. Rohn in [8]. This algorithm either computes the interval hull of

the solution set of the system of interval linear equations ˜Ax = ˜b, or finds a singular

matrix S ∈ ˜A. It has been proved the algorithm terminates in finite number of steps

for each n×n interval matrix ˜A and for each n-dimensional interval vector ˜b. In this
algorithm we have to solve an equation of the form

Ax+B|x| = b (3.3)

where A,B ∈ R
n×n and b ∈ R

n, which is called an absolute value equation. A very
efficient algorithm for the solution of equation (3.3) was described by J. Rohn in [9],
[10].

Since the interval matrix ˜Ai (i ∈ {1, 2}) is non-singular, Gaussian elimination
also can be used to bound the solution set of (3.1) and (3.2). The direct generalization
of the Gaussian algorithmwas described in [1]. As we will see in example 4.1 sometimes
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Gaussian elimination gives the same result as Rohn’s algorithm. Generally Rohn’s
method provide better enclosure of the solution set.

4. Numerical examples

Let A ∈ IR
m×n be a full rank interval matrix where m > n and b ∈ IR

m.
Let Ac = Q · R be the QR factorization of Ac. The n × n triangular real matrix R1

is obtained by dropping from R the last m − n rows. Let B := (QT
A) · R−1

1 and
c := QT

b. The subvector of cc obtained by dropping the last m − n components is
denoted by x0. Let the interval vector d is given by dc is the subvector of cc obtained
by replacing the first n components by zeros and δd := ∆B · |x0|+ δc. Let the interval
vector h is given by hc := dc and δh := ∆B · x0. The following results was showed by
A.H. Bentbib in [11].

∑

(A,b) ⊆ R−1

1 ·
∑

(B, c) ⊆ R−1

1 ·
(

x0 +
∑

(B,d)
)

and
∑

(A,b) ⊆ R−1

1 ·
(

∑

(B, cc) +
∑

(B, c̃)
)

⊆

⊆ R−1

1 ·
(

x0 +
∑

(B,h) +
∑

(B, c̃)
)

where c̃ denote the interval vector whose component c̃i corresponds to the centered
interval [−(δc)i, (δc)i].

Let the interval vector given by the Householder method applied to the
overdetermined full rank interval linear equation system Ax = b is denoted
by xH(A,b). We denote by xCh(A,b) the interval vector given by the interval
Cholesky method [12] applied to symmetric n × n interval linear equation sys-
tem A

T
Ax = A

T
b. A.H. Bentbib compared the interval vectors v1 = xH(A,b),

v2 = R−1

1 xH(B, c), v3 = R−1

1 (x0 + xH(B,d)), v4 = R−1

1 (xH(B, cc) + xH(B, c̃))
and v5 = R−1

1 (x0 + xH(B,h) + xH(B, c̃)) which all contains
∑

(A,b).
Let us denote by x1 the interval vector given by J. Rohn’s method [8] applied

to the square interval linear equation system A+
c Ax = A+

c b, by x2 the interval vec-
tor given by J. Rohn’s method applied to the square interval linear equation system
AT

c Ax = AT
c b. Let x3 denote the enclosure interval vector of the solution set of

the square interval linear equation system A+
c Ax = A+

c b and x4 denote the enclo-
sure interval vector of the solution set of the square interval linear equation system
AT

c Ax = AT
c b by using Gaussian elimination.

Example 4.1. Let us consider the following interval linear system




[0.1, 0.3] [0.9, 1.1]
[8.9, 9.1] [0.4, 0.6]
[0.9, 1.1] [6.9, 7.1]



 · x =





[0.8, 1.2]
[−0.2, 0.2]
[1.8, 2.2]



 .

The following results was published by A.H. Bentbib:

xCh =

(

[−0.0642, 0.0285]
[0.2408, 0.3692]

)

, v1 =

(

[−0.0761, 0.0362]
[0.2199, 0.4024]

)

,
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v2 =

(

[−0.0616, 0.0294]
[0.2579, 0.3485]

)

, v3 =

(

[−0.0558, 0.0232]
[0.2560, 0.3486]

)

,

v4 =

(

[−0.0620, 0.0296]
[0.2564, 0.3485]

)

, v5 =

(

[−0.0558, 0.0232]
[0.2560, 0.3486]

)

.

We have the following results:

x1 =

(

[−0.0451, 0.0121]
[0.2614, 0.3447]

)

, x2 =

(

[−0.0532, 0.0186]
[0.2557, 0.3516]

)

,

x3 =

(

[−0.0451, 0.0121]
[0.2614, 0.3447]

)

, x4 =

(

[−0.0532, 0.0188]
[0.2544, 0.3517]

)

.

Let e denote the real vector whose all components are equal to 1 and by E we
denote the real m×n matrix whose elements are all equal to 1. We illustrate the real
vectors x and x according to the index of component i which is varying from 1 to n.

Example 4.2. (See Figures 1-4.) Let A ∈ IR
m×n is given by

Ac = rand(m,n) + 4E − 2I, ∆ = ε1 ·E.

The interval vector b ∈ IR
m is given by

bc = Ac · e, δ = ε2 · e.

Example 4.3. (See Figures 5-7.) Let A ∈ IR
m×n is given by

Ac = rand(m,n) + 3I, ∆ = ε1 · E.

The interval vector b ∈ IR
m is given by

bc = Ac · e, δ = ε2 · e.
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Figure 1. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−3.
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Figure 2. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−3.
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Figure 3. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−3.
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Figure 4. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−1.
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Figure 5. For m = 10, n = 6, ε1 = 10−3, ε2 = 10−1.

1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 

 

x
1

x
2

x
3

x
4

Figure 6. For m = 20, n = 10, ε1 = 10−3, ε2 = 10−2.
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Figure 7. For m = 20, n = 10, ε1 = 10−3, ε2 = 10−2.
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Figure 8. For m = 20, n = 10, ε1 = 10−3, ε2 = 10−2.

We note that in our experiments (see Example 4.2, 4.3) we got the same results
for x1 and x3 using two different methods to solve equation (3.1). Namely, we applied
Rohn’s method and Gaussian elimination. It would be a very interesting question how
we can characterize those systems where the equality holds.
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Comparison of Riemann solvers in fluid dynamics
by weighted error number

Csaba Müller and Lajos Gergó

Abstract. After using a numerical method our eyes are good witnesses whether
that method is good or not. We aim to provide, for first order hyperbolic systems,
a number that measures, determines the quality of a method instead of decid-
ing by figures. This number is based on the ℓ1 vector norm of the error vector,
combined with weighting. This weight vector has bigger values near discontinu-
ities and kinks because most of the Riemann-solvers have difficulties (including
numerical diffusion and oscillations) in solving the equations near these states.

Mathematics Subject Classification (2010): 65M06.

Keywords: Riemann-solver, hyperbolic equation.

1. Introduction

Our primary research field is numerical methods for first order hyperbolic equa-
tions. This type of equations, systems are used in several places, for example in fluid
dynamics, shallow water calculations, and many other places. For example if we want
to model blood flow in human vascular system then the obtained equation will be
hyperbolic too but a much more complicated one. For a detailed biomechanical view
for this subject see [10].

In this case wall of veins can’t be considered as a rigid tube, it is flexible, it
can narrow and broaden. Thereby a new source term appears in the system which
will depend on the solution itself. There is another big difficulty because in this case
junctions have to be studied. In this paper we work with a simpler system of equations,
namely the Euler system in fluid dynamics. For more detailed theory of hyperbolic
equations see the Godlewski-Raviart book [3].

Our objective is to assign a number to a given numerical solution. This number
should show us how that method can perform near critical regions. How close the
numerical solution to the exact solution is; if the given method produces a solution at

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science
(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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all. As we will see there are test cases where certain methods are unable to produce
numerical results because of their properties. This is because most of the arising
physical properties in modeling gas flows (pressure, density and energy) can’t be
negative. However in certain cases oscillations could occur with a portion of numerical
methods. If these oscillations are big “enough” then they can reach negative region
and a negative value in density for example ruins all the calculations.

These problems could be avoided by minor modifications of the methods but our
goal is to use and study them in their “original” forms. We would do a note here. These
methods usually lose slightly from their good properties due to the modifications and
the running time could also increase by these extra checks.

1.1. Computer configuration used for tests

Hardware configuration.

• CPU: AMD FX-8350, 4.0-4.2 GHz
• RAM: 12 GB, DDR3-1600 MHz

Software configuration.

• Operating system: Microsoft Windows 7 (64-bit, Professional version)
• MATLAB version 2010b

2. Euler system

Our test equation is the Euler system in fluid dynamics. It is given as

∂~u

∂t
+

∂ ~f (~u)

∂x
= 0,

that is in the so-called conservative form. The solution vector ~u has three components,
namely ~u = [ρ,m, e] where ρ is the density, m = ρu is the mass flow component and
e is the total energy.

The function ~f is known as flux. It contains three components as

~f (~u) =

[

m,
m2

ρ
+ p,

m

ρ
(e+ p)

]

,

where p is the pressure. It can be calculated by the equation

e =
p

γ − 1
+

m2

2ρ
,

where γ is ratio of specific heats, a constant depending on the gas. In our tests we
used γ = 1.4 which is the case of air.

Physically this system describes gas flow and state changes over time in a rigid
one-dimensional tube with given initial values. It is easy to see that Euler system is
nonlinear. Nonlinearity always brings additional complexity compared to the simpler
linear cases. This is even more true in solving nonlinear partial differential equations
numerically. In our case, complexity of the problem is caused by the nonlinearity of
the flux and the discontinuity of initial values.
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Characteristics are important in the case of hyperbolic equations (see [1], [12],
[18]). In linear systems these characteristics are parallel lines. The components of the
solution are constant along these lines, only depending on initial values and the source
terms if the system is not homogeneous. Some methods were discussed by Roe [13]
and LeVeque, Yee [9] for systems with source terms.

The aforementioned property also provides a simple method for calculating the
solution, this is called the method of characteristics (see in [14]). The initial values
should be moved along characteristic lines. Additionally if the system is inhomoge-
neous the source term should be integrated above a specific section of the characteristic
line. In numerical mathematics there are many known methods to integrate a function
above a finite line segment.

Characteristics are not parallel in the case of nonlinear equations. In addition
they could intersect each other so we can not use this simple method.

But characteristics are still important in solving this system numerically. They
describe the propagation speed of waves, S. If we want to guarantee stability for a
numerical method then we should use a time step τ such that the following inequality
holds in all grid points and for all coordinates

CFL :=
τ |S|

h
≤ c,

where h is the spatial step. The value of c is 1 for Lax-Friedrichs and Lax-Wendroff
methods; it is 1

2
for Godunov-type methods, so that the waves do not cross the cell

borders (see [18]). CFL (Courant-Friedrichs-Levy) is called Courant number.

So the stability of a method depends on the Courant number, therefore we need
to determine this number during calculations. Because τ and h depends only on
discretization, we need to calculate S in all grid points.

This value S depends on none other than the eigenvalues of Jacobian matrix of
the flux which is nothing other than the slope of characteristics. In linear case, these
eigenvalues are constant, but in our case they depend on the solution as well.

Analytically the eigenvalues of the Euler system are as follows

λ1 = u− c, λ2 = u, λ3 = u+ c,

where u is the velocity of the gas and c is the speed of sound which can be calculated
by

c =

√

γ
p

ρ
.

We determine approximation to this number in all grid points during the entire
calculation and examine whether the maximal absolute value from these numbers
meets the Courant condition or not. In practice this is the easiest way to guarantee
the stability.
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3. Test cases

In our tests we solved the Euler equation with different initial values (see Table
1). These initial values are from the book of Toro [18]. We assume that the initial
values consist of two different constant states with a discontinuity in x0 as follows

~u0 (x) := ~u (x, t) |t=0 =

{

[ ρL,mL, eL]
T
(=: ~uL) if x < x0

[ ρR,mR, eR]
T
(=: ~uR) if x0 < x

where the indices L and R refer to the left and right constant states.
For this special type of initial conditions the initial value problem is called Rie-

mann problem. The spatial domain is taken as interval [−3, 3] and our time domain is
[0, T ] where T is a parameter of the test case. The calculations were done on a finite
interval so we need boundary conditions. In our cases we used transmissive boundary
conditions (see [2]). The spatial domain was divided to 600 subintervals, so h is fixed
at 0.01 in all cases. Time steps number M could be changed in order to guarantee
stability. Then

τ =
T

M

can be applied to determine time step size.
The spatial-time graph can be divided into 4 parts in the case of Riemann

problem by 3 lines. In all subparts of the graph, gas states (velocity, pressure, density
and energy) are constant.

- x

6
t

r

x0

~uL ~uR

~u∗L ~u∗R

Figure 1. Characteristic types



Comparison of Riemann solvers 547

These three lines are characteristic lines starting from the discontinuity of initial
values (see Figure 1). There are three different types of characteristics. There is a
conventional way of marking these waves by type. Thick lines mark the so-called
shock waves, thinner lines mark the contact discontinuity in the middle and the fan-
like marking is for rarefaction waves. For more detailed descriptions of waves, see the
book of Whitham [20].

In our case the middle wave will be a contact wave. Only density and total
energy change along a contact wave, velocity and pressure are equal on both sides of
this wave. The region between the two outer waves is called star region.

It is important to note that while contact and shock waves produce a disconti-
nuity in solution, rarefaction waves do not. They blur and link the values from the
adjacent regions continuously. This is the reason of the fan-like marking in figures.

-

6

p -

6

p

-

6

p -

6

p

Figure 2. Possible characteristic layouts

On our example graph there is a rarefaction wave on the left side and a shock
wave on the right. There are 4 possible layout as you can see in figure 2. On a given
side the wave type depends on how the pressure on that particular side compares to
the pressure in star region. If pressure is higher in the star region then there will be a
shock wave at a given side , if lower (or equal) then there will be a rarefaction wave.

After presenting the wave types and possible layouts we describe each test cases
in a few words.
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Test x0 T ρL uL pL ρR uR pR
1 0 1 1 0 1 0.125 0 0.1

2 −1.2 1.2 1 0.75 1 0.125 0 0.1

3 0 0.9 1 −2 0.4 1 2 0.4

4 0 0.072 1 0 1000 1 0 0.01

5 −0.6 0.21 5.99924 19.5975 460.894 5.99242 −6.19633 46.095

6 1.8 0.072 1 −19.59745 1000 1 −19.59745 0.01

7 0 12 1.4 0 1 1 0 1

8 0 12 1.4 0.1 1 1 0.1 1

Table 1. Initial values and parameters

Test case 1 is a very popular test case for this equation, called SOD test case.
Its characteristics layout is the same as in figure 1, so there is a rarefaction wave on
the left, middle wave is contact discontinuity. This is moving to the right slowly by
the time. The right wave is a shock wave in this case.

Test case 2 is very similar to test 1, but the initial velocity isn’t 0 on the entire
interval, only on the right side, it is 0.75 on the left. Wave structure is the same as
in test 1 but wave slopes, speeds differ from those. Numerical results are also very
similar.

In test case 3 there are two rarefaction waves symmetrically to 0. These rarefac-
tions cover two long intervals. Generally, numerical methods do not handle these long
rarefaction waves well. Furthermore close to vacuum state appears in this test, which
causes the Lax-Wendroff method to fail.

The wave layout in test 4 is the same as in test 1 and 2 but in this case contact
and shock waves are extremely close to each other. Robustness of the method can be
measured by this test case. Initial values differ several orders of magnitude on two
sides which causes another difficulty to numerical methods.

Test 5 is very similar to test 4 but in this case left wave will also be a shock
wave and there will be bigger distance between contact discontinuity and right shock
wave. Numerical results are also similar to those seen in the latest test.

Test 6 is almost exactly the same as test 4 except the initial velocity is not 0.
Perhaps the biggest differences are visible among methods in this test case. Because
of this we make a comparative figure (see Figure 3) for the obtained numerical ap-
proximations by different methods. We only represent the density plots since density
graph is always the most interesting one.

Test 7 is a trivial test case, because the gas is in steady state. There is one trivial
rarefaction wave on both sides. The contact wave stays at x0 = 0 and does not move,
however bunch of numerical methods blur this discontinuity along left and right states
because of numerical diffusion. Some methods can produce exact solution in this case
because of the simplicity of initial values and trivial wave structure.

Test 8 is almost the same as case 7, except the contact wave will move to the
right slowly by the time. The results are also very similar to those produced in the
latest test case, but there is no method producing exact solution.
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Figure 3. Test 6: obtained density plots by different methods

4. Approximate Riemann-solvers

We study conservative numerical methods in the following form

~u
j+1

i = ~u
j
i −

τ

h

(

~f
j+ 1

2

i+ 1

2

− ~f
j+ 1

2

i− 1

2

)

,

where ~u
j
i means the numerical approximation at time level j in the ith spatial point

and ~f
j+ 1

2

i± 1

2

is the left and right intercell numerical flux. The studied methods differ

only in the calculation, definition of this numerical flux.
The basic idea comes from Godunov [4]. The initial value problem could be

solved by calculating exact or approximate solution of a Riemann problem in each
cell of the grid. We get the intercell numerical fluxes from these solutions. Then we
can do a time-step.

Five different Riemann-solvers were tested, the Lax-Friedrichs, Lax-Wendroff,
HLL solver, HLLC solver, and the exact one. Intercell flux can be expressed without
solving a Riemann problem in the case of Lax-Friedrichs and Lax-Wendroff solvers.

The Lax-Friedrichs [7] solver has an important advantage over the other (except
the exact) solvers, namely this is a monotone solver. Therefore it will not produce
oscillations near the regions with difficulties, according to Godunov’s theorem (see
[4]). On the other hand it has a disadvantage, it generates a high numerical diffusion
near the contact discontinuity.

The Lax-Wendroff [8] solver is second order for linear problems, and therefore it
can not be monotone method, so it will produce oscillations near the discontinuities.
It is a disadvantage, but on the other hand it limits the discontinuities to a smaller in-
terval. It means that the numerical diffusion will be much smaller using Lax-Wendroff
scheme than in the case of using a first order methods.
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The other three tested methods are really based on Riemann problem. The HLL
solver [6] uses approximations to the two outer waves’ speed only. It has problems with
middle wave, in the form of high numerical diffusion. The HLLC solver is an improved
version of the HLL solver introduced by Toro [17]. It tries to reduce numerical diffusion
in the way of using estimates for all three wave speeds, C refers to the contact.

Finally the exact Riemann solver. It computes the exact solution of the Riemann
subproblems. There are many works related to the exact solver, for example [4], [5],
[11], [15], [16] and [19]. We used the version from [18, Chap. 4].

5. Numerical results

All test cases (see Table 1) were computed by all the mentioned numerical meth-
ods and all of the obtained approximations were studied.

All of our test cases are Riemann problems. There exists exact solver for these
type of problems, as mentioned above. This can be used to compare the obtained
numerical approximations to the exact solution.

Our primary goal is to specify the error at time T as follows

‖~u(·, T )− ~unum(·, T )‖L1
=

3
∫

−3

|~u (x, T )− ~unum (x, T )| dx, (5.1)

this is the L1 norm of the difference between the exact and the approximate solution,
where ~unum is the numerical solution. But numerical solution gives values only in grid
points, therefore we can not integrate this difference along the specified interval. We
could interpolate the numerical values and then integrate using this interpolation, but
there is a more simple way.

We evaluate the exact solution only in grid points at time level T , denote this

vector of values by ~U
(i)
exact, (i = 0, 1, . . .600). Then we can get the discretization of L1

norm by calculating the

∥

∥

∥

~Uexact − ~Unum

∥

∥

∥

ℓ1

=

600
∑

i=0

∣

∣

∣

~U
(i)
exact − ~U (i)

num

∣

∣

∣

ℓ1 vector norm, where ~U
(i)
num is the numerical solution at time level T in the ith spatial

grid point. The ~U
(i)
exact and ~U

(i)
num contains multiple values, so these calculations could

be made coordinate-by-coordinate.

We remark here that if we use interpolation to calculate the error formula (5.1)
then the results would be almost the same. For example if we use the trapezoidal rule
then the result differs only by a multiplication factor of h, because at the boundaries
the error is 0, at the inner points the trapezoidal rule multiplies by h.

It is not our goal. We want to calculate the error with higher weights near critical
regions. For this reason our exact solver returns the types and places of waves at time
t = T . The mentioned critical regions are the locations of contact, shock waves and
head and tail of rarefaction waves at time t = T .
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Figure 4. Weight vector on the density plot

Weights are developed as follows. We use

w(x) = min
{

c1e
−c3 (x−c2)

2

; c4

}

, x ∈ [−3, 3]

functions. 3 to 5 functions of this type and the constant 1 function were taken. Then
the weight in the ith point of the grid (wi) is the maximal value of the previous
functions’ value in that given point.

It should be noted that we have actually two different weight vectors because
contact discontinuity only appears in the density and total energy graphs. One of
the weight vectors is used to these coordinates. The other weight vector ignores the
contact wave. We use this to calculate error of the pressure and velocity components.

We tuned the constants (c1, . . . , c4) to focus weights to critical regions. Based
on our experience we use 3 truncated exponential functions. The function

min
{

200 e−64 (x−c)2 , 100
}

is used in case of shock waves where c is the place of shock at time t = T ;

min
{

200 e−16 (x−c)2 , 100
}

is used to the head and tail of a rarefaction wave, c is the place of the head/tail of
the given rarefaction;

min
{

400 e−64 (x−c)2 , 200
}

is used to contact discontinuities, c denotes the place of the contact wave. In all
function x takes value from the [−3, 3] interval.
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Test Lax-Friedrichs Lax-Wendroff HLL HLLC Exact

1 0.0294 0.0075 0.0156 0.0151 0.0144
0.0163 s 0.0401 s 2.8603 s 3.0637 s 91.5954 s

2 0.0413 0.0096 0.0160 0.0162 0.0163
0.0373 s 0.0598 s 4.2828 s 4.5213 s 126.875 s

3 0.0193 − 0.0237 0.0237 0.0214
0.0303 s − 3.0494 s 3.1376 s 98.2901 s

4 47.2754 − 28.2834 27.9647 27.8372
0.0409 s − 5.0140 s 5.3397 s 129.833 s

5 86.1165 − 30.2774 31.0984 30.307
0.0627 s − 7.7901 s 8.0085 s 276.242 s

6 14.0664 − 11.1666 10.2964 9.5426
14.0664 s − 5.3077 s 5.5960 s 130.901 s

7 0.0323 ≈ 10−16 0.0316 0 0
0.0934 s 0.1540 s 18.4428 s 19.5587 s 819.263 s

8 0.0329 0.0088 0.0318 0.0131 0.0131
0.1132 s 0.1779 s 20.091 s 21.174 s 657.2296 s

Table 2. Summary of results

Figure 4 illustrates the resulting weight vector with the exact solution and a
numerical approximation by Lax-Friedrichs solver of the density plot for SOD test
case. In the figure thinner line marks the exact solution, the thicker one marks the
numerical approximation while the lighter line marks the weight vector scaled down
by 500.

Then the weighted error is defined in the following steps. First we calculate the

errorw =
1

W

600
∑

i=0

wi |numericali − exacti|

numbers for all coordinates where W =
600
∑

i=0

wi with the corresponding weight vector’s

values. To be totally clear numericali marks the given coordinate of the numerical
approximation in ith grid point, exacti stays for the exact solution in that point.
After calculating this number for all four coordinates we average these to get the final
weighted error of the approximation.

We summarize these results in Table 2. There are two numbers in each cell of
this table. Weighted error numbers are at top and the runtimes are at bottom of each
cell.

Each test was calculated with the highest possible Courant number that holds
stability. We get the slightest numerical diffusion this way.

We examined how methods work if using not 1 but 0.75, 0.5 and 0.25 as Courant
numbers. You can find these results in Table 3 using Lax-Friedrichs method.

Results get worse in all test cases, because more time-steps should be done to
reach the desired t = T level as we have smaller time step size.

We make another figure (Figure 5) to illustrate this behavior. On all of these
figures thinner line marks the exact solution, thicker one marks the numerical solution
using the Lax-Friedrichs method with the corresponding CFL number can be found
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Test CFL ≤ 1 CFL ≤ 0.75 CFL ≤ 0.5 CFL ≤ 0.25

1 0.0294 0.0394 0.0546 0.0836

2 0.0413 0.0523 0.0702 0.1049

3 0.0193 0.0364 0.0566 0.0897

4 47.2754 58.7429 74.6345 99.69

5 86.1165 112.4286 157.1259 239.5929

6 14.0664 23.4655 34.5278 54.0884

7 0.0323 0.0342 0.0366 0.0399

8 0.0329 0.0348 0.0372 0.0404

Table 3. Lax-Friedrichs method with different Courant numbers
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Figure 5. Test 1 with different Courant numbers using Lax-
Friedrichs method

in the title of the subfigure. We mentioned that doing more time steps increases
numerical diffusion. For example when CFL is near 0.25 then the obtained solution is
almost a straight line between side states. It is impossible to recognize discontinuities
based on this approximation.

These modified CFL tests were done with Lax-Wendroff method. In this case
numerical diffusion grow only slightly but oscillations increasing and widening (see
Figure 6). In this figure thinner line marks the exact solution, thicker line marks the
numerical approximation using the Lax-Wendroff method with CFL number as in the
title of the subfigure.

The other three methods do not produce worse solutions (maybe a little bit
worse, barely visible differences) calculating with lower Courant number. The reason
of this could be that they divide the whole problem to many Riemann problems and
they use some approximation of wave speeds. They can keep numerical diffusion under
control this way.
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Figure 6. Test 1 with different Courant numbers using Lax-
Wendroff method

6. Remarks and conclusion

The space step size, h was fixed at 0.01 in all of our tests. We remark that in the
case we use a smaller space step our results will keep the same pattern. Of course the
approximations would be more accurate, numerical diffusion and oscillations would
take a narrower interval. But we should take more time steps in order to keep the
CFL number below 1 and therefore computational time would increase significantly.
For example if we use half of the original spatial step size (h = 0.005), it means twice
as much intervals as in the original case, but we should take about twice as much
time steps because of the CFL condition. So the calculation time increases with a
multiplier of 4, but the accuracy of the approximation would not be 4 times better.
All in all taking a fixed h was just a simplification to our test procedure.

The runtime of the exact solver is incredibly high in comparison with other
solvers. That is because it has to calculate the exact solution of a Riemann problem
in each cell. Which is a very time-consuming task. In addition we can see that its
weighted error values are not much better compared for example to theHLLC solver’s
values. So using the exact solver is only recommended for very sharpened cases.

Lax methods are much quicker than their counterparts in all cases. The expla-
nation is simple, these two solvers could be written in a closed formula, as mentioned
above, so they actually do not need to divide the problem into subproblems thus
considerably simplifying the process of calculation.

Furthermore, we remark that in general cases we do not have an exact solver,
so we can not produce exact solution. We could not compare our results to the exact
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solution. In this case we should make a quasi-exact solution using some monotone
(eg. Lax-Friedrichs) method with very fine spatial discretization. Numerical diffusion
should be corrected after the calculation in order to use this as a quasi-exact solution
and compare other methods to this result.
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Stud. Univ. Babeş-Bolyai Math. 59(2014), No. 4, 557–566

Distributed computing of simultaneous
Diophantine approximation problems

Norbert Tihanyi, Attila Kovács and Ádám Szűcs

Abstract. In this paper we present the Multithreaded Advanced Fast Rational
Approximation algorithm – MAFRA – for solving n-dimensional simultaneous Dio-
phantine approximation problems. We show that in some particular applications
the Lenstra-Lenstra-Lovász (L3) algorithm can be substituted by the presented
one in order to reduce their practical running time. MAFRA was implemented in
the following architectures: an Intel Core i5-2450M CPU, an AMD Radeon 7970
GPU card and an Intel cluster with 88 computing nodes.
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1. Introduction

1.1. Diophantine approximations

Approximating an irrational α with rationals is called Diophantine approxima-
tion or rational approximation. The theory of continued fractions provides one of
the most effective methods of rational approximation of a real number [1]. Simple
continued fractions are expressions of the form

a0 +
1

a1 +
1

a2 + · · ·

where ai-s are integers with a1, a2 . . . > 0. The sequence C0 = a0, C1 = a0 +
1

a1
, . . .

are called convergents. Every convergent Cm = pm/qm represents a rational number.
An infinite continued fraction [a0; a1, . . . , am] is called convergent if the limit

α = lim
m→∞

Cm

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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exists. It is known that no better rational approximation exists to the irrational
number α with smaller denominator than the convergents (see e.g: [2]). Fractions
of the form

pm−1 + jpm
qm−1 + jqm

(1 ≤ j ≤ am+2 − 1)

are called intermediate (or semi-) convergents. Calculating intermediate convergents
can be used to get every rational approximation between two consecutive conver-
gents pm/qm and pm+1/qm+1. Adolf Hurwitz (1859-1919) proved in 1891 that for each
irrational α there are infinitely many pairs (p, q) of integers which satisfy∣∣α− p

q

∣∣ < 1

q2
√

5
.

Approximating more than one irrationals at the same time is called simultaneous
Diophantine approximation. The challenge in this case is that for given real numbers
α1, α2, . . . , αn and ε > 0 find p1, p2, . . . , pn, q ∈ Z such that∣∣αi − pi

q

∣∣ < ε (1.1)

for all 1 ≤ i ≤ n. The continued fraction approximation method can be used efficiently
for constructing solutions in one or two dimensions. In higher dimensions the situa-
tion is more challenging. In 1982 Arjen Lenstra, Hendrik Lenstra and László Lovász
invented a polynomial time lattice basis reduction algorithm (L3) that can be used
for solving simultaneous Diophantine approximations [3]. If α1, α2, . . . , αn are irra-
tionals and 0 < ε < 1 then there is a polynomial time algorithm to compute integers
p1, p2, . . . , pn, q ∈ Z such that

1 ≤ q ≤ 2n(n+1)/4ε−n and |q · αi − pi| < ε

for all 1 ≤ i ≤ n. The algorithm L3 can be used effectively for solving Diophantine
approximations in higher dimensions, however, it can not be used to generate thou-
sands or millions of q ∈ Z that satisfy (1.1) even with varying reduction parameters.
Consider the set of irrationals Υ = {α1, α2, . . . , αn}. Let ε > 0 and let us define the
set

Λ(Υ, ε) = {k ∈ N : ‖kαi‖ < ε for all αi ∈ Υ} (1.2)

where ‖ · ‖ denotes the nearest integer distance function, i.e.

‖z‖ = min{|z − j|, j ∈ Z} .
In general, the following computational challenges can be stated: (1) generate as
many elements of Λ = Λ(Υ, ε) as possible in a given time frame, and (2) generate a
predefined (huge) number of solutions as fast as possible. In this paper we consider
the following number-theoretic challenge:
Challenge: Determine 1 billion elements of the set

Λ

({
log(p)

log(2)
, p prime , 3 ≤ p ≤ 31

}
, 0.01

)
(1.3)

as fast as possible. This challenge is a 10-dimensional simultaneous Diophantine ap-
proximation problem. Generating such a huge amount of integers with L3 would be
very time-consuming on an average desktop PC. The first two authors of this paper
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recently presented a method for solving n-dimensional Diophantine approximation
problems efficiently [4]. The main idea is the following:

Theorem 1.1. Let Υ = {α1, α2, . . . , αn} be a set of irrationals and ε > 0 real. Then
there is a set Γn with 2n elements with the following property: if k ∈ Λ then (k+γ) ∈ Λ
for some γ ∈ Γn.

It was also presented that the generation of Γn can be done very efficiently for
small dimension (e.g: n < 20). In our particular case using the set Γ10 it is possible
to generate arbitrarily many integers k ∈ Λ.

The main goal of this paper is to improve the implementation of the existing al-
gorithms and develop an even faster method than the one presented in [4]. We refer to
this new algorithm as MAFRA – Multithreaded Advanced Fast Rational Approximation.

1.2. Practical usage of MAFRA

Fast algorithms for solving Diophantine approximations can be used in many
fields of computer science. In some particular applications the L3 algorithm can
be substituted by MAFRA in order to reduce their practical running time. We used
MAFRA for locating large values of the Riemann zeta function on the critical line. The
Riemann-Siegel formula can be calculated by

Z(t) = 2

b
√
t/2πc∑
n=1

1√
n

cos(θ(t)− t · lnn) +O(t−1/4) , (1.4)

where θ(t) = arg(Γ(1/4 + it
2 )) − 1

2 t lnπ. In 1989 Andrew M. Odlyzko presented a
method for predicting large values of Z(t). “We need to find a t for which there exist
integers m1, . . . ,mn such that each of t ln pk − 2πmk is small (1 ≤ k ≤ n)” [5]. This
is a simultaneous Diophantine approximation problem like (1.3). By applying MAFRA

one can solve this kind of approximation problem much faster than with L3 for small
dimensions (n < 20). We implemented MAFRA in order to be able to measure the
practical running time in different architectures.

2. Algorithms for solving Diophantine approximation problems

It is known that Algorithm 2.1 solves our challenge efficiently [4].

Algorithm 2.1. – (FRA) – Fast Rational Approximation

Require: bound . default is one billion
Require: k . starting point, the default is zero

1: Γ← Apply Algorithm Precalc from [4]

2: Υ← log(p)
log(2) , p prime, 3 ≤ p ≤ 31

3: counter← 0, ε← 0.01
4: while counter < bound do
5: for i = 1→ 1024 do
6: find← true
7: for j = 1→ 10 do
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8: a← Frac((k + Γ[i]) ·Υ[j])
9: if (a > ε) and (a < 1− ε) then

10: find← false
11: break . Leave the for loop
12: end if
13: end for
14: if find = true then
15: k ← k + Γ[i]
16: counter← counter + 1
17: break
18: end if
19: end for
20: end while

The test system was an IntelrCore i5-2450M CPU with Sandy Bridge architec-
ture and the development environment was the PARI/GP computer algebra system.
Using this setup it was possible to produce 100 000 appropriate integers within 22.16
seconds. In order to achieve better performance the development environment had
been changed to native C using the GNU MP 5.1.3 multi precision library. In Algo-
rithm 2.1 the Precalc function calculates Γ10 in few minutes. After the calculation
of the 1024 elements of Γ10 one can generate arbitrarily many k ∈ Λ very efficiently.
With the improved C code it was possible to produce 100 000 integers within 2.65
seconds. This is approximately 10 times faster than the PARI/GP implementation.

It is important to note a significant difference between our 10-dimensional Chal-
lenge (1.3) and the 7-dimensional Challenge presented in [4]. In that paper the solution
set was defined in the following way:

Ω(Υ, ε, a, b) = {k ∈ N : a ≤ k ≤ b, ‖kαi‖ < ε for all αi ∈ Υ} .
As it can be seen, the elements of the Ω are bounded. In (1.2) we redefined Ω without
boundaries. This “small” change of the definition allows us to design and develop an
even faster algorithm.

Algorithm 2.2. – (AFRA) – Advanced Fast Rational Approximation

Require: bound . default is one billion
Require: k . starting point, the default is zero

1: Γ← Apply Algorithm Precalc from [4]

2: Υ← log(p)
log(2) , p prime, 3 ≤ p ≤ 31

3: ε← 0.01
4: counter← 0
5: while counter < bound do
6: sum← 0
7: for i = 1→ 10 do
8: a← Frac(k ·Υ[i])
9: if (a < ε) then

10: sum← sum + 2i

11: end if
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12: end for
13: sum← abs(sum− 1024) . binary complementer
14: counter← counter + 1
15: k ← k + Γ[sum]
16: end while

Algorithm 2.2 (AFRA) is substantially different from Algorithm 2.1 (FRA). Let
k ∈ Λ. FRA always finds the smallest γ ∈ Γ10 where (k + γ) ∈ Λ. It is easy to see
that in the worst case this algorithm goes through all the 1024 elements of Γ10 (see
Algorithm 2.1, line 5). In each step the algorithm has to check whether (k+γ) ∈ Λ or
not (see line 9). AFRA finds one element from Γ10 — not necessary the smallest one1

— that satisfies (k + γ) ∈ Λ (Lemma 8 in [4] ensures finding the appropriate γ ∈ Γ10

efficiently). Algorithm 2.2 is therefore faster, however, adding some γ to k produces
larger values in Λ. It can be concluded that FRA is a better choice for solving bounded
challenges like Ω(Υ, ε, a, b). For solving unbounded challenges, like our particular 10-
dimensional case, AFRA is much better. We implemented Algorithm 2.2 in native C.
In our test system we were able to generate 100 000 integers ∈ Λ in 0.434 seconds2.
This is almost ten times faster than the Algorithm 2.1 implementation.

Let us compare the algorithms FRA and AFRA with exact numbers. Consider the
following challenge: generate as many integers as possible in the set

Ω

({
log(p)

log(2)
, p prime , 3 ≤ p ≤ 31

}
, 0.01, 0, 2× 1019

)
(2.1)

This challenge differs from (1.3) since the elements of Ω are bounded. As we mentioned
FRA is a better choice for a bounded challenge. Solving (2.1) by FRA one can produce
13 different integers between 0 and 2× 1019. These integers are presented in Table 1.
It is easy to verify that every integer k in Table 2 satisfies the following:∥∥∥∥k log(p)

log(2)

∥∥∥∥ < 0.01

for all 3 ≤ p ≤ 31.

Table 1. FRA output between 0 and 2× 1019

102331725988392788 479125648045771184 710080108123034500
1711993379226146170 2088787301283524566 3423106890630466630
5441342799508541730 7540063840126351339 8406797017385611672
10118790396611757842 10503998465875331568 11021951848184774212
19036050657750584878

These integers were generated in 0.015 seconds. AFRA is almost 10 times faster
than FRA, however, inappropriate for solving this particular “bounded” challenge.

1The set of integers in Γ10 are ordered in the following way: every integer in Γn is represented by
an n-dimensional binary vector (see Lemma 8 in [4]). Γ10 contains integers ordered by the values of

this binary vector (e.g: 0000000000, 0000000001, 0000000010, 0000000011 etc.)
2During the measurements Input/Output costs are not cummulated. Displaying the 100 000 integers

from the memory would take approximately 5-6 seconds.
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With AFRA we can produce only one integer solution, which is 2298677471355273619.
The next integer would be 183963121486836331196 which is already out of the upper
bound 2× 1019.

We conclude that challenge (1.3) is unbounded, so when the size of the integers
is unimportant then Algorithm AFRA is the right solution.

3. Computing methods and results

To make the generation even faster we modified our C code in order to be
able to run in parallel using pthreads (IEEE Std. 1003.1c-1995.). We refer to the
multithreaded version of AFRA as MAFRA– Multithreaded Advanced Fast Rational Ap-
proximation algorithm.

In this section we present the measured running time of MAFRA for different
architectures. The first test environment was a simple Sandy Bridge Intel Core i5-
2450M with 4 GB RAM. The second hardware was a Super Computing Cluster called
ATLAS with 90x Intel Xeon E5520 Nehalem Quad Core 2.26 GHz Processors and
0.6TB RAM. The third hardware was an ATI Radeon 7970 GPU card.

3.1. Test – Core i5-2450M Laptop

Our first test environment was a simple home desktop PC. It was an Intel Core
i5-2450M Sandy Bridge CPU with 4 GB RAM having 2 cores. Generating 100 000
integers ∈ Λ for solving the 10 dimensional challenge with the algorithm MAFRA took
0.234 sec. Our newly implemented, optimized and multithreaded C code is effective,
however, generating 1 billion elements of (1.3) with this architecture would take ap-
proximately 39 minutes.

3.2. Test – ATLAS Computing Cluster

Our second test environment was the ATLAS Supercomputing Cluster that is
operating in the Eötvös Loránd University, Budapest. The most important character-
istics of ATLAS are the following: the architecture consists of one dedicated Headnode
and 44 Computing nodes.

1x Headnode:

1. 2x Intel Xeon E5520 Nehalem Quad Core 2.26 GHz Processor with 8 MB cache
(HyperThreading OFF)

2. 72 Gbyte RAM
3. 10 Gbit eth interface to the 44 computing nodes

44x Computing Nodes:

1. 2x Intel Xeon E5520 Nehalem Quad Core 2.26 GHz Processor with 8 MB cache
(HyperThreading ON)

2. 12 Gbyte RAM

Each Nehalem Quad core CPU has 4 physical cores with SSE extension. Each node
has a 2 × 36.256 GFLOP/sec peak performance (see [6]) calculated by the following
formula:
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FLOPS = 4 cores× 2.266GHz× 2 (SIMD double prec.)× 2 (MUL, ADD)
= 36.256 GFLOP/sec.

There are 44 computing nodes which contain 88 physical CPU. The total number
of physical cores are 352 (4× 88). With hyper-threading the number of cores can be
doubled to 704 virtual core. The peak performance of the ATLAS Computing Cluster
is 72.512×44 = 3190.528 GFLOP/sec. With full performance ATLAS takes 12.6 kW,
34.2 A, and cosFI= 0.95.

Generating 100 000 integers in one computing node took approximately 0.175
sec. Remember that in the previous test the Intel Core i5-2450 had 2 cores with 4
threads. If the number of threads is less than the number of dimensions then the
multithreaded running is obvious; every thread checks whether (k + γ) · Υ[i] < ε for
all i < n where n denotes the dimension. ATLAS has 44 different nodes which are
much more than the number of dimensions in our particular case. If one wanted to
use all of the cores then the best way would be to run 44 copies of AFRA in each
node. In this case each node should start from different starting points. Generating
44 different appropriate starting points for each copies of AFRA can be done very
effectively with the L3 algorithm. Let α1, α2, . . . , αn be irrational numbers and let us
approximate them with rationals admitting an ε > 0 error. Let X = βn(n+1)/4ε−n

and let the matrix A be the following:

A =



1 0 0 . . . 0
α1X X 0 . . . 0
α2X 0 X . . . 0

...
...

αnX 0 0 . . . X


.

Applying the L3 algorithm for A the first column of the resulting matrix contains the
vector [q, p1, p2, p3, . . . , pn]T which satisfies∣∣αi − pi

q

∣∣ < ε

q
and 0 < q ≤ βn(n+1)/4ε−n

for all 1 ≤ i ≤ n, where β is an appropriate reduction parameter. Using MAFRA in
accordance with L3 it is possible to generate 4.4 millions of integers within 0.175 + δ
seconds where δ is the generating time of the 44 starting points not exceeding 5000
ms. With the ATLAS Computing Cluster calculating exactly one billion integers that
satisfy (1.3) took approximately 39.7 seconds.

Generating the 44 integers as starting points with L3 can be done very effectively,
however, we would like to emphasize again that the L3 algorithm is ineffective in
generating many solutions (e.g. one billion).

3.3. Test – ATI Radeon 7970 GPU

The third test environment was a Sapphire Vapor-X ATI Radeon 7970 6GB
GDDR5 GHz Edition GPU card. Modern graphic cards can be other promising so-
lutions for solving high performance computations. Clearly, in order to implement
another fast method for our Diophantine approximation problem one has to take into
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consideration the usage of GPU cards. In our case the multithreaded version of FRA
and AFRA were implemented for the GPU. In the first step, however, we faced with
the following problem: there were not any fast quadruple precision packages on the
GPU. Although some similar packages for the older GPU cards were found written
by Andrew Thall [7] and Eric Bainville [8], these packages found to be inappropriate
to solve our particular challenge. The problem with the package written by Andrew
Thall is that it uses too much branching and function calling in the program which
costs a lot clock cycles. It comes from the behaviour of the graphical processing unit
which evaluates both the if and the else part of the conditional, and after the com-
putation it uses that data where the logical value was True. FRA and AFRA contain
a lot of logical evaluation, so the usage of this package was not convenient for our
purposes. The other package, which was written by Eric Bainville, is faster, but it is
for fixed point numbers which was inappropriate, as well.

In conclusion, we developed our own multiplication, addition, subtraction and
truncation methods. We applied the Karatsuba multiplication algorithm and some
bitwise tricks for the addition and truncation methods. After measuring the running
speeds on this architecture it turned out that using the AFRA algorithm on the GPU
approximately 50 times performance drop-down could be measured without using the
L3 algorithm for the generation of the starting points3.

bound AFRA Running speed in seconds
1 0.0254221
10 0.183748
100 1.35351
1000 12.7255
10000 127.038
100000 1200.7

After examining AFRA we can state that the main problem with this “linear”
algorithm is that it was not possible to distribute enough threads on the GPU. Con-
sider for example our 10-dimensional case. One had to add the 1024 integers to the
partial results and then multiply them with the irrationals. The problem with this
solution is that in the quadruple–adder kernel it was not possible to send in enough
threads lowering or hiding the latency. In our case the global work size was twice as
big as the local work size, which leaded to performance drop-down. In order to avoid
the big performance drop-down we utilized every threads on the GPU just like in the
ATLAS Super Cluster. For example, if we want to use 2048 threads on the GPU,
then we would have to generate 2048 different starting points with the L3 algorithm
to feed all the threads on the GPU. We also modified a bit the number representa-
tion in order to achieve higher speed on this architecture. In that particular case our
measurements show that generating 100 000 different integers on the 7970 GPU it is
4 times faster than on the CPU.

3Measuring speeds on the GPU is only an approximation.
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Combination of the CPU version of L3 and the GPU version of MAFRA turned out
to be a very effective way to solve simultaneous Diophantine approximation problems.
A supercomputer with GPU accelerators would be a nice solution for this problem.

4. Further Researches

As we stated in the introduction we used MAFRA for locating large values of the
Riemann zeta function on the critical line. It was possible to substitute L3 with MAFRA

in order to achieve a much better performance of finding large values. We have imple-
mented MAFRA algorithm to the GRID system of the Hungarian Academy of Sciences
and solving simultaneous Diophantine approximation problems very effectively. We
plan to continue our research in this direction.
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