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On Fejér type inequalities for products convex
and s-convex functions

Hüseyin Budak and Yonca Bakış

Abstract. In this paper, we first obtain some new Fejér type inequalities for
products of convex and s-convex mappings. Then, some Fejér type inequalities
for products of two s-convex function are established.
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1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are considerable significant in the literature (see, e.g., [6], [14, p. 137]). These inequa-
lities state that if f : I → R is a convex function on the interval I of real numbers
and a, b ∈ I with a < b, then

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
. (1.1)

Both inequalities hold in the reversed direction if f is concave. We note that
Hermite-Hadamard inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. Over the years, many studies
have focused on to establish generalization of the inequality (1.1) and to obtain new
bounds for left hand side and right hand side of the inequality (1.1).

The overall structure of the paper takes the form of five sections including intro-
duction. The remainder of this work is organized as follows: we first give some Hermite-
Hadamard and Fejér type inequalities.. Moreover, we give some Hermite-Hadamard
type inequalities for products two convex functions. In Section 2 and Section 3, we
obtain some integral inequalities of Hermite-Hadamard-Fejér type for products con-
vex and s-convex functions and for products two s-convex functions. We give also
some special cases of these inequalities. Finally, conclusions and future directions of
research are discussed in Section 4.
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The weighted version of the inequalities (1.1), so-called Hermite-Hadamard-Fejér
inequalities, was given by Fejer in [7] as follow:

Theorem 1.1. f : [a, b]→ R, be a convex function, then the inequality

f

(
a + b

2

) b∫
a

w(x)dx ≤
b∫

a

f(x)w(x)dx ≤ f(a) + f(b)

2

b∫
a

w(x)dx (1.2)

holds, where w : [a, b]→ R is non-negative, integrable, and symmetric about x =
a + b

2
(i.e. w(x) = w(a + b− x)).

In [13], Pachpatte established the Hermite-Hadamard type inequalities for pro-
ducts of two convex functions.

Theorem 1.2. Let f and g be real-valued, non-negative and convex functions on [a, b] .
Then we have

1

b− a

b∫
a

f(x)g(x)dx ≤ 1

3
M(a, b) +

1

6
N(a, b), (1.3)

and

2f

(
a + b

2

)
g

(
a + b

2

)
≤ 1

b− a

b∫
a

f(x)g(x)dx +
1

6
M(a, b) +

1

3
N(a, b) (1.4)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

In recent years, the generalized versions of inequalities (1.3) and (1.4) for several
convexity have been proved. For some of them please refer to ([4]-[5], [8], [16], [17]).
Kirmaci et al. gave the proved inequalities (1.3) and (1.4) for products of convex and
s-convex functions in [9]. On the other hand, Budak and Bakış [1] proved the weighted
versions of the inequalities (1.3) and (1.4) which generalize the several obtained in-
equalities. Moreover in [10], Latif and Alomari proved some inequalities for product
of two co-ordinated convex function. Furthermore in [11] and [12], Ozdemir et al. gave
some generalizations of results given by Latif and Alomari using the product of two
coordinated s-convex mappings and product of two coordinated h-convex mappings,
respectively. In [2], Budak and Sarıkaya proved Hermite-Hadamard type inequalities
for products of two co-ordinated convex mappings via fractional integrals.

2. Fejér type inequalities for products convex and s-convex functions

In this section, we present some Fejér type inequalities for products convex and
s-convex functions.

Theorem 2.1. Suppose that w : I → R is non-negative, integrable, and symmetric

about x =
a + b

2
(i.e. w(x) = w(a+b−x)). If f : I → R is a real-valued, non-negative
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and convex functions on I and if g : I → R is a s-convex on I for some fixed s ∈ (0, 1],
then for any a, b ∈ I, we have

b∫
a

f(x)g(x)w(x)dx ≤ M(a, b)

(b− a)
s+1

b∫
a

(b− x)
s+1

w(x)dx (2.1)

+
N(a, b)

(b− a)
s+1

b∫
a

(b− x) (x− a)
s
w(x)dx

where

M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Proof. Since f is convex and g is s-convex functions on [a, b] , then we have

f (ta + (1− t) b) ≤ tf(a) + (1− t)f(b) (2.2)

and

g (ta + (1− t) b) ≤ tsg(a) + (1− t)
s
g(b). (2.3)

By adding the inequalities (2.2) and (2.3), we get

f (ta + (1− t) b) g (ta + (1− t) b) (2.4)

≤ ts+1f(a)g(a) + (1− t)
s+1

f(b)g(b)

+ t (1− t)
s
f(a)g(b) + ts (1− t) f(b)g(a).

Multiplying both sides of (2.4) by w (ta + (1− t) b) , then integrating the resulting
inequality with respect to t from 0 to 1, we obtain

1∫
0

f (ta + (1− t) b) g (ta + (1− t) b)w (ta + (1− t) b) dt (2.5)

≤ f(a)g(a)

1∫
0

ts+1w (ta + (1− t) b) dt

+f(b)g(b)

1∫
0

(1− t)
s+1

w (ta + (1− t) b) dt

+f(a)g(b)

1∫
0

t (1− t)
s
w (ta + (1− t) b) dt

+f(b)g(a)

1∫
0

ts (1− t)w (ta + (1− t) b) dt.
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By change of variable x = ta + (1− t) b with dx = −(b− a)dt, we get

1∫
0

f (ta + (1− t) b) g (ta + (1− t) b)w (ta + (1− t) b) dt (2.6)

=
1

b− a

b∫
a

f(x)g(x)w(x)dx.

Moreover, it is easily observe that

1∫
0

ts+1w (ta + (1− t) b) dt =
1

(b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx (2.7)

and since w is symmetric about
a + b

2
, we have

1∫
0

(1− t)
s+1

w (ta + (1− t) b) dt =
1

(b− a)
s+2

b∫
a

(x− a)
s+1

w(x)dx (2.8)

=
1

(b− a)
s+2

b∫
a

(b− u)
s+1

w(a + b− u)du.

=
1

(b− a)
s+2

b∫
a

(b− u)
s+1

w(u)du.

We also have
1∫

0

t (1− t)
s
w (ta + (1− t) b) dt =

1

(b− a)
s+2

b∫
a

(b− x) (x− a)
s
w(x)dx (2.9)

and
1∫

0

ts (1− t)w (ta + (1− t) b) dt (2.10)

=
1

(b− a)
s+2

b∫
a

(b− x)
s

(x− a)w(x)dx

=
1

(b− a)
s+2

b∫
a

(b− u) (u− a)
s
w(a + b− u)du

=
1

(b− a)
s+2

b∫
a

(b− u) (u− a)
s
w(u)du.
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By substituting the equalities (2.6)-(2.10) in (2.5), then we have the following inequa-
lity

1

b− a

b∫
a

f(x)g(x)w(x)dx (2.11)

≤ [f(a)g(a) + f(b)g(b)]

(b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx

+
f(a)g(b) + f(b)g(a)

(b− a)
s+2

b∫
a

(b− x) (x− a)
s
w(x)dx.

If we multiply both sides of (2.11) by (b− a) , then we obtain the desired result. �

Remark 2.2. If we choose w(x) = 1 for all x ∈ [a, b] in Theorem 2.1, then we have the
following inequality

1

b− a

b∫
a

f(x)g(x)dx ≤ 1

s + 2
M(a, b) +

1

(s + 1) (s + 2)
N(a, b)

which is proved by Kırmacı et al. in [9].

Remark 2.3. If we choose s = 1 in Theorem 2.1, then we have the following inequality

b∫
a

f(x)g(x)w(x)dx ≤ M(a, b)

(b− a)
2

b∫
a

(b− x)
2
w(x)dx

+
N(a, b)

(b− a)
2

b∫
a

(b− x) (x− a)w(x)dx

which is proved by Budak and Bakış in [1].

Remark 2.4. If we choose f(x) = 1 for all x ∈ [a, b] in Theorem 2.1, then we have the
following inequality

b∫
a

g(x)w(x)dx ≤ g(a) + g(b)

2 (b− a)
s

b∫
a

[(b− x)
s

+ (x− a)
s
]w(x)dx

which is proved by Sarıkata et al. in [15, for h(t) = ts].
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Proof. From the inequality (2.1) for f(x) = 1 for all x ∈ [a, b] , we have

b∫
a

g(x)w(x)dx

≤ g(a) + g(b)

(b− a)
s+1

b∫
a

(b− x)
s+1

w(x)dx (2.12)

+
g(a) + g(b)

(b− a)
s+1

b∫
a

(b− x) (x− a)
s
w(x)dx

=
g(a) + g(b)

(b− a)
s+1

 b∫
a

(b− x)
s+1

w(x)dx +

b∫
a

(b− x) (x− a)
s
w(x)dx

 .

Since w is symmetric about
a + b

2
, we have

b∫
a

(b− x)
s+1

w(x)dx =

b∫
a

(x− a)
s+1

w(x)dx.

Using this equality in (2.12), we get

b∫
a

g(x)w(x)dx

≤ g(a) + g(b)

(b− a)
s+1

 b∫
a

(x− a)
s+1

w(x)dx +

b∫
a

(b− x) (x− a)
s
w(x)dx



=
g(a) + g(b)

(b− a)
s

b∫
a

(x− a)
s
w(x)dx

=
g(a) + g(b)

2 (b− a)
s

b∫
a

[(x− a)
s

+ (b− x)
s
]w(x)dx

which completes the proof. �
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Theorem 2.5. Suppose that conditions of Theorem 2.1 hold, then we have the following
inequality

2sf

(
a + b

2

)
g

(
a + b

2

) b∫
a

w (x) dx (2.13)

≤
b∫

a

f(x)g(x)w(x)dx +
M(a, b)

(b− a)
s+1

b∫
a

(x− a)
s

(b− x)w(x)dx

+
N(a, b)

(b− a)
s+1

b∫
a

(b− x)
s+1

w(x)dx.

where M(a, b) and N(a, b) are defined as in Theorem 2.1.

Proof. For t ∈ [0, 1], we can write

a + b

2
=

(1− t)a + tb

2
+

ta + (1− t)b

2
.

Using the convexity of f and s-convexity of g, we have

f

(
a + b

2

)
g

(
a + b

2

)

= f

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
g

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
≤ 1

2s+1
[f((1− t)a + tb) + f(ta + (1− t)b)]

× [g((1− t)a + tb) + g(ta + (1− t)b)]

=
1

2s+1
[f((1− t)a + tb)g((1− t)a + tb) + f(ta + (1− t)b)g(ta + (1− t)b)]

+
1

2s+1
[f((1− t)a + tb)g(ta + (1− t)b) + f(ta + (1− t)b)g((1− t)a + tb)] .

By using again the convexity of f and s-convexity of g, we obtain

f

(
a + b

2

)
g

(
a + b

2

)
(2.14)

≤ 1

2s+1
[f((1− t)a + tb)g((1− t)a + tb) + f(ta + (1− t)b)g(ta + (1− t)b)]

+
1

2s+1
[ts (1− t) + t(1− t)s] [f(a)g(a) + f(b)g(b)]

+
1

2s+1

[
ts+1 + (1− t)

s+1
]

[f(a)g(b) + f(b)g(a)] .
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Multiplying both sides of (2.14) by w ((1− t) a + tb) , then integrating the resulting
inequality with respect to t from 0 to 1, we obtain

f

(
a + b

2

)
g

(
a + b

2

) 1∫
0

w ((1− t) a + tb) dt (2.15)

≤ 1

2s+1

1∫
0

[f((1− t)a + tb)g((1− t)a + tb)

+f(ta + (1− t)b)g(ta + (1− t)b)]w ((1− t) a + tb) dt

+
M(a, b)

2s+1

1∫
0

[ts (1− t) + t(1− t)s]w ((1− t) a + tb) dt

+
N(a, b)

2s+1

1∫
0

[
ts+1 + (1− t)

s+1
]
w ((1− t) a + tb) dt.

Using the change of variable, we have

1∫
0

w ((1− t) a + tb) dt =
1

b− a

b∫
a

w (x) dx, (2.16)

1∫
0

f((1− t)a + tb)g((1− t)a + tb)w ((1− t) a + tb) dt (2.17)

+

1∫
0

f(ta + (1− t)b)g(ta + (1− t)b)w ((1− t) a + tb) dt

=
1

b− a

b∫
a

f(x)g(x)w(x)dx +
1

b− a

b∫
a

f(x)g(x)w(a + b− x)dx

=
2

b− a

b∫
a

f(x)g(x)w(x)dx,

1∫
0

[ts (1− t) + t(1− t)s]w ((1− t) a + tb) dt (2.18)

=

1∫
0

[ts (1− t)w ((1− t) a + tb) + t(1− t)sw ((1− t) a + tb)] dt
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=
1

(b− a)
s+2

b∫
a

(x− a)
s

(b− x)w(x)dx

+
1

(b− a)
s+2

b∫
a

(x− a)
s

(b− x)w(a + b− x)dx

=
2

(b− a)
s+2

b∫
a

(x− a)
s

(b− x)w(x)dx

and
1∫

0

[
ts+1 + (1− t)

s+1
]
w ((1− t) a + tb) dt (2.19)

=

1∫
0

[
ts+1w ((1− t) a + tb) + (1− t)

s+1
w ((1− t) a + tb)

]
dt

=
1

(b− a)
s+2

b∫
a

(b− x)
s+1

w(a + b− x)dx

+
1

(b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx

=
2

(b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx.

If we substitute the equalities (2.16)-(2.19) in (2.15), then we have the following
inequality

f

(
a + b

2

)
g

(
a + b

2

)
1

b− a

b∫
a

w (x) dx (2.20)

≤ 1

2s (b− a)

b∫
a

f(x)g(x)w(x)dx +
M(a, b)

2s (b− a)
s+2

b∫
a

(x− a)
s

(b− x)w(x)dx

+
N(a, b)

2s (b− a)
s+2

b∫
a

(b− x)
s+1

w(x)dx.

By multiplying the both sides of (2.20) by 2s(b− a) then we obtain the desired result
(2.13). �



174 Hüseyin Budak and Yonca Bakış

Remark 2.6. If we choose w(x) = 1 for all x ∈ [a, b] in Theorem 2.5, then we have the
following inequality

2sf

(
a + b

2

)
g

(
a + b

2

)
≤ 1

b− a

b∫
a

f(x)g(x)dx +
M(a, b)

(s + 1) (s + 2)
+

N(a, b)

s + 2

which is proved by Kırmacı et al. in [9].

Remark 2.7. If we choose s = 1 in Theorem 2.1, then we have the following inequality

2f

(
a + b

2

)
g

(
a + b

2

) b∫
a

w (x) dx ≤
b∫

a

f(x)g(x)w(x)dx

+
M(a, b)

(b− a)
2

b∫
a

(x− a) (b− x)w(x)dx

+
N(a, b)

(b− a)
2

b∫
a

(b− x)
2
w(x)dx.

which is proved by Budak and Bakış in [1].

Corollary 2.8. If we choose f(x) = 1 for all x ∈ [a, b] in Theorem 2.5, then we have
the following the following Fejér type inequality

2sg

(
a + b

2

) b∫
a

w (x) dx≤
b∫

a

g(x)w(x)dx+
g(a) + g(b)

2 (b− a)
s

b∫
a

[(x− a)
s

+ (b− x)]
s
w(x)dx.

Proof. From inequality (2.13) for f(x) = 1 for all x ∈ [a, b] , we have

2g

(
a + b

2

) b∫
a

w (x) dx ≤
b∫

a

g(x)w(x)dx +
g(a) + g(b)

(b− a)
s+1

b∫
a

(x− a)
s

(b− x)w(x)dx

+
g(a) + g(b)

(b− a)
s+1

b∫
a

(b− x)
s+1

w(x)dx

=

b∫
a

g(x)w(x)dx

+
g(a)+g(b)

(b− a)s+1

 b∫
a

(x− a)s(b− x)w(x)dx+

b∫
a

(b− x)s+1w(x)dx


=

b∫
a

g(x)w(x)dx +
g(a)+g(b)

2 (b− a)
s

b∫
a

[(x− a)
s

+ (b− x)
s
]w(x)dx.

This completes the proof. �
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3. Fejér type inequalities for products two s-convex functions

In this section, we present some Fejér type inequalities for products two s-convex
functions which generalize the results in Section 2.

Theorem 3.1. Suppose that w : I → R is non-negative, integrable, and symmetric

about x =
a + b

2
(i.e. w(x) = w(a + b− x)). If f : I → R is s1-convex functions on I

and if g : I → R is s2-convex on I for some fixed s1, s2 ∈ (0, 1], then for any a, b ∈ I,
we have

b∫
a

f(x)g(x)w(x)dx ≤ M(a, b)

(b− a)
s1+s2

b∫
a

(b− x)
s1+s2 w(x)dx (3.1)

+
N(a, b)

(b− a)
s1+s2

b∫
a

(b− x)
s1 (x− a)

s2 w(x)dx.

where M(a, b) and N(a, b) are defined as in Theorem 2.1.

Proof. Since f is s1-convex and g is s2-convex functions on [a, b] , then we have

f (ta + (1− t) b) ≤ ts1f(a) + (1− t)s1f(b) (3.2)

and

g (ta + (1− t) b) ≤ ts2g(a) + (1− t)
s2 g(b). (3.3)

By (3.2) and (3.3), we have

f (ta + (1− t) b) g (ta + (1− t) b) (3.4)

≤ ts1+s2f(a)g(a) + (1− t)
s1+s2 f(b)g(b)

+ts1 (1− t)
s2 f(a)g(b) + ts2 (1− t)

s1 f(b)g(a).
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Multiplying both sides of (3.4) by w (ta + (1− t) b) , then integrating the resulting
inequality with respect to t from 0 to 1, we obtain

1∫
0

f (ta + (1− t) b) g (ta + (1− t) b)w (ta + (1− t) b) dt (3.5)

≤ f(a)g(a)

1∫
0

ts1+s2w (ta + (1− t) b) dt

+f(b)g(b)

1∫
0

(1− t)
s1+s2 w (ta + (1− t) b) dt

+f(a)g(b)

1∫
0

ts1 (1− t)
s2 w (ta + (1− t) b) dt

+f(b)g(a)

1∫
0

ts2 (1− t)
s1 w (ta + (1− t) b) dt.

By change of variable x = ta + (1− t) b, we get

1∫
0

ts1+s2w (ta + (1− t) b) dt =
1

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx (3.6)

and since w is symmetric about
a + b

2
, we have

1∫
0

(1− t)
s1+s2 w (ta + (1− t) b) dt =

1

(b− a)
s1+s2+1

b∫
a

(x− a)
s1+s2 w(x)dx

=
1

(b− a)
s1+s2+1

b∫
a

(b− u)
s1+s2 w(a + b− u)du.

=
1

(b− a)
s1+s2+1

b∫
a

(b− u)
s1+s2 w(u)du.

We also have

1∫
0

ts1(1−t)s2w(ta+(1−t)b)dt= 1

(b− a)s1+s2+1

b∫
a

(b−x)s1(x−a)s2w(x)dx (3.7)
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and

1∫
0

ts2 (1− t)
s1 w (ta + (1− t) b) dt (3.8)

=
1

(b− a)
s1+s2+1

b∫
a

(b− x)
s2 (x− a)

s1 w(x)dx

=
1

(b− a)
s1+s2+1

b∫
a

(b− u)
s1 (u− a)

s2 w(a + b− u)du

=
1

(b− a)
s1+s2+1

b∫
a

(b− u)
s1 (u− a)

s2 w(u)du

By substituting the equalities (3.6)-(3.8) in (3.5), then we have the following inequality

1

b− a

b∫
a

f(x)g(x)w(x)dx (3.9)

≤ f(a)g(a) + f(b)g(b)

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx

+
f(a)g(b) + f(b)g(a)

(b− a)
s1+s2+1

b∫
a

(b− x)
s1 (x− a)

s2 w(x)dx.

If we multiply both sides of (3.9) by (b− a) , then we obtain the desired result. �

Remark 3.2. If we choose w(x) = 1 for all x ∈ [a, b] in Theorem 3.1, then we have the
following inequality

1

b− a

b∫
a

f(x)g(x)dx ≤ 1

s1 + s2 + 1
M(a, b) + B(s1 + 1, s2 + 1)N(a, b)

which is proved by Kırmacı et al. in [9]. Here B(x, y) is the Beta Euler function.

Remark 3.3. If we choose s1 = 1 and s2 = s in Theorem 3.1, then the inequality (3.1)
reduces to the inequality (2.1).
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Corollary 3.4. If we choose s1 = s2 = s in Theorem 3.1, then we have the following
inequality

b∫
a

f(x)g(x)w(x)dx ≤ M(a, b)

(b− a)
2s

b∫
a

(b− x)
2s
w(x)dx

+
N(a, b)

(b− a)
2s

b∫
a

(b− x)
s

(x− a)
s
w(x)dx.

Theorem 3.5. Suppose that conditions of Theorem 3.1 hold, then we have the following
inequality

2s1+s2−1f

(
a + b

2

)
g

(
a + b

2

) b∫
a

w (x) dx (3.10)

≤
b∫

a

f(x)g(x)w(x)dx +
M(a, b)

(b− a)
s1+s2

b∫
a

(x− a)
s1 (b− x)

s2 w(x)dx

+
N(a, b)

(b− a)
s1+s2

b∫
a

(b− x)
s1+s2 w(x)dx.

where M(a, b) and N(a, b) are defined as in Theorem 2.1.

Proof. Using the s1-convexity of f and s2-convexity of g, we have

f

(
a + b

2

)
g

(
a + b

2

)

= f

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
g

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
≤ 1

2s1+s2
[f((1− t)a + tb) + f(ta + (1− t)b)]

× [g((1− t)a + tb) + g(ta + (1− t)b)]

=
1

2s1+s2
[f((1− t)a + tb)g((1− t)a + tb) + f(ta + (1− t)b)g(ta + (1− t)b)]

+
1

2s1+s2
[f((1− t)a + tb)g(ta + (1− t)b) + f(ta + (1− t)b)g((1− t)a + tb)] .
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By using again the s1-convexity of f and s2-convexity, we obtain

f

(
a + b

2

)
g

(
a + b

2

)
(3.11)

≤ 1

2s1+s2
[f((1− t)a + tb)g((1− t)a + tb) + f(ta + (1− t)b)g(ta + (1− t)b)]

+
1

2s1+s2
[ts1 (1− t)

s2 + ts2(1− t)s1 ] [f(a)g(a) + f(b)g(b)]

+
1

2s1+s2

[
ts1+s2 + (1− t)

s1+s2
]

[f(a)g(b) + f(b)g(a)] .

Multiplying both sides of (3.11) by w ((1− t) a + tb) , then integrating the resulting
inequality with respect to t from 0 to 1, we obtain

f

(
a + b

2

)
g

(
a + b

2

) 1∫
0

w ((1− t) a + tb) dt (3.12)

≤ 1

2s1+s2

1∫
0

[f((1− t)a + tb)g((1− t)a + tb)

+f(ta + (1− t)b)g(ta + (1− t)b)]w ((1− t) a + tb) dt

+
M(a, b)

2s1+s2

1∫
0

[ts1 (1− t)
s2 + ts2(1− t)s1 ]w ((1− t) a + tb) dt

+
N(a, b)

2s1+s2

1∫
0

[
ts1+s2 + (1− t)

s1+s2
]
w ((1− t) a + tb) dt.

Using the change of variable, we have

1∫
0

[ts1 (1− t)
s2 + ts2(1− t)s1 ]w ((1− t) a + tb) dt (3.13)

=

1∫
0

[ts1 (1− t)
s2 w ((1− t) a + tb) + ts2(1− t)s1w ((1− t) a + tb)] dt

=
1

(b− a)
s1+s2+1

b∫
a

(x− a)
s1 (b− x)

s2 w(x)dx

+
1

(b− a)
s1+s2+1

b∫
a

(x− a)
s1 (b− x)

s2 w(a + b− x)dx
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=
2

(b− a)
s1+s2+1

b∫
a

(x− a)
s1 (b− x)

s2 w(x)dx

and
1∫

0

[
ts1+s2 + (1− t)

s1+s2
]
w ((1− t) a + tb) dt (3.14)

=

1∫
0

[
ts1+s2w ((1− t) a + tb) + (1− t)

s1+s2 w ((1− t) a + tb)
]
dt

=
1

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(a + b− x)dx

+
1

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx

=
2

(b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx.

If we substitute the equalities (2.16), (2.17), (3.13) and (3.14) in (3.12), then we have
the following inequality

f

(
a + b

2

)
g

(
a + b

2

)
1

b− a

b∫
a

w (x) dx (3.15)

≤ 1

2s1+s2−1 (b− a)

b∫
a

f(x)g(x)w(x)dx

+
M(a, b)

2s1+s2−1 (b− a)
s1+s2+1

b∫
a

(x− a)
s1 (b− x)

s2 w(x)dx

+
N(a, b)

2s1+s2−1 (b− a)
s1+s2+1

b∫
a

(b− x)
s1+s2 w(x)dx.

By multiplying the both sides of (3.15) by 2s1+s2−1 (b− a) then we obtain the desired
result (3.10). �
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Corollary 3.6. If we choose w(x) = 1 for all x ∈ [a, b] in Theorem 3.5, then we have
the following inequality

2s1+s2−1f

(
a + b

2

)
g

(
a + b

2

)

≤ 1

b− a

b∫
a

f(x)g(x)dx + B(s1 + 1, s2 + 1)M(a, b) +
1

s1 + s2 + 1
N(a, b).

Remark 3.7. If we choose s1 = 1 and s2 = s in Theorem 3.5, then the inequality
(3.10) reduces to the inequality (2.13).

Corollary 3.8. If we choose s1 = s2 = s in Theorem 3.5, then we have the following
inequality

22s−1f

(
a + b

2

)
g

(
a + b

2

) b∫
a

w (x) dx

≤
b∫

a

f(x)g(x)w(x)dx

+
M(a, b)

(b− a)
2s

b∫
a

(x− a)
s

(b− x)
s
w(x)dx +

N(a, b)

(b− a)
2s

b∫
a

(b− x)
2s
w(x)dx.

4. Concluding remarks

In this paper, we present some Hermite-Hadamard-Fejér type inequalities for
products convex and s-convex functions. For further investigations we propose to
consider the Fejér type inequalities for products other type convex functions or for
fractional integral operators.
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[7] Fejer, L., Über die Fourierreihen, (Hungarian), II. Math. Naturwiss. Anz Ungar. Akad.
Wiss., 24(1906), 369-390.

[8] Hue, N.N., Huy, D.Q., Some inequalities of the Hermite-Hadamard type for product of
two functions, Journal of New Theory, 2016, 26-37.
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Generalization of weighted Ostrowski–Grüss type
inequality by using Korkine’s identity

Silvestru Sever Dragomir, Nazia Irshad and Asif R. Khan

Abstract. We obtain generalized weighted Ostrowski-Grüss type inequality with
parameters for differentiable functions by using the weighted Korkine’s identity,
and we then apply these obtained inequalities to probability density functions.
Also, we discuss some applications of numerical quadrature rules.
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1. Introduction

Inequalities are frequently used in different areas of sciences. Inequalities play a
major role in numerical analysis for error estimation of bounds. In numerical analysis,
inequalities help us to find out the best bounds. In the last few years, the mid-point,
trapezoid and Simpson’s type rules have been examined with the perspective of getting
bounds for the quadrature rules. By using modern theory of inequalities and weighted
Peano kernel approach, present article is devoted to investigate several refinements
of inequalities for weighted Ostrowski-Grüss type inequality and to deduce explicit
bounds for the numerical quadrature rules in terms of variety of norms.

In 1935, Grüss gave a celebrated integral inequality known as Grüss inequality
[4] which provides a bound on Čebyšev inequality (see [8], p.297) which establishes a
relation between the integral of the product of two functions and the product of the
integral of two functions. To highlight its importance, these inequalities are discussed
in detail by D. S. Mitrinović, J. E. Pečarić and A. M. Fink in their books “Classical
and New Inequalities in Analysis” [8] and “Inequalities involving Functions and their
Integrals and Derivatives” [9]. The Grüss inequality is stated as:

Proposition 1.1. Let ψ, ϕ : [b0, b1] → R be two integrable functions, satisfying the
conditions

m ≤ ψ(η) ≤M, n ≤ ϕ(η) ≤ N,
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for each η ∈ [b0, b1], where m,M,n,N are given real constants. Further, let the
Čebyšev functional be defined as

T (ψ,ϕ) =
1

b1 − b0

∫ b1

b0

ψ(η)ϕ(η)dη − 1

(b1 − b0)2

∫ b1

b0

ψ(η)dη

∫ b1

b0

ϕ(η)dη.

Then,

|T (ψ,ϕ)| ≤ 1

4
(M −m)(N − n),

where the constant
1

4
is the best possible.

In 1997, using the Grüss inequality S. S. Dragomir and S. Wang [3] verified the
following Ostrowski-Grüss type integral inequality:

Proposition 1.2. Let ψ : I → R, where I ⊆ R is an interval, be a mapping differentiable
in the interior I0 of I, and let b0, b1 ∈ I0 with b0 < b1. If ν ≤ ψ′(η) ≤ µ, η ∈ [b0, b1]
for some constants ν, µ ∈ R. Then∣∣∣∣∣ψ(η)− 1

b1 − b0

∫ b1

b0

ψ(s)ds− ψ(b1)− ψ(b0)

b1 − b0

(
η − b0 + b1

2

)∣∣∣∣∣
≤ 1

4
(b1 − b0)(µ− ν) (1.1)

for all η ∈ [b0, b1].

Relation (1.1) generates a link between the Ostrowski inequality [10] and the Grüss
inequality [8].
In 2000, Proposition 1.2 was improved by M. Matić, J. E. Pečarić and N. Ujević [7].

Proposition 1.3. Let the assumptions of Proposition 1.2 be true. Then∣∣∣∣∣ψ(η)− 1

b1 − b0

∫ b1

b0

ψ(s)ds− ψ(b1)− ψ(b0)

b1 − b0

(
η − b0 + b1

2

)∣∣∣∣∣
≤ 1

4
√

3
(µ− ν)(b1 − b0) (1.2)

for all η ∈ [b0, b1].

In the same year, N. S. Barnett, S. S. Dragomir and A. Sofo [2] worked upon
inequality (1.2). The improved version of the inequality states that:

Proposition 1.4. Let ψ : I → R be an absolutely continuous function whose derivative
ψ′ ∈ L2[b0, b1], if ν ≤ ψ′(η) ≤ µ, η ∈ [b0, b1] for some constants ν, µ ∈ R. Then∣∣∣∣∣ψ(η)− 1

b1 − b0

∫ b1

b0

ψ(s)ds− ψ(b1)− ψ(b0)

b1 − b0

(
η − b0 + b1

2

)∣∣∣∣∣
≤ (b1 − b0)

2
√

3

[
1

b1 − b0
‖ψ′‖22 −

(
ψ(b1)− ψ(b0)

b1 − b0

)2
] 1

2

≤ 1

4
√

3
(µ− ν)(b1 − b0). (1.3)
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In 2006, B. G. Pachpatte discussed inequalities by using Montgomery’s identity. In
2010, F. Zafar and N. A. Mir in [12] introduced some parameters in the Peano kernel,
defined as

K(η, s) =


s−

(
b0 + h

b1 − b0
2

)
, if s ∈ [b0, η],

s−
(
b1 − h

b1 − b0
2

)
, if s ∈ (η, b1]

and generalized the inequality (1.3) in the next proposition:

Proposition 1.5. Let the assumptions of Proposition 1.4 be valid. Then the inequality
of Ostrowski-Grüss type is

∣∣∣∣(1− h)

[
ψ(η)− ψ(b1)− ψ(b0)

b1 − b0

(
η − b0 + b1

2

)]
+h

ψ(b0) + ψ(b1)

2
− 1

b1 − b0

∫ b1

b0

ψ(s)ds

∣∣∣∣∣
≤

[
(b1 − b0)2

12
(3h2 − 3h+ 1) + h(1− h)

(
η − b0 + b1

2

)2
] 1

2

×

[
1

b1 − b0
‖ψ′‖22 −

(
ψ(b1)− ψ(b0)

b1 − b0

)2
] 1

2

≤ 1

2
(µ− ν)

[
(b1 − b0)2

12
(3h2 − 3h+ 1) + h(1− h)

(
η − b0 + b1

2

)2
] 1

2

(1.4)

for all η ∈
[
b0 − h

b1 − b0
2

, b1 + h
b1 − b0

2

]
and h ∈ [0, 1].

In this article, we generalized inequality (1.4) for differentiable functions in terms of
weights and parameters. The generalization of Grüss inequality will be established by
introducing weighted Peano kernel. The parameters and weights can be adjusted to
recapture the previous results. Our first section is based on Introduction and Propo-
sitions. In the second section, we would state results related to weighted Ostrowski-
Grüss inequality by using the technique of weighted Korkine’s identity. In the third
section, we apply our established results to probability density functions. Fourth sec-
tion is based on applications of numerical quadrature rules. Our last section concludes
the article.
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2. Main result

We need following two lemmas from [1] to prove our main result.

Lemma 2.1. (Weighted Korkine’s Identity) Let p, ψ, ϕ : [b0, b1]→ R be the measurable
mapping for which the integrals involved in the following identity exist and finite.
Then ∫ b1

b0

p(s)ds

∫ b1

b0

p(s)ψ(s)ϕ(s)ds−
∫ b1

b0

p(s)ψ(s)ds

∫ b1

b0

p(s)ϕ(s)ds

=
1

2

∫ b1

b0

∫ b1

b0

p(s)p(t) (ψ(s)− ψ(t)) (ϕ(s)− ϕ(t)) dsdt. (2.1)

Lemma 2.2. Let the assumptions of Lemma 2.1 be valid. Then we have the following
inequality

0 ≤
∫ b1

b0

p(s)ψ2(s)ds−

(∫ b1

b0

p(s)ψ(s)ds

)2

≤ 1

4
(M −m)2 (2.2)

where m ≤ ψ(s) ≤M a.e. on [b0, b1].

Throughout the paper α = b0 +h
b1 − b0

2
and β = b1−h

b1 − b0
2

where h ∈ [0, 1].

Theorem 2.3. Let the assumptions of Proposition 1.4 be valid. Then we get the in-
equality ∣∣∣∣∣ψ(η)

∫ β

α

p(u)du+ ψ(b0)

∫ α

b0

p(u)du+ ψ(b1)

∫ b1

β

p(u)du

−

(
η

∫ β

α

p(u)du+ b0

∫ α

b0

p(u)du+ b0

∫ b1

β

p(u)du−
∫ b1

b0

p(s)sds

)

×

(∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

∣∣∣∣∣
≤

∫ b1

b0

K2
p(η, s)ds

p(s)
−

(∫ b1

b0

Kp(η, s)ds

)2
 1

2

×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤1

2
(µ− ν)Hp(η, s) (2.3)

where

Hp(η, s) =

∫ b1

b0

K2
p(η, s)ds

p(s)
−

(∫ b1

b0

Kp(η, s)ds

)2
 1

2
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and p : [b0, b1]→ [0,∞) is some probability density function satisfying∫ b1

b0

p(s)ds = 1

for all η ∈ [α, β] and h ∈ [0, 1].

Proof. We have the kernel as defined in [5], Kp(η, s) : [b0, b1]2 → R

Kp(η, s) =



∫ s

α

p(u)du, if s ∈ [b0, η],

∫ s

β

p(u)du, if s ∈ (η, b1].

From (2.1), we get the Korkine’s identity in the form of∫ b1

b0

Kp(η, s)ψ
′(s)ds−

∫ b1

b0

Kp(η, s)ds

∫ b1

b0

p(s)ψ′(s)ds

=
1

2

∫ b1

b0

∫ b1

b0

p(s)p(t)

(
Kp(η, s)

p(s)
− Kp(η, t)

p(t)

)
(ψ′(s)− ψ′(t)) dsdt. (2.4)

From [5], we have∫ b1

b0

Kp(η, s)ψ
′(s)ds = ψ(η)

∫ β

α

p(u)du+ ψ(b0)

∫ α

b0

p(u)du

+ψ(b1)

∫ b1

β

p(u)du−
∫ b1

b0

p(s)ψ(s)ds (2.5)

and ∫ b1

b0

Kp(η, s)ds = η

∫ β

α

p(u)du+ b0

∫ α

b0

p(u)du

+b1

∫ b1

β

p(u)du−
∫ b1

b0

p(s)sds. (2.6)

By putting (2.5) and (2.6) in (2.4), we get

ψ(η)

∫ β

α

p(u)du+ ψ(b0)

∫ α

b0

p(u)du+ ψ(b1)

∫ b1

β

p(u)du

−

(
η

∫ β

α

p(u)du+ b0

∫ α

b0

p(u)du+ b1

∫ b1

β

p(u)du−
∫ b1

b0

p(s)sds

)

×

(∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

=
1

2

∫ b1

b0

∫ b1

b0

p(s)p(t)

(
Kp(η, s)

p(s)
− Kp(η, t)

p(t)

)
(ψ′(s)− ψ′(t)) dsdt, (2.7)

∀ η ∈ [α, β].
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Using Cauchy-Schwartz inequality for double integrals, we get∣∣∣∣∣12
∫ b1

b0

∫ b1

b0

p(s)p(t)

(
Kp(η, s)

p(s)
− Kp(η, t)

p(t)

)
(ψ′(s)− ψ′(t)) dsdt

∣∣∣∣∣
≤

(
1

2

∫ b1

b0

∫ b1

b0

p(s)p(t)

(
Kp(η, s)

p(s)
− Kp(η, t)

p(t)

)2

dsdt

) 1
2

×

(
1

2

∫ b1

b0

∫ b1

b0

p(s)p(t) (ψ′(s)− ψ′(t))2 dsdt

) 1
2

. (2.8)

By using (2.4), we get the following identities

1

2

∫ b1

b0

∫ b1

b0

p(s)p(t)

(
Kp(η, s)

p(s)
− Kp(η, t)

p(t)

)2

dsdt

=

∫ b1

b0

K2
p(η, s)ds

p(s)
−

(∫ b1

b0

Kp(η, s)ds

)2

(2.9)

and

1

2

∫ b1

b0

∫ b1

b0

p(s)p(t) (ψ′(s)− ψ′(t))2 dsdt

=

∫ b1

b0

p(s)[ψ′(s)]2ds−
(∫ b1

b0

p(s)ψ′(s)ds
)2
. (2.10)

Using weighted Ostrowski Grüss inequality (2.2), if ν ≤ ψ′(s) ≤ µ and s ∈ (b0, b1),
we get

0 ≤
∫ b1

b0

p(s)
(
ψ′(s)

)2
ds−

(∫ b1

b0

p(s)ψ′(s)ds
)2
≤ 1

4
(µ− ν)2. (2.11)

Using (2.7)− (2.11), we obtain∣∣∣∣∣ψ(η)

∫ β

α

p(u)du+ ψ(b0)

∫ α

b0

p(u)du+ ψ(b1)

∫ b1

β

p(u)du

−

(
η

∫ β

α

p(u)du+ b0

∫ α

b0

p(u)du+ b1

∫ b1

β

p(u)du−
∫ b1

b0

p(s)sds

)

×

(∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

∣∣∣∣∣
≤

∫ b1

b0

K2
p(η, s)ds

p(s)
−

(∫ b1

b0

Kp(η, s)ds

)2
 1

2
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×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤ 1

2
(µ− ν)

∫ b1

b0

K2
p(η, s)ds

p(s)
−

(∫ b1

b0

Kp(η, s)ds

)2


=
1

2
(µ− ν)Hp(η, s)

which proves our result (2.3). �

We can state some special cases of (2.3).

Remark 2.4. If we put p(s) ≡ 1

b1 − b0
in (2.3), then we get the result (1.4) of [12].

Remark 2.5. If we put h = 0 in (2.3), then α = b0 and β = b1, then following
inequality holds∣∣∣∣∣ψ(η)−

(
η −

∫ b1

b0

p(s)sds

) (∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

∣∣∣∣∣
≤

∫ b1

b0

K2
p(η, s)ds

p(s)
−

(∫ b1

b0

Kp(η, s)ds

)2
 1

2

×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤1

2
(µ− ν)Hp(η, s). (2.12)

The above inequality is Theorem 1 of paper [6].

Remark 2.6. If we put p(s) ≡ b1 − b0
2

in (2.12), then we get the inequality (1.3) of [2].

Remark 2.7. If we put h = 1 in (2.3), then α = β =
b0 + b1

2
, then following inequality

holds∣∣∣∣∣ψ(b0)

∫ b0+b1
2

b0

p(u)du+ ψ(b1)

∫ b0+b1
2

b1

p(u)du−
∫ b1

b0

p(s)ψ(s)ds

−

(
b0

∫ b0+b1
2

b0

p(u)du+ b1

∫ b1

b0+b1
2

p(u)du−
∫ b1

b0

p(s)sds

) (∫ b1

b0

p(s)ψ′(s)ds

)∣∣∣∣∣
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≤

∫ b1

b0

K2
p(η, s)ds

p(s)
−

(∫ b1

b0

Kp(η, s)ds

)2
 1

2

×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤1

2
(µ− ν)Hp(η, s). (2.13)

Remark 2.8. If we put p(s) ≡ 1

b1 − b0
in (2.13), then trapezoidal inequality holds

∣∣∣∣∣ψ(b0) + ψ(b1)

2
− 1

b1 − b0

∫ b1

b0

ψ(s)ds

∣∣∣∣∣
≤ b1 − b0

2
√

3

[
1

b1 − b0
‖ψ′‖22 −

(
ψ(b1)− ψ(b0)

b1 − b0

)2
] 1

2

≤ 1

4
√

3
(µ− ν)(b1 − b0).

The above inequality is Corollary 1 (Part 1) of [12].

Corollary 2.9. If we put η =
b0 + b1

2
in (2.3), then following inequality holds

∣∣∣∣∣ψ
(
b0 + b1

2

)∫ β

α

p(u)du+ ψ(b0)

∫ α

b0

p(u)du+ ψ(b1)

∫ b1

β

p(u)du

−

(
b0 + b1

2

∫ β

α

p(u)du+ b0

∫ α

b0

p(u)du+ b1

∫ b1

β

p(u)du−
∫ b1

b0

p(s)sds

)

×

(∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

∣∣∣∣∣
≤

∫ b1

b0

K2
p

(
b0+b1

2 , s
)
ds

p(s)
−

(∫ b1

b0

Kp

(
b0 + b1

2
, s

)
ds

)2
 1

2

×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤1

2
(µ− ν)Hp

(
b0 + b1

2
, s

)
. (2.14)
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Remark 2.10. If we put p(s) ≡ 1

b1 − b0
in (2.14), then the bound of average midpoint

and trapezoidal inequality holds∣∣∣∣∣(1− h)ψ

(
b0 + b1

2

)
+ h

ψ(b0) + ψ(b1)

2
− 1

b1 − b0

∫ b1

b0

ψ(s)ds

∣∣∣∣∣
≤ b1 − b0

2
√

3

√
3h2 − 3h+ 1

[
1

b1 − b0
‖ψ′‖2 −

(
ψ(b1)− ψ(b0)

b1 − b0

)2
] 1

2

≤ (µ− ν)(b1 − b0)

4
√

3

√
3h2 − 3h+ 1.

Remark 2.11. If we put h = 1, then α = β =
b0 + b1

2
in (2.14), then following

inequality holds∣∣∣∣∣ψ(b0)

∫ b0+b1
2

b0

p(u)du+ ψ(b1)

∫ b1

b0+b1
2

p(u)du

+

(
b0

∫ b0+b1
2

b0

p(u)du+ b1

∫ b1

b0+b1
2

p(u)du−
∫ b1

b0

p(s)sds

)

×

(∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

∣∣∣∣∣
≤

∫ b1

b0

K2
p

(
b0+b1

2 , s
)
ds

p(s)
−

(∫ b1

b0

Kp

(
b0 + b1

2
, s

)
ds

)2
 1

2

×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤1

2
(µ− ν)Hp

(
b0 + b1

2
, s

)
. (2.15)

Remark 2.12. If we put p(s) ≡ 1

b1 − b0
in (2.15), then trapezoidal inequality holds as

we achieve in (2.14).

Remark 2.13. If we put, h = 0, then α = b0 and β = b1 in (2.14), then weighted
midpoint inequality holds∣∣∣∣∣ψ

(
b0 + b1

2

)
−

(
b0 + b1

2
−
∫ b1

b0

p(s)sds

)(∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

∣∣∣∣∣
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≤

∫ b1

b0

K2
p

(
b0+b1

2 , s
)
ds

p(s)
−

(∫ b1

b0

Kp

(
b0 + b1

2
, s

)
ds

)2
 1

2

×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤1

2
(µ− ν)Hp

(
b0 + b1

2
, s

)
. (2.16)

The above inequality is Corollary 1 of [6].

Remark 2.14. If we put p(s) =
1

b1 − b0
in (2.16), then midpoint inequality holds∣∣∣∣∣ψ

(
b0 + b1

2

)
− 1

b1 − b0

∫ b1

b0

ψ(s)ds

∣∣∣∣∣
≤ (b1 − b0)

2
√

3

[
1

b1 − b0
||ψ′||22 −

(
ψ(b1)− ψ(b0)

b1 − b0

)2
] 1

2

≤ 1

4
√

3
(µ− ν)(b1 − b0).

The above inequality is the Corollary 1 (Part 2) of [12].

Remark 2.15. If we put h =
1

2
, then α =

3b0 + b1
4

and β =
b0 + 3b1

4
in (2.14), then

following inequality holds∣∣∣∣∣ψ
(
b0 + b1

2

)∫ b0+3b1
4

3b0+b1
4

p(u)du+ ψ(b0)

∫ 3b0+b1
4

b0

p(u)du+ ψ(b1)

∫ b1

b0+3b1
4

p(u)du

−

(
b0 + b1

2

∫ b0+3b1
4

3b0+b1
4

p(u)du+ b0

∫ 3b0+b1
4

b0

p(u)du+ b1

∫ b1

b0+3b1
4

p(u)du−
∫ b1

b0

p(s)sds

)

×

(∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

∣∣∣∣∣
≤

∫ b1

b0

K2
p

(
b0+b1

2 , s
)
ds

p(s)
−

(∫ b1

b0

Kp

(
b0 + b1

2
, s

)
ds

)2
 1

2

×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤1

2
(µ− ν)Hp

(
b0 + b1

2
, s

)
. (2.17)
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Remark 2.16. If we put p(s) =
1

b1 − b0
in (2.17), then the bound of average midpoint

and trapezoidal inequality holds∣∣∣∣∣12
[
ψ(b0) + ψ(b1)

2
+ ψ

(
b0 + b1

2

)]
− 1

b1 − b0

∫ b1

b0

ψ(s)ds

∣∣∣∣∣
≤ (b1 − b0)

4
√

3

[
1

b1 − b0
||ψ′||22 −

(
ψ(b1)− ψ(b0)

b1 − b0

)2
] 1

2

≤ 1

8
√

3
(µ− ν)(b1 − b0).

The above inequality is Corollary 1 (Part 3) of [12].

Remark 2.17. If we put, h =
1

3
, then α =

5b0 + b1
6

and β =
b0 + 5b1

6
in (2.14), then

following inequality holds∣∣∣∣∣ψ
(
b0 + b1

2

)∫ b0+5b1
6

5b0+b1
6

p(u)du+ ψ(b0)

∫ 5b0+b1
6

b0

p(u)du+ ψ(b1)

∫ b1

b0+5b1
6

p(u)du

−

(
b0 + b1

2

∫ b0+5b1
6

5b0+b1
6

p(u)du+ b0

∫ 5b0+b1
6

b0

p(u)du+b1

∫ b1

b0+5b1
6

p(u)du−
∫ b1

b0

p(s)sds

)

×

(∫ b1

b0

p(s)ψ′(s)ds

)
−
∫ b1

b0

p(s)ψ(s)ds

∣∣∣∣∣
≤

∫ b1

b0

K2
p

(
b0+b1

2 , s
)
ds

p(s)
−

(∫ b1

b0

Kp

(
b0 + b1

2
, s

)
ds

)2
 1

2

×

∫ b1

b0

p(s)[ψ′(s)]2ds−

(∫ b1

b0

p(s)ψ′(s)ds

)2
 1

2

≤1

2
(µ− ν)Hp

(
b0 + b1

2
, s

)
. (2.18)

Remark 2.18. If we put p(s) =
1

b1 − b0
in (2.18), then bound of

1

3
Simpson’s rule

holds ∣∣∣∣∣13
[
ψ(b0) + ψ(b1)

2
+ 2ψ

(
b0 + b1

2

)]
− 1

b1 − b0

∫ b1

b0

ψ(s)ds

∣∣∣∣∣
≤ (b1 − b0)

6

[
1

b1 − b0
||ψ′||22 −

(
ψ(b1)− ψ(b0)

b1 − b0

)2
] 1

2

≤ 1

12
(µ− ν)(b1 − b0).
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The above inequality is Corollary 1 (Part 4) of [12].

Remark 2.19. If we put η = b0 or η = b1 and p(s) ≡ 1

b1 − b0
in (2.3), then trapezoidal

inequality holds which is independent of the value of h∣∣∣∣∣ψ(b0) + ψ(b1)

2
− 1

b1 − b0

∫ b1

b0

ψ(s)ds

∣∣∣∣∣
≤ b1 − b0

2
√

3

[
1

b1 − b0
‖ψ′‖2 −

(
ψ(b1)− ψ(b0)

b1 − b0

)2
] 1

2

≤ (b1 − b0)(µ− ν)

4
√

3
.

In Sections 3 and 4, we are going to present applications involving probability
density function and numerical quadrature rules respectively.

3. Application to probability density functions

From [6], let X be a continuous random variable having the probability density
function ψ : [b0, b1] → R+ and the cumulative distribution function Ψ : [b0, b1] →
[0, 1], i.e.,

Ψ(η) =

∫ η

b0

ψ(s)ds, η ∈ [α, β] ⊂ [b0, b1],

E(X) =

∫ b1

b0

sψ(s)ds,

and weighted expectation would be

Ep(X) =

∫ b1

b0

p(s)sψ(s)ds

on the interval [b0, b1]. Then we have the following theorem.

Theorem 3.1. Let the assumptions of Theorem 2.3 be valid and if probability density
function belongs to L2[b0, b1] space, then following inequality holds∣∣∣∣∣Ψ(η)

∫ β

α

p(u)du+

∫ b1

β

p(u)du− b1p(b1) + Ep(X)

−

(
η

∫ β

α

p(u)du+ b0

∫ α

b0

p(u)du+ b1

∫ b1

β

p(u)du−
∫ b1

b0

p(s)sds

)

×

(
p(b1)−

∫ b1

b0

p′(s)Ψ(s)ds

)
+

∫ b1

b0

p′(s)sΨ(s)ds

∣∣∣∣∣
≤ 1

2
(µ− ν)Hp(η, s) (3.1)

for all η ∈ [α, β].
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Proof. Put ψ = Ψ in (2.3) and by using these two identities mention below, we get
(3.1), ∫ b1

b0

p(s)Ψ(s)ds = b1p(b1)− Ep(X)−
∫ b1

b0

p′(s)sΨ(s)ds

and ∫ b1

b0

p(s)Ψ′(s)ds = p(b1)−
∫ b1

b0

p′(s)Ψ(s)ds. �

Remark 3.2. Let the assumptions of Theorem 3.1 be valid, if we substitute

p(s) ≡ 1

b1 − b0
in (3.1), then following inequality holds∣∣∣∣(1− h)

[
Ψ(η)− 1

b1 − b0

(
η − b0 + b1

2

)]
+
h

2
− b1 − E(X)

b1 − b0

∣∣∣∣
≤ 1

b1 − b0

[
1

12
(3h2 − 3h+ 1) + h(1− h)

(
η − b0 + b1

2

)2
] 1

2

×
[
(b1 − b0)‖ψ‖22 − 1

] 1
2

≤ µ− ν
2(b1 − b0)

[
1

12
(3h2 − 3h+ 1) + h(1− h)

(
η − b0 + b1

2

)2
] 1

2

.

4. Applications to numerical quadrature rules

Let In : b0 = z0 < z1 < . . . < zn = b1 be a partition of the interval [b0, b1] and
let ∆zk = zk+1 − zk, k ∈ {0, 1, 2, . . . , n− 1}. Then∫ b1

b0

p(s)ψ(s)ds = Qn(In, ψ, p) +Rn(In, ψ, p) (4.1)

where Qn(In, ψ, p) is a quadrature formula, define as

Qn(In, ψ, p) =

n−1∑
k=0

[
ψ(η)

∫ βk

αk

p(u)du + ψ(zk)

∫ αk

zk

p(u)du+ ψ(zk+1)

∫ zk+1

βk

p(u)du

−

(
ηk

∫ βk

αk

p(u)du+zk

∫ αk

zk

p(u)du+ zk+1

∫ zk+1

βk

p(u)du−
∫ zk+1

zk

p(s)sds

)

×
(∫ zk+1

zk

p(s)ψ′(s)ds

)]
(4.2)

for all ηk ∈ [zk, zk+1].



196 Silvestru Sever Dragomir, Nazia Irshad and Asif R. Khan

Theorem 4.1. Let ψ as be defined in Theorem 2.3. Then (4.1) holds where Qn(In, ψ, p)
is given by formula (4.2) and the remainder Rn(In, ψ, p) satisfies the estimates

|Rn(In, ψ, p)| ≤
n−1∑
k=0

(µ− ν)

2
Hp(ηk, s) (4.3)

for all ηk ∈ [zk, zk+1].

Proof. Using (2.3) on [zk, zk+1],

Rk(Ik, ψ, p) =

∫ zk+1

zk

p(s)ψ(s)ds− ψ(ηk)

∫ βk

αk

p(u)du− ψ(zk)

∫ αk

zk

p(u)du

− ψ(zk+1)

∫ zk+1

βk

p(u)du+

(
ηk

∫ βk

αk

p(u)du+ zk

∫ αk

zk

p(u)du

+zk+1

∫ zk+1

βk

p(u)du−
∫ zk+1

zk

p(s)sds

)
×
(∫ zk+1

zk

p(s)ψ′(s)ds

)
.

Summing over k from 0 to n− 1. This yields

Rn(Ik, ψ, p) =

∫ b1

b0

p(s)ψ(s)ds−
n−1∑
k=0

[
ψ(ηk)

∫ βk

αk

p(u)du+ ψ(zk)

∫ αk

zk

p(u)du

+ ψ(zk+1)

∫ zk+1

βk

p(u)du−

(
ηk

∫ βk

αk

p(u)du+ zk

∫ αk

zk

p(u)du

+zk+1

∫ zk+1

βk

p(u)du−
∫ zk+1

zk

p(s)sds

)
×
(∫ zk+1

zk

p(s)ψ′(s)ds

)]
.

Applying absolute property on the above identity, we get

|Rn(Ik, ψ, p)| =

∣∣∣∣∣
∫ b1

b0

p(s)ψ(s)ds−
n−1∑
k=0

[
ψ(ηk)

∫ βk

αk

p(u)du+ ψ(zk)

∫ αk

zk

p(u)du

+ψ(zk+1)

∫ zk+1

βk

p(u)du−

(
ηk

∫ βk

αk

p(u)du+ zk

∫ αk

zk

p(u)du

+zk+1

∫ zk+1

βk

p(u)du−
∫ zk+1

zk

p(s)sds

)
×
(∫ zk+1

zk

p(s)ψ′(s)ds

)]∣∣∣∣
≤ 1

2
(µ− ν)Hp(ηk, s). �
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5. Conclusion

Main objective of this article is to generalize the results of [6] and [12]. By
introducing the weighted kernel as defined in [5], we have obtained generalization
of Ostrowski-Grüss integral inequality for first differentiable functions in terms of
weights. By using appropriate substitution we get different previously published re-
sults. At the end, we have also discussed some applications for probability density
functions and numerical quadrature rules.
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[10] Ostrowski, A.M., Über die absolutabweichung einer differentiebaren funktion von ihren
integralmittelwert, Comment. Math. Helv., 10(1938), 226-227.
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Application of Ruscheweyh q-differential
operator to analytic functions of reciprocal order

Shahid Mahmood, Saima Mustafa and Imran Khan

Abstract. The core object of this paper is to define and study new class of analytic
function using Ruscheweyh q-differential operator. We also investigate a number
of useful properties such as inclusion relation, coefficient estimates, subordination
result,for this newly subclass of analytic functions.
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Ruscheweyh q-differential operator, reciprocal order.

1. Introduction

Quantum calculus (q-calculus) is simply the study of classical calculus without
the notion of limits. The study of q-calculus attracted the researcher due to its appli-
cations in various branches of mathematics and physics, see detail [8]. Jackson [10, 12]
was the first to give some application of q-calculus and introduced the q-analogue of
derivative and integral. Later on Aral and Gupta [5, 6, 7] defined the q-Baskakov
Durrmeyer operator by using q-beta function while the author’s in [2, 3, 4] discussed
the q-generalization of complex operators known as q-Picard and q-Gauss-Weierstrass
singular integral operators. Recently, Kanas and Răducanu [13] defined q-analogue of
Ruscheweyh differential operator using the concepts of convolution and then stud-
ied some of its properties. The application of this differential operator was further
studied by Mohammed and Darus [1] and Mahmood and Sokó l [14]. The aim of the
current paper is to define a new class of analytic functions of reciprocal order involving
q-differetial operator.

Let A be the class of functions having the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)
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which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let M(α) denote a
subclass of A consisting of functions which satisfy the inequality

Re
zf ′(z)

f(z)
< α (z ∈ U) ,

for some α (α > 1). And let N (α) be the subclass of A consisting of functions f which
satisfy the inequality:

Re
(zf ′(z))

′

f ′(z)
< α (z ∈ U),

for some α (α > 1). These classes were studied by Owa et al. [16, 18]. Shams et al. [20]
have introduced the k-uniformly starlike SD (k, α) and k-uniformly convex CD (k, α)
of order α, for some k (k ≥ 0) and α (0 ≤ α < 1). Using these ideas in above defined
classes, Junichi et al. [17] introduced the following classes.

Definition 1.1. Let f ∈ A. Then f is said to be in class MD (k, α) if it satisfies

Re
zf ′(z)

f(z)
< k

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣+ α (z ∈ U) ,

for some α (α > 1) and k (k ≤ 0).

Definition 1.2. An analytic function f of the form (1.1) belongs to the class ND (k, α),
if and only if

Re
(zf ′(z))

′

f ′(z)
< k

∣∣∣∣ (zf ′(z))′f ′(z)
− 1

∣∣∣∣+ α (z ∈ U) ,

for some α (α > 1) and k (k ≤ 0).

If f and g are analytic in U, we say that f is subordinate to g, written as f ≺ g
or f(z) ≺ g(z), if there exists a Schwarz function w, which is analytic in U with
w (0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). Furthermore, if the function g(z)
is univalent in U, then we have the following equivalence holds, see [11, 15].

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For two analytic functions

f(z) =
∞∑
n=1

anz
n g(z) =

∞∑
n=1

bnz
n (z ∈ U) ,

For t ∈ R and q > 0, q 6= 1, the number [t, q] is defined in [14] as

[t, q] =
1− qt

1− q
, [0, q] = 0.

For any non-negative integer n the q-number shift factorial is defined by

[n, q]! = [1, q] [2, q] [3, q] · · · [n, q] , ([0, q]! = 1) .

We have lim
q→1

[n, q] = n. Throughout in this paper we will assume q to be fixed number

between 0 and 1.
The q-derivative operator or q-difference operator for f ∈ A is defined as

∂qf(z) =
f (qz)− f(z)

z (q − 1)
, z ∈ U.
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It can easily be seen that for n ∈ N := {1, 2, 3, . . .} and z ∈ U

∂qz
n = [n, q] zn−1, ∂q

{ ∞∑
n=1

anz
n

}
=

∞∑
n=1

[n, q] anz
n−1.

The q-generalized Pochhammer symbol for t ∈ R and n ∈ N is defined as

[t, q]n = [t, q] [t+ 1, q] [t+ 2, q] · · · [t+ n− 1, q] ,

and for t > 0, let q-gamma function is defined as

Γq (t+ 1) = [t, q] Γq (t) and Γq (1) = 1.

Definition 1.3. [14] For a function f(z) ∈ A, the Ruscheweyh q-differential operator
is defined as

Dµ
q f(z) = φ (q, µ+ 1; z) ∗ f(z) = z +

∞∑
n=2

Φn−1anz
n, (z ∈ U and µ > −1) , (1.2)

where

φ (q, µ+ 1; z) = z +

∞∑
n=2

Φn−1z
n, (1.3)

and

Φn−1 =
Γq (µ+ n)

[n− 1, q]!Γq (µ+ 1)
=

[µ+ 1, q]n−1
[n− 1, q]!

. (1.4)

From (1.2), it can be seen that

L0
qf(z) = f(z) and L1

qf(z) = z∂qf(z),

and

Lmq f(z) =
z∂mq

(
zm−1f(z)

)
[m, q]!

, (m ∈ N) .

lim
q→1−

φ (q, µ+ 1; z) =
z

(1− z)µ+1 ,

and

lim
q→1−

Dµ
q f(z) = f(z) ∗ z

(1− z)µ+1 .

This shows that in case of q → 1−, the Ruscheweyh q-differential operator reduces
to the Ruscheweyh differential operator Dδ (f(z)) (see [19]). From (1.2) the following
identity can easily be derived.

z∂Dµ
q f(z) =

(
1 +

[µ, q]

qµ

)
Dµ
q f(z)− [µ, q]

qµ
Dµ
q f(z). (1.5)

If q → 1−, then

z
(
Dµ
q f(z)

)′
= (1 + µ)Dµ

q f(z)− µDµ
q f(z).

Now using the Ruscheweyh q-differential operator, we define the following class.
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Definition 1.4. Let f ∈ A. Then f is in the class KDq (k, α, γ) if

Re

{
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)}
< k

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ α,

for some k (k ≤ 0), α (α > 1) and for some γ ∈ C \ {0}.

We note that LD0
2 (1, 1, α) =M(α) and LD0

1 (1, 1, α) = N (α), the classes introduced
by Owa et al. [16, 18]. When we take γ = 1, 2, c = 1, and a = 1 the class KDq (k, α, γ)
reduces to the classesMD (k, α) and ND (k, α) (see [17]). For 1 < α < 4/3 the classes
M(α) and N (α) were investigated by Uralegaddi et al. [21].

2. Preliminary results

Lemma 2.1. [9]For a positive integer t, we have

σ

t∑
j=1

(σ)j−1
(j − 1)!

=
(σ)t

(t− 1)!
. (2.1)

Proof. Consider

σ

t∑
j=1

(σ)j−1
(j − 1)!

= σ

(
1 +

σ

1
+

(σ)2
2!

+
(σ)3
3!

+
(σ)4
4!

+ · · ·+ (σ)t−1
(t− 1)!

)
= σ(1 + σ)

(
1 +

σ

2
+
σ(σ + 2)

2× 3
+ · · ·+ σ(σ + 2) · · · (σ + t− 2)

2× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)

2

(
1 +

σ

3
+ · · ·+ σ(σ + 3) · · · (σ + t− 2)

3× 4× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)

2

(σ + 3)

3

(
1 +

σ

4
+ · · ·+ σ(σ + 4) · · · (σ + t− 2)

4× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)

2

(σ + 3)

3

(σ + 4)

4

(
1 +

σ

5
+ · · ·+ σ · · · (σ + t− 2)

5× 6× · · · × (t− 1)

)
= σ(1 + σ)

(σ + 2)

2

(σ + 3)

3

(σ + 4)

4
· · ·
(

1 +
σ

t− 1

)
= σ(1 + σ)

(σ + 2)

2

(σ + 3)

3

(σ + 4)

4
· · ·
(
σ + (t− 1)

t− 1

)
=

(σ)t
(t− 1)!

.

�
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3. Main results

With the help of the definition of KDq (k, α, γ) , we prove the following results.

Theorem 3.1. If f(z) ∈ KDq (k, α, γ) , then

f(z) ∈ KDq
(

0,
α− k
1− k

, γ

)
.

Proof. Because k ≤ 0, we have

Re

{
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)}
< k

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ α,

≤ kRe

(
1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

))
+ α− k,

which implies that

(1− k)Re
1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)
< α− k.

After simplification, we obtain

Re

[
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)]
<
α− k
1− k

, (k ≤ 0, α > 1 and ) . (3.1)

This completes the proof. �

Theorem 3.2. If f(z) ∈ KDq (k, α, γ) and if f(z) has the form (1.1), then

|an| ≤
(σ)n−1

(n− 1)!Φn−1
, (3.2)

where

σ =
2|γ|(α− 1)

q(1− k)
. (3.3)

Proof. Let us define a function

p(z) =
(α− k)− (1− k)

[
1 + 1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1
)]

α− 1
. (3.4)

Then p(z) is analytic in U, p(0) = 1 and Re {p(z)} > 0 for z ∈ U. We can write[
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)]
=

(α− k)− (α− 1)p(z)

1− k
(3.5)

If we take p(z) = 1 +
∞∑
n=1

pnz
n, then (3.5) can be written as

z∂qD
µ
q f(z)−Dµ

q f(z) = −γ (α− 1)

1− k
(
Dµ
q f(z)

)( ∞∑
n=1

pnz
n

)
.

this implies that[ ∞∑
n=2

q [n− 1] Φn−1anz
n

]
= −γ(α− 1)

1− k

( ∞∑
n=1

Φn−1anz
n

)( ∞∑
n=1

pnz
n

)
.
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Using Cauchy product

( ∞∑
n=1

xn

)
·
( ∞∑
n=1

yn

)
=
∞∑
j=1

j∑
k=1

xkyk−j , we obtain

q [n− 1] Φn−1anz
n = −γ(α− 1)

1− k

∞∑
n=2

n−1∑
j=1

Φj−1ajpn−j

 zn.

Comparing the coefficients of nth term on both sides, we obtain

an =
−γ(α− 1)

q [n− 1] Φn−1 (1− k)

n−1∑
j=1

Φj−1ajpn−j .

By taking absolute value and applying triangle inequality, we get

|an| ≤
|γ| (α− 1)

q [n− 1] Φn−1 (1− k)

n−1∑
j=1

Φj−1 |aj | |pn−j | .

Applying the coefficient estimates |pn| ≤ 2 (n ≥ 1) for Caratheodory functions [11],
we obtain

|an| ≤
2 |γ| (α− 1)

q [n− 1] Φn−1(1− k)

n−1∑
j=1

Φj−1 |aj |

=
σ

[n− 1] Φn−1

n−1∑
j=1

ψj−1 |aj | , (3.6)

where σ = 2|γ|(α− 1)/q(1− k). To prove (3.2) we apply mathematical induction. So
for n = 2, we have from (3.6)

|a2| ≤
σ

Φ1
=

(σ)2−1
[2− 1]!Φ2−1

, (3.7)

which shows that (3.2) holds for n = 2. For n = 3, we have from (3.6)

|a3| ≤
σ

[3− 1] Φ3−1
{1 + Φ1 |a2|} ,

using (3.7), we have

|a3| ≤
σ

[2] Φ2
(1 + σ) =

(σ)3−1
[3− 1] Φ3−1

,

which shows that (3.2) holds for n = 3. Let us assume that (3.2) is true for n ≤ t,
that is,

|at| ≤
(σ)t−1

[t− 1]!Φt−1
j = 1, 2, . . . , t. (3.8)
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Using (3.6) and (3.8), we have

|at+1| ≤
σ

tΦt

t∑
j=1

Φj−1 |aj |

≤ σ

tΦt

t∑
j=1

ψj−1
(σ)j−1

[j − 1]!Φj−1

=
σ

tΦt

t∑
j=1

(σ)j−1
[j − 1]!

.

Applying (2.1), we have

|at+1| ≤
1

tΦt

(σ)t
[t− 1]!

=
1

Φt

(σ)t
[t]!

.

Consequently, using mathematical induction, we have proved that (3.2) holds true for
all n, n ≥ 2. This completes the proof. �

Theorem 3.3. If a function f ∈ KDq (k, α, γ), then

z∂qD
µ
q f(z)

Dµ
q f(z)

≺ 1 + 2 (α1 − 1)− 2 (α1 − 1)

1− z
(z ∈ U), (3.9)

α1 =
α− k
1− k

. (3.10)

Proof. If f(z) ∈ KDq (k, α, γ), then by (3.1)

Re

{
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)}
< α1. (3.11)

Then there exists a Schwarz function w(z) such that

α1 −
{

1 + 1
γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1
)}

α1 − 1
=

1 + w(z)

1− w(z)
, (3.12)

and

Re

{
1 + w(z)

1− w(z)

}
> 0, (z ∈ U).

Therefore, from (3.12), we obtain

z∂qD
µ
q f(z)

Dµ
q f(z)

= 1 + γ (α1 − 1)

(
1− 1 + w(z)

1− w(z)

)
.

This gives
z∂qD

µ
q f(z)

Dµ
q f(z)

= 1 + 2γ (α1 − 1)− 2γ (α1 − 1)

1− w(z)
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and hence

z∂qD
µ
q f(z)

Dµ
q f(z)

≺ 1 + 2γ (α1 − 1)− 2γ (α1 − 1)

1− z
(z ∈ U).

which was required in (3.9). �

Theorem 3.4. If function f ∈ KDq (k, α, γ), then we have

1− [1 + 2γ(α1 − 1)] r

1− r
≤ Re

{
z∂qD

µ
q f(z)

Dµ
q f(z)

}
≤ 1 + [1 + 2γ(α1 − 1)] r

1 + r
, (3.13)

for |z| = r < 1 and α1 is defined by (3.10).

Proof. By the virtue of Theorem (3.3), let us take the function φ(z) defined by

φ(z) = 1 + 2γ (α1 − 1)− 2γ(α1 − 1)

1− z
(z ∈ U) .

Letting z = reiθ(0 ≤ r < 1), we see that

Reφ(z) = 1 + 2γ (α1 − 1) +
2γ (1− α1) (1− r cos θ)

1 + r2 − 2r cos θ
.

Let us define

ψ(t) =
1− rt

1 + r2 − 2rt
(t = cos θ) .

Since ψ′(t) =
r
(
1− r2

)
(1 + r2 − 2rt)

2 ≥ 0, because r < 1. Therefore we get

1 + 2γ (α1 − 1)− 2γ (α1 − 1)

1− r
≤ Reφ(z) ≤ 1 + 2γ (α1 − 1)− 2γ (α1 − 1)

1 + r
.

After simplification, we have

1− [1 + 2γ (α1 − 1)] r

1− r
≤ Reφ(z) ≤ 1 + [1 + 2γ (α1 − 1))] r

1 + r
.

Since we note that
z∂qD

µ
q f(z)

Dµ
q f(z)

≺ φ(z), (z ∈ U) by Theorem 3.3 and φ(z) is analytic

in U, we proved the inequality (3.13). �

Theorem 3.5. If f ∈ A satisfies∣∣∣∣z∂qDµ
q f(z)

Dµ
q f(z)

− 1

∣∣∣∣ < (α− 1)|γ|
(1− k)

z ∈ U, (3.14)

for some k (k ≤ 0), α (α > 1) and γ ∈ C \ {0}. Then f ∈ KDq(k, α, γ).
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Proof. ∣∣∣∣z∂qDµ
q f(z)

Dµ
q f(z)

− 1

∣∣∣∣ < (α− 1)|γ|
(1− k)

⇒
∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣ < α− 1

1− k

⇒ (1− k)

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ 1 < α

⇒
∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ 1 < k

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ α

⇒ Re

{
1 +

1

γ

(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)}
+ 1 < k

∣∣∣∣ 1γ
(
z∂qD

µ
q f(z)

Dµ
q f(z)

− 1

)∣∣∣∣+ α

⇒ f ∈ LDkb (a, c, β)

�

Corollary 3.6. Let f ∈ A be of the form (1.1) and satisfies∣∣∣∣∑∞n=2 [n− 1] Φn−1anz
n−1

1 +
∑∞
n=2 Φn−1anzn−1

∣∣∣∣ < (α− 1)|γ|
q(1− k)

z ∈ U, (3.15)

for some k (k ≤ 0), β (β > 1) and for some b ∈ C \ {0}. Then f ∈ KDq(k, α, γ)..

Proof. We have

Dµ
q f(z) = z +

∞∑
n=2

Φn−1anz
n

and by (1.5)

z∂Dµ
q f(z) = z +

∞∑
n=2

[n] Φn−1anz
n.

Therefore, (3.14) follows immediately (3.15). �

Theorem 3.7. Let f ∈ A be of the form (1.1) and satisfies

∞∑
n=2

([n− 1] + y) |Φn−1||an| < y z ∈ U, (3.16)

for some k (k ≤ 0), β (β > 1) and for some b ∈ C \ {0} and where

y =
(α− 1)|γ|
q(1− k)

> 0.

Then f ∈ KDq(k, α, γ).
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Proof. We have

∞∑
n=2

([n− 1] + y) |Φn−1||an| < y

⇒
∞∑
n=2

([n− 1] + y) |Φn−1||an| < y − y
∞∑
n=2

|Φn−1||an|

⇒ 0 < y − y
∞∑
n=2

|Φn−1||an|

⇒ 0 < y − y
∞∑
n=2

|Φn−1||an||zn−1|

⇒ 0 < y

∣∣∣∣∣1 +

∞∑
n=2

Φn−1anz
n−1

∣∣∣∣∣ (3.17)

We have
∞∑
n=2

([n− 1] + y) |Φn−1||an| < y

⇒
∞∑
n=2

([n− 1] + y) |Φn−1||an||zn−1| < y

⇒
∞∑
n=2

[n− 1] |Φn−1||an||zn−1| < y − y
∞∑
n=2

|Φn−1||an||zn−1|

⇒

∣∣∣∣∣
∞∑
n=2

[n− 1] Φn−1anz
n−1

∣∣∣∣∣ < y

∣∣∣∣∣1 +

∞∑
n=2

Φn−1anz
n−1

∣∣∣∣∣
⇒

∣∣∣∣∑∞n=2 [n− 1] Φn−1anz
n−1

1 +
∑∞
n=2 Φn−1anzn−1

∣∣∣∣ < y,

because of (3.17). By (3.15) it follows f ∈ LDkb (a, c, β). �
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Inclusion properties of hypergeometric type
functions and related integral transforms

Lateef Ahmad Wani and Swaminathan Anbhu

Abstract. In this work, conditions on the parameters a, b and c are given so that
the normalized Gaussian hypergeometric function zF (a, b; c; z), where

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn, |z| < 1,

is in certain class of analytic functions. Using Taylor coefficients of functions in
certain classes, inclusion properties of the Hohlov integral transform involving
zF (a, b; c; z) are obtained. Similar inclusion results of the Komatu integral oper-
ator related to the generalized polylogarithm are also obtained. Various results
for the particular values of these parameters are deduced and compared with the
existing literature.

Mathematics Subject Classification (2010): 30C45, 33C45, 33A30.

Keywords: Univalent, convex, starlike, close-to-convex functions, Gaussian hyper-
geometric functions, incomplete beta functions, Komatu integral operator, poly-
logarithm.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

analytic in the open unit disk D = {z : |z| < 1}, and S denote the subclass of A
that contains functions univalent in D. A function f ∈ A is called starlike, denoted
by f ∈ S∗, if tw ∈ f(D) whenever w ∈ f(D) and t ∈ [0, 1]. The class of all convex
functions, denoted by C, consists of the functions f ∈ A such that zf ′ is starlike. A
function f ∈ A is said to be close-to-convex with respect to a fixed starlike function

g ∈ S∗ if and only if Re

(
eiλ

zf ′(z)

g(z)

)
> 0 for z ∈ D and λ ∈ R. . Let K denote the
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subclass of all such close-to-convex functions, where λ = 0. Various generalization of
these classes and various other subclasses of S exist in the literature. For example the
class of starlike functions of order σ, denoted by S∗(σ), 0 ≤ σ < 1, which has the

analytic characterization Re
zf ′(z)

f(z)
> σ, is the generalization of the class S∗(0) = S∗.

Note that C(σ), the class of convex functions of order σ contains all functions f ∈ S
for which zf ′ ∈ S∗(σ).

We introduce the class Rτγ,α(β), with 0 ≤ γ < 1, 0 ≤ α ≤ 1, τ ∈ C\{0} and
β < 1 as

Rτγ,α(β) :=

{
f ∈ A :

∣∣∣∣∣ (1− α+ 2γ) f
z

+ (α− 2γ)f ′ + γzf ′′ − 1

2τ(1− β) + (1− α+ 2γ) f
z

+ (α− 2γ)f ′ + γzf ′′ − 1

∣∣∣∣∣ < 1, z ∈ D

}
.

(1.2)

Note that few particular cases of this class discussed in the literature.

1. The class Rτγ,α(β) for α = 2γ+ 1, was considered in [16], where references about
other particular cases in this direction are provided.

2. The class Rτγ, α(β) for τ = eiη cos η, where −π/2 < η < π/2 is considered in [1]
(see also [2, 3]), and the properties of certain integral transforms of the type

Vλ(f) =

∫ 1

0

λ(t)
f(tz)

t
dt, f ∈ R(eiη cos η)

0,γ (β) (1.3)

with β < 1, γ < 1 and |η| < π/2, under suitable restriction on λ(t) was discussed
using duality techniques for various values of γ in [1]. For other interesting cases,
we refer to [3, 16] and references therein.

3. The class Rτ0,1(0) with τ = eiη cos η was considered in [10] with reference to the
univalency of partial sums.

It is clear that the geometric properties of certain integral transforms under du-
ality techniques, which is one of recent research interest (for example, see [1, 3] and
references therein), cannot be proved easily as the results involve certain multiple
integrals and it is difficult to check the conditions given for the existence of the inclu-
sion results for these integral transforms. For this purpose, the inclusion properties of

certain special functions to be in the analytic subclasses like R
(eiη cos η)
γ, α (β) are studied

using techniques other than duality methods which motivates this work.
Among various results related to the integral operator (1.3) available in the

literature, an important and interesting result is application of the operator (1.3)
when λ(t) is related to the function zF (a, b; c; z). Here by F (a, b; c; z) we mean the
well-known Gaussian hypergeometric function

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn (1.4)

z ∈ D, with (λ)n being the Pochhammer symbol given by (λ)n = λ(λ+1)n−1, (λ)0 = 1.
Also, there has been considerable interest to find conditions on the parameters a, b,
and c such that the normalized hypergeometric functions (c/ab) (F (a, b; c; z)− 1) or
zF (a, b; c; z) belong to one of the known subclasses of S. For more details on the basic
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ideas of Gaussian hypergeometric functions, we refer to [11] and on the applications
related to geometric function theory, we refer to [1, 14, 15, 16] and references therein.

Related to F (a, b; c; z) is the Hohlov operator H a, b, c (f)(z) = zF (a, b; c; z)∗f(z),
where ∗ denotes the well-known Hadamard product or convolution. This operator is
particular case of a general integral transform studied in [5]. To be more specific, the
properties of certain integral transforms of the type

Vλ(f) =

∫ 1

0

λ(t)
f(tz)

t
dt, f ∈ R(eiη cos η)

γ, α (β) (1.5)

under suitable restriction on λ(t) was discussed by many authors [1, 3, 5]. In particular,
if

λ(t) =
Γ(c)

Γ(b)Γ(c− b)
tb−1(1− t)c−b−1

then Vλ(f) = L(b, c)(f)(z) which is the well-known Carlson-Schaffer operator. Note
that H 1, b, c (f)(z) = L(b, c)(f)(z). The following lemma exhibits the relation between
the integral operator in discussion with the Hohlov operator.

Lemma 1.1. If f ∈ A and c− a+ 1 > b > 0, then

Vλ(f)(z) = Ha,b,c(f)(z)

where

Ha,b,c(f)(z) =
Γ(c)

Γ(a)Γ(b)

∫ 1

0

(1− t)c−a−b

Γ(c− a− b+ 1)
tb−2F (c−a, 1−a; c−a−b+1; 1−t)f(tz)dt.

The Komatu operator Kp
a : A → A [9] is defined as

Kp
a [f ](z) =

(1 + a)p

Γ(p)

∫ 1

0

(
log(

1

t
)
)p−1

ta−1f(tz)dt,

where a > −1 and p ≥ 0. It has a series representation as

Kp
a [f ](z) = z +

∞∑
n=2

(1 + a)p

(n+ a)p
anz

n

and in terms of convolution, we can write

Kp
a [f ](z) = Kpa(z) ∗ f(z),

where Kpa(z) = z +

∞∑
n=2

(1 + a)p

(n+ a)p
zn.

In this paper we study the operators H a, b, c (f)(z) and Kp
a [f ](z) for various

choices of the function f .
The paper is organized as follows. In Section 2, some preliminary results about

the Gaussian hypergeometric function F (a, b; c; z) and conditions on the Taylor co-
efficients of f ∈ Rτγ,α(β) are given which are used in the subsequent sections. Con-
ditions on the triplets a, b, c are obtained so that in Section 3 inclusion properties of
F (a, b; c; z) and its normalized case to be in the class Rτγ,α(β) are discussed and in
Section 4, inclusion properties of zF (a, b; c; z) ∗ f(z) for f in various subclasses of S
are discussed. Similar type of inclusion results for the Komatu operator is discussed



214 Lateef Ahmad Wani and Swaminathan Anbhu

in Section 5. In the last section, certain remarks are given to provide motivation for
further research in this direction.

2. Preliminary results

The following result is available in [16], which can also be easily verified by simple
computation.

Lemma 2.1. Let F (a, b; c; z) be the Gaussian hypergeometric function as given in (1.4).
Then we have the following

(i) For Re (c− a− b) > 0 and c 6= 0,−1,−2, . . .,

F (a, b; c; 1) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
(2.1)

(ii) For a, b > 0, c > a+ b+ 1,

∞∑
n=0

(n+ 1)(a)n(b)n
(c)n(1)n

= F (a, b; c; 1)

[
ab

c− 1− a− b
+ 1

]
. (2.2)

(iii) For a 6= 1, b 6= 1 and c 6= 1 with c > max{0, a+ b− 1},
∞∑
n=0

(a)n(b)n
(c)n(1)n+1

=
(c− 1)

(a− 1)(b− 1)

[
F (a− 1, b− 1; c− 1; 1)− 1

]
. (2.3)

(iv) For a 6= 1 and c 6= 1 with c > max{0, 2Re a− 1},
∞∑
n=0

|(a)n|2

(c)n(1)n+1
=

(c− 1)

|a− 1|2

[
F (a− 1, ā− 1; c− 1; 1)− 1

]
. (2.4)

Proof. Part (i) is the well-known Gauss summation formula. Part (ii) follows from
splitting the left hand side into two parts and applying (2.1). For part (iii), using the
fact that λ(λ+ 1)m = (λ)m+1, in place of a, b and c, the required result follows. Part
(iv) is nothing but Part (iii) with b = ā. �

In order to obtain the objective, we need conditions on the Taylor coefficients of
Rτγ,α(β) which is given in the following results.

Lemma 2.2. Let f(z) ∈ S and is of the form (1.1). If f(z) is in Rτγ,α(β), then

|an| ≤
2|τ |(1− β)

1 + (n− 1)(α− 2γ + γn)
, n = 2, 3, . . . . (2.5)

Equality holds for the function

f(z) =
1

z(1/ν)−1
1

µν

∫ z

0

1

t
1
µ−

1
ν+1

∫ t

0

w

1

1− 1
µ

(
1 +

2(1− β)τwn−1

1− wn−1

)
dw, (2.6)

where µ+ ν = α− γ and µν = γ.
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Proof. Clearly f ∈ Rτγ,α(β) is equivalent to

1 +
1

τ

(
(1− α+ 2γ)

f

z
+ (α− 2γ)f ′ + γzf ′′ − 1

)
=

1 + (1− 2β)w(z)

1− w(z)
,

where w(z) is analytic in D and satisfies the condition w(0) = 0, |w(z)| < 1 for z ∈ D.
Hence we have
1

τ

(
(1− α+ 2γ)

f

z
+ (α− 2γ)f ′ + γzf ′′ − 1

)
= w(z)

(
2(1− β) +

1

τ

(
(1− α+ 2γ)

f

z
+ (α− 2γ)f ′ + γzf ′′ − 1

))
.

Using (1.1) and w(z) =

∞∑
n=1

bnz
n we have[

2(1− β) +
1

τ

( ∞∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1

)][ ∞∑
n=1

bnz
n

]

=
1

τ

∞∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1.

Equating the coefficients of the powers of zn−1 on both sides of the above equation,
it is easy to observe that the coefficient an in right hand side of the above expression
depends only on a2, . . . , an−1 and the left hand side of the above expression. Hence,
for n ≥ 2 this gives[

2(1− β) +
1

τ

(
k−1∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1

)]
w(z)

=
1

τ

k∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1 +

∞∑
n=k+1

dnz
n−1.

Using |w(z)| < 1, this reduces to the inequality∣∣∣∣∣2(1− β) +
1

τ

(
k−1∑
n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1

)∣∣∣∣∣
>

∣∣∣∣∣1τ
k∑

n=2

[1 + (α− 2γ + γn)(n− 1)]anz
n−1 +

∞∑
n=k+1

dnz
n−1

∣∣∣∣∣ .
Squaring the above inequality and integrating around |z| = r, 0 < r < 1, we get

4(1− β)2 +
1

|τ |2

(
k−1∑
n=2

[1 + (α− 2γ + γn)(n− 1)]2|an|2r2(n−1)
)

>
1

|τ |2
k∑

n=2

[1 + (α− 2γ + γn)(n− 1)]2|an|2r2(n−1) +

∞∑
n=k+1

|dn|2r2(n−1).
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and letting r → 1 we obtain

4(1− β)2 ≥ 1

|τ |2
[1 + (α− 2γ + γn)(n− 1)]2|an|2

which gives the desired result. For sharpness, consider the function

(1− α+ 2γ)
f

z
+ (α− 2γ)f ′ + γzf ′′ = 1 +

2(1− β)τzn−1

1− zn−1
:= p(z).

Simplifying and using the fact µ+ ν = α− γ and µν = γ gives (2.6). �

Remark 2.3. The condition given in (2.5) is equivalent to the condition

|an| ≤
2|τ |(1− β)

1 + α(n− 1) + γ(n− 1)(n− 2)
, n = 2, 3, . . . , (2.7)

which will be used in the sequel.

Lemma 2.4. Let f(z) be of the of the form (1.1). Then a sufficient condition for f(z)
to be in Rτγ,α(β) is

∞∑
n=2

[1 + (n− 1)(α− 2γ + γn)]|an| ≤ |τ |(1− β). (2.8)

This condition is also necessary if η = 0 in (1.2) and an < 0 in (1.1).

Proof. Using (1.1) it is easy to see that

Re eiη
(

(1− α+ 2γ)
f

z
+ (α− 2γ)f ′ + γzf ′′ − β

)
= (1− β) cos η + Re eiη

∞∑
n=2

(
1 + (α− 2γ + γn)(n− 1)

)
anz

n−1

≥ (1− β) cos η −
∞∑
n=2

∣∣∣(1 + (α− 2γ + γn)(n− 1)
)∣∣∣ |an| ≥ 0,

using (2.8). The resultant obtained above is equivalent to the analytic characterization
of f ∈ Rτγ,α(β) and the proof is complete. �

3. Inclusion results for zF (a, b; c; z)

Theorem 3.1. Let a, b, c and γ satisfy any one of the following conditions such that
Ti(a, b, c, γ) ≤ |τ |(1− β) for i = 1, 2, 3.

(i) a, b > 0, c > a+ b+ 2 and

T1(a, b, c, γ) = F (a, b; c; 1) + α
a b

c
F (a+ 1, b+ 1; c+ 1; 1) + γ

(a)2 (b)2

(c)2
F (a+ 2, b+ 2; c+ 2; 1)− 1.

(ii) a, b ∈ C\{0}, |a| 6= 1, |b| 6= 1, c > |a|+ |b|+ 2 and
T2(a, b, c, γ)

= F (|a|+ 1, |b|+ 1; c+ 1; 1)

(
α
|ab|
c

+ γ
(|a|)2(|b|)2

(c)(c− |a| − |b| − 2)
+
c− |a| − |b| − 1

c

)
− 1.
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(iii) −1 < a < 0, −1 < b < 0, c > 0 and
T3(a, b, c, γ)

= F (a+ 1, b+ 1; c+ 1; 1)

(
α
ab

c
+ γ

(a)2(b)2
(c)(c− a− b− 2)

+
c− a− b− 1

c

)
− 1.

Then zF (a, b; c; z) is in Rτγ,α(β).

Proof. Clearly zF (a, b; c; z) has the series representation of the form (1.1) where

an =
(a)n−1(b)n−1
(c)n−1(1)n−1

. (3.1)

Using Lemma 2.4, it suffices to prove that
∞∑
n=2

[1 + (n− 1)(α− 2γ + γn)]|an| ≤ |τ |(1− β),

which is equivalent in writing
∞∑
n=2

[1 + α(n− 1) + γ(n− 1)(n− 2)]|an| ≤ |τ |(1− β) =⇒ f ∈ Rτγ,α(β). (3.2)

Case (i): Let a, b > 0 and c > a+ b+ 2. Then the series in the left hand side of (3.2)
can be written as

S : =

∞∑
n=2

(
1 + α(n− 1) + γ(n− 1)(n− 2)

)
(a)n−1(b)n−1

(c)n−1(1)n−1

=
∞∑
n=1

(a)n(b)n

(c)n(1)n
+ α

ab

c

∞∑
n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−2
+ γ

(a)2(b)2

(c)2

∞∑
n=3

(a+ 2)n−3(b+ 2)n−3

(c+ 2)n−3(1)n−3
.

An easy computation by using the hypothesis of the theorem and applying (2.1), we
get the required result.

Case (ii): Let a, b ∈ C\{0}, c > |a|+ |b|+ 2. Since |(a)n| ≤ (|a|)n, we have from (3.2),

S :=

∞∑
n=2

(
1 + α(n− 1) + γ(n− 1)(n− 2)

)
|an|

≤ |ab|
c

∞∑
n=0

(|a|+ 1)n(|b|+ 1)n
(c+ 1)n(1)n+1

+ α

∞∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1(1)n
+ γ

∞∑
n=1

(n− 1)
(|a|)n(|b|)n
(c)n(1)n−1

.

(3.3)

Note that the third sum in the right hand side of (3.3) is equivalent to
∞∑
n=0

n
(|a|)n+1(|b|)n+1

(c)n+1(1)n

=

∞∑
n=0

(n+ 1)
(|a|)n+1(|b|)n+1

(c)n+1(1)n
−
∞∑
n=0

(|a|)n+1(|b|)n+1

(c)n+1(1)n

=
|ab|
c

∞∑
n=0

(n+ 1)
(|a|+ 1)n(|b|+ 1)n

(c+ 1)n(1)n
− |ab|

c

∞∑
n=0

(|a|+ 1)n(|b|+ 1)n
(c+ 1)n(1)n

.
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Using the above value in (3.3) we get that the inequality (3.3) is equivalent to

S ≤ |ab|
c

∞∑
n=0

(|a|+ 1)n(|b|+ 1)n
(c+ 1)n(1)n+1

+(α− γ)
|ab|
c

∞∑
n=0

(|a|+ 1)n(|b|+ 1)n
(c+ 1)n(1)n

+ γ
|ab|
c

∞∑
n=0

(n+ 1)
(|a|+ 1)n(|b|+ 1)n

(c+ 1)n(1)n
. (3.4)

Now applying (2.3) and the hypothesis of the theorem in the first sum of (3.4) gives(
c− |a| − |b| − 1

c
F (|a|+ 1, |b|+ 1; c+ 1; 1)− 1

)
. (3.5)

Similarly applying (2.2) and the hypothesis of the theorem in the third sum of (3.4)
gives

|ab|
c

(
F (|a|+ 1, |b|+ 1; c+ 1, 1)

(
(|a|+ 1)(|b|+ 1)

c− |a| − |b| − 2
+ 1

))
. (3.6)

Clearly the second sum of (3.4) is related to (2.1) which gives

|ab|
c
F (|a|+ 1, |b|+ 1; c+ 1; 1).

Now substituting this resultant and (3.5) and (3.6) in (3.4) gives the required result.
Case (iii): Let −1 < a < 0, −1 < b < 0 and c > 0. The result follows by proceeding
in a similar way to the previous case. �

Since the substitution a = b in Theorem 3.1 is useful in characterizing polynomi-
als with positive coefficients when b is some negative integer, we give the corresponding
result independently, wherein only the second case can be applied.

Corollary 3.2. Let c > 2 Re b+ 2 and T4(b, c, γ) ≤ |τ |(1− β) where

T4(b, c, γ) = F (b+ 1, b+ 1; c+ 1; 1)

(
α
|b|2

c
+ γ

(|b|)22

c(c− 2Re b− 2)
+
c− 2Re b− 1

c

)
−1.

Then zF (b, b; c; z) is in Rτγ,α(β).

Note that the results in Corollary 3.2 can also be obtained directly by using (2.4)
instead of (2.3), as used in Theorem 3.1.

Further, if we set α = 1 and γ = 0, then by choosing β = 0 and τ = eiη cos η with
−π/2 < η < π/2, we get the functions in the class Rτγ,α(β) satisfying the analytic
criterion Re f ′ > 0 which implies that f(z) is close-to-convex with respect to the
starlike function g(z) = z. Hence the following result is immediate.

Corollary 3.3. Let c > 2|b− 1|+ 3 and

F (b, b; c; 1) ≤ 2(c− 1)

|b− 2|2 + c− 3
, (3.7)

then zF (b, b; c; z) is close-to-convex with respect to the starlike function g(z) = z.
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Remark 3.4. Corollary 3.3, with the absence of α, β, γ and τ , is much useful, in
particular, for extracting polynomials with positive coefficients, which is the main
idea behind choosing a = b. Moreover, if we take b = −m, then (3.7) gives

F (−m,−m; c; 1)

(
m2 + 4m+ c+ 1

2(c− 1)

)
≤ 1.

But, when m is sufficiently large, c has to be chosen so large to have the value in the
left side bounded by 1. This is given by the condition that c > 2m + 5. In the case
of m = 2, c need to be larger than 9 and should satisfy c3 − 18c2 − 75c− 104 ≥ 0 so

that the corresponding polynomial 1+
4

c
z+

2

c(c+ 1)
z2 is close-to-convex. It is easy to

see that the condition is satisfied for c more than 21.68057259 . . ., which is obtained
using mathematical software. Hence if m is chosen as a larger negative integer then
this result is true for polynomials having their coefficients very small, which is not
interesting.

Instead, if we consider, Theorem 3.1, with either a = −m or b = −m we can
still extract polynomials that can have smaller values of c, with coefficients having
alternate signs, that satisfy the hypothesis given in Theorem 3.1.

In Theorem 3.1, if we take a = 1, we get the result for the incomplete beta
function zF (1, b; c; z). Since the incomplete beta function plays an important role in
geometric function theory (for example, see [15]), we give the result for the incomplete
beta function independently as

Theorem 3.5. Let b, c and γ satisfy any one of the following conditions
such that Ti(b, c, γ) ≤ |τ |(1− β) for i = 1, 2.

(i) b > 0, c > b+ 3 and

T1(b, c, γ) = F (1, b; c; 1) + α
b

c
F (2, b+ 1; c+ 1; 1) + γ

2 (b)2

(c)2
F (3, b+ 2; c+ 2; 1)− 1.

(ii) b ∈ C\{0}, c > |b|+ 3 and

T2(b, c, γ) = F (2, |b|+ 1; c+ 1; 1)

(
α
|b|
c

+ γ
2(|b|)2

(c)(c− |b| − 3)
+
c− |b| − 2

c

)
− 1.

Then the incomplete beta function φ(b; c; z) := zF (1, b; c; z) is in Rτγ,α(β).

Remark 3.6. Note that at α = 1, γ = 0, β = 0 and τ = eiη cos η with −π/2 < η < π/2
the above result reduces to c > b + 3, b > 0. Under these conditions, the normalized
incomplete beta function zF (1, b; c; z) is close-to-convex with respect to the starlike
function g(z) = z.

Consider the operator of the form G(a, b; c; z) :=

∫ z

0

F (a, b; c; t)dt. Then we have

G(a, b; c; z) := z +

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(1)n

zn = z +

∞∑
n=2

an
n
zn,

where an is given as in (3.1). This is the normalized form of the hypergeometric
function F (a, b; c; z) which has many interesting properties. Note that a function may
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fail to inherit its geometric properties under such normalization. For example, 1 + z
is convex univalent in D, whereas its normalized form z(1 + z) is not even univalent.

Theorem 3.7. Let a, b ∈ C\{0} with |a| 6= 1, |b| 6= 1 and |c| > |a| + |b| + 1 such that
T (a, b, c, γ) ≤ |τ |(1− β) where
T (a, b, c, γ)

= F (a, b; c; 1)

(
γ ab

c− a− b− 1
+ α+

(1− α+ 2γ)(c− a− b)
(a− 1)(b− 1)

)
− (1− α+ 2γ)(c− 1)

(a− 1)(b− 1)
.

Then G(a, b; c; z) is in Rτγ,α(β).

Proof. We have G(a, b; c; z) = z+

∞∑
n=2

(a)n−1(b)n−1
(c)n−1(1)n

zn. So it is sufficient to prove that

∞∑
n=2

[1 + α(n− 1) + γ(n− 1)(n− 2)] |an| ≤ |τ |(1− β).

The left hand side of the above inequality can be expressed as
∞∑
n=1

(a)n(b)n
(c)n(1)n+1

+ α

∞∑
n=1

n
(a)n(b)n

(c)n(1)n+1
+ γ

∞∑
n=1

n(n− 1)
(a)n(b)n

(c)n(1)n+1
. (3.8)

For the third part (3.8), writing n(n− 1) = n(n+ 1)− 2(n+ 1) + 2 and adding with
the second part of (3.8) gives

(1− α+ 2γ)

∞∑
n=1

(a)n(b)n
(c)n(1)n+1

+ (α− 2γ)

∞∑
n=1

(a)n(b)n
(c)n(1)n

+
γab

c

∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

.

(3.9)

Now, using the hypothesis and comparing the first part of (3.9) with (2.3), second
and third part of (3.9) with (2.1) gives the required result upon simplification. �

Check, if at a = b in the above result gives the following Corollary.

Corollary 3.8. Let a = b, 0 < b 6= 1 and c > 2Re b+1 such that T (b, b, c, γ) ≤ |τ |(1−β)
where
T (b, b, c, γ)

= F (b, b; c; 1)

(
γ |b|2(α− 2γ)

c− 2Re b− 1
+

(1− α+ 2γ)(c− 2Reb)

|b− 1|2

)
−
(

(1− α+ 2γ)(c− 1)

|b− 1|2

)
Then G(b, b; c; z) is in Rτγ,α(β).

4. Inclusion properties of H a, b c(f)(z)

Our next interest is to find the inclusion properties of

H a, b c(f)(z) = zF (a, b; c; z) ∗ f(z),

where f(z) is in certain subclass of S. For this, we recall certain subclasses that are
necessary for further discussion. We begin with the following definition.
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Definition 4.1. [4] Let f ∈ A, 0 ≤ k < ∞, and 0 ≤ σ < 1. Then f ∈ k − UCV (σ) if
and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ σ. (4.1)

This class generalizes various other classes which are worthy to mention here.
The class k−UCV (0), called as k-uniformly convex is due to [8], and has the geometric
characterization that for 0 ≤ k < ∞, the function f ∈ A is said to be k-uniformly
convex in D, if f is convex in D, and the image of every circular arc γ contained in
D, with center ζ, where |ζ| ≤ k, is convex.

The class 1 − UCV (0) = UCV [7] (see also [12]) describes geometrically the

domain of values of the expression p(z) = 1 +
zf ′′(z)

f ′(z)
, z ∈ D, as f ∈ UCV if and only

if p is in the conic region

Ω = {ω ∈ C : (Imω)2 < 2 Reω − 1}.
Using Alexander transform a related class k − Sp(σ) is obtained as f ∈ k − UCV (σ)
⇐⇒ zf ′ ∈ k−Sp(σ). Results for the condition on the Taylor coefficients of functions
in these classes are available in the literature. Among them, we mention the results
that serve our purpose.

Lemma 4.2. [4] A function f ∈ A is in k − UCV (σ) if it satisfies the condition
∞∑
n=2

n [n(1 + k)− (k + σ)] |an| ≤ 1− σ. (4.2)

It was also found that the condition (4.2) is necessary if f ∈ A given by (1.1)
has an < 0. Further that the condition

∞∑
n=2

[n(1 + k)− (k + σ)] |an| ≤ 1− σ. (4.3)

is sufficient for f to be in k−Sp(σ) and turns out to be also necessary if f ∈ A given
by (1.1) has an < 0.

Theorem 4.3. Let f ∈ A be defined as in (1.1). Suppose that a, b ∈ C\{0},
c > |a|+ |b|+ 1 be such that, for k ≥ 0, 0 ≤ σ < 1,
F (|a|+ 1, |b|+ 1; c+ 1; 1)

(|ab|(1 + k) + (1− σ)(c− |a| − |b| − 1) ≤ c(1− σ)

(
1 +

α− 3γ

2|τ |(1− β)

)
. (4.4)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, H a, b c(f)(z) ∈
k − UCV (σ).

Proof. Let f ∈ A be defined as in Theorem 4.3. Considering (4.2), from Lemma 2.2,
we need to prove that if f ∈ A satisfies (2.5), then

∞∑
n=2

n
(
n(1 + k)− (k + σ)

)
|An| ≤ 1− σ, (4.5)
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where

An =
(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)
an, n ≥ 2.

Since 1 + α(n − 1) + γ(n − 1)(n − 2) ≥ n(α − 3γ) for 0 ≤ γ ≤ 1 and n ≥ 2, using
|(a, n)| ≤ (|a|, n) it is enough if we prove that

T :=

∞∑
n=2

n
(n)(1 + k)− (k + σ)

n

(|a|, n− 1)(|b|, n− 1)

(|c|, n− 1)(1, n− 1)
≤ (1− σ)(α− 3γ)

2|τ |(1− β)
.

Using (n+ 2)(1 + k)− (k + σ) = (n+ 1)(1 + k) + (1− σ) and

F (a, b; c; 1) =

∞∑
n=0

(a, n)(b, n)

(c, n)(1, n)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re (c− a− b) > 0,

we get

T = (1 + k)

∞∑
n=0

(n+ 1)
(|a|, n+ 1)(|b|, n+ 1)

(c, n+ 1)(1, n+ 1)
+ (1− σ)

∞∑
n=0

(|a|, n+ 1)(|b|, n+ 1)

(c, n+ 1)(1, n+ 1)

= (1 + k)
ab

c

(
Γ(c− |a| − |b| − 1)Γ(c+ 1)

Γ(c− |a|)Γ(c− |b|)

)
+ (1− σ)

(
Γ(c− |a| − |b|)Γ(c)

Γ(c− |a|)Γ(c− |b|)
− 1

)
=

(
Γ(c− |a| − |b| − 1)Γ(c)

Γ(c− |a|)Γ(c− |b|)

)(
|ab|(1 + k) + (1− σ)(c− |a| − |b| − 1)

)
− (1− σ),

which by using the hypothesis, gives the required result. �

Another sufficient condition for the class k − UCV is also given in [8] by the
following result.

Lemma 4.4. [8] Let f ∈ S and has the form (1.1). If for some k, 0 ≤ k < ∞, the
inequality

∞∑
n=2

n(n− 1)|an| ≤
1

k + 2
, (4.6)

holds, then f ∈ k − UCV . The number 1/(k + 2) cannot be increased.

It is interesting to observe that, even though σ is not involved in this sufficient
condition, this condition holds for f ∈ k−UCV (σ), by the method of proof given for
Lemma 4.4 in [8]. Also that, using the Alexander transform, a result for f ∈ k−Sp(σ)
analogous to (4.6) cannot be obtained by replacing an by an/n as in many other
situations.

To compare the results we are interested in giving a theorem equivalent to The-
orem 4.3, by using (4.6) instead of (4.2). Since σ is not involved in (4.6), we present
this result for the case σ = 0 only. The proof of this theorem is similar to Theorem
4.3 and we omit details.

Theorem 4.5. Let f ∈ A be defined as in (1.1). Suppose that a, b ∈ C\{0},
c > |a|+ |b|+ 1 be such that, for k ≥ 0, 0 ≤ α < 1,

F (|a|+ 1, |b|+ 1; c+ 1; 1)
|ab|
c
≤ (α− 3γ)

2|τ |(1− β)(k + 2)
. (4.7)
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Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1,0 ≤ α ≤ 1 and 0 ≤ β < 1, H a, b, c (f)(z) ∈ k−UCV .

If we let a = b in F (a, b; c; z) we get polynomials with positive coefficients when
b is some negative integer. Hence the above Theorems are useful in characterizing
convex polynomials and we give the corresponding results independently.

Corollary 4.6. Let f ∈ A be defined as in (1.1). Suppose that b > 0, c > 2Reb + 1 and
b, c satisfy

F (b+ 1, b+ 1; c+ 1; 1)(|b|2(1 + k) + (1− σ)(c− 2Reb− 1)

≤ c(1− σ)

(
1 +

α− 3γ

2|τ |(1− β)

)
. (4.8)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, H b, b c(f)(z) ∈
k − UCV (σ).

Corollary 4.7. Let f ∈ A be defined as in (1.1). Suppose that b > 0, c > 2Reb + 1 be
such that

F (b+ 1, b+ 1; c+ 1; 1)
|b|2

c
≤ (α− 3γ)

2|τ |(1− β)(k + 2)
. (4.9)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1,0 ≤ α ≤ 1 and 0 ≤ β < 1, H b, b, c (f)(z) ∈ k−UCV
where k ≥ 0.

The Hohlov operator H a, b, c(f)(z) reduces to the Carlson-Shaffer operator
L(b, c)(f)(z) if a = 1. Hence we give the statement of the following results.

Corollary 4.8. Let f ∈ A be defined as in (1.1). Suppose that b > 0, c > b+2 are such
that, for k ≥ 0, 0 ≤ σ < 1 and

(c− 1)

(c− b− 1)(c− b− 2)
(|b|(1 + k) + (1− σ)(c− b− 2) ≤ (1− σ)

(
1 +

α− 3γ

2|τ |(1− β)

)
.

(4.10)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, L(b, c)(f)(z) ∈
k − UCV (σ).

Corollary 4.9. Let f ∈ A be defined as in (1.1). Suppose that b > 0, c > b+2 are such
that, for k ≥ 0, 0 ≤ σ < 1 and

(α− 3γ)

2|τ |(1− β)(k + 2)

(
(c− 1)2 + (2b+ 1)(c− 1) + b(b+ 1)

)
− b(c− 1) ≥ 0. (4.11)

Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, L(b, c)(f)(z) ∈ k−UCV .

Let S∗λ (λ > 0), denotes the class of functions in S such that

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < λ.

A sufficient condition for f ∈ A of the form (1.1) to be in S∗1 ⊂ S∗, is given

by

∞∑
n=2

n|an| ≤ 1, and is proved by many authors. For example, see [6]. A particular
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extension of this, due to [13], is

∞∑
n=2

(n+ λ− 1)|an| ≤ λ =⇒ f ∈ S∗λ. (4.12)

Theorem 4.10. Let a, b > 0 or a ∈ C\{0} with a = b. Further, let |a| 6= 1, |b| 6= 1, and
0 6= c > a+ b be such that

F (a, b; c; 1)

(
1 +

(λ− 1)(c− |a| − |b|)
(|a| − 1)(|b| − 1)

)
≤ (λ− 1)(c− 1)

(|a| − 1)(|b| − 1)
+ λ

(
1 +

(α− 3γ)

2|τ |(1− β)

)
.

(4.13)

Suppose that f ∈ A be defined as in (1.1). Then, for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1,
0 ≤ α ≤ 1, 0 ≤ β < 1, and λ > 0, H a, b, c(f)(z) ∈ S∗λ.

Proof. Let f(z) be of the form (1.1). In view of (4.12), it suffices to prove that

∞∑
n=2

(n+ λ− 1)|An| ≤ λ, (4.14)

where

An =
(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)
an, n ≥ 2.

Since f ∈ Rτγ,α(β), using (2.5) and 1 + α(n − 1) + γ(n − 1)(n − 2) ≥ n(α − 3γ), we
need only to show that

T :=

∞∑
n=2

(|a|, n− 1)(|b|, n− 1)

(c, n− 1)(1, n− 1)
+ (λ− 1)

∞∑
n=2

(|a|, n− 1)(|b|, n− 1)

(c, n− 1)(1, n)
≤ λ (α− 3γ)

2|τ |(1− β)
.

But this last inequality is true by the hypothesis of the theorem and (2.3). �

5. Inclusion properties of Kp
a [f ](z)

Theorem 5.1. Let f ∈ A be as in (1.1). Suppose a > −1, p ≥ 0 and

∞∑
n=2

[n(1 + k)− (k + σ)]Bn(a, p) ≤ (1− σ)(α− 3γ)

2|τ |(1− β)
, (5.1)

where Bn(a, p) =
(1 + a)p

(n+ a)p
. Then for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and

0 ≤ β < 1, we have Kp
a [f ](z) ∈ k − UCV (σ).

Proof. Since f ∈ Rτγ,α(β), we have from Lemma 2.2 and the fact

1 + α(n− 1) + γ(n− 1)(n− 2) ≥ n(α− 3γ), n ≥ 2

that

|an| ≤
2|τ |(1− β)

n(α− 3γ)
.
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Now using Lemma 4.2, it is enough to show that
∞∑
n=2

n
[
n(1 + k)− (k + σ)

]
|An| ≤ 1− σ,

where An = Bn(a, p)an. Clearly, the above inequality is true if (5.1) holds. �

It is easy to see that, for all n ≥ 2,

Bn(a, p) =
(1 + a)p

(n+ a)p
< 1, a > −1, p ≥ 0

which leads to

Corollary 5.2. Let f ∈ A be as in (1.1). Suppose a > −1, p ≥ 0 and
∞∑
n=2

[n(1 + k)− (k + σ)] ≤ (1− σ)(α− 3γ)

2|τ |(1− β)
.

Then for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and 0 ≤ β < 1, we have Kp
a [f ](z) ∈

k − UCV (σ).

Theorem 5.3. Let p ≥ 0, a > −1 and f ∈ A be as in (1.1). Suppose that
∞∑
n=2

[n+ λ− 1]
Bn(a, p)

n
≤ λ(α− 3γ)

2|τ |(1− β)
, (5.2)

where Bn(a, p) =
(1 + a)p

(n+ a)p
. Then for f ∈ Rτγ,α(β), 0 ≤ γ ≤ 1, 0 ≤ α ≤ 1 and

0 ≤ β < 1, we have Kp
a [f ](z) ∈ S∗λ.

Proof. Since f ∈ Rτγ,α(β), Lemma 2.2 gives

|an| ≤
2|τ |(1− β)

1 + α(n− 1) + γ(n− 1)(n− 2)
.

Using the fact that 1 + α(n− 1) + γ(n− 1)(n− 2) ≥ n(α− 3γ), n ≥ 2, we obtain

|an| ≤
2|τ |(1− β)

n(α− 3γ)
. (5.3)

Now Kp
a [f ](z) ∈ S∗λ if

∞∑
n=2

[n+ λ− 1]
∣∣∣ (1 + a)p

(n+ a)p
an

∣∣∣ ≤ λ
=⇒

∞∑
n=2

[n+ λ− 1]
(1 + a)p

(n+ a)p
∣∣an∣∣ ≤ λ

=⇒
∞∑
n=2

[n+ λ− 1]
(1 + a)p

(n+ a)p
2|τ |(1− β)

n(α− 3γ)
≤ λ, using (5.3)

=⇒
∞∑
n=2

[n+ λ− 1]
(1 + a)p

(n+ a)p
1

n
≤ λ(α− 3γ)

2|τ |(1− β)
,
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which is the hypothesis and the proof is complete. �

6. Concluding remarks

Remark 6.1. If k = 0 then it is clear from the analytic characterization that
k − UCV (σ) reduces to the class of Convex functions of order σ, denoted by C(σ).
Similarly, (using Alexander transform), k−Sp(σ) reduces to the class of Starlike func-
tions of order σ, (S∗(σ)). For results regarding to these classes we refer to [6]. Further
results on the restriction k = 0 can be found in the literature, e.g. see [8].

Remark 6.2. We note that Theorem 4.3 and Theorem 4.5 are not sharp. In particular,
for a, b real with η = 0, k = 0 and σ = 0, we get from (2.5),

F (|a|+ 1, |b|+ 1; c+ 1; 1)
|ab|
c

+ (c− |a| − |b| − 1) ≤ 1 +
α− 3γ

2(1− β)
. (6.1)

This inequality for α = 1 and γ = 0 further reduces to

F (|a|+ 1, |b|+ 1; c+ 1; 1)
|ab|
c

+ (c− |a| − |b| − 1) ≤ 1 +
1

2(1− β)
. (6.2)

Similarly, (4.7) reduces to

F (|a|+ 1, |b|+ 1; c+ 1; 1)
|ab|
c
≤ 1

4(1− β)
. (6.3)

From (6.2) and (6.3), it is easy to see that Theorem 4.5 is better for all c lying between

|a|+ |b|+ 1 and |a|+ |b|+ 3

2
and for all other values of c satisfying c > |a|+ |b|+ 3

2
,

Theorem 4.3 is better.

Note that, in Theorem 4.10, |a| 6= 1 and |b| 6= 1. Hence Theorem 4.10 cannot
be reduced to the important transforms such as Carlson-Schaffer integral operator,
which leads to the following.

Problem 6.3. To find conditions on b and c such that the Carlson-Schaffer operator
L(b, c)(f)(z) maps the class Rτγ,α(β) onto S∗λ.

Note that, for p = 1, the results given in Section 5 for the Komatu operator
Kp
a [f ](z) reduce to the results for the Bernardi integral operator and coincide with

the results of Section 4 for particular values of a, b and c. However, for no values of p
or a, the Komatu operator Kp

a [f ](z) can be reduced to the Carlson-Schaffer operator
L(b, c)(f)(z). Hence Problem 6.3 gains further significance.

References

[1] Ali, R.M., Badghaish, A.O., Ravichandran, V., Swaminathan, A., Starlikeness of integral
transforms and duality, J. Math. Anal. Appl., 385(2012), no. 2, 808-822.

[2] Ali, R.M., Lee, S.K., Subramanian, K.G., Swaminathan, A., A third-order differential
equation and starlikeness of a double integral operator, Abstr. Appl. Anal., Article in
press, 10 pages, DOI: 10.1155/2011/901235.



Inclusion properties of hypergeometric type functions 227

[3] Ali, R.M., Nargesi, M.M., Ravichandran, V., Convexity of integral transforms and
duality, Complex Variables and Elliptic Equations: An International Journal, DOI:
10.1080/17476933.2012.693483.

[4] Bharati, R., Parvatham, R., Swaminathan, A., On subclasses of uniformly convex func-
tions and corresponding class of starlike functions, Tamkang J. Math., 28(1997), no. 1,
17-32.

[5] Fournier, R., Ruscheweyh, S., On two extremal problems related to univalent functions,
Rocky Mountain J. Math., 24(1994), no. 2, 529-538.

[6] Goodman, A.W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc.,
8(1957), 598-601.

[7] Goodman, A.W., On uniformly convex functions, Ann. Polon. Math., 56(1991), no. 1,
87-92.

[8] Kanas, S., Wisniowska, A., Conic regions and k-uniform convexity, Continued fractions
and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math.,
105(1999), no. 1-2, 327-336.

[9] Komatu, Y., On a family of integral operators related to fractional calculus, Kodai Math.
J., 10(1987), no. 1, 20-38.

[10] Li, J.L., On some classes of analytic functions, Math. Japon., 40(1994), no. 3, 523-529.

[11] Rainville, E., Special Functions, The Macmillan Co., New York 1960, xii+365 pp.

[12] Ronning, F., Uniformly convex functions and a corresponding class of starlike functions,
Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196.

[13] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc.,
51(1975), 109-116.

[14] Swaminathan, A., Inclusion theorems of convolution operators associated with normal-
ized hypergeometric functions, J. Comput. Appl. Math., 197(2006), no. 1, 15-28.

[15] Swaminathan, A., Convexity of the incomplete beta functions, Integral Transforms Spec.
Funct., 18(2007), no. 7-8, 521-528.

[16] Swaminathan, A., Sufficient conditions for hypergeometric functions to be in a certain
class of analytic functions, Comput. Math. Appl., 59(2010), no. 4, 1578-1583.

Lateef Ahmad Wani
Department of Mathematics, Indian Institute of Technology
Roorkee-247 667, Uttarkhand, India
e-mail: lateef17304@gmail.com

Swaminathan Anbhu
Department of Mathematics, Indian Institute of Technology
Roorkee-247 667, Uttarkhand, India
e-mail: swamifma@iitr.ac.in, mathswami@gmail.com
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Existence and multiplicity of solutions to the
Navier boundary value problem for a class of
(p(x), q(x))-biharmonic systems

Hassan Belaouidel, Anass Ourraoui and Najib Tsouli

Abstract. In this article, we study the following problem with Navier boundary
conditions. 

∆(a(x,∆u)) = Fu(x, u, v), in Ω

∆(a(x,∆v)) = Fv(x, u, v), in Ω,

u = v = ∆u = ∆v = 0 on ∂Ω.

By using the Mountain Pass Theorem and the Fountain Theorem, we establish
the existence of weak solutions of this problem.

Mathematics Subject Classification (2010): 35J30, 35J60, 35J92.

Keywords: Fourth-order, variable exponent, Palais Smale condition, mountain
pass theorem.

1. Introduction

In recent years, the study of differential equations and variational problems with
p(x)-growth conditions was an interesting topic, which arises from nonlinear elec-
trorheological fluids and elastic mechanics. In that context we refer the reader to
Ruzicka [15], Zhikov [20] and the reference therein; see also [4, 7, 8, 5].

Fourth-order equations appears in many context. Some of theses problems come
from different areas of applied mathematics and physics such as Micro Electro-
Mechanical systems, surface diffusion on solids, flow in Hele-Shaw cells (see [10]).
In addition, this type of equations can describe the static from change of beam or the
sport of rigid body.

In [1] the authors studied a class of p(x)-biharmonic of the form

∆(|∆u|p(x)−2∆u) = λ|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,
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where Ω is a bounded domain in RN , with smooth boundary ∂Ω, N ≥ 1, λ ≥ 0 .

In [3], A. El Amrouss and A. Ourraoui considered the below problem and us-
ing variational methods, by the assumptions on the Carathéodory function f , they
establish the existence of Three solutions the problem of the form

∆(|∆u|p(x)−2∆u) + a(x)|u|p(x)−2u = f(x, u) + λg(x, u) in Ω,

Bu = Tu = 0 on ∂Ω.

Inspired by the above references, the work of L. Li [11]and [14], the aim
of this article is to study the existence and multiplicity of weak solutions for
(p(x), q(x))−biharmonic type system

∆(a(x,∆u)) = Fu(x, u, v), in Ω

∆(a(x,∆v)) = Fv(x, u, v), in Ω,

u = ∆u = 0, v = ∆v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1,

∆2
p(x)u := ∆(|∆u|p(x)−2∆u),

is the p(x)-biharmonic operator, p,q are continuous functions on Ω with

inf
x∈Ω

p(x) > max

{
1,
N

2

}
, inf
x∈Ω

q(x) > max

{
1,
N

2

}
and F : Ω × R2 → R is a function such that F (., s, t) is continuous in Ω, for all
(s, t) ∈ R2, F (x, ., .) is C1 in R2 for every x ∈ Ω, and Fu, Fv denote the partial
derivative of F , with respect to u, v respectively such that

(F1) For all (x, s, t) ∈ Ω× R2, we assume

lim
|s|→0

Fs(x, s, t)

|s|p(x)−1
= 0, lim

|t|→0

Ft(x, s, t)

|s|q(x)−1
= 0.

(F2) For all (x, s, t) ∈ Ω× R2, we assume

F (x, s, t) = o(|s|p(x)−1 + |t|q(x)−1) as |(s, t)| → ∞.

(F3) There exists u > 0, v > 0 such that F (x, u, v) > 0 for a.e x ∈ Ω
(F4) There exist λ > 0 such that F (x, s, t) ≥ λ(|s|α(x) − |t|β(x)) for all (s, t) ∈ R2,

with

α− > r+, 1 < β− ≤ β+ < r−.

(F5) For all (x, s, t) ∈ Ω× R2 F (x,−s,−t) = −F (x, s, t).

Let a : Ω × RN → RN to be a continuous potential derivative with respect to
ξ of the mapping A : Ω × RN → RN where a = DA = A

′
, with the assumption as

below

(A1) A(x, 0) = 0 , for all x ∈ Ω.
(A2) a(x, ξ) ≤ C1(1 + |ξ|r(x)−1), C1 > 0 and r− > p+, r− > q+.
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(A3) A is r(x)-uniformly convex: there exists a constant k > 0 such that

A

(
x,
ξ + η

2

)
≤ 1

2
A(x, ξ) +

1

2
A(x, η)− k|ξ − η|r(x),

for all x ∈ Ω, ξ, η ∈ RN .
(A4) A is r(x)-subhomogenuous, for all (x, ξ) ∈ Ω× RN ,

|ξ|r(x) ≤ a(x, ξ) ≤ r(x)A(x, ξ).

(A5) For all (x, s) ∈ Ω× RN a(x,−s) = −a(x, s).

The main results of this paper are the following theorems.

Theorem 1.1. Assume that (A1)− (A4) and (F1)− (F3) hold. Then the problem (1.1)
has two weak solutions.

Theorem 1.2. Assume that (A1)− (A5) and (F1)− (F5) hold. Then the problem (1.1)
has a sequence of weak solutions such that φ(±(uk, vk)) → +∞, as k → +∞ with φ
is a energy associated of the problem (1.1) defined in (2.2).

This paper is organized as three sections. In Section 2, we recall some basic
properties of the variable exponent Lebegue-Sobolev spaces. In Section3 we give the
proof of main results.

2. Preliminaries

To study p(x))-Laplacian problems, we need some results on the spaces Lp(x))(Ω)
and W k,p(x))(Ω), and properties of p(x))-Laplacian, which we use later. Let Ω be a
bounded domain of RN , denote

C+(Ω) = {h(x);h(x) ∈ C(Ω), h(x) > 1,∀x ∈ Ω}.

For any h ∈ C+(Ω), we define

h+ = max{h(x); x ∈ Ω}, h− = min{h(x); x ∈ Ω};

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x))(Ω) =
{
u;u is a measurable real-valued function such that∫

Ω

|u(x)|p(x))dx <∞
}
,

endowed with the so-called Luxemburg norm

|u|p(x)) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x))

dx ≤ 1

}
.

Then (Lp(x))(Ω), | · |p(x))) becomes a Banach space.
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Proposition 2.1 ([9]). The space (Lp(x))(Ω), | · |p(x))) is separable, uniformly convex,

reflexive and its conjugate space is Lq(x)(Ω) where q(x) is the conjugate function of
p(x)), i.e.,

1

p(x))
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x))(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x))|v|q(x) ≤ 2|u|p(x))|v|q(x).

The Sobolev space with variable exponent W k,p(x))(Ω) is defined as

W k,p(x))(Ω) = {u ∈ Lp(x))(Ω) : Dαu ∈ Lp(x))(Ω), |α| ≤ k},
where

Dαu =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαN

N

u,

with α = (α1, . . . , αN ) is a multi-index and |α| =

N∑
i=1

αi. The space W k,p(x))(Ω)

equipped with the norm

‖u‖k,p(x)) =
∑
|α|≤k

|Dαu|p(x)),

also becomes a separable and reflexive Banach space. For more details, we refer the
reader to [6, 9, 13]. Denote

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N

for any x ∈ Ω, k ≥ 1.

Proposition 2.2 ([9]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω, there is
a continuous embedding

W k,p(x))(Ω) ↪→ Lr(x)(Ω).

If we replace ≤ with <, the embedding is compact.

We denote by W
k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x)(Ω). Then the func-

tion space
((
W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω)
)
, ‖u‖p(x)

)
is a separable and reflexive Banach

space, where

‖u‖p(x) = inf
{
µ > 0 :

∫
Ω

(∣∣∣∆u(x)

µ

∣∣∣p(x)

≤ 1
}
.

Remark 2.3. According to [[18] Theorem 4.4. ], the norm ‖ · ‖2,p(x) is equivalent to
the norm ‖ · ‖p(x) in the space X. Consequently, the norms ‖ · ‖2,p(x), ‖ · ‖ and ‖ · ‖p(x)

are equivalent.

Proposition 2.4 ([2]). If we denote ρ(u) =
∫

Ω
|∆u|p(x)dx, then for u, un ∈ X, we have

(1) ‖u‖p < 1 (respectively=1; > 1) ⇐⇒ ρ(u) < 1 (respectively = 1; > 1);



Existence and multiplicity of solutions 233

(2) ‖u‖p ≤ 1⇒ ‖u‖p+p ≤ ρ(u) ≤ ‖u‖p−p ;

(3) ‖u‖p ≥ 1⇒ ‖u‖p−p ≤ ρ(u) ≤ ‖u‖p+p ;
(4) ‖un‖p → 0 (respectively →∞) ⇐⇒ ρ(un)→ 0 (respectively →∞).

Note that the weak solutions of problem (1.1) are considered in the generalized
Sobolev space

X =
(
W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω)
)
×
(
W 2,q(x)(Ω) ∩W 1,q(x)

0 (Ω)
)

equipped with the norm

‖(u, v)‖ = max{‖u‖p(x), ‖u‖q(x)}.
Remark 2.5 (see [19]). As the Sobolev space X is a reflexive and separable Banach
space, there exist (en)n∈N∗ ⊆ X and (fn)n∈N∗ ⊆ X∗ such that fn(el) = δnl for any
n, l ∈ N∗ and

X = span{en : n ∈ N∗}, X∗ = span{fn : n ∈ N∗}
w∗

.

For k ∈ N∗, denote by

Xk = span{ek}, Yk = ⊕kj=1Xj , Zk = ⊕∞k Xj .

For every m > 1 , u, v ∈ Lm(Ω), we define

|(u, v)|m := max{|u|m, |v|m}.
Lemma 2.6 (See [8]). Define

βk := sup{|(u, v)|m; ‖(u, v)‖ = 1, (u, v) ∈ Zk},
where m := max

x∈Ω
(p(x), q(x)). Then, we have

lim
k→∞

βk = 0.

2.1. Existence and multiplicity of weak solutions

Definition 2.7. We say that (u, v) ∈ X is weak solution of (1.1) if∫
Ω

a(x,∆u)∆ϕdx+

∫
Ω

a(x,∆v)∆ϕdx =

∫
Ω

Fu(x, u, v)ϕdx+

∫
Ω

Fv(x, u, v)ϕdx, (2.1)

for all ϕ ∈ X.

The functional associated to (1.1) is given by

φ(u, v) =

∫
Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx−
∫

Ω

F (x, u, v)dx. (2.2)

It should be noticed that under the condition (F1)− (F2) the functional φ is of class
C1(X,R) and

φ
′
(u, v)(ψ,ϕ) =

∫
Ω

a(x,∆u)∆ψdx+

∫
Ω

a(x,∆v)∆ϕdx (2.3)

−
∫

Ω

Fu(x, u, v)ψdx−
∫

Ω

Fv(x, u, v)ϕdx, ∀(ψ,ϕ) ∈ X.
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Then, we know that the weak solution of (1.1) corresponds to critical point of
the functional φ.

Definition 2.8. We say that

(1) The C1-functional φ satisfies the Palais-Smale condition (in short (PS) condi-
tion) if any sequence (un)n∈N ⊆ X for which, (φ(un))n∈N ⊆ R is bounded and

φ
′
(un)→ 0 as n→∞, has a convergent subsequence.

(2) The C1-functional φ satisfies the Palais-Smale condition at the level c (in short
(PS)c condition) for c ∈ R if any sequence (un)n∈N ⊆ X for which, φ(un) → c

and φ
′
(un)→ 0 as n→∞, has a convergent subsequence.

(3) The C1-functional φ satisfies the (PS)∗c condition for c ∈ R if any sequence

(un)n∈N ⊆ X for which, un ∈ Yn for each n ∈ N, φ(un)→ c and φ
′

|Yn
)(un)→ 0 as

n→∞ with Yn, n ∈ N as defined in Remark 2.5, has a subsequence convergent
to a critical point of φ.

Remark 2.9. It is easy to see that if φ satisfies the (PS) condition, then φ satisfies
the (PS)c condition for every c ∈ R.

Proof of Theorem 1.1. To prove Theorem 1.1, we shall use the Mountain Pass theorem
[16]. We first start with the following lemmas.

Lemma 2.10. Under the assumptions (F1)-(F3) and (A1)-(A3) φ is sequentially weakly
lower semi continuous and coercive .

Proof. By (F1)-(F2), we see that

|F (x, s, t)| ≤ C3(1 + |s|p(x) + |t|q(x)), ∀(s, t) ∈ R2. (2.4)

By the compact embeddings

X ↪→ Lp(x)(Ω), X ↪→ Lq(x)(Ω),

we deduce that w 7→
∫

Ω
F (x,w)dx is sequentially lower semi continuous ∀w ∈ R2.

Since

w 7→
∫

Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx

is convex uniformly, so it is sequentially lower semi continuous.

Now we prove that φ is coercive. From (F2) for ε small enough, there exist δ > 0 such
that

| F (x, s, t) |≤ ε(|s|p(x) + |t|q(x)), for |(s, t)| > δ,

and thus we have

| F (x, s, t) |≤ ε(|s|p(x) + |t|q(x)) + max
|(s,t)|≤δ

| F (x, s, t) | ||(s, t)|,∀(s, t) ∈ R2,
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for a.e x ∈ Ω. Consequently, for ‖(u, v)‖ > 1 we obtain

φ(u, v) ≥
∫

Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx

− ε

∫
Ω

|u|p(x)dx− ε
∫

Ω

|v|q(x)dx− max
|(u,v)|≤δ

| F (x, u, v) |
∫

Ω

|(u, v)|dx

≥
∫

Ω

1

r(x)
|∆u|r(x)dx+

∫
Ω

1

r(x)
|∆v|r(x)dx

− Cε

∫
Ω

|u|p(x)dx− Cε
∫

Ω

|v|q(x))dx− max
|(u,v)|≤δ

| F (x, u, v) |
∫

Ω

|(u, v)|dx

≥ 1

r+
max

(
‖u‖r

−

r(x), ‖v‖
r−

r(x)

)
− 2Cεmax

(
‖u‖p

+

p(x), ‖v‖
q+

q(x)

)
−Cε|Ω| max

|(u,v)|≤δ
| F (x, u, v) | max

(
‖u‖p

+

p(x), ‖v‖
q+

q(x)

)
.

Therefore, φ is coercive and has a global minimizer (u1, v1) which is a nontrivial
because by (F3)

φ(u1, v1) ≤ φ(u, v) < 0.

Lemma 2.11. Under the assumptions (F1)-(F3) and (A1)-(A4). Then φ satisfies the
Palais-smale condition.

Proof. Let wn = (un, vn) ⊂ X be a Palais-smale sequence, then

φ
′
(wn)→ 0 in X∗, φ(wn)→ l ∈ R.

We show that (wn) is bounded. By (A5) we have

φ(wn) =

∫
Ω

A(x,∆un)dx+

∫
Ω

A(x,∆vn)dx−
∫

Ω

F (x, un, vn)dx

≥
∫

Ω

1

r(x)
|∆un|r(x)dx+

∫
Ω

1

r(x)
|∆vn|r(x)dx−

∫
Ω

F (x, un, vn)dx,

and we get

φ
′
(un, vn)(un, vn)

=

∫
Ω

a(x,∆un)∆undx+

∫
Ω

a(x,∆vn)∆vndx

−
∫

Ω

Fun(x, un, vn)undx−
∫

Ω

Fvn(x, un, vn)vndx

≤
∫

Ω

r(x)A(x,∆un)dx+

∫
Ω

r(x)A(x,∆vn)dx

−
∫

Ω

Fun
(x, un, vn)undx−

∫
Ω

Fvn(x, un, vn)vndx.

Using the fact that Fs, Ft ∈ C(Ω×R2,R) and with (F1)− (F2), for ε > 0 there exists
δ > 0 and η > 0 such that

|Fs(x, s, t)| ≤ ε|s|p(x)−1, |Ft(x, s, t)| ≤ ε|t|q(x)−1,
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and

|F (x, s, t)| ≤ ε(|s|p(x) + |t|q(x)),

for all |s, t)| ≤ δ, and for all |s, t)| ≥ η.
Then we have

|Fs(x, s, t)s| ≤ ε|s|p(x), |Ft(x, s, t)t| ≤ ε|t|q(x), (2.5)

and

|F (x, s, t)| ≤ ε(|s|p(x) + |t|q(x)),

for all |s, t)| ≤ δ, and for all |s, t)| ≥ η.
It yields,

− 1

2r+
φ
′
(un, vn)(un, vn)

≥ − 1

2r+

∫
Ω

r(x)A(x,∆un)dx− 1

2r+

∫
Ω

r(x)A(x,∆vn)dx

+
1

2r+

[∫
Ω

Fun
(x, un, vn)undx+

∫
Ω

Fvn(x, un, vn)vndx

]
≥ − 1

2r+

∫
Ω

r(x)A(x,∆un)dx− 1

2r+

∫
Ω

r(x)A(x,∆vn)dx

+
1

2r+

[∫
Ω

Fun(x, un, vn)undx+

∫
Ω

Fvn(x, un, vn)vndx

]
.

Thus,

φ(un, vn)− 1

2r+
φ
′
(un, vn)(un, vn)

≥
∫

Ω

A(x,∆un)dx+

∫
Ω

A(x,∆vn)dx−
∫

Ω

F (x, un, vn)dx

− 1

2r+

∫
Ω

r(x)A(x,∆un)dx− 1

2r+

∫
Ω

r(x)A(x,∆vn)dx

−
∫

Ω

F (x, un, vn)dx+
1

2r+

[∫
Ω

Fun(x, un, vn)undx+

∫
Ω

Fvn(x, un, vn)vndx

]
≥ 1

2

[∫
Ω

|∆un|r(x)dx+

∫
Ω

|∆vn|r(x)dx

]
−
∫

Ω

F (x, un, vn)dx

+
1

2r+

[∫
Ω

Fun(x, un, vn)undx+

∫
Ω

Fvn(x, un, vn)vndx

]
≥ 1

2
max

(
‖un‖r

+

r(x), ‖vn‖
r+

r(x)

)
− (Cε+ ε)

∫
Ω

|un|p(x)dx− (Cε+ ε)

∫
Ω

|vn|q(x))dx.

Since r− > p+ > 1, r− > q+ > 1, by the compact embeddings

X ↪→ Lp(x)(Ω), X ↪→ Lq(x)(Ω),
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we deduce

φ(un, vn)− 1

2r+
φ
′
(un, vn)(un, vn)

≥ 1

2
max

(
‖un‖r

+

r(x), ‖vn‖
r+

r(x)

)
− 2(C

′
ε+ ε)‖(un, vn)‖

≥
[

1

2
− 2(C

′
ε+ ε)

]
‖(un, vn)‖,

where C
′

is positive constant.

For ε small enough with R = 1
2 − 2(C

′
ε+ ε) > 0, we get

‖(un, vn)‖ ≤ 1

R

(
φ(un, vn)− 1

2r+
φ
′
(un, vn)(un, vn)

)
.

Since φ(un, vn) is bounded and φ
′
(un, vn)(un, vn) → 0 as n → ∞, then (un, vn) is

bounded in X, passing to a subsequence, so (un, vn) ⇀ (u, v) in X and (un, vn) →
Lp(x)(Ω)× Lq(x)(Ω). We show that (un, vn)→ (u, v) in X.

φ
′
(un, vn) ((un, vn)− (u, v))

=

∫
Ω

a(x,∆un)∆(un − u)dx+

∫
Ω

a(x,∆vn)∆(vn − v)dx

−
∫

Ω

Fun
(x, un, vn)(un − u)dx−

∫
Ω

Fvn(x, un, vn)(vn − v)dx.

Since ∣∣∣∣∫
Ω

a(x,∆un)∆(un − u)dx+

∫
Ω

a(x,∆vn)∆(vn − v)dx

∣∣∣∣
= |φ

′
(un, vn) ((un, vn)− (u, v)) +

∫
Ω

Fun
(x, un, vn)(un − u)dx

+

∫
Ω

Fvn(x, un, vn)(vn − v)dx|

≤ ‖φ
′
(un, vn)‖X?‖(un, vn)− (u, v)‖

+

∫
Ω

|Fun(x, un, vn)||(un − u)|dx+

∫
Ω

|Fvn(x, un, vn)||(vn − v)|dx.

By (2.5), we have∫
Ω

|Fun
(x, un, vn)||(un − u)|dx+

∫
Ω

|Fvn(x, un, vn)||(vn − v)|dx

≤ ε

∫
Ω

(
|un − u|p(x) + |vn − v|q(x)

)
dx,

we get

lim sup
n→+∞

(∫
Ω

a(x,∆un)∆(un − u)dx+

∫
Ω

a(x,∆vn)∆(vn − v)dx

)
≤ 0.

Since a(x, ξ) is of (S+) type, we see that (un, vn)→ (u, v) in X.
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Now, we verified the conditions of Mountain Pass Theorem. By Hölder’s inequality,
from (F1) there exists δ > 0 such that

|F (x, u, v)| ≤
∣∣∣∣∫ u

0

Fs(x, s, v)dx+

∫ v

0

Ft(x, 0, t)dx+ F (x, 0, 0)

∣∣∣∣
≤ ε

∣∣∣∣∫ u

0

|s|p(x)−1dx+

∫ v

0

|t|q(x)−1dx

∣∣∣∣+ |F (x, 0, 0)|

≤ ε(|u|p(x) + |v|q(x)) +M,

for all |u, v)| ≤ δ, with M := max
x∈Ω

F (x, 0, 0) and by (F2), there exists M(δ) > 0 such

that

| F (x, u, v) |≤M(δ)(|u|p(x) + |v|q(x)), for |(u, v)| > δ.

Therefore, for ‖(u, v)‖ = % small enough, we have

φ(u, v) ≥
∫

Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx− ε
∫
|(u,v)|<δ

(
|u|p(x) + |v|q(x)

)
dx

− M(δ)

∫
|(u,v)|>δ

(|u|p(x) + |v|q(x))−Mmeas{|(u, v)| < δ}

≥ 1

r+
max

(
‖u‖r

+

r(x), ‖v‖
r+

r(x)

)
− min(εC,M(δ)C

′
) max

(
‖u‖p

−

p(x), ‖v‖
q−

q(x)

)
−Mmeas{|(u, v)| < δ}

= g(%).

There exists θ > 0 such that g(%) > θ > 0. Since φ(0, 0) = 0, we conclude that φ
satisfies the conditions of Mountain Pass Theorem. Then there exists (u2, v2) such

that φ
′
(u2, v2) = 0.

Proof of Theorem 1.2. To prove Theorem 1.2, above, will be based on a variational
approach, using the critical points theory, we shall prove that the C1-functional φ has
a sequence of critical values. The main tools for this end are “Fountain theorem” (see
Willem [16, Theorem 6.5]) which we give below.

Theorem 2.12 (“Fountain theorem”, [16]). Let X be a reflexive and separable Banach
space, φ ∈ C1(X,R) be an even functional and the subspaces Xk, Yk, Zk as defined in
remark 2.5. If for each k ∈ N∗ there exist ρk > rk > 0 such that

(1) infx∈Zk,‖x‖=rk φ(x)→∞ as k →∞,
(2) maxx∈Yk,‖x‖=ρk φ(x) ≤ 0,
(3) I satisfies the (PS)c condition for every c > 0.

Then I has a sequence of critical values tending to +∞.

According to Lemma 2.6, (F5) and (A5), Φ ∈ C1(X,R) is an even functional. We
will prove that if k is large enough, then there exist ρk > νk > 0 such that

bk := inf{Φ(u)/u ∈ Zk, ‖u‖ = νk} → +∞ as k → +∞; (2.6)

ak := max{Φ(u)/u ∈ Yk, ‖u‖ = ρk} → 0 as k → +∞. (2.7)



Existence and multiplicity of solutions 239

For any (u, v) ∈ Zk, ‖v‖q(x) > 1, ‖u‖p(x) > 1 and ‖(u, v)‖ = ηk, (ηk will be
specified later), by (2.4) we have

φ(u, v) =

∫
Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx−
∫

Ω

F (x, u, v)dx

≥ 1

r+
max

(
‖u‖r

−

r(x), ‖v‖
r−

r(x))

)
−
∫

Ω

C3(1 + |u|p(x) + |v|q(x))dx

≥ 1

r+
max

(
‖u‖r

−

r(x), ‖v‖
r−

r(x))

)
− C3

∫
Ω

dx− C3

∫
Ω

|u|p(x)dx− C3

∫
Ω

|v|q(x)dx

≥ 1

r+
‖(u, v)‖r

−
− C3(βk‖(u, v)‖)p

+

− C3(βk‖(u, v)‖)q
+

− C3|Ω|

≥ 1

r+
‖(u, v)‖r

−
− C4βk‖(u, v)‖m − C3|Ω|,

where m is defined in Lemma 2.6. We fix

ηk =

(
1

r+C4βbk

) 1

m−r−

→ +∞ as k → +∞.

Consequently

φ(u, v) ≥ ηk
[

1

r+
ηr
−−1
k − C4β

b
kη
m−1
k

]
− C3|Ω|.

Then,

φ(u, v)→ +∞ as k → +∞.

Proof of (2.7). From (F4), there exists λ > 0 such that

F (x, s, t) ≥ λ(|s|α(x) − |t|β(x)),

with α− > r+, β+ < r−.

Therefore, by Lemma 2.1 [12] and Lemma 3.1 [17], for any ω := (u, v) ∈ Yk with
‖ω‖ = 1 and 1 < t = ρk, we have

φ(tω) =

∫
Ω

A(x, t∆u)dx+

∫
Ω

A(x, t∆v)dx−
∫

Ω

F (x, tω)dx

≤
∫

Ω

tr(x)A(x,∆u)dx+

∫
Ω

tr(x)A(x,∆v)dx

− λ
∫

Ω

|tu|α(x)dx+ λ

∫
Ω

|tv|β(x)dx

≤ tr
+

[∫
Ω

A(x,∆u)dx+

∫
Ω

A(x,∆v)dx

]
− λtα

−
∫

Ω

|u|α(x)dx+ λtβ
−
∫

Ω

|v|β(x)dx.

By α− > r+ > β− and dimYk <∞, we conclude that φ(tu, tv)→ −∞ as ‖tω‖ → +∞
for ω ∈ Yk. By applying the fountain Theorem, we achieved the proof of Theorem 1.2.
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Korovkin type approximation on an infinite
interval via generalized matrix summability
method using ideal
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Abstract. Following the notion of AI-summability method for real sequences [24]
we establish a Korovkin type approximation theorem for positive linear operators
on UC∗[0,∞), the Banach space of all real valued uniform continuous functions on
[0,∞) with the property that lim

x→∞
f(x) exists finitely for any f ∈ UC∗[0,∞). In

the last section, we extend the Korovkin type approximation theorem for positive
linear operators on UC∗ ([0,∞)× [0,∞)). We then construct an example which
shows that our new result is stronger than its classical version.
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1. Introduction and background

Throughout the paper N will denote the set of all positive integers. For a sequence
{Ln}n∈N of positive linear operators on C(X), the space of real valued continuous
functions on a compact subset X of real numbers, Korovkin [17] first established the
necessary and sufficient conditions for the uniform convergence of {Ln(f)}n∈N to a
function f by using the test functions e1 = 1, e2 = x, e3 = x2 [1]. The study of
the Korovkin type approximation theory has a long history and is a well-established
area of research. In recent years, using the concept of uniform statistical convergence
various statistical approximation results have been proved ([9]). Erkuş and Duman
[13] studied a Korovkin type approximation theorem via A-statistical convergence in
the space Hw(I2) where I2 = [0,∞)× [0,∞) which was extended for double sequences
of positive linear operators of two variables in A-statistical sense by Demirci and Dirik
in [6, 8]. Further it was extended for double sequences of positive linear operators of
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two variables in AI2 -statistical sense and in the sense of AI2 -summability method, by
Dutta et. al. [11, 10].

Our primary interest, in this paper, is to obtain general Korovkin type ap-
proximation theorem for positive linear operators on the space UC∗(D), the Ba-
nach space of all real valued uniform continuous functions on D := [0,∞) with the
property that limx→∞ f(x) exists and finite, endowed with the supremum norm

‖f‖∗ = supx∈D | f(x) | for f ∈ UC∗(D), using the concept of A
I
-summability

method for real sequences and test functions 1, e−x, e−y. In the last section, we ex-
tend the Korovkin-type approximation theorem for double sequence of positive linear
operators on UC∗ ([0,∞)× [0,∞)). We also construct an example which shows that
our new result is stronger than its classical version.

The concept of convergence of a sequence of real numbers was extended to sta-
tistical convergence by Fast [14]. Further investigations started in this area after the
pioneering works of Šalát [22] and Fridy [15]. The notion of I-convergence of real
sequences was introduced by Kostyrko et. al. [18] as a generalization of statistical
convergence using the notion of ideals. On the other hand statistical convergence was
generalized to A-statistical convergence by Kolk ([16]). Later a lot of works have been
done on matrix summability and A-statistical convergence (see [2, 3, 5, 12, 16, 19, 23]).
In particular, in [25, 24] the very general notion of AI-statistical convergence and AI-
summability was introduced and studied.

Recall that a real double sequence {xmn}m,n∈N is said to be convergent to L in
Pringsheim’s sense if for every ε > 0 there exists N(ε) ∈ N such that |xmn−L| < ε for
all m,n > N(ε) and denoted by lim

m,n
xmn = L. A double sequence is called bounded

if there exists a positive number M such that |xmn| ≤ M for all (m,n) ∈ N × N. A
real double sequence {xmn}m,n∈N is statistically convergent to L if for every ε > 0,

lim
j,k

|{m ≤ j, n ≤ k : |xmn − L| ≥ ε}|
jk

= 0 [20].

Recall that a family I ⊂ 2Y of subsets of a nonempty set Y is said to be an
ideal in Y if (i)A,B ∈ I implies A∪B ∈ I; (ii)A ∈ I, B ⊂ A implies B ∈ I, while an
admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y . If I is a non-trivial
proper ideal in Y (i.e. Y /∈ I, I 6= {∅}) then the family of sets F (I) = {M ⊂ Y : there
exists A ∈ I : M = Y \A} is a filter in Y . It is called the filter associated with the ideal
I. A non-trivial ideal I of N× N is called strongly admissible if {i} × N and N× {i}
belong to I for each i ∈ N. It is evident that a strongly admissible ideal is admissible
also. Let I0 = {A ⊂ N×N : there is m(A) ∈ N such that i, j ≥ m(A) =⇒ (i, j) /∈ A}.
Then I0 is a non-trivial strongly admissible ideal [4].

2. A Korovkin type approximation for a sequence of positive linear
operators of single variable

Throughout this section I denotes the non-trivial admissible ideal on N. If
{xk}k∈N is a sequence of real numbers and A = (ank)∞n,k=1 is an infinite matrix,
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then Ax is the sequence whose n-th term is given by

An(x) =

∞∑
k=1

ankxk.

A matrix A is called regular if A ∈ (c, c) and

lim
k→∞

Ak (x) = lim
k→∞

xk for all x = {xk}k∈N ∈ c

when c, as usual, stands for the set of all convergent sequences. It is well-known that
the necessary and sufficient conditions for A to be regular are

R1) ||A|| = sup
n

∑
k

|ank| <∞;

R2) lim
n
ank = 0, for each k;

R3) lim
n

∑
k

ank = 1.

We first recall the following definition

Definition 2.1. [25] Let A = (ank) be a non-negative regular summability matrix.
Then a real sequence x = {xk}k∈N is said to be AI-summable to a number L if for

every ε > 0, {n ∈ N : |An(x)− L| ≥ ε} ∈ I where An(x) =

∞∑
k=1

ankxk.

Thus x = {xk}k∈N is AI-summable to a number L if and only if {An(x)}n∈N is

I-convergent to L. In this case, we write I − lim
n

∑
k∈N

ankxk = L.

It should be noted that for I = Id, the set of all subsets of N with natural
density zero, AI-summability reduces to statistical A-summability [12].

We now establish a Korovkin type approximation theorem for positive linear
operators on UC∗[0,∞), the Banach space of all real valued uniform continuous func-
tions on [0,∞) with the property that lim

x→∞
f(x) exists finitely for any f ∈ UC∗[0,∞).

If L be a positive linear operator then L(f) ≥ 0 for any positive function f. Also we
denote the value of L(f) at a point x ∈ [0,∞) by L(f ;x).

Theorem 2.2. Let {Ln} be a sequence of positive linear operators from UC∗[0,∞)
into itself and let, A = (ajn) be a non-negative regular summability matrix then for
all f ∈ UC∗[0,∞)

I − lim
n

∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥
∗

= 0

if and only if the following statements hold

I − lim
n

∥∥∥∥∥
∞∑
k=1

ankLk(e−pt)− e−px
∥∥∥∥∥
∗

= 0, p = 0, 1, 2.
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Proof. Since the necessity is clear, then it is enough to proof sufficiency. Our objective
is to show that for given ε > 0 there exist constants C0 , C1 , C2 (depending on ε > 0)
such that ∥∥∥∥∥

∞∑
k=1

ankLk(f)− f

∥∥∥∥∥
∗

≤ ε+ C2

∥∥∥∥∥
∞∑
k=1

ankLk(e−2t)− e−2x
∥∥∥∥∥
∗

+ C1

∥∥∥∥∥
∞∑
k=1

ankLk(e−t)− e−x
∥∥∥∥∥
∗

+ C0

∥∥∥∥∥
∞∑
k=1

ankLk(1)− 1

∥∥∥∥∥
∗

.

If this is done then our hypothesis implies that for any ε > 0,{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥ ≥ ε
}
∈ I.

Let f ∈ UC∗[0,∞) then ∃ a constant M such that | f(x) |≤ M for each x ∈ [0,∞).
Let ε be an arbitrary positive number. By hypothesis we may find δ := δ(ε) > 0 such
that for every t, x ∈ [0,∞), | e−t − e−x |< δ implies | f(t)− f(x) |< ε. We can write
| f(t)− f(x) |< 2M ∀ t, x ∈ [0,∞). Also if | e−t − e−x |≥ δ then

| f(t)− f(x) |< 2M

δ2
(e−t − e−x)2.

Then for all t, x ∈ [0,∞),

| f(t)− f(x) |< ε+
2M

δ2
(e−t − e−x)2.

Then for n ∈ N, using the linearity and the positivity of the operators Ln,∣∣∣∣∣
∞∑
k=1

ankLk(f(t);x)− f(x)

∣∣∣∣∣ ≤
∞∑
k=1

ankLk(| f(t)− f(x) |;x)

+ | f(x) |

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣
≤
∞∑
k=1

ankLk(ε+
2M

δ2
(e−t − e−x)2;x)+ | f(x) |

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣
≤ ε+ (ε+M)

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣+
2M

δ2

∞∑
k=1

ankLk((e−t − e−x)2;x)

≤ ε+ (ε+M)

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣+
2M

δ2
| e−2x |

∣∣∣∣∣
∞∑
k=1

ankLk(1;x)− 1

∣∣∣∣∣
+

2M

δ2

∣∣∣∣∣
∞∑
k=1

ankLk(e−2t;x)− e−2x
∣∣∣∣∣+

4M

δ2
| e−x |

∣∣∣∣∣
∞∑
k=1

ankLk(e−t;x)− e−x
∣∣∣∣∣
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where | e−kt |≤ 1 ∀ t ∈ [0,∞) and k ∈ N.
Then taking supremum over x ∈ [0,∞) we have∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥
∗

≤ ε+K

{∥∥∥∥∥
∞∑
k=1

ankLk(1)− 1

∥∥∥∥∥
∗

+

∥∥∥∥∥
∞∑
k=1

ankLk(e−t)− e−x
∥∥∥∥∥
∗

+

∥∥∥∥∥
∞∑
k=1

ankLk(e−2t)− e−2x
∥∥∥∥∥
∗

}
where

K = max

{
ε+M +

2M

δ2
,

2M

δ2
,

4M

δ2

}
.

For a given r > 0 choose ε > 0 such that ε < r let us define the following sets

D =

{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥
∗

≥ r

}

D1 =

{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(1)− 1

∥∥∥∥∥
∗

≥ r − ε
3K

}

D2 =

{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(e−t)− e−x
∥∥∥∥∥
∗

≥ r − ε
3K

}

D3 =

{
n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(e−2t)− e−2x
∥∥∥∥∥
∗

≥ r − ε
3K

}
.

It follows that D ⊂ D1 ∪D2 ∪D3. Since from hypotheses D1, D2, D3 are belong to
I so D ∈ I i.e. {

n ∈ N :

∥∥∥∥∥
∞∑
k=1

ankLk(f)− f

∥∥∥∥∥ ≥ ε
}
∈ I

and this completes the proof. �

3. A Korovkin type approximation for a sequence of positive linear
operators of two variables

Throughout this section I denotes the non-trivial strongly admissible ideal on
N×N. Let A = (ajkmn) be a four dimensional summability matrix. For a given double
sequence {xmn}m,n∈N, the A-transform of x, denoted by Ax := ((Ax)jk), is given by

(Ax)jk =
∑

(m,n)∈N2

ajkmnxmn

provided the double series converges in Pringsheim sense for every (j, k) ∈ N2. In
1926, Robison [21] presented a four dimensional analog of the regularity by consider-
ing an additional assumption of boundedness. This assumption was made because a
convergent double sequence is not necessarily bounded.
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Recall that a four dimensional matrix A = (ajkmn) is said to be RH-regular if it
maps every bounded convergent double sequence into a convergent double sequence
with the same limit. The Robison-Hamilton conditions state that a four dimensional
matrix A = (ajkmn) is RH-regular if and only if

(i) lim
j,k

ajkmn = 0 for each (m,n) ∈ N2,

(ii) lim
j,k

∑
(m,n)∈N2

ajkmn = 1,

(iii) lim
j,k

∑
m∈N
|ajkmn| = 0 for each n ∈ N,

(iv) lim
j,k

∑
n∈N
|ajkmn| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2

|ajkmn| is convergent for each (j, k) ∈ N2,

(vi) there exist finite positive integers M0 and N0 such that
∑

m,n>N0

|ajkmn| < M0

holds for every (j, k) ∈ N2.
Let A = (ajkmn) be a nonnegative RH-regular summability matrix and let K ⊂ N2.
Then the A-density of K is given by

δ
(2)
A {K} = lim

j,k

∑
(m,n)∈K

ajkmn.

Recall the following definition

Definition 3.1. [10] Let A = (ajkmn) be a nonnegative RH-regular summability ma-
trix. Then a real double sequence x = {xmn}m,n∈N is said to be AI2 -summable to a
number L if for every ε > 0,

{
(j, k) ∈ N2 : |(Ax)j,k − L| ≥ ε

}
∈ I.

Thus x = {xmn}m,n∈N is AI2 -summable to a number L if and only if (Ax)j,k is

I-convergent to L. In this case, we write I2 − lim
j,k

∑
(m,n)∈N2

ajkmnxmn = L.

It should be noted that, if we take I = Id, the set of all subsets of N × N
with natural density zero, then AI2 -summability reduces to the notion of statistical
A-summability for double sequence [2].

We now establish the Korovkin type approximation theorem for a double se-
quence of positive linear operators on UC∗ ([0,∞)× [0,∞)), the Banach space of all
real valued uniform continuous functions defined on [0,∞)× [0,∞) with the property
that lim

(x,y)→(∞,∞)
f(x, y) exists finitely for any f ∈ UC∗ ([0,∞)× [0,∞)) endowed with

the supremum norm ||f ||∗ = sup
x,y∈[0,∞)

|f(x, y)|, in AI2 -summability method. If L be a

positive linear operator then L(f) ≥ 0 for any positive function f. Also we denote the
value of L(f) at a point (x, y) ∈ [0,∞)× [0,∞) by L(f ;x, y).

Theorem 3.2. Assume K := [0,∞) × [0,∞) and let {Lmn}m,n∈N be a sequence of
positive linear operators on UC∗ (K), the Banach space of all real valued uniform
continuous functions defined on K with the property that lim

(x,y)→(∞,∞)
f(x, y) exists
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finitely for any f ∈ UC∗ (K) and let A = (ajkmn) be a non-negative RH-regular
summability matrix. Then for any f ∈ UC∗ (K),

I2 − lim
j,k

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

= 0

is satisfied if the following hold

I2 − lim
j,k

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(fi)− fi

∥∥∥∥∥∥
∗

= 0, i = 0, 1, 2, 3 (3.1)

where f0 = 1, f1 = e−x, f2 = e−y, f3 = e−2x + e−2y.

Proof. Assume that (3.1) holds. Let f ∈ UC∗ (K). Our objective is to show that for
given ε > 0 there exist constants C0, C1, C2, C3 (depending on ε > 0) such that∥∥∥∥∥∥

∑
(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

≤ ε+

3∑
i=0

Ci

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(fi)− fi

∥∥∥∥∥∥
∗

.

If this is done then our hypothesis implies that for any ε > 0 ,

{(j, k) ∈ N2 : ‖
∑

(m,n)∈N2

ajkmnLmn(f)− f‖∗ ≥ ε} ∈ I.

To this end, start by observing that for each (u, v) ∈ K the function 0 ≤ guv ∈ UC∗ (K)
defined by

guv(s, t) = (e−s − e−u)2 + ((e−t − (e−v)2

satisfies

guv = (e−x)2 + (e−y)2 − 2e−ue−x − 2e−ve−y + (e−u)2 + (e−v)2.

Since each Lmn is a positive operator, Lmnguv is a positive function. In particular,
we have for each (u, v) ∈ K,

0 ≤
∑

(m,n)∈N2

ajkmnLmn(guv)(u, v)

=

 ∑
(m,n)∈N2

ajkmnLmn

((
e−x

)2
+
(
e−y
)2−2e−ue−x − 2e−ve−y +

(
e−u

)2
+
(
e−v
)2

;u, v
)

=

 ∑
(m,n)∈N2

ajkmnLmn

((
e−x

)2
+
(
e−y
)2

;u, v
)
−
(
e−u

)2 − (e−v)2


−2e−u

 ∑
(m,n)∈N2

ajkmnLmn

(
e−x;u, v

)
− e−u


−2e−v

 ∑
(m,n)∈N2

ajkmnLmn

(
e−y;u, v

)
− e−v


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+
{(
e−u

)2
+
(
e−v
)2} ∑

(m,n)∈N2

ajkmnLmn(f0)− f0


≤

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f3)− f3

∥∥∥∥∥∥
∗

+ 2e−u

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f1)− f1

∥∥∥∥∥∥
∗

+2e−v

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f2)− f2

∥∥∥∥∥∥
∗

+
{(
e−u

)2
+
(
e−v
)2}∥∥∥∥∥∥

∑
(m,n)∈N2

ajkmnLmn(f0)− f0

∥∥∥∥∥∥
∗

.

Let f ∈ UC∗ (K). Then there exists a constant M such that |f(x, y)| ≤ M for each
(x, y) ∈ K. Let ε > 0 be arbitrary. Then by the uniform continuity of f on K there
exists a δ = δ(ε) > 0 such that if | e−x − e−u |< δ and | e−y − e−v |< δ then

| f(x, y)− f(u, v) |< ε+
2M

δ2

[(
e−x − e−u

)2
+
(
e−y − e−v

)2]
for all (x, y), (u, v) ∈ K.
Since each Lmn is positive and linear it follows that

−ε
∑

(m,n)∈N2

ajkmnLmn(f0)− 2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv)

≤
∑

(m,n)∈N2

ajkmnLmn(f)− f(u, v)Lmn(f0)

≤ ε
∑

(m,n)∈N2

ajkmnLmn(f0) +
2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv).

Therefore ∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnLmn(f ;u, v)− f(u, v)Lmn(f0;u, v)

∣∣∣∣∣∣
≤ ε+ ε

 ∑
(m,n)∈N2

ajkmnLmn(f0;u, v)− f0(u, v)

+
2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv)

≤ ε+ ε

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f0)− f0

∥∥∥∥∥∥+
2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv).

In particular, note that ∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnLmn(f ;u, v)− f(u, v)

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnLmn(f ;u, v)− f(u, v)
∑

(m,n)∈N2

ajkmnLmn(f0;u, v)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnf(u, v)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

(m,n)∈N2

ajkmnLmn(f0;u, v)− f0(u, v)

∣∣∣∣∣∣
≤ ε+ (M + ε)

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f0)− f0

∥∥∥∥∥∥
∗

+
2M

δ2

∑
(m,n)∈N2

ajkmnLmn(guv)

which implies∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

≤ ε+ C3

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f3)− f3

∥∥∥∥∥∥
∗

+ C2

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f2)− f2

∥∥∥∥∥∥
∗

+ C1

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f1)− f1

∥∥∥∥∥∥
∗

+ C0

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f0)− f0

∥∥∥∥∥∥
∗

where there exist such A and B such that

C0 =

[
2M

δ2
{(e−A)2 + (e−B)2}+M + ε

]
, C1 =

4M

δ2
e−A,

C2 =
4M

δ2
e−B and C3 =

2M

δ2
.

i.e.∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)−f

∥∥∥∥∥∥
∗

≤ ε+C

3∑
i=0

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(fi)−fi

∥∥∥∥∥∥
∗

, i = 0, 1, 2, 3

where C = max{C0, C1, C2, C3}.
For a given γ > 0, choose ε > 0 such that ε < γ. Now let

U =

(j, k) ∈ N2 :

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

≥ γ


and

Ui =

(j, k) ∈ N2 :

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(fi)− fi

∥∥∥∥∥∥
∗

≥ γ − ε
4C

 , i = 0, 1, 2, 3.
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It follows that U ⊂
3⋃

i=0

Ui. By hypotheses each Ui ∈ I, i = 0, 1, 2, 3 and consequently

U ∈ I i.e. (j, k) ∈ N2 :

∥∥∥∥∥∥
∑

(m,n)∈N2

ajkmnLmn(f)− f

∥∥∥∥∥∥
∗

≥ γ

 ∈ I.
This completes the proof of the theorem. �

Remark 3.3. We now show that our theorem is stronger than the statistical A-
summable version [7] (and so the classical version). Let I be a non-trivial strongly
admissible ideal of N × N. Choose an infinite subset C = {(pi, qi) : i ∈ N} (where
pi 6= qi, p1 < p2 < ..., and q1 < q2 < ...) from I \ Id where Id denotes the set of all
subsets of N× N with natural density zero. Let {umn}m,n∈N be given by

umn =

{
1 if m,n are even

0 otherwise.

Let A = (ajkmn) be given by

ajkmn =


1 if j = pi, k = qi,m = 2pi, n = 2qi for some i ∈ N
1 if (j, k) 6= (pi, qi), for any i,m = 2j + 1, n = 2k + 1

0 otherwise.

Now

yj,k =
∑

(m,n)∈N2

ajkmnumn =

{
1 if j = pi, k = qi for some i ∈ N
0 if (j, k) 6= (pi, qi), for any i ∈ N.

Let ε > 0 be given. Then {(j, k) ∈ N2 : |yj,k − 0| ≥ ε} = C ∈ I. Then the sequence
{umn}m,n∈N is AI2 -summable to 0. Evidently this sequence is not statistically A-
summable to 0.

Let K = [0,∞)× [0,∞). We consider the following Baskakov operators

Bmn : UC∗(K)→ UC∗(K)

defined by

Bmn(f ;x, y)=

∞∑
j=0

∞∑
k=0

f

(
j

n
,
k

n

)(
m− 1 + j

j

)(
n− 1 + k

k

)
(1+x)−m−j(1+y)−n−kxjyk.

We now consider the double sequence {Lmn}m,n∈ N of positive linear operators defined
by

Lmn(f ;x, y) = (1 + umn)Bmn(f ;x, y).
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Then observe that

Lmn(f0;x, y) = (1 + umn)f0(x, y),

Lmn(f1;x, y) = (1 + umn)
(

1 + x− xe− 1
m

)−m
,

Lmn(f2;x, y) = (1 + umn)
(

1 + y − ye− 1
n

)−n
,

Lmn(f3;x, y) = (1 + umn)

[(
1 + x− xe− 1

m

)−m
+
(

1 + y − ye− 1
n

)−n]
.

Now as A is a nonnegative RH-regular summability matrix and {umn}m,n∈N is AI2 -
summable to 0 then for any ε > 0,(j, k) ∈ N2 : ||

∑
(m,n)∈N2

ajkmnLmn(fi)− fi||∗ ≥ ε

 ∈ I, i = 0, 1, 2, 3.

Therefore by previous theorem(j, k) ∈ N2 : ||
∑

(m,n)∈N2

ajkmnLmn(f)− f ||∗ ≥ ε

 ∈ I.
But since {umn}m,n∈N is not usual convergent and statistical A-summable so we
can say that the classical version and statistical A-summable version of the previous
theorem do not work for the operator defined above.
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A−Summation process in the space of locally
integrable functions
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Abstract. In this paper, using the concept of summation process, we give a Ko-
rovkin type approximation theorem for a sequence of positive linear operators
acting from Lp,q (loc) , the space of locally integrable functions, into itself. We
also study rate of convergence of these operators.
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1. Introduction

Approximation theory has many connections with theory of polynomial approxi-
mation, functional analysis, numerical solutions of differential and integral equations,
summability theory, measure theory and probability theory ([1], [14], [7]).

A Korovkin type theorem for positive linear operators acting from Lp (a, b) to
Lp (a, b) was studied in [5], [8], [11] and [20]. Note that all the results just mentioned
are devoted to the case of a finite interval (a, b). Roughly speaking a Korovkin type
approximation theorem provides conditions for whether a given sequence of positive
linear operators converges strongly to the identity operator [1], [12] and [14]. These
theorems exhibit a variety of test functions which guarantee that convergence property
holds on the whole space provided it holds on them ([1], [14]). If the sequence of
positive linear operators does not converge, then it might be useful to use matrix
summability methods. The main aim of using summability methods has always been to
make a non-convergent sequence to converge. This was the motivation behinde Fejer’s
famous theorem showing that Cesàro method being effective in making the Fourier
series of a continuous periodic function to converge ([22]) . Summability methods are
also considered in physics ([6]) to make a nonconvergent sequence to converge.

In this paper, using matrix summability methods which includes both conver-
gence and almost convergence, we obtain a Korovkin type approximation theorem of
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a function f in Lp,q (loc). We also give rate of convergence in Lp,q (loc) approxima-
tion by means of the modulus of continuity. We recall that some results concerning
the approximation in Lp,q (loc) may be found in [9], [10], [18], [19], [21]. Also Lp,q ap-
proximation via Abel convergence has been studied in [4]. We remark that matrix
summability methods are quite effective, in summing sequences of nonlinear integral
operators ([2]) .

First of all, we recall some notation and basic definitions used in this paper.
Let q(x) = 1 + x2 ; −∞ < x < ∞ . For h > 0, by Lp,q(loc) we will denote the

space of measurable functions f satisfying the inequality, 1

2h

x+h∫
x−h

|f(t)|p dt

1/p

≤Mf q (x) ,−∞ < x <∞ (1.1)

where p ≥ 1 and Mf is a positive constant which depends on the function f.
It is known [13] that Lp,q(loc) is a linear normed space with norm,

‖f‖p,q = sup
−∞<x<∞

(
1
2h

x+h∫
x−h
|f(t)|p dt

)1/p

q (x)
. (1.2)

where ‖f‖p,q may also depend on h > 0. To simplify the notation, we need the
following. For any real numbers a and b put

‖f ;Lp (a, b)‖p,q :=

 1

b− a

b∫
a

|f(t)|p dt

1/p

,

‖f ;Lp,q (a, b)‖p,q = sup
a<x<b

‖f ;Lp (x− h, x+ h)‖p,q
q(x)

,

‖f ;Lp,q (|x| ≥ a)‖p,q = sup
|x|≥a

‖f ;Lp (x− h, x+ h)‖p,q
q(x)

.

With this notation the norm in Lp,q (loc) may be written in the form

‖f‖p,q = sup
x∈R

‖f ;Lp (x− h, x+ h)‖
q(x)

.

It is known [13] that Lkp,q (loc) is the subspace of all functions f ∈ Lp,q (loc) for which
there exists a constant kf such that

lim
|x|→∞

‖f − kfq;Lp (x− h, x+ h)‖
q(x)

= 0.

As usual, if T is a positive linear operator from Lp,q (loc) into Lp,q (loc), then the

operator norm ‖T‖ is given by ‖T‖ := sup
f 6=0

‖Tf‖p,q
‖f‖p,q

.

Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with nonnegative

real entries. A sequence {Tj} of positive linear operators from Lp,q (loc) into itself is



A−Summation process in the space of locally integrable functions 257

called a strong A−summation process in Lp,q (loc) if {Tjf} is strongly A−summable
to f for every f ∈ Lp,q (loc), i.e.,

lim
k

∑
j

ankj ‖Tjf − f‖p,q = 0, uniformly in n.

Some results concerning strong summation processes in Lp,q (loc) may be found in [3].

2. A−summation process in Lp,q (loc)

The main aim of the present work is to study a Korovkin type approximation
theorem for a sequence of positive linear operators acting on the space Lp,q (loc)
by using matrix summability method which includes both convergence and almost
convergence. We also present an example of positive linear operators which verifies
our Theorem 2.6 but does not verify the classical one (see Theorem 2.2 below).

Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with nonnegative

real entries. A sequence {Tj} of positive linear operators from Lp,q (loc) into itself is
called an A−summation process in Lp,q (loc) if {Tjf} is A−summable to f for every
f in Lp,q (loc) , i.e.,

lim
k

∥∥∥∥∥∥
∑
j

ankjTjf − f

∥∥∥∥∥∥
p,q

= 0, uniformly in n, (2.1)

where it is assumed that the series converges for each k, n and f. Some results con-
cerning summation processes on some other spaces may be found in [16], [17] and
[20].

The next result establishes a relationship between strong summation process and
summation process in Lp,q (loc) .

Proposition 2.1. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries and assume that

lim
k

sup
n

∑
j

a
(n)
kj = 1.

Let {Tj} be a sequence of positive linear operators from Lp,q (loc) into itself If {Tj}
is a strong A−summation process in Lp,q (loc) then {Tj} is an A−summation process
in Lp,q (loc) .

Proof. The proof may be obtained by using the idea given in [16].
Throughout the paper let

B
(n)
k (f) = B

(n)
k (f ;x) :=

∑
j

ankjTj (f ;x)

where we assume that the series on the right is convergent for each k, n ∈ N and
f ∈ Lp,q (loc) .

We recall the following result of [13] that we need in the sequel.
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Theorem 2.2. Let {Tj} be a sequence of positive linear operators from Lp,q (loc) into
itself and satisfy the conditions

i) The sequence (Tj) is uniformly bounded, that is, ‖Tj‖ ≤ C < ∞, where C is
a constant independent of j,

ii) For fi (y) = yi, i = 0, 1, 2;

lim
j
‖Tj (fi;x)− fi (x)‖p,q = 0.

Then

lim
j
‖Tjf − f‖p,q = 0

for each function f ∈ Lkp,q (loc) , (see [13]) .

We show that the Korovkin type theorem holds in the subspace Lkp,q (loc) . First
we give the following

Lemma 2.3. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with non-

negative real entries. Let {Tj} be a sequence of positive linear operators from Lp,q (loc)
into itself satisfying the condition

lim
k

sup
n

∥∥∥B(n)
k (fi;x)− fi (x)

∥∥∥
p,q

= 0.

Then, for any continuous and bounded function f on the real axis, we have

lim
k

sup
n

∥∥∥B(n)
k (f ;x)− f (x) ;Lp,q (a, b)

∥∥∥ = 0

where a and b are any real numbers.

Proof. By the uniform continuity of f on the interval [a, b] and by the positivity and
linearity of Tj , we may write that∥∥∥B(n)

k (f (t) ;x)− f (x) ;Lp,q (a, b)
∥∥∥ ≤ ∥∥∥B(n)

k (f (t) + f (x)− f (x) ;x)− f (x)
∥∥∥
p,q

≤
∥∥∥B(n)

k (|f (t)− f (x)| ;x)
∥∥∥
p,q

+ |f (x)|
∥∥∥B(n)

k (1;x)− 1
∥∥∥
p,q

< ε+
2M

δ2

∥∥∥B(n)
k (t2;x)− x2

∥∥∥
p,q

+
4Mc

δ2

∥∥∥B(n)
k (t;x)− x

∥∥∥
p,q

+

(
2Mc2

δ2
+ ε+M

)∥∥∥B(n)
k (1;x)− 1

∥∥∥
p,q
.

Hence the proof is completed.

Theorem 2.4. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries. Let {Tj} be a sequence of positive linear operators from
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Lp,q (loc) into itself. Assume that

H := sup
n,k

∑
j

ank,j ‖Tj‖ <∞. (2.2)

Then {Tj} is an A − summation process in Lkp,q (loc) , i.e.,for any function f ∈
Lkp,q (loc)

lim
k

sup
n

∥∥∥B(n)
k (f ;x)− f (x)

∥∥∥
p,q

= 0

if and only if

lim
k

sup
n

∥∥∥B(n)
k (fi;x)− fi (x)

∥∥∥
p,q

= 0

where fi (y) = yi for i = 0, 1, 2.

Proof. We follow [13] up to a certain stage. If f ∈ Lkp,q (loc) then f−kf .q ∈ L0
p,q (loc) .

So it is sufficient to prove the theorem for the function f ∈ L0
p,q (loc) . For ε > 0, there

exists a point x0 such that the inequality 1

2h

x+h∫
x−h

|f (t)|p dt

1/p

< εq (x) (2.3)

holds for all x, |x| ≥ x0. By the well known Lusin theorem, there exists a continuous
function ϕ on the finite interval [−x0 − h, x0 + h] such that the inequality

‖f − ϕ;Lp (−x0, x0)‖ < ε (2.4)

is fulfilled. Setting

δ < min

{
2hεp

Mp (x0)
, h

}
, (2.5)

where M (x0) = max

{
max

|x|≤x0+h
|ϕ (x)| , 1

}
, we define a continuous function g by

g (x) =

 ϕ (x) , if |x| ≤ x0 + h
0, if |x| ≥ x0 + h+ δ
linear, otherwise.

Then by (2.3), (2.4), (2.5) and the Minkowski inequality, we obtain

‖f − g‖p,q < ε (2.6)

for any ε > 0 (see [13]).

Now we can find a point x1 > x0 such that

q (x1) >
M (x0)

ε
and g (x) = 0 for |x| > x1, (2.7)
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where M (x0) is defined above. Then by (2.4), (2.5), (2.6) and by Lemma 2.3 we get∥∥∥B(n)
k (f ;x)− f (x)

∥∥∥
p,q
≤
∥∥∥B(n)

k (f − g)
∥∥∥
p,q

+
∥∥∥B(n)

k g − g
∥∥∥
p,q

+ ‖f − g‖p,q

≤ ε
∑
j

a
(n)
kj ‖Tj‖p,q + ε+

∥∥∥B(n)
k g − g

∥∥∥
p,q

≤ ε

∑
j

a
(n)
kj ‖Tj‖p,q + 1

+
∥∥∥B(n)

k g − g;Lp,q (−x1, x1)
∥∥∥

+
∥∥∥B(n)

k g − g;Lp,q (|x| ≥ x1)
∥∥∥

≤ ε

∑
j

a
(n)
kj ‖Tj‖p,q + 2

+
∥∥∥B(n)

k g;Lp,q (|x| ≥ x1)
∥∥∥ .

(2.8)

Since |g (x)| ≤M (x0) for all x ∈ R, we can write∥∥∥B(n)
k g;Lp,q (|x| ≥ x1)

∥∥∥
p,q
≤M (xo)

∥∥∥B(n)
k 1;Lp,q (|x| ≥ x1)

∥∥∥
≤M (xo)

∥∥∥B(n)
k 1− 1;Lp,q (|x| ≥ x1)

∥∥∥
+M (xo) ‖1;Lp,q (|x| ≥ x1)‖

≤M (xo)
∥∥∥B(n)

k 1− 1
∥∥∥
p,q

+
M (xo)

q (x1)
.

Considering hypothesis and (2.7) we get by (2.8) that

lim
k

sup
n

∥∥∥B(n)
k f − f

∥∥∥
p,q

= 0.

The next result shows that Korovkin type theorem does not hold in the whole space
Lp,q (loc) .

Theorem 2.5. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries. Let {Tj} be a sequence of positive linear operators from
Lp,q (loc) into itself satisfying

lim
k

sup
n

∥∥∥∥∥∥
∑
j

a
(n)
kj Tj(fi;x)− fi (x)

∥∥∥∥∥∥
p,q

= 0.

Then there exists a function f∗ in Lp,q (loc) for which

lim
k

sup
n

∥∥∥∥∥∥
∑
j

a
(n)
kj Tjf

∗ − f∗
∥∥∥∥∥∥
p,q

≥ 21−
1
p . (2.9)
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Proof. We consider the sequence of operators Tj given in [13] (for j = 1, 2, . . .):

Tj (f ;x) =


x2

(x+ h)
2 f (x+ h) , x ∈ [(2j − 1)h, (2j + 1)h)

f (x) , otherwise.

As observed in [13] that Tj : Lp,q (loc)→ Lp,q (loc) . Assume now that

A :=
{
A(n)

}
=
{
a
(n)
kj

}
is a sequence of infinite matrices defined by

a
(n)
kj =


1

k + 1
, n ≤ j ≤ n+ k

0, otherwise.

It is shown in [13] that

‖Tjfi − fi‖p,q → 0, (as j →∞) .

Now it is easy to verify that, for each i = 0, 1, 2∥∥∥∥∥∥ 1

k + 1

k+n∑
j=n

Tjfi − fi

∥∥∥∥∥∥
p,q

=

∥∥∥∥∥∥ 1

k + 1

k+n∑
j=n

Tjfi −
1

k + 1

k+n∑
j=n

fi

∥∥∥∥∥∥
p,q

=

∥∥∥∥∥∥ 1

k + 1

k+n∑
j=n

(Tjfi − fi)

∥∥∥∥∥∥
p,q

≤ 1

k + 1

k+n∑
j=n

‖Tjfi − fi‖p,q

→ 0 (k →∞, uniformly in n).

Consider the following function f∗ given in [13] :

f∗ (x) =


x2, if x ∈

∞⋃
k=1

[(2k − 1)h, 2kh)

−x2, if x ∈
∞⋃
k=0

[2kh, (2k + 1)h)

0, if x < 0.
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Then f∗ ∈ Lp,q (loc) and we get

∥∥∥∥∥∥ 1

k + 1

k+n∑
j=n

Tjf
∗ − f∗

∥∥∥∥∥∥
p,q

≥ sup
x∈[(2n−1)h,2(n+k)h]

(
1
2h

x+h∫
x−h

∣∣∣∣∣ 1
k+1

k+n∑
j=n

Tjf
∗ − f∗

∣∣∣∣∣
p

dt

) 1
p

q(x)

≥

(
1
2h

2nh+h∫
2nh−h

∣∣∣∣∣ 1
k+1

k+n∑
j=n

ξ2

(ξ+h)2
f∗ (ξ + h)− f∗ (ξ)

∣∣∣∣∣
p

dξ

) 1
p

q (2nh)

>

(
1
2h2p ((2n− 1)h)

2p
h
) 1

p

1 + 4n2h2

=
21−

1
p (2n− 1)

2
h2

1 + 4n2h2
.

On applying the operator lim
k

sup
n

on both sides one can see that

lim
k

sup
n

∥∥∥∥∥∥ 1

k + 1

k+n∑
j=n

Tjf
∗ − f∗

∥∥∥∥∥∥
p,q

≥ 21−1/p

Therefore the theorem is proved.

In the whole space Lp,q (loc) we have the following

Theorem 2.6. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries for which (2.2) holds. Let {Tj} be a sequence of positive
linear operators from Lp,q (loc) into itself. Assume that

lim
k

sup
n

∥∥∥B(n)
k (fi;x)− fi (x)

∥∥∥
p,q

= 0

where fi (y) = yi for i = 0, 1, 2. Then for any functions f ∈ Lp,q (loc) we have

lim
k

sup
n

sup
x∈R

∥∥∥B(n)
k f − f ;Lp (x− h, x+ h)

∥∥∥
q∗ (x)

 = 0

where q∗ is a weight function such that lim
|x|→∞

1+x2

q∗(x) = 0.

Proof. By hypothesis, given ε > 0, there exists x0 such that for all x with |x| ≥ x0 we
have

1 + x2

q∗ (x)
< ε. (2.10)
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Let f ∈ Lp,q (loc). Then, for all n, k we get

γ
(n)
k :=

∥∥∥B(n)
k f − f ;Lp (|x| > x0)

∥∥∥
≤
∥∥∥B(n)

k f − f
∥∥∥
p,q

≤
∑
j

a
(n)
k,j ‖Tjf‖p,q + ‖f‖p,q

≤ ‖f‖p,q

∑
j

a
(n)
k,j ‖Tj‖p,q + 1

 < N, say.

Hence we have sup
n,k

γ
(n)
k < ∞. By Lusin’s theorem we can find a continuous function

ϕ on [−x
0
− h, x0 + h] such that

‖f − ϕ;Lp (−x0 − h, x0 + h)‖ < ε. (2.11)

Now we consider the function G defined in [13] given by

G (x) :=

 ϕ (−x0 − h) , x ≤ −x0 − h
ϕ (x0) , |x| < x0 + h
ϕ (x0 + h) , x ≥ x0 + h.

We see that G is continuous and bounded on the whole real axis.
Now let f ∈ Lp,q (loc) . Then we get for all n, k that

β
(n)
k :=

∥∥∥∥∥∥
∑
j

a
(n)
k,jTjf − f ;Lp,q (−x0, x0)

∥∥∥∥∥∥
≤ ‖f −G;Lp,q (−x0 − h, x0 + h)‖

∑
j

a
(n)
k,j ‖Tj‖p,q + 1


+

∥∥∥∥∥∥
∑
j

a
(n)
k,jTjG−G;Lp,q (−x0, x0)

∥∥∥∥∥∥ .
Hence by the hypothesis and Lemma 2.3 we have

lim
k

sup
n
β
(n)
k = 0. (2.12)

On the other hand, a simple calculation shows that

u
(n)
k :=

∥∥∥∥∥∥
∑
j

a
(n)
k,jTjf − f

∥∥∥∥∥∥
p,q∗

< β
(n)
k sup
|x|<x0

q (x)

q∗ (x)
+ γ

(n)
k sup
|x|≥x0

q (x)

q∗ (x)

< β
(n)
k M + εγ

(n)
k , (for some M > 0). (2.13)
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It follows from (2.10), (2.11), (2.12), (2.13) and Lemma 2.3 that

u
(n)
k < q (x0) ‖f −G;Lp,q (−x0 − h, x0 + h)‖

∑
j

a
(n)
k,j ‖Tj‖p,q + 1


+ q (x0)

∥∥∥∥∥∥
∑
j

a
(n)
k,jTjG−G;Lp,q (−x0, x0)

∥∥∥∥∥∥+ εN

= Kε+ q (x0)

∥∥∥∥∥∥
∑
j

a
(n)
k,jTjG−G;Lp,q (−x0, x0)

∥∥∥∥∥∥
where K := Mq (x0) +N and M := H + 1. By Lemma 2.3 we get

lim
k

sup
n

sup
x∈R

∥∥∥B(n)
k f − f ;Lp (x− h, x+ h)

∥∥∥
p,q

q∗ (x)

 = 0.

Remark 2.7. We now present an example of a sequence of positive linear operators
which satisfies Theorem 2.6 but does not satisfy Theorem 2.2. Assume now that

A :=
{
A(n)

}
=
{
a
(n)
kj

}
is a sequence of infinite matrices defined by

a
(n)
k,j =

{
1
k+1 , n ≤ j ≤ n+ k

0, otherwise.

In this case A−summability method reduces to almost convergence, ([15]).

Let Tj : Lp,q (loc)→ Lp,q (loc) be given by

Tj (f ;x) =

{
x2

(x+h)2
f (x+ h) , x ∈ [(2j − 1)h, (2j + 1)h)

f (x) , otherwise.

The sequence {Tj} satisfies Theorem 1 in [13]. It is also shown in [13] that for all
j ∈ N, ‖Tjf‖p,q ≤ 4 ‖f‖p,q . Hence {Tj} is an uniformly bounded sequence of positive

linear operators from Lp,q (loc) into itself. Also

lim
k

sup
n

∥∥∥B(n)
k (fi;x)− fi (x)

∥∥∥
p,q

= 0

where fi (y) = yi for i = 0, 1, 2. Now we define {Pj} by

Pj (f ;x) = (1 + uj)Tj (f ;x)

where

uj =

{
1, j = 2n, n ∈ N
0, otherwise.

It is easy to see that {uj} is almost convergent to zero. Therefore the sequence of
positive linear operators {Pj} satisfies Theorem 2.6 but does not satisfy Theorem 2.2.
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3. Rates of convergence for A−summation process in Lp,q (loc)

In this section, using the modulus of continuity, we study rates of convergence
of operators given in Theorem 2.6.

We consider the following modulus of continuity:

w (f, δ) = sup
|x−y|≤δ

|f (y)− f (x)|

where δ is a positive constant, f ∈ Lp,q (loc) . It is easy to see that, for any c > 0 and
all f ∈ Lp,q (loc) ,

w (f, cδ) ≤ (1 + [c])w (f, δ) , (3.1)

where [c] is defined to be the greatest integer less than or equal to c.

We first need the following lemma

Lemma 3.1. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with non-

negative real entries. Let {Tj} be a sequence of positive linear operators from Lp,q (loc)
into itself. Then for each j ∈ N and δ > 0, and for every function f that is continuous
and bounded on the whole real axis, we have∥∥∥B(n)

k f − f ;Lp,q (a, b)
∥∥∥ ≤ w (f ; δ)

∥∥∥B(n)
k f0 − f0

∥∥∥
p,q

+ 2w (f ; δ) + C1

∥∥∥B(n)
k f0 − f0

∥∥∥
p,q

where f0 (t) = 1, ϕx (t) := (t− x)
2
, C1 = sup

a≤x≤b
|f (x)| and

δ := α
(n)
k =

√∥∥∥B(n)
k ϕx

∥∥∥
p,q
.

Proof. Let f be any continuous and bounded function on the real axis, and let x ∈ [a, b]
be fixed. Using linearity and monotonicity of Tj and for any δ > 0, by (3.1), we get∣∣∣B(n)

k (f ;x)− f (x)
∣∣∣ ≤ B(n)

k (|f (t)− f (x)| ;x) + |f (x)|
∣∣∣B(n)

k (f0;x)− f0 (x)
∣∣∣

B
(n)
k

(
w

(
f,
|t− x|
δ

δ

)
, x

)
+ |f (x)|

∣∣∣B(n)
k (f0;x)− f0 (x)

∣∣∣
≤ w (f, δ)B

(n)
k

(
1 +

[
t− x
δ

]
, x

)
+ |f (x)|

∣∣∣B(n)
k (f0;x)− f0 (x)

∣∣∣
≤ w (f, δ)

∣∣∣B(n)
k (f0;x)− f0 (x)

∣∣∣+ w (f, δ)

+
w (f, δ)

δ2

∣∣∣B(n)
k ϕx

∣∣∣+ |f (x)|
∣∣∣B(n)

k (f0;x)− f0 (x)
∣∣∣ .
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Now let C1 = sup
a<x<b

|f (x)| and δ := α
(n)
k =

√∥∥∥B(n)
k ϕx

∥∥∥
p,q
. Then we have

∥∥∥B(n)
k f − f

∥∥∥
p,q
≤ w (f, δ)

∥∥∥B(n)
k (f0;x)− f0 (x)

∥∥∥
p,q

+ 2w (f, δ)

+ C1

∥∥∥B(n)
k (f0;x)− f0 (x)

∥∥∥
p,q
.

Theorem 3.2. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entires. Let {Tj} be a sequence of positive linear operators from
Lp,q (loc) into itself. Assume that for each continuous and bounded function f on the
real line, the following conditions hold:

(i) limk supn

∥∥∥B(n)
k (f0;x)− f0 (x)

∥∥∥
p,q

= 0,

(ii) limk supn w (f, δ) = 0.

Then we have

lim
k

sup
n

∥∥∥B(n)
k f − f

∥∥∥
p,q

= 0.

Proof. Using Lemma 3.1 and considering (i) and (ii) , we have

lim
k

sup
n

∥∥∥B(n)
k f − f ;Lp,q (a, b)

∥∥∥ = 0

for all continuous and bounded functions on the real axis.

Theorem 3.3. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries for which (2.2) holds. Let {Tj} be a sequence of positive
linear operators from Lp,q (loc) into itself. For a given f ∈ Lp,q (loc) assume that

lim
k

sup
n

∥∥∥B(n)
k (fi;x)− fi (x)

∥∥∥
p,q

= 0

where fi (y) = yi for i = 0, 1, 2. If

(i) limk supn

∥∥∥B(n)
k (f0;x)− f0 (x)

∥∥∥
p,q

= 0,

(ii) limk supn w (G, δ) = 0

where G is given as in the proof of Theorem 2.6. Then we have

lim
k

sup
n

sup
x∈R

∥∥∥B(n)
k f − f ;Lp (x− h, x+ h)

∥∥∥
q∗ (x)

 = 0

where q∗ is a weight function such that

lim
|x|→∞

1 + x2

q∗ (x)
= 0.
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Proof. It is known from Theorem 2.6 that

u
(n)
k < q (x0) ‖f −G;Lp,q (−x0 − h, x0 + h)‖

∑
j

a
(n)
kj ‖Tj‖p,q + 1


+ q (x0)

∥∥∥B(n)
k G−G;Lp,q (−x0, x0)

∥∥∥+ εN

= Kε+ q (x0)
∥∥∥B(n)

k G−G;Lp,q (−x0, x0)
∥∥∥

where K := Mq (x0) +N and M := H + 1. Then by Lemma 3.1 and Theorem 3.2 we
get

u
(n)
k ≤ Kε+ q (x0)w (G; δ)

∥∥∥B(n)
k (f0;x)− f0 (x)

∥∥∥
p,q

+ 2q (x0)w (G; δ)

+ q (x0)C
′

1

∥∥∥B(n)
k (f0;x)− f0 (x)

∥∥∥
p,q

where C
′

1 := sup
−x0<x<x0

|G (x)| and the proof is completed.
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Constrained visualisation using

Shepard-Bernoulli interpolation operator

Teodora Cătinaş

Abstract. We consider Shepard-Bernoulli operator in order to solve a problem of

interpolation of scattered data that is constrained to preserve positivity, using

the technique described by K.W. Brodlie, M.R. Asim and K. Unsworth (2005).

We also give some numerical examples.
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Keywords: Scattered data, Shepard operator, constrained interpolation.

1. Introduction

The interpolation operators and the radial basis functions are the usual tools

used for approximating scattered data. Sometimes we may have data that have to pre-

serve some constraints, subject to certain physical laws (e.g., the densities, percentage

mass concentrations in a chemical reaction, volume and mass are always positive, see

[1], [2]); such cases require to impose some special conditions to the interpolants.

The Shepard method is a well suited method for multivariate interpolation of

very large scattered data sets, but it does not guarantee to preserve positivity.

In [3] and [4] there have been introduced some combined Shepard operators of

Bernoulli type which diminish the drawbacks of the Shepard operator. In [4] the com-

bined operators are obtained using the classical and the modified Shepard operator,

introduced, respectively, in [12] and [8]. They preserve the advantages and improve

the reproduction qualities, have better accuracy and better computational efficiency.

We recall some results from [6]. Bernoulli polynomials are defined by:
B0(x) = 1,

B′n(x) = nBn−1(x), n ≥ 1,∫ 1

0

Bn(x)dx = 0, n ≥ 1.

(1.1)
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For f ∈ Cm[a, b], the univariate Bernoulli interpolant is given by

(Bmf)(x) := Bm[f ; a, b] = f(a) +

m∑
i=1

Si

(
x− a
h

)
hi−1

i!
∆hf

(i−1)(a), (1.2)

where h = b− a and

Si

(
x− a
h

)
= Bi

(
x− a
h

)
−Bi, i ≥ 1, (1.3)

∆hf
(i−1)(a) = f (i−1)(b)− f (i−1)(a), 1 ≤ i ≤ m.

Let X = [a, b]× [c, d]. Denote h := b− a, k := d− c and consider the operators:

∆(h,0)f(x, y) := f(x+ h, y)− f(x, y), (1.4)

∆(0,k)f(x, y) := f(x, y + k)− f(x, y),

∆(h,k)f(x, y) := ∆(h,0)∆(0,k)f(x, y) = ∆(0,k)∆(h,0)f(x, y).

For f ∈ Cm,n(X), the Bernoulli interpolant on the rectangle is [6]:

(Bm,nf)(x, y) :=f(a, c) +
m∑
i=1

∆(h,0)f
(i−1,0)(a, c)

hi−1

i!
Si

(
x− a
h

)
(1.5)

+
n∑
j=1

∆(0,k)f
(0,j−1)(a, c)

kj−1

j!
Sj

(
y − c
k

)
+

m∑
i=1

n∑
j=1

∆(h,k)f
(i−1,j−1)(a, c)

hi−1kj−1

i!j!
Si

(
x− a
h

)
Sj

(
y − c
k

)
,

where Sk, k > 1 are given in (1.3). The polynomial from (1.5) satisfies the following

interpolation conditions [6]:

(Bm,nf)(a, c) = f(a, c), (1.6)

(∆(h,0)Bm,nf)(i,0)(a, c) = ∆(h,0)f
(i,0)(a, c), 0 ≤ i ≤ m− 1,

(∆(0,k)Bm,nf)(0,j)(a, c) = ∆(0,k)f
(0,j)(a, c), 0 ≤ j ≤ n− 1,

(∆(h,k)Bm,nf)(i,j)(a, c) = ∆(h,k)f
(i,j)(a, c), 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

The Shepard method, introduced in [12], is a well suited method for multivariate

interpolation of very large scattered data sets. The bivariate Shepard operator is

given by

(Sf) (x, y) =

N∑
i=0

Ai,µ (x, y) f (xi, yi) , (1.7)

where

Ai,µ (x, y) =

N∏
j=0
j 6=i

rµj (x, y)

N∑
k=0

N∏
j=0
j 6=k

rµj (x, y)

, (1.8)
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with µ > 0 and ri (x, y) are the distances between (x, y) and the given points (xi, yi),

i = 0, 1, ..., N .

In [4] we have introduced the bivariate Shepard-Bernoulli operator that preserve

the advantages and improve the reproduction qualities, have better accuracy and

computational efficiency:

(SBf)(x, y) =

N∑
i=0

Ai,µ(x, y)(Bim,nf)(x, y), µ > 0, (1.9)

where Bim,nf denotes the Bernoulli interpolant Bm,n[f ; (xi, yi), (hi, ki)] in the rectan-

gle with opposite vertices (xi, yi), (xi+1, yi+1), given by (1.5), having hi = xi+1 − xi,
ki = yi+1 − yi, i = 0, ..., N .

Remark 1.1. The operator SB has the following interpolation properties:

(SBf)(xp, yp) = f(xp, yp), 0 ≤ p ≤ N ;µ > m+ n− 2

and its degree of exactness is (m,n).

There are flat spots at each data point and the accuracy tends to decrease in

the areas where the interpolation nodes are sparse. This can be improved using the

local version of Shepard interpolation, introduced by Franke and Nielson in [8] and

improved in [7], [10], [11]:

(Sf) (x, y) =

N∑
i=0

Wi (x, y) f (xi, yi)

N∑
i=0

Wi (x, y)

, (1.10)

with

Wi (x, y) =

[
(Rw − ri)+

Rwri

]2
,

where Rw is a radius of influence about the node (xi, yi) and it is varying with i. This

is taken as the distance from node i to the jth closest node to (xi, yi) for j > Nw
(Nw is a fixed value) and j as small as possible within the constraint that the jth

closest node is significantly more distant than the (j−1)st closest node (see, e.g. [10]).

As it is mentioned in [9], this modified Shepard method is one of the most powerful

software tools for the multivariate interpolation of large scattered data sets.

With these assumptions, for f ∈ C(m,n)(X) and distinct points (xi, yi) ∈ X,

i = 0, ..., N, the Shepard-Bernoulli operator, given in (1.9), becomes (see [4]):

(SwBf) (x, y) :=

N∑
i=0

Wi (x, y) (Bim,nf)(x, y)

N∑
i=0

Wi (x, y)

. (1.11)
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2. Constraints of the Shepard-Bernoulli operator

There are two most important classes of interpolation methods of very large

scattered data sets: radial basis functions and Shepard type methods. Both are widely

used in practice.

There could be cases when the data are inherently positive. We will make the

modified Shepard-Bernoulli operator to preserve positivity by forcing the quadratic

basis functions to be positive, using the method introduced in [2].

The modified Shepard-Bernoulli operator preserves the advantages of the classi-

cal Shepard operator and improves the reproduction qualities, have better accuracy

and computational efficiency. There are cases when we have additional information to

take into account in reconstruction by interpolation as the case when the information

are the subject to certain physical laws that constrain their behavior. In [2] there are

mentioned the case when the information refer to some densities and the case when

data values are specified as fractions of a whole. In the first case the reconstruction

must be positive and in the second must be within [0, 1] to be realistic.

The classical Shepard operator S, given in (1.7) satisfies the following property:

min{f (xi, yi)} ≤ (Sf)(x, y) ≤ max{f (xi, yi)}, i = 0, ..., N. (2.1)

A consequence of this property is that a positive interpolant is guaranteed if the data

values are positive.

The modified Shepard operator, given in (1.10), has superior qualities but it

does not satisfy the property (2.1).

For a function f ∈ C(m,n)(X), X = [a, b]× [c, d] and a set of N+1 distinct points

(xi, yi) ∈ X, i = 0, ..., N, we consider Shepard-Bernoulli operator given by (1.9). We

will impose constraints to positivity, using the method from [2].

We will use as a basis function a linear transformation of the old one, namely

the function

(CiBf)(x, y) = α(Bim,nf)(x, y) + β, i = 0, ..., N (2.2)

where α and β are chosen as

α =
f(xi, yi)

f(xi, yi)− min
(x,y)∈[xi,xi+1]×[yi,yi+1]

{Bim,nf(x, y)}
∈ [0, 1]

β = (1− α)f(xi, yi), for i = 1, ...N.

Remark 2.1. Bim,nf, i = 0, ..., N could have negative values but the constrained

function CiBf, i = 0, ..., N have just positive values.

Theorem 2.2. If (xA, yA) and (xB , yB) are two points such that

(Bim,nf)(xA, yA) ≤ (Bim,nf)(xB , yB)

then

(CiBf)(xA, yA) ≤ (CiBf)(xB , yB).
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Proof. The proof follows directly taking into account the form (2.2). �

Remark 2.3. The method can be extended to handle other types of constraints, for

example, in the interval [0, 1] or, furthermore, in any arbitrary interval [a, b], a > b,

a, b ∈ R.

T he constrained Shepard-Bernoulli operator of first kind is given by

(ScBf)(x, y) =

N∑
i=0

Ai,µ(x, y)(CiBf)(x, y), µ > 0, (2.3)

with Ai,µ(x, y) given in (1.8).

Theorem 2.4. For f ∈ C(m,n)(X) the operator SB has the following interpolation

properties:

(ScBf)(xp, yp) = f(xp, yp),

for 0 ≤ p ≤ N and µ > m+ n− 2.

Proof. We have

(ScBf)(xp, yp) =

N∑
i=0

Ai,µ(xp, yp)(C
i
Bf)(xp, yp)

= α

N∑
i=0

Ai,µ(xp, yp)(B
i
m,nf)(xp, yp) + β

N∑
i=0

Ai,µ(xp, yp)

Taking into account that
N∑
i=0

Ai,µ(xp, yp) = 1, we get

(ScBf)(xp, yp) = α

N∑
i=0

Ai,µ(xp, yp)(B
i
m,nf)(xp, yp) + β

= α(SBf)(x, y)(xp, yp) + β

and by the interpolation properties of SB (given in [4]) the conclusion follows. �

Theorem 2.5. The degree of exactness of the operator ScB is (m,n).

Proof. The proof follows considering the form of

(CiBf)(x, y) = α(Bim,nf)(x, y) + β

and the property that degree of exactness of the operator SB is (m,n), (as it was

proved in [4]). �

We consider also the modified Shepard-Bernoulli operator given by (1.11). We

will keep the benefits of the modified Shepard-Bernoulli interpolation and impose

constraints, using the previous method (see [2]).
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The constrained Shepard-Bernoulli operator of second kind is given by

(Sc,wB f) (x, y) :=

N∑
i=0

Wi (x, y) (CiBf)(x, y)

N∑
i=0

Wi (x, y)

, (2.4)

Remark 2.6. If f(xi, yi) = 0 for any i then α = 0 and β = f(xi, yi) therefore the

interpolants becomes the classical Shepard interpolants.

3. Numerical examples

We consider the following test functions ([7], [10], [11]):

f1(x, y) = exp

[
−81

16
((x− 0.5)2 + (y − 0.5)2)

]
/3, (Gentle)

f2(x, y) =
√

64− 81((x− 0.5)2 + (y − 0.5)2)/9− 0.5 (Sphere)

Table 1 contains the maximum errors for approximating by the Shepard,

Shepard-Bernoulli, the modified Shepard-Bernoulli and the coresponding constrained

methods, (2.3) and (2.4), considering 52 random generated nodes in the unit square,

m = n = 2 and µ = 2. By numerical experiments we have obtained that for these data

the optimal value for Nw is Nw = 8. We compare the obtained numerical results with

some combined Shepard operators known in the literature, namely with the combined

Shepard operators of Lagrange, Hermite and Taylor type, denoted respectively by SL,

SH and ST .

In Figures 1 and 2 we plot the graphs of fi, SBfi, S
w
Bfi, S

c
Bfi, S

c,w
B fi, for i = 1, 2.

Table 1. Maximum approximation errors.

f1 f2
Sf 0.1870 0.2374

SBf 0.0905 0.0274

SwBf 0.0628 0.0187

ScBf 0.2975 0.3563

Sc,wB f 0.3085 0.3767

SLf 0.5353 0.5798

SHf 0.4646 0.0883

ST f 0.2110 0.3635
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Figure 1. Graphs for the function f1.
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Figure 2. Graphs for the function f2.
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1, Kogălniceanu St.

400084 Cluj-Napoca, Romania

e-mail: tcatinas@math.ubbcluj.ro
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1. Introduction

The operators defined by

Sn(f, x) =

∞∑
k=0

sn,k(x)f

(
k

n

)
, x ∈ [0,∞), n = 1, 2, . . . ,

where sn,k are

sn,k(x) = e−nx
(nx)k

k!
,

were introduced and studied independently by Mirakyan [14], Favard [3] and Szász
[17]. They usually are referred to as Szász-Mirakyan operators and the functions sn,k
form the Szász-Mirakyan basis or the Poisson distribution.

Motivated by the article of Gavrea and Ivan [4] we study the following operators

An(f, x) =

∞∑
k=0

s2n,k(x)f

(
k

n

)
∞∑
k=0

s2n,k(x)

, x ≥ 0, n = 1, 2, . . . (1.1)



280 Adrian Holhoş

Herzog [5] introduced and studied the following sequence of positive linear operators

Aνn(f, x) =


1

Iν(nx)

∞∑
k=0

(nx
2

)2k+ν
Γ(k + 1)Γ(k + 1 + ν)

· f
(

2k

n

)
, x > 0

f(0), x = 0

where Iν is the modified Bessel function defined by

Iν(t) =

∞∑
k=0

(
nt

2

)2k+ν

Γ(k + 1)Γ(k + 1 + ν)
.

For ν = 0 the operators Aνn can be written in terms of the operators (1.1) by

A0
n(f, x) = An(f ◦ g−1, g(x)),

where g is the function defined by g(x) = x/2, x ≥ 0.

The author of [5] studied the operators Aνn in polynomial and exponential weight
spaces (see also [6]), but did not point out how well behave these operators compared
to the Szász-Mirakyan operators.

In this paper, we show that An are King-type operators [12] preserving the
functions e0 and e2 and so extending the class of Szász-Mirakyan type operators
which preserve some polynomial functions [2, 18]. We also prove that the error of
approximation of a function f by Anf is smaller than the error of approximation
by the classical Szász-Mirakyan operators. In the final part of the paper, we present
some approximation properties of (An), showing what functions can be uniformly
approximated by these operators and what is the order of the convergence by giving
a quantitative Voronovskaya theorem. A similar study for Bernstein operators was
done recently in [4, 9] and for Baskakov operators in [10].

2. Some properties of the operators

Let us notice first that the operators An preserve the functions e0 and e2 (we
denote as usual ek(x) = xk). From the relation (1.1) we can easily see that

An(e0, x) = e0(x) = 1.

From the following relation

∞∑
k=0

s2n,k(x) · k
2

n2
= e−2nx

∞∑
k=0

(nx)2k

(k!)2
· k

2

n2
= x2e−2nx

∞∑
k=1

(nx)2k−2

[(k − 1)!]2

= x2e−2nx
∞∑
i=0

(nx)2i

(i!)2
= x2

∞∑
i=0

s2n,i(x).

we deduce that An(e2, x) = e2(x) = x2, for every x ≥ 0. In fact, only for ν = 0, the
general operators Aνn do preserve the function e2. This can be seen from the following
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relation obtained in [5]

Aνn(e2, x) = x2 · Iν+2(nx)

Iν(nx)
+

2x

n
· Iν+1(nx)

Iν(nx)

and the recurrence relation (9.6.26) of [1]

Iν−1(t)− Iν+1(t) =
2ν

t
Iν(t).

We have

Aνn(e2, x) = x2 − 2xν

n
· Iν+1(nx)

Iν(nx)
.

So, Aνn(e2) = e2 if and only if ν = 0.

Let us denote

µn,k(x) = An((e1 − x)k, x), k = 0, 1, 2, . . .

the central moments of the operators An, which will be very important in our study.

Next let us observe that

µn,2(x) = −2xµn,1(x). (2.1)

Indeed,

µn,2(x) = An(e2, x)− 2xAn(e1, x) + x2An(e0, x) = 2x2 − 2xAn(e1, x) = −2xµn,1(x).

Lemma 2.1. For every x ∈ (0,∞) we have

lim
n→∞

4n · µn,1(x) = −1 (2.2)

lim
n→∞

2n · µn,2(x) = x. (2.3)

Proof. Because of the relation (2.1) it suffices to prove (2.2).
Let us denote

Kn(x) =

∞∑
k=0

s2n,k(x). (2.4)

The function Kn was expressed [15] in terms of the modified Bessel function I0 by

Kn(x) = e−2nxI0(2nx). (2.5)

Using the well-known relation

s′n,k(x) = sn,k(x) · k − nx
x
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we have

2n · µn,1(x) = 2n


∞∑
k=0

s2n,k(x) · k
n

Kn(x)
− x

 =

2

∞∑
k=0

s2n,k(x)(k − nx)

Kn(x)

=

2x

∞∑
k=0

sn,k(x)s′n,k(x)

Kn(x)
=
xK ′n(x)

Kn(x)
=

2nx[I ′0(2nx)− I0(2nx)]

I0(2nx)
.

We have obtained a formula expressing the central moment of order 1 in terms of the
modified Bessel function I0:

µn,1(x) = x

(
I ′0(2nx)

I0(2nx)
− 1

)
. (2.6)

For every x ∈ (0,∞) the quantity t = 2nx grows to infinity when n tends to infinity.
Using the asymptotic relations (9.7.1) and (9.7.3) from Abramowitz and Stegun [1]

I0(t) ∼ et√
2πt

(
1 +

1

8t
+

9

2(8t)2
+ . . .

)
(t→∞) (2.7)

I ′0(t) ∼ et√
2πt

(
1− 3

8t
− 15

2(8t)2
− . . .

)
(t→∞)

we obtain

µn,1(x) ∼ − 1

4n
− 1

32n2x
− 15

1024n3x2
− . . . (n→∞)

which proves (2.2). �

Lemma 2.2. The sequence (n · µ′n,1(x)) converges to zero for every x > 0.

Proof. Computing the derivative of µn,1 we obtain

µ′n,1(x) =
I ′0(2nx)

I0(2nx)
− 1 + 2nx · I

′′
0 (2nx)I0(2nx)− [I ′0(2nx)]2

[I0(2nx)]2
.

Using the relation tI ′′0 (t) + I ′0(t)− tI0(t) = 0 (see (9.6.1) from [1]), we have

µ′n,1(x) = 2nx− 1− 2nx
[I ′0(2nx)]2

[I0(2nx)]2
.

The asymptotic relations (2.7) show that

µ′n,1(x) ∼ − 29

128(2nx)2
+

31

1024(2nx)3
+ . . . (n→∞)

and this proves the assertion stated in the lemma. �

Lemma 2.3. For every x ≥ 0 we have

µn,2(x) ≤ S · x
n
, (2.8)
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where S is defined by

S = sup
x>0

x− x2

1

2
+

√
x2 +

9

4

 = 0.67038 . . .

Proof. Using (2.6) and (2.1) the central moment of order 2 can be expressed by

µn,2(x) = 2x2
(

1− I ′0(2nx)

I0(2nx)

)
.

To prove (2.8) it is enough to prove that

t

(
1− I ′0(t)

I0(t)

)
< S, t > 0.

Using inequality (73) of [16] we have

tI ′0(t)

I0(t)
>

t2

1

2
+

√
9

4
+ t2

.

But this proves that

t

(
1− I ′0(t)

I0(t)

)
< t− t2

1

2
+

√
9

4
+ t2

≤ S. �

Remark 2.4. Because the second central moment of the usual Szász-Mirakyan opera-

tors is
x

n
, inequality (2.8) proves that the central moment of order 2 of the operators

(1.1) is smaller than the classical Szász-Mirakyan operators. In addition, we use the
estimation

|Ln(f, x)− f(x)| ≤ (1 + nµn,2(x)) · ω
(
f,

1√
n

)
,

which is valid for every sequence of positive linear operators (Ln) preserving constants
functions and for every uniformly continuous function f . This estimation proves that
the error by approximating f with Anf is smaller than the error of approximation by
the classical Szász-Mirakyan operators.

We prove in the next Lemma that An satisfy a differential equation. This equa-
tion is similar to the relation satisfied by the so called exponential type operators (see
[13, 11]).

Lemma 2.5. For every f ∈ C[0, 1] and x ∈ (0, 1) we have

(An(f, x))
′

=
2n

x
[An(f · (e1 − xe0), x)−An(e1 − xe0, x) ·An(f, x)] . (2.9)

Proof. Using again

s′n,k(x) = sn,k(x) · k − nx
x
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we get  s2n,k(x)
n∑
i=0

s2n,i(x)


′

=
2sn,k(x)s′n,k(x)

n∑
i=0

s2n,i(x)

−
2s2n,k(x)

n∑
i=0

sn,i(x)s′n,i(x)(
n∑
i=0

s2n,i(x)

)2

=
2s2n,k(x)
n∑
i=0

s2n,i(x)

·

k − nxx
−

n∑
i=0

s2n,i(x)
i− nx
x

n∑
i=0

s2n,i(x)



=
2s2n,k(x)
n∑
i=0

s2n,i(x)

·

kx −
n∑
i=0

s2n,i(x)
i

x

n∑
i=0

s2n,i(x)



=
2n

x
·

s2n,k(x)
n∑
i=0

s2n,i(x)

·

k

n
−

n∑
i=0

s2n,i(x)
i

n

n∑
i=0

s2n,i(x)

 .

We obtain

(An(f, x))
′

=
2n

x
·An(f · (e1 −An(e1, x)), x)

which is equivalent with (2.9). �

Lemma 2.6. We have for every x > 0

lim
n→∞

(2n)2 · µn,4(x) = 3x2.

Proof. Using Lemma 2.2 and (2.1) the following limit holds true for every x > 0

lim
n→∞

2n · µ′n,2(x) = lim
n→∞

−4nµn,1(x)− 4nxµ′n,1(x) = 1.

In relation (2.9) we take f = (e1 − xe0)k and we obtain the recurrence relation

(µn,k(x))
′
+ k · µn,k−1(x) =

2n

x
· [µn,k+1(x)− µn,1(x) · µn,k(x)] , (2.10)

which is similar to the relation (2.7) of Ismail and May [11]. Using (2.10) we get

2nµk+1(x) = xµ′n,k(x) + kxµn,k−1(x) + 2nµn,1(x)µn,k(x), k = 1, 2, . . .

For k = 2 we have

2nµ3(x) = xµ′n,2(x) + 2xµn,1(x) + 2nµn,1(x)µn,2(x).
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Multiplying this equality with 2n and using the relations (2.2) and (2.3), we have for
every x

lim
n→∞

4n2 · µn,3(x) = −x
2
.

For k = 3, the recurrence (2.10) becomes

µ′n,3(x) + 3µn,2(x) =
2n

x
· [µn,4(x)− µn,1(x)µn,3(x)] .

Multiplying with 2n and letting n tend to infinity we get

lim
n→∞

4n2 · µn,4(x) = 3x2,

for every x > 0, if 2nµ′n,3(x)→ 0. We prove this convergence.

Applying the derivative to the relation (2.10) for k = 2 we get

2nµ′n,3(x) = 2nµn,1(x)µ′n,2(x) + 2nµn,2(x)µ′n,1(x)

+ µ′n,2(x) + xµ′′n,2(x) + 2xµ′n,1(x) + 2µn,1(x).

It remains to prove that µ′′n,2 converges to zero.

Applying the derivative twice to the relation (2.1), the sequence (µ′′n,2) converges
to zero if and only if the sequence µ′′n,1 converges to zero. But applying the derivative
to the relation (2.10) for k = 1 we obtain

2nµ′n,2(x) = 4nµn,1(x)µ′n,1(x) + µ′n,1(x) + xµ′′n,1(x) + 1.

Using that 2nµ′n,2(x)→ 1 we obtain that µ′′n,1 → 0 and the lemma is proved. �

3. Some approximation results

In order to give some approximation results for the operators An, let us introduce
some notation.

For α ≥ 0, we denote by Cθ,α the space of all continuous functions defined on
the positive half-line f : (0,∞)→ R with the property that exists a constant M > 0
such that |f(x)| ≤ Meαθ(x), for every x > 0. We denote with Cθ the union of all
spaces Cθ,α.

Let us observe that for θ(x) = x, the functions Anf exist for every f ∈ Cθ,α. To
prove this, it is enough to prove that An(eαt) exist. We will prove more in the next
lemma.

Lemma 3.1. The sequence An(eαt, x) converges pointwise to the function eαx.

Proof. We have

An(eαt, x) =
I0
(
2nxe

α
2n

)
I0(2nx)

.

For a fixed x ∈ (0,∞) we use the asymtotic relation (2.7) and we obtain

An(eαt, x) ∼ e2nxe
α
2n

√
2π · 2nxe α

2n

·
√

2π · 2nx
e2nx

∼ e2nx(e
α
2n−1) ∼ eαx (n→∞). �
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Remark 3.2. The Lemma 3.1 implies that for a fixed x > 0 we have

An(max(eαt, eαx), x) ≤Mα(x), (3.1)

for every n ∈ N. Indeed, for x > 0, there is n0 such that∣∣An(eαt, x)− eαx
∣∣ ≤ 1, for every n ≥ n0.

We obtain for every n ≥ n0
An(max(eαt, eαx), x) ≤ An(eαt + eαx, x) ≤ 1 + 2eαx.

The inequality (3.1) is true for

Mα(x) = 1 + 2eαx + max
n≤n0

An(max(eαt, eαx), x).

Remark 3.3. As was pointed out in Remark 7.2.1 of [6], the function Anf does not
necessarily belong to the space Cθ,α when f belong to the space Cθ,α, for θ(x) = x.
We prove that for θ(x) =

√
x, this condition is satisfied as in the case of the classical

Szász-Mirakyan operators (see [7]).

Lemma 3.4. There is a constant Mα > 0 not depending on n or x such that

An(eα
√
t, x) ≤Mαe

α
√
x, (3.2)

for every x > 0, α ≥ 0 and n ∈ N.

Proof. We need to prove that An(eα(
√
t−
√
x), x) is bounded.

Starting from the inequality
√
t−
√
x =

t− x√
t+
√
x
≤ t− x√

x
, x > 0 (3.3)

we obtain that

An(eα(
√
t−
√
x), x) ≤ An(e

α(t−x)√
x , x) =

An(e
αt√
x , x)

eα
√
x

=
I0

(
2nxe

α
2n
√
x

)
I0(2nx) · eα

√
x
.

Using again (2.7) we deduce the existence of a constant t0 > 0 such that

et

2
√

2πt
< I0(t) <

3et

2
√

2πt
, for every t > t0.

So, for x > t0
2n and n ∈ N

An(eα(
√
t−
√
x), x) ≤ 3

e2nxe
α

2n
√
x√

2π · 2nxe
α

2n
√
x

·
√

2π · 2nx
e2nx · eα

√
x

≤ 3 exp
(

2nx(e
α

2n
√
x − 1)− α

√
x
)
.

Using the inequality eu − 1 ≤ u+ u2eu, u ≥ 0, we obtain

An(eα(
√
t−
√
x), x) ≤ 3 exp

(
2nx · α

2n
√
x

+ 2nx · α2

4n2x
e

α
2n
√
x − α

√
x

)
= 3 exp

(
α2

2n
e

α
2n
√
x

)
≤ 3 exp

(
α2

2
e

α√
2t0

)
.
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Consider now the case when x is smaller than t0
2n . In this case, we need only prove that

An(eα
√
t, x) is bounded. Because

√
k ≤ k, for every k = 0, 1, 2, . . . and I0(2nx) ≥ 1

we obtain

An(eα
√
t, x) ≤ An(etα

√
n, x) =

I0(2nxe
α

2
√
n )

I0(2nx)
≤ I0

(
2nxe

α
2
√
n

)
≤ I0

(
t0e

α
2

)
. �

We need the following general result.

Theorem 3.5 ([8]). Let m be a nonnegative integer and let f ∈ Cθ,α such that f is m

times continuously differentiable with f (m) ∈ Cθ,α. Then∣∣∣∣∣Ln(f, x)−
m∑
k=0

f (k)(x)

k!
· µn,k(x)

∣∣∣∣∣ ≤ 1

m!

(
An,m(x) +

Bn,m(x)

δn

)
ωϕ,θ,α

(
f (m), δn

)
where

An,m(x) = Ln

(
max

(
eαθ(t), eαθ(x)

)
|t− x|m, x

)
Bn,m(x) = Ln

(
max

(
eαθ(t), eαθ(x)

)
|t− x|m · |ϕ(t)− ϕ(x)| , x

)
ωϕ,θ,α(f, δ) = sup

x,t∈I
|ϕ(t)−ϕ(x)|≤δ

|f(t)− f(x)|
max

(
eαθ(t), eαθ(x)

)
and ϕ is a continuous and strictly increasing function on I such that θ ◦ ϕ−1 is
uniformly continuous on ϕ(I).

Theorem 3.6. Let θ(x) = ϕ(x) =
√
x. For every f ∈ Cθ,α there is a constant M > 0

independent of n and x such that

|An(f, x)− f(x)| ≤Meα
√
x · ωϕ,θ,α

(
f,

1√
n

)
,

for every x > 0 and n ∈ N.

Proof. We apply Theorem 3.5 for m = 0 and δn = 1√
n

. Using inequality (3.2) we

easily obtain that An,0(x) ≤ C1e
α
√
x, for every x > 0, for some constant C1 > 0. Using

the Cauchy-Schwarz inequality for positive linear operators the quantity Bn,0(x) is
bounded by

Bn,0(x) ≤
√
An(max(e2α

√
t, e2α

√
x), x) ·

√
An(|ϕ(t)− ϕ(x)|2 , x).

Using inequalities (3.3) and (2.8) we have for x > 0

An(|ϕ(t)− ϕ(x)|2 , x) ≤ 1

x
· µn,2(x) ≤ S

n
.

Using again (3.2), the inequality
√
n ·Bn,0(x) ≤ C2

is true for every x > 0 and n ≥ 1, where C2 is some constant independent of n and
x. �
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Corollary 3.7. For every function f such that g(x) = e−xf(x2) is uniformly continu-
ous on (0,∞) we have

lim
n→∞

sup
x>0

e−α
√
x |An(f, x)− f(x)| = 0.

Proof. Because g is uniformly continuous, ωϕ,θ,α(f, 1/
√
n) → 0 when n → ∞ (see

[8]). �

Theorem 3.8. For α ≥ 0, θ(x) = x and ϕ(x) = x let f ∈ Cθ,α be a twice continuously
differentiable function such that f ′′ ∈ Cθ,α. Then∣∣∣∣An(f, x)− f(x)− µn,1(x)f ′(x)− µn,2(x)

2
f ′′(x)

∣∣∣∣
≤ 1

2

(√
µn,4(x)M2α(x) +

√
n · 4
√
M4α(x) · 4

√
[µn,4(x)]3

)
· ωϕ,θ,α

(
f ′′,

1√
n

)
,

for every x > 0 and n ∈ N.

Proof. We use Theorem 3.5 for m = 2 and δn = 1√
n

. We have

An,2(x) ≤
√
An(max(e2αt, e2αx), x) ·

√
An(|t− x|4 , x) ≤

√
µn,4(x)M2α(x).

Using Hölder inequality for p = 4 and q = 4/3 we obtain

Bn,2(x) = An(max(eαt, eαx) |t− x|3 , x)

≤
(
An(max(e4αt, e4αx), x)

) 1
4 ·
(
An
(
|t− x|4, x

)) 3
4

≤ 4
√
M4α(x) · 4

√
[µn,4(x)]3.

�

Corollary 3.9. For every f ∈ Cθ,α, with θ(x) = x such that f ′′ exists and

g(x) = e−xf ′′(x)

is uniformly continuous on (0,∞) and for every x > 0

lim
n→∞

n[An(f, x)− f(x)] = −1

4
· f ′(x) +

x

4
· f ′′(x).

Proof. Because g is uniformly continuous on (0,∞), the quantity ωϕ,θ,α

(
f ′′,

1√
n

)
tends to zero as n goes to infinity. We multiply with n the inequality proved in
Theorem 3.8 and we take the limit as n tends to infinity, using Lemma 2.6 and the
relations (2.2) and (2.3). The right-hand side of this inequality is 0. �

Problem 3.10. We propose the reader to study the general operators

Ln(f, x) =

∞∑
k=0

g(sn,k(x))f

(
k

n

)
∞∑
k=0

g(sn,k(x))

, x ≥ 0, n = 1, 2, . . . .



King-type operators related to squared Szász-Mirakyan basis 289

For g(x) = x we obtain the classical Szász-Mirakyan operators. For g(x) = x2 we have
the operators studied in this paper. It would be interesting to study the operators for
g(x) = xm, related to the Rényi entropy and for g(x) = x lnx, related to the Shannon
entropy.
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1. Introduction

The study of the linear methods of approximation, which are given by sequences
of linear and positive operators, has become a firmly rooted part of an old area
of mathematical research called Approximation Theory. It has a great potential for
applications to a wide variety of issues.

The starting point of this note is a general approximation process of discrete
type which acts on the real valued functions defined on a compact interval K ⊂ R.
Since a linear substitution maps any compact interval [a, b] into [0, 1], we will only
consider functions defined on [0, 1]. Each operator Ln of the class to which we refer,
uses an equidistant network with a flexible step of the form ∆n = (kλn)0≤k≤n, where
(λn)n≥1 is a strictly decreasing sequence of real numbers with the property

0 < λn ≤
1

n
, n ∈ N. (1.1)

The operators we are referring to are designed as follows

(Lnf)(x) =

n∑
k=0

ak(λn;x)f(kλn), n ∈ N, x ∈ [0, 1], (1.2)
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where the function ak(λn; ·) : [0, 1] → R+ is continuous for each n ∈ N and
k ∈ {0, 1, . . . , n}. The condition (1.2) guarantees that ∆n is indeed a network on
the compact [0, 1].

Typically, the operators described by (1.2) satisfy the condition of reproducing
constants. Being linear operators, this property is involved in achieving the following
identity

n∑
k=0

ak(λn;x) = 1, x ∈ [0, 1]. (1.3)

Throughout the paper, we consider this as a working hypothesis. Note that such
operators are called Markov operators.

At this point we refer to non-Newtonian calculus also called as multiplicative cal-
culus. In the 1970s, Michael Grossman and Robert Katz [5] have developed this type
of calculation moving the roles of subtraction and addition to division and multiplica-
tion. See also Dick Stanley’s paper [8]. This type of calculus was also called geometric
calculus in order to emphasize that changes in function arguments are measured by
differences, while changes in values are measured in ratios. Recently, Bashirov et al.
[1] have given the complete mathematical description of multiplicative calculus. In the
last decade there have been extensions of this notion in different directions of math-
ematics, even if it has a relatively restrictive area of applications than the classical
calculus of Newton and Leibniz covering only positive quantities. Of the area where
this type of approach has proven efficacy, we mention the theory of economic growth,
see, for example, [4].

In the present paper our aim is to bring up multiplicative calculus to the atten-
tion of researchers in the branch of positive approximation processes. We could find
no references that treat any kind of multiplicative calculus to the above mentioned
directions.

In the next two sections we present basic elements of multiplicative calculus
and new results as regards the positive approximation processes. A particular case is
treated at the end of the paper.

2. Preliminaries

We introduce the second central moment of Ln, n ∈ N, operators, i.e.,

M2(Ln;x) := (Lnϕ
2
x)(x), where ϕx(t) = |t− x|,

(t, x) ∈ [0, 1] × [0, 1]. Taking into account Bohman-Korovkin criterion, since (1.3) is
fulfilled, in order the sequence (Ln)n≥1 to become an approximation process on the
space C([0, 1]), it is necessary and sufficient to take place the following relation

lim
n→∞

M2(Ln;x) = 0, uniformly in x ∈ [0, 1]. (2.1)

We also consider that this identity is achieved.
Set R∗+ = (0,∞). Also, B+([0, 1]) stands for all strictly positive real valued

functions defined on [0, 1] and

C+([0, 1]) = {f ∈ B+([0, 1]) : f continuous on [0, 1]}.
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We collected some information about multiplicative calculus. Here, the symbol
	 represents the difference in non-Newtonian geometric calculus which means the
division in the classical calculus. Consequently, a 	 b means a/b, provided that a/b
makes sense.

In non-Newtonian geometric calculus, the multiplicative absolute value (or
modulus) of an element x ∈ (0,∞) be a number |x|∗ such that

|x|∗ =

 x , x > 1
1 , x = 1
1/x , x < 1.

Owing to the definition of multiplicative absolute value, the multiplicative distance
between two elements x, y ∈ (0,∞) is given by

|x	 y|∗ =

∣∣∣∣xy
∣∣∣∣∗ =

 x/y , x/y > 1
1 , x = y
y/x , x/y < 1.

From the definition of the multiplicative absolute value, it is obvious that |x|∗ ≥ 1 for
all x ∈ (0,∞) .

For a closed interval I ⊆ R, denoting {f | f : I → R∗+} = F+(I), we present the
following

Definition 2.1. A function f ∈ F+(I) is said to tend to the limit L > 0 as x tends to
a ∈ I, if, corresponding to any arbitrary chosen number ε > 1, there exists a positive
number δ > 1 such that

|f(x)	 L|∗ < ε,

for all values of x for which
1 < |x	 a|∗ < δ.

Here
1 < |x	 a|∗ < δ ⇐⇒ a

δ
< x < aδ

and

|f(x)	 L|∗ < ε⇐⇒ L

ε
≤ f(x) < Lε.

We use the notation lim
x→a

f(x)
m
= L or f(x)

m−→ L, x→ a.

Definition 2.2. A function f ∈ F+(I) is said to be multiplicative continuous at
x = a ∈ I, if

lim
x→a

f(x)
m
= f(a)

holds.
In other words, a function f ∈ F+(I) is said to be multiplicative continuous at

x = a ∈ I, if, corresponding to any arbitrary chosen number ε > 1, there exists a
positive number δ > 1 such that

|f(x)	 f(a)|∗ < ε,

for all values of x for which
|x	 a|∗ < δ.
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Similar to the classic modulus of smoothness, can be defined the modulus of
multiplicative smoothness.

Definition 2.3. Let I ⊆ R+ be an interval and f ∈ B+(I). The modulus of multiplica-
tive smoothness of f is denoted by ω〈m〉(f ; ·) and is defined as follows

ω〈m〉(f ; δ) = sup
1≤|x	t|≤δ
x,t∈I

|f(x)	 f(t)|∗ , δ ≥ 1. (2.2)

Remark 2.4. Examining relation (2.2) we deduce

i) ω〈m〉(f ; 1) = 1;

ii) if 1 ≤ δ1 < δ2, then ω〈m〉(f ; δ1) ≤ ω〈m〉(f ; δ2),
consequently ω〈m〉(f ; ·) is a non-decreasing function.

We associate to the operators defined by (1.2) with the fulfillment of hypotheses
(1.3) and (2.1), the following operators

(L〈m〉n f)(x) =

n∏
k=0

(f(kλn))ak(λn;x), x ∈ [0, 1], (2.3)

for each function f ∈ B+([0, 1]). This new class of operators loses the linearity pro-
perty.

We also notice that it keeps the constants. Indeed, by virtue of property (1.3),

if f(x) = c > 0, x ∈ [0, 1], then (L
〈m〉
n c)(x) = c, x ∈ [0, 1].

Further on, our goal is to highlight approximation properties of the sequence

(L
〈m〉
n )n≥1.

3. Results

Theorem 3.1. Let f ∈ B+([0, 1]) and the operators L
〈m〉
n , n ∈ N, be defined by (2.3).

The following relation

lim
n→∞

(L〈m〉n f)(x0)
m
= f(x0) (3.1)

holds at each point x0 ∈ (0, 1] of multiplicative continuity of f .

Proof. Let ε > 1 be arbitrarily fixed. In order to prove the theorem we have to show∣∣∣(L〈m〉n f)(x0)	 f(x0)
∣∣∣∗ < ε

holds true at each point x0 ∈ (0, 1] of multiplicative continuity of f ∈ B+([0, 1]).
If f ∈ B+([0, 1]) is a constant function then one has

(L〈m〉n f)(x0) = f(x0),

and hence ∣∣∣(L〈m〉n f)(x0)	 f(x0)
∣∣∣∗ = 1 < ε

holds true at every point x0 ∈ (0, 1]. This proves (3.1) for constant functions.
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Now, we assume that f ∈ B+([0, 1]) is not a constant function. Since the multi-
plicative absolute value is always greater than or equal to 1

(
|•|∗ ≥ 1

)
, it is sufficient

only to show that the inequality∣∣∣(L〈m〉n f)(x0)	 f(x0)
∣∣∣∗ < ε (3.2)

is valid for n ≥ N , N being a certain rank. By using (2.3) and (1.3) we can write∣∣∣(L〈m〉n f)(x0)	 f(x0)
∣∣∣∗ =

∣∣∣∣∣
n∏
k=0

(
f(kλn)

f(x0)

)ak(λn;x0)
∣∣∣∣∣
∗

. (3.3)

Since lim
x→x0

f(x)
m
= f(x0), in accordance with Definition 2.2, there exists a positive

number δ > 1 such that

|f(x)	 f(x0)|∗ < ε, (3.4)

for all values of x for which

|x	 x0|∗ < δ. (3.5)

We split up the set J = {0, 1, . . . , n} as follows

J0 = {0} ,
J1 = {k ∈ J\J0 : |kλn 	 x0|∗ < δ},
J2 = {k ∈ J\J0 : |kλn 	 x0|∗ ≥ δ}.

Returning at (3.2) we break down the product as follows∣∣∣∣∣
n∏
k=0

(
f(kλn)

f(x0)

)ak(λn;x0)
∣∣∣∣∣
∗

(3.6)

≤
(∣∣∣∣ f(0)

f(x0)

∣∣∣∣∗)a0(λn;x0) ∏
k∈J1

(∣∣∣∣f(kλn)

f(x0)

∣∣∣∣∗)ak(λn;x0) ∏
k∈J2

(∣∣∣∣f(kλn)

f(x0)

∣∣∣∣∗)ak(λn;x0)

.

The first product can be increased in the following way∏
k∈J1

(∣∣∣∣f(kλn)

f(x0)

∣∣∣∣∗)ak(λn;x0)

< ε

∑
k∈J1

ak(λn;x0)

≤ ε,

see (3.3) and (1.3). The relation k ∈ J0 ∪ J2 involves∑
k∈J0∪J2

ak(λn;x0) ≤
∑

k∈J0∪J2

(kλn − x0)2

δ2
ak(λn;x0)

≤ 1

δ2

n∑
k=0

(kλn − x0)2ak(λn;x0)

=
1

δ2
M2(Ln;x0). (3.7)

Based on (2.1), for any µ > 0, there exists a rank N ∈ N such that

M2(Ln;x0) < µ, for every n ≥ N. (3.8)
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Setting

sup
x∈[0,1]

∣∣∣∣ f(x)

f(x0)

∣∣∣∣∗ = M, (3.9)

we can evaluate the last part from (3.6)

∏
k∈J0∪J2

(∣∣∣∣f(kλn)

f(x0)

∣∣∣∣∗)ak(λn;x0)

≤M
∑

k∈J0∪J2

(λn;x0)

≤Mµ/δ2 , n ≥ N, (3.10)

see (3.7) and (3.8). Returning at (3.6), we get

∀ µ > 0, ∃ N ∈ N, ∀ n ≥ N,
n∏
k=0

∣∣∣∣f(kλn)

f(x0)

∣∣∣∣ak(λn;x0)

< εMµ/δ2 .

If M = 1, then we obtain exactly the inequality (3.2). Otherwise (M > 1), choosing
µ = δ2 logM ε > 0, we obtain the same inequality from (3.2) with ε := ε2 which does
not alter the statement.

In this moment, the proof of (3.2) is completed, consequently (3.1) takes place. �
Next, we establish an upper bound of the error of approximation by using the

modulus of multiplicative smoothness.

Theorem 3.2. Let f ∈ B+([0, 1]) and the operators L
〈m〉
n , n ∈ N, be defined by (2.3).

For n large enough, the following relation∣∣∣(L〈m〉n f)(x)	 f(x0)
∣∣∣∗ ≤Mω〈m〉(f ; δ), δ ≥ 1, (3.11)

holds at each point x0 ∈ (0, 1] of multiplicative continuity of f . The constant M is
defined at (3.9).

Proof. We use the identity (3.3) and the decomposition of that product according
to the relation (3.6). Based both on the definition of ω〈m〉(f ; ·), see (2.2), and the
inequalities set out in (3.10) that are valid for any µ > 0 and n sufficiently large, we
can write∣∣∣(L〈m〉n f)(x0)	 f(x0)

∣∣∣∗ ≤
 ∏
|kλn	x0|∗≤δ

ω〈m〉(f ; δ)ak(λn;x0)

Mµ/δ2

≤Mµ/δ2ω〈m〉(f ; δ).

Choosing µ = δ2, we obtain the desired result. �

4. A special case

In this section, we give a particular example of operators satisfying the assump-
tions employed in the previous sections.
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4.1. Multiplicative (geometric) Bernstein operators

By choosing λn = 1
n , ak(λn;x) = pn,k(x), where pn,k(x) =

(
n
k

)
xk(1− x)n−k

is the Bernstein basis, then we obtain a special case of the operators (2.3), namely mul-
tiplicative (geometric) version of the celebrated Bernstein operators. More precisely,

B
〈m〉
n : B+[0, 1]→ C+[0, 1] (n ≥ 1) is given by

(
B〈m〉n f

)
(x) =

n∏
k=0

[
f

(
k

n

)]pn,k(x)

, x ∈ [0, 1]. (4.1)

As a consequence of Theorem 3.1 for functions f ∈ B+([0, 1]) and for multiplica-

tive (geometric) Bernstein operators B
〈m〉
n , we have the following direct estimate:

Corollary 4.1. Let f ∈ B+([0, 1]) be a function. Let the operators B
〈m〉
n , n ∈ N, be

defined by (4.1). The following relation

lim
n→∞

(B〈m〉n f)(x0)
m
= f(x0)

holds at each point x0 ∈ (0, 1] of multiplicative continuity of f .

4.2. Graphical and Numerical Representations

In the recent period, many operators have been investigated that generalize the
classical approximation operators and the theoretical approach is usually accompa-
nied by illustrations of convergence properties of particular functions. The included
graphics are realized using software programs. Among such papers, we randomly quote
[3], [7], [2], [6], the last three appeared in the years 2019-2020.

Following this line, we give some graphical and numerical examples to illustrate
the approximation results for multiplicative (geometric) Bernstein operators obtained
in the present paper.

We note that in the Figures 1, 2 and 3, the graph with the red line belongs to
the original function, the graph with the green line to the operators with n = 2, and
finally the graph consisting of blue line to the operators with n = 10.

Example 4.2. Let us consider the function f(x) = x3+1, and we take its corresponding

multiplicative Bernstein operator (B
〈m〉
n f) (x) (4.1), that one has for n = 2 and for

n = 10.
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Figure 1. Approximation of f(x) = x3 + 1 by multiplicative Bern-
stein operators (4.1), for n = 2 and n = 10.

In the following tables, by using the Wolfram Mathematica 11 Program, we
compute the error of approximation numerically at certain points for n = 100, 300
and 500;

x = 0.2 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.2) 1.00896 1.00832 1.00819

f(0.2) 1.008 1.008 1.008
The Error 0.000955622 0.000316981 0.000189999 ,

x = 0.5 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.5) 1.12811 1.12604 1.12562

f(0.5) 1.125 1.125 1.125
The Error 0.00310983 0.00103996 0.000624384 ,

and finally

x = 0.8 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.8) 1.5139 1.51263 1.51238

f(0.8) 1.512 1.512 1.512
The Error 0.00189809 0.000630805 0.000378252 .

Example 4.3. Let us consider the function f(x) = sin(x + 1), and we take its corre-

sponding multiplicative Bernstein operator (B
〈m〉
n f) (x) (4.1), that one has for n = 2

and for n = 10.
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Figure 2. Approximation of f(x) = sin(x + 1) by multiplicative
Bernstein operators (4.1), for n = 2 and n = 10.

In the following tables, we compute the error of approximation numerically at
certain points for n = 100, 300 and 500;

x = 0.2 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.2) 0.931181 0.931753 0.931867

f(0.2) 0.932039 0.932039 0.932039
The Error 0.000857595 0.000286029 0.000171637 ,

x = 0.5 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.5) 0.996241 0.997077 0.997244

f(0.5) 0.997495 0.997495 0.997495
The Error 0.00125394 0.000417802 0.00025066 ,

and finally

x = 0.8 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.8) 0.973026 0.973574 0.973683

f(0.8) 0.973848 0.973848 0.973848
The Error 0.000821133 0.000273789 0.000164283

Example 4.4. Let us consider the function f(x) = sinx + 1, and we take its corre-

sponding multiplicative Bernstein operator (B
〈m〉
n f) (x) (4.1), that one has for n = 2

and for n = 10.



300 Octavian Agratini and Harun Karsli
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Figure 3. Approximation of f(x) = sinx+1 by multiplicative Bern-
stein operators (4.1), for n = 2 and n = 10.

In the following tables, we compute the error of approximation numerically at
certain points for n = 100, 300 and 500;

x = 0.2 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.2) 1.19787 1.1984 1.19851

f(0.2) 1.19867 1.19867 1.19867
The Error 0.000798903 0.000266545 0.000159956 ,

x = 0.5 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.5) 1.47818 1.47901 1.47918

f(0.5) 1.47943 1.47943 1.47943
The Error 0.00125027 0.000416697 0.000250011 ,

and finally

x = 0.8 n = 100 n = 300 n = 500(
B
〈m〉
n f

)
(0.8) 1.71656 1.71709 1.7172

f(0.8) 1.71736 1.71736 1.71736
The Error 0.000800703 0.000266745 0.000160028

Remark 4.5. Unlike error evaluation for linear and positive operators, from (3.11)

we cannot deduce the convergence property of the sequence (L
〈m〉
n f)n≥1 to f . This

note should be regarded as a pioneering activity in order to introduce multiplicative
calculus in the field promoted by Korovkin type theory.
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Ulam stability of Volterra integral equation
on a generalized metric space
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Abstract. The aim of this paper is to give some Ulam-Hyers stability results for
Volterra integral equations on a generalized metric space. In this case we consider
the Volterra integral equation in the Krasnoselski-Krein and Naguno-Perron-Van
Kampen conditions. Here we present only Ulam-Hyers stability for the Volterra
integral equation.
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1. Introduction

The Ulam stability is an important concept in the theory of Volterra integral
equations. This problem has been studied by L.P. Castro and A. Ramos [1], N. Cădariu
and V. Radu [2], S.M. Jung [3], I.A. Rus [9], [10], I.A. Rus and N. Lungu [11]. But, on
a generalized metric spaces this problem has been studied in the papers [1] and [10]. In
what follows we shall present Ulam-Hyers stability of a Volterra integral equation on a
generalized metric space, N. Lungu [5]. Here, we consider a Volterra integral equation
in the Krasnoselski-Krein and Naguno-Perron-Van Kampen conditions. In the present
work we consider a generalized metric space (X, d), where d(x, y) ∈ R+ ∪ {+∞} is
a generalized metric on X. For these we need some notions and results from the
generalized metric spaces theory.

Let (X, d) be a generalized metric space. On X we have the following equivalence
relation:

x ∼ y ⇔ d(x, y) <∞, ∀ x, y ∈ X.
Let X =

⋃
λ∈Λ

Xλ be the canonical decomposition of X after this equivalence

relation. We denote

dλ(x, y) = d(x, y)
∣∣∣
Xλ×Xλ
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and we have that (Xλ, dλ) is a metric space ([7]).
In this paper we need the following two theorems (see W.A.J. Luxemburg [6],

I.A. Rus [7], [8]):

Theorem 1.1. Let (X, d) be a generalized complete metric space and A : X → X an
operator with the property:

∃ α ∈ [0, 1] such that d(x, y) <∞⇒ d(A(x), A(y)) ≤ αd(x, y)

for all x, y ∈ X.
If there exists x0 ∈ X such that d(x0, A(x0)) < +∞, then the operator A has at

least one fixed point.

Theorem 1.2. (Luxemburg-Jung). Let (X, d) be a generalized complete metric space

and his canonical decomposition X =
⋃
Xλ. If A : X → X ia a contraction, then the

operator A have in every Xλ, for which exists uλ such that

d(uλ, A(uλ)) < +∞,
a unique fixed point.

2. Ulam-Hyers stability in the generalized Krasnoselski-Krein
conditions

In what follows we shall consider the following integral equation

u(x, y) = h(x, y) +

∫ x

0

∫ y

0

f(s, t, u(s, t))dsdt (2.1)

f : [0, a)× [0, b)× R→ R, h : [0, a)× [0, b)→ R,
f ∈ C([0, a)× [0, b)× R,R),

h ∈ C([0, a)× [0, b),R), u ∈ C([0, a)× [0, b),R),

(x, y) ∈ [0, a)× [0, b), D = [0, a)× [0, b).

Let X be the set:
X = C(D) (2.2)

and the generalized metrics:

d : X ×X → R+ ∪ {+∞}

d(u1, u2) := sup
D

|u1(x, y)− u2(x, y)|
(xy)p

√
k

(2.3)

for all u1, u2 ∈ X, p > 1, k > 0.
It is known that the space (X, d) is a generalized complete metric space.
Let a, b ∈ (0,∞] and ε > 0. In what follows we denote by A the operator

A : X → X

A(u)(x, y) := the second part of (2.1).

Then the equation (2.1) becomes

u(x, y) = A(u)(x, y). (2.4)
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For the fixed point equation (2.4) we have:

Definition 2.1. ([10]) The equation (2.4) is Ulam-Hyers stable if there exists the pos-
itive real number Cf > 0 such that, for each ε ∈ R∗+ and each solution v of the
inequation

d(v,Av) ≤ ε (2.5)

there exists a solution u ∈ X of (2.4) such that

d(u, v) ≤ Cf · ε.

In this case we have

Theorem 2.2. We suppose that:
(i) f : E → R is continuous and bounded on E, E = D × R;
(ii) a <∞, b <∞;
(iii) f verifies the generalized Krasnoselski-Krein conditions ([4]):

|f(x, y, u1)− f(x, y, u2)| ≤ k

xy
|u1 − u2|, k > 0 (2.6)

|f(x, y, u1)− f(x, y, u2)| ≤ c

(xy)β
|u1 − u2|α, c > 0 (2.7)

α ∈ (0, 1), β < α, k(1− α)2 < (1− β)2, β < p
√
k, xy 6= 0,

p2k(1− α)2 < (1− β)2, for all (x, y, u) ∈ E.
Then the equation (2.4) is Ulam-Hyers stable.

Proof. We consider X = C(D) and X =
⋃
λ∈Λ

Xλ. Let v be a solution of the inequation

(2.5) and there exists λ ∈ Λ such that v ∈ Xλ. By Luxemburg-Jung theorem (Theorem
1.2), the equation (2.4) has a unique solution u in Xλ.

From (2.1), (2.5), (2.6) and (2.7), we have:

|v(x, y)− u(x, y)| ≤
∣∣∣∣v(x, y)− h(x, y)−

∫ x

0

∫ y

0

f(s, t, v(s, t))dsdt

∣∣∣∣
+

∫ x

0

∫ y

0

|f(s, t, v(s, t))− f(s, t, u(s, t))|dsdt. (2.8)

Hence, from (2.4), (2.6) and (2.7), we have

|v(x, y)− u(x, y)| ≤ |v(x, y)−A(v)(x, y)|+
∫ x

0

∫ y

0

k

st
|v(s, t)− u(s, t)|dsdt,

or

|v(x, y)− u(x, y)| ≤ |v(x, y)−A(v)(x, y)|+
∫ x

0

∫ y

0

kd(u, v)(st)p
√
k−1dsdt,

and

|v(x, y)− u(x, y)| ≤ |v(x, y)−A(v)(x, y)|+ kd(u, v)
(xy)p

√
k

p2k
,

from where we have

d(u, v) ≤ ε+
1

p2
d(u, v)
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and

d(u, v) ≤ p2

p2 − 1
ε (2.9)

then

d(u, v) ≤ Cf · ε
where

Cf =
p2

p2 − 1
.

So, from Definition 2.1, the equation (2.4) is Ulam-Hyers stable.

Example 2.3. Let us consider the equation (2.1) in the Krasnoselski-Krein conditions
(2.6)+(2.7) and

f(x, y, u) = u(x, y)xye−x
2y2 , h(x, y) = x2y2,

then α =
1

2
, β =

1

3
, k = 1, p = 2.

In this case we have cf =
p2

p2 − 1
and for p = 2, cf =

4

3
, hence the equation (2.1)

is Ulam-Hyers stable.

3. Ulam-Hyers stability in the generalized
Naguno-Perron-Van Kampen conditions

In this case we consider the integral equation (2.1) in the same conditions. Let
X = C(D) and the generalized metrics

d : X ×X → R+ ∪ {+∞}

d(u1, u2) = sup
D

|u1(x, y)− u2(x, y)|
(xy)p+1

(3.1)

for all u1, u2 ∈ X, p > −1.
It is known that the space (X, d) is a generalized complete metric space. Here,

we consider the stability of the equation (2.4) in the generalized Naguno-Perron-Van
Kampen conditions.

Theorem 3.1. If we have
(i) f : E → R is continuous and bounded on E;
(ii) a < +∞, b < +∞;
(iii) f verifies the generalized Naguno-Perron-Van Kampen conditions ([12]):

|f(x, y, u)| ≤ α(xy)p, p > −1, α > 0. (3.2)

|f(x, y, u1)− f(x, y, u2)| ≤ c

(xy)r
|u1 − u2|q, q ≥ 1, c > 0, (3.3)

pq + q − r = p, xy 6= 0, ρ =
c(2α)q−1

(p+ 1)2q
< 1, for all (x, y, u) ∈ E.

Then the equation (2.4) is Ulam-Hyers stable.
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Proof. Evidently, in the conditions Naguno-Perron-Van Kampen, by Luxemburg-Jung
theorem (Theorem 1.2), the equation (2.4) has a unique solution u in Xλ.

First we observe that

|v(x, y)− u(x, y)| ≤ 2α

(p+ 1)2
(xy)p+1. (3.4)

From (2.1), (2.5), (3.2), (3.3) we have

|v(x, y)− u(x, y)| ≤
∣∣∣∣v(x, y)− h(x, y)−

∫ x

0

∫ y

0

f(s, t, v(s, t))dsdt

∣∣∣∣
+

∫ x

0

∫ y

0

|f(s, t, v(s, t))− f(s, t, u(s, t))|dsdt.

From (3.3) we have

|v(x, y)− u(x, y)| ≤ |v(x, y)−A(v)(x, y)|+
∫ x

0

∫ y

0

c

(st)r
|v(s, t)− u(s, t)|qdsdt

≤|v(x, y)−A(v)(x, y)|+
∫ x

0

∫ y

0

c

(st)r
· |v(s, t)− u(s, t)|

(st)p+1
· |v(s, t)− u(s, t)|q−1

(st)−p−1
dsdt

≤ |v(x, y)−A(v)(x, y)|+ cd(u, v)

∫ x

0

∫ y

0

(2α)q−1

(p+ 1)2(q−1)
(st)pq+q−rdsdt.

Then we have

d(u, v) ≤ d(v,A(v)) + ρd(u, v) (3.5)

and

d(u, v) ≤ ε

1− ρ
,

then

d(u, v) ≤ Cf · ε
where

Cf =
1

1− ρ
.

From Definition 2.1, the equation (2.4) is Ulam-Hyers stable.

Remark 3.2. For every λ ∈ Λ there exists at least a solution v of (2.5) in Xλ and for
each v exists a unique solution u of (2.4) which is Ulam-Hyers stable.

Remark 3.3. It is possible that the inequation (2.5) do not have a solution, but in
this case the equation (2.4) is Ulam-Hyers stable.

Example 3.4. Let us consider the equation (2.1) in the Naguno-Perron-Van Kampen
conditions (3.2)+(3.3), p > −1, r = 1, q ≥ 1.

In this case cf =
1

1− ρ
, where ρ =

c(2α)q−1

(p+ 1)2q
and the equation (2.1) is Ulam-

Hyers stable. If ρ = 1 then the equation (2.1) is Ulam-Hyers instable.
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Nonlinear economic growth dynamics
in the context of a military arms race

Daniel Metz and Adrian Viorel

Abstract. In the present contribution, we propose and analyze a dynamical eco-
nomic growth model for two rival countries that engage an arms race. Under
natural assumptions, we prove that global solutions exist and discuss their as-
ymptotic long-time behavior. The results of our stability analysis support the
recurring hypothesis in Cold War political science that engaging in an arms race
with a technologically superior and hence faster growing adversary has damaging
economic consequences. Numerical findings illustrate our claims.
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1. Introduction

The Cold War has ended three decades ago and regional antagonisms have re-
placed the previous colossal struggle. Nevertheless, our understanding of the United
States vs. USSR Arms Race and its wider economic consequences remains far from
complete (see [7]).

A plausible, and often repeated explanation attributes the Eastern Block’s col-
lapse to an economic crisis triggered by unsustainable military ambitions. Given the
ever growing and ever more visible gap in technological and economic capabilities,
matching American military development was possible only at the expense of eco-
nomic growth and stability.

The aim of the present contribution is to examine this hypothesis from an an-
alytic point of view by developing a model that, at least qualitatively, reproduces
economic stagnation caused by a prolonged military rivalry with a faster developing
adversary.

Arms races have a long history that goes back far beyond the Cold War Era.
The ancient Greeks and Romans built fleets to match their Persian and Carthaginian
rivals, but the naval race that followed the 1889 Naval Defense Act calling for the Royal
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Navy to be as strong as the world’s next two largest navies combined, is probably the
most intensively studied predecessor as it led to World War I (WWI).

For decades, Arms races have been a topical subject in Political Science, such
that the scarcity of treatments from a mathematical perspective comes as a real
surprise - all the more so given L. F. Richardson’s pioneering contributions to the
field synthesized in Arms and Insecurity: A Mathematical Study of the Causes and
Origins of War [12] and Statistics of Deadly Quarrels [13].

The classical Richardson model, which relies on a system of two coupled linear
differential equations, has dominated theoretical debates for more than half a century.
If x(t) and y(t) denote the levels of arms for two rival states, with rates of change
driven by the sum of a positive reaction to the other country’s arms, a negative
’fatigue’ reaction to own military level and a constant ’grievance’ term, then the time
evolution is described by

dx

dt
(t) = −β11x(t) + β12y(t) + γ1,

dy

dt
(t) = β21x(t)− β22y(t) + γ2.

(1.1)

The unique equilibrium point of the system, which exists provided that the two
straight lines defined by the right hand side of (1.1) are not parallel, may be un-
stable and Richardson related exponentially diverging solutions with the outbreak of
war. Nonlinear extensions of the classical Richardson model have been considered by
Hill [6].

We take a similar approach but augment the model by adding an economic
dimension described in terms of Solow-Swan dynamics discussed below based on [3].
A different line of thought, that we don’t pursue here, deals with arms races or, more
generally, strategic interactions from a game theoretical perspective. Two or more
actors play a (repeated) game in which the strategies that they can choose from
are to arm or not to arm (see, for example [10]). For a recent contribution that is
somewhat pertaining to the present work, we refer to [9]. The direction contrary to
our study, that is disarmament models has also been pursued (cf. [4]), while a strongly
misleading use of the term arms race in a biological context has been rendered popular
by Dawkins and Krebs in [5].

The Solow-Swan model, originating from the independent works [14] and [15],
explains long-run economic growth in a neoclassical framework by relating capital,
labor and technology. The model relies on three fundamental assumptions. The first
assumption is an exponential population (or labor) growth

L(t) = L0e
nt (equivalently

dL

dt
= nL).

The second assumption concerns a Cobb-Douglas production function connecting the
economic output Y to the labor L, capital K and the level of technology A

Y = AKαL1−α.

Here, α ∈ [0, 1] is the returns to scale constant.
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The third assumption of the model asserts that change in capital K(t) is due to
the positive capital output saving (with saving rate σ ∈ (0, 1)) and to the negative
capital depreciation (at a rate δ)

dK

dt
= σY − δK.

By combining these three assumptions and expressing them in terms of the
capital intensity

k(t) =
K(t)

L(t)

one obtains
dk

dt
L+ k nL =

dK

dt
= σA(kL)αL1−α − δ(kL)

and deduces the fundamental equation of the Solow-Swan model

dk

dt
= σAkα − (n+ δ)k. (1.2)

Observe that here we have reached an explicitly solvable Bernoulli equation which
defines a dynamical system with two equilibria, k∗ = 0 being unstable in contrast to

k∗ =

(
σA

n+ δ

)1/1−α

which is asymptotically stable (attractor).

2. An economic growth model with arms race military expenses

The simplicity and lack of specificity proved to be both a strength and weak-
ness of the classical Richardson model which has become a cornerstone of strategic
thinking despite the somewhat imprecise concept of arms not allowing rigorous fit-
ting to measurable data. It turns out that replacing weapon quantities by an abstract
’security’ concept that can be linked to economic factors is more lucrative. Loosely
following discrete models in both Krabs [8] and Larrosa [9] we consider an augmented
arms race model in underlying economic growth context

ds1
dt

(t) = −k2(t)s1(t) + k1(t)s2(t),

ds2
dt

(t) = k2(t)s1(t)− k1(t)s2(t),

dk1
dt

(t) = a1k1(t)α − bk1(t)− cs2(t)k1(t),

dk2
dt

(t) = a2k2(t)α − bk2(t)− cs1(t)k2(t).

(2.1)

Here, si(t) describes the level of security of the state i at time t, ki(t) being the
country’s capital intensity. Security levels obey Richardson-type equations but with
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time-varying coefficients. The competitive nature of the model is reflected in the fact
that an increase in one actor’s security is its adversary’s security loss as

ds1
dt

(t) = −ds2
dt

(t). (2.2)

In other words the total security is constant s1(t) + s2(t) = const and imposing
s1(0) + s2(0) = 1 will assure, as we will see in the next section, 0 ≤ s1(t), s2(t) ≤ 1
meaning that security levels range from 0 (totally insecure) to 1 (totally secure).

On the other hand, both economies grow according to a Solow-Swan model with
an additional term explicitly accounting for military expenses. These exchange terms
including the adversary’s security might look surprising at first glance, but in view of
(2.2) one country’s security is the other’s insecurity sj = 1− si and military expenses
are proportional precisely to the insecurity 1−si. The coefficient c ∈ (0, 1) represents a
budget constraint and expresses the percentual limit which military spendings cannot
exceed in a functional peacetime economy.

Returning to the security equations, one can now see that the right hand side
terms are actually proportional to military costs, insecurity rising based on rival
spending and decreasing based on own spendings.

The parameters α, b and ai retain their original Solow model meaning and only
a1, a2 differ from country to country. In view of (1.2), this difference is essential to
our model and accounts for the technological gap separating the two economies.

3. Analysis of the model

We start our analysis by discussing an uncoupled Solow-Swan model with vari-
able military expenditures. Quite naturally, the best and worst case scenarios, namely
zero or maximal military spending, provide upper and lower bounds for the dynamics.

Lemma 3.1 (upper and lower bounds). Let us consider the initial value problem

dk

dt
= akα − bk − cs(t)k, k(0) = k0 (3.1)

with coefficients a > 0, α ∈ (0, 1), b > 0, c ∈ [0, 1] and s : [0,∞) → R a given smooth
function with s(t) ∈ [0, 1] for any t ≥ 0. If k0 > 0 then the solution of (3.1) exists, is
positive and satisfies for all times

a) k(t) ≤ k(t), where k is the solution of

dk

dt
= ak

α − bk, k(0) = k0; (3.2)

a) k(t) ≤ k(t), where k is the solution of

dk

dt
= akα − bk − ck, k(0) = k0. (3.3)

Proof. In (3.1) we are dealing with a Bernoulli equation which is exactly solvable,
hence the global existence using the usual change substitution z(t) = k(t)1−α. Using
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the variation of constants formula one has the desired positivity from

k(t)1−α = z(t) = e−
∫ t
0
b+cs(ρ)

1−α dρ

[
k1−α0 +

a

1− α

∫ t

0

e
∫ τ
0
b+cs(ρ)

1−α dρ dτ

]
. (3.4)

To obtain both the upper and lower bounds, one can rely on standard sub and super-
solution arguments. Since 0 ≤ s(t) ≤ 1 and k(t) ≥ 0

akα − bk − ck ≤ dk

dt
≤ akα − bk

and the conclusion follows. �

Remark 3.2. From a dynamical systems point of view, both autonmous equations
in Lemma 3.1 are Solow-Swan equations and have the same stability behavior albeit
with different nonzero asymptotically stable equilibria namely

k
∗

=
(a
b

) 1
1−α

and k∗ =

(
a

b+ c

) 1
1−α

respectively.

After this helpful preliminaries we are in position to prove the existence of global
solutions to (2.1).

Theorem 3.3 (global existence). Let us consider the growth under arms race rivalry
model (2.1) with a1, a2 > 0, α ∈ (0, 1), b > 0 and c ∈ [0, 1]. Then for any initial
conditions k1(0), k2(0) > 0 and s1(0), s2(0) > 0 with s1(0) + s2(0) = 1 there exists
a unique classical solution of the initial value problem associated to the system (2.1)
which remains bounded for all t ≥ 0.

Proof. We divide the proof in several steps.
Step 1. Local existence. As the right hand side of the system has good regularity
(only local Lipschitz continuity is actually required), a standard Banach fixed point
argument guarantees the existence of local in time solutions, defined on a maximal
interval t ∈ [0, T ), T = T (s1(0), s2(0), k1(0), k2(0).
Step 2. Positivity of k1 and k2. Based on the representation formula (3.4) which holds
on their maximal interval of existence t ∈ [0, T ), one can see that for positive initial
states k1(0), k2(0) > 0, both k1(t) and k2(t) must be positive for t ∈ [0, T ).
Step 3. Positivity of s1 and s2. Using the fact that

s1(t) + s2(t) = 1 for all t ∈ [0, T ), (3.5)

one can rewrite the evolution equations for s1 and s2 as

ds1
dt

= k1(t)− (k1(t) + k2(t))s1,

ds2
dt

= k2(t)− (k1(t) + k2(t))s2,

(3.6)

such that aplying the variation of constants formula one again

s1(t) = e−
∫ t
0
(k1(ρ)+k2(ρ))dρ

[
s1(0) +

∫ t

0

e
∫ τ
0
(k1(ρ)+k2(ρ))dρk1(τ) dτ

]
(3.7)
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which is positive for positive k1. Similarly, one can show that s2 has the same property.
In view of (3.5) and the positivity of s1, s2 we have

0 ≤ s1(t), s2(t) ≤ 1 for all t ∈ [0, T ). (3.8)

Step 4. Boundedness of k1, k2 and global solutions. The estimates in (3.8) not only
assure the boundedness for s1, s2 but also allow us to apply Lemma 3.1, more precisely
the upper bound in a), and hence deduce the boundedness of k1 and k2. A classical
result (see Barbu [2]) now assures that the local in time solutions can be extend to
arbitrary positive times. �

4. Asymptotic behavior of the model

We start by determining the equilibrium points of the system, that is the solu-
tions of 

0 = −k∗2s∗1 + k∗1s
∗
2,

0 = k∗2s
∗
1 − k∗1s∗2,

0 = a1(k∗1)α − bk∗1 − cs∗2k∗1 ,

0 = a2(k∗2)α − bk∗2 − cs∗1k∗2 .

(4.1)

One can reduce this to a 3 by 3 nonlinear system by assuming that (3.5) holds. The
resulting equilibrium equations are

0 = k∗1 − (k∗1 + k∗2)s∗1,

0 = a1(k∗1)α − bk∗1 − c(1−)s∗1)k∗1 ,

0 = a2(k∗2)α − bk∗2 − cs∗1k∗2 .

(4.2)

Trivial equilibria, that is with k∗i = 0, exist but are not interesting from a modeling
perspective as they would indicate the disappearance of an economy. Nevertheless,
we note without going into details, that all such equilibria are unstable, as a natural
consequence of the lower bound b) in Lemma 3.1 means that both k1 and k2 are
pushed away from zero even when starting arbitrarily close.

However, there exists also a nontrivial equilibrium point.

4.1. The unique nontrivial equilibrium

In terms of the convenient notation

R∗ =
s∗1
s∗2

=
k∗1
k∗2
,

from (3.5) we have

s∗1 =
R∗

1 +R∗
and s∗2 =

1

1 +R∗
. (4.3)

Such that inserting this in the 3rd and 4th equation of (4.1) leads to(
k∗1
k∗2

)1−α

=
a1
a2
· b+ (b+ c)R∗

(b+ c) + bR∗
,
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that is,

(R∗)1−α =
a1
a2
F (R∗) (4.4)

with

F (R) =
b+ (b+ c)R

(b+ c) + bR
.

Hence, finding the nontrivial equilibrium reduces to solving the coincidence problem
(4.4) (or equivalently the fixed point problem R∗ = a1

a2
F (R∗)1/1−α). The existence of

a unique nontrivial coincidence point R∗ follows from geometric considerations.

Lemma 4.1. The coincidence problem (4.4) with a1 ≥ a2 has a unique solution R∗ ≥ 1
provided that α ∈

[
0, 12
)

and c
2b+c ≤ 1− α. If a1 > a2 then R∗ > a1

a2
.

Proof. We start by noting some geometric properties of F . One can easily check that

F (0) =
b

b+ c
, F (1) = 1 and F (∞) =

b+ c

b

while

F ′(R) =
(2b+ c)c

((b+ c) + bR)2
> 0 and F ′′(R) < 0.

In other words, F is monotonically increasing, convex and bounded from above by
b+ c/b. Consequently, the range of R 7→ a1

a2
F (R) is [a1a2

b
b+c ,

a1
a2

b+c
b ].

Now, observe that for a1
a2

= 1, R = 1 is a solution of

R1−α = F (R).

For the moment, we assume that there are no other solutions in (0, 1) and later give
a sufficient condition for this to hold true.

If R1−α = F (R) has no solutions is (0, 1), that is, F (R) > R1−α for R ∈ (0, 1)
due to F (0) = b/(b + c) > 0, then a1

a2
R1−α = F (R) has no solutions in (0, a1/a2).

Indeed, on one hand

R1−α < F (R) ≤ a1
a2
F (R) for 0 < R < 1

while on the other hand

R1−α < R <
a1
a2

<
a1
a2
F (R) for 1 < R <

a1
a2
.

As R 7→ R1−α is increasing and unbounded while F is increasing and bounded,
the two curves will cross at a unique point R∗ > a1

a2
.

The necessary and sufficient condition for R1−α = F (R) to have no solutions in
(0, 1) is again geometric in nature. Actually, the slope of F at R = 1 must not exceed
that of G(R) = R1−α, that is precisely

c

2b+ c
≤ 1− α. �
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Remark 4.2. Both essential conditions for the uniqueness of the coincidence point

α <
1

2
and

c

2b+ c
≤ 1− α (4.5)

are natural and in accordance with econometric data. The returns to scale constant
is generally considered to be α ≈ 1/3 while the depreciation constant is b ≈ 0.05 (see
Acemoglu [1]). On the other hand, even at the hight of the Cold War, according to the
World Bank1 military expenses have not exceeded 10% of GDP, so roughly c ≈ 2b,
which satisfies the coincidence condition.

0 2 4 6 8 10

0

1

2

3

4

R1−α

F(R)
1.5F(R)
1.75F(R)
2F(R)

Figure 1. Qualitative behavior of the coincidence problem under
the uniqueness assumptions (4.5).

In the sequel, we analyze the stability of the equilibrium point corresponding to this
unique R∗, that is of (4.3) together with

k∗1 =

(
a1

b+ c
1+R∗

) 1
1−α

and k∗2 =

(
a2

b+ cR∗

1+R∗

) 1
1−α

.

To this end, we compute the Jacobi matrix of the (3 by 3) system which is

J(s∗1, k
∗
1 , k
∗
2) =

−(k∗1 + k∗2) 1− s∗1 −s∗1
ck∗1 T1 0
−ck∗2 0 T2

 (4.6)

with

T1 = (α− 1)
b+ c+ bR∗

1 +R∗
and T2 = (α− 1)

b+ (b+ c)R∗

1 +R∗
.

We discuss the eigenvalues of this matrix in two different, parameter-dependent cases.

1https://data.worldbank.org/indicator/MS.MIL.XPND.GD.ZS?locations=US
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4.2. The catch-up scenario a1 = a2 = a

This is the simpler yet less realistic situation in which there exists no difference
between the parameters describing the two countries, this especially means that both
economies have the same technology level, and only their initial states may differ.

Returning to (4.4), one can see that it reduces to the simpler

(R∗)1−α = F (R∗)

which has the unique coincidence point R∗ = 1. As a consequence

s∗1 = s∗2 =
1

2
and k∗1 = k∗2 = k∗ =

(
a

b+ 1
2c

) 1
1−α

and straightforward but rather tedious computation show that all three eigenvalues
of the Jacobian J( 1

2 , k
∗, k∗) have negative real part, so the equilibrium is locally

asymptotically stable.

From a modeling perspective, this describes a catch-up evolution in which the
country with the initially weaker economy will recover the deficit in the long-run and
stabilize at the same level as its rival, as depicted in Figure 2.
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Figure 2. The catch-up scenario a1 = a2. The two countries expe-
rience a convergent economic growth with the initialy weaker econ-
omy catching up to the stronger (Left panel). Security levels also
converge towards a balanced stationary state (Right panel). Simula-
tions correspond to a1 = a2 = 0.15, α = 1/3, b = 0.06, c = 0.1 and
s1(0) = s2(0) = 1/2, k1(0) = 0.3, k2(0) = k1(0)/4.

4.3. The increasing gap scenario a1 > a2

From our point of view, the more interesting and realistic situation is that of
unequal coefficients a1 > a2. This describes a technological gap between the two
contenders, and we will show that the quotient a1/a2 plays a decisive role in the
long-term dynamics as its affects the equilibrium quotient R∗ of the two economies
(see Figure 3).
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Figure 3. The increasing gap scenario a1 > a2. Despite growth for
both countries, the gap separating them widens as excessive military
spending harms the slower developing one (Left panel). Security levels
also separate in the stronger economy’s favour (Right panel). Simu-
lations correspond to a1 = 0.18, a2 = 0.15, α = 1/3, b = 0.06, c = 0.1
and s1(0) = s2(0) = 1/2, k1(0) = 0.3, k2(0) = k1(0)/4.

Indeed, from the proof of Lemma 4.1, we know that the coincidence point R∗

must lie above the a1
a2

threshold. This means that the equlibirum quotient exceeds the
quotient of coefficients

k∗1
k∗2

= R∗ >
a1
a2
.

Again, the eigenvalues of the Jacobian at the equilibrium point corresponding
to R∗ > a1

a2
have negative real part and hence the equilibrium point is asymptotically

stable. We omit the details of this technical computation, but in order to strike a bal-
ance between the abstract and the concrete level, we mention that given the realistic
values

a1 = 0.18, a2 = 0.15, α = 1/3, b = 0.06, c = 0.1

for the parameters, one obtains

R∗ = 2.208, k∗1 = 2.773 and k∗2 = 1.256

such that the eigenvalues of the Jacobi matrix are all negative

λ1,2,3 = −4.081, −0.076 and − 0.019.

5. Conclusions

In order to describe the economic implications of a prolonged military rivalry, we
have constructed a nonlinear dynamical model that merges the classical Richardson
arms race evolution with economic growth in the sense of Solow’s pioneering work.

The ensuing nonstandard model turns out to be well-posed and in accordance
with both political and economic intuitions. More precisely, when considering different
levels of technology for the two competing powers, the model predicts that in the long
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run, due to nonlinear effects, the sizes of the two economies will be separated by a
gap that exceeds the technology gap.

The reality of Cold War dynamics has been far more complex than the relatively
simple model that we propose can describe. Many extensions are possible and, actually
desirable. The most natural extension would be to consider the augmented human
capital version of the Solow-Swan model due to Mankiw, Romer and Weil [11] not
the Solow-Swan economic growth model itself.

Furthermore, the Cold War arms race is just a prototype for more general eco-
nomic rivalry phenomena. Trade or economic wars provide very interesting challenges
form a modeling perspective.
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The present book provides a modern presentation of various classical topics
in complex analysis. As it is mentioned in the preface, the level of difficulty of the
material increases gradually from chapter to chapter.

The book is divided into seven chapters, as follows.

The first chapter is an introductory chapter, in which there are reviewed the
complex numbers, the topological and metric structures of the complex plane C, and

the topological structure of the extended complex plane Ĉ.

The second chapter is devoted to the notion of holomorphy in the case of func-
tions of one complex variable. There are presented basic properties regarding the
derivative of a complex function, including the fundamental Cauchy-Riemann the-
orem of characterization the complex differentiability. Also, there are included use-
ful examples of elementary entire functions. A special attention is paid to Möbius
transformations and their basic properties (the invariance of the cross ratio, and the
preservation of circles in C∞ onto circles in C∞).

The third chapter is concerned with the theory of the complex integral. For
this aim, first there are defined the notions of paths, homotopy of two paths, simply
connected domain, etc. Then there are presented the notion of the complex integral
and basic properties regarding this notion. Among them, we mention here the funda-
mental Cauchy integral theorem for holomorphic functions, and the Cauchy integral
formulas with its important consequences and applications. The notion of the index
of a path, and the analytic branches of multi-valued functions are also discussed.

In the fourth chapter, the authors are concerned with the local properties of
analytic functions in terms of the power series expansions. The chapter begins with
a review of locally uniformly convergence of sequences of holomorphic functions, and
continues with important properties of power series, the treatment of zeros of holomor-
phic functions, followed by the maximum modulus theorem and the Schwarz lemma.
Finally, the Laurent series, the notion of an isolated singular point, and basic prop-
erties of meromorphic functions are also presented.

The fifth chapter deals with the residue theory and various applications of the
fundamental residue theorem in the computation of complex integrals as well as on



322 Book reviews

some real integrals. The residue theory is then applied to study the number of ze-
ros and poles of meromorphic functions. There are proved the argument principle
and Rouché’s theorem with its main consequences and applications in the theory of
holomorphic functions.

The sixth chapter is one of the main chapters of this book. In the first section,
there is proved the classical result of Montel concerning the equivalence between the
notions of locally uniformly convergence and normal families in the case of holomor-
phic functions. In the second section, there is studied the notion of univalence for
holomorphic functions, and there are obtained a necessary condition of univalence
(the non-vanishing of the first derivative of a univalent function) and the Hurwitz
theorem concerning the locally uniformly convergence of sequences of univalent func-
tions. In the third section, there is treated a fundamental problem in the theory
of univalent mappings, namely the conformal (biholomorphic) equivalence between
simply connected domains D ( C and the open unit disc U. In the fourth section,
there is proved the famous Riemann mapping theorem, and there are deduced some
consequences of this significant result in complex analysis.

Each chapter contains a useful collections of exercises of different level. The
solutions to these exercises are carefully presented in the seventh chapter of this
book.

The present book is clearly written, in an accessible style, and the proofs of
the main results are rigorous. The examples and exercises help the reader to become
acquainted with the theory of functions of one complex variable. It is recommended
to undergraduate and graduate students, and to all researchers that are interested in
classical and advanced topics of complex analysis.

Gabriela Kohr
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