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Differential sandwich theorem for certain class
of analytic functions associated with an integral
operator

Luminiţa-Ioana Cot̂ırlă and Adriana Cătaş

Abstract. In this paper we obtain some applications of first order differential sub-
ordination and superordination result involving an integral operator for certain
normalized analytic function.

Mathematics Subject Classification (2010): 30C45.

Keywords: Integral operator, subordination and superordination, analytic func-
tions, sandwich theorem.

1. Introduction and preliminaries

Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k, ak ≥ 0, (1.1)

which are analytic and univalent in the open unit disk U = {z : |z| < 1}.
If f and g are analytic functions in U , we say that f is subordinate to g in U ,

written symbolically as f ≺ g or f(z) ≺ g(z) if there exists a Schwarz function w(z)
analytic in U, with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)), z ∈ U . In
particular, if the function g is univalent in U , the subordination f ≺ g is equivalent
to f(0) = g(0) and f(U) ⊂ g(U) (see [2], [3]).

For the function f given by (1.1) and g ∈ A given by g(z) = z +

∞∑
k=2

bkz
k, the

Hadamard product (or convolution) of f and g is defined by

(f ∗ g) (z) = z +

∞∑
k=2

akbkz
k = (g ∗ f) (z) .
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The set of all functions f that are analytic and injective on U − E(f), denote
by Q where

E(f) = {ζ ∈ ∂U : lim
z→ζ

f(z) =∞}

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U\E(f), (see [4]).
If ψ : C3×U → C and h is univalent in U with q ∈ Q. In [3] Miller and Mocanu

consider the problem of determining conditions on admissible functions ψ such that

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) (1.2)

implies that p(z) ≺ q(z) for all functions p ∈ H[a, n] that satisfy the differential
subordination (1.2).

Let φ : C3 × U → C and h ∈ H with q ∈ H[a, n]. In [4] and [5] is studied the
dual problem and determined conditions on φ such that

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z) (1.3)

implies q(z) ≺ p(z) for all functions p ∈ Q that satisfy the above subordination. They
also found conditions so that the functions q is the largest function with this property,
called the best subordinant of the subordination (1.3) .

Let H (U) be the class of analytic functions in the open unit disc.
For n a positive integer and a ∈ C let

H[a, n] = {f ∈ H : f(z) = a+ anz
n + . . .} .

The integral operator Im of a function f is defined in [6] by

I0f(z) = f(z),

I1f(z) = If(z) =

∫ z

0

f(t)t−1dt,

. . .

Imf(z) = I
(
Im−1f(z)

)
, z ∈ U.

Lemma 1.1. [3] Let q be univalent in U, ζ ∈ C∗ and suppose that

Re

{
1 +

zq′′(z)

q′(z)

}
> max

{
0,−Re

(
1

ζ

)}
. (1.4)

If p is analytic in U with p(0) = q(0) and

p(z) + ζzp′(z) ≺ q(z) + ζzq′(z) (1.5)

then p(z) ≺ q(z) and q is the best dominant.

Lemma 1.2. [3] Let the function q be univalent in the unit disk and let θ, ϕ be analytic
in domain D containing q(U) with ϕ(w) 6= 0, where w ∈ q(U). Set

Q(z) = zq′(z)ϕ(q(z)) and h(z) = θ(q(z)) +Q(z).

Suppose that

Q is starlike univalent in U ;

Re

{
zh′(z)

Q(z)

}
> 0, for z ∈ U.
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If p is analytic with p(0) = q(0), p(U) ⊆ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)) (1.6)

then p(z) ≺ q(z) and q is the best dominant.

Lemma 1.3. [1] Let q be convex in the unit disc U, q(0) = a and ζ ∈ C, Re (ζ) > 0.
If p ∈ H[a, 1] ∩Q and p(z) +ζzp′(z) is univalent in U then

q(z) + ζzq′(z) ≺ p(z) + ζzp′(z) (1.7)

implies q(z) ≺ p(z) and q is the best subordinant.

Lemma 1.4. [2] Let the function q be convex and univalent in the unit disc U and θ
and ϕ be analytic in a domain D containing q(U). Suppose that

1. Re

{
θ′(q(z))

ϕ(q(z))

}
> 0 for z ∈ U and

2. Q(z) = zq′(z)ϕ(q(z)) is starlike univalent in U .
If p ∈ H[q(0), 1]∩Q with p(U) ⊆ D and θ(p(z)) +zp′(z)ϕ(p(z)) is univalent in U and

θ(q(z)) + zq′(z)ϕ(q(z)) ≺ θ(p(z)) + zp′(z)ϕ(p(z)) (1.8)

then q(z) ≺ p(z) and q is the best subordinant.

2. Main results

Theorem 2.1. Let q be univalent in U, with q(0) = 1 and q(z) 6= 0 for all z ∈ U, and
let σ ∈ C∗, f ∈ A and suppose that f and g satisfy the next conditions:

Im+1 (f(z))

z
6= 0, z ∈ U (2.1)

and

Re

{
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)

}
> 0 for z ∈ U. (2.2)

If
Im (f(z))

Im+1 (f(z))
≺ 1 +

zq′(z)

σq(z)
, (2.3)

then (
Im+1 (f(z))

z

)σ
≺ q(z)

and q is the best dominant of (2.3).

Proof. Let

p(z) =

(
Im+1 (f(z))

z

)σ
, z ∈ U. (2.4)

Because the integral operator Im satisfies the identity z
[
Im+1 (f(z))

]′
= Im (f(z))

and the function p(z) is analytic in U , by differentiating (2.4) logarithmically with
respect to z, we obtain

zp′(z)

p(z)
= σ

(
Im (f(z))

Im+1 (f(z))
− 1

)
. (2.5)
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In order to prove our result we will use Lemma 1.2. In this lemma we consider

θ(w) = 1 and ϕ(w) =
1

σw
,

then θ is analytic in C and ϕ(w) 6= 0 is analytic in C∗. Also, if we let

Q (z) = zq′(z)ϕ(q(z)) =
zq′(z)

σq(z)

and

h(z) = θ (q(z)) +Q (z) = 1 +
zq′(z)

γσq(z)

from (2.2) we see that Q (z) is a starlike function in U. We also have

Re

{
zh′(z)

Q(z)

}
= Re

{
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)

}
> 0 for z ∈ U

and then, by using Lemma 1.2 we deduce that subordination (2.3) implies p(z) ≺ q(z)
and the function q is the best dominant of (2.3) . �

Taking q(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 2.1, it easy to check that the

assumption

p(z) +
1

σ
zp′(z) ≺ q(z) +

α

σ
zq′(z)

holds, hence we obtain the next result.

Corollary 2.2. Let σ ∈ C∗ and f ∈ A . Suppose

Im+1 (f(z))

z
6= 0, z ∈ U.

If
Im (f(z))

Im+1 (f(z))
≺ 1 +

z (A−B)

σ (1 +Az) (1 +Bz)
,

then (
Im+1 (f(z))

z

)σ
≺ 1 +Az

1 +Bz

and q(z) = 1+Az
1+Bz is the best dominant.

Taking q(z) = 1+z
1−z in Theorem 2.1, it easy to check that the assumption

p(z) +
1

σ
zp′(z) ≺ q(z) +

α

σ
zq′(z)

holds, hence we obtain the next result.

Corollary 2.3. Let σ ∈ C∗ and f ∈ A . Suppose

Im+1 (f(z))

z
6= 0, z ∈ U.

If
Im (f(z))

Im+1 (f(z))
≺ 1 +

2z

σ (1− z) (1 + z)
,



Differential sandwich theorem for certain class of analytic functions 491

then (
Im+1 (f(z))

z

)σ
≺ 1 + z

1− z
and q(z) = 1+z

1−z is the best dominant.

Theorem 2.4. Let q be univalent in U , with q(0) = 1. Let σ ∈ C∗ and t, ν, η ∈ C with
ν + η 6= 0. Let f ∈ A and suppose that f and g satisfy the next conditions

υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z
6= 0, z ∈ U (2.6)

and

Re

{
1 +

zq′′(z)

q′(z)

}
> max {0,−Ret} , z ∈ U. (2.7)

If

ψ(z) = t

[
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

]σ
+ σ

[
υz
(
Im+1 (f(z))

)′
+ zη

(
Im+2 (f(z))

)′
υIm+1 (f(z)) + ηIm+2 (f(z))

− 1

]
(2.8)

and

ψ(z) ≺ tq(z) +
zq′(z)

q(z)
(2.9)

then [
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

]σ
≺ q(z)

and q is the best dominant.

Proof. Let

p(z) =

[
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

]σ
, z ∈ U. (2.10)

According to (2.3) the function p(z) is analytic in U and differentiating (2.10) loga-
rithmically with respect to z, we obtain

zp′(z)

p(z)
= σ

[
υz
(
Im+1 (f(z))

)′
+ zη

(
Im+2 (f(z))

)′
υIm+1 (f(z)) + ηIm+2 (f(z))

− 1

]
(2.11)

and hence

zp′(z)=σ

[
υIm+1 (f(z))+ηIm+2 (f(z))

(υ + η) z

]σ
·

[
υz
(
Im+1 (f(z))

)′
+zη

(
Im+2 (f(z))

)′
υIm+1 (f(z)) + ηIm+2 (f(z))

−1

]
.

In order to prove our result we will use Lemma 1.2. In this lemma we consider

θ (w) = tw and ϕ (w) =
1

w
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then θ is analytic in C and ϕ (w) 6= 0 is analytic in C∗. Also if we let

Q (z) = zq′(z)ϕ(q(z)) = σ

[
υz
(
Im+1 (f(z))

)′
+ zη

(
Im+2 (f(z))

)′
υIm+1 (f(z)) + ηIm+2 (f(z))

− 1

]
and

h(z) = θ(q(z)) +Q (z)

= t

[
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

]σ
+σ

[
υz
(
Im+1 (f(z))

)′
+ zη

(
Im+2 (f(z))

)′
υIm+1 (f(z)) + ηIm+2 (f(z))

− 1

]
from (2.6) we see that Q (z) is a starlike function in U . We also have

Re

{
zh′(z)

Q(z)

}
= Re

{
t+ 1 +

zq′′(z)

q′(z)

}
> 0 for z ∈ U

and then, by using Lemma 1.2 we deduce that the subordination (2.9) implies
p(z) ≺ q(z). �

Taking q(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 2.4 and according to

zp′(z)

p(z)
= σ

(
Im+1 (f(z))

Im+2 (f(z))
− 1

)
the condition (2.7) becomes max {0,−Re (t)} ≤ 1−|B|

1+|B| . Hence, for the special case

υ = 1 and η = 0 we obtain the following result.

Corollary 2.5. Let t ∈ C with max {0,−Re (t)} ≤ 1−|B|
1+|B| . Let f ∈ A and suppose that

Im+1 (f(z))

z
6= 0, z ∈ U.

If

t

[
Im+1 (f(z))

z

]σ
+ σ

[
z
(
Im+1 (f(z))

)′
Im+1 (f(z))

− 1

]
≺ t1 +Az

1 +Bz
+

(1−B) z

(1 +Az) (1 +Bz)

then (
Im+1 (f(z))

z

)σ
≺ 1 +Az

1 +Bz

and q(z) = 1+Az
1+Bz is the best dominant.

Taking υ = m = 1, η = 0 and q(z) = 1+z
1−z in Theorem 2.1, we obtain the next result.

Corollary 2.6. Let f ∈ A and suppose that I2(f(z))
z 6= 0, z ∈ U, σ ∈ C∗. If

t

[
I2 (f(z))

z

]σ
+ σ

[
z
(
I2 (f(z))

)′
I2 (f(z))

− 1

]
≺ t1 + z

1− z
+

2z

(1 + z) (1− z)

then [
I2 (f(z))

z

]σ
≺ 1 + z

1− z

and q(z) =
1 + z

1− z
is the best dominant.
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Theorem 2.7. Let q be convex in U , with q(0) = 1. Let σ ∈ C∗ and t, ν, η ∈ C with
ν + η 6= 0 and Ret > 0. Let f ∈ A and suppose that f satisfies the next conditions:

υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z
6= 0, z ∈ U (2.12)

and [
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

]σ
∈ H [q(0), 1] ∩Q. (2.13)

If the function ψ given by (2.8) is univalent in U and

tq(z) +
zq′(z)

q(z)
≺ ψ(z), (2.14)

then

q(z) ≺
[
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

]σ
and q(z) is the best subordinant of (2.14) .

Proof. Let

p(z) =

[
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

]σ
, z ∈ U. (2.15)

According to (2.12) the function p(z) is analytic in U and differentiating (2.15) loga-
rithmically with respect to z, we obtain

zp′(z)

p(z)
= σ

[
υz
(
Im+1 (f(z))

)′
+ zη

(
Im+2 (f(z))

)′
υIm+1 (f(z)) + ηIm+2 (f(z))

− 1

]
. (2.16)

In order to prove our result we will use Lemma 1.4. In this lemma we consider

Q (z) = zq′(z)ϕ(q(z)) = σ

[
υz
(
Im+1 (f(z))

)′
+ zη

(
Im+2 (f(z))

)′
υIm+1 (f(z)) + ηIm+2 (f(z))

− 1

]
and

h(z) = θ(q(z)) +Q (z)

= t

[
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

]σ
+σ

[
υz
(
Im+1 (f(z))

)′
+ zη

(
Im+2 (f(z))

)′
υIm+1 (f(z)) + ηIm+2 (f(z))

− 1

]
from (2.12) we see that Q (z) is a starlike function in U . We also have

Re

{
zh′(z)

Q(z)

}
= Re

{
t+ 1 +

zq′′(z)

q′(z)

}
> 0 for z ∈ U

and then, by using Lemma 1.4 we deduce that the subordination (2.14) implies
q(z) ≺ p(z) and the proof is completed. �
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Corollary 2.8. Let q1, q2 are two convex functions in U , with q1(0) = q2(0) = 1,
σ ∈ C∗, t, ν, η ∈ C with ν + η 6= 0 and Ret > 0. Let f ∈ A and suppose that f
satisfies the next conditions:

υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z
6= 0, z ∈ U

and (
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

)σ
∈ H [q(0), 1] ∩Q.

If the function ψ(z) given by (2.8) is univalent in U and

tq1(z) +
zq′1(z)

q1(z)
≺ ψ(z) ≺ tq2(z) +

zq′2(z)

q2(z)

then

q1(z) ≺
(
υIm+1 (f(z)) + ηIm+2 (f(z))

(υ + η) z

)σ
≺ q2(z) (2.17)

and q1, q2 are respectively, the best subordinant and the best dominant of (2.17) .
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Abstract. In this note we obtain sufficient conditions under which we can guar-
antee the stability of solutions of a fractional differential equations of non con-
formable type and we obtain some fractional analogous theorems of the direct
Lyapunov method for a given class of equations of motion.
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1. Introduction

Fractional calculus concerns the generalization of differentiation and integration
to non-integer (fractional) orders. The subject has a long mathematical history being
discussed for the first time already in the correspondence of Leibniz with L’Hopital
when this replied ”What does dn

dxn f(x) mean if n= 1
2?” in September 30 of 1695. Over

the centuries many mathematicians have built up a large body of mathematical knowl-
edge on fractional integrals and derivatives. Although fractional calculus is a natural
generalization of calculus, and although its mathematical history is equally long, it
has, until recently, played a negligible role in physics. One reason could be that, until
recently, the basic facts were not readily accessible even in the mathematical litera-
ture (see [13]). The nature of many systems makes that they can be more precisely
modeled using fractional differential equations. The differentiation and integration of
arbitrary orders have found applications in diverse fields of science and engineering like
viscoelasticity, electrochemistry, diffusion processes, control theory, heat conduction,
electricity, mechanics, chaos, and fractals (see [5], [6] and [13]). Lyapunov’s Second or
Direct Method is unique in that it does not require a characterization of the solutions
to determine stability. This method often allows us to determine whether a differential
equation is stable without knowing anything about what the solutions look like, so it



496 P.M. Guzmán, L.M. Lugo Motta Bittencurt and J.E. Nápoles Valdes

is ideal for dealing with nonlinear systems. The method uses a supplementary function
called a Lyapunov function to determine properties of the asymptotic behavior of so-
lutions of a differential equation. It is known that the method of Lyapunov functions
is a tool used in the analysis of stability, in many classes of differential equations of
disturbed movement, so it is interesting to investigate an extension of the method for
non-integer order systems (see [9] and [10] and bibliography there). Such extension
is based on the concept of a local fractional derivative non conformable, defined by
the authors in a previous paper (see [2]) which is presented below. In this paper the
application of a fractional-like derivative of the Lyapunov function for the stability
analysis of solutions of the equations of perturbed motion with a fractional-like de-
rivative of the state vector is discussed. Some fractional analogous theorems of the
direct Lyapunov method for a given class of equations of motion are presented.

2. Preliminary results

It is necessary to present some necessary definitions for our work. Be α ∈ (0, 1]
and define a continuous function f : [t0,+∞)→ R.

First, let’s remember the definition of Nα
1 f(t), a non conformable fractional

derivative of a function in a point t defined in [9] and that is the basis of our results,
that are close resemblance of those found in classical qualitative theory.

Definition 2.1. Given a function f : [t0,+∞) → R, t0 > 0. Then the N-derivative of
f of order α is defined by

Nα
1 f(t) = lim

ε→0

f(t+ εet
−α

)− f(t)

ε

for all t > 0, α ∈ (0, 1). If f is α−differentiable in some (0, a), and lim
t→0+

N
(α)
1 f(t) exists,

then define N
(α)
1 f(0) = lim

t→0+
N

(α)
1 f(t).

If the N-derivative of the function x(t) of order α exists and is finite in (t0,∞),
we will say that x(t) is N-differentiable in I = (t0,∞).

Remark 2.2. The use in definition 2.1 of the limit of a certain incremental quotient,
instead of the integral used in the classical definitions of fractional derivatives, allows
us to give the following interpretation of the N-derivative. Suppose that the point

moves in a straight line in R+. For the moments t1 = t and t2 = t + het
−α

where
h > 0 and α ∈ (0, 1] and we denote S(t1) and S(t2) the path traveled by point P at
time t1 and t2 so we have

S(t2)− S(t1)

t2 − t1
=
S(t+ het

−α
)− S(t)

het−α

this is the average N-speed of point P over time het
−α

. Let’s consider

Lim
h→0

S(t+ het
−α

)− S(t)

het−α
.
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When α = 1, this is the usual instantaneous velocity of a point P at any time
t > 0. If α ∈ (0, 1) this is the instantaneous q-speed of the point P for any t > 0.
Therefore, the physical meaning of the N-derivative is the instantaneous q-change rate
of the state vector of the considered mechanics or another nature of the system.

Remark 2.3. The N-derivative solves almost all the insufficiencies that are indicated
to the classical fractional derivatives. In particular we have the following result.

Theorem 2.4. (See [2]) Let f and g be N-differentiable at a point t > 0 and α ∈ (0, 1].
Then

a) Nα
1 (af + bg)(t) = aNα

1 (f)(t) + bNα
1 (g)(t).

b) Nα
1 (tp) = et

−α
ptp−1, p ∈ R.

c) Nα
1 (λ) = 0, λ ∈ R.

d) Nα
1 (fg)(t) = fNα

1 (g)(t) + gNα
1 (f)(t).

e) Nα
1

(
f

g

)
(t) =

gNα
1 (f)(t)− fNα

1 (g)(t)

g2(t)
.

f) If, in addition, f is differentiable then Nα
1 (f) = et

−α
f ′(t).

g) Being f differentiable and α = n integer, we have Nn
1 (f)(t) = et

−n
f ′(t).

Remark 2.5. The relations a), c), d) and e) are similar to the classical results mathe-
matical analysis, these relationships are not established (or do not occur) for fractional
derivatives of global character (see [5] and [13] and bibliography there). The relation
c) is maintained for the fractional derivative of Caputo. Cases c), f) and g) are typical
of this non conformable local fractional derivative.

Now we will present the equivalent result, for Nα
1 , of the well-known chain rule

of classic calculus and that is basic in the Second Method of Lyapunov, for the study
of stability of perturbed motion.

Theorem 2.6. (See [2]) Let α ∈ (0, 1], g N-differentiable at t > 0 and f differentiable
at g(t) then

Nα
1 (f ◦ g)(t) = f ′(g(t))Nα

1 g(t).

Definition 2.7. The non conformable fractional integral of order α is defined by the
expression

NJ
α
t0f(t) =

∫ t

t0

f(s)

es−α
ds.

The following statement is analogous to the one known from the Ordinary Calculus.

Theorem 2.8. Let f be N-differentiable function in (t0,∞) with α ∈ (0, 1]. Then for
all t > t0 we have

a) If f is differentiable NJ
α
t0 (Nα

1 f(t)) = f(t)− f(t0).

b) Nα
1

(
NJ

α
t0f(t)

)
= f(t).

Proof. a) From definition we have

NJ
α
t0 (Nα

1 f(t)) =

∫ t

t0

Nα
1 f(s)

es−α
ds =

∫ t

t0

f ′(s)es
−α

es−α
ds = f(t)− f(t0).
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b) Analogously we have

Nα
1

(
NJ

α
t0f(t)

)
= et

−α d

dt

[∫ t

t0

f(s)

es−α
ds

]
= f(t). �

3. N-derivative of the Lyapunov function and conditions of stability
and instability of movement

Consider the following system of fractional N-differential equations

Nα
1 x(t) = f(t, x(t)), (3.1)

x(t0) = x0. (3.2)

where x ∈ Rn, f ∈ C(R+ × Rn,Rn), t0 > 0. It is further assumed that for (t0, x0) ∈
int(R+ × Rn) the initial value problem (3.1-3.2) has a solution x(t) ∈ Cα(I) for all
t > t0 > 0. In addition, it is assumed that f(t, 0) = 0 for all t > t0 > 0.

Let for equation (3.1) a Lyapunov-type function V (t, x) ∈ Cα(I × Rn) be con-
structed in some way such that V (t, 0) = 0 for all t > 0. Introduce the notation
Sr = {x ∈ Rn : ‖x‖ < r, r > 0}.

Definition 3.1. Let V be a continuous and α-differentiable function (scalar or vector),
V : I × Sr → Rp(p = 1 or p = m, respectively), and x(t) be the solution of the IVP
(3.1-3.2), which exists and is defined on I×Sr. Corresponding to V(t,x) we define for
(t, x) ∈ I × Sr the function

+N
α
(3.1)V (t, x) = lim sup

h→0

[V (t+ h, x+ hαf(t, x))− V (t, x)]

h
(3.3)

is the N-derivative of V (t, x) with respect to the system (3.1) (or along the solutions
of system (3.1)).

We will now present the results analogous to those known from the Second
Method of Lyapunov, for the study of the stability of systems (3.1).

With C(R) and CI(R) we respectively denote the families of continuous functions
and increasing continuous functions defined on R.

Definition 3.2. (see [11]). CS(R) = {h ∈ C(R) : xh(x) > 0, x 6= 0}

Definition 3.3. (see [11]). CC(R) := CI(R) ∩ CS(R).

Definition 3.4. A continuous function β : [0, t)→ [0,+∞) is said to belong to class-K
if it is strictly increasing and β(0) = 0.

Theorem 3.5. Suppose that for the system (3.1) there is a function N-differentiable
V (t, x) and the functions a, b ∈ K, such that

i) V (t, x) ≥ a(‖x‖),
ii) V (t, x) ≤ b(‖x‖), and

+N
α
(3.1)V (t, x) ≤ 0, (3.4)

for all (t, x) ∈ I × Sr. Then the solution x = 0 of the system (3.1) is uniformly
stable.
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Proof. Let x(t) the solution of system (3.1) which satisfies the initial condition
(t0, x0) ∈ I × Sr and that exists for all t ≥ t0. Let t0 ∈ I and 0 < ε < r. Under
conditions i), ii) of the theorem let’s choose δ = δ(ε) > 0 such that

b(δ) < a(ε) (3.5)

Let’s prove that if ‖x0‖ < δ then ‖x(t)‖ < ε for all t ≥ t0. If this were not true,
then there is a solution x = x(t) such that for ‖x0‖ < δ there exists t1 > t0 what
satisfies ‖x(t1)‖ = ε, and ‖x(t)‖ < ε for all t ∈ [t0, t1).

Under Theorem 8 and condition (3.2), we have

V (t, x(t))− V (t0, x0) =N Jαt0 (Nα
1 V (t, x(t)))

and so

V (t, x(t))− V (t0, x0) ≤ 0 (3.6)

of this last inequality for t = t1 we get

a(ε) ≤ V (t1, x(t1)) ≤ V (t0, x0) ≤ b(‖x‖) < a(ε) (3.7)

The resulting inequality is evidently false. This proves Theorem (3.5). �

Next, we present the conditions that guarantee the asymptotic stability of the
null solution of the fractional system (3.1).

Theorem 3.6. In addition to the conditions i)-ii) of the previous theorem, suppose that
instead of condition (3.4), we have

+N
α
(3.1)V (t, x) ≤ −c(‖x‖), (3.8)

for all (t, x) ∈ I × Sr and c is a function of class K. Then the solution x = 0 of the
system (3.1) is uniform asymptotically stable.

Proof. Under the conditions of the theorem, the solution x = 0 of the system (3.1) is
uniformly stable since the conditions of the previous theorem are satisfied. We show
that this solution is uniformly asymptotically stable.

Let 0 < ε < r and δ = δ(ε) > 0 as before. For ε0 ≤ r let’s choose δ0 = δ0(ε0) > 0
and we consider the solution x(t) with initial conditions t0 ∈ I and ‖x0‖ < δ0. For
t0 < t ≤ t0 + T (ε), where T (ε) will be defined by an implicit expression that will
be specified later, such a solution satisfies ‖x(t)‖ ≥ δ(ε). Let’s prove that under the
conditions of the theorem this is impossible. From (3.8) and Theorem 2.8 we obtain

V (t, x(t))− V (t0, x0) = NJ
α
t0 (Nα

1 V (t, x(t))) ≤ −NJαt0 (c(‖x(t)‖))

V (t, x(t))− V (t0, x0) ≤ −
∫ t

t0

c(‖x(t)‖)
e(s−t0)−α

ds. (3.9)

We denote by

NJ
α
t0(e) =

∫ t

t0

ds

e(s−t0)−α
= E(t)− E(t0),

so we have from (3.9)

V (t, x(t)) ≤ b(δ0)− c(δ(ε))NJαt0(e) (3.10)
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For t = t0 + T (ε) the inequality (3.10) we can write it as

0 < a(δ(ε)) ≤ V (t0 + T (ε), x(t0 + T (ε))) ≤ b(δ0)− c(δ(ε))[E(T (ε))] ≤ 0.

This contradiction shows that there is t1 ∈ [t0, t0 + T (ε)] for which ‖x(t1)‖ < δ(ε).
Therefore, the estimate ‖x(t)‖ < ε is true for all t ≥ t0 + T (ε) as ‖x0‖ < δ0 and
Lim
t→∞

‖x(t)‖ = 0 uniformly in t0 ∈ I. This proves Theorem. �

Next, we will establish the conditions for the instability of the solution x = 0 of
the system (3.1).

Theorem 3.7. Suppose that for the system (3.1) there is an N-differentiable Lyapunov
function V(t,x) such that on I ×Bq with Bq ⊂ Bε satisfies the assumptions

i) 0 < V (t, x) ≤ b(‖x‖),
ii) +N

α
(3.1)V (t, x) ≤ λV (t, x) +W (t, x), with λ > 0 and V : I ×Bq → R+,

W (t, x) ≥ 0;
iii) the solution x = 0 belongs to δBq;
iv) V (t, x) = 0 on I × (δBq ∩Bε).

Then the solution x = 0 is unstable.

Proof. From assumptions ii), and Theorem 2.8 we have

V (t, x(t)) ≥ V (t0, x(t0)) exp
[
λNJ

α
t0(e)

]
, t ≥ t0, (3.11)

Let the solution with initial condition x0 ∈ N be a neighborhood of x = 0. So that for
any t ≥ t0 satisfying the estimate (3.11) along the solution x(t), then it is clear that
for t → ∞, the function V (t, x(t)) grows indefinitely, whereas under the conditions
of Theorem 3.5 is bounded. Therefore, for the solution x(t) there exists t′ such that
x(t′) will leave the region Bε. This shows the instability of the solution x = 0 of the
system (3.1), which proves the theorem. �

Example 3.8. We consider the Lienard N-fractional system{
Nα

1 x(t) = y − F (t)
Nα

1 y(t) = −g(x(t))
(3.12)

with

F (x) =

∫ x

0

f(r)dr

and we take the Lyapunov Function

V (t, x, y) =
y2

2
+G(x), (3.13)

with

G(x) =

∫ x

0

g(s)ds.

Under assumptions on the continuous functions f and g:

1. f(x) > 0 for all x ∈ R,
2. xg(x) > 0 for all x 6= 0,
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we have the stability of solution x = y = 0 of system (3.12). From (3.13) we have

+N
α
(3.1)V (t, x, y) = −g(x)F (x) ≤ 0.

By virtue of Theorem 3.5 the desired result is obtained.
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Arun Kumar Tripathy and Shyam Sundar Santra

Abstract. In this work, the necessary and sufficient conditions for oscillation of
a class of second order neutral impulsive systems are established and our im-
pulse satisfies a discrete neutral nonlinear equation of similar type. Further, one
illustrative example showing applicability of the new result is included.
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1. Introduction

Impulsive differential equations are now recognized as an excellent source of
models to simulate processes and phenomena observed in control theory, physics,
chemistry, population dynamics, industrial robotics, biotechnologies, economics and
to mention a few. Due to the wide range application of this theory to the real world
problem, a good number of interests has been given to study impulsive differential
equations, since it is much richer than the corresponding theory of differential equa-
tions without impulse effect. We refer the readers to the monographs [1, 2, 10, 13, 14]
and [18], where a number of properties of their solutions are discussed and the refer-
ences cited there in.

In [28], Tripathy has considered the impulsive system

(E1)

{(
y(t) + p(t)y(t− τ)

)′
+ q(t)G

(
y(t− σ)

)
= 0, t 6= τk, k ∈ N,

∆
(
y(τk) + p(τk)y(τk − τ)

)
+ q(τk)G

(
y(τk − σ)

)
= 0, k ∈ N,

and studied the oscillatory character of solutions of the system. For all ranges of
p(t), he has established the oscillation criteria for the impulsive system (E1) which
is highly nonlinear and G could be linear, sublinear or superlinear. In [29], Tripathy

This work is supported by the Department of Science and Technology (DST), New Delhi, India,

through the bank instruction order No. DST/INSPIRE Fellowship/2014/140, dated Sept. 15, 2014.
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and Santra have made an attempt to establish the necessary and sufficient condition
for oscillation of a class of forced impulsive differential equations of the form{(

y(t) + p(t)y(t− τ)
)′

+ q(t)G
(
y(t− σ)

)
= f(t), t 6= τk, k ∈ N,

∆
(
y(τk) + p(τk)y(τk − τ)

)
+ r(τk)G

(
y(τk − σ)

)
= g(τk), k ∈ N.

In an another paper [30], Tripathy and Santra have studied the characterization of
the impulsive system

(E2)

{(
y(t)− ry(t− τ)

)′
+ qy(t− σ) = 0, t 6= τk, k ∈ N,

∆
(
y(τk)− ry(τk − τ)

)
+ py(τk − σ) = 0, k ∈ N,

and linearized oscillation of the system

(E3)

{(
y(t)− r(t)g(y(t− τ))

)′
+ q(t)f

(
y(t− σ)

)
= 0, t 6= τk, k ∈ N,

∆
(
y(τk)− r(τk)g(y(τk − τ))

)
+ p(τk)f

(
y(τk − σ)

)
= 0, k ∈ N.

They have established the conditions pertaining the oscillation of the system (E2)
using the pulsatile constant and hence the linearized oscillation results carried out for
(E3) by using its limiting equation (E2).

Motivated by the works [28, 29, 30], an attempt is made here to discuss the
oscillation properties of a class of second order neutral impulsive system of the form:

(E)

{(
r(t)(y(t) + p(t)y(t− τ))′

)′
+ q(t)G

(
y(t− σ)

)
= 0, t 6= τk, k ∈ N,

∆
(
r(τk)(y(τk) + p(τk)y(τk − τ))′

)
+ q(τk)G

(
y(τk − σ)

)
= 0, k ∈ N,

where τ, σ ∈ R+ = (0,+∞); τ1, τ2, · · · , τk, · · · are the fixed moments of impulse effect;
p(τk), r(τk) and q(τk) are real sequences for k ∈ N; G ∈ C(R,R) is nondecreasing
such that xG(x) > 0 for x 6= 0; q, r ∈ C(R+,R+); p ∈ PC(R+,R), and

∆
(
r(τk)z′(τk)

)
= r(τk + 0)z′(τk + 0)− r(τk − 0)z′(τk − 0);

y(τk − 0) = y(τk) and y(τk − τ − 0) = y(τk − τ), k ∈ N.

The objective of this work is to establish the necessary and sufficient conditions
for oscillation of the impulsive system (E). Here, we are concerned with oscillating
systems which remain oscillating after being perturbed by instantaneous change of
state. We may note that this type of work is very rare in the literature signifying that
the impulse of the differential equation follows a difference equation of same type. In
this direction, we refer the reader to some of the related works [3, 4, 5, 6, 7, 8, 9, 11,
12, 15, 16, 17, 19, 26, 27, 32, 33, 34] and the references cited there in.

Definition 1.1. A function y : [−ρ,+∞) → R is said to be a solution of (E) with
initial function φ ∈ C([−ρ, 0],R), if y(t) = φ(t) for t ∈ [−ρ, 0], y ∈ PC(R+,R),
z(t) = y(t) + p(t)y(t− τ) and r(t)z′(t) are continuously differentiable for t ∈ R+, and
y(t) satisfies (E) for all sufficiently large t ≥ 0, where ρ = max{τ, σ}, PC(R+,R) is
the set of all functions U : R+ → R which are continuous for t ∈ R+, t 6= τk, k ∈ N,
continuous from the left- side for t ∈ R+, and have discontinuity of the first kind at
the points τk ∈ R+, k ∈ N.
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Definition 1.2. A nontrivial solution y(t) of (E) is said to be nonoscillatory, if there
exists a point t0 ≥ 0 such that y(t) has a constant sign for t ≥ t0. Otherwise, the
solution y(t) is said to be oscillatory.

Definition 1.3. A solution y(t) of (E) is said to be regular, if it is defined on some
interval [Ty,+∞) ⊂ [t0,+∞) and

sup{|y(t)| : t ≥ Ty} > 0

for every Ty ≥ T . A regular solution y(t) of (E1) is said to be eventually positive
(eventually negative), if there exists t1 > 0 such that y(t) > 0 (y(t) < 0) for t ≥ t1.

2. Main results

This section deals with the necessary and sufficient conditions for oscillation of
all solutions of the impulsive system (E). We introduce the following assumptions for
our use in the sequel:

(A0)
∫∞
0

dt
r(t) <∞ if and only if

∑∞
k=1

1
r(τk)

<∞;

(A1) 0 < τ1 < τ2 < · · · and limk→∞ τk = +∞;
(A2) p ∈ PC(R+,R), pk = p(τk − 0) = p(τk), rk = r(τk − 0) = r(τk) and

qk = q(τk − 0) = q(τk), k ∈ N.

Theorem 2.1. Let −1 < −a ≤ p(t) ≤ 0, a > 0 and t ∈ R+. Assume that (A0), (A1)
and (A2) hold. Furthermore, assume that

(A3) G(−u) = −G(u), u ∈ R
and

(A4)
∫∞
σ
q(t)G

(
CR(t− σ)

)
dt+

∑∞
k=1 q(τk)G

(
CR(τk − σ)

)
< +∞ for every constant

C > 0

hold, where R(t) =
∫ t
0

ds
r(s) . Then every unbounded solution of the system (E) oscillates

if and only if

(A5)
∫∞
0

ds
r(s) < +∞.

Proof. Let y(t) be a regular solution of (E) which is unbounded. So, there exists
t0 > 0 such that y(t) > 0 or < 0, for t ≥ t0. Without loss of generality and because of
(A3), we may assume that y(t) > 0, y(t−τ) > 0 and y(t−σ) > 0, for t ≥ t1 > t0+ρ.
Setting

z(t) = y(t) + p(t)y(t− τ) (2.1)

in the system (E), it follows that(
r(t)z′(t)

)′
= −q(t)G

(
y(t− σ)

)
< 0, t 6= τk (2.2)

∆
(
r(τk)z′(τk)

)
= −qk G

(
y(τk − σ)

)
< 0, k ∈ N

for t ≥ t1. Hence, there exists t2 > t1 such that r(t)z′(t) is nonincreasing on [t2,∞).
Since z(t) is monotonic, then there exists t3 > t2 such that z(t) > 0 or < 0, for
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t ≥ t3. Indeed, z(t) < 0 for t ≥ t3 implies that y(t) < y(t − τ), y(τk) < y(τk − τ),
y(τk + 0) < y(τk + 0− τ) and hence

y(t) < y(t− τ) < y(t− 2τ) < · · · < y(t3), t 6= τk,

y(τk) < y(τk − τ) < y(τk − 2τ) < · · · < y(t3), k ∈ N,
y(τk + 0) < y(τk + 0− τ) < y(τk + 0− 2τ) < · · · < y(t3), k ∈ N,

that is, y(t) is bounded, which is absurd. Hence, z(t) > 0 for t ≥ t3. If r(t)z′(t) > 0
for t ≥ t3, then r(t)z′(t) is nonincreasing on [t3,∞) and hence there exist a constant
C > 0 and t4 > t3 such that r(t)z′(t) ≤ C for t ≥ t4. Consequently,

z(t) ≤ z(t4) +
∑

t4≤τk<t

z′(τk) + C

∫ t

t4

ds

r(s)
,

since r(τk)z′(τk) ≤ C. Therefore, the last inequality becomes

z(t) ≤ z(t4) + C

∫ t

t4

ds

r(s)
+

∑
t4≤τk<t

1

r(τk)

 <∞,
as t → ∞ due to (A0). On the other hand, y(t) is unbounded, and thus there exists
{ηn} such that ηn →∞ as n→∞, y(ηn)→∞ as n→∞ and

y(ηn) = max{y(s) : t3 ≤ s ≤ ηn}.

Therefore,

z(ηn) = y(ηn) + p(ηn)y(ηn − τ)

≥ (1− a)y(ηn)→ +∞, as t→∞

implies that z(t) (ultimately z(τk) for k ∈ N) is unbounded, a contradiction.
Obviously, the case r(t)z′(t) < 0, z(t) > 0 for t ≥ t3 is not possible.
Hence, every unbounded solution of the system (E) oscillates.

Next, we suppose that (A5) doesn’t hold. Assume that∫ ∞
0

ds

r(s)
= +∞

and due to our assumption (A4), let∫ ∞
T

q(t)G
(
CR(t− σ)

)
dt+

∞∑
k=1

qk G
(
CR(τk − σ)

)
≤ C

4
, C > 0.

Let’s consider

M = {y : y ∈ C([T − ρ,+∞),R), y(t) = 0 for t ∈ [T − ρ, T ] and

C

4

[
R(t)−R(T )

]
≤ y(t) ≤ C

[
R(t)−R(T )

]
}
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and define Φ : M → C([T − ρ,+∞),R) such that

(Φy)(t) =


0, t ∈ [T − ρ, T )

−p(t)y(t− τ) +
∫ t
T

1
r(u)

[
C
4 +

∫∞
u
q(s)G

(
y(s− σ)

)
ds

+
∑∞
k=1 qkG

(
y(τk − σ)

)]
du, t ≥ T.

For every y ∈M ,

(Φy)(t) ≥
∫ t

T

1

r(u)

[
C

4
+

∫ ∞
u

q(s)G
(
y(s− σ)

)
ds+

∞∑
k=1

qkG
(
y(τk − σ)

)]
du

≥ C

4

∫ t

T

du

r(u)
=
C

4

[
R(t)−R(T )

]
and y(t) ≤ CR(t) implies that

(Φy)(t) ≤ −p(t)y(t− τ) +
C

2

∫ t

T

du

r(u)

≤ aC
[
R(t− τ)−R(T )

]
+
C

2

[
R(t)−R(T )

]
≤ aC

[
R(t)−R(T )

]
+
C

2

[
R(t)−R(T )

]
=

(
a+

1

2

)
C
[
R(t)−R(T )

]
≤ C

[
R(t)−R(T )

]
implies that (Φy)(t) ∈M . Define un : [T − ρ,+∞)→ R by the recursive formula

un(t) =
(
Φun−1

)
(t), n ≥ 1,

with the initial condition

u0(t) =

{
0, t ∈ [T − ρ, T )
C
4

[
R(t)−R(T )

]
, t ≥ T.

Inductively it is easy to verify that

C

4

[
R(t)−R(T )

]
≤ un−1(t) ≤ un(t) ≤ C

[
R(t)−R(T )

]
.

for t ≥ T . Therefore for t ≥ T − ρ, limn→∞ un(t) exists. Let

lim
n→∞

un(t) = u(t) for t ≥ T − ρ.

By the Lebesgue’s dominated convergence theorem u ∈M and
(
Φu
)
(t) = u(t), where

u(t) is a solution of the impulsive system (E) on [T −ρ,∞) such that u(t) > 0. Hence,
(A5) is necessary. This completes the proof of the theorem. �

Remark 2.1. In Theorem 2.1, G could be linear, sublinear or superlinear.

Theorem 2.2. Let −1 < −a ≤ p(t) ≤ 0, a > 0 for t ∈ R+. Assume that (A1) − (A3)
and (A5) hold. Furthermore, assume that

(A6)
∫∞
T

1
r(t)

[∫ t
T
q(s)G

(
CR1(s− σ)

)
ds+

∑∞
k=1 q(τk)G

(
CR1(τk − σ)

)]
dt = +∞



508 Arun Kumar Tripathy and Shyam Sundar Santra

and

(A7)
∫∞
T
q(s)ds+

∑∞
k=1 q(τk) = +∞

hold for every constants C, T > 0, where R1(t) =
∫∞
t

ds
r(s) . Then every solution of the

system (E) either oscillates or converges to zero.

Proof. Let y(t) be a regular solution of (E). Proceeding as in Theorem 2.1, we have
(2.2) for t ≥ t1. Hence, there exists t2 > t1 such that r(t)z′(t) and z(t) are of constant
sign on [t2,∞). If z(t) < 0 for t ≥ t2, then y(t) is bounded. Consequently, limt→∞ z(t)
exists. As a result,

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t)

≥ lim sup
t→∞

(
y(t)− a y(t− τ)

)
≥ lim sup

t→∞
y(t) + lim inf

t→∞

(
−a y(t− τ)

)
= (1− a) lim sup

t→∞
y(t)

implies that lim supt→∞ y(t) = 0 [∵ 1 − a > 0] and thus limt→∞ y(t) = 0 for t 6= τk,
k ∈ N. We may note that {y(τk − 0)}k∈N and {y(τk + 0)}k∈N are sequences of reals,
and because of continuity of y

lim
k→∞

y(τk − 0) = 0 = lim
k→∞

y(τk + 0)

due to

lim inf
t→∞

y(t) = 0 = lim sup
t→∞

y(t).

Hence for all t and τk, k ∈ N, limt→∞ y(t) = 0. Let z(t) > 0 for t ≥ t2. If r(t)z′(t) < 0
for t ≥ t2, then z(t) is bounded and hence limt→∞ z(t) exists. Therefore, for s ≥ t > t2,
r(s)z′(s) ≤ r(t)z′(t) implies that

z′(s) ≤ r(t)z′(t)

r(s)
,

that is,

z(s) ≤ z(t) + r(t)z′(t)

∫ s

t

dθ

r(θ)
.

Because r(t)z′(t) is nonincreasing, we can find a constant C > 0 such that r(t)z′(t) ≤
−C for t ≥ t2. As a result,

z(s) ≤ z(t)− C
∫ s

t

dθ

r(θ)

and hence 0 ≤ z(t) − CR1(t) for t ≥ t2. Ultimately, z(τk) ≥ CR1(τk), k ∈ N. From
the system (2.2) it is easy to see that(

r(t)z′(t)
)′

+ q(t)G
(
CR1(t− σ)

)
≤ 0, t 6= τk

∆
(
r(τk)z′(τk)

)
+ q(τk) G

(
CR1(τk − σ)

)
≤ 0, k ∈ N.
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Integrating the last inequality from t2 to t(> t2), we obtain[
r(s)z′(s)

]t
t2

+

∫ t

t2

q(s)G
(
CR1(s− σ)

)
ds−

∑
t3≤τk<t

∆
(
r(τk)z′(τk)

)
≤ 0,

that is,∫ t

t2

q(s)G
(
CR1(s− σ)

)
ds+

∑
t2≤τk<t

qkG
(
CR1(τk − σ)

)
≤ −

[
r(s)z′(s)

]t
t2

≤ −r(t)z′(t)

implies that

1

r(t)

∫ t

t2

q(s)G
(
CR1(s− σ)

)
ds+

∑
t2≤τk<t

qkG
(
CR1(τk − σ)

) ≤ −z′(t)
and further integration of the preceding inequality, we have∫ u

t3

1

r(t)

∫ t

t3

q(s)G
(
CR1(s− σ)

)
ds+

∑
t3≤τk<t

qkG
(
CR1(τk − σ)

) dt
≤ −

[
z(t)

]u
t3

+
∑

t3≤τk<u

∆z(τk)

= −
[
z(t)

]u
t3

+
∑

t3≤τk<u

[
z(τk + 0)− z(τk − 0)

]
≤ z(t3) +

∑
t3≤τk<u

z(τk + 0)

< +∞.

Ultimately,∫ ∞
t3

1

r(t)

[∫ t

t3

q(s)G
(
CR1(s− σ)

)
ds+

∞∑
k=1

qkG
(
CR1(τk − σ)

)]
dt <∞,

gives a contradiction to (A6). Hence, r(t)z′(t) > 0 for t ≥ t2. As z(t) is nondecreasing
on [t2,∞), there exist a constant C > 0 and t3 > t2 such that z(t) ≥ C for t ≥ t3.
Therefore, the system (2.2) becomes(

r(t)z′(t)
)′

+ q(t)G(C) ≤ 0, t 6= τk

∆
(
r(τk)z′(τk)

)
+ q(τk) G(C) ≤ 0, k ∈ N.

We integrate the preceding inequality from t3 to +∞ and obtain∫ ∞
t3

q(s)ds+
∑

t3≤τk<∞

q(τk) < +∞,

which is a contradiction to (A7). Thus the proof of the theorem is complete. �

Theorem 2.3. Let −1 < −a ≤ p(t) ≤ 0, a > 0 for t ∈ R+. Assume that (A5) and
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(A8)
∫∞
0
q(s)ds+

∑∞
k=1 q(τk)dt <∞

hold. Then the impulsive system (E) admits a positive bounded solution.

Proof. Due to (A5), it is easy to verify that∫ ∞
0

1

r(s)

[∫ ∞
s

q(t)dt+

∞∑
k=1

q(τk)

]
ds < +∞. (2.3)

Let there exist T > ρ such that

G
(
R(t)

) ∫ t

T

1

r(s)

[∫ ∞
s

q(θ)dθ +

∞∑
k=1

q(τk)

]
ds ≤ R(t)

4
, T ≥ ρ.

Consider

M = {y ∈ C([T − σ,+∞),R) : y(t) =
R(t)

4
, t ∈ [T − ρ, T ];

R(t)

4
≤ y(t) ≤ R(t) for t ≥ T}

and let Φ : M →M be defined by

(Φy)(t) =


(Φy)(T ), t− ρ ≤ t ≤ T,
−p(t)y(t− τ) + R(t)

4 +
∫ t
T

1
r(s)

[∫∞
s
q(θ)G

(
y(θ − σ)

)
dθ

+
∑∞
k=1 q(τk)G

(
y(τk − σ)

)]
ds, t ≥ T.

For every y ∈M , (Φy)(t) ≥ R(t)
4 and

(Φy)(t) ≤ aR(t) +
R(t)

4
+G(R(t))

∫ t

T

1

r(s)

[∫ ∞
s

q(θ)dθ +

∞∑
k=1

q(τk)

]
ds

≤ aR(t) +
R(t)

4
+
R(t)

4
=

(
a+

1

2

)
R(t) ≤ R(t)

implies that (Φy) ∈M . Proceeding as in the proof of Theorem 2.1, we conclude that
the operator T has a fixed point u ∈M , that is, u(t) = (Tu)(t), t ≥ T − ρ. Therefore,

u(t) is a solution of the impulsive system (E) with R(t)
4 ≤ u(t) ≤ R(t) for t ≥ T

which is regular and does not tend to zero as t→∞ when the limit exists. Thus the
theorem is proved. �

Theorem 2.4. Let 0 ≤ p(t) ≤ a < ∞ for t ∈ R+. Assume that (A1) − (A3) and (A5)
hold. Furthermore, assume that

(A9) there exists λ > 0 such that G(u) +G(v) ≥ λG(u+ v) for u, v ∈ R+,
(A10) G(uv) ≤ G(u)G(v), u, v ∈ R+,

(A11)
∫∞
T

1
r(t)

[∫ t
T1
Q(s)G

(
CR1(s− σ)

)
ds+

∑∞
k=1Q(τk)G

(
CR1(τk − σ)

)]
dt

= +∞, T, T1 > 0

and

(A12)
∫∞
T
Q(t)dt+

∑∞
k=1Q(τk) = +∞, T > ρ

hold, where Q(t) = min{q(t), q(t − τ)}, t ≥ τ . Then every solution of the impulsive
system (E) oscillates.
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Proof. On the contrary, let y(t) be a regular nonoscillatory solution of (E). Proceeding
as in Theorem 2.1, we have two cases namely z(t) > 0, r(t)z′(t) < 0 and z(t) > 0,
r(t)z′(t) > 0 for t ∈ [t2,∞). Consider the former one. Ultimately, y(t) is bounded.
Using the same type of argument as in the proof of the Theorem 2.2, we obtain that
z(t) ≥ CR1(t) for t ≥ t2. From the system (E) it is easy to see that(

r(t)z′(t)
)′

+ q(t)G
(
y(t− σ)

)
+G(a)

[(
r(t− τ)z′(t− τ)

)′
+ q(t− τ)G

(
y(t− τ − σ)

)]
= 0, t 6= τk,

∆
(
r(τk)z′(τk)

)
+ q(τk)G

(
y(τk − σ)

)
+G(a)

[
∆
(
r(τk − τ)z′(τk − τ)

)
+ q(τk − τ)G

(
y(τk − τ − σ)

)]
= 0, k ∈ N.

Using (A9) and (A10) in the above system, it follows that(
r(t)z′(t)

)′
+G(a)

(
r(t− τ)z′(t− τ)

)′
+ λQ(t)G

(
z(t− σ)

)
≤ 0

∆
(
r(τk)z′(τk)

)
+G(a)∆

(
r(τk − τ)z′(τk − τ)

)
+ λQ(τk)G

(
z(τk − σ)

)
≤ 0, (2.4)

where z(t) ≤ y(t) + ay(t− τ). Ultimately, (2.4) reduces to(
r(t)z′(t)

)′
+G(a)

(
r(t− τ)z′(t− τ)

)′
+ λQ(t)G

(
CR1(t− σ)

)
≤ 0

∆
(
r(τk)z′(τk)

)
+G(a)∆

(
r(τk − τ)z′(τk − τ)

)
+ λQ(τk)G

(
CR1(τk − σ)

)
≤ 0

for t ≥ t3 > t2, t 6= τk, k ∈ N. Integrating the last system from t3 to t (> t3), we get[
r(s)z′(s)

]t
t3

+G(a)
[
r(s− τ)z′(s− τ)

]t
t3
−

∑
t3≤τk<t

∆
(
r(τk)z′(τk)

)
−G(a)

∑
t3≤τk<t

∆
(
r(τk − τ)z′(τk − τ)

)
+ λ

∫ t

t3

Q(s)G
(
CR1(s− σ)

)
ds ≤ 0,

that is,

λ
[∫ t

t3

Q(s)G
(
CR1(s− σ)

)
ds +

∑
t3≤τk<t

Q(τk)G
(
CR1(τk − σ)

)]
≤ −

[
r(s)z′(s) +G(a)

(
r(s− τ)z′(s− τ)

)]t
t3

≤ −
[
r(t)z′(t) +G(a)

(
r(t− τ)z′(t− τ)

)]
≤ −

(
1 +G(a)

)
r(t)z′(t).

Therefore,

λ

1 +G(a)

1

r(t)

[∫ t

t3

Q(s)G
(
CR1(s− σ)

)
ds+

∑
t3≤τk<t

Q(τk)G
(
CR1(τk − σ)

)]
≤ −z′(t).

Integrating the above inequality, we obtain

λ

1 +G(a)

∫ ∞
t3

1

r(t)

[∫ t

t3

Q(s)G
(
CR1(s− σ)

)
ds+

∑
t3≤τk<t

QkG
(
CR1(τk − σ)

)]
dt <∞
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which is a contradiction to (A11). If the latter case holds, then there exist a constant
C > 0 and t3 > t2 such that z(t) ≥ C for t ≥ t3. From (2.4), it follows that(

r(t)z′(t)
)′

+G(a)
(
r(t− τ)z′(t− τ)

)′
+ λQ(t)G(C) ≤ 0

∆
(
r(τk)z′(τk)

)
+G(a)∆

(
r(τk − τ)z′(τk − τ)

)
+ λQ(τk)G(C) ≤ 0.

Integrating the last inequality from t3 to +∞, we get a contradiction to (A12). This
completes the proof of the theorem. �

Theorem 2.5. Let 0 ≤ p(t) ≤ R(t) < 1 for t ∈ R+. Assume that (A5) and (A8)
hold. Furthermore, assume that G is Lipschitzian on the intervals of the form [a, b],
0 < a < b <∞. Then the impulsive system (E) admits a positive bounded solution.

Proof. Proceeding as in the proof of Theorem 2.3, we get (2.3). So, there exists T > ρ
such that ∫ ∞

T

1

r(s)

[∫ ∞
s

q(t)dt+

∞∑
k=1

q(τk)

]
ds <

1−R(t)

3L
.

where L = max{L1, G(1)}, L1 is the Lipschitz constant of G on
[
1−R(t)

2 , 1
]

for t ≥ T .

Let X = BC([T,∞),R) be the space of real valued continuous functions on [T,∞).
Indeed, X is a Banach space with respect to the sup norm defined by

‖y‖ = sup{|y(t)| : t ≥ T}.

Define

S = {v ∈ X :
1−R(t)

2
≤ v(t) ≤ 1, t ≥ T}.

We notice that S is a closed and convex subspace of X. Let Φ : S → S be such that

(Φy)(t) =


(Φy)(T + ρ), t ∈ [T, T + ρ],

−p(t)y(t− τ) + 5+R(t)
6 −

∫∞
t

1
r(s)

[∫∞
s
q(u)G

(
y(u− σ)

)
du

+
∑∞
k=1 q(τk)G

(
y(τk − σ)

)]
ds, t ≥ T + ρ.

For every y ∈ X, (Φy)(t) ≤ 5+R(t)
6 < 1 and

(Φy)(t) ≥ −R(t) +
5 +R(t)

6
− 1−R(t)

3
=

1

2
(1−R(t))

implies that Φy ∈ S. For y1, y2 ∈ S,

|(Φy1)(t)− (Φy2)(t)| ≤ R(t)|y1(t− τ)− y2(t− τ)|

+

∫ ∞
t

1

r(s)

[∫ ∞
s

q(u)|G
(
y1(u− σ)

)
−G

(
y2(u− σ)

)
|du

+

∞∑
k=1

qk|G
(
y1(τk − σ)

)
−G

(
y2(τk − σ)

)
|
]
ds,
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that is,

|(Φy1)(t)− (Φy2)(t)| ≤ R(t)‖y1 − y2‖+ ‖y1 − y2‖L1

×
∫ ∞
t

1

r(s)

[∫ ∞
s

q(u)du+

∞∑
k=1

qk

]
ds

≤
(
R(t) +

1−R(t)

3

)
‖y1 − y2‖

implies that

|(Φy1)(t)− (Φy2)(t)| ≤ µ‖y1 − y2‖,

where (
R(t) +

1−R(t)

3

)
≤ 1 + 2α

3
= µ < 1

and α = lim supt→∞R(t) (∵ R(t) < ∞, R′(t) > 0). Therefore, Φ is a contraction.
Using Banach’s fixed point theorem, it follows that Φ has a unique fixed point y(t)

in
[
1−R(t)

2 , 1
]
. This completes the proof of the theorem. �

Theorem 2.6. Let 1 < a1 ≤ p(t) ≤ a2 < ∞, a21 ≥ a2 for t ∈ R+. Assume that (A5)
and (A8) hold. Let G be Lipschitzian on intervals of the form [a, b], 0 < a < b < ∞.
Then the impulsive system (E) admits a positive bounded solution.

Proof. Proceeding as in the proof of Theorem 2.3, we have obtained (2.3). Let∫ ∞
T

1

r(t)

[∫ ∞
t

q(s)ds+

∞∑
k=1

q(τk)

]
dt <

a1 − 1

4L
,

where L = max{L1, L2}, L1 is the Lipschitz constant of G on [a, b], L2 = G(b) with

a =
4µ(a21 − a2)− a2(a1 − 1)

4a12a2

b =
a1 − 1 + 4µ

4a1
, µ >

a2(a1 − 1)

4(a12 − a2)
> 0.

Let X = BC([T,∞),R) be the space of real valued functions defined on [T,∞).
Indeed, X is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ T}.
Define

S = {u ∈ X : a ≤ u(t) ≤ b, t ≥ T} .
Let Φ : S → S be such that

(Φy)(t) =


Φy(T + ρ), t ∈ [T, T + ρ]

−y(t+τ)p(t+τ) + µ
p(t+τ) + 1

p(t+τ)

∫ t+τ
T

1
r(s)

[∫∞
s
q(v)G

(
y(v − σ)

)
dv

+
∑∞
k=1 q(τk)G

(
y(τk − σ)

)]
ds, t ≥ T + ρ.
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For every y ∈ S,

(Φy)(t) ≤ G(b)

p(t+ τ)

∫ t+τ

T

1

r(s)

[∫ ∞
s

q(v)dv +

∞∑
k=1

q(τk)

]
ds+

µ

p(t+ τ)

≤ G(b)

p(t+ τ)

∫ ∞
T

1

r(s)

[∫ ∞
s

q(v)dv +

∞∑
k=1

q(τk)

]
ds+

µ

p(t+ τ)

≤ 1

a1

[
a1 − 1

4
+ µ

]
= b

and

(Φy)(t) ≥ −y(t+ τ)

p(t+ τ)
+

µ

p(t+ τ)
> − b

a1
+

µ

a2
= a

implies that Φy ∈ S. For y1, y2 ∈ S

|(Φy1)(t)− (Φy2)(t)| ≤ 1

|p(t+ τ)|
|y1(t+ τ)− y2(t+ τ)|

+
G(b)

|p(t+ τ)|

∫ t+τ

T

1

r(s)

[∫ ∞
s

q(v)|y1(v − σ)− y2(v − σ)|dv

+

∞∑
k=1

q(τk)|y1(τk − σ)− y2(τk − σ)|
]
ds,

that is,

|(Φy1)(t)− (Φy2)(t)| ≤ 1

a1
||y1 − y2||+

G(b)

a1
||y1 − y2||

×
∫ t+τ

T

1

r(s)

[∫ ∞
s

q(v)dv +

∞∑
k=1

q(τk)

]
ds

<
1

a1
||y1 − y2||

(
1 +

a1 − 1

4

)
.

Therefore,

||(Φy1)− (Φy2)|| ≤
(

1

a1
+
a1 − 1

4a1

)
||y1 − y2||.

As
(

1
a1

+ a1−1
4a1

)
< 1, Φ is a contraction mapping. We note that S is a closed convex

subset of X and hence by the Banach’s fixed point theorem Φ has a unique fixed
point, that is, Φy(t) = y(t) on [a, b]. Thus the proof of the theorem is complete. �

Theorem 2.7. Let −∞ < −a1 ≤ p(t) ≤ −a2 < −1 for t ∈ R+, where a1, a2 > 0.
Assume that (A1)− (A3) and (A5)− (A7) hold. If

(A13)
∫∞
T

1
r(t)

[∫ t
T
q(s)ds+

∑∞
k=1 q(τk)

]
dt = +∞,

then every bounded solution of the system (E) either oscillates or converges to zero.
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Proof. Let y(t) be a bounded regular solution of (E). Proceeding as in Theorem 2.1,
it follows that z(t) and r(t)z′(t) are monotonic functions on [t2,∞). Since y(t) is
bounded, then z(t) is bounded and hence limt→∞ z(t) exists. Using the arguments
as in the proof of Theorem 2.2, we get contradictions to (A6) and (A7) for the cases
z(t) > 0, r(t)z′(t) < 0 and z(t) > 0, r(t)z′(t) > 0 respectively. Consider the case
z(t) < 0, r(t)z′(t) > 0 for t ≥ t2. We claim that limt→∞ z(t) = 0. If not, there exist
β < 0 and t3 > t2 such that z(t + τ − σ) < β for t ≥ t3. Hence, z(t) ≥ −a1y(t − τ)
implies that y(t − σ) ≥ −a−11 β for t ≥ t3. Consequently, the impulsive system (2.2)
reduces to (

r(t)z′(t)
)′

+G
(
−a−11 β

)
q(t) ≤ 0, t 6= τk

∆
(
r(τk)z′(τk)

)
+G

(
−a−11 β

)
q(τk) ≤ 0, k ∈ N (2.5)

for t ≥ t3. Integrating (2.5) from t3 to +∞, we get[∫ ∞
t3

q(s)ds+
∑

t3≤τk≤∞

q(τk)

]
<∞

which is a contradiction to (A7). So, our claim holds and

0 = lim
t→∞

z(t) = lim inf
t→∞

(
y(t) + p(t)y(t− τ)

)
≤ lim inf

t→∞
(y(t)− a2 y(t− τ))

≤ lim sup
t→∞

y(t) + lim inf
t→∞

(
−a2 y(t− τ)

)
= (1− a2) lim sup

t→∞
y(t)

implies that lim supt→∞ y(t) = 0 [∵ 1− a2 < 0]. Thus, limt→∞ y(t) = 0.
Let z(t) < 0, r(t)z′(t) < 0 for t ≥ t2. Proceeding as in the previous case, we get (2.5).
Integrating (2.5) from t3 to t, we obtain∫ t

t3

q(s)G
(
−a−11 β

)
ds+

∑
t3≤τk≤t

q(τk)G
(
−a−11 β

)
≤ −r(t)z′(t),

that is,

1

r(t)

[∫ t

t3

q(s)G
(
−a−11 β

)
ds+

∑
t3≤τk≤t

q(τk)G
(
−a−11 β

)]
≤ −z′(t)

for t ≥ t3. Further integration of the above inequality from t3 to +∞, we get∫ ∞
t3

1

r(t)

[∫ t

t3

q(s)ds+
∑

t3≤τk≤t

q(τk)

]
dt <∞

which contradicts (A13). Thus limt→∞ z(t) = 0. Rest of this case follows from the
previous case. This completes the proof of the theorem. �

Theorem 2.8. Let −∞ < −a1 ≤ p(t) ≤ −a2 < −1 for t ∈ R+, where a1, a2 > 0
such that 4a2 > a1. Assume that (A5) and (A8) hold. Furthermore, assume that G is
Lipschitzian on the intervals of the form [a, b], 0 < a < b <∞. Then the system (E)
admit a positive bounded solution.
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Proof. Proceeding as in the proof of Theorem 2.3, we get (2.3). So, it is possible to
find T > ρ such that∫ ∞

T

1

r(s)

[∫ ∞
s

q(t)dt+

∞∑
k=1

q(τk)

]
ds <

a2 − 1

4L
,

where L = max{L1, G(1)}, L1 is the Lipschitz constant of G on (a, 1),

a =
(a2 − 1)(4a2 − a1)

4a1a2
.

Let X = BC([T,∞),R) be the space of real valued continuous functions defined on
[T,∞). Indeed, X is a Banach space with the supremum norm defined by

||y|| = sup{|y(t)| : t ≥ T}.

Define

S = {v ∈ X : a ≤ v(t) ≤ 1, t ≥ T} .

We may note that S is a closed and convex subspace of X. Let Ψ : S → S be such
that

(Ψy)(t) =


Ψy(T + ρ), t ∈ [T, T + ρ]

−y(t+τ)p(t+τ) −
a2−1
p(t+τ) + 1

p(t+τ)

∫ t+τ
T

1
r(s)

[∫∞
s
q(u)G

(
y(u− σ)

)
du

+
∑∞
k=1 q(τk)G

(
y(τk − σ)

)]
ds, t ≥ T + ρ.

For every y ∈ S,

(Ψy)(t) ≤ −y(t+ τ)

p(t+ τ)
− a2 − 1

p(t+ τ)

≤ 1

a2
+
a2 − 1

a2
= 1

and

(Ψy)(t) ≥ − a2 − 1

p(t+ τ)
+

1

p(t+ τ)

×
∫ t+τ

T

1

r(s)

[∫ ∞
s

q(u)G
(
y(u− σ)

)
du+

∞∑
k=1

q(τk)G
(
y(τk − σ)

)]
ds

≥ a2 − 1

a1
+

G(1)

p(t+ τ)

∫ t+τ

T

1

r(s)

[∫ ∞
s

q(u)du+

∞∑
k=1

q(τk)

]
ds

≥ a2 − 1

a1
− G(1)

a2

∫ ∞
T

1

r(s)

[∫ ∞
s

q(u)du+

∞∑
k=1

q(τk)

]
ds

≥ a2 − 1

a1
− a2 − 1

4a2
= a
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implies that (Ψy) ∈ S. For y1, y2 ∈ S, we have that

|(Ψy1)(t)− (Ψy2)(t)| ≤ 1

|p(t+ τ)|
|y1(t+ τ)− y2(t+ τ)|

+
L1

|p(t+ τ)|

∫ t+τ

T

1

r(s)
[

∫ ∞
s

q(u)|y1(u− σ)− y2(u− σ)|du

+

∞∑
k=1

q(τk)|y1(τk − σ)− y2(τk − σ)|]ds,

that is,

|(Ψy1)(t)− (Φy2)(t)| ≤ 1

a2
||y1 − y2||+

a2 − 1

4a2
||y1 − y2||

implies that

||(Ψy1)− (Ψy2)|| ≤ µ||y1 − y2||,
where µ = 1

a2

(
1 + a2−1

4

)
< 1. Therefore, Ψ is a contraction. By the Banach’s fixed

point theorem, Ψ has a unique fixed point y ∈ S. It is easy to see that limt→∞ y(t) 6= 0.
This completes the proof of the theorem. �

3. Discussion and example

It is worth observation that we could succeed to establish the necessary and
sufficient conditions for oscillation of all solutions of the impulsive system (E1) when
−1 < p(t) ≤ 0 only. However, we failed to obtain the necessary and sufficient condi-
tions for the other ranges of p(t) and hence the undertaken problem is open for other
ranges of p(t). May be some other method is required to overcome the problem.

We conclude this section with the following example:

Example 3.1. Consider the impulsive system

(E4)

{(
r(t)(y(t) + p(t)y(t− 1))′

)′
+ q(t)y(t− 1) = 0, t 6= τk

∆
(
r(τk)(y(τk) + p(τk) y(τk − 1))′

)
+ q(τk) y(τk − 1) = 0, k ∈ N,

where −1 < p(t) = e−t − 1 ≤ 0, q(t) = e−t, r(t) = et, R(t) = 1 − e−t, G(x) = x,
ρ = 1 and τk = 2k, k ∈ N. Clearly, all conditions of Theorem 2.1 are satisfied. Thus
by Theorem 2.1, every unbounded solution of the system (E4) oscillates.
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type problem with nonlinear term of superlinear
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Abstract. This paper is concerned by the study of the existence of nonnegative
and nonpositive solutions for a nonlocal quasilinear Kirchhoff problem by using
the Mountain Pass lemma technique.
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1. Introduction

Many research are interested to study the existence of nontrivial solutions of
Kirchhoff type equations for its huge importance. The Kirchhoff equation was intro-
duced for the first time in 1876, which describe the free transverse vibrations of a
tight rope of length L and a constant density (assumed to be equal to 1). The rope
is described by a variable x taking its values in the interval [0, L]. The system of
equations describing this phenomena and which was given by Kirchhoff is

utt −
(
g(λ)ux

)
x

= 0, 0 < x < L, t > 0, (1.1)

vtt −
(
g(λ)(1 + vx)

)
x

= 0, 0 < x < L, t > 0, (1.2)

u(0, t) = u(L, t) = v(0, t) = v(L, t), t ≥ 0, (1.3)

where λ is the deformation of the cord given by λ(x, t) =
(
|1+vx|2 + |ux|2

) 1
2 −1, and

g(λ) = σ(λ)
1+λ with σ(λ) represents the rope (cord) constraint corresponding to λ; finally

and most important, the unknowns u(x, t) and v(x, t) represent the transversal and
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longitudinal displacements of the material point x at the time t. In order to separate
the unknowns u and v and under some hypotheses, one can obtain

utt −
(
T0 +

E

2L

∫ L

0

|ux|2 dx
)
uxx = 0, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0,

which is named the Kirchhoff equation. T0 and E
2L are two physical constants.

Since then, many researchers are interested in the Kirchhoff equation for its impor-
tance and it has been the subject of many studies; we cite here, in particular [4],
which treats the following Kirchhoff type problem −

(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u), in Ω,

u = 0, on ∂Ω,

with 4-superlinear growth as |u| → +∞, and using minimax methods, it gives two
interesting results, the existence of nontrivial solutions, and the existence of sign-
changing solutions and multiple solutions. We cite also [3] which treat the existence
and multiplicity of solutions for the semilinear elliptic problem given by{

−∆u+ `(x)u = f(x, u), in Ω,
u = 0, on ∂Ω,

by using the Mountain Pass technique. Note that, our work is practically based on
the papers [3] and [4].

Let us consider the following nonlocal1 Kirchhoff problem −
(
a+ b

∫
Ω

|∇u|p dx
)p−1

∆pu+ `(x)|u|p−2u = f(x, u), in Ω,

u = 0 on ∂Ω,
(1.4)

where ∆p is the p Laplacian operator: −∆pu = div(|∇u|p−2∇u), Ω is a smooth
bounded domain in RN with N ≥ 3, a, b two strictly positive real numbers, ` ∈
L
N
p (Ω) ∩ L∞(Ω) and f is a real continuous function defined on Ω × R. The induced

norm in W 1,p
0 (Ω) is given by

||u|| :=
(∫

Ω

|∇u|p dx
) 1
p

, ∀u ∈W 1,p
0 (Ω).

2. Statement of the main result

The operator L defined by Lu = −(a + b||u||p)p−1∆pu + `|u|p−2u possesses an
unbounded eigenvalues sequence

λ1 < λ2 ≤ · · · ≤ λn → +∞ as n→ +∞,

1It is called nonlocal because of the term M(||u||p) = a+ b||u||p which implies that the equation is

no more a punctual identity [1].
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where λ1 is simple and is characterized by

λ1 = inf
u∈W 1,p

0 (Ω),u 6=0

(a+ b||u||p)p−1||u||p +

∫
Ω

`(x)|u|p dx∫
Ω

|u|p dx
·

Remark 2.1. Our purpose in this remark is to study the following eigenvalue problem

Lφ = −(a+ b||φ||p)p−1∆pφ+ `(x)|φ|p−2φ = λ|φ|p−2φ. (2.1)

Let λk and φ̃k respectively eigenvalues and eigenfunctions of the operator

−∆p + g|φ|p−2 : W 1,p
0 (Ω)→W−1,p′(Ω)

with g ∈ L∞(Ω) (see [5], [6]), which means that

−∆pφ̃k + g(x)|φ̃k|p−2φ̃k = λk|φ̃k|p−2φ̃k; (2.2)

especially for g(x) =
`(x)

(a+ b||φ̃k||p)p−1
, i.e.,

−∆pφ̃k +
`(x)

(a+ b||φ̃k||p)p−1
|φ̃k|p−2φ̃k = λk|φ̃k|p−2φ̃k, (2.3)

multiplying by (a+ b||φ̃k||p)p−1, we obtain

−(a+ b||φ̃k||p)p−1∆pφ̃k + `(x)|φ̃k|p−2φ̃k = λk(a+ b||φ̃k||p)p−1|φ̃k|p−2φ̃k, (2.4)

so the sequence (λ̂k) defined by

λ̂k = λk(a+ b||φ̃k||p)p−1

consist of eigenvalues of the operator L associated to the eigenfunctions φ̃k. Since λ1

is simple and strictly positive (see[5]) , it follows that λ̂1, the first eigenvalue of (2.1),
is also simple and strictly positive.

Proposition 2.1. If λ is an eigenvalue of the operator L, then, there exist λk and φ̃k
such that

λ = λk(a+ b||φ̃k||p)p−1.

Proof. As λ is an eigenvalue of the operator L, one has that there exists φ ∈W 1,p
0 (Ω)

with φ 6≡ 0 which satisfies

−(a+ b||φ||p)p−1∆pφ+ `(x)|φ|p−2φ = λ|φ|p−2φ in Ω, φ = 0 on ∂Ω,

and this implies that

(a+ b||φ||p)p−1

∫
Ω

|∇φ|p dx+

∫
Ω

`(x)|φ|p dx = λ

∫
Ω

|φ|p dx,

as a result

λ =
(a+ b||φ||p)p−1||φ||p +

∫
Ω
`(x)|φ|p dx∫

Ω
|φ|p dx

,
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and that

−∆pφ+
`(x)

(a+ b||φ||p)p−1
|φ|p−2φ =

λ

(a+ b||φ||p)p−1
|φ|p−2φ,

consequently, there exists k ∈ N∗ such that λk = λ

(a+b||φ̃k||p)p−1
and φ = φ̃k for some

eigenfunction associated to λk. λk = λ

(a+b||φ̃k||p)p−1
implies that λ = λk(a+b||φ̃k||p)p−1

and this conclude the proof of the proposition. �

For p < N and concerning the embedding mapping W 1,p
0 (Ω) # Lr(Ω), it is

continuous for r ∈ [1, p∗] and compact for r ∈ [1, p∗) with p∗ = pN
N−p , so we have that

Sr|u|r ≤ ||u|| for all u ∈ W 1,p
0 (Ω), where | · |r denotes the norm in Lr(Ω) and Sr is

the best constant corresponding to the embedding mapping (see [2]).

In this paper, we assume that f is a continuous function on Ω×R and satisfies:

(H1) for every M > 0, there exists a constant LM > 0 such that |f(x, s)| ≤ LM for
|s| ≤M and a.e. x ∈ Ω,

(H2) lim
|s|→∞

f(x, s)

|s|p∗−2s
= 0, uniformly in a.e. x ∈ Ω,

(H3) there exist a function m ∈ L
N
p (Ω), and a subset Ω′ ⊂ Ω with |Ω′| > 0 such that

lim sup
s→0

pF (x, s)

|s|p
≤ m(x) ≤ λ1,

uniformly in a.e. x ∈ Ω, and m < λ1 in Ω′, where F (x, s) =
∫ s

0
f(x, t) dt and | · |

is the Lebesgue measure,

(H4) lim
|s|→∞

F (x, s)

sp2
= +∞ uniformly in a.e. x ∈ Ω,

(H5) let F (x, u) =
1

p2
f(x, u)u − F (x, u), then F (x, u) → +∞ as |u| → +∞ uni-

formly in x ∈ Ω, and there exists σ > max{1, Np } such that |f(x, u)|σ ≤
CF (x, u)(|u|p−1)σ for |u| large.

Furthermore, we suppose that one of the two conditions is satisfied
(
`(x)−m(x) ≥ 0

)
or
(
`(x) ≥ 0 and ap−1 ≥ |m|L∞

Spp
when p ≥ 2

)
.

Example: consider the function

f(x, s) =

{
s3 ln(1 + s) + s4

4(1+s) −
1
4 [s3 + s2 + s], s ≥ 0,

s3 ln(1− s)− s4

4(1−s) −
1
4 [s3 − s2 + s], s < 0,

then f satisfies all the above hypotheses for p = 2 and N = 3.
Our main result is the following theorem

Theorem 2.1. Assume that hypotheses (H1)-(H5) hold, and that sf(x, s) ≥ 0 for
s ∈ R and a.e. x ∈ Ω. Then problem (1.4) has at least a nonnegative solution and a
nonpositive solution.
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3. Preliminaries

Let E = W 1,p
0 (Ω) and define the functional

Φ(u) =
1

p
M̂(||u||p) +

1

p

∫
Ω

`(x)|u|p dx−
∫

Ω

F (x, u) dx, u ∈ E,

where M̂(t) =
∫ t

0
[M(s)]p−1 ds and M(s) = a+ bs, in other words,

Φ(u) =
1

bp2

[
(a+ b||u||p)p − ap

]
+

1

p

∫
Ω

`(x)|u|p dx−
∫

Ω

F (x, u) dx, u ∈ E.

The variational formulation associated to the problem is[
M(||u||p)

]p−1
∫

Ω

|∇u|p−2∇u∇v dx+

∫
Ω

`(x)|u|p−2uv dx =

∫
Ω

f(x, u)v dx, ∀v ∈ E,

and by (H1) and (H2), one can verify that Φ ∈ C1(E,R) and

〈Φ′(u), v〉 =
[
M(||u||p)

]p−1
∫

Ω

|∇u|p−2∇u∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

f(x, u)v dx, ∀u, v ∈ E;

the weak solutions of the variational formulation are the critical points of Φ in E.
Following the paper [3] and in order to obtain nonnegative and nonpositive solutions,

we let f̃(x, s) = f(x, s)−m(x)|s|p−2s and truncate f̃ above or below s = 0, i.e., let

f̃+(x, s) =

{
f̃(x, s), s ≥ 0,
0, s < 0,

and f̃−(x, s) =

{
f̃(x, s), s ≤ 0,
0, s > 0,

and F̃+(x, s) =
∫ s

0
f̃+(x, t) dt, F̃−(x, s) =

∫ s
0
f̃−(x, t) dt. Under (H1) and (H2), the

functionals Φ̃+ and Φ̃− defined as follows

Φ̃+(u) =
1

p
M̂(||u||p) +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx−
∫

Ω

F̃+(x, u) dx,

=
1

bp2

[
(a+ b||u||p)p − ap

]
+

1

p

∫
Ω

`(x)|u|p dx

− 1

p

∫
Ω

m(x)|u|p dx−
∫

Ω

F̃+(x, u) dx,

Φ̃−(u) =
1

p
M̂(||u||p) +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx−
∫

Ω

F̃−(x, u) dx,

=
1

bp2

[
(a+ b||u||p)p − ap

]
+

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

−
∫

Ω

F̃−(x, u) dx,
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belong to C1(E,R) and

〈Φ̃′+(u), v〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

m(x)|u|p−2uv dx−
∫

Ω

f̃+(x, u)v dx,

〈Φ̃′−(u), v〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

m(x)|u|p−2uv dx−
∫

Ω

f̃−(x, u)v dx,

for all u, v ∈ E.

4. Proof of main results

We recall one critical point theorem which is the Mountain Pass lemma.

Theorem 4.1. Let (X, || · ||X) be a Banach space, suppose that Φ ∈ C1(X,R) satisfies
Φ(0) = 0 and

(i) (the first geometric condition) there exist positive constants R0 and α0 such that

Φ(u) ≥ α0 for all u ∈ X with ||u||X = R0,

(ii) (the second geometric condition) there exists e ∈ X with ||e||X > R0 such that
Φ(e) < 0,

(iii) (the Palais-Smale condition) Φ satisfies the (Cc) condition, that is, for c ∈ R,
every sequence (un) ⊂ X such that

Φ(un)→ c, ||Φ′(un)|| (1 + ||un||)→ 0

has a convergent subsequence. Then c := inf
γ∈Γ

sup
s∈[0,1]

Φ(γ(s)) is a critical value of

Φ, where

Γ := {γ ∈ C([0, 1], X); γ(0) = 0, γ(1) = e}.

We need also the following lemmas.

Lemma 4.1. Assume that N ≥ 3 and v ∈ L
N
p (Ω), then the functional

ψ(u) :=

∫
Ω

v(x)|u|p dx, u ∈W 1,p
0 (Ω)

is weakly continuous.

Proof. As in [8], the functional ψ is well defined by the Sobolev and Hölder inequali-

ties. Assume that un ⇀ u in W 1,p
0 (Ω) and consider an arbitrary subsequence (wn) of

(un). Since

wn → u in Lploc(Ω), w+
n → u+ in Lploc(Ω) and w−n → u− in Lploc(Ω)

going if necessary to a subsequence, we can assume that

wn → u a.e. on Ω, w+
n → u+ a.e. on Ω and w−n → u− a.e. on Ω.
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Since both (w+
n ) and (w−n ) are bounded in Lp

∗
(Ω), ((w+

n )p) and ((w−n )p) are bounded

in L
N
N−p (Ω). Hence (w+

n )p ⇀ (u+)p and (w−n )p ⇀ (u−)p in L
N
N−p (Ω), and so∫

Ω

v(x)|wn|p dx→
∫

Ω

v(x)|u|p.

As a result, ψ is weakly continuous. �

Lemma 4.2. Assume that m ∈ L
N
p (Ω), and there exists Ω′ ⊂ Ω with |Ω′| > 0 such

that
m ≤ λ1 in Ω and m < λ1 in Ω′

then

d := inf
u∈W 1,p

0 (Ω),u6=0

(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx−

∫
Ω
m(x)|u|p dx

||u||p

is strictly positive (d > 0).

Proof. Since λ1 = inf
u∈W 1,p

0 (Ω),u6=0

(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx

|u|pp
and from the

assumption that m ≤ λ1 in Ω, we have that d ≥ 0, because m ≤ λ1 implies that

−
∫

Ω

m|u|p dx ≥ −
∫

Ω

λ1|u|p dx,

and consequently, we have(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx−

∫
Ω
m(x)|u|p dx

||u||p

≥

(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx−

∫
Ω
λ1|u|p dx

||u||p

=

(
a+ b||u||p

)p−1

||u||p +
∫

Ω
`(x)|u|p dx

||u||p
− λ1

∫
Ω
|u|p dx
||u||p

≥ 0,

by definition of λ1. It remains to prove that d 6= 0; for that, we let

J(u) :=

∫
Ω

`(x)|u|p dx, u ∈W 1,p
0 (Ω),

K(u) :=

∫
Ω

m(x)|u|p dx, u ∈W 1,p
0 (Ω),

L(u) :=
(
a+ b||u||p

)p−1

||u||p + J(u)−K(u), u ∈W 1,p
0 (Ω).

Supposing by contradiction that d = 0, it follows that there exists a sequence (un)n ⊂
W 1,p

0 (Ω) such that
||un|| = 1 and lim

n→+∞
L(un) = 0,
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by the boundedness of (un)n in W 1,p
0 (Ω), we can extract a subsequence such that

un ⇀ u in W 1,p
0 (Ω). Since J and K are weakly continuous, we have

lim
n→+∞

J(un) = J(u), lim
n→+∞

K(un) = K(u), (4.1)

and from the weak lower semicontinuity of L, we obtain

0 ≤ L(u) ≤ lim inf
n

L(un) = lim
n
L(un) = 0,

then we have

L(u) =
(
a+ b||u||p

)p−1

||u||p + J(u)−K(u) = lim
n
L(un) = 0, (4.2)

which implies that(
a+ b||u||p

)p−1

||u||p + J(u) = K(u) =

∫
Ω

m(x)|u|p dx ≤ λ1

∫
Ω

|u|p dx,

so, we have(
a+ b||u||p

)p−1

||u||p + J(u) ≤ λ1

∫
Ω

|u|p dx ≤
(
a+ b||u||p

)p−1

||u||p + J(u),

consequently (
a+ b||u||p

)p−1

||u||p + J(u) = λ1

∫
Ω

|u|p dx. (4.3)

If u = 0, from (4.1), (4.2), we have that

lim
n
L(un) = lim

n

((
a+ b||un||p

)p−1

||un||p
)

+ J(0)−K(0) = 0,

which implies that lim
n→+∞

||un|| = 0, and this is a contradiction with ||un|| = 1. So

u 6= 0, then u is an eigenfunction corresponding to λ1; since m ≤ λ1 in Ω and m < λ1

in Ω′ with |Ω′| > 0, it follows that,(
a+ b||u||p

)p−1

||u||p + J(u) = K(u) =

∫
Ω

m(x)|u|p dx

=

∫
Ω′
m(x)|u|p dx+

∫
Ω\Ω′

m(x)|u|p

< λ1

∫
Ω′
|u|p dx+

∫
Ω\Ω′

λ1|u|p dx

=

∫
Ω

λ1|u|p dx,

which is in contradiction with (4.3). Consequently, d > 0. �

Lemma 4.3. Assume (H1), (H2) and (H3) hold, then Φ̃+ satisfies the first geometric
condition.

Proof. In the same way as in the paper [3], by (H3) and for ε ∈
(

0,
dSpp

2

)
, there exists

a positive constant M1 < 1 such that

F+(x, s) = F (x, s+) ≤ 1

p
(m(x) + ε)(s+)p, for |s| ≤M1 and a.e. x ∈ Ω (4.4)
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with s+ = max(s, 0); for the chosen ε and from (H1) and (H2), we have

∃M2 > 1,∃LM2
: |f+(x, s)| = |f(x, s+)| ≤ ε(s+)p

∗−1 + LM2
(4.5)

and

F+(x, s) ≤ 1

p
(m(x) + ε)(s+)p +

(LM2M2

Mp∗

1

+
ε

p∗

)
(s+)p

∗
, (4.6)

for s ∈ R and a.e. x ∈ Ω. From (4.6), we have

Φ̃+(u) =
1

bp2

[
(a+ b||u||p)p − ap

]
+

1

p

∫
Ω

`(x)|u|p dx

− 1

p

∫
Ω

m(x)|u|p dx−
∫

Ω

F̃+(x, u) dx

=
1

bp2
(a+ b||u||p)p +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

− ap

bp2
−
∫

Ω

F̃+(x, u) dx

=
1

bp2
(a+ b||u||p)p−1(a+ b||u||p) +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

− ap

bp2
−
∫

Ω

F̃+(x, u) dx

≥ 1

bp2
(a+ b||u||p)p−1b||u||p +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

− ap

bp2
−
∫

Ω

F̃+(x, u) dx

=
1

p2
(a+ b||u||p)p−1||u||p +

1

p

∫
Ω

`(x)|u|p dx− 1

p

∫
Ω

m(x)|u|p dx

− ap

bp2
−
∫

Ω

F̃+(x, u) dx,

=
1

p

[
(a+ b||u||p)p−1||u||p +

∫
Ω

`(x)|u|p dx−
∫

Ω

m(x)|u|p dx
]

− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p −

∫
Ω

F̃+(x, u) dx

≥ d

p
||u||p −

∫
Ω

F̃+(x, u) dx− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p

=
d

p
||u||p −

∫
Ω

F+(x, u) dx+
1

p

∫
Ω

m(x)|u+|p dx

− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p

≥ d

p
||u||p − 1

p

∫
Ω

(m(x) + ε)(u+)p dx−
∫

Ω

(LM2
M2

Mp∗

1

+
ε

p∗

)
(u+)p

∗
dx

+
1

p

∫
Ω

m(x)|u+|p dx− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p
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=
d

p
||u||p − 1

p

∫
Ω

ε(u+)p dx−
∫

Ω

(LM2
M2

Mp∗

1

+
ε

p∗

)
(u+)p

∗
dx

− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p

≥ d

p
||u||p − ε

pSpp
||u||p −

(LM2M2

M2∗
1

+
ε

2∗

)( 1

Sp∗

)
||u||p

∗

− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p

=
d

2p
||u||p −

(LM2
M2

Mp∗

1

+
ε

p∗

)( 1

Sp∗

)
||u||p

∗
− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p,

∀u ∈W 1,p
0 (Ω).

Let C1 =
(
LM2

M2

Mp∗
1

+ ε
p∗

)(
1
Sp∗

)
, we have that

Φ̃+(u) ≥ d

2p
||u||p − C1||u||p

∗
− ap

bp2
− 1

pp′
(a+ b||u||p)p−1||u||p, ∀u ∈W 1,p

0 (Ω).

For R0 sufficiently small, with ‖u‖ = R0, one can have ||u||p∗ < ||u||p and

(a+ b||u||p)p−1||u||p < ||u||p

and

Φ̃+(u) ≥ d

2p
||u||p− C1||u||p

∗
− ap

bp2
− 1

pp′
(a+b||u||p)p−1||u||p≥α0>0, ∀u ∈W 1,p

0 (Ω).

Consequently, the first geometric condition is satisfied. �

Lemma 4.4. Assume that (H1) and (H4) hold, then Φ̃+ satisfies the second geometric
condition.

Proof. Note that, using the following standard inequality, for α, β ≥ 0 and p ≥ 1, we
have (α+ β)p ≤ 2p−1(αp + βp), then,

M̂(||u||p) =
1

pb

[
(a+ b||u||p)p − ap

]
≤ 1

pb

[
2p−1

(
ap + bp||u||p

2
)
− ap

]
≤ 1

pb

[
(2p−1 − 1)ap + 2p−1bp||u||p

2
]
;

let c1 = 2p−1 − 1 and c2 = 2p−1bp, we have

M̂(||u||p) ≤ 1

pb

[
c1a

p + c2||u||p
2
]
. (4.7)

From (H1) and (H4), we have

∀Λ > 0, ∃M3 > 0, F+(x, s) ≥ Λ(s+)p
2

− LM3M3,

for s ∈ R and a.e. x ∈ Ω.
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Then for t > 0, φ1 > 0, the first eigenfunction and using (4.7), we have

Φ̃+(tφ1) =
1

p
M̂(||tφ1||p) +

1

p

∫
Ω

`(x)|tφ1|p dx−
1

p

∫
Ω

m(x)|tφ1|p dx−
∫

Ω

F̃+(x, tφ1) dx

≤ 1

p2b

[
c1a

p + c2||tφ1||p
2
]

+
1

p

∫
Ω

`(x)|tφ1|p dx−
1

p

∫
Ω

m(x)|tφ1|p dx

−
∫

Ω

F̃+(x, tφ1) dx

=
1

p2b

[
c1a

p + c2||tφ1||p
2
]

+
1

p

∫
Ω

`(x)|tφ1|p dx−
1

p

∫
Ω

m(x)|tφ1|p dx

+
1

p

∫
Ω

m(x)((tφ1)+)p dx−
∫

Ω

F (x, (tφ1)+) dx

≤ 1

p2b

[
c1a

p + c2||tφ1||p
2
]

+
1

p

∫
Ω

`(x)|tφ1|p dx− Λ

∫
Ω

tp
2

φp
2

1 dx+ LM3M3|Ω|

= tp
2
[ c2
p2b
||φ1||p

2

− Λ

∫
Ω

φp
2

1 dx
]

+
tp

p

∫
Ω

`(x)φp1 dx+
c1a

p

p2b
+ LM3

M3|Ω|

= Atp
2

+Btp + C = P (t),

where

A =
c2
p2b
||φ1||p

2

− Λ

∫
Ω

φp
2

1 dx, B =
1

p

∫
Ω

`(x)φp1 dx, and C =
c1a

p

p2b
+ LM3M3|Ω| > 0;

by choosing

Λ >
c2||φ1||p

2

p2b
∫

Ω
φp

2

1 dx
,

we then have A < 0. For t0 sufficiently large, we have that P (t0) < 0 and then by
taking

e = t0φ1 ∈W 1,p
0 (Ω),

we conclude that Φ̃+ satisfies the second geometric condition. �

Lemma 4.5. Assume that (H1), (H2) and (H5) hold, then Φ̃+ satisfies the Palais-
Smale condition.

Proof. Claim 1: Under the same hypotheses in the above lemma, any (Cc) sequence
is bounded.
Indeed, for c ∈ R, and (un)n ⊂W 1,p

0 (Ω), such that

Φ̃+(un)→ c and (1 + ||un||)Φ̃′+(un)→ 0, (4.8)
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we have for n large, that

C0 ≥ Φ̃+(un)− 1

p2
Φ̃′+(un)un

=
1

p
M̂(||un||p) +

1

p

∫
Ω

`(x)|un|p dx−
1

p

∫
Ω

m(x)|un|p dx−
∫

Ω

F̃+(x, un) dx

− 1

p2

[[
M(||un||p)

]p−1

||un||p +

∫
Ω

`(x)|un|p dx−
∫

Ω

m(x)|un|p dx

−
∫

Ω

f̃+(x, un)un dx
]

=
1

p
M̂(||un||p) +

1

p

∫
Ω

`(x)|un|p dx−
1

p

∫
Ω

m(x)|un|p dx+
1

p

∫
Ω

m(x)(u+
n )p dx

−
∫

Ω

F+(x, un) dx− 1

p2

[[
M(||un||p)

]p−1

||un||p +

∫
Ω

`(x)|un|p dx

−
∫

Ω

m(x)|un|p dx+

∫
Ω

m(x)(u+
n )p dx−

∫
Ω

f+(x, un)un dx
]

because,

F̃+(x, s) = F (x, s+)−m(x)
(s+)p

p

and

f̃+(x, s) = f(x, s+)s+ −m(x)(s+)p = f(x, s+)s−m(x)(s+)p,

then

C0 ≥ 1

p
M̂(||un||p)−

1

p2

[
M(||un||p)

]p−1

||un||p +
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx

−
(1

p
− 1

p2

)∫
Ω

m(x)|u−n |p dx−
∫

Ω

F+(x, un) dx+
1

p2

∫
Ω

f+(x, un)un dx

=
1

p
M̂(||un||p)−

1

p2

[
M(||un||p)

]p−1

||un||p +
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx

−
(1

p
− 1

p2

)∫
Ω

m(x)|u−n |p dx+

∫
Ω

F (x, u+
n ) dx;

note that the quantity 1
pM̂(||un||p)− 1

p2

[
M(||un||p)

]p−1

||un||p is positive, so we obtain

C0 ≥ Φ̃+(un)− 1

p2
Φ̃′+(un)un

≥
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx−
(1

p
− 1

p2

)∫
Ω

m(x)|u−n |p dx+

∫
Ω

F (x, u+
n ) dx.
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If `(x)−m(x) ≥ 0 and since (u−)p ≤ |u|p, we have

C0 ≥
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx−
(1

p
− 1

p2

)∫
Ω

m(x)|un|p dx+

∫
Ω

F (x, u+
n ) dx

=
(1

p
− 1

p2

)∫
Ω

(`(x)−m(x))|un|p dx+

∫
Ω

F (x, u+
n ) dx

≥
∫

Ω

F (x, u+
n ) dx.

If `(x) ≥ 0 and ap−1 ≥ |m|L∞
Spp

where p ≥ 2, and using the fact that∣∣∣ ∫
Ω

m(x)upn dx
∣∣∣ ≤ |m|L∞ |un|pp

≤ |m|L∞
1

Spp
||un||p,

we have

C0 ≥ 1

p
M̂(||un||p)−

1

p2

[
M(||un||p)

]p−1

||un||p +
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx

−
(1

p
− 1

p2

)∫
Ω

m(x)|un|p dx+

∫
Ω

F (x, u+
n ) dx

≥ 1

p
M̂(||un||p)−

1

p2

[
M(||un||p)

]p−1

||un||p −
(1

p
− 1

p2

)
|m|L∞

1

Spp
||un||p

+
(1

p
− 1

p2

)∫
Ω

`(x)|un|p dx+

∫
Ω

F (x, u+
n ) dx

≥
∫

Ω

F (x, u+
n ) dx.

So, in both cases, one can obtain

C0 ≥ Φ̃+(un)− 1

p2
Φ̃′+(un)un

≥
∫

Ω

F (x, u+
n ) dx; (4.9)

let suppose by contradiction that ||un|| → +∞, and set

vn =
un
||un||

.

Then ||vn|| = 1, and

|vn|s ≤
1

Ss
||vn|| =

1

Ss
,

for s ∈ [1, p∗].
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Observe that

Φ̃′+(un)un = (a+ b||un||p)p−1||un||p +

∫
Ω

`(x)|un|p dx−
∫

Ω

m(x)|un|p dx

−
∫

Ω

f̃(x, u+
n )un dx

= (a+ b||un||p)p−1||un||p +

∫
Ω

`(x)|un|p dx−
∫

Ω

m(x)|un|p dx

−
∫

Ω

f(x, u+
n )un dx+

∫
Ω

m(x)(u+
n )p dx

= (a+ b||un||p)p−1||un||p +

∫
Ω

`(x)|un|p dx−
∫

Ω

m(x)(u−n )p dx

−
∫

Ω

f(x, u+
n )un dx

= ||un||p
2
( (a+ b||u||p)p−1||u||p

||un||p2
+

∫
Ω
`(x)|un|p dx
||un||p2

−
∫

Ω
m(x)(u−n )p dx

||un||p2

−
∫

Ω
f(x, u+

n )vn dx

||un||p2−1

)
.

From (4.8), Φ̃′+(un)→ 0 as n→ +∞, so we have

lim
n

( (a+ b||u||p)p−1||u||p

||un||p2
+

∫
Ω
`(x)|un|p dx
||un||p2

−
∫

Ω
m(x)(u−n )p dx

||un||p2
−
∫

Ω
f(x, u+

n )vn dx

||un||p2−1

)
=0.

Let’s show that

lim
n

∫
Ω
`(x)|un|p dx
||un||p2

= 0

and

lim
n

∫
Ω
m(x)(u−n )p dx

||un||p2
= 0.

We have ∫
Ω
`(x)|un|p dx
||un||p2

=

∫
Ω
`(x)|vn|p dx
||un||p

and ∫
Ω
m(x)(u−n )p dx

||un||p2
=

∫
Ω
m(x)(v−n )p dx

||un||p
;

since vn → v in Lr (r ∈ [1, p∗)) and from Lemma 4.1, we deduce that

lim
n

∫
Ω

`(x)|vn|p dx =

∫
Ω

`(x)|v|p dx and lim
n

∫
Ω

m(x)(v−n )p dx =

∫
Ω

m(x)(v−)p dx,

and since ||un|| → +∞, we conclude that

lim
n

∫
Ω
`(x)|un|p dx
||un||p2

= lim
n

∫
Ω
m(x)(u−n )p dx

||un||p2
= 0.
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We have also that

lim
n→+∞

(a+ b||un||p)p−1||u||p

||un||p2
= lim
n→+∞

bp−1||u||p(p−1)+p

||un||p2
= bp−1.

Then

lim
n

∫
Ω

f(x, u+
n )vn dx

||un||p2−1
= bp−1. (4.10)

Set for r ≥ 0,

g(r) = inf{F (x, u+) : x ∈ Ω and u+ ∈ R+ with u+ ≥ r}.
(H5) implies that g(r) > 0 for all r large, and g(r) → +∞ as r → +∞. Set for
0 ≤ α < β ≤ +∞,

Λn(α, β) := {x ∈ Ω : α ≤ |u+
n (x)| < β}

and

σβα := inf
{F (x, u+)

|u+(x)|p
: x ∈ Ω and u+ ∈ R+ with α ≤ u+ < β

}
.

For large α, we have F (x, u+) > 0, σβα > 0 and

F (x, u+
n ) ≥ σβα|u+

n |p, for x ∈ Λn(α, β).

It follows from (4.9) that

C0 ≥
∫

Λn(0,α)

F (x, u+
n ) +

∫
Λn(α,β)

F (x, u+
n ) +

∫
Λn(β,+∞)

F (x, u+
n )

≥
∫

Λn(0,α)

F (x, u+
n ) + σβα

∫
Λn(α,β)

|u+
n |p + g(β) |Λn(β,+∞)|.

Since g(r)→ +∞ as r → +∞,

|Λn(β,+∞)| → 0, as β → +∞, uniformly in n,

which implies that, by the Hölder inequality, that for any s ∈ [1, p∗),∫
Λn(β,+∞)

|vn|s ≤
(∫

Λn(β,+∞)

(|vn|s)
p∗
s

) s
p∗ |Λn(β,+∞)|

p∗−s
p∗

≤ 1

Ssp∗
|Λn(β,+∞)|

p∗−s
p∗

→ 0 (4.11)

as β → +∞ uniformly in n. Furthermore, for any fixed 0 < α < β,∫
Λn(α,β)

|v+
n |p =

1

||un||p

∫
Λn(α,β)

|u+
n |p =

1

||un||p

∫
Λn(α,β)

σβα|u+
n |p

σβα

≤ 1

||un||pσβα

∫
Λn(α,β)

F (x, u+
n )

≤ C0

||un||pσβα
→ 0. (4.12)
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Set 0 < η < bp−1

3 . From (4.5) (from (H1) and (H2)), we have∫
Λn(0,α)

f(x, u+
n )un

||un||p2
≤
∫

Λn(0,α)

|f(x, u+
n )un|

||un||p2
=

∫
Λn(0,α)

|f(x, u+
n )| (u+

n + u−n )

||un||p2

=

∫
Λn(0,α)

|f(x, u+
n )|u+

n

||un||p2
+

∫
Λn(0,α)

|f(x, u+
n )|u−n

||un||p2

≤
∫

Λn(0,α)

(ε(u+
n )p

∗
+ LM2u

+
n ) dx

||un||p2

+

∫
Λn(0,α)

(ε(u+
n )p

∗−1 + LM2)u−n dx

||un||p2

≤
∫

Λn(0,α)

(εαp
∗

+ LM2α) dx

||un||p2
+

∫
Λn(0,α)

LM2 u
−
n dx

||un||p2
→ 0,

because ∫
Λn(0,α)

LM2
u−n dx

||un||p2
=

LM2

||un||p2−1

∫
Λn(0,α)

v−n dx

≤ LM2

||un||p2−1
|Ω|

1
p′ |v−n |Lp

≤ LM2
|Ω|

1
p′

||un||p2−1
|vn|Lp

≤ LM2 |Ω|
1
p′

Sp||un||p2−1
→ 0,

so there exists n1, such that for n > n1,∫
Λn(0,α)

f(x, u+
n )un

||un||p2
< η. (4.13)

Set σ′ = σ
σ−1 . Since σ > max{1, Np }, one can see that pσ′ ∈ (p, p∗). By ||un|| → +∞,

we take n2 > n1 such that ||un|| ≥ 1, if n ≥ n2, and by (4.11), (H5) and Hölder
inequality, one can take β large such that∫

Λn(β,+∞)

f(x, u+
n )vn

||un||p2−1
≤

∫
Λn(β,+∞)

f(x, u+
n )

|un|p−1
vpn

≤
∫

Λn(β,+∞)

f(x, u+
n )

|u+
n |p−1

vpn (4.14)

≤
(∫

Λn(β,+∞)

∣∣∣f(x, u+
n )

|u+
n |p−1

∣∣∣σ) 1
σ
(∫

Λn(β,+∞)

vpσ
′

n

) 1
σ′

≤
(∫

Λn(β,+∞)

CF (x, u+
n )
) 1
σ
(∫

Λn(β,+∞)

vpσ
′

n

) 1
σ′

< η. (4.15)
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Note that there is C = C(α, β) independent of n such that ( because of the continuity

of (x, s) 7→ f(x,s)
s on the compact Ω× [α, β], so it is bounded)

|f(x, u+
n )| ≤ Cu+

n ≤ C|un|, for x ∈ Λn(α, β).

So by (4.12), there is n0 > n2 such that∫
Λn(α,β)

f(x, u+
n )vn

||un||p2−1
≤

∫
Λn(α,β)

C|u+
n | |vn|

||un||p2−1

=
C

||un||p2−2

∫
Λn(α,β)

v+
n |vn|

=
C

||un||p2−2

∫
Λn(α,β)

v+
n (v+

n + v−n )

=
C

||un||p2−2

∫
Λn(α,β)

(v+
n )2

≤ C

||un||p2−2

∫
Λn(α,β)

(vn)2

≤ C

||un||p2−2

1

S2
2

||vn||2

=
C

||un||p2−2

1

S2
2

< η, (4.16)

for all n > n0. Now, combining (4.13), (4.14) and (4.16), we obtain that for n > n0,∫
Ω

f(x, u+
n )un

||un||p2
< 3η < bp−1,

which contradicts (4.10). As a result, (un)n is bounded in W 1,p
0 (Ω).

Claim 2: Assume the same hypotheses as in the last lemma, then any (Cc) condition
has a convergent subsequence.
Indeed, let (un) be the (Cc) sequence such that

Φ̃+(un)→ c, (1 + ||un||)Φ̃′+(un)→ 0.

We have

Φ̃′+(un)(u− un) = (a+ b||un||p)p−1

∫
Ω

|∇un|p−2∇un∇(u− un) dx

−
∫

Ω

f(x, u+
n )(u− un) dx+

∫
Ω

`(x)|un|p−2un(u− un) dx

−
∫

Ω

m(x)|un|p−2un(u− un) dx+

∫
Ω

m(x)|u+
n |p−2u+

n (u− un) dx.
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Since (un) is bounded, one can extract a subsequence, named in the same way (un),
that satisfies

un ⇀ u in W 1,p
0 (Ω),

un → u in Ls(Ω), for 1 ≤ s < p∗, (4.17)

un → u a.e. in Ω,

u−n ⇀ u− in W 1,p
0 (Ω),

u−n → u− in Ls(Ω), for 1 ≤ s < p∗,

u−n → u− a.e. in Ω.

For ε in (4.5), and from (4.17), there exists a positive constant N(ε) such that

|u− un|1 ≤ ε, ∀n > N(ε); (4.18)

from this, (4.5), Hölder inequality and |u+
n | ≤ |un|, it follows that for n > N(ε),∣∣∣ ∫

Ω

f(x, u+
n )(u− un) dx

∣∣∣ =
∣∣∣ ∫

Ω

f+(x, un)(u− un) dx
∣∣∣

≤
∫

Ω

(
ε(u+

n )p
∗−1 + LM2

)
|u− un| dx

=

∫
Ω

ε(u+
n )p

∗−1|u− un| dx+ LM2
|u− un|1

≤ ε|un|p
∗−1
p∗ |u− un|p∗ + LM2

ε,

using the fact that |un|p∗ ≤ 1
Sp∗
||un||, |u−un|p∗ ≤ 1

Sp∗
||u−un||, also the boundedness

of (un) in W 1,0
0 (Ω) i.e. there exists C3 > 0 such that ||un|| ≤ C3 and the following

inequality

||u− un|| ≤ ||u||+ ||un||
≤ lim inf

n
||un||+ ||un||

≤ 2C3,

we obtain ∣∣∣ ∫ f(x, u+
n )(u− un)

∣∣∣ ≤ 2ε
( C3

Sp∗

)p∗
+ LM2

ε;

this implies that lim
n

∫
Ω

f(x, u+
n )(u− un) dx = 0.

Also we have by Hölder inequality, that∫
Ω

`(x)|un|p−2un(u− un) dx→ 0,∫
Ω

m(x)|un|p−2un(u− un) dx→ 0

and ∫
Ω

m(x)|u+
n |p−2u+

n (u− un) dx→ 0.
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In addition, let A(∇un) = |∇un|p−2∇un, then

(a+ b||un||p)p−1

∫
Ω

|∇un|p−2∇un · ∇(u− un) dx

= (a+ b||un||p)p−1

∫
Ω

A(∇un)∇(u− un) dx.

(4.19)

Taking account all the previous estimations and limits, we obtain that∫
Ω

A(∇un)∇(u− un) dx→ 0, n→ +∞.

From the fact that∫
Ω

A(∇un)∇(un − u) dx =

∫
Ω

(
A(∇un)−A(∇u)

)
∇(un − u) dx

+

∫
Ω

A(∇u)∇(un − u) dx

and ∫
Ω

A(∇u)∇(un − u) dx→ 0, n→ +∞,

we deduce ∫
Ω

(
A(∇un)−A(∇u)

)
∇(un − u) dx→ 0, n→ +∞.

From the following inequality

Cp

∫
Ω

|∇(u− un)|p dx ≤
∫

Ω

(
A(∇un)−A(∇u)

)
∇(un − u) dx,

we deduce that un → u in W 1,p
0 (Ω). �

Proof of Theorem 2.1. By Lemmas 4.3, 4.4 and 4.5 and by applying theorem 4.1, one

can deduce that Φ̃+ has a nontrivial critical point u, that is, for any v in E,

〈Φ̃′+(u), v〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

m(x)|u|p−2uv dx−
∫

Ω

f̃+(x, u)v dx = 0.

Taking as a test function v = u− in the precedent equation, we obtain

〈Φ̃′+(u), u−〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇u− dx+

∫
Ω

`(x)|u|p−2uu− dx

−
∫

Ω

m(x)|u|p−2uu− dx−
∫

Ω

f̃+(x, u)u− dx

= 0;
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from the definition of f̃+, we have
∫

Ω
f̃+(x, u)u− dx = 0, so

〈Φ̃′+(u), u−〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇u− dx+

∫
Ω

`(x)|u|p−2uu− dx

−
∫

Ω

m(x)|u|p−2uu− dx

= (a+ b||u||p)p−1

∫
Ω

|∇u|p−2(∇u+ −∇u−) · ∇u− dx

+

∫
Ω

`(x)|u|p−2(u+ − u−)u− dx−
∫

Ω

m(x)|u|p−2(u+ − u−)u− dx

= −(a+ b||u||p)p−1

∫
Ω

|∇u|p−2|∇u−|2 dx−
∫

Ω

`(x)|u|p−2|u−|2 dx

+

∫
Ω

m(x)|u|p−2|u−|2 dx

= 0.

If `(x)−m(x) ≥ 0, then, one can have that

(a+ b||u||p)p−1

∫
Ω

|∇u|p−2|∇u−|2 dx+

∫
Ω

(
`(x)−m(x)

)
|u|p−2|u−|2 dx = 0,

consequently, each term in the last equation is equal to zero, especially∫
Ω

|∇u|p−2|∇u−|2 dx = 0,

since ∫
Ω

|∇u|p−2|∇u−|2 dx =

∫
Ω

|∇u−|p dx,

one can deduce that ||u−|| = 0. If `(x) ≥ 0 and ap−1 ≥ |m|L∞
Spp

, then

0 = −〈Φ̃′+(u), u−〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2|∇u−|2 dx+

∫
Ω

`(x)|u|p−2|u−|2 dx

−
∫

Ω

m(x)|u|p−2|u−|2 dx

= (a+ b||u||p)p−1

∫
Ω

|∇u−|p dx+

∫
Ω

`(x)|u−|p dx−
∫

Ω

m(x)|u−|p dx

≥ (a+ b||u||p)p−1||u−||p − |m|L∞(Ω)
1

Spp
||u−||p +

∫
Ω

`(x)|u−|p dx

≥ 0,

as a result each term is equal to zero, consequently ||u−|| = 0.
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So one can say that u = u+ ≥ 0. Then u is also a critical point of Φ+, which means
that,

〈Φ′+(u), v〉 = (a+ b||u||p)p−1

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

`(x)|u|p−2uv dx

−
∫

Ω

m(x)|u|p−2uv dx−
∫

Ω

f+(x, u)v dx

= 0, ∀v ∈ E.

In addition, from (H1), (H2) and ` ∈ L∞(Ω), we obtain that there exists a positive
constant Cε such that

| − a(x)u+ f(x, u)| ≤ Cε
(

1 + |u|p
∗−1
)
, for s ∈ R and a.e. x ∈ Ω.

Now, consider

b(x) :=
−`(x)|u(x)|p−2u(x) + f(x, u(x))

(a+ b||u||p)p−1(1 + |u(x)|)
,

then b ∈ L
N
p (Ω) and

−∆pu = b(x)(1 + |u(x)|).

Remark 4.1. Following [7], we believe that one can obtain a positive and negative
solutions for our problem. Note that, for the case p = 2 and using the same techniques
as in [3], we have proved the existence of positive and negative solutions.

In a similar way, one can obtain a nonpositive solution for problem (1.4) by treating

with Φ̃−.
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1. Introduction

We consider the problem of finding u = u(x, t) weak solutions to the following
nonlinear heat equation of Kirchhoff type with variable exponent of nonlinearity,
viscoelastic term and source term involving the fractional Laplacian(

1 + a|u|r(x)−2
)
ut +M(‖u‖2w0

)(−∆)su−
∫ t

0

g(t− τ)(−∆)su(τ)dτ

= |u|ρ−1 in Ω×]0,∞[,
u = 0 in

(
RN\Ω

)
× [0,∞[,

u(x, 0) = u0(x) in Ω,

(1.1)

where Ω ⊆ RN is a smooth bounded domain, M(t) = tα−1 + 1, t ≥ 0, s ∈]0, 1[,
2 < ρ < 2∗s = 2N

N−2s , 2 < N
s , α > 1 ; g : [0,∞[→]0,∞[ belongs to C1([0,∞[), g(0) > 0,

l = 1−
∫ ∞

0

g(τ)dτ > 0, g ′(t) ≤ 0 and r is a given continuous function.

This type of problems without viscoelastic term (that is g = 0 ), r(x) = constant and
M(t) = 1 have been considered by many authors with the standard Laplace operator
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(−4)s, s = 1 and can be seen as special case of doubly nonlinear parabolic type
equations

(ϕ(u))t −∆u = f(u),

which appear in the mathematical modelling of various physical processes such as
flows of incompressible turbulent fluids or gases in pipes, processes of filtration in
porous media, glaciology, see [3, 8, 7, 20, 33, 52] and the further references therein.
When a = 0, M(t) = 1 and s = 1, equation (1.1) is reduced to the following equation

ut −∆u+

∫ t

0

g(t− τ)∆u(τ)dτ = f(u). (1.2)

This equation arises from the study of heat conduction in materials with memory.
The questions of solvability and the long time behavior of solutions of the abstract
evolutions equations of type

ut −Bu+

∫ t

0

g(t− τ)Au(τ)dτ = f(u),

where A and B are given operators, were studied in [12, 19, 36, 40].
Also, doubly nonlinear nonlocal parabolic equations

(ϕ(u))t − divσ(∇u) =

∫ t

0

g(t− τ)divσ(∇u(τ))dτ + f(x, t, u),

were studied in [9, 30, 47, 48, 49, 50].
On the other hand, many fractional and nonlocal operators are actively studied in
the recent years. This type of operators arises in a quite natural way in many in-
teresting applications, such as, finance, physics, game theory, Lévy stable diffusion
processes, crystal dislocation, one can see [10, 35, 51] and their references. Some gen-
eral motivations regarding the fractional Laplacian can be explicitly found in the
recent monograph [17]. Nonlocal evolution equations of the form

ut =

∫
RN

(u(y, t)− u(x, t))K(x− y) dy, (1.3)

and variations of it, have been widely used to model diffusion processes, more precisely
as stated in [26], if u(x, t) is thought as a density of population at the point x at time
t and K(x− y) is thought of as the probability distribution of jumping from location

y to location x, then

∫
RN

(u(y, t)K(x− y)) dy is the rate at which individuals are

arriving at position x from all other places and

∫
RN

(u(x, t)K(x− y)) dy is the rate

which they are leaving location x to travel to all other sites. So the density u satisfies
(1.3). For recent references on nonlocal diffusion problems, see [5, 1, 29]. If we consider
the effects of total population, then equation (1.3) becomes

ut = M

(∫ ∫
RN
|u(y, t)− u(x, t)|2K(x− y) dx dy

)∫
RN

(u(y, t)− u(x, t))K(x−y) dy.

(1.4)
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In particular, if s→ 1− and K(x) = |x|−N−2s, then equation reduces to

ut = −M
(∫ ∫

RN
|∇u|2 dx

)
∆u,

which is equation (1.2), with M(t) = 1, g(t) = 0 and f(t) = 0. Thus it is natural to
consider equation (1.1) as a generalization of the model (1.4). The main feature of the
equation (1.1) is that contains an integrodifferential operator usually called memory
term or viscoelastic term, which can be used to represent the damping or memory
effect on the diffusion process.
The research on nonlinear problems with variable exponent growth conditions is an
an attractive topic, and these problems have many applications in nonlinear elastic
electrorheological fluids and image restoration, see [2, 16, 18, 53].
The study of Kirchhoff type problems has been receiving considerable attention in
more recent years, see [31, 38, 42, 41]. The interest arises from their contribution to
the modeling of many physical and biological phenomena. We refer for example the
reader to the bibliography [4, 6, 11, 32, 37] and references therein. The first result
concerning fractional Kirchhoff problems was obtained in Fiscella and Valdinoci [27].
In this paper, the fractional Kirchhoff equation was first introduced and motivated.
In [42], by using the sub-differential approach, Pucci et al obtained the well-posedness
of solutions for problem (1.1) with f(x, t) instead of |u|p−2u. Moreover, the large-time
behavior and extinction of solutions also are considered. With the help of potential
well theory, Fu and Pucci [28] studied the existence of global weak solutions and estab-
lished the vacuum isolating and blow-up of strong solutions, provided that M ≡ 1 and
2 < p ≤ 2∗s = 2N/(N − 2s). However, the Kirchhoff function M is assumed to satisfy
the non-degenerate condition in the above papers. In [41], Pan et al investigated for
the first time the existence of global weak solutions for degenerate Kirchhoff-type dif-
fusion problems involving fractional p-Laplacian, by combining the Galerkin method
with potential well theory, for the special function M(t) = t ; Mingqi et al. [38] proved
the local existence and blow-up of solutions for the similar equation with more general
conditions on M which cover the degenerate case.
In the works mentioned above, there are few about the global existence and exponen-
tial decay rate for doubly nonlinear parabolic equation, involving variable exponent
conditions, with viscoelastic term in the fractional setting. Motivated by it, we intend
to study global existence for the problem (1.1) by using Galerkin’s method and also
give the exponential decay rate of the energy via the energy perturbation method.
The plan of the paper is the following. In Section 2, we give the preliminaries for our
research. In Section 3, by using the Galerkin approximation method we are able to
prove global existence and finally, we obtain the exponential decay under certain class
of initial data.

2. Preliminaries

In this section, we present some materials and assumptions needed in the rest
of this paper.
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We denote: Q = R2n \ (CΩ× CΩ) and CΩ := Rn \ Ω,

W =

u : RN → R : u|Ω ∈ L2(Ω),

∫∫
Q

|u(x)− u(y)|2

|x− y|N+2s
dx dy <∞

 ,

where u|Ω represents the restriction to Ω of function u(x). Also, we define the following
linear subspace of W ,

W0 =
{
u ∈W : u = 0 a.e. in RN \ Ω

}
.

The linear space W is endowed with the norm

‖u‖W := ‖u‖L2(Ω) +
(∫∫
Q

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

.

It is easily seen that ‖ · ‖W is a norm on W and C∞0 (Ω) ⊆W0.
The functional

‖u‖W0
=

∫∫
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy

1/2

,

is a equivalent norm on W0 = {u ∈W : u(x) = 0 a.e. in RN \ Ω} which is a closed
linear subspace of W . Furthermore (W0, ‖·‖W0

) is a Hilbert space with inner product

〈u, v〉W0
=

∫∫
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy.

We review the main embedding results for the space W0.

Lemma 2.1 ([44, 43, 46, 45]). The embedding W0 ↪→ Lr(Ω) is continuous for any
r ∈ [1, 2∗s], and compact for any r ∈ [1, 2∗s[.

Lemma 2.2 ([39, Lemma 2.1]). Let N ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ > 0 and

0 < θ < 1 be such that 1
τ = θ

(
1
p −

s
N

)
+ 1−θ

q then

‖u‖Lτ (Rn) ≤ ‖u‖θW s,p(Rn)‖u‖
1−θ
Lq(Rn), ∀u ∈ C1

0 (RN ).

Now, we recall some necessary background knowledge and propositions concerning
the generalized Lebesgue-Sobolev spaces. We refer the reader to [21, 22, 25, 23] for
details.
Set

C+(Ω) = {p(x) : p(x) ∈ C(Ω), p(x) > 1, for all x ∈ Ω}.
For any p ∈ C+(Ω) we define

p+ = max{p(x) : x ∈ Ω}, p− = min{p(x);x ∈ Ω};

Lp(x)(Ω) =
{
u : u is a measurable real-valued function,

∫
Ω

|u(x)|p(x)dx <∞
}
,
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with the norm

‖u‖p(x) ≡ ‖u‖Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
becomes a Banach space [34]. We also define the space

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},
equipped with the norm

‖u‖W 1,p(x)(Ω) = ‖u(x)‖p(x) + ‖∇u(x)‖p(x).

We denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω). Of course the norm

‖u‖ = ‖∇u‖p(x) is an equivalent norm in W
1,p(x)
0 (Ω).

Proposition 2.3 ([24, 25]). (i) The conjugate space of Lp(x)(Ω) is Lp
′(x)(Ω), where

1

p(x)
+

1

p′(x)
= 1.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have∫
Ω

|uv|dx ≤
( 1

p−
+

1

p′−

)
‖u‖p(x)‖v‖p′(x) ≤ 2‖u‖p(x)‖v‖p′(x).

(ii) If p1(x), p2(x) ∈ C+(Ω) and p1(x) ≤ p2(x) for all x ∈ Ω, then Lp2(x)(Ω) ↪→
Lp1(x)(Ω) and the embedding is continuous.

Proposition 2.4 ([25]). Set ρ(u) =
∫

Ω
|∇u(x)|p(x) dx, then for u ∈ W

1,p(x)
0 (Ω) and

(uk) ⊂W 1,p(x)
0 (Ω), we have

(1) ‖u‖ < 1 (respectively = 1;> 1) if and only if ρ(u) < 1 (respectively = 1;> 1);
(2) for u 6= 0, ‖u‖ = λ if and only if ρ(uλ ) = 1;

(3) if ‖u‖ > 1, then ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ ;

(4) if ‖u‖ < 1, then ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;
(5) ‖uk‖ → 0 (respectively →∞) if and only if ρ(uk)→ 0 (respectively →∞).

For x ∈ Ω, let us define

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.5 ([23]). If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for x ∈ Ω, then
there is a continuous (compact) embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Lemma 2.6. Let 2 < r < ρ < 2∗s.For each ε > 0 , there exists a positive constant Cε
such that

‖v‖ρρ ≤ ε‖v‖2W0
+ Cε‖v‖krr ,

for all v ∈W0 ∩ Lr(Ω) where

k =
2ρ(1− θ)
r(2− ρθ)

, θ =
(1

r
− 1

ρ

)( s
N
− 1

2
+

1

r

)−1

.
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Proof. The conclusion of lemma immediately follows from Lemma 2.2 and Young’s
inequality. �

Lemma 2.7. [34, Theorem 1, pag 23] Suppose that

r ∈ L∞+ (Ω), r− ≥ 2, w ∈ Lr(x) (Ω×]0, T [) and
∂

∂t
(|w|r(x)−2w) ∈ Lr

′(x) (Ω×]0, T [) .

Then, for any s, τ ∈ [0, T ], s < τ the following formula of integration by parts is
correct:∫ τ

s

∫
Ω

w
( 1

r(x)− 1
|w|r(x)−2w

)
dx dt =

∫
Ω

1

r(x)
|w(τ)|r(x) dx−

∫
Ω

1

r(x)
|w(s)|r(x) dx.

3. Global existence and exponential decay

In this section, we focus our attention on the global existence and exponential
decay of the solution to problem (1.1).

Definition 3.1. Let T > 0. A weak solution of problem (1.1) is a function u ∈
L∞(0, T ;W0), with ut ∈ L2(0, T ;L2(Ω)) and

(
|u|r(x)/2

)
t
∈ L2 (Ω×]0, T [) such that∫ T

0

∫
Ω

(
1 + a|u|r(x)−2

)
utw dxdt+M(‖u‖2w0

)

∫ T

0

〈u,w〉W0
dt

−
∫ T

0

∫ t

0

g(t− τ)〈u(τ), w〉W0
dτdt =

∫ T

0

∫
Ω

|u|ρ−1w dxdt,

for all w ∈ L2(0, T ;W0), and u(x, 0) = u0(x) ∈W0.

Theorem 3.2 (Local Solution). Assume u0 ∈ W0, 2 < r− < ρ < 2∗s, ρ < 2 + 2rs
N ,

r+ ∈]2, 2∗s[ , then problem (1.1) has a unique weak solution u for T small enough.

Proof. We prove the local existence of weak solutions by using the Faedo-Galerkin
method benefited from the ideas of [14]. We choose a sequence {wν}ν∈N ⊆ C∞0 (Ω)

such that C∞0 (Ω) ⊆
∞⋃
ν=1

Vm

C1(Ω)

and {wν} is a standard orthonormal basis with

respect to the Hilbert space L2(Ω) and an orthogonal basis in W0, where

Vm = spam{w1, w2, ....wm}.

Now, we construct approximate solutions um (m = 1, 2, · · · ), of the problem (1.1), in
the form

um(x, t) =

m∑
i=1

gjm(t)wj(x),
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where the coefficient functions gjm satisfy the system of ordinary differential equations∫
Ω

(
1 + a|um(t)|r(x)−2

)
umt(t)wj dx+M(‖um(t)‖2w0

)〈um(t), wj〉W0

−
∫ t

0

g(t− τ)〈um(τ), wj〉W0
dτdt =

∫
Ω

|um(t)|ρ−1wj dx

j = 1, 2, · · ·m.
um(x, 0) = u0

m(x)→ u0(x) in W0.

(3.1)

Let us show that the system (3.1) is locally solvable.
It is clear that (3.1) can be rewritten in the form

d

dt
Φ(gm(t)) = −M

(∥∥∥∥∥
m∑
i=1

gjm(t)wj(x)

∥∥∥∥∥
2

W0

)
Bgm(t)+

∫ t

0

g(t−τ)Bgm(τ)dτ+F (gm(t)),

(3.2)
where

gm(t) = (gm1(t), gm2(t), · · · , gmm(t))t, B = [〈wi, wj〉]1≤i,j≤m ,

Φ(η) = (Φ1(η),Φ2(η), · · · ,Φm(η))t with η = (η1, η2, · · · , ηm) ∈ Rm,

Φi(η) =

∫
Ω

{ m∑
j=1

ηjwj +
a

r(x)− 1

∣∣∣∣∣
m∑
k=1

ηkwk

∣∣∣∣∣
r(x)−2 m∑

k=1

ηkwk

}
wi dx i = 1, 2, · · · ,m

and

F (η)=

∫
Ω

∣∣∣∣∣
m∑
k=1

ηjwj

∣∣∣∣∣
ρ−1

w1 dx,

∫
Ω

∣∣∣∣∣
m∑
k=1

ηjwj

∣∣∣∣∣
ρ−1

w2 dx, · · · ,
∫

Ω

∣∣∣∣∣
m∑
k=1

ηjwj

∣∣∣∣∣
ρ−1

wmdx

t

.

This system is equivalent to

Φ(gm(t)) = Φ(gm(0))

+

∫ t

0

−M
∥∥∥∥∥

m∑
i=1

gjm(t)wj(x)

∥∥∥∥∥
2

W0

Bgm(t) +

∫ ξ

0

g(ξ − τ)Bgm(τ)dτ + F (gm(ξ))

dξ.
If ζ, η are to arbitrary elements of Rm, we get

(Φ(ζ)− Φ(η), ζ − η)Rm ≥ Cm|ζ − η|2Rm (3.3)

here Cm is a constant such that, for any gm in Rm∫
Ω

|um|2 dx ≥ Cm|gm|2Rm .

Then Φ is monotone coercive. Also it is obviously continuous. So, by the Brouwer
theorem Φ is onto. In view of (3.3), Φ−1 is locally Lipchitz continuous.
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Consider the map L : C(0, T,Rm)→ C(0, T,Rm), defined by

L(gm)(t) = Φ−1

(
Φ(gm(0))

+

∫ t

0

−M
∥∥∥∥∥

m∑
i=1

gjm(t)wj(x)

∥∥∥∥∥
2

W0

Bgm(t)+

∫ ξ

0

g(ξ−τ)Bgm(τ)dτ + F (gm(ξ))

dξ),
t ∈ [0, T ].

It is not hard to prove that L is completely continuous and also, there exist (sufficient
small) Tm > 0 and (sufficient large) R > 0 such that L(BR) ⊆ BR, where BR
is the ball in C(0, Tm,Rm) with center the origin and radius R. Consequently, by
Schauder’s theorem, the operator L has a fixed point in C(0, Tm,Rm). This fixed
point is a solution of (3.2).
So, we can obtain an approximate solution um(t) of (3.1) in Vm over [0, Tm[ and it
can be extended to the whole interval [0, T ], for all T > 0, as a consequence of the a
priori estimates that shall be proven in the next step.

The First Estimate
Multiplying (3.1) by gjm(t) and adding in j = 1; · · · ;m, we have∫

Ω

(
1 + a|um(t)|r(x)−2

)
umt(t)um(t) dx+M(‖um(t)‖2w0

)〈um(t), um(t)〉W0

−
∫ t

0

g(t− τ)〈um(τ), um(t)〉W0dτdt =

∫
Ω

|um(t)|ρ−1um(t) dx

(3.4)

which implies, integrating with respect to the time variable from 0 to t on both sides,
using Lemma 2.7 that

Sm(t) = Sm(0) +

∫ t

0

dλ

∫ λ

0

g(λ− τ)〈um(τ), um(λ)〉W0
dτ

+

∫ t

0

∫
Ω

|um(t)|ρ−1um(τ) dx dτ,

(3.5)

where

Sm(t) =

∫
Ω

|um(t)|2 dx+a

∫
Ω

1

r(x)
|um(t)|r(x) dx+

∫ t

0

(
‖um(τ)‖2αW0

+ ‖um(τ)‖2W0

)
dτ.

Let us introduce the function Θ(λ) =
∫ λ

0
g(λ− τ)‖um(τ)‖W0

. Estimating the second
term on right-hand side of (3.5) we have∫ t

0

dλ

∫ λ

0

g(λ− τ)〈um(τ), um(λ)〉W0 dτ ≤
1

2

∫ t

0

(
‖um(τ)‖2αW0

+ ‖um(τ)‖2W0

)
dτ

+
1

2

∫ t

0

Θ2(λ) dλ.

(3.6)
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But, using Young Inequality and noting that
∫∞

0
g(τ)dτ < 1, we get∫ t

0

Θ2(λ)dλ ≤
∫ ∞

0

g(τ)dτ

∫ t

0

(
‖um(τ)‖2αW0

+ ‖um(τ)‖2W0

)
dτ. (3.7)

Plugging (3.6)- (3.7)into (3.5), it follows that

Sm(t) ≤ Sm(0) +
1

2

(
1 +

∫ ∞
0

g(τ)dτ

)∫ t

0

(
‖um(τ)‖2αW0

+ ‖um(τ)‖2W0

)
dτ

+

∫ t

0

‖um(t)‖ρρ dτ. (3.8)

To estimate the last term in (3.8) we use Lemma 2.6,∫ t

0

‖um(t)‖ρρ dτ ≤ ε
∫ t

0

(
‖um(τ)‖2αW0

+ ‖um(τ)‖2W0

)
dτ + c0

∫ t

0

Skm(λ) dλ, (3.9)

where k = 2ρ(1−θ)
r−(2−ρθ) > 1. Taking ε suitably small in (3.9), it follows from (3.5)-(3.9)

that

Sm(t) ≤ Ĉ0 + Ĉ1

∫ t

0

Skm(λ) dλ. (3.10)

Hence, by employing Bihari-Langenhop’s inequality (cf. [13]), there exists a constant
T0 such that

Sm(t) ≤ CT0
, ∀t ∈ [0, T0]. (3.11)

The Second Estimate
Multiplying (3.1) by g′jm(t) and adding in j = 1; · · · ;m, it holds that

d

dt

{ 1

2α
‖um(t)‖2αW0

+
1

2

(
1−

∫ t

0

g(τ)dτ

)
‖um(t)‖2W0

+
1

2
(g � u)(t)

−1

ρ

∫
Ω

|um(t)|ρ−1um(t) dx
}

+ ‖umt(t)‖22 + a

∫
Ω

|um(t)|r(x)−2|umt(t)|2 dx

=
1

2
(g′ � u)(t)− 1

2
g(t)‖um(t)‖2W0

.

(3.12)

where (g � u)(t) =

∫ t

0

g(t− τ)‖u(t)− u(τ)‖2W0
dτ .

Integrating (3.12) on [0, t], t ≤ T0 we get∫ t

0

‖umt(t)‖22 + a

∫ t

0

∫
Ω

|um(t)|r(x)−2|umt(t)|2 dx+
1

2α
‖um(t)‖2αW0

+
l

2
‖um(t)‖2W0

≤ 1

2α
‖um(0)‖2αW0

+
1

2
‖um(0)‖|2W0

− 1

ρ

∫
Ω

|um(0)|ρ−1um(0) dx

+
1

ρ

∫
Ω

|um(t)|ρ−1um(t) dx.
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From the assumptions on ρ and u0, Lemma 2.6 and the estimate (3.11), it follows
that∫ t

0

‖umt(t)‖22 + a

∫ t

0

∫
Ω

|um(t)|r(x)−2|umt(t)|2 dx+
1

2α
‖um(t)‖2αW0

+
l

2
‖um(t)‖2W0

≤M1, (3.13)

for some constant M1 > 0.

By the above estimates (3.11) and (3.13), {um} have subsequences still denoted by
{um} such that

um → u weakly* in L∞(0, T0;W0), (3.14)

umt → ut weakly in L2(0, T0;L2(Ω)), (3.15)(
|um|r(x)/2

)
t
→ χ weakly in L2(0, T0;L2(Ω)). (3.16)

Employing the same arguments as in [16] we can prove that

χ =
(
|u|r(x)/2

)
t
|um|r(x)/2umt → |u|r(x)/2ut weakly in L2(Ω×]0, T0[), (3.17)

|um|ρ−1 → |u|ρ−1 weakly in L
ρ
ρ−1 (Ω×]0, T0[). (3.18)

Therefore, passing to the limit in (3.1) as m → +∞, by (3.14)– (3.18), we can show
that u satisfies the initial condition u(0) = u0 and∫ T

0

∫
Ω

(
1 + a|u|r(x)−2

)
utw dxdt+M(‖u‖2w0

)

∫ T

0

〈u,w〉W0 dt

−
∫ T

0

∫ t

0

g(t− τ)〈u(τ), w〉W0dτdt =

∫ T

0

∫
Ω

|u|ρ−1w dxdt,

for all w ∈ L2(0, T0;W0).
The uniqueness property of a solutions can be derived from [20, Theorem 3, p. 1095],

observing that
(
u+ a

r(x)−1 |u|
r(x)−2u

)
∈ L2(Ω×]0, T0[) and Au = M(‖u‖2w0

)(−∆)su

is a monotone operator. We omit the details. �

Next, we consider the global existence and energy decay of solutions for problem (1.1).
For this purpose we define the energy associated with problem (1.1) by

E(t) =
1

2α
‖u(t)‖2αW0

+
1

2

(
1−

∫ t

0

g(τ)dτ

)
‖u(t)‖2W0

+
1

2
(g�u)(t)−1

ρ

∫
Ω

|u(t)|ρ−1u(t) dx.

(3.19)
Then, we easily can check that

d

dt
E(t) =

1

2
(g′ � u)(t)− 1

2
g(t)‖u(t)‖2W0

− ‖ut(t)‖22 − a
∫

Ω

|u(t)|r(x)−2u2
t (t) dx

≤ 0

for any regular solution. This remains valid for weak solutions by simple density
argument. This shows that E(t) is a nonincreasing function.
Let C∗ be the optimal constant satisfying the Sobolev inequality ‖u‖ρ ≤ C∗‖u‖W0

,
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and B1 = C∗√
l
. We define the function h(λ) = 1

2λ
2 − Bρ1

ρ λ
ρ. Then, we can verify that

the function h is increasing in ]0, λ1[, decreasing in ]λ1,∞[, h(λ) → −∞, as λ → ∞
and h has a maximum at λ1 with the maximum value

h(λ1) = E1 =

(
1

2
− 1

ρ

)
B
− 2ρ
ρ−2

1 =
ρ− 2

2ρ
B
− 2ρ
ρ−2

1 .

where λ1 is the first positive zero of the derivative function h′(λ).
Here, note that

E(t) ≥ l

2
‖u(t)‖2W0

+
1

2
(g � u)(t)− 1

ρ
‖u(t)‖ρρ

≥ 1

2

(
l‖u(t)‖2W0

+ (g � u)(t)
)
− Bρ1 l

ρ/2

ρ
‖u(t)‖ρW0

(3.20)

≥ h
(√

l‖u(t)‖2W0
+ (g � u)(t)

)
, ∀t ≥ 0.

Now, we are ready to state our result.

Theorem 3.3. Assume that hypotheses of Theorem 3.2 are satisfied. Consider u0 ∈W0,
satisfying

0 < l1/2‖u0‖W0
< λ1, (3.21)

1

2α
‖u0‖2αW0

+
1

2
‖u0‖2W0

− 1

ρ

∫
Ω

|u0|ρ−1u0 dx <

(
ρ− 2

2ρ

)
B
− 2ρ
ρ−2

1 . (3.22)

Then problem admits a global weak solution in time. In addition, if there exists a
constant ξ0 > 0 such that g ′(t) ≤ −ξ0g(t), then this solution satisfies

E(t) ≤ L0e
−γt,∀t ≥ 0, (3.23)

where L0 and γ are positive constants.

Proof. We will get global estimates for um(t) solution of the approximate system (3.1)
under the conditions (3.21)–(3.22) for u0. For this, it suffices to show that

Em(t) +

∫ t

0

‖umt(t)‖22 + a

∫ t

0

∫
Ω

|um(t)|r(x)−2|umt(t)|2 dx,

where Em(t) is defined in (3.19) with u(t) replaced by um(t), is bounded and inde-
pendently of t. From (3.12) and the definition of energy, we have

Em(t) +

∫ t

0

‖umt(t)‖22 + a

∫ t

0

∫
Ω

|um(t)|r(x)−2|umt(t)|2 dx ≤ Em(0). (3.24)

Due to convergence u0m → u0 in W0 we see that Em(0) <
(
ρ−2
2ρ

)
B
− 2ρ
ρ−2

1 for suffi-

ciently large m. We claim that there exists an integer ν0 such that√
l‖um(t)‖2W0

+ (g � um)(t) < λ1 ∀t ∈ [0, Tm[,m ≥ ν0. (3.25)
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Suppose the claim is proved. Then h
(√

l‖um(t)‖2W0
+ (g � um)(t)

)
≥ 0 and from

(3.20), (3.24)–(3.25) we get

‖um(t)‖2αW0
+ ‖um(t)‖2W0

+

∫ t

0

‖umt(t)‖22 + a

∫ t

0

∫
Ω

|um(t)|r(x)−2|umt(t)|2 dx ≤ C.

(3.26)
where C is a constant independent of m.Thus, we obtain the global existence.
Proof of Claim: Suppose (3.25) is not true. Thus, for each m > ν0,there exists t1 ∈
[0, Tm[ such that √

l‖um(t1)‖2W0
+ (g � um)(t1) ≥ λ1. (3.27)

Here, we observe that, from (3.21) and the convergence u0m → u0 in W0 there exists
ν1 such that

l1/2‖um(0)‖W0 < λ1 ∀m > ν1.

Hence, by continuity there exists

t∗ = inf{t ∈ [0, Tm[:
√
l‖um(t)‖2W0

+ (g � um)(t) ≥ λ1},

such that √
l‖um(t∗)‖2W0

+ (g � um)(t∗) = λ1. (3.28)

By (3.20), we see that

Em(t∗) ≥ h
(√

l‖um(t∗)‖2W0
+ (g � um)(t∗)

)
= h(λ1) = E1 (3.29)

which contradicts Em(t) ≤ Em(0) < E1, ∀t ≥ 0. Therefore our claim is true.
The above estimates permit us to pass to the limit in the approximate equation.
To show the uniform decay of the solution we introduce the perturbed energy func-
tional

F (t) = E(t) + εΦ(t), (3.30)

where ε is a positive constant which shall be determined later, and

Φ(t) =

∫
Ω

(|u|2 +
a

r(x)
|u|r(x)) dx. (3.31)

It is straightforward to see that F (t) and E(t) are equivalent in the sense that there
exist two positive constants β1 and β2 depending on ε such that for t ≥ 0

β1E(t) ≤ F (t) ≤ β2E(t). (3.32)

By taking the time derivative of the function F defined above in (3.30), using (3.20),
and performing several integration by parts, we get

d

dt
F (t) =

1

2
(g′ � u)(t)− 1

2
g(t)‖u(t)‖2W0

− ‖ut(t)‖22 − a
∫

Ω

|u(t)|r(x)−2u2
t (t) dx

−ε‖u(t)‖2αW0
− ε‖u(t)‖2W0

+ ε

∫
Ω

|u(t)|ρ−1u(t) dx+ ε

∫ t

0

g(t− τ)〈u(τ), u(t)〉W0 dτ.

(3.33)
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On the other hand, we can easily see that the condition E(0) < E1 is equivalent to
the inequality:

Bρ1

(
2ρ

ρ− 2
E(0)

) ρ−2
2

< 1. (3.34)

From the assumption (3.21)–(3.22) and (3.24) we have

l‖u(t)‖2W0
≤
(

1−
∫ t

0

g(τ)dτ

)
‖u(t)‖2W0

+ (g � u)(t)

< λ2
1 = B

− 2ρ
ρ−2

1 ,

which implies that

I(t) =

(
1−

∫ t

0

g(τ)dτ

)
‖u(t)‖2W0

+ (g � u)(t)−
∫

Ω

|u(t)|ρ−1u(t) dx

≥ l‖u(t)‖2W0
+ (g � u)(t)− ‖u(t)‖ρρ

≥ l‖u(t)‖2W0
− Cρ∗‖u(t)‖ρW0

≥ 0.

So, we have(
ρ− 2

2ρ

)
l‖u(t)‖2W0

≤ ρ− 2

2ρ

(
1−

∫ t

0

g(τ)dτ

)
‖u(t)‖2W0

≤ ρ− 2

2ρ

[(
1−

∫ t

0

g(τ)dτ

)
‖u(t)‖2W0

+ (g � u)(t)
]

+
1

ρ
I(t)

≤ E(t) ≤ E(0),

then

l‖u(t)‖2W0
≤ 2ρ

ρ− 2
E(0). (3.35)

Using the above inequality, we can deduce that∣∣∣∣∫
Ω

|u|ρ−1u

∣∣∣∣ ≤ ‖u(t)‖ρρ (3.36)

≤ Cρ∗‖u(t)‖ρW0

Cρ∗
l

(
2ρ

l(ρ− 2)
E(0)

) ρ−2
2

l‖u(t)‖2W0

≡ θl‖u(t)‖2W0
.

From the Young inequality and the fact that∫ t

0

g(τ) dτ ≤
∫ ∞

0

g(τ) dτ = 1− l,
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it follows that∫ t

0

g(t− τ)〈u(τ), u(t)〉W0 dτ

≤ 1

2
‖u(t)‖2W0

+
1

2

{∫ t

0

g(t− τ) (‖u(τ)− u(t)‖W0 + ‖u(t)‖W0) dτ
}2

≤ 1

2
‖u(t)‖2W0

+
1

2
(1 + η)

(∫ t

0

g(t− τ)‖u(t)‖W0
dτ

)2

+
1

2
(1 +

1

η
)

(∫ t

0

g(t− τ)‖u(τ)− u(t)‖W0
dτ

)2

≤ 1

2
‖u(t)‖2W0

+
1

2
(1 + η)(1− l)2‖u(t)‖2W0

+
1

2
(1 +

1

η
)(1− l)(g � u)(t). (3.37)

for any η > 0. Now, letting η = l
1−l > 0 then (3.37) yields∫ t

0

g(t− τ)〈u(τ), u(t)〉W0 dτ ≤
2− l

2
‖u(t)‖2W0

+
1− l

2l
(g � u)(t). (3.38)

Substituting (3.38) into (3.33), we obtain

d

dt
F (t) ≤ −1

2

(
ξ0 − ε

1− l
l

)
(g�u)(t)−ε‖u(t)‖2αW0

− εl
2
‖u(t)‖2W0

+ε

∫
Ω

|u(t)|ρ−1u(t) dx.

(3.39)
Using the definition of E(t) and (3.36) we have, for any positive constant M

d

dt
F (t) ≤ −MεE(t) + ε

(
M

2α
− 1

)
‖u(t)‖2αW0

+
ε

2

[
M + 2θl(1− M

ρ
)− l

]
‖u(t)‖2W0

+
1

2

[
ε(

1− l
l

+
M

2
)− ξ0

]
(g � u)(t). (3.40)

At this point, we choose 1 > M > 0 and E(0) small sufficiently such that

M

2α
− 1 < 0 and M + 2θl

(
1− M

ρ

)
− l < 0.

After M is fixed, we choose ε small enough such that

ε

(
1− l
l

+
M

2

)
− ξ0 < 0.

Inequality (3.40) becomes
d

dt
F (t) ≤ −MεE(t).

By (3.32), we have
d

dt
F (t) ≤ −Mβ2εF (t).

So F (t) ≤ Ce−Kt where K = Mβ2ε > 0. Consequently, by using (3.32) once again,
we conclude the result.
Thus, the proof of Theorem 3.3 is achieved. �
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Statistical Korovkin and Voronovskaya type
theorem for the Cesáro second-order operator
of fuzzy numbers
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Abstract. In this paper we define the Cesáro second-order summability method
for fuzzy numbers and prove Korovkin type theorem, then as the application
of it, we prove the rate of convergence. In the last section, we prove the kind
of Voronovskaya type theorem and give some concluding remarks related to the
obtained results.
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1. Introduction

The concepts of fuzzy sets and fuzzy set operations were first introduced by
Zadeh [16] and subsequently, several authors have discussed various aspects of the
theory and applications of fuzzy sets such as fuzzy topological spaces, similarity
relations, and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming. Matloka [13] introduced bounded and convergent sequences of fuzzy
numbers studied some of their properties and showed that every convergent sequence
of fuzzy numbers is bounded.

In the present paper, we will prove the Korovkin type theorem for statistical
summability (C, 2) and the rate of convergence. In this section, we give a brief overview
of statistical convergence, fuzzy numbers, and sequences of fuzzy numbers. In section
2 we prove the main results of this paper. In section 3 we give results related to the
rate of convergence.

The idea of statistical convergence depends upon the density of subsets of the
set N of natural numbers. We shall denote by N the set of all natural numbers. Let
K ∈ N and Kn = {k ≤ n : k ∈ K}. Then the natural density of K is defined by
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d(K) = limn→∞
|Kn|
n if the limit exists, where the vertical bars indicate the number

of elements in the enclosed set. The sequence x = (xk) is said to be statistically
convergent to L([10]) if for every ε > 0, the set Kε = {k ∈ N : |xk − L| ≥ ε} has
natural density zero, i.e. for each ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write st− limx = L. Note that every convergent sequence is statisti-
cally convergent but not conversely.

In paper [6], was defined the second order Cesáro summability method as follows:

(C, 2)n =

∞∑
n=1

(
1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)|xk|

)
.

The summability method (C, 2)n is a regular. We say that the series
∑∞
n=1 xn is

(C, 2)n− summable to L if

lim
n

n∑
j=1

(
1

(j + 1)(j + 2)

j∑
k=0

(j + 1− k)|xk|

)
= L.

In the present paper, we define Cesáro second-order summability method for
sequences of fuzzy numbers and give Korovkin type theorem and rate of convergence.
The theory of Korovkin type theorems was intensively investigated in recent years,
see for example [3, 4, 1, 6, 7, 8, 9, 11, 12].

2. Preliminaries

Let C(R) denote the family of all nonempty, compact, convex subsets of R.
Denote by

L(R) = {u : R→ [0, 1] : u satisfies (1)− (4) bellow}

where

1. u is normal, there exists an x0 ∈ R such that u(x0) = 1,
2. u is fuzzy convex, for any x, y ∈ R and 0 ≤ λ ≤ 1, u(λx + (1 − λ)y) ≥

min [u(x), u(y)],
3. u is upper semicontinuous,
4. the closure of {x ∈ R : u(x) > 0}, denoted by [u]0, is compact.

If u ∈ L(R), then u is called fuzzy number, and L(R) is said to be fuzzy number space.
For 0 < α ≤ 1, the α− level set [u]α of u is defined by [u]α = {x ∈ R : u(x) ≥ α}.
Then from (1)-(4), it follows that the α−level sets [u]α ∈ C(R).

The set of real numbers can be embedded in L(R), since each r ∈ R can be
regarded as a fuzzy number r defined by

r =

{
1; if x = r,
0; if x 6= r.
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Let u, v, w ∈ L(R) and k ∈ R. Then the operations addition and scalar multipli-
cations are defined in L(R) as follows:

u+ v = w ⇔ [w]α = [u]α + [v]α for all α ∈ [0, 1],

⇔ w−α = u−α + v−α and w+
α = u+α + v+α for all α ∈ [0, 1],

[ku]α = k[u]α for all α ∈ [0, 1].

Further details related to the structural properties of the fuzzy numbers, are given
in [5]. Let us denote by W the set of all closed bounded intervals A of real numbers
with endpoints A and A, i.e., A = [A,A]. Define the relation d on W by

d(A,B) = max {|A−B|, |A−B|}.

Then it can be easily observed that d is a metric on W and (W,d) is a complete
metric space, ([14]). Now, we may define the metric D on L(R) by means of the
Hausdorff metric d as follows

D(u, v) = sup
α∈[0,1]

d([u]α, [v]α) = sup
α∈[0;1]

max {|u−(α)− v−(α)|, |u+(α)− v+(α)|}

and

D(u, 0) = sup
α∈[0;1]

max {|u−(α)|, |u+(α)|} = max {|u−(α)|, |u+(α)|}.

Let f, g : [a, b] → L(R), be fuzzy number valued functions. The parametric

representation is as follows: [f(x)]r = [f
(r)
− (x), f

(r)
+ (x)], for every x ∈ [a, b] and every

r ∈ [0, 1]. Then, the distance between f and g is given by

D∗(f, g) = sup
x∈[a,b]

sup
r∈[0,1]

max
{∣∣∣f (r)− − g(r)− ∣∣∣ , ∣∣∣f (r)+ − g(r)+

∣∣∣}.
Fuzzy function f : [a, b]→ L(R), is continuous at x0 ∈ [a, b] if for each ε > 0 there is
a δ > 0 such that D(f(x), f(x0)) < ε, whenever x ∈ [a, b] with |x − x0| < δ. If f is
continuous in each point on [a, b], then we say that it is continuous whole [a, b]. The
class of continuous function we will denote by CF [a, b].

A sequence u = (uk) of fuzzy numbers is a function u from the set N, into the
set L(R). The fuzzy number uk denotes the value of the function at k ∈ N and is
called as the k−th term of the sequence. By w(F ), we denote the set of all sequences
of fuzzy numbers. A sequence (un) ∈ w(F ) is said to be convergent to u ∈ L(R), if
for every ε > 0 there exists an n0 = n0(ε) ∈ N such that

D(un, u) < ε for all n > n0.

Definition 2.1. Let X = (Xk) be a sequence of fuzzy numbers. The sequence X is
said to converge weighted statistically to a fuzzy number X0, if for every ε > 0

lim
n→∞

1

(n+ 1)(n+ 2)
|{k ≤ (n+ 1)(n+ 2) : D(Xk, X0) ≥ ε}| = 0.

The above type of convergence will be denoted as

stF − lim
n
Xn = X0.
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Definition 2.2. Let X = (Xk) be a sequence of fuzzy numbers. The sequence X is
said to be statistically Cesáro second order summable to a fuzzy number X0 if the
sequence

(C, 2)n(X) =
1

(n+ 1)(n+ 2)

n∑
k=0

(n+ 1− k)Xk,

is statistically convergent to X0, where the sum in (C, 2)n(X) is usual addition of
fuzzy real numbers through α− level sets. That is (Xk) is statistically Cesáro second
order summable to the fuzzy number X0, if for every ε > 0

lim
n→∞

1

(n+ 1)(n+ 2)
|{k ≤ (n+ 1)(n+ 2) : D((C, 2)n, X0) ≥ ε}| = 0.

The above type of convergence will be denoted as

st(C,2) − lim
n
Xn = X.

3. Statistical fuzzy Korovkin type theorem

Let us denote by C[a, b] the space of continuous function defined in the [a, b]. As
we know, this space equipped with supremum norm

||f || = sup
x∈[a,b]

|f(x)|,

is a complete metric space.
In this section we prove fuzzy Korovkin type theorem via the concept of statisti-

cal summability (C, 2). Let f : [a, b]→ L(R) be fuzzy number valued functions. Then
f is said to be fuzzy continuous at x0 ∈ [a, b] provided that whenever xn → x0, then
D(f(xn), f(x0))→∞ as n→∞. Also, we say that f is fuzzy continuous on [a, b] if it
is fuzzy continuous at every point x ∈ [a, b]. The set of all fuzzy continuous functions
on the interval [a, b] is denoted by CF [a, b] (see, for instance, [3]).

Let L : CF [a, b]→ CF [a, b] be an operator. Then L is said to be fuzzy linear, if
for every α, β ∈ R, any f, g ∈ CF [a, b] and for every x ∈ [a, b],

L(αf + βg;x) = αL(f ;x) + βL(g;x),

holds. L is said to be fuzzy positive linear operator if it is fuzzy linear and the condition
L(f ;x) � L(g;x) is satisfied for any f, g ∈ CF [a, b] and for all x ∈ [a, b] with f(x) �
g(x). Last relation is fulfilled if and only if f

(r)
− (x) ≤ g

(r)
− (x) and f

(r)
+ (x) ≤ g

(r)
+ (x),

where [f(x)](r) = [f
(r)
− (x), f

(r)
+ (x)]. The fuzzy Korovkin type theorem was investigated

by many authors(see [3, 4, 2]) and statistical version of the theorem, was given by [4],
as follows.

Theorem 3.1. ([3]) Let {Ln}n∈N : CF [a, b] → CF [a, b], be a sequence of fuzzy posi-

tive linear operators. Assume that there exists a corresponding sequence {L̃n}n∈N :
C[a, b]→ C[a, b], of linear positive operators, with the property:

{Ln(f ;x)}(r)± = L̃n(f
(r)
± ;x) (3.1)
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for all x ∈ [a, b], r ∈ [0, 1], n ∈ N and f ∈ CF [a, b]. Also assume that

lim
n→∞

∥∥∥L̃n(ei)− ei
∥∥∥ = 0, for each i = 0, 1, 2,

where ei = xi. Then, for all f ∈ CF [a, b], we have

lim
n
D∗(Ln(f), f) = 0.

Later one, this result is extended to summability matrix as follows

Theorem 3.2. ([4]) Let A = (ajn) be a non-negative regular summability method matrix
and let {Ln}n∈N be a sequence of fuzzy positive linear operators from CF [a, b] into

itself. Assume that there exists a corresponding sequence {L̃n}n∈N of positive linear
operators from C[a, b] into itself with the property (3.1). Assume further that

stA − lim
n→∞

∥∥∥L̃n(ei)− ei
∥∥∥ = 0, for each i = 0, 1, 2,

where ei = xi. Then, for all f ∈ CF [a, b], we have

stA − lim
n
D∗(Ln(f), f) = 0.

Now we prove the fuzzy Korovkin type theorem for statistical convergence, using
the notion of the statistical summability method (C, 2).

Theorem 3.3. Let {Ln}n∈N be a sequence of fuzzy positive linear operators from

CF [a, b] into itself. Assume that there exists a corresponding sequence {L̃n}n∈N of
positive linear operators from C[a, b] into itself with the property (3.1). Also assume
that

st(C,2) − lim
n→∞

∥∥∥L̃n(ei)− ei
∥∥∥ = 0, for each i = 0, 1, 2, (3.2)

where ei = xi. Then, for all f ∈ CF [a, b], we have

st(C,2) − lim
n
D∗(Ln(f), f) = 0. (3.3)

Proof. Let f ∈ CF [a, b] for x ∈ [a, b] and r ∈ [0, 1]. By hypothesis f
(r)
± ∈ C[a, b], which

means that for every ε > 0 there exists a δ(ε) > 0, and for any y ∈ [a, b] such that

|x − y| < δ we obtain |f (r)± (x) − f (r)± (y)| < ε. From last relation and boundedness of

function f
(r)
± (x), we get∣∣∣f (r)± (x)− f (r)± (y)

∣∣∣ ≤ ε+ 2
∥∥∥f (r)± ∥∥∥ (x− y)2

δ2
.

Considering linearity and positivity of the operators L̃n, we have for each n ∈ N, that∣∣∣L̃n (f (r)± ;x
)
−f (r)± (x)

∣∣∣≤ ∣∣∣L̃n (∣∣∣f (r)± (x)−f (r)± (y)
∣∣∣ ;x)∣∣∣+∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e0;x)−e0(x)

∣∣∣≤ε
+
(
ε+

∥∥∥f (r)± ∥∥∥) · ∣∣∣L̃n(e0;x)− e0(x)
∣∣∣+

2
∥∥∥f (r)± ∥∥∥
δ2

∣∣∣L̃n((x− y)2;x)
∣∣∣ ,

if we put M = max{|a|, |b|}, we have∣∣∣L̃n (f (r)± ;x
)
− f (r)± (x)

∣∣∣ ≤ ε+

(
ε+

∥∥∥f (r)± ∥∥∥+
2x2

δ2

∥∥∥f (r)± ∥∥∥) · ∣∣∣L̃n(e0;x)− e0(x)
∣∣∣
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+
4x

δ2

∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e1;x)− e1(x)
∣∣∣+

2

δ2

∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e2;x)− e2(x)
∣∣∣ ≤∣∣∣L̃n (f (r)± ;x

)
− f (r)± (x)

∣∣∣ ≤ ε+

(
ε+

∥∥∥f (r)± ∥∥∥+
2M2

δ2

∥∥∥f (r)± ∥∥∥) · ∣∣∣L̃n(e0;x)− e0(x)
∣∣∣

+
4M

δ2

∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e1;x)− e1(x)
∣∣∣+

2

δ2

∥∥∥f (r)± ∥∥∥ ∣∣∣L̃n(e2;x)− e2(x)
∣∣∣ .

Let

M
(r)
± (ε) = max

{
ε+

∥∥∥f (r)± ∥∥∥+
2M2

δ2

∥∥∥f (r)± ∥∥∥ , 4M

δ2

∥∥∥f (r)± ∥∥∥ , 2

δ2

∥∥∥f (r)± ∥∥∥} .
Taking supremum on the above inequality for x ∈ [a, b], we obtain∥∥∥L̃n (f (r)± )− f (r)± ∥∥∥≤ ε+M (r)

± (ε)
{∥∥∥L̃n(e0)− e0

∥∥∥+
∥∥∥L̃n(e1)− e1

∥∥∥+
∥∥∥L̃n(e2)− e2

∥∥∥} .
(3.4)

Now using into consideration relation (3.1) and relation (3.4), we have

D∗(f, g) = sup
x∈[a,b]

D(Ln(f ;x), f(x))

= sup
x∈[a,b]

sup
r∈[0,1]

max
{∣∣∣L̃n (f (r)− ;x

)
− f (r)− (x)

∣∣∣ , ∣∣∣L̃n (f (r)+ ;x
)
− f (r)+ (x)

∣∣∣}
= sup
r∈[0,1]

max
{∥∥∥L̃n (f (r)− )− f (r)− ∥∥∥ ,∥∥∥L̃n (f (r)+

)
− f (r)+

∥∥∥}. (3.5)

From relations (3.4) and (3.5), it yields

D∗(Ln(f), f) ≤ ε+M(ε)
{∥∥∥L̃n(e0)− e0

∥∥∥+
∥∥∥L̃n(e1)− e1

∥∥∥+
∥∥∥L̃n(e2)− e2

∥∥∥} , (3.6)

where M(ε) = sup0≤r≤1 max{M (r)
− (ε),M

(r)
+ (ε)}.

Let ε1 > 0, we can choose 0 < ε < ε1, and define sets:

A = {n ∈ N : D∗(Ln(f), f) ≥ ε1},

A1 =

{
n ∈ N :

∥∥∥L̃n(e0)− e0
∥∥∥ ≥ ε1 − ε

3M(ε)

}
,

A2 =

{
n ∈ N :

∥∥∥L̃n(e1)− e1
∥∥∥ ≥ ε1 − ε

3M(ε)

}
,

A3 =

{
n ∈ N :

∥∥∥L̃n(e2)− e2
∥∥∥ ≥ ε1 − ε

3M(ε)

}
.

Then from relation (3.6), we have

A ⊂ A1 ∪A2 ∪A3.

Now from last relation and relations (3.2), we get relation (3.3). �

Remark 3.4. Our theorem is generalization of the result given in theorem 3.1 and
theorem 3.2, as it is shown on this.
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Example 3.5. Take A = (C, 2) = (cjn), the Cesáro second order matrix and define
the following sequence

(an) =

{
0, if n 6= m2,m = 1, 2, · · · ,
n

3
2 , otherwise

If we use into consideration the fuzzy Bernstein-type operators

BFn (f ;x) = an �
n⊕
k=0

(
n

k

)
xk(1− x)n−k � f (r)±

(
k

n

)
,

where f ∈ CF [0, 1], x ∈ [0, 1] and n ∈ N. We can define

{
BFn (f ;x)

}(r)
± = B̃n

(
f
(r)
± ;x

)
= an

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(r)
±

(
k

n

)
,

f
(r)
± ∈ C[0, 1].

Let us define the following operators

Ln(f ;x) = (1 + an)B̃n(f ;x). (3.7)

Then we have:

Ln(e0;x) = (1 + an),

Ln(e1;x) = x(1 + an),

Ln(e2;x) =

(
x2 +

x(1− x)

n

)
(1 + an).

The limit st(C,2) − lim an, exist and it is:

∑
n:|an−0|≥ε

cjn =
∑

n:|an−0|≥ε

1

(j + 1)(j + 2)
≤ j

3
2

(j + 1)(j + 2)
→ 0, as j →∞,

which means that st(C,2) − lim an = 0.

From above relation we get

st(C,2) − lim
n→∞

‖Ln(ei)− ei‖ = 0, for each i = 0, 1, 2

and from theorem 3.3, we obtain

st(C,2) − lim
n
D∗(Ln(f), f) = 0.

However, (an) is not convergent in usual sense, the sequence {BFn (f ;x)} is not fuzzy
convergent to f.
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4. Statistical fuzzy rate of convergence

In this section, we investigate the rate of the Cesáro second order operators,
statistical convergence of positive linear operators in the space CF [a, b].

Definition 4.1. Let (an) be any nondecreasing sequence of positive numbers. We say
that the sequence of functions (fn) ∈ CF [a, b] is Cesáro second order statistical con-
vergent to a function f with the rate of convergence given by o(an), if, for each ε > 0,

lim
n→∞

1

(n+ 1)(n+ 2)an
|{m ≤ (n+ 1)(n+ 2) and D∗((C, 2)m; f)) ≥ ε}| = 0.

In this case, we write

fn − f = o(an)((C, 2)n − stat).

Lemma 4.2. Let (an) and (bn) be two nondecreasing sequences of positive numbers.
Suppose also that the sequences (fn) and (gn) are constrained by

fn − f = o(an)((C, 2)n − stat) and gn − g = o(bn)((C, 2)n − stat),

respectively. Then

1. α(fn − f) = o(an)((C, 2)n − stat) for any scalar α;
2. (fn − f)± (gn − g) = o(cn)((C, 2)n − stat);
3. (fn − f)(gn − g) = o(anbn)((C, 2)n − stat),

where

cn := max {an, bn}.

Now, by defining the modules of continuity, for a given function f(x) ∈ CF [a, b],
as follows:

Definition 4.3. Let f : [a, b] → E be a fuzzy real number valued function. We define
the modulus of continuity of f by

ωF1 (f, δ) = sup
x,y∈[a,b]

D(f(x), f(y)),

for every |x− y| ≤ δ and any 0 < δ ≤ b− a.

We now state and prove the following result.

Theorem 4.4. Let (Ln) be a sequence of fuzzy positive linear operators from CF [a, b]

into CF [a, b]. Assume that there exists a corresponding sequence {L̃n}n∈N of positive
linear operators from C[a, b] into itself with the property (3.1). Suppose that (an) and

(bn) are non-decreasing sequence and also that the operators L̃n satisfy the following
conditions:

1.
∥∥∥L̃n(e0)− e0

∥∥∥ = (C, 2)n − stat o(an) as n→∞,
2. ωF1 (f, λn) = (C, 2)n − stat o(bn) as n→∞

where

λn =

√∥∥∥L̃n(ϕ)
∥∥∥ and ϕy = (y − x)2, for allx ∈ [a, b].
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Then, for all f ∈ CF [a, b], we have∥∥∥L̃n(f)− f
∥∥∥ = (C, 2)n − stat o(cn), as n→∞,

where cn = max {an, bn}, for each n ∈ N.

Proof. Let f ∈ CF [a, b]. Then,

L̃k(f
(r)
± , x)− f (r)± (x) = L̃k(f

(r)
± , x)− f (r)± (x)L̃k(1, x) + f

(r)
± (x)[L̃k(1, x)− 1], (4.1)

and

|f (r)± (x)− f (r)± (y)| ≤ ωF1 (f, δ)

(
|x− y|
δ

+ 1

)
, (4.2)

in both cases, where |x− y| ≥ δ and |x− y| ≤ δ.
By using the relations (4.1) and (4.2), we get the following estimate:

|L̃n(f
(r)
± , x)− f (r)± (x)| ≤ |L̃n(|f (r)± (y)− f (r)± (x)|, x)|+ |f (r)± (x)| · |L̃n(1, x)− 1|

≤ L̃n
(
|x− y|
δ

+ 1, x

)
ωF1 (f, δ)+|f(x)|·|L̃n(1, x)−1| (by Cauchy-Schwartz inequality)

≤ 1

δ
L̃n
(
(x− y)2, x

) 1
2 L̃n (1, x)

1
2 ωF1 (f, δ) + L̃n(1, x)ωF1 (f, δ)

+|f (r)± (x)| · |L̃n(1, x)− 1|(for δ = λn, we get)

≤ K
∣∣∣L̃n(1, x)− 1

∣∣∣+ 2ωF1 (f, δ) + ωF1 (f, δ)|L̃n(1, x)− 1|

+ωF1 (f, δ)

√
|L̃n(1, x)− 1|,

where K =
∥∥∥f (r)± ∥∥∥ . Now, by using relations (1) and (2) in the theorem and lemma

4.2, we complete proof of Theorem.
�

5. Statistical fuzzy Voronovskaya type theorem

In this section we show positive linear operators

Dn(f ;x) =
(1 + bn)

n2
B̃n(f ;x),

where sequence n(bn) = (an), and (an), is defined in example 3.5, satisfy a
Voronovskaja type property in the (C, 2)− statistically convergence sense. We first
prove the following lemma.

Lemma 5.1. For x ∈ [a, b], and Φ(y) = y − x then

n2Dn(Φ4) ∼ x2(2x2 + 1)(x− 1)((C, 2)− stat.) on [a, b].
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Proof. After some calculations we get:

n2Dn(Φ4) = (1+bn)

[(
2− 5

n
+

8

n2
− 11

n3
+

6

n4

)
x5 +

(
−2 +

4

n
− 5

n2
+

9

n3
− 6

n4

)
x4

+

(
1− 2

n
+

1

n3

)
x3 −

(
1− 2

n
+

3

n3
− 2

n4

)
x2 +

(
1

n2
− 3

n3
+

2

n4

)
x

]
.

Thus we obtain:∣∣n2Dn(Φ4)− x2(2x2 + 1)(x− 1)
∣∣ ≤ |(1 + bn)− 1||(2x5 − 2x4 + x3 − x2)|

+

∣∣∣∣(− 5

n
+

8

n2
− 11

n3
+

6

n4

)
x5
∣∣∣∣+

∣∣∣∣( 4

n
− 5

n2
+

9

n3
− 6

n4

)
x4
∣∣∣∣+

∣∣∣∣(− 2

n
+

1

n3

)
x3
∣∣∣∣

+

∣∣∣∣(− 2

n
+

3

n3
− 2

n4

)
x2
∣∣∣∣+

∣∣∣∣( 1

n2
− 3

n3
+

2

n4

)
x

∣∣∣∣→ 0((C, 2)− stat.),

as n→∞, on [a, b]. This completes proof of the Lemma. �

In what follows we establish the following Voronovskaya fuzzy type theorem for
operators Dn, defined as in above Lemma. Before given the main result of this section
we will give some concepts related to the H-derivatives for the fuzzy functions.

A function f : [x0;x0 + α] → RF , for α > 0, is H−derivative at x ∈ T if there

exists a f
′
(x) ∈ RF such that the limits

lim
h→0+

f(x+ h)− f(x)

h
, lim
h→0+

f(x)− f(x− h)

h

exists and are equal to f
′
(x).

We assume that the H− differences f(x + h) − f(x), f(x) − f(x − h) ∈ RF in

a neighborhood of x. We call f
′
(x) the derivative or H− derivative of f at x (for

more details see [15]). In paper [2], was given the Taylor formula for fuzzy functions
as follows:

Theorem 5.2. Let T = [x0, x0 + α] ⊂ R, and α > 0. We assume that f (i) : T → RF
are H− differentiable for all i ∈ {0, 1, 2, 3, · · · , n− 1}, for any x ∈ T. (It means that
there exists in RF the H− differences f (i)(x + h) − f (i)(x), f (i)(x) − f (i)(x − h),
i ∈ {0, 1, 2, 3 · · · , n − 1} for all h such that 0 < h < α. Furthermore there exists
f (i+1)(x) ∈ RF such that limits in D− metrics exist and

f (i+1)(x) = lim
h→0+

f (i)(x+ h)− f (i)(x)

h
= lim
h→0+

f (i)(x)− f (i)(x− h)

h
,

for all i ∈ {0, 1, 2, 3 · · · , n− 1}.) Also we assume that f (n), is fuzzy continuous on T.
Then for s ≥ a; s, a ∈ T we obtain

f(s) = f(a) +
f
′
(a)

1!
(s− a) +

f
′′
(a)

2!
(s− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(s− a)n−1 +Rn(s, a),

where

Rn(s, a) =

∫ s

a

(∫ s1

a

· · ·
(∫ sn−1

a

f (n)(sn)dsn

)
dsn−1 · · ·

)
ds1,
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above integration is in sense of Fuzzy-Riemann integral and Rn(s, a) is fuzzy contin-
uous on T as a function of s.

Theorem 5.3. For every f : [a, b] → RF , we assume that there exists f
′
, f
′′ ∈ RF ,

then

n
[
n2Dn(f)− f(x)

]
∼ 1

2
(x− x2)f

′′
(x)((C, 2)− stat.),

on [a, b].

Proof. Let us suppose that f
′
, f
′′ ∈ RF and x ∈ [a, b]. Define

ψx(y) =

 f(y)− f(x)− (y − x)f
′
(x)− 1

2 (y − x)2f
′′
(x)

(y − x)2
for x 6= y

0 for x = y.

Then ψx(x) = 0 and ψx ∈ CF [a, b]. By Taylor’s formula, we get

f(y) = f(x) + (y − x)f
′
(x) +

1

2
(y − x)2f

′′
(x) + (y − x)2ψx(y). (5.1)

Knowing that

Dn(1, x) =
(1 + bn)

n2
;Dn((y − x), x) = 0 and Dn((y − x)2, x) = (1 + bn)

x− x2

n3
,

and after operating in the both sides of relation (5.1) by operator Dn, we obtain:

n2Dn(f) = f(x) + bnf(x) +
f
′′
(x)

2

x− x2

n
(1 + bn) + (1 + bn)Dn(Φ2ψx, x),

which yields ∣∣∣∣∣n [n2Dn(f)− f(x)
]
− f

′′
(x)

2
(x− x2)

∣∣∣∣∣ ≤
nbn|f(x)|+ bn

∣∣∣∣∣f
′′
(x)

2
(x− x2)

∣∣∣∣∣+ n(1 + bn)
∣∣Dn(Φ2ψx, x)

∣∣ ,
respectively∣∣∣∣∣n [n2Dn(f)−f(x)

]
− f

′′
(x)

2
(x− x2)

∣∣∣∣∣≤ nbnM+n
∣∣Dn(Φ2ψx, x)

∣∣+nbn ∣∣Dn(Φ2ψx, x)
∣∣ ,

(5.2)

where Φ(y) = y − x and M = ||f ||CF [a,b] + ||f ′′ ||CF [a,b]. After application of the
Cauchy-Schwartz inequality in the terms of the right side of the relation (5.2), we
obtain:

n
∣∣Dn(Φ2ψx, x)

∣∣ ≤ [n2Dn(Φ4, x)]
1
2 · [Dn(ψ2

x, x)]
1
2 . (5.3)

Putting ηx(y) = (ψx(y))2, we get that ηx(x) = 0 and ηx(·) ∈ CF [a, b]. Also

an
∣∣Dn(Φ2ψx, x)

∣∣ ≤ an[Dn(Φ4, x)]
1
2 · [Dn(ψ2

x, x)]
1
2 , (5.4)

where an → 0((C, 2)n − stat).
Now from Theorem 3.3, it follows that

Dn(ηx)→ 0((C, 2)n − stat), (5.5)
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on [a,b]. Now, from relations (5.3), (5.5), (5.4) and Lemma 5.1, we have

n(1 + bn)Dn(Φ2ψx, x)→ 0((C, 2)n − stat), (5.6)

on [a, b]. For a given ε > 0, we define the following sets:

An(x, ε) =

∣∣∣∣∣
{
k : k ≤ (n+ 1)(n+ 2) :

∣∣∣∣∣n [n2Dn(f)− f(x)
]
− f

′′
(x)

2
(x− x2)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ ,

A1,n(x, ε) =
∣∣∣{k : k ≤ (n+ 1)(n+ 2) : |kbk| ≥

ε

2M

}∣∣∣ ,
and

A2,n(x, ε) =
∣∣∣{k : k ≤ (n+ 1)(n+ 2) : |k(1 + bk)Dk(Φ2ψx, x)| ≥ ε

2

}∣∣∣ .
From last relation we have

An(x, ε)

(n+ 1)(n+ 2)an
≤ A1,n(x, ε)

(n+ 1)(n+ 2)an
+

A2,n(x, ε)

(n+ 1)(n+ 2)an
. (5.7)

From definition of the sequence (bn), we get

nbn → 0((C, 2)n − stat), (5.8)

on [a,b]. Now from relations (5.6) and (5.8), the right hand side of the relation (5.7),
tends to zero as n→∞. Therefore, we have

lim
n→∞

An(x, ε)

(n+ 1)(n+ 2)an
= 0,

which proves that

n
[
n2Dn(f)− f(x)

]
∼ 1

2
(x− x2)f

′′
(x)((C, 2)n − stat),

on [a, b]. �

6. Concluding remarks

In this section, we will give some remarks related to the results obtained in this
paper and their relationship with other results.

Remark 6.1. Suppose that we replace the conditions (1) and (2) in Theorem 4.4 by
the following condition:

L̃n(xi)− xi = o(ani
)((C, 2)n − stat) on [a, b](i = 0, 1, 2). (6.1)

Then, since

L̃n(ψ2;x) = L̃n(t2, x)− 2xL̃n(t, x) + x2L̃n(1, x),

we may write

L̃n(ψ2, x) ≤ K[|L̃n(1, x)− 1|+ |L̃n(t, x)− t|+ |L̃n(t2, x)− t2|],

where

K = 1 + 2||t||+ ||t2||.
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Now it follows from above relations and Lemma 4.2 that

δn =

√
L̃n(ψ2) = o(dn)((C, 2)n − stat)

on [a, b], where dn = min{an0 , an1 , an2}. Hence

ω(f, dn) = o(dn)((C, 2)n − stat)
on [a, b]. If those conditions which are given here we can use in Theorem 3.3, we can
thus see that, for all f ∈ CF [a, b],

L̃n(f)− f = o(dn)((C, 2)n − stat)
on [a, b]. Therefore, if we use the condition (6.1) in Theorem 4.4 instead of the condi-
tions (1) and (2), then we obtain the rates of (C, 2)n−stat convergent of the sequence
of positive linear operators in Theorem 3.3.

Acknowledgment. Authors would like to thank referees for carefully reading the paper
and give comments, which helped us to improve it.
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Mohammed Arif Siddiqui and Nandita Gupta

Abstract. In the present paper we propose a new generalization of Szász-
Mirakjan-type operators. We discuss their weighted convergence and rate of con-
vergence via weighted modulus of continuity. We also give an asymptotic estimate
through Voronovskaja type result for these operators.
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1. Introduction

In [7] Rempulska et al. introduced the following operators of Szász-Mirakjan
type

Ln(f ;x) =

∞∑
k=0

pn,k(x)f
(2k

n

)
, (1.1)

with

pn,k(x) =
1

coshnx

(nx)2k

(2k)!
, k ∈ N0 = N ∪ {0}, (1.2)

where f ∈ CB and CB is the space of real-valued functions uniformly continuous and
bounded on R+ = [0, ∞) and the norm in CB is given as

‖f‖ = sup
x∈R+

|f(x)|.

In [8, 9] a Voronovskaja-type theorem was proved for these operators.
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In 2014, Aral et al. [1] introduced a very interesting generalization of the Szász-
Mirakjan operators [10] using a function ρ as

Sρn(f ;x) =e−nρ(x)
∞∑
k=0

(
f ◦ ρ−1

)(k
n

)
(nρ(x))k

k!
(1.3)

=(Sn(f ◦ ρ−1) ◦ ρ)(x)

=e−nρ(x)
∞∑
k=0

f

(
ρ−1

(
k

n

))
(nρ(x))k

k!
,

where the function ρ satisfies following properties:
(ρ1) ρ is continuously differentiable on R+,
(ρ2) ρ(0) = 0, inf

x∈R+
ρ′(x) ≥ 1.

We propose a similar generalization of the operators (1.1) as follows

Lρn(f ;x) =
1

cosh (nρ(x))

∞∑
k=0

(f ◦ ρ−1)

(
2k

n

)
(nρ(x))2k

(2k)!
, (1.4)

where x ∈ R+, n ∈ N, k ∈ N0 = N ∪ {0} and function ρ satisfies conditions (ρ1) and
(ρ2).

We see that these new operators are positive linear operators. For ρ(x) = x,
these operators (1.4) reduce to the operators (1.1). Also from conditions (ρ1) and
(ρ2) we can draw out that
(i) lim

x∈R+
ρ(x) =∞,

(ii) |t− x| ≤ |ρ(t)− ρ(x)| for all x, t ∈ R+.
In this paper we study some approximation properties of these new operators.

Firstly we prove a theorem for the weighted convergence of Lρnf to f with the help
of a weighted Korovkin-type theorem [4], [3]. Then we determine an estimate of the
rate of the weighted convergence using weighted modulus of continuity defined in [5].
At the end we prove a Voronovskaja type result for these new operators.

2. Weighted convergence of Lρn(f ;x)

From the definition of the operators Lρn one can easily derive the following results.

Lemma 2.1. For the operators defined in (1.4) we have

Lρn(1;x) =1, (2.1)

Lρn(ρ;x) =ρ(x) tanh(nρ(x)), (2.2)

Lρn(ρ2;x) =ρ2(x) +
ρ(x)

n
tanh(nρ(x)), (2.3)

Lρn(ρ3;x) =ρ3(x) tanh(nρ(x)) +
3ρ2(x)

n
+
ρ(x)

n
tanh(nρ(x)), (2.4)

Lρn(ρ4;x) =ρ4(x) +
6ρ3(x)

n
tanh(nρ(x)) + 7

ρ2(x)

n2
+
ρ(x)

n3
tanh(nρ(x)). (2.5)
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Lemma 2.2. For the operators defined in (1.4) we have

Lρn(ρ(t)− ρ(x);x) =ρ(x)(tanh(nρ(x))− 1),

Lρn((ρ(t)− ρ(x))2;x) =

(
2ρ2(x)− ρ(x)

n

)
(1− tanh(nρ(x))) +

ρ(x)

n
,

Lρn((ρ(t)− ρ(x))4;x) =

(
8ρ4(x)− 12ρ3(x)

n
+

4ρ2(x)

n2
− ρ(x)

n3

)
× (1− tanh(nρ(x))) +

3ρ2(x)

n2
+
ρ(x)

n3
.

Now we give a very useful lemma.

Lemma 2.3. For the operators defined in (1.4) we have

lim
n→∞

nLρn(ρ(t)− ρ(x);x) = 0,

lim
n→∞

nLρn((ρ(t)− ρ(x))2;x) = ρ(x).

Proof. From Lemma 2.2

nLρn(ρ(t)− ρ(x);x) =nρ(x)(tanh(nρ(x))− 1)

=
−2nρ(x)

e2nρ(x) + 1
.

Thus

lim
n→∞

nLρn(ρ(t)− ρ(x);x) =0.

Again from Lemma 2.2

nLρn((ρ(t)− ρ(x))2;x) =

(
2ρ(x)− 1

n

)
nρ(x)(1− tanh(nρ(x))) + ρ(x)

=

(
2ρ(x)− 1

n

)(
2nρ(x)

e2nρ(x) + 1

)
+ ρ(x).

Thus we have

lim
n→∞

nLρn((ρ(t)− ρ(x))2;x) = ρ(x). �

We prove the convergence theorem using weighted Korovkin type theorem. Ko-
rovkin’s theorem [6] was extended to unbounded intervals and a weighted Korovkin
type theorem in a subspace of continuous functions on the real axis R was proved in
[4], [3]. It was shown that the test functions 1, x, x2 of original Korovkin’s theorem
can be replaced by 1, ρ, ρ2 under certain additional conditions on the function ρ. We
recall some notations and results given in [1], [4], [3].



578 Mohammed Arif Siddiqui and Nandita Gupta

Let ϕ(x) = 1+ρ2(x), where ρ satisfies conditions (ρ1) and (ρ2). Thus we see that
ρ is continuous and strictly increasing function on positive real axis. We will consider
following weighted space:

Bϕ(R+) = {f : R+ → R : |f(x)| ≤Mfϕ(x), x ∈ R+},

where Mf is positive constant depending only on f . Bϕ(R+) is a normed space with
the norm

||f ||ϕ = sup
x∈R+

|f(x)|
ϕ(x)

.

We denote the subspace of all continuous function in Bϕ(R+) by Cϕ(R+). Ckϕ(R+)

denotes the subspace of all functions f ∈ Cϕ(R+) with the property

lim
x→∞

|f(x)|
ϕ(x)

= kf ,

where kf is a constant depending on f . Uϕ(R+) be the subspace of all functions f in

Cϕ(R+) such that f(x)
ϕ(x) is uniformly continuous. Then obviously

Ckϕ(R+) ⊂ Uϕ(R+) ⊂ Cϕ(R+) ⊂ Bϕ(R+).

Lemma 2.4 ([4, 3]). The linear positive operators Ln, n ≥ 1, act from Cϕ(R+) to
Bϕ(R+) if and only if

|Ln(ϕ;x)| ≤ Kϕ(x),

where x ∈ R+, ϕ(x) is the weight function and K is a positive constant.

Theorem 2.5 ([4, 3]). Let (Ln)n≥1 be the sequence of positive linear operators which
act from Cϕ(R+) to Bϕ(R+) satisfying the conditions

lim
n→∞

||Ln(ρi)− ρi||ϕ = 0, i = 0, 1, 2.

then for any function f ∈ Ckϕ(R+)

lim
n→∞

||Ln(f)− f ||ϕ = 0.

Lemma 2.6. The linear positive operators Lρn, n ∈ N, act from Cϕ(R+) to Bϕ(R+),
where ϕ(x) = 1 + ρ2(x) is the weight function.

Proof. In view of (2.1) and (2.3) we see that operators Lρn, n ∈ N satisfy the condition
of the Lemma 2.4. Thus the result follows. �

In [8] the following inequality was proved

0 ≤ xr(1− tanh(nx)) ≤ 21−rr!n−r, n, r ∈ N and x ≥ 0.

Similarly for ρ(x) satisfying ρ1 and ρ2 and n, r ∈ N we can get the following inequality

0 ≤ ρr(x)(1− tanh(nρ(x)) ≤ 21−rr!n−r. (2.6)

Now we prove the convergence theorem for the operators (Lρn).
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Theorem 2.7. Let (Lρn)n∈N be the sequence of linear positive operators defined by (1.4).
Then for any f ∈ Ckϕ(R+) we have

lim
n→∞

||Lρn(f)− f ||ϕ = 0.

Proof. Using Theorem 2.5 we see that in order to prove the theorem, it is sufficient
to prove the following three conditions

lim
n→∞

||Lρn(ρv)− ρv||ϕ = 0, v = 0, 1, 2.

Now from (2.1) we have

lim
n→∞

||Lρn(1)− 1||ϕ = 0.

From (2.2) we get

||Lρn(ρ)− ρ||ϕ ≤ sup
x∈R+

ρ(x)

1 + ρ2(x)
(1− tanh(nρ(x)),

so using (2.6) for r = 1 we have

||Lρn(ρ)− ρ||ϕ ≤
1

n
.

This leads to

lim
n→∞

||Lρn(ρ)− ρ||ϕ = 0.

Again from (2.3)

Lρn(ρ2)− ρ2 =
ρ(x)

n
tanh(nρ(x))

=
ρ(x)

n
− ρ(x)

n
(1− tanh(nρ(x))),

thus

||Lρn(ρ2)− ρ2||ϕ ≤ sup
x∈R+

[ ρ(x)

n(1 + ρ2(x))
+

ρ(x)

n(1 + ρ2(x))
(1− tanh(nρ(x)))

]
and using (2.6) we get

||Lρn(ρ2)− ρ2||ϕ ≤
[ 1

n
+

1

n

]
=

2

n
. (2.7)

So we have

lim
n→∞

||Lρn(ρ2)− ρ2||ϕ = 0.

This completes the proof. �
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3. Rate of convergence via weighted modulus of continuity

In this section we compute the rate of convergence of the operators defined
in (1.4) in terms of weighted modulus of continuity. In [5] Holhoş defined for all
f ∈ Cϕ(R+) and for every δ ≥ 0, the weighted modulus of continuity as

ωρ(f, δ) = sup
x∈R+, |ρ(t)−ρ(x)|≤δ

|f(t)− f(x)|
ϕ(t) + ϕ(x)

.

We see that ωρ(f, 0) = 0 for all f ∈ Cϕ(R+) and also that ωρ(f, δ) is a nonnegative
and nondecreasing function with respect to δ. The properties of weighted modulus of
continuity were discussed in [5]. The following results were given by Holhos [5].

Lemma 3.1 ([5]). For every f ∈ Uϕ(R+), lim
δ→0

ωρ(f, δ) = 0.

Theorem 3.2 ([5]). Let (Ln)n≥1 be a sequence of linear positive operators acting from
Cϕ(R+) to Bϕ(R+) with

||Ln(ρ0)− ρ0||ϕ0 = an,

||Ln(ρ)− ρ||
ϕ

1
2

= bn,

||Ln(ρ2)− ρ2||ϕ = cn,

||Ln(ρ3)− ρ3||
ϕ

3
2

= dn,

where an, bn, cn and dn tend to zero as n goes to infinity. Then

||Ln(f)− f ||
ϕ

3
2
≤ (7 + 4an + 2cn)ωρ(f, δn) + ||f ||ϕan

for all f ∈ Cϕ(R+), where

δn = 2
√

(an + 2bn + cn)(1 + an) + an + 3bn + 3cn + dn.

Theorem 3.3. For all f ∈ Cϕ(R+), we have

||Lρn(f)− f ||
ϕ

3
2
≤
(

7 +
4

n

)
ωρ(f, δn),

where

δn =
4√
n

+
15

n
.

Proof. From (2.1) and (2.2) we see that

||Ln(ρ0)− ρ0||ϕ0 = an = 0,

bn =||Ln(ρ)− ρ||
ϕ

1
2
≤ sup
x∈R+

ρ(x)√
1 + ρ2(x)

(1− tanh(nρ(x))

and using (2.6) we get

bn = ||Ln(ρ)− ρ||
ϕ

1
2
≤ 1

n
.

From (2.7) we have

cn = ||Ln(ρ2)− ρ2||ϕ ≤
2

n
.
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Again from (2.4) we obtain

dn =||Ln(ρ3)− ρ3||
ϕ

3
2

= sup
x∈R+

1

(1 + ρ2(x))
3
2

∣∣∣ρ3(x) tanh(nρ(x))− ρ3(x) +
3ρ2(x)

n

+
ρ(x)

n2
tanh(nρ(x))

∣∣∣
≤ sup
x∈R+

1

(1 + ρ2(x))
3
2

∣∣∣ρ3(x)(1− tanh(nρ(x))) +
ρ(x)

n2
(1− tanh(nρ(x)))

+
3ρ2(x)

n
+
ρ(x)

n2

∣∣∣
≤ 1

n
+

1

n2
+

3

n
+

1

n2
.

Using (2.6) and by the fact that 1
n2 ≤ 1

n we obtain

dn =||Ln(ρ3)− ρ3||
ϕ

3
2
≤ 6

n
.

Thus we see that an, bn, cn and dn tend to zero as n goes to infinity. So on applying
Theorem 3.2, we get

||Lρn(f)− f ||
ϕ

3
2
≤
(

7 +
4

n

)
ωρ(f, δn),

where

δn =
4√
n

+
15

n
.

This completes the proof. �

Remark 3.4. We see from Theorem 3.3 that as n→∞, δn → 0. Thus, using Lemma
3.1, we have

lim
n→∞

||Lρn(f)− f ||
ϕ

3
2

= 0

for every f ∈ Uϕ(R+).

4. Voronovskaja type theorem

Now we give a Voronovskaja-type result using the technique of Cárdenas-Morales
et al. [2].

Theorem 4.1. Let f ∈ Cϕ(R+), x ∈ R+ and suppose that the first and second deriva-
tives of f ◦ ρ−1 exist at ρ(x). If the second derivative of f ◦ ρ−1 is bounded on R+,
then we have

lim
n→∞

n[Lρn(f ;x)− f(x)] =
ρ(x)

2
(f ◦ ρ−1)′′(ρ(x)).
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Proof. By the Taylor expansion of f ◦ρ−1 at the point ρ(x) ∈ R+, there exists ξ lying
between x and t such that

f(t) =(f ◦ ρ−1)(ρ(t)) = (f ◦ ρ−1)(ρ(x)) + (f ◦ ρ−1)′(ρ(x))(ρ(t)− ρ(x))

+
1

2
(f ◦ ρ−1)′′(ρ(x))(ρ(t)− ρ(x))2 + h(t;x)(ρ(t)− ρ(x))2,

where

h(t;x) =
(f ◦ ρ−1)′′(ρ(ξ))− (f ◦ ρ−1)′′(ρ(x))

2
. (4.1)

On applying the operator (1.4)

n[Lρn(f ;x)− f(x)]

=(f ◦ ρ−1)′(ρ(x))nLρn(ρ(t)− ρ(x);x) +
1

2
(f ◦ ρ−1)′′(ρ(x))

× nLρn((ρ(t)− ρ(x))2;x) + nLρn(h(t;x)(ρ(t)− ρ(x))2;x). (4.2)

Now using Lemma 2.3 in (4.2) we get

lim
n→∞

n[Lρn(f ;x)− f(x)]

=
ρ(x)

2
(f ◦ ρ−1)′′(ρ(x)) + lim

n→∞
nLρn(h(t;x)(ρ(t)− ρ(x))2;x). (4.3)

From the hypothesis of the theorem we have |h(t;x)| ≤M and

lim
t→x

h(t;x) = 0.

Thus, for any ε > 0 there exist a δ > 0 such that

|h(t;x)| < ε for |t− x| < δ.

But from the condition (ρ2) we have

|t− x| ≤ |ρ(t)− ρ(x)|.

Therefore, if |ρ(t)− ρ(x)| < δ, then

|h(t;x)(ρ(t)− ρ(x))2| < ε(ρ(t)− ρ(x))2

and if

|ρ(t)− ρ(x)| ≥ δ,
then

|h(t;x)(ρ(t)− ρ(x))2| < M

δ2
(ρ(t)− ρ(x))4.

Hence

Lρn(h(t;x)(ρ(t)− ρ(x))2;x)

< εLρn((ρ(t)− ρ(x))2;x) +
M

δ2
Lρn((ρ(t)− ρ(x))4;x).

From Lemma 2.2 we see that

Lρn((ρ(t)− ρ(x))4;x) = O
( 1

n2

)
.
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Thus we get
lim
n→∞

nLρn(h(t;x)(ρ(t)− ρ(x))2;x) = 0.

On applying this to (4.3) we get the desired result. �
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[2] Cárdenas-Morales, D., Garrancho, P., Raşa, I., Asymptotic formulae via a Korovkin-type
result, Abstr. Appl. Anal., DOI: 10.1155/2012/217464 (2012).

[3] Gadjiev, A.D., The convergence problem for a sequence of positive linear operators on
unbounded sets, and theorems analogous to that of P.P. Korovkin, Dokl. Akad. Nauk.
SSSR, 218(1974), no. 5, 1001-1004 (in Russian), Sov. Math. Dokl., 15(1974), no. 5,
1433-1436 (in English).

[4] Gadjiev, A.D., Theorems of Korovkin type, Math. Zametki, 20(1976), 781-786 (in Rus-
sian). Math. Notes, 20(1976), no. 5-6, 996-998 (in English).
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Perturbations of local C-cosine functions

Chung-Cheng Kuo

Abstract. We show that A+B is a closed subgenerator of a local C-cosine function
T (·) on a complex Banach space X defined by

T (t)x =

∞∑
n=0

Bn

∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)xds

for all x ∈ X and 0 ≤ t < T0, if A is a closed subgenerator of a local C-cosine
function C(·) on X and one of the following cases holds: (i) C(·) is exponentially

bounded, and B is a bounded linear operator on D(A) so that BC = CB on D(A)

and BA ⊂ AB; (ii) B is a bounded linear operator on D(A) which commutes

with C(·) on D(A) and BA ⊂ AB; (iii) B is a bounded linear operator on X

which commutes with C(·) on X. Here jn(t) = tn

n!
for all t ∈ R, and∫ t

0

j−1(s)j0(t− s)C(|t− 2s|)xds = C(t)x

for all x ∈ X and 0 ≤ t < T0.

Mathematics Subject Classification (2010): 47D60, 47D62.

Keywords: Local C-cosine function, subgenerator, generator, abstract Cauchy
problem.

1. Introduction

Let X be a complex Banach space with norm ‖ · ‖, and let L(X) denote the
set of all bounded linear operators on X. For each 0 < T0 ≤ ∞ and each injection
C ∈ L(X), a family C(·) (= {C(t) | 0 ≤ t < T0}) in L(X) is called a local C-cosine
function on X if it is strongly continuous, C(0) = C on X and satisfies

2C(t)C(s) = C(t+ s)C + C(|t− s|)C (1.1)

on X for all 0 ≤ t, s, t+ s < T0 (see [5], [7], [14], [15], [21], [23], [25]). In this case, the
generator of C(·) is a closed linear operator A in X defined by

D(A) = {x ∈ X | lim
h→0+

2(C(h)x− Cx)/h2 ∈ R(C)}
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and Ax = C−1 lim
h→0+

2(C(h)x − Cx)/h2 for x ∈ D(A). Moreover, we say that C(·) is

locally Lipschitz continuous, if for each 0 < t0 < T0 there exists a Kt0 > 0 such that

‖C(t+ h)− C(t)‖ ≤ Kt0h (1.2)

for all 0 ≤ t, h, t+ h ≤ t0; exponentially bounded, if T0 =∞and there exist K,ω ≥ 0
such that

‖C(t)‖ ≤ Keωt (1.3)

for all t ≥ 0; exponentially Lipschitz continuous, if T0 =∞ and there exist K,ω ≥ 0
such that

‖C(t+ h)− C(t)‖ ≤ Kheω(t+h) (1.4)

for all t, h ≥ 0. In general, a local C-cosine function is also called a C-cosine function
if T0 = ∞ (see [2], [12], [14], [16]) or a cosine function if C = I (identity operator
on X) (see [1], [4], [6]), and a C-cosine function may not be exponentially bounded
(see [16]). Moreover, a local C-cosine function is not necessarily extendable to the
half line [0,∞) (see [21]) except for C = I (see [1], [4], [6]) and the generator of a C-
cosine function may not be densely defined (see [2]). Perturbations of local C-cosine
functions have been extensively studied by many authors appearing in [1], [2], [4],
[9], [11], [17], [18], [19]. Some interesting applications of this topic are also illustrated
there. In particular, a classical perturbation result of cosine functions shows that if A
is the generator of a C-cosine function C(·) on X, and B a bounded linear operator
on X, then A+B is the generator of a C-cosine function on X when C = I, but the
conclusion may not be true when C is arbitrary, and is still unknown until now even
though B and C(·) are commutable, which can be completely solved in this paper
and several new additive perturbation theorems concerning local C-cosine functions
are also established as results in [20] for the case of C-semigroup and in [8], [13] for
the case of local C-semigroup. A new representation of the perturbation of a local
C-cosine function is given in (1.5) below. We show that if C(·) is an exponentially
bounded C-cosine function on X with closed subgenerator A and B a bounded linear
operator on D(A) such that BC = CB on D(A) and BA ⊂ AB, then A + B is a
closed subgenerator of an exponentially bounded C-cosine function T (·) on X defined
by

T (t)x =

∞∑
n=0

Bn
∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)xds (1.5)

for all x ∈ X and 0 ≤ t < T0 (see Theorem 2.6 below). Here jn(t) = tn

n! for all t ∈ R,
and ∫ t

0

j−1(s)j0(t− s)C(|t− 2s|)xds = C(t)x

for all x ∈ X and 0 ≤ t < T0. Moreover, T (·) is also exponentially Lipschitz continuous
or norm continuous if C(·) is. We then show that the exponential boundedness of T (·)
can be deleted and C-cosine functions can be extended to the context of local C-cosine
functions when the assumption of BC(·) = C(·)B on D(A) is added (see Theorem
2.7 below). Moreover, T (·) is locally Lipschitz continuous or norm continuous if C(·)
is. We also show that A + B is a closed subgenerator of a local C-cosine function
T (·) on X if A is a closed subgenerator of a local C-cosine function C(·) on X and
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B a bounded linear operator on X such that BC(·) = C(·)B on X (see Theorem 2.8
below). A simple illustrative example of these results is presented in the final part of
this paper.

2. Perturbation theorems

In this section, we first note some basic properties of a local C-cosine function
with its subgenerator and generator.

Definition 2.1. (see [10], [14]) Let C(·) be a strongly continuous family in L(X). A
linear operator A in X is called a subgenerator of C(·) if

C(t)x− Cx =

∫ t

0

∫ s

0

C(r)Axdrds

for all x ∈ D(A) and 0 ≤ t < T0, and∫ t

0

∫ s

0

C(r)xdrds ∈ D(A) and A

∫ t

0

∫ s

0

C(r)xdrds = C(t)x− Cx

for all x ∈ X and 0 ≤ t < T0. A subgenerator A of C(·) is called the maximal
subgenerator of C(·) if it is an extension of each subgenerator of C(·) to D(A).

Proposition 2.2. (see [4], [5], [10], [14], [21]) Let A be the generator of a local C-cosine
function C(·) on X. Then

C(t)x ∈ D(A) and C(t)Ax = AC(t)x (2.1)

for all x ∈ D(A) and 0 ≤ t < T0;

C−1AC = A and R(C(t)) ⊂ D(A) (2.2)

for all 0 ≤ t < T0;

x ∈ D(A) and Ax = yx if and only if C(t)x− Cx =

∫ t

0

∫ s

0

C(r)yxdrds (2.3)

for all 0 ≤ t < T0;

A0 is closable and C−1A0C = A (2.4)

for each subgenerator A0 of C(·);

A is the maximal subgenerator of C(·). (2.5)

From now on, we always assume that A : D(A) ⊂ X → X is a closed linear operator
so that CA ⊂ AC.

Theorem 2.3. (see [10], [16]) A strongly continuous family C(·) in L(X) satisfying
(1.3) is a C-cosine function on X with subgenerator A if and only if CC(·) = C(·)C,
λ2 ∈ ρC(A), and λ(λ2 −A)−1C = Lλ on X for all λ > ω. Here

Lλx =

∫ ∞
0

e−λtC(t)xdt for x ∈ X.
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Lemma 2.4. (see [1]) Let C(·)(= {C(t) | 0 ≤ t < T0}) be a strongly continuous family in
L(X). We set C(−t) = C(t) for 0 ≤ t < T0. Then C(·) is a local C-cosine function on
X if and only if 2C(t)C(s)=C(t+s)C+C(t−s)C on X for all |t|, |s|, |t−s|, |t+s| < T0.
In this case,

S(−t) = −S(t) (2.6)

for all 0 ≤ t < T0;

S(t+ s)C = S(t)C(s) + C(t)S(s) on X (2.7)

for all |t|, |s|, |t+ s| < T0. Here S(t) = j0 ∗ C(t) for all |t| < T0.

By slightly modifying the proof of [3, Lemma 2], the next lemma is also attained.

Lemma 2.5. Let C(·)(= {C(t) | 0 ≤ t < T0}) be a local C-cosine function on X, and
C(−t) = C(t) for 0 ≤ t < T0. Assume that S∗n+1 denotes the (n+1)-fold convolution
of S for n ∈ N ∪ {0}, that is

S∗2(t)x =

∫ t

0

S(t− s)S(s)xds

and

S∗n+1(t)x =

∫ t

0

S∗n(t− s)S(s)xds.

Then

S∗n+1(t) =

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)Cnds =

∫ t

0

jn(s)jn(t− s)C(t− 2s)Cnds

on X for all |t| < T0. Here S(t) = j0 ∗ C(t) and∫ t

0

j−1(s)j0(t− s)S(t− 2s)C0ds = S(t) = S∗1(t)

for all |t| < T0.

Proof. It is easy to see that

S∗n+1(t) =

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)Cnds

=

∫ t

0

jn(s)jn(t− s)C(t− 2s)Cnds
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on X for n = 0. By induction, we have

S∗n+1(t)x =

∫ t

0

S∗n(s)S(t− s)xds

=

∫ t

0

∫ s

0

jn−1(r)jn−1(s− r)C(s− 2r)Cn−1S(t− s)xdrds

=
1

2

∫ t

0

∫ s

0

jn−1(r)jn−1(s− r)
[
S(t− 2r) + S(t+ 2r − 2s)

]
Cnxdrds

=

∫ t

0

∫ s

0

jn−1(r)jn−1(s− r)S(t− 2r)Cnxdrds

=

∫ t

0

∫ t

r

jn−1(r)jn−1(s− r)S(t− 2r)Cnxdsdr

=

∫ t

0

jn−1(r)jn(t− r)S(t− 2r)Cnxdr

=
1

2

∫ t

0

[
jn−1(r)jn(t− r)− jn(r)jn−1(t− r)

]
S(t− 2r)Cnxdr

=
1

2

∫ t

0

d

dr
[jn(r)jn(t− r)]S(t− 2r)Cnxdr

=

∫ t

0

jn(r)jn(t− r)C(t− 2r)Cnxdr

for all n ∈ N, x ∈ X and |t| < T0. �

Applying Theorem 2.3 we can obtain the next perturbation theorem concerning
exponentially bounded C-cosine functions just as a corollary of [11, Corollary 2.6.6].

Theorem 2.6. Let A be a subgenerator of an exponentially bounded C-cosine function
C(·) on X. Assume that B ∈ L(D(A)), BC = CB on D(A) and BA ⊂ AB. Then
A + B is a closed subgenerator of an exponentially bounded C-cosine function T (·)
on X given as in (1.5). Moreover, T (·) is also exponentially Lipschitz continuous or
norm continuous if C(·) is.

Proof. It is easy to see that

(λ2 −A−B)−1C =

∞∑
n=0

Bn(λ2 −A)−n−1C

for λ > ω, and the boundedness of {‖C(t)‖ | 0 ≤ t ≤ t0} for each t0 > 0 and the
strong continuity of C(·) imply that the right-hand side of (1.5) converges uniformly
on compact subsets of [0,∞). In particular, T (·) is a strongly continuous family in
L(X). For simplicity, we may assume that ‖C(t)‖ ≤ Keωt for all t ≥ 0 and for some
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fixed K,ω ≥ 0. Then ‖T (t)‖ ≤ Ke(ω+
√
‖B‖)t for all t ≥ 0, and

(λ2 −A−B)−1Cx =

∞∑
n=0

Bn
∫ ∞
0

e−λt
∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∫ ∞
0

∞∑
n=0

Bne−λt
∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∫ ∞
0

e−λtj0 ∗ T (t)xdt

for λ > ω and x ∈ X or equivalently,

λ(λ2 −A−B)−1Cx =

∫ ∞
0

e−λtT (t)xdt

for λ > ω and x ∈ X. Here∫ t

0

j−1(s)j0(t− s)S(t− 2s)xds = S(t)x for t ≥ 0.

Applying Theorem 2.3, we get that T (·) is an exponentially bounded C-cosine function
on X with closed subgenerator A+B. Since∫ t

0

jn−1(r)jn(t− r)C(t− 2r)xdr

−
∫ s

0

jn−1(r)jn(s− r)C(s− 2r)xdr

=

∫ t

s

jn−1(r)jn(t− r)C(t− 2r)xdr

+

∫ s

0

jn−1(r)[jn(t− r)C(t− 2r)− jn(s− r)C(s− 2r)]xdr

(2.8)

and ∫ s

0

jn−1(r)[jn(t− r)C(t− 2r)− jn(s− r)C(s− 2r)]xdr

=

∫ s

0

jn−1(r)jn(s− r)[C(t− 2r)− C(s− 2r)]xdr

+

∫ s

0

jn−1(r)[jn(t− r)− jn(s− r)]C(t− 2r)xdr

=

∫ s

0

jn−1(r)jn(s− r)[C(|t− 2r|)− C(|s− 2r|)]xdr

+

∫ s

0

jn−1(r)[jn(t− r)− jn(s− r)]C(|t− 2r|)xdr

(2.9)

for all n ∈ N, x ∈ X and t ≥ s ≥ 0, we observe from (1.5) that T (·) is also exponen-
tially Lipschitz continuous or norm continuous if C(·) is. �
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Next we deduce a new perturbation theorem concerning local C-cosine functions.
In particular, the exponential boundedness of T (·) in Theorem 2.6 can be deleted when

the assumption of BC(·) = C(·)B on D(A) is added.

Theorem 2.7. Let A be a subgenerator of a local C-cosine function C(·) on X. Assume

that B is a bounded linear operator on D(A) such that BC(·) = C(·)B on D(A) and
BA ⊂ AB. Then A + B is a closed subgenerator of a local C-cosine function T (·)
on X given as in (1.5). Moreover, T (·) is also locally Lipschitz continuous or norm
continuous if C(·) is.

Proof. Just as in the proof of Theorem 2.6, we observe from (2.8)-(2.9) and (1.5) that
T (·) is also locally Lipschitz continuous or norm continuous if C(·) is. Since

R(C(t)) ⊂ D(A) and BC(·) = C(·)B on D(A),

we have
CT (·) = T (·)C on X.

Let x ∈ X and 0 ≤ t ≤ r < T0 be fixed. Then∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xds =
1

2
[j1(t)S̃(t)−

∫ t

0

S̃(t− 2s)xds]

for n = 1, and ∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xds

=
1

2

∫ t

0

[jn−2(s)jn(t− s)− jn−1(s)jn−1(t− s)]S̃(t− 2s)xds

for all n ≥ 2. Here
S̃(·) = j0 ∗ S(·).

Since BA ⊂ AB and

S̃(r)x =

∫ r

0

∫ t

0

C(s)xdsdt ∈ D(A),

we have

AB

∫ r

0

[
j1(t)S̃(t)x−

∫ t

0

S̃(t− 2s)xds
]
dt

= BA

∫ r

0

[
j1(t)S̃(t)x−

∫ t

0

S̃(t− 2s)xds
]
dt

= B

∫ r

0

(
j1(t)[C(t)x− Cx]−

∫ t

0

[C(t− 2s)x− Cx]ds
)
dt

= B

∫ r

0

j1(t)C(t)xdt−B
∫ r

0

∫ t

0

C(t− 2s)xdsdt

= B

∫ r

0

j1(t)C(t)xdt−B
∫ r

0

S(t)xdt.

Since ∫ r

0

j1(t)C(t)xdt = xj1(r)S(r)x− S̃(r)x
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and

j1(r)S(r)x = 2

∫ r

0

j1(r − s)C(r − 2s)xds,

we also have

AB

∫ r

0

[
j1(t)S̃(t)x−

∫ t

0

S̃(t− 2s)xds
]
dt

= 2B

∫ r

0

j1(r − s)C(r − 2s)xds− 2B

∫ r

0

∫ t

0

C(s)xdsdt.

(2.10)

Let n ≥ 2 be fixed.

Using integration by parts, we have

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xds

=
1

2

∫ t

0

[
jn−2(s)jn(t− s)− jn−1(s)jn−1(t− s)

]
S̃(t− 2s)xds.

Since ∫ r

0

∫ t

0

jn−2(s)jn(t− s)Cxdsdt =

∫ r

0

∫ t

0

jn−1(s)jn−1(t− s)Cxdsdt,

we have

A

∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=
1

2

[∫ r

0

∫ t

0

jn−2(s)jn(t− s)AS̃(t− 2s)xdsdt

−
∫ r

0

∫ t

0

jn−1(s)jn−1(t− s)AS̃(t− 2s)xdsdt

]
=

1

2

[∫ r

0

∫ t

0

jn−2(s)jn(t− s)(C(t− 2s)x− Cx)dsdt

−
∫ r

0

∫ t

0

jn−1(s)jn−1(t− s)(C(t− 2s)x− Cx)dsdt

]
=

1

2

∫ r

0

∫ t

0

jn−2(s)jn(t− s)C(t− 2s)xdsdt

− 1

2

∫ r

0

∫ t

0

jn−1(s)jn−1(t− s)C(t− 2s)xdsdt.

(2.11)
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Since ∫ r

0

∫ t

0

jn−2(s)jn(t− s)C(t− 2s)xdsdt

=

∫ r

0

∫ r

s

jn−2(s)jn(t− s)C(t− 2s)xdtds

=

∫ r

0

jn−2(s)
[
jn(r − s)S(r − 2s)x

−
∫ r

s

jn−1(t− s)S(t− 2s)xdt
]
ds

=

∫ r

0

jn−2(s)jn(r − s)S(r − 2s)xds

−
∫ r

0

jn−2(s)

∫ r

s

jn−1(t− s)S(t− 2s)xdtds,

(2.12)

∫ r

0

jn−2(s)jn(r − s)S(r − 2s)xds

=

∫ r

0

jn−1(s)jn−1(r − s)S(r − 2s)xds

+2

∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

=2

∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

(2.13)

and ∫ r

0

∫ r

s

jn−2(s)jn−1(t− s)S(t− 2s)xdtds

=

∫ r

0

∫ t

0

jn−2(s)jn−1(t− s)S(t− 2s)xdsdt,

we have ∫ r

0

∫ t

0

jn−2(s)jn(t− s)C(t− 2s)xdsdt

= 2

∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

−
∫ r

0

∫ t

0

jn−2(s)jn−1(t− s)S(t− 2s)xdsdt.

(2.14)

By Lemma 2.5, we have∫ r

0

∫ t

0

jn(s)jn(t− s)C(t− 2s)xdsdt

=

∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt.

(2.15)
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Combining (1.11) with (2.14) and (2.15), we have

A

∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

−
∫ r

0

∫ t

0

jn−2(s)jn−1(t− s)S(t− 2s)xdsdt.

(2.16)

It follows from (2.10)and (2.16) that we have

A

∫ r

0

∞∑
n=0

Bn
∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

= A

∞∑
n=0

Bn
∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∞∑
n=0

ABn
∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

= A

∫ r

0

∫ t

0

C(s)xdsdt+AB

∫ r

0

∫ t

0

j1(t− s)S(t− 2s)xdsdt

+

∞∑
n=2

BnA

∫ r

0

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=
[
C(r)x− Cx

]
+B

[∫ r

0

j1(r − s)C(r − 2s)xds−
∫ r

0

∫ t

0

C(s)xdsdt

]
+

∞∑
n=2

Bn
[∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds

−
∫ r

0

∫ t

0

jn−2(s)jn−1(t− s)S(t− 2s)xdsdt

]
=

∞∑
n=0

Bn
∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds− Cx− B

∫ r

0

∫ t

0

C(s)xdsdt

−
∫ r

0

∞∑
n=1

Bn+1

∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

=

∞∑
n=0

Bn
∫ r

0

jn−1(s)jn(r − s)C(r − 2s)xds− Cx

− B

∫ r

0

∞∑
n=0

Bn
∫ t

0

jn−1(s)jn(t− s)S(t− 2s)xdsdt

(2.17)

for all x ∈ X and 0 ≤ r < T0 or equivalently,

(A+B)

∫ r

0

∫ t

0

T (s)xdsdt = T (r)x− Cx
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for all x ∈ X and 0 ≤ r < T0. Since ABn = BnA and BnC(t) = C(t)Bn on D(A),
we have∫ r

0

∫ t

0

T (s)(A+B)xdsdt = (A+B)

∫ r

0

∫ t

0

T (s)xdsdt = T (r)x− Cx

for all x ∈ D(A) and 0 ≤ r < T0. It follows from [14, Theorem 2.5] that T (·) is a local
C-cosine function on X with closed subgenerator A+B, and is also locally Lipschitz
continuous or norm continuous if C(·) is. �

By slightly modifying the proof of Theorem 2.7 we also obtain the next perturbation
theorem concerning local C-cosine functions which is still new even though T0 =∞.

Theorem 2.8. Let A be a subgenerator of a local C-cosine function C(·) on X. Assume
that B is a bounded linear operator on X such that BC(·) = C(·)B on X. Then A+B
is a closed subgenerator of a local C-cosine function T (·) on X satisfying

T (t)x =

∞∑
n=0

∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)Bnxds (2.18)

for all x ∈ X and 0 ≤ t < T0. Moreover, T (·) is also locally Lipschitz continuous or
norm continuous if C(·) is.

Proof. Suppose that B is a bounded linear operator on X which commutes with C(·)
on X. Then

T (t)x =

∞∑
n=0

∫ t

0

jn−1(s)jn(t− s)C(|t− 2s|)Bnxds

for all x ∈ X and 0 ≤ t < T0. Since the assumption of BA ⊂ AB in the proof of Theo-
rem 2.7 is only used to show that (2.10) and (2.17) hold, but both are automatically
satisfied if BA ⊂ AB is replaced by assuming that B is a bounded linear operator
on X which commutes with C(·) on X. Therefore, the conclusion of this theorem is
true. �

We end this paper with a simple illustrative example.

Example 2.9. Let C(·) (= {C(t)|0 ≤ t < 1}) be a family of bounded linear operators
on c0 (family of all convergent sequences in C with limit 0), defined by

C(t)x = {xne−n coshnt}∞n=1

for all x = {xn}∞n=1 ∈ c0 and 0 ≤ t < 1, then C(·) is a local C-cosine function on
c0 with generator A defined by Ax = {n2xn}∞n=1 for all x = {xn}∞n=1 ∈ c0 with
{n2xn}∞n=1 ∈ c0. Here C = C(0). Let B be a bounded linear operator on c0 defined
by Bx = {xne−n coshn}∞n=1 for all x = {xn}∞n=1 ∈ D(A), then C(·)B = BC(·) on c0.
Applying Theorem 2.8, we get that A+B generates a local C-cosine function T (·) on
c0 satisfying (1.5).
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On the viscoelastic equation with Balakrishnan-
Taylor damping and nonlinear boundary/interior
sources with variable-exponent nonlinearities

Abita Rahmoune and Benyattou Benabderrahmane

Abstract. This work is devoted to the study of a nonlinear viscoelastic Kirch-
hoff equation with Balakrishnan-Taylor damping and nonlinear boundary interior
sources with variable exponents. Under appropriate assumptions, we establish a
uniform decay rate of the solution energy in terms of the behavior of the nonlin-
ear feedback and the relaxation function, without setting any restrictive growth
assumptions on the damping at the origin and weakening the usual assumptions
on the relaxation function.

Mathematics Subject Classification (2010): 49Q15, 35L05, 35L20 35B40, 35B35.
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1. Introduction

In this paper, we study the following viscoelastic problem with Balakrishnan-
Taylor damping and nonlinear boundary interior sources involving the variable-
exponent nonlinearities

∂2u

∂t2
−M

(
|∇u (t)|2

)
∆u+

∫ t

0

g (t− s) ∆u (s) ds = |u|p(x)−1
u in Ω× (0,+∞) ,

(1.1)

u = 0 on Γ0 × (0,+∞) , (1.2)

M
(
|∇u (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds+ h (ut) = |u|k(x)−1

u on Γ1 × (0,+∞) ,

(1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.4)
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where M (r) is a locally Lipschitz function in r, g > 0 is a memory kernel and Ω ⊂ Rn
(n ≥ 2), be a bounded domain with a smooth boundary Γ = ∂Ω = Γ0 ∪ Γ1. The
boundary Γ of Ω is assumed to be regular and is divided by two closed and disjoint
parts Γ0, Γ1, Here, Γ0 6= ∅. (.)

′
denotes the derivative with respect to time t thus

ut = ∂u
∂t , utt = ∂2u

∂t2 , ∆ stands for the Laplacian with respect to the spatial variables,
respectively. Let ν be the outward normal to Γ. The exponents k(.) and p(.) are given
measurable functions on Ω satisfying{

1 < p− ≤ p (x) ≤ p+ <∞,
1 < k− ≤ k (x) ≤ k+ <∞, (1.5)

where 
p+ = ess sup

x∈Ω
p (x) , p− = ess inf

x∈Ω
p (x) ,

k+ = ess sup
x∈Ω

k (x) , k− = ess inf
x∈Ω

k (x) .
(1.6)

We also assume that k satisfies the following Zhikov-Fan uniform local continuity
condition:

|k (x)− k (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0.

In recent years, many authors have paid attention to the study of nonlinear hyper-
bolic, parabolic and elliptic equations with nonstandard growth condition. For in-
stance, modeling of physical phenomena such as flows of electro-rheological fluids or
fluids with temperature-dependent viscosity, thermoelasticity, nonlinear viscoelastic-
ity, filtration processes through a porous media and image processing. More details
on these problems can be found in [5, 7, 1, 2, 3, 26, 34, 35] and references therein.
Constant exponent. In (1.1)-(1.4), when g ≥ 0 and k, p are constants, this equation
has its origin in the nonlinear vibration of an elastic string, were the source term
|u|p−2

u forces the negative-energy solutions to explode in finite time. While, the
dissipation term h (ut) assures the existence of global solutions for any initial data,
local, global existence and long-time behavior have been considered by many authors
(see for example [40, 31, 19, 41] and references therein). It is well known that Kirchhoff
first investigated the following nonlinear vibration of an elastic string for f = g = 0:

ρh
∂2u

∂t2
+ δ

∂u

∂t
+ g

(
∂u

∂t

)
=

{
p0 +

Eh

2L

∫ L

0

(
∂u

∂x

)2

dx

}
∂2u

∂x2
+ f (u)

for 0 < x < L, t ≥ 0, where u(x, t) is the lateral displacement, E the Young modulus,
ρ the mass density, h the cross-section area, L the length, p0 the initial axial tension,
δ the resistance modulus, and f and g the external forces. The above equation is
described by the second order hyperbolic equation (1.1) and it is seemed to be im-
portant and natural that the equation with external forces is considered for analyzing
phenomena in real world. The equations in (1.1)-(1.4) with M ≡ 1 form a class of
nonlinear viscoelastic equations used to investigate the motion of viscoelastic materi-
als. As these materials have a wide application in the natural sciences, their dynamics
are interesting and of great importance. Hence, questions related to the behavior of
the solutions for the wave equation with Dirichlet’s boundary condition has attracted
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considerable the attention of many authors. In particular, there are many results of
proving the nonexistence and blow-up of solutions with negative initial energy (see
[24, 25, 22, 38, 32, 9] and a list of references therein) also these results were obtained
with convexity method. However much less is known when the initial energy is positive
(cf. [8, 21, 33, 42]) and these results used several, for example, contradiction method,
decomposition method and so on. The equations in (1.1) with M (r) = a + br and
a > 0, b > 0 is the model to describe the motion of deformable solids as hereditary ef-
fect is incorporated, which was first studied by Torrejon and Yong [37]. They proved
the existence of weakly asymptotic stable solution for the large analytical datum.
Later, Rivera [30] showed the existence of global solutions for small datum and the
total energy decays to zero exponentially under some restrictions. Problem (1.1)-(1.4)
is the extension of the problems in which the variable-exponent are constants and
g ≥ 0. The main difficulty of this problem is related to the presence of the quasilin-
ear terms in (1.1)-(1.4) in the variable-exponent. In this paper a class of a weakly
damped wave equation of generalized Kirchhoff type with nonlinear damping and
source terms involving the variable-exponent nonlinearities were considered. Hence
by using the Faedo-Galerkin arguments and compactness method as in [27], together
with the Banach fixed point theorem, we will show the local existence of the problem
(1.1)-(1.4). The purpose of this paper is to generalize the existence and uniform decay
theorems of local solutions due to the constant-exponents. In other words we prove
the existence and uniform decay rate of local solutions to weakly damped degener-
ate wave equations of Kirchhoff type (1.1)-(1.4) with nonlinear damping and source
terms. This paper consists of 3 sections in addition to the introduction. In Section
2, we recall the definitions of the variable-exponent Lebesgue spaces Lp(.)(Ω), the
Sobolev spaces W 1,p(.)(Ω), and some of their properties. In Section 3, we state, with
the proof, existence and uniqueness result of weak solution for (1.1)-(1.4) by employ-
ing Faedo–Galerkin’s together with the Banach fixed point theorem and compactness
methods. In Section 4, the statement and the proof of our global existence and a
stability theorem for certain solutions with positive initial energy. To the best of our
knowledge, this problem has not been studied previously. In addition, our method of
determining these results, because the presence of the exponents m (.) and p (.), is
somewhat different.

2. Preliminaries. Function spaces

In this section, we list and recall some well-known results and facts from the
theory of the Sobolev spaces with variable exponent. (On the basic properties of the
spaces W 1,p(x)(Ω) and Lp(x)(Γ) we refer to [10, 11, 15, 17, 23]).

Throughout the rest of the paper we assume that Ω is a bounded domain of Rn,
n ≥ 1 with smooth boundary Γ and assume that p(.) is a measurable function on Ω
such that:

1 < p− ≤ p (x) ≤ p+ <∞, (2.1)

where

p+ = ess sup
x∈Ω

p (x) , p− = ess inf
x∈Ω

p (x) .
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We also assume that p satisfies the following Zhikov–Fan uniform local continuity
condition:

|p (x)− p (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0. (2.2)

Given a function p : Ω→ [p−, p+] ⊂ (1,∞) , p± = const, we define the set

Lp(.)(Ω) =

{
v : Ω→ R : v measurable functions on Ω,

%p(.), Ω (v) =
∫

Ω
|v (x)|p(x)

dx <∞.

}
The variable-exponent space Lp(.)(Ω) equipped with the Luxemburg norm

‖u‖p(.),Ω = ‖u‖p(.) = inf

{
λ > 0,

∫
Ω

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1

}
,

becomes a Banach space.
In general, variable-exponent Lebesgue spaces are similar to classical Lebesgue

spaces in many aspects, see the first discussed the Lp(x) spaces and W k,p(x) spaces by
Kovàcik and Rákosnik in [23].

Let us list some properties of the spaces Lp(.)(Ω) which will be used in the study
of the problem (1.1)-(1.4).

• If p(x) is measurable and 1 < p− ≤ p(x) ≤ p+ < ∞ in Ω, then Lp(.)(Ω) is a
reflexive and separable Banach space and C∞0 (Ω) is dense in Lp(.)(Ω).

• If condition (2.2) is fulfilled, and Ω has a finite measure and p, q are variable
exponents so that p(x) ≤ q(x) almost everywhere in Ω, the inclusion Lq(.)(Ω) ⊂
Lp(.)(Ω) is continuous and

∀v ∈ Lq(.)(Ω) ‖u‖p(.) ≤ C ‖u‖q(.) ; C = C
(
|Ω| , p±

)
(2.3)

• The variable Sobolev space W 1,p(.) (Ω) is defined as the closure of C∞0 (Ω) with
respect to the norm

‖u‖
W

1,p(.)
0 (Ω)

= ‖u‖p(.),Ω + ‖∇u‖p(.),Ω .

It is known that for the elements of W
1,p(.)
0 (Ω) the Poincar´e inequality holds,

‖u‖p(.),Ω ≤ C (n,Ω) ‖∇u‖p(.),Ω , (2.4)

and an equivalent norm of W
1,p(.)
0 (Ω) can be defined by

‖u‖
W

1,p(.)
0 (Ω)

= ‖∇u‖p(.),Ω .

According to (2.2) W
1,p(.)
0 (Ω) ⊂ W 1,p−

0 (Ω). If p− > 2n
n+2 , then the embedding

W 1,p−

0 (Ω) ⊂ L2(Ω) is compact.

• It is known that C∞0 (Ω) is dense in W
1,p(.)
0 (Ω) according to (2.2) if p(x) ∈

Clog(Ω), that is, the variable exponent p(x) is continuous in Ω with the logarith-
mic module of continuity.

• It follows directly from the definition of the norm that

min
(
‖u‖p

−

p(.) , ‖u‖
p+

p(.)

)
≤ %p(.) (u) ≤ max

(
‖u‖p

−

p(.) , ‖u‖
p+

p(.)

)
. (2.5)
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• The following generalized Hölder inequality∫
Ω

|u (x) v (x)|dx ≤
(

1

p−
+

1

(p−)
′

)
‖u‖p(x) ‖v‖p′(x) ≤ 2 ‖u‖p(x) ‖v‖p′(x)

holds, for all u ∈ Lp(.)(Ω), v ∈ Lp′(.)(Ω) with p (x) ∈ (1,∞) , p′ (x) = p(x)
p(x)−1 .

• If p : Ω → [p−, p+] ⊂ [1,+∞) is a measurable function and p∗ > ess sup
{x∈Ω}

p (x)

with p∗ ≤ 2n
n−2 , then the embedding H1

0 (Ω) = W 1,2
0 (Ω) ↪→ Lp(.)(Ω) is continuous

and compact.

Lemma 2.1. ([10]) Let Ω be a bounded domain of Rn, p(.) and m (.) satisfies (1.5) and
(2.2), then

B0 ‖∇u‖m(.) ≥ ‖u‖p(.) for all u ∈W 1,m(.)
0 (Ω). (2.6)

where the optimal constant of Sobolev embedding B0 is depends on p± and |Ω|.

Lemma 2.2 (Poincaré’s Inequality). ([10]) Let Ω be a bounded domain of Rn and p(.)
satisfies (2.2), then

D0 ‖∇u‖p(.) ≥ ‖u‖p(.) for all u ∈W 1,p(.)
0 (Ω). (2.7)

where the optimal constant of Sobolev embedding D0 is depends on p± and |Ω|.

Proposition 2.3. (See [16, 14, 15, 12, 13]) Let Ω be a bounded domain in Rn, p ∈
C0,1

(
Ω
)
, 1 < p− ≤ p (x) ≤ p+ < n. Then For any q ∈ C(Γ) with 1 ≤ q(x) ≤

(n−1)p(x)
n−p(x) , there is a continuous trace W 1,p(x)(Ω) → Lq(x)(Γ), when 1 ≤ q(x) <<

(n−1)p(x)
n−p(x) , the trace is compact, in particulary the continuous trace W 1,p(x)(Ω) →
Lp(x)(Γ) is compact.

There are many proprieties of the theory of Lebesgue and Sobolev spaces with
variable exponent, see the detailed exposition given in the monograph [4, Ch.1.].

Lemma 2.4 (Modified Gronwall inequality). Let φ and h be nonnegative functions on
[0,+∞) satisfying

0 ≤ φ ≤ K +

∫ t

0

h (s)φ (s)
r+1

ds,

with K > 0 and r > 0. Then

φ (t) ≤
(
K−r − r

∫ t

0

h (s) ds

)−1
r

.

as long as the right-hand side exists.
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2.1. Mathematical hypotheses

We begin this section by introducing some hypotheses and our main result.
Throughout this paper, we use standard functional spaces and denote that ‖.‖p(.) ,
‖.‖p(.),Γ1

are Lp(.)(Ω) norm and Lp(.)(Γ1) norm, respectively, such that:

‖u‖p(.),Γ1
=

∫
Γ1

|u (η)|p(η)
dη =

∫
Γ1

|u (x)|p(x)
dΓ;

‖.‖q,Γ1
=

∫
Γ1

|u (x)|q dΓ.

Also, we define (u, v) =
∫

Ω
u (x) v (x) dx and (u, v)Γ1

=
∫

Γ1
u (x) v (x) dΓ.

The inner products and norms in L2(Ω) and H1
0 (Ω) are represented by (., .), ‖.‖

respectively and they are given by:

(u, v) =

∫
Ω

u (x) v (x) dx and ‖u‖2L2(Ω) = |u|2 =

∫
Ω

u2dx;

‖u‖2H1
0 (Ω) = ‖u‖2 = |∇u|2 =

∫
Ω

|∇u|2 dx.

Next, we state the assumptions for problem (1.1)-(1.4).

(H1) Hypotheses on M . Let M ∈ C ([0,+∞) ,R+) be a nonnegative locally Lips-
chitz function and for positive constant m > 0, we have

M (s) ≥ m3 > 0, s ≥ 0 (2.8)

(H2) Hypotheses on g. g : [0,∞)→ (0,∞) is a bounded C1 function satisfying

g (0) > 0, m3 −
∫ ∞

0

g (s) ds = l > 0, (2.9)

and there exists a non-increasing positive differentiable function ζ such that

g′ (t) ≤ −ζ (t) g (t) for all t ≥ 0. (2.10)

(H3) Hypotheses on h. h : R→ R is a Lipschitz non-decreasing function with

h(s)s ≥ 0 for all s ∈ R (2.11)

(H4) Hypotheses on p(.), k(.). Let m(.) and p(.) are given measurable functions on
Ω satisfying the following conditions,

1 < p− ≤ p (x) ≤ p+ ≤ n
n−2 , n > 2 and 1 ≤ p− ≤ p+ <∞ if n = 2,

1 < k− ≤ k (x) ≤ k+ < n−1
n−2 , n > 2 and 1 ≤ k− ≤ k+ <∞ if n = 2

(2.12)

According to (2.12), we have

‖u‖p++1 ≤ B |∇u| ∀u ∈ H
1
Γ0 (Ω) . (2.13)

where

H1
Γ0

(Ω) =
{
u ∈ H1 (Ω) : u |Γ0

= 0
}

endow with the Hilbert structure induced by H1 (Ω), is a Hilbert space and

B > 0 be the optimal constant of Sobolev embedding H1
Γ0

(Ω) ↪→ Lp
++1(Ω)

which satisfies the inequality (2.13) and we use the trace-Sobolev imbedding:
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H1
Γ0

(Ω) ↪→ Lk
++1(Γ1), 1 < k+ < n−1

n−2 . In this case, the imbedding constant is
denoted by B∗, i.e.,

‖u‖k++1,Γ1
≤ B∗ |∇u| ∀u ∈ H1

Γ0
(Ω) . (2.14)

(H5) Assumptions on u0, u1. Assume that (u0, u1) ∈ H1
Γ0

(Ω) ∩H2 (Ω) ×H1
Γ0

(Ω)
satisfying the compatibility conditions

M
(
|∇u0|2

) ∂u0

∂ν
+ h (u1) = |u0|k(.)−1

u0 on Γ1. (2.15)

3. Main result

This section first presents the local existence and uniqueness of the solution for
problem (1.1)-(1.4) with a degenerated second order equation on Γ1. Our method of
proof by perturbing the boundary equation is based on the combination of the Faedo-
Galerkin approximation and the compactness method together with the Banach fixed
point theorem with the ones from [36].

3.1. Existence of local solutions

In this section, under the assumptions (H1)-(H5), we prove the existence of the
local solution to the wave equation of Kirchhoff type (1.1)-(1.4) for any initial value
(u0, u1) ∈ H1

Γ0
(Ω)∩H2 (Ω)×H1

Γ0
(Ω). First we need the local existence and uniqueness

of the solution to the following wave equation:

∂2u

∂t2
−M

(
|∇ϕ (t)|2

)
∆u+

∫ t

0

g (t− s) ∆u (s) ds = |u|p(x)−1
u in Ω× (0,+∞) ,

u = 0 on Γ0 × (0,+∞) ,

M
(
|∇ϕ (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds+ h (ut) = |u|k(x)−1

u on Γ1 × (0,+∞) ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (P4)

where ϕ : [0, T ] → H1
Γ0

(Ω) is a continuous function. So we first prove the existence
and uniqueness of the local solution to (P4). Let (wj) , j = 1, 2, ..., be a completely
orthonormal system in L2(Ω) having the following properties:
∗ ∀j;wj ∈ H1

Γ0
(Ω);

∗ The family {w1, w2, ..., wm} is linearly independent;
∗ Vm the space generated by {w1, w2, ..., wm} , ∪

m
Vm is dense in H1

Γ0
(Ω)∩H2 (Ω). We

construct approximate solutions, for each η ∈ (0, 1), uηm (m = 1, 2, 3, ...) in Vm in the
form:

uηm(t) =

m∑
i=1

Kjm(t)wi, m = 1, 2, ..., (3.1)
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where Kjm(t) are determined by the following ordinary differential perturbed equa-
tion:

(uηmtt (t), wj) +M
(
|∇ϕ (t)|2

)
(∇uηm,∇wj)−

(∫ t

0

g (t− s)∇uηm (s) ds,∇wj
)

+ (h (uηmt ) , wj)Γ1
+ η (uηmt (t), wj)Γ1

=
(
|uηm (t)|k(x)−1

uηm (t) , wj

)
Γ1

+
(
|uηm (t)|p(x)−1

uηm (t) , wj

)
, j = 1, 2, ...,

and will be completed by the following initial conditions uηm(0), uηmt (0) which satis-
fies:

uηm(0) = uηm0 =
m∑
i=1

αimwi −→ u0(x) when m −→∞ in H1
Γ0

(Ω) ∩H2 (Ω) ,

uηmt (0) = uηm1 =
m∑
i=1

βimwi −→ u1(x) when m −→∞ in H1
Γ0

(Ω) .

(3.2)
Then it holds that for any given v ∈ Span {w1, w2, ..., wm} ,

(uηmtt (t), v) +M
(
|∇ϕ (t)|2

)
(∇uηm,∇v)−

(∫ t

0

g (t− s)∇uηm (s) ds,∇v
)

+ (h (uηmt ) , v)Γ1
+ η (uηmt (t), v)Γ1

=
(
|uηm (t)|k(x)−1

uηm (t) , v
)

Γ1

+
(
|uηm (t)|p(x)−1

uηm (t) , v
)

. (3.3)

By virtue of the theory of ordinary differential equations, system (3.1), (3.2) and (3.3)
has a unique local solution which is extended to a maximal intervals [0, tm[ .

A solution u to the problem (1.1)-(1.4) on some interval [0, tm[ will be obtain as
the limit of uηm as m → ∞ and η → 0. Then, this solution can be extended to the
whole interval [0, T ], for all T > 0, as a consequence of the a priori estimates that shall
be proven in the next step. In this paper, ε, C (ε) , Cε, C, C (m3) , c, c∗ or c∗ denote
a various positive constant which changes from line to line and are independent of
natural number n and depends only (possibly) on the initial value.

Let us first recall a useful identity for the memory term who play an important
role in the sequel. By denoting

(g � ∇ (u)) (t) =

∫ t

0

g (t− s)
∫

Ω

|∇u (s)−∇u (t)|2 dxds,

it is easy, by differentiating the term (β � ∇ (u)) (t) with respect to t, to show that∫
Ω

∫ t

0

g (t− s)∇u (s)∇ut (t) dxds

= −1

2

d

dt

{
(g � ∇u) (t)− |∇(u (t))|2

∫ t

0

g (s) ds

}
(3.4)

+
1

2
(g′ � ∇u) (t)− 1

2
g (t) |∇u (t)|2 .

We prove by the Galerkin method the following lemma on the existence and unique-
ness of local solution to (P4) in time.
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Lemma 3.1. Let M(r) be a nonnegative locally Lipschitz function. Let

(u0, u1) ∈ H1
Γ0

(Ω) ∩H2 (Ω)×H1
Γ0

(Ω) .

Assume that the differentiable function ϕ(t) satisfies

ϕ(0) = u0, ϕ
′(0) = u1.

Assume that the following condition is satisfied

1 < k+ <
n− 1

n− 2
and 1 < p+ ≤ n

n− 2
if n ≥ 3,

1 ≤ k− ≤ k+ <∞ and 1 ≤ p− ≤ p+ <∞ if n = 2.

Then there exists a time T0 = T0(u0, u1,m1,m2,m3) > 0 such that if there exist
m1,m2,m3 > 0 and T > 0 satisfying

|∇ϕ (t)| ≤ m1, |∇ϕ′ (t)| ≤ m2, M
(
|∇ϕ (t)|2

)
≥ m3 > 0

for all t ∈ [0, T ], then there exists a unique local weak solution in time u(t) to (P4)
with the initial value (u0, u1) on [0, T0], where T0 ≤ T satisfying:

u (t) ∈ C([0, T0] : H1
Γ0

(Ω))),

ut (t) ∈ C([0, T0] : L2 (Ω)) ∩ C([0, T ] : H1
Γ0

(Ω)),

utt (t) ∈ C([0, T0] : L2 (Ω)).

Proof. The first estimate (Estimates on uηmt ):

By taking v = uηmt (t) in (3.3), we have that

(uηmtt (t), uηmt ) +M
(
|∇ϕ (t)|2

)
(∇uηm,∇uηmt )−

(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmt
)

+η ||uηmt (t)||22,Γ1
+ (h (uηmt ) , uηmt )Γ1

=
(
|uηm (t)|k(x)−1

uηm (t) , uηmt

)
Γ1

+
(
|uηm (t)|p(x)−1

uηm (t) , uηmt

)
.

Since it holds that∫ t

0

M
(
|∇ϕ (t)|2

)
(∇uηm,∇uηmt ) ds =

1

2

∫ t

0

M
(
|∇ϕ (s)|2

) d

dt
|∇uηm (s)|2 ds

≥
[

1

2
M
(
|∇ϕ (s)|2

)
|∇uηm|2

]t
0

− 1

2

∫ t

0

[
d+

ds
M
(
|∇ϕ (s)|2

)]
|∇uηm|2 ds,

d+

ds
M
(
|∇ϕ (s)|2

)
≤ 2

(
d+

dr
M (r)

)
|∇ϕ (s)| |∇ϕ′ (s)| ≤ 2Lm1m2, s ∈ [0, T1] .
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where L = L(m1) is a local Lipschitz constant for M(r), we have for t ∈ (0, tm)

1

2
|uηmt |

2
+

1

2

(
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇uηm|2 + (g � ∇uηm) (t)

−1

2

∫ t

0

(g′ � ∇uηm) (s) ds+ η

∫ t

0

||uηmt (s)||22,Γ1
ds (3.5)

+
1

2

∫ t

0

g (s) |∇uηm|2 ds+

∫ t

0

(h (uηmt ) , uηmt (s))Γ1
ds

≤ Lm1m2

∫ t

0

|∇uηm|2 ds+
1

2
M
(
|∇ϕ (0)|2

)
|∇u0|2 +

1

2
|u1|2

=

∫ t

0

(
|uηm (s)|k(x)−1

uηm (s) , uηmt

)
Γ1

ds

+

∫ t

0

(
|uηm (s)|p(x)−1

uηm (s) , uηmt

)
ds.

Young’s inequality gives

∣∣∣∣∫
Ω

|uηm (t)|p(x)−1
uηm (t)uηmt (t)dx

∣∣∣∣ ≤ ∫
Ω

|uηm (t)|p(x)−1 |uηm (t)| |uηmt (t)|dx (3.6)

≤ |uηm (t)|p(x)−1 |uηm (t)| |uηmt (t)|

≤ 1

2
Cε max

(∫
Ω

|uηm (t)|2p
+

dx,

∫
Ω

|uηm (t)|2p
−

dx

)
+

1

2
ε

∫
Ω

|uηmt (t)|2 dx

≤ 1

2
Cε

(
|∇uηm|2p

+

+ |∇uηm|2p
−)

+
1

2
ε |uηmt (t)|2

Also

∣∣∣∣∫
Γ1

|uηm (t)|k(x)−1
uηm (t)uηmt (t)dΓ

∣∣∣∣
≤ 1

2
Cε max

(
‖uηm‖2k

+

2k+,Γ1
, ‖uηm‖2k

−

2k−,Γ1

)
+

1

2
ε

∫
Γ1

|uηmt (t)|2 dΓ (3.7)

1

2
Cε

(
|∇uηm|2k

+

+ |∇uηm|2k
−)

+
1

2
ε ||uηmt (t)||22,Γ1

,

consequently, taking (2.8) and (2.9) into account

(
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
≥ m3 −

∞∫
0

g (s) ds = l > 0
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Combining above results, and observing that g > 0 and g′ ≤ 0, we deduce

1

2
|uηmt |

2
+

1

2
l |∇uηm|2 + (g � ∇uηm)− 1

2

∫ t

0

(g′ � ∇uηm) (s) ds

+η

∫ t

0

||uηmt (s)||22,Γ1
ds+

1

2

∫ t

0

g (s) |∇uηm|2 ds+

∫ t

0

(h (uηmt ) , uηmt (s))Γ1
ds

≤ Lm1m2

∫ t

0

|∇uηm|2 ds+
1

2
M
(
|∇ϕ (0)|2

)
|∇u0|2 +

1

2
|u1|2

+Cε

∫ t

0

(
|∇uηm|2k

+

+ |∇uηm|2k
−

+ |∇uηm|2p
+

+ |∇uηm|2p
−)

ds

+
1

2
ε

∫ t

0

|uηmt (s)|2 ds+ ε

∫ t

0

||uηmt (s)||22,Γ1
ds,

Choosing ε = η
2 , we arrive at

1

2
|uηmt |

2
+

1

2
l |∇uηm|2 + (g � ∇uηm) (t)− 1

2

∫ t

0

(g′ � ∇uηm) (s) ds

+
η

2

∫ t

0

||uηmt (s)||22,Γ1
ds+

1

2

∫ t

0

g (s) |∇uηm (s)|2 ds+

∫ t

0

(h (uηmt ) , uηmt (s))Γ1
ds

≤ η

2

∫ t

0

|uηmt (s)|2 ds+ Lm1m2

∫ t

0

|∇uηm|2 ds

+Cε

∫ t

0

(
|∇uηm|2k

+

+ |∇uηm|2k
−

+ |∇uηm|2p
+

+ |∇uηm|2p
−)

ds

+
1

2
Lm1 |∇u0|2 +

1

2
|u1|2 + Cε. (3.8)

Thus, there exist B > 0, β > 0 and r > 0 such that

|∇uηm|2 + |uηmt |
2 ≤ B + β

∫ t

0

[
1 +

(
|∇uηm (s)|2 + |uηmt (s)|2

)r+1
]

ds

where we note that B and β are independent of m and r. Since r > 0, there exists an
enough small time T0 := T0(u0, u1,m3) ∈ (0, T1) satisfying

(B + βT0)
−r − rβT0 > 0

Thus, we have by the modified Gronwall lemma 2.4

|∇uηm|2 + |uηmt |
2 ≤

(
(B + βT0)

−r − rβT0

)−1
r

Therefore, there exist constants ci = ci(u0, u1,m3) > 0 (i = 1, 2, 3) such that for any
t ∈ [0, T0]

|∇uηm|2 ≤ C1 and |uηmt |
2 ≤ C2. (3.9)
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Furthermore, by (3.8) it follows that

(g � ∇uηm) (t)− 1

2

∫ t

0

(g′ � ∇uηm) (s) ds+

∫ t

0

||uηmt (s)||22,Γ1
ds (3.10)

+

∫ t

0

g (s) |∇uηm (s)|2 ds+

∫ t

0

(h (uηmt ) , uηmt (s))Γ1
ds ≤ C3

where Ci are a positive constants which are independent of m, η and t. Thus, the
solution can be extended to [0, T ) and, in addition, we have

(uηm) is bounded sequence in L∞
(
0, T ;H1

Γ0
(Ω)
)
,

(uηmt ) is bounded sequence in L∞
(
0, T ;L2(Ω)

)
,

(h (uηmt ) .uηmt ) is bounded sequence in L1
(
0, T ;L1(Γ1)

)
.

The second estimate (Estimates on uηmtt ):

First of all, we are going to estimate uηmtt (0). By taking t = 0 in (3.3), taking
(2.15) into account, we get

|uηmtt (0)|2 ≤ c
∣∣∣M (

|∇u0|2
)∣∣∣2 |∆u0|2 + c

∫
Ω

|u0|2p(x)
dx (3.11)

≤ cL |∇u0|4 |∆u0|2 + cmax
(
|∇u0|2p

+

, |∇u0|2p
−)
≤ c∗

Now, by differentiating (3.3) with respect to t and substituting wj = uηmtt (t), we have

1

2

d

dt
|uηmtt |

2
+ 2M ′

(
|∇ϕ (t)|2

)
(∇ϕ,∇ϕ′) (∇uηm,∇uηmtt )

+M
(
|∇ϕ (t)|2

)
(∇uηmt ,∇uηmtt )

+ (h′ (uηmt )uηmtt , u
ηm
tt )Γ1

+ η ||uηmtt (s)||22,Γ1
=
(
k (x) |uηm (t)|k(x)−1

uηmt (t) , uηmtt

)
Γ1

+
(
p (x) |uηm (t)|p(x)−1

uηmt (t) , uηmtt

)
+ g (0)

d

dt
(∇uηm (t) ,∇uηmt )− g (0) |∇uηmt |

2

+
d

dt

(∫ t

0

g′ (t− s)∇uηm (s) ds,∇uηmt
)
− g′ (0) (∇uηm,∇uηmt (t))

−
(∫ t

0

g′′ (t− s)∇uηm (s) ds,∇uηmt
)
. (3.12)

To analyze the term 2M ′
(
|∇ϕ (t)|2

)
(∇ϕ,∇ϕ′) (∇uηm,∇uηmtt (t)), we multiplying

both sides of (3.3) by

f (t) =
2M ′

(
|∇ϕ (t)|2

)
(∇ϕ,∇ϕ′)

M
(
|∇ϕ (t)|2

) (
≤ 2Lm1m2

m3

)
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and replacing v = uηmtt (t), we have

2M ′
(
|∇ϕ (t)|2

)
(∇ϕ,∇ϕ′) (∇uηm,∇uηmtt ) = −f (t) |uηmtt |

2

+f (t)

(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmtt
)

−f (t) (h (uηmt ) , uηmtt )Γ1
− ηf (t) (uηmt (t), uηmtt )Γ1

+f (t)
(
|uηm (t)|k(x)−1

uηm (t) , uηmtt

)
Γ1

+f (t)
(
|uηm (t)|p(x)−1

uηm (t) , uηmtt

)
By replacing above equality in (3.12), we have

1

2

d

dt
|uηmtt |

2
+ f (t)

(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmtt
)

+f (t)
(
|uηm (t)|k(x)−1

uηm (t) , uηmtt

)
Γ1

+f (t)
(
|uηm (t)|p(x)−1

uηm (t) , uηmtt

)
+η ||uηmtt (s)||22,Γ1

+M
(
|∇ϕ (t)|2

)
(∇uηmt ,∇uηmtt ) + (h′ (uηmt )uηmtt , u

ηm
tt )Γ1

= f (t) |uηmtt |
2

+
(
k (x) |uηm (t)|k(x)−1

uηmt (t) , uηmtt

)
Γ1

(3.13)

+
(
p (x) |uηm (t)|p(x)−1

uηmt (t) , uηmtt

)
+ηf (t) (uηmt (t), uηmtt )Γ1

+ g (0)
d

dt
(∇uηm (t) ,∇uηmt )

−g (0) |∇uηmt |
2

+ f (t) (h (uηmt ) , uηmtt )Γ1

−
(∫ t

0

g′′ (t− s)∇uηm (s) ds,∇uηmt
)

+
d

dt

(∫ t

0

g′ (t− s)∇uηm (s) ds,∇uηmt
)
− g′ (0) (∇uηm,∇uηmt (t)).

Next, we are going to analyze the term on the right-hand side of (3.13), taking in
mind the estimates (3.9) and (3.10).

Estimate for I1 :

|I1| =
∣∣f (t) (h (uηmt ) , uηmtt )Γ1

∣∣ ≤ η

8
||uηmtt (s)||22,Γ1

+
4Lm1m2

ηm3
Ch ||uηmt ||

2
2,Γ1

(3.14)

Estimate for I2 :

|I2| =
∣∣∣∣− ∫

Ω

h′ (uηmt )uηmt (t)uηmtt (t)dx

∣∣∣∣ ≤ ChC1

2
+
Ch
2
|uηmtt (t)|2 (3.15)
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Estimate for I3 : From the generalized Hölder’s inequality, Young’s inequality and the
conditions (2.14), we have

|I3| =
∣∣∣∣f (t)

(
|uηm (t)|k(x)−1

uηm (t) , uηmtt

)
Γ1

∣∣∣∣ (3.16)

≤
(

2Lm1m2

m3

)2

C (ε) max

(∫
Γ1

|uηm|2k
+

dΓ,

∫
Γ1

|uηm|2k
−

dΓ

)
+ ε ||uηmtt ||

2
2,Γ1

≤
(

2Lm1m2

m3

)2

C (ε) max
(
|∇uηm|2k

+

, |∇uηm|2k
−)

+ ε ||uηmtt (t)||22,Γ1

≤ Cε + ε ||uηmtt (t)||22,Γ1
.

Estimate for I4 : From the generalized Hölder’s inequality, it hold that

|I4| =
∣∣∣∣(k (x) |uηm (t)|k(x)−1

uηmt (t) , uηmtt

)
Γ1

∣∣∣∣ (3.17)

≤ k+ max

(∫
Γ1

|uηm|k
+−1 |uηmt | |u

ηm
tt (t)|dΓ,

∫
Γ1

|uηm|k
−−1 |uηmt | |u

ηm
tt (t)|dΓ

)
≤ k+ max

(
||uηm (t)||k

+−1
2k+,Γ1

||uηmt (t)||2k+,Γ1
||uηmtt (t)||2,Γ1

,

||uηm (t)||k
−−1

2k−,Γ1
||uηmt (t)||2k−,Γ1

||uηmtt (t)||2,Γ1

)
≤ k+ max

(
|∇uηm|k

+−1
, |∇uηm|k

−−1
)
|∇uηmt | ||u

ηm
tt (t)||2,Γ1

≤ C (ε) |∇uηmt |
2

+ ε ||uηmtt (t)||22,Γ1

Estimate for I5 :

|I5| =
∣∣∣(p (x) |uηm (t)|p(x)−1

uηmt (t) , uηmtt

)∣∣∣
≤ p+ max

(∫
Ω

|uηm|p
+−1 |uηmt | |u

ηm
tt (t)|dx,

∫
Ω

|uηm|p
−−1 |uηmt | |u

ηm
tt (t)|dx

)
≤ p+ max

(
||uηm (t)||p

+−1
2p+ ||uηmt (t)||2p+ |uηmtt (t)| ,

||uηm (t)||p
−−1

2p− ||uηmt (t)||2p− |u
ηm
tt (t)|

)
(3.18)

≤ p+ max
(
|∇uηm|p

+−1
, |∇uηm|p

−−1
)
|∇uηmt | |u

ηm
tt (t)|

≤ C (ε) |∇uηmt |
2

+ ε |uηmtt (t)|2 .

Estimate for I6 :

|I6| =
∣∣∣f (t)

(
|uηm (t)|p(x)−1

uηm (t) , uηmtt

)∣∣∣
≤ 2Lm1m2

m3
max

(∫
Ω

|uηm|p
+

|uηmtt (t)|dx,
∫

Ω

|uηm|p
−
|uηmtt (t)|dx

)
≤ max

(
|∇uηm|p

+

, |∇uηm|p
−)
|uηmtt (t)| ≤ Cε + ε |uηmtt (t)|2
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Estimate for I7 :

I7 =
∣∣ηf (t) (uηmt (t), uηmtt )Γ1

∣∣ ≤ η

8
||uηmtt (t)||22,Γ1

+ 2η

(
2Lm1m2

m3

)2

||uηmt (t)||22,Γ1

Estimate for I8 :

I8 = |−g′ (0) (∇uηm,∇uηmt (t))| ≤ Cε + C (ε) |∇uηmt |
2

Estimate for I9 :

I9 =

∣∣∣∣−(∫ t

0

g′′ (t− s)∇uηm (s) ds,∇uηmt
)∣∣∣∣ ≤ |∇uηmt |∫ t

0

g′′ (t− s) |∇uηm|ds

≤ C (ε) |∇umt |
2

+ ε ‖g′′‖L1

∫ t

0

|g′′ (t− s)| |∇uηm|2 ds

≤ C (ε) |∇uηmt |
2

+
(
ε ‖g′′‖2L1 + ε

)∫ t

0

|∇uηm|2 ds

≤ C (ε) |∇uηmt |
2

+ Cε sup
(0,T )

||uηm (t)||2L∞(0,T ;H1
0 (Ω)) .

Estimate for I10 :

I10 =

(∫ t

0

g′ (t− s)∇uηm (s) ds,∇uηmt
)

≤ m3

8
|∇uηm|2 +

2ξ (0) ‖g‖L1 ‖g‖L∞
m3

|∇uηmt |
2

≤ m3

8
|∇uηmt |

2
+ C (m3) sup

(0,T )

||uηm (t)||2L∞(0,T ;H1
0 (Ω)) .

By replacing (3.14)-(3.17) in (3.13) and choosing ε = η
4 , we obtain

1

2

d

dt
|uηmtt |

2
+

1

2
M
(
|∇ϕ (t)|2

) d

dt
|∇uηmt (t)|2

+g (0) |∇uηmt |
2

+
η

2
||uηmtt (t)||22,Γ1

(3.19)

≤ −f (t)

(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmtt
)

+ g (0)
d

dt
(∇uηm (t) ,∇uηmt )

+3Cε + f (t) |uηmtt |
2

+ 3C (ε) |∇uηmt |
2

+ 2ε |uηmtt (t)|2

+2η

(
2Lm1m2

m3

)2

||uηmt (t)||22,Γ1

+
2Lm1m2

m3
|uηmtt (t)|2 +

4Lm1m2

ηm3
Ch ||uηmt ||

2
2,Γ1

+
ChC1

2
+
Ch
2
|uηmtt (t)|2 +

d

dt

(∫ t

0

g′ (t− s)∇uηm (s) ds,∇uηmt
)
.

Employing Hölder’s inequality, Young’s inequality, integrating by parts on (0, t), the
first and second terms on the right-hand side and the first term on the left-hand side
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of (3.19) can be estimated as follows, for∣∣∣∣∣
∫ t

0

−f (ζ)

(∫ ζ

0

g (ζ − s)∇uηm (s) ds,∇uηmtt

)
dζ

∣∣∣∣∣
≤ 2Lm1m2

m3

∣∣∣∣∣
∫ t

0

(∫ ζ

0

g (ζ − s)∇uηm (s) ds,∇uηmtt (ζ)

)
dζ

∣∣∣∣∣
≤ 2Lm1m2

m3

∣∣∣∣(∫ t

0

g (t− s)∇uηm (s) ds,∇uηmt (t)

)∣∣∣∣
+

2Lm1m2

m3
g (0)

∣∣∣∣∫ t

0

(∇uηm (s) ,∇uηmt (s)) ds

∣∣∣∣
≤ C +

m3

8
|∇uηmt |

2
+
Lm1m2

m3
g (0)

(∫ t

0

|∇uηmt |
2

ds+

∫ t

0

|∇uηm|2 ds

)
≤ C +

m3

8
|∇uηmt |

2
+
Lm1m2

m3
g (0)

∫ t

0

|∇uηmt |
2

ds

+
Lm1m2

m3
g (0) sup

(0,T )

||uηm (t)||2L∞(0,T ;H1
0 (Ω))

because, from estimate (3.9) we have

2Lm1m2

m3

∫
Ω

∇uηmt (t)

∫ t

0

g (t− s)∇uηm (s) dsdx ≤ C |∇uηmt | ‖g‖L1(R+)

≤ C +
m3

8
|∇uηmt |

2
,

and

g (0)

∫ t

0

d

dt
(∇uηm (t) ,∇uηmt ) ds

≤ m3

8
|∇uηmt |

2
+

2

m3
g (0)

2 |∇uηm|2+g (0) |∇u0| |∇u1|

≤ m3

8
|∇uηmt |

2
+

2

m3
g (0)

2
sup
(0,T )

||uηm (t)||2L∞(0,T ;H1
0 (Ω)) + g (0) |∇u0| |∇u1|

and

1

2

∫ t

0

M
(
|∇ϕ (s)|2

) d

dt
|∇uηmt (s)|2 ds

≥
[

1

2
M
(
|∇ϕ (s)|2

)
|∇uηmt |

2

]t
0

− 1

2

∫ t

0

[
d+

ds
M
(
|∇ϕ (s)|2

)]
|∇uηmt |

2
ds

≥
[

1

2
M
(
|∇ϕ (s)|2

)
|∇uηmt |

2

]t
0

− Lm1m2

∫ t

0

|∇uηmt |
2

ds, s ∈ [0, T1] .
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Combining, we get

1

2
|uηmtt |

2
+
m3

8
|∇uηmt |

2
+ g (0)

∫ t

0

|∇uηmt |
2

ds+ η

∫ t

0

||uηmtt (s)||22,Γ1

≤
(

2Lm1m2

m3
+ 2ε+

Ch
2

)∫ t

0

|uηmtt (s)|2 ds

+

(
Lm1m2

m3
g (0) + Lm1m2 + 2C (ε)

)∫ t

0

|∇uηmt |
2

ds

+

(
2

m3
g (0)

2
+ C (m3) +

Lm1m2

m3
g (0) + Cε

)
sup
(0,T )

||uηm (t)||2
L∞

(
0,T ;H1

Γ0
(Ω)

)

+

(
4Lm1m2

ηm3
Ch + 2η

(
2Lm1m2

m3

)2
)∫ t

0

||uηmt (t)||22,Γ1
ds+ C5

where

C5 =

(
C,Ch, C1, u1, u0, Cε, T, g (0) ,

Lm1m2

m3

)
.

Choosing ε = η
4 , therefore, by using estimates (3.10), (3.5) and Gronwall’s lemma, we

arrive at

|uηmtt |
2

+ |∇uηmt |
2

+

∫ t

0

|∇uηmt |
2

ds+

∫ t

0

||uηmtt (s)||22,Γ1
ds ≤ C6 (3.20)

where C6 is a positive constant which is independent of m, η and t.
Thanks to (3.10) and (3.20), we obtain

(uηm) is a bounded sequence in L∞
(
0, T0;H1

Γ0
(Ω)
)

, (3.21)

(uηmt ) is a bounded sequence in L∞
(
0, T0;H1

Γ0
(Ω)
)
∩ L2

(
0, T0;L2(Ω)

)
, (3.22)

(uηmtt ) is bounded in L∞
(
0, T0;L2(Ω

)
, (3.23)

(uηmt ) is a bounded sequence in L2
(
0, T0;L2(Γ1)

)
, (3.24)

(uηmtt ) is bounded in L2
(
0, T0;L2(Γ1)

)
,

By (2.11), (3.22) and (3.24), we have

h (uηmt ) is bounded in L2
(
0, T0;L2(Γ1)

)
. (3.25)

From (3.21)-(3.24), there exists a subsequence of (uηm) , still denote by (uηm), such
that such that

uηm −→ uη weak star in L∞
(
0, T0;H1

Γ0
(Ω)
)

, (3.26)

uηmt −→ uηt weak star in L∞
(
0, T0;H1

Γ0
(Ω)
)

, (3.27)

uηmtt −→ uηtt weak star in L∞
(
0, T0;L2(Ω

)
, (3.28)

uηmt −→ uηt weakly in L2
(
0, T0;L2(Γ1)

)
, (3.29)

uηmtt −→ uηtt weakly in L2
(
0, T0;L2(Γ1)

)
, (3.30)

uηmt −→ uηt weak star in L∞
(

0, T0;H
1
2 (Γ1)

)
, (3.31)
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Since H
1
2 (Γ1) ↪→ L2(Γ1) and H1(Γ0) ↪→ L2(Ω) are compact and from Aubin–Lions

theorem, we deduce that

uηm −→ uη strongly in L2
(
0, T0;L2(Ω)

)
,

uηm −→ uη strongly in L2
(
0, T0;L2(Γ1)

)
,

uηmt −→ uηt strongly in L2
(
0, T0;L2(Ω)

)
uηmt −→ uηt strongly in L2

(
0, T0;L2(Γ1)

)
,

Consequently, by making use of Lions’ Lemma [27, Lemma 1.3.], we have

|uηm (t)|p(.)−1
uηm (t) → |uη (t)|p(.)−1

uη (t) weakly in L2
(
0, T0;L2(Ω)

)
|uηm (t)|k(.)−1

uηm (t) → |uη (t)|k(.)−1
uη (t) weakly in L2

(
0, T0;L2(Γ1)

)
.

From (3.28) and (3.29) and since the injection of H
1
2 (Γ1) in L2(Γ1) is compact, there

exists a subsequence of (uηm) , still denote by (uηm), such that

uηmt −→ uηt a.e. in Q0,

where Q0 = Γ1 × ]0, T0[. Then by (2.11), we have

h (uηmt )→ h (uηt ) a.e. in Q0, (3.32)

From (3.25) and (3.32) and by using Lions’ lemma, we conclude that

h (uηmt )→ h (uηt ) weakly in L2
(
0, T0;L2(Γ1)

)
(3.33)

The convergences (3.26), (3.28), (3.31), (4.16) and (3.33) permit us to pass to the
limit in the (3.3). Since (wj) is a basis of H1

Γ0
(Ω) ∩ H2 (Ω) and Vm is dense in

H1
Γ0

(Ω) ∩H2 (Ω), after passing to the limit, we obtain∫ T0

0

(uηtt(t), v) θ (t) dt+

∫ T0

0

M
(
|∇ϕ (t)|2

)
(∇uη,∇v) θ (t) dt

−
∫ T0

0

(∫ t

0

g (t− s)∇uη (s) ds,∇v
)
θ (t) dt+

∫ T0

0

(h (uηt ) , v)Γ1
θ (t) dt

+η

∫ T0

0

(uηt (t), v)Γ1
θ (t) dt =

∫ T0

0

(
|uη (t)|k(x)−1

uη (t) , v
)

Γ1

θ (t) dt (3.34)

+

∫ T0

0

(
|uη (t)|p(x)−1

uη (t) , v
)
θ (t) dt,

for all θ ∈ D (0, T ), and for all v ∈ H1
Γ0

(Ω) ∩H2 (Ω) .

We can see that the estimates (3.10) and (3.21) are also independent of η. Therefore,
by the same argument used to obtain uη from uηm, we can pass to the limit when
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η → 0 in uη, obtaining a function u such that

uη −→ u weak star in L∞
(
0, T0;H1

Γ0
(Ω)
)

, (3.35)

uηt −→ ut weak star in L∞
(
0, T0;H1

Γ0
(Ω)
)
,

uηtt −→ utt weak star in L∞
(
0, T0;L2(Ω

)
, (3.36)

uηt −→ ut weak star in L∞
(

0, T0;H
1
2 (Γ1)

)
,

h (uηt )→ h (ut) weakly in L2
(
0, T0;L2(Γ1)

)
, (3.37)

|uη (t)|p(.)−1
uη (t)→ |u (t)|p(.)−1

u (t) weakly in L2
(
0, T0;L2(Ω)

)
,

|uη (t)|k(.)−1
uη (t)→ |u (t)|k(.)−1

u (t) weakly in L2
(
0, T0;L2(Γ1)

)
From the above convergence in (3.10) and by observing that Vm is dense in H1

Γ0
(Ω)∩

H2 (Ω), we have∫ T0

0

(utt(t), v) θ (t) dt+

∫ T0

0

M
(
|∇ϕ (t)|2

)
(∇u,∇v) θ (t) dt

−
∫ T0

0

(∫ t

0

g (t− s)∇u (s) ds,∇v
)
θ (t) dt+

∫ T0

0

(h (ut) , v)Γ1
θ (t) dt

=

∫ T0

0

(
|u (t)|k(x)−1

u (t) , v
)

Γ1

θ (t) dt+

∫ T0

0

(
|u (t)|p(x)−1

u (t) , v
)
θ (t) dt, (3.38)

for all v ∈ H1
Γ0

(Ω) and for all θ ∈ D (0, T0) .

By taking v ∈ D (Ω), we get that

∂2u

∂t2
−M

(
|∇ϕ (t)|2

)
∆u+

∫ t

0

g (t− s) ∆u (s) ds = |u|p(x)−1
u in D′ (Ω) .

Therefore, by (3.36) and (3.37), we obtain

∂2u

∂t2
−M

(
|∇ϕ (t)|2

)
∆u+

∫ t

0

g (t− s) ∆u (s) ds = |u|p(x)−1
u in L2

(
0, T0;L2(Ω)

)
.

(3.39)
From the hypotheses of M, g and (3.35), we conclude that

g (t− s)u, M
(
|∇ϕ (t)|2

)
u ∈ L∞

(
0, T0;H1

Γ0
(Ω)
)
,

and by (3.39),

−∆

(
M
(
|∇ϕ (t)|2

)
u−

∫ t

0

g (t− s)u (s) ds

)
∈ L2

(
0, T0;L2(Ω)

)
Then

M
(
|∇ϕ (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds ∈ L2

(
0, T0;H−

1
2 (Γ1)

)
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according to Miranda [29] is established. By taking (3.39) into account and making
use of the generalized Green formula, we deduce

M
(
|∇ϕ (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds+ h (ut) = |u|k(x)−1

u

in D′
(

0, T0;H−
1
2 (Γ1)

)
, and as h (ut) , |u|k(.)−1

u ∈ L2
(
0, T0;L2(Γ1)

)
, we infer

M
(
|∇ϕ (t)|2

) ∂u
∂ν
−
∫ t

0

g (t− s) ∂

∂ν
u (s) ds+h (ut) = |u|k(x)−1

u in L2
(
0, T0;L2(Γ1)

)
.

(3.40)
Prove the uniqueness of the local solution. To this end let u(t) and v(t) be two local
solutions to (3.3) with the same initial value. Let w(t) = u(t)− v(t). Then w(0) = 0,
wt(0) = 0 for all t ∈ [0, T0] and

(w′′(t), ψ) +M
(
|∇ϕ (t)|2

)
(∇w,∇ψ)−

(∫ t

0

g (t− s)∇w (s) ds,∇ψ
)

(3.41)

+ (h (ut)− h (vt) , ψ)Γ1
=
(
|u (t)|k(x)−1

u (t)− |v (t)|k(x)−1
v (t) , ψ

)
Γ1

+
(
|u (t)|p(x)−1

u (t)− |v (t)|p(x)−1
v (t) , ψ

)
for all ψ ∈ H1

Γ0
(Ω) . By replacing ψ = wt (t) in (3.41) and observing that

(h (ut)− h (vt) , ψ)Γ1
≥ 0, it hold that

1

2

d

dt
|wt(t)|2 +

1

2

d+

dt

((
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇w (t)|2

)
(3.42)

+
1

2

d

dt
(g � ∇w) (t)− 1

2
(g′ � ∇w) (t) +

1

2
g (t) |∇w (t)|2

≤ 1

2

(
d+

dt
M
(
|∇ϕ (t)|2

))
|∇w|2 +

(
|u (t)|k(x)−1

u (t)− |v (t)|k(x)−1
v (t) , wt (t)

)
Γ1

+
(
|u (t)|p(x)−1

u (t)− |v (t)|p(x)−1
v (t) , wt (t)

)
From the generalized Hölder’s and Young’s inequalities and estimates (3.21)-(3.24),
it hold that ∣∣∣(|u (t)|k(x)−1

u (t)− |v (t)|k(x)−1
v (t) , wt

)∣∣∣
≤ cmax

 (
||u (t)||k

−−1
2k− + ||v (t)||k

−−1
2k−

)
||u (t)− v (t)||2k− ‖wt‖2 ,(

||u (t)||k
+−1

2k+ + ||v (t)||k
+−1

2k+

)
||u (t)− v (t)||2k+ ‖wt‖2


≤ cc∗max

 (
|∇u (t)|k

−−1
+ |∇v (t)|k

−−1
)
,(

|∇u (t)|k
+−1

+ |∇v (t)|k
+−1

)  |∇w| |wt|
≤ c |∇w|2 + c |wt|2 .
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By the same manner∣∣∣(|u (t)|p(x)−1
u (t)− |v (t)|p(x)−1

v (t) , wt

)∣∣∣
≤ cmax

 (
||u (t)||p

−−1
2p− + ||v (t)||p

−−1
2p−

)
||u (t)− v (t)||2p− ‖wt‖2 ,(

||u (t)||p
+−1

2p+ + ||v (t)||p
+−1

2p+

)
||u (t)− v (t)||2p+ ‖wt‖2


≤ cc∗max

 (
|∇u (t)|p

−−1
+ |∇v (t)|p

−−1
)
,(

|∇u (t)|p
+−1

+ |∇v (t)|p
+−1

)  |∇w| |wt|
≤ c |∇w|2 + c |wt|2 .

Substituting the last two inequalities in (3.42) and integrating the results over (0, t),
it holds

1

2
|wt(t)|2 +

1

2
l |∇w (t)|2 ≤ C

∫ t

0

(
|∇w|2 + |wt|2

)
ds

Thus, employing Gronwall’s lemma, we conclude that |wt(t)|2 = |∇w (t)|2 = 0.
Consequently this completes the proof of the lemma. �

We are concerned with the existence and uniqueness of local solution in time to
degenerate wave equation (1.1)-(1.4). So by using Lemma 3.1 we prove the existence
and uniqueness of local solution in time to (1.1)-(1.4) by the Banach fixed point
theorem.

Theorem 3.2. Assume that M(r) > 0 is a locally Lipschitz function and assume that
the following condition is satisfied

1 < k+ <
n− 1

n− 2
and 1 < p+ ≤ n

n− 2
if n ≥ 3,

1 ≤ k− ≤ k+ <∞ and 1 ≤ p− ≤ p+ <∞ if n = 2.

Let (u0, u1) ∈ H1
Γ0

(Ω)∩H2 (Ω)×H1
Γ0

(Ω) with |∇u1| 6= 0 or |∇u0| 6= 0. Assume that

M
(
|∇u0|2

)
> 0. Then there exists a time T0 > 0 and a unique local weak solution

u(t) to (1.1)-(1.4) with the initial value (u0, u1) satisfying

u (t) ∈ C([0, T0] : H1
Γ0

(Ω)),

ut (t) ∈ C([0, T0] : L2 (Ω)) ∩ C([0, T0] : H1
Γ0

(Ω)),

utt (t) ∈ C([0, T0] : L2 (Ω)).

Proof. Since M
(
|∇u0|2

)
> 0, there exists a positive real number m3 such that 0 <

m3 < M
(
|∇u0|2

)
. Assume that

0 < m3 −
∫ +∞

0

g (t) dt < 1.
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Let R0 be a positive real number such that

R0 =

√
2

l

(
|∇u1|2 +M

(
|∇u0|2

)
|∇u0|2

)
Since M

(
|∇u0|2

)
> 0, for sufficiently small time T > 0, we define the space BT (R0)

by

BT (R0) =



φ (t) ∈ C([0, T ] : H1
Γ0

(Ω)) ∩ C([0, T ] : H1
Γ0

(Ω)),
φ′ (t) ∈ C([0, T ] : L2 (Ω)) ∩ C([0, T ] : H1

Γ0
(Ω)),

φ′′ (t) ∈ C([0, T ] : L2 (Ω)),

M
(
|∇φ (t)|2

)
≥ m3, |∇φ′ (t)|2 + |∇φ (t)|2 ≤ R2

0 on [0, T ] ,

φ (0) = u0, φ
′ (0) = u1.


We introduce the metric d on the space BT (R0) by

d (u, v) = sup
0≤t≤T

(
|ut (t)− vt (t)|2 + |∇u (t)−∇v (t)|2

)
for u, v ∈ BT (R0).

Then the space BT (R0) is the complete metric space. Let φ ∈ BT (R0).

Then |∇φ(t)| ≤ R0, |∇φ′(t)| ≤ R0 and M
(
|∇φ (t)|2

)
≥ m3 for all t ∈ [0, T ]. Thus

thanks to Lemma 3.1 we obtain a unique local weak solution u(t) on [0, T1] with
T1 ≤ T to the following wave equation:

(utt(t), v) +M
(
|∇ϕ (t)|2

)
(∇u,∇v)−

(∫ t

0

g (t− s)∇u (s) ds,∇v
)

+ (h (ut) , v)Γ1

(3.43)

=
(
|u (t)|k(x)−1

u (t) , v
)

Γ1

+
(
|u (t)|p(x)−1

u (t) , v
)

in L2
(
0, T1;H−1 (Ω)

)
∩ L2

(
0, T1;H−

1
2 (Γ1)

)
.

Let T = T1 without loss of generality. Define the mapping Φ by

Φ (ϕ) = u

Then we have that

Φ (ϕ) = u ∈ BT (R0) for ϕ ∈ BT (R0), (3.44)

Φ : BT (R0)→ BT (R0) is a contractive mapping. (3.45)

For showing (3.44), posing v = ut in (3.43) and taking

(h (ut) , ut)Γ1
− 1

2
(g′ � ∇u) (t) +

1

2
g (t) |∇u (t)|2 ≥ 0,
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into account we have that:

1

2

d+

dt

(
|ut(t)|2 +

((
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇u (t)|2

)
+

1

2
(g � ∇u) (t)

)
≤ 1

2

(
d+

dt
M
(
|∇ϕ (t)|2

))
|∇u|2

+
(
|u (t)|k(x)−1

u (t) , ut

)
Γ1

+
(
|u (t)|p(x)−1

u (t) , ut

)
= I1 + I2 + I3.

And so we estimates I1 and I2 as follows

I1 =
1

2

(
d+

dt
M
(
|∇ϕ (t)|2

))
|∇u|2 ≤ L |∇ϕ (t)| |∇ϕ′ (t)| |∇u|2 ≤ LR2

0

l
ψϕu (t)

Taking estimates (4.9) into account

|I2| =
∣∣∣∣(k (x) |u (t)|k(x)−1

u (t) , ut

)
Γ1

∣∣∣∣
≤ k+ max

(∫
Γ1

|u|k
+

|ut(t)|dΓ,

∫
Γ1

|u|k
−
|ut|dΓ

)
≤ k+ max

(
||u (t)||k

+

2k+,Γ1
, ||u (t)||k

−

2k−,Γ1

)
||ut (t)||2,Γ1

≤ k+ max
(
Bk

+

∗ |∇u|
k+

, Bk
−

∗ |∇u|
k−
)
||ut (t)||2,Γ1

≤ k+ max
(

(B∗R0)
k+

, (B∗R0)
k−
)
||ut (t)||2,Γ1

≤ C2

similarly

|I3| =
∣∣∣(p (x) |u (t)|p(x)−1

u (t) , uηmtt

)∣∣∣
≤ p+ max

(∫
Ω

|u|p
+

|ut(t)|dx,
∫

Ω

|u|p
−
|ut(t)|dx

)
≤ p+ max

(
||u (t)||p

+

2p+ , ||u (t)||p2p−
)
|ut(t)|

≤ p+ max
(
Bp

+

|∇u|p
+

, Bp
−
|∇u|p

−)
|ut(t)|

≤ p+ max
(

(BR0)
p+

, (BR0)
p−
)
|ut(t)| ≤ C3ψϕu (t)

1
2

because ||ut (t)||2,Γ1
≤ C |∇ut (t)| is bounded on [0, T ] by Lemma 3.1. Thus

d+

dt
ψϕu (t) ≤ 2C2 + 2C1ψϕu (t) + 2C3ψϕu (t)

1
2

where

ψϕu (t) = |ut(t)|2 +

((
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇u (t)|2

)
+ (g � ∇u) (t) ,
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and C1 =
LR2

0

l . Gronwall inequality yields

ψϕu (t) ≤ (ψϕu (0) + 2C2T2) e(2C1+2C3)T2

< lR2
0, 0 ≤ t ≤ T2,

for sufficiently small 0 < T2 ≤ T1. Thus

lR2
0 > |ut(t)|

2
+

((
M
(
|∇ϕ (t)|2

)
−
∫ t

0

g (s) ds

)
|∇u (t)|2

)
+ (g � ∇u) (t)

> |ut(t)|2 + l |∇u (t)|2 , (l < 1)

We have that

R2
0 > |ut(t)|

2
+ |∇u (t)|2 , 0 ≤ t ≤ T2,

Let T = T2 be modified. Thus (3.44) is satisfied. Rest to show (3.45). Let w = u1−u2,
where u1 = Φ (ϕ1) , u2 = Φ (ϕ2) with ϕ1, ϕ2 ∈ BT (R0). Then we have that

(wtt(t), v) +M
(
|∇ϕ1 (t)|2

)
(∇w,∇v) + (h (u1t)− h (u2t) , v)Γ1

(3.46)

=
(
M
(
|∇ϕ2 (t)|2

)
−M

(
|∇ϕ1 (t)|2

))
(∇u2,∇v)

+

(∫ t

0

g (t− s)∇w (s) ds,∇v
)

=
(
|u1 (t)|k(x)−1

u1 (t)− |u2 (t)|k(x)−1
u2 (t) , v

)
Γ1

+
(
|u1 (t)|p(x)−1

u1 (t)− |u2 (t)|p(x)−1
u2 (t) , v

)
in L2

(
0, T1;H−1 (Ω)

)
.

Set

βϕ1
(w) (t) = |wt(t)|2 +

((
M
(
|∇ϕ1 (t)|2

)
−
∫ t

0

g (s) ds

)
|∇w (t)|2

)
Since 0 < l = m3 −

∫∞
0
g (s) ds < 1, we have that

βϕ1
(w) (t) ≥ l

(
|wt(t)|2 + |∇w (t)|2

)
By replacing v in (3.46) by wt we have that

1

2

d+

dt

(
|wt(t)|2 +

((
M
(
|∇ϕ1 (t)|2

)
−
∫ t

0

g (s) ds

)
|∇w (t)|2

))
+

1

2

d

dt
(g � ∇w) (t)− 1

2
(g′ � ∇w) (t) +

1

2
g (t) |∇u (t)|2

≤ 1

2

(
d+

dt
M
(
|∇ϕ1 (t)|2

))
|∇w|2

+
(
M
(
|∇ϕ2 (t)|2

)
−M

(
|∇ϕ1 (t)|2

))
(∇u2,∇wt)

+
(
|u1 (t)|k(x)−1

u1 (t)− |u2 (t)|k(x)−1
u2 (t) , wt

)
Γ1

+
(
|u1 (t)|p(x)−1

u1 (t)− |u2 (t)|p(x)−1
u2 (t) , wt

)
= I4 + I5 + I6 + I7
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Then

|I4| =
∣∣∣∣12
(

d+

dt
M
(
|∇ϕ1 (t)|2

))
|∇w|2

∣∣∣∣ ≤ LR2
0 |∇w|

2

≤ LR2
0

l
βϕ1 (w) (t) := ξ4βϕ1 (w) (t)

and

|I5| =
∣∣∣(M (

|∇ϕ2 (t)|2
)
−M

(
|∇ϕ1 (t)|2

))
(∇u2,∇wt)

∣∣∣
≤ LR2

0d (ϕ1, ϕ2)
1
2 |∇u2| |∇wt| ≤

2LR2
0√
l

d (ϕ1, ϕ2)
1
2 βϕ1

(w) (t)
1
2

:= ξ5d (ϕ1, ϕ2)
1
2 βϕ1 (w) (t)

1
2 .

Since

|I6| =
∣∣∣∣(|u1 (t)|k(x)−1

u1 (t)− |u2 (t)|k(x)−1
u2 (t) , wt

)
Γ1

∣∣∣∣
≤ cmax

 (
||u1 (t)||k

−−1
2k− + ||u2 (t)||k

−−1
2k−

)
||u1 (t)− u2 (t)||2k− ‖wt‖2 ,(

||u1 (t)||k
+−1

2k+ + ||u2 (t)||k
+−1

2k+

)
||u1 (t)− u2 (t)||2k+ ‖wt‖2


≤ cc∗max

 (
|∇u1 (t)|k

−−1
+ |∇u2 (t)|k

−−1
)
,(

|∇u1 (t)|k
+−1

+ |∇u2 (t)|k
+−1

)  |∇w| |wt|
≤ 2cc∗

(√
Ck
−−1

1 +

√
Ck

+−1
1

)
|∇w| |wt|

≤ cc∗
1

l

(√
Ck
−−1

1 +

√
Ck

+−1
1

)
βϕ1

(w) (t) := ζ6βϕ1
(w) (t)

and

|I7| =
∣∣∣(|u1 (t)|p(x)−1

u1 (t)− |u2 (t)|p(x)−1
u2 (t) , wt

)∣∣∣
≤ cmax

 (
||u1 (t)||p

−−1
2p− + ||u2 (t)||p

−−1
2p−

)
||u1 (t)− u2 (t)||2p− ‖wt‖2 ,(

||u1 (t)||p
+−1

2p+ + ||u2 (t)||k
+−1

2p+

)
||u1 (t)− u2 (t)||2p+ ‖wt‖2


≤ cc∗max

 (
|∇u1 (t)|p

−−1
+ |∇u2 (t)|p

−−1
)
,(

|∇u1 (t)|p
+−1

+ |∇u2 (t)|p
+−1

)  |∇w| |wt|
≤ 2cc∗

(√
Cp
−−1

1 +

√
Cp

+−1
1

)
|∇w| |wt|

≤ cc∗
1

l

(√
Cp
−−1

1 +

√
Cp

+−1
1

)
βϕ1

(w) (t) := ζ7βϕ1
(w) (t)

It follows that

βϕ1
(w) (t) ≤ (ξ4 + ζ6 + ζ7)

∫ t

0

βϕ1
(w) (s) ds+ ξ5

∫ t

0

d (ϕ1, ϕ2)
1
2 βϕ1

(w) (s)
1
2 ds
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Gronwall’s lemma gives

d (u1, u2) ≤ ξ2
5T

l
d (ϕ1, ϕ2) e(1+ξ4+ζ6+ζ7)T .

Choose a 0 < T3 ≤ T small enough which satisfies that

ξ2
5

l
T3e

(1+ξ4+ζ6+ζ7)T3 < 1.

Thus by the Banach contraction mapping theorem there exists a fixed point

u = Φ(u) ∈ BT3
(R0),

which is a unique local weak solution in time to (1.1)-(1.4). This completes the proof
of the theorem. �

4. Uniform decay rates

In this section, we shall prove the general decay rates of solution for system
(1.1)-(1.4).

In this section we assume that

M
(
|∇u|2

)
= m3 + b |∇u|2 + σ

∫
Ω

∇u∇utdx,

m3 > 0, b > 0, σ : positive and small enough.
(4.1)

and providing that h satisfies:

(H′3) Hypotheses on h. h : R → R is a non-decreasing function with h(s)s ≥ 0
for all s ∈ R and there exists a convex and increasing function H : R+ → R+

of class C1(R+) ∩ C2((0,∞)) satisfying H(0) = 0 and H is linear on [0, r] or
H ′(0) = 0 and H ′′ > 0 on (0, r] (r > 0) such that

m1 |s| ≤ |h (s)| ≤M1 |s| if |s| ≥ r,
h2 (s) ≤ H−1 (sh (s)) if |s| ≤ r, (4.2)

where r, m1 and M1 are positive constants.

For formulate our results it is convenient to introduce the energy of the system

E (t) =
1

2
|ut(t)|2 + J (u (t)) for u ∈ H1

Γ0
(Ω) (4.3)

where

J (u (t)) =
1

2

(
m3 −

∫ t

0

g (s) ds

)
‖∇u(t)‖22 +

b

4
‖∇u‖42 +

1

2
(g ◦ ∇ (u)) (t) (4.4)

−
∫

Ω

1

p (x) + 1
|u|p(x)+1

dx−
∫

Γ1

1

k (x) + 1
|u|k(x)+1

dΓ,
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so, we have

J (u (t)) ≥ 1

2

(
m3 −

∫ t

0

g (s) ds

)
‖∇u(t)‖22 +

b

4
‖∇u‖42 +

1

2
(g ◦ ∇ (u)) (t)

− 1

p− + 1
max

(∫
Ω

|u|p
++1

dx,

∫
Ω

|u|p
−+1

dx

)
− 1

k− + 1
max

(∫
Γ1

|u|k
++1

dΓ,

∫
Γ1

|u|k
−+1

dΓ

)
≥ 1

2
l ‖∇u(t)‖22 +

b

4
‖∇u‖42 +

1

2
(g ◦ ∇ (u)) (t) (4.5)

−
(

1

p− + 1

∫
Ω

|u|p
++1

dx+
1

k− + 1

∫
Γ1

|u|k
++1

dΓ

)
−
(

1

p− + 1

∫
Ω

|u|p
−+1

dx+
1

k− + 1

∫
Γ1

|u|k
−+1

dΓ

)
,

then

E′ (t)=−σ
(

1

2

d

dt
‖∇u(t)‖22

)2

−
∫

Γ1

uth (ut) dΓ+
1

2
(g′ ◦ ∇ (u)) (t)−1

2
g (t) ‖∇u(t)‖22≤0,

(4.6)
so the energy E(t) is nonincreasing function.

Next, with some modifications, we define a functionals F1,2 introduced by Cav-
alcanti et al. [28], which helps in establishing desired results. Setting

F1 (x) =
1

4
x2 −

Kp−+1
−,Ω

p− + 1
xp
−+1 −

Kk−+1
−,Γ

k− + 1
xk
−+1, x > 0 (4.7)

F2 (x) =
1

4
x2 −

Kp++1
+,Ω

p− + 1
xp

++1 −
Kk++1

+,Γ

k− + 1
xk

++1, x > 0, (4.8)

where

0 < K+,Ω = sup
u∈H1

Γ0
(Ω), u6=0

 ‖u‖p++1√
l ‖∇u‖22 + b

2 ‖∇u‖
4
2

 <∞, (4.9)

0 < K−,Ω = sup
u∈H1

Γ0
(Ω), u6=0

 ‖u‖p−+1√
l ‖∇u‖22 + b

2 ‖∇u‖
4
2

 <∞. (4.10)

and

0 < K+,Γ = sup
u∈H1

Γ0
(Ω), u6=0

 ‖u‖k++1,Γ1√
l ‖∇u‖22 + b

2 ‖∇u‖
4
2

 <∞, (4.11)

K−,Γ = sup
u∈H1

Γ0
(Ω), u6=0

 ‖u‖k−+1,Γ1√
l ‖∇u‖22 + b

2 ‖∇u‖
4
2

 <∞. (4.12)
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Remark 4.1. (i). As in [28], we can verify that the functional F1 is increasing in
(0, λ1), decreasing in (λ1,∞), and F1 has a maximum at λ1 with the maximum
value

d1 = F1 (λ1) =
1

4
λ2

1 −
Kp−+1
−,Ω

p− + 1
λp
−+1

1 −
Kk−+1
−,Γ

k− + 1
λk
−+1

1 , (4.13)

also, for F2 is increasing in (0, λ2), decreasing in (λ2,∞), and F2 has a maximum
at λ2 with the maximum value

d2 = F2 (λ2) =
1

4
λ2

2 −
Kp++1

+,Ω

p− + 1
λp

++1
2 −

Kk++1
+,Γ

k− + 1
λk

++1
2 , (4.14)

λ1 and λ2 are the first positive zero of the derivative functions F ′1(x) and F ′2(x),
respectively.

(ii). From (4.3), (4.5), (2.9), (2.12) and the definition of F1 and F2 we have

E (t) ≥ J (t) ≥ 1

4
γ (t)

2 −
Kp−+1
−,Ω

p− + 1
γ (t)

p−+1 −
Kk−+1
−,Γ

k− + 1
γ (t)

k−+1

+
1

4
γ (t)

2 −
Kp++1

+,Ω

p− + 1
γ (t)

p++1 −
Kk++1

+,Γ

k− + 1
γ (t)

k++1
= F1 (γ (t)) + F2 (γ (t)) , t ≥ 0,

(4.15)

where

γ (t) =

√
l ‖∇u‖22 +

b

2
‖∇u‖42 + (g ◦ ∇ (u)) (t)

Now, if one considers γ (t) < λ0 = min (λ1, λ2) , then, from (4.15), we get

E (t) ≥ F1 (γ (t)) + F2 (γ (t))

> γ (t)
2

1

4
−
Kp−+1
−,Ω

p− + 1
γ (t)

p−−1 −
Kk−+1
−,Γ

k− + 1
γ (t)

k−−1


+γ (t)

2

1

4
−
Kp++1

+,Ω

p− + 1
γ (t)

p+−1 −
Kk++1

+,Γ

k− + 1
γ (t)

k+−1

 , t ≥ 0,

which together with the identities

1

2
−Kp−+1

−,Ω γ (t)
p−−1 −Kk−+1

−,Γ γ (t)
k−−1

= 0, and (4.16)

1

2
− p+ + 1

p− + 1
Kp++1

+,Ω γ (t)
p+−1 − k+ + 1

k− + 1
Kk++1

+,Γ γ (t)
k+−1

= 0 (4.17)

give

F1 (γ (t)) > c0γ (t)
2
, c0 =

{
p−−1

4(p−+1) if k− ≥ p−
k−−1

4(k−+1) if p− ≥ k−
,
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also, since p++1
p−+1 > 1 and k++1

k−+1 > 1 and from (4.17) we deduce that

0 =
1

2
− p+ + 1

p− + 1
Kp++1

+,Ω γ (t)
p+−1 − k+ + 1

k− + 1
Kk++1

+,Γ γ (t)
k+−1

≤ 1

2
−Kp++1

+,Ω γ (t)
p+−1 −Kk++1

+,Γ γ (t)
k+−1

,

therefore

−Kp++1
+,Ω γ (t)

p+−1 −Kk++1
+,Γ γ (t)

k+−1 ≥ −1

2
,

and consequently,

F2 (t) > γ (t)
2

1

4
−
Kp++1

+,Ω

p− + 1
γ (t)

p+−1 −
Kk++1

+,Γ

k− + 1
γ (t)

k+−1


> c0γ (t)

2
, c0 =

{
p−−1

4(p−+1) if k− ≥ p−
k−−1

4(k−+1) if p− ≥ k−
,

consequently

E (t) ≥ F1 (γ (t)) + F2 (γ (t)) = F (γ (t)) ≥ 2c0γ (t)
2

(4.18)

and identities (4.16), (4.17) are derived because λ1 and λ2 are the first positive
zero of the derivative function F ′1(x) and F ′2(x) respectively.

Lemma 4.2. Let (u0, u1) ∈ H1
Γ0

(Ω)×H1
Γ0

(Ω) and hypotheses (H1)-(H3) hold. Assume

further that γ (0) =
√
l ‖∇u0‖22 + b

2 ‖∇u0‖42 < λ0 and E (0) < d = min (d1,d2). Then

γ (t) =

√
l ‖∇u‖22 +

b

2
‖∇u‖42 + (g ◦ ∇ (u)) (t) < λ0, (4.19)

for all t ∈ [0, T ) .

Proof. Using (4.15) and considering E(t) is a non-increasing function, we obtain

F (γ (t)) = F1 (γ (t)) + F2 (γ (t)) ≤ E (t) ≤ E (0) < d, t ∈ [0, T ) (4.20)

In addition, from Remark 4.1 (i), we see that F is increasing in (0, λ0), decreasing
in (max (λ1, λ2) ,∞), and F → −∞ as max (λ1, λ2) → ∞. Thus, as E(0) < d, there
exist 0 ≤ λ′3 ≤ λ0 ≤ λ3 such that F (λ′3) = F (λ3) = E (0). Besides, through the
assumption γ (0) < λ0, we observe for t = 0 that

F (γ (0)) ≤ E (0) = F (λ′3) .

This implies that γ (0) ≤ λ′3. Next, we will prove that

γ (t) ≤ λ′3, t ∈ [0, T ) . (4.21)

To establish (4.21), we reason by absurd. Suppose that (4.21) does not hold, then
there exists t∗ ∈ (0, T ) such that γ(t∗) > λ′3.
Case 1. If λ′3 < γ(t∗) < λ0, then

F (γ(t∗)) > F (λ′3) = E (0) ≥ E (t∗) .

This contradicts (4.20).
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Case 2. If γ(t∗) ≥ λ0, then by continuity of γ(t), there exists 0 < t1 < t∗ such that

λ′3 < γ(t1) < λ0,

then

F (γ(t1)) > F (λ′3) = E (0) ≥ E (t1) .

This is also a contradiction of (4.20). Thus, we have proved (4.21). �

Theorem 4.3. Under the hypotheses of Lemma 4.2 the problem (1.1)-(1.4) have a
global solution.

Proof. It follows from (4.19), (4.18) and (4.15) that

1

2
|ut|2 + 2c0γ (t)

2 ≤ 1

2
|ut|2 + F (γ (t)) ≤ 1

2
|ut|2 + J (t) = E (t) < E (0) < d. (4.22)

Thus, we establish the boundedness of ut in L2(Ω) and the boundedness of u in H1
Γ0

.
Moreover, from (2.13), (2.14) and (4.22), we also obtain∫

Ω

1

p (x) + 1
|u|p(x)+1

dx+

∫
Γ1

1

k (x) + 1
|u|k(x)+1

dΓ

≤ 1

p− + 1
max

(∫
Ω

|u|p
++1

dx,

∫
Ω

|u|p
−+1

dx

)
+

1

k− + 1
max

(∫
Γ1

|u|k
++1

dΓ,

∫
Γ1

|u|k
−+1

dΓ

)
≤ 1

p− + 1
max

(
Bp

++1 |∇u|p
+−1

, Bp
−+1 |∇u|p

−−1
)
|∇u|2

+
1

k− + 1
max

(
Bk

++1
∗ |∇|k

+−1
, Bk

−+1
∗ |∇u|k

−−1
)
|∇u|2

≤ Ll |∇|2 ≤ L

2c0
E (t) <

L

2c0
E (0) <

L

2c0
d

which implies that the boundedness of u in Lp(.)+1(Ω) and in Lk(.)+1(Γ1) with

L =
1

l

(
1

p− + 1
max

(
Bp

++1

(
E (0)

2lc0

)p+−1

, Bp
−+1

(
E (0)

2lc0

)p−−1
))

+
1

l

(
1

k− + 1
max

(
Bk

++1
∗

(
E (0)

2lc0

)k+−1

, Bk
−+1
∗

(
E (0)

2lc0

)k−−1
))

.

Hence, it must have T =∞. �

Now, we shall investigate the asymptotic behavior of the energy function E(t).
First, let us define the perturbed modified energy by

G (t) = ME (t) + εΦ (t) + Ψ (t) (4.23)

where

Φ (t) =

∫
Ω

utudx+
σ

4
‖∇u(t)‖42 , (4.24)



Existence and uniform decay rates of solutions 629

Ψ (t) =

∫
Ω

ut

∫ t

0

g (t− s) (u (s)− u (t)) dsdx, (4.25)

and M , ε are some positive constants to be specified later.
In order to prove the main theorem, we recall the following lemmas.

Lemma 4.4. There exist two positive constants β1 and β2 such that

β1E (t) ≤ G (t) ≤ β2E (t) (4.26)

relation holds, for ε > 0 small enough while M > 0 is large enough.

Proof. By Hölder’s and Young’s inequalities, (2.9) and (2.12), we deduce that

|G (t)−ME (t)| ≤ ε |Φ (t)|+ |Ψ (t)|

≤ ε+ 1

2
|ut|2 +

εB2

2
|∇u|2 +

σε

4
|∇u|4 +

1

2

∫
Ω

(∫ t

0

g (t− s) (u (s)− u (t)) ds

)2

dx

≤ ε+ 1

2
|ut|2 +

εB2

2
|∇u|2 +

σε

4
|∇u|4 +

B2 (m3 − l)
2

(g � ∇u) (t)

≤ c1
(

1

2
|ut|2 + 2c0

(
l |∇u|2 + (g � ∇u) (t) +

b

2
|∇u|4

))
,

where

c1 = max

(
ε+ 1,

εB2

8c0l
,
B2 (m3 − l)

8c0l
,
σε

8bc0

)
.

Employing (4.22) and choosing ε > 0 small enough and M sufficiently large, there
exist two positive constants β1 and β2 such that

β1E (t) ≤ G (t) ≤ β2E (t) . �

Lemma 4.5. Assume that the hypotheses of Lemma 4.2 be fulfilled. Furthermore, if
E(0) is small enough, then, for any t0 > 0, the functional G(t) verifies, along solution
of (1.1)-(1.4) and for t ≥ t0,

G′ (t) ≤ −α1E (t) + α2 (g � ∇u) (t) + α3

∫
Γ1

h2 (ut) dΓ− α4E (0)E′ (t) (4.27)

where αi, i = 1, ..., 4 are some positive constants.

Proof. In the following, we estimate the derivative of G(t). From (4.24) and (1.1)-
(1.4), we have

Φ′ (t) = |ut|2 −
(
m3 + b |∇u|2

)
+

∫
Ω

∇u (t)

∫ t

0

g (t− s)∇u (s) dsdx−
∫

Γ1

uh (ut) dΓ

+

∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ. (4.28)

Employing Hölder’s inequality, Young’s inequality, (2.14) and (2.9), the third and
fourth terms on the right-hand side of (4.28) can be estimated as follows, for η, δ > 0,∣∣∣∣∫

Ω

∇u (t)

∫ t

0

g (t− s)∇u (s) dsdx

∣∣∣∣ ≤ (η +m3 − l) |∇u|2 +
(m3 − l)

4η
(g � ∇u) (t) ,

(4.29)
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and ∣∣∣∣∫
Γ1

uh (ut) dΓ

∣∣∣∣ ≤ δB2
∗ |∇u|

2
+

1

4δ

∫
Γ1

h2 (ut) dΓ. (4.30)

A substitution of (4.29)-(4.30) into (4.28) yields

Φ′ (t) = |ut|2 −
(
−η + l − δB2

∗
)
|∇u|2 +

(m3 − l)
4η

(g � ∇u) (t)−
∫

Γ1

uh (ut) dΓ

+
1

4δ

∫
Γ1

h2 (ut) dΓ +

∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ.

Letting η = l
2 > 0 and δ = l

4B2
∗

in above inequality, we obtain

Φ′ (t) ≤ |ut|2 −
l

4
|∇u|2 +

(m3 − l)
2l

(g � ∇u) (t)−
∫

Γ1

uh (ut) dΓ (4.31)

+
B2
∗
l

∫
Γ1

h2 (ut) dΓ +

∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ.

For estimate Ψ′(t), taking the derivative of Ψ(t) in (4.25) and using (1.1)-(1.4), we
obtain

Ψ′ (t) =

∫
Ω

(
m3 + b |∇u|2

)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

+

∫
Ω

(
σ

∫
Ω

∇u∇utdx
)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

−
∫

Ω

(∫ t

0

g (t− s)∇u (s) ds

)(∫ t

0

g (t− s) (∇u (t)−∇u (s)) ds

)
dx

+

∫
Γ1

h (ut)

∫ t

0

g (t− s) (u (t)− u (s)) dsdΓ

−
∫

Γ1

|u|k(x)−1
u

∫ t

0

g (t− s) (u (t)− u (s)) dsdΓ

−
∫

Ω

|u|p(x)−1
u

∫ t

0

g (t− s) (u (t)− u (s)) dsdx

−
∫

Ω

ut

∫ t

0

g′ (t− s) (u (t)− u (s)) dsdx−
(∫ t

0

g (s) ds

)
|ut|2 . (4.32)

Similar to deriving (4.31), in what follows we will estimate the right-hand side of
(4.32). Using Young’s inequality, Hölder’s inequality,

|∇u|2 ≤ E (0)

2lc0
by (4.22),

E′ (t) ≤ −σ
(

1

2

d

dt
‖∇u(t)‖22

)2

by (4.6),
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and applying (2.14) and (2.9), we have, for δ > 0,∣∣∣∣∫
Ω

(
m3 + b |∇u|2

)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

∣∣∣∣
≤

∣∣∣∣∫
Ω

(
m3 +

b

2c0
E (0)

)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

∣∣∣∣
≤ δ |∇u|2 +

m3 − l
4δ

(
m3 +

b

2c0
E (0)

)2

(g � ∇u) (t) , (4.33)

∣∣∣∣∫
Ω

(
σ

∫
Ω

∇u∇utdx
)
∇u (t)

∫ t

0

g (t− s) (∇u (t)−∇u (s)) dsdx

∣∣∣∣
≤ σ2

(∫
Ω

∇u∇utdx
)2

l |∇u|2 +
1

4l

∫
Ω

(∫ t

0

g (t− s) (∇u (t)−∇u (s)) ds

)2

dx

≤ −σ
2c0

E (0)E′ (t) +
m3 − l

4δ
(g � ∇u) (t) , (4.34)

∣∣∣∣∫
Ω

(∫ t

0

g (t− s)∇u (s) ds

)(∫ t

0

g (t− s) (∇u (t)−∇u (s)) ds

)
dx

∣∣∣∣
≤ 2δ (m3 − l)2 |∇u|2 +

(
2δ +

1

4δ

)
(m3 − l) (g � ∇u) (t) , (4.35)

and ∣∣∣∣∫
Γ1

h (ut)

∫ t

0

g (t− s) (u (t)− u (s)) dsdΓ

∣∣∣∣ (4.36)

≤ 1

2

∫
Γ1

h2 (ut) dΓ +
(m3 − l)B2

∗
2

(g � ∇u) (t) .

As for the the fifth and sixth terms on the right-hand side of (4.32), utilizing Hölder’s
inequality, Young’s inequality, (2.9), (2.13), (2.14) and (4.22), we obtain,∣∣∣∣∫

Γ1

|u|k(x)−1
u

∫ t

0

g (t− s) (u (t)− u (s)) dsdΓ

∣∣∣∣
≤ δmax

(
‖u‖2k

+

2k+,Γ1
, ‖u‖2k

−

2k−,Γ1

)
+

(m3 − l)B2
∗

4δ
(g � ∇u) (t)

≤ δmax
(
B2k+

∗ |∇u|2k
+

, B2k−

∗ |∇u|2k
−)

+
(m3 − l)B2

∗
4δ

(g � ∇u) (t) (4.37)

≤δmax

(
B2k+

∗

(
E (0)

2lc0

)k+−1

, B2k−

∗

(
E (0)

2lc0

)k−−1
)
|∇u|2 +

(m3 − l)B2
∗

4δ
(g � ∇u) (t)
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and ∣∣∣∣∫
Ω

|u|p(x)−1
u

∫ t

0

g (t− s) (u (t)− u (s)) dsdx

∣∣∣∣ (4.38)

≤ δmax
(
B2p+

|∇u|2p
+

, B2p− |∇u|2p
−)

+
(m3 − l)B2

4δ
(g � ∇u) (t)

≤δmax

(
B2p+

(
E (0)

2lc0

)p+−1

, B2p−
(
E (0)

2lc0

)p−−1
)
|∇u|2 +

(m3 − l)B2

4δ
(g � ∇u) (t) .

Exploiting Hölder’s inequality, Young’s inequality and (H1) to estimate the seventh
term, we have∣∣∣∣∫

Ω

ut

∫ t

0

g′ (t− s) (u (t)− u (s)) dsdx−
(∫ t

0

g (s) ds

)
|ut|2

∣∣∣∣ (4.39)

≤ δ |ut|2 −
g (0)B2

4δ
(g′ � ∇u) (t) .

Then, combining these estimates (4.33)-(4.39), (4.32) becomes

Ψ′ (t) ≤ −
(∫ t

0

g (s) ds− δ
)
|ut|2 + c2δ |∇u|2 + c3 (g � ∇u) (t) (4.40)

−g (0)B2

4δ
(g′ � ∇u) (t) +

1

2

∫
Γ1

h2 (ut) dΓ− σ

2c0
E (0)E′ (t) ,

where

c2 = 1 + 2 (m3 − l)2
+ max

(
B2k+

∗

(
E (0)

2lc0

)k+−1

, B2k−

∗

(
E (0)

2lc0

)k−−1
)

+ max

(
B2p+

(
E (0)

2lc0

)p+−1

, B2p−
(
E (0)

2lc0

)p−−1
)
,

and

c3 = (m3 − l)

1 +
(
m3 + bE(0)

2lc0

)2

4δ
+ 2δ +

1

4l
+
B2
∗

2
+
B2 +B2

∗
4δ

 .

Since g is continuous and g(0) > 0, then there exists t0 > 0 such that,

∫ t

0

g (s) ds ≥
∫ t0

0

g (s) ds = g0, ∀t ≥ t0.
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Hence, we conclude from (4.23), (4.6), (4.31), and (4.40) that

G′ (t) = ME′ (t) + εΦ′ (t) + Ψ′ (t)

≤ −
(
M

2
− g (0)B2

4δ

)
(− (g′ � ∇u) (t))− (g0 − δ − ε) |ut|2 (4.41)

+

(
c2δ −

εl

4

)
|∇u|2 +

(
c3 +

(m3 − l) ε
2l

)
(g � ∇u) (t)

+

(
1

2
+

2B2
∗ε

l

)∫
Γ1

h2 (ut) dΓ− σ

2c0
E (0)E′ (t)

+ε

(∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ

)
.

At this point, we choose ε > 0 small enough so that Lemma4.4 holds and ε < g0

2 .
Once ε is fixed, we choose δ to satisfy

δ < min

(
g0

4
,
εl

8c2

)
and then pick M sufficiently large such that M > g(0)B2

2δ . Thus, for all t ≥ t0, we
arrive at

G′ (t) ≤ −εl
8
|∇u|2 − g0

4
|ut|2 + c4 (g � ∇u) (t) + c5

∫
Γ1

h2 (ut) dΓ

−c6E (0)E′ (t) + ε

(∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ

)
≤ − εl

4 (m3 − g0)

1

2

(
m3 −

∫ t

0

g (s) ds

)
|∇u|2 − g0

4
|ut|2

+c4 (g � ∇u) (t) + c5

∫
Γ1

h2 (ut) dΓ− c6E (0)E′ (t)

+ε

(∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ

)
.

with some positive constants ci, i = 4, 5, 6. Additionally, observing the fact that
εl

4(m3−g0) < g0 due to ε < g0 and l
(m3−g0) < 1 and employing the definition of E(t) by

(4.3) and using |∇u|2 ≤ E(0)
2lc0

by (4.22), we deduce that

G′ (t) ≤ −c7E (t) +
c7b

4
|∇u|4 +

(
c4 +

c7
2

)
(g � ∇u) (t)

+c5

∫
Γ1

h2 (ut) dΓ− c6E (0)E′ (t) + εc8

(∫
Ω

|u|p(x)+1
dx+

∫
Γ1

|u|k(x)+1
dΓ

)
≤ −α1E (t) +

(
c4 +

c7
2

)
(g � ∇u) (t) + c5

∫
Γ1

h2 (ut) dΓ− c6E (0)E′ (t) ,

where

c7 =
εl

4 (m3 − g0)
,
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c8 = max

(
1− l

4 (p− + 1) (m3 − g0)
, 1− l

4 (k− + 1) (m3 − g0)

)
> 0

and

α1 =c7−

 c7b

8l2c0
E (0) + ε

c8
2lc0


max

(
Bp

++1
(
E(0)
2lc0

) p+−1

2

, Bp
−+1

(
E(0)
2lc0

) p−−1

2

)
,

max

(
Bk

++1
∗

(
E(0)
2lc0

) k+−1

2

, Bk
−+1
∗

(
E(0)
2lc0

) k−−1

2

)

 .

Hence, if E(0) is small enough, then not only the condition E(0) < d is satisfied, but
also α1 > 0 is assured. Therefore, we have, for t ≥ t0,

G′ (t) ≤ −α1E (t) + α2 (g � ∇u) (t) + α3

∫
Γ1

h2 (ut) dΓ− α4E (0)E′ (t) , (4.42)

where αi, i = 1, ..., 4 are all positive constants. This completes the proof. �

Before stating our main result, we need to recall that if ϕ is a proper convex
function from R to R ∪ {∞}, then its convex conjugate ϕ∗ is defined as

ϕ∗ (y) = sup
x∈R
{xy − ϕ (x)} (4.43)

Now, we are in a position to state our main result by adopting and modifying the
arguments in [18, 39, 20]. We consider the following partition of Γ1

Γ+
1 = {x ∈ Γ1 | |ut| > r} , Γ−1 = {x ∈ Γ1 | |ut| ≤ r} .

Theorem 4.6. Assume that the conditions of 4.5 are valid, then, for each t0 > 0 and
k1, k2 and ε0 are positive constants, the solution energy of (1.1)-(1.4) satisfies

E (t) ≤ k2H
−1
1

(
k1

∫ t

0

ζ (s) ds

)
, t ≥ t0 (4.44)

where

H1 (t) =

∫ 1

t

1

H2 (s)
ds (4.45)

and

H2 (t) =

{
t, if H is linear on [0, r] ,

tH ′ (ε0t) , if H ′ (0) = 0 and H ′′ > 0 on (0, r] .
(4.46)

Proof. The global existence of solution u of (1.1)-(1.4) is guaranteed directly by Theo-
rem 4.3. Next, we consider the following two cases: (i) H is linear on [0, r] and (ii)
H ′(0) = 0 and H ′′ > 0 on (0, r].
Case 1. H is linear on [0, r]. In this case, there exists α′1 > 0 such that |h(s)| ≤ α′1|s|,
for all s ∈ R. By (4.6), we have∫

Γ1

h2 (ut) dΓ ≤ α′1
∫

Γ1

uth (ut) dΓ ≤ −α′1E′ (t) ,

which together with (4.42) implies that

(G (t) + c9E (t))
′ ≤ −α1H2 (E (t)) + α2 (g � ∇u) (t) , (4.47)
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where H2(s) = s and c9 = α′1α3 + α4E(0).
Case 2. H ′(0) = 0 and H ′′ > 0 on (0, r]. In this case, we first estimate

∫
Γ1
h2 (ut) dΓ on

the right-hand side of (4.42). Given (4.2), noting that H−1 is concave and increasing
and using the well-known Jensen’s inequality and (4.6), we deduce that∫

Γ1

h2 (ut) dΓ =

∫
Γ1

h2 (ut) dΓ +

∫
Γ1

h2 (ut) dΓ

≤ M1

∫
Γ+

1

uth (ut) dΓ +

∫
Γ−1

h2 (ut) dΓ

≤ −M1E
′ (t) +

∫
Γ−1

H−1 (uth (ut)) dΓ

≤ −M1E
′ (t) +

1

c10
H−1

c10

∫
Γ−1

(uth (ut)) dΓ


≤ −M1E

′ (t) +
1

c10
H−1 (−c10E

′ (t)) ,

where c10 = 1

|Γ−1 |
. Hence, (4.42) becomes

G′1 (t) ≤ −α1E (t) + α3

∣∣Γ−1 ∣∣H−1 (−c10E
′ (t)) + α2 (g � ∇u) (t) , ∀t ≥ t0, (4.48)

where

G1 (t) = G (t) + (M1α3 + α4E (0))E (t) . (4.49)

Now, we define

G2 (t) = H ′ (ε0E (t))G1 (t) + βE (t) , (4.50)

where ε0 > 0 and β > 0 to be determined later. Then, using E′(t) ≤ 0, H ′′(t) ≥ 0,
and (4.48), we obtain

G′2 (t) = ε0E
′ (t)H ′′ (ε0E (t))G1 (t) +H ′ (ε0E (t))G′1 (t) + βE′ (t) (4.51)

≤ −α1H
′ (ε0E (t))E (t) + α2H

′ (ε0E (t)) (g � ∇u) (t)

+c11H
′ (ε0E (t))H−1 (−c10E

′ (t)) + βE′ (t) .

To estimate the fourth term in the right hand side of (4.51), let H∗ be the conjugate
function of the convex function H defined by (4.43), then

ab ≤ H∗ (a) +H (b) for a, b ≥ 0. (4.52)

Moreover, due to the argument given in [6], it holds that

H∗ (s) = s (H ′)
−1

(s)−H
(

(H ′)
−1

(s)
)

for s ≥ 0. (4.53)

Further, using (4.53) and noting that H ′(0) = 0, (H ′)
−1

is increasing and H is also
increasing yield

H∗ (s) ≤ s (H ′)
−1

(s) , s ≥ 0. (4.54)



636 Abita Rahmoune and Benyattou Benabderrahmane

Taking H ′ (ε0E (t)) = a and H−1 (−c10E
′ (t)) = b in (4.51), applying (4.54) and

(4.52), and noting that 0 ≤ H ′ (ε0E (t)) ≤ H ′ (ε0E (0)) due to H ′ is increasing, to
obtain

G′2 (t) ≤ −α1H
′ (ε0E (t))E (t) + c11H

∗ (H ′ (ε0E (t)))

+c13 (g � ∇u) (t) + (β − c12)E′ (t)

≤ − (α1 − c11ε0)H ′ (ε0E (t))E (t) + c13 (g � ∇u) (t) + (β − c12)E′ (t)

with c12 = c10c11 and c13 = α2H
′ (ε0E (0)) > 0. Thus, choosing 0 < c11ε0 < α1,

β > c12 and using E′(t) ≤ 0 by (4.6), we have

G′2 (t) ≤ −c14H
′ (ε0E (t))E (t) + c13 (g � ∇u) (t) = −c14H2 (E (t)) + c13 (g � ∇u) (t) ,

(4.55)
where H2(s) = sH ′(ε0s) and c14 is a positive constant.

Let

F1 (t) =

{
G(t) + c9E(t), if H is linear on [0, r],
G2(t), if H ′(0) = 0 and H ′′ > 0 on (0, r].

Then, by Lemma 4.4 and the definition of G2 by (4.49)-(4.50), there exist β′1, β′2 > 0
such that

β′2E (t) ≤ F1 (t) ≤ β′1E (t) , (4.56)

which is equivalent to E(t), and from (4.47) and (4.55), we have

F ′1 (t) ≤ −c15H2 (E (t)) + c16 (g � ∇u) (t) , t ≥ t0, (4.57)

where c15 and c16 denote some positive constants. In addition, using (4.56) and ξ(t) ≤
ξ(0) by (H2) and for l1 = β′1ξ(0) +2c16 > 0, we see that

ξ(t)F1 (t) + 2c16E (t) ≤ l1E (t) , t ≥ t0, (4.58)

Now, we define

G3 (t) = ε1 [ξ(t)F1 (t) + 2c16E (t)] , 0 < l1ε1 < r, (4.59)

which is equivalent to E(t) by (4.56). Thanks to (4.57), (2.10) and (4.6), we arrive at

G′3 (t) = ε1 [ξ′(t)F1 (t) + ξ(t)F ′1 (t) + 2c16E
′ (t)]

≤ −c15ε1H2 (E (t)) ξ(t) + c16ε1ξ(t) (g � ∇u) (t) + 2c16ε1E
′ (t)

≤ −c15ε1H2 (E (t)) ξ(t)− c16ε1 (g′ � ∇u) (t) + 2c16ε1E
′ (t)

≤ −c15ε1H2 (E (t)) ξ(t).

Exploiting the fact that H2 is increasing, using (4.58) and using the fact that 0 <
l1ε1 < r by (4.59), we obtain

G′3 (t) ≤ −c15ε1ξ(t)H2

(
1

l1
(ξ(t)F1 (t) + 2c16E (t))

)
≤ −c15ε1ξ(t)H2 (ε1 (ξ(t)F1 (t) + 2c16E (t))) = −c15ε1ξ(t)H2 (G3 (t)) .

Using that H ′1 (t)H2 (t) = −1 (see (4.45)), we see that

G′3 (t)H ′1 (G3 (t)) ≥ c15ε1ξ(t), t ≥ t0.
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Integrating this over (t0, t) which implies, having in mind that H−1
1 is decreasing on

(0, r], that

G3 (t) ≤ H−1
1

(
H1 (G3 (0)) + c15ε1

∫ t

0

ξ(s)ds− c15ε1

∫ t0

0

ξ(s)ds

)
≤ H−1

1

(
c15ε1

∫ t

0

ξ(s)ds

)
,

where we need ε1 > 0 sufficiently small so that H1 (G3 (0))− c15ε1

∫ t0
0
ξ(s)ds > 0.

Consequently, from the equivalent relation of G3 and E yields

E (t) ≤ k2H
−1
1

(
k1

∫ t

0

ξ (s) ds

)
, t ≥ t0,

where k1 and k2 are positive constants. Hence, this completes the proof. �

Remark 4.7. Because lim
t→0

H1(t) =∞ (see (4.46)), thus, if
∫∞

0
ξ (s) ds =∞, we get the

stability of system (1.1)-(1.4), in the other words, lim
t→+∞

E(t) = 0.
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geometries
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Abstract. The aim of this paper is to study the cycles of EPH geometries through
their homogeneous gradient-type deformations recently introduced by the author.
A special topic is the orthogonality between a given cycle C and its deformations
as well as between C and its rotated version R(C).
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1. Introduction

It is well-known that up to isomorphisms there are three 2-dimensional real
algebras: C = R[X]/(x2 + 1), D = R[X]/(x2) and A = R[X]/(x2 − 1). The theory
of the first algebra is richer than the following two, a fact corresponding to the field
property of C. Inspired by the terminology of [6, p. 1458] or [7, p. 2] we call EPH
geometries these spaces and a common image consists in A(σ) := R[X]/(x2−σ) with
σ := i2 ∈ {−1, 0, 1} respectively and i the corresponding imaginary unit.

The recent papers [2] and [5], devoted to Finsler geometry, start with a defor-
mation of a conic Γ obtained by deforming the gradient vector field for the quadratic
form defining Γ. These deformations are inspired by the scaling (linear) transforma-
tion of Computer Graphics: (x, y) ∈ R2 → (λx · x, λy · y) ∈ R2, following [8, p. 136].
Using the well-known invariants from the Euclidean geometry of conics we obtained
the classifications of the new conics which depends on two scalars denoted α and β,
having the role of λx, λy. The new conic of [2], denoted Γ̃, is a degenerate one and

we could interpret the map Γ→ Γ̃ as a ”curve shortening” transformation. The same
fact holds for the new conic of [5], denoted Γm, if the initial conic Γ does not have
linear terms.

In this note we use these classes of gradient-type deformation to a main object
of EPH geometries, called cycle, which is a particular case of conic sections, invariant
under the action of the group SL(2,R) through Mobiüs transformations. A detailed
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analysis of the deformed cycles depends on the vanishing or not of σ as well as the
vanishing or not of a parameter k separating the circles to lines. Also, we discuss the
transformation of a square matrix associated to any cycle C.

Moreover, we treat these deformations in terms of A(σ)-numbers. In the second
section we study the orthogonality of a given cycle C with its deformations restricting
to the σ 6= 0 case. In the last section we introduce a natural rotation R in A(σ) and
we study the relationships between a given C and its rotated cycle R(C).

2. The cycles of EPH geometries and their gradient-type
deformations

In the two-dimensional Euclidean space R2 let us consider the conic Γ implicitly
defined by f ∈ C∞

(
R2
)

as: Γ = {(x, y) ∈ R2 | f (x, y) = 0} where f is a quadratic

function of the form f(x, y) = r11x
2 + 2r12xy + r22y

2 + 2r10x + 2r20y + r00 with
r2
11 + r2

12 + r2
22 6= 0 for the non-degenerate conics.

It is well-known that the gradient vector field of f , namely

∇f =

(
fx =

∂f

∂x
, fy =

∂f

∂y

)
,

gives important properties of Γ; for example, the centers of Γ are exactly the critical
points of ∇f . Inspired by this fact we introduced recently:

Definition 2.1. Fix the scalars α, β with αβ 6= 0.
i) ([2, p. 86-87], [3, p. 60]) The (α, β)-deformation of Γ is the conic:

Γ̃ = Γα,β : α

[
1

2
fx

]2

+ β

[
1

2
fy

]2

= 0. (2.1)

ii) ([5, p. 102]) The (α, β)-mixed deformation of Γ is the conic:

Γm = Γmα,β : αy

[
1

2
fx

]
+ βx

[
1

2
fy

]
= 0. (2.2)

A main object in EPH geometries is given in [6, p. 1459], [7, p. 4]:

Definition 2.2. The common name cycle will be used to denote circles, parabolas and
hyperbolas (as well as straight lines as their limits) in the respective EPH geometry.

An analytical study of a cycle can be done via the general equation given in [6, p.
1460] or [7, p. 6]:

C : f(u, v) := k(u2 − σv2)− 2lu− 2nv +m = 0 (2.3)

and hence C is a conic section completely defined by the data (k, l, n,m) ∈ P3. As
usual, if k = 0 then C can be called a degenerate cycle. In fact, in the cited works C
is identified with the matrix:

Csσ̆ :=

(
l + ı̆sn −m
k −l + ı̆sn

)
(2.4)
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where s is a new parameter, usually equal to ±1, and a new imaginary unit ı̆. Its
square σ̆ := ı̆2 belongs again to {−1, 0, 1} but independently of σ.

Since C is a conic section we can apply the ideas of Definition 2.1 to introduce
the gradient-type deformations of a cycle:{

C̃ = Cα,β : α(ku− l)2 + β(kσv + n)2 = 0,
Cm : αv(ku− l)− βu(kσv + n) = 0

(2.5)

which yields immediately:

Proposition 2.3. Since α 6= 0 we have:
i) C̃ is a cycle if and only if σ(α+ σβ) = 0,
ii) Cm is a cycle if and only if k(α− βσ) = 0. In this case Cm is the straight line:

(βn)u+ (αl)v = 0.

Example 2.4. In the following we discuss the remarkable particular cases of the result
above.
i) Suppose σ = 0. Then C̃ is the cycle:

C̃ : (ku− l)2 +
β

α
n2 = 0 (2.6)

with the matrix:

C̃sσ̆ =

(
kl −(l2 + β

αn
2)

k2 −kl

)
. (2.7)

The degenerate case of an initial line i.e. k = 0 is possible if and only if αl2 +βn2 = 0
which is relation (2.19) below. If k 6= 0 then, due to the projective character of the
coefficients of a cycle, we get the matrix:

C̃sσ̆ =

(
l − 1

k (l2 + β
αn

2)
k −l

)
. (2.8)

If β
α > 0 then C̃ is a void set for n 6= 0 while n = 0 gives the deformation:

C : ku2 − 2lu+m = 0→ C̃ : ku = l (line : k 6= 0). (2.9)

If β
α < 0 then we have the lines:

C̃ : ku− l = ±
√
−β
α
n. (2.10)

Cm is a cycle if and only if k = 0 which means that we have the mixed deformation:

C : 2lu+ 2nv −m = 0 (line)→ Cm : (βn)u+ (αl)v = 0 (line). (2.11)

If β = −α then these two lines are Euclidean orthogonal. From the matrix point of
view the deformation (2.11) means:

Csσ̆ =

(
l + ı̆sn −m

0 −l + ı̆sn

)
→ Cm,sσ̆ =

(
−βn+ ı̆s(−αl) 0

0 βn+ ı̆s(−αl)

)
.

(2.12)

ii) For σ 6= 0 we have that C̃ is a cycle only for β = −ασ = −σα and then:

C̃ :
[
k(u+ iv)− l +

n

i

] [
k(u− iv)− l − n

i

]
= 0. (2.13)
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Hence, if k 6= 0 then C̃ consists in a single point: M = ( lk ,−
n
kσ ). Let us point out that

for σ 6= 0 we have 1
σ = σ and hence M = ( lk ,−σ

n
k ) which is exactly the e/h-center

of the initial cycle C, as it is introduced in formula (7) of [6, p. 1460] or [7, p. 7]. In
conclusion, for σ · k 6= 0 we have the deformation:

C → C̃ = its center. (2.14)

The matrix corresponding to C̃ is:

C̃sσ̆ =

(
k(l + ı̆sn) n2σ − l2

k2 k(−l + ı̆sn)

)
(2.15)

which for k = 0 becomes:

C̃sσ̆ =

(
0 n2σ − l2
0 0

)
(2.16)

while for k 6= 0, due to the projective character of the parameters of a cycle:

C̃sσ̆ =

(
l + ı̆sn 1

k (n2σ − l2)
k −l + ı̆sn

)
. (2.17)

The same case σ · k 6= 0 for ii) of proposition above gives β = α
σ = σα and Cm is the

line:
Cm : nu+ (σl)v = 0. (2.18)

For elliptic geometry the condition β = −ασ = −σα becomes the equality α = β
discussed in [2, p. 89] and [3, p. 62]; it can be called the diagonal case. Remark that

the elliptic center C̃ of (2.14) is obtained in [6, p. 1461] or [7, p. 8] from the vanishing
condition detCs−1 = 0.

Remark 2.5. The cycle Cm contains the origin (u, v) = (0, 0) = O. This fact holds for

C̃ if and only if:
αl2 + βn2 = 0. (2.19)

With the discussion of above particular cases it results:
i) for σ = 0 the only available case is β

α < 0 yielding:

l± = ±
√
−β
α
n. (2.20)

ii) for σ 6= 0 since β = −ασ = −σα we get that for the elliptic geometry the only
possible case is O = M the center of C while for the hyperbolic geometry:

l± = ±n. (2.21)

The gradient-type deformation of a standard (i.e. Euclidean) ellipse is discussed in
example 2.2i) of [2, p. 87]. Let us point out that (2.20) and (2.21) coincide for β = −α
which for the case ii) correspond to the hyperbolic geometry. Hence the above cases

i) and ii) are completely different, both from σ and the sign of β
α points of view.

Returning to the general case of α and β we treat the considered deformations
within A(σ) following the model of [3] and [5]. More precisely, with the usual notation
z = u+ iv ∈ A(σ) we derive the expression of C:

C : F (z, z̄) := kzz̄ +Bz + B̄z̄ +m = 0, B := −l − n

σ
i ∈ A(σ) (σ 6= 0). (2.22)
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For σ = 0 we have: B = −l − n
i . The inverse relationship between f and F is:

l = −<B, n = −σ=B (2.23)

with < and = respectively the real and imaginary part. By replacing in (2.5) the usual
relations:

u =
1

2
(z + z̄), v =

1

2i
(z − z̄) (2.24)

we get:{
C̃ : α[k(z + z̄)− 2l]2 + β[ki(z − z̄) + 2n]2 = 0,
Cm : α(z − z̄)[k(z + z̄)− 2l]− β(z + z̄)[kσ(z − z̄) + 2ni] = 0.

(2.25)

For the case σ 6= 0 we follow the discussion of Example 2.4ii and then:{
C̃ : [k(z + z̄)− 2l]2 − σ[ki(z − z̄) + 2n]2 = 0,
Cm : (z − z̄)[k(z + z̄)− 2l]− σ(z + z̄)[kσ(z − z̄) + 2ni] = 0.

(2.26)

The second equation (2.26) reduces to:

Cm : Bz − B̄z̄ = 0↔ Bz ∈ R (2.27)

and hence, for B 6= 0 we have the line: z = B̄ · R.
We finish this section by applying to the cycle C (not containing the origin, hence
m 6= 0) the inversion J : z ∈ A(σ)∗ → 1

z = w. We get a new cycle, expressed in w:

J(C) : mww̄ + B̄w +Bw̄ + k = 0 (2.28)

which means J : (k, l, n,m)→ (m, l,−n, k). With (2.26)-(2.27) its gradient deforma-
tions for σ 6= 0 are:{

J̃(C) : [m(w + w̄)− 2l]2 − σ[mi(w − w̄)− 2n]2 = 0,

J(C)m : Bw̄ − B̄w = 0↔ B̄w ∈ R.
(2.29)

Again, if B 6= 0 then the second cycle from from above is the line: w = B · R.

3. Orthogonality in the geometry of cycles

In [6, p. 1462] or [7, p. 2] a Möbius-invariant (indefinite) inner product (depend-
ing on σ̆) is defined on the set of cycles through:

< Csσ̆, Ĉ
s
σ̆ >:= Tr(Csσ̆ · Ĉsσ̆) (3.1)

which yields an associated σ̆-orthogonality. Here, the bar means the conjugation with
respect to ı̆.

For our setting we derive firstly the norms of a cycle and its gradient-type de-
formations for kσ 6= 0:{

‖Csσ̆‖2 = 2(l2 − km− σ̆n2) = ‖J(C)sσ̆‖2,
‖C̃sσ̆‖2 = 2(σ − σ̆)n2, ‖Cm,sσ̆ ‖2 = 1

2 (n2 − σ̆l2).
(3.2)

Let us remark that:

det Csσ̆ = km+ σ̆n2 − l2 → ‖Csσ̆‖2 = ‖J(C)sσ̆‖2 = −2det Csσ̆. (3.3)

Secondly, we study all the possible cases of orthogonality for our setting:
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Theorem 3.1. Let σ 6= 0 and the cycle C with k 6= 0. Then:
1) C is σ̆-orthogonal to its gradient deformation C̃ if and only if:

l2 − km+ (σ − 2σ̆)n2 = 0. (3.4)

2) C is σ̆-orthogonal to its mixed-gradient deformation Cm if and only if:

(1− σσ̆)nl = 0. (3.5)

3) C̃ is σ̆-orthogonal to Cm if and only if (3.4) holds.
4) Suppose also m 6= 0. Then C is σ̆-orthogonal to J(C) if and only if:

2(l2 + σ̆n2)− k2 −m2 = 0. (3.6)

Proof. 1) A straightforward computation gives:

< Csσ̆, C̃
s
σ̆ >= l2 − km+ (σ − 2σ̆)n2. (3.7)

2) The matrix of Cm from (2.18) is:

Cm,sσ̆ =
1

2

(
n+ ı̆sσl 0

0 −n+ ı̆sσl

)
(3.8)

and then:

< Csσ̆, C
m,s
σ̆ >= (1− σσ̆)nl. (3.9)

3) The same computation as above.
4) The matrix of J(C) is:

J(C)sσ̆ :=

(
l − ı̆sn −k
m −l − ı̆sn

)
(3.10)

and:

< Csσ̆, JC
s
σ̆ >= 2(l2 + σ̆n2)−m2 − k2. (3.11)

which gives the conclusion. �

Example 3.2. Suppose σ = σ̆. Then 1 − σσ̆ = 0 since σ2 = 1 and then Cm is
both orthogonally on C and C̃. In this case C is orthogonally to C̃ if and only if
l2 − km − σ̆n2 = 0 but from the first equation (3.2) this means that ‖C‖ = 0 i.e. C
is also self-orthogonal.

Returning to the Möbius-type study of cycles we continue this section considering
some transformation of cycles. The first one is inspired by [1, p. 2706]. Let α ∈ A(σ)
with module |α| 6= 1 and consider the map Tα : A(σ)→ A(σ):

Tα(z) = z + αz̄ := w. (3.12)

It follows directly that Tα is a bijective map with the inverse:

z := T−1
α (w) =

1

1− |α|2
(w − αw̄). (3.13)

Replacing this expression of z in (2.22) we find the image of cycle C through Tα:

Tα(C) : k|w− αw̄|2 + (1− |α|2)[(B − ᾱB̄)w + (B̄ − αB)w̄ + (1− |α|2)m] = 0 (3.14)

but this curve is not a cycle for α · k 6= 0.



Gradient-type deformations of cycles in EPH geometries 647

The second transformation is a Blaschke factor Ba defined by a ∈ A(σ) with
module |a| < 1:

w := Ba(z) =
z − a
1− āz

, (3.15)

having the inverse:

z = B−a(w) =
w + a

1 + āw
. (3.16)

The Blaschke transformation of the cycle (2.22) is again a cycle:

Ba(C) : ba(k)ww̄ + ba(B)w + ba(B)w̄ + ba(m) = 0 (3.17)

with:  ba(k) = k +m|a|2 + 2<(Ba),
ba(B) = (k +m)ā+B + B̄ā2,
ba(m) = m+ k|a|2 + 2<(Ba).

(3.18)

Example 3.3. Suppose that |B| < 1 and let a = B̄. Then the Blaschke transformation
of the coefficients is:  bB̄(k) = k + (m+ 2)|B|2,

bB̄(B) = (k +m+ 1 + |B|2)B,
bB̄(m) = m+ (k + 2)|B|2.

(3.19)

The last transformation is a similarity defined by a, b ∈ A(σ) with a 6= 0:

w := Sa,b(z) = az + b, (3.20)

having the inverse:

z =
1

a
(w − b) = S 1

a ,
−b
a

(w). (3.21)

The similarity transformation of the cycle (2.22) is again a cycle:

Sa,b(C) : kww̄ + (Bā− kb̄)w + (B̄a− kb)w̄ +m|a|2 + k|b|2 − 2<(Bbā) = 0. (3.22)

If the initial cycle C is non-degenerate then we restrict to the case k = 1 due to
the projective character of the coefficients of C. Then a non-degenerate C is called
decomposable if it is a product of lines:

C : (z −B)(z̄ − B̄) = 0 (3.23)

which means that m = |B|2 = l2− σn2. A similarity preserves the class of decompos-
able cycles since its image is:

Sa,b(C) : (w − b+ aB̄)(w̄ − b̄+ āB). (3.24)

From (3.3) it follows that a decomposable cycle has:

det Csσ̆ = (σ̆ − σ)n2. (3.25)
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4. The rotation of a cycle

In this section we suppose that σ 6= 0. In A(σ) we introduce the rotation map
R : (u, v) → i · (u, v) = (σv, u); then its square is: R2 = σI. It follows that a given
cycle C has an associated rotation cycle R(C) with equation:

R(C) : k(σ2v2 − σu2)− 2lσv − 2nu+m = 0. (4.1)

A short computation gives a more simple form:

R(C) : k(u2 − σv2) + 2(σn)u+ 2lv − σm = 0 (4.2)

and then we have the deformation:

C = (k, l, n,m)→ R(C) = (k,−σn,−l,−σm). (4.3)

The general rotation of conics is treated in [4].

Remark 4.1. Concerning the compositions J ◦R and R ◦ J we have:

J ◦R(C) = (−σm,−σn, l, k), R ◦ J(C) = (m,σn,−l,−σk) (4.4)

and then J and R anti-commutes in the hyperbolic setting respectively J and R
commutes if and only if l = 0 in the complex setting: σ = −1.

In terms of associated matrix we have:

R(C)sσ̆ =

(
−σn− ı̆sl σm

k σn− ı̆sl

)
, ‖R(C)sσ̆‖2 = 2(n2 + σ̆l2 + σkm). (4.5)

Then R preserves the norm of C if and only if:

(σ + 1)km+ (σ̆ − 1)l2 + (1− σ̆)n2 = 0. (4.6)

Also, recall from section 2 that the e/h-center of C is M( lk ,−σ
n
k ) and hence its

rotation is R(M) = (−nk ,
l
k ). But the center of R(C) is M̄ = (−σnk ,

σl
k ) and then

M̄ = σR(M); these points coincide for σ = 1.
Concerning the orthogonality of this new cycle with the previous three cycles we

have:

Proposition 4.2. Let C be a cycle with k 6= 0. Then:
i) C is σ̆-orthogonal to its rotated cycle R(C) if and only if:

(σ̆ − σ)nl + (σ − 1)km = 0. (4.7)

ii) C̃ is σ̆-orthogonal to R(C) if and only if:

2(σ̆ − σ)nl + σ(n2 + km)− l2 = 0. (4.8)

iii) Cm is σ̆-orthogonal to R(C) if and only if:

σ̆l2 = n2. (4.9)

Proof. A straightforward computation gives:

< Csσ̆, R(C)sσ̆ >= 2[(σ̆ − σ)nl + (σ − 1)km], (4.10)

< C̃sσ̆, R(C)sσ̆ >= 2(σ̆ − σ)nl + σ(n2 + km)− l2, (4.11)

< Cm,sσ̆ , R(C)sσ̆ >= 2σ(σ̆l2 − n2] (4.12)

which yields the conclusion. �
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Example 4.3. Suppose that σ = σ̆ = 1. Then R(C) is orthogonal to C and:

a) is orthogonal to C̃ if and only if: l2 = n2 + km; for k = 1 this means that C is
decomposable,
b) is orthogonal to Cm if and only if: l± = ±n, which is exactly the relation (2.21).
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The size of some vanishing and critical sets

Cornel Pintea

Abstract. We prove that the vanishing sets of all top forms on a non-orientable
manifold are at least 1-dimensional in the general case and at most 1-codimen-
sional in the compact case. We apply these facts to show that the critical sets
of some differentiable maps are at least 1-dimensional in the general case and at
most 1-codimensional when the source manifold is compact.
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1. Introduction

It is well-known that the orientability of a manifold is characterized by the
existence of a top differential form which never vanishes. Therefore it is natural to
investigate the size of the vanishing sets V (θ) := {p ∈ M : θp = 0} of the top forms
θ ∈ Ωm(M) towards a measure of the deviation from orientability of the involved non-
orientable manifold M . Indeed, the complement of every vanishing set of a top form
is orientable and the smallest such vanishing sets are good candidates to measure this
deviation. In this paper we show that the top forms of non-orientable manifolds cannot
have arbitrarily small vanishing sets and apply this fact to show that some maps
cannot have arbitrarily small critical sets. For instance the zero dimensional subsets
of the non-orientable manifolds are neither vanishing sets of the top differentiable
forms, nor critical sets of any differentiable function with orientable regular set, for
the orientable option of the target manifold. Similar lower bounds for the size of the
branch locus arise due to Church and Timourian [5, 6] in the codimension cases 0,
−1 and −2. On the other hand, the critical set of a zero codimensional differentiable
map was treated before in [17], where the critical set is realised as the vanishing set
of the pull-back of a volume form on the oriented target manifold.

Note that the other extreme is well represented in the recent years, as quite some
effort oriented towards the maps with finite critical sets has been done, not only for
one dimensional, but also for higher dimensional target manifolds [1, 2, 3, 8, 9, 10].
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The paper is organized as follows: In the second and third sections we quickly
review the tools and emphasize the preparatory results needed to prove the main
results of the paper, which are also stated here. In the fourth section we prove the
main results of the paper, the first of which concerns the surjectivity of the group
homomorphism induced, at the level of fundamental groups, by the inclusion M \A ↪→
M , where Mm (m ≥ 2) is a manifold and A ⊂ M is a closed zero dimensional set.
As a consequence we observe that the dimension of the critical set of a zero or lower
codimensional map, whose target manifold is orientable and the source manifold is
non-orientable, is at least 1-dimensional. Relying, all over this paper, on the inductive
definition of the ’dimension’ [7, 13], we prove that the dimension of the critical set of a
zero or lower codimensional map, whose target manifold is compact orientable and the
source manifold Mn is compact non-orientable, is at least (n− 1)-dimensional. Recall
however that the small and large inductive dimensions are equal to each other and
both are equal with the covering dimension whenever the evaluated space is separable
[7, p. 65]. Since differential manifolds are metrizable metric spaces, it follows that the
inductive dimensions of a certain subset of a given manifold are equal to each other
and both are equal with the covering dimension of that subset.

2. Main results

In order to achieve such results we rely on the characterization of orientability
of a connected differential manifold M by means of the orientation character, i.e. the
group homomorphism w

M
: π1(M) −→ C2 := {−1, 1} defined by

w
M

([γ]) =

{
1 if γ̃(1) = x̃1
−1 if γ̃(1) = x̃−1,

where γ̃ : [0, 1] −→ M̂ is the lift of the loop γ : [0, 1] −→ M , γ(0) = γ(1) = x, with

γ̃(0) = x̃1, p : M̂ −→M is the orientable double cover of M and p−1(x) = {x̃1, x̃−1}.
Indeed, M is orientable if and only if the orientation character is trivial. Equivalently,
M is non-orientable if and only if w

M
is onto. Taking into account that the orientation

double cover of O is p
∣∣
p−1(O)

: p−1(O) −→ O, we deduce that the orientation character

of a connected open set O ⊆M can be decomposed as

ω
O

= w
M
◦ π1(i

O
), where π1(i

O
) : π1(O) −→ π1(M)

is the group homomorphism induced by the inclusion map i
O

: O ↪→M . Consequently
the open connected subset O of a non-orientable manifold M remains non-orientable
whenever π1(i

O
) is surjective. Note that the orientation character ω

M
of M coincides

with w1(M) ◦ ρ, where ρ : π1(M) −→ H1(M,Z) stands for the Hurewicz homomor-
phism and w1(M) for the first Stiefel-Whitney class regarded as a homomorphism via
the homomorphism of the universal coefficient Theorem

H1(M ;Z2) −→ Hom(H1(M ;Z),Z2)

and C2 is identified with Z2.

Remark 2.1. Let Mm is a connected non-orientable manifold.
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1. If the 1-skeletonM1 of a certain CW -decomposition ofM is a strong deformation
retract of some of its open neighbourhood U , then the complement M \U cannot
be the vanishing set of any top form on M , as the group homomorphism

π1(i
M\U ) : π1(M \ U) −→ π1(M)

is onto [11, p. 39].
2. The m− 2 and lower dimensional submanifolds of Mm cannot be the vanishing

sets of any top forms on M , as the group homomorphism

π1(i
M\X ) : π1(M \X) −→ π1(M)

is an isomorphism for m ≥ 3 and an epimorphism for m = 2, whenever X is
such a submanifold of M . In particular the discrete subsets of M cannot be the
vanishing sets of any top forms on M [16, Proposition 2.3]. By using the same
type of arguments one can actually show that no countable subset of M can
be the vanishing sets of any top form on M . In other words the vanishing set
of every top form on M is uncountable. In fact the zero dimensional subsets of
M cannot be the vanishing sets of any top forms on M , as we shall see in the
Theorem 2.1 and Corollary 2.2.

Theorem 2.1. If Mm is a smooth connected manifold (m ≥ 2) and A ⊆M is a closed
zero dimensional set, then M \A is also connected and the group homomorphism

π1(i) : π1(M \A) −→ π1(M),

induced by the inclusion i : M \A ↪→M , is onto, i.e. π1(M,M \A) = 0.

Corollary 2.2. If Mm is a non-orientable manifold, then dimV (ω) ≥ 1 for every
differentiable form ω ∈ Ωm(M).

Proof. Assume that dimV (ω) = 0 for some differentiable form ω ∈ Ωm(M). Accord-
ing to Theorem 2.1, the complement M \ V (θ) of the vanishing set is also connected
and the group homomorphism

π1(i) : π1(M \ V (θ)) −→ π1(M)

is onto. The non-orientability of M shows that the orientation character w
M

is onto.
Consequently the orientaion character ω

M\V (θ)
= w

M
◦π1(i

M\V (θ)
), of M \V (θ), is also

onto, due to Theorem 2.1.
On the other hand the restriction θ|M\V (θ) is a nowhere vanishing top form of

M \ V (θ), which shows that M \ V (θ) is an orientable open submanifold of M . In
other words, the orientation character ω

M\V (θ)
= w

M
◦ π1(i

M\V (θ)
) is trivial, which

implies that either the orientation character w
M

is not onto or the induced group
homomorphism π1(i

M\V (θ)
) : π1(M\V (θ)) −→ π1(M) is not onto, which is absurd. �

In the compact non-orientable case we can provide, by using some different type
of arguments, a much larger lower bound for the vanishing sets of all top forms.

Theorem 2.3. If Mm is a compact connected non-orientable manifold, then
dimV (ω) ≥ m− 1 for every differentiable form ω ∈ Ωm(M).
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Remark 2.2. The estimate, provided by Corollary 2.2 is sometimes sharp. Indeed, by
removing a suitable circle out of Klein bottle we obtain a cylinder, which is orientable.
Also by removing a suitable copy of the (2n − 1)-dimensional real projective space,
out of the 2n-dimensional real projective space we obtain a 2n-disc, which is also
orientable. In both casses the removed submanifolds have, due to Corollary 2.2 and
Theorem 2.3, the smallest possible dimension in order to get orientability on their
complements.

3. Preliminary results

3.1. Vanishing sets of differentiable forms

If ω is a k-differential on M , recall that the vanishing set V (ω) of ω is the
collection of points z ∈ U at which ω vanishes, i.e.

V (ω) := {z ∈M : ωz(v1, . . . , vk) = 0 for all vi ∈ Tz(M)}.

We shall only use in this paper the vanishing sets of the top differential forms of M .

In this subsection we investigate the size of critical sets of maps between two
manifolds with the same dimension via the vanishing set of the pull-back form of a
volume form on the target manifold.

Remark 3.1. If f : Mn → Nn is a local diffeomorphism and θ ∈ Ωk(N), then V (f∗θ) =
f−1 (V (θ)). If f is additionally surjective, then this equality can be rewritten as
f (V (f∗θ)) = V (θ), which shows, by means of Hodel [12],

dim (V (f∗θ)) = dimV (θ) (3.1)

whenever V (f∗θ) is compact.

Theorem 3.1. ([17]) If Mm, Nn,m ≥ n are differential manifolds with N orientable
and f : M −→ N is a differential map, then C(f) = V

(
f∗volN

)
, where volN is a

volume form on N .

Corollary 3.2. Let Mn, Nn be differential manifolds. If N is orientable and M is
non-orientable then dimC(f) ≥ 1 for every differentiable function f : M → N .

Proof. Let volN be a volume form on N . Combining Theorem 3.1 with Corollary 2.2
we deduce that dimC(f) = dimV (f∗volN ) ≥ 1. �

In addition to the usefulness of the vanishing sets of differentiable forms in
evaluating the size of the critical sets, they are also useful in evaluating the size of
the tangency sets [4].

3.2. Zero dimensional subsets of manifolds

Lemma 3.3. If C is a closed subset of a smooth manifold Mn, then there exists a
smooth nonnegative function f : M −→ R such that f−1(0) = C.
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Proof. We first consider an embedding j : M ↪→ R2n+1, whose existence is ensured
by Whitney’s embedding theorem.
If K ⊆ R2n+1 is a closed subset such that j(C) = K ∩ j(M), i.e. j−1(K) = C,
then the required function is f = g ◦ j, where g : R2n+1 −→ R is a smooth positive
function such that g−1(0) = K, whose existence is ensured by the Whitney theorem
([18, Théorème 1, p. 17]). �

Proposition 3.4. If A is a closed zero dimensional subset of a smooth manifold Mn,
then for each x ∈M and every neighbourhood U of x, there exists an open neighbour-
hood V of x such that V ⊆ U, ∂V ∩A = ∅ and ∂V is smooth.

Proof. If x 6∈ A, then the existence of V is immediate. Assume now that a ∈ A and
consider an open and relatively compact neighbourhood V ′ of a such that V ′ ⊆ U and
∂V ′ ∩ A = ∅. We may assume that V ′ is actually connected, as otherwise we reduce
V ′ to its connected component containing a. If ϕ : M −→ R is a smooth nonnegative
function such that ϕ−1(0) = A, whose existence is ensured by Lemma 3.3, observe
that m := min{ϕ(x) |x ∈ ∂V ′} > 0, since the compact set A ∩ cl(V ′) = A ∩ V ′ has
no common points with the compact boundary ∂V ′. If y ∈ (0,m) is a regular value of

ϕ|V ′ : V ′ → R, then (ϕ|V ′)−1 (y) is a compact hypersurface in V ′, as (ϕ|V ′)−1 (y) =

ϕ−1(y) ∩ cl(V ′). Indeed, the inclusion (ϕ|V ′)−1 (y) ⊆ ϕ−1(y) ∩ cl(V ′) is obvious. If
x ∈ ϕ−1(y) ∩ cl(V ′), then ϕ(x) = y and x ∈ cl(V ′) = V ′ ∪ ∂V ′. But since y > 0, it

follows that x 6∈ ∂V ′, which shows that x ∈ V ′ and x ∈ (ϕ|V ′)−1 (y) as well. Because

y < m, it follows that (ϕ|V ′)−1 (y) ∩A = ∅.
Finally, we consider a regular value y ∈ (0,m) of ϕ|V ′ : V ′ → R and observe

that the inverse image
(
ϕ|

V ′

)−1
(−∞, y) ⊆ V ′ is an open neighbourhood of A and

∂
[(
ϕ|

V ′

)−1
(−∞, y)

]
=
(
ϕ|

V ′

)−1
(y),

which shows that ∂
[(
ϕ|

V ′

)−1
(−∞, y)

]
∩ A = ∅. If V is the connected component of

the inverse image
(
ϕ|

V ′

)−1
(−∞, y) containing a, then its boundary is a collection of

connected components of
(
ϕ|

V ′

)−1
(y) and therefore ∂V ∩A = ∅. �

Remark 3.2. If A is a closed zero dimensional subset of a smooth surface Σ, then
for each x ∈ Σ and every neighbourhood U of x, there exists an open disk D such
that x ∈ D ⊆ U, ∂D ∩ A = ∅ and ∂D is a smooth circle. Indeed, we consider, via
Proposition 3.4, a local chart (W,ψ) of Σ at x as well as a connected neighbourhood
V of x with smooth boundary such that x ∈ V , cl(V ) ⊆ W ⊆ U , ψ(W ) = D2

and ∂V ∩ A = ∅. Note that the boundary of ψ(V ) is a union of pairwise disjoint
circles, as the circle is the only compact boundaryless one dimensional manifold. One
of these circles, say C, is the boundary of the unbounded component of R2 \ ψ(V ).
The bounded component of R2 \C is completely contained in D2, contains ψ(V ) and
we may choose its inverse image through ψ to play the role of D.

3.3. Deformations of punctured manifolds

Since the deformations of the punctured Euclidean space and the punctured
manifolds [16] will be repeatedly used in what follows, we shall review them shortly.
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For r > 0 and n ∈ N∗ denote by Dn
r and Sn−1r the open disk and the sphere respec-

tively, both of them having the center at the origin of the space Rn and radius r. Dn
1

and Sn−11 will be simply denoted by Dn and Sn−1 respectively. For x ∈ Dn, consider
the map hx : Rn \ {x} −→ Rn \ {x} defined to be the identity outside the open disc
Dn and hx(y) = Sn−1∩]xy for every y ∈ Dn \ {x}, where ]xy stands for the half line
{(1− s)x+ sy : s > 0}. In particular hx(y) = y, ∀y ∈ Sn−1.

Let N be an n-dimensional manifold and c = (U,ϕ) be a local chart of N
such that cl(Dn) ⊆ ϕ(U). Denote by Dϕ and Sϕ the sets ϕ−1(Dn) and ϕ−1(Sn−1)
respectively. For x ∈ Dϕ we define the continuous map hc,x : N \ {x} −→ N \ {x} by

hc,x(y) =

{
y if y ∈M \Dϕ

ϕ−1
(
hϕ(x) (ϕ(y))

)
if y ∈ U \ {x}.

Note that hc,x(Dϕ\{x}) = Sϕ and hc,x(y) = y, ∀y ∈ Sϕ.

Remark 3.3. 1. hx(Dn\{x}) = Sn−1 and hx 'Hx idRn\{x}(relRn\Dn), where

Hx : Rn\{x} × [0, 1]→ Rn\{x}, Hx(y, t) = (1− t)y + thx(y).

2. hc,x 'Hc,x idM\{x}, where Hc,x : (M\{x})× [0, 1]→M \ {x},

Hc,x(y, t) =

{
y if y ∈M\Dϕ

ϕ−1
(
Hϕ(x)(ϕ(y), t)

)
if y ∈ U\{x}.

If P is a given manifold and f : P −→ M is a continuous map whose image avoids
the point x, then f ' hc,x ◦ f and a homotopy between f and hc,x ◦ f is Hc,x(·, t) ◦ f .
We shall refere to each hc,x ◦ f and Hc,x(·, t) ◦ f as the punctured deformation of f
from x onto Sϕ.

4. The proofs of theorems 2.1 and 2.3

Proof of Theorem 2.1. Consider a homotopy class of curves in π1(M,M \ A) repre-
sented by a continuous curve α : [0, 1] −→ M , α(0), α(1) ∈ M \ A and deform α
rel{0, 1} to some differentiable curve β with non vanishing tangent vector field. The
immersion β might actually be chosen to be a geodesic from α(0) to α(1) with respect
to some Riemannian metric on M (see e.g. [14, Theorem 1.4.6, p. 24]). Obviously
dim (A ∩ Im(β)) ≤ dim(A) = 0 and dim Im(β) = 1.

From this point we continue the proof by induction with respect to the dimension
m of the manifold M . First assume that m = 2 and observe that for each t ∈ β−1(A)
there exists, via Remark 3.2, a two dimensional disc Dt ⊆M with circular boundary,
neighbourhood of β(t), such that its circular boundary Ct has no common points
with A. Since β is locally an embedding, Dt might be chosen inside the domain
Ut of a coordinate chart ct = (Ut, ϕt) in such a way that Dt = Dϕt , Ct = Sϕt ,
α(0) = β(0), α(1) = β(1) ∈ M \ cl(Dt), Jt := β−1(Dt) is an open interval and
ϕt (Dt ∩ Im(β|Jt)) = ϕ(Dt) ∩ R. Since {Dt | t ∈ β−1(A)} is an open covering of the
compact set Im(β)∩A, we may extract a finite open cover, say Dt1 , . . . , Dts . We may
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assume that Dti \ cl(Dtj ) 6= ∅ whenever i 6= j. Since dim(Im(β) = 1 it follows that
Im(β) cannot fill the open set

Dti \
r⋃
j=1

j 6=i

cl(Dtj ).

For each i ∈ {1, . . . , r}, consider a point

xi ∈ Dti \
(

Im(β) ∪
r⋃
j=1

j 6=i

cl(Dtj )
)

and the maps gcti ,xi, : M \ {x1, . . . , xs} −→M \ {x1, . . . , xs} given by

gcti ,xi(y) = hcti ,xi(y).

Note that idM\{x1,...,xs} ' gct1 ,x1
◦· · ·◦gcts ,xs (rel M \ (Dt1 ∪ · · · ∪Dts)) as each of the

maps gct1 ,x1
, . . . , gcts ,xs is homotopic to idM\{x1,...,xs} relative to M \(Dt1 ∪· · ·∪Dts).

Thus
β ' (gct1 ,x1 ◦ · · · ◦ gcts ,xs ◦ β)(rel{0, 1})

and Im(gct1 ,x1
◦ · · · ◦ gcts ,xs ◦ β) ⊆M \A, as

(gct1 ,x1 ◦ · · · ◦ gcts ,xs) ((Dt1 ∪ · · · ∪Dts) \ {x1, . . . , xs}) ⊆ Ct1 ∪ · · · ∪ Cts ⊆M \A

and β−1 (M \ (Dt1 ∪ · · · ∪Dts)) ⊆ β−1(M \A).
We next assume that the statement holds for (m−1)-dimensional manifolds and

we shall prove it for the m-dimensional manifold M . In this respect we consider a
partition 0 = t0 < t1 < · · · < tr = 1 of the interval [0, 1] with small enough norm such
that:

1. β([t0, t1]) ∩A = β([tr−1, tr]) ∩A = ∅ and β(t1), . . . , β(tr−1) ∈M \A.
2. there are small enough open discs D1 = Dϕ1

, . . . , Dr−2 = Dϕr−2
with spherical

boundaries S1 = Sϕ1
, . . . , Sr−2 = Sϕr−2

, for some charts c1 = (U1, ϕ1), . . . , cr =
(Ur−2, ϕr−2), with the following properties:
(a) β−1(Di) is the open interval (ti, ti+1) and the restriction (ti, ti+1) −→ Di,

t 7→ β(t) is an embedding, for every i = 1, r − 2;
(b) cl(Di) ∩ Im(β) = Si ∩ Im(β) = {β(ti), β(ti+1)} and Di ∩ Di+1 = ∅ while

cl(Di) ∩ cl(Di+1) = Si ∩ Si+1 = {β(ti+1)}, for every i = 1, r − 3.

Note that Im(β)∩A ⊂ D1∪· · ·∪Dr−2. For every i ∈ {1, . . . , r−2}, consider xi ∈ Di \
Im(β) and observe that β|[xi,xi+1] ' hcti ,xi◦β|[xi,xi+1](rel({xi, xi+1})). By applying the

inductive hypothesis to the punctured deformation hcti ,xi ◦ β|[xi,xi+1](rel({xi, xi+1}))
of β|[xi,xi+1] from xi onto Si, whose image is contained in the (m − 1)-dimensional
sphere Si, one can conclude that hcti ,xi ◦ β|[xi,xi+1] is homotopic rel({xi, xi+1}) to

some continuous curve γi : [xi, xi+1] −→ Si whose image avoids the set A, i.e.
γi([xi, xi+1]) ⊆ Si \A. Thus hcti ,xi ◦β is homotopic rel({0, 1}) to the continuous curve

γ : [0, 1] −→ M \ A defined by γ|[x0,x1] = β|[x0,x1], γ|[xi,xi+1] = γi for 1 ≤ i ≤ r − 2
and γ|[xr−1,xr] = β|[xr−1,xr]. �
Proof of Theorem 2.3. We first observe that every top-form ω ∈ Ωm(M) is exact, as
the top de Rham cohomology group Hm

dR(M) is trivial [15, Th. 15.21, p. 405], i.e.
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ω = dθ for some θ ∈ Ωm−1(M). If p : M̃ −→ M is the orientable double cover, then

p∗ω = p∗(dθ) = d(p∗θ), which shows that

∫
M̃

p∗ω = 0 and that dim (V (p∗ω)) ≥ m−1

therefore. Thus

dim (V (ω)) = dim (p (V (p∗ω))) = dim (V (p∗ω)) ≥ m− 1,

as p (V (p∗ω)) = V (ω). �

Corollary 4.1. Let Mn, Nn be differential manifolds. If N is orientable and M is
compact and non-orientable then dimC(f) ≥ n − 1 for every differentiable function
f : M → N .

Proof. Let volN be a volume form on N . Combining Theorem 3.1 with Theorem 2.3
we deduce that dimC(f) = dimV (f∗volN ) ≥ n− 1, for every differentiable function
f : M −→ N . �

A proof of Corollary 4.1 of similar flavor appears in [17, Theorem 2.4.(b)].

Remark 4.1. Corollaries 3.2 and 4.1 rely on the orientability of the regular set
R(f) = M \ C(f) in the 0 = dim(N) − dim(M) codimension case which is a pri-
ori ensured by the nowhere vanishing restricted top form f∗volN

∣∣
R(f)

on R(f). In the

lower codimension case dim(M) > dim(N), the lack of orientability of the regular set
is obvious, even for the orientable option of the target manifold N . We stress this by
the example of the projection of a product M = N ×X on the first factor, when N
is orientable and X is non-orientable. The critical set of this projection is obviously
empty, but its regular set is the whole non-orientable product M = N ×X.

However, the orientability of the regular set R(f) ensure similar lower bounds
even in the lower codimensional context. More precisely, if Nn is orientable and Mm

(m > n) is connected non-orientable and f : M −→ N is a differentiable function
with orientable regular set R(f), then dim(C(f)) ≥ 1. The proof of this statement
works along the same lines with the one of Corollary 2.2, the role of the vanishing set
V (θ) is played here by the critical set C(f).

Acknowledgment. The author is grateful to the anonymous referee for his (or her)
useful comments, which have helped him to improve the presentation.
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