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Differential sandwich theorem for certain class
of analytic functions associated with an integral
operator

Luminita-loana Cotirla and Adriana Catasg

Abstract. In this paper we obtain some applications of first order differential sub-
ordination and superordination result involving an integral operator for certain
normalized analytic function.

Mathematics Subject Classification (2010): 30C45.

Keywords: Integral operator, subordination and superordination, analytic func-
tions, sandwich theorem.

1. Introduction and preliminaries

Let A denote the class of functions of the form

f(z):z+2akzk, ap >0, (1.1)
k=2

which are analytic and univalent in the open unit disk U = {z : |z| < 1}.

If f and g are analytic functions in U, we say that f is subordinate to g in U,
written symbolically as f < g or f(z) < g(z) if there exists a Schwarz function w(z)
analytic in U, with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)), z € U. In
particular, if the function g is univalent in U, the subordination f < g is equivalent
to f(0) = g(0) and f(U) C g(U) (see [2], [3]).

For the function f given by (1.1) and g € A given by g(z) = z + Zbkzk, the
k=2

Hadamard product (or convolution) of f and g is defined by

(f9)(2) =2+ abpz" = (g% f) (2).
k=2
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The set of all functions f that are analytic and injective on U — E(f), denote
by @ where

B(f)={Ce0U: lm /() = )
z—
and are such that f'(¢) # 0 for ¢ € U\E(f), (see [4]).
If ¢ : C3> x U — C and h is univalent in U with ¢ € Q. In [3] Miller and Mocanu
consider the problem of determining conditions on admissible functions ¢ such that
D(p(2), 2/ (2), 20" (2); 2) < D(2) (1.2)
implies that p(z) < ¢(z) for all functions p € H[a,n] that satisfy the differential
subordination (1.2).
Let ¢ : C3 x U — C and h € H with ¢ € H[a,n]. In [4] and [5] is studied the
dual problem and determined conditions on ¢ such that
h(z) < 6(p(2), 20 (2), 2°p" (2); 2) (1.3)
implies ¢(z) < p(z) for all functions p € @ that satisfy the above subordination. They
also found conditions so that the functions ¢ is the largest function with this property,
called the best subordinant of the subordination (1.3).
Let H (U) be the class of analytic functions in the open unit disc.
For n a positive integer and a € C let
Hla,n|={feH: f(z)=a+az"+...}.
The integral operator I"™ of a function f is defined in [6] by

I°f(2) = f(2),
I'f(2) /f )t tdt,

If(z) =1 (Im’lf(z)) , z€U.
Lemma 1.1. [3] Let q be univalent in U, { € C* and suppose that
o) > mo e ()]
Re {1+ > max< 0,—Re | = . 1.4
T G 4
If p is analytic in U with p(0) = ¢(0) and

p(2) +C2p'(2) < q(2) + C2q'(2) (1.5)
then p(z) < q(z) and q is the best dominant.

Lemma 1.2. [3] Let the function q be univalent in the unit disk and let 0, ¢ be analytic
in domain D containing q(U) with o(w) # 0, where w € q(U). Set

Q(z) = 2q'(2)p(a(2)) and h(z) = 0(q(2)) + Q(2).
Suppose that
Q is starlike univalent in U;

Re {Zg((j))} >0, for z € U.
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If p is analytic with p(0) = ¢(0), p(U) C D and
0(p(2)) + 20 (2)p(p(2)) < 0(q(2)) + 2q'(2)(q(2)) (1.6)
then p(z) < q(z) and q is the best dominant.

Lemma 1.3. [1] Let g be convex in the unit disc U, ¢(0) = a and ¢ € C, Re(¢) > 0.
If p € Hla,1] N Q and p(z) +Czp'(2) is univalent in U then

q(2) + C2q'(2) < p(2) + Czp'(2) (1.7)
implies q(z) < p(z) and q is the best subordinant.

Lemma 1.4. [2] Let the function q be conver and univalent in the unit disc U and 6
and ¢ be analytic in a domain D containing q(U). Suppose that

1. Re {9’((](2))} >0 forze U and
pla(z))
2. Q(z) = zq'(2)p(q(2)) is starlike univalent in U.

If p € H[q(0),1]NQ with p(U) C D and 8(p(z)) + 2p'(2)p(p(2)) is univalent in U and

0(q(2)) + 24 (2)p(q(2)) < 0(p(2)) + 2P ()0 (p(2)) (1.8)
then q(z) < p(z) and q is the best subordinant.

2. Main results

Theorem 2.1. Let q be univalent in U, with ¢(0) = 1 and q(z) # 0 for all z € U, and
let 0 € C*, f € A and suppose that f and g satisfy the next conditions:

w #0,z€U (2.1)
" ") ()
z2q"(2) 24 (=
Re {1+ 7 9l }>0forz eU. (2.2)
If
1" (f(2)) 2q'(2)
) ) 22
then "
(Z DY
and q is the best dominant of (2.3).
Proof. Let
m—+1 P g
p(z) = <Iz(f())> , zeU. (2.4)

Because the integral operator I™ satisfies the identity z [/} (f(z))]/ =I"(f(z))
and the function p(z) is analytic in U, by differentiating (2.4) logarithmically with

respect to z, we obtain
W) _ (I
o = (g Y 29)
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In order to prove our result we will use Lemma 1.2. In this lemma we consider
1

Pt

then 6 is analytic in C and p(w) # 0 is analytic in C*. Also, if we let

Q=) = 2¢ (2)pla(z)) = L)

O(w) =1 and p(w) =

and

s Ao 270G
h(z) =0(q(2)) + Q (2) 1+~yo—q(z)

from (2.2) we see that @Q (z) is a starlike function in U. We also have
ZhTZ)} { 2q"(2) ZQTZ)}
Re =Re {1+ - >0forz €U
{ Q(z) 7(z)  az)
and then, by using Lemma 1.2 we deduce that subordination (2.3) implies p(z) < ¢(z)
and the function ¢ is the best dominant of (2.3). O

Taking ¢(z) = ﬂ'gz (-1 < B < A<1) in Theorem 2.1, it easy to check that the
assumption

1 «
p) + 2 (2) < () + 22 (2)
holds, hence we obtain the next result.

Corollary 2.2. Let 0 € C* and f € A . Suppose

w #£0,z€U.
If
1" (£(2)) 2(A-B)
() T o1 A2 (14 B2)’
then
It (F(2)\° 1+ Az
( z ) A 1+ Bz
and q(z) = ﬁgz is the best dominant.

Taking ¢(z) = ii in Theorem 2.1, it easy to check that the assumption

1 a
pe) + =o' () < () + 22 (2)
holds, hence we obtain the next result.

Corollary 2.3. Let 0 € C* and f € A . Suppose

M#O,ZGU

If
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then

z 1—2z

(zm+1 (f(z)))“ L1tz

and q(z) = 122 is the best dominant.

Theorem 2.4. Let g be univalent in U, with ¢(0) = 1. Let 0 € C* and t,v,n € C with
v+n#0. Let f € A and suppose that f and g satisfy the next conditions

VI (f(2)) + I 2 (f(2))

CEP #0,z€U (2.6)
and
2'(2) CRett s
fe {1 T } > max {0, —Ret}, z €U. (2.7)
If
L [eIm () IR (f(2))]°
WH[ CEE }
vz (I"”'H (f(Z))), + 21 ([m+2 (f(Z)))l B
i oIt (f(2)) + nI™t2 (f(2)) 1] 29
and
¥(2) < tg(2) + Zg(g) (2.9)
then
oI (f(2) + ™2 (F(2)]°
] <
and q is the best dominant.
Proof. Let
oI () Al (f(2)]° ;
p(2) = { (v+n)z } el (210)

According to (2.3) the function p(z) is analytic in U and differentiating (2.10) loga-
rithmically with respect to z, we obtain

@) _ lvz (I (f(2) 4 en (72 (1) 1}

p(2) - oIt (f(2)) + nlmt2 (f(2)) (2.11)

and hence

(2) :”[ (w+n)2 oI (F(2) + I (f(2)

In order to prove our result we will use Lemma 1.2. In this lemma we consider

0 (w) =tw and go(w):i

VI (f(2)) 4l (f(z))} g lvz (I (F() +2n ("2 (f(2))' _1] |
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then 6 is analytic in C and ¢ (w) # 0 is analytic in C*. Also if we let

(el — o | AT @) e (I (£(2)))
Q () = 24/ ()pla(2) = l e (K 1]

and
h(z) = 0(q(2)) + Q (2)
_, [vfm“ (f()) + 1™+ <f<z>>r+a vz (I (F(2)) + 20 (I (1)) 1]
(v+n)2 oI (f(2)) +nl™*2 (f(2))
from (2.6) we see that @ (z) is a starlike function in U. We also have
! 2
Re {ZCS((,:))} = Re {t—l—l—i— Zj’(z)} >0forz €U
and then, by using Lemma 1.2 we deduce that the subordination (2.9) implies
p(2) < q(z). -
Taking ¢(z) = }frgz (-1 < B < A<1)in Theorem 2.4 and according to
o) (1) )
p(2) Im+2(f(2))
the condition (2.7) becomes max {0, —Re (¢)} < 1-|B]

. Hence, for the special case

118
v =1 and n = 0 we obtain the following result.
Corollary 2.5. Let t € C with max {0, —Re ()} < i;}g{ Let f € A and suppose that
Im+1
U Ly e
If
JEE,  [FU ) ) ik As . (1-B):
z 7| (f(2)) 14+ Bz (14 Az)(1+ Bz)
then

( Z(f(z)))" (Lt

and q(z) = iigi is the best dominant.

Takingv=m =1, n=0and ¢q(z) = %J_ri in Theorem 2.1, we obtain the next result.

Corollary 2.6. Let f € A and suppose that M #0,ze€U,0eC*. If
2 ’ 2 ' 1 2
t[ (f(Z))] +U[Z< (/(2))) _1] PREE 2

2 Z(f(2) = " a+a01-2
then

z 1—2

[I?(f(z))r< 1+ 2

and q(z) = T +z is the best dominant.
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Theorem 2.7. Let q be convex in U, with ¢(0) = 1. Let 0 € C* and t,v,n € C with
v+mn#0 and Ret > 0. Let f € A and suppose that f satisfies the next conditions:

oIt (f(2)) 4+ nI™ 2 (f(2))

(v+m)z #0,z€U (2.12)
and
vl (f(2) + 0™ (f(2)]°
{ (v+n)z ] € H[q(0),1]NQ. (2.13)

If the function v given by (2.8) is univalent in U and

2q'(z)

q(z)

tq(z) +

< (2), (2.14)

then

I (£(2)) + I (f(2)]°
a(z) < { CEDE ]

and q(z) is the best subordinant of (2.14).

Proof. Let

oI (@) 4l ()]

According to (2.12) the function p(z) is analytic in U and differentiating (2.15) loga-
rithmically with respect to z, we obtain

26 _, [ (I () + o (72 (1) 1] .

,zeU. (2.15)

p(2) oI (f(2)) + I+ (F(2)) (2.16)

In order to prove our result we will use Lemma 1.4. In this lemma we consider

O
—
I
~—
Il
I
U
—~
W
~
S
—~
=)
—
I
~—
~
|

_ et g ) e (1 ()
oI+ (f(2)) + ™2 (f(2))

and

h(z) = 0(q(2)) + Q ()

o [LImr e ] [ (F) +en ("2 (1)
(v+mn)z oIt (f(2)) + 0™ 2 (f(2))

from (2.12) we see that @ (z) is a starlike function in U. We also have
2l (2) } { 2q"(2) }
Re =Re <t+1+ >0forz €U
{Q@) ¢ (2)

and then, by using Lemma 1.4 we deduce that the subordination (2.14) implies
q(z) < p(z) and the proof is completed. O
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Corollary 2.8. Let q1,q2 are two convex functions in U, with ¢1(0) = ¢2(0) = 1,
oeC* tivyn € Cwithv+mn+#0 and Ret > 0. Let f € A and suppose that f
satisfies the next conditions:

oI (f(2)) 4+ nI™ 2 (f(2))

Wtz #£0,z€eU
and
oI (f(2) + 0l (f(2)\°
( W)z ) € H[q(0),1]NQ.
If the function ¥(z) given by (2.8) is univalent in U and
2¢1(2) 2¢3(2)
Ry S e
then
v m-+1 P m+2 P g
n(e) < (S LELE D) ey (217)

and q1,q2 are respectively, the best subordinant and the best dominant of (2.17).
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On the stability of solutions of fractional non
conformable differential equations

Paulo M. Guzman, Luciano M. Lugo Motta Bittencurt and
Juan E. Néapoles Valdes

Abstract. In this note we obtain sufficient conditions under which we can guar-
antee the stability of solutions of a fractional differential equations of non con-
formable type and we obtain some fractional analogous theorems of the direct
Lyapunov method for a given class of equations of motion.

Mathematics Subject Classification (2010): 34A08.

Keywords: Fractional non conformable system of equations, Lyapunov second
method, stability, asymptotic stability, instability.

1. Introduction

Fractional calculus concerns the generalization of differentiation and integration
to non-integer (fractional) orders. The subject has a long mathematical history being
discussed for the first time already in the correspondence of Leibniz with L’Hopital
when this replied ”What does %f(x) mean if n:%?” in September 30 of 1695. Over
the centuries many mathematicians have built up a large body of mathematical knowl-
edge on fractional integrals and derivatives. Although fractional calculus is a natural
generalization of calculus, and although its mathematical history is equally long, it
has, until recently, played a negligible role in physics. One reason could be that, until
recently, the basic facts were not readily accessible even in the mathematical litera-
ture (see [13]). The nature of many systems makes that they can be more precisely
modeled using fractional differential equations. The differentiation and integration of
arbitrary orders have found applications in diverse fields of science and engineering like
viscoelasticity, electrochemistry, diffusion processes, control theory, heat conduction,
electricity, mechanics, chaos, and fractals (see [5], [6] and [13]). Lyapunov’s Second or
Direct Method is unique in that it does not require a characterization of the solutions
to determine stability. This method often allows us to determine whether a differential
equation is stable without knowing anything about what the solutions look like, so it
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is ideal for dealing with nonlinear systems. The method uses a supplementary function
called a Lyapunov function to determine properties of the asymptotic behavior of so-
lutions of a differential equation. It is known that the method of Lyapunov functions
is a tool used in the analysis of stability, in many classes of differential equations of
disturbed movement, so it is interesting to investigate an extension of the method for
non-integer order systems (see [9] and [10] and bibliography there). Such extension
is based on the concept of a local fractional derivative non conformable, defined by
the authors in a previous paper (see [2]) which is presented below. In this paper the
application of a fractional-like derivative of the Lyapunov function for the stability
analysis of solutions of the equations of perturbed motion with a fractional-like de-
rivative of the state vector is discussed. Some fractional analogous theorems of the
direct Lyapunov method for a given class of equations of motion are presented.

2. Preliminary results

It is necessary to present some necessary definitions for our work. Be o € (0, 1]
and define a continuous function f : [tg, +00) — R.

First, let’s remember the definition of N{*f(t), a non conformable fractional
derivative of a function in a point ¢ defined in [9] and that is the basis of our results,
that are close resemblance of those found in classical qualitative theory.

Definition 2.1. Given a function f : [tg,+00) — R, to > 0. Then the N-derivative of
f of order « is defined by

N ) — tim ST = (D

e—0 £
for allt > 0, a € (0,1). If f is a—differentiable in some (0, a), and lir(r)1+N1(a)f(t) exists,
t—s

then define Nl(a)f(O) = lim Nl(a)f(t).
t—0t

If the N-derivative of the function z(t) of order « exists and is finite in (¢o, 00),
we will say that x(¢t) is N-differentiable in I = (g, 00).

Remark 2.2. The use in definition 2.1 of the limit of a certain incremental quotient,
instead of the integral used in the classical definitions of fractional derivatives, allows
us to give the following interpretation of the N-derivative. Suppose that the point
moves in a straight line in R,. For the moments ¢t; = t and t, = t 4+ he’ ~ where
h >0 and a € (0,1] and we denote S(t1) and S(t2) the path traveled by point P at
time ¢; and ¢ so we have

S(ta) —S(t1)  S(t+het ") —S(t)

tg - tl hetia

this is the average N-speed of point P over time he' . Let’s consider

[ 2
LimS(t-i-he _) S(t).
h—0 het™
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When o = 1, this is the usual instantaneous velocity of a point P at any time
t > 0. If a € (0,1) this is the instantaneous g-speed of the point P for any ¢ > 0.
Therefore, the physical meaning of the N-derivative is the instantaneous g-change rate
of the state vector of the considered mechanics or another nature of the system.

Remark 2.3. The N-derivative solves almost all the insufficiencies that are indicated
to the classical fractional derivatives. In particular we have the following result.

Theorem 2.4. (See [2]) Let f and g be N-differentiable at a pointt > 0 and « € (0, 1].
Then

A) .
(f9)(t) = fN;[(g)( )+9N1]\§ )(®).
Ny <f) (t) = gNT (f)( ;2(15{ (gt )
f) If, in addition, f is differentiable then N{(f) = et f'(t).
g) Being [ differentiable and oo = n integer, we have NT*(f)(t) = e

AGE
Remark 2.5. The relations a), ¢), d) and e) are similar to the classical results mathe-
matical analysis, these relationships are not established (or do not occur) for fractional
derivatives of global character (see [5] and [13] and bibliography there). The relation
¢) is maintained for the fractional derivative of Caputo. Cases c), f) and g) are typical
of this non conformable local fractional derivative.

Now we will present the equivalent result, for N{*, of the well-known chain rule
of classic calculus and that is basic in the Second Method of Lyapunov, for the study
of stability of perturbed motion.

Theorem 2.6. (See [2]) Let o € (0,1], g N-differentiable at t > 0 and f differentiable
at g(t) then

NP (fog)(t) = f'(g(t))Nig(t).

Definition 2.7. The non conformable fractional integral of order « is defined by the
expression

Jaf() f()dS

to €

The following statement is analogous to the one known from the Ordinary Calculus.

Theorem 2.8. Let f be N-differentiable function in (tg,00) with o € (0,1]. Then for
all t > tg we have

a) If fis differentiable nJZ (N f(t)) = f(t) — f(to)-
b) Ni (wJip f(t) = £(t).

Proof. a) From definition we have

w2 (No g Nl“ Bhas = [ i 50 - st
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b) Analogously we have

N (W2 () = "= { t 1) ds} = f(1). 0

3. N-derivative of the Lyapunov function and conditions of stability
and instability of movement

Consider the following system of fractional N-differential equations
Ni'a(t) = f(t, (1)), 3.1)
where x € R", f € C(Ry x R",R"), t5 > 0. It is further assumed that for (to, o) €
int(R4 x R™) the initial value problem (3.1-3.2) has a solution x(t) € C*(I) for all
t > to > 0. In addition, it is assumed that f(¢,0) = 0 for all ¢ > ¢y > 0.
Let for equation (3.1) a Lyapunov-type function V' (¢t,z) € C*(I x R™) be con-

structed in some way such that V(¢,0) = 0 for all £ > 0. Introduce the notation
Sy ={z e R": ||z|| < r,r > 0}.

Definition 3.1. Let V' be a continuous and a-differentiable function (scalar or vector),
V:IxS,. = RP(p=1orp=m, respectively), and z(t) be the solution of the IVP
(3.1-3.2), which exists and is defined on I x S,.. Corresponding to V(t,x) we define for
(t,x) € I x S, the function

+N(o§,_1)v(t,$) = lim sup [V(t + h"r +h f(t,ac)) - V(t, 1‘)]
h—0 h

(3.3)

is the N-derivative of V (¢, z) with respect to the system (3.1) (or along the solutions
of system (3.1)).

We will now present the results analogous to those known from the Second
Method of Lyapunov, for the study of the stability of systems (3.1).

With C(R) and CI(R) we respectively denote the families of continuous functions
and increasing continuous functions defined on R.

Definition 3.2. (see [11]). CS(R) = {h € C(R) : zh(z) >0, z # 0}
Definition 3.3. (see [11]). CC(R) := CI(R) N CS(R).

Definition 3.4. A continuous function g : [0,t) — [0, +00) is said to belong to class-K
if it is strictly increasing and 8(0) = 0.

Theorem 3.5. Suppose that for the system (3.1) there is a function N-differentiable
V(t,x) and the functions a,b € K, such that
1) V(t,x) = a(]lz]]),
i) V(¢ z) <b(||z|]), and
+NG )Vt z) <0, (3.4)
for all (t,x) € I x S,.. Then the solution x = 0 of the system (3.1) is uniformly
stable.
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Proof. Let x(t) the solution of system (3.1) which satisfies the initial condition
(to,x0) € I x S, and that exists for all ¢ > t5. Let tp € I and 0 < & < r. Under
conditions i), ii) of the theorem let’s choose 6 = d(g) > 0 such that

b(0) < a(e) (3.5)

Let’s prove that if ||zg|| < § then ||z(t)|| < e for all ¢ > to. If this were not true,
then there is a solution x = x(t) such that for ||zg]| < 0 there exists t; > ¢, what
satisfies ||z(t1)|| = €, and ||z(t)|| < € for all ¢ € [to,t1).

Under Theorem 8 and condition (3.2), we have

V(t,z(t)) = V(to, xo) =n Jiy (NTV (t, (1))

and so
Vt,z(t)) — V(to,z0) <0 (3.6)
of this last inequality for ¢ = t; we get
a(e) < V(ty,z(t1)) < V(to, o) < b([|z]]) < ale) (3.7)
The resulting inequality is evidently false. This proves Theorem (3.5). g

Next, we present the conditions that guarantee the asymptotic stability of the
null solution of the fractional system (3.1).

Theorem 3.6. In addition to the conditions i)-ii) of the previous theorem, suppose that
instead of condition (3.4), we have

NGVt ) < (), (3.8)

for all (t,x) € I x S, and ¢ is a function of class K. Then the solution x = 0 of the
system (3.1) is uniform asymptotically stable.

Proof. Under the conditions of the theorem, the solution z = 0 of the system (3.1) is
uniformly stable since the conditions of the previous theorem are satisfied. We show
that this solution is uniformly asymptotically stable.

Let 0 < e < rand d = d(e) > 0 as before. For g9 < r let’s choose §y = dp(g9) > 0
and we consider the solution x(¢) with initial conditions ¢y € I and ||zo|| < do. For
to <t < tg+ T(e), where T'(¢) will be defined by an implicit expression that will
be specified later, such a solution satisfies ||z(t)|| > (). Let’s prove that under the
conditions of the theorem this is impossible. From (3.8) and Theorem 2.8 we obtain

V(ta(t) - V(to,zo) = nJ& (NPV(a(t) < —nJE (e(la®)])
V(tolt) - Vitoo) < - At g (3.9)

We denote by
o ¢ ds
~nJi(e) = /to Gt E(t) — E(to),

so we have from (3.9)

V(t,2(t)) < b(do) — c(6(€))nJf () (3.10)
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For ¢t = to + T'(¢) the inequality (3.10) we can write it as
0 <a(d(e)) <Vt +T(e),x(to + T(e))) < b(do) — c((e))[E(T(e))] < 0.

This contradiction shows that there is t1 € [to,to + T'(¢)] for which |z(¢1)] < d(e).
Therefore, the estimate ||z(t)|| < ¢ is true for all t > to + T'(¢) as ||zo| < o and
tLim [lz(¢)]] = 0 uniformly in ¢¢ € I. This proves Theorem. O
— 00

Next, we will establish the conditions for the instability of the solution = = 0 of
the system (3.1).

Theorem 3.7. Suppose that for the system (3.1) there is an N-differentiable Lyapunov
function V(t,x) such that on I x By with By C B satisfies the assumptions
1) 0 <V(t,x) <b(|l]),
ii) +N(°§A1)V(t,x) <AV (t,z)+W(t,z), withA>0and V : I x By — Ry,
W(t,x) > 0;
ili) the solution x =0 belongs to 0By;
iv) V(t,z) =0 on I x (6B, N B;).

Then the solution x = 0 is unstable.

Proof. From assumptions ii), and Theorem 2.8 we have
V(t,z(t)) = V(to, z(to)) exp [An i (e)] .t > to, (3.11)

Let the solution with initial condition 2y € N be a neighborhood of = 0. So that for
any t > to satisfying the estimate (3.11) along the solution x(t), then it is clear that
for t — oo, the function V (¢, z(t)) grows indefinitely, whereas under the conditions
of Theorem 3.5 is bounded. Therefore, for the solution z(¢) there exists ¢’ such that
x(t") will leave the region B.. This shows the instability of the solution z = 0 of the
system (3.1), which proves the theorem. O

Example 3.8. We consider the Lienard N-fractional system
Nia(t) =y — F(t)
3.12
{ Nt = Lato) (312
with .
Fo) = [ fyir
0

and we take the Lyapunov Function
2

Vitzy) = % +Gla), (3.13)
with
G(z) = /Zg(s)ds.
Under assumptions on the continuous funcotions f and g¢:

1. f(x) >0 for all z € R,
2. zg(z) > 0 for all z # 0,
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we have the stability of solution = y = 0 of system (3.12). From (3.13) we have
+N(%.1)V(t7 Zz, y) = *g(SC)F(;L') <0.

By virtue of Theorem 3.5 the desired result is obtained.
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On oscillatory second order nonlinear impulsive
systems of neutral type

Arun Kumar Tripathy and Shyam Sundar Santra

Abstract. In this work, the necessary and sufficient conditions for oscillation of
a class of second order neutral impulsive systems are established and our im-
pulse satisfies a discrete neutral nonlinear equation of similar type. Further, one
illustrative example showing applicability of the new result is included.
Mathematics Subject Classification (2010): 34C10, 35K40, 34K11.

Keywords: Oscillation, nonoscillation, neutral, delay, non-linear, Lebesgue’s dom-
inated convergence theorem, Banach’s fixed point theorem.

1. Introduction

Impulsive differential equations are now recognized as an excellent source of
models to simulate processes and phenomena observed in control theory, physics,
chemistry, population dynamics, industrial robotics, biotechnologies, economics and
to mention a few. Due to the wide range application of this theory to the real world
problem, a good number of interests has been given to study impulsive differential
equations, since it is much richer than the corresponding theory of differential equa-
tions without impulse effect. We refer the readers to the monographs [1, 2, 10, 13, 14]
and [18], where a number of properties of their solutions are discussed and the refer-
ences cited there in.

In [28], Tripathy has considered the impulsive system

(5, { 00+ 20 = 7))+ aG (e =) = 0.t £ 70, ke,
A(y(m) + p(me)y(te — 7)) + q(7)G(y(7p — 0)) =0, k € N,
and studied the oscillatory character of solutions of the system. For all ranges of

p(t), he has established the oscillation criteria for the impulsive system (E;) which
is highly nonlinear and G could be linear, sublinear or superlinear. In [29], Tripathy

This work is supported by the Department of Science and Technology (DST), New Delhi, India,
through the bank instruction order No. DST/INSPIRE Fellowship/2014/140, dated Sept. 15, 2014.
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and Santra have made an attempt to establish the necessary and sufficient condition
for oscillation of a class of forced impulsive differential equations of the form

{(y(t) +pt)y(t—7) +a®)G(yt — o)) = f(t), t#m, keN,
A(y(me) + p(mi)y (i — 7)) + r(m)G(y(1% — 0)) = g(7k), k€N,

In an another paper [30], Tripathy and Santra have studied the characterization of
the impulsive system

(E») (y(t) —ry(t —7'))/ +qyit—0)=0,t# 71, k€N,
A(y(me) —ry(me — 7)) + py(m —0) = 0, k €N,

and linearized oscillation of the system

() (y(t) = r(t)g(y(t — 7)) +a(t) f(y(t — o)) =0, t # 70, k €N,
A(y(mi) — r(m)g(y(m — 7)) + p(7) f (y( —0)) =0, keN.

They have established the conditions pertaining the oscillation of the system (Fs)
using the pulsatile constant and hence the linearized oscillation results carried out for
(FE3) by using its limiting equation (Es).

Motivated by the works [28, 29, 30], an attempt is made here to discuss the
oscillation properties of a class of second order neutral impulsive system of the form:

(& {(rw(y(t) +p(0)y(t = 7)) +aG(y(t —0)) =0, t#mkEN,
A(r(m)(y(me) + p(me)y(m — 7)) + a()G(y(me —0)) =0, k€N,

where 7,0 € Ry = (0,400); 71,72, , Tk, - - - are the fixed moments of impulse effect;
p(7%), 7(7k) and q(73) are real sequences for k € N; G € C(R,R) is nondecreasing
such that *G(z) > 0 for x # 0; ¢q,r € C(R4+,R4); p € PC(R4,R), and

A(r(m)z (1)) = r(7 4+ 0)2 (1 + 0) — r(7 — 0)2' (4 — 0);
y(r = 0) =y(m) and y(rp —7—0)=y(r —7), keN.

The objective of this work is to establish the necessary and sufficient conditions
for oscillation of the impulsive system (F). Here, we are concerned with oscillating
systems which remain oscillating after being perturbed by instantaneous change of
state. We may note that this type of work is very rare in the literature signifying that
the impulse of the differential equation follows a difference equation of same type. In
this direction, we refer the reader to some of the related works [3, 4, 5, 6, 7, 8, 9, 11,
12, 15, 16, 17, 19, 26, 27, 32, 33, 34] and the references cited there in.

Definition 1.1. A function y : [—p,+00) — R is said to be a solution of (E) with
initial function ¢ € C([—p,0,R), if y(t) = &(t) for t € [—p,0], y € PC(R4,R),
z(t) = y(t) + p(t)y(t — 7) and r(t)2'(¢t) are continuously differentiable for ¢ € R, and
y(t) satisfies (E) for all sufficiently large ¢ > 0, where p = max{r,0}, PC(R;,R) is
the set of all functions U : Ry — R which are continuous for t € Ry, ¢t # 74,k € N,
continuous from the left- side for ¢ € R, and have discontinuity of the first kind at
the points 7, € R4,k € N.
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Definition 1.2. A nontrivial solution y(¢) of (E) is said to be nonoscillatory, if there
exists a point ¢y > 0 such that y(¢) has a constant sign for ¢ > ¢y. Otherwise, the
solution y(¢) is said to be oscillatory.

Definition 1.3. A solution y(¢) of (E) is said to be regular, if it is defined on some
interval [Ty, +00) C [to, +00) and

sup{[y(t)] : t > T,} > 0

for every T,, > T. A regular solution y(t) of (E1) is said to be eventually positive
(eventually negative), if there exists t; > 0 such that y(¢) > 0 (y(¢) < 0) for ¢ > ¢;.

2. Main results

This section deals with the necessary and sufficient conditions for oscillation of
all solutions of the impulsive system (E). We introduce the following assumptions for
our use in the sequel:

(Ao) [y~ 5 < oo if and only if Y07, L5 < oo;
(A1) 0 <7 <7 < -+ and limy_o0 7 = +00;
(A2) p € PC(R4,R), pr = p(1e — 0) = p(7%), e = r(75 — 0) = r(7%) and

qr = q(mx — 0) = q(7%), k € N.
Theorem 2.1. Let —1 < —a < p(t) <0, a >0 and t € Ry. Assume that (Ap), (A1)
and (As) hold. Furthermore, assume that
(43) G(—u) = -G(u), u e R
and
(As) [ q(t)G(CR(t —0))dt + > 5 q(71)G(CR(7i, — 0)) < 400 for every constant
C>0
hold, where R(t) = fot %, Then every unbounded solution of the system (E) oscillates
if and only if

(As) Jy° i < +o0.

Proof. Let y(t) be a regular solution of (E) which is unbounded. So, there exists
to > 0 such that y(¢) > 0 or < 0, for ¢ > to. Without loss of generality and because of
(As), we may assume that y(¢) >0, y(t—7)>0and y(t—o) >0, fort > t; > to+p.
Setting

2(t) = y(t) +p(t)y(t —7) (2.1)
in the system (E), it follows that
(r(t)2' (1)) = —q()G(y(t —0)) <0, t#m (2.2)

A(T(Tk)zl(ﬂe)) = —qk G(y(Tk — U)) <0, keN

for ¢ > t;. Hence, there exists to > ¢ such that r(¢)z’(¢) is nonincreasing on [tg, 00).
Since z(t) is monotonic, then there exists t3 > t2 such that z(¢t) > 0 or < 0, for
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t > ts. Indeed, z(t) < 0 for ¢ > t3 implies that y(t) < y(t — 1), y(7) < y(7% — 7),
y(mx +0) < y(7x + 0 — 7) and hence

y(t) <yt —7) <yt —27) <--- <ylts), t#m,

y(me) <ylme —7) <ylme —27) <--- <ylts), keN,

Y +0) <yl +0—7) <yl +0—-27) <--- <y(ts), keN,
that is, y(t) is bounded, which is absurd. Hence, z(t) > 0 for t > t3. If r(¢)2'(¢t) > 0

for t > t3, then r(¢)z'(t) is nonincreasing on [t3,00) and hence there exist a constant
C > 0 and ¢4 > t3 such that r(¢)2'(t) < C for t > t4. Consequently,

A0 <st)+ X Ko [ I

since r(1)2' (1) < C. Therefore, the last inequality becomes

z(t) < z(ts) + C /t Tc(iz) +

as t — 0o due to (Ap). On the other hand, y(t) is unbounded, and thus there exists
{nn} such that n,, — oo as n — oo, y(n,) — oo as n — oo and

< 00,

ta<tp<t r(7k)

y(mn) = max{y(s) : t5 < s <mn}.
Therefore,

2(0n) = y(n) + ()Y (10 — 7)
> (1—-a)y(n,) — +o0, as t— o0

implies that z(t) (ultimately z(7x) for k& € N) is unbounded, a contradiction.
Obviously, the case r(t)2’(t) < 0, z(t) > 0 for ¢ > t3 is not possible.

Hence, every unbounded solution of the system (F) oscillates.

Next, we suppose that (As) doesn’t hold. Assume that

| =

and due to our assumption (Ay), let

/ q)G(CR(t — 0))dt + Z qr G(CR(, — 0)) < %,
T k=1
Let’s consider

M={y:yeC(l - p,+00)R),y(t) =0  for te[T—pT] and
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and define ® : M — C([T — p, +00),R) such that
0, te[l—pT)
(@y)(t) = § —p(y(t = 7) + [ 755 [F + [ a(s)G (y(s — o)) ds
+> 0, qu(y(Tk — o))]du, t>T.
For every y € M,
@0 = [
c [t du C
2 ) 7 [R(t) = R(T)]

and y(t) < CR(t) implies that

¢ [f + /:O 4(s)G(y(s — o))ds + i el g))] du

k=1

(@y)(t) < —p)y(t —7) +
<aC|[R(t—71)—R(T)] +
<aC|[R(t) — R(T)] +

1
= (a + 2) C[R(t) — R(T)]
< C[R(t) — R(T)]
implies that (®y)(t) € M. Define w,, : [T — p, +00) — R by the recursive formula
un(t) = (@un,l)(t), n>1,
with the initial condition

= 0, te[T—pT)
uo(t) = CIR(t) - R(T)], t>T.

4
Inductively it is easy to verify that

%[R(t) — R(T)] < tn_1(t) < un(t) < C[R(t) — R(T)].

for t > T. Therefore for ¢t > T — p, lim,,_, o0 u, (t) exists. Let
lim u,(t) =u(t) for t > T — p.
n—oo
By the Lebesgue’s dominated convergence theorem u € M and (®u)(t) = u(t), where

u(t) is a solution of the impulsive system (E) on [T — p, 00) such that u(¢) > 0. Hence,
(As5) is necessary. This completes the proof of the theorem. O

Remark 2.1. In Theorem 2.1, G could be linear, sublinear or superlinear.

Theorem 2.2. Let —1 < —a < p(t) <0, a >0 fort € Ry. Assume that (A1) — (As)
and (As) hold. Furthermore, assume that

(Ag) f;o % [f; q(s)G(CRl(s — O'))dS + 21?;1 q(Tk)G(CRl(Tk — O’)):| dt = +oo
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and
(A7) f7 a(s)ds + 3207 alm) = +oo
hold for every constants C,T > 0, where Ry(t) = too r?i)' Then every solution of the

system (E) either oscillates or converges to zero.

Proof. Let y(t) be a regular solution of (E). Proceeding as in Theorem 2.1, we have
(2.2) for t > t1. Hence, there exists t2 > t1 such that r(¢)z’(t) and z(¢) are of constant
sign on [tg,00). If z(t) < 0 for t > t5, then y(t) is bounded. Consequently, lim;_, o z(t)
exists. As a result,

0 > lim z(¢) = limsup z(t)
t—o0 t—o0
> limsup(y(t) —ay(t — 7))
t—o0
S 1 e _
> hirisogpy(t) + htlglogf( ay(t—r))

(1 —a)limsupy(t)
t—00

implies that limsup, ,. y(t) =0 [." 1 —a > 0] and thus lim;_, o y(t) = 0 for ¢ # 7%,
k € N. We may note that {y(7 — 0)}reny and {y(7x + 0)}ren are sequences of reals,
and because of continuity of y

lim y(rx —0) =0= lim y(7x +0)
k—o0 k—ro0

due to
litm infy(t) = 0 = limsup y(t).
—00

t—o00
Hence for all t and 7, k € N, limy_, oo y(t) = 0. Let z(¢) > 0 for t > 5. If r(¢)2'(t) < 0
for t > to, then z(t) is bounded and hence lim;_,, z(t) exists. Therefore, for s > ¢ > ¢,
r(s)2'(s) < r(t)Z'(t) implies that

that is,
° db
2(8) < z(t) + ()2 (¢ / — .
() < =0 +r0)70) |
Because r(t)2’(t) is nonincreasing, we can find a constant C' > 0 such that r(¢)2'(t) <
—C for t > ty. As a result,
5 de
z(s) < z(t fC/ —
@<=m-c [ 5

and hence 0 < z(t) — CRy(t) for t > to. Ultimately, z(7x) > CR1(7), k € N. From
the system (2.2) it is easy to see that
(r(1)2' (1)) + q()G(CR(t — o)) <0, t#m,
A(r(te)z' (7)) + q(7) G(CR1 (7, — 0)) <0, k € N.
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Integrating the last inequality from o to ¢(> t2), we obtain

[7"(t9)z’(s)]z2 +/t q(s)G(CRy(s — 0))ds — Z A(r(m)z' (1)) <0,

that is, )
/t q(s)G(CRy(s — 0))ds + Z akG(CRy (1, —0)) < — [r(s)z’(s)]:2

< —r(H)(1)
implies that
1 t /
o) /t 4()G(CRi(s —0))ds+ > qG(CRi(mi —0))| < —2(1)

and further integration of the preceding inequality, we have

/tur(lt) /t 4()G(CRi(s —0))ds+ Y qG(CRi(rx —0)) | dt
<-[20].+ D Az(m)
=-[z®)]; + > [2(m +0) = 2(m — 0)]
<z(ta)+ Y #m+0)
< 400. e

Ultimately,
/oo % [/ Q(S)G(CR1(S — o))ds + quG(CR1(Tk - U)) dt < 00,
t3 ts 1

gives a contradiction to (Ag). Hence, r(¢)2’(¢) > 0 for t > t5. As z(t) is nondecreasing
on [t2,00), there exist a constant C' > 0 and t3 > t2 such that z(¢t) > C for t > ¢s.
Therefore, the system (2.2) becomes

(r(®)2' (1)) +4a()G(C) <0, t#m
A(r(m)? () +a(m) G(C) <0, k€N
We integrate the preceding inequality from ¢3 to +00 and obtain
/ q(s)ds + Z q(1) < 400,
ts t3 <1 <00

which is a contradiction to (A7). Thus the proof of the theorem is complete. O

Theorem 2.3. Let —1 < —a < p(t) <0, a >0 fort € Ry. Assume that (As) and
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(As) [57q(s)ds + > pq q(m)dt < oo

hold. Then the impulsive system (E) admits a positive bounded solution.

Proof. Due to (As), it is easy to verify that

AOO Tls) {/:O q(t)dt +§Q(Tk) ds < +o0. (2.3)

Let there exist T > p such that

R ] e < B
G(r) [ [ a0+ Samofas < T 72
Consider
M= {y € C(T — o, 400), B) (1) = 0 v e [~ 7
@ < y(t) < R(t) fort > T}

and let ® : M — M be defined by
((I)y)(T)7 t—p<t<T,
(@y)(t) = § —p(O)y(t —7) + 52 + [1 75 [T a0)G (y(0 — o)) do
+ >y a(me)G (y(mi — 0))]d8, t>1T.
For every y € M, (®y)(t) > @ and
o)) < o)+ 0+ ctrey [T a0+ S atm)as
S k=1

7 7(s)

< aR(t) + @ + @ = (a—i— ;) R(t) < R(t)

implies that (®y) € M. Proceeding as in the proof of Theorem 2.1, we conclude that
the operator T has a fixed point u € M, that is, u(t) = (T'u)(t), t > T — p. Therefore,
u(t) is a solution of the impulsive system (E) with # < u(t) < R(t) fort > T
which is regular and does not tend to zero as t — oo when the limit exists. Thus the
theorem is proved. O

Theorem 2.4. Let 0 < p(t) < a < 0o fort € Ry. Assume that (A1) — (Asz) and (As)
hold. Furthermore, assume that

(Ag) there exists A > 0 such that G(u) + G(v) > AG(u +v) for u,v € Ry,
(A10) G(u ) < G(u )G( ), u,v € Ry,
(An) [ s [le )G(CRy(s — 0))ds + 3222, Q(7,)G (CRl(Tk—a))] dt
=400, T,11 >0
and
(A12) [77 Q)dt + 3232, Qi) = +00, T > p

hold, where Q(t) = min{q(¢),q(t — 1)}, t > 7. Then every solution of the impulsive
system (E) oscillates.
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Proof. On the contrary, let y(t) be a regular nonoscillatory solution of (E). Proceeding
as in Theorem 2.1, we have two cases namely z(t) > 0,7(¢)2'(t) < 0 and z(t) > 0,
r(t)z'(t) > 0 for t € [tz,00). Consider the former one. Ultimately, y(t) is bounded.
Using the same type of argument as in the proof of the Theorem 2.2, we obtain that
2(t) > CRy(t) for t > to. From the system (F) it is easy to see that

(r(t)2' (1)) + a(t)G(y(t — 0))
+ G(a) [(r(t —71)2'(t — 7'))/ +q(t —7)G(y(t — 7 — a))} =0, t # T,

A(r(m)2' (1)) + a(m) G (y(mh — 0))
+ G(a) [A(T(Tk -7 (11, — T)) +q(m — T)G(y(Tk -7 - 0’))] =0, keN.
Using (Ag) and (Ajp) in the above system, it follows that
(r()2' () + Gla)(r(t = 7)2'(t = 7)) + AQH)G (=(t
A(r(mo)2 (1)) + G(@)A(r(m, = 7)2' (1) = 7)) + AQ(71) G (2(7i
where z(t) < y(t) + ay(t — 7). Ultimately, (2.4) reduces to
(r(t)z/(t)) + Gla)(r(t —7)2'(t - T))/ +AQ(t)G(CRy(t — 0)) <
A(T(Tk)zl(m)) + G(G)A(T(Tk — 1) (11 — T)) + )\Q(Tk)G(CRl(Tk — O’)) <
for t > t3 > to, t # 7, k € N. Integrating the last system from t3 to t (> t3) we get

[r(s)z’(s)]; +G(a)[r(s— 1) (s —7) Z A(r(m)2' (1))

ts <t <t

) Y A(r(me =) (e~ 7)) + A | Q(s)G(CRi(s —0))ds <0,

t3<7'k <t

) —0)) <0
G —0)) <0, (24)

0
0

that is,
t

A QG)G(CRi(s—0))ds + > Q(m)G(CRi(mk —0))]

< - [r(s)z’(s) + G(a) (r(s —71)2' (s — 7'))];
< —[r@®) )+ G(a)(r(t —7)2'(t —7))]
< —(1+G(@)r(®)2 ().
Therefore,
g G [/ Q(s)G(CRy(s —0))ds + Z Q(7)G(CRy (1 — 0))] < —2/(t).

t3 <1<t

Integrating the above inequality, we obtain

1+G / {/Q G(CRu(s - 0))ds + Z QrG CRl(Tka))]dt<oo

t3<TL <t
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which is a contradiction to (A11). If the latter case holds, then there exist a constant
C > 0 and t3 > t9 such that z(t) > C for ¢t > t3. From (2.4), it follows that

(r(t)2' (1)) + Gla)(r(t — 7)2'(t — 7)) + AQ()G(C) <0
A(r(m)z’(m)) + G(a)A(r(Tk —71)2 (1 — T)) +AQ(1)G(C) < 0.
Integrating the last inequality from t3 to +00, we get a contradiction to (Ajz). This

completes the proof of the theorem. O

Theorem 2.5. Let 0 < p(t) < R(t) < 1 fort € Ry. Assume that (As) and (As)
hold. Furthermore, assume that G is Lipschitzian on the intervals of the form [a, ],
0 <a<b<oo. Then the impulsive system (E) admits a positive bounded solution.

Proof. Proceeding as in the proof of Theorem 2.3, we get (2.3). So, there exists T > p

such that
/TC>O %8) {/:o g(t)dt + ]i Q(Tk)] ds < 1_37];”(15)

where L = max{L;,G(1)}, L; is the Lipschitz constant of G on [PTR“), 1} fort >1T.
Let X = BC(|T, ), R) be the space of real valued continuous functions on [T, 00).
Indeed, X is a Banach space with respect to the sup norm defined by
lyll = sup{ly(®)| : t > T}
Define
1—R(t)
2

We notice that S is a closed and convex subspace of X. Let ® : S — S be such that

S={veX: <o) <1, t>T)

(Py) (T +p), te[T,T+p],
(@y)(t) = —p(t)y(t —7) + D — [ L[ q(w)G (y(u - 0))du
+ 2k Q(Tk)G(y(Tk —0))])ds, t > T + p.

For every y € X, (Py)(t) < HTR(” <1 and

(@)(1) > —rr) + 20 12O 2 gy

implies that ®y € S. For y1,y2 € S,
[(@y1)(t) = (Py2)(B)| < R(E)|y1(t = 7) — y2(t — 7)]

s US""MG(%@_@) — Glys(u—o))ldu

+ qu|G(y1 (tk — 0)) = G(y2(mi — 0))||ds,
k=1
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that is,
[(@y1)(t) = (Py2) ()] < R(E)llyr — w2ll + llyr — g2l Ly

x/toor(ls)[/:oq(u)du—l—iqk}ds

S R e [

implies that
[(@y1)(t) = (Py2)(B)] < pllyr — v2ll;

(R(t>+1—R(t)> St

where

3 3

and a = limsup,_, o R(t) (. R(t) < oo, R'(t) > 0). Therefore, ® is a contraction.
Using Banach’s fixed point theorem, it follows that ® has a unique fixed point y(t)

in [FTR“), 1] This completes the proof of the theorem. O

Theorem 2.6. Let 1 < a1 < p(t) < ag < o0, a3 > a for t € Ry. Assume that (As)
and (As) hold. Let G be Lipschitzian on intervals of the form [a,b], 0 < a < b < 0.
Then the impulsive system (E) admits a positive bounded solution.

Proof. Proceeding as in the proof of Theorem 2.3, we have obtained (2.3). Let

/TOO % /tooq(s)ds—FZq(Tk)] dt < a14£ 1,

k=1
where L = max{Ly, Ly}, Ly is the Lipschitz constant of G on [a,b], Ly = G(b) with

- 4p(a? — ag) — az(a; — 1)
4a12a2
ay — 1+4u, . as(ay — 1)
4aq 4(a1? — az)
Let X = BC([T,0),R) be the space of real valued functions defined on [T, 00).
Indeed, X is a Banach space with respect to sup norm defined by

lyll = sup{ly(®)[ : t = T}.

b= > 0.

Define
S={ueX:a<u(t)<b t>T}.
Let @ : S — S be such that
Qy(T +p), te[T,T+p)

(t+7) L gt 1 | peo
(@y)(t) = { a0 T aar T aw e R [fs a(W)G (y(v — o))dv

+ > Q(Tk)G(y(Tk — U))}d& t>T+p.
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For every y € S,

(@y)(1) < 2O /t+T1{_/SOOQ(v)dv+iQ(Tk)]ds+p 2

pt+7) Jr r(s) Pt (t+71)
G(b) Ooi ~ v U 3 T S
ey Arel) AECL T2l 0] s+ st
“alr
and
@ > - LD b

CpltrT) pEET) T a a
implies that &y € S. For y1,y2 € S

1

[(@y1) (1) — (Py2)(t)] < m@l(t +7) —yo(t + 7|
& t+ri ° v v—0) — 1o (v — o)ldv
+lp(t+7>\/T r(s)[/s W)y (v = 0) = ys(v — 0)ld

X ambn(n ~ o) = (- o)l ds

k=1
that is,
1 G(b
@32)(0) — @02)()] < s = vell + S s —
al al
t+r g 00 oo
X — q(v)dv + q(Tx }ds
[l « 2 )
1 ay — 1
— — 1 .
<a1|\yl y2||< + 1 )
Therefore,

1 a1—1
Py1) — (P <[|— - .
@) = @)l < (-4 5t ) o = el

As (ai + “41—_1) < 1, ® is a contraction mapping. We note that S is a closed convex
1 al

subset of X and hence by the Banach’s fixed point theorem ® has a unique fixed
point, that is, ®y(t) = y(t) on [a, b]. Thus the proof of the theorem is complete. O

Theorem 2.7. Let —0co < —ay < p(t) < —ag < —1 for t € Ry, where aj,as > 0.
Assume that (A1) — (As) and (As) — (A7) hold. If

(Aig) [ i [ al)ds + 52, a(m)] de = +oo,

then every bounded solution of the system (E) either oscillates or converges to zero.
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Proof. Let y(t) be a bounded regular solution of (E). Proceeding as in Theorem 2.1,
it follows that z(t) and r(t)z'(¢) are monotonic functions on [t2,00). Since y(¢) is
bounded, then z(t) is bounded and hence lim;_, . 2(t) exists. Using the arguments
as in the proof of Theorem 2.2, we get contradictions to (Ag) and (Ay) for the cases
z(t) > 0,r(t)z'(t) < 0 and z(¢t) > 0,r(t)z'(t) > 0 respectively. Consider the case
z(t) < 0, r(t)2'(t) > 0 for t > t3. We claim that lim;_,o 2(t) = 0. If not, there exist
B < 0 and t3 > to such that z(t +7 — o) < g for t > t3. Hence, z(t) > —a1y(t — 7)
implies that y(t — o) > —aj'J3 for t > t3. Consequently, the impulsive system (2.2)
reduces to

(r(®)2' (1) +G(=a;'B)g(t) <0, t#m
A(r(me)#' () + G (a7 ' B)a(m) <0, keN (2.5)
)

for t > t3. Integrating (2.5) from t3 to +o00, we get

)
U:q(s)der T q(Tk)}@o

t3<tp<oo

which is a contradiction to (A7). So, our claim holds and

0 = lim 2(t) = ligiogf(y(t) +p(t)y(t — 7))
< htrglogf( y(t) —az y(t — 7))

< limsupy(t) + hgg)lf(—ag y(t—7))

t—o00

= (1—a2)limsupy(t)
t—o0

implies that limsup, . y(t) =0 [."1—ay <0]. Thus, lim;_, y(t) = 0.
Let z(t) <0, r(t)z'(t) < 0 for t > t5. Proceeding as in the previous case, we get (2.5).
Integrating (2.5) from t¢3 to ¢, we obtain

)
/ q(s)G(—ay ' B)ds + Z q(m)G(—ai ' B) < —r(H)Z'(t),

¢ t3<TR<t
that is,

/q(s)G(fal_lﬂ)der Z q(Tk)G(al—lﬂ)] < —2(t)

ol
r(t) L, ta<ra<t

for ¢t > t3. Further integration of the above inequality from t3 to +o00, we get

/t:O7“(lﬂ[/t:Q(s)ds+ > ‘J(Tk)]dt<oo

t3<7p <t

which contradicts (Ay3). Thus lim;—, 2(t) = 0. Rest of this case follows from the
previous case. This completes the proof of the theorem. O

Theorem 2.8. Let —o0 < —ay < p(t) < —as < —1 fort € Ry, where aj,ag > 0
such that 4az > a1. Assume that (As) and (As) hold. Furthermore, assume that G is
Lipschitzian on the intervals of the form [a,b], 0 < a < b < co. Then the system (E)
admit a positive bounded solution.
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Proof. Proceeding as in the proof of Theorem 2.3, we get (2.3). So, it is possible to
find T > p such that

sl q<t>dt+§q<m>}ds <l

T

where L = max{Ly,G(1)}, L; is the Lipschitz constant of G on (a,1),

_ (ag — 1)(4&2 — (11)
4a1a2 '

Let X = BC([T,o0),R) be the space of real valued continuous functions defined on
[T, 00). Indeed, X is a Banach space with the supremum norm defined by

lyll = sup{ly(®)[ : ¢ = T'}.
Define
S={veX:a<vit)<1,t>T}.

We may note that S is a closed and convex subspace of X. Let ¥ : § — S be such
that

Yy(T +p), te[l,T+p]
_y(t+7)  as-—1 + 1 t+7 1 {

(Ty)(t) = ptET)  pltrn) T pGrn) JT T (s [ a(w)G(y(u—0))du
+ 2 hey 4(m) G (y(m, — 0))} ds, t>T+p.

For every y € S,
y(t+7) as —1

7p(t +7) pt+7)

1 a1
+ 2

(Wy)(t) <

<[ v o [ / " g6 - 0))du+ Y a(m)G vl - U”} ds

k=1

as — 1 G(l) t+7 i 00 00 )
Ctwen b o V alu)dut ;q“’“)] !

as—1 G() [~ 1 oo =
ZT— a(2)/ M[L Q(u)du+ZQ(Tk)] ds

T k=1

ag—l_ag—].:a

ay 4&2
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implies that (Uy) € S. For y1,y2 € S, we have that

1
[(Wy1)(t) — (Py2)(t)] < e

Ll t+7 1 oo
+|p(t+7')|/T 7«(3)L/9 q(u)|y1(uft7)—y2(u,g)|du

+ 3 a(m)lyi (T — o) = ya(mi — 0)|]ds,
k=1

ly1(t+7) — 2t +7)]

that is,
ags — 1

I(‘I’yl)(t)—(‘byz)(t)lé%Hyl—y2ll+ [y — 2l

4a2
implies that

1(®y1) — (W)l < pllyr — 2],
where p = L+ (1 + a2T’1) < 1. Therefore, ¥ is a contraction. By the Banach’s fixed

az

point theorem, ¥ has a unique fixed point y € S. It is easy to see that lim; . y(t) # 0.
This completes the proof of the theorem. O

3. Discussion and example

It is worth observation that we could succeed to establish the necessary and
sufficient conditions for oscillation of all solutions of the impulsive system (E7) when
—1 < p(t) < 0 only. However, we failed to obtain the necessary and sufficient condi-
tions for the other ranges of p(¢) and hence the undertaken problem is open for other
ranges of p(t). May be some other method is required to overcome the problem.

We conclude this section with the following example:

Example 3.1. Consider the impulsive system

(Ey) (r@®W(®) +pO)yt = 1)) +at)y(t—1) =0, t # 7
A(r()(y(7r) +p(7e) y(m — 1)) +alme) y(ne —1) =0, k€N,
where —1 < p(t) = e ' —1<0,qt) =e ', rt) =¢€", R{t) =1—¢t, Gz) = =z,
p=1and 7, = 2¥, k € N. Clearly, all conditions of Theorem 2.1 are satisfied. Thus
by Theorem 2.1, every unbounded solution of the system (E,) oscillates.
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Existence of solutions for a p-Laplacian Kirchhoff
type problem with nonlinear term of superlinear
and subcritical growth
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Abstract. This paper is concerned by the study of the existence of nonnegative
and nonpositive solutions for a nonlocal quasilinear Kirchhoff problem by using
the Mountain Pass lemma technique.
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1. Introduction

Many research are interested to study the existence of nontrivial solutions of
Kirchhoff type equations for its huge importance. The Kirchhoff equation was intro-
duced for the first time in 1876, which describe the free transverse vibrations of a
tight rope of length L and a constant density (assumed to be equal to 1). The rope
is described by a variable x taking its values in the interval [0, L]. The system of
equations describing this phenomena and which was given by Kirchhoff is

Uyt — (g()\)ux> —0,0<z<L,t>0, (1.1)
Ve — (g()\)(l—kvx)) —0,0<z<L,t>0, (1.2)
u(0,t) = u(L,t) = v(0,t) = v(L,t), t >0, (1.3)

1
where ) is the deformation of the cord given by A(z,t) = (|1 +vg 2+ |uw|2) *—1,and

g(A) = % with () represents the rope (cord) constraint corresponding to A; finally

and most important, the unknowns u(x,t) and v(x,t) represent the transversal and
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longitudinal displacements of the material point x at the time ¢. In order to separate
the unknowns v and v and under some hypotheses, one can obtain

E [
utt—<TO—|—ﬁ |uz|2dx>um20, O<z<L,t>0,
0
u(0,t) = u(L,t) =0, t>0,

which is named the Kirchhoff equation. Ty and % are two physical constants.

Since then, many researchers are interested in the Kirchhoff equation for its impor-
tance and it has been the subject of many studies; we cite here, in particular [4],
which treats the following Kirchhoff type problem

—(a+b/ |Vu\2dx)Au:f(x7u), in Q,
Q
u =0, on 0,
with 4-superlinear growth as |u| — 400, and using minimax methods, it gives two
interesting results, the existence of nontrivial solutions, and the existence of sign-

changing solutions and multiple solutions. We cite also [3] which treat the existence
and multiplicity of solutions for the semilinear elliptic problem given by

—Au+L(z)u= f(z,u), inQ,
u =0, on 012,

by using the Mountain Pass technique. Note that, our work is practically based on
the papers [3] and [4].
Let us consider the following nonlocal® Kirchhoff problem
p—1
—(a + b/ |VulP dx) Apu+ (@) |uP2u = f(z,u), inQ,
Q
u =0 on 01,

(1.4)

where A, is the p Laplacian operator: —A,u = div(|Vu[P72Vu), Q is a smooth
bounded domain in RN with N > 3, a,b two strictly positive real numbers, ¢ €
L%(Q) N L*(€) and f is a real continuous function defined on Q x R. The induced
norm in Wy?(Q) is given by

lJul| = (/Q|vu|pdx)5, Vu € W (Q).

2. Statement of the main result

The operator L defined by Lu = —(a + b|[u||P)P~ Apu + £|u|P~2u possesses an
unbounded eigenvalues sequence

A< A <o <\, = 400 asn — +oo,

1t is called nonlocal because of the term M (||u||P) = a + b||u||P which implies that the equation is
no more a punctual identity [1].
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where A is simple and is characterized by

(a+b||u\|”)1’—1||u\|?+/ £(z)[ul? dx
/\1 = inf Q2 .
uEW&’p(Q),uy&O / |u‘p dx
Q

Remark 2.1. Our purpose in this remark is to study the following eigenvalue problem
L = —(a+bl|0|[P)P 7 Ape + £(2)|]" 26 = [P 0. (2.1)
Let A\; and ak respectively eigenvalues and eigenfunctions of the operator
—Ap + glolP ™7 We (@) —» W ()
with g € L*>°(Q) (see [5], [6]), which means that

— Dy, + g(2) |0k P 201 = Nl dr|P 2 s (2.2)
especially for g(z) = (aerﬁé;x)H’)pl? ie.,
k
At D 5 25 = MG, (2.3)

(a + bl|gx|[P)P—

multiplying by (a + b||¢x|[P)P~, we obtain
—(a + bl Gk| )~ Ap i + @) Gk lP 2Pk = Ae(a + bl gk [P)P | ok[P2Gx,  (24)

so the sequence (Xk) defined by

A = Ak @+ b|gx[[7)P~!

consist of eigenvalues of the operator L associated to the eigenfunctions gk. Since A;
is simple and strictly positive (see[5]) , it follows that A\q, the first eigenvalue of (2.1),
is also simple and strictly positive.

Proposition 2.1. If A is an eigenvalue of the operator L, then, there exist A\ and $k
such that

A = Ni(a+0lgx][P)P.

Proof. As )\ is an eigenvalue of the operator L, one has that there exists ¢ € VVO1 P(Q)
with ¢ # 0 which satisfies

—(a+bl[g|P)P A + L(2) 0P 2o = MpP ¢ in Q, ¢ =0ondQ,
and this implies that

(a+bllg][P)~! /Q VPP d + /Q ()| Bl d = A /Q 6P da,

as a result
(a+blol|P)P~H|lIP + [, £(x)||? dx

N\ =
fQ |¢|pd$
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and that
£(x) A
A ¢>+—¢p 2p= —————|o[P 29,
O F e T e
consequently, there exists k& € N* such that Ay = W and ¢ = 5k for some
a k
eigenfunction associated to Ag. A = W implies that A = A\ (a+b||¢px|[P)P~!
a k
and this conclude the proof of the proposition. O

For p < N and concerning the embedding mapping Wy (Q) 9 L"(), it is
continuous for r € [1,p*] and compact for r € [1,p*) with p* —N , 5o we have that
Sylul, < ||u|| for all u € WyP(Q), where | - |, denotes the norm in L"(Q) and S, is
the best constant corresponding to the embedding mapping (see [2]).

In this paper, we assume that f is a continuous function on Q x R and satisfies:

(H1) for every M > 0, there exists a constant Lp; > 0 such that |f(x,s)| < Ly for
|s| < M and a.e. z € Q,

(H2) lim f(x, 82) = 0, uniformly in a.e. z € Q,
|s|—o0 |S|P"T=s
(H3) there exist a function m € L (Q), and a subset Q' C Q with || > 0 such that
F
limsupm <m(zx) < A,
5—0 |5|

uniformly in a.e. x € , and m < Ay in €, where F(z,s) = [ f(z,t)dt and |- |
is the Lebesgue measure,

F
(H4) ‘ llim (Z;S) = 400 uniformly in a.e. x € Q,
s|—o0 S

— 1 —
(H5) let F(x,u) = — f(z,u)u — F(z,u), then F(z,u) — 400 as |[u| = +oo uni-
p

formly in € Q, and there exists o > max{l,%} such that |f(z,u)]” <
CF(x,u)(|u[P~1) for |u| large.
Furthermore, we suppose that one of the two conditions is satisfied (ﬁ(sc) —m(z) > 0)
or (ﬁ(m) >0 and a?~ ! > ‘T”S# when p > 2).

Example: consider the function

4

flz,s) = { Sl 4(1+s)

s3n(1 —s) — 74(1 35~

1[s3 +s%+s], 5> 0,
[s% — 52+ 5], s <0,

NN

then f satisfies all the above hypotheses for p = 2 and N = 3.
Our main result is the following theorem

Theorem 2.1. Assume that hypotheses (H1)-(Hb5) hold, and that sf(xz,s) > 0 for
s € R and a.e. x € Q. Then problem (1.4) has at least a nonnegative solution and a
nonpositive solution.
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3. Preliminaries

Let E = Wy?(Q) and define the functional
®u) = S3T(ull) + - [ ol do~ [ Flaw)ds, ueP.
p

where M fo )JP~tds and M(s) = a + bs, in other words,

1

)= ;s

[(a+b||u|\p —ap /€ \u|pdm—/qu uekFE.
The variational formulation associated to the problem is
[1\4(||u||20)]p_1 /Q VP2V Vo do +/Qe(x)|u\%2uv de = /Qf(x,u)v dz, Vv € E,
and by (H1) and (H2), one can verify that ® € C'(E,R) and
(@ (u), v) = [M(||u|\p)r71/ﬂ|Vu|p_2Vqudx+/Qﬁ(a:)|u|p_2uvdx
- /Q f(z,uw)vdz, Yu,v € E;
the weak solutions of the variational formulation are the critical points of ® in F.

Following the paper [3] and in order to obtain nonnegative and nonpositive solutions,
we let f(z,s) = f(x,s) — m(x)|s[P~2s and truncate f above or below s = 0, i.e., let

f+($,8) — { g(xvs)v z i 87 and ]A{_(J},S) — { g(z7s)7 z § 8’

and F, (z, s) =/ f+ z,t)dt, F_(z,s) fo (x,t)dt. Under (H1) and (H2), the
functionals @, and ®_ defined as follows

By 0) = 3l + 5 [t de = [ m@pup de— [ Fya da,
= @l -]+ 1 [ il as
—]f)/ﬂm(aﬂﬂu\pdmf/ﬁ+(m,u)dx,

&) = <3l + 5 [t de =5 [ m@pup do— [ F- @) da,

1
72[( 4 b|[ul[P)P —ap /13 |u|pdx—f/m Yul? dz
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belong to C*(E,R) and

~u7v:a+u N ul”"“Vu - Vodx + x)|ul” “uv dx
@ (0),0) = (a+ bl [ [Vup V- Vodo+ [ ta)lul 2uvd
Q Q
—/m(ac)|u\p_2uvdx—/ﬁr(x,u)vdm,
Q Q
(@ (u),v) = (a+b||u|\P)p—1/ |Vu|p_2Vu~Vvdx+/E(x)\u|p_2uvdx
Q Q

—/m(x)|u\p_2uvdx—/f_(a:,u)vdac,
Q Q

for all u,v € E.

4. Proof of main results
We recall one critical point theorem which is the Mountain Pass lemma.
Theorem 4.1. Let (X, || -||x) be a Banach space, suppose that ® € C1(X,R) satisfies
®(0) =0 and
(i) (the first geometric condition) there exist positive constants Ry and ag such that
O(u) > ap for all uw € X with ||u||x = Ro,
(i) (the second geometric condition) there exists e € X with ||e||x > Ro such that
P(e) <0,
(iii) (the Palais-Smale condition) ® satisfies the (C.) condition, that is, for ¢ € R,
every sequence (u,) C X such that
O(un) = ¢, ||®(un)ll (1 + [[unl)) = 0

has a convergent subsequence. Then ¢ := inf sup ®(vy(s)) is a critical value of
7€l sef0,1)
P, where

I':= {y € C([0,1], X); 7(0) = 0,7(1) = e}.

We need also the following lemmas.

Lemma 4.1. Assume that N >3 and v € L%(Q), then the functional

V() = / o(@)ulP dz, u e WEP(Q)
Q
18 weakly continuous.

Proof. As in [8], the functional ¢ is well defined by the Sobolev and Hélder inequali-
ties. Assume that uw, — u in VVO1 () and consider an arbitrary subsequence (w,) of
(uy,). Since

w, »>win LY (Q), wi —u"inL! (Q) and w, —u” in L}

(€2)
going if necessary to a subsequence, we can assume that
+ +

w, = u a.e on ), w}

—u" ae on{) and w, — u” ae. on
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Since both (w;) and (w;;) are bounded in LP" (), ((w;")?) and ((w;, )P) are bounded
in LNLW(Q) Hence (w;")? — (u™)? and (w;, )P — (u™)? in LNL*P(Q), and so

| o@lulrae = [ vl

As a result, ¢ is weakly continuous. O

Lemma 4.2. Assume that m € L%(Q), and there exists Q' C Q with || > 0 such
that

m<A\ inQandm <\ inQ
then

(at b\|u||p> [ulP + J;, €(@)lulP dz — [y, m()[ul? d
d:= inf
uEWOI’p(Q),'UJéO ||u||p
is strictly positive (d > 0).
(at olbull?)" el + fy )l d
Proof. Since \; = inf and from the

uGWOI’p(Q),u;éO |U|p
assumption that m < A1 in €2, we have that d > 0, because m < \; implies that

—/ m|ul? dx > —/ A1 |ul? dx,
Q Q

and consequently, we have
(ot Bllullr)” lfullr + Jo €@l de — oy m(@)ful
ull
(ot Bul?) ull + oy ) i — oy Ml
- ull

(atbllullr)” lulle + o @l dz | s

= - Al
[Jul[? [Jul[?

> 0,

by definition of A;. It remains to prove that d # 0; for that, we let

J(u) = /Qé(w)|u|pdﬂc,u€VV01’p(Q),

=
£
i

/ m(z)|ulP de,u € Wy (Q),
Q

=
£
[

(a + b\|u||p)p71||u|\p + J(u) — K(u),u € Wol’p(Q).

Supposing by contradiction that d = 0, it follows that there exists a sequence (uy,), C
W, P(2) such that
[lun]|] =1 and lim L(u,) =0,

n—-+oo
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by the boundedness of (u,), in Wy?(Q), we can extract a subsequence such that
Uy, — u in WyP(Q). Since J and K are weakly continuous, we have

lm J(up) = J(u), nErEmK(un) = K(u), (4.1)

n—-+oo

and from the weak lower semicontinuity of L, we obtain
0 < L(u) < liminf L(uy) = lim L(u,) = 0,
then we have
p—1
L) = (a+bllul?)" lull” + J(w) = K(w) =lim L(w,) =0, (4.2)
which implies that
p—1
(act elll) " Nl + I ) = K () = [ mia@)fupdo < x [ [ul?
Q Q
so, we have
p—1 p—1
(a-t Blll) Nl -+ I0) < A0 [ fupdo < (et W)l + I (w)
Q
consequently
p—1
(act elll) " Yl + I = v [ Jul da. (4.3)
Q
If u =0, from (4.1), (4.2), we have that
p—1
lim L(uy) = lim ((a -+ Bllunl?)" fluall”) +7(0) = K(0) =0,

which implies that lirf [lun|| = 0, and this is a contradiction with ||u,|| = 1. So
n—-+0o0

u # 0, then u is an eigenfunction corresponding to A1; since m < A; in Q and m < A;
in Q' with || > 0, it follows that,

(arltalP) " full + 00 = K = [ mia)fup da

= [ m@lapdst [ )P

Qo Q\Q/
< A\ |ul? dx + / A1 |ul? dx
o Q\Q/
= / >\1|u|p dl?,
Q
which is in contradiction with (4.3). Consequently, d > 0. O

Lemma 4.3. Assume (H1), (H2) and (H3) hold, then ® satisfies the first geometric
condition.

Proof. In the same way as in the paper [3], by (H3) and for € € (0, %), there exists

a positive constant M; < 1 such that

1
Fy(x,8) = F(z,s7) < =(m(z) +¢)(sT)P, for [s| < M; and a.e. v € (4.4)
p
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with s = max(s,0); for the chosen ¢ and from (H1) and (H2), we have

3Mz > 1, 3L, = |f+ (2, 8)] = |f(2,s7)] < e(sT)7 7 + Lag, (4.5)
and 1 L, M-
p MMz € p*
Felers) < Jm(o) +)(sHP + (F1 + 2 ) 6 (46)

for s € R and a.e. x € Q. From (4.6), we have

1
Bo0) = oz @+ Ulully — o] + /4 Jul? da

1 »
— 7/ m(x)|ul? dx —/ Fy(xz,u)dx
1 a + bl||ul|P)P 1 T pdxffl m(z)|ulP dz

a

f@f/Qﬁ+(:c,u)dx
1 ) 1 1
L@+l o+ bl + = [ @ de— 2 [ @)l do
b P Ja PJa
a /ﬁr(x,u)daﬂ
Q
oz @ bl el 4 [ @l do— o [ m)lulr ds
b Q P Ja
——2—/ﬁr($,u)dm
Q

= Syl + 5 [ e de = [ el do
p?

bp

1
= >+ byl + [ @)l o~ [ @)l

p Q Q
- oz = o by P - [ Ftou)do

bp*  pp/ o
> Sl [ Fetoyu)de = 1o = Gt ) ul
TP o bp*  pp/
= el - [ Frtwnydo s [ m@lutr do

p Q D Ja

a? 1 _

~ i3 = o Pl

d 1 Ly,My € .
[P — = +e)uh)Pd —/ M2 L Z )ty d
i [ o)<ty de = [ (2 4 D)) e

p
m(x u+pdx————a+bupp_1up
/ z)|u’ pp( [l [P)2~ ]
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1 L, M- x
ngqu—f/a(qu)pdx—/( ) [
P Jo Q

p M pr
aP 1 _
—b?—ﬁ(aerHqu)p ul [P
d € Ly, M € 1 -
> Sjull? - Sl - (322 + ) (o= )P
P »Sp M 2% )\ Sp-
ab 1 p\p—1 P
—W—E,(Hbllull )P ||
d L]\/[ M2 1S 1 * a? 1 _
:—up—( — +—)(—>up————a+bupplup,
Qp\l I M7 \5 [[ul| 0 pp,( [l [7)P~ ]
Yu € WyP(Q).
LetC:(LL%+%)(1), e have that
1 MP P 5,- Wi Vi
b d p p* ab 1 pyp—1 p 1,p
@+(U)Z%|\U|l — Cillu *@*@(GHHUH) [[ul[P,  Vu € Wy ().

For Ry sufficiently small, with [u|| = Ry, one can have |[u|[P" < ||u||P and

(a -+ bl[ul ")~ [ul[” < [[ul”

and

By (1) > ol Cullull”” — 25— (atblful Pl 2 00> 0, Vu € W ().
~ 2 bp®>  pp/ - ’ 0

Consequently, the first geometric condition is satisfied. O

Lemma 4.4. Assume that (H1) and (H4) hold, then &hr satisfies the second geometric
condition.

Proof. Note that, using the following standard inequality, for o, 3 > 0 and p > 1, we
have (o + 8)P < 2P~1(aP + BP), then,

W) = [+ bllully =7
< pib[zp—l(ap+bp||u\|p2)—ap}
< Slerm—ne -]

let ¢; =2P~1 — 1 and cp = 2P~ 'bP, we have
F(all) < - [ere + calfal”]. (47)
From (H1) and (H4), we have
VA >0, 3M3 > 0, Fi(z,s) > A(sT)?* — Ly, Ms,

for s € R and a.e. z € Q.
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Then for ¢ > 0, ¢; > 0, the first eigenfunction and using (4.7), we have

B (1)) = “NI(||tn]) + /e |t¢1\pdx—f/m |t¢1|pdf‘/F+xt¢1 da

IN

[clap+02\|t¢1||p ] +%/Qe(x)\twd%};/Qm(znwlv’dz
(IE t¢1)

\
BM‘HZJ\%M‘H
S (=

P ]y L x P x—l m(x Pdx
[0 + calleonl?”] + - [ d@leen o [ mialeonra
m(x)((ter) )P do — /QF(SC, (tgp1)T) dx

_l’_
HE\H
n\

IN
w\

b
o [Slolr” —a [ of aa] + 2 [ @potde + S + LMol

= A"’ + BI? + C = P(t),

1
[Clap + C2\|t¢1||p2 + 7/ {(x)|tp:|P da — A/ 1" 8" da + L, My|Q]

3

where
||¢1||p A/gbp dx, B= - /E Vol dx, andC— +LM3M3|Q| > 0;

by choosing
el ||P°
2 b)
p2b [, 87 dx

we then have A < 0. For ¢ sufficiently large, we have that P(tp) < 0 and then by
taking

e = to(,bl S Wol’p(Q),

we conclude that ‘5+ satisfies the second geometric condition. O

Lemma 4.5. Assume that (H1), (H2) and (H5) hold, then ®. satisfies the Palais-
Smale condition.

Proof. Claim 1: Under the same hypotheses in the above lemma, any (C.) sequence

is bounded.
Indeed, for ¢ € R, and (uy), C W, ?(Q), such that

® (up) — cand (1 + ||un|)) P, (un) — 0, (4.8)
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we have for n large, that
~ 1=,
Co > P4 (uy) — —<I>+(un)un
1~
= A (") + /e |un|pdx—f/m \un\pdx—/F+(x ) dz
= [l )]l + [ t@unl? dar— [ @) dr
p2 n n n n

—/ﬁ_(m,un)undaﬂ}

Q
1 1

= —M(||un]|?) + - /E |un|pdx—f/m )|t |P dx + — /m VP dx
p pPJa

- [ Prwudo = [ (M) unll + [ @l do

,/Qm(x)\unv’dwr/Qm(x)(UI)de*/Qf+($’“")“"dx]

because,
Fi(os) = Flast) = m(n) )
and
Frla,s) = fla,57)s" = ml@)(s)? = f(z,5")s — m(x)(s* )P,

then
Co = Wlunll”) = 5 [Mlual?)] ™ Nl + (5 = ) [ alual? do

—(% _ %) /Qm(x)|u,;|pdx - /QF+(m,un) do + ]% /Q Fo (@, un)un d

= T ul?) = 5 (M)l + (5= ) [ @ do
f(% - %) [ @) P dar+ /Qf(z,u;) da;

— p—1
note that the quantity %M(| |wn|P)— p% [M(| |un||p)] [|un||P is positive, so we obtain

Co

\V;
o
+
=
3
|
3| =
=
=
=
z
=
3

;2)/Qm(x) ;‘pdﬂ?‘F/QF(x,u,t)dx.

vV
~~
D=
|

m"—‘ ~
~—
S~
~
~
8
=
S
3
)
U
S
|
—~
| =
|
=
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If 4(x) —m(z) > 0 and since (v~ )P < |u|P, we have
Co
1 Tl
- (7 — —2> ((x) — m(z))|up|P dx + | F(x,u)dx
p P Q Q
> F(x,ul)de.
Q

If /(x) > 0 and a?~! > ‘mS# where p > 2, and using the fact that

533

() o () s | Fesir
1

‘/m(x)ufldx’ < |mlps|unlp
Q
1 P
< ImILwST;;HUnll :
we have
1~ 1 p—1 1 1
Cy > -M unp——{M unp} U ||P + ,_7>/g$ un|P dz
0 , (lunl?) o (unl)| Nunl| (p ), (@) |un|
1 1 _
—(f——2>/m(w)|un\pdx+/F(x,u,f)dx
p p Q Q
1~ 1 p—1 1 1 1
> -M unp_i[M unp:| unp_<7_7)mL°°7 unp
’ (lun?) p (unlP)| Hunl| - Im| S},’” I
1 1 _
+(*—f2>/€(x)\un|pdx+/F(x,u,’l")dx
p p Q Q
> F(x,ul)de.

Q

So, in both cases, one can obtain
~ 1=,
Co > Dy(un)— E(Iq_(un)un
> / F(x,u))dz;
Q

let suppose by contradiction that ||u,|| — +o0, and set

Then ||v,|| = 1, and
1
nls < o ||vnl] =
[oals < -l

for s € [1,p*].

(4.9)



534 Melzi Imane and Moussaoui Toufik

Observe that
&, (1)t = (@ + bfJun )P lan [P + / @) P dex / (@) un P d

— f(m,u:)un dx
Q
= (@ + b|[un[P)P~H|Jun|? +/ () |un|P de — / m(x)|un|” dx
Q

/fmu undas—k/m pdaz

— (a+b||un|\p)f°*1||un\|p+/Qe(x)\unv’dx—/Qm(x)(u;)”dw

/f Z, n undx

:Hun||p<(a+b||u||pp Y |ul|P fg \un\de g de

fQ vy, dx).

||un\|p2‘1
From (4.8), ® ' (up) — 0 as n — +00, so we have

(U2l Joy Uinl? b @) de_Jo aviondry
" el fn¥” luallP fen 7=

Let’s show that

n|P d
o t@nds
" Huan
and
)P dx
o™ =0.
3 ||un||p
We have
Jo U(x)uy|P da fQ Y|vn|P dz
||un||p |[un [P
and
me(x)(u;)pdx fQ . )P dx
||un||p2 Huan 7

since v, — v in L" (r € [1,p*)) and from Lemma 4.1, we deduce that

hm/ |vn|pdz—/ﬂé(x)|v|pdx and 117131/Qm(x)(v;)pdz:/Qm(g:)(v*)pdz,

and since ||u,|| = 400, we conclude that

fQ )| |P d:r B fQ 2)Pdr

& [t [[P* i Hunl|p
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We have also that

bl [, | [P)P 1 [ul] P pP— 1|y ||P(P—D+p
N ) 7 [ G | Y
n——4oo Huan n——+oo Huan
Then
fz,uwf)v, dx T
hm/ HuanLl =bP". (4.10)
Set for r > 0,

g(r) =inf{F(z,u") : 2 € Qand u™ € Ry with u* > r}.

(H5) implies that g(r) > 0 for all r large, and g(r) — 400 as 7 — +o0. Set for
0<a<f< +oo,

An(e, ) :=={z € Q: o < |uj (2) < B}

and

+
oP = inf{F(x’u )

. jut ()P
For large «, we have F(x,ut) > 0, ¢ > 0 and

F(z,uf) > dBlutP,  for z € Ap(a, B).
Tt follows from (4.9) that

C’oz/ F(x,u,f)—k/ F(x,u,f)—k/ F(z,u))
An(O,a) An(o‘nﬁ) An(ﬁ»“l’oo)

> / F(z,u?) +of / it P + 9(B) |An (B, +00)|.
Ay (0,a) An (o)

Since g(r) — 400 as r — 400,

:mEQandu+eR+witha§u+<ﬁ}.

[An(B,+0)] = 0, as 8 — 400, uniformly in n,

which implies that, by the Holder inequality, that for any s€[l,p*),

[l < / (10al) 5 ) ™ 1An(B. +00)| 5
An(B,+00) An(B,+00)

< A, B
< g8 4o0)
~ 0 (4.11)
as 3 — 400 uniformly in n. Furthermore, for any fixed 0 < a < f3,
+
J AT ey L
An(a,B) [[unllP JA, (a,8) l[unlP Ja, () oh
1 —
< 76/ F(z,u))
||un||p0-0/ An(a7ﬁ)
< G
[un|[Pos

— 0. (4.12)
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Set 0 < < Y% From (4.5) (from (H1) and (H2)), we have

/ flz,uf)un, </ |f(z, uf )un| / |f (2w (uh +uy,)
a0 Nl T a0 uallP? An(0,@) [ |[P*

Y Ny g 0
hmoe) Tl Srsomy Nl

</ (W) + Layusy) d
T JAan0.@)

[l |[P*

e [ s
T Jan0.@) | [P A0y unll? 7

because
L]\/]2u;d$ . LM2 _
/A ™~ Tl Un 47
n(0,a) n n A (0,)
L 1
< M 1017 vy |1
[[un||P"—1
L, |97
= Tualet
1
-7
S LM2|Q|IJ 0,

—
Spllun|[P*

so there exists ni, such that for n > nq,

+
/ faunJun (4.13)
An(0,0)  unll?
Set o’ . Since o > max{l N1 one can see that po’ € (p,p*). By |Jun|| — +o0,

we take ng > ny such that ||un|| > 1, if n > ng, and by (4.11), (H5) and Holder
inequality, one can take § large such that

) +
J AP =y R (el o
ey Toall i i

Jul)
D5 Il yp (4.14)
An (B 400) Iun Ip !

1 a1
o B )
An(Brtoc) | k[P An(BAoc)
1 1
< (. cme) ([, )
An(Br400) A (B+00)
< . (4.15)
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Note that there is C' = C(«, 8) independent of n such that ( because of the continuity
of (z,8) — f(TTg) on the compact Q x [a, 3], so it is bounded)

|f(;1:,u:)| SCUI < Cluyl|, forz e Ay(a,p).

So by (4.12), there is ng > ng such that

f(@, ud)vn Clut| vn]
p2,1 g p2,1
An(a,B) [[un| An(a,B) [[wn ]|

C
= ||p22/ 0,F [0
Up| An(a,f)
C

F(F 4 o=
= —s vy (v +vy,)
[ [[P* =2 /An(a,ﬁ) e

C / 9
= — (vh)
[un|[P*=2 JA, (a.8)

< Lz_/ (vn)?
[unllP* =2 JA, (a.8)
C 1
S Tozsgiell
1
T [Jual*2 83
< n (4.16)

for all n > ng. Now, combining (4.13), (4.14) and (4.16), we obtain that for n > ng,

/fnu e <<t

which contradicts (4.10). As a result, (u,), is bounded in W, (Q).
Claim 2: Assume the same hypotheses as in the last lemma, then any (C.) condition
has a convergent subsequence.
Indeed, let (u,) be the (C.) sequence such that
Oy (un) = ¢, (1+||unl))® (un) = 0.
We have
B, (0= 1) = (0 D7V [ [V 2V, 0= )

- z,ul)(u— uy,)de ) |un|P 2w, (0 — uy) do
[ o= u) dot [ @l o= ) d

— / m(x)|un|p_2un(u —up)dx + / m(ac)\u:\p_Quj;(u — uyp) dz.
Q Q
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Since (uy,) is bounded, one can extract a subsequence, named in the same way (u,),

that satisfies

For ¢ in (4.5), and from

from this,

\/f

u, — win WyP(Q),

win L*(Q), for 1 < s < p*, (4.17)
u a.e. in £,

u” in WyP(Q),

u” in L*(Q), for 1 < s < p*,

u~ a.e. in .

Un

U

3

L4 bl

n
n
Up,
(

4.17), there exists a positive constant N(g) such that

|u —upl1 <e,¥n > N(e); (4.18)

4.5), Holder inequality and |u)| < |u,]|, it follows that for n > N(e),

u—un)dx‘ = /Qf+(m7un)(u—un)dx‘
/Q(E(uj;)p*_l—l—LM2>|u—un\dx

= / e(u )P " — wp| de + Lz, [t — un)y
Q

p**1|

IN

IN

Uu—mu

p* + LM257

. <

p* STLHUHHJU_UYL Sy

of (u,) in Wy°(Q) i.e. there exists C3 > 0 such that ||u,|| < C3 and the following

inequality

we obtain

< lull + [[ual]
< liminf [Jug|| + ||un]]
n

2037

[l = unl]

IN

Cg P
Sp*) + L€

< 25(

| [ - )

this implies that hm/ flz,ub)(u—u,)dz = 0.

Also we have by Hélder inequality, that

and

/ ((x)|un|p_2un(u —up)dx — 0,
Q

/ () [t |72 (0 — up ) dz — 0
Q

/ m(z)|wh P~ 2w (u — u,) de — 0.
Q
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In addition, let A(Vuy,) = |[Vu,|P~2Vu,, then
(@ + bl|uy,||P)P~1 /Q |V, |P~*Vu, - V(u— u,) de
= (a + bl|u,|[P)P~1 /Q A(Vun)V(u — up) dz.
Taking account all the previous estimations and limits, we obtain that
/QA(V’U,H)V(U —up)dr — 0, n— 4oc.

From the fact that

/Q AV u)V (1, — 1) da = /Q (A(Vun) ~ ACV0)) V()i

+ | AVu)V(u, —u)dx

Q

and

/QA(VU)V(un —w)dz—0, n—+oo,
we deduce
/Q (A(Vun) - A(Vu))V(un —w)dz =0, n— +oc.
From the following inequality
cp/Q IV (4 — un)|P da < /Q (A(Vun) ~ A(V0) )V (u, — ) di,

we deduce that w, — u in Wy (Q).

539

(4.19)

O

Proof of Theorem 2.1. By Lemmas 4.3, 4.4 and 4.5 and by applying theorem 4.1, one

can deduce that & has a nontrivial critical point u, that is, for any v in E,

<<T>'+(u),v>:(a+b|\u||p)p*1/ﬂ\Vu\p*2Vu~Vvdx+/ﬂ€(m)|u\p*2uvdx

—/m(x)|u|p*2uvdx—/ fi(z,u)vde = 0.
Q Q

Taking as a test function v = v~ in the precedent equation, we obtain

@, (w)u) = (atblulP)! /Q VP2V - Va- de + /Q (@) ulP~2uu~ do

—/m(x)|u|p_2uu_ dm—/ f+(x,u)u_ dz
Q Q
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from the definition of ﬁ_, we have fQ f+(:c, u)u~ dz =0, so
@)ﬁr(u), u”) = (a+b||ul|[P)P~? / |Vu|P~2Vu - Vu~ do + / () |ulP~2uu da
Q Q
- / m(z)|ulP2uu” dx
Q
— (a4 blJu|[)P / VulP 2 (Vat — Va©) - Vu~ de
Q
+/ (@) |uP2(ut —u )u” de — / m(x)|ulP?(ut —u)u” dr
Q Q
= (a+ b||u||p)p_1/ VulP~2 |V ? di — / 0@ ful? 2l 2 da
Q Q

+/ m(@)|ulP~2Ju|? dz
Q
=0.

If ¢(x) — m(z) > 0, then, one can have that

(a+ bllull?)! / IVulP~2Vu 2 de + / (e(a) —ma) ) fulpJu" [ dz =0,
Q Q

consequently, each term in the last equation is equal to zero, especially

/ |VulP~2|Vu~|? dz = 0,
Q

since
/ |Vu|P~2|Vu~|? da :/ |[Vu™|P dz,
Q Q
one can deduce that [|u~|| = 0. If £(z) > 0 and aP~* > ‘mS#, then

0= —(®, (u),u”) = (a+ bHUHP)pfl/ [VulP~?|Vu™ [* da +/ (@) |ul?~2[u”[* dz
Q Q
= [ @ da
Q
= (a+ b\|u||p)p*1/ |[Vu™|P dx+/ (x)|u~|P dw—/ m(z)|u”|P dx
Q Q Q

1y — 1, _ _
> (a+ blful )P Hlu [P = [m] o () g ||”+/€(ff)\u P dzx
P Q
0,

v

as a result each term is equal to zero, consequently |[u~|| = 0.
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So one can say that u = u* > 0. Then u is also a critical point of ®, which means
that,

<<I>'+(u),v>:(a+b|\u||p)p*1/ﬂ\Vu\p*2Vu~Vvdx—i—/ﬂ€(m)|u\p*2uvdx

- / m(z)|ulP~*uv dz — / f+(z,w)vdx
Q Q
=0,V eEFE.

In addition, from (H1), (H2) and ¢ € L*°(Q2), we obtain that there exists a positive
constant C. such that

| —a(x)u+ f(z,u)| < C. (1 + |u|”*71)7 for s € R and a.e. x € Q.
Now, consider

—l()|u(@)[P"*u(x) + f (2, u(z))

Y= b @)

then b € L%(Q) and
—Apu = b(z)(1 + [u(z)]).

Remark 4.1. Following [7], we believe that one can obtain a positive and negative
solutions for our problem. Note that, for the case p = 2 and using the same techniques
as in [3], we have proved the existence of positive and negative solutions.

In a similar way, one can obtain a nonpositive solution for problem (1.4) by treating
with & _.
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Abstract. This work is concerned with a class of diffusion problem of Kirchhoff
type with viscoelastic term and nonlinear interior source in the setting of the
fractional Laplacian. Under suitable conditions we prove the existence of global
solutions and the exponential decay of the energy.
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Galerkin method.

1. Introduction

We consider the problem of finding u = u(z,t) weak solutions to the following
nonlinear heat equation of Kirchhoff type with variable exponent of nonlinearity,
viscoelastic term and source term involving the fractional Laplacian

t
(14 alul"®=2) up +M([Jul, ) (—2) - / gt —7)(=A)u(r)dr
0
= ulP~t  in Qx]0, 00|, (1.1)
u=0 in (RM\Q) x [0, 00,
u(z,0) = u®(z) in Q,

where Q C RN ib a smooth bounded domain, M(t) = t*~t +1, ¢ > 0, s €]0,1],
2<p< 2t = 2< ¥ a>1;g:[0,00[-]0, 0] belongs to Cl([O ool), g(O) > 0,

29’
l=1- / ( )dr >0, g (t) < 0 and r is a given continuous function.

0
This type of problems without viscoelastic term (that is g = 0 ), r(z) = constant and
M (t) = 1 have been considered by many authors with the standard Laplace operator
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(=A)%,s = 1 and can be seen as special case of doubly nonlinear parabolic type
equations

(o(uw)e — Au = f(u),
which appear in the mathematical modelling of various physical processes such as
flows of incompressible turbulent fluids or gases in pipes, processes of filtration in

porous media, glaciology, see [3, 8, 7, 20, 33, 52| and the further references therein.
When a =0, M(t) =1 and s = 1, equation (1.1) is reduced to the following equation

—Au+ /0 g(t — T)Au(r)dr = f(u). (1.2)

This equation arises from the study of heat conduction in materials with memory.
The questions of solvability and the long time behavior of solutions of the abstract
evolutions equations of type

— Bu+ /Olg(t — 1) Au(r)dr = f(u),

where A and B are given operators, were studied in [12, 19, 36, 40].
Also, doubly nonlinear nonlocal parabolic equations

(p(u))y — dive(Vu) = /0 g(t — 7)divo(Vu(r))dr + f(z,t,u),

were studied in [9, 30, 47, 48, 49, 50].

On the other hand, many fractional and nonlocal operators are actively studied in
the recent years. This type of operators arises in a quite natural way in many in-
teresting applications, such as, finance, physics, game theory, Lévy stable diffusion
processes, crystal dislocation, one can see [10, 35, 51] and their references. Some gen-
eral motivations regarding the fractional Laplacian can be explicitly found in the
recent monograph [17]. Nonlocal evolution equations of the form

w= [ () = ) Ko = ) dy, (1.3

and variations of it, have been widely used to model diffusion processes, more precisely
as stated in [26], if u(x,t) is thought as a density of population at the point x at time
t and K (x —y) is thought of as the probability distribution of jumping from location

y to location z, then / (u(y,t)K(x — y)) dy is the rate at which individuals are
RN

arriving at position z from all other places and / (u(z,t)K(x —y)) dy is the rate
N

R
which they are leaving location x to travel to all other sites. So the density u satisfies
(1.3). For recent references on nonlocal diffusion problems, see [5, 1, 29]. If we consider
the effects of total population, then equation (1.3) becomes

(/ / ) — e, t) Kz - >dwdy) / (uly, 1) — ule, 1)) K (z—y) dy.

(1.4)
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In particular, if s — 1~ and K (x) = |z|~ 2%, then equation reduces to

ug = —M <// |Vu|2d:r) Au,
RN

which is equation (1.2), with M (¢) =1, ¢g(t) = 0 and f(¢) = 0. Thus it is natural to
consider equation (1.1) as a generalization of the model (1.4). The main feature of the
equation (1.1) is that contains an integrodifferential operator usually called memory
term or viscoelastic term, which can be used to represent the damping or memory
effect on the diffusion process.

The research on nonlinear problems with variable exponent growth conditions is an
an attractive topic, and these problems have many applications in nonlinear elastic
electrorheological fluids and image restoration, see [2, 16, 18, 53].

The study of Kirchhoff type problems has been receiving considerable attention in
more recent years, see [31, 38, 42, 41]. The interest arises from their contribution to
the modeling of many physical and biological phenomena. We refer for example the
reader to the bibliography [4, 6, 11, 32, 37] and references therein. The first result
concerning fractional Kirchhoff problems was obtained in Fiscella and Valdinoci [27].
In this paper, the fractional Kirchhoff equation was first introduced and motivated.
In [42], by using the sub-differential approach, Pucci et al obtained the well-posedness
of solutions for problem (1.1) with f(x,t) instead of |u[’~2u. Moreover, the large-time
behavior and extinction of solutions also are considered. With the help of potential
well theory, Fu and Pucci [28] studied the existence of global weak solutions and estab-
lished the vacuum isolating and blow-up of strong solutions, provided that M = 1 and
2 < p<2f=2N/(N —2s). However, the Kirchhoff function M is assumed to satisfy
the non-degenerate condition in the above papers. In [41], Pan et al investigated for
the first time the existence of global weak solutions for degenerate Kirchhoff-type dif-
fusion problems involving fractional p-Laplacian, by combining the Galerkin method
with potential well theory, for the special function M (t) = t ; Mingqi et al. [38] proved
the local existence and blow-up of solutions for the similar equation with more general
conditions on M which cover the degenerate case.

In the works mentioned above, there are few about the global existence and exponen-
tial decay rate for doubly nonlinear parabolic equation, involving variable exponent
conditions, with viscoelastic term in the fractional setting. Motivated by it, we intend
to study global existence for the problem (1.1) by using Galerkin’s method and also
give the exponential decay rate of the energy via the energy perturbation method.
The plan of the paper is the following. In Section 2, we give the preliminaries for our
research. In Section 3, by using the Galerkin approximation method we are able to
prove global existence and finally, we obtain the exponential decay under certain class
of initial data.

2. Preliminaries

In this section, we present some materials and assumptions needed in the rest
of this paper.
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We denote: Q = R?"\ (CQL x CQ) and CQ =R\ Q,

|u(z) — u(y)|?

o — g2 drdy < ooy,

W= u:RN—>]R:u|QeL2(Q),/

where u|q represents the restriction to Q of function u(x). Also, we define the following
linear subspace of W,

Wo={ueW:u=0ae in RV \Q}.

The linear space W is endowed with the norm
u(@) — u(y)? 1/2
lullw = [lullL2Q) + / y|N+2S dx dy) .

It is easily seen that || - ||w is a norm on W and C§°(Q2) C Wy,
The functional
1/2

|u(z
lull, = / ) N+2dey ,

is a equivalent norm on Wy = {u € W : u(z) =0 a.e. in RV \ Q} which is a closed
linear subspace of W. Furthermore (Wo7 ||HW ) is a Hilbert space with inner product

// |x(+562)s— v(y))dxdy'

We review the main embedding results for the space Wj.

Lemma 2.1 ([44, 43, 46, 45]). The embedding Wy — L"(Q) is continuous for any
r € [1,2%], and compact for any r € [1,2%].

Lemma 2.2 ([39, Lemma 2.1)). Let N > 1, 0 <s<1l, p>1 ¢>1 7>0 and
0<0<1besuchthat%z@(%—%)erthen

luall £ gy < el oy el 7 iy Vu € Co(R™).

Now, we recall some necessary background knowledge and propositions concerning
the generalized Lebesgue-Sobolev spaces. We refer the reader to [21, 22, 25, 23] for
details.

Set

C(Q) = {p(z) : p(x) € C(Q), p(x) > 1, for all z € Q}.
For any p € C(Q) we define

pt =max{p(z):x €Q}, p =min{p(z);z € Q};

LP@)(Q) = {u: u is a measurable real-valued function, / Ju(z)|P@dx < oo},
Q
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with the norm

lullpz) = Hu||Lp<m>(Q) = inf {)\ >0: /Q

becomes a Banach space [34]. We also define the space
WP (Q) = {u € LPP(Q) : |Vu| € LP@(Q)},
equipped with the norm

A

p(z)
dr <1

[ullwree @) = (@) lp@) + V(@) [p@)-
We denote by Wol’p(m)(ﬂ) the closure of C§°(Q) in WP (Q). Of course the norm
|u|| = |IVullp(z) is an equivalent norm in Wol’p(x)(Q).
Proposition 2.3 ([24, 25]). (i) The conjugate space of LP®)(Q) is LP'(*)(Q), where
1
p(x)  p'(z)
For any u € LP™)(Q) and v € L' *)(Q), we have

1 1
<|(— 4+ — / < () -
/Q fwoldz < (== + == Yl ol ey < 2l ol e

(ii) If p1(z), p2(z) € C4(Q) and py(x) < pa(z) for all x € Q, then LP2(®)(Q) —
LP1®)(Q) and the embedding is continuous.

Proposition 2.4 ([25]). Set p(u) = [, |Vu(z)|P®) dz, then for u € Wol’p(w)(Q) and
(ug) C Wol’p(w)(Q), we have

(1) |lu|l <1 (respectively = 1;> 1) if and only if p(u) < 1 (respectively =1;>1);
(2) foru#0, ||ul| = X if and only if p(%) = 1;

(3) if lull > 1, then [[ullP” < p(u) < |lul]"";

543 if lull < 1, then [[ullP” < p(u) < Jul””;

5) |lug|| — O (respectively — oc) if and only if p(ur) — 0 (respectively — o).

For z € (), let us define

() = N2 if p(z) < N,
00 if p(z) > N.

Proposition 2.5 ([23]). If ¢ € C.(Q) and q(z) < p*(x) (q(x) < p*(x)) for x € Q, then
there is a continuous (compact) embedding WP (Q) — L1=)(Q).
Lemma 2.6. Let 2 < r < p < 2%.For each € > 0, there exists a positive constant C,
such that

lvll5 < ellvllfy, + Cellvll¥,
for allv e WoN L™(Q) where

= N CE R
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Proof. The conclusion of lemma immediately follows from Lemma 2.2 and Young’s
inequality. O

Lemma 2.7. [34, Theorem 1, pag 23] Suppose that
. 0 . .
re LE(Q), 1~ >2, we LW (Qx]0,T[) and &(\w|7(l)_2w) e L" @ (Qx]0,TY).

Then, for any s,7 € [0,T], s < 7T the following formula of integration by parts is
correct:

| (o ) dede= [ ur@dn - [ puor® de

3. Global existence and exponential decay

In this section, we focus our attention on the global existence and exponential
decay of the solution to problem (1.1).

Definition 3.1. Let T > 0. A weak solution of problem (1.1) is a function u €
L>(0,T; Wy), with u, € L2(0,T; L*(2)) and (|u|"*)/2), € L? (2x]0,T]) such that
T
/ / (1 + alul =2 ww dadt + M (ul? )/ (1, W)y dt

7/0 [)g(th)(u(T),w)WOdet:/ /|u|p L derde,

for all w € L?(0,T; W), and u(x,0) = u’(x) € Wp.

Theorem 3.2 (Local Solution). Assume u® € Wy, 2 <1~ < p < 2%, p < 2+ 2”
€]2,2%[ , then problem (1.1) has a unique weak solution u for T small enough

Proof. We prove the local existence of weak solutions by using the Faedo-Galerkin

method benefited from the ideas of [14]. We choose a sequence {w, },en € C§°(2)
(@)

such that C§°( U Vin and {w,} is a standard orthonormal basis with

respect to the Hilbert space L?(Q) and an orthogonal basis in Wy, where
Vi = spam{wy, wa, ....wy }.

Now, we construct approximate solutions u,, (m = 1,2,---), of the problem (1.1), in
the form

t) = Zgjm(t)’wj(l’%
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where the coefficient functions g, satisfy the system of ordinary differential equations

/Q (14 alum (8)]7)72) (D)5 da + M (D11, (2 (1), w05,

- /0 9(t = )t (7), w;)wodrdt = /Q [ (D7~ 0 da (3.1)
i=1,2,---m.
U (2,0) = u¥ () — u®(x) in W.

Let us show that the system (3.1) is locally solvable.
It is clear that (3.1) can be rewritten in the form

2
d . !
G5200n0) =M (| gy Ows@)| ) Bon)+ [ glt=r)Bon(r)ir+ Flgn(0).
i=1 W 0
’ (3.2)
where
Gnl®) = (Gt (), (), G @)y B = [, w5}y i
q)(n) = ((I)l(n)v (I)Q(n)a T ><I>m(77))t with n= (77177727 T anm) € Rma
m a m r(@)=2
<I>i(77)=/ njwj + —~——~ Nk Wk NkWk pw; dx i=12---,m
AX g ] ]
and
m p=1 m p=1 m p=1 ¢
F(n)= / anwj w1y dw,/ anwj wo dx, - - ,/ anwj Wy dx
lp=1 Qlg=1 Q|p=1

This system is equivalent to

P(gm(t)) = 2(gm(0))

t
[ |-m
0

If ¢, n are to arbitrary elements of R™, we get

(@(¢) = @(n),¢ = Mrm = CinlC = Nlm (3-3)

here C), is a constant such that, for any g,, in R™

2 €
Byum(t) + /0 9(E — ) Bgm(7)dr + F(gm(©)) | de.

> gim(t)w;(z)
=1

Wo

2
Rm -

/ lum|? dz > Cinlgm
Q

Then & is monotone coercive. Also it is obviously continuous. So, by the Brouwer
theorem @ is onto. In view of (3.3), ®~! is locally Lipchitz continuous.
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Consider the map L : C(0,T,R™) — C(0,T,R™), defined by

L(gm)(t) = 27 (‘P(gm(O))
+f t

It is not hard to prove that L is completely continuous and also, there exist (sufficient
small) 7, > 0 and (sufficient large) R > 0 such that L(Bg) C Bpg, where Bgr
is the ball in C(0,T,,,R™) with center the origin and radius R. Consequently, by
Schauder’s theorem, the operator L has a fixed point in C(0,T,, R™). This fixed
point is a solution of (3.2).

So, we can obtain an approximate solution u,,(t) of (3.1) in V,, over [0,T,,[ and it
can be extended to the whole interval [0, T], for all T > 0, as a consequence of the a
priori estimates that shall be proven in the next step.

D> gim (s ()

£
By (t)+ / 9(6—7) By (1)d7 + Fgm(€)) ds>,
Wo 0
te[0,T].

The First Estimate
Multiplying (3.1) by gjm(t) and adding in j = 1;--- ;m, we have

(1 P ) e (6o + M O, D) (€,
& (3.4)

—/ g(t—T)(um(T),um(t»Wodet:/ o (8) Pt () dz
0 Q

which implies, integrating with respect to the time variable from 0 to ¢ on both sides,
using Lemma 2.7 that

t A
S (t) = Sin(0) + / dx / 9O = 1)t (7).t (V)
+/0 /Q|um(t)|”_ U (T) d d,

/|um \dwa/ ()|um< >|’”<z>dx+/ (ttn (P28, + (7)1, i

(3.5)

where

Let us introduce the function ©(\ fo — 7) ||t (7)||w, - Estimating the second
term on right-hand side of (3.5) we have

t A 1 t )
| [ a0 =)W dr < 5 [ ), + (D)) e

1 t
+—/ ©%(\) dA
2 0

(3.6)
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But, using Young Inequality and noting that fo 7)dT < 1, we get

/0 O%(A)dA < / g(r)dr / ([t (2, + lm (PIZ,) dr. (3.7)

Plugging (3.6)- (3.7)into (3.5), it follows that
1 o] t )
500 < $,00) + 5 (14 [ 027 [ (DI, + Vi (D) a
+/0 lum (@)1 dr. (3.8)

To estimate the last term in (3.8) we use Lemma 2.6,

[ @ < [ Qnli, + ) dm+eo [ Sh0r 69)

where k = T%p((zljgg) > 1. Taking ¢ suitably small in (3.9), it follows from (3.5)-(3.9)
that

Spm(t) < Co+ 4 / t SE (A) dA. (3.10)
0

Hence, by employing Bihari-Langenhop’s inequality (cf. [13]), there exists a constant
Ty such that

Sm(t) < OTO; Vit € [O,To]. (311)

The Second Estimate
Multiplying (3.1) by g/,,(t) and adding in j = 1;--- ;m, it holds that

a8, + 5 (1= [ o)) lam @), + 300000
1

o [ ®F () de )+ O + @ [ OO (O da
P Ja Q

= (g ow)(®) ~ S9(0)lum (O,
(3.12)

t

where (gou)(t) = / g(t — 7)||lu(t) — U(T)”%VO dr.
0

Integrating (3.12) on [0,t], t < Ty we get

/Hum ||2+a//\um D12 e dz 4+ 5 (O, + gm0y,
1 «
< glhum OV, + 3l (O) I, — / 1 (0) [P V11 (0) iz

1 -
+ / tt (1) PVt () dit
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From the assumptions on p and u°, Lemma 2.6 and the estimate (3.11), it follows
that

’I" x 1
1 @1+ [ O s 00 o+ 5 @8, + 0
o ew
for some constant M; > 0.

By the above estimates (3.11) and (3.13), {un} have subsequences still denoted by
{um} such that

Um — u  weakly® in L%°(0, Tp; W), (3.14)

Umt — uy  weakly in L?(0, Tp; L*(Q)), (3.15)

(|um|*<w)/2) — x weakly in L2(0, To; L*(2)). (3.16)
t

Employing the same arguments as in [16] we can prove that
X = (|u|r(‘”)/2) [t |"® Pty — |u|"®/ 20y weakly in L2(Q2x]0,To[),  (3.17)
t
[ |[P~" = |ul?™" weakly in L1 (Q2x]0, Tp]). (3.18)

Therefore, passing to the limit in (3.1) as m — 400, by (3.14)— (3.18), we can show
that u satisfies the initial condition u(0) = u® and

T T
/ /(1+a|u‘r<z>—z) utwdxdt+M(||u||fm)/ (1, W),
0 Q 0

[ [ st wwarar= [ [ o asa

for all w € L2(0,Tp; Wo).
The uniqueness property of a solutions can be derived from [20, Theorem 3, p. 1095],

observing that (u + ﬁwr(z)ﬂu) € L?(Qx]0,Tp[) and Au = M(Hu”io)(fA)su
is a monotone operator. We omit the details. g

Next, we consider the global existence and energy decay of solutions for problem (1.1).
For this purpose we define the energy associated with problem (1.1) by

B0) = 5o Il +5 (1 [ o)) L@y 45000 -2 [ P uo s

(3.19)
Then, we easily can check that
d 1 N
FEO =500 0u)(t) = 5a®u0)r, ~ @)1~ [ (O (0) do

<0

for any regular solution. This remains valid for weak solutions by simple density
argument. This shows that E(¢) is a nonincreasing function.
Let C, be the optimal constant satisfying the Sobolev inequality [jul|, < Ci||u|lw,,
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and By = \Cﬂ We define the function h(\) = $A? — B?{)/\p. Then, we can verify that
the function h is increasing in 0, A\1[, decreasing in Ay, 0o, h(A) = —o0,a8 A — o0

and h has a maximum at A\; with the maximum value

11\ 2 p—2 2
e L
where A; is the first positive zero of the derivative function h'(\).
Here, note that

B() > 5@l + 50000 — 5 lulo)l;
P1p/2
> L @i, + @ow®) - 2L i, (3.20)

2 p
> h (il + (gow®) . ¥t >0

Now, we are ready to state our result.

Theorem 3.3. Assume that hypotheses of Theorem 3.2 are satisfied. Consider ug € Wy,
satisfying

0< ll/QHUOHWD < )\1, (3.21)
L o2 Looy2 1/ 01p—1,0 p—2 -2
— 54 — - — de < | —— | B, " *°. 3.22
Sl + g1, — 1 [ Wyt as < (222 5 (3:22)

Then problem admits a global weak solution in time. In addition, if there exists a
constant & > 0 such that g’ (t) < —&og(t), then this solution satisfies

E(t) < Loe "Vt >0, (3.23)
where Ly and v are positive constants.

Proof. We will get global estimates for w,, (t) solution of the approximate system (3.1)
under the conditions (3.21)-(3.22) for u°. For this, it suffices to show that

t t
Bun(t) + / et (D2 + a / / tg ()72 et (1) iz,
0 0 Q

where E,,(t) is defined in (3.19) with u(t) replaced by un,(t), is bounded and inde-
pendently of ¢. From (3.12) and the definition of energy, we have

Eo(t) + / e (]2 + a / /ﬂ|um<t>|’”<f>*2|umt<t>|2dxSEmm). (3.24)

_ 2
Due to convergence ug, — u’ in Wy we see that E,,,(0) < (%) B, *7* for suffi-

ciently large m. We claim that there exists an integer 1y such that

\/1||um(t)||§vo F(goun)t) <A V€0, Tn[,m > vo. (3.25)
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Suppose the claim is proved. Then h <\/1Hum(t)||‘2,v0 + (goum)(t)) > 0 and from
(3.20), (3.24)~(3.25) we get

t t
e (828, + 1t (1) 12, + / e (B2 + / /Q tt (]2 e (£) 2 i < C.
0 0

(3.26)
where C' is a constant independent of m.Thus, we obtain the global existence.
Proof of Claim: Suppose (3.25) is not true. Thus, for each m > vg,there exists ¢t; €
[0, Ty, [ such that

VUl () By, + (970 wm) (1) > M. (3.27)

Here, we observe that, from (3.21) and the convergence ug,, — u’ in Wy there exists
v1 such that

2t (0o < A1 V> 11,

Hence, by continuity there exists

£ = inf{t € [0, Tl \/Uum (), + (9.0 um)(t) > i},

such that

VUl @) [y, + (90 um) (%) = M. (3.28)
By (3.20), we see that

En(t) 2 b (\/Ulum () [y, + (g0 un)(t)) = hOw) = B1 - (3.29)

which contradicts E,, (t) < E,,,(0) < E1, Vt > 0. Therefore our claim is true.

The above estimates permit us to pass to the limit in the approximate equation.

To show the uniform decay of the solution we introduce the perturbed energy func-
tional

F(t) = E(t) + (1), (3.30)
where € is a positive constant which shall be determined later, and
a
<I>t=/ ul? + —— |u|"®)) da. 3.31
(0= [ (sl ) (331)

Tt is straightforward to see that F'(t) and E(t) are equivalent in the sense that there
exist two positive constants 51 and 2 depending on ¢ such that for ¢ > 0

BLE(t) < F(t) < BaE(t). (3.32)
By taking the time derivative of the function F' defined above in (3.30), using (3.20),
and performing several integration by parts, we get
d ]. ]- r(x)—
—F(t) = (g ou)(t) = 59)[u®)liy, — llue ()3 ~ a/ Ju(®)|" 2 (1) da
dt 2 2 o
¢
—ellu®i7, = ellu®liy, + E/Q u(t)]"~ u(t) da + E/O g(t = 7){u(r), u(®))w, dr.
(3.33)
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On the other hand, we can easily see that the condition F(0) < FEj is equivalent to
the inequality:

2p kN
B | —/—F 1. .34
((25p0) T < (3.34)
From the assumption (3.21)-(3.22) and (3.24) we have
t
zmwm@s@—égwwﬁmwm%+moww
<\ =B e

which implies that

uw@l%mmwwnm+gou )= [ oo do

> Uu®) iy, + (g0 u)(t) = llu®)ll}
> U[u(®)|liy, — CLllu(®)|y, = 0.

So, we have
2 -2
(522) o, < 222 (1= [ otrrar
2p 2p 0

/t<>
[ o)

)waw%

<222 (1= [ otwar) Il + (g0 w(@] + 1)
< E(t) < E(0),
then
()l < p2 S E(0). (3.35)

Using the above inequality, we can deduce that

[ et
Q

< Jlu(®I (3.36)

p—2

<ol G (7 225E0) Mol
= 01][u(t)

From the Young inequality and the fact that

/Otg(T)dTS/Ooog(T)dT=1—l,
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it follows that

| att=)tutr).ut)w, ar
< @l + 5{ [ ot =) () = ), + u(olwe) ar}

1 2

< g, + 50+ ([ ot~ D@l ar)

A

w50 ([ ot =) — dT)Q

< IOy, + 51+ D= DO, + 50+ DO =Digowr). (337

for any 1 > 0. Now, letting n = ﬁ > 0 then (3.37) yields

1

L=lgeu)). (3.38)

| ot = e, utepw, ar < 22 ), +

Substituting (3.38) into (3.33), we obtain

GF0 <=3 (- =270 ) o0 -0, - Sy +e [ JuOP ) do

(3.39)
Using the definition of E(t) and (3.36) we have, for any positive constant M
d M € M
—F(t) < —McE — -1 W s | M+200(1 - —) - 7
G0 < ~MeB() e (50 - 1) ol + 5 |3 +2000 - 5 ] Jutoliy
1 1-1 M
+3 [T+ - 6| Goue, (3.40)

At this point, we choose 1 > M > 0 and F(0) small sufficiently such that

M M
——-1<0 and M+29[(1—>—l<0.
2ce p

After M is fixed, we choose € small enough such that
1-1 M
—_— ] = 0.
€ ( i + 5 ) & <

%F(t) < —MeE(t).

Inequality (3.40) becomes

By (3.32), we have
4 Py < ~MpacF ().

So F(t) < Ce Kt where K = M fs¢ > 0. Consequently, by using (3.32) once again,
we conclude the result.
Thus, the proof of Theorem 3.3 is achieved. O
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theorem for the Cesaro second-order operator
of fuzzy numbers
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Abstract. In this paper we define the Cesaro second-order summability method
for fuzzy numbers and prove Korovkin type theorem, then as the application
of it, we prove the rate of convergence. In the last section, we prove the kind
of Voronovskaya type theorem and give some concluding remarks related to the
obtained results.
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1. Introduction

The concepts of fuzzy sets and fuzzy set operations were first introduced by
Zadeh [16] and subsequently, several authors have discussed various aspects of the
theory and applications of fuzzy sets such as fuzzy topological spaces, similarity
relations, and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming. Matloka [13] introduced bounded and convergent sequences of fuzzy
numbers studied some of their properties and showed that every convergent sequence
of fuzzy numbers is bounded.

In the present paper, we will prove the Korovkin type theorem for statistical
summability (C, 2) and the rate of convergence. In this section, we give a brief overview
of statistical convergence, fuzzy numbers, and sequences of fuzzy numbers. In section
2 we prove the main results of this paper. In section 3 we give results related to the
rate of convergence.

The idea of statistical convergence depends upon the density of subsets of the
set N of natural numbers. We shall denote by N the set of all natural numbers. Let
K € Nand K,, = {k < n:k € K}. Then the natural density of K is defined by
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d(K) = lim,, |Ii"| if the limit exists, where the vertical bars indicate the number
of elements in the enclosed set. The sequence x = (xy) is said to be statistically
convergent to L([10]) if for every ¢ > 0, the set K. = {k € N : |z — L| > ¢} has
natural density zero, i.e. for each € > 0,

lim f|{k<n |z — L| > e} = 0.

n—oo

In this case, we write st — limax = L. Note that every convergent sequence is statisti-
cally convergent but not conversely.
In paper [6], was defined the second order Cesdro summability method as follows:

Z (TLHMZ(TLH —k)|xk>.

The summability method (C,2), is a regular. We say that the series > oo | x, is
(C,2),,— summable to L if

hmz (WZU +1- k)|mk|> =L

In the present paper, we define Cesdro second-order summability method for
sequences of fuzzy numbers and give Korovkin type theorem and rate of convergence.
The theory of Korovkin type theorems was intensively investigated in recent years,
see for example [3, 4, 1, 6, 7, 8, 9, 11, 12].

2. Preliminaries

Let C(R) denote the family of all nonempty, compact, convex subsets of R.
Denote by

LR)={u:R—1[0,1]: v satisfies (1) —(4) bellow}

where

1. u is normal, there exists an zy € R such that u( 0) =

2. u is fuzzy convex, for any z,y € R and 0 < A § s u e + (1= Ny) >

min [u(z), u(y),

3. w is upper semicontinuous,

4. the closure of {z € R: u(x) > 0}, denoted by [u]o, is compact.
If u € L(R), then w is called fuzzy number, and L(R) is said to be fuzzy number space.
For 0 < o < 1, the a— level set [u], of u is defined by [u], = {z € R : u(z) > a}.
Then from (1)-(4), it follows that the a—level sets [u], € C(R).

The set of real numbers can be embedded in L(R), since each r € R can be
regarded as a fuzzy number 7 defined by

_ |1 if z=mr,
"TYl 0 if x#w
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Let u,v,w € L(R) and k € R. Then the operations addition and scalar multipli-
cations are defined in L(R) as follows:

utv=w<E [wy=[uls+[v]e foral ae€]l0,1],
sw, =u, +v, and wl =ul +vl forall «a€]l0,1],
[ku]q = k[u], for all a€[0,1].
Further details related to the structural properties of the fuzzy numbers, are given

in [5]. Let us denote by W the set of all closed bounded intervals A of real numbers
with endpoints A and A4, i.e., A = [A, A]. Define the relation d on W by

d(A, B) = max{|A— B|,[A— Bl}.

Then it can be easily observed that d is a metric on W and (W, d) is a complete
metric space, ([14]). Now, we may define the metric D on L(R) by means of the
Hausdorff metric d as follows

D(u,v) = sup d([ula, [v]a) = sup max{|u”(a) — v (a)],Ju"(e) —v" ()}
a€l0,1] a€l0;1]
and
D(u,0) = s max {|u”(a)], [u™(a)[} = max {|u” ()], [u™(a)[}.
ac|0;

Let f,g : [a,b] — L(R), be fuzzy number valued functions. The parametric
representation is as follows: [f(z)]" = [fir) (z), f)(x)], for every x € [a,b] and every
r € [0,1]. Then, the distance between f and g is given by

D*(f,g) = sup sup max{‘fy) —g(f) ,)ff) — gif)
z€[a,b] r€[0,1]
Fuzzy function f : [a,b] — L(R), is continuous at zg € [a, b] if for each € > 0 there is
a d > 0 such that D(f(x), f(x0)) < €, whenever x € [a,b] with |z —xo| < d. If f is
continuous in each point on [a, b], then we say that it is continuous whole [a, b]. The
class of continuous function we will denote by Crla, b].

A sequence u = (uy) of fuzzy numbers is a function u from the set N, into the
set L(R). The fuzzy number wuj denotes the value of the function at k¥ € N and is
called as the k—th term of the sequence. By w(F'), we denote the set of all sequences
of fuzzy numbers. A sequence (uy) € w(F) is said to be convergent to u € L(R), if
for every € > 0 there exists an ny = ng(e) € N such that

D(up,u) <e forall n>ng.

Definition 2.1. Let X = (X}) be a sequence of fuzzy numbers. The sequence X is
said to converge weighted statistically to a fuzzy number X, if for every € > 0

1
Im ——|{k < 1 2): D(Xk, Xo) > =0.
iy sy {k < (n+1)(n+2): D(Xy, Xo) > e}
The above type of convergence will be denoted as

stp — lim X,, = Xp.
n
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Definition 2.2. Let X = (Xj) be a sequence of fuzzy numbers. The sequence X is
said to be statistically Cesaro second order summable to a fuzzy number X if the

sequence
n

1

mkzzo(n—i—l—k))ﬁw

is statistically convergent to Xo, where the sum in (C,2),(X) is usual addition of
fuzzy real numbers through a— level sets. That is (X}) is statistically Cesdro second
order summable to the fuzzy number X, if for every ¢ > 0

. 1 ) _
nlgrolo CESICES)] H{k < (n+1)(n+2): D((C,2),, Xo) >} =0.

(C,2)n(X) =

The above type of convergence will be denoted as

stc,2) — lirlln X, =X.

3. Statistical fuzzy Korovkin type theorem

Let us denote by Cfa, b] the space of continuous function defined in the [a, b]. As
we know, this space equipped with supremum norm

IfIl = sup [f(x)],
z€[a,b]
is a complete metric space.

In this section we prove fuzzy Korovkin type theorem via the concept of statisti-
cal summability (C,2). Let f : [a,b] — L(R) be fuzzy number valued functions. Then
f is said to be fuzzy continuous at xg € [a, b] provided that whenever x,, — z¢, then
D(f(xy), f(z0)) = 00 as n — oo. Also, we say that f is fuzzy continuous on [a, b] if it
is fuzzy continuous at every point = € [a, b]. The set of all fuzzy continuous functions
on the interval [a, b] is denoted by Cr[a, b] (see, for instance, [3]).

Let L : Crla,b] — Crla,b] be an operator. Then L is said to be fuzzy linear, if
for every o, 8 € R, any f,g € Crla,b] and for every z € [a, b],

L(af + Bg;x) = aL(f;x) + BL(g; x),
holds. L is said to be fuzzy positive linear operator if it is fuzzy linear and the condition
L(f;2z) = L(g;x) is satisfied for any f,g € Cr[a,b] and for all z € [a,b] with f(z) <
g(z). Last relation is fulfilled if and only if fir) (z) < g™ (z) and f_(:) (x) < gg_r) (z),
where [f(2)]") = [f") (2), J(:) (x)]. The fuzzy Korovkin type theorem was investigated

by many authors(see [3, 4, 2]) and statistical version of the theorem, was given by [4],
as follows.

Theorem 3.1. ([3]) Let {L,}nen : Crla,b] — Crla,b], be a sequence of fuzzy posi-
tive linear operators. Assume that there exists a corresponding sequence {Ly,}nen :
Cla,b] — Cla,b], of linear positive operators, with the property:

{La(f;2)}) = Lo(f0:2) (3.1)
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for all x € [a,b],r € [0,1],n € N and f € Cr[a,b]. Also assume that
|| Fnlea) — e

where e; = x'. Then, for all f € Cgla,b], we have
lim D*(L,(f), f) = 0.

for each i=0,1,2,

Later one, this result is extended to summability matrix as follows

Theorem 3.2. ([4]) Let A = (a;,) be a non-negative reqular summability method matriz
and let {Ly}nen be a sequence of fuzzy positive linear operators from Crgla,b] into
itself. Assume that there exists a corresponding sequence {En}neN of positive linear
operators from Cla,b] into itself with the property (3.1). Assume further that

~n(ei) — €
where e; = xt. Then, for all f € Cgla,b], we have
sta —lm D*(L,(f), f) =0.

for each i=0,1,2,

sta — lim
n—oo

Now we prove the fuzzy Korovkin type theorem for statistical convergence, using
the notion of the statistical summability method (C, 2).

Theorem 3.3. Let {L,}nen be a sequence of fuzzy positive linear operators from
Crla,b] into itself. Assume that there exists a corresponding sequence {Ly}nen of
positive linear operators from Cla,b] into itself with the property (3.1). Also assume
that

m(ei) —eill =0, foreach i=0,1,2, (3.2)

stc,2) — lim
n—oo

where e; = xt. Then, for all f € Crla,b], we have
st(c,2) = im D*(Ln(f), f) = 0. (33)

Proof. Let f € Crla,b] for z € [a,b] and r € [0, 1]. By hypothesis f(r) € Cla, b], which
means that for every € > 0 there exists a §(¢) > 0, and for any y € [a,b] such that
|z —y| < & we obtain |f(ir) (x) — fir) (y)| < e. From last relation and boundedness of

function fj(!)(x), we get

’fir)(x) ‘fi”(y)\ < €+2Hfﬂ(:) (l‘giij

Considering linearity and positivity of the operators L., we have for each n € N, that

Lo (£i2) =10 @)| < |2 (|2 @ = 10w s2) |+ | £7]| | Enleos ) —eo(a)| <
+ (= + [ £7]]) - [£ntensz) = eotw)| + 2”(5 (@ —y)%a)|
if we put M = max{|a|, |b|}, we have
L~n (Jf:(tr);x) f(r)( )‘ <E+(€_’_Hf:(tr) Hf(r) ) - (eo;x)—eo(x)‘
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Hf(r) n(er;x) — e (x ‘ Hf(r) I:n(eg;a:)—eg(a:)‘g
L, (ff_f);:c)—fi”( >\<s+(s+Hf<” + B2 0] - [Eateos) - ot
Hf(r) n(e1; ) — ‘ Hf(r) I:n(eg;x)—eg(m)‘.
Let
M () = max{a+Hf<” il il = g }

Taking supremum on the above 1nequahty for = € [a, b} we obtain
o () = 10| 2 e+ {12

Now using into consideration relation (3.1) and relation (3.4), we have

D*(f.9) = Sup]D( n(f;2), f(2))

z€la,b
Lo (£02) = 10 @)}

61 *61’

n(eo) — 60‘

)

= sup sup max{‘[:n (f@;z) — fﬁT) (x)
z€la,b] T€[0,1]

_ - () _ ) H = () )
s max{HLn (f_ ) L, (f+ ) £ } (3.5)
From relations (3.4) and (3.5), it yields
D*(La(f): 1) < &+ M (&) {|[Lateo) = eo| + | Enter) = e + || Later) = 2 } . (36)
where M (e) = supg<,<; max{MﬁT) (e), Mg_r) (e)}.
Let €1 > 0, we can choose 0 < € < €1, and define sets:
A={neN:D*(L,(f), f) > e},
~ g1 — €
A= N:|L, — > )
v={ne e - o 2 525
~ g1 —€
Ay = N:||Ly, — > ,
o= {nemsfiuen - ol > 55}
~ €1—¢€
Az = {n eN: ||[L,(e2) —eafl > 3]1\4(5)}
Then from relation (3.6), we have
AC A UAU A;.
Now from last relation and relations (3.2), we get relation (3.3). O

Remark 3.4. Our theorem is generalization of the result given in theorem 3.1 and
theorem 3.2, as it is shown on this.
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Example 3.5. Take A = (C,2) = (c¢jn), the Cesdro second order matrix and define
the following sequence

0, if n#m?2m=12---,
(an) = 3 .
nz, otherwise

If we use into consideration the fuzzy Bernstein-type operators

1o (D)0t (£).
k=0

where f € Cr[0,1], z € [0,1] and n € N. We can define
T) ~ r ° n n— r k
(B = B, (1050) a3 () -0 (2),
k=0

£ e clo,1].
Let us define the following operators

Ln(f;z) = (1+ an)By(f;2). (3.7)
Then we have:

L.(eg;2) = (14 ap),

Ly(er;2) = (1 + ay),

Ly (ea;z) = <x2 + ‘”(1;x)> (1+ay).

The limit st(c ) — lim a,,, exist and it is:

_ 1 j? .
2 o= X GTngen SGengry % B I

n:la, —0|>¢e n:la, —0|>¢e

which means that st o) —lim a, = 0.
From above relation we get

st(c,2) — lim [[Ly(e;) —ei|| =0, foreach i=0,1,2
n—oo
and from theorem 3.3, we obtain

st(c.2) = lim D™ (L (f), f) = 0.

However, (a,) is not convergent in usual sense, the sequence { BL'(f;x)} is not fuzzy
convergent to f.
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4. Statistical fuzzy rate of convergence

In this section, we investigate the rate of the Cesaro second order operators,
statistical convergence of positive linear operators in the space Crla, b].

Definition 4.1. Let (a,) be any nondecreasing sequence of positive numbers. We say
that the sequence of functions (f,) € Crla,b] is Cesédro second order statistical con-

vergent to a function f with the rate of convergence given by o(ay,), if, for each ¢ > 0,
1
lim m<(n+1)(n+2) and D*((C,2)m; >¢e} =0.
e [ < (14 D+ 2) (C.2): £)) > <)

In this case, we write

fo = [ = 0(an)((C,2), — stat).

Lemma 4.2. Let (a,) and (b,) be two nondecreasing sequences of positive numbers.
Suppose also that the sequences (fy,) and (g,) are constrained by

fn — f=o0(ax)((C,2), — stat) and gn — g = 0(bn)((C,2),, — stat),
respectively. Then
1. a(fn — f) = 0(an)((C,2), — stat) for any scalar «;

2. (fn = f) £ (gn — g) = 0(cn)((C,2), — stat);
3. (fn = )gn = 9) = 0(anbn)((C,2)n — stat),

where
Cn i=max {an, by }.

Now, by defining the modules of continuity, for a given function f(x) € Crla, b],
as follows:

Definition 4.3. Let f : [a,b] — E be a fuzzy real number valued function. We define
the modulus of continuity of f by

Wf(f76): sSup D(f(w),f(y)),

z,y€la,b]

for every |t —y| < dand any 0 < 6 < b—a.
We now state and prove the following result.

Theorem 4.4. Let (L,,) be a sequence of fuzzy positive linear operators from Crla,b)
into Crla,b]. Assume that there exists a corresponding sequence {En}neN of positive
linear operators from Cla,b] into itself with the property (3.1). Suppose that (a,) and
(bn) are non-decreasing sequence and also that the operators L,, satisfy the following
conditions:

1. an(eo) - eoH = (C,2), — stat o(a,) as n — oo,
2. wf'(f, \n) = (C,2), — stat o(b,) as n — oo

where

A, = ’

LNn(@)H and 0y = (y— x)?, for allx € [a,b].
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Then, for all f € Cpla,b], we have

where ¢, = max {an, b, }, for each n € N.

L.(f) - fH = (C,2), —stat o(cp),as n — 00,

Proof. Let f € Cp[a,b]. Then,
Li(f7,2) — 17 (2) = Lu (7, 2) — £ (@) Li(L,2) + 7 (@) [Li(L,2) — 1], (4.1)

and

6 - Wl el (10 (T3 1), (4.2

in both cases, where |z —y| > ¢ and |z — y| < 4.
By using the relations (4.1) and (4.2), we get the following estimate:

Lo (7, 2) = 17 (@)] < |La(11 () — 18 @) )]+ 1127 (@) - | La(1,2) — 1]

< L, (|x — | + 1,33) WE(f,8)+|f(x)|-| L, (1, 2)—1| (by Cauchy-Schwartz inequality)

< ST (o= 9)%0)* L (L2)b ol (£,6) + La(L2)of (£,0)
HA (@) - | Ea (1, @) — 1| (for § = Ay, we get)
< K |La(1,2) = 1| + 200 (£,6) + wf (£,6)|La(1,2) — 1]

+wi (f,8)/|La(L,2) — 1],

where K = ’ f( ). Now, by using relations (1) and (2) in the theorem and lemma

4.2, we complete proof of Theorem.

O
5. Statistical fuzzy Voronovskaya type theorem
In this section we show positive linear operators
+b
Du(fir) = S8 (ri,
where sequence n(b,) = (a,), and (an), is defined in example 3.5, satisfy a

Voronovskaja type property in the (C,2)— statistically convergence sense. We first
prove the following lemma.

Lemma 5.1. For z € [a,b], and ®(y) =y — x then
n?D, (®*) ~ 2%(222 + 1)(z — 1)((C,2) — stat.) on |[a,b].
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Proof. After some calculations we get:
n?D,, (®*) = (1+b,)

2 1 3 2 3 2 9 1 3 2
+ 1—54-? o — 1—54-@—? T+ ﬁ—ﬁﬁ-ﬁ T|.

Thus we obtain:

|n® Dy (@) — 2%(22° + 1)(z — 1)| < (14 by) — 1]|(22° — 22" 4+ 2° — 2?)|
(243 L O s (20 8 Ol (2 L)
n n2 n3 ni n n2 n3 ni n nd
2 3 2\, 1 3 2
+‘<n+n3n4>1’ +’<n2n3+n4>1’ 4)0((0,2)7875(115),

as n — oo, on [a,b]. This completes proof of the Lemma. O

In what follows we establish the following Voronovskaya fuzzy type theorem for
operators D,,, defined as in above Lemma. Before given the main result of this section
we will give some concepts related to the H-derivatives for the fuzzy functions.

A function f : [xo;x0 + @] = Rp, for @ > 0, is H—derivative at = € T if there
exists a f (x) € Rp such that the limits

o S = f@) | f@) = f—h)

h—0t h " hot h

exists and are equal to f/(m)

We assume that the H— differences f(z + h) — f(x), f(x) — f(xr —h) € Rp in
a neighborhood of z. We call f (z) the derivative or H— derivative of f at x (for
more details see [15]). In paper [2], was given the Taylor formula for fuzzy functions
as follows:

Theorem 5.2. Let T = [z9,z0 + o] C R, and a > 0. We assume that f) : T — Rp
are H— differentiable for all i € {0,1,2,3,--- ,n — 1}, for any € T. (It means that
there exists in Rp the H— differences f&(x + h) — fO(x), fO(z) — fO(x — h),
1€ {0,1,2,3--- ;n — 1} for all h such that 0 < h < «. Furthermore there exists
fUt)(z) € Rp such that limits in D— metrics exist and

vy fO@ N~ @) ) — O —h)
S ) = h1—>0+ h - hl—>0+ h ’

for alli € {0,1,2,3--- ,n—1}.) Also we assume that f™, is fuzzy continuous on T.
Then for s > a;s,a € T we obtain

/ 1"

f (a
(s —a)+ 2(')

f"=(a)
(n—1)!

Ru(s,a) = /a (/a (/a f(”)(sn)dsn> dsn1~-->dsh

(s—a)*+---+ (s —a)" ' 4+ R,(s,a),
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above integration is in sense of Fuzzy-Riemann integral and R, (s,a) is fuzzy contin-
wous on T as a function of s.

Theorem 5.3. For every f : [a,b] — Rp, we assume that there exists . f" € Rp,
then

n 2 D(f) — @) ~ 5~ a?)f @)(C,2) ~ stat.),
on [a,b].
Proof. Let us suppose that f, f" € Rp and z € [a,b]. Define
fly) = f@) = (y—2)f (2) = §(y —2)*f (x)

baly) = e for z#y
0 for z=uy.

Then ¢, (x) = 0 and ¢, € Crla,b]. By Taylor’s formula, we get
Fy) = f@)+ (y—2)f (z) + %(y — )’ f (@) + (y — 2)°a (). (5.1)
Knowing that

(14 bn) x — 22

D,(1,z) = 3 :Dn((y—x),2) =0 and D,((y— )% z)=(1+by,) 5

and after operating in the both sides of relation (5.1) by operator D,,, we obtain:

)z — a2
2 n

n2Dn(f) = f(z) + b f(x) + (1+0b,) +(1+ bn)Dn((I)2wmvx)a

which yields

n [2Da(f) - f(@)] - LB (o~ 22)

1"

bl @)1+ b | T2 (0 )| 14 0,) D (8%, 0)

)

respectively

n [n®D,(f)—f(z)] - f @) (z — 2?)| < nb,M4n |Dn(q>21/1x7x)’+nbn |Dn(¢>2wm,x)| ,

(5.2)
where ®(y) = y — 2 and M = ||f|lcpan + ||f |lcpan. After application of the
Cauchy-Schwartz inequality in the terms of the right side of the relation (5.2), we
obtain:

1| Dy (@2, 7)| < [n? D (®*,2)]? - [Dy (97, 2)] 2. (5.3)
Putting 1, (y) = (¥ (y))?, we get that n,(z) = 0 and 1,(-) € Cpla,b]. Also
an | D (@2, 2)| < an[D, (9%, 2))7 - [D, (42, 2)]2, (5.4)

where a, — 0((C,2),, — stat).
Now from Theorem 3.3, it follows that

D, (n:) — 0((C, 2),, — stat), (5.5)
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on [a,b]. Now, from relations (5.3), (5.5), (5.4) and Lemma 5.1, we have
n(1 + by) Dy (®*2h,, 2) — 0((C,2),, — stat), (5.6)

on [a,b]. For a given ¢ > 0, we define the following sets:

Ap(z,e) = {k‘ k<(n+1)(n+2):|n [nQDn(f) *f(x)] s 2(39) (- 22) > 5} ’
Aqp(z,€) = sz k< (n+1)(n+2): kb > ﬁ} ,
and

Agn(z,€) = sz k< (n+1)(n+2): k(1 + bp)D(®%,, )| >

j|

N ™

From last relation we have
Ap(z,€) < Aqp(z,€) As n(x,€)
(n+1(n+2)a, ~ (n+1)(n+2)a, nm+1)(n+2a,
From definition of the sequence (b,,), we get
nb, — 0((C,2),, — stat), (5.8)
on [a,b]. Now from relations (5.6) and (5.8), the right hand side of the relation (5.7),
tends to zero as n — o0o. Therefore, we have
An(z,¢)

A Dt ey
which proves that
n[2D(f) = f(@)] ~ 5~ a?)f @)((C,2) ~ stat),
on [a,b]. O

6. Concluding remarks

In this section, we will give some remarks related to the results obtained in this
paper and their relationship with other results.

Remark 6.1. Suppose that we replace the conditions (1) and (2) in Theorem 4.4 by
the following condition:
Lon(z;) — 23 = o(an,)((C,2), — stat) on [a,b](i =0,1,2). (6.1)

Then, since

L,(V*z) = L, (1%, 2) — QxEn(t,x) + :EQLNn(l,:c),
we may write
Ln(@? 2) < K[| Ln(1,2) = 1| + [Ln (£, 2) — t] + |Ln (82, ) — 7],

where
K =142t + ||1£2].
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Now it follows from above relations and Lemma 4.2 that

6n =\ Ln(¥?) = o(d,)((C,2), — stat)

on [a, b], where d,, = min{ano, Qp, , G, }- Hence
(.()(f, dn) = O(dn)((c, 2)n — stat)

on [a, b]. If those conditions which are given here we can use in Theorem 3.3, we can
thus see that, for all f € Cr[a,b],

Lo(f) = f = 0(dn)((C,2)n — stat)
on [a, b]. Therefore, if we use the condition (6.1) in Theorem 4.4 instead of the condi-

tions (1) and (2), then we obtain the rates of (C, 2),, — stat convergent of the sequence
of positive linear operators in Theorem 3.3.
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Approximation by a generalization of
Szasz-Mirakjan type operators

Mohammed Arif Siddiqui and Nandita Gupta

Abstract. In the present paper we propose a new generalization of Szasz-
Mirakjan-type operators. We discuss their weighted convergence and rate of con-
vergence via weighted modulus of continuity. We also give an asymptotic estimate
through Voronovskaja type result for these operators.

Mathematics Subject Classification (2010): 41A36.

Keywords: Linear positive operators, Szasz-Mirakjan operators, rate of conver-
gence, weighted Korovkin-type theorem, weighted modulus of continuity.

1. Introduction

In [7] Rempulska et al. introduced the following operators of Szasz-Mirakjan
type

Lofie) = Y pua)f (), (1.1)
k=0
with
1 (nx)?
pn,k(x) = M(Tk)', keNy=NU {0}, (1.2)

where f € Cp and Cp is the space of real-valued functions uniformly continuous and
bounded on Rt = [0, c0) and the norm in Cp is given as

Il = sup [f(z)].
zERT

In [8, 9] a Voronovskaja-type theorem was proved for these operators.
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In 2014, Aral et al. [1] introduced a very interesting generalization of the Szdsz-
Mirakjan operators [10] using a function p as

> np\xr k
Sp(fia) =@ Y (£op7) (1) AP (1.3

n
k=0

=(Su(fop™") o p)(@)
. nplx k
e ()

where the function p satisfies following properties:
(p1) p is continuously differentiable on R,
(p2) p(0) =0, inf p'(z)>1.

z€RT

We propose a similar generalization of the operators (1.1) as follows

L& (2K (np(a)
PF ) — (22
B = g 25007 ( ! ) - (1.4)
where z € Rt n € N, k € Ng = NU {0} and function p satisfies conditions (p;) and
(p2)-

We see that these new operators are positive linear operators. For p(z) = =z,
these operators (1.4) reduce to the operators (1.1). Also from conditions (p;) and
(p2) we can draw out that
(1) lim p(z) = oo,

(i) [t — x| < |p(t) — p(x)| for all z, t € RT.

In this paper we study some approximation properties of these new operators.
Firstly we prove a theorem for the weighted convergence of L? f to f with the help
of a weighted Korovkin-type theorem [4], [3]. Then we determine an estimate of the
rate of the weighted convergence using weighted modulus of continuity defined in [5].
At the end we prove a Voronovskaja type result for these new operators.

2. Weighted convergence of L?(f;x)
From the definition of the operators L? one can easily derive the following results.

Lemma 2.1. For the operators defined in (1.4) we have

LA (1;) =1, (2.1)

L7 (p; @) =p(x) tanh(np(z)), (2:2)
147 2) =0*() + A tan(np(a), (2.3)
L (") = (&) tanb(mp(a)) + 2 4 2 (), (2.4)
L2 (phz) =p(z) + 6’)1("7) tanh(np(z)) + 7”1(;”) + % tanh(np(z)).  (2.5)
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Lemma 2.2. For the operators defined in (1.4) we have
L2(p(t) — plw); ) =p() (banh(np(z)) — 1),

L2((0l0) = p(o)s2) = (20) = 20 ) (1~ e
_12p%(2) | 4p%() p(fﬂ))
)

~—
~—
_|_
)
3w

L2((olt) - pla))s ) = (8p4<m>

n n2 n3
3p?(x

~—
=
B

x (1 — tanh(np(x))) +

2

n
Now we give a very useful lemma.
Lemma 2.3. For the operators defined in (1.4) we have
Jim nLy(p(t) — p(a); ) = 0,
lim nL8((p(t) — plx))?:2) = pla).

n—r oo

Proof. From Lemma 2.2

nLE(p(t) — p(a); ) =np(a) (tanh(np(x)) — 1)

_ —2np(x)
~e2no@) 4 1

Thus
lim nLf(p(t) — p(z);z) =0.

n—roo

Again from Lemma 2.2

AL((p(0) — o) 5) = (20(2) — %) mplie)(1 = tanb(p(o)) + (o)
~ (2000 3 ) (i ) + ot

Thus we have
lim nLf ((p(t) — p(x))* 2) = p(). O

n—oo

We prove the convergence theorem using weighted Korovkin type theorem. Ko-
rovkin’s theorem [6] was extended to unbounded intervals and a weighted Korovkin
type theorem in a subspace of continuous functions on the real axis R was proved in
[4], [3]. It was shown that the test functions 1, z, 2% of original Korovkin’s theorem
can be replaced by 1, p, p? under certain additional conditions on the function p. We
recall some notations and results given in [1], [4], [3].
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Let o(z) = 1+ p%(z), where p satisfies conditions (p;) and (pa). Thus we see that
p is continuous and strictly increasing function on positive real axis. We will consider
following weighted space:

B,(RT) ={f:R* = R: |f(2)| < Myp(z), z € RT},

where M is positive constant depending only on f. B,(R™) is a normed space with
the norm
|f (@)
I£1le = su :
zERT QO(I)

We denote the subspace of all continuous function in By, (R*) by Cy(R1). CE(RT)
denotes the subspace of all functions f € C,(R") with the property

i Y@
z—o0 ()
where ky is a constant depending on f. U,(R™) be the subspace of all functions f in

Cy,(R™) such that % is uniformly continuous. Then obviously

CERT) CUL(RT) C C,(RT) C B,(RT).

Lemma 2.4 ([4, 3]). The linear positive operators L,, n > 1, act from C,(R") to
B, (R") if and only if

|Ln(@;2)| < Ko(x),

where x € RY, ¢(x) is the weight function and K is a positive constant.

Theorem 2.5 ([4, 3]). Let (Ly)n>1 be the sequence of positive linear operators which
act from C,(R1) to B,(R™) satisfying the conditions

nh—)ngo HLn(p ) - P Hcp =0,i=0,1,2.
then for any function f € CE(R™)
Jim [[Ln(f) = fllo =0

Lemma 2.6. The linear positive operators Lf,, n € N, act from C,(RT) to B,(R"),

n’

where p(z) = 1+ p?(x) is the weight function.

Proof. In view of (2.1) and (2.3) we see that operators L?, n € N satisfy the condition

n?

of the Lemma 2.4. Thus the result follows. O
In [8] the following inequality was proved
0 < 2"(1 — tanh(nz)) < 2'""rln™", n,r € N and x > 0.
Similarly for p(x) satisfying p; and p2 and n,r € N we can get the following inequality
0 < p"(2)(1 — tanh(np(x)) < 2'7"rin=". (2.6)

Now we prove the convergence theorem for the operators (L7 ).
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Theorem 2.7. Let (L?),cn be the sequence of linear positive operators defined by (1.4).
Then for any f € C’ZZ(R*) we have

i [L5(f) ~ fll, = 0.

Proof. Using Theorem 2.5 we see that in order to prove the theorem, it is sufficient
to prove the following three conditions

lim [|L(p") ~ p"llo =0, v =0,1,2

Now from (2.1) we have

lim [|L5(1) — 1|, = 0.

From (2.2) we get

12£05) = il < sup (01— tanhnp(a).

so using (2.6) for r = 1 we have

1

1) = pll < —.

This leads to
lim [|L7(p) — pll, = 0.

n—oo

Again from (2.3)

LP

n

()~ 0 =22 tann(np())

:$ — @(1 — tanh(np(z))),

thus

o2y 2 su p(z) p(z) _ tanh(no(z
126%) = #lls < sup [ s + s (1= tanh(up(2))

and using (2.6) we get
1 1 2
Lh(?) - Pl <[~ + | = 2. 2.7
14~ Pl <[+ 4 (2.7
So we have
: P(A2) _ 2 _
Jim [|Z7(p7) = o7l = 0.

This completes the proof. O
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3. Rate of convergence via weighted modulus of continuity

In this section we compute the rate of convergence of the operators defined
in (1.4) in terms of weighted modulus of continuity. In [5] Holhog defined for all
f € C,(RT) and for every § > 0, the weighted modulus of continuity as

f@) - f(=
wp(fa(s): sup | () ( )‘
2€RT, |p(t)—p(x)|<s P(t) + ()
We see that w,(f,0) = 0 for all f € C,(R") and also that w,(f,d) is a nonnegative
and nondecreasing function with respect to 6. The properties of weighted modulus of
continuity were discussed in [5]. The following results were given by Holhos [5].

Lemma 3.1 ([5]). For every f € U,(RT), }ir%wp(f, 9) =0.
—

Theorem 3.2 ([5]). Let (L,)n>1 be a sequence of linear positive operators acting from
Cy(RT) to B,(RT) with

L) = 2llyo
120 (p) = pll 3 = bn,
1L (p?) =PIl = e,
1La(o?) — "l 3 = do.
where an, by, cn and d, tend to zero as n goes to infinity. Then
ILa(f) = £l g = (7+day +2¢n)wp(f, 00) + | fllpan
for all f € Cu,(RY), where
6n =2/ (an + 2b, + ¢) (1 + ay) + ay + 3b, + 3¢, + d.
Theorem 3.3. For all f € C,(R"), we have

1220 = 1l < (743wl 00

Qn,s

where

Proof. From (2.1) and (2.2) we see that
12n(p°) = P°lleo = an =0,

bo =l1Zn(p) — pll_y < sup ——2E (1~ tanh(np(z)

¢2 7 pert /1 + p?(x)
and using (2.6) we get
by = [[Ln(p) — pll

From (2.7) we have
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Again from (2.4) we obtain

dn =||Ln(p?) — P3H¢%

_H;SI ah(n ~ B 3p*(x)
= T W) p”(z) tanh(np(z)) — p*(z) + —

+ % tanh(np(x))‘

su;3x — tanh(np(z M—ann:c
< sup 11703 p°(2)(1 = tanh(np(2))) + = 5~ (1 — tanh(np(z)))

3p%(x) | p(2)

+ + =5

1+1 3+1
“n n?2 n  n?

Using (2.6) and by the fact that 2y < = we obtain

dy =N La(p®) = 7Pl g <

Thus we see that a,, b,, ¢, and d,, tend to zero as n goes to infinity. So on applying
Theorem 3.2, we get

M) — g < (74 2 )l 6),
where
ST )
N
This completes the proof. O

Remark 3.4. We see from Theorem 3.3 that as n — oo, d,, — 0. Thus, using Lemma
3.1, we have

lim [125(/) — fll 3 =0

n— 00 ©

for every f € U,(R™).

4. Voronovskaja type theorem

Now we give a Voronovskaja-type result using the technique of Céardenas-Morales
et al. [2].

Theorem 4.1. Let f € C,(RT), z € RY and suppose that the first and second deriva-

tives of f o p~t exist at p(z). If the second derivative of f o p~! is bounded on RT,
then we have

lim L8 (f: ) — £(@)] = 22 (f 0 p~ ) (pla)).

n—00 2



582 Mohammed Arif Siddiqui and Nandita Gupta

Proof. By the Taylor expansion of fop~!

between x and t such that

F@&)=(fop )pt) = (Fop ")px)+ (fop ) (p(x)(p(t) — p(x))

+ %(f o p )" (p(2))(p(t) = p(2))* + h(t; 2)(p(t) = p(2))?,

where
sy = U 20 )~ (07 o))

On applying the operator (1.4)
nlLy(f; @) — f(x)]
=(f o p™) (p(a))nLf(p(t) — p(w); @) +
x nLp ((p(t) — p(x))*; @) +nLh (h(t;
Now using Lemma 2.3 in (4.2) we get
lim n[LE(fi2) — £ (@)

(fop")"(p(x))

1
2
)(p(t) — p(2))* @).

2
From the hypothesis of the theorem we have |h(t;2)] < M and

tll_rg h(t;z) = 0.
Thus, for any € > 0 there exist a § > 0 such that
|h(t;x)| < e for |t —x| <.
But from the condition (p3) we have
[t — x| < |p(t) — p()]-
Therefore, if |p(t) — p(z)| < §, then

[n(t:2)(p(t) — p(2))?| < e(p(t) — p(x))?

and if
p(t) — p2)] = 6,
then v
|h(t; 2)(p(t) — p(x))?] < 52 () plx))*
Hence

Li (h(t; ) (p(t) = p(x))*; @)
M

<eLh((p(t) = p(2))%2) + S5 LA ((p(t) = p(@))"; 2)-

From Lemma 2.2 we see that

=29 (1o p 1y (p(a)) + lim L (At ) (p(t) - pl@)% ).

at the point p(x) € RT, there exists £ lying

(4.2)

(4.3)
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Thus we get

lim 0L (h(t;2)(p(t) — plw))s ) =0,

n—oo
On applying this to (4.3) we get the desired result. O
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Perturbations of local ('-cosine functions

Chung-Cheng Kuo

Abstract. We show that A+ B is a closed subgenerator of a local C-cosine function
T'(-) on a complex Banach space X defined by

x—ZB"/ Jn—1(8)jn(t — s)C(|t — 2s|)zds

for all z € X and 0 <t < Tp, if A is a closed subgenerator of a local C-cosine
function C(-) on X and one of the following cases holds: (i) C(-) is exponentially
bounded, and B is a bounded linear operator on D(A) so that BC' = CB on D(A)
and BA C AB; (it) B is a bounded linear operator on D(A) which commutes
with C(-) on D(A) and BA C AB; (iii) B is a bounded linear operator on X
which commutes with C(-) on X. Here j,(t) = % for all t € R, and

/0 Jo1(8)jo(t — $)C(lt — 2s|)ads = C(t)z

forallz € X and 0 <t < Tp.
Mathematics Subject Classification (2010): 47D60, 47D62.

Keywords: Local C-cosine function, subgenerator, generator, abstract Cauchy
problem.

1. Introduction

Let X be a complex Banach space with norm || - ||, and let L(X) denote the
set of all bounded linear operators on X. For each 0 < Ty < oo and each injection
C € L(X), a family C(:) (= {C(t)|0 <t < Tp}) in L(X) is called a local C-cosine
function on X if it is strongly continuous, C(0) = C' on X and satisfies

2C(t)C(s) =C(t+5)C+ C(|t — s|)C (1.1)
on X for all 0 <t,s,t+s < Tp (see [5], [7], [14], [15], [21], [23], [25]). In this case, the
generator of C(-) is a closed linear operator A in X defined by

D(A)={zecX| hlij& 2(C(h)xz — Cz)/h? € R(C)}
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and Az = C~1 hhm+ 2(C(h)x — Cx)/h? for x € D(A). Moreover, we say that C(-) is
—0

locally Lipschitz continuous, if for each 0 < ¢y < T there exists a Ky, > 0 such that

[C(t+h) = C@O) < Kiph (1.2)

for all 0 < t,h,t + h < ty; exponentially bounded, if Ty = cocand there exist K,w > 0
such that
IC@)l < Ke! (1.3)
for all ¢ > 0; exponentially Lipschitz continuous, if Ty = oo and there exist K,w > 0
such that
|C(t+h) — Ct)|| < Khe* (1.4)
for all ¢, h > 0. In general, a local C-cosine function is also called a C-cosine function
if Ty = oo (see [2], [12], [14], [16]) or a cosine function if C' = I (identity operator
on X) (see [1], [4], [6]), and a C-cosine function may not be exponentially bounded
(see [16]). Moreover, a local C-cosine function is not necessarily extendable to the
half line [0, 00) (see [21]) except for C' = I (see [1], [4], [6]) and the generator of a C-
cosine function may not be densely defined (see [2]). Perturbations of local C-cosine
functions have been extensively studied by many authors appearing in [1], [2], [4],
[9], [11], [17], [18], [19]. Some interesting applications of this topic are also illustrated
there. In particular, a classical perturbation result of cosine functions shows that if A
is the generator of a C-cosine function C(-) on X, and B a bounded linear operator
on X, then A+ B is the generator of a C-cosine function on X when C = I, but the
conclusion may not be true when C' is arbitrary, and is still unknown until now even
though B and C(-) are commutable, which can be completely solved in this paper
and several new additive perturbation theorems concerning local C-cosine functions
are also established as results in [20] for the case of C-semigroup and in [8], [13] for
the case of local C-semigroup. A new representation of the perturbation of a local
C-cosine function is given in (1.5) below. We show that if C(-) is an exponentially
bounded C-cosine function on X with closed subgenerator A and B a bounded linear
operator on D(A) such that BC = CB on D(A) and BA C AB, then A+ B is a
closed subgenerator of an exponentially bounded C-cosine function T'(-) on X defined
by

Ttz =) B”/O Gro1(8)in(t — $)C(|t — 25|)ads (1.5)
n=0

for all x € X and 0 <t < Ty (see Theorem 2.6 below). Here j,(t) = % for all t € R,
and

[ ia(@pite = )0t = 25Dyads = oy

forallz € X and 0 <t < Ty. Moreover, T'(+) is also exponentially Lipschitz continuous
or norm continuous if C(-) is. We then show that the exponential boundedness of T'(+)
can be deleted and C-cosine functions can be extended to the context of local C-cosine
functions when the assumption of BC(-) = C(-)B on D(A) is added (see Theorem
2.7 below). Moreover, T'(+) is locally Lipschitz continuous or norm continuous if C(+)
is. We also show that A + B is a closed subgenerator of a local C-cosine function
T(-) on X if A is a closed subgenerator of a local C-cosine function C(-) on X and
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B a bounded linear operator on X such that BC(-) = C(-)B on X (see Theorem 2.8
below). A simple illustrative example of these results is presented in the final part of
this paper.

2. Perturbation theorems

In this section, we first note some basic properties of a local C-cosine function
with its subgenerator and generator.

Definition 2.1. (see [10], [14]) Let C(-) be a strongly continuous family in L(X). A
linear operator A in X is called a subgenerator of C'(-) if

Clt)z — Cx = /0 t /O " () Awdrds

for all x € D(A) and 0 < ¢ < Tp, and

t s
/ / C(r)xzdrds € D(A) and A/ / C(r)zdrds = C(t)x — Cx
o Jo

for all z € X and 0 < ¢t < Tp. A subgenerator A of C(-) is called the maximal
subgenerator of C(-) if it is an extension of each subgenerator of C(-) to D(A).

Proposition 2.2. (see [4], [5], [10], [14], [21]) Let A be the generator of a local C-cosine
function C(-) on X. Then

C(t)x € D(A) and C(t)Ax = AC(t)x (2.1)
for allz € D(A) and 0 <t < Tp;
CT'AC =A and R(C(t)) c D(A) (2.2)

for all 0 <t < Ty,
t s
x € D(A) and Ax =y, if and only if C(t)x — Cx = / / C(r)yzdrds (2.3)
0o Jo

for all0 <t <Tpy;

Ay is closable and C~1A,C = A (2.4)
for each subgenerator Ay of C(-);
A is the mazimal subgenerator of C(-). (2.5)

From now on, we always assume that A : D(A) C X — X is a closed linear operator
so that CA C AC.

Theorem 2.3. (see [10], [16]) A strongly continuous family C(-) in L(X) satisfying
(1.3) is a C-cosine function on X with subgenerator A if and only if CC(-) = C(-)C,
A2 € pc(A), and A\(A\2 — A)~*C = Ly on X for all A > w. Here

Lyz = / e MO(t)xdt for x € X.
0
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Lemma 2.4. (see [1]) Let C(-)(= {C(t) |0 < t < Tp}) be a strongly continuous family in

L(X). We set C(—t) = C(t) for 0 <t < Ty. Then C(-) is a local C-cosine function on
X if and only if 2C(t)C(s)=C(t+s)C+C(t—s)C on X for all|t|,|s], [t—s|, [t+s] < Tp.
In this case,

S(—t) =-5(t) (2.6)
for all 0 <t < Ty,
S(t+s)C = St)C(s)+ C(t)S(s) on X (2.7)
for all |t|,|s|, |t + s| < Typ. Here S(t) = jo x C(t) for all |t| < Tp.
By slightly modifying the proof of [3, Lemma 2], the next lemma is also attained.
Lemma 2.5. Let C()(= {C(t)|0 <t < Tp}) be a local C-cosine function on X, and

C(—t) = C(t) for 0 < t < Ty. Assume that S*" ' denotes the (n+1)-fold convolution
of S for n € NU{0}, that is

5*2 ;v—/St—s s)xds
and
t
S () = / S*(t — 5)S(s)xds.
0

Then

t

I 8)jn(t —s —25)C™ds = in(8)jn(t — s — 25)C"ds
s @—AWNMQ)%2KW Ahwm )C(t - 28)C™d

on X for all [t| < Ty. Here S(t) = jo x C(t) and

t
/jﬂwmw—@ﬂwawwm:smzsﬂw
0
for all |t] < Tp.
Proof. 1t is easy to see that

S (1) et (8)n(t — $)S(t — 25)C™ds

Jn(8)jn(t —s)C(t — 25)C"ds
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on X for n = 0. By induction, we have
t

SN () = / S*"()S(t — s)xds
0

- /0 /05 Jn—-1(r)jn-1(s —r)C(s — Qr)cn—ls(t _ s)zdrds

1

= 5 /0 /0S jn—l(r)jn—l(s - 7‘) [S(t — 27") + S(t + 2r — 28)] C"xdrds

t s
= / / Jn—-1(r)jn—1(s —r)S(t — 2r)C"xdrds
0 JO
t pt
= / / Gn-1(")jn_1(s —r)S(t — 2r)C™zdsdr
0 Jr
t

= /0 Jn—1(r)jn(t —r)S(t — 2r)C™xdr

= 1 / [j”—l(r)jn(t - T) - jn(r)jn—l(t - 7‘)] S(t — 2T)C”xdr

2 0
it IS 200
D) o dr In\T)Jn
t

= /0 Jn(T)in(t —r)C(t — 2r)C"zdr

foralln € N, z € X and |t| < Tp. O

Applying Theorem 2.3 we can obtain the next perturbation theorem concerning
exponentially bounded C-cosine functions just as a corollary of [11, Corollary 2.6.6].

Theorem 2.6. Let A be a subgenerator of an exponentially bounded C'-cosine function
C(-) on X. Assume that B € L(D(A)),BC = CB on D(A) and BA C AB. Then
A+ B is a closed subgenerator of an exponentially bounded C-cosine function T(-)
on X giwven as in (1.5). Moreover, T(-) is also exponentially Lipschitz continuous or
norm continuous if C(-) is.

Proof. 1t is easy to see that

(N —A-B)'C=> B\ -4)"'C

n=0

for A > w, and the boundedness of {||[C(¢)||| 0 < t < tg} for each t; > 0 and the
strong continuity of C(-) imply that the right-hand side of (1.5) converges uniformly
on compact subsets of [0,00). In particular, T'(-) is a strongly continuous family in
L(X). For simplicity, we may assume that ||C(¢)|| < Ke*! for all ¢ > 0 and for some
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fixed K,w > 0. Then ||T(t)|| < Ke“+VIBD! for all ¢ > 0, and

e 00 t
N —-A-B)'Cz = Z B”/ e*)‘t/ Jn—1(8)jn(t — s)S(t — 2s)xdsdt
n=0 0 0

t
0

= 3 ne— Al ] S$)jn(t — s — 2s)xds
_/0 ;::OB /JH( )in(t — $)S(t — 2s)xdsdt

oo
:/0 e Mo x T(t)adt
for A > w and = € X or equivalently,
AN —A—-B)"'Cz = /Ooo e MT(t)adt
for A > w and x € X. Here
/Ot J—1(8)jo(t — s)S(t — 2s)xds = S(t)x for t > 0.

Applying Theorem 2.3, we get that T'(+) is an exponentially bounded C-cosine function
on X with closed subgenerator A + B. Since

/0 Jn—1(r)jn(t —r)C(t — 2r)xdr

Jn-1(r)jn(s —1r)C(s — 2r)zdr

Jn-1(r)jn(t — r)C(t — 2r)xdr

S

Jn—1(M)[n(t = r)C(t —2r) — jn(s —7)C(s — 2r)]xdr

+

o T S

and

in—1(1)[n(t = r)C(t — 2r) — jn(s —7)C(s — 2r)]xdr

)

in—1(1)jn(s —T)[C(t — 2r) — C(s — 2r)]zdr

=

Jn—1(r)jn(s = )[C(|t = 2r]) = C(|s = 2r[)]xdr

Jn—1(r)jn(t = 1) = jn(s = P)]C(|t = 2r|)zdr

|
|
i / ()l =) — uls — PIC(E — 2)dr (2.9)
|
|

foralln € N, x € X and t > s > 0, we observe from (1.5) that T'() is also exponen-
tially Lipschitz continuous or norm continuous if C(-) is. O
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Next we deduce a new perturbation theorem concerning local C-cosine functions.
In particular, the exponential boundedness of T'() in Theorem 2.6 can be deleted when
the assumption of BC(-) = C(-)B on D(A) is added.

Theorem 2.7. Let A be a subgenerator of a local C-cosine function C(-) on X. Assume
that B is a bounded linear operator on D(A) such that BC(-) = C(-)B on D(A) and
BA C AB. Then A+ B is a closed subgenerator of a local C-cosine function T(-)
on X given as in (1.5). Moreover, T(-) is also locally Lipschitz continuous or norm
continuous if C(-) is.

Proof. Just as in the proof of Theorem 2.6, we observe from (2.8)-(2.9) and (1.5) that
T(-) is also locally Lipschitz continuous or norm continuous if C(-) is. Since

R(C(t)) € D(A) and BC(-) = C(-)B on D(A),

we have
CT()=T(-)C on X.
Let z € X and 0 <t <r < Ty be fixed. Then

/ in1(8)jn(t — $)S(t — 28)ads = %[jl(t)g(t) _ / S(t — 29)wds]
0 0
for n =1, and

/0 Jn—1(8)jn(t — 8)S(t — 2s)xds

I ~
= 5/ [n—2(8)jn(t = 8) = jn-1(8)jn-1(t — 5)]S(t — 2s)xds
0
for all n > 2. Here B
S(-) = jo*S(-).
Since BA C AB and

S(ryx = /O ' /0 tC’(s)mdsdt € D(A),

we have
AB /O ' [51(t)S(t)a — /O S(t — 2s)ads)dt
= BA /07« [j1(t)S(t)z — /Ot S(t — 2s)xds]dt
_B /O (OO — Ca] - /O (Ot — 250 — Calds)dt
- B /0 (OO (t)adt — B /0 ' /0 Ot — 25)ndsdt
~B /O (OO ()adt — B /0 " S(t)adt.
Since

/0 OO 2dt = 271 (1) Sz — §(r)z
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and
Ji(r)S(r)z = 2/0T ji(r = s)C(r — 2s)xds,

we also have

AB/T [jl() xf/ St728)$d8]d

(2.10)
—ZB/ Ji(r—s) r—25xds—23//0 Yxdsdt.
Let n > 2 be fixed.
Using integration by parts, we have
t
/ Jn—=1(8)jn(t — 5)S(t — 2s)xds
0
I -
=3 / [in—2(8)jn(t = 5) = jn—1(8)jn—1(t — 5)] S(t — 2s)zds.
0
Since
r t r t
| [ dnsinte = s)Czasat = [ [ gucs(9)inoa(t - o)Cadsat,
o Jo o Jo
we have
T t
A/ / Jn-1(8)dn(t — 8)S(t — 2s)zdsdt
o Jo
1 r r t _
-5 / / jn—Q(S)jn(t - S)AS(t — 23)1‘d8dt
21Jo Jo
T t
- / / Jn-1(8)Jn-1(t — s)AS(t — 25)xdsdt]
0o Jo
1 rrr t
=3 / / Jn—2(8)jn(t — 8)(C(t — 2s)x — Cx)dsdt (2.11)
Lo Jo
T t
- / / Jn-1(8)jn-1(t — 8)(C(t — 28)x — C’:v)dsdt]
0o Jo
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Since
t

Jn—2(8)jn(t — s)C(t — 2s)xdsdt

Jn—2(8)Jn(t — $)C(t — 2s)xdtds

e
|

]n—2( )[jn(T —5)S(r—2s)x

Jn—1(t = 5)S(t — 2s)adt]ds

T

Jn—2(8)jn(r — 8)S(r — 2s)zds

Nc\u\c\c\c\

Jn—2(8)Jn(r — 8)S(r — 2s)xds

S~

= /Or jn—l(s)jn—l(”’ - S)S(’I" — 25)1‘d5
Jn=1(8)jn(r — 8)C(r — 2s)xds
Jn—1(8)gn(r — s)C(r — 2s)xds

and

Jn—2(8)Jn-1(t — s)S(t — 2s)xdtds

we have
T t
/ / Jn—2(8)jn(t — $)C(t — 2s)xzdsdt
o Jo
In—

1(8)jin(r — 8)C(r — 25)xds

- /7"/ Jn—2(8)jn—1(t — 5)S(t — 2s)xdsdt.
o Jo

By Lemma 2.5, we have

t
Jn(8)jn(t —s)C(t — 2s)xdsdt

|
-/

(=)

Jn—1(8)jn(t — 8)S(t — 2s)xdsdt.

J
/

o

jn,g(s)/ Jn-1(t — 8)S(t — 2s)xdtds,

/
:/OT/Otjn 2(8)jn1(t — )S(t — 28)adsdt,

593

(2.12)

(2.13)

(2.14)

(2.15)
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Combining (1.11) with (2.14) and (2.15), we have
/ / Jn—1(8)jn(t — 5)S(t — 2s)xdsdt
/ Jn—1(8)jn(r — s)C(r — 28)xds (2.16)

/ / Jn—2(8)Jn—1(t = 5)S(t — 2s)wdsdt.
It follows from (2.10)and (2.16) that we have

A/o nz_an/o Jn—1(8)jn(t — 8)S(t — 2s)xdsdt
_ A;B" /O /0 in1(8)jult — $)S(E — 2)dsdt
= AB" o in—1(8)Jn(t — 8)S(t — 2s)xdsdt

7;) /0 /0 Jn-1(s)]

_ A/OT /Ot C(s)aﬁdsdt—i—AB/Or /Otjl(t—s)S(t—Qs)mdsdt
+ ni:B”A /O ' /0 (8t — $)S(t — 25)adsdt
= [C(r)z — Cz] + B {/OT Ji(r —s)C(r — 2s)xds — /OT /Ot C(s)xdsdt]

" (2.17)
+ ZBn {/ In-1(8)jn(r — s)C(r — 2s)xds

_ / /Jn 2(8)jn_ 1t—s)5(t—2s)xdsdt}

_ ZB"/ in1(8)jn(r — $)C(r — 25)ads — Cx — B/ / C(s)adsdt

n=0 0
- / Z B"+1/ Jn—1(8)jn(t — $)S(t — 2s)xdsdt
= Z B"/ Jn—1(8)jn(r —s)C(r — 2s)xzds — Cx
n=0 0
r t
-B[ > B" / Gr1(8)gn(t — 5)S(t — 28)xdsdt
0 =0 0

for all x € X and 0 < r < T or equivalently,

A+B// s)xdsdt = T(r)x — Cx
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for all z € X and 0 < r < Ty. Since AB™ = B"A and B"C(t) = C(t)B™ on D(A),

we have

// )(A 4+ B)adsdt = A+B// s)xdsdt = T(r)x — Cx

for all z € D(A) and 0 < r < Tp. It follows from [14, Theorem 2.5] that T'(+) is a local
C-cosine function on X with closed subgenerator A 4+ B, and is also locally Lipschitz
continuous or norm continuous if C(-) is. O

By slightly modifying the proof of Theorem 2.7 we also obtain the next perturbation
theorem concerning local C-cosine functions which is still new even though Ty = oco.

Theorem 2.8. Let A be a subgenerator of a local C-cosine function C(-) on X. Assume
that B is a bounded linear operator on X such that BC(-) = C(-)B on X. Then A+ B
is a closed subgenerator of a local C-cosine function T(-) on X satisfying

(t)z = Z/ in1(8)jnlt — $)C(It — 25)) B zds (2.18)
n=0 0

for allz € X and 0 <t < Ty. Moreover, T(-) is also locally Lipschitz continuous or
norm continuous if C(-) is

Proof. Suppose that B is a bounded linear operator on X which commutes with C(-)
on X. Then

T(t)x = Z/O Gno1(8)jn(t — 8)C(|t — 25|) B zds
n=0

for all z € X and 0 < ¢ < Tjy. Since the assumption of BA C AB in the proof of Theo-
rem 2.7 is only used to show that (2.10) and (2.17) hold, but both are automatically
satisfied if BA C AB is replaced by assuming that B is a bounded linear operator
on X which commutes with C(-) on X. Therefore, the conclusion of this theorem is
true. 0

We end this paper with a simple illustrative example.

Example 2.9. Let C(-) (= {C(¢)|0 <t < 1}) be a family of bounded linear operators
on ¢g (family of all convergent sequences in C with limit 0), defined by

C(t)x = {xne " coshnt}

for all z = {2,}22, € ¢p and 0 < ¢t < 1, then C(:) is a local C-cosine function on
co with generator A defined by Az = {n?wz,}°°, for all # = {2,}5%,; € ¢y with
{n?2,}2%, € cp. Here C = C(0). Let B be a bounded linear operator on ¢ defined
by Bx = {x,e " coshn}22 for all x = {x,}72, € D(A), then C(-)B = BC(-) on .
Applying Theorem 2.8, we get that A+ B generates a local C-cosine function T'(+) on
co satisfying (1.5).
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On the viscoelastic equation with Balakrishnan-
Taylor damping and nonlinear boundary /interior
sources with variable-exponent nonlinearities

Abita Rahmoune and Benyattou Benabderrahmane

Abstract. This work is devoted to the study of a nonlinear viscoelastic Kirch-
hoff equation with Balakrishnan-Taylor damping and nonlinear boundary interior
sources with variable exponents. Under appropriate assumptions, we establish a
uniform decay rate of the solution energy in terms of the behavior of the nonlin-
ear feedback and the relaxation function, without setting any restrictive growth
assumptions on the damping at the origin and weakening the usual assumptions
on the relaxation function.

Mathematics Subject Classification (2010): 49Q15, 35L05, 35120 35B40, 35B35.
Keywords: Balakrishnan-Taylor damping, global existence, general decay, relax-
ation function, viscoelastic equation, Lebesgue and Sobolev spaces with variable
exponents.

1. Introduction

In this paper, we study the following viscoelastic problem with Balakrishnan-
Taylor damping and nonlinear boundary interior sources involving the variable-
exponent nonlinearities

0% 2 t 1
oM (|Vu )] ) Au+/ g(t—s)Au(s)ds = [ul'™ " uin Q x (0,+00),
0

ot?
(1.1)
u=0on Iy x (0,+00), (1.2)

t
M (\Vu (t)\2> u _ / g(t—2s) gu (s)ds + h (ug) = |ul"™ 1w on Ty x (0, +00),
0

v v
(1.3)
u(z,0) = uo(x), u(z,0)=ui(z), ze€Q, (1.4)
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where M (r) is a locally Lipschitz function in r, g > 0 is a memory kernel and 2 C R"
(n > 2), be a bounded domain with a smooth boundary I' = 9Q = I'o UT'y. The
boundary T" of 2 is assumed to be regular and is divided by two closed and disjoint
parts g, 'y, Here, I’y # 0. ()/ denotes the derivative with respect to time ¢ thus
Up = %, Uy = %, A stands for the Laplacian with respect to the spatial variables,
respectively. Let v be the outward normal to I'. The exponents k(.) and p(.) are given
measurable functions on §2 satisfying

1<k™ <k(z) <kt < oo, '
where
pT =ess supp(x), p~ =ess infp(z),
TEQN e (1.6)
kT =ess supk (z), k= =ess infk(x). '
EQ e

We also assume that k satisfies the following Zhikov-Fan uniform local continuity
condition:

[k (x) =k (y)

In recent years, many authors have paid attention to the study of nonlinear hyper-
bolic, parabolic and elliptic equations with nonstandard growth condition. For in-
stance, modeling of physical phenomena such as flows of electro-rheological fluids or
fluids with temperature-dependent viscosity, thermoelasticity, nonlinear viscoelastic-
ity, filtration processes through a porous media and image processing. More details
on these problems can be found in [5, 7, 1, 2, 3, 26, 34, 35] and references therein.

Constant exponent. In (1.1)-(1.4), when g > 0 and k, p are constants, this equation
has its origin in the nonlinear vibration of an elastic string, were the source term
lul? ~2 4 forces the negative-energy solutions to explode in finite time. While, the
dissipation term h (u;) assures the existence of global solutions for any initial data,
local, global existence and long-time behavior have been considered by many authors
(see for example [40, 31, 19, 41] and references therein). It is well known that Kirchhoff
first investigated the following nonlinear vibration of an elastic string for f = g = 0:

0u ou ou Eh [T [ou\? 0%u
phat2+5at+g(at> = {po+2L ; (636) dx}axQJrf(u)
for 0 < x < L, t > 0, where u(x,t) is the lateral displacement, E the Young modulus,
p the mass density, h the cross-section area, L the length, py the initial axial tension,
6 the resistance modulus, and f and g the external forces. The above equation is
described by the second order hyperbolic equation (1.1) and it is seemed to be im-
portant and natural that the equation with external forces is considered for analyzing
phenomena in real world. The equations in (1.1)-(1.4) with M = 1 form a class of
nonlinear viscoelastic equations used to investigate the motion of viscoelastic materi-
als. As these materials have a wide application in the natural sciences, their dynamics
are interesting and of great importance. Hence, questions related to the behavior of
the solutions for the wave equation with Dirichlet’s boundary condition has attracted

1
<——— forallz, yin Q with |z —y| < =, M > 0.
[log [z — y]| 2
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considerable the attention of many authors. In particular, there are many results of
proving the nonexistence and blow-up of solutions with negative initial energy (see
[24, 25, 22, 38, 32, 9] and a list of references therein) also these results were obtained
with convexity method. However much less is known when the initial energy is positive
(cf. [8, 21, 33, 42]) and these results used several, for example, contradiction method,
decomposition method and so on. The equations in (1.1) with M (r) = a + br and
a > 0, b > 0 is the model to describe the motion of deformable solids as hereditary ef-
fect is incorporated, which was first studied by Torrejon and Yong [37]. They proved
the existence of weakly asymptotic stable solution for the large analytical datum.
Later, Rivera [30] showed the existence of global solutions for small datum and the
total energy decays to zero exponentially under some restrictions. Problem (1.1)-(1.4)
is the extension of the problems in which the variable-exponent are constants and
g > 0. The main difficulty of this problem is related to the presence of the quasilin-
ear terms in (1.1)-(1.4) in the variable-exponent. In this paper a class of a weakly
damped wave equation of generalized Kirchhoff type with nonlinear damping and
source terms involving the variable-exponent nonlinearities were considered. Hence
by using the Faedo-Galerkin arguments and compactness method as in [27], together
with the Banach fixed point theorem, we will show the local existence of the problem
(1.1)-(1.4). The purpose of this paper is to generalize the existence and uniform decay
theorems of local solutions due to the constant-exponents. In other words we prove
the existence and uniform decay rate of local solutions to weakly damped degener-
ate wave equations of Kirchhoff type (1.1)-(1.4) with nonlinear damping and source
terms. This paper consists of 3 sections in addition to the introduction. In Section
2, we recall the definitions of the variable-exponent Lebesgue spaces LP()(Q), the
Sobolev spaces W1P()(Q), and some of their properties. In Section 3, we state, with
the proof, existence and uniqueness result of weak solution for (1.1)-(1.4) by employ-
ing Faedo—Galerkin’s together with the Banach fixed point theorem and compactness
methods. In Section 4, the statement and the proof of our global existence and a
stability theorem for certain solutions with positive initial energy. To the best of our
knowledge, this problem has not been studied previously. In addition, our method of
determining these results, because the presence of the exponents m (.) and p(.), is
somewhat different.

2. Preliminaries. Function spaces

In this section, we list and recall some well-known results and facts from the
theory of the Sobolev spaces with variable exponent. (On the basic properties of the
spaces WP (Q) and LP)(T') we refer to [10, 11, 15, 17, 23]).

Throughout the rest of the paper we assume that €2 is a bounded domain of R”,
n > 1 with smooth boundary I' and assume that p(.) is a measurable function on
such that:

l<p™ <p(z)<p’ <oo, (2.1)
where

pt =ess supp(z), p~ =ess infp(x).
z€EQ z€Q
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We also assume that p satisfies the following Zhikov-Fan uniform local continuity
condition:

Given a function p: Q — [p~, p*] C (1,00), p

Ip(z) —p(y)| <

1
| < —— forall z, yin Q with |z —y|< =, M >0. (2.2)
[log | — | 2

+ = const, we define the set

LP(~)(Q) = {

v:Q—=>R:v measurable functions on 2, }
00y, 0 (V) = [ lv(z )P dz < oo.

The variable-exponent space Lp(')(Q) equipped with the Luxemburg norm

. u (@)
a0 =l =inf {30, [ |30 <1},

becomes a Banach space.

In general, variable-exponent Lebesgue spaces are similar to classical Lebesgue

spaces in many aspects, see the first discussed the LP(*) spaces and W#»?(®) spaces by
Kovacik and Rékosnik in [23].

Let us list some properties of the spaces LP(-) () which will be used in the study

of the problem (1.1)-(1.4).

If p(z) is measurable and 1 < p~ < p(z) < pT < oo in Q, then LPL)(Q) is a
reflexive and separable Banach space and C§°(9) is dense in LP()(Q).

If condition (2.2) is fulfilled, and € has a finite measure and p, ¢ are variable
exponents so that p(x) < ¢(z) almost everywhere in €, the inclusion L4()(Q)
LP)(Q) is continuous and

o e LI0©Q) [ull, < Clulyy: € =0 (92p%) (2.3
The variable Sobolev space W1P() (Q) is defined as the closure of C§°(Q) with
respect to the norm

||UHWOLP<->(Q) = ||U||p(.),Q + ||VU||p( ),Q

It is known that for the elements of WO1 P (')(Q) the Poincar e inequality holds,
[ull, )0 < C Q) [[Vull, ) q; (2.4)

and an equivalent norm of W,"? (')(Q) can be defined by

||u||W011P(-)(Q) = Hqup(,),Q '

According to (2.2) Wy’ *O(Q) ¢ Wy (Q). If p~ >
WyP (Q) € L*(Q) is compact.

It is known that C§°(Q2) is dense in Wol’p(')(ﬂ) according to (2.2) if p(z) €
Clog(9), that is, the variable exponent p(z) is continuous in © with the logarith-

mic module of continuity.
It follows directly from the definition of the norm that

. - + - +
min (Jlull? )l ) < gy () < max ([l sl ) - (2.5)

n+2, then the embedding
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e The following generalized Holder inequality

1 1
(@) 0 (@)lds < (o= + ) Mol Bl < 2l ol
holds, for all u € LrO(Q), v € L¥'0(Q) with p(z) € (1,00), p/ (z) = 42,
e Ifp:Q — [p~, p™] C [1,+00) is a measurable function and p, > ess supp (z)
{zeQ}
with p, < -2 then the embedding H{ (Q) = Wy2(Q) < LPO)(Q) is continuous
and compact.

Q

Lemma 2.1. ([10]) Let 2 be a bounded domain of R, p(.) and m (.) satisfies (1.5) and
(2.2), then

Bo [Vl = I,y for allu e Wo™ (). (2.6)
where the optimal constant of Sobolev embedding By is depends on p*™ and |9|.

Lemma 2.2 (Poincaré’s Inequality). ([10]) Let 2 be a bounded domain of R™ and p(.)
satisfies (2.2), then

1,p(.
Do | Vull,y > llull,, for allu e Wy (Q). (2.7)
where the optimal constant of Sobolev embedding Dy is depends on p* and |Q.

Proposition 2.3. (See [16, 14, 15, 12, 13]) Let Q be a bounded domain in R™, p €
CoM(Q),1 < p <plx) <p" < n. Then For any ¢ € C(T') with 1 < ¢(z) <
=Lp@) yhere s a continuous trace Wwhr)(Q) — LI, when 1 < g(z) <<
, the trace is compact, in particulary the continuous trace Wl’p(“’)(ﬂ) —
LP®)(T) is compact.

There are many proprieties of the theory of Lebesgue and Sobolev spaces with
variable exponent, see the detailed exposition given in the monograph [4, Ch.1.].

Lemma 2.4 (Modified Gronwall inequality). Let ¢ and h be nonnegative functions on
[0,4+00) satisfying

t
O§¢SK+/h@¢@”w&
0

with K >0 and r > 0. Then

—1

(1) < <K”—r/0th(s)ds>r.

as long as the right-hand side exists.
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2.1. Mathematical hypotheses

We begin this section by introducing some hypotheses and our main result.
Throughout this paper, we use standard functional spaces and denote that |||,

[-lpyr, are LPO)(Q) norm and LPO)(T1) norm, respectively, such that:

”“”p(.),rl:/ lu ()PP dn = [ |u ()" dr;
I Ty
Ilr, = / ()7 dT
Also, we define ( = [qu( z)dz and (u,v)p, = fr z)dr.

The inner products and norms in L?(Q) and Hg (2) are represented by (.,.), |||l
respectively and they are given by:

() = [ wle)v(@)do and fulfag = o = [ old

2 2 2 2
gy = l® = 9 = [ [Vul”a.

Next, we state the assumptions for problem (1.1)-(1.4).

(H1) Hypotheses on M. Let M € C (]0,+00),Ry) be a nonnegative locally Lips-
chitz function and for positive constant m > 0, we have

M(s)>m3>0, s>0 (2.8)

(H2) Hypotheses on g. g : [0,00) — (0,00) is a bounded C! function satisfying
g(0) >0, mg—/ g(s)ds=1>0, (2.9)

0

and there exists a non-increasing positive differentiable function ¢ such that

g (t) < —C(t)g(t) for all t > 0. (2.10)
(H3) Hypotheses on h. h: R — R is a Lipschitz non-decreasing function with

h(s)s >0 for all s € R (2.11)

(H4) Hypotheses on p(.), k(.). Let m(.) and p(.) are given measurable functions on
Q satisfying the following conditions,

l<p <p@)<pt <25, n>2and1<p <pf <ooifn=2,
l<h <k(@) <kt < n>2adl<h <kt <ooifn—=2 (12
According to (2.12), we have

lullys sy < BIVa| Ve Hy (). (2.13)
where

Hp, () ={ue H" (Q):ul|p,=0}

endow with the Hilbert structure induced by H! (), is a Hilbert space and
B > 0 be the optimal constant of Sobolev embedding Hp, (€2) — Lp++1(Q)
which satisfies the inequality (2.13) and we use the trace-Sobolev imbedding:
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H} () — LF' Uy, 1 < kt < 2-1 In this case, the imbedding constant is
denoted by B, i.e.,

lullis 10, < Bs|Vul Vu€ Hr, (Q). (2.14)

(H5) Assumptions on ug, u1. Assume that (ug,u1) € Hf () N H? (Q) x HE (Q)
satisfying the compatibility conditions
8u0

M (|vu0|2) E + h(ul) = |U0|k(')_1 Uug on Fl. (215)

3. Main result

This section first presents the local existence and uniqueness of the solution for
problem (1.1)-(1.4) with a degenerated second order equation on I'y. Our method of
proof by perturbing the boundary equation is based on the combination of the Faedo-
Galerkin approximation and the compactness method together with the Banach fixed
point theorem with the ones from [36].

3.1. Existence of local solutions

In this section, under the assumptions (Hy)-(Hs), we prove the existence of the
local solution to the wave equation of Kirchhoff type (1.1)-(1.4) for any initial value
(uo,u1) € Hp (Q)NH? () x Hy, (). First we need the local existence and uniqueness
of the solution to the following wave equation:

*u 2 ' p(z)—-1 -
el —M(\ch(t)| )Au—i— ; g(t—s)Au(s)ds = |ul uwin Q x (0,400),

u=0on Ty x (0,400),

M (190 0F) 5= [ 0= ) puls)ds+hu) = [ won Ty x (0.420),
w(z,0) = uo(x), u(z,0)=ui(z), z€Q, (P4)

where ¢ : [0,T] — H{ () is a continuous function. So we first prove the existence
and uniqueness of the local solution to (P4). Let (w,), j = 1,2,..., be a completely
orthonormal system in L?(Q) having the following properties:

* Vi w; € Hp, (Q);

* The family {w1,wa, ..., wy,} is linearly independent;

* Vp, the space generated by {w1,wa, ..., wpn }, %Vm is dense in H} ()N H? (Q). We

construct approximate solutions, for each n € (0,1), " (m =1,2,3,...) in V,, in the
form:

u () =Y Kjm(twi, m=1,2, ..., (3.1)
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where K, (t) are determined by the following ordinary differential perturbed equa-
tion:

(" (1), wy) + M IV (07 ) (Vu™, V) = ( [ att=svur @as, ij)
(™) )y, 0 (™ (0, w05);,
= (@ @) ) (e OFO T (@) ) =12,

and will be completed by the following initial conditions «™(0), uy""(0) which satis-
fies:

um(0) = ul™ Z Qimw; — ug(x) when m — oo in Hy, () N H? (),
i=1
u!™(0) = ui™ Z Bimw; — u1(z) when m — oo in Hf (Q).
=1
(3.2)

Then it holds that for any given v € Span {w1,wa, ..., wn},

(ugi"(t),v) + M (\ch (t)|2) (Vu™ Vo) — (/Otg (t —s) VuT™ (s)ds, Vv)
+ (h (™) v)p, + 0 (u™ (), v)p,
= (lrm @ @) 0) 4 (e P e @) (33)

By virtue of the theory of ordinary differential equations, system (3.1), (3.2) and (3.3)
has a unique local solution which is extended to a maximal intervals [0, ,,].

A solution u to the problem (1.1)-(1.4) on some interval [0, ¢,,,[ will be obtain as
the limit of ¥ as m — oo and n — 0. Then, this solution can be extended to the
whole interval [0, T], for all T > 0, as a consequence of the a priori estimates that shall
be proven in the next step. In this paper, ¢, C (¢), C., C, C (m3), ¢, ¢* or ¢, denote
a various positive constant which changes from line to line and are independent of
natural number n and depends only (possibly) on the initial value.

Let us first recall a useful identity for the memory term who play an important
role in the sequel. By denoting

(g0 V () (1) = / t—s/\vu Vau ()2 dads,

it is easy, by differentiating the term (8 ¢ V (u)) (t) with respect to ¢, to show that

// (t —s)Vu(s) Vuy (t) deds
1 {wovno - v [ o) (3.0

+% (¢ o Vu) (t) — %g (1) [Vu ()]

We prove by the Galerkin method the following lemma on the existence and unique-
ness of local solution to (P4) in time.
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Lemma 3.1. Let M (r) be a nonnegative locally Lipschitz function. Let
(ug,uy1) € Hllo Q)N H?(Q) x Hllo Q).
Assume that the differentiable function ¢(t) satisfies
©(0) = uo, ¢'(0) =u1.

Assume that the following condition is satisfied

n — n

1<kt <

1
dl<pt<
P

1§k‘§k+<ooandlgp_§p+<ooifn:2.

ifn >3,

Then there exists a time Ty = To(ug,ur,my,ma,m3) > 0 such that if there exist
my,mo,mg >0 and T > 0 satisfying

Vo ()] < ma, [V (O] < ma, M (Ve (1)) 2 ms >0

for all t € [0,T], then there exists a unique local weak solution in time u(t) to (P4)
with the initial value (ug,u1) on [0,Ty], where To < T satisfying:
u(t) € C([0,To] : Hy, (),
u (t) € O([0,To] : L* (2)) N C([0. T] = H, (),
Ut (t) S C([O,TQ]  L? (Q))

Proof. The first estimate (Estimates on u;™):

By taking v = u{™(t) in (3.3), we have that

t
(" (1), wf™) + M (]9 (O ) (Tu™, Vuf™) - ( [ at=svum s Vu;"”)
0
™ @l + (™) ™), = (a7 @O ™ @) ™)
(P (1), ).

Since it holds that

[ 2 (196 @) vy as = 5 [ ar (Ve 6)) 5 19w o) as

1 [t[d* 2 (2
5 [ |G (e @r) | wumtas,

M (19p6)F) <2(5000)) (90 619 0] < 2Lmama, s € 073

1 2 2]’
> |= nm

> [QM(|V<;;(3)| ) v, h
+
ds
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where L = L(m;) is a local Lipschitz constant for M (r), we have for t € (0,¢,,)

1mpz 1 ' m -
gl 5 (M (9o 0F) - [Caeas) v+ o vum) 0
0
1 ‘ / nm ' nm 2
D) . (g' o Vu™) (s)ds +n . |y (5)||2,F1d5
1 t 5 t
+g [ o v ass [ nar) wr @)y, as
¢ 2 1 2 2 1
nglmQ/ Va2 ds + M (Ve (0)) [Vuol + 5
0 2 2
t
- / (fur ()= (s) g™ ) - ds
0 I

t
# [ (e P ), .
0

Young’s inequality gives

™™ ()P () uf™ () da| <

< Ju™™ (PO [ ()] [ul™ (2)|

1
§§ (/ [u™ (1) P / lu™ ()% dx) 75/ ™ (t)|* da
S

3Ce (19w P77 () S )

Also

™™ (1) PO (1) ™ <f>df‘
r

m 2
|ug™ ()" AT

1 1
< =C. max (||u"m|\2k+ ry o Hunmllzk T ) T3¢
=2 2 Jn,

m 2k m |2k~ 1 2
SC (19 4 (927 ) 4 e ™ (),

consequently, taking (2.8) and (2.9) into account

(2 (o) —/Otg<s>ds) zmg—o/oog<s>ds=1>o

(3.5)

/Q ™ ()P ™ ()] [uf ™ (t) de - (3.6)
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Combining above results, and observing that g > 0 and ¢’ < 0, we deduce

2
9 ™|

1t . K my nm
oo [ e, s 5 [ g maras s [0 o), s

1 1
+ §l [Vu™|? + (g o Vu™) — 5/ (¢ o Vu"™) (s)ds
0

t
1
SLmlmg/ |Vu”m|2ds+ §M (|Vgp( )| )|Vuo| + - |u1|
0

t — —
+CE/ (|v PR PR (g P [ ) ds

rye [ as ve [ @), as

Choosing ¢ = #, we arrive at

1 1 1 [t
3 u?m\z + 51 |Vu'7m|2 + (goVuT™) (t) — 5/ (g o Vu"™) (s)ds
0

t t ¢
n m 2 1 m m m
[ @l a5 [ @ @F s [0 o, o
n [ ) t
< f/ lui™ (s)] ds+Lm1m2/ IVu™|? ds
2 Jo 0
t — —
—|—C’5/ (|Vu"m\2k+ + Va4 \Vu’7m|2er + | Vu™|?P ) ds
0
1 2 1,0
+§Lm1 |VUO‘ + 5 |U1| + C.. (38)
Thus, there exist B > 0, 8 > 0 and r > 0 such that
2 m)2 ! 2 me 2\ T
V™2 4 ™ §B+B/ [1+(|Vu"m(s)| + ™ (5)/?) }ds
0

where we note that B and S are independent of m and r. Since r > 0, there exists an
enough small time Ty := Ty (ug, u1, m3) € (0,T}) satisfying

(B + BTy)™" — rBTy > 0

Thus, we have by the modified Gronwall lemma 2.4

!
L

Va4 ™ < (B4 BTy) " —r8Ty)

Therefore, there exist constants ¢; = ¢;(ug, u1,ms3) > 0 (i = 1,2, 3) such that for any
t €10, Tp]

|Vu"™? < Cy and |[ul™|* < Cs. (3.9)



610 Abita Rahmoune and Benyattou Benabderrahmane

Furthermore, by (3.8) it follows that

1 t
govum) ()= [ (g ovum™) (9 ds + / ™ ()] 2., ds (3.10)

+ / 9(s) [Vur™ (s) ds + / (h (™), ul™(5))y, ds < Cs

where C; are a positive constants which are independent of m, n and ¢. Thus, the
solution can be extended to [0,T) and, in addition, we have
(u"™) is bounded sequence in L™ (0,T; Hf (),
(uf™) is bounded sequence in L™ (0,T; L*(Q)),
(h(uf™) .uf™) is bounded sequence in L" (0,T; L (I'y)).

The second estimate (Estimates on uj;"):

First of all, we are going to estimate u}," (0). By taking ¢t = 0 in (3.3), taking
(2.15) into account, we get

IN

2
W OF < e[ (1Vuof)| \Au0|2+c/ﬂ\uo\2p<’”)dx (3.11)

IA

. _
L [Vuo|* | Aug|® + ¢ max (|Vu0|2p Vo | ) <c*

Now, by differentiating (3.3) with respect to ¢ and substituting w; = u;" (t), we have
1d m2 / 2 / nm nm
537 [t 20 (196 () (Vip, V) (Tum™, Tull™)
+M (19 (O ) (Tu™, Vug")
+ (0 (™ gl e (), = (k@) ™ OF T ul™ (0, uf
t tt o Utt n 2,1y t e )

d

+(p @) OPO ™ 1)) +90)

3 (Ve (), Vui™) = g (0) V™|

2 ([ -9 v @) as. v - O (w0
_ (/Ot g" (t —s)Vu" (s)ds, Vu?m> . (3.12)

To analyze the term 2M’ (|V<p (t)|2) (V, V') (VuT™ V)™ (t)), we multiplying
both sides of (3.3) by

B 2M’ (|w (t)l2) (Vo, V') (< 2Lm1m2>
M (19 (1)) oo
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and replacing v = )" (t), we have

2M' (|9 () (Vo V) (Vu™, Vull™) = = f () Juff" |

t
+f(t) (/ g (t—s)Vu" (s)ds, Vuftm>
0
—f @) (h (/™) uif" ), = nf (&) (u™ (@), wfi")r,
@ (la™ O @), u)
@) (Jum P (1), )
By replacing above equality in (3.12), we have

d t
%a ul"f +f<>(/0 <t—s>Vu"m(s>d57V“?tm>

) (Jur @ (1) )
1 () (™ PO w1, ulr)
nlu ()r, + M (199 OF) (Tuf™, Tuf™) + (0 @™yl uff")p,
= 0 Jugf" [+ () ™ ()] ™ (1), ") (3.13)
+ (@ P g (1), )
nf (8) (™ (0w, + 9 (0) S (Tu™ (1), V™)
g (O)[Vuy™[* 4 1 (8) (b (™) uf")r,

_ ( /0 " (= 5 Tu™ (s) ds, vujzm>

J% ( /0 " (= 5) Tur™ (5) ds, Vu”’”) — ¢ (0) (Vu™, Vu™ (1)).

Next, we are going to analyze the term on the right-hand side of (3.13), taking in
mind the estimates (3.9) and (3.10).

Estimate for Iy :

m 2 4Lmyimeo mii2
I = | F (&) (h(u{™), uli™)p, SgHU (s) +W0h||ul’ llop, (3.14)

Estimate for I :

cpCy  C
|12=|— /Q B (™) ud™ (Eugy" (de| < =5 4+ 2 fuf™ (0) (3.15)
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Estimate for I3 : From the generalized Holder’s inequality, Young’s inequality and the
conditions (2.14), we have

1l = [0 (jem @O e @) (3.16)

2L 2
< (W) 0(5) max ( |unm|2k+ dF7 | nm|2k dF) +e ||u ||2 ;M
m3 Fl 1—‘1
2Lmims > + -
< <12> C (¢) max (|Vu”m\2k ,|Vu77m|2]€ ) + e |fugf" (t) ;
ms3

2
< Ce+elluf” (t)||2,1“1 .

Estimate for I, : From the generalized Holder’s inequality, it hold that

1l = | (k) e 0 0., (3.17)

< et ([ g olar, [ o)
T Iy

kt—1
< K+ max ( ™ () 5y, llaf™ (D), [ (0 )
— kT —1
™ )l 5, 1™ O llg- oy ™ @,
< & max (Va7 9w ) (9l (1)

2 2
C (&) IVu{™[" + e llug" (Dl r,

Estimate for I :
1151 = | (p (@)l (P wf™ (1) u) |
< p* max ( o o, [ |u"mv"1u"m|u?mt>|dx)
Q Q
m pt—1 nm nm
§p+m< ™™ @) i ™ (8| ey <t>)||,> (318)

-1
™ @115, 1™ ()], " ¢
<yt max (|9u™ P V) (9 g ()
C @) IVuy™ + <l 1)

Estimate for Ig :

15| = |1 (&) (jur™ P~ wr @), uf)|

2Lm1m2 m m|p m
< Hmamy ( e s, [ e (t)dx)

< max (IW"’"I” T ) [ (1)) < Ce e " ()



Existence and uniform decay rates of solutions 613

Estimate for I5 :

Ir = |nf () (/™ (1), ")y,

2 2Lmims \ 2
17702 m
< Tl @, +20 (222 ) ™ 01,

Estimate for Ig :
Iy = =g (0) (Vu"™, Vu]™ (1)) < Ce + C () [Vu]™|?

Estimate for Iy :
" t
Iy = ‘ (/ g" (t —s) Vu"™ (s)ds, Vu?m> ’ < |Vui™| / g" (t—s)|Vu™|ds
o 0
t
C (&) [Vu"* + ¢ llg"|l 11 /O lg" (t = )| [Vu"™* ds
t
<CE v+ (o173 +e) [ 1vumias
0
m 2 m
< C (&) |[Vu]™* + C. sup |[u" (t)Hioo(O,T;H(}(Q)) :
(0,1)
Estimate for Iy :

t
Iip = </ g (t—s)Vu™ (s)ds, Vu?m)
0

ilvunm‘Q_i_ 5( )HgHLl ||gHL |VU? |2

ms

IN

IN

3 m2 m
s [Vu]™|” + C (ms3) sup ||u? (t)HQLoo(o,T;Hé(Q)) :

By replacing (3.14)-(3.17) in (3.13) and choosing € = 7, we obtain
1d 2 1 2 d 2
5 Wl P+ 5M (Ve 0 ) 7 IVu™ ¢)
m,2 n m 2
+9.(0) V™" + S [lugt”™ D)l r, (3.19)

<=fo) </ g (t— ) Vu™ () ds, Vu?t’”> 1 g(0) L (v 1), vurm)

dt
+3C: + f () [ul")? +3C (e) [Vui™ | + 2¢ [ufy™ (1)

2Lm1m2 nm 2
v (22N i o,

2Lmimo

. AL
/O e
ms

2
Ch ||u::7m||2,1‘1

d t
Ch201 + % ugy " (t )\ + — gy </ g (t—s)Vu™™ (s) ds,Vu?m> )

Employing Holder’s inequality, Young’s inequality, integrating by parts on (0,t), the
first and second terms on the right-hand side and the first term on the left-hand side
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of (3.19) can be estimated as follows, for

t ¢
/ -1 Q) (/ g(¢—s)Vu™™ (S)ds,VU?f> d¢
0 0

t ¢
. w;ii;mz /0 (/0 9(C—5) Vu™ (s) ds, V" <<>> a
< 2 ([0 sy 9arm ) as, 9™ 0 )|
t
M%zmg O] (Vu"™ (), Vuf"™ (5)) ds

: L ¢
<C+ % V™" 2 m1m2 (/ [Vul™? ds —|—/ |Vum|? ds)
0

L t
<c4 s |Vu’g’”|2 4 mme (0)/ Va2 ds
8 ms 0

Lm1m2

2
o 202 10 O~

because, from estimate (3.9) we have

2Lm1m2

t
/Q vl (1) / g(t — ) Vur™ () dsdz < C[Vul™ gl 11 s,
0

<O+7|v 7]77‘L|

ms3

and
“d
9(0) [ 5 (T 0. Va) s
0
m m 2 m
< 5 IVl 4 g (07 VU™ P (0) [Vol [V
m m2 2 m
< 5 IVl g (007 sup [ (O] e o1y c) + 9 (0) [Vt [V
and

5 [ (V) v o) as
> (a1 (o) wumf] -3 [ [ (wo )| 1o as

> BM (Ve ()F) |Vu?M|2]t

¢
— Lm1m2/ |Vu?m|2d5, s€[0,T1].
0 0
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Combining, we get

m 2
St 4+ g 4 (0 /\Vu |ds+n/ ™ ()|,

9L
( m1m2+2 +)/ |uy]

L
+( m1ma g (0) + Lmyms + 2C (e )/ [Vu]™
ms
(2900 + € (mg) + 226 0) 4 . ) sup [l (1)
mg ms (0.7) L= (0,73 H ()
4L myime 2Lmims 2 /t m 2
—2Cp 4+ 2n | ———= (¢ ds + C
+< nms e 77( ms )) 0 [ ()H2’Fl s
where
L
CS = (Ca Chvclaulau();CEaT?g(O)v ﬂ:rimz) .
3

Choosing € = 7, therefore, by using estimates (3.10), (3.5) and Gronwall’s lemma, we
arrive at

t
WP+ VP Ve P ds + [l ds < Cg (3.20)
o 2 N

where C§ is a positive constant which is 1ndependent of m, n and ¢.
Thanks to (3.10) and (3.20), we obtain

(u"™) is a bounded sequence in L (0, To; Hr, (©2)) , (3.21)

(uf™) is a bounded sequence in L™ (0,Ty; Hy, () N L* (0,To; L*()),  (3.22)
(uy™) is bounded in L™ (0, Tp; L*(9), (3.23)

(u/™) is a bounded sequence in L? (0, Tp; L*(I'y)) , (3.24)

(uf,") is bounded in L* (0, Ty; L*(I'1)),
By (2.11), (3.22) and (3.24), we have
h(uf™) is bounded in L* (0, Ty; L*(T'1)) . (3.25)

From (3.21)-(3.24), there exists a subsequence of (u"7™), still denote by (u"™), such
that such that

u™  —  u" weak star in L (0, To; Hp, () , (3.26)
uf™  —  u weak star in L (0, To; Hp, () , (3.27)
uf" — ugy, weak star in L™ (0, To, 2(Q), (3.28)
u™  —  uy weakly in L? (O,To; Iy)), (3.29)
uf"  — g weakly in L? (0,Tp; L*(I'y)) , (3.30)
ul™  —  u weak star in L™ (O To; %(Fl)) (3.31)
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Since Hz(T'y) < L2(I') and H'(I'y) < L3(Q) are compact and from Aubin-Lions
theorem, we deduce that

u"™ —s u" strongly in L? (07 Ty; L? (Q)) ,
u"™  — " strongly in L2 (07 Ty; L* (Fl)) ,
u™  —  uf strongly in L* (0, Tp; L*(€2))

uf™  — uf strongly in L* (0, Ty; L*(T'1)),

Consequently, by making use of Lions’ Lemma [27, Lemma 1.3.], we have
™™ (PO ™ (1) =l (PO W (8) weakly in L2 (0, To; L2(2))

™ ()P () = ()] FO T (1) weakly in L2 (0, Ty; L2(T)) -

From (3.28) and (3.29) and since the injection of H2(T'y) in L2(T'y) is compact, there
exists a subsequence of (™), still denote by (u"™), such that

ug™ — uy a.e. in Qo,
where Qo =T'1 x ]0,Tp[. Then by (2.11), we have
h(uf™) = h(u)) ae. in Qo, (3.32)
From (3.25) and (3.32) and by using Lions’ lemma, we conclude that
h(uf™) — h(uf) weakly in L* (0, To; L*(T'y)) (3.33)
The convergences (3.26), (3.28), (3.31), (4.16) and (3.33) permit us to pass to the

limit in the (3.3). Since (w;) is a basis of H} () N H?(Q) and V,, is dense in
H} (Q) N H? (), after passing to the limit, we obtain

/OTO (ul(£),v) 0 (£) dt + /OTO M (Ve () (T, 90) 0 (1)

/OTO (/Otg(ts)Vu"(s)ds,Vv)G(t)dtJr/oTo (h (uf),v)y, 6 (1) dt

To

To
+n/0 (uf (), 0)p, 0 (1) dt:/o (e @ (1),0) 0@ar (3.34)

O A (U TICE

for all @ € D (0,T), and for all v € H} () NH?(Q).

We can see that the estimates (3.10) and (3.21) are also independent of 7. Therefore,
by the same argument used to obtain " from u"™, we can pass to the limit when
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7 — 0 in u", obtaining a function u such that

u" — u weak star in L™ (0, Tp; Hp, (Q)), (3.35)
u — uy weak star in L™ (0, To; Hp, (Q)) ,

ug, — uy weak star in L™ (0, Tp; L*(Q) (3.36)
w! — uy weak star in L (o,TO;H%(Fl)) :
h(uf) — h(u¢) weakly in L* (0, To; L*(T'1)) , (3.37)

" (8) PO (8) = Ju (8) PO 7w (t) weakly in L2 (0, To; L2(92))
u? (8P () = Ju (6)FO 7w (8) weakly in L2 (0, Ty; L*(Ty))

From the above convergence in (3.10) and by observing that V;, is dense in Hf ()N
H? (), we have

/OTO (uee(t),v) 0 (t) dt + /OT0 M (\W) (t)|2) (Vu, Vo) 0 (t) dt
_/OTO (/Otg(t—s)Vu(s)d&Vv) 9(t)dt+/0T0 (h (ug) ,0)p, (1) dt
= /OTO (lu(t)lmmu(t) w)F 0 (t)dt + /OTO (|u(t)|P<m>*1u(t),v) 0 (t)dt, (3.38)

1

for all v € Hf () and for all § € D (0,Ty).
By taking v € D (), we get that

2 ¢
% - M <|VS0 (t)|2> Au +/O g(t—s)Au(s)ds = |u|p(m)_1 win D' (Q).

Therefore, by (3.36) and (3.37), we obtain

0 ' D1,
673 - M (|w (t)|2) Au +/ g(t—s)Au(s)ds = [u"™ " uin L? (0, Tp; L*()) .
0
(3.39)
From the hypotheses of M, g and (3.35), we conclude that

g(t=s)u, M|V () ) ue L (0,7 B}, (9)).

and by (3.39),

~A (M (|w (t)\2> u —/0

tg(t —s)u(s) ds) € L* (0, To; L* ()

Then

M (|w (t)|2> o - /Otg(t — %) a%u(s) ds € L? (o,TO;H—%(rl))
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according to Miranda [29] is established. By taking (3.39) into account and making
use of the generalized Green formula, we deduce

M (|V<P (t)‘2) % _ /O g(t — S) %U (3) ds + h(ut) — |u|k(;r)—1 w

in D’ <O7T0;H_%(F1)), and as h (u) , |u\k¢(')71 u € L?(0,Tp; L*(T'1)), we infer

t

M (\V(p (t)|2> gZ—/O g(t—2s) (,%u(s) ds+h (ug) = \u|k(%)_1 win L* (0, Ty; L*(T'y)) -

(3.40)

Prove the uniqueness of the local solution. To this end let w(¢) and v(t) be two local

solutions to (3.3) with the same initial value. Let w(t) = u(t) — v(¢). Then w(0) =0,
we(0) =0 for all ¢ € [0,Tp] and

w00+ 31 (196 @) (70.90) - ([ 9= 9Voasve) @y
(b () = b (0) ¥)p, = (e @FO ™ w () = O 0 (), )
+ (P @)~ o OO o 1), ¢)

ry

for all ¥ € H{ (). By replacing ¢ = wy(t) in (3.41) and observing that
(h (ug) = h(ve),9)p, >0, it hold that

0P+ 35 (3 (We@F) - [9@as)Ivuer) @

2dt 2 dt
+%% (90 V) (t) - % (9" 0 V) (t) + %g(t) Ve (6)°
+
< 5 (G (9 @F) ) 19al = (0 o) = o @1 0 0).w ),

+ (TP (@) = o )P o (1) wr (1)

From the generalized Hélder’s and Young’s inequalities and estimates (3.21)-(3.24),
it hold that

(OO G OR™ |
N B (20 e O e NTO R O T
- (1 O+l e ) e () = 0 Ol e el

Vu @) Ve @) ! ,
(1 Ll <>|k+_1) —
(IVa@* "+ Vo @)

< c|Vwl? + clw]?.
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By the same manner
(le P ) = o P 0 (), )
3 (1w (015, =" + llo O, ) e (8) = v (g el
: (11w @1+ llo @1 ) e (€)= v (Ol el
(IVu@P "+ vo@r ),
(Ivu@P™ " + Vo @P )

< |Vl + clw?.

|Vl [wy]

Substituting the last two inequalities in (3.42) and integrating the results over (0, t),
it holds

1 2 1 2 ! 2 2
= ()] + 51|V (8)] gc/ (IVwl® + [wif*) ds
2 2 0

Thus, employing Gronwall’s lemma, we conclude that |w(t)]* = |Vw (£)|° = 0.
Consequently this completes the proof of the lemma. O

We are concerned with the existence and uniqueness of local solution in time to
degenerate wave equation (1.1)-(1.4). So by using Lemma 3.1 we prove the existence
and uniqueness of local solution in time to (1.1)-(1.4) by the Banach fixed point
theorem.

Theorem 3.2. Assume that M(r) > 0 is a locally Lipschitz function and assume that
the following condition is satisfied

1<kt <22

1
dl<pt <
n_2 " <P T n—2

1§k‘_§k+<ooandlgp_§p+<ooifn:2.

ifn >3,

Let (uo,u1) € Hp, (Q) N H? (Q) x Hp () with [Vui| # 0 or [Vug| # 0. Assume that
M (\Vu0|2) > 0. Then there exists a time Ty > 0 and a unique local weak solution
u(t) to (1.1)-(1.4) with the initial value (ug,u1) satisfying
u(t) € C([0,To) : H, (),
u, (t) € C([0,Tp) : L* (Q2)) N C([0,Ty] = Hp, (),
wn (t) € C([0,To] : L* ().

Proof. Since M (|Vu0\2) > 0, there exists a positive real number mg such that 0 <
mg < M (|Vu0\2>. Assume that

“+oo
O<m3—/ g(t)dt < 1.
0
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Let Ry be a positive real number such that

Ro= /2 (1 + M (1VaP?) 191

Since M (\Vu0|2) > 0, for sufficiently small time 7" > 0, we define the space Br(Ry)
by

¢(t) € C((0,7] : Hy, (2)) N C([0,T] : Hy, (),
¢ (t) e C([0,7): 1 (2 ))ﬂC([O 1] : Hy, (),

Br(Ro) = &' (1) € O(0.T]: 1* (),
M (V6 (1)) = ma, [V¢' () + Vo () < B on [0,7],
¢(0) = Uo, (b/ (0) = Ui.

We introduce the metric d on the space Br(Rg) by

d(u,v) = sup <|ut (t) — v (1)) + |V (t) — Vo (t)|2> for u, v € Br(Ry).
0<t<T
Then the space Br(Ry) is the complete metric space. Let ¢ € Br(Ryp).
Then [Vé(t)| < R, |Vé'(t)] < Ry and M (|w> (t)|2) > my for all ¢ € [0,T]. Thus

thanks to Lemma 3.1 we obtain a unique local weak solution w(t) on [0,77] with
Ty < T to the following wave equation:

(uae(8),0) + M (|9 (D) (Vu, V) (/Otgos 5)Vu <s>ds,w) + (b () v)y,

(3.43)
= (e @) v) + (uOP O ), 0)
in L% (0,Ty; H (Q)) N L <O,T1; H—%(Fl)) .
Let T' = T, without loss of generality. Define the mapping ® by
®(p) =u
Then we have that
® (¢) =u € Br(Ro) for ¢ € Br(Ro), (3.44)
® : Br(Ry) — Br(Ryp) is a contractive mapping. (3.45)

For showing (3.44), posing v = u¢ in (3.43) and taking

(h (), u)e, — 5 (6" F0) (1) + 59 (1) [Vu (B 2 0,
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into account we have that:

%% (|ut(t)|2 + ((M (1Ive @17) - /otg(s> ds) Vu (t>|2> +5 (507w (t))
(S (1ve ) ) (9t

And so we estimates I; and I, as follows

1 /d* , LR?
L=3 (dtM (Ive (t)Z)) Vul* < LIV )] [V¢' (O] [Vul® < = Fveu(t)

Taking estimates (4.9) into account

1l = | (k) a0 ), 0), |

< K* max ( [l pwtar, [ |ut|dr)
Ty 1051

kT k™
<k max (| (0)15e r,  llu Ol S r, )l @),
S k+ max (BiC+ |v'u/|k+ 7857 |Vu|k7> ||ut (t)||271—‘1
+ _
< i max ((BoRo)™  (B.Ro)* ) [fue (1)l r, < Co

similarly

] = | (@)l OF " w (0) )|

<t ([l (ol [ o fu)]a)
Q Q

.
< ptmax (|[u @)l lu @15, ) u ()]
< p* max (B [Val” B [Vul” ) fui(t)
+ - 1
< p" max ((BRo)"  (BRo)" ) |us(t)] < Cathu (1)}

because [[us (t)[|yr, < C|Vut (¢)] is bounded on [0,7] by Lemma 3.1. Thus

a+ s
7 Vet (B) < 202+ 2C19gu () + 2039u (1)

where

sent) = 0+ (31 (Vo 0F) - [ 96)05) W) + 0o V) 0
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and Cy = L?g. Gronwall inequality yields

You(t) < (Pou(0) + 205Ty) 2O 20T
< IR2, 0<t<Ty,
for sufficiently small 0 < T5 < T3. Thus

18> 0+ (31 (9o 0F) - [ 96)as) D) + (g0 V) 0

> Ju(6)]* +1Vu (@), (1<1)
We have that
R2 > |lus(8))* + [V ()]?, 0<t < Ty,
Let T' = T, be modified. Thus (3.44) is satisfied. Rest to show (3.45). Let w = uy —us,
where u; = @ (¢1), us = @ (¢2) with 1, w2 € Br(Rp). Then we have that

(wee(®),v) + M (|91 (O ) (Vw, T0) + (b (1) = B (we) v)p,  (3.46)
= (M (IVe2 1) = M (Vg1 () (Yo, Vo)

+</Otg(ts)Vw(s)ds,Vv)

= (Jur O w1 () = Juz O w2 (), 0)
+ <|u1 AP uy (1) = Jug O)P@ " uy (t),v) in L2 (0,Ty; H () .

Set

N—
|
\
s
=
a
@
~
<
g
—
N
o
~_

B (w) (£) = |wt<t>|2 + ((M (Iver o
Since 0 <1 =m3 — [~ g(s)ds < 1, we have that

B () (&) = 1 (Jwn(®) + [V (1))

By replacing v in (3.46) by w; we have that

%% (|wt(t)|2+ ((M(|w1 (t)P) —/Otg(s)ds> Vw(t)|2>)

45 (90 V) (1) — 5 (9o V) (1) + 50 (1) [Vu (1)

(
<3 (5 (9o 0F) ) 1vu?
+ (M (1Ve2 OF) = M (IVer D) ) (Vuz, Vur)
o (lon OF O™ w1 (8) = Juz () wz (1) i)

o (Jun Py (1) = fuz P s (6) ,w0) = L+ Ts + I + Iz

1
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Then
+
1 = |3 (M (91 @OF) ) (9P| < L83 9
LR2
< 0B, (w) (1) = &by, (w) (1)
and
15 = |(M (1962 (0)F) = M (1Ve1 (O ) ) (Vuz, V)|
1 2 1 1
< LR (01, 0)? [ V| [Vn| < QL}dewl,w)i By (w) ()}
= &5d (g1, 02)7 By (W) (1) .
Since

|ls| =

1

< emax (Hul ][y [ (f)l\gg—_l) g () = ug ()] welly
- (|IU1 OIET + ua (t)||’§,::1) [y () — w2 ()]s welly

Vur ()F 7+ [Vue (1) 7Y,
e ( @ "+ <>|k+1) ——
(1w @ + Va0

< 2ce. (\/Cfl + \/C’f+1) [Vw| |wy

<eerq (VEE VO ) B 00 = G (0) 0

and

2] = | (e (P i (8) = fuz (O iy (8), 0t

< e ( (1hus @118, + w2 @18, ) llun (8) = 2 (B)lly,- el )

T-1 kT —1
(llus 15, + Nz (D115, ) T (8) = 2 () gy el

coormae | (TP 4 ve@r ) O
=T (v 0F 7+ 190 @p )

< 2ce, (\/Cfl + \/C’{#*l) |Vw| |wy]

<o (VT e Ver ) s @) 0 = 8 ) 0

It follows that

B (w) () < (€4 + o +C7) /0 Ber (w) () ds + 65/() d(p1,92) B, (w) (5)* ds
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Gronwall’s lemma gives

ET (14+€4+Co+¢r)T
d(u1,U2)STd(<P1,<P2)€ TR

Choose a 0 < T3 < T small enough which satisfies that

2
€T5T36(1+§4+46+C7)T3 <1

Thus by the Banach contraction mapping theorem there exists a fixed point
u = <I>(u) € Br, (Ro),

which is a unique local weak solution in time to (1.1)-(1.4). This completes the proof
of the theorem. O

4. Uniform decay rates

In this section, we shall prove the general decay rates of solution for system
(1.1)-(1.4).
In this section we assume that
M (\Vu|2) =ms+b|Vul> + a/ VuVudz,
Q

mg >0, b >0, o : positive and small enough.

(4.1)

and providing that h satisfies:

(H'3) Hypotheses on h. h : R — R is a non-decreasing function with h(s)s > 0
for all s € R and there exists a convex and increasing function H : Ry — Ry
of class C1(R;) N C?((0,00)) satisfying H(0) = 0 and H is linear on [0,7] or
H'(0) =0and H” >0 on (0,r] (r > 0) such that

my |s| < |h(s)] < My|s| if |s| >,

h2 (s) < H- (sh (s)) if |s| <, (4.2)
where r, m; and M; are positive constants.
For formulate our results it is convenient to introduce the energy of the system
1 2
E(t) = 3 lug(8)|” + J (u(t)) for u e H11‘0 (Q) (4.3)

(m3 / g(sms) Va2 + 5 IVulld + 5 (g0 V@) () (44)

1 p()+1 / 1 k()41
Y A do— [ — 1 dr,
I e L R@ 1
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so, we have

J(u(t»z;(mg—/ (9)s) Va1 + § IVl + 5 (50 ¥ () 0

</ lul” +1dx/|u|p de)

max ( |u\k thar, JulF T dF>
Fl

1
k1
> LIV + 2 [Vulli+ 3 (90 () (1) (4.5)

1
( 1 / ‘u|p++1 Aot " dF)
p Iy

1 p 1 1 k41
— d dr’
(p+1/g|u S n'u‘ ’
then

B (0)=-0 (55 IVu01E) - [ wh (a4 (o0 ¥ () (039 (0 [Tu(o)]3 <0
' (4.6)

I'y

so the energy F(t) is nonincreasing function.
Next, with some modifications, we define a functionals F} o introduced by Cav-
alcanti et al. [28], which helps in establishing desired results. Setting

1, Krg'loo KES O
F —— 2 s p~ +1 k™41 0 47
(@) = ot = S s (47)
1 pt+1 . K41 .
F _ .2 +8Q pt+1 +I _kT41 0 4.8
5 (z) 1 p7+1x e , x>0, (4.8)
where
u
0<Kigq= sup | Llp++l = | <o, (4.9)
wett, @, w20 \ /1| Zull? + L[| Vul}
ul|, -
O0<K_q= sup | !p s = | <o (4.10)
wertty @, w20 \ /1| 9ull? + & | Vull;
and
u
0<Kyr=  sup H ”’j”’“ = | <o, (4.11)
wett, (@, w20 \ |\ J1|[Vul}3 + 5| Vull;
ulf, -
K_r= sup el < 0. (4.12)

uett, (@), w0 \ (/1| Vul2 + & | Vul3
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Remark 4.1.  (i). As in [28], we can verify that the functional F} is increasing in
(0, A1), decreasing in (A1, 00), and Fy has a maximum at A; with the maximum
value

1 Kg};rl B Kk +1
dy=F (\) =23 — =2 \p ol ke 4.13
! 1(1)41p*+11 k=41 (4.13)

also, for Fj is increasing in (0, A2), decreasing in (A2, 00), and F5 has a maximum
at Ay with the maximum value

Kp+Q+1 . Kk+F+1 .
dy = Fy (X2) = 43 - p_+’+1>\§ L ﬁ)@ +1 (4.14)

A1 and Ay are the first positive zero of the derivative functions Fy(x) and Fj(z),

respectively.
(ii). From (4.3), (4.5), (2.9), (2.12) and the definition of F; and Fy we have

1 2 Kp_s;rl 41 k_F+1 k41
EM>J@#) > ~t) = —2 @) T — )"t
02702 710 = =2 @ = =
T+1 k1
1 ,» KPg 1 BKip k41
— [ ke, _ = F F: >
+37 (@) p,+17(t) k,+lv(t) (v (1) 4+ Fa(y (1), t >0,
(4.15)
where

b
1) = 1Vl + 2 I9ull + (g0 v () 1)
Now, if one considers v (t) < Ag = min (A1, Az), then, from (4.15), we get
E(t) = Fy(y (1) + F2 (v (1))

T+1 k™41
(1 KPg -1 Klrp k-1
2> - —L — =0
>7 (07| 3 p,Hv() k,+1v()
T4l k41

(1 KLg o1 Kip k-1
R [ - t>0
(7| p,+17() k,+17() , >0,

which together with the identities
1

3 K? Gy =Ky TP =0, and (4.16)
1 p+ + 1 + 1 +71 k + 1 Et—1
3 o IKQJ 7 (t)P = j () =0 (4.17)

give
ifk™ >p~
if pm >k~

3

Py (y(1) > coy (8)?, co = { 4(p “
3D
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also, since ZJ:E > 1 and Ztﬁ > 1 and from (4.17) we deduce that

1_p+—|—1 p++1 _k++1Kk++1
2 p+1 HY k- 41 b

1 +41 +1 Kt k-1
3 KU gy ()" = KV (1) ;

O (1)

<

therefore

+ t-1 + kt—1
—KL gy () T K T (" T 2 -,

and consequently,
T4
1 K”J +

Fy(t 02> — =2 @) -

2(0) > ()7 | p—+17()

kT+1
Ky
-1

Ol

> (O, = { e p ik 20
W rnitp” 2k
consequently
E(t) > Fi(y(0)) + F2 (v(1)) = F (7 (1)) > 2¢07 (¢)° (4.18)
and identities (4.16), (4.17) are derived because A; and Ay are the first positive
zero of the derivative function Fy(x) and Fi(x) respectively.

Lemma 4.2. Let (ug,u;) € Hf (Q)x HE (Q) and hypotheses (Hy)-(Hs) hold. Assume
further that v (0) = \/l ||Vuo||§ +2 HVuOH;1 < Ao and E(0) < d = min (dy,dz). Then

v (1) = \/l IVl + 3 IVul3 + (507 () () < o, (4.19)
forallt €10,T).
Proof. Using (4.15) and considering F(t) is a non-increasing function, we obtain
Fiy@®)=FO#)+FR0#)<E@X)<E0)<d te0,T) (4.20)

In addition, from Remark 4.1 (i), we see that F' is increasing in (0, Ag), decreasing
in (max (A1, A2),00), and F' — —oo as max (A;, A2) — oco. Thus, as E(0) < d, there
exist 0 < A5 < Ao < As such that F (\;) = F(A3) = E(0). Besides, through the
assumption v (0) < Ag, we observe for ¢t = 0 that

F(y(0)) < E(0) = F(X3).
This implies that v (0) < A5. Next, we will prove that
v(t) < A5, t€[0,T). (4.21)

To establish (4.21), we reason by absurd. Suppose that (4.21) does not hold, then
there exists t* € (0,7) such that v(t*) > Aj.
Case 1. If \j < y(t*) < Ao, then

F ) > F () = E(0) = E ().
This contradicts (4.20).
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Case 2. If y(t*) > Ao, then by continuity of (¢), there exists 0 < t; < t* such that
)\é < "}/(t1) < Ao,
then
F(y(th) > F(X3) = E(0) 2 E(t).
This is also a contradiction of (4.20). Thus, we have proved (4.21). O

Theorem 4.3. Under the hypotheses of Lemma 4.2 the problem (1.1)-(1.4) have a
global solution.

Proof. Tt follows from

—~

4.19), (4.18) and (4.15) that

e ® + F (v (1) < % >+ J (t) = E(t) < E(0) <d. (4.22)

N |

1
B Jug|” + 2¢07 (£)? <

Thus, we establish the boundedness of u; in L*(€2) and the boundedness of u in HY, .
Moreover, from (2.13), (2.14) and (4.22), we also obtain

1 p(x)+1 / 1 ()41
_— dx + _ dar
/Qp<x>+1‘“' S AR e

1 _
< — max </ |u|p++1 dx,/ luP ! dm)
p~+1 Q Q

max( lu*" T, |u|k+1dF>
I'y

L1
k=41

I'y

1 _ - -_
—— max (Bp++1\Vu\p+ L Br 1) Vu|?
p

1 . _ - -
——max (B VN BE vl ) VP
E—+1
L L L
<LIWVP?P< =ZE#t) < —E(0) < —d
SLIVE < 5oB () < 5 (0) < 5

which implies that the boundedness of u in LP)FH(Q) and in LFO+H(T,) with

+—1 -1
1 1 +.1 (E(0)\” - E(0)\”
= — pT+1 p~ +1 — N7
=4 <p T <B ( 2co ) B 2cy
1 k™ —1
1 1 kT+1 E(O) g k™41 E(O)
*7 (k T (B* ( 2co » B 2co '

Hence, it must have T' = oc. O

Now, we shall investigate the asymptotic behavior of the energy function E(t).
First, let us define the perturbed modified energy by

Gt) = ME (t) + £ (1) + U (¢) (4.23)
where
B (1) = /QutudgCJr % Ivu@, (4.24)
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:/Qut/o g (t—5) (u(s) — u (b)) dsdz, (4.95)

and M, € are some positive constants to be specified later.
In order to prove the main theorem, we recall the following lemmas.

Lemma 4.4. There exist two positive constants 81 and B2 such that
PiE () <G(t) <BE() (4.26)
relation holds, for € > 0 small enough while M > 0 is large enough.
Proof. By Holder’s and Young’s inequalities, (2.9) and (2.12), we deduce that
G () - ME@)] <e[® )]+ [V (1)
2

5+1| Pt Bz|vU|2+J€|Vu|4+1/Q</0tg(t5)(U(5)’“(t))ds) da

E-l—l B? (ms —1
el + 2 vup? + ot a2l

b
<e (2 lue|* + 2c0 (z [Vul? + (g o Vu) (t) + 5 |Vu|4>) ,

(g0 Vu) ()

where

eB? B%(m3—1) o¢

ol 8COZ ’ 8b00>
Employing (4.22) and choosing € > 0 small enough and M sufficiently large, there
exist two positive constants 51 and (B, such that

BIE(t) <G (1) < BB (1). O

Lemma 4.5. Assume that the hypotheses of Lemma 4.2 be fulfilled. Furthermore, if
E(0) is small enough, then, for any tg > 0, the functional G(t) verifies, along solution
of (1.1)-(1.4) and for t > to,

clmax(erl

G’ (t) < —a1E (t) + as (g0 V) (£) + as /F h? (u)dD — as B (0) E' (t)  (4.27)

where o, i =1,...,4 are some positive constants.
Proof. In the following, we estimate the derivative of G(t). From (4.24) and (1.1)-
(1.4), we have
t
' (t) = |ug|* = (mg +b |Vu|2) + [ Vu(t) / g (t —s)Vu(s)dsdzr — / uh (u) dT
Q 0 Ty

—I—/ \u|p(x)+1dx+/ JuFT A (4.28)
Q '

Employing Holder’s inequality, Young’s inequality, (2.14) and (2.9), the third and
fourth terms on the right-hand side of (4.28) can be estimated as follows, for n, § > 0,

/QVu(t)/O g(t—s)Vu(s)dsde <(n—|—m3—l)Vu|2+W(gOVu)(t),

(4.29)
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and
1

2

/ uh (ut)dF‘ < 6B |Vul* +
ry
A substitution of (4.29)-(4.30) into (4.28) yields

(1) = |u* — (-n+1-6B7) |Vu|® + (ms 1) (goVu)(t) — / uh (u) dT

4n ry
1
+— [ R2(u)dr +/ PO Az 4+ [ u/f@Har.
46 I Q I
Letting n = é >0and 6 = ﬁ in above inequality, we obtain
/ 2 2 (m3—1)
D (1) < |ug|” — i [Vul” + 5 (goVu) () — [ wuh(uy)dl (4.31)
Iy
B2
+7*/ h2 (uy) dT +/ PO 4z + [ @A
l Ty Q 'y

For estimate U'(t), taking the derivative of ¥(¢) in (4.25) and using (1.1)-(1.4), we
obtain

v (1) = /Q (m3 + b|Vu|2) Vu (t) /Otg (t — s) (Vu () — Vau (s)) dsda
+/Q <0 /Q VuVutdx> Vu (t) /Ot gt —3)(Vu(t) — Vu(s))dsdx

_/Q (/Otg(t—s)Vu(s)ds) </Otg(t—s)(Vu(t)—Vu(s))ds) dz

+/F1h<ut)/0 g(t—s)(u(t) —u(s))dsdl
7/ |u|k(m)*1u/ g(t—5) (u(t) —u(s))dsdl

I 0
— wP@ =1y t —8) (u(t) — u(s))dsdx
[ Ju /Ogu ) (1 (t) — u(s)) dsd

_/ﬂut /Otg’ (t—s) (u(t) —u(s)) dsdz — (/Otg(s)ds> Jug]? . (4.32)

Similar to deriving (4.31), in what follows we will estimate the right-hand side of
(4.32). Using Young’s inequality, Holder’s inequality,

E (0
Vil < 20 by (122),

2
B <o (5 IVaIE) by (46),
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and applying (2.14) and (2.9), we have, for 6 > 0,

‘/Q (m3 +0 |VU|2) Vu (t) /Otg (t —s) (Vu (t) — Vu(s)) dsdz

b t
< /Q<m3+2OE( )) Vu(t)/o gt —s)(Vu(t) — Vu(s))dsdx
< §|vup 4Tt b 2@ (gov 4
< o+ "2 (my B 0) o v 0. (4.39)

A (0’ /Q VuVutdx> Vu (t) -/Ot gt —s)(Vu(t) — Vu(s))dsdx
2

o? (/QVuVutdx)2l|Vu|2+41l/Q(/Otg(t—s) (Vu(t)—Vu(s))ds) dz

g;—;E(O)E’(t)+m45 L govu) (1), (4.34)
(s ([-ase-ss)
< 26 (ms —1)? |Vul? +< 15> (ms —1) (g0 V) (1), (4.35)
and
[ [ =) (u(t) —u(s) dsdr\ (436)

1 1) B2

< 2/F1 h2(ut)dr+(””‘3_f*(govu)(t).

As for the the fifth and sixth terms on the right-hand side of (4.32), utilizing Holder’s
inequality, Young’s inequality, (2.9), (2.13), (2.14) and (4.22), we obtain,

S u/o gt —s)(ut)—u(s)) dsdl“‘

Iy
(ms — 1) BZ
< omax ([[ull3f r, el r, ) + T (g0 V) (1)
_ - — 1) B2
< §max (Bﬁk+ (Vu? B2 v )+ % (g0 V) (t) (4.37)

<(5lﬂf1a><<Bf'“+ <E(O))k B ,B2F (W>k_l> Vul® + % (g0 V) (t)
Co
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and
t
/\u|p(w)_1u/ gt —s) (u(t) - u(s)) dsdz (4.38)
Q 0
_ _ 2
< §max (B?fo+ (Vu>" B |y ) + % (g0 V) (t)
! -1
E(0)\” ~(E(0)\? o (ms—1)B?
< 2pJr 2p .
5maX<B (2160 ) ,B (2[60 |Vul —&—745 (goVu) (t)

Exploiting Holder’s inequality, Young’s inequality and (H;) to estimate the seventh
term, we have

/Qut/;g'u—@ (u (1) — u (s)) dsdz — (/Otg@ds) o

< 6wl — % (¢ o V) (1).

(4.39)

Then, combining these estimates (4.33)-(4.39), (4.32) becomes

() < _</0 g(s)ds—§> lug|® + c28 |Vul® + 3 (g 0 Vu) (t) (4.40)

g(0) B?

T (g’oVu)(t)Jr;/Fth(ut)dF;;)E(O)E'(t),

1m0 5 <Bfk+ <E(0)>k+1733k (E(O))k_1>

1 -1
4 max -BZp+ E (0) P B2p7 E (0) P
2100 ’ 2160 ’

and

2
1+ (mg + big)))) 05 1 Bf B2 + Bz
I ROt gt T

C3 — (m3 71)

Since g is continuous and g(0) > 0, then there exists ¢y > 0 such that,

t to
/ g(s)dsz/ g(s)ds = go, Vt > tp.
0 0
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Hence, we conclude from (4.23), (4.6), (4.31), and (4.40) that
G'(t) = ME' (t) + e’ (¢t) + V' (¢)

< (520 ) c@ovim-m-s-all @y

2 45
<025—) Vul® +( +<m32;1)5> (g0 Vu) (1)

v (; + QBZEE) /P P () dT — - E (0) E' (1)

Co
+e ( / WP de 4 [ fufE T dF) .
Q Iy

At this point, we choose € > 0 small enough so that Lemma4.4 holds and & < %“.
Once ¢ is fixed, we choose J to satisfy

go el
<
min ( 1 8@)
and then pick M sufficiently large such that M > % . Thus, for all t > tg, we
arrive at

l
G () < —%|Vu|2—%|ut|2+64(goVu)(t)+cs B2 (uy) AT
Iy

B @B+ ([ WO ars [ )
Q r,

el 1 /t ) 2 9o, |2
_— ms- s)ds ) |[Vu|” = Z |u
4(m3—90)2< ° og() Vel 4|t|

+eq (goVu) (t) + ¢ g h? (ug) dT — ¢ E (0) E' (t)

+e </ luP@H dg —|—/ |u|FE) 1 dF) )
Q 1

with some positive constants ¢;,i = 4,5,6. Additionally, observing the fact that

m < go due to € < gg and 7!” < 1 and employing the definition of E(t) by

(4.3) and using |Vu|® < EZ(COO) by (4.22), we deduce that

IN

G (t) < —crE (t) + C7b IV +(c4+ 2>(g<>Vu) (t)

+c5 / h? (ug) AT — ¢ E (0) E' (t) + ecs (/ T SR Py LSO dI‘)
r, Q

ry

< B(0)+ (et D) (g0 ) (1) + CS/F B2 (ug) dT — e E (0) E' (1),
el

Cr = —F———r,
! 4 (m3 — go)
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l l
o8 T A (1 4(p~ +1)(ms —90)71 4 (k= +1)(ms3 —go)> 0
and
pto1 p——1
max | BP H (@) 7T pr+l (E(0)> 2
C7b cs 2lco ’ 2lco ’
a1 =C7— 812COE (0) +

52100 rt—1 kT —1
+ E(0 2 - E(0 2
o (377 (52) 7ot () )

Hence, if E(0) is small enough, then not only the condition E(0) < d is satisfied, but
also a; > 0 is assured. Therefore, we have, for t > tq,

G (t) < —a1E(t)+az(goVu) (t) + a3 /1“ h? (ug) dT — au E (0) E' (t),  (4.42)

where «;, i = 1,...,4 are all positive constants. This completes the proof. O

Before stating our main result, we need to recall that if ¢ is a proper convex
function from R to R U {oo}, then its convex conjugate ¢* is defined as

" (y) = Sup {zy — o ()} (4.43)

Now, we are in a position to state our main result by adopting and modifying the
arguments in [18, 39, 20]. We consider the following partition of I’y

Ff:{oj€F1||ut|>r}, T ={zely||u| <r}.

Theorem 4.6. Assume that the conditions of 4.5 are valid, then, for each tg > 0 and
k1, ko and ey are positive constants, the solution energy of (1.1)-(1.4) satisfies

E(t) < koH{! (k1 /Otg(s) ds), t >ty (4.44)

where

Hy(t) = /t Hzl(s) ds (4.45)

and
t, if H is linear on [0,r],

Hy (t) = { tH (eot), if H' (0) =0 and H” >0 on (0,r]. (4.46)

Proof. The global existence of solution u of (1.1)-(1.4) is guaranteed directly by Theo-
rem 4.3. Next, we consider the following two cases: (i) H is linear on [0, r] and (i)
H'(0)=0and H” >0 on (0,7].
Case 1. H is linear on [0, 7]. In this case, there exists aj > 0 such that |h(s)| < of]s],
for all s € R. By (4.6), we have

/ h? (ug) dT < o/l/ ugh (ug) dI' < —a B’ (1),
I'y

I'y
which together with (4.42) implies that

(G (t)+ cFE (t))/ < —agHy (E(t)) +az(go Vu) (t), (4.47)
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where Hy(s) = s and ¢g = afaz + as E(0).

Case 2. H'(0) = 0 and H” > 0 on (0,7]. In this case, we first estimate [. h? (u) AT on
the right-hand side of (4.42). Given (4.2), noting that H ! is concave and increasing
and using the well-known Jensen’s inequality and (4.6), we deduce that

/Fth(ut)dr = /Fth(ut)dF+/Flh2(ut)dF
< M1/uth(ut)dF+/h2 (ug) AT

rf ry
< _ME (t)—i—/H_l (ugh (uy)) dT
ry
< —MlE’(t)JriH—1 cw/(uth(ut))df
C10

Iy
1
< —ME () + —H™ (—ew (1),
10

where c1g = ﬁ Hence, (4.42) becomes
1

Gi(t) < —aE(t)+ a3 |TT|H ' (—c10F' (1) + az (go Vu) (), Vt > 1y, (4.48)
where
G (t)=G(t)+ (Mias + asE (0)) E(t). (4.49)
Now, we define
Go (t) = H' (eoE (1)) G1 () + BE (t) , (4.50)

where €g > 0 and 8 > 0 to be determined later. Then, using E’'(t) < 0, H"(t) > 0,
and (4.48), we obtain

Gy (t) = eoE (t) H" (0 E () G1 (t) + H' (e0E (1)) G (t) + BE' (t) (4.51)
< —a1H' (eoE (1)) E (t) + asH' (0 E (1)) (g ¢ Vu) (t)
enH! (2B (1) H™' (—eof (1) + B (1),

To estimate the fourth term in the right hand side of (4.51), let H* be the conjugate
function of the convex function H defined by (4.43), then

ab < H* (a) + H (b) for a, b> 0. (4.52)
Moreover, due to the argument given in [6], it holds that

H*(s)=s(H) ' (s)— H ((H’)*1 (s)) for s > 0. (4.53)

Further, using (4.53) and noting that H’(0) = 0, (H’)"" is increasing and H is also
increasing yield

H*(s) < s(H) " (s), s >0. (4.54)
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Taking H' (oE (t)) = a and H™! (—cioE’ (t)) = b in (4.51), applying (4.54) and
(4.52), and noting that 0 < H' (g9E (t)) < H' (g9E (0)) due to H' is increasing, to
obtain

Gy (t) < —aH' (eoE (1)) E (t) + i H* (H' (0 E (1))
+c13 (go Vau) (t) + (8 — c12) E' (1)
< — (o1 —cnigo) H' (e0E () E () + c13 (9 © V) (t) + (8 — c12) B (t)

with ¢12 = cjoc11 and ¢13 = aoH' (69 E (0)) > 0. Thus, choosing 0 < ¢1180 < ag,
B > c12 and using E’(t) < 0 by (4.6), we have

GI ( ) —014Hl (EoE( )) E (t) + C13 (g < V’LL) (t) = —014H2 (E (t)) + c13 (g < VU) (t) y
(4.55)
where Hy(s) = sH'(g9s) and c14 is a positive constant.

Let

Fu(t) = G(t) 4+ coE(t),if H is linear on [0, 7],
! Go(t),if H'(0) =0 and H” > 0 on (0,7].

Then, by Lemma 4.4 and the definition of G5 by (4.49)-(4.50), there exist 31, 55 > 0
such that

BB () < Fi(t) < E (1), (4.56)
which is equivalent to E(t), and from (4.47) and (4.55), we have
Fl ( ) —ci15Ho (E (t)) + C16 (g <o Vu) (t) , t > to, (457)

where c¢15 and ¢16 denote some positive constants. In addition, using (4.56) and £(¢) <
£(0) by (Hs) and for Iy = p1£(0) +2c16 > 0, we see that

E@)F (1) +2c16E () <L E(t), t > to, (4.58)
Now, we define
G3(t) =¢e1 [E()F1 (t) + 2c16FE ()], 0 < liey <, (4.59)
which is equivalent to E(t) by (4.56). Thanks to (4.57), (2.10) and (4.6), we arrive at
Gy (t) =1 [€/ () F1 (t) + E(O)FY (1) + 2c16E' ()]
< —cise1Ha (E (1)) £(t) + c16e1£(t) (g © V) (8) + 2c16e1 E' ()
< —ci5e1Hy (E () £(t) — c16e1 (¢’ © Vu) (t) + 2c16e1 E' (t)
< —ciserHa (B (1)) €(2).

Exploiting the fact that Hs is increasing, using (4.58) and using the fact that 0 <
lie1 < r by (4.59), we obtain

G4 (1) < —eunréOHa 1 (€0F () + 20 (1) )

< —c15e1§(H) Ha (e1 (&) F1 (F) + 2c16E (1)) = —c15e1€(H) H2 (G5 (1)) -
Using that Hj (t) Ha (t) = —1 (see (4.45)), we see that
G5 (t) Hi (G3 (1)) > ci51€(t), t > to.
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Integrating this over (to,¢) which implies, having in mind that H 1 is decreasing on
(0, 7], that

Gs (t) < Hl_l (Hl (Gg (0)) + C15€1 /Ot f(S)dS — C15€1 /Oto f(s)ds)

t
<ot <C15€1/ f(S)dS) ;
0

where we need g1 > 0 sufficiently small so that Hy (G3 (0)) — c1561 foto &(s)ds > 0.
Consequently, from the equivalent relation of G3 and F yields

t
E(t) < koH{! (k:l/ £ (s) ds) . t>to,
0
where k1 and ky are positive constants. Hence, this completes the proof. O

Remark 4.7. Because %iH(l)Hl (t) = oo (see (4.46)), thus, if fooo & (s)ds = oo, we get the
—
stability of system (1.1)-(1.4), in the other words, tET E(t) = 0.
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1. Introduction

It is well-known that up to isomorphisms there are three 2-dimensional real
algebras: C = R[X]/(2% + 1), D = R[X]/(2?) and A = R[X]/(2% — 1). The theory
of the first algebra is richer than the following two, a fact corresponding to the field
property of C. Inspired by the terminology of [6, p. 1458] or [7, p. 2] we call EPH
geometries these spaces and a common image consists in A(c) := R[X]/(2? — o) with
o :=1i% € {—1,0,1} respectively and i the corresponding imaginary unit.

The recent papers [2] and [5], devoted to Finsler geometry, start with a defor-
mation of a conic I' obtained by deforming the gradient vector field for the quadratic
form defining T". These deformations are inspired by the scaling (linear) transforma-
tion of Computer Graphics: (z,y) € R? — (A, -z, A, - y) € R?, following [8, p. 136].
Using the well-known invariants from the Euclidean geometry of conics we obtained
the classifications of the new conics which depends on two scalars denoted a and f3,
having the role of A\, A,. The new conic of [2], denoted L,isa degenerate one and
we could interpret the map I' — I as a ”curve shortening” transformation. The same
fact holds for the new conic of [5], denoted I'"™, if the initial conic I" does not have
linear terms.

In this note we use these classes of gradient-type deformation to a main object
of EPH geometries, called cycle, which is a particular case of conic sections, invariant
under the action of the group SL(2,R) through Mobiiis transformations. A detailed
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analysis of the deformed cycles depends on the vanishing or not of o as well as the
vanishing or not of a parameter k separating the circles to lines. Also, we discuss the
transformation of a square matrix associated to any cycle C.

Moreover, we treat these deformations in terms of A(o)-numbers. In the second
section we study the orthogonality of a given cycle C' with its deformations restricting
to the o # 0 case. In the last section we introduce a natural rotation R in A(c) and
we study the relationships between a given C' and its rotated cycle R(C).

2. The cycles of EPH geometries and their gradient-type
deformations

In the two-dimensional Euclidean space R? let us consider the conic I' implicitly
defined by f € C* (R?) as: I' = {(z,y) € R? | f (z,y) = 0} where f is a quadratic
function of the form f(z,y) = ri1@? + 2riewy + ro2y? + 2ri0x + 2re0y + 700 With
72, + 13y + 3, # 0 for the non-degenerate conics.

It is well-known that the gradient vector field of f, namely
of f
Vf = <fac = afy y

gives important properties of I'; for example, the centers of I' are exactly the critical
points of V f. Inspired by this fact we introduced recently:

Definition 2.1. Fix the scalars «, g with a8 # 0.
i) ([2, p. 86-87], [3, p. 60]) The (a, B)-deformation of T is the conic:
. 1,77 1,7°
ii) ([5, p. 102]) The («, B)-mized deformation of T is the conic:
M =Ts:ay { fw} + Bz { fy] =0. (2.2)
A main object in EPH geometries is given in [6, p. 1459], [7, p. 4]:

Definition 2.2. The common name cycle will be used to denote circles, parabolas and
hyperbolas (as well as straight lines as their limits) in the respective EPH geometry.

An analytical study of a cycle can be done via the general equation given in [6, p.
1460] or [7, p. 6]:

C: f(u,v) :=k(u? — 0v?) = 2lu —2nv+m =0 (2.3)

and hence C is a conic section completely defined by the data (k,l,n,m) € P3. As
usual, if £ =0 then C can be called a degenerate cycle. In fact, in the cited works C
is identified with the matrix:

s [ l+1isn -m
g ( k —l+1sn ) (2:4)
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where s is a new parameter, usually equal to £+1, and a new imaginary unit 1. Its
square & := i belongs again to {—1,0, 1} but independently of .
Since C' is a conic section we can apply the ideas of Definition 2.1 to introduce
the gradient-type deformations of a cycle:
{ C=Cup:alku—1)?+B(kov+n)? =0,

C™: av(ku —1) — pu(kov+n) =0 (25)

which yields immediately:
Proposition 2.3. Since a # 0 we have:

i) C is a cycle if and only if ola+op) =0,
ii) C™ is a cycle if and only if k(oo — Bo) = 0. In this case C™ is the straight line:

(Bn)u + (ad)v = 0.

Example 2.4. In the following we discuss the remarkable particular cases of the result
above. R
i) Suppose o = 0. Then C is the cycle:

C:(ku—1)?%+ §n2 =0 (2.6)
with the matrix: s oo
~Ns o kl —(l + E’I’L )

C; = ( 12 i ) . (2.7)

The degenerate case of an initial line i.e. k = 0 is possible if and only if al? +8n2 =0
which is relation (2.19) below. If k # 0 then, due to the projective character of the
coefficients of a cycle, we get the matrix:

s = ( . ‘%(ZZ_J; an’) ) (2.8)

If g > 0 then C is a void set for n # 0 while n = 0 gives the deformation:
C:ku?—2lu+m=0—C:ku=1 (line:k#0). (2.9)
If g < 0 then we have the lines:

C:ku—1=+ —gn. (2.10)
C™ is a cycle if and only if £ = 0 which means that we have the mixed deformation:
C:2lu+2nv—m=0 (line) = C™: (Bn)u+ (al)v = 0 (line). (2.11)
If B = —a then these two lines are Euclidean orthogonal. From the matrix point of
view the deformation (2.11) means:
s [ l+1isn —-m m,s [ —Bn+1s(—al) 0
Cs = ( 0 —l+1isn ) -G = < 0 Bn+is(—al) )

(2.12)
ii) For o # 0 we have that C is a cycle only for 8 = —% = —ca and then:

oF [k(u—f—iv)—l—&—%} [k(u—iv)—l—% =0. (2.13)
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Hence, if k # 0 then C consists in a single point: M = (%, —2=). Let us point out that

for o # 0 we have 1 = o and hence M = (L, —o%) which is exactly the e/h-center
of the initial cycle C, as it is introduced in formula (7) of [6, p. 1460] or [7, p. 7]. In

conclusion, for o - k # 0 we have the deformation:

C — C = its center. (2.14)
The matrix corresponding to C' is:
~s [ k(l+1sn) n?c—1?
Cs = ( K2 k(- +1sn) (2.15)
which for k = 0 becomes: ) )
s 0 nfo—1
Cy = ( o o ) (2.16)
while for k£ # 0, due to the projective character of the parameters of a cycle:
~s [ l+1isn F(no—1?)
Cs = < k —l+1sn ’ (2.17)

The same case o - k # 0 for ii) of proposition above gives f = ¢ = ca and C™ is the
line:

C™ :nu+ (ol)v = 0. (2.18)
For elliptic geometry the condition 8 = —% = —oa becomes the equality a = 3
discussed in [2, p. 89] and [3, p. 62]; it can be called the diagonal case. Remark that
the elliptic center C' of (2.14) is obtained in [6, p. 1461] or [7, p. 8] from the vanishing

condition detC?; = 0.

Remark 2.5. The cycle C™ contains the origin (u,v) = (0,0) = O. This fact holds for
C if and only if:

al? + fn? = 0. (2.19)
With the discussion of above particular cases it results:
i) for o = 0 the only available case is 5<0 yielding:

[0

lp ==+ —én. (2.20)
!
ii) for ¢ # 0 since 8 = —% = —oa we get that for the elliptic geometry the only
possible case is O = M the center of C' while for the hyperbolic geometry:
ly ==*n. (2.21)

The gradient-type deformation of a standard (i.e. Euclidean) ellipse is discussed in
example 2.2i) of [2, p. 87]. Let us point out that (2.20) and (2.21) coincide for 8 = —a
which for the case ii) correspond to the hyperbolic geometry. Hence the above cases
i) and ii) are completely different, both from ¢ and the sign of § points of view.

Returning to the general case of a and 5 we treat the considered deformations
within A(o) following the model of [3] and [5]. More precisely, with the usual notation
z=u+iv € A(o) we derive the expression of C:

C:F(2,2) =k:Z+Bz+Bi+m=0, B:=-l——icA()(c#£0). (2.22)
g
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For o0 = 0 we have: B = —] — %. The inverse relationship between f and F' is:
l=-RB, n=-03B (2.23)

with $ and S respectively the real and imaginary part. By replacing in (2.5) the usual
relations:

1 _ 1 _
u:§(z+z), ’U—Z(Z—Z) (2.24)

we get:

C:alk(z+z) — 202 + Blki(z — 2) + 2n)2 = 0, (2.25)

O™ a(z — 2)[k(z+2) — 2] — B(z + 2)[ko(z — Z) + 2ni] = 0. '
For the case o # 0 we follow the discussion of Example 2.4ii and then:

C:[k(z+2) — 2% —olki(z — 2) +2n]> =0, (2.26)

C™:(z=2)k(z+2)—2l] —o(z+ 2)[ko(z — Z) + 2ni] = 0. '

The second equation (2.26) reduces to:
C":Bz—Bz=0« BzeR (2.27)
and hence, for B # 0 we have the line: z = B - R.
We finish this section by applying to the cycle C' (not containing the origin, hence
m # 0) the inversion J : z € A(o)* — % = w. We get a new cycle, expressed in w:
J(C) : mww + Bw+ Bw+k =0 (2.28)
which means J : (k,l,n,m) = (m,l, —n, k). With (2.26)-(2.27) its gradient deforma-
tions for o # 0 are:
J(C) : [m(w + @) — 202 — o|mi(w — @) — 2n)? = 0,
J(CY™: Bw — Bw =0 + Bw € R.
Again, if B # 0 then the second cycle from from above is the line: w = B - R.

(2.29)

3. Orthogonality in the geometry of cycles

In [6, p. 1462] or [7, p. 2] a Mébius-invariant (indefinite) inner product (depend-
ing on &) is defined on the set of cycles through:

< 5,08 >=Tr(Cs - C3) (3.1)
which yields an associated g-orthogonality. Here, the bar means the conjugation with
respect to 1.

For our setting we derive firstly the norms of a cycle and its gradient-type de-
formations for ko # 0:

HCN’; 2=2(2 - km —on?) = ||J(C’)§||2, (3.2)
G512 = 20— a)m®, | = §(n® — o). |
Let us remark that:
det C =km + sn? —1?2 > ||C’;||2 = HJ(C’);H2 = —2det C%. (3.3)

Secondly, we study all the possible cases of orthogonality for our setting:
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Theorem 3.1. Let o # 0 and the cycle C' with k # 0. Then:
1) C is g-orthogonal to its gradient deformation C if and only if:

> —km+ (0 —25)n* = 0. (3.4)
2) C is ¢g-orthogonal to its mized-gradient deformation C™ if and only if:
(1 —00)nl =0. (3.5)

8) C is G-orthogonal to C™ if and only if (3.4) holds.
4) Suppose also m # 0. Then C is F-orthogonal to J(C) if and only if:

201 + 6n?) — k* —m? = 0. (3.6)
Proof. 1) A straightforward computation gives:
< C%,C8 >=12 —km + (0 — 25)n>. (3.7)
2) The matrix of C™ from (2.18) is:
oy = % ( ! +01501 -n —ETsol > (3:8)
and then:
< 0,00 >=(1—o00)nl. (3.9)

3) The same computation as above.
4) The matrix of J(C) is:

J(C)5 :=<lisn k ) (3.10)

m -l —1sn
and:
< C5,JOE >=2(1 + on?) —m? — k2. (3.11)
which gives the conclusion. O
Example 3.2. Suppose 0 = &. Then 1 — 06 = 0 since 02> = 1 and then C™ is

both orthogonally on C' and C. In this case C is orthogonally to C if and only if
12 — km — 6n? = 0 but from the first equation (3.2) this means that ||C| = 0 i.e. C
is also self-orthogonal.

Returning to the Mébius-type study of cycles we continue this section considering
some transformation of cycles. The first one is inspired by [1, p. 2706]. Let o € A(0)
with module || # 1 and consider the map T, : A(c) = A(o):

To(2) =2z +az:=w. (3.12)
It follows directly that T, is a bijective map with the inverse:
1

Replacing this expression of z in (2.22) we find the image of cycle C' through T,:
To(C) : k|lw — aw]? + (1 — o) [(B —aB)w + (B — aB)w + (1 — |a|*)m] = 0 (3.14)

but this curve is not a cycle for a - k # 0.
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The second transformation is a Blaschke factor B, defined by a € A(o) with
module |a| < 1:

z—a
= B,(2) = ——, 3.15
wim Baz) = T (315)
having the inverse:
w+a
=B_, = . 3.16
‘ (w) 1+aw ( )

The Blaschke transformation of the cycle (2.22) is again a cycle:

Bo(C) : ba(k)ww + by (B)w + by (B)w + be(m) =0 (3.17)
with:
ba(k) = k +mla|* + 2R(Ba),
bo(B) = (k+m)a + B + Ba?, (3.18)
ba(m) = m + kl|a|? + 2R(Ba).

Example 3.3. Suppose that |B| < 1 and let a = B. Then the Blaschke transformation
of the coefficients is:

ba(k) =k + (m+2)|BJ?,
bg(B) = (k+m+1+|B*)B, (3.19)
bz(m) =m+ (k+2)| B>

The last transformation is a similarity defined by a,b € A(o) with a # 0:
w = Sep(2) =az+Db, (3.20)

having the inverse:
1

z=—(w—=0)=51

a = (w). (3.21)

s

The similarity transformation of the cycle (2.22) is again a cycle:
Sap(C) : kwiw + (Ba — kb)w + (Ba — kb)w + mlal® + k|b|> — 2R(Bba) = 0. (3.22)

If the initial cycle C is non-degenerate then we restrict to the case k£ = 1 due to
the projective character of the coefficients of C. Then a non-degenerate C is called
decomposable if it is a product of lines:

C:(:—B)(z-B)=0 (3.23)

which means that m = |B|? = [? — on?. A similarity preserves the class of decompos-
able cycles since its image is:

Sap(C): (w—b+aB)(w — b+ aB). (3.24)
From (3.3) it follows that a decomposable cycle has:
det C§ = (5 — o)n®. (3.25)
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4. The rotation of a cycle

In this section we suppose that o # 0. In A(c) we introduce the rotation map
R : (u,v) = i-(u,v) = (ov,u); then its square is: R? = oI. It follows that a given
cycle C has an associated rotation cycle R(C') with equation:

R(O) : k(0*v? — ou®) — 2lov — 2nu +m = 0. (4.1)
A short computation gives a more simple form:

R(C) : k(u? — 0v?) + 2(on)u +2lv —om =0 (4.2)
and then we have the deformation:

C = (k,l,n,m) = R(C) = (k,—on, -1, —om). (4.3)

The general rotation of conics is treated in [4].

Remark 4.1. Concerning the compositions J o R and R o J we have:

JoR(C)=(—om,—on,l,k), RoJ(C)=(m,on,—l,—ck) (4.4)
and then J and R anti-commutes in the hyperbolic setting respectively J and R
commutes if and only if [ = 0 in the complex setting: o = —1.

In terms of associated matrix we have:

R(C)‘f:(_(m_wl o ),||R<o>;||2:2<nzmz+(,km). (4.5)

g k on —1isl
Then R preserves the norm of C' if and only if:
(c+Dkm+ (5 -1+ (1—-5)n*=0. (4.6)
Also, recall from section 2 that the e/h-center of C is M(é,—a%) and hence its
rotation is R(M) = (f%,%) But the center of R(C) is M = (f%,%) and then
M = g R(M); these points coincide for o = 1.
Concerning the orthogonality of this new cycle with the previous three cycles we
have:

Proposition 4.2. Let C be a cycle with k # 0. Then:
i) C is g-orthogonal to its rotated cycle R(C) if and only if:

(¢ —o)nl+ (o — 1)km = 0. (4.7)

i) C is &-orthogonal to R(C) if and only if:
2(6 — o)nl 4+ o(n?® +km) — 1> = 0. (4.8)

iii) C™ 1is F-orthogonal to R(C) if and only if:

51? =n?. (4.9)

Proof. A straightforward computation gives:
< CE R(C)s >=2[(6 —o)nl+ (o — 1)km], (4.10)
< O, R(0O)s >=2(5 — o)nl + o(n® + km) — 1%, (4.11)
< CI"* R(0)s >=20(51* — n?] (4.12)

which yields the conclusion. O
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Example 4.3. Suppose that 0 = & = 1. Then R(C) is orthogonal to C' and:

a) is orthogonal to C if and only if: 12 = n? + km; for k = 1 this means that C is
decomposable,

b) is orthogonal to C™ if and only if: I+ = +n, which is exactly the relation (2.21).
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The size of some vanishing and critical sets

Cornel Pintea

Abstract. We prove that the vanishing sets of all top forms on a non-orientable
manifold are at least 1-dimensional in the general case and at most 1-codimen-
sional in the compact case. We apply these facts to show that the critical sets
of some differentiable maps are at least 1-dimensional in the general case and at
most 1-codimensional when the source manifold is compact.

Mathematics Subject Classification (2010): 57R70, 57R35, 57TM10.
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1. Introduction

It is well-known that the orientability of a manifold is characterized by the
existence of a top differential form which never vanishes. Therefore it is natural to
investigate the size of the vanishing sets V(6) := {p € M : 6, = 0} of the top forms
0 € Q™ (M) towards a measure of the deviation from orientability of the involved non-
orientable manifold M. Indeed, the complement of every vanishing set of a top form
is orientable and the smallest such vanishing sets are good candidates to measure this
deviation. In this paper we show that the top forms of non-orientable manifolds cannot
have arbitrarily small vanishing sets and apply this fact to show that some maps
cannot have arbitrarily small critical sets. For instance the zero dimensional subsets
of the non-orientable manifolds are neither vanishing sets of the top differentiable
forms, nor critical sets of any differentiable function with orientable regular set, for
the orientable option of the target manifold. Similar lower bounds for the size of the
branch locus arise due to Church and Timourian [5, 6] in the codimension cases 0,
—1 and —2. On the other hand, the critical set of a zero codimensional differentiable
map was treated before in [17], where the critical set is realised as the vanishing set
of the pull-back of a volume form on the oriented target manifold.

Note that the other extreme is well represented in the recent years, as quite some
effort oriented towards the maps with finite critical sets has been done, not only for
one dimensional, but also for higher dimensional target manifolds [1, 2, 3, 8, 9, 10].
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The paper is organized as follows: In the second and third sections we quickly
review the tools and emphasize the preparatory results needed to prove the main
results of the paper, which are also stated here. In the fourth section we prove the
main results of the paper, the first of which concerns the surjectivity of the group
homomorphism induced, at the level of fundamental groups, by the inclusion M\ A —
M, where M™ (m > 2) is a manifold and A C M is a closed zero dimensional set.
As a consequence we observe that the dimension of the critical set of a zero or lower
codimensional map, whose target manifold is orientable and the source manifold is
non-orientable, is at least 1-dimensional. Relying, all over this paper, on the inductive
definition of the ’dimension’ [7, 13], we prove that the dimension of the critical set of a
zero or lower codimensional map, whose target manifold is compact orientable and the
source manifold M™ is compact non-orientable, is at least (n — 1)-dimensional. Recall
however that the small and large inductive dimensions are equal to each other and
both are equal with the covering dimension whenever the evaluated space is separable
[7, p. 65]. Since differential manifolds are metrizable metric spaces, it follows that the
inductive dimensions of a certain subset of a given manifold are equal to each other
and both are equal with the covering dimension of that subset.

2. Main results

In order to achieve such results we rely on the characterization of orientability
of a connected differential manifold M by means of the orientation character, i.e. the
group homomorphism w,, : 71 (M) — Cs := {—1,1} defined by

_ 1 ify(1) =&
wM([’Y]) - { -1 lf ,3,(1) — j—h
where 7 : [0,1] — M is the lift of the loop 7 : [0,1] — M, v(0) = v(1) = z, with
7(0) = &1, p: M — M is the orientable double cover of M and p~!(z) = {#1,7_1}.
Indeed, M is orientable if and only if the orientation character is trivial. Equivalently,
M is non-orientable if and only if w,, is onto. Taking into account that the orientation

double cover of O is p|p,1(o) :p~1(O) — O, we deduce that the orientation character
of a connected open set O C M can be decomposed as

w, = w,, om(i,), where m1(i,): 71 (0) — w1 (M)

is the group homomorphism induced by the inclusion map i, : O < M. Consequently
the open connected subset O of a non-orientable manifold M remains non-orientable
whenever 71 (i,,) is surjective. Note that the orientation character w,, of M coincides
with wy (M) o p, where p : m (M) — Hy1(M,Z) stands for the Hurewicz homomor-
phism and w (M) for the first Stiefel-Whitney class regarded as a homomorphism via
the homomorphism of the universal coefficient Theorem

H'(M; Zy) — Hom(Hy(M; Z), Zs)
and (5 is identified with Zo.

Remark 2.1. Let M™ is a connected non-orientable manifold.
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1. If the 1-skeleton M* of a certain C'W-decomposition of M is a strong deformation
retract of some of its open neighbourhood U, then the complement M \ U cannot
be the vanishing set of any top form on M, as the group homomorphism

ﬂ-l(i}\/l\U) : 771(M \ U) — 7T1(M)

is onto [11, p. 39].
2. The m — 2 and lower dimensional submanifolds of M™ cannot be the vanishing
sets of any top forms on M, as the group homomorphism

Wl(iM\X) cm(M\X) — m (M)

is an isomorphism for m > 3 and an epimorphism for m = 2, whenever X is
such a submanifold of M. In particular the discrete subsets of M cannot be the
vanishing sets of any top forms on M [16, Proposition 2.3]. By using the same
type of arguments one can actually show that no countable subset of M can
be the vanishing sets of any top form on M. In other words the vanishing set
of every top form on M is uncountable. In fact the zero dimensional subsets of
M cannot be the vanishing sets of any top forms on M, as we shall see in the
Theorem 2.1 and Corollary 2.2.

Theorem 2.1. If M™ is a smooth connected manifold (m > 2) and A C M is a closed
zero dimensional set, then M \ A is also connected and the group homomorphism

m (i) :m(M\ A) — 7 (M),
induced by the inclusion i : M\ A — M, is onto, i.e. m (M, M\ A) = 0.

Corollary 2.2. If M™ is a non-orientable manifold, then dimV(w) > 1 for every
differentiable form w € Q™ (M).

Proof. Assume that dim V(w) = 0 for some differentiable form w € Q™ (M). Accord-
ing to Theorem 2.1, the complement M \ V(6) of the vanishing set is also connected
and the group homomorphism

m (1) :m(M\V(0)) — 7 (M)

is onto. The non-orientability of M shows that the orientation character w,, is onto.
Consequently the orientaion character =w,, om (i ,of M\ 'V (8), is also
onto, due to Theorem 2.1.

On the other hand the restriction 6[y/\v(g) is a nowhere vanishing top form of
M \ V(0), which shows that M \ V() is an orientable open submanifold of M. In
other words, the orientation character w,, ., = Wy, © T1(iy, ) is trivial, which
implies that either the orientation character w,, is not onto or the induced group
homomorphism 71 (¢ ) : m (M\V(0)) — m1 (M) is not onto, which is absurd. O

Whrv (o) M\V(s))

M\V (0)

In the compact non-orientable case we can provide, by using some different type
of arguments, a much larger lower bound for the vanishing sets of all top forms.

Theorem 2.3. If M™ is a compact connected mon-orientable manifold, then
dimV(w) > m — 1 for every differentiable form w € Q™(M).
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Remark 2.2. The estimate, provided by Corollary 2.2 is sometimes sharp. Indeed, by
removing a suitable circle out of Klein bottle we obtain a cylinder, which is orientable.
Also by removing a suitable copy of the (2n — 1)-dimensional real projective space,
out of the 2n-dimensional real projective space we obtain a 2n-disc, which is also
orientable. In both casses the removed submanifolds have, due to Corollary 2.2 and
Theorem 2.3, the smallest possible dimension in order to get orientability on their
complements.

3. Preliminary results

3.1. Vanishing sets of differentiable forms

If wis a k-differential on M, recall that the vanishing set V(w) of w is the
collection of points z € U at which w vanishes, i.e.

V(w) ={z€ M :wy(vy,...,v,) =0 for all v; € T,(M)}.

We shall only use in this paper the vanishing sets of the top differential forms of M.

In this subsection we investigate the size of critical sets of maps between two
manifolds with the same dimension via the vanishing set of the pull-back form of a
volume form on the target manifold.

Remark 3.1. If f : M™ — N™ is alocal diffeomorphism and § € Q¥ (), then V (f*0) =
f~H(V(0)). If f is additionally surjective, then this equality can be rewritten as
fF(V(f*0)) = V(0), which shows, by means of Hodel [12],

dim (V(f*6)) = dim V(6) (3.1)
whenever V(f*#) is compact.

Theorem 3.1. ([17]) If M™,N"™,m > n are differential manifolds with N orientable
and f : M — N is a differential map, then C(f) = V(f*voly), where voly is a
volume form on N.

Corollary 3.2. Let M™, N™ be differential manifolds. If N is orientable and M 1is
non-orientable then dim C(f) > 1 for every differentiable function f: M — N.

Proof. Let voly be a volume form on N. Combining Theorem 3.1 with Corollary 2.2
we deduce that dim C(f) = dim V(f*voly) > 1. O

In addition to the usefulness of the vanishing sets of differentiable forms in
evaluating the size of the critical sets, they are also useful in evaluating the size of
the tangency sets [4].

3.2. Zero dimensional subsets of manifolds

Lemma 3.3. If C is a closed subset of a smooth manifold M™, then there exists a
smooth nonnegative function f : M — R such that f~(0) = C.
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Proof. We first consider an embedding j : M < R?"*1 whose existence is ensured
by Whitney’s embedding theorem.

If K C R**H! is a closed subset such that j(C) = K N j(M), ie. j~4K) = C,
then the required function is f = g o j, where g : R?"*! — R is a smooth positive
function such that ¢g=1(0) = K, whose existence is ensured by the Whitney theorem
([18, Théoreme 1, p. 17]). O

Proposition 3.4. If A is a closed zero dimensional subset of a smooth manifold M™,
then for each x € M and every neighbourhood U of x, there exists an open neighbour-
hood V' of x such that V C U, OVNA =10 and OV is smooth.

Proof. If x ¢ A, then the existence of V' is immediate. Assume now that a € A and
consider an open and relatively compact neighbourhood V' of a such that V' C U and
OV’ N A = (). We may assume that V' is actually connected, as otherwise we reduce
V' to its connected component containing a. If ¢ : M — R is a smooth nonnegative
function such that p=1(0) = A, whose existence is ensured by Lemma 3.3, observe
that m := min{p(x) |z € IV'} > 0, since the compact set A Ncl(V') = ANV’ has
no common points with the compact boundary V’. If y € (0, m) is a regular value of
olv : V! = R, then (¢|y/) "' (y) is a compact hypersurface in V', as (¢|v/) " (y) =
© 1(y) N cl(V'). Indeed, the inclusion (¢|y/)~" (y) € ¢ (y) N cl(V') is obvious. If
x € pL(y)Nel(V'), then p(x) =y and = € (V') = V' UIV’. But since y > 0, it
follows that = & OV’ which shows that z € V' and z € (¢|y/) ™" (y) as well. Because
y < m, it follows that (¢|y) " (y) N A= 0.

Finally, we consider a regular value y € (0,m) of ¢|ys : V! — R and observe

that the inverse image (<p|v,)71 (—o0,y) C V' is an open neighbourhood of A and
—1 —1
d [(@IV/) (—oo,y)} = (¢elv.) @),

which shows that 0 {(cp|v,)_1 (—o0, y)} NA=0.If Vis the connected component of

the inverse image ((p|v,)_1 (—o0,y) containing a, then its boundary is a collection of

connected components of (g0|v,)71 (y) and therefore 9V N A = (). O

Remark 3.2. If A is a closed zero dimensional subset of a smooth surface X, then
for each z € ¥ and every neighbourhood U of x, there exists an open disk D such
that z € D C U, DN A = () and 9D is a smooth circle. Indeed, we consider, via
Proposition 3.4, a local chart (W, ) of ¥ at = as well as a connected neighbourhood
V of x with smooth boundary such that = € V, cl(V) C W C U, (W) = D?
and 9V N A = (. Note that the boundary of ¥ (V) is a union of pairwise disjoint
circles, as the circle is the only compact boundaryless one dimensional manifold. One
of these circles, say C, is the boundary of the unbounded component of R? \ (V).
The bounded component of R? \ C' is completely contained in D?, contains ¢ (V') and
we may choose its inverse image through 1 to play the role of D.

3.3. Deformations of punctured manifolds

Since the deformations of the punctured Euclidean space and the punctured
manifolds [16] will be repeatedly used in what follows, we shall review them shortly.
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For r > 0 and n € N* denote by D" and S”~! the open disk and the sphere respec-
tively, both of them having the center at the origin of the space R™ and radius r. D}
and S{l*l will be simply denoted by D" and S™~! respectively. For 2 € D", consider
the map hy, : R™\ {#} — R™\ {z} defined to be the identity outside the open disc
D" and h,(y) = S"'N]ay for every y € D™\ {z}, where |zy stands for the half line
{(1 —s)x+ sy : s> 0}. In particular h,(y) =y, Vy € S*~L.

Let N be an n-dimensional manifold and ¢ = (U, ) be a local chart of N
such that cl(D™) C ¢(U). Denote by D, and S, the sets ¢~ !(D") and ¢~ 1(S"™!)
respectively. For x € D, we define the continuous map he, : N\ {z} — N\ {z} by

_ Y ifye M \ D@
hea(y) = { ¢! (how@ (p(y))  ifyeU\{z}.

Note that he . (D,\{z}) =S, and h..(y) =y, Yy € S,,.
Remark 3.3. 1. hy(D"\{z}) = S" " and h, ~p, idgn\ {5} (relR"\D"), where
Hy : R"\{z} x [0,1] = R"\{z}, Ho(y,t) = (1 = t)y + tha(y).
2. hea ~p, , iy (2}, Where He o, 0 (M\{z}) x [0,1] = M \ {z},

B y if y € M\D,,
Hc,a:(yat) - { (p—l(Hw(w)(go(y),t)) lfy € U\{‘r}

If P is a given manifold and f : P — M is a continuous map whose image avoids
the point x, then f ~ h. ;o f and a homotopy between f and h¢ o f is Hez(-,t) o f.
We shall refere to each he, o f and H. (-, t) o f as the punctured deformation of f
from x onto S,.

4. The proofs of theorems 2.1 and 2.3

Proof of Theorem 2.1. Consider a homotopy class of curves in 71 (M, M \ A) repre-
sented by a continuous curve « : [0,1] — M, «(0),a(l) € M \ A and deform «
rel{0,1} to some differentiable curve 8 with non vanishing tangent vector field. The
immersion 8 might actually be chosen to be a geodesic from «(0) to (1) with respect
to some Riemannian metric on M (see e.g. [14, Theorem 1.4.6, p. 24]). Obviously
dim (ANIm(B)) < dim(A) = 0 and dimIm(5) = 1.

From this point we continue the proof by induction with respect to the dimension
m of the manifold M. First assume that m = 2 and observe that for each t € 371(A)
there exists, via Remark 3.2, a two dimensional disc D; C M with circular boundary,
neighbourhood of S(t), such that its circular boundary C; has no common points
with A. Since [ is locally an embedding, D; might be chosen inside the domain
U, of a coordinate chart ¢, = (U, ¢¢) in such a way that Dy = D, Cy = S,,,
a(0) = B(0), a(l) = B(1) € M\ cl(Dy), J; :== B~1(D;) is an open interval and
i (DeNIm(Bly,)) = ¢(Dy) NR. Since {D; | t € B71(A)} is an open covering of the
compact set Im(3) N A, we may extract a finite open cover, say D;,, ..., D;.. We may
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assume that Dy, \ cl(Dy;) # 0 whenever i # j. Since dim(Im(3) = 1 it follows that
Im(B) cannot fill the open set

D\ | Jel(Dy)).
j=1
ji
For each ¢ € {1,...,7}, consider a point

i € Dy, \ (Im(B) ulJ cl(Dtj))
7
and the maps g, o, : M \{z1,..., 25} — M\ {x1,..., 25} given by

Ger, s (y) = he,, ., (y)
Note that id s\ (a;,....2.} = Ger, 21O " *OFey, x, (vl M\ (D, U---U Dy,)) as each of the
maps ge, .y« -1 Jey, x, 15 homotopic to idap (4, ,....e,} Telative to M\ (D, U---UDy,).
Thus
B~ (QCtl,m O 00c, @ © B)(rel{0,1})
and Im(gctl)x1 0--0ge x,00B) C M\ A, as

(galﬂhO"'OQCts,ws)<(Dt1U"'UDts)\{xlw--axs}) CCyU--- UG, QM\A

and §1 (M \ (Dy, U+ U D,,)) C B4 (M A).

We next assume that the statement holds for (m — 1)-dimensional manifolds and
we shall prove it for the m-dimensional manifold M. In this respect we consider a
partition 0 =ty < t; < --- < t, = 1 of the interval [0, 1] with small enough norm such
that:

1. B([to, 1) VA = B(itr—1,]) N A =0 and B(11), .., Bltr—1) € M\ A.

2. there are small enough open discs Dy = D,,,,...,D,_3 = D, __, with spherical
boundaries S} = S,,,...,S—2 = S,,_,, for some charts ¢; = (U, ¢1),...,¢ =
(Ur—2, @r—2), with the following properties:

(a) B~Y(D;) is the open interval (t;,t;,1) and the restriction (t;,%;41) — Dj,
t — B(t) is an embedding, for every i = 1,7 — 2;
(b) CI(D,L) N Im(ﬁ) = Si N Im(ﬁ) = {6(t2)7ﬁ(tl+l)}’ and DZ N Di+1 = (Z) while
c(D;)Nel(Diy1) = SiNSip1 = {B(tit1)}, for every i = 1,r — 3.
Note that Im(8)NA C D1U---UD,_5. For every i € {1,...,r—2}, consider z; € D;\
Im(3) and observe that Bz, 2,,,] = ey, 208, i41] (tel({Zi; Tiy1})). By applying the
inductive hypothesis to the punctured deformation he, o, © Bz, z;,,](vel({@i, Tit1}))
of Bl(z;,2,,,) from z; onto S;, whose image is contained in the (m — 1)-dimensional
sphere S;, one can conclude that he, u; © B[, z,,,) I8 homotopic rel({z;,z;41}) to
some continuous curve 7; : [z;,x;41] — S; whose image avoids the set A, i.e.
Yi([%i, wit1]) € Si\ A. Thus he, ., o is homotopic rel({0,1}) to the continuous curve
v :[0,1] — M\ A defined by V|[zg,01] = Bliwe,21]» Viziszisy) = i for 1 <i < —2
and 7‘[w,~,17wr] = ﬁ‘[wr,hwr]' O
Proof of Theorem 2.3. We first observe that every top-form w € Q™(M) is exact, as
the top de Rham cohomology group HJj (M) is trivial [15, Th. 15.21, p. 405], i.e.
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w = df for some § € Q™1 (M). If p: M — M is the orientable double cover, then
p*w = p*(df) = d(p*0), which shows that /~ p*w = 0 and that dim (V (p*w)) > m—1
therefore. Thus "

dim (V(w)) = dim (p (V (p"))) = dim (V(p"w)) > m — 1,
as p(V(p'w)) = V(w). -

Corollary 4.1. Let M™, N™ be differential manifolds. If N is orientable and M 1is
compact and non-orientable then dim C(f) > n — 1 for every differentiable function
f:M— N.

Proof. Let voly be a volume form on N. Combining Theorem 3.1 with Theorem 2.3
we deduce that dim C(f) = dim V(f*voly) > n — 1, for every differentiable function
f: M — N. O

A proof of Corollary 4.1 of similar flavor appears in [17, Theorem 2.4.(b)].

Remark 4.1. Corollaries 3.2 and 4.1 rely on the orientability of the regular set
R(f) = M\ C(f) in the 0 = dim(N) — dim(M) codimension case which is a pri-
ori ensured by the nowhere vanishing restricted top form f*vol N| R(p) OO R(f). In the
lower codimension case dim(M) > dim(N), the lack of orientability of the regular set
is obvious, even for the orientable option of the target manifold N. We stress this by
the example of the projection of a product M = N x X on the first factor, when N
is orientable and X is non-orientable. The critical set of this projection is obviously
empty, but its regular set is the whole non-orientable product M = N x X.

However, the orientability of the regular set R(f) ensure similar lower bounds
even in the lower codimensional context. More precisely, if N" is orientable and M™
(m > n) is connected non-orientable and f : M — N is a differentiable function
with orientable regular set R(f), then dim(C(f)) > 1. The proof of this statement
works along the same lines with the one of Corollary 2.2, the role of the vanishing set
V() is played here by the critical set C(f).
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