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A refinement of an inequality due to Ankeny
and Rivlin

Dinesh Tripathi

Abstract. Let p(z) =

n∑
ν=0

aνz
ν be a polynomial of degree n,

M(p,R) := max
|z|=R≥0

|p(z)|, and M(p, 1) := M(p).

Then by well-known result due to Ankeny and Rivlin [1], we have

M(p.R) ≤
(
Rn + 1

2

)
M(p), R ≥ 1.

In this paper, we sharpen and generalizes the above inequality by using a result
due to Govil [5].

Mathematics Subject Classification (2010): 15A18, 30C10, 30C15, 30A10.

Keywords: Inequalities, polynomials, maximum modulus.

1. Introduction

Let Pn :=

{
p(z); p(z) =

n∑
ν=0

aνz
ν

}
be a class of polynomial of degree n. Let

max
|z|=R

|p(z)| = M(p,R) and M(p, 1) = M(p).Then from maximum modulus principle,

M(p,R) is a strictly increasing function and for 0 ≤ R < ∞. Also, it is a simple
deduction from the maximum modulus principle (see [10, p. 158, Problem 269]) that
for R ≥ 1,

M(p,R) ≤ RnM(p). (1.1)

The result is best possible and equality holds if and only if p(z) = λzn, where λ being
a complex number.
For p ∈ Pn not vanishing in the interior of unit circle, Ankeny and Rivlin [1] sharpened
inequality (1.1), by proving following result.
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Theorem 1.1. If p ∈ Pn and p(z) 6= 0 for |z| < 1, then for R ≥ 1,

M(p,R) ≤
(
Rn + 1

2

)
M(p), R ≥ 1. (1.2)

The above inequality is sharp and equality holds for polynomial

p(z) = α+ βzn, |α| = |β|.

Since the equality in (1.2) holds only for p(z) = α+ βzn, which satisfy

|β| = 1

2
M(p), (1.3)

therefore it should possible to improve the bound (1.2) for the polynomial not satis-
fying (1.3). Govil [5] solve this problem by proving the following result.

Theorem 1.2. If p ∈ Pn and p(z) 6= 0 for |z| < 1, then for R ≥ 1,

M(p,R) ≤
(
Rn + 1

2

)
M(p)− n

2

(
M(p)2 − 4|an|2

M(p)

){
(R− 1)M(p)

M(p) + 2|an|

− ln

(
1 +

(R− 1)M(p)

M(p) + 2|an|

)}
. (1.4)

The result is best possible and the equality holds for p(z) = (λ+ µzn), λ and µ being
complex numbers with |λ| = |µ|.

The other extension and generalization of Theorem 1.1 has been mentioned in
the various article,e.g Aziz [2], Aziz and Mohammad [3], Milovanović, Mitrinović and
Rassias [8], Govil [6], Govil, Qazi and Rahman [7] and Rahman and Schmeisser [12],
Tripathi [13] etc.

2. Main results

In this paper, we prove the following improved generalization of Theorem 1.2 for
the class of Lacunary type of polynomial

p(z) = a0 +

n∑
ν=µ

aνz
ν .

Theorem 2.1. If p(z) = a0 +

n∑
ν=µ

aνz
ν is a polynomial of degree n and p(z) 6= 0 for

|a| < k, k ≥ 1, then for R > r ≥ 1,

|{p(Reiθ)}s| ≤ (Rns − rns)
1 + kµ

{M(p)}s − n

1 + kµ
{M(p)}s

(
1− (1 + kµ)|an|

M(p)

)
h(n)

+ |{p(reiθ)}s|, (2.1)
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where

h(n) =

(
Rn−rn

n

)
+

n−1∑
k=1

(
Rn−k−rn−k

n− k

)
(−1)k

(
(1+kµ)|an|
M(p)

+ 1

)(
(1+kµ)|an|
M(p)

)k−1
+ (−1)n

(
(1 + kµ)|an|

M(p)
+ 1

)(
(1 + kµ)|an|

M(p)

)n−1
ln

(
R(M(p)) + (1 + kµ)|an|
r(M(p)) + (1 + kµ)|an|

)
for n ≥ 1 and h(0) = 0.

On taking s = 0, µ = 1, r = 1 and k = 1, we have the following application of above
Theorem 2.1.

Corollary 2.2. If p ∈ Pn and p(z) 6= 0 for |z| < 1, then for R ≥ 1,

|p(Reiθ)| ≤ (Rn + 1)

2
M(p)− n

2
M(p)

(
1− 2|an|

M(p)

)
h(n), (2.2)

where

h(n) =

(
Rn − 1

n

)
+

n−1∑
k=1

(
Rn−k − 1

n− k

)
(−1)k

(
2|an|
M(p)

+ 1

)(
2|an|
M(p)

)k−1
+ (−1)n

(
2|an|
M(p)

+ 1

)(
2|an|
M(p)

)n−1
ln

(
1 +

(R− 1)M(p)

M(p) + 2|an|

)
for n ≥ 1 and h(0) = 0.

Remark 2.3. From Lemma 3.7, we get 0 ≤ h(n). Using this in Corollary 2.2, we get

|p(Reiθ)| ≤ (Rn + 1)

2
M(p)− n

2
M(p)

(
1− 2|an|

M(p)

)
h(n) ≤ (Rn + 1)

2
M(p),

which shows that Corollary 2.2, clearly refines Theorem 1.1 due to Ankeny and
Rivlin [1].

Remark 2.4. From Lemma 3.7, we have h(1) ≤ h(n). Using this inequality in Corollary
2.2, we get

|p(Reiθ)| ≤ (Rn + 1)

2
M(p)− n

2
M(p)

(
1− 2|an|

M(p)

)
h(n)

≤ (Rn + 1)

2
M(p)− n

2
M(p)

(
1− 2|an|

M(p)

)
h(1), (2.3)

and,

h(1) = (R− 1)−
(

1 +
2|an|
M(p)

)
ln

(
1 +

(R− 1)M(p)

M(p) + 2|an|

)
. (2.4)

Substitute the value of h(1) in (2.3), we get

|p(Reiθ)| ≤
(
Rn + 1

2

)
M(p)− n

2

(
M(p)2 − 4|an|2

M(p)

){
(R− 1)M(p)

M(p) + 2|an|

− ln

(
1 +

(R− 1)M(p)

M(p) + 2|an|

)}
,
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which is Theorem 1.2 due to Govil [5].

By taking µ = 1 in inequality (2.1), we obtain the following results.

Corollary 2.5. If p ∈ Pn and p(z) 6= 0 for |z| < k, k ≥ 1, then for R > r ≥ 1,

|{p(Reiθ)}s| ≤ (Rns − rns)
1 + k

{M(p)}s − n

1 + k
{M(p)}s

(
1− (1 + k)|an|

M(p)

)
h(n)

+|{p(reiθ)}s|, (2.5)

where

h(n) =

(
Rn−rn

n

)
+

n−1∑
k=1

(
Rn−k−rn−k

n− k

)
(−1)k

(
(1 + k)|an|
M(p)

+ 1

)(
(1 + k)|an|
M(p)

)k−1
+ (−1)n

(
(1 + k)|an|
M(p)

+ 1

)(
(1 + k)|an|
M(p)

)n−1
ln

(
R(M(p)) + (1 + k)|an|
r(M(p)) + (1 + k)|an|

)
for n ≥ 1 and h(0) = 0.

Remark 2.6. We also have some other application Theorem 2.1, by taking s = 0,
k = 1 and r = 1 respectively.

3. Lemmas

For the proof of theorem, we need the following lemmas. Our first lemma is a
well-known generalization of Schwarz’s lemma (see for example [9, p. 167]).

Lemma 3.1. If f(z) is analytic inside and on the circle |z| = 1, f(0) = a, where
|a| < f , then

|f(z)| ≤M(f)

(
M(f)|z|+ |a|
|a||z|+M(f)

)
. (3.1)

Lemma 3.2. If p(z) =

n∑
v=0

avz
v is a polynomial of degree n, then for |z| = R ≥ 1,

|p(z)| ≤
(
|an|R+M(p)

M(p)R+ |an|

)
M(p)Rn. (3.2)

The proof follows easily on applying Lemma 3.1 to the function T (z) = znp(1/z) and
noting that M(T ) = M(p) (for details see [12, Lemma 2]).

From Lemma 3.2, one immediately gets:

Lemma 3.3. If p(z) =

n∑
v=0

avz
v is a polynomial of degree n, then for |z| = R ≥ 1,

|p(z)| ≤
(

1− (M(p)− |an|)(R− 1)

M(p)R+ |an|

)
M(p)Rn. (3.3)

The following result is due to Chan and Malik [4].
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Lemma 3.4. If p(z) = a0 +

n∑
v=µ

avz
v is a polynomial of degree n, and p(z) 6= 0 for

|z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kµ
M(p). (3.4)

Lemma 3.5. If p(z) =
n∑
v=0

avz
v is a polynomial of degree n, and let r ≥ 1, then

(
1− (x− |an|)(r − 1)

rx+ n|an|

)
x (3.5)

is an increasing function of x, for x > 0.

The proof of above lemma is straight forward using derivative test, so we omit the
detail proof.

Lemma 3.6. Let

h(n) =

∫ R

r

(t− 1)(tn−1)

t+ a
dt for n ≥ 1.

Then

h(n) =

(
Rn − rn

n

)
+

n−1∑
k=1

(
Rn−k − rn−k

n− k

)
(−1)k(a+ 1)ak−1

+ (−1)n(a+ 1)an−1 ln

(
R+ a

r + a

)
.

Proof. We define the function f(n) =
∫ R
r

tn

t+adt for n ≥ 0. It is easy to see that

h(n) = f(n)− f(n− 1) for n ≥ 1.

We can obtain

f(n) + af(n− 1) =

∫ R

r

tn + atn−1

t+ a
dt

=

∫ R

r

tn−1(t+ a)

t+ a
dt =

Rn − rn

n
= g(n), (say).

Then

f(n) = g(n)− af(n− 1). (3.6)

Solving the recurrence relation (3.6), we get

f(n) =

n−1∑
k=0

g(n− k)(−1)kak + (−1)nanf(0), (3.7)

where

f(0) =

∫ R

1

1

r + a
dr = ln

(
R+ a

r + a

)
.
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Now, Substituting the value of f(0) in (3.7), we get

f(n) =

n−1∑
k=0

g(n− k)(−1)kak + (−1)nan ln

(
R+ a

r + a

)
, n ≥ 0. (3.8)

Using h(n) = f(n)− f(n− 1) and value of g(n), we have Lemma 3.6 for n ≥ 1. �

Lemma 3.7. Let

h(n) =

∫ R

r

(t− 1)(tn−1)

t+ a
dt for n ≥ 1.

Then h(n) is a non-negative increasing function of n for n ≥ 1.

Proof. Let

f(n) =

∫ R

r

rn

r + a
dr for n ≥ 0.

It is easy to see that h(n) = f(n)− f(n− 1) for n ≥ 1. For n ≥ 1,

f(n)− f(n− 1) =

∫ R

1

(r − 1)(rn−1)

r + a
dr ≥

∫ R

1

(r − 1)(rn−2)

r + a
dr = f(n− 1)− f(n− 2)

as rn−1 ≥ rn−2 for r ≥ 1. Therefore,

h(n) = f(n)− f(n− 1) ≥ f(n− 1)− f(n− 2) = h(n− 1).

Therefore, h(n) is an increasing function of n for n ≥ 1.
Also, h(n) = f(n)− f(n− 1) ≥ 0 for n ≥ 0 as∫ R

r

(t− 1)(tn−1)

t+ a
dr ≥ 0

for n ≥ 1 and h(0) = 0. Therefore, h(n) ≥ 0 and is an increasing function of n for
n ≥ 0. �

4. Proof of the Theorem

Proof of Theorem 2.1. For each θ, 0 ≤ θ < 2π, we have

|{p(Reiθ)}s − {p(reiθ)}s| =

∣∣∣∣∣
∫ R

r

d

dt
{p(teiθ)}sdt

∣∣∣∣∣ ≤
∫ R

r

s|{p(teiθ)}s−1||p′(teiθ)|dt,

≤ {M(p)}s−1
∫ R

r

tns−ns|p′(teiθ)|dt

|{p(Reiθ)}s − {p(reiθ)}s|

≤ {M(p)}s−1
∫ R

r

stns−1
{

1− (M(p′)− n|an|)(t− 1)

n|an|+ tM(p′)

}
M(p′)dt, (4.1)

by using Lemma 3.3 for the polynomial p′(z), which is of degree n − 1. We can see,
from Lemma 3.5, the integrand in (4.1) is an increasing function of M(p′).
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Now, applying Lemma 3.4 to inequality (4.1), we get for 0 ≤ θ < 2π,

|{p(Reiθ)}s − {p(reiθ)}s|

≤ {M(p)}s−1
∫ R

r

stsn−1

{
1−

( n
1+kµM(p)− n|an|)(t− 1)

n|an|+ t n
1+kµM(p)

}
n

1 + kµ
M(p)dt

=
(Rns − rns)

1 + kµ
{M(p)}s − n

1 + kµ
{M(p)}s(1− a)

∫ R

r

(t− 1)(tn−1)

t+ a
dt, (4.2)

by taking a =
(1 + kµ)|an|

M(p)
.

Using Lemma 3.6 in inequality (4.2), and substituting the value of a, we get

|{p(Reiθ)}s| ≤ (Rns − rns)
1 + kµ

{M(p)}s − n

1 + kµ
{M(p)}s

(
1− (1 + kµ)|an|

M(p)

)
h(n)

+|{p(reiθ)}s|, (4.3)

where

h(n) =

(
Rn−rn

n

)
+

n−1∑
k=1

(
Rn−k−rn−k

n− k

)
(−1)k

(
(1 + kµ)|an|

M(p)
+1

)(
(1+kµ)|an|
M(p)

)k−1
+ (−1)n

(
(1 + kµ)|an|

M(p)
+ 1

)(
(1 + kµ)|an|

M(p)

)n−1
ln

(
R(M(p)) + (1 + kµ)|an|
r(M(p)) + (1 + kµ)|an|

)
for n ≥ 1 and h(0) = 0. �

5. Computation

For the polynomial p(z) = (z − 2)2, p(z) 6= 0 for |z| < 1 and M(p) = 9. Then,
for R = 3, exact value of M(p,R) is 25. Using Theorem 1.2,

M(p,R) ≤ 45− 7 ∗ (2− 11/9 log(29/11)) = 39.29 (5.1)

Using Corollary 2.2 of Theorem 2.1,

M(p,R) ≤ 45− 7 ∗ (4− 22/9 + 22/81 log(29/11)) = 32.26 (5.2)
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Unit exchange elements in rings

Grigore Călugăreanu

Abstract. Replacing left principal ideals by cosets in the monoid (R, ·) of a unital
ring R, we say that an element a ∈ R is left unit exchange (or suitable) if there is
an idempotent e ∈ R such that e− a ∈ U(R)(a− a2) where U(R) denotes the set
of units. Unit-regular and clean elements are left (and right) unit suitable, and
left (or right) unit suitable elements are exchange (suitable). The paper studies
the multiple facets of this new notion.

Mathematics Subject Classification (2010): 16U99, 16U60, 13G99.

Keywords: Clean element, unit-regular element, exchange (suitable) element, unit
suitable element, matrix rings.

1. Introduction

First recall that an element a in a ring R is clean if it is a sum of an idempotent
and unit and strongly clean if these two commute. For an idempotent e ∈ R we denote
by e = 1− e the complementary idempotent. The set of units of a (unital) ring R is
denoted by U(R).

An element a in a ring R was defined as (see [5] for this numbering) left suitable
(or exchange) by any of the following equivalent conditions:

(1) there is an idempotent e ∈ R such that e− a ∈ R(a− a2).

(3) there is an idempotent e ∈ R such that e ∈ Ra and Re+R(1− a) = R.

(4) there is an idempotent e ∈ R such that e ∈ Ra and 1− e ∈ R(1− a).

Replacing R by U(R), we introduce (similar to (1)) the following definition.

Definition 1.1. An element a ∈ R is left unit suitable if there exists e2 = e ∈ R such
that e − a ∈ U(R)(a − a2). When we intend to emphasize the idempotent, a will be
called e-left unit suitable.

For an idempotent e and a unit u we consider the equation (called left eu-equation)

Pu,e(x) := x2 − (1 + u)x+ eu = 0.
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It is readily seen that x ∈ R is a solution of this equation iff

∃e2 = e ∈ R,∃u ∈ U(R) : u−1eu− x = u−1(x− x2).

Therefore the left unit suitable elements in a ring are exactly the solutions of such
eu-equations (more precisely, e− a = u(a− a2) is equivalent to Pu−1,ueu−1(a) = 0).
By computation Pu,e(u+ e) = 0, so

{clean elements} ⊆ {left unit suitable elements} ⊆ {suitable elements}.
Examples in Section 3 will show that both inclusions may be proper.

However, it is easy to see that the left inclusion is equality in the following cases:
(i) R has no zero divisors;
(ii) R is a clean ring and in particular, is a matrix ring Mn(R) over any clean

ring R;
(iii) R is Abelian and in particular commutative.
(iv) R is Artinian and in particular finite.
Right unit suitable elements are defined symmetrically and similarly clean ele-

ments are right unit suitable and right unit suitable elements are suitable.
As an easy first example (which is largely generalized further), any square-zero

element is trivially left and right unit suitable, since since 0− a = (−1)(a− a2) holds
whenever a2 = 0.

In the first section, we give some useful characterizations for (left) unit suitable
elements, for clean elements and for unit-regular elements, since such elements turn
out to be left (or right) unit suitable. Since eu-equations are of degree two, some hints
are given on the (possible) not clean solution.

The second section is devoted to results on left unit suitable 2× 2 matrices. We
show that over any commutative domain left unit suitable 2×2 matrices are also right
unit suitable, we characterize left unit suitable zero lower row integral 2× 2 matrices,
trace 1 left (or right) unit suitable integral matrices via Diophantine equations and
diagonal 2× 2 left unit suitable matrices over any commutative domain. The matrix[

3 9
7 −2

]
, already used in [1] as nil-clean but not clean, turns out to be suitable

but not left (or right) unit suitable. Finally, a characterization of 2× 2 unit-suitable
matrices over any commutative domain is given, in connection again with unit-regular
elements.

2. Basic properties

As already mentioned above, (left) suitable elements were defined in [5], by
four equivalent conditions. Our definition corresponds to (1). Here is an equivalent
definition corresponding to (4).

Proposition 2.1. An element a ∈ R is left unit suitable iff there exist e2 = e ∈ R and
b, c ∈ R such that e = ba, 1− e = c(1− a) and b− c ∈ U(R).

Proof. If e − a = u(a − a2) with u ∈ U(R) then e = [1 + u(1 − a)]a ∈ Ra and
1− e = (1−ua)(1−a) ∈ R(1−a) and b− c = 1 +u(1−a)− (1−ua) = u. Conversely,
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if e = ba, 1 − e = c(1 − a) and b − c = u ∈ U(R) then 1 − e = (b − u)(1 − a) and so
1−ba = (b−u)(1−a) = b−u−ba+ua gives b = 1+u−ua and e−a = (b−1)a = u(1−a)a.
Here b = 1 + u− ua and c = 1− ua. �

A symmetric result holds for right unit suitable elements:

Proposition 2.2. An element a ∈ R is right unit suitable iff there exist e2 = e ∈ R
and b, c ∈ R such that e = ab ∈ aR, 1− e = (1− a)c ∈ (1− a)R and b− c ∈ U(R).

Here b = 1 + u− au, c = 1− au and again b− c = u.

Corollary 2.3. Left (or right) unit suitable elements have the ”complement property”,
that is, if α is left (or right) unit suitable, so is 1− α.

In [7], another class of rings, intermediate between clean and suitable rings is
introduced, under the name of weakly clean rings (and elements). Recall that weakly
clean elements do not have the ”complement property” (see Remark 4.7 (ii) in [8]),
so these are different elements compared to left (or right) unit suitable elements (by
the previous corollary).

”For any a, b ∈ R, 1 − ab is a unit iff 1 − ba is a unit” is known as Jacobson’s
lemma for units.

Since this lemma fails for clean elements and for suitable elements but holds for
(unit) regular elements, we could ask whether it holds or fails for left (and/or right)
unit suitable elements. Actually it fails: in [4] an example of clean (and so also left
and right unit suitable) matrix CD ∈ M2(Z) is given, for which DC is not suitable
(and so nor left or right unit suitable). It remains to use the previous corollary.

The set of left unit suitable elements in a ring also includes the unit regular
elements. More, we can prove the following characterization (with above notations)

Proposition 2.4. A left unit suitable element a is unit regular iff, with the notations
in the previous proposition, c2 = c and ac = 0.

Proof. Suppose a = aua with u ∈ U(R). Then ua and so c = 1 − ua are both
idempotents and ac = 0. Take b = c + u. Then ba − a = u(1 − a)a and baba = ba

shows that a is left unit suitable (one can also check 1 − ba = c(1 − a)̇). Conversely,
assume c2 = c, ac = 0, 1− ba = c(1− a) and b− c = u ∈ U(R). By left multiplication
with a we get a− aba = ac− aca = 0 so aba = a. Hence aua = a(b− c)a = aba = a,
as desired. �

A symmetric result holds for right unit suitable elements.
In particular, unit regular elements are left and right unit suitable and so ele-

ments which are both left and right suitable need not be clean (see the example after
Theorem 3.3, in the next section).

An elementary trick, more or less always used in the context of exchange rings,
is the following: for a ring R and elements a, e ∈ R, if e ∈ Ra is an idempotent, an
element b ∈ R can be chosen such that e = ba and bab = b. Note that such an element
b is regular.

Recall (see Introduction) that an element a ∈ R was called left suitable (or
exchange) if there is an idempotent e ∈ R such that e ∈ Ra and 1 − e ∈ R(1 − a).
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Using the previous observation, (regular) elements b, c ∈ R can be chosen such that
e = ba, bab = b, 1− e = c(1− a) and c(1− a)c = c.

Coming back to our initial definition, we could consider elements a ∈ R such
that the elements b, c above can be chosen with b− c ∈ U(R).

This restriction is too strong because it is easy to prove the following character-
ization (already noticed in [2])

Proposition 2.5. An element a in a ring R is clean iff there exist b, c ∈ R such that
bab = b, c(1− a)c = c, 1− ba = c(1− a) and b− c ∈ U(R).

Notice that if only one from the conditions bab = b, c(1 − a)c = c holds, the
statement above is no longer valid. An example is given after Theorem 3.3.

Rephrasing, a left unit suitable element a is clean iff for the regular elements
b, c emphasized above with bab = b and c(1− a)c = c, b− c is a unit.

Remark 2.6. Since we already noticed that x = u+ e is a solution of the eu-equation
Pu,e(x) = 0, we could wonder when this degree two polynomial factors into two
degree one polynomials. Denoting by a the second solution it is easy to show that
Pu,e(x) = x2− (1+u)x+eu = (x−u−e)(x−a) iff (u+e−x)a = e(u−x). If ue = eu
then a = e is a clean solution.

3. Unit suitable 2× 2 matrices

Recall that a ring R is Dedekind finite (DF for short) if, for every a, b ∈ R, ab = 1
implies ba = 1. A ring R is stably finite if the matrix ringsMn(R) are Dedekind finite
for all natural numbers n.

We first point out some simple but general results.

Proposition 3.1. (a) In any DF ring, the 0-left unit suitable elements are clean.
(b) In any DF ring, the 0-left unit suitable elements are also right unit suitable.
(c) For any positive integer n, and any stably finite ring k, 0n-left unit suitable

matrices in Mn(k) are clean.
(d) In any DF ring, the 1-left unit suitable elements are units and so clean.
(e) In any DF ring, the 1-left unit suitable elements are also right unit suitable.
(f) For any positive integer n, and any stably finite ring k, In-left unit suitable

matrices in Mn(k) are clean.

Proof. (a) First notice that e− a = u(a− a2)̇ is equivalent to 1− e = (1− ua)(1− a).
Taking e = 0 yields 1 = (1− ua)(1− a) and if the ring is DF, 1− a is a unit. Hence
a is clean.

(b), (c) follow from (a).
(d) We just notice that 1 = a+u(a−a2) is now equivalent to 1 = [1+u(1−a)]a,

so a is a unit.
(e), (f) follow from (d). �

If k is a commutative domain, then E ∈ M2(k) is an idempotent iff E = 02, E = I2
or det(E) = 0 and Tr(A) = 1.
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Theorem 3.2. Left unit suitable 2× 2 matrices over a commutative domain k are also
right unit suitable.

Proof. Suppose A ∈ M2(k) is left unit suitable, i.e. E = A+ U(A− A2) with a unit
U and an idempotent E.

If E = 02 or E = I2 the result follows from Proposition 3.1 (b) and (e), respec-
tively.

In the remaining case, assume det(E) = 0 and Tr(E) = 1. Letting

F = A+ (A−A2)U,

we have

Tr(F ) = Tr(A) + Tr((A−A2)U) = Tr(A) + Tr(U(A−A2)) = Tr(E) = 1.

Moreover, det(E) = 0 gives det(I2 + U(I2 −A)) det(A) = 0, hence

det(I2 + U(I2 −A)) = 0 or det(A) = 0.

Notice that for any 2× 2 matrix M over a commutative ring,

det(I2 +M) = det(M) + Tr(M) + 1.

Therefore,

det[I2 + U(I2 −A)] = det[U(I2 −A)] + Tr[U(I2 −A)] + 1

= det[(I2 −A)U ] + Tr[(I2 −A)U ] + 1

= det[I2 + (I2 −A)U ]

and so det[I2 + U(I2 −A)] = 0 iff det[I2 + (I2 −A)U ] = 0. It follows that

det(I2 + (I2 −A)U) = 0 or det(A) = 0,

hence det(F ) = det(I2 + (I2 − A)U) det(A) = 0. This shows that Tr(F ) = 1 and
det(F ) = 0, proving that F is an idempotent. Hence A is right unit suitable (in this
case, with respect to the same unit). �

In contrast with suitable elements, it is unlikely that the set of left unit suitable
rings and the set of right unit suitable coincide. As seen above, the always good source
of examples, M2(Z), cannot be used when searching for a left unit suitable element
which is not right unit suitable.

Since Z is not exchange (and so nor clean), in searching for unit suitable elements
which are not clean, it is worth trying withM2(Z). In searching for left unit suitable
elements which are not clean, or suitable elements which are not left unit suitable we
first prove the following

Theorem 3.3. For a matrix A =

[
a b
0 0

]
∈M2(Z), the following are equivalent:

1. A is unit-regular or clean in M2(Z).
2. A is left unit suitable in M2(Z).
3. A is suitable in M2(Z).
4. (a, b) is a unimodular row or a ∈ {0, 2}.
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Proof. 1 ⇒ 2 ⇒ 3 follow from earlier results in the paper (and hold for any ring
element).

3 ⇒ 4: Suppose that A is suitable and gcd(a, b) = n > 1 (i.e. (a, b) is not
unimodular). By the suitable property, E = RA and I2 − E = S(I2 − A) for some
R,S,E ∈ M2(Z) with E2 = E. Since A ∈ nM2(Z), it follows that E ∈ nM2(Z),
hence E = 0 as E = E2.

Hence I2 = S(I2 − A) so that I2 − A is a unit. The determinant of this matrix
is 1− a. Hence 1− a ∈ {±1}, i.e. a ∈ {0, 2}.

4 ⇒ 1: If (a, b) is unimodular then A is clearly unit-regular, and if a ∈ {0, 2}
then I2 −A is a unit so that A is clean. �

Recall from [3] (Theorem 4.7) that if (a, b) is a reduced unimodular row (i.e.

|a| ≥ 2 |b| and a, b generate the unit ideal),

[
a b
0 0

]
is clean iff a ≡ ±1(modb).

Therefore, again according to [3], the reduced unimodular rows (12, 5), (13, 5),

(12, 7), (13, 8), (17, 5), (16, 7), (18, 5), (17, 7) yield not clean unit-regular matrices
which are left unit suitable.

Example 3.4. For A =

[
12 5
0 0

]
, U =

[
19 8
7 3

]
and E =

[
8 −8
7 −7

]
one checks

the eu-equation
X2 − (I2 + U)X + EU = 02.

This example also suits as a left unit suitable element with

C(I2 −A)C = C =

[
−35 −15
84 36

]
(that is, regular C) but

BAB =

[
−32 32
77 −77

]
6=

[
−32 −23
77 55

]
= B

(so not regular B). Here

B − C =

[
3 −8
−7 19

]
is a unit, AU−1A = A and both

BA = F =

[
−384 −160
924 385

]
(here F −A = U−1(A−A2)), AB =

[
1 −1
0 0

]
are idempotents.

Remark 3.5. The nice idempotent obtained in the previous example,

AB =

[
1 −1
0 0

]
is not specific. It is the result for any matrix

A =

[
a b
0 0

]
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with coprime a, b. As seen in the previous proof,

U = A+

[
z u22
z u22

]
with au22 − bz = 1. Then

U−1 =

[
u22 −u22
−z z

]
+

[
0 −b
0 a

]
= S + T

and indeed

AS =

[
1 −1
0 0

]
and AT = 02.

Hence

AB = A+AU−1(I2 −A) = AU−1 = AS =

[
1 −1
0 0

]
.

Obviously AB is idempotent and in general

BAB =

[
r s
m n

]
AB =

[
r s
m n

] [
1 −1
0 0

]
=

[
r −s
m −n

]
6=

[
r s
m n

]
= B

unless n = s = 0.

Since unipotent elements (i.e. sums 1 + t with nilpotent t) are special units in
rings, we could ask whether (left) unipotent suitable elements are not clean. First
notice (e.g. from the proof of the previous theorem), that in general there is no
uniqueness for the unit in the definition of the (left) unit suitable elements. So a
better rephrased question would be: if for a (left) unit suitable element, the unit can
be chosen as an unipotent, is the element clean? The answer is no as shows the next
example.

Example 3.6. Take the second unimodular row in the list above (from [3]). For the

matrix A =

[
13 5
0 0

]
, U =

[
5 2
−8 −3

]
and E =

[
−7 7
−8 8

]
one checks the eu-

equation

X2 − (I2 + U)X + EU = 02.

Therefore A is left unipotent suitable but not clean (it is readily checked that unipo-
tents in M2(Z) are the matrices of trace = 2 and determinant = 1).

As mentioned above, the same matrix satisfies the eu-equation with U =

[
18 7
5 2

]
and E =

[
6 −6
5 −5

]
where U is no more unipotent.

Similar results (on zero upper row, or columns) may be obtained using conjuga-

tion by

[
0 1
1 0

]
or transposes.

The ringM2(Z) contains many suitable elements that are not left unit suitable.
Matrices with trace 1 are definitely one example, but there are also other classes that
are easier to characterize. One of those classes are the diagonal matrices. Below is
given a characterization of suitable and left unit suitable diagonal matrices.
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Lemma 3.7. Let A =

[
a 0
0 b

]
be a 2×2 diagonal matrix over a commutative domain

k and let d ∈ k. The following are equivalent:

1. There exists X ∈M2(k) with det(X) = d such that E = A+X(A−A2) is a
nontrivial idempotent (i.e. E 6= 02, I2).

2. There exists t ∈ k such that t(a− b)− d(a− a2) = 1.

Proof. 1 ⇒ 2: Suppose that E = A + X(A − A2) is a nontrivial idempotent and

det(X) = d. Write α = a− a2, β = b− b2 and X =

[
x y
z w

]
. Then

E =

[
a+ xα yβ
zα b+ wβ

]
and since E is nontrivial Tr(E) = 1, hence

a+ b+ xα+ wβ = 1. (3.1)

If b = 0 then this equation gives a + xα = 1, whence a ∈ U(k). Hence, taking
t = (1 + dα)a−1 we get

t(a− b)− dα = ta− dα = (1 + dα)− dα = 1,

which proves the claim. Similarly if b = 1 then (3.1) gives a+ xα = 0.
Hence 1+x(1−a)a = 0 which implies 1−a ∈ U(k). Hence taking t = (1+dα)(a−1)−1

we get t(a − b) − dα = t(a − 1) − dα = (1 + dα) − dα = 1, as desired. Thus we may
assume b 6= 0, 1 and so β 6= 0.

The determinant condition det(E) = 0 gives

ab+ awβ + bxα+ αβd = 0. (3.2)

Now (3.1) and (3.2) together give

b = b(a+ b+ xα+ wβ)− (ab+ awβ + bxα+ αβd) = b2 + (b− a)wβ − αβd,

hence β = (b− a)wβ−αβd. Cancelling β we obtain 1 = (b− a)w−αd and so t = −w
fulfills the desired condition.

2 ⇒ 1: Take t with t(a− b)− d(a− a2) = 1. Letting

X =

[
t+ d(a+ b− 1) −1
t(t+ d(a+ b− a)) −t

]
it is easy to see that det(X) = d and E = A + X(A − A2) satisfies Tr(E) = 1 and
det(E) = 0, which proves the claim. �

Theorem 3.8. For a 2 × 2 matrix A =

[
a 0
0 b

]
over a commutative domain k, the

following are equivalent:

1. A is suitable.

2. Either A is a unit or I2 − A is a unit or t(a − b) + s(a − a2) = 1 for some
t, s ∈ k.
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Proof. 1⇒ 2: Let E = A+X(A−A2) with idempotent E and X ∈M2(k). If E = I2
then A is a unit, and if E = 02 then I2−A = XA(I2−A)+I2, so that I2−A is a unit.
Therefore we may assume that E is a nontrivial idempotent. By the previous lemma
we obtain t ∈ k such that t(a − b) − det(X)(a − a2) = 1. Hence t and s = −det(X)
satisfy the required condition.

2 ⇒ 1: If A or I2 − A is invertible then there is nothing to prove. Thus let
t(a− b) + s(a−a2) = 1 with t, s ∈ k. Using again the previous lemma we get a matrix
X with det(X) = −s such that E = A + X(A − A2) is a nontrivial idempotent, as
desired. �

Theorem 3.9. For a 2 × 2 matrix A =

[
a 0
0 b

]
over a commutative domain k, the

following are equivalent:
1. A is left unit suitable.
2. A is clean.
3. Either A is a unit or I2 − A is a unit or t(a − b) + s(a − a2) = 1 for some

t ∈ k and s ∈ U(k).

Proof. 2 ⇒ 1 is clear
1 ⇒ 3: Suppose A is left unit suitable, i.e. E = A+U(A−A2) with idempotent

E and unit U . As before, if E = I2 then A is a unit, and if E = 02 then I2 − A is
a unit. Therefore we may assume E is nontrivial. Hence by Lemma 3.7 there exists
t ∈ k with t(a−b)−det(U)(a−a2) = 1, so that t and s = −det(U) satisfy the desired
condition.

3 ⇒ 2: If A or I2 −A is invertible there is nothing to prove. Thus let

t(a− b) + s(a− a2) = 1

for some t ∈ k and s ∈ U(k). We can check directly that

E =

[
a− s−1t 1 + t(a+ b− 1− s−1t)
s−1 1− a+ s−1t

]
is an idempotent (with Tr(E) = 1 and det(E) = 0) and U = A − E is a unit (with
det(U) = s−1). �

Example 3.10. Let a = 2 and b = −3. Then, taking t = 1 and s = 2 we get

t(a− b) + s(a− a2) = 1 · 5 + 2 · (−2) = 1,

so that A =

[
2 0
0 −3

]
is suitable inM2(Z) by Theorem 3.8. However, the equation

t · 5 + s · (−2) = 1 clearly has no solution in Z if s ∈ U(Z), hence A is not left unit
suitable in M2(Z) by Theorem 3.9.

Next we prove another result which connects unit-suitable 2 × 2 matrices with
unit-regular ones.

Theorem 3.11. For a 2× 2 matrix A over a commutative domain k, the following are
equivalent:

1. A is unit-suitable.
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2. Either A is unit-regular or I2−A is unit-regular or there exists a unit U such
that the pairs (Tr(U),det(UA)) and (Tr(UA)− 1,det(U)(Tr(A)− 1)) have the same
sum and the same product.

Proof. For any 2× 2 matrix, Cayley-Hamilton’s theorem gives

A−A2 = det(A)I2 − (Tr(A)− 1)A.

Hence, a matrix A is (left) unit-suitable iff there is a unit U such that

E = (I2 + U(I2 −A))A = A+ det(A)U − (Tr(A)− 1)UA (3.3)

is an idempotent.
As mentioned in the proof of Theorem 3.2, if E = 02 then I2 − A is a unit and

if E = I2 then A is a unit (and units are unit-regular). In the remaining case, assume
Tr(E) = 1 and det(E) = 0.

Notice that equivalently det(E) = 0 gives det(I2 +U(I2−A)) det(A) = 0, hence

det(I2 + U(I2 −A)) = 0 or det(A) = 0.

By (3.3), Tr(E) = 1 is equivalent to det(A)Tr(U) = (Tr(A)− 1)(Tr(UA)− 1).
Case 1. If det(A) = 0 then Tr(A) = 1 or Tr(UA) = 1 and since

det(UA) = det(U) det(A) = 0,

A or UA is a (nontrivial) idempotent. As well-known, in both cases A is unit-regular.
Case 2. If det(A) 6= 0 then det(I2 +U(I2 −A)) = 0. Notice that for any 2× 2 matrix
B,

det(I2 +B) = 1 + Tr(B) + det(B),

so the previous condition amounts to 1 + Tr(U(I2 −A)) + det(U(I2 −A)) = 0.
Equivalently,

1 + Tr(U)− Tr(UA) + det(U)[1− Tr(A) + det(A)] = 0

or

1 + Tr(U) + det(UA) = Tr(UA) + det(U)(Tr(A)− 1).

Multiplying det(A)Tr(U) = (Tr(A)− 1)(Tr(UA)− 1) by det(U) shows that the pairs
(Tr(U),det(UA)) and (Tr(UA) − 1,det(U)(Tr(A) − 1)) have the same sum and the
same product. �

Corollary 3.12. Let A be a 2×2 matrix over a commutative domain k, and det(A) = 0.
Then A is unit-suitable iff either A is unit-regular or I2 −A is unit-regular.

Proof. One way follows from the previous proof, and the converse follows from Corol-
lary 2.3, since unit-regular elements are unit-suitable. �

For integral matrices we can say more.

Corollary 3.13. Let A be an integral 2 × 2 matrix. Then A is unit-suitable iff either
A is unit-regular or I2 −A is unit-regular or there exists a unit U such that

Tr(UA) = 1 + det(UA), Tr(U) = det(U)(Tr(A)− 1).
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Proof. Indeed, since the pairs in the previous theorem are roots of the same degree
two (solvable) equation we have

{Tr(U),det(UA)} = {Tr(UA)− 1,det(U)(Tr(A)− 1)}.

Therefore

Tr(UA) = 1 + det(UA), Tr(U) = det(U)(Tr(A)− 1),

or

Tr(UA) = 1 + Tr(U), det(UA) = det(U)(Tr(A)− 1).

In the second case, we can show that I2 −A is a unit-regular element.

Recall that we are working in the hypothesis of Case 2 (the proof of the previous
theorem), that is,

det(I2 + U(I2 −A)) = 0.

Since

Tr(I2 + U(I2 −A)) = 2 + Tr(U)− Tr(UA) = 1

it follows that E := I2 + U(I2 −A) is an idempotent. Hence

I2 −A = −U−1(I2 − E)

is unit-regular (indeed, an element b ∈ R is unit-regular iff there are a unit u and an
idempotent e such that b = ue). �

Trace 1 left (or right) unit suitable integral matrices can be characterized via
Diophantine equations. We just mention the following

Proposition 3.14. (i) A trace 1, 2× 2 integral matrix A =

[
a+ 1 b
c −a

]
with b 6= 0

is (left or right) unit suitable iff

bx2 − (2a+ 1)xy − cy2 + (1 + det(A))y + b = 0 (1)

and

b divides 1 + det(A)− (2a+ 1)x− cy (2)

or else

bx2 − (2a+ 1)xy − cy2 + (1− det(A))y − b = 0 (3)

and

b divides 1− det(A)− (2a+ 1)x− cy (4)

(ii) The matrix C =

[
3 9
−7 −2

]
is a 2× 2 suitable (exchange) matrix which is

not left nor right unit suitable in M2(Z).

Remark 3.15. This shows that C, our example in [1], can be used to improve its initial
purpose: this is a nil-clean matrix which is not unit suitable (not only not clean). As
for now, the problem of finding an example of nil-clean element which is not suitable
(exchange) remains open.
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Str. Kogălniceanu, 1,
400084 Cluj-Napoca, Romania
e-mail: calu@math.ubbcluj.ro
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Various results in relation with
the hypergeometric equations and the
hypergeometric functions in the complex plane
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Abstract. The main purpose of this investigation is to specify an extensive re-
lation between the hypergeometric functions and the hypergeometric equations
in the complex plane and then to point various implications of our main result,
conclusion and also recommendations out.
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complex plane.

1. Introduction, definitions and motivation

In this section, we first introduce the (Gauss) hypergeometric function, the
(Gauss) hypergeometric differential equation and certain well-known relationship be-
tween them. We then focus on revealing some possible interesting results associating
with certain novel and extensive relationships between them. In the light of the al-
leged results, we also remark that there are a number of important implications of our
results between various (differential) equations and special functions in the complex
plane.

The well-known hypergeometric functions (and also the hypergeometric differ-
ential equations) with complex (or real) variable have been attracting much more
attention in the literature. This interest is due to its importance as solutions (or
applications) of many applied problems in mathematics given by the references in
[1]-[3], [8], [7], [12], [13], [14], [18], [30], [38], [39], [44]-[45] and [49], in Statistics and
Probability given by [2], [11], [14], [21], [33] and [38], in physics [2], [3], [7], [11], [19],
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[25] and [38], and also in the majority of engineering sciences given by [2], [5], [7], [9],
[14], [17], [22], [24], [25], [33], [34], [38], [40], [43], [48], [50] and [51].

As is known, the hypergeometric functions (and also the functions being the so-
lutions of hypergeometric differential equations) constitute a wide and important class
of special functions with complex (or real) variable. In particularly, a great number of
special functions of mathematical physics turn out to be hypergeometric function. In
addition, multivariate hypergeometric functions can be introduced as solutions to cer-
tain overdetermined systems of linear partial differential equations with polynomial
coefficients. In general, such systems of equations are of substantial independent in-
terest and appear in several applications. The simplest ordinary differential equation
of this kind is the Gauss hypergeometric equation in the literature. Any second-order
linear differential equation with three regular singularities in the Riemann sphere can
be also reduced to the Gauss equation by the help of a suitable change of the vari-
ables. For their details, it can be also checked the works given in [2], [5]-[6], [9], [10],
[16], [17], [20], [23], [31], [32], [38]-[37], [41], [43]-[48], [50] and [51].

Since our main purpose in this scientific work is to reveal certain novel and/or
non-linear relationships between the (Gauss, Gaussian or ordinary) hypergeometric
functions and certain special functions in the complex plane, primarily, we have to
remember certain basic information about the functions and the (differential) equa-
tions which are related to the mentioned topics and the related ones. In mathematics,
we note that the hypergeometric function is a special function represented by series
(or integral), which includes many other special functions as specific or limiting cases.
This function is a solution of a second-order linear ordinary differential equation that
every second-order linear ordinary differential equation with three singular points can
be transformed into the related differential equation. For their details, let us now start
by recalling (or introducing) the following information.

First of them, here and throughout this present work, firstly, we note that the
well-known notations:

N , Z− , R , C and U

denote the set of natural numbers, the set of negative integers, the set of real numbers,
the set of complex numbers and the open unit disk in the complex plane, respectively.

The first important topic is related to the function set by the series, so let me
know about it now. For this, the following functional series in the complex variable z,
called the (Gauss, Gausian or ordinary) hypergeometric function, is denoted by any
one of the notations: 2F1(α, β; γ; z), F (α, β; γ; z) and F(α, β; γ; z) and also defined by

F (α, β; γ; z) = 1 +
αβ

γ
z +

α(α+ 1)β(β + 1)

γ(γ + 1)

z2

2!

+
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2)

z3

3!
+ · · ·

=

∞∑
n=0

(α)n(β)n
(γ)n

zn

n!
, (1.1)
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where α ∈ C−Z−0 , β ∈ C−Z−0 , γ ∈ C−Z−0 and z ∈ C, and, in terms of the Gamma
function Γ(z), the (rising) Pochhammer symbol, i.e., the symbol (v)n is also defined
by

(v)n =

{
1

(
n = 0

)
v(v + 1) · · · (v + n− 1)

(
n ∈ N

)
=

Γ(v + n)

Γ(v)
, (1.2)

where n ∈ N0 := N ∪ {0} and v ∈ C− Z−0 .
We here note that, as certain characteristic properties of the series in (1.1)

together with (1.2), it is absolutely and uniformly convergent in the disk U. The
convergence also extends over the unit circle when <e

(
α+ β − γ

)
< 0, it converges

at all the points of the unit circle except the point z = 1 when 0 ≤ <e
(
α+β−γ

)
< 1.

Nevertheless, there exists an analytic continuation of the hypergeometric function in
(1.1) to the exterior |z| > 1 of the unit disk with the slit (1,∞). The function defined
by the series in (1.1), namely, F (α, β; γ; z) is an univalent-analytic function in the
complex plane with slit (1,∞). When α or β are zero or negative integers, the series
given (1.1) terminates after a finite number terms and the hypergeometric function is
a polynomial in z. Further, when n ∈ Z−0 , the function given by (1.1) is not defined
but the limit can be considered there.

It follows from (1.1) that

F
(
α, β; γ; z

)
= F

(
β, α; γ; z

)
, (1.3)

and, in the light of the identity (1.2), it is easily shown that

d

dz

(
F
(
α, β; γ; z

))
=
αβ

γ
F (α, β; γ; z), (1.4)

and, more generally,

dn

dzn

(
F (α, β; γ; z)

)
=

(α)n(β)n
(γ)n

F
(
α+ n, β + n; γ + n; z

)
(1.5)

for all n ∈ N0. In particular, we note that the properties relating to the derivative
given in (1.4) (or (1.5) will be useful in the simpler expression of complex statements
for equations (or inequalities) stated by derivative(s).

The second important issue is associated with a homogenous differential equation
in the complex plane. So, there is a need to present about it. For this, the function,
given by the series in the form (1.1), is a solution of the following homogeneous
differential equation given by:

z (1− z) d
2w

dz2
+
[
γ −

(
α+ β + 1

)
z
]dw
dz
− αβw(z) = 0 , (1.6)

where α ∈ C− Z−0 , β ∈ C− Z−0 , γ ∈ C− Z−0 and z ∈ C− [1,∞).
The differential equation just above is also known as the (Euler’s) hypergeometric

differential equation in the literature. By a simple focusing, it can be easy seen that,
for the equation in (1.6), there have three singular points, which are 0, 1 and ∞.
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Because of the important relation between the function given by (1.1) and the
equation (1.6), there are a large number of the possible special functions specified
by the function given (1.1) and, naturally, they will also include many significant
relations with the differential equation in (1.6). We can now continue to determine
those relations (or properties) in the second section.

2. Main result, comment and recommendations

As is known, the proof technique used in the proof of the theories is very impor-
tant in the theoretical studies. A few examples given as in [27]-[29] are some of the
proofs used in the complex functions theory, which is appropriate for the purpose of
this study. As a different proof method will be used in this paper, in order to prove
our main result, initially, we need to recall the following-well-known assertion (see
[35] and [36]).

Lemma 2.1. Let a function p(z) in the form:

p(z) = 1 + enz
n + en+1z

n+1 + en+2z
n+2 + · · · (2.1)

be analytic in the open set:

U =
{
z : z ∈ C and |z| < 1

}
,

where n ∈ N and en ∈ C.
If the function p(z) is not with positive real part in U, then there is a point z0 ∈ U

such that

p(z)
∣∣
z=z0

= iλ and z
d

dz

(
p(z)

)∣∣∣
z=z0

= µ , (2.2)

where

λ ∈ R− {0} , µ ∈ R and µ ≤ − n 1 + λ2

2

(
n ∈ N

)
. (2.3)

Let us now introduce a third-order differential equations with (complex) variable
coefficients in the complex plane, which will play an important role in our main result,
as in the following form:

(1− z) z2 d
3ω

dz3
+ z

[
1 + γ −

(
3 + α+ β

)
z
] d2ω
dz2

−
(
1 + α+ β

)
z
dω

dz
= αβ Φ(z) , (2.4)

where z ∈ U, α ∈ C − Z−0 , β ∈ C − Z−0 and γ ∈ C − Z−0 . In special, note that, since
the differential equation in (2.4) is the derivative of both sides of the equation in
(1.6), clearly, both the function w := F (α, β; γ; z) is the solution for the (complex)
differential equation in (2.4) and the (complex) function Φ(z) is analytic in U.

Theorem 2.2. Let the functions ω := ω(z) and Φ(z) be in the forms defined by (1.1)
and (2.4), respectively. For any z ∈ U and for some α ∈ C− Z−0 and β ∈ C− Z−0 , if
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any one of the cases of the following inequality:

<e
(
αβ Φ(z)

){ > −<e(αβ)2 if <e
(
αβ
)
≥ 0

< −<e(αβ)2 if <e
(
αβ
)
≤ 0

, (2.5)

is satisfied, then

<e
(
ω(z)

)
> 0

(
z ∈ U

)
(2.6)

is also satisfied

Proof. Since the function ω ≡ ω(z) has the form given by (1.1), it is a particular
solution for the differential equation given by (1.6). By taking into account this fact,
let us take p(z) as

p(z) = ω(z)
(
≡ F (α, β; γ; z)

)
(2.7)

to show that <e
(
p(z)

)
> 0 for all z ∈ U.

It is clear that the function ω(z) both has the series form given by (1.6) and is
analytic in the open set U of the complex plane. Therefore, the function p(z) is also
satisfies the conditions p(0) = 1 and n = 1, accentuated in Lemma 2.1.

It easily follows from (2.7) that

d

dz

(
p(z)

)
=
dω

dz
(2.8)

and in consideration of the equation determined in (2.4), the following relationships:

(1− z) z2 d
3ω

dz3
+ z

[
1 + γ −

(
3 + α+ β

)
z
] d2ω
dz2

−
(
1 + α+ β

)
z
dω

dz
= αβ zω′(z) (2.9)

≡ αβ Φ(z) (say)

is easily identified, where z ∈ U, α ∈ C− Z−0 and β ∈ C− Z−0 .
Suppose now that the related function p(z) is not with positive real part in the

domain U. In the circumstances, under the conditions (2.2) and (2.3) of Lemma 2.1,
there is a point z0 ∈ U such that

p(z)
∣∣
z=z0

= p
(
z0
)

= iλ and z
d

dz

[
p(z)

]∣∣∣
z=z0

= µ ,

where

n = 1 , λ ∈ R− {0} , µ ∈ R and µ ≤ − 1 + λ2

2
.

Then, under favour of the assumptions above, from (2.9), it follows that

<e
(
αβ Φ

(
z0
))

= µ<e
(
αβ
){ ≤ −<e(αβ)2 if <e(αβ) ≥ 0

≥ −<e(αβ)2 if <e(αβ) ≤ 0
,

where

α ∈ C− Z−0 , β ∈ C− Z−0 and µ ≤ − 1 + λ2

2

(
λ ∈ R− {0}

)
.
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But, these cases above are contradictions, respectively, with the cases of the inequality,
given in (2.5). Therefore, the function p(z), defined by (2.7), immediately yields the
the inequality given by (2.6). So, this completes the proof of Theorem 2.1. �

As we indicated in the first section, the function F (α, β; γ; z) defined by (1.1)
plays very important roles in mathematical analysis and its applications. Specially, it
also enables us to solve many important and interesting problems, such as conformal
mapping of triangular domains bounded by line segments or circular arcs and various
problems of quantum mechanics. Most of the functions that occur during analysis (or
searches) can be expressed with nearly special forms of the hypergeometric functions.

In order to emphasize the importance of our main result, we here think useful
to provide some information again. Especially, the series representation in (1.1) gives
researchers much more motivations for their investigations; that is, the fact that the
elementary functions and several other important functions in mathematics can be
stated in terms of hypergeometric functions. Moreover, hypergeometric functions can
be described as solutions of special second order linear differential equations that
we pointed out as the hypergeometric differential equations given as in (1.6). After-
wards, Riemann was the first to raise this idea and introduce a special symbol to
classify hypergeometric functions by singularities and exponents of differential equa-
tions. As we have also noted in the section 1, the hypergeometric function is a solution
of the hypergeometric differential equation given in (1.6). The generalization of this
equation to three arbitrary regular singular points is given by Riemanns differential
equation. Any second order differential equation with three regular singular points
can be transformed to the hypergeometric differential equation by changing of its
variable. For more information, see the works given by the references in [2], [5]-[6],
[9], [10], [16], [17], [20], [23], [31], [32], [38]-[41] and [43]-[51]. Therefore, as a require-
ment of the above explanations, in view of the above those relationships between the
function given in (1.1) and the equation given in (1.6) will be important for our novel
investigation. For this reason, our main result and their implications have various
novel and/or nonlinear relations between them. Moreover, the desired research can
be further expanded, taking into consideration the derivatives mentioned in (1.4) (or
(1.5) for all the possible results that can be obtained. Accordingly, to determine all
those results will be determined by the related elementary and also special functions,
we need first recall some extra information in relation with the related definitions in
(1.1) and (1.6), which are in the following forms.

(i) Some of Elementary Functions:

(1 + z)n = F
(
− n, 1; 1;−z

) (
z ∈ C

)
, (2.10)

1

1− z
= F

(
1, 1; 1; z

) (
z ∈ C− {0}

)
, (2.11)

cos(z) = F
(
1/2,−1/2; 1/1; sin2 z

) (
z ∈ C

)
, (2.12)

ln(1 + z) = zF
(
1, 1; 2;−z

) (
z ∈ C− {−1}

)
, (2.13)

ln

(
1 + z

1− z

)
= 2zF

(
1/2, 1; 3/2; z2

) (
z ∈ C− {±1}

)
, (2.14)
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exp(z) = lim
β→∞

F
(
1, β; 1; z/β

) (
z ∈ C

)
, (2.15)

arcsin(z) = zF
(
1/2, 1/2; 3/2; z2

) (
z ∈ C

)
(2.16)

and
arctan(z) = zF

(
1/2, 1; 3/2;−z2

) (
z ∈ C

)
. (2.17)

(ii) The Complete Elliptic Integrals of the First and Second Kinds:

K(z) =
π

2
F
(
1/2, 1/2; 1;−z2

) (
z ∈ C

)
(2.18)

and
E(z) =

π

2
F
(
− 1/2, 1/2; 1;−z2

) (
z ∈ C

)
. (2.19)

(iii) The Adjoint Legendre Functions:

Pnm(z) =
(z + 1)n/2

(z − 1)m/2
1

Γ(1− n)
F
(
− n, n+ 1; 1−m;

1− z
2

)
. (2.20)(

− n,m ∈ N0; z ∈ C
)

(iv) The Chebyshev Polynomials:

Tn(z) = F
(
− n, n;

1

2
;

1− z
2

) (
n ∈ N0; z ∈ C

)
. (2.21)

(v) The Legendre Polynomials:

Pn(z) = F
(
− n, n+ 1; 1;

1− z
2

) (
n ∈ N0; z ∈ C

)
. (2.22)

(vi) The Gegenbauer (Ultraspherical) Polynomials:

Cαn (z) =
(1 + α)n
Γ(n+ 1)

F
(
− n, n+ 2α;α+

1

2
;

1− z
2

)
(2.23)(

n ∈ N0;α ∈ Z−0 ; z ∈ C
)
.

(vii) The Jacobi Polynomials:

Pα,βn (z) =
(1 + α)n
Γ(n+ 1)

F
(
− n, 1 + n+ α+ β;α+ 1;

1− z
2

)
. (2.24)(

n ∈ N0;α ∈ Z−0 ;β ∈ Z−0 ; z ∈ C
)
.

(viii) The Confluent Hypergeometric Function 1F1(α;β; z):

1F1(α;β; z) = lim
γ→∞

F
(
α, γ;β;

z

γ

) (
α, β, γ ∈ Z−0 ; z ∈ C

)
. (2.25)

(ix) The Error Functions:

erf(z) =
2z√
π

1F1

(
1/2; 3/2;−z2

) (
z ∈ C

)
(2.26)
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and

erfc(z) =
1√
π
e−z

2

1F1

(
1/2; 1/2; z2

) (
z ∈ C

)
(2.27)

and so on. For the details of those functions (or series representations), one may refer
to the works given by the references in [2], [5], [15], [6], [12], [18], [20], [34], [38], [40]
and [43]-[51].

As certain special implications of our main result, when considering the impor-
tant relationships signified by (2.10)-(2.27), it is naturally easy to determine a number
of special results, which are related to the main result, namely, Theorem 2.2. In order
to determine both appropriate sampling and possible special results, we would like
to leave the researchers with detailed research and emphasize only two of them, as
examples.

As one of the special implications, we would like to point out a comprehensive
result in relation with the confluent hypergeometric function that we mentioned as
in (2.25). For this, we would like to remind researchers of some detailed information
about this particular results again.

The following functional series with the complex variable z:

1F1

(
α;β; z

)
= 1 +

α

β
z +

α(α+ 1)

β(β + 1)

z2

2!
+ . . .

=

∞∑
k=0

(α)k
(β)k

zk

k!
(2.28)

(
z ∈ U;α ∈ C− Z−0 ;β ∈ C− Z−0

)
,

where (α)k and (β)k are the Pochhammer symbols defined by (1.2), in generally, is
called as the confluent hypergeometric function in the literature. Clearly, it defines
an analytic function for all finite z, is closely connected the hypergeometric function
given by (1.1), and is then obtained as a limit of F (α, β; γ; z/β) when β tends to ∞
as it was indicated in (2.25). It is clear that the confluent hypergeometric function
is a degenerate form of the hypergeometric function 2F1

(
α;β; γ; z

)
which arises as a

solution of the confluent hypergeometric differential equation given by above.

Since the confluent hypergeometric function is any of the solutions of the follow-
ing second-order ordinary linear differential equation:

z
d2ω

dz2
+
(
α− z

) dω
dz
− β ω = 0 (2.29)

(
z ∈ C;α ∈ C− Z−0 ;β ∈ C− Z−0

)
,

this differential equation is also called as the confluent hypergeometric differential
equation in the literature.

The first special implication of our main result is contained in the following
proposition below.
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Proposition 2.3. Let the function ω := ω(z) be in the form given as (2.28) and also
let any one of the cases of the following inequality:

<e
{
z2
d3ω

dz3
+
[
1 +

(
α− z

)]
z
d2ω

dz2
− z dω

dz

}
{

> −<e(β)2 if <e
(
β
)
≥ 0

< −<e(β)2 if <e
(
β
)
≤ 0

(2.30)

be provided for any z ∈ U and for some α ∈ C− Z−0 and β ∈ C− Z−0 . In the present
case,

<e
(
ω(z)

)
> 0

(
z ∈ U

)
(2.31)

is also provided.

Proof. By means of the information presented as in (2.28) and (2.29), and also in
consideration of the proof of Theorem 2.2, if one takes the function p(z), defined as
in (2.7), namely, define it in the form:

p(z) = ω(z)
(
≡ 1F1

(
α;β; z

))
(
z ∈ U;α ∈ C− Z−0 ;β ∈ C− Z−0

)
,

and then the related steps used (in the proof of Theorem 2.2) are again followed, the
desired proof can be easily obtained. Here, its details are left to the researchers.

Through the instrument of the relation between the hypergeometric function
and the complex error function in (2.26) together with (2.27), as second implication
of our main result, certain special results can be also obtained between the various
inequalities associated with error functions in the complex plane. For those, in (2.26),
(2.28) and (2.29), respectively, by choosing the suitable values of the parameters α
and β, one can derive some of them. For example, by setting

α :=
1

2
and β :=

3

2

in (2.26), the following results:

1F1

(
1/2; 3/2;−z2

)
=

√
π

2

erf (z)

z
(2.32)(

z ∈ D := U− {0}
)
,

1F1

(
1/2; 3/2; z

)
= 2

∞∑
k=0

(−z)k

k!

(
z ∈ U

)
(2.33)

and

2 z
d2ω

dz2
+ (1− 2z)

dω

dz
− 3ω = 0

(
z ∈ U

)
(2.34)

are easily obtained.
So, as we have informed above, the following-special function:

1F1

(
1/2; 3/2;−z2

) (
z ∈ U

)
,
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which is given by (2.32) (or (2.33)), is a solution for the second-order linear differential
equation given by (2.34). After these explanations, the following proposition, i.e.,
Proposition 2.4 below, can be easily proved within the scope of the rationale of the
main result (or Proposition 2.3). The detail of the related proof has been left to the
researchers again.

Proposition 2.4. For any z ∈ D
(
or, z ∈ U

)
, if the inequality:

<e
{

2z2
d3

dz3

(
erf(z)

z

)
+
[
2 +

(
1− 2z

)]
z
d2

dz2

(
erf(z)

z

)
− 2z

d

dz

(
erf(z)

z

)}
> − 3√

π

is ensured, then

<e
(

erf (z)

z

)
> 0

is also ensured.
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Notes on the norm of pre-Schwarzian derivatives
of certain analytic functions
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Abstract. In this paper, we obtain sharp bounds for the norm of pre-Schwarzian
derivatives of certain analytic functions. Initially this problem was handled by
H. Rahmatan, Sh. Najafzadeh and A. Ebadian [Stud. Univ. Babeş-Bolyai Math.
61(2016), no. 2, 155-162]. We pointed out that their proofs are incorrect and
present correct proofs.
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1. Introduction

Let ∆ = {z ∈ C : |z| < 1} be the open unit disc on the complex plane C. Let
H be the family of all analytic functions and A ⊂ H be the family of all normalized
functions in ∆. We denote by U the class of all univalent functions in ∆ and denote
by LU ⊂ H the class of all locally univalent functions in ∆. For a f ∈ LU , we consider
the following norm

||f || = sup
z∈∆

(1− |z|2)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ,
where the quantity f ′′/f is often referred to as pre-Schwarzian derivative of f such
that in the theory of Teichmüller spaces is considered as element of complex Banach
spaces. We remark that ||f || <∞ if, and only if, f is uniformly locally univalent in ∆.
We also notice that, ||f || ≤ 6 if f is univalent in ∆ and, conversely, f is univalent in
∆ if ||f | ≤ 1. Both of these bounds are sharp, see [1]. For more geometric properties
of the function f relating the norm, see [2, 4, 9] and the references therein.

We say that a function f is subordinate to g, written by f(z) ≺ g(z) or f ≺ g
where f and g belonging to the class A, if there exists a Schwarz function w(z) is
analytic in ∆ with

w(0) = 0 and |w(z)| < 1 (z ∈ ∆),
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such that f(z) = g(w(z)) for all z ∈ ∆.
Here are two certain subclasses of analytic and normalized functions A functions

defined. First, we say that a function f ∈ A belongs to the class S(α, β) if it satisfies
the following two-sided inequality

α < Re

{
zf ′(z)

f(z)

}
< β (z ∈ ∆),

where 0 ≤ α < 1 and β > 1. The class S(α, β) was introduced by Kuroki and Owa (cf.
[7]) and generalized by Kargar et al. [6]. We also say that a function f ∈ A belongs
to the class V(α, β) if

α < Re

{(
z

f(z)

)2

f ′(z)

}
< β (z ∈ ∆).

The class V(α, β) was first introduced by Kargar et al., see [5].
Since the convex univalent function

Pα,β(z) = 1 +
(β − α)i

π
log

(
1− eiφz

1− z

)
(z ∈ ∆), (1.1)

where

φ :=
2π(1− α)

β − α
, (1.2)

maps ∆ onto the domain Ω = {ω : α < Re{ω} < β} conformally, thus we have.

Lemma 1.1. ([7, Lemma 1.3]) Let α ∈ [0, 1) and β ∈ (1,∞). Then f ∈ S(α, β) if, and
only if,

zf ′(z)

f(z)
≺ 1 +

(β − α)i

π
log

(
1− eiφz

1− z

)
(z ∈ ∆),

where φ is defined in (1.2).

Lemma 1.2. ([5, Lemma 1.1]) Let α ∈ [0, 1) and β ∈ (1,∞). Then f ∈ V(α, β) if, and
only if, (

z

f(z)

)2

f ′(z) ≺ 1 +
(β − α)i

π
log

(
1− eiφz

1− z

)
(z ∈ ∆),

where φ is defined in (1.2).

Rahmatan, Najafzadeh and Ebadian (see [10]) estimated the norm of pre-
Schwarzian derivatives of the function f where f belongs to the classes S(α, β) and
V(α, β). Both their estimates and proofs are incorrect. Indeed, the results that were
wrongly proven by them are as follows:
Theorem A. For 0 ≤ α < 1 < β, if f ∈ S(α, β), then

||f || ≤ 2(β − α)

π

(
1− e2πi 1−αβ−α

)
.

Theorem B. For 0 ≤ α < 1 < β, if f ∈ V(α, β), then

||f || ≤ 3(β − α)

π

(
1− e2πi 1−αβ−α

)
.

We first note that both the above bounds are complex numbers!
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In this paper we give the best estimate for ||f || when f ∈ S(α, β) and disprove the
Theorem B. However, we show that ||f || <∞ when f ∈ V(α, β).

2. Main results

The correct version of Theorem A is as follows.

Theorem 2.1. Let α ∈ [0, 1) and β ∈ (1,∞). If a function f belongs to the class
S(α, β), then

||f || ≤ 2(β − α)

π

√
4 sin2(φ/2) + 2π2 − 4 sin(φ/2)√

4 sin2(φ/2) + 2π2

, (2.1)

where φ is defined in (1.2). The result is sharp.

Proof. Let that α ∈ [0, 1), β ∈ (1,∞) and φ be given by (1.2). If f ∈ S(α, β), by
Lemma 1.1, then we have

zf ′(z)

f(z)
≺ 1 +

(β − α)i

π
log

(
1− eiφz

1− z

)
(z ∈ ∆). (2.2)

The above subordination relation (2.2) implies that

zf ′(z)

f(z)
= 1 +

(β − α)i

π
log

(
1− eiφw(z)

1− w(z)

)
(z ∈ ∆),

or equivalently

log

{
zf ′(z)

f(z)

}
= log

{
1 +

(β − α)i

π
log

(
1− eiφw(z)

1− w(z)

)}
(z ∈ ∆), (2.3)

where w(z) is the well-known Schwarz function. From (2.3), differentiating on both
sides, after simplification, we obtain

f ′′(z)

f ′(z)
=

(β − α)i

π

[
1

z
log

(
1− eiφw(z)

1− w(z)

)

+
(1− eiφ)w′(z)

(1− w(z))(1− eiφw(z))
(

1 + (β−α)i
π log

(
1−eiφw(z)

1−w(z)

))
 . (2.4)

It is well-known that |w(z)| ≤ |z| (cf. [3]) and also by the Schwarz-Pick lemma, for a
Schwarz function the following inequality

|w′(z)| ≤ 1− |w(z)|2

1− |z|2
(z ∈ ∆), (2.5)

holds (see [8]). We also know that if log is the principal branch of the complex loga-
rithm, then we have

log z = ln |z|+ i arg z (z ∈ ∆ \ {0},−π < arg z ≤ π). (2.6)

Therefore, by the above equation (2.6), it is well-known that if |z| ≥ 1, then

| log z| ≤
√
|z − 1|2 + π2, (2.7)
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while for 0 < |z| < 1, we have

| log z| ≤

√∣∣∣∣z − 1

z

∣∣∣∣2 + π2. (2.8)

Thus, it is natural to distinguish the following cases.

Case 1.
∣∣∣ 1−eiφw(z)

1−w(z)

∣∣∣ ≥ 1.

By (2.7), we have

∣∣∣∣log

(
1− eiφw(z)

1− w(z)

)∣∣∣∣ ≤
√∣∣∣∣1− eiφw(z)

1− w(z)
− 1

∣∣∣∣2 + π2

=

√
|1− eiφ|2|w(z)|2 + π2|1− w(z)|2

|1− w(z)|

≤

√
4 sin2(φ/2)|w(z)|2 + π2(1 + |w(z)|2)

1− |w(z)|

≤

√
4 sin2(φ/2)|z|2 + π2(1 + |z|2)

1− |z|
(2.9)

for all z ∈ ∆. We note that the above inequality is well defined also for z = 0. Thus
from (2.4), (2.5) and (2.9), we get∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣
=

∣∣∣∣ (β − α)i

π

[
1

z
log

(
1− eiφw(z)

1− w(z)

)

+
(1− eiφ)w′(z)

(1− w(z))(1− eiφw(z))
(

1 + (β−α)i
π log

(
1−eiφw(z)

1−w(z)

))
∣∣∣∣∣∣

≤ (β − α)

π

[
1

|z|

∣∣∣∣log

(
1− eiφw(z)

1− w(z)

)∣∣∣∣
+

∣∣1− eiφ∣∣ |w′(z)|
|1− w(z)| |1− eiφw(z)|

(
1− (β−α)

π

∣∣∣log
(

1−eiφw(z)
1−w(z)

)∣∣∣)


≤ (β − α)

π

 1

|z|


√

4 sin2(φ/2)|z|2 + π2(1 + |z|2)

1− |z|


+

2 sin(φ/2)

1− |z| − (β−α)
π

√
4 sin2(φ/2)|z|2 + π2(1 + |z|2)

.
1 + |z|
1− |z|2

 .
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However, we obtain

||f || = sup
z∈∆

(1− |z|2)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣
≤ sup

z∈∆

{
(β − α)

π

[
1 + |z|
|z|

√
4 sin2(φ/2)|z|2 + π2(1 + |z|2)

+
2 sin(φ/2)(1 + |z|)

1− |z| − (β−α)
π

√
4 sin2(φ/2)|z|2 + π2(1 + |z|2)


=

2(β − α)

π

√
4 sin2(φ/2) + 2π2 − 4 sin(φ/2)√

4 sin2(φ/2) + 2π2

concluding the inequality (2.1).

Case 2.
∣∣∣ 1−eiφw(z)

1−w(z)

∣∣∣ < 1.

By (2.8), we have

∣∣∣∣log

(
1− eiφw(z)

1− w(z)

)∣∣∣∣ ≤
√√√√√
∣∣∣∣∣∣

1−eiφw(z)
1−w(z) − 1

1−eiφw(z)
1−w(z)

∣∣∣∣∣∣
2

+ π2

=

√
|1− eiφ|2|w(z)|2 + π2|1− eiφw(z)|2

|1− eiφw(z)|

≤

√
4 sin2(φ/2)|w(z)|2 + π2(1 + |w(z)|2)

1− |w(z)|
(|eiφ| = 1)

≤

√
4 sin2(φ/2)|z|2 + π2(1 + |z|2)

1− |z|
.

Since in both cases 1 and 2 we have the equal estimates for∣∣∣∣log

(
1− eiφw(z)

1− w(z)

)∣∣∣∣ ,
therefore, in this case also, the desired result will be achieved. For the sharpness,
consider the function fα,β(z) as follows

fα,β(z) = z exp

{
(β − α)i

π

∫ z

0

1

ξ
log

(
1− eiφξ

1− ξ

)
dξ

}
= z +

(β − α)i

π

(
1− eiφ

)
z2 + · · · ,

where φ is defined in (1.2), 0 ≤ α < 1 and β > 1. A simple calculation, gives us

zf ′α,β(z)

fα,β(z)
= 1 +

(β − α)i

π
log

(
1− eiφz

1− z

)
(z ∈ ∆)
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and thus fα,β(z) ∈ S(α, β). With the same proof as above we get the desired result.
The result also is sharp for a rotation of the function fα,β(z) as follows:

fα,β(z) = z exp

{
(β − α)i

π

∫ z

0

1

ξ
log

(
1− eiφξ

1− e−iφξ

)
dξ

}
.

This is the end of proof. �

Remark 2.2. In Theorem B, the authors of [10] estimated the norm ||f || when f ∈
V(α, β). But in the proof of this theorem [10, p. 160], wrongly, they used from the
following equation

zf ′(z)

f(z)
= Pα,β(w(z)),

where Pα,β is defined in (1.1). This means that f , simultaneously, belonging to the
class S(α, β) and V(α, β).
Next, we show that the best estimate for ||f || when f ∈ V(α, β) does not exist.

Theorem 2.3. Let α ∈ [0, 1) and β ∈ (1,∞). If a function f belongs to the class
V(α, β), then ||f || <∞.

Proof. Let α ∈ [0, 1) and β ∈ (1,∞) and f ∈ V(α, β). Then by Lemma 1.2 and by
use of definition of subordination, we have(

z

f(z)

)2

f ′(z) = Pα,β(w(z)) = 1 +
(β − α)i

π
log

(
1− eiφw(z)

1− w(z)

)
, (2.10)

where w is Schwarz function and φ is defined in (1.2). Taking logarithm on both sides
of (2.10) and differentiating, we get

f ′′(z)

f ′(z)
= 2

(
f ′(z)

f(z)
− 1

z

)
+

(β − α)i

π
(2.11)

×

 (1− eiφ)w′(z)

(1− w(z))(1− eiφw(z))
(

1 + (β−α)i
π log

(
1−eiφw(z)

1−w(z)

))
 .

With a simple calculation, (2.10) implies that(
f ′(z)

f(z)
− 1

z

)
=
f(z)

z

(
Pα,β(w(z))

z
− 1

)
. (2.12)

Combining (2.11) and (2.12), give us

f ′′(z)

f ′(z)
= 2

(
f(z)

z

(
Pα,β(w(z))

z
− 1

))

+
(β − α)i

π

 (1− eiφ)w′(z)

(1− w(z))(1− eiφw(z))
(

1 + (β−α)i
π log

(
1−eiφw(z)

1−w(z)

))


It was proved in ([5, Theorem 2.2]) that if f ∈ V(α, β) where 0 < α ≤ 1/2 and β > 1,
then

1− 1

α
< Re

{
f(z)

z

}
<∞ (z ∈ ∆).



Notes on the norm of pre-Schwarzian derivatives 363

Since Re{z} ≤ |z|, the last two-sided inequality means that |f(z)/z| < ∞ when
f ∈ V(α, β). Thus from the above we deduce that∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ <∞ (z ∈ ∆)

concluding the proof. �
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On a certain class of harmonic functions and the
generalized Bernardi-Libera-Livingston integral
operator

Grigore Ştefan Sălăgean and Ágnes Orsolya Páll-Szabó

Abstract. In this paper we examine the closure properties of the class VH(F ; γ)
under the generalized Bernardi-Libera-Livingston integral operator Lc(f),

(c > −1) which is defined by Lc(f) = Lc(h) + Lc(g), f = h + g, h and g
are analytic functions, where

Lc(h)(z) =
c+ 1

zc

z∫
0

(tc−1h(t)dt and Lc(g)(z) =
c+ 1

zc

z∫
0

(tc−1g(t)dt.

The obtained results are sharp and they improve known results.

Mathematics Subject Classification (2010): 30C45, 30C50.

Keywords: Harmonic univalent functions, extreme points, varying arguments,
Hadamard product, integral operator.

1. Preliminaries

A continuous function f = u + iv is a complex-valued harmonic function in a
complex domain G if both u and v are real and harmonic in G. In any simply-connected
domain D ⊂ G, we can write f = h + g, where h and g are analytic in D. We call h
the analytic part and g the co-analytic part of f . A necessary and sufficient condition
for f to be locally univalent and orientation preserving in D is that |h′ (z)| > |g′ (z)|
in D (see [3]).
Denote by H the family of functions

f = h+ g (1.1)

which are harmonic, univalent and orientation preserving in the open unit disc
U = {z : |z| < 1} so that f is normalized by f(0) = h(0) = f ′z(0) − 1 = 0. Thus,
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for f = h + g ∈ H, the functions h and g analytic in U can be expressed in the
following forms:

h(z) = z +

∞∑
m=2

amz
m, g(z) =

∞∑
m=1

bmz
m (0 ≤ b1 < 1) ,

and f(z) is then given by

f(z) = z +

∞∑
m=2

amz
m +

∞∑
m=1

bmzm (0 ≤ b1 < 1) . (1.2)

For functions f ∈ H given by (1.2) and F ∈ H given by

F (z) = H(z) +G(z) = z +

∞∑
m=2

Amz
m +

∞∑
m=1

Bmzm, (0 ≤ B1 ≤ 1), (1.3)

we recall the Hadamard product (or convolution) of f and F by

(f ∗ F )(z) = z +

∞∑
m=2

amAmz
m +

∞∑
m=1

bmBmzm (z ∈ U) . (1.4)

In terms of the Hadamard product (or convolution), we choose F as a fixed function
in H such that (f ∗ F )(z) exists for any f ∈ H, and for various choices of F we get
different linear operators which have been studied in recent past.
In [8] a subclass of H denoted by SH(F ; γ), for 0 ≤ γ < 1, is defined and studied and
it consists of functions of the form (1.1) satisfying the inequality:

∂

∂θ
(arg [(f ∗ F )(z)]) > γ (1.5)

0 ≤ θ < 2π and z = reiθ. Equivalently

Re

{
z (h (z) ∗H (z))

′ − z (g (z) ∗G (z))
′

h (z) ∗H (z) + g (z) ∗G (z)

}
≥ γ (1.6)

where z ∈ U . We also let VH(F ; γ) = SH(F ; γ)
⋂
VH where VH is the class of har-

monic functions with varying arguments introduced by Jahangiri and Silverman [6],
consisting of functions f of the form (1.1) in H for which there exists a real number
φ such that

ηm + (m− 1)φ ≡ π (mod 2π) , δm + (m+ 1)φ ≡ 0 (mod 2π) , m ≥ 2, (1.7)

where ηm = arg (am) and δm = arg (bm).
Some of the function classes emerge from the function class SH(F ; γ) defined above.
Indeed, if we specialize the function F (z) we can obtain, respectively, (see [8]) the class
of functions defined using: the Wright’s generalized operator on harmonic functions
([9], [13]), the Dziok-Srivastava operator on harmonic functions ([1]), the Carlson-
Shaffer operator ([2]), the Ruscheweyh derivative operator on harmonic functions
([5], [7], [10]) , the Srivastava-Owa fractional derivative operator ([12]), the Sălăgean
derivative operator for harmonic functions ([4], [11]).
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In the following we suppose that F (z) is of the form

F (z) = H(z) +G(z) = z + z +

∞∑
m=2

Cm (zm + zm) , (1.8)

where Cm ≥ 0 (m ≥ 2).
In [8] the following characterization theorem is proved

Theorem 1.1. Let f = h + g be given by (1.2) with restrictions (1.7) and 0 ≤ b1 <
1− γ
1 + γ

, 0 ≤ γ < 1. Then f ∈ VH(F ; γ) if and only if the inequality

∞∑
m=2

(
m− γ
1− γ

|am|+
m+ γ

1− γ
|bm|

)
Cm ≤ 1− 1 + γ

1− γ
b1 (1.9)

holds true.

Theorem 1.2. [8] Set λm =
1− γ

(m− γ)Cm
and µm =

1− γ
(m+ γ)Cm

. Then for b1 fixed,

0 ≤ b1 <
1− γ
1 + γ

the extreme points for VH(F ; γ), 0 ≤ γ < 1 are{
z + λmxz

m + b1z
}
∪
{
z + b1z + µmxzm

}
where m ≥ 2 and x = 1− 1 + γ

1− γ
b1.

2. Main result

Now, we will examine the closure properties of the class VH(F ; γ) under the
generalized Bernardi-Libera-Livingston integral operator Lc(f), (c > −1) which is

defined by Lc(f) = Lc(h) + Lc(g) where

Lc(h)(z) =
c+ 1

zc

z∫
0

(tc−1h(t)dt and Lc(g)(z) =
c+ 1

zc

z∫
0

(tc−1g(t)dt.

Theorem 2.1. Let f ∈ VH(F ; γ). Then Lc(f) ∈ VH(F ; δ (γ)) where

δ (γ) =
(2 + γ) (c+ 2) (1− b1)− 2 (c+ 1) [(1− γ)− (1 + γ) b1]

(2 + γ) (c+ 2) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
> γ.

The result is sharp.

Proof. Since f ∈ VH(F ; γ) we have

∞∑
m=2

(
m− γ
1− γ

|am|+
m+ γ

1− γ
|bm|

)
Cm

1− 1 + γ

1− γ
b1

≤ 1. (2.1)
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We know from Theorem 1.1 that Lc(f) ∈ VH(F ; δ (γ)) if and only if

∞∑
m=2

(
m− δ (γ)

1− δ (γ)

c+ 1

c+m
|am|+

m+ δ (γ)

1− δ (γ)

c+ 1

c+m
|bm|

)
Cm

1− 1 + δ (γ)

1− δ (γ)
b1

≤ 1. (2.2)

We note that the inequalities

∞∑
m=2

(
m− δ (γ)

1− δ (γ)

c+ 1

c+m
|am|+

m+ δ (γ)

1− δ (γ)

c+ 1

c+m
|bm|

)
Cm

1− 1 + δ (γ)

1− δ (γ)
b1

≤

∞∑
m=2

(
m− γ
1− γ

|am|+
m+ γ

1− γ
|bm|

)
Cm

1− 1 + γ

1− γ
b1

(2.3)

imply (2.2). It is sufficient to determine δ (γ) such that

m− δ(γ)

1− δ(γ)

c+ 1

c+m

1− 1 + δ(γ)

1− δ(γ)
b1

≤

m− γ
1− γ

1− 1 + γ

1− γ
b1

(2.4)

and
m+ δ(γ)

1− δ(γ)

c+ 1

c+m

1− 1 + δ(γ)

1− δ(γ)
b1

≤

m+ γ

1− γ

1− 1 + γ

1− γ
b1

. (2.5)

holds true. (2.4) is equivalent to

m− δ(γ)

1− δ(γ)− b1 − δ(γ)b1

c+ 1

c+m
≤ m− γ

(1− γ)− (1 + γ) b1

δ(γ) ≤ (m− γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m− γ) (c+m) (1 + b1)− (c+ 1) [(1− γ)− (1 + γ) b1]
. (2.6)

Relation (2.5) is equivalent to

m+ δ(γ)

1− δ(γ)− b1 − δ(γ)b1

c+ 1

c+m
≤ m+ γ

(1− γ)− (1 + γ) b1

δ(γ) ≤ (m+ γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m+ γ) (c+m) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
. (2.7)
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From (2.6) and (2.7) we choose the smaller one:

(m− γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m− γ) (c+m) (1 + b1)− (c+ 1) [(1− γ)− (1 + γ) b1]

>
(m+ γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m+ γ) (c+m) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]

or equivalently

2(c+ 1)∆2m(m− 1)

[(m− γ) (c+m) (1 + b1)− (c+ 1) ∆] [(m+ γ) (c+m) (1 + b1) + (c+ 1) ∆]
> 0,

where ∆ = [(1− γ)− (1 + γ) b1] > 0 which is true. So

δ(γ) ≤ (m+ γ) (c+m) (1− b1)−m (c+ 1) [(1− γ)− (1 + γ) b1]

(m+ γ) (c+m) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
. (2.8)

Let us consider the function E : [2;∞)→ R

E(x) =
(x+ γ) (c+ x) (1− b1)− x (c+ 1) [(1− γ)− (1 + γ) b1]

(x+ γ) (c+ x) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
;

then its derivative is:

E′(x) =
(c+ 1) [(1− γ)− (1 + γ) b1]

[
(1 + b1)x2 + 2x(1− b1) + 2γ + b1 − 1

]
{(x+ γ) (c+ x) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]}2

> 0.

E(x) is an increasing function. In our case we need δ (γ) ≤ E (m) ,∀m ≥ 2 and for
this reason we choose

δ (γ) = E(2) =
(2 + γ) (c+ 2) (1− b1)− 2 (c+ 1) [(1− γ)− (1 + γ) b1]

(2 + γ) (c+ 2) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
.

We must check δ (γ) > γ that is equivalent to

[(1− γ)− (1 + γ) b1] (2 + γ) [(c+ 2)− (c+ 1)]

(2 + γ) (c+ 2) (1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]
> 0

which is true.
The result is sharp, because if

f(z) = z + b1z +
1− γ

(2 + γ)C2

(
1− 1 + γ

1− γ
b1

)
z2

then

Lc(f)(z) = z + b1z +
1− γ

(2 + γ)C2

(
1− 1 + γ

1− γ
b1

)
z2
c+ 1

c+ 2

= z + b1z +
1− δ (γ)

(2 + δ (γ))C2

(
1− 1 + δ(γ)

1− δ(γ)
b1

)
z2

⇔ 1− γ
(2 + γ)

c+ 1

c+ 2

1− γ − (1 + γ)b1
1− γ

=
1− δ (γ)

(2 + δ (γ))

1− δ(γ)− (1 + δ(γ))b1
1− δ(γ)

⇔ δ(γ) =
(2 + γ) (c+ 2)(1− b1)− 2 (c+ 1) [(1− γ)− (1 + γ) b1]

(2 + γ) (c+ 2)(1 + b1) + (c+ 1) [(1− γ)− (1 + γ) b1]

this is the (2.7) inequality. �
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Meromorphic close-to-convex functions satisfying
a differential inequality

Kuldeep Kaur Shergill and Sukhwinder Singh Billing

Abstract. In the present paper, we study the differential inequality

−<
[
(1− α)z2f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)]
> β, (z ∈ E)

where f ∈ Σ and notice that the members of class Σ which satisfy the above
inequality are meromorphic close-to-convex.

Mathematics Subject Classification (2010): 30C45, 30C80.

Keywords: Meromorphic function, meromorphic starlike function, meromorphic
close-to-convex function.

1. Introduction

Let Σ denote the class of meromorphic functions of the form

f(z) =
1

z
+

∞∑
n=1

anz
n,

which are analytic in the punctured open unit disc E0 = E \ {0}, where

E = {z ∈ C : |z| < 1}.

A function f ∈ Σ is said to be meromorphic starlike of order α if and only if

−<
(
zf ′(z)

f(z)

)
> α, (z ∈ E)

for some real α (0 ≤ α < 1). The class of such functions is denoted by MS∗(α).
WriteMS∗ =MS∗(0), the class of meromorphic starlike functions i.e. meromorphic
functions which satisfy the condition

−<
(
zf ′(z)

f(z)

)
> 0, (z ∈ E).
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A function f ∈ Σ is said to be meromorphic close-to-convex of order α if there exists
a meromorphic starlike function g ∈MS∗ such that

−<
(
zf ′(z)

g(z)

)
> α, (z ∈ E).

The class of such functions is denoted by MC(α). Write MC = MC(0), the class of
meromorphic close-to-convex functions i.e. meromorphic functions which satisfy the
condition

−<
(
zf ′(z)

g(z)

)
> 0, (z ∈ E) (1.1)

where g ∈MS∗.
A little calculation yields that the function g(z) =

1

z
is a member of class MS∗.

Therefore, the condition (1.1) reduces to the following condition

−<(z2f ′(z)) > 0, (z ∈ E).

Therefore, f ∈MC if −<(z2f ′(z)) > 0.
In the literature of meromorphic functions, many authors obtained the conditions for
meromorphic close-to-convex functions. Some of the results from literature are given
below:
Jing and Li [4] have proved the following results:

Theorem 1.1. For any f ∈ Σ, suppose that for arbitrary α, f satisfies −z2f ′(z) 6= α
and the following inequalities:
(i) For the case 0 < α < 1

2

2 + <
(
zf ′′(z)

f ′(z)

)
<

α

2(1− α)
,

(ii) For the case 1
2 ≤ α < 1

2 + <
(
zf ′′(z)

f ′(z)

)
<

1− α
2α

,

then f ∈MC(α).

Theorem 1.2. Let f ∈ Σ, suppose that for arbitrary α, f satisfies −z2f ′(z) 6= α and
the following inequality:

1 + <
(
zf ′′(z)

f ′(z)

)
≥ 3α− 2

2(1− α)
,

then f ∈MC(α).

Goyal and Prajapat [1] proved the following results:

Theorem 1.3. If f ∈ Σ satisfies the following inequality∣∣∣∣zf ′′(z)f ′(z)
− z2f ′(z) + 1

∣∣∣∣ < (1− α)(3− α)

2− α
(0 ≤ α < 1),

then f ∈MC(α).
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Theorem 1.4. If f ∈ Σ satisfies the following inequality∣∣∣∣zf ′′(z)f ′(z)
− z2f ′(z) + 1

∣∣∣∣ < 3

2
,

then f ∈MC.

Theorem 1.5. If f ∈ Σ satisfies the following inequality

<[z2{f ′(z)(z2f ′(z)− 1)− zf ′′(z)}] > −1

2
,

then f ∈MC.

Recently Wang and Guo [3] proved the following results:

Theorem 1.6. Let f ∈ Σ and suppose that there exists a meromorphic starlike function
g such that

<
{
zf ′(z)

g(z)

(
1 +

zf ′′(z)

f ′(z)
− zg′(z)

g(z)

)}
>

1

2

(
1 +

∣∣∣∣zf ′(z)g(z)

∣∣∣∣2
)
,

then f ∈MC.

Theorem 1.7. Let f ∈ Σ and suppose that there exists a meromorphic starlike function
g such that

<
{
zf ′(z)

g(z)

(
−1− zf ′′(z)

f ′(z)
+
zg′(z)

g(z)

)}
> −1

4

(
1 +

∣∣∣∣zf ′(z)g(z)

∣∣∣∣2
)
,

then f ∈MC( 1
2 ).

Theorem 1.8. For f ∈ Σ, suppose that there exists a meromorphic starlike function g
such that

<
{
zf ′(z)

g(z)

(
−1− zf ′′(z)

f ′(z)
+
zg′(z)

g(z)

)}
> −1

2
(1− α), (0 ≤ α < 1)

then f ∈MC(α).

2. Preliminaries

We shall need the following lemma of Miller and Mocanu [2] to prove our main result.

Lemma 2.1. Let D be a subset of C × C (C is the complex plane) and let φ : D → C
be a complex function. For u = u1 + iu2, v = v1 + iv2 (u1, u2, v1, v2 are reals), let φ
satisfy the following conditions:
(i) φ(u, v) is continuous in D;
(ii) (1, 0) ∈ D and <φ(1, 0) > 0; and
(iii) < {φ(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ D such that v1 ≤ −(1 + u22)/2.
Let p(z) = 1+p1z+p2z

2+ . . . be regular in the unit disc E such that (p(z), zp′(z)) ∈ D
for all z ∈ E. If

<[φ(p(z), zp′(z))] > 0, z ∈ E,
then < p(z) > 0, z ∈ E.
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3. Main theorem

Theorem 3.1. Let α and β be real numbers such that α ≤ β < 1. If f ∈ Σ satisfies

−<
[
(1− α)z2f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)]
> β, z ∈ E, (3.1)

then −<(z2f ′(z)) > 0 in E. So, f is meromorphic close-to-convex in E. The result
is sharp in the sense that the constant β on the right hand side of (3.1) cannot be
replaced by a real number smaller than α.

Proof. Define a function p by p(z) = −z2f ′(z) where p is analytic in E. Then,

−
[
(1− α)z2f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)]
= −

[
(1− α)(−p(z)) + α

(
−1 +

zp′(z)

p(z)

)]
(3.2)

Thus, condition (3.1) is equivalent to

<
[

1− α
1− β

p(z)− α

1− β
zp′(z)

p(z)
+
α− β
1− β

]
> 0, z ∈ E. (3.3)

If D = (C \ {0})× C, define φ(u, v) : D→ C as under:

φ(u, v) =
1− α
1− β

u− α

1− β
v

u
+
α− β
1− β

.

Then φ(u, v) is continuous in D, (1, 0) ∈ D and <(φ(1, 0)) = 1 > 0. Further, in view
of (3.3),

<[φ(p(z), zp′(z))] > 0, z ∈ E.
Let u = u1 + iu2, v = v1 + iv2(u1, u2, v1, v2 are real numbers). Then, for (iu2, v1) ∈ D,

with v1 ≤ −
1 + u22

2
, we have

<[φ(iu2, v1)] = <
[

1− α
1− β

iu2 −
α

1− β
v1
iu2

+
α− β
1− β

]
=
α− β
1− β

≤ 0.

In view of Lemma 2.1, proof now follows.
To show that the constant β on the right side of (3.1) cannot be replaced by a real
number smaller than α, we consider the function

f0(z) =
−z − 2 log(1− z)

z2
,

which belongs to the class Σ. A simple calculation gives

−
[
(1− α)z2f ′0(z) + α

(
1 +

zf ′′0 (z)

f ′0(z)

)]
= −(1− α)

[
−z2 + 3z + 4(1− z) log(1− z)

z(1− z)

]
−α

[
−z3 + 10z2 − 7z − 8(1− z)2 log(1− z)
z3 − 4z2 + 3z + 4(1− z)2 log(1− z)

]
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Using Mathematica 7.0, we plot in Figure 3.1, the image of the unit disc E under the
operator

−
[
(1− α)z2f ′0(z) + α

(
1 +

zf ′′0 (z)

f ′0(z)

)]

taking α = −1.

Figure 3.1

From Figure 3.1, we observe that minimum real part of

−
[
(1− α)z2f ′0(z) + α

(
1 +

zf ′′0 (z)

f ′0(z)

)]
for α = −1

is smaller than −1 (the chosen value of α).

In Figure 3.2, we plot the image of unit disc E under the function −z2f ′0(z).

It is obvious that −<(z2f ′0(z)) ≯ 0 for all z in E.
Moreover, the point z = 0.9 is an interior point of E, but at this point

−<(z2f ′0(z)) = −10.766... < 0.
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Figure 3.2

This justifies our claim. �
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Inequalities involving Mittag-Leffler type
q-Konhauser polynomial

Bharti Vishandas Nathwani

Abstract. In the present work, we propose generalized structure of the q-
Konhauser polynomial suggested by a generalized q-Mittag-Leffler function. For
this polynomial, we obtain its difference equation and several other properties
involving inequalities are also derived which yield as the particular cases, q-
analogues of the generating function relations and finite summation formulas.
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1. Introduction

In 1903, Mittag-Leffler [20] proposed a function Eα(z) defined by

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
,

where z is a complex variable and α ∈ C, <(α) > 0. Later on this function was referred
to as Mittag-Leffler function. The Mittag-Leffler function is direct generalization of
the exponential function to which it reduces for α = 1. This function has some inter-
esting properties which later became essential for the description of many problems
arising in applications. Nowadays the Mittag-Leffler function and its numerous gener-
alizations have acquired a new life. The recent notable increased interest in the study
of their relevant properties is due to the close connection to the Fractional Calculus
and its application to the study of Differential and Integral Equations. Many modern
models of fractional type have recently been proposed in Probability Theory, Mechan-
ics, Mathematical Physics, Chemistry, Biology, Mathematical Economics, Engineering
and Applied Sciences etc. There are many applications of Mittag-Leffler function and
its generalizations in Astrophysics problems (see [17]). One application of Mittag-
Leffler function is described below.
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In a reaction-diffusion process if N(t) is the number density at a time t and if the
production rate is proportional to original number, then

d

dt
N(t) = λN(t), λ > 0 (1.1)

where λ is the rate of production. If the consumption or destruction rate is also
proportional to the original number then

d

dt
N(t) = −µN(t), µ > 0 (1.2)

where µ is the destruction rate. Then the residual part is given by

d

dt
N(t) = −cN(t), c = µ− λ. (1.3)

If c is free of t then the solution is exponential model

N(t) = N0e
−ct, N0 = N(t) at t = t0 (1.4)

where t0 is the starting time. Instead of total derivative in (1.1) to (1.3) if the fractional
derivative or fractional nature of reactions is considered, that is, an equation of the
form

N(t)−N0 = −cv 0D
−v
t N(t) (1.5)

is considered where 0D
−v
t is the standard Riemann-Liouville fractional integral oper-

ator, then the solution

N(t) = N0

∞∑
n=0

(−1)k (ct)vk

Γ(vk + 1)
= N0 Ev(−(ct)v), (1.6)

involves Ev(.) which is nothing but the Mittag-Leffler function.
The well known Mittag-Leffler function [20]

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, (1.7)

where z is a complex variable and α ∈ C, <(α) > 0 was generalized by Wiman [37]
in 1905 in the form:

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, <(α, β) > 0, (1.8)

which is known as Wiman’s function or generalized Mittag-Leffler function.

Note 1.1. Eα,1(z) = Eα(z).

In 1971, Prabhakar [25] introduced its extension:

Eγα,β(z) =

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
, (1.9)

wherein <(α, β, γ) > 0.

Note 1.2. E1
α,β(z) = Eα,β(z).
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In 2007, Shukla and Prajapati [34] introduced the function:

Eγ,qα,β(z) =

∞∑
n=0

(γ)qn
Γ(αn+ β)

zn

n!
, (1.10)

in which α, β, γ ∈ C; <(α, β, γ) > 0 and q ∈ (0, 1) ∪ N.

Note 1.3. Eγ,1α,β(z) = Eγα,β(z).

As a continuation of these studies, Nathwani, Dave and Prajapati [27, 28, 29, 23, 22,
24] introduced the following function:

Definition 1.4. For α, β, γ, λ ∈ C, <(α, β, γ, λ) > 0, δ, µ > 0, r ∈ {−1, 0} ∪ N, s ∈
N ∪ {0}

Eγ,δα,β,λ,µ(z; s, r) =

∞∑
n=0

[(γ)δn]s

Γ(αn+ β) [(λ)µn]r n!
zn. (1.11)

Note 1.5. Eγ,qα,β,λ,µ(z; 1, 0) = Eγ,qα,β(z).

The objective of constructing this function is to
(i) include certain existing generalizations of Mittag-Leffler function,
(ii) also include the functions such as Bessel Maitland function, Dotsenko function,
Bessel function, generalized Bessel Maitland function, Lommel function etc. especially
by means of parameters r, γ, λ (Table-1 below)
(iii) obtain inverse inequality relations and some other inequalities by means of the
integer ′s′.
Since the time of Wiman (1905), many researchers have proposed and studied various
generalizations of the Mittag-Leffler function [20] (see [38], [25], [34], [14], [15], [18],
[21], [27], [29], [32], [33], [10]).
The q-analogue of the above generalized Mittag-Leffler function (1.11) is given by
Nathwani and Dave [22, 24]:

Eγ,δα, β, λ, µ(z; s, r|q) =

∞∑
n=0

(−1)pn qpn(n−1)/2 [Γq(γ + δn)]s

Γq(β + αn) [Γq(λ+ µn)]r (q; q)n
zn, (1.12)

where α, β, γ, λ ∈ C with <(α, β, γ, λ) > 0, δ, µ > 0, r ∈ {−1, 0} ∪ N, s ∈ N ∪ {0},
p = α2 + rµ2 − sδ2 + 1 with <(p) > 0.
The aim of the present work is to extend the well known q-Konhauser Polynomial [6]

Zβm(x; k|q) =
[qβ+1]km
(qk; qk)m

m∑
n=0

qkn(kn−1)/2+kn(m+β+1)(q−mk; qk)n x
kn

[qβ+1]kn (qk; qk)n
,

and hence the generalized q-Laguerre polynomial [30]:

L(β)
m (x|q) =

[qβ+1]m
(q; q)m

m∑
n=0

qn(n+1)/2+n(m+β)(q−m; q)n x
n

[qβ+1]n (q; q)n
, (1.13)

where <(β) > −1 suggested by the generalized q-Mittag-Leffler function (1.12).
The following definitions and formulas will be used in this work.
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For a ∈ C, and 0 < |q| < 1, the q-shifted factorial is defined by [13, Eq.(1.2.15), p.3
and Eq.(1.2.30), p.6]

(a; q)n =


1 if n = 0
(1− a)(1− aq) · · · (1− aqn−1) if n ∈ N

(q; q)∞
(aqn; q)∞

if n ∈ C,
(1.14)

where

(a; q)∞ =

∞∏
k=0

(1− aqk) , |q| < 1.

A well-known extension of the q-shifted factorial is given by [12]

[t− |a]n = (t− a)(t− aq)(t− aq2) · · · (t− aqn−1). (1.15)

A finite series-product identity [12]
n∑
k=0

qk(k−1)/2
[
n

k

]
xk =

n∏
k=1

(1 + xqk−1). (1.16)

The q-derivative of a function f(x) is defined by [13, Ex.1.12, p.22]

Dqf(x) =
f(x)− f(xq)

x(1− q)
(1.17)

Definition 1.6. A q-Gamma function is defined as ([16], [35]):

Γq(α) =
(q; q)∞ (1− q)1−α

(qα; q)∞
, (1.18)

where α 6= 0,−1,−2, ..., and 0 < q < 1.
The q-analogue of Stirling’s asymptotic formula [19, Eq.(2.25), p.482] for the q-
Gamma function is

Γq(x) ∼ (1 + q)
1
2 Γq2

(
1

2

)
(1− q) 1

2−x eµq(x), (1.19)

where µq(x) =
θ qx

1− q − qx
, 0 < θ < 1.

A q-Beta function Bq(x, y) is expressible in different ways [13].

Bq(x, y) =

1∫
0

tx−1(tq)y−1 dqt, (1.20)

Bq(x, y) =
(1− q) (q)∞ (qx+y)∞

(qx)∞ (qy)∞
, (1.21)

and

Bq(x, y) =

1∫
0

tx−1
(tq; q)∞
(tqy; q)∞

dqt (1.22)
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in which y 6= 0,−1,−2, ..., <(x) > 0.
The q-Euler (Beta) transform is [13]:

B{f(z) : a, b|q} =

1∫
0

uβ−1
(uq; q)∞
(uqη; q)∞

f(z) dqu. (1.23)

The q-Laplace transform.
Hahn [16] defined the q-analogues of the well known classical Laplace transform:

F (S) = φ(S) =

∞∫
0

e−St f(t) dt,

by means of the following two integral equations.

Lq{f(t)} =
1

(1− q)

S−1∫
0

Eq(qSt) f(t) dqt, (1.24)

and

Lq{f(t)} =
1

(1− q)

∞∫
0

eq(−St) f(t) dqt, (1.25)

where <(S) > 0.
The q-analogue of Riemann-Liouville fractional integral operator ([4], [39], [31]) is
given by

qI
µ
a+f(x) =

1

Γq(µ)

x∫
a

(x− |yq)µ−1 f(y) dqy, (1.26)

where µ is an arbitrary order of integration with <(µ) > 0.
In particular, for f(x) = xν−1, the equation (1.26) reduces to

qI
µ
0+f(x)[xν−1] =

Γq(ν)

Γq(ν + µ)
xν+µ−1. (1.27)

The fractional q-differential operator of arbitrary order α, is defined as ([5], [31]):

(
qD

α
0+f

)
(x) =

1

Γq(−α)

x∫
0

(x− |yq)−α−1 f(y) dqy, (1.28)

in which <(α) < 0, 0 < |q| < 1.
It is to be noted that

(
qD

α
0+f

)
(x) = Dα

x,qf(x). In this context, we have(
qD

α
a+f

)
(x) =

(
dq
dqx

)n (
qI
n−α
a+ f

)
(x). (1.29)

If f(x) = xµ−1, then (1.28) reduces to

qD
α
0+[xµ−1] =

Γq(µ)

Γq(µ− α)
xµ−α−1. (1.30)
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The generalized Konhauser polynomial due to Prajapati, Ajudia and Agarwal is given
by [26]:

L
(k,σ)
m∗ (xk) = Zσm∗(x; k) =

Γ(km+ σ + 1)

Γ(m+ 1)

m∗∑
n=0

(−m)δn
Γ(kn+ σ + 1)

xkn

n!
. (1.31)

We propose here generalization of q-Konhauser polynomial.

Definition 1.7. For α, β, λ > 0, m, δ, µ, k, s ∈ N, r ∈ N ∪ {0}, m∗ = [mδ ], the integral
part of m

δ , define

B
(α,β,λ,µ)
m∗ (xk; s, r|q) =

(qβ+1; q)αm
[(qk; qk)m]s

m∗∑
n=0

qskδn(m+(δnk−1)/2) qδn(α(β+1)+rµλ)

(qβ+1; q)αn [(qλ; q)µn]r

× [(q−mk; qk)δn]s xkn

(qk; qk)n
. (1.32)

The polynomial in (1.32) will be referred to as q-GKP.

2. Generalized q-Konhauser polynomial

If α = k ∈ N, s = 1, r = 0 then (1.32) reduces to q-analogue of another general-
ization of the Konhauser polynomial (1.31) in the form considered by [26]:

B
(k,β,λ,µ)
m∗ (xk; 1, 0|q) =

(qβ+1; q)km
(qk; qk)m

m∗∑
n=0

qkδn(kδn−1)/2+δnm qδnk(β+1)

(qβ+1; q)αn

× (q−mk; qk)δn x
kn

(qk; qk)n

= Zβm∗(x; k|q). (2.1)

A q-analogue of the classical Konhauser polynomial (1.13) is obtained from (2.1) by
taking δ = 1, that is

B(k,β,λ,µ)
m (xk; 1, 0|q) =

(qβ+1; q)km
(qk; qk)m

m∑
n=0

qkn(kn−1)/2+kn(m+β+1)(q−mk; qk)n x
kn

(qβ+1; q)kn (qk; qk)n

= Zβm(x; k|q). (2.2)

Further, with k = 1,

B(1,β,λ,µ)
m (x; 1, 0|q) =

(qβ+1; q)m
(q; q)m

m∑
n=0

qn(n+1)/2+n(m+β)(q−m; q)n x
n

(qβ+1; q)n (q; q)n

= L(β)
m (x|q) (2.3)

is a q-analogue of the generalized Laguerre polynomial.
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Theorem 2.1. Let

B
(α,β,λ,µ)
m∗ (xk; s, r|q) =

(qβ+1; q)αm
[(qk; qk)m]s

m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ)

(qβ+1; q)αn [(qλ; q)µn]r

× [(q−mk; qk)δn]s xkn

(qk; qk)n
. (2.4)

Then as limit m→∞, B(α,β,λ,µ)
m∗ (xk; s, r|q) approaches to the entire function

B(α,β,λ,µ)
∞ (xk; s, r|q) =

(qβ+1; q)∞
[(qk; qk)∞]s

∞∑
n=0

(−1)sδn qs(kδn(kδn−1)/2+kδn(δn−1)/2)

(qβ+1; q)αn [(qλ; q)µn]r

×q
δn(α(β+1)+rµλ) xkn

(qk; qk)n
(2.5)

in any bounded domain.

Proof. It will be shown first that the series in (2.5) has an infinite radius of conver-
gence.

Taking

υn =
(−1)sδn qs(kδn(kδn−1)/2+kδn(δn−1)/2)

(qβ+1; q)αn [(qλ; q)µn]r
qδn(α(β+1)+rµλ)

(qk; qk)n

=
(−1)sδn qs(kδn(kδn−1)/2+kδn(δn−1)/2) qδn(α(β+1)+rµλ)

(qβ+1; q)∞ [(qλ; q)∞]r

× (qαn+β+1; q)∞ [(qµn+λ; q)∞]r

(qk; qk)n
.

Then using D’Albert’s Ratio test, the radius of convergence R is given by

R = lim
n→∞

∣∣∣∣ υnυn+1

∣∣∣∣
= lim

n→∞

∣∣∣∣∣ (−1)sδn qs(kδn(kδn−1)/2+kδn(δn−1)/2) qδn(α(β+1)+rµλ)

(qβ+1; q)∞ [(qλ; q)∞]r (qk; qk)n

× (qβ+1; q)∞ [(qλ; q)∞]r (qαn+β+1; q)∞ [(qµn+λ; q)∞]r

(−1)sδ(n+1) qskδ(n+1)(δ(n+1)−1)/2+(kδ(n+1)−1)/2

× (qk; qk)n+1

qδ(n+1)(α(β+1)+rµλ) (qα(n+1)+β+1; q)∞ [(qµ(n+1)+λ; q)∞]r

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣ qskδ−sk
2δ2 (1− q(n+1)k)

qnsδ2(k(k+1)) qδ(α(β+1)+rµλ)

× (1− qαn+β+1) (1− qαn+β+2) . . . (1− qαn+β+α)

[(1− qµn+λ+1) (1− qµn+λ+2) . . . (1− qµn+λ+µ)]−r

∣∣∣∣∣
= ∞.
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Here it suffices to show that for m sufficiently large,

m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ)

(qβ+1; q)αn [(qλ; q)µn]r
[(q−mk; qk)δn]s xkn

(qk; qk)n
(2.6)

tends to

∞∑
n=0

(−1)sδn qs(kδn(kδn−1)/2+kδn(δn−1)/2)

(qβ+1; q)αn [(qλ; q)µn]r
qδn(α(β+1)+rµλ) xkn

(qk; qk)n
. (2.7)

In fact,

∣∣∣∣∣
∞∑
n=0

(−1)sδn qs(kδn(kδn−1)/2+kδn(δn−1)/2)

(qβ+1; q)αn [(qλ; q)µn]r
qδn(α(β+1)+rµλ) xkn

(qk; qk)n

−
m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ)

(qβ+1; q)αn [(qλ; q)µn]r
[(q−mk; qk)δn]s xkn

(qk; qk)n

∣∣∣∣∣
=

∣∣∣∣∣
m∗∑
n=0

{
qskδn(δn−1)/2 − [(q−mk; qk)δn]s qskδnm (−1)sδn

}
×q

skδn(kδn−1)/2 qδn(α(β+1)+rµλ) (−1)sδn xkn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n

∣∣∣∣∣
=

∣∣∣∣∣
m∗∑
n=0

{
qskδn(δn−1)/2 −

[
(1− q−mk) (1− q−mk+k) (1− q−mk+2k) . . .

×(1− q−mk+(δn−1)k)
]s
qskδnm (−1)sδn

}
×q

skδn(kδn−1)/2 qδn(α(β+1)+rµλ) (−1)sδn xkn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n

∣∣∣∣∣
=

∣∣∣∣∣
m∗∑
n=0

{
qskδn(δn−1)/2 −

[
(q−mk − 1) (q−mk+k − 1) (q−mk+2k − 1) . . .

×(q−mk+(δn−1)k − 1)
]s
qskδnm

}
×q

skδn(kδn−1)/2 qδn(α(β+1)+rµλ) (−1)sδn xkn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n

∣∣∣∣∣



Inequalities involving Mittag-Leffler type q-Konhauser polynomial 387

=

∣∣∣∣∣
m∗∑
n=0

{
qskδn(δn−1)/2 −

[
(1− qmk) (1− qmk−k) (1− qmk−2k) . . .

×(1− qmk−(δn−1)k)
]s
qskδnm qskδn(δn−1)/2−skδnm

}
×q

skδn(kδn−1)/2 qδn(α(β+1)+rµλ) (−1)sδn xkn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n

∣∣∣∣∣
≤

m∗∑
n=0

∣∣∣∣∣qskδn(δn−1)/2 − [(1− qmk) (1− qmk−k) (1− qmk−2k) . . .

×(1− qmk−(δn−1)k)
]s
qskδn(δn−1)/2

∣∣∣∣∣
×q

skδn(kδn−1)/2 qδn(α(β+1)+rµλ) |x|kn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n
. (2.8)

The absolute difference may be simplified with the aid of the inequality

k∏
j=1

(1− xj) ≥ 1−
k∑
j=1

xj , 0 ≤ xj ≤ 1, j = 1, 2, . . . , k,

to get

∣∣∣∣∣qskδn(δn−1)/2 − [(1− qmk) (1− qmk−k) (1− qmk−2k) . . .

×(1− qmk−(δn−1)k)
]s
qskδn(δn−1)/2

∣∣∣∣∣
= qskδn(δn−1)/2

×

∣∣∣∣∣1− [(1− qmk) (1− qmk−k) (1− qmk−2k) . . . (1− qmk−(δn−1)k)
]s∣∣∣∣∣

= qskδn(δn−1)/2

∣∣∣∣∣∣1−
 δn∏
j=1

(1− qmk−jk+k)

s∣∣∣∣∣∣
≤ qskδn(δn−1)/2

∣∣∣∣∣∣1−
1−

δn∑
j=1

qmk−jk+k

s∣∣∣∣∣∣
≤ qskδn(δn−1)/2

∣∣∣∣∣∣
δn∑
j=1

qmk−jk+k

∣∣∣∣∣∣
s
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= qskδn(δn−1)/2

 δn∑
j=1

qmk−jk+k

s

= qskδn(δn−1)/2+skm

δn−1∑
j=0

q−jk

s

= qskδn(δn−1)/2+skm
(1− q−δnk)s

(1− q−k)s

= qskδn(δn−1)/2−skδn+smk+sk
(1− qδnk)s

(1− qk)s

≤ qskδn(δn−1)/2−skδn+smk+sk

(1− qk)s
,

because δn ≤ m. Therefore,∣∣∣∣∣qskδn(δn−1)/2 − [(1− qmk) (1− qmk−k) (1− qmk−2k) . . .

×(1− qmk−(δn−1)k)
]s
qskδn(δn−1)/2

∣∣∣∣∣
≤ qskδn(δn−1)/2−snδk+smk+sk

(1− qk)s
. (2.9)

This last inequality is valid for all non negative values of δn. Substituting this into
(2.8), one gets∣∣∣∣∣

∞∑
n=0

(−1)sδn qs(kδn(kδn−1)/2+kδn(δn−1)/2)

(qβ+1; q)αn [(qλ; q)µn]r
qδn(α(β+1)+rµλ) xkn

(qk; qk)n

−
m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ)

(qβ+1; q)αn [(qλ; q)µn]r
[(q−mk; qk)δn]s xkn

(qk; qk)n

∣∣∣∣∣
≤ qsmk+sk

(1− qk)s

∞∑
n=0

qskδn(δn−1)/2−snδkqskδn(kδn−1)/2 qδn(α(β+1)+rµλ) |x|kn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n
.(2.10)

Thus the last series (2.10) has an infinite radius of convergence and is therefore
bounded in every bounded domain. It follows that the left hand side in (2.8) → 0
as n → ∞ uniformly in any bounded domain. Hence the series (2.6) converges to
(2.7) uniformly on any bounded domain. �

3. Difference equations

The operators considered in this section are listed below.

Λqf(x) = f(x)− f(xq−1), Θf(x) = f(x)− f(xq),
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Dq f(x) = (1− q) Dqf(x) := (1− q) f(x)− f(xq)

x− xq
=
f(x)− f(xq)

x
,

{
a−1∏
u=0

a−1∏
v=0

[Θ + c−uq1−(b+v)/a − 1]m
}

{
a−1∏
u=0

a−1∏
v=0

[c−uq1−(b+v)/a]m

} = Φ(a,b,c;m)
u,v

and {
a−1∏
u=0

a−1∏
v=0

[Θ + c−uq(b+v)/a − 1]m
}

{
a−1∏
u=0

a−1∏
v=0

[c−uq−(b+v)/a]m
} = Ψ(a,b,c;m)

u,v .

In the notations of these operators, the difference equation satisfied by the polynomial

B
(α,β,λ,µ)
m∗ (xk; s, r|q) is derived in the following theorem.

Theorem 3.1. Let α, β, λ, m, δ, µ, k, s ∈ N, r ∈ N ∪ {0}, m∗ = [mδ ] then

B
(α,β,λ,µ)
m∗ (xk; s, r|q) satisfies the equation[

Φ
(µ,λ,η;r)
`,κ Φ

(α,β+1,σ;1)
h,g Θ

]
B

(α,β,λ,µ)
m∗ (xk; s, r|q)

−xk qs(kδ(kδ−1)/2)+skδm Ψ
(δk,−mk,χ;s)
j,i B

(α,β,λ,µ)
m∗ (xkqs(kδ)

2

; s, r|q) = 0, (3.1)

where χ is (δk)th root of unity, η is µth root of unity, σ is αth root of unity.

Proof. The coefficient of xnk in (1.32) will be first expressed in q-factorial notation
with the aid of the formulas [13, Appendix I]:

(a; q)kn = (a, aq, . . . , aqk−1; qk)n,

(ak; qk)n = (a, aωk, . . . , aω
k−1
k ; qk)n ;ωk = e(2πi)/k,

(A; qn)νk = (A1/n; q)νk(A1/nω; q)νk . . . (A
1/nωn−1; q)νk, ω

n = 1,

and

(qγ ; qδ)n = (qγ/δ; q)n ($qγ/δ; q)n . . . ($
δ−1qγ/δ; q)n =

δ−1∏
i=0

($iqγ/δ; q)n, $
δ = 1.

Now if

[n/δ]∑
n=0


δk−1∏
j=0

δk−1∏
i=0

[(χj q(−mk+i)/(δk); q)n]s


{
µ−1∏
`=0

µ−1∏
κ=0

[(η` q(λ+κ)/µ; q)n]r

}−1

×q
s(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ){

α−1∏
h=0

α−1∏
g=0

(σh q(β+g)/α; q)n

} xnk

(qk; qk)n
= Y, (3.2)
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δk−1∏
j=0

δk−1∏
i=0

[(χj q(−mk+i)/(δk); q)n]s = Hn,
µ−1∏
`=0

µ−1∏
k=0

[(η` q(λ+k)/µ; q)n]r = Bn,

α−1∏
h=0

α−1∏
g=0

(σh q(β+g)/α; q)n = Cn, qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ) = Gn,

then (3.2) will assume the elegant form:

Y =

[n/δ]∑
n=0

Hn Gn
Bn Cn (qk; qk)n

xnk.

Now

ΘY =

[n/δ]∑
n=0

Hn Gn
Bn Cn (qk; qk)n

Θxnk =

[n/δ]∑
n=1

Hn Gn
Bn Cn

xnk

(qk; qk)n−1
.

Next operating by Φ
(α,β,σ;1)
h,g , one gets

Φ
(α,β,σ;1)
h,g ΘY =

[n/δ]∑
n=1

Hn Gn
Bn (qk; qk)n−1

{
α−1∏
h=0

α−1∏
g=0

(Θ + σ−hq1−(β+g)/α − 1)

}
{
α−1∏
h=0

α−1∏
g=0

(σ−hq1−(β+g)/α)

}

×

{
α−1∏
h=0

α−1∏
g=0

(σhq(β+g)/α; q)n

}−1
xnk

=

[n/δ]∑
n=1

Hn Gn
Bn (qk; qk)n−1

{
α−1∏
h=0

α−1∏
g=0

(1− σhqn−1+(β+g)/α)

}
{
α−1∏
h=0

α−1∏
g=0

(σhq(β+g)/α; q)n

} xnk

=

[n/δ]∑
n=1

Hn Gn
Bn Cn−1 (qk; qk)n−1

xnk.

Finally,

Φ
(µ,λ,η;r)
`,κ Φ

(α,β,σ;1)
h,g ΘY

=

[n/δ]∑
n=1

Hn Gn
Cn−1 (qk; qk)n−1

{
µ−1∏
`=0

µ−1∏
κ=0

[(Θ + η−`q1−(λ+κ)/µ − 1)]r

}
{
µ−1∏
`=0

µ−1∏
κ=0

[(η−`q1−(λ+κ)/µ)]r

}

×

{
µ−1∏
`=0

µ−1∏
κ=0

[(η` q(λ+κ)/µ; q)n]r

}−1
xnk
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=

[n/δ]∑
n=1

Hn Gn
Cn−1 (qk; qk)n−1

{
µ−1∏
`=0

µ−1∏
κ=0

[(−qn + η−`q1−(λ+κ)/µ)]r

}
{
µ−1∏
`=0

µ−1∏
κ=0

[(η−`q1−(λ+κ)/µ)]r

}

×

{
µ−1∏
`=0

µ−1∏
κ=0

[(η` q(λ+κ)/µ; q)n]r

}−1
xnk

=

[n/δ]∑
n=1

Hn Gn
Bn−1 Cn−1 (qk; qk)n−1

xnk.

Thus,

Φ
(µ,λ,η;r)
`,κ Φ

(α,β,σ;1)
h,g ΘY =

[n/δ]∑
n=0

Hn+1 Gn+1

Bn Cn (qk; qk)n
xnk+k. (3.3)

Further,

Ψ
(δk,−mk,χ;s)
j,i B

(α,β,λ,µ)
m∗ (xkqs(kδ)

2

; s, r|q)

=

[n/δ]∑
n=0

Hn Gn qs(kδ)
2n

Bn Cn (qk; qk)n

{
δk−1∏
j=0

δk−1∏
i=0

[(Θ + χ−jq−(−mk+i)/(δk) − 1)]s

}
{
δk−1∏
j=0

δk−1∏
i=0

[(χ−jq−(−mk+i)/(δk))]s

} xnk

=

[n/δ]∑
n=0

Gn qs(kδ)
2

Bn Cn (qk; qk)n

{
δk−1∏
j=0

δk−1∏
i=0

[(χj q(−mk+i)/(δk); q)n]s

}

×

{
δk−1∏
j=0

δk−1∏
i=0

[(1− χjqn+(−mk+i)/(δk))]s

}
xnk,

and hence

xk qs(kδ(kδ−1)/2)+skδm Ψ
(δk,−mk,χ;s)
j,i B

(α,β,λ,µ)
m∗ (xkqs(kδ)

2

; s, r|q)

=

[n/δ]∑
n=0

Hn+1 Gn+1

Bn Cn (qk; qk)n
xnk+k. (3.4)

The equation (3.1) now follows by comparing (3.3) and (3.4). �

4. Generating function inequality

With the motivation of work done by ([36], [9], [7], [8], [1], [2], [3]) on inequalities,
in this section certain inequalities containing q-GKP are obtained.
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Theorem 4.1. If α, β, λ > 0, m, δ, µ, k, s ∈ N, r ∈ N ∪ {0}, 0 < st < 1 then the
following series inequality holds.

∞∑
m=0

B
(α,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)αm
tms ≤

(
eqk (t)

)s [(qk; qk)∞]s

(qβ+1; q)∞

×B(α,β,λ,µ)
∞ (xk tsδ; s, r|q). (4.1)

Proof. From left hand side of (4.1),

∞∑
m=0

B
(α,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)αm
tms

=

∞∑
m=0

1

(qβ+1; q)αm

(qβ+1; q)αm
[(qk; qk)m]s

×
m∗∑
n=0

qskδn(m+(δnk−1)/2) qδn(α(β+1)+rµλ) [(q−mk; qk)δn]s xkn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n
tms

=

∞∑
m=0

m∗∑
n=0

qskδn(m+(δnk−1)/2) qδn(α(β+1)+rµλ) xkn

[(qk; qk)m]s (qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n

× (−1)sδn qskδn(δn−1)/2−skmδn [(qk; qk)m]s

[(qk; qk)(m−δn)]s
tms

=

∞∑
m=0

m∗∑
n=0

(−1)sδn qskδn(kδn−1)/2+skδn(δn−1)/2 qδn(α(β+1)+rµλ) xkn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n

× tms

[(qk; qk)(m−δn)]s

=

∞∑
m=0

tms

[(qk; qk)m]s

∞∑
n=0

(−1)sδn qskδn(kδn−1)/2+skδn(δn−1)/2 qδn(α(β+1)+rµλ)

(qβ+1; q)αn [(qλ; q)µn]r

× t
sδn xkn

(qk; qk)n

Here the inner sum is obtained by making limit m→∞ in

B
(α,β,λ,µ)
m∗ (xk tsδ; s, r|q)

=
(qβ+1; q)αm
[(qk; qk)m]s

m∗∑
n=0

tsδnqskδn(m+(δnk−1)/2) qδn(α(β+1)+rµλ) [(q−mk; qk)δn]sxkn

(qβ+1; q)αn [(qλ; q)µn]r (qk; qk)n
,

and since 0 < t < 1,
∞∑
m=0

B
(α,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)αm
tms =

∞∑
m=0

tms

[(qk; qk)m]s
[(qk; qk)∞]s

(qβ+1; q)∞
B(α,β,λ,µ)
∞ (xk tsδ; s, r|q)

≤

( ∞∑
m=0

tm

(qk; qk)m

)s
[(qk; qk)∞]s

(qβ+1; q)∞
B(α,β,λ,µ)
∞ (xk tsδ; s, r|q)
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=
(
eqk (t)

)s [(qk; qk)∞]s

(qβ+1; q)∞
B(α,β,λ,µ)
∞ (xk tsδ; s, r|q). �

4.1. Special cases - Generating function relations

For s = 1, the series inequality relations in Theorem 4.1 will yield the generating
function relation. Their various specializations are deduced here.
(i) Taking α = k ∈ N, r = 0 in (4.1) leads to

∞∑
m=0

L
(k,β)
m∗ (xk|q)

(qβ+1; q)km
tm = eqk (t)

(qk; qk)∞
(qβ+1; q)∞

L(k,β)
∞ (xk tδ|q).

Further the case δ = 1, gives

∞∑
m=0

Zβm(x; k|q)
(qβ+1; q)km

tm = eqk (t)
(qk; qk)∞

(qβ+1; q)∞
Zβ∞(x t

1
k ; k|q).

Finally, for k = 1 this reduces to (cf. [30, Eq. (1), p. 201])

∞∑
m=0

L
(β)
m (x|q)

(qβ+1; q)m
tm = eq (t)

(q; q)∞
(qβ+1; q)∞

L(β)
∞ (xt|q).

4.2. Special cases-Inequalities

If α = k ∈ N in (4.1) then

∞∑
m=0

B
(k,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)km
tms ≤

(
eqk (t)

)s [(qk; qk)∞]s

(qβ+1; q)∞
B(k,β,λ,µ)
∞ (xk tsδ; s, r|q).

This will be used in the next section.
Further for δ = 1, r = 0, this reduces to

∞∑
m=0

Zβm,s(x
k|q)

(qβ+1; q)km
tms ≤

(
eqk (t)

)s [(qk; qk)∞]s

(qβ+1; q)∞
Zβ∞(xk ts; |q).

Consequently, the generalized Laguerre polynomial case k = 1, is

∞∑
m=0

L
(β)
m,s(x|q)

(qβ+1; q)m
tms ≤ (eq (t))

s [(q; q)∞]s

(qβ+1; q)∞
L(β)
∞,s(x t

s|q).

Here

Zβm,s(x
k|q) =

(qβ+1; q)km
[(qk; qk)m]s

m∑
n=0

qs(kn(kn−1)/2+knm) qn(k(β+1))

(qβ+1; q)kn

× [(q−mk; qk)n]s xkn

(qk; qk)n
, <(β) > −1, (4.2)

is q-extended Konhauser polynomial. And

L(β)
m,s(x|q) = Zβm,s(x|q).

is q-extended Laguerre polynomial.
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5. Finite q-series inequality

In this section, the inequality below involves finite q-series and q-GKP.

Theorem 5.1. If β, λ > 0, m, δ, µ, k, s ∈ N, r ∈ N ∪ {0}, then

B
(k,β,λ,µ)
m∗ (xk; s, r|q) ≤ (qβ+1; q)km

(
x

y

) km
δ

m∑
j=0

(−1)j qkj(j−1)/2

(qk; qk)j

×
((y

x

) k
δ

qk(−j−s+1); qk
)
j

B
(k,β,λ,µ)
(m−j)∗ (yk; s, r|q)
(qβ+1; q)k(m−j)

. (5.1)

Proof. From the inequality (4.2), one gets

∞∑
m=0

B
(k,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)km
tms ≤

(
eqk (t)

)s [(qk; qk)∞]s

(qβ+1; q)∞
B(k,β,λ,µ)
∞ (xk tsδ; s, r|q).

With t =
(
y
k

) k
sδ w, it gives

∞∑
m=0

B
(k,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)km

(y
k

) km
δ

wms

≤
(
eqk

((y
k

) k
sδ

w

))s
[(qk; qk)∞]s

(qβ+1; q)∞
B(k,β,λ,µ)
∞

((xy
k

)k
wsδ; s, r|q

)
.

Hence,

∞∑
m=0

B
(k,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)km

(y
k

) km
δ

wms
(
eqk

((y
k

) k
sδ

w

))−s
≤ [(qk; qk)∞]s

(qβ+1; q)∞
B(k,β,λ,µ)
∞

((xy
k

)k
wsδ; s, r|q

)
. (5.2)

Now interchanging the role of x and y in (5.2), it yields

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
(
eqk

((x
k

) k
sδ

w

))−s
≤ [(qk; qk)∞]s

(qβ+1; q)∞
B(k,β,λ,µ)
∞

((xy
k

)k
wsδ; s, r|q

)
. (5.3)

Here from (5.2) and (5.3), either

∞∑
m=0

B
(k,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)km

(y
k

) km
δ

wms
(
eqk

((y
k

) k
sδ

w

))−s
≤

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
(
eqk

((x
k

) k
sδ

w

))−s
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or

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
(
eqk

((x
k

) k
sδ

w

))−s
≤

∞∑
m=0

B
(k,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)km

(y
k

) km
δ

wms
(
eqk

((y
k

) k
sδ

w

))−s
Now rewriting the inequality (5.4) in the form

∞∑
m=0

B
(k,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)km

(y
k

) km
δ

wms

≤
∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
(
eqk

((y
k

) k
sδ

w

))s
×
(
eqk

((x
k

) k
sδ

w

))−s
and using the easily verifiable identities and inequalities (sx, sy ∈ (0, 1), s ∈ N), ([11],
[13]):

eq(x)Eq(−x) = 1,

(Eq(−x))
s ≤ Eq(−xs),

(1 + x) Eq(qx) = Eq(x),

eq−1(x) = Eq(−xq),
(1− x) eq(x) = eq(qx),(

eq−1(−xq−1)
)−s ≤ eq(x

sq−s),

(eq(−x))
s ≤ eq(−xs),(

eq−1(−xq−1)
)s ≤ eq(−xsq−s),

the above inequality can easily be written as

∞∑
m=0

B
(k,β,λ,µ)
m∗ (xk; s, r|q)

(qβ+1; q)km

(y
k

) km
δ

wms

≤
∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
(
Eqk

(
−
(x
k

) k
sδ

w

))s
×
(
Eqk

(
−
(y
k

) k
sδ

w

))−s
≤

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms Eqk

(
−
(x
k

) k
δ

ws
)

×
(
Eqk

(
−
(y
k

) k
sδ

w

))−s
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=

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms Eqk

(
−
(x
k

) k
δ

ws
)

×
(

1−
(y
k

) k
sδ

w

)−s (
Eqk

(
−qk

(y
k

) k
sδ

w

))−s
=

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms Eqk

(
−
(x
k

) k
δ

ws
)

×
(

1−
(y
k

) k
sδ

w

)−s (
eq−k

((y
k

) k
sδ

w

))−s
=

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms Eqk

(
−
(x
k

) k
δ

ws
)

×
(
eq−k

(
q−k

(y
k

) k
sδ

w

))−s
≤

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms Eqk

(
−
(x
k

) k
δ

ws
)

×eqk
(
q−sk

(y
k

) k
δ

ws
)

=

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
∞∑
j=0

(−1)j qkj(j−1)/2

(qk; qk)j

(x
k

) kj
δ

wsj

×
∞∑
i=0

(
y
k

) ki
δ q−ski wsi

(qk; qk)i

=
∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
∞∑
j=0

j∑
i=0

(−1)j−i qk(j−i)(j−i−1)/2

(qk; qk)j−i

×
(x
k

) k(j−i)
δ ws(j−i)

(
y
k

) ki
δ q−ski wsi

(qk; qk)i

=

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
∞∑
j=0

(−1)j qkj(j−1)/2 wsj

(qk; qk)j

(x
k

) kj
δ

×
j∑
i=0

(−1)i qki(i−1)/2
[
j

i

]
k

(y
x

) ki
δ

q(1−j−s)ki

=

∞∑
m=0

B
(k,β,λ,µ)
m∗ (yk; s, r|q)

(qβ+1; q)km

(x
k

) km
δ

wms
∞∑
j=0

(−1)j qkj(j−1)/2 wsj

(qk; qk)j

(x
k

) kj
δ

×
j∏
i=1

(
1−

(y
x

) k
δ

qk(i−j−s)
)
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=

∞∑
m=0

m∑
j=0

B
(k,β,λ,µ)
(m−j)∗ (yk; s, r|q)
(qβ+1; q)k(m−j)

(x
k

) k(m−j)
δ

w(m−j)s q
kj(j−1)/2 wsj

(qk; qk)j

(x
k

) kj
δ

×
j∏
i=1

(
1−

(y
x

) k
δ

qk(i−j)
)

=
∞∑
m=0

m∑
j=0

B
(k,β,λ,µ)
(m−j)∗ (yk; s, r|q)
(qβ+1; q)k(m−j)

qkj(j−1)/2

(qk; qk)j

(x
k

) km
δ

((y
x

) k
δ

qk(−j−s+1); qk
)
j

wms.

Now comparing the coefficients of wms both the sides, one arrives at (5.1). �

5.1. Special cases

(i) From (5.1), one gets finite summation formulas for s = 1:

B
(k,β,λ,µ)
m∗ (xk; 1, r|q) = (qβ+1; q)km

(
x

y

) km
δ

m∑
j=0

(−1)j qkj(j−1)/2

(qk; qk)j

×
((y

x

) k
δ

q−kj ; qk
)
j

B
(k,β,λ,µ)
(m−j)∗ (yk; 1, r|q)
(qβ+1; q)k(m−j)

(5.4)

From (5.4), with r = 0, the following summation formula involving the generalized
Laguerre polynomial (1.31) occurs.

L
(k,β)
m∗ (xk|q) = (qβ+1; q)km

(
x

y

) km
δ

m∑
j=0

(−1)j qkj(j−1)/2

(qk; qk)j

((y
x

) k
δ

q−kj ; qk
)
j

×
L
(k,β)
(m−j)∗(yk|q)

(qβ+1; q)k(m−j)
.

Further, δ = 1 in (5.5) provides

Zβm(x; k|q) = (qβ+1; q)km

(
x

y

)km m∑
j=0

(−1)j qkj(j−1)/2

(qk; qk)j

((y
x

)k
q−kj ; qk

)
j

×
Zβ(m−j)(y; k|q)
(qβ+1; q)k(m−j)

.

The Laguerre polynomial case follows immediately with k = 1 in the form:

L(β)
m (x|q) = (qβ+1; q)m

(
x

y

)m m∑
j=0

(−1)j qj(j−1)/2

(q; q)j

((y
x

)
q−j ; q

)
j

×
L
(β)
(m−j)(y|q)

(qβ+1; q)(m−j)
.
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6. Mixed relation

Theorem 6.1. For β, λ > 0, m, δ, µ, k, s ∈ N, r ∈ N ∪ {0} there hold the mixed
relations:

(1− qβ) B
(k,β,λ,µ)
m∗ (xk; s, r|q) + (1− q) qβ x DqB

(k,β,λ,µ)
m∗ (xk; s, r|q)

= (1− qβ+km)B
(k,β−1,λ,µ)
m∗ ((xqδ)k; s, r|q), (6.1)

where

Dqf(x) =
f(x)− f(xq)

x− xq
.

Proof. Here

l.h.s. = (1− qβ) B
(k,β,λ,µ)
m∗ (xk; s, r|q) + (1− q) qβ x DqB

(k,β,λ,µ)
m∗ (xk; s, r|q)

= (1− qβ)
(qβ+1; q)km
[(qk; qk)m]s

m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(k(β+1)+rµλ)

(qβ+1; q)kn [(qλ; q)µn]r

× [(q−mk; qk)δn]s xkn

(qk; qk)n
+ (1− q) qβ x Dq

(qβ+1; q)αm
[(qk; qk)m]s

×
m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ)

(qβ+1; q)kn [(qλ; q)µn]r
[(q−mk; qk)δn]s xkn

(qk; qk)n

= (1− qβ)
(qβ+1; q)km
[(qk; qk)m]s

m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(k(β+1)+rµλ)

(qβ+1; q)kn [(qλ; q)µn]r

× [(q−mk; qk)δn]s xkn

(qk; qk)n
+ (1− q) qβx (qβ+1; q)αm

[(qk; qk)m]s

×
m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ)

(qβ+1; q)kn [(qλ; q)µn]r
[(q−mk; qk)δn]s

(qk; qk)n
Dq(x

kn)

= (1− qβ)
(qβ+1; q)km
[(qk; qk)m]s

m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(k(β+1)+rµλ)

(qβ+1; q)kn [(qλ; q)µn]r

× [(q−mk; qk)δn]s xkn

(qk; qk)n
+ (1− q) qβx (qβ+1; q)αm

[(qk; qk)m]s

×
m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ)

(qβ+1; q)kn [(qλ; q)µn]r
[(q−mk; qk)δn]s

(qk; qk)n

(1− qkn)

x(1− q)
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= (1− qβ)
(qβ+1; q)km
[(qk; qk)m]s

m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(k(β+1)+rµλ)

(qβ+1; q)kn [(qλ; q)µn]r

× [(q−mk; qk)δn]s xkn

(qk; qk)n
+ (qβ − qkn+β)

(qβ+1; q)αm
[(qk; qk)m]s

×
m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(α(β+1)+rµλ)

(qβ+1; q)kn [(qλ; q)µn]r
[(q−mk; qk)δn]s

(qk; qk)n

(1− qβ+km)(qβ ; q)km
[(qk; qk)m]s

m∗∑
n=0

qs(kδn(kδn−1)/2+kδnm) qδn(k(β+1)+rµλ)

[qβ ]kn [(qλ; q)µn]r

× [(q−mk; qk)δn]s xkn

(qk; qk)n
.

= (1− qβ+km)B
(k,β−1,λ,µ)
m∗ ((xqδ)k; s, r|q)

= r.h.s.

�
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alized fractional integral operator, J. Inequal. Appl., 147(2014), no. 1, 1-8.
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A class of differential systems of even degree
with exact non-algebraic limit cycles

Abdelkrim Kina, Aziza Berbache and Ahmed Bendjeddou

Abstract. Up until now all the polynomial differential systems for which non-
algebraic limit cycles are known explicitly have degree odd. Here we show that
that there are polynomial systems of even degree with explicit no-algebraic limit
cycles. To our knowledge, there are no such type of examples in the literature.
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1. Introduction and statement of the main results

We consider a polynomial differential system of the form{
ẋ = P (x, y),
ẏ = Q (x, y) ,

(1.1)

where P and Q are real polynomials in the variables x and y. The degree of the system
(1.1) is the maximum of the degrees of the polynomials P and Q. As usual the dot
denotes derivative with respect to the independent variable t.

A limit cycle of system (1.1) is an isolated periodic solution in the set of all
periodic solutions of system (1.1). If a limit cycle is contained in the zero level set
of a polynomial function, see for example, [[1], [4], [5], [9], [11]], then we say that it
is algebraic, otherwise it is called non–algebraic see for example ([2], [4], [8], [10]).
The topic of limit cycles is interesting both in mathematics and in science and many
models from physics, engineering, chemistry, biology, economics,..., were displayed as
differential systems with limit cycles.

An important problem of the qualitative theory of differential equations is to
determine the limit cycles of a system of form (1.1). We usually only ask for the number
of such limit cycles, but their location as orbits of the system is also an interesting
problem. And an even more difficult problem is to give an explicit expression of them.
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In the chronological order the first examples where explicit non-algebraic limit
cycles appeared are those of A. Gasull and all [8] and J. Gine and M. Grau [10] and by
Al-Dosary, Khalil I. T.[2] for n = 5. In [6], an example of an explicit limit cycle which
is not algebraic is given for n = 3. Bendjeddou in [3] provide a class of polynomial
differential system of degree odd with explicit limit cycle non-algebraic.

In this paper, we consider the family of the polynomial differential system of the
form

ẋ = x (l + wx+ vy)
n+1

+ n
(
vx2 − vy2 − 2ly − 2wxy

) (
x2 + y2

)n
+ x (l + wx+ vy)

(
a
(
x2 + y2

)
+ 2c

(
x2 − y2

)
− 4bxy

) (
x2 + y2

)n−1

ẏ = y (l + wx+ vy)
n+1

+ n
(
wx2 − wy2 + 2lx+ 2vxy

) (
x2 + y2

)n
+ y (l + wx+ vy)

(
a
(
x2 + y2

)
+ 2c

(
x2 − y2

)
− 4bxy

) (
x2 + y2

)n−1
,

(1.2)

where a, b, c, w, v, n and l are real constants, n is strictly positive integer (n ∈ N∗).
We prove that these systems are Liouville integrable. Moreover, we determine suf-
ficient conditions for a polynomial differential system (1.2) to possess an explicit
non-algebraic limit cycle.

It remains the open question to determine if the polynomial differential systems
of degree 2 can exhibit explicit non-algebraic limit cycles (this question is due to
Benterki and Llibre [6]).

Thus, our main result is the following one.

Theorem 1.1. Consider a multi-parameter polynomial differential system (1.2). Then
the following statements hold.

(a) System (1.2) is Darboux integrable with the Liouvillian first integral

H (x, y) =

(
x2 + y2

wx+ vy + l

)n
e
−
(
a(arctan y

x )+ bx2+2cxy−by2

x2+y2

)

−
∫ arctan y

x

0

e−as−b cos 2s−c sin 2s ds.

(b) If a < 0, w ≥ 0, l > 0 and 2aπ + b 6= 0 then system (1.2) has an explicit non
algebraic limit cycles, given in polar coordinates (r, θ) by

r∗(θ) =
1

2

(
g (θ) ρ∗ (θ)

1
n +

√(
g (θ) ρ∗ (θ)

1
n

)2
+ 4lρ∗ (θ)

1
n

)
,

where

g (θ) = w cos θ + v sin θ,

f (θ) =

∫ θ

0

e−as−b cos 2s−c sin 2s ds,

ρ∗ (θ) = eaθ+b cos 2θ+c sin 2θ

(
e2πaf (2π)

1− e2πa
+ f (θ)

)
.

Moreover, this limit cycle is hyperbolic.
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2. Proof of Theorem 1.1

Firstly, we have

xẏ − yẋ = n (2l + wx+ vy)
(
x2 + y2

)n+1
,

thus, the equilibrium points of system (1.2) are present in the equation curve’s(
x2 + y2

)n+1
(2l + wx+ vy) = 0, (2.1)

we deduce that the origin is an equilibrium point, and any other, if exists must lies
on the straight line

(∆) : (2l + wx+ vy) = 0.

Let (x0, y0) 6= (0, 0) be such a point. Then form the remark above, x0 and y0 must
satisfy 

x0(−l)n+1 + n(vx20 − wx0y0)(x20 + y20) + x0(−l)(a(x20 + y20)
+2c(x20 − y20)− 4bx0y0) = 0,

y0(−l)n+1 + n(vx0y0 − wy20)(x20 + y20) + y0(−l)(a(x20 + y20)
+2c(x20 − y20)− 4bx0y0) = 0,

vy0 + wx0 + 2l = 0,{
(−l)n+1

+ n (vx0−wy0)
(
x20 + y20

)
+ (−l)

(
a
(
x20 + y20

)
+ 2c

(
x20−y20

)
−4bx0y0

)
= 0,

y0 = − 1
v (2l + wx0) ,

this system can be written as

−l
(
av3 + 2cv3 − 6nw3 + avw2 + 4bv2w − 2cvw2 − 6nv2w

)
x20

−4l2
(
2bv2 − nv2 − 3nw2 + avw − 2cvw

)
x0 + n

(
v2 + w2

)2
x30

−
(

4al3v − (−l)n+1
v3 − 8cl3v − 8l3nw

)
= 0,

(2.2)

then, the equilibrium points of system (1.2) are
{

(0, 0) ,
(
x0,− 1

v (2l + wx0)
)}
, where

x0 is a real root of the equation (2.2).
Note that, the origin of coordinates which is an unstable node because its eigenvalues
are ln+1 > 0 with multiplicity two, for more details see for instance [[7], Theorem
2.15].

Proof of statement (a).
To prove our results (a) and (b) we write the polynomial differential system (1.2) in
polar coordinates (r, θ), defined by x = r cos θ and y = r sin θ. Then the system (1.2)
become ṙ = r (l + wr cos θ + vr sin θ)

n+1
+ l (a+ 2c cos 2θ − 2b sin 2θ) r2n+1

+ (n (v cos θ − w sin θ) + (w cos θ + v sin θ) (a+ 2c cos 2θ − 2b sin 2θ)) r2n+2,

θ̇ = 2lnr2n + n (v sin θ + w cos θ) r2n+1.

Taking θ as an independent variable, we obtain the equation

dr

dθ
=

(l + wr cos θ + vr sin θ)
n+1

r + l (a+ 2c cos 2θ − 2b sin 2θ) r2n+1

2lnr2n + n (v sin θ + w cos θ) r2n+1
(2.3)

+
(n (v cos θ − w sin θ) + (w cos θ + v sin θ) (a+ 2c cos 2θ − 2b sin 2θ)) r2n+2

2lnr2n + n (v sin θ + w cos θ) r2n+1
.
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Via the change of variables

ρ =
r2n

((w cos θ + v sin θ) r + l)
n ,

the equation (2.3) is transformed into the linear differential equation

dρ

dθ
= (a+ 2c cos 2θ − 2b sin 2θ) ρ+ 1. (2.4)

The general solution of linear equation (2.4) is

ρ (θ, k) = eaθ+b cos 2θ+c sin 2θ

(
k +

∫ θ

0

e−as−b cos 2s−c sin 2sds

)
, (2.5)

where k ∈ R. Going back through the changes of variables we obtain the first integral
of the statement (a) of Theorem 1. Since this first integral is a function that can be
expressed by quadratures of elementary functions, it is a Liouvillian function, and
consequently system (1.2) is Darboux integrable.

Proof of statement (b) of Theorem 1.
In (2.5) let θ → ρ(θ, k∗) be the solution taking the value of k∗ ∈ R for θ = 0. To

be a periodic solution, it must satisfy at first the condition

ρ (0, k∗) = ρ (2π, k∗) ,

providing the value of k∗ is

k∗ =
e2πaf (2π)

1− e2πa
> 0,

because a < 0 and f (θ) =

∫ θ

0

e−as−b cos 2s−c sin 2sds > 0 for all ∈ R.

After the substitution of the value k∗ into ρ (θ, k) we obtain

ρ (θ, k∗) = ρ∗ (θ) = eaθ+b cos 2θ+c sin 2θ

(
k∗ +

∫ θ

0

e−as−b cos 2s−c sin 2sds

)
. (2.6)

Note that, since

f (θ) =

∫ θ

0

e−as−b cos 2s−c sin 2sds > 0

for all ∈ R and k∗ > 0, consequently,ρ∗ (θ) > 0 for all θ ∈ R.
Note that, since ρ∗ (θ) > 0 for all θ ∈ R, from the expression of the change of variable
that transform (2.3) into (2.4), one gets a unique r∗ (θ) > 0 for all θ ∈ R and it has
the expression

r∗ (θ) =
1

2

(
g (θ) ρ∗ (θ)

1
n +

√(
g (θ) ρ∗ (θ)

1
n

)2
+ 4lρ∗ (θ)

1
n

)
. (2.7)

Moreover, since l > 0 and ρ∗ (θ) > 0 for all θ ∈ R, then r∗ (θ) > 0, one can see that
it is 2π−periodic, since g and ρ∗ are 2π− periodic.
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In order to prove that the periodic orbit is hyperbolic limit cycles, we consider (2.6),
and introduce the Poincaré return map

λ 7→ Π(2π, λ) = ρ (θ, λ) .

Therefore, a limit cycle of system (1.2) is hyperbolic if and only if

dρ(2π, λ)

dλ

∣∣∣∣
λ=k∗

6= 1.

An easy computation shows that:

dρ(2π, λ)

dλ

∣∣∣∣
λ=k∗

=
dρ∗ (θ)

dk∗
= e2πa+b 6= 1.

Therefore the limit cycle of the differential equation (2.4) is hyperbolic, for more
details see [12]. Consequently 2.7 is hyperbolic limit cycle of the differential equation
(2.3).
Clearly the curve (r(θ) cos θ, r(θ) sin θ) in the (x, y) plane with

r2n

(g (θ) r + l)
n − eaθ+b cos 2θ+c sin 2θ

(
e2πaf(2π)
1−e2πa + f (θ)

)
= 0, (2.8)

is not algebraic, due to the expression e2πaf(2π)
1−e2πa eaθ+b cos 2θ+c sin 2θ. More precisely, in

Cartesian coordinates r2 = x2 +y2, θ = arctan y
x , the curve defined by this limit cycle

is

F (x, y) =

(
x2 + y2

wx+ vy + l

)n
− ea(arctan

y
x )+ bx2+2cxy−by2

x2+y2

×

(
e2πaf(2π)
1−e2πa +

∫ arctan y
x

0

e−as−b cos 2s−c sin 2s ds

)
.

If the limit cycle is algebraic this curve must be given by a polynomial, but a polyno-
mial F (x, y) in the variables x and y satisfies that there is a positive integer n such

that ∂(n)F
∂xn = 0, and this is not the case because in the derivative

d

dx
F (x, y) = n

(
wx2 + 2vxy + 2lx− wy2

) (
x2+y2

l+vy+wx

)n−1

(l + vy + wx)
2

− y

x2 + y2

 1 +
(
ax2+ay2+2cx2−2cy2−4bxy

x2+y2

)
e
a(arctan y

x )+ bx2+2cxy−by2

x2+y2

×
(
e2πaf(2π)
1−e2πa +

∫ arctan y
x

0
e−as−b cos 2s−c sin 2s ds

)
 ,

it appears again the expression

e
a(arctan y

x )+ bx2+2cxy−by2

x2+y2

(
e2πaf(2π)
1−e2πa +

∫ arctan y
x

0

e−as−b cos 2s−c sin 2s ds

)
,

which already appears in F (x, y), and this expression will appear in the partial de-
rivative at any order. This completes the proof of theorem.
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3. Example

If we take b = 1
2 , c = 0, a = −1, v = w = l = 1, then system (1.2) reads

ẋ = x (1 + x+ y)
n+1

+ n
(
x2 − y2 − 2y − 2xy

) (
x2 + y2

)n
+ x (1 + x+ y)

(
−
(
x2 + y2

)
+−2xy

) (
x2 + y2

)n−1

ẏ = y (1 + x+ y)
n+1

+ n
(
x2 − y2 + 2x+ 2xy

) (
x2 + y2

)n
+ y (1 + x+ y)

(
−
(
x2 + y2

)
+−2xy

) (
x2 + y2

)n−1
,

(3.1)

has a non-algebraic limit cycle whose expression in polar coordinates (r, θ) is

r∗ (θ) =
1

2

(
(cos θ + sin θ) ρ∗ (θ)

1
n +

√
(cos θ + sin θ)

2
ρ∗ (θ)

2
n + 4lρ∗ (θ)

1
n

)
,

where

ρ∗ (θ) = e−θ+
1
2 cos 2θ

(
e−2πf(2π)
1−e−2π + f (θ)

)
and f (θ) =

∫ θ

0

es−
1
2 cos 2s ds.

For n = 1: The system (3.1) is a quartic system and that has a non algebraic limit
cycle whose expression in polar coordinates (r, θ) is

r∗(θ) =
1

2

(
(cos θ + sin θ) ρ∗ (θ) +

√
(cos θ + sin θ)

2
ρ∗ (θ)

2
+ 4lρ∗ (θ)

)
.

Figure 1. Limit cycle of system (3.1) for n = 1

For n = 2: The system (3.1) is of degree 6 and that has a non algebraic limit cycle
whose expression in polar coordinates (r, θ) is

r∗(θ) =
1

2

(
(cos θ + sin θ) ρ∗ (θ)

1
2 +

√(
(cos θ + sin θ) ρ∗ (θ)

1
2

)2
+ 4lρ∗ (θ)

1
2

)
.
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Figure 2. Limit cycle of system (3.1) for n = 2
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1. Introduction

The set-valued differential, integral and discrete-time equations and inclusions
are an important part of the theory of set-valued analysis, and they are high-valued
for the control theory and its applications, as well as for fuzzy differential equations.
They were first studied in 1969 by F.S. de Blasi and F. Iervolino [5]. Later, set-valued
differential equations have been studied by many scientists due to their applications
in many areas. A lot of results on the theory of set-valued differential, integral and
discrete-time equations and inclusions can be found in the following books and articles
[6, 10, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26, 27, 31, 36, 30, 38, 41, 42, 44] and
references therein.

In this article first we consider some definitions of the derivative of a set-valued
mapping (Hukuhara derivative [11], Plotnikov-Skripnik derivative [32] and Bede-Gal
derivative [1, 19, 20, 46, 47]) and some of their properties. Next, we consider a linear
set-valued differential equation with different derivatives that were previously dis-
cussed and study the existence of solutions for these equations.
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2. Preliminaries

Let R be the set of real numbers and let Rn denote the n-dimensional Euclidean
space (n ≥ 2). We denote by comp(Rn) and conv(Rn) the set of nonempty compact
subsets of Rn and the set of nonempty convex and compact subsets of Rn, respectively.
For two given sets X,Y ∈ comp(Rn) and λ ∈ R, the Minkowski sum and scalar
multiple are defined by

X + Y = {x+ y |x ∈ X, y ∈ Y } and λX = {λx |x ∈ X}.

We consider the Hausdorff distance h : comp(Rn)× comp(Rn)→ R+

⋃
{0} given by

h(X,Y ) = min{r ≥ 0 |X ⊂ Y +Br(0), Y ⊂ X +Br(0)},

where Br(0) = {x ∈ Rn | ‖x‖ ≤ r} is the closed ball with radius r centered at the
origin ( ‖x‖ denotes the Euclidean norm).

Lemma 2.1. [39, 40] The following properties hold:
1) (conv(Rn), h) is a complete metric space,
2) h(A+ C,B + C) = h(A,B),
3) h(λA, λB) = |λ|h(A,B) for all A,B,C ∈ conv(Rn) and λ ∈ R.

However, comp(Rn) and conv(Rn) are not linear spaces since they do not contain
inverse elements for the addition, and therefore difference is not well defined, i.e. if
A ∈ comp(Rn) and A 6= {a}, then A + (−1)A 6= {0}. As a consequence, alternative
formulations for difference have been suggested [7, 11, 28, 39]. One of these alternatives
is the Hukuhara difference [11].

Definition 2.2. [11] Let X,Y ∈ conv(Rn). A set Z ∈ conv(Rn) such that X = Y + Z
is called a Hukuhara difference (H-difference) of the sets X and Y and is denoted by
X H Y.

In this case X H X = {0} and also (A+ B) H B = A for any A,B ∈ conv(Rn).

Also, we note that X H Y 6= X + (−1)Y.

Remark 2.3. Let A,B ∈ conv(Rn). Then the following statements are true:

1) if the H-difference A H B exists, then diam(A) ≥ diam(B);

2) if n = 1 and diam(A) ≥ diam(B), then the H-difference A H B exists;

3) if n ≥ 2 and diam(A) ≥ diam(B), then the H-difference A H B may not exist.

For example, if A = {a ∈ Rn | |ai| ≤ 2, i = 1, n} and B = {b ∈ Rn | ‖b‖ ≤ 1},
then A H B does not exist.

The properties of this difference are studied in detail in [11, 15, 16, 22, 31, 30, 39].
M. Hukuhara introduced the concept of H-differentiability [11] for set-valued

functions by using the H-difference.
Let X : [0, T ]→ conv(Rn) be a set-valued mapping; (t0 −∆, t0 + ∆) ⊂ [0, T ] be

a ∆- neighborhood of a point t0 ∈ [0, T ]; ∆ > 0.
For any t ∈ (t0 − ∆, t0 + ∆) consider the following Hukuhara differences

X(t) h X(t0), t ≥ t0, and X(t0) h X(t), t ≥ t0 if these differences exist.
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Definition 2.4. [11] We say that the mapping X : [0, T ] → conv(Rn) has Hukuhara
derivative (H-derivative) DHX(t0) at a point t0 ∈ [0, T ], if there exists an element
DHX(t0) ∈ conv(Rn) such that the limits

lim
t↓t0

1

t− t0
(X(t)

h
X(t0)) and lim

t↑t0

1

t0 − t
(X(t0)

h
X(t)) (2.1)

exist in the topology of conv(Rn) and are equal to DHX(t0).

The properties of Hukuhara derivative are studied in detail in [8, 11, 15, 22, 31,
30, 39]. Here, we mention some of them.

Theorem 2.5. [11] If the mapping X : [0, T ]→ conv(Rn) is H-differentiable on [0, T ],
then

X(t) = X(0) +

t∫
0

DHX(s)ds,

where the integral is understood in the sense of [11].

Corollary 2.6. If the mapping X(·) is H-differentiable on [0, T ], then diam(X(·)) is a
non-decreasing function on [0, T ].

Remark 2.7. The inverse statement is not true. For, example. Let X(·) : [0, 1] →

conv(R2) be such that X(t) = A(t)C(t), where A(t) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
is

a rotation matrix, C(t) = {x ∈ R2 | |xi| ≤ t, i = 1, 2} is square. Obviously,

diam(X(t)) =
√

2t. However, the mapping X(·) is not H-differentiable on [0, 1].

Corollary 2.8. If the function diam(X(·)) is a decreasing function on [0, T ], then the
mapping X(·) is not H-differentiable on [0, T ].

In order to overcome these shortcomings of this approach, other types of deriva-
tives for set-valued functions have been explored.

The first alternative of the derivative for set-valued mappings have been intro-
duced by H.T. Banks, M.Q. Jacobs [7] and J.N.Tyurin [45]. According to the Rad-
ströms embedding theorem [40] there is a real normed linear space B and an isometric
mapping π : conv(Rn)→ B. B is a space of equivalence classes (see [7, 39, 40]). Then,
taking advantage of this embedding theorem, a set-valued mapping X(·) is said to
be π-differentiable at t0 if π ◦ X(·) is differentiable at t0. Some properties of this
derivative and its connection with other derivatives for set-valued mappings can be
found in [7, 9, 18, 21, 37, 39]. However, the π-derivative of a set-valued mapping X(·)
may be an element of the space B, which does not have a comparable set in the space
conv(Rn) (examples, see [15, 22, 31, 30]).

In [28, 31, 30] the definition of the T-derivative that generalizes the H-derivative
and reminds outwardly the π - derivative was introduced. However, its use had diffi-
culty when writing the corresponding set-valued differential equation.

Later, A.V. Plotnikov and N.V. Skripnik took advantage of some approaches
that were used in [28] and introduced a new definition of a derivative.
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Definition 2.9. [32] Let X : [0, T ] → conv(Rn) and t ∈ [0, T ]. We say that X(·) has
a Plotnikov-Skripnik derivative (PS-derivative) DpsX(t) ∈ conv(Rn) at t ∈ (0, T ), if
for all ∆ > 0 that are sufficiently close to 0, the H-differences and the limits exist in
at least one of the following expressions:
(i) lim

∆→0
∆−1(X(t+ ∆) H X(t)) = lim

∆→0
∆−1(X(t) H X(t−∆)) = DpsX(t)

or
(ii) lim

∆→0
∆−1(X(t) H X(t+ ∆))= lim

∆→0
∆−1(X(t−∆) H X(t))=DpsX(t)

or
(iii) lim

∆→0
∆−1(X(t+ ∆) H X(t)) = lim

∆→0
∆−1(X(t−∆) H X(t)) = DpsX(t)

or
(iv) lim

∆→0
∆−1(X(t) H X(t+ ∆))= lim

∆→0
∆−1(X(t) H X(t−∆))=DpsX(t).

The properties of this derivative were obtained in [32, 33, 34, 35]. Here, we
mention some of them.

Remark 2.10. If the set-valued mapping X(·) is H-differentiable then it is PS-
differentiable and DpsX(t) = DHX(t).

Remark 2.11. If the set-valued mapping X(·) is PS-differentiable on I and diamX(·)
is a non-decreasing function on [0, T ] then the set-valued mapping X(·) is H-
differentiable and DpsX(t) = DHX(t).

Remark 2.12. There exist set-valued mappings that are PS-differentiable but not
H-differentiable.

Example 2.13. The set-valued mapping X(t) = B|t|(0) is PS-differentiable on R and
its PS-derivative DpsX(t) ≡ B1(0). It is obvious that the given set-valued mapping is
H-differentiable only on the interval (0,+∞) and DHX(t) = B1(0). On the interval
(−∞, 0) it is not H-differentiable as its diameter on this interval decreases.

Theorem 2.14. [32] If the mapping X : [0, T ] → conv(Rn) is PS-differentiable on
[0, T ], then for all t ∈ [0, T ]

(i) if function diam(X(t)) is a non-decreasing function on [0, T ], then

X(t) = X(0) +

t∫
0

DpsX(s)ds;

(ii) if function diam(X(t)) is a decreasing function on [0, T ], then

X(t) = X(0)
H

t∫
0

DpsX(s)ds.

Later, M.T. Malinowski [19, 20], H. Vu and L.S. Dong [46], H. Vu and N. Van
Hoa [47] and Ş.E. Amrahov, A. Khastan, N. Gasilov and A.G. Fatullayev [1] adapted
the concept of the Bede-Gal derivative [3, 4, 10, 43] for interval-valued mappings
on set-valued mappings, that is, such that X : [0, T ] → conv(Rn), and studied its
properties [47].
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Definition 2.15. [1, 46] Let X : [0, T ] → conv(Rn) and t ∈ [0, T ]. We say that X(·)
has a Bede-Gal derivative (BG-derivative) DbgX(t) ∈ conv(Rn) at t ∈ (0, T ), if for
all ∆ > 0 that are sufficiently close to 0, the H-differences and the limits exist in at
least one of the following expressions:
(i) lim

∆→0
∆−1(X(t+ ∆) H X(t)) = lim

∆→0
∆−1(X(t) H X(t−∆)) = DbgX(t)

or
(ii) lim

∆→0
(−∆)−1(X(t) H X(t+ ∆))= lim

∆→0
(−∆)−1(X(t−∆) H X(t))=DbgX(t)

or
(iii) lim

∆→0
∆−1(X(t+ ∆) H X(t)) = lim

∆→0
(−∆)−1(X(t−∆) H X(t)) = DbgX(t)

or
(iv) lim

∆→0
(−∆)−1(X(t) H X(t+ ∆))= lim

∆→0
∆−1(X(t) H X(t−∆))=DbgX(t).

Remark 2.16. In the article [19, 20] M.T. Malinowski considered set-valued mappings
that satisfy condition (ii) and called this derivative a second type Hukuhara derivative.

Remark 2.17. If the set-valued mapping X(·) is H-differentiable on [0, T ] it is BG-
differentiable on [0, T ] and DbgX(t) = DHX(t).

Remark 2.18. If the set-valued mapping X(·) is BG-differentiable on [0, T ] and
diamX(·) is a non-decreasing function on [0, T ] then the set-valued mapping X(·)
is H-differentiable and DbgX(t) = DHX(t).

Remark 2.19. There exist set-valued mappings that are BG-differentiable but not
H-differentiable.

Example 2.20. [1] The set-valued mapping X(t) = B|t|(0) is BG-differentiable on
R and its BG-derivative DbgX(t) ≡ B1(0). It is obvious that the given set-valued
mapping is H-differentiable only on the interval (0,+∞) and DHX(t) = B1(0). On
the interval (−∞, 0) it is not H-differentiable as its diameter on this interval decreases.

Theorem 2.21. [1] If the mapping X : [0, T ]→ conv(Rn) is BG-differentiable on [0, T ],
then for all t ∈ [0, T ]

(i) if function diam(X(t)) is a non-decreasing function on [0, T ], then

X(t) = X(0) +

t∫
0

DbgX(s)ds;

(ii) if function diam(X(t)) is a decreasing function on [0, T ], then

X(t) = X(0)
H

(−1)

t∫
0

DbgX(s)ds.

Remark 2.22. By Remarks 2.10 and 2.17, if the set-valued mapping X(·) is H-
differentiable on [0, T ] then it is BG-differentiable on [0, T ] and PS-differentiable on
[0, T ] as well as DHX(t) = DpsX(t) = DbgX(t).

Remark 2.23. By Remarks 2.13 and 2.20, we see that the set-valued mapping X(t) =
B|t|(0) is BG-differentiable on R and PS-differentiable on R as well as DbgX(t) ≡
DpsX(t) ≡ B1(0) for all t ∈ R.
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Remark 2.24. There exist set-valued mappings X(·) such that DbgX(t) 6= DpsX(t)
for any t.

Example 2.25. Let X : [0, 2] → conv(R2) and X(t) = B|1−t|(g(t)), where g(t) =

(t+ 1, t+ 1)T (see Figure 1).

Figure 1: X(t), t ∈ [0, 2]

The set-valued mapping X(·) is BG-differentiable on (0, 2) and its BG-derivative
DbgX(t) ≡ B1(a), where a = (1, 1)T . However, the set-valued mapping X(·) is PS-
differentiable on (0, 1) and its PS-derivative DpsX(t) ≡ B1(b) 6= DbgX(t), where
b = (−1,−1)T . Also, the set-valued mapping X(·) is PS-differentiable on (1, 2) and
its PS-derivative DpsX(t) ≡ B1(a) = DbgX(t), where a = (1, 1)T . As well as the
PS-derivative DpsX(t) at the point t = 1 does not exist (see Figure 2 and Figure 3).

Figure 2: DbgX(t), t ∈ [0, 2] Figure 3: DpsX(t), t ∈ [0, 2]

Example 2.26. Let X : [0, 2]→ conv(R2) such that

X(t) =

{
{x ∈ R2 |x2

1 + x2
2 ≤ t, x2 ≥ 0}, t ∈ [0, 1],

{x ∈ R2 |x2
1 + x2

2 ≤ 2− t, x2 ≥ 0}, t ∈ (1, 2]

(see Figure 4).
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Figure 4: X(t), t ∈ [0, 2]

The set-valued mapping X(·) is PS-differentiable on (0, 2) and its PS-derivative
DpsX(t) ≡ {x ∈ R2 |x2

1 + x2
2 ≤ 1, x2 ≥ 0}. However, the set-valued mapping X(·) is

BG-differentiable on (0, 1) and its BG-derivative DbgX(t) ≡ DpsX(t). Also, the set-
valued mapping X(·) is BG-differentiable on (1, 2) and its BG-derivative DbgX(t) ≡
(−1)DpsX(t). As well as the BG-derivative DbgX(t) at the point t = 1 does not exist
(see Figure 5 and Figure 6).

Figure 5: DpsX(t), t ∈ [0, 2] Figure 6: DbgX(t), t ∈ [0, 2]

3. Linear set-valued differential equations

In this section, we consider linear set-valued differential equations

DX(t) = aX(t), X(0) = X0, (3.1)
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where a ∈ R, X : [0, T ]→ conv(Rn) is a set-valued mapping, DX(t) is one of the pre-
viously considered derivatives (DHX(t), DpsX(t), Dbg(t)) of the set-valued mapping
X(t).

Definition 3.1. A set-valued mapping X(·) is called a solution of (3.1) if it is contin-
uously differentiable and satisfies system (3.1) everywhere on [0, T ].

As known, linear Hukuhara differential equation

DHX(t) = aX(t), X(0) = X0, (3.2)

has a unique solution on the interval [0, T ] [22, 31]. It’s also obvious that function
diam(X(t)) is a non-decreasing function on [0, T ].

Remark 3.2. [5, 22, 31] If a ≥ 0 then X(t) = eatX0 for all t ∈ [0, T ].

Remark 3.3. [38] System (3.2) may not be equivalent to the following system of
interval-valued differential equations with the Hukuhara derivative DHX1(t) = aX1(t), X1(0) = X01,

. . . . . .
DHXn(t) = aXn(t), Xn(0) = X0n,

(3.3)

where Xi : [0, T ]→ conv(R) is a interval-valued mapping, X0i is the projection of the
set X0 on the axis 0xi, i = 1, n.

If X(·) is a solution of (3.2) and Xi(·), i = 1, n are solutions of (3.3), then
X(t) ⊂ X1(t)× . . .×Xn(t) for all t ∈ [0, T ].

If X0 = X01 × . . .×X0n then system (3.2) is equivalent to system (3.3).

We demonstrate this by the following example.

Example 3.4. Let

DHX(t) = X(t), X(0) = B1(0), t ∈ [0, 1], (3.4)

and {
DHX1(t) = X1(t), X1(0) = X01 = [−1, 1],
DHX2(t) = X2(t), X2(0) = X02 = [−1, 1],

(3.5)

where X : [0, 1] → conv(R2) is a set-valued mapping, Xi : [0, 1] → conv(R) is an
interval-valued mapping, X0i is the projection of the set X0 on the axis 0xi, i = 1, 2.

The set-valued mapping X(t) = Bet(0) is a solution of Hukuhara differential
equation (3.4). The interval-valued mappingsXi(t) = [−et, et], i = 1, 2 are solutions of
the system of Hukuhara differential equations (3.5). It’s obvious that X(t) ⊂ X1(t)×
X2(t) for all t ∈ [0, 1] (see Figure 7). However, if X(0) = {x ∈ R2 | |xi| ≤ 1, i = 1, 2}
is a square, then X0 ≡ X01 × X02 and X(t) ≡ X1(t) × X2(t) for all t ∈ [0, 1] (see
Figure 8).

Now, we consider linear differential equation (3.1) with PS-derivative and BG-
derivative. By [1, 32, 33, 34, 35], this set-valued differential equation (3.1) has at
least one solution. Moreover, one of these solutions (the one whose diameter is a
non-decreasing function) coincides with the solution of the corresponding differential
equation (3.2).

We will show it by the following example.
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Figure 7:
X(t) ⊂ X1(t)×X2(t), t ∈ [0, 1]

Figure 8:
X(t) ≡ X1(t)×X2(t), t ∈ [0, 1]

Example 3.5. Let

DX(t) = X(t), X(0) = B1(0), t ∈ [0, 1], (3.6)

where X : [0, 1]→ conv(R2) is a set-valued mapping, DX(t) is one of the previously
considered derivatives (DHX(t), DpsX(t), Dbg(t)) of the set-valued mapping X(t).

The set-valued mapping X(t) = Bet(0) is a solution of Hukuhara differential
equation (3.6) (see Figure 9).

Figure 9: X(t), t ∈ [0, 1]

Set-valued mappings X1(t) = Bet(0) and X2(t) = Be−t(0) are solutions of differential
equation (3.6) with PS-derivative and BG-derivative (see Figure 10 and Figure 11).

In this case, solutions of differential equations with PS-derivative will be solutions
of the differential equation with BG-derivative and vice versa. For the first solution
X1(·) the function diam(X1(t)) is an increasing function on [0, 1]. For the second
solution X2(·) the function diam(X2(t)) is a decreasing function on [0, 1]. Also, the
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Figure 10: X1(t), t ∈ [0, 1] Figure 11: X2(t), t ∈ [0, 1]

first solution X1(·) is the solution of the Hukuhara differential equation, i.e. X(t) =
X1(t) for all t ∈ [0, 1].

Solutions X1(·) and X2(·) will be called basic solutions.
We also note that set-valued mappings

Y1(t) =

{
Bet(0), t ∈ [0, 0.5]
Be1−t(0), t ∈ [0.5, 1]

Y2(t) =

{
Be−t(0), t ∈ [0, 0.5]
Bet−1(0), t ∈ [0.5, 1]

are the solutions of differential equation (3.6) with PS-derivative and BG-derivative
(see Figure 12 and Figure 13).

Figure 12: Y1(t), t ∈ [0, 1] Figure 13: Y2(t), t ∈ [0, 1]

It is obvious that in this example such solutions can be built infinitely many.
These solutions will be called mixed solutions. For these mixed solutions Y (·), the
diameter function diam(Y (·)) is not increasing or decreasing over the entire interval.
We also note that the shape of the cross section of solutions corresponds to the shape
of the initial set.

Later in this article we will consider only the basic solutions.
The question arises: Do such equations always have two basic solutions?
Consider the following examples when a = 1 (a > 0).
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Example 3.6. Let
DpsX(t) = X(t), X(0) = K, t ∈ [0, 1], (3.7)

where X : [0, 1]→ conv(R2) is a set-valued mapping,

K = {x ∈ R2 |x2
1 + x2

2 ≤ 1, x2 ≥ 0}.
This differential equation with PS-derivative has two basic solutions X1(·) and X2(·)
(see Figure 14 and Figure 15).

Figure 14: X1(t), t ∈ [0, 1] Figure 15: X2(t), t ∈ [0, 1]

Example 3.7. Let
DbgX(t) = X(t), X(0) = K, t ∈ [0, 1]. (3.8)

This differential equation with BG-derivative has only one basic solution, which
coincides with the solution of the Hukuhara differential equation and the first basic
solution X1(·) of the differential equation with the PS-derivative (see Figure 14).

There will be no second solution because there is no set-valued mapping that sat-
isfies the corresponding integral equation (since the set K is not a centrally symmetric
set, the Hukuhara difference does not exist)

X(t) = K
H

(−1)

t∫
0

DbgX(s)ds = K
H

(−1)

t∫
0

X(s)ds.

Now, we consider the same examples when a = −1 (a < 0).

Example 3.8. Let

DbgX(t) = (−1)X(t), X(0) = K, t ∈ [0, 1], (3.9)

where X : [0, 1]→ conv(R2) is a set-valued mapping,

K = {x ∈ R2 |x2
1 + x2

2 ≤ 1, x2 ≥ 0}.
This differential equation with BG-derivative has two basic solutions X1(·) and X2(·)
(see Figure 16 and Figure 17).
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Figure 16: X1(t), t ∈ [0, 1] Figure 17: X2(t), t ∈ [0, 1]

Example 3.9. Let

DpsX(t) = (−1)X(t), X(0) = K, t ∈ [0, 1]. (3.10)

This differential equation with PS-derivative has only one basic solution, which
coincides with the solution of the Hukuhara differential equation and the first basic
solution X1(·) of the differential equation with the BG-derivative.

There will be no second basic solution because there is no set-valued mapping
that satisfies the corresponding integral equation (the Hukuhara difference does not

exist) X(t) = K H
t∫

0

DpsX(s)ds = K H (−1)
t∫

0

X(s)ds.

Next, we consider the same examples when X0 is such that H-difference
X0

H (−1)X0 exists (X0 is centrally symmetric set [7]).

Example 3.10. Let

DbgX(t) = X(t), X(0) = P, t ∈ [0, 1], (3.11)

DpsX(t) = X(t), X(0) = P, t ∈ [0, 1], (3.12)

where X : [0, 1]→ conv(R2) is set-valued mapping, P = {x ∈ R2 | 0 ≤ x1−2 ≤ 4, 1 ≤
x2 − 2 ≤ 3}.

Each differential equation will have two basic solutionsXbg
1 (·),Xbg

2 (·) andXps
1 (·),

Xps
2 (·) (see Figures 18,19 and Figures 20,21).

Example 3.11. Let

DbgX(t) = (−1)X(t), X(0) = P, t ∈ [0, 1], (3.13)

DpsX(t) = (−1)X(t), X(0) = P, t ∈ [0, 1]. (3.14)

Also, each differential equation will have two basic solutions Xbg
1 (·), Xbg

2 (·) and Xps
1 (·),

Xps
2 (·) (see Figures 22, 23 and Figures 24, 25).

Remark 3.12. It’s obvious that the basic solution Xps
2 (·) of differential equation (3.12)

coincides with the basic solution Xbg
2 (·) of differential equation (3.13). Also, the basic

solution Xbg
2 (·) of differential equation (3.11) coincides with the basic solution Xps

2 (·)
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Figure 18: Xbg
1 (t), t ∈ [0, 1] Figure 19: Xbg

2 (t), t ∈ [0, 1]

Figure 20: Xps
1 (t), t ∈ [0, 1] Figure 21: Xps

2 (t), t ∈ [0, 1]

Figure 22: Xbg
1 (t), t ∈ [0, 1] Figure 23: Xbg

2 (t), t ∈ [0, 1]

of differential equation (3.14). This is confirmed by integral equations that correspond
to differential equations (3.11), (3.12), (3.13) and (3.14):

Xbg
2 (t) = P

H
(−1)

t∫
0

Xbg
2 (s)ds, (3.15)
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Figure 24: Xps
1 (t), t ∈ [0, 1] Figure 25: Xps

2 (t), t ∈ [0, 1]

Xps
2 (t) = P

H
t∫

0

Xps
2 (s)ds, (3.16)

Xbg
2 (t) = P

H
(−1)

t∫
0

(−1)Xbg
2 (s)ds = P

H
t∫

0

Xbg
2 (s)ds, (3.17)

Xps
2 (t) = P

H
t∫

0

(−1)Xps
2 (s)ds = P

H
(−1)

t∫
0

Xps
2 (s)ds. (3.18)

Remark 3.13. If the differential equation with the PS-derivative (BG-derivative) has
two basic solutions and we write the corresponding system of interval-valued differen-
tial equations the PS-derivative (BG-derivative) similar to (3.3), then Remark 3.3 will
be satisfied. However, we note that this system will always have two basic solutions
(even when the original equation has only one basic solution).

Based on all above stated, we can make the following proposition.

Proposition 3.14. For system (3.1) the following statements are true:
1) if H-difference X0

H (−1)X0 exists, then differential equation (3.1) with
PS(BG)-derivative has two basic solutions;

2) if H-difference X0
H (−1)X0 does not exist, then

a) if a > 0, then differential equation (3.1) with PS-derivative has two basic
solutions and differential equation (3.1) with BG-derivative has one basic solution;

a) if a < 0, then differential equation (3.1) with BG-derivative has two basic
solutions and differential equation (3.1) with PS-derivative has one basic solution.

4. Conclusion

In the article it is shown that linear set-valued differential equations have sig-
nificant differences from ordinary and interval-valued linear differential equations. In
these equations, the number of solutions may depend on the form (shape) of the initial
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set, the considered derivative and the coefficient in the right-hand side. We also note
that in articles [32, 33, 34, 35, 42], the authors considered a new type of differential
equations with PS-derivative, in which no more than one solution can exist.
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valued systems, Stud. Univ. Babeş-Bolyai Math., 63(2018), no. 4, 539-548.

[14] Komleva, T.A., Plotnikova, L.I., Plotnikov, A.V., A multivalued discrete system and its
properties, Ukr. Math. J., 70(11)(2019), 1750-1757.

[15] Komleva, T.A., Plotnikov, A.V., Skripnik, N.V., Differential equations with set-valued
solutions, Ukr. Math. J., 60(10)(2008), 1540-1556.

[16] Lakshmikantham, V., Granna Bhaskar, T., Vasundhara Devi, J., Theory of Set Differ-
ential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge, 2006.

[17] Lakshmikantham, V., Mohapatra, R.N., Theory of Fuzzy Differential Equations and
Inclusions, Taylor & Francis, London, 2003.

[18] Lasota, A., Strauss, A., Asymptotic behavior for differential equations which cannot be
locally linearized, J. Differ. Equations, 10(1971), 152-172.



426 T.A. Komleva, L.I. Plotnikova, N.V. Skripnik and A.V. Plotnikov

[19] Malinowski, M.T., Second type Hukuhara differentiable solutions to the delay set-valued
differential equations, Appl. Math. Comput., 218(2012), 9427-9437.

[20] Malinowski, M.T., On set differential equations in Banach spaces - a second type
Hukuhara differentiability approach, Appl. Math. Comput., 219(2012), 289-305.

[21] Martelli, M., Vignoli, A., On differentiability of multi-valued maps, Boll. Unione Mat.
Ital., 10(1974), 701-712.

[22] Perestyuk, N.A., Plotnikov, V.A., Samoilenko, A.M., Skripnik, N.V., Differential equa-
tions with impulse effects: multivalued right-hand sides with discontinuities, de Gruyter
Stud. Math. 40, Berlin/Boston, Walter De Gruyter GmbH& Co, 2011.

[23] Perestyuk, N.A., Skripnik, N.V., Averaging of set-valued impulsive systems, Ukr. Math.
J., 65(2013), no. 1, 140-157.

[24] Perestyuk, N.A., Skripnik, N.V., Averaging of fuzzy systems, Ukr. Math. J., 70(2018),
no. 3, 477-494.

[25] Petersen, I.R., Savkin, A.V., Robust Kalman Filtering for Signals and Systems with
Large Uncertainties, Control Engineering, Birkhäuser, Boston, MA, 1999.
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Exponential decay of the viscoelastic wave
equation of Kirchhoff type with a nonlocal
dissipation

Mohamed Mellah and Ali Hakem

Abstract. The following viscoelastic wave equation of Kirchhoff type with non-
linear and nonlocal damping

utt − ψ
(∥∥∇u∥∥2

2

)
∆u− α∆ut +

∫ t

0

g(t− τ)∆u(τ)dτ +M
(∥∥∇u∥∥2

2

)
ut = f(u),

where M(r) is a C1([0,∞)) -function satisfying M(r) ≥ m1 > 0 for r ≥ 0, is
considered in a bounded domain Ω of RN . The existence of global solutions and
decay rates of the energy are proved.

Mathematics Subject Classification (2010): 35L05, 35L70, 93D15.

Keywords: Kirchhoff equation, nonlocal damping, global solution, energy decay,
relaxation function.

1. Introduction

In this paper, we shall consider the initial boundary value problem for the fol-
lowing integro-differential problem

utt − ψ
(∥∥∇u∥∥2

2

)
∆u− α∆ut +

∫ t

0

g(t− τ)∆u(τ)dτ

+M
(∥∥∇u∥∥2

2

)
ut = f(u), in Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.1)

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω so that
the divergence theorem can be applied. ψ(r) is a positive locally Lipschitz function
satisfying ψ(r) ≥ m0 > 0, for r ≥ 0 like ψ(r) = m0 + brγ , b ≥ 0 and γ ≥ 1. M(r)
is a C1[0,∞) -function satisfying M(r) ≥ m1 > 0 for r ≥ 0, the scalar function g(s)
(so-called relaxation kernel) is assumed to satisfy (2.1) and f is a non-linear function
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as similar to |u|p−2u, p > 2. Here α ≥ 0. The motivation for this problem comes from
the following original equation

ρh
∂2u

∂t2
+ δ

∂u

∂t
=

{
p0 +

Eh

L

∫ L

0

(
∂u

∂x

)2

dx

}
∂2u

∂x2
+ f, (1.2)

where 0 ≤ x ≤ L, t ≥ 0 and u = u(x, t) is the lateral displacement at the space
coordinate x and the time t, ρ the mass density, h the cross-section area, L the
length, E the Youngs modulus, p0 the initial axial tension, δ the resistance modulus
and f the external force. When δ = f = 0, the equation (1.2) was first introduced by
Kirchhoff [2].

In the absence of the term M
(∥∥∇u∥∥2

2

)
ut. Wu and Tsai [7] studied (1.1) with α = 1.

The authors established the global existence and energy decay under the assumption
g′(t) ≤ −rg(t), ∀t ≥ 0 for some r > 0. Recently, this decay estimate of the energy
function was improved by Wu in [6] under a weaker condition on g i.e. g′(t) ≤ 0,
∀t ≥ 0.
If we consider (1.1) with [ψ ≡ 1, f = α = 0] and the bi-harmonic instead of Laplace
operator one we get the model

utt + ∆2u−
∫ t

0

g(t− τ)∆2u(τ)dτ +M
(∥∥∇u∥∥2

2

)
ut = 0. (1.3)

Cavalcanti et al. [1] investigated the global existence, uniqueness and stabilization of
energy. By taking a bounded or unbounded open set Ω, the authors showed that the
energy goes to zero exponentially provided that g goes to zero at the same form.
The main interest of the present paper is to examine whether there exists a global solu-
tion u to (1.3) under the presence of the nonlinear and nonlocal dissipation represented

by M

(∫
Ω

|∇u(x, t)|2dx
)
ut and the real-value function M : [0,+∞) → [m1,+∞),

where m1 > 0 will be considered of class C1.
This kind of damping effect was firstly introduced by H. Lange and G. Perla Menzala
[3] for the beam equation where the following model was considered

utt + ∆2u+M

(∫
Ω

|∇u(x, t)|2dx
)
ut = 0 in RN × R+. (1.4)

The nonlocal nonlinearity M

(∫
Ω

|∇u(x, t)|2dx
)
ut is indeed a damping term. It mod-

els a frictional mechanism acting on the body that depends on the average of u itself.
Moreover, if such u does exist, we intend to investigate its asymptotic behavior as
t→∞.
In this paper we show that under some conditions the solution is global in time and
the energy decays exponentially. We first use Faedo-Galerkin method to study the ex-
istence of the simpler problem (3.1). Then, we obtain the local existence Theorem 3.2
by using contraction mapping principle. We obtain global existence of the solutions
of (1.1) given in Theorem 4.4. Our technique of proof is similar to the one in [7] with
some necessary modifications due to the nature of the problem treated here. Moreover,
the asymptotic behavior of global solutions is investigated under some assumptions
on the initial data.
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2. Preliminaries

In this section we present some assumptions, notations and Lemmas. We first
make the following hypotheses.
(A1) g : R+ → R+ is a bounded C1 function satisfying∫ ∞

0

g(τ)dτ = l1 > 0, g(0)−K1

∫ ∞
0

g(τ)dτ = l2 > 0,

−K1g(t) ≤ g′(t) ≤ −K2g(t),

(2.1)

here K1 and K2 are positive constants.
(A2) f(0) = 0 and there is a positive constant K3 such that∣∣f(u)− f(v)

∣∣ ≤ K3

∣∣u− v∣∣(∣∣u∣∣p−2
+
∣∣v∣∣p−2

)
for u, v ∈ R, (2.2)

and

2 < p <∞ if N = 1, 2 and 2 < p ≤ 2(N − 1)

N − 2
if N ≥ 3. (2.3)

(A3) The function M(r) for r ≥ 0 belongs to the class C1[0,∞) and satisfies

M(r) ≥ m1 > 0 for r ≥ 0. (2.4)

For functions u(x, t), v(x, t) defined on Ω, we introduce

(u, v) =

∫
Ω

uvdx, ‖u‖2 =

(∫
Ω

|u|2dx
) 1

2

, ‖u‖∞ = ess sup
x∈Ω
|u(x)|,

‖u‖p =

(∫
Ω

|u|pdx
) 1
p

, ‖u‖Hm =

 ∑
|β|≤m

‖Dβ‖22

 1
2

.

Lemma 2.1. (Sobolev-Poincaré inequality [5]) If 2 ≤ p ≤ 2N
N−2 , then

‖u‖p ≤ B1‖∇u‖2, (2.5)

for u ∈ H1
0 (Ω) holds with some constant B1.

3. Local existence of solution

In this section, we shall discuss the local existence of solutions for (1.1) by using
contraction mapping principle. An important step in the proof of local existence
Theorem 3.2 below is the study of the following simpler problem:

utt − µ(t)∆u− α∆ut +

∫ t

0

g(t− τ)∆u(τ)dτ

+χ(t)ut = f1(x, t), in Ω× (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(3.1)
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Here, T > 0, α ≥ 1, f1 is a fixed forcing term in Ω× (0, T ), µ(t) is a positive locally
Lipschitz function on [0,∞) with µ(t) ≥ m0 > 0 for t ≥ 0 and χ(t) is C1-function on
[0,∞) such that χ(t) ≥ 0 for t ≥ 0.

Lemma 3.1. Suppose that (A1) holds, and that u0 ∈ H2(Ω)∩H1
0 (Ω), u1 ∈ H1

0 (Ω) and
f1 ∈ L2

(
[0, T ];L2(Ω)

)
be given. Then the problem (3.1) admits a unique solution u

such that

u ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)), ut ∈ C([0, T ];L2(Ω)) ∩ L2([0, T ];H1

0 (Ω)),

utt ∈ L2([0, T ];L2(Ω)).

Proof. Let (ωn)n∈N be a basis in H2(Ω) ∩H1
0 (Ω) and V n be the space generated by

ω1, ...., ωn, n = 1, 2, · · ·. Let us consider

un(t) =

n∑
k=1

dnk (t)wk,

be the weak solution of the following approximate problem corresponding to (3.1)∫
Ω

untt(t)ωdx+ µ(t)

∫
Ω

∇un(t) · ∇ωdx

−
∫ t

0

g(t− τ)

∫
Ω

∇un(τ) · ∇ωdxdτ + α

∫
Ω

∇unt (t) · ∇ωdx

+χ(t)

∫
Ω

unt (t)ωdx =

∫
Ω

f1(x, t)wdx for ω ∈ V n,

(3.2)

with initial conditions

un(0) = un0 =

n∑
k=1

∫
Ω

u0wkdxwk −→ u0 in H2(Ω) ∩H1
0 (Ω), (3.3)

unt (0) = un1 =

n∑
k=1

∫
Ω

u1wkdxwk −→ u1 in H1
0 (Ω). (3.4)

By standard methods in differential equations, we prove the existence of solutions to
(3.2) − (3.4) on some interval [0, tn), 0 < tn < T . In order to extend the solution of
(3.2)− (3.4) to the whole interval [0, T ], we need the following a priori estimate.
Step 1. (The first priori estimate) Replacing w by 2unt (t) in (3.2), we have

d
dt

[
‖unt (t)‖22 + µ(t)‖∇un(t)‖22

]
+ 2α‖∇unt (t)‖22 + 2χ(t)‖unt (t)‖22

= µ′(t)‖∇un(t)‖22 + 2

∫ t

0

g(t− τ)

∫
Ω

∇un(τ) · ∇unt (t)dxdτ

+2

∫
Ω

f1(x, t)unt (t)dx ≤ µ′(t)‖∇un(t)‖22 + ‖∇unt (t)‖22

+‖g‖L1

∫ t

0

g(t− τ)‖∇un(τ)‖22dτ + ‖f1‖22 + ‖unt (t)‖22.

(3.5)
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Then, integrating (3.5) from 0 to t, we get

‖unt (t)‖22 + µ(t)‖∇un(t)‖22 + (2α− 1)

∫ t

0

‖∇unτ (τ)‖22dτ ≤ c1

+

∫ t

0

[
1 +

1

µ(τ)

(
|µ′(τ)|+ ‖g‖2L1

)] [
‖unτ (τ)‖22 + µ(τ)‖∇un(τ)‖22

]
dτ,

(3.6)

where

c1 = ‖un1‖22 + µ(0)‖∇un0‖22 +

∫ t

0

‖f1‖22dt.

Taking into account (3.3) and (3.4), we obtain from Gronwall’s Lemma the first priori
estimate

‖unt (t)‖22 + µ(t)‖∇un(t)‖22 +

∫ t

0

‖∇unt (τ)‖22dτ ≤ L1, (3.7)

for all t ∈ [0, T ]. Here L1 is a positive constant independent of n ∈ N and t ∈ [0, T ].
Step 2. (The second priori estimate) Replacing ω by untt(t) in (3.2), we have

d
dt

[
µ(t)

∫
Ω

∇un(t) · ∇unt (t)dx+
α

2
‖∇unt (t)‖22 +

χ(t)

2
‖unt (t)‖22

]
+‖untt(t)‖22 = µ′(t)

∫
Ω

∇un(t) · ∇unt (t)dx+ µ(t)‖∇unt (t)‖22

+χ′(t)
2 ‖u

n
t (t)‖22 + d

dt

(∫ t

0

g(t− τ)

∫
Ω

∇un(τ) · ∇unt (t)dxdτ

)
−g(0)

∫
Ω

∇un(t) · ∇unt (t)dx+

∫
Ω

f1(x, t)untt(t))dx

−
∫ t

0

g′(t− τ)

∫
Ω

∇un(τ) · ∇unt (t)dxdτ.

(3.8)

By (A1), Hölder’s inequality and Young’s inequality, one has than we have

−
∫ t

0

g′(t− τ)

∫
Ω

∇un(τ) · ∇unt (t)dxdτ ≤ 1

2
‖∇unt (t)‖22

+
ξ21‖g‖L1

2

∫ t

0

g(t− τ)‖∇un(τ)‖22dτ.
(3.9)

Since µ(t) ≥ m0 and from (3.7) we obtain

−g(0)

∫
Ω

∇un(t) · ∇unt (t)dx ≤ 1

2
‖∇unt (t)‖22 +

g(0)2

2
‖∇un(t)‖22

≤ 1
2‖∇u

n
t (t)‖22 + g(0)2L1

2m0
.

(3.10)

Since χ(t) is C1-function on [0,∞) and using (3.7) we infer that

χ′(t)

2
‖unt (t)‖22 ≤

A1

2
‖unt (t)‖22 ≤

A1

2
L1. (3.11)

Moreover,∣∣∣∣µ′(t)∫
Ω

∇un(t) · ∇unt (t)dx

∣∣∣∣ ≤ 1
2‖∇u

n
t (t)‖22 +

M2
1

2 ‖∇u
n(t)‖22

≤ 1
2‖∇u

n
t (t)‖22 +

M2
1L1

2m0
,

(3.12)
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where M1 = sup
0≤t≤T

{|µ′(t)|} and A1 = max
0≤t≤T

{|χ′(t)|}. Then, by using (3.9) − (3.12),

we obtain from (3.8)

d
dt

[
µ(t)

∫
Ω

∇un(t) · ∇unt (t)dx+
α

2
‖∇unt (t)‖22 +

χ(t)

2
‖unt (t)‖22

]
+ 1

2‖u
n
tt(t)‖22 ≤ c2 +

ξ21‖g‖L1

2

∫ t

0

g(t− τ)‖∇un(τ)‖22dτ

+ d
dt

(∫ t

0

g(t− τ)

∫
Ω

∇un(τ) · ∇unt (t)dxdτ

)
+
(

3
2 +M2

)
‖∇unt (t)‖22,

(3.13)

where c2 =
(
g(0)2+M2

1 +A1m0

2m0

)
L1+ 1

2‖f1‖22 and M2 = sup
0≤t≤T

{|µ(t)|}. Thus, integrating

(3.13) over (0, t), we obtain

α
2 ‖∇u

n
t (t)‖22 + 1

2

∫ t

0

‖unττ (τ)‖22dt+
χ(t)

2
‖unt (t)‖22

≤ c3 + µ(t)

∣∣∣∣∫
Ω

∇un(t) · ∇unt (t)dx

∣∣∣∣+ µ(0)

∣∣∣∣∫
Ω

∇un0 · ∇un1dx
∣∣∣∣

+
(
M2 + 3

2

) ∫ t

0

‖∇unτ (τ)‖22dτ +

∫ t

0

g(t− τ)

∫
Ω

∇un(τ) · ∇unt (t)dxdτ,

(3.14)

where
(
c3 = c2 + ξ2

1‖g‖2L1L1

)
T + α

2 ‖∇u
n
1‖22 + χ(0)

2 ‖u
n
1‖22. We note that using the in-

equality ab ≤ 1
4ηa

2 + ηb2, where η > 0 is arbitrary, it follows that∫ t

0

g(t− τ)

∫
Ω

∇un(τ) · ∇unt (t)dxdτ ≤ η‖∇unt (t)‖22

+ 1
4η‖g‖L1(0,∞)‖g‖L∞(0,∞)

∫ t

0

‖∇un(τ)‖22dτ ≤ η‖∇unt (t)‖22

+
‖g‖L1(0,∞)‖g‖L∞(0,∞)

4ηm0
L1T,

(3.15)

and

µ(t)

∣∣∣∣∫
Ω

∇un(t) · ∇unt (t)dx

∣∣∣∣ ≤ η‖∇unt (t)‖22 +
M2

2

4η
‖∇un(t)‖22

≤ η‖∇unt (t)‖22 +
M2

2

4ηm0
L1. (3.16)

By plugging (3.15) and (3.16) into (3.14) with 0 < η ≤ α
4 , we obtain from χ(t) ≥ 0

that (
α
2 − 2η

)
‖∇unt (t)‖22 + 1

2

∫ t

0

‖unττ (τ)‖22dt ≤ c4

+
(
M2 + 3

2

) ∫ t

0

‖∇unτ (τ)‖22dτ,
(3.17)

where

c4 = c3 + µ(0)‖∇un0‖2‖∇un1‖2 +
M2

2

4ηm0
L1 +

‖g‖L1‖g‖L∞
4ηm0

L1T. (3.18)
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Taking into account (3.3)−(3.4), we obtain from Gronwall’s Lemma the second priori
estimate

‖∇unt (t)‖22 +

∫ t

0

‖unττ (τ)‖22dτ ≤ L2, (3.19)

for all t ∈ [0, T ]. Here L2 is a positive constant independent of n ∈ N and t ∈ [0, T ].
Step 3. (The third priori estimate) Replacing ω by −∆un(t) in (3.2), we have

d
dt

[
−
∫

Ω

unt (t)∆un(t)dx+
α

2
‖∆un(t)‖22 +

χ(t)

2
‖∇un(t)‖22

]
−‖∇unt (t)‖22 + µ(t)‖∆un(t)‖22
= χ′(t)

2 ‖∇u
n(t)‖22 +

∫ t

0

g(t− τ)

∫
Ω

∆un(τ) ·∆un(t)dxdτ

+

∫
Ω

f1(x, t)(−∆un(t))dx ≤ A1

2
‖∇un(t)‖22 + 2η‖∆un(t)‖22

+
‖g‖L1

4η

∫ t

0

g(t− τ)‖∆un(τ)‖22dτ +
1

4η
‖f1‖22,

(3.20)

where 0 < η ≤ m0

2 is some positive constant. From µ(t) ≥ m0 > 0, we deduce by
integration

α
2 ‖∆u

n(t)‖22 + (m0 − 2η)

∫ t

0

‖∆un(τ)‖22dτ +
χ(t)

2
‖∇un(t)‖22

≤
∫ t

0

‖∇unτ (τ)‖22dt+
A1

2

∫ t

0

‖∇un(τ)‖22dτ +

∣∣∣∣∫
Ω

unt (t)∆un(t)dx

∣∣∣∣
+

∣∣∣∣∫
Ω

unt (0)∆un(0)dx

∣∣∣∣+ 1
4η

∫ t

0

‖f1‖22dt

+α
2 ‖∆u

n
0‖22 + χ(0)

2 ‖∇u
n
0‖22 +

‖g‖2
L1

4η

∫ t

0

‖∆un(τ)‖22dτ

≤ c5 +

∣∣∣∣∫
Ω

unt (t)∆un(t)dx

∣∣∣∣+
‖g‖2

L1

4η

∫ t

0

‖∆un(τ)‖22dτ,

(3.21)

where

c5 = ‖un1‖2‖∆un0‖2 +
α

2
‖∆un0‖22 +

1

4η

∫ t

0

‖f1‖22dτ +
χ(0)

2
‖∇un0‖22 +

(
A1

m0
L1 + L2

)
T.

We note that using the inequality ab ≤ 1
4a

2 + b2, it follows that∫
Ω

unt (t)∆un(t)dx ≤ 1

4
‖∆un(t)‖22 + ‖unt (t)‖22. (3.22)

Plugging (3.22) into (3.21), we obtain from χ(t) ≥ m1 > 0 that(
α
2 −

1
4

)
‖∆un(t)‖22 + (m0 − 2η)

∫ t

0

‖∆un(τ)‖22dτ

+χ(t)
2 ‖∇u

n(t)‖22 ≤ c6 +
‖g‖2

L1

4η

∫ t

0

‖∆um(τ)‖22dτ,
(3.23)

where

c6 = c5 + L1.
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Taking into account (3.3)− (3.4), we obtain from Gronwall’s Lemma the third priori
estimate,

‖∆un(t)‖22 +

∫ t

0

‖∆un(τ)‖22dτ ≤ L3, (3.24)

for all t ∈ [0, T ] and L3 is a positive constant independent of n ∈ N and t ∈ [0, T ].
Step 4. Let p ≥ n be two natural numbers, and consider zn = up−un. Then, applying
the same way as in the estimate step 1 and step 3 and observing that {un0} and {un1}
are Cauchy sequence in H1

0 (Ω) ∩ H2(Ω) and H1
0 (Ω), respectively, we deduce for all

t ∈ [0, T ]

‖znt (t)‖22 + µ(t)‖∇zn(t)‖22 +

∫ t

0

‖∇znτ (τ)‖22dτ → 0, (3.25)

and

‖∆zn(t)‖22 +

∫ t

0

‖∆zn(τ)‖22dτ → 0, as n→∞. (3.26)

Therefore, (3.7), (3.19), (3.24), (3.25) and (3.26), we see that

un → u strongly in C(0, T ;H1
0 (Ω)), (3.27)

unt → ut strongly in C(0, T ;L2(Ω)). (3.28)

unt → ut strongly in L2(0, T ;H1
0 (Ω)), (3.29)

untt → utt weakly in L2(0, T ;L2(Ω)). (3.30)

Then (3.27) − (3.30) are sufficient to pass the limit in (3.2) to obtain in
L2(0, T ;H−1(Ω))

utt − µ(t)∆u+

∫ t

0

g(t− τ)∆u(τ)dτ − α∆ut + χ(t)ut = f1(x, t). (3.31)

Next, we want to show the uniqueness of (3.1). Let u(1) and u(2) be two solutions of
(3.1). Then y = u(1) − u(2) satisfies for ω ∈ H1

0 (Ω)

µ(t)

∫
Ω

∇y(t) · ∇ωdx−
∫ t

0

g(t− τ)

∫
Ω

∇y(τ) · ∇ωdxdτ

+

∫
Ω

ytt(t)ωdx+ α

∫
Ω

∇yt(t) · ∇ωdx+ χ(t)

∫
Ω

yt(t)ωdx = 0,

y(x, 0) = 0, yt(x, 0) = 0, x ∈ Ω,
y(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(3.32)

Setting w = 2yt(t) in (3.32), then as in deriving (3.7), we see that

‖yt(t)‖22 + µ(t)‖∇y(t)‖22 + (2α− 1)

∫ t

0

‖∇yτ (τ)‖22dτ

≤
∫ t

0

[
1 +

1

µ(τ)

(
|µ′(τ)|+ ‖g‖2L1

)] [
‖yτ (τ)‖22 + µ(τ)‖∇y(τ)‖22

]
dτ.

(3.33)

Thus employing Gronwall’s Lemma, we conclude that

‖yt(t)‖2 = ‖∇y(t)‖2 = 0 for all t ∈ [0, T ]. (3.34)

Therefore, we have the uniqueness. This finishes the proof of Lemma 3.1. �

Now, let us prove the local existence of the problem (1.1).
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Theorem 3.2. Assume that (A1), (A2) and (A3) are fulfilled. Suppose that u0 ∈
H2(Ω) ∩H1

0 (Ω), u1 ∈ H1
0 (Ω) be given. Then there exists a unique solution u of (1.1)

satisfying u ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)) and ut ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)),
and at least one of the following statements is valid:

(i) T =∞,
(ii) e

(
u(t)

)
≡ ‖ut(t)‖22 + ‖∆u(t)‖22 →∞ as t→ T−.

(3.35)

Proof. Define the following two-parameter space:

XT,R0
=

 v ∈ C([0, T ];H1
0 (Ω) ∩H2(Ω)),

vt ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) :

e
(
v(t)

)
≤ R2

0, t ∈ [0, T ], with v(0) = u0, vt(0) = u1.

 ,

for T > 0, R0 > 0. Then XT,R0 is a complete metric space with the distance

d(y, z) = sup
0≤t≤T

e (y(t)− z(t))
1
2 , (3.36)

where y, z ∈ XT,R0 . Given v ∈ XT,R0 , we consider the following problem
utt − ψ

(∥∥∇v∥∥2

2

)
∆u− α∆ut +

∫ t

0

g(t− τ)∆u(τ)dτ

+M
(∥∥∇v∥∥2

2

)
ut = f(v), in Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(3.37)

By (A2), we see that f(v) ∈ L2
(
0, T ;L2(Ω)

)
. Thus, by Lemma 3.1, we derive that

problem (3.37) admits a unique solution u ∈ C([0, T ];H2(Ω) ∩ H1
0 (Ω)) and ut ∈

C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). Then, we define the nonlinear mapping Sv = u,

and we would like to show that there exist T > 0 and R0 > 0 such that S is a
contraction mapping from XT,R0

into itself. For this, we multiply the first equation
of (3.37) by 2ut and integrate it over Ω to get

d
dt

[(
ψ
(
‖∇v‖22

)
−
∫ t

0

g(τ)dτ

)
‖∇u(t)‖22 +

(
g ◦ ∇u

)
(t)

]
+ d
dt

[
‖ut(t)‖22

]
+ 2α‖∇ut(t)‖22 + 2M

(∥∥∇v∥∥2

2

)
‖ut(t)‖22

−
(
g′ ◦ ∇u

)
(t) + g(t)‖∇u(t)‖22

=
(
d
dtψ
(∥∥∇v∥∥2

2

))
‖∇u(t)‖22 + 2

∫
Ω

f(v)utdx.

(3.38)

The equality in (3.38) is obtained, because

−2

∫ t

0

∫
Ω

g(t− τ)∇u(τ) · ∇ut(t)dxdτ = −
(
g′ ◦ ∇u

)
(t)

+g(t)‖∇u(t)‖22 + d
dt

[(
g ◦ ∇u

)
(t)−

∫ t

0

g(τ)‖∇u(t)‖22dτ
]
,

(3.39)

where (
g ◦ ∇u

)
(t) =

∫ t

0

g(t− τ)

∫
Ω

|∇u(τ)−∇u(t)|2dxdτ.
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Next, multiplying the first equation of (3.37) by −2∆u, and integrating it over Ω, we
have

d
dt

[
α‖∆u(t)‖22 − 2

∫
Ω

ut∆udx+M
(∥∥∇v∥∥2

2

)
‖∇u(t)‖22

]
+2ψ

(∥∥∇v∥∥2

2

)
‖∆u(t)‖22 − 2‖∇ut(t)‖22

=
(
d
dtM

(∥∥∇v∥∥2

2

))
‖∇u(t)‖22 − 2

∫
Ω

f(v)∆udx

+2

∫ t

0

g(t− τ)∆u(τ) ·∆u(t)dxdτ.

(3.40)

Multiplying (3.40) by ε, 0 ≤ ε ≤ 1, adding (3.38) together and taking into account
(A1) and (A3), we obtain

d

dt
e∗
(
u(t)

)
+ 2(α− ε)‖∇ut(t)‖22 + 2εψ

(∥∥∇v∥∥2

2

)
‖∆u(t)‖22 ≤ I1 + I2 + I3, (3.41)

where

e∗
(
u(t)

)
= ‖ut(t)‖22 +

(
ψ
(
‖∇v‖22

)
−
∫ t

0

g(τ)dτ

)
‖∇u(t)‖22

+
(
g ◦ ∇u

)
(t) + εα‖∆u(t)‖22 − 2ε

∫
Ω

ut∆udx

+εM
(∥∥∇v∥∥2

2

)
‖∇u(t)‖22.

(3.42)

I1 = 2

∫
Ω

f(v)
(
ut − ε∆u

)
dx,

I2 =

(
d

dt
ψ
(∥∥∇v∥∥2

2

)
+ ε

d

dt
M
(∥∥∇v∥∥2

2

))
‖∇u(t)‖22,

and

I3 = 2ε

∫ t

0

g(t− τ)∆u(τ) ·∆u(t)dxdτ.

Estimate for I1 = 2
∫

Ω
f(v)

(
ut − ε∆u

)
dx. From (A2) and making use of Hölder’s

inequality and Lemma 2.1, we have

I1 = 2

∫
Ω

f(v)
(
ut − ε∆u

)
dx

≤ 2

∫
Ω

∣∣∣f(v)ut

∣∣∣dx+ 2ε

∫
Ω

∣∣∣f(v)∆u
∣∣∣dx

≤ 2K3

∫
Ω

∣∣v∣∣p−1∣∣ut∣∣dx+ 2εK3

∫
Ω

∣∣v∣∣p−1∣∣∆u∣∣dx
≤ 2K3B

2(p−1)
1 ‖∆v‖p−1

2 ‖ut‖2 + 2εK3B
2(p−1)
1 ‖∆v‖p−1

2 ‖∆u‖2
≤ 2K3B

2(p−1)
1 Rp−1

0 e
(
u(t)

) 1
2 + 2εK3B

2(p−1)
1 Rp−1

0 e
(
u(t)

) 1
2

= 2K3(1 + ε)B
2(p−1)
1 Rp−1

0 e
(
u(t)

) 1
2 .

(3.43)

Estimate for I2 =
(
d
dtψ
(∥∥∇v∥∥2

2

)
+ ε ddtM

(∥∥∇v∥∥2

2

))
‖∇u(t)‖22. First of all, we observe

that
d
dtψ
(∥∥∇v∥∥2

2

)
= 2ψ′

(∥∥∇v∥∥2

2

)∫
Ω

∇v · ∇vtdx

≤ 2M3‖∆v‖2‖vt‖2 ≤ 2M3R
2
0,

(3.44)
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where M3 = sup
{
|ψ′(s)|; 0 ≤ s ≤ B2

1R
2
0

}
, and

ε ddtM
(∥∥∇v∥∥2

2

)
= 2εM ′

(∥∥∇v∥∥2

2

)∫
Ω

∇v · ∇vtdx

≤ 2εA2‖∆v‖2‖vt‖2 ≤ 2εA2R
2
0,

(3.45)

where A2 = max
{
|M ′(s)|; 0 ≤ s ≤ B2

1R
2
0

}
. Then, from (3.44) ,(3.45) and using (3.35)

we arrive at
I2 ≤ 2B2

1R
2
0(M3 + εA2)e

(
u(t)

)
. (3.46)

Estimate for I3 = 2ε
∫ t

0
g(t−τ)∆u(τ)·∆u(t)dxdτ . Using the inequality ab ≤ 1

4ηa
2+ηb2,

where η > 0 is arbitrary, we get

I3 = 2ε

∫ t

0

g(t− τ)

∫
Ω

∆u(τ) ·∆u(t)dxdτ

≤ 2εη‖∆u(t)‖22 + ε
‖g‖L1

2η

∫ t

0

g(t− τ)‖∆u(τ)‖22dτ.
(3.47)

Combining these inequalities with 0 < η <
‖g‖L1

2 , we get

d
dte
∗(u(t)

)
+ 2(α− ε)‖∇ut(t)‖22 + 2ε

(
ψ
(
‖∇v‖22

)
− η
)
‖∆u(t)‖22

≤ 2B2
1R

2
0(M3 + εA2)e

(
u(t)

)
+ 2K3(1 + ε)B

2(p−1)
1 Rp−1

0 e
(
u(t)

) 1
2

+ε
‖g‖L1

2η

∫ t

0

g(t− τ)‖∆u(τ)‖22dτ.

(3.48)

When we take ε = 0 in (3.48), we see that

d
dt

[(
ψ
(
‖∇v‖22

)
−
∫ t

0

g(τ)dτ

)
‖∇u(t)‖22 +

(
g ◦ ∇u

)
(t)

]
+ d
dt

[
‖ut(t)‖22

]
+ 2α‖∇ut(t)‖22

≤ 2B2
1R

2
0M3e

(
u(t)

)
+ 2K3B

2(p−1)
1 Rp−1

0 e
(
u(t)

) 1
2 .

(3.49)

By Young’s inequality, we get

2ε

∫
Ω

ut∆udx ≤ 2ε‖ut‖22 +
ε

2
‖∆u(t)‖22.

Hence

e∗
(
u(t)

)
≥ (1− 2ε)‖ut‖22 + ε

(
α− 1

2

)
‖∆u(t)‖22 +

(
g ◦ ∇u

)
(t)

+εM
(∥∥∇v∥∥2

2

)
‖∇u(t)‖22 +

(
ψ
(
‖∇v‖22

)
−
∫ t

0

g(τ)dτ

)
‖∇u(t)‖22.

(3.50)

Choosing ε = 2
5 and taking into account (A1) and (A3), we have

e∗
(
u(t)

)
≥ 1

5
e
(
u(t)

)
, (3.51)

and

e∗
(
u0

)
≤ (1 + 2ε)‖u1‖22 + ε

(
α+ 1

2

)
‖∆u0‖22 + ψ

(
‖∇u0‖22

)
‖∇u0‖22

+εM
(∥∥∇u0

∥∥2

2

)
‖∇u0‖22 ≤ 2‖u1‖22 +

(
α+ 1

2

)
‖∆u0‖22

+ψ
(
‖∇u0‖22

)
‖∇u0‖22 +M

(∥∥∇u0

∥∥2

2

)
‖∇u0‖22 = c∗.

(3.52)
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Integrating (3.48) over (0, t), we get

e∗
(
u(t)

)
+ 4

5

(
m0 − η −

‖g‖2
L1

4η

)∫ t

0

‖∆u(τ)‖22dτ

≤ e∗
(
u0

)
+

∫ t

0

[
C1e

∗(u(τ)
)

+ C2e
∗(u(τ)

) 1
2

]
dτ,

(3.53)

where C1 = 10B2
1R

2
0(M3 + 2

5A2) and C2 = 14
√

5
5 K1B

2(p−1)
1 Rp−1

0 . Taking η =
‖g‖L1

2η in

(3.53), then from (A1), we deduce

e∗
(
u(t)

)
≤ e∗

(
u0

)
+

∫ t

0

[
C1e

∗(u(τ)
)

+ C2e
∗(u(τ)

) 1
2

]
dτ

≤ c∗ +

∫ t

0

[
C1e

∗(u(τ)
)

+ C2e
∗(u(τ)

) 1
2

]
dτ.

(3.54)

Hence, by Gronwall’s inequality, we have

e∗
(
u(t)

)
≤
(√

c∗ +
C2

2
T

)2

eC1T . (3.55)

Then, by (3.51), we obtain

e
(
u(t)

)
≤ 5

(√
c∗ +

C2

2
T

)2

eC1T . (3.56)

for any t ∈ (0, T ]. Therefore, we see that for the parameters T and R0 satisfy

5

(√
c∗ +

C2

2
T

)2

eC1T ≤ R2
0. (3.57)

That means S maps XT,R0
into itself. Moreover, by Lemma 3.1,

u ∈ C0([0, T ];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

On the other hand, it follows from (3.49) and (3.56) that

ut ∈ L2(0, T ;H1
0 (Ω)).

Next, we shall verify that S is a contraction mapping with respect to the metric d(·, ·).
We take v1, v2 ∈ XT,R0

, and denote u(1) = Sv1 and u(2) = Sv2. Hereafter we suppose

that (3.57) is valid, thus u(1), u(2) ∈ XT,R0 . Putting w(t) =
(
u(1) − u(2)

)
(t), then w

satisfies 

wtt − ψ
(
‖∇v1‖22

)
∆w +

∫ t

0

g(t− τ)∆w(τ)dτ − α∆wt

+M
(
‖∇v1‖22

)
wt = f(v1)− f(v2)

+
[
ψ
(
‖∇v1‖22

)
− ψ

(
‖∇v2‖22

)]
∆u(2)

+
[
M
(
‖∇v2‖22

)
−M

(
‖∇v1‖22

)]
u

(2)
t ,

w(0) = 0, wt(0) = 0,
w(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(3.58)
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We multiply the first equation of (3.58) by 2wt and integrate it over Ω to get

d
dt

[(
ψ
(
‖∇v1‖22

)
−
∫ t

0

g(τ)dτ

)
‖∇w(t)‖22 + (g ◦ ∇w)(t)

]
+ d
dt

[
‖wt(t)‖22

]
+ 2α‖∇wt(t)‖22 ≤ I4 + I5 + I6 + I7.

(3.59)

We now estimate I4-I7 (defined as below), respectively.

I4 =

(
d

dt
ψ
(
‖∇v1‖22

))
‖∇w(t)‖22 ≤ 2M3B

2
1R

2
0e
(
w(t)

)
, (3.60)

I5 = 2

∫
Ω

[
f(v1)− f(v2)

]
wtdx

≤ 2K3

∫
Ω

(
|v1|p−2 + |v2|p−2

)
|v1 − v2|wtdx

≤ 2K3

[
‖v1‖p−2

N(p−2) + ‖v2‖p−2
N(p−2)

]
‖v1 − v2‖ 2N

N−2
‖wt‖2

≤ 4K3B
2(p−1)
1 Rp−2

0 e
(
v1 − v2

) 1
2 e
(
w(t)

) 1
2 ,

(3.61)

I6 = 2
[
ψ
(
‖∇v1‖22

)
− ψ

(
‖∇v2‖22

)] ∫
Ω

∆u(2)wtdx

≤ 2L
(
‖∇v1‖2 + ‖∇v2‖2

)
‖∇v1 −∇v2‖2

∥∥∆u(2)
∥∥

2
‖wt‖2

≤ 4LB2
1R

2
0e
(
v1 − v2

) 1
2 e
(
w(t)

) 1
2 ,

(3.62)

where L = L(R) is the Lipschitz constant of ψ(s) in [0, R0].

Estimate for I7 = 2
[
M
(
‖∇v2‖22

)
−M

(
‖∇v1‖22

)] ∫
Ω
u

(2)
t wtdx. Assumption (A3) gives

∣∣M (
‖∇v2‖22

)
−M

(
‖∇v1‖22

)∣∣ =

∣∣∣∣∣
∫ ‖∇v2‖22
‖∇v1‖22

M ′(r)dr

∣∣∣∣∣
≤
∫ ‖∇v2‖22
‖∇v1‖22

|M ′(r)| dr ≤ C∗
∣∣‖∇v2‖22 − ‖∇v1‖22

∣∣
≤ C∗

(
‖∇v1‖2 + ‖∇v1‖2

)
‖∇v2 −∇v1‖2,

(3.63)

where C∗ is a positive constant. From (3.63) and (3.35), we have

I7 = 2
[
M
(
‖∇v2‖22

)
−M

(
‖∇v1‖22

)] ∫
Ω

u
(2)
t wtdx

≤ 2C∗

(
‖∇v1‖2 + ‖∇v1‖2

)
‖∇(v2 − v1)‖2

∥∥∥u(2)
t

∥∥∥
2
‖wt‖2

≤ 2C∗B
2
1R

2
0e
(
v1 − v2

) 1
2 e
(
w(t)

) 1
2 .

(3.64)

Inserting (3.60)− (3.64) in (3.59), we get

d
dt

[(
ψ
(
‖∇v1‖22

)
−
∫ t

0

g(τ)dτ

)
‖∇w(t)‖22 + (g ◦ ∇w)(t)

]
d
dt

[
‖wt(t)‖22

]
+ 2α‖∇wt(t)‖22

≤ C3e
(
w(t)

)
+ C4e

(
v1 − v2

) 1
2 e
(
w(t)

) 1
2 ,

(3.65)
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where C3 = 2M3B
2
1R

2
0 and C4 = 4K3B

2(p−1)
1 Rp−2

0 + 4LB2
1R

2
0 + 2C∗B

2
1R

2
0.

On the other hand, multiplying the first equation in (3.58) by −2∆w, and integrating
it over Ω, we get

d
dt

{
α‖∆w(t)‖22 − 2

∫
Ω

wt∆wdx+M
(∥∥∇v1

∥∥2

2

)
‖∇w(t)‖22

}
+2ψ

(∥∥∇v1

∥∥2

2

)
‖∆w(t)‖22 − 2‖∇wt‖22 = I8 + I9 + I10 + I11 + I12.

(3.66)

We now estimate I8-I11 (defined as below), respectively.
Applying the similar arguments as in estimating Ii, i = 2, 3, 5, 6, 7, we observe that

I8 =

(
d

dt
M
(∥∥∇v1

∥∥2

2

))
‖∇w(t)‖22 ≤ 2A2R

2
0B

2
1e
(
w(t)

)
, (3.67)

I9 = −2

∫
Ω

[
f(v1)− f(v2)

]
∆wdx

≤ 4K3B
2(p−1)
1 Rp−2

0 e
(
v1 − v2

) 1
2 e
(
w(t)

) 1
2 ,

(3.68)

I10 = 2
[
ψ
(
‖∇v1‖22

)
− ψ

(
‖∇v2‖22

)] ∫
Ω

∆u(2)∆wdx

≤ 4LB2
1R

2
0e
(
v1 − v2

) 1
2 e
(
w(t)

) 1
2 ,

(3.69)

I11 = 2
[
M
(
‖∇v2‖22

)
−M

(
‖∇v1‖22

)] ∫
Ω

∆u(2)∆wdx

≤ 2C∗B
2
1R

2
0e
(
v1 − v2

) 1
2 e
(
w(t)

) 1
2 ,

(3.70)

and

I12 = 2

∫ t

0

g(t− τ)

∫
Ω

∆w(τ) ·∆w(t)dxdτ

≤ 2η‖∆w(t)‖22 +
‖g‖L1

2η

∫ t

0

g(t− τ)‖∆w(τ)‖22dτ,
(3.71)

where η > 0 is arbitrary. Combining these inequalities with 0 < η ≤ ‖g‖L1

2 , we get

d
dt

{
α‖∆w(t)‖22 − 2

∫
Ω

wt∆wdx+M
(∥∥∇v1

∥∥2

2

)
‖∇w(t)‖22

}
+2
(
ψ
(∥∥∇v1

∥∥2

2

)
− 2η

)
‖∆w(t)‖22 ≤ C4e

(
v1 − v2

) 1
2 e
(
w(t)

) 1
2

+
‖g‖L1

2η

∫ t

0

g(t− τ)‖∆w(τ)‖22dτ + 2‖∇wt‖22 + C5e
(
w(t)

)
,

(3.72)

where C5 = 2A2B
2
1R

2. Multiplying (3.72) by ε, 0 < ε ≤ 1, and adding (3.65) together,
we obtain

d
dte
∗∗(w(t)

)
+ 2(α− ε)‖∇wt‖22 + 2ε

(
ψ
(∥∥∇v1

∥∥2

2

)
− 2η

)
‖∆w(t)‖22

≤ (C3 + εC5)e
(
w(t)

)
+ (1 + ε)C4e

(
v1 − v2

) 1
2 e
(
w(t)

) 1
2

+ε
‖g‖L1

2η

∫ t

0

g(t− τ)‖∆w(τ)‖22dτ,

(3.73)
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where

e∗∗
(
w(t)

)
= ‖wt(t)‖22 +

(
ψ
(
‖∇v1‖22

)
−
∫ t

0

g(τ)dτ

)
‖∇w(t)‖22

+(g ◦ ∇w)(t) + εα‖∆w(t)‖22 − 2ε

∫
Ω

wt∆wdx

+εM
(∥∥∇v1

∥∥2

2

)
‖∇w(t)‖22.

(3.74)

By using Young’s inequality on the fifth term of right hand side of (3.74), we get

e∗∗
(
w(t)

)
≥ (1− 2ε)‖wt(t)‖22 + ε

(
α− 1

2

)
‖∆w(t)‖22

+

(
ψ
(
‖∇v1‖22

)
−
∫ t

0

g(τ)dτ

)
‖∇w(t)‖22

+(g ◦ ∇w)(t) + εM
(∥∥∇v1

∥∥2

2

)
‖∇w(t)‖22.

(3.75)

Choosing ε = 2
5 and by (2.1), (2.4), we have

e∗∗
(
w(t)

)
≥ 1

5
e
(
w(t)

)
. (3.76)

Then, applying the some way as in obtained (3.53) and taking η =
‖g‖L1

2η , we deduce

e∗∗
(
w(t)

)
≤
∫ t

0

[
5

(
C3 +

2

5
C5

)
e∗∗
(
w(t)

)
+ 7
√

5
5 C4e

(
v1 − v2

) 1
2 e∗∗

(
w(t)

) 1
2

]
dτ + e∗∗

(
w(0)

)
.

(3.77)

Thus, applying Gronwall’s Lemma and noting that e∗∗
(
w(0)

)
= 0, we have

e∗∗
(
w(t)

)
≤ 49

20
C2

4T
2e5(C3+ 2

5C5)T sup
0≤t≤T

e(v1 − v2). (3.78)

By (3.36) and (3.76), we have

d(u(1), u(2)) ≤ C(T,R0)
1
2 d(v1, v2), (3.79)

where

C(T,R0)
1
2 =

49

4
C2

4T
2e5(C3+ 2

5C5)T . (3.80)

Hence, under inequality (3.57), S is a contraction mapping if C(T,R0) < 1. Indeed,
we choose R0 sufficient large and T sufficient small so that (3.57) and (3.79) are sat-
isfied at the same time. By applying Banach fixed point theorem, we obtain the local
existence result.
The second statement of the theorem is proved by a standard continuation argu-
ment. Indeed, let [0, T ) be a maximal existence interval on which the solution of
(1.1) exists. Suppose that T <∞ and lim

t→T−

(
‖ut(t)‖22 + ‖∆u(t)‖22

)
<∞. Then, there

are a sequence {tn} and a constant K > 0 such that tn → T− as n → ∞ and
‖ut(tn)‖22 + ‖∆u(tn)‖22 ≤ K, n = 1, 2, . . . Since for all n ∈ N, there exists a unique
solution of (1.1) with initial data (u(tn), ut(tn)) on [tn, tn+ρ], ρ > 0 depending on K
and independent of n ∈ N. Thus, we can get T < tn + ρ for n ∈ N large enough. It
contradicts to the maximality of T . The proof of Theorem 3.2 is now completed. �
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4. Global existence and energy decay

In this section, we consider the global existence and energy decay of solutions
for a kind of the problem (1.1):

utt − ψ
(∥∥∇u∥∥2

2

)
∆u− α∆ut +

∫ t

0

g(t− τ)∆u(τ)dτ

+M
(∥∥∇u∥∥2

2

)
ut = |u|p−2u, x ∈ Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0,

(4.1)

where 2 < p ≤ 2(N−1)
N−2 , α ≥ 1 and ψ(r) = 1 + brγ , b ≥ 0, γ ≥ 1 and r ≥ 0.

To obtain the results of this section, we now define some functionals as follows:

I1(t) = I1
(
u(t)

)
=

(
1−

∫ t

0

g(τ)dτ

)
‖∇u(t)‖22 + (g ◦ ∇u)(t)− ‖u(t)‖pp, (4.2)

I2(t) = I2
(
u(t)

)
= I1(t) + b‖∇u(t)‖2(γ+1)

2 , (4.3)

J(t) = J
(
u(t)

)
= 1

2

(
1−

∫ t

0

g(τ)dτ

)
‖∇u(t)‖22 + 1

2 (g ◦ ∇u)(t)

+ b
2(γ+1)‖∇u(t)‖2(γ+1)

2 − 1
p‖u(t)‖pp.

(4.4)

We define the energy of the solution u of (4.1) by

E(t) = E
(
u(t)

)
= 1

2‖ut(t)‖
2
2 + J

(
u(t)

)
= 1

2‖ut(t)‖
2
2

+ 1
2

(
1−

∫ t

0

g(τ)dτ

)
‖∇u(t)‖22 + 1

2 (g ◦ ∇u)(t)

+ b
2(γ+1)‖∇u(t)‖2(γ+1)

2 − 1
p‖u(t)‖pp.

(4.5)

Lemma 4.1. E(t) is a non-increasing function for t ≥ 0, that is

E′(t) ≤ −
[
m1‖ut(t)‖22 + α‖∇ut(t)‖22 + K2

2

(
g ◦ ∇u

)
(t)

+ 1
2g(t)‖∇u(t)‖22

]
≤ 0, for all t > 0.

(4.6)

Proof. Multiplying the differential equation in (4.1) by ut, integrating by parts over
Ω and using (A3), we obtain

d
dt

[
1
2‖ut(t)‖

2
2 + 1

2‖∇u(t)‖22 + b
2(γ+1)‖∇u(t)‖2(γ+1)

2 − 1
p‖u(t)‖pp

]
= −α‖∇ut(t)‖22 −M

(
‖∇u‖22

)
‖ut(t)‖22

+

∫ t

0

∫
Ω

g(t− τ)∇u(τ) · ∇ut(t)dxdτ

≤ −α‖∇ut(t)‖22 −m1‖ut(t)‖22 +

∫ t

0

∫
Ω

g(t− τ)∇u(τ) · ∇ut(t)dxdτ.

Exploiting (3.39) on the third term on the right hand side of the above inequality and
using (A1), we have the result. �
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Lemma 4.2. Let u be the solution of (4.1). Assume the conditions of Theorem 3.2
hold. If I1(0) > 0 and

σ =
Bp1
l1

(
2p

l1(p− 2)
E(0)

) p−2
2

< 1, (4.7)

then I2(t) > 0, for all t ≥ 0.

Proof. Since I1(0) > 0, it follows from the continuity of u(t) that

I1(t) > 0, (4.8)

for some interval near t = 0. Let tmax > 0 be a maximal time (possibly tmax = T ),
when (4.8) holds on [0, tmax). From (4.2) and (4.4), we have

J(t) ≥ 1
2

(
1−

∫ t

0

g(τ)dτ

)
‖∇u‖22 + 1

2

(
g ◦ ∇u

)
(t)− 1

p‖u‖
p
p

≥ p−2
2p

[(
1−

∫ t

0

g(τ)dτ

)
‖∇u‖22 + (g ◦ ∇u)(t)

]
+ 1

pI1(t)

≥ p−2
p

(
1−

∫ t

0

g(τ)dτ

)
‖∇u‖22 ≥

(
p−2
2p

)
l1‖∇u‖22.

(4.9)

Using (4.9), (4.5) and E(t) is non-increasing by (4.6), we get

l1‖∇u‖22 ≤
2p

p− 2
J(t) ≤ 2p

p− 2
E(t) ≤ 2p

p− 2
E(0). (4.10)

Exploiting Lemma 2.1 and (4.7), we obtain from (4.10) on [0, tmax)

‖u‖pp ≤ Bp1‖∇u‖
p
2 = Bp1‖∇u‖

p−2
2 ‖∇u‖22

≤ Bp1
l1

(
2p

l1(p−2)E(0)
) p−2

2

l1‖∇u‖22 = σl1‖∇u‖22

<

(
1−

∫ t

0

g(τ)dτ

)
‖∇u‖22.

Thus on [0, tmax), we have

I1(t) =

(
1−

∫ t

0

g(τ)dτ

)
‖∇u(t)‖22 +

(
g ◦ ∇u

)
(t)− ‖u(t)‖pp > 0. (4.11)

This implies that we can take tmax = T . But, from (4.2) and (4.3), we see that

I2(t) ≥ I1(t) > 0, t ∈ [0, T ]. (4.12)

Therefore, we have I2(t) > 0, t ∈ [0, T ].
Next, we want to show that T =∞. Multiplying the first equation in (4.1) by −2∆u,
and integrating it over Ω, we get

d
dt

{
α‖∆u‖22 − 2

∫
Ω

ut∆udx+M
(∥∥∇u∥∥2

2

)
‖∇u‖22

}
+
(

2ψ
(∥∥∇u∥∥2

2

)
− 2η

)
‖∆u‖22 ≤ 2‖∇ut‖22 − 2

∫
Ω

|u|p−2u∆udx

+
‖g‖L1

2η

∫ t

0

g(t− τ)‖∆u(τ)‖22dτ +

(
d

dt
M
(∥∥∇u∥∥2

2

))
‖∇u‖22,

(4.13)
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where 0 < η ≤ ‖g‖L1

2 . On the other hand, multiplying the first equation in (4.1) by
2ut, and integrating it over Ω, we get

d
dt (2E(t)) + 2α‖∇ut‖22 =

(
g′ ◦ ∇u

)
(t)− g(t)‖∇u(t)‖22

−2M
(∥∥∇u∥∥2

2

)
‖ut‖22.

(4.14)

Multiplying (4.13) by ε, 0 < ε ≤ 1, and adding (4.14) together, we obtain

d
dtE

∗(t) +2(α− ε)‖∇ut‖22 + 2ε
(
ψ
(∥∥∇u∥∥2

2

)
− 2η

)
‖∆u‖22

≤ −2ε

∫
Ω

|u|α−2u∆udx+ ε

(
d

dt
M
(∥∥∇u∥∥2

2

))
‖∇u‖22

+2ε
‖g‖L1

2η

∫ t

0

g(t− τ)‖∆u(τ)‖22dτ,

(4.15)

where

E∗(t) = 2E(t)− 2ε

∫
Ω

ut∆udx+ εα‖∆u‖22 + εM
(∥∥∇u∥∥2

2

)
‖∇u‖22. (4.16)

By young’s inequality, we get∣∣∣∣2ε∫
Ω

ut∆udx

∣∣∣∣ ≤ 2ε‖ut‖22 +
ε

2
‖∆u‖22. (4.17)

Hence, choosing ε = 2
5 and by (4.11), we see that

E∗(t) ≥ 1

5

(
‖ut‖22 + ‖∆u‖22

)
. (4.18)

Let us estimate I13 =
(
d
dtM

(∥∥∇u∥∥2

2

))
‖∇u‖22. Since M ∈ C1 ([0,∞), using (4.10)

and (4.18) we infer that

I13 =
(
d
dtM

(∥∥∇u∥∥2

2

))
‖∇u‖22

= 2M ′
(∥∥∇u∥∥2

2

)(∫
Ω

∇u · ∇utdx
)
‖∇u‖22

≤ 2A3‖∆u‖2‖ut‖2‖∇u‖22 ≤ 10A3

(
2p

l1(p−2)

)
E(0)E∗(t) = c7E

∗(t),

(4.19)

where c7 = 10A3( 2p
l1(p−2) )E(0) and A3 = max{M ′(r), 0 ≤ r ≤ ( 2p

l1(p−2) )E(0)}. More-

over, we note that

2

∣∣∣∣∫
Ω

|u|p−2u∆udx

∣∣∣∣ ≤ 2(p− 1)

∫
Ω

|u|p−2|∇u|2dx

≤ 2(p− 1)‖u‖p−2
(p−2)θ1

‖∇u‖22θ2 ,
(4.20)

where 1
θ1

+ 1
θ2

= 1, so that, we put θ1 = 1 and θ2 = ∞, if N = 1; θ1 = 1 + ε1 (for

arbitrary small ε1 > 0), if N = 2; and θ2 = N
N−2 , if N ≥ 3. Then, by Lemma 2.1,

(4.10) and (4.18), we have

2

∣∣∣∣∫
Ω

|u|p−2u∆udx

∣∣∣∣ ≤ 2Bp1(p− 1)‖∇u‖p−2
2 ‖∆u‖22 ≤ c8E∗(t), (4.21)
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where c8 = 10Bp1(p−1)
(

2p
l1(p−2)E(0)

) p−2
2

. Inserting (4.19) and (4.21) into (4.15), and

then integrating it over (0, t), we obtain

E∗(t) + 4
5

(
m0 − η −

‖g‖2
L1

4η

)∫ t

0

‖∆u(τ)‖22dτ

≤ E∗(0) +

∫ t

0

c9E
∗(τ)dτ,

(4.22)

where c9 = c7 + c8. Taking η =
‖g‖L1

2 in (4.22), and by Gronwall’s Lemma, we deduce

E∗(t) ≤ E∗(0)ec9t, (4.23)

for any t ≥ 0. Therefore by Theorem 3.2, we have T =∞. �

Lemma 4.3. If u satisfies the assumptions of Lemma 4.2, then there exists B > 0 such
that

‖u‖pp ≤ BE(t). (4.24)

Proof. Using Lemma 2.1 and (4.10), we have

‖u‖pp ≤ Bp1‖∇u‖
p
2 = Bp1‖∇u‖

p−2
2 ‖∇u‖22

≤ Bp1
l1

(
2p

l1(p− 2)
E(0)

) p−2
2

l1‖∇u‖22 = σl1‖∇u‖22

≤ σ

(
2p

p− 2

)
E(t).

Let B = σ
(

2p
p−2

)
, then we have (4.24). �

Theorem 4.4. (Global existence and Energy decay) Suppose that (A1) and (A3) hold.
Assume I1(u0) > 0 and (4.7) holds, then the problem (4.1) admits a global solution
u if u0 ∈ H2(Ω) ∩ H1

0 (Ω) and u1 ∈ H1
0 (Ω). Moreover, we have the following decay

estimates
E(t) ≤ ce−κεt, ∀t ≥ 0 and ε ∈ (0, ε1],

where c, κ and ε1 are positive constants.

Proof. Defining the perturbed energy by

Eε(t) = E(t) + εϕ(t), (4.25)

where

ϕ(t) =

∫
Ω

u(t)ut(t)dx, (4.26)

we can show that for ε small enough, there exist two positive constants β1 and β2

such that
β1E(t) ≤ Eε(t) ≤ β2E(t). (4.27)

In fact

Eε(t) ≤ E(t) + ε
2‖ut‖

2
2 + ε

2‖u‖
2
2 ≤ (1 + ε)E(t) + ε

2B
2
1‖∇u‖22

≤ (1 + ε)E(t) + ε
2B

2
1

(
2p

l1(p−2)

)
E(t) ≤ β2E(t),

(4.28)
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and

Eε(t) ≥ E(t)− ε

4δ
‖ut‖22 − εδ‖u‖22 ≥ E(t)− ε

4δ
‖ut‖22 − εδB2

1‖∇u‖22. (4.29)

By choosing δ small enough, we have

Eε(t) ≥ E(t)− ε

4δ
‖ut‖22 ≥ J

(
u(t)

)
+

(
1

2
− ε

4δ

)
‖ut‖22. (4.30)

Once δ is chosen, we take ε so small that

Eε(t) ≥ J
(
u(t)

)
+
β1

2
‖ut‖22 ≥ β1E(t), (4.31)

where β1

2 ≤
1
2−

ε
4δ . Now taking the derivative of ϕ(t) defined in (4.26) and substituting

utt = ψ
(∥∥∇u∥∥2

2

)
∇u+ α∆ut −

∫ t

0

g(t− τ)∆u(τ)dτ

−M
(∥∥∇u∥∥2

2

)
ut + |u|p−2u,

(4.32)

in the obtained expression, it results that

ϕ′(t) = ‖ut‖22 − ‖∇u‖22 − b‖∇u‖
2(γ+1)
2

+

∫ t

0

g(t− τ)

∫
Ω

∇u(τ) · ∇u(t)dxdτ − α
(
∇ut,∇u

)
−M

(∥∥∇u∥∥2

2

)(
ut, u

)
+ ‖u‖pp.

(4.33)

Adding and subtracting 2E(t), and taking (4.5) into account, from (4.33) we infer

ϕ′(t) = −2E(t) + 2‖ut‖22 −
(∫ t

0

g(τ)dτ

)
‖∇u(t)‖22

+
(
g ◦ ∇u

)
(t)− b

(
1− 1

γ+1

)
‖∇u‖2(γ+1)

2

+
(

1− 2
p

)
‖u‖pp − α

(
∇ut,∇u

)
−M

(∥∥∇u∥∥2

2

)(
ut, u

)
+

∫ t

0

g(t− τ)

∫
Ω

∇u(τ) · ∇u(t)dxdτ.

(4.34)

Estimate for J1 = α
(
∇ut,∇u

)
. Considering Cauchy-Schwartz inequality, we have

|J1| ≤
α2

2
‖∇ut(t)‖22 +

1

2
‖∇u(t)‖22. (4.35)

Let us estimate J2 = M
(∥∥∇u∥∥2

2

)(
ut, u

)
. Noting that ‖∇u(t)‖22 ≤

2p
l1(p−2)E(0) = β3

for all t ≥ 0, we have that

M
(∥∥∇u∥∥2

2

)
≤ ξ, ∀t ≥ 0, (4.36)

where ξ = max {M(r); r ∈ [0, β3]}. From (4.36) we conclude that

|J2| ≤
ξ2

2
‖ut(t)‖22 +

1

2
‖u(t)‖22 ≤

ξ2

2
‖ut(t)‖22 +

1

2
B2

1‖∇u(t)‖22. (4.37)
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Estimate J3 =

∫ t

0

g(t− τ)

∫
Ω

∇u(τ) · ∇u(t)dxdτ . From assumption (A1) and making

use of the Cauchy-Schwarz inequality, we have

J3 =

∫ t

0

g(t− τ)

∫
Ω

∇u(τ) · ∇u(t)dxdτ

=

∫ t

0

g(t− τ)

∫
Ω

[
∇u(τ)−∇u(t) +∇u(t)

]
· ∇u(t)dxdτ

≤
∫ t

0

g(t− τ)
∣∣∇u(t)−∇u(τ)

∣∣∣∣∇u(t)
∣∣dxdτ

+

(∫ t

0

g(τ)dτ

)
‖∇u(t)‖22

≤ ‖∇u(t)‖22
∫ t

0

g(t− τ)‖∇u(t)−∇u(τ)‖22dτ

+

(∫ t

0

g(τ)dτ

)
‖∇u(t)‖22

≤ 1
2‖∇u(t)‖22 + 1

2‖g‖L1(0,∞)

(
g ◦ ∇u

)
(t) +

(∫ t

0

g(τ)dτ

)
‖∇u(t)‖22

≤ 1
2‖∇u(t)‖22 + 1

2

(
g ◦ ∇u

)
(t) +

(∫ t

0

g(τ)dτ

)
‖∇u(t)‖22.

(4.38)

Utilizing Lemma 4.3 and inserting (4.35), (4.38) and (4.37) in (4.34), we have

ϕ′(t) ≤
(
ξ2

2 + 2
)
‖ut‖22 +

(
1 +

B2
1

2

)
‖∇u‖22

+
[(

1− 2
p

)
B − 2

]
E(t)− b

(
1− 1

γ+1

)
‖∇u‖2(γ+1)

2

+α2

2 ‖∇ut(t)‖
2
2 + 3

2

(
g ◦ ∇u

)
(t).

(4.39)

Then, from (4.6), (4.25), (4.26) and (4.39) we arrive at

E′ε(t) = E′(t) + εϕ′(t) ≤ −
(
m1 − λ1ε

)
‖ut‖22 + λ2ε‖∇u‖22

−
(
K2

2 −
3
2ε
) (
g ◦ ∇u

)
(t)−

(
α− α2

2 ε
)
‖∇ut(t)‖22

−ε(−λ3)E(t)− bε
(

1− 1
γ+1

)
‖∇u‖2(γ+1)

2 − 1
2g(t)‖∇u(t)‖22,

(4.40)

where

λ1 =
ξ2

2
+ 2 > 0, λ2 =

B2
1

2
+ 1 > 0

and

λ3 =

(
1− 2

p

)
B − 2 =

(
1− 2

p

)(
2p

p− 2

)
σ − 2 = 2σ − 2 < 0.

On the other hand, since ∫ t

0

g′(τ)dτ = g(t)− g(0),

then

−g(t)‖∇u(t)‖22 = −g(0)‖∇u(t)‖22 −
(∫ t

0

g′(τ)dτ

)
‖∇u(t)‖22.
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From (A1) the last inequality yields

−1

2
g(t)‖∇u(t)‖22 ≤ −

1

2
g(0)‖∇u(t)‖22 +

K1

2
‖g‖L1(0,∞)‖∇u(t)‖22. (4.41)

Combining (4.40) and (4.41) we conclude that

E′ε(t) ≤ −
(
m1 − λ1ε

)
‖ut‖22 −

(
K2

2 −
3
2ε
) (
g ◦ ∇u

)
(t)

−
(
α− α2

2 ε
)
‖∇ut(t)‖22 − bε

(
1− 1

γ+1

)
‖∇u‖2(γ+1)

2 − ε(−λ3)E(t)

− 1
2

[
g(0)−K1‖g‖L1(0,∞) − 2λ2ε

]
‖∇u(t)‖22.

(4.42)

From (2.1) we have l2 = g(0)−K1‖g‖L1(0,∞) > 0. Defining

ε1 = min

{
m1

λ1
,
K2

3
,

2

α
,
l2

2λ2

}
, (4.43)

we conclude by taking ε ∈ (0, ε1] in (4.42) that

E′ε(t) ≤ −ε(−λ3)E(t). (4.44)

Thus, we see that ∀t ≥ 0 and ε ∈ (0, ε1]

E′ε(t) ≤ −ε(−λ3)E(t) ≤ −−λ3

β2
εEε(t). (4.45)

By the Gronwall inequality, we see that

Eε(t) ≤ Eε(0)e−κεt, ∀t ≥ 0 and ε ∈ (0, ε1], (4.46)

where κ = −λ3

β2
. Combining with (4.27), we obtain

β1E(t) ≤ Eε(t) ≤ Eε(0)e−κεt, ∀t ≥ 0 and ε ∈ (0, ε1], (4.47)

and

E(t) ≤ ce−κεt, ∀t ≥ 0 and ε ∈ (0, ε1], (4.48)

where c = Eε(0)
β1

. Thus, the proof of the theorem is completed. �
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A smooth approximation for non-linear second
order boundary value problems using composite
non-polynomial spline functions
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Abstract. A different amalgamation of non-polynomial splines is used to find the
approximate solution of linear and non-linear second order boundary value prob-
lems. Cubic spline functions are assembled with exponential and trigonometric
functions to develop the different orders of numerical schemes. Free parameter k
of the non-polynomial part is also used to form a new scheme, which elevates the
accuracy of the solution. Numerical illustrations are given to validate the appli-
cability and feasibility of the present methods and also depicted in the graphs.
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numerical approximation, error Analysis, convergence analysis.

1. Introduction

To demonstrate the basic concept and idea of our technique, we consider the
following general non-linear second order two point boundary value problems (BVPs),
which arise in a wide variety of engineering applications

u(2)(x) = f(x, u), −∞ 6 a 6 x 6 b 6∞ (1.1)

with the boundary conditions (BCs)

u(a) = A1, u(b) = A2, (1.2)

where Ai, i=1, 2 are arbitrary finite real constants and −∞ < u < ∞. The function
f(x, u(x)) is a continuous function of two variables with fu > 0 on [a, b]. DE (1.1)
with BC (1.2) has a unique solution, whose existence and uniqueness can be studied
in [24]. For the linear case, f(x, u) = p(x)u + g(x) with p(x) and g(x) continuous
functions on the interval [a, b].
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It is well acknowledged that numerous real-life phenomena in physics and engi-
neering sciences often convert to boundary value problems for second order differential
equations such as in heat transfer, optimal control, deflection in cables and plates,
vibration of springs, electric circuits and in a number of other scientific applications
[19]. Most of the BVPs are essentially solved using numerical approaches as those
are not explained enough using existing analytical approaches. Consequently, some
useful numerical schemes were being promoted, most notably spline-based’ schemes.
Spline functions were applied by many authors to establish the accurate and efficient
numerical schemes for the solution of boundary value problems [4]. An exploration
of the literature on a number of polynomial and non-polynomial spline techniques to
solve the second order BVPs can be comprehended as quadratic spline method [8, 26,
32, 42, 49], cubic spline method [2-3, 5, 9-12, 15, 20-23, 27-28, 30-34, 36-38, 40-41, 50],
quartic spline method [6, 13-14, 29, 47], quintic spline method [7, 16, 43, 48] and oth-
ers [39, 46]. Voluminous research work have been contributed to this field but we are
mainly concerned on those papers which have implemented non-polynomial splines
for the solution of second order BVPs with various types of boundary conditions.

For instance, Rashidinia et al. [40] built up a technique based on cubic non-
polynomial spline functions of the form

Tn = Span{1, x, sin(τx), cos(τx)}, (1.3)

They applied their scheme to acquire the numerical solution of the following form of
second order two point BVPs

− d

dx

[
p(x)

du

dx

]
= g(x); u(a) = u(b) = 0. (1.4)

Here, authors employed direct method to simplify the obtained system and facilitated
the smooth approximations to linear second order BVPs. Similar approach was ex-
ercised by Islam and Tirmizi [27] to find the approximate solution of the system of
two-point second order BVPs with Dirichlet BCs (1.2). They established the consis-
tency equations to attain the desired results and solved linear second order equations
to show the feasibility of their method. Khan and Aziz [34] proposed the parametric
cubic spline functions with a parameter for attaining approximations to the solutions
of the system of BVP. They presented improved results while comparing with some
existing methods. Former approach [35] was yet again instituted by Khan in [33] to
solve the following second order linear BVPs

y(2)(x) = f(x)y(x) + g(x); a 6 x 6 b (1.5)

with Dirichlet BCs (1.2). Here, the author developed the method of order four for
specific values of parameters, or else his method was of order two. Over again, Zahra
et al. [50] used cubic non-polynomial spline function space (1.3) to compute approx-
imation to the solution of above linear BVPs (1.5) but with Neumann BCs. Kalyani
and Rao [31] also adopted similar approach demonstrated by [27, 40, 50] to solve the
following BVP of second order

− d

dx

[
p(x)

du

dx

]
+ v(x)u(x) = g(x); u(a) = u(b) = 0. (1.6)
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They solved many linear and non-linear examples to study the performance of their
method. Cubic non-polynomial spline scheme was once more deliberated by Justine
and Sulaiman [30] to solve the general linear second order BVPs subject to Dirich-
let BCs. To solve the obtained linear system, they used successive over relaxation
in conjunction with Gauss-Seidel method. However, to establish the result, here au-
thors considered the total number of iterations, execution times along with maximum
absolute error (MAE).

Above, we have summarized numerous contributions that are made to deal with
the solution of various types of second order BVPs choosing non-polynomial splines.
The present research could contribute remarkably to this field as it includes some
novel methods to solve non-linear second order BVPs with significant results. Our
method is based on distinctive exponential and trigonometric spline function space
given as

T3 = Span
{

1, x, ekx, sin(kx)
}

= Span

{
1, x, (

2

k2
)
(
ekx − kx− 1

)
, (

6

k3
) (kx− sin(kx))

}
, (1.7)

where k is the frequency of trigonometric and exponential part of the spline func-
tion, which can be real or pure imaginary. It follows that if k → 0, T3 reduces to
Span

(
1, x, x2, x3

)
. In this paper, we have developed different order methods along

with a modified k-dependent method based on the angular frequency of the non-
polynomial part for smooth approximation of the second order linear and non-linear
BVPs. We have solved several examples using our developed methods and also shown
comparisons of our results with some known methods like collocation, finite difference,
Galerkin, Adomian decomposition and other spline methods. Our spline method solu-
tion and comparisons demonstrate that our algorithm performs comparatively better
with more precise results.

Now, the paper is organized as follows: section 2 shows the formulation of our
schemes and section 3 describes the solution of BVPs using the developed scheme.
Section 4 deliberates the convergence of the schemes, while in section 5 some examples
are solved using our developed spline methods. Paper is concluded in section 6.

2. Derivation of the method

In this section, we develop a numerical method to approximate the solution of
second order BVP (1.1)-(1.2). To do that, we first set a framework of N + 1 equally
spaced points xi of an interval [a, b] and divide them into N equal sections such that

xi = a+ ih, i = 0, 1, 2, . . . , N where x0 = a, xN = b and h = (b−a)
N . Then, our spline

function Pi(x) holds the following structure in every section of the interval

Pi(x) = ai sin k(x− xi) + bie
k(x−xi) + ci(x− xi) + di; i = 0, 1, 2 . . . , N, (2.1)

where ai, bi, ci and di are constants and k is free parameter, which can be real or
purely imaginary and will be used to raise the accuracy of the method. The function
Pi(x), which interpolates S(x) at the mesh points xi and reduces to cubic spline as
k → 0, where S(x) is the approximate solution of (1.1). Let u(x) be the exact solution



456 Anju Chaurasia, Yogesh Gupta and Prakash C. Srivastava

and Si be an approximation to ui = u(xi) obtained by the segment Pi(x) of the spline
function passing through the points (xi, Si) and (xi+1, Si+1). Then the mixed spline
defined by the function S(x) = Pi(x).

Now, we assume

Pi(xi) = Si, Pi(xi+1) = Si+1, P
(2)
i (xi) = Mi, P

(2)
i (xi+1) = Mi+1,

to get the following value of coefficients

ai =
1

k2 sin(θ)
[eθMi −Mi+1], bi =

1

k2
[Mi],

ci =
Si+1 − Si

h
+
Mi+1 +Mi

k2h
− 2eθMi

k2h
, di = Si −

1

k2
[Mi],

whereby θ = kh and i = 0, 1, 2, ....., N .

Next, use the continuity condition of the first derivative and substitute the value
of coefficients ai, bi, ci and di. After some algebraic manipulations, we can obtain the
following main relation

Si−1 − 2Si + Si+1 = h2[αMi−1 + βMi + γMi+1]; i = 1, 2, ...N − 1, (2.2)

where,

α =
θeθ {sin(θ) + cos(θ)}+ sin(θ)(1− 2eθ)

θ2 sin(θ)
,

β =
2eθ sin(θ)− θeθ − θ {sin(θ) + cos(θ)}

θ2 sin(θ)
,

γ =
θ − sin(θ)

θ2 sin(θ)

and Mi = S(2)(xi) = f(x, u), by discretizing the considered DE (1.1) at the nodal
point xi. As k → 0, α = 1/6, β = 4/6 and γ = 1/6, our scheme (2.2) reduces to
ordinary cubic spline scheme [5] and then, it is evidently second order convergent.

Accordingly, equation (2.2) provides a system of N − 1 non-linear algebraic
equations in the N − 1 unknowns Si, i = 1, 2, . . . , N − 1, which by discretizing can be
written as(
Si−1 − αh2f(xi−1, Si−1)

)
−
(
2Si + βh2f(xi, Si)

)
+
(
Si+1 − γh2f(xi+1, Si+1)

)
+ti = 0.

(2.3)
Then, the local truncation error ti, i = 1, 2, ...., N − 1, can be written as

ti = {1− (α+ β + γ)}h2u(2)i + (α− γ)h3u
(3)
i +

{
1

12
− 1

2
(α+ γ)

}
h4u

(4)
i

+
1

6
(α− γ)h5u

(5)
i +

{
1

360
− 1

24
(α+ γ)

}
h6u

(6)
i +O(h7).

(2.4)

Thus, our schemes (2.2) and (2.4) give rise to a family of methods of different orders
as follows:
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2.1. Different order of methods

Case (i). First order method
For α+ β + γ = 1, α 6= γ. Here,

ti = (α− γ)h3u
(3)
i +O(h4),

‖T‖ = |(α− γ)|h3M3, M3 = max|u(3)(x)|. (2.5)

Case (ii). Second order method
For α+ β + γ = 1, α = γ and α+ γ 6= 1

6 . Here,

ti =

{
1

12
− 1

2
(α+ γ)

}
h4u

(4)
i +O(h5),

‖T‖ =

∣∣∣∣ 1

12
− 1

2
(α+ γ)

∣∣∣∣h4M4, M4 = max|u(4)(x)|. (2.6)

Case (iii). Fourth order method
For α+ β + γ = 1, α = γ and α+ γ = 1

6 . Here,

ti =

{
1

360
− 1

24
(α+ γ)

}
h6u

(6)
i +O(h7),

‖T‖ =

∣∣∣∣ 1

360
− 1

24
(α+ γ)

∣∣∣∣h6M6, M6 = max|u(6)(x)|. (2.7)

where ‖ · ‖ represents the ∞ norm in matrix vector.

2.2. Modified k-dependent method

In this section, we will use the parameter k to raise the order of accuracy of the
obtained scheme (2.2). To do this, we first rearrange the terms in equation (2.4) in
the following manner

ti =h4

[
1

θ2
+

(eθ − 1)(1 − cos(θ)) + sin(θ)(1 + eθ)

θ3 sin(θ)

]
(k2u

(2)
i − u

(4)
i )

+h5

[
eθ(sin(θ) + cos(θ)) − 1

θ3 sin(θ)
+

2(1 − eθ)

θ4

]
k2u

(3)
i

+h6

[
1

12θ2
− 1 + eθ(sin(θ) + cos(θ))

2θ3 sin(θ)
+

(1 + eθ)

θ4

]
k2u

(4)
i

+h6

[
(sin(θ) + cos(θ)) + 1 + eθ(sin(θ) − cos(θ) − 1)

θ5 sin(θ)

]
k2u

(4)
i

+h6

[{
1

360
+
−eθ(sin(θ) + cos(θ))

24θ sin(θ)
+

(2eθ − 1)

24θ2

}
u
(6)
i (η1) +

{
1

24θ2
− 1

24θ sin(θ)

}
u
(6)
i (η2)

]
+h7

[
eθ(sin(θ) + cos(θ) − 1)

6θ3 sin(θ)
+

(1 − eθ)

3θ4

]
k2u

(5)
i + · · ·

Equating the coefficient of the leading term in the above equation to zero, we can
get the equation in ki as

k2i =
u
(4)
i

u
(2)
i

=
f ′′(xi, ui)

f(xi, ui)
(2.8)
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For the linear case, f(xi, ui) = piui + gi. Then,

k2i =
(p′′i + p2i )ui + 2p′iu

′
i + pigi + g′′i

piui + gi
(2.9)

Thus, from above we see that calculation of ki requires the approximations for ui and
u′i. Approximation for ui can be obtained by means of our developed scheme (2.2) for
k = 0 and for u′i, following steps can be adapted:
(i) Differentiating equation (2.1) at x = xi, to get

P ′i (x) =
1

k sin(θ)

{
(sin(θ) + eθ)Mi −Mi+1

}
+

(Si+1 − Si)
h

+
1

k2h

{
(1− 2eθ)Mi +Mi+1

}
,

(ii) If the limit k going to zero in the above equation, we obtain

P ′i (x) = −h
6
f(xi+1, ui+1)− h

3
f(xi, ui) +

(Si+1 − Si)
h

; i = 0, 1, ....., N. (2.10)

3. Composite non-polynomial spline solution

To develop the approximation to the solution of BVP (1.1)-(1.2) based on our
developed spline method, we write our scheme (2.2) in the following standard matrix
form:

A0S
(1) − h2Bf (1)

(
S(1)

)
= C(1), (3.1)

where A0 and B are three-band square matrices of order N − 1, given by

A0 =



−2 1
1 −2 1

1 −2 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

1 −2 1
1 −2



B =



β γ
α β γ

α β γ
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

α β γ
α β


Matrix: f (1)(S(1)) = f(xi, S

(1)
i ), S(1) = [S1, S2, ..., SN−1]t and

C(1) =

 −A1 + h2αf(x0, A1), i = 1,
0, i = 2, 3, ...N − 2,

−A2 + h2γf(xN , A2), N − 1.
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Likewise,

A0U
(1) − h2Bf (1)(U (1)) = C(1) + T (1), (3.2)

where the vector U (1) = u(xi) is the exact solution with truncation error T (1) = (t
(1)
i ),

for i = 1, 2, . . . , N − 1.
From (3.1) and (3.2), we have

[A0 − h2BQ]E(1) = T (1) (3.3)

where

E(1) = U (1) − S(1) = [e
(1)
1 , e

(1)
2 , ....., e

(1)
N−1]T

and

Q = diag

(
∂f

(1)
i

∂u
(1)
i

)
, i = 1, 2, . . . , N − 1

is the diagonal matrix of order N − 1, whereas for the linear case, Q =diag(f
(1)
i ).

Thus, the equations (3.1)-(3.3) demonstrate our scheme, using which one can
obtain the approximate solution of non-linear DE (1.1) with the BC (1.2). We shall
use Newton’s method to obtain the solution of the non-linear system (2.2), which
converge to the solution of (1.1)-(1.2) for all sufficiently small values of h [24, 46].

4. Convergence analysis

Now, we will derive a bound on
∥∥E(1)

∥∥. From equation (3.3), we get

AE(1) = T (1),

where, A =[A0 − h2BQ] is a tri-diagonal matrix. The elements of A are given by

aij =


−2− h2βfu(xi, ui), i = j,
1− h2αfu(xi, ui), i− j = 1,
1− h2γfu(xi, ui), j − i = 1,

0, |i− j| > 1.

From above, we have ∥∥∥E(1)
∥∥∥ ≤ ∥∥A−1∥∥∥∥∥T (1)

∥∥∥ .
(See [24])

∥∥A−1∥∥ ≤ (b−a)2/8h2 and so, we can infer the following convergent schemes:

Case 4.1. First order convergent method
For (α, β, γ) =(75/1920,1755/1920,90/1920),

∥∥T (1)
∥∥
∞ = 1

128h
3M3.

Then from equation (2.5), we get∥∥∥E(1)
∥∥∥ ≤ K1h ∼= O(h1). (4.1)

This relation (4.1) shows that the method is first order convergent.

Case 4.2. Second order convergent method
For α = γ = 3

38 and β = 32
38 ,
∥∥T (1)

∥∥
∞ = 1

128h
4M4.



460 Anju Chaurasia, Yogesh Gupta and Prakash C. Srivastava

Then it follows from (2.6) that∥∥∥E(1)
∥∥∥ ≤ K2h

2 ∼= O(h2). (4.2)

The relation (4.2) confirms second order convergence of the method.

Case 4.3. Fourth order convergent method
For α = γ = 1

12 and β = 10
12 ,
∥∥T (1)

∥∥
∞ = 1

240h
6M6.

Then from equation (2.7), we have∥∥∥E(1)
∥∥∥ ≤ K3h

4 ∼= O(h4). (4.3)

which confirms fourth order convergence of the method.

5. Numerical illustration

To illuminate the use of our developed methods, we have considered several
linear and non-linear examples of second order BVPs and also compared our results
with other existing methods.
Problem 5.1. Consider the linear BVP

u(2)(x) =
2

x2
u− 1

x
; 2 < x < 3; u(2) = u(3) = 0. (5.1)

The theoretical (exact) solution of (5.1) is

u(x) =
1

38
(−5x2 + 19x− 36

x
). (5.2)

Comparing the given equation (5.1) with (1.1) at x = xi, we have

f(xi, ui) =
2

x2i
ui −

1

xi
.

Table 1. Absolute error for the solution of Problem 5.1 at different value of x
for N = 8

x Our method for k = 0 Our k-based method Value of k

17/8 2.36×10−5 4.28×10−6 1.0674
18/8 3.66×10−5 6.31×10−6 0.9581
19/8 4.16×10−5 6.86×10−6 0.8623
20/8 4.07×10−5 6.45×10−6 0.7781
21/8 3.52×10−5 5.38×10−6 0.7040
22/8 2.61×10−5 3.87×10−6 0.6387
23/8 1.42×10−5 2.05×10−6 0.5809

For the linear case, f(x, u) = p(x)u+ g(x), so pi = p(xi) = 2/x2i ; gi = g(xi) = −1/xi
and equation(3.1) is changed to AS = C, where A = A0 − h2BQ; Q = diag(fi).
By substituting these values, we get system of linear equations for Problem 5.1 that
can be solved using any suitable method. Absolute errors at different point of x are
summarized in Table 1 for k = 0, i.e. (α, β, γ) = (1/6, 4/6, 1/6) and k-based method,
when h = 1/8. Results indicate that the modified k-dependent method provides better
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results than the method for k = 0. The value of parameter k at different value of x is
also listed in Table 1 (col. IV).

Table 2 reports the MAE at different value of N for second order schemes to-
gether with k-based technique. Table indicates that k-based method is a third order
convergent method. Comparison of numerical results with other existing methods is
also included in this table. Fourth order method solution when (α, β, γ) = (1/12,
10/12, 1/12) of Problem 5.1 for N=10 is presented in Table 3, along with comparison
with Galerkin method.

Table 2. Comparison of maximum absolute errors for Problem 5.1

Our method N = 4 N = 8 N = 16

Our second order methods
(α = γ = 3/38, β =32/38) 5.94×10−6 2.00×10−6 5.37×10−7

(α = γ = 1/13, β =11/13) 9.88×10−6 3.01×10−6 7.90×10−7

Our method for k = 0 1.65×10−4 4.16×10−5 1.04×10−5

Our k-based Method 5.05×10−5 6.86×10−6 8.61×10−7

Quadratic spline [9] 1.60×10−4 2.66×10−5 5.58×10−6

Centered Difference method [10] 2.79×10−4 5.42×10−5 1.19×10−5

Quadratic spline [42] 7.93×10−5 2.06×10−5 5.20×10−6

Cubic spline [10] 5.49×10−5 1.87×10−5 5.07×10−6

Cubic non-poly. spline [33] 2.05×10−5 5.74×10−6 1.47×10−6

Discrete cubic spline [21] 1.77×10−5 5.00×10−6 1.29×10−6

Figure 1. (a) Comparison of approximate and exact values for Problem 5.1.
(b) Error graph for Problem 5.1 at different values of N (Table 3).
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Table 3. Comparison of MAE for the solution of Problem 5.1
(Fourth order method)

x 2.1 2.2 2.3 2.4 2.5

Our method 3.73×10−8 5.89× 10−8 6.92×10−8 7.15×10−8 6.78×10−8

Galerkin method [25] 2.52× 10−7 1.15×10−6 6.73 ×10−7 6.90 ×10−7 1.24× 10−6

x 2.6 2.7 2.8 2.9

Our method 5.96× 10−8 4.81×10−8 3.39×10−8 1.77×10−8

Galerkin method [25] 4.51×10−7 7.90×10−7 9.70× 10−7 3.17×10−7

Figure 2. (a) Comparison of approximate and exact values for Problem 5.2.
(b) Error graph for Problem 5.2 at different values of N (Table 4).

Problem 5.2. Consider the linear BVP

u(2)(x) = 100u; 0 < x < 1; u(0) = u(1) = 1. (5.3)

The theoretical solution of (5.3) is

u(x) =
cosh(10x− 5)

cosh 5
. (5.4)

Problem 5.3. Consider the linear BVP

u(2)(x) = u+ cos(x), 0 < x < 1; u(0) = u(1) = 1. (5.5)

The theoretical solution of (5.5) is

u(x) =
−3 cosh(1) + 3 sinh(1) + cos(1) + 2

4 sinh(1)
ex

+
3 cosh(1) + 3 sinh(1)− cos(1)− 2

4 sinh(1)
e−x − cos(x)

2

(5.6)
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Table 4. Comparison of maximum absolute errors for Problem 5.2

Our method
N = 16 N = 32 N = 20 N = 40

α = γ = 3/38, β=32/38 1.95×10−4 7.15×10−5 1.54×10−4 4.75×10−5

α = γ = 1/13, β=11/13 3.37×10−4 1.07×10−4 2.47×10−4 7.08×10−5

Our method for k = 0 6.10×10−3 1.50×10−3 3.90×10−3 9.65×10−4

Our k-based method 1.16×10−2 1.11×10−3 5.40×10−3 5.57×10−4

Our fourth-order method 1.12×10−4 7.28×10−6 4.75×10−5 2.99×10−6

Cubic non-poly. spline [33] 7.22×10−4 2.06×10−4 5.00×10−4 1.34×10−4

Discrete cubic spline [21] 6.18×10−4 1.80×10−4 4.32×10−4 1.17×10−4

Quadratic spline [42] 3.06×10−3 7.58×10−4 — —
Collocation method [32] — — 1.80×10−3 4.70×10−4

Cubic spline [10] 2.27×10−3 6.84×10−4 1.57×10−3 4.53×10−4

Maximum absolute errors at the different values of N are tabulated in Table 4
for Problem 5.2 and in Table 5 for Problem 5.3. Fourth order method solution and
error graphs at different values of N are also given in Figures 1-3 respectively for
Problems 5.1-5.3.

Table 5. Comparison of maximum absolute errors for the solution of Problem 5.3

x
Our

method

for k = 0

Our
k-based

method

Our
fourth

order

method

Standard
Tau-

method

[45]

Perturbed
Tau-

method

[45]

EADM

[17]

EFM

[44]

1/8 5.24×10−4 7.13×10−6 8.97×10−8 1.00×10−4 2.10×10−4 4.37×10−7 6.88×10−5

2/8 9.69×10−4 1.17×10−5 1.50×10−7 0 1.10×10−4 8.07×10−7 4.93×10−5

3/8 1.26×10−3 1.43×10−5 1.84×10−7 1.00×10−4 7.51×10−5 1.05×10−6 3.21×10−5

4/8 1.37×10−3 1.50×10−5 1.93×10−7 1.00×10−4 6.25×10−5 1.14×10−6 2.63×10−5

5/8 1.26×10−3 1.39×10−5 1.79×10−7 2.00×10−4 4.31×10−5 1.05×10−6 2.16×10−5

6/8 9.69×10−4 1.11×10−5 1.42×10−7 2.00×10−4 2.43×10−5 8.07×10−7 1.09×10−5

7/8 5.24×10−4 6.56×10−6 8.32×10−8 2.00×10−4 1.13×10−5 4.37×10−7 1.01×10−5

Abbreviations: EADM: Extended Adomian Decomposition Method; EFM: Exponential fitting

method

Figure 3. (a) Comparison of approximate and exact values for Problem 5.3.
(b) Error graph for Problem 5.3 at different values of N (Table 5).
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Problem 5.4. Consider the non-linear BVP

u(2)(x) = 2(u(x))3, −1 < x < 0; u(−1) = 1/2, u(0) = 1/3. (5.7)

The theoretical solution of equation (5.7) is

u(x) =
1

(x+ 3)
(5.8)

To solve non-linear BVP (Problem 5.4), compare the equation (5.7) with equation
(1.1) at x = xi and we have

f(xi, ui) = 2(u(xi))
3;

Using equation (3.1), we obtain a system of non-linear equations that have been solved
using Newton’s method. Results are verified with MATLAB builtin solver(fsolve)
command. Tables 6 and 7 show the maximum absolute errors, in case of k=0, modified
k-dependent method and fourth order method solution. Tables clearly indicate that
our developed methods produce the better accuracy than some other specified me-
thods. We have also listed the value of parameter k at different value of x in Table 8.

Table 6. Comparison of MAE at N=10 for the solution of Problem 5.4

Our
method
for k = 0

Our
k-based
method

Our fourth
order
method

Quintic
spline [7]

Cubic
spline[20]

Quartic
spline [6]

2.65×10−5 8.08×10−6 3.23×10−7 8.82×10−6 1.68×10−5 4.67×10−6

Table 7. Maximum absolute errors at different value of N for Problem 5.4

Our method N = 4 N = 8 N = 16

Our method for k = 0 1.63×10−4 4.13×10−5 1.03×10−5

Our k-based method 1.28×10−4 1.53×10−5 6.83×10−6

Our fourth-order method 2.56×10−6 1.64×10−7 1.08×10−8

Table 8. The value of k at different value of x for the solution of Problem 5.4

x -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

k 1.6499 1.5748 1.5062 1.4433 1.3855 1.3321 1.2827 1.2368 1.1941
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Figure 4. (a) Comparison of approximate values and exact values for Problem 5.4.
(b) Error graph for Problem 5.4 at different values of N (Table 7).

Figure 5. (a) Comparison of approximate values and exact values for Problem 5.5.
(b) Error graph for Problem 5.5 at different values of N (Table 9, col. III).

Problem 5.5. Consider the non-linear BVP (Bratu Problem)

u(2)(x) + 2eu(x) = 0, 0 < x < 1; u(0) = u(1) = 0. (5.9)

The theoretical solution of (5.9) is

u(x) = −2 ln(cosh(1.17878 (x− 0.5)))/ cosh (0.589388). (5.10)
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Table 9. Comparison of MAE for the solution of Problem 5.5 at N = 10

Our method for
k = 0

Our k-based
method

Our fourth or-
der method

LGSM [1] Quintic
spline [7]

8.83×10−4 3.56×10−5 3.64×10−6 5.7×10−6 6.22×10−6

B-Spline
method [18]

Quartic spline
method [6]

Cubic
spline[20]

LADM [35] ADM [22]

5.29×10−5 1.10×10−4 6.26×10−4 1.24×10−2 1.52×10−2

Abbreviations: ADM: Adomian Decomposition Method;

LGSM: Lie-group shooting method;
LADM: Laplace Adomian Decomposition Method

Problem 5.6. Consider the non-linear BVP

u(2)(x) =
1

2
(1 + x+ u)3, 0 < x < 1; u(0) = u(1) = 0. (5.11)

The theoretical solution of (5.11) is

u(x) =
2

(2− x)
− x− 1. (5.12)

The other non-linear BVPs mentioned in Problems 5.5 and 5.6, are also solved just
like Problem 5.4 using Newton’s method. Obtained results show the efficiency and
accuracy of our proposed methods. Maximum absolute errors at the nodal points
with a comparison with other methods are summarized in Table 9 for Problem 5.5
and in Table 10 for Problem 5.6, respectively. Figures 4-6 demonstrate the fourth
order method solution and error graphs for nonlinear Problems 5.4-5.6 respectively
with comparison of errors at the nodal points.

Table 10. Comparison of MAE for Problem 5.6 with Approaching spline method
at N = 5

x values 0 0.2 0.4 0.6 0.8 1

Our method for k = 0 0 1.30×10−3 2.40×10−3 3.10×10−3 2.80×10−3 0
Our k-based method 0 2.70×10−5 5.25×10−5 7.19×10−5 6.49×10−5 0
Our fourth order method 0 3.80×10−5 7.26×10−5 9.92×10−5 9.96×10−5 0
Approaching spline [31] 0 1.40×10−4 2.60×10−4 3.20×10−4 2.70×10−4 0
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Figure 6. (a) Comparison of approximate values and exact values for Problem 5.6.
(b) Error graph for Problem 5.6 at different values of N (Table 10).

6. Conclusion

A unique approach based on a different combination of non-polynomial cubic
splines is used to develop various orders methods for solving linear and non-linear
second order BVPs. We have also developed a parameter k -based method for smooth
approximation of these BVPs. The convergence of the developed method is also es-
tablished. Competence of the demonstrated technique can also be weighed through
comparisons with the literature given in tables, which show that our results are com-
paratively better with more precise result. Graphs are plotted at different values of
N for all the problems, which clearly show that absolute errors decrease rapidly as
step size N increases.
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Optimal decay rates for the acoustic wave
motions with boundary memory damping
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Abstract. A linear wave equation with acoustic boundary conditions (ABC) on
a portion of the boundary and Dirichlet conditions on the rest of the boundary
is considered. The (ABC) contain a memory damping with respect to the normal
displacement of the boundary point. In this paper, we establish polynomial energy
decay rates for the wave equation by using resolvent estimates.
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1. Introduction

In this paper we investigate the existence and decay properties of solutions for
the initial boundary value problem of the wave equation of the type

ytt(x, t)− yxx(x, t) = 0 in (0, L)× (0,+∞),
y(0, t) = 0 in (0,+∞),
yx(L, t) = zt(t) in (0,+∞),
yt(L, t) +mz(t) + γ∂α,ηt z(t) = 0 in (0,+∞),
y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, L),

(P )

where (x, t) ∈ (0, L) × (0,+∞),m > 0, γ > 0, η ≥ 0 and the initial data are taken
in suitable spaces. The notation ∂α,ηt stands for the generalized Caputo’s fractional
derivative of order α, 0 < α < 1, with respect to the time variable (see Choi and
MacCamy [9]). It is defined as follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s) dw

ds
(s) ds, η ≥ 0.

The problem (P ) describes sound wave propagation in a domain which is full of some
kind of medium and with a portion of boundary made of light-weight viscoelastic
material.
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Acoustic model was proposed by Morse and Ingard [15], and improved in a
rigorous mathematical way by Beale and Rosencrans [5]. Under the assumption that
each local-reacting boundary point acts as a spring, the author analyzed the model
in both bounded and exterior domains in [3], [4]. Uniform energy decay rates were
studied in [7], [16] for acoustic wave systems with both internal and boundary memory
damping terms. To our knowledge, there has been few work about the decay rates
of acoustic wave energies when only one memory damping acting on the acoustic
boundary.

Recently, In [11], the authors considered the following initial boundary value
problem with memory type acoustic boundary conditions,

ytt(x, t)−∆y(x, t) = 0 in Ω× (0,+∞),
y(x, t) = 0 in Γ0 × (0,+∞),
∂y
∂ν (x, t) = zt(x, t) in Γ1 × (0,+∞),

yt(x, t) +mz(x, t) + γ∂α,0t z(x, t) = 0 in Γ1 × (0,+∞),
y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, L).

(P )

They proved well-posedness and strong stability of the system (P ) without giving
an energy decay rate. Very Recently, in [12] the authors proved that the energy is
polynomially stable but without obtaining the precise exponent.

The aim of the present paper is to obtain more precise rates of decay. This can
be achieved via some theorems about operator semigroups. We provide a standard
method of going from resolvent estimates for a suitable PDE to rates of decay of
classical (strong) solutions.

We should mention here that the approach in [11] and [12], which is based on
Laplace transform is different from ours. By redescribing the fractional derivative term
by means of a suitable diffusion equation as in [14], the original model is transformed
into an augmented system which can be more easily tackled by the energy method.

2. Augmented model

This section is concerned with the reformulation of the model (P ) into an aug-
mented system. For that, we need the following claims.

Theorem 2.1 (see [14]). Let µ be the function:

µ(ξ) = |ξ|(2α−1)/2, −∞ < ξ < +∞, 0 < α < 1. (2.1)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞ < ξ < +∞, η ≥ 0, t > 0, (2.2)

φ(ξ, 0) = 0, (2.3)

O(t) = (π)−1 sin(απ)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ (2.4)

is given by

O = I1−α,ηU = Dα,ηU, (2.5)
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where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0

(t− τ)α−1e−η(t−τ)f(τ) dτ.

Lemma 2.2 (see [1]). If λ ∈ Dη = C\]−∞,−η] then∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

We are now in a position to reformulate system (P ). Indeed, by using Theorem 2.1,
system (P ) may be recast into the augmented model:

ytt(x, t)− yxx(x, t) = 0 in (0, L)× (0,+∞),
∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− zt(t)µ(ξ) = 0 in (−∞,+∞)× (0,+∞),
y(0, t) = 0 in (0,+∞),
yx(L, t) = zt(t) in (0,+∞),

yt(L, t) +mz(t) + ζ

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0 in (0,+∞),

y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, L),
φ(ξ, 0) = 0 in (−∞,+∞).

(P ′)

We define the energy associated to the solution of the problem (P ′) by the following
formula:

E(t) =
1

2
‖yt‖22 +

1

2
‖yx‖22 +

m

2
|z(t)|2 +

ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ. (2.6)

Lemma 2.3. Let (y, φ) be a solution of the problem (P ′). Then, the energy functional
defined by (2.6) satisfies

E′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0. (2.7)

Proof. Multiplying the first equation in (P ′) by yt, integrating over (0, L) and using
integration by parts, we get

1

2

d

dt
‖yt‖22 −<

∫ L

0

yxxytdx = 0.

Then

d

dt

(
1

2
‖yt‖22 +

1

2
‖yx‖22

)
+ <zt(t)

(
mz(t) + ζ

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ

)
= 0. (2.8)

Multiplying the second equation in (P ′) by ζφt and integrating over (−∞,+∞), to
obtain:

ζ

2

d

dt
‖φ‖22 + ζ

∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ − ζ<zt(t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (2.9)

From (2.6), (2.8) and (2.9) we get

E′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ.

This completes the proof of the lemma. �
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3. Well-posedness

The energy space associated to system (P ) is

H = H1
L(0, L)×L2(0, L)×L2(−∞,+∞)×C, H1

L(0, L) = {y ∈ H1(0, L), y(0) = 0}
equipped with the inner product

< U, Ũ >H=

∫
Ω

(
vṽ + yxỹx

)
dx+mzz̃ + ζ

∫ +∞

−∞
φφ̃dξ,

where U = (y, v, φ, z)T , Ũ = (ỹ, ṽ, φ̃, z̃)T ∈ H.
Let U = (y, yt, φ, z)

T and rewrite (P ′) as{
U ′ = AU,
U(0) = (y0, y1, φ0, z0),

(3.1)

where the operator A is defined by

A


y
v
φ
z

 =


v
yxx

−(ξ2 + η)φ+ yx(L)µ(ξ)
yx(L)

 (3.2)

with domain

D(A) =



(y, v, φ, z)T in H : y ∈ H2(0, L) ∩H1
L(0, L),

v ∈ H1
L(0, L), z ∈ C,

−(ξ2 + η)φ+ yx(L)µ(ξ) ∈ L2(−∞,+∞),

v(L) +mz + ζ

∫ ∞
−∞

µ(ξ)φ(ξ) dξ = 0,

|ξ|φ ∈ L2(−∞,+∞)


. (3.3)

Now, we will give well-posedness results for problem (P ) using semigroup theory. We
show that the operator A generates a C0- semigroup in H. We prove that A is a
maximal dissipative operator (see [8]). For this purpose we need the following two
lemmas.

Lemma 3.1. The operator A is dissipative and satisfies, for any U ∈ D(A),

<〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ. (3.4)

Proof. For any U = (y, v, φ, z)T ∈ D(A), Using (3.1) and the fact that

‖(y, yt, φ, z)‖2H = ‖U‖2H, (3.5)

estimate (3.4) easily follows. �

Lemma 3.2. The operator λI −A is surjective for all λ > 0.

Proof. We need to show that for all F = (f1, f2, f3, f4)T ∈ H, there exists

U = (y, u, φ, v)T ∈ D(A)

such that
λU −AU = F, (3.6)
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that is 
λy − v = f1,
λv − yxx = f2,
λφ+ (ξ2 + η)φ− yx(L)µ(ξ) = f3,
λz − yx(L) = f4.

(3.7)

Suppose that we have found y. Therefore, the first equation in (3.7) gives

v = λy − f1. (3.8)

It is clear that u ∈ H1
L(0, L). Furthermore, by (3.7) we can find φ as

φ =
f3(ξ) + µ(ξ)yx(L)

ξ2 + η + λ
. (3.9)

By using (3.7) and (3.8) the function y satisfying the following system

λ2y − yxx = f2 + λf1. (3.10)

Solving system (3.10) is equivalent to finding y ∈ H2 ∩H1
L(0, L) such that∫ L

0

(λ2yw − yxxw) dx =

∫ L

0

(f2 + λf1)w dx, (3.11)

for all w ∈ H1
L(0, L). By using (3.11) and (3.9) the function y satisfying the following

system

∫ L

0

(λ2yw + yxwx) dx+
λ2

m+ γλ(λ+ η)α−1
y(L)w(L)

=

∫ L

0

(f2 + λf1)w dx+
1

m+ γλ(λ+ η)α−1
(λf1(L)

−ζλ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ −mf4w(L).

(3.12)

Consequently, problem (3.12) is equivalent to the problem

a(y, w) = L(w), (3.13)

where the sesquilinear form a : H1
L(0, L) × H1

L(0, L) → C and the antilinear form
L : H1

L(0, L)→ C are defined by

a(y, w) =

∫ L

0

(λ2yw + yxwx) dx+
λ2

m+ γλ(λ+ η)α−1
y(L)w(L)

and

L(w) =

∫ L

0

(f2 + λf1)w dx+
1

m+ γλ(λ+ η)α−1
(λf1(L)

−ζλ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ −mf4w(L).

It is easy to verify that a is continuous and coercive, and L is continuous. So applying
the Lax-Milgram theorem, we deduce that for all w ∈ H1

L(0, L) problem (3.13) admits
a unique solution y ∈ H1

L(0, L). Applying the classical elliptic regularity, it follows
from (3.12) that y ∈ H2(0, L). Therefore, the operator λI − A is surjective for any
λ > 0. �
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Consequently, using Hille-Yosida Theorem, we have the following well-posedness
result:

Theorem 3.3 (Existence and uniqueness).

(1) If U0 ∈ D(A), then system (3.1) has a unique strong solution

U ∈ C0(R+, D(A)) ∩ C1(R+,H).

(1) If U0 ∈ H, then system (3.1) has a unique weak solution

U ∈ C0(R+,H).

4. Lack of exponential stability

In order to state and prove our stability results, we need the following well known
theorems.

Theorem 4.1 ([17]-[10]). Let S(t) = eAt be a C0-semigroup of contractions on Hilbert
space H. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR
and

lim
|β|→∞

‖(iβI −A)−1‖L(H) <∞.

Theorem 4.2 ([6]). Let S(t) = eAt be a C0-semigroup on a Hilbert space H. If

iR ⊂ ρ(A) and sup
|β|≥1

1

βδ
‖(iβI −A)−1‖L(H) < M

for some δ > 0, then there exist c such that

‖eAtU0‖2 ≤
c

t
2
δ

‖U0‖2D(A).

Theorem 4.3 ([2]-[13]). Let A be the generator of a uniformly bounded C0- semigroup
{S(t)}t≥0 on a Hilbert space H. If:

(i) A does not have eigenvalues on iR.
(ii) The intersection of the spectrum σ(A) with iR is at most a countable set,

then the semigroup {S(t)}t≥0 is asymptotically stable, i.e, ‖S(t)z‖H → 0 as t → ∞
for any z ∈ H.

Our main first result is

Theorem 4.4. The semigroup generated by the operator A is not exponentially stable.

Proof. We will examine two cases.
• Case 1. η = 0: We shall show that iλ = 0 is not in the resolvent set of the operator
A. Indeed, noting that (0, 0, 0, cosL)T ∈ H, and denoting by (y, v, φ, z)T the image of

(0, 0, 0, cosL)T by A−1, we see that φ(ξ) = |ξ| 2α−5
2 cosL. But, then φ 6∈ L2(−∞,+∞),

since α ∈]0, 1[. Hence (y, v, φ, z)T 6∈ D(A).
• Case 2. η 6= 0: We aim to show that an infinite number of eigenvalues of A approach
the imaginary axis which prevents the wave system (P ) from being exponentially
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stable. Indeed we first compute the characteristic equation that gives the eigenvalues
of A. Let λ be an eigenvalue of A with associated eigenvector U = (y, v, φ, z)T . Then
AU = λU is equivalent to

λy − v = 0,
λv − yxx = 0,
λφ+ (ξ2 + η)φ− yx(L)µ(ξ) = 0,
λz − yx(L) = 0,

v(L) +mz + ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0.

(4.1)

From (4.1)1 − (4.1)2 for such λ, we find

λ2y − yxx = 0. (4.2)

Since v = λy(L), using (4.1)3 and (4.1)4, we get{
y(0) = 0,
λ2y(L) + (m+ γλ(λ+ η)α−1)yx(L) = 0.

(4.3)

The solution y is given by

y(x) =

2∑
i=1

cie
tix, (4.4)

where
t1(λ) = λ, t2(λ) = −λ.

Thus the boundary conditions may be written as the following system:

M(λ)C(λ) =

(
1 1

h(t1)et1L h(t2)et2L

)(
c1
c2

)
=

(
0
0

)
(4.5)

where we have set
h(r) = (m+ γλ(λ+ η)α−1)r + λ2.

Hence a non-trivial solution y exists if and only if the determinant of M(λ) vanishes.
Set f(λ) = detM(λ), thus the characteristic equation is f(λ) = 0.

Our purpose is to prove, thanks to Rouché’s Theorem, that there is a subsequence
of eigenvalues for which their real part tends to 0. �

In the sequel, since A is dissipative, we study the asymptotic behavior of the
large eigenvalues λ of A in the strip −α0 ≤ R(λ) ≤ 0, for some α0 > 0 large enough
and for such λ, we remark that eti , i = 1, 2 remains bounded.

Lemma 4.5. There exists N ∈ N such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A) (4.6)

where

λk = i
kπ

L
+

α̃

k1−α +
β

k1−α + o

(
1

k1−α

)
, k ≥ N, α̃ ∈ iR, β ∈ R, β < 0,

λk = λ−k if k ≤ −N.
Moreover for all |k| ≥ N , the eigenvalues λk are simple.
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Proof. Step 1.

f(λ) = et2h(t2)− et1h(t1)

= −e−λL((m+ γλ(λ+ η)α−1) + λ)

(
e2λL − λ− (m+ γλ(λ+ η)α−1)

λ+ (m+ γλ(λ+ η)α−1)

)
= −e−λL((m+ γλ(λ+ η)α−1) + λ)

(
e2λL − 1 + 2

m+ γλ(λ+ η)α−1

m+ λ+ γλ(λ+ η)α−1

)
.

(4.7)
We set

f̃(λ) = e2λL − 1 + 2
m+ γλ(λ+ η)α−1

m+ λ+ γλ(λ+ η)α−1

= f0(λ) + f1(λ)
λ1−α + o

(
1

λ1−α

) (4.8)

where

f0(λ) = e2λL − 1, (4.9)

f1(λ) = 2γ. (4.10)

Note that f0 and f1 remain bounded in the strip −α0 ≤ R(λ) ≤ 0.

Step 2. We look at the roots of f0. From (4.9), f0 has one familie of roots that we
denote λ0

k.

f0(λ) = 0⇔ e2λL = 1.

Hence

2λL = i2kπ, k ∈ Z,
i.e.,

λ0
k =

ikπ

L
, k ∈ Z.

Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are close
to those of f0. Changing in (4.8) the unknown λ by u = 2λL then (4.8) becomes

f̃(u) = (eu − 1) +O

(
1

u

)
= f0(u) +O

(
1

u

)
.

The roots of f0 are uk = ik
L π, k ∈ Z, and setting u = uk+reit, t ∈ [0, 2π], we can easily

check that there exists a constant C > 0 independent of k such that |eu− 1| ≥ Cr for
r small enough. This allows to apply Rouché’s Theorem. Consequently, there exists
a subsequence of roots of f̃ which tends to the roots uk of f0. Equivalently, it means
that there exists N ∈ N and a subsequence {λk}|k|≥N of roots of f(λ), such that

λk = λ0
k + o(1) which tends to the roots ik

L π of f0. Finally for |k| ≥ N,λk is simple

since λ0
k is.

Step 3. From Step 2, we can write

λk = i
1

L
kπ + εk. (4.11)

Using (4.11), we get

e2λkL = 1 + 2Lεk + 2L2ε2
k + o(ε2

k). (4.12)
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Substituting (4.12) into (4.8), using that f̃(λk) = 0, we get:

f̃(λk) = 2Lεk +
2γ

(kπiL + εk)(1−α)
+ o(εk) + o(1/k)

= 2Lεk +
2γ

(kπL i)
(1−α)

+ o

(
1

k

)
= 0

(4.13)

and hence

εk = − γ

Lα
1

(kπ)(1−α)

(
cos(1− α)

π

2
− i sin(1− α)

π

2

)
+ o

(
1

k1−α

)
for k � 0.

From (4.13) we have in that case |k|1−αRλk ∼ β, with

β = − γ

Lαπ1−α cos(1− α)
π

2
.

The operator A has a non exponential decaying branch of eigenvalues. Thus the proof
is complete. �

5. Polynomial stability and optimality (for η 6= 0)

In the previous section,we have shown that the transmission wave system is not
exponentially stable. In this section, we prove that it is polynomially stable with an
optimal rate of decay when η > 0. To achieve this, we use a recent result by Borichev
and Tomilov [6]. Accordingly, if we consider a bounded C0-semigroup S(t) = eAt on
a Hilbert space. If

iR ⊂ ρ(A) and lim|β|→∞
1

βδ
‖(iβI −A)−1‖L(H) <∞

for some δ > 0, then there exist c such that

‖eAtU0‖2 ≤
c

t
2
δ

‖U0‖2D(A).

Our main result is as follows.

Theorem 5.1. The semigroup SA(t)t≥0 is polynomially stable and

E(t) = ‖SA(t)U0‖2H ≤
1

t2/(1−α)
‖U0‖2D(A).

Moreover, the rate of energy decay t−2/(1−α) is optimal for any initial data in D(A).

Proof. We will need to study the resolvent equation (iλ−A)U = F , for λ ∈ R, namely
iλy − v = f1,
iλv − yxx = f2,
iλφ+ (ξ2 + η)φ− yx(L)µ(ξ) = f3,
iλz − yx(L) = f4

(5.1)

with the boundary condition

v(L) +mz + ζ

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0. (5.2)
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We divide the proof into three steps, as follows:
Step 1. Inserting (5.1)1 into (5.1)2, we get

λ2y + yxx = −(f2 + iλf1).

As y(0) = 0, then

y(x) = c1 sinλx− 1

λ

∫ x

0

(f2(σ) + iλf1(σ)) sinλ(x− σ) dσ, (5.3)

and hence

yx(x) = c1λ cosλx−
∫ x

0

(f2(σ) + iλf1(σ)) cosλ(x− σ) dσ. (5.4)

Step 2. With the third equation of (5.1), we get

φ(ξ) =
yx(L)µ(ξ) + f3(ξ)

iλ+ ξ2 + η
. (5.5)

Inserting (5.5) in the boundary condition (5.2), we easy to check that

−λ2y(L) + (m+ γiλ(iλ+ η)α−1)yx(L) = iλf1(L)−mf4 − ζiλ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ.

(5.6)
Using (5.3) and (5.4), we can rewrite (5.6) as an equation in the unknown c1,

c1(−λ2 sinλL+ λ(m+ γiλ(iλ+ η)α−1) cosλL)

= iλf1(L)−mf4 − ζiλ
∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ − λ

∫ L

0

(f2(σ) + iλf1(σ)) sinλ(L− σ) dσ

+(m+ γiλ(iλ+ η)α−1)

∫ L

0

(f2(σ) + iλf1(σ)) cosλ(L− σ) dσ. (5.7)

Step 3. We set

g(λ) = −λ sinλL+ (m+ γiλ(iλ+ η)α−1) cosλL. (5.8)

As f1 ∈ H1
L(0, L) and f2 ∈ L1(0, L), we have∣∣∣∣∣
∫ L

0

(f2(σ) + iλf1(σ)) sinλ(L− σ) dσ

∣∣∣∣∣ ≤ c(‖f2‖L2(0,L) + ‖f1‖H1(0,L)).∣∣∣∣∣
∫ L

0

(f2(σ) + iλf1(σ)) cosλ(L− σ) dσ

∣∣∣∣∣ ≤ c(‖f2‖L2(0,L) + ‖f1‖H1(0,L)).

As g(λ) 6= 0 for all λ (if η = 0 then for all λ 6= 0) , then c1 is uniqueley determined by
(5.7). Hence the operator iλ − A is surjective for all λ (if η = 0 then for all λ 6= 0).
Moreover, taking account of Lemma 4.5, the operator iλ − A is injective for all λ.
Then iR ⊂ ρ(A) (if η = 0 then iR∗ ⊂ ρ(A)).

Moreover, we can easily prove that

|g(λ)| ≥ c|λ|α for λ large.

Hence
|c1| ≤ c|λ|−α for λ large.
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Then, we deduce that

‖yx‖L2(0,L) ≤ c|λ|1−α for λ large.

‖v‖L2(0,L) ≤ c|λ|1−α for λ large.

|z| ≤ c|λ|−α for λ large.

Moreover from (3.4), we have

‖φ‖2L2(−∞,∞) ≤
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ c‖U‖H‖F‖H.

Thus, we conclude that

‖(iλI −A)−1‖H ≤ c|λ|1−α as |λ| → ∞. (5.9)

The conclusion then follows by applying the Theorem 4.2. Besides, we prove that
the decay rate is optimal. Indeed, the decay rate is consistent with the asymptotic
expansion of eigenvalues which show a behavior of the real part like k−(1−α). �

Remark 5.2. The method developed in this paper is direct and very flexible; it can
be applied to various dissipative problems. In particular, we will consider in the fu-
ture more general acoustic wave motions and also multidimensional cases under some
geometric control conditions.
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Book reviews

Tom Richmond, General topology. An introduction, de Gruyter, 2020,
ISBN 978-3-11-068656-2/pbk; 978-3-11-068657-9/ebook, xi + 314 pages.

The specific feature of this introductory text on general topology is the insistence
on the relations between topology and order, with emphasis on the so called asymmet-
ric topologies, meaning topologies in the non T1 setting. Since the only T1 topology
on a finite set is the discrete one, studies in computer science, where one works with
finite sets of points (pixels), require the use of non T1 topologies. The specialization
order on a topological space (X, τ) is defined by x ≤τ y if x ∈ cl {y}. Since in a T1
space it becomes the equality relation, it is relevant only in non T1 setting. Actually,
there exists a bijective correspondence between quasi-orders (reflexive and transitive
relations) and topologies, done through the Alexandroff topologies, meaning topolo-
gies for which the intersection of an arbitrary family of open sets is open. All these are
presented in the second part of the book, Chapters 8 to 10. In Ch. 11 one discusses
some typical examples of asymmetric topologies given by extended distances – pseu-
dometrics, quasi-metrics (the symmetry of the distance is broken), partial-metrics (it
is possible that d(x, x) > 0 for some x). Uniform spaces are discussed in Chapter
12, including a brief presentation of quasi-uniform spaces, the asymmetric analogs
of uniform spaces, where the opposite U−1 of an entourage U is not necessarily an
entourage. The last chapter of the book, Chapter 13. Continuous deformation of sets
and curves, contains a quick introduction to some topics in algebraic topology, laying
the groundwork for further study in this area.

The first chapter, Chapter 0. Preliminaries, contains some notions and results
from set theory, logic and ordered sets. Chapters 1 to 7 provide an introduction to
classical general topology, culminating with connectedness, separation axioms and
compactness (Tychonoff theorem), the presentation being based on motivation by
examples and intuition. For instance, the quotient topology is exemplified on the
circle obtained by the identification of the endpoints of a segment, the cylinder and
the Möbius strip obtained in a similar way from a rectangle and the torus from a
cylinder.

Another specific of the book is the rich supply of exercises (over than 740) spread
through the book, completing the main text with further examples and applications
as well as suggesting areas for continued investigation.

This is a well written introductory course on general topology. The numerous
examples (illustrated by figures) and the intuitive approach adopted by the author
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makes it appealing to students in mathematics and related areas. Students in com-
puter science will find a carefully motivated presentation of some topics in asymmetric
topology (tightly connected with discrete mathematics) they may encounter in their
study.

S. Cobzaş
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