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Degenerate Hermite poly-Bernoulli numbers
and polynomials with q-parameter

Waseem A. Khan, Idrees A. Khan and Musharraf Ali

Abstract. In this paper, we introduce a new class of degenerate Hermite poly-
Bernoulli polynomials with q-parameter and give some identities of these poly-
nomials related to the Stirling numbers of the second kind. Some implicit sum-
mation formulae and general symmetry identities are derived by using different
analytical means and applying generating functions. These results extend some
known summations and identities of degenerate Hermite poly-Bernoulli numbers
and polynomials.

Mathematics Subject Classification (2010): 11B68, 11B73, 11B75, 33C45.

Keywords: Hermite polynomials, degenerate q-poly-Bernoulli polynomials, de-
generate Hermite q-poly-Bernoulli polynomials, summation formulae, symmetric
identities.

1. Introduction

The special polynomials of more than one variable provide new means of analy-
sis for the solution of wide class of partial differential equations often encountered in
physical problems. The importance of multi-variable Hermite polynomials has been
recognized [6] and these polynomials have been exploited to deal with quantum me-
chanical and optical beam transport problems.

It happens very often that the solution of a given problem in physics or applied
mathematics requires the evaluation of infinite sums, involving special functions. Prob-
lems of this type arise, for example, in the computation of the higher-order moments
of a distribution or to evaluate transition matrix elements in quantum mechanics. In
[7], [8], [9], [19], [20], [21], [22], it has been shown that the summation formulae of
special functions, encountered in applications ranging from electromagnetic process
to combinatorics can be written in terms of Hermite polynomials of more than one
variable.
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The 2-variable Kampe de Feriet generalization of the Hermite polynomials [3]
and [8] are defined as

Hn(x, y) = n!

[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
. (1.1)

These polynomials are specified by the generating function:

ext+yt
2

=

∞∑
n=0

Hn(x, y)
tn

n!
(1.2)

and reduce to the ordinary Hermite polynomials Hn(x) (see [1]) when y = −1 and x
is replaced by 2x.

In (2016), Khan [13] introduced the degenerate Hermite polynomials of two
variables by means of the following generating function:

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hn(x, y;λ)
tn

n!
, (1.3)

where λ 6= 0. Since (1 + λt)
1
λ −→ et as λ −→ 0, it is evident that (1.3) reduces to

(1.2). That is Hn(x, y) limiting case of Hn(x, y;λ) when λ −→ 0.

The following representation of degenerate Hermite polynomials Hn(x, y;λ) is
given by

Hn(x, y;λ) = n!

[n2 ]∑
r=0

(−xλ )n−2r(− y
λ )r(−λ)n−r

r!(n− 2r)!
. (1.4)

Since lim
λ−→0

Hn(x, y;λ) = Hn(x, y), (1.1) is a limiting case of (1.4).

For λ ∈ C, Carlitz introduced the degenerate Bernoulli polynomials by means of the
following generating function:

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn(x;λ)
tn

n!
, (see [4], [18], [17]) (1.5)

so that

βn(x;λ) =

m∑
n=0

(
n
m

)
βm(λ)

(x
λ

)
n−m

. (1.6)

When x = 0, βn(λ) = βn(0;λ) are called the degenerate Bernoulli numbers.

From (1.5), we note that

∞∑
n=0

lim
λ−→0

βn(x;λ)
tn

n!
= lim
λ−→0

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ

=
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (1.7)

where Bn(x) are called the Bernoulli polynomials (see [1]-[25]).
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The classical polylogarithm function Lik(z) is

Lik(z) =

∞∑
m=1

zm

mk
, (k ∈ Z) (see [13], [14], [16]) (1.8)

so for k ≤ 1,

Lik(z) = − ln(1− z), Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, ...

The poly-Bernoulli polynomials are given by

Lik(1− e−t)
et − 1

ext =

∞∑
n=0

B(k)
n (x)

tn

n!
, (see [2], [12], [13]). (1.9)

For k = 1 in (1.9), we have

Li1(1− e−t)
et − 1

ext =
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
. (1.10)

From (1.7) and (1.10), we have

B(1)
n (x) = Bn(x).

Very recently, Khan [13] introduced the degenerate Hermite poly-Bernoulli polyno-

mials of two variables Hβ
(k)
n,q(x, y;λ) by means of the following generating function:(

Lik(1− e−t)
(1 + λt)

1
λ − 1

)α
(1 + λt)

x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hβ
(k)
n (x, y;λ)

tn

n!
, (1.11)

so that

HB
(k)
n (x, y;λ) =

n∑
m=0

(
n
m

)
β
(k)
n−m(λ)Hm(x, y;λ). (1.12)

The Stirling number of the first kind is given by

(x)n = x(x− 1) · · · (x− n+ 1) =

n∑
l=0

S1(n, l)xl, (n ≥ 0), (1.13)

and the Stirling number of the second kind is defined by generating function:

(et − 1)n = n!

∞∑
l=n

S2(l, n)
tl

l!
. (1.14)

A generalized falling factorial sum σk(n;λ) can be defined by the generating function
[25]

∞∑
k=0

σk(n;λ)
tk

k!
=

(1 + λt)
(n+1)
λ − 1

(1 + λt)
1
λ − 1

. (1.15)

Note that

lim
λ−→0

σk(n;λ) = Sk(n).
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The object of this paper as follows, we first give definition of the degenerate Hermite

poly-Bernoulli polynomials Hβ
(k)
n (x, y;λ) with q-parameter and then extend and il-

lustrate how, a connection between Hermite and Bernoulli polynomials can yield new
expansions and representations. Some implicit summation formulae and general sym-
metry identities are derived. These results establish a link between these families
of polynomials (namely degenerate Hermite and degenerate q-poly-Bernoulli polyno-
mials).

2. q-analogue of degenerate Hermite poly-Bernoulli polynomials

In this section, we introduce q-analogue of degenerate of Hermite-poly-Bernoulli
numbers and polynomials and its properties.

Definition 2.1. For λ ∈ C, k ∈ Z and n ≥ 0, 0 ≤ q < 1, we introduce q-analogue of
degenerate Hermite poly-Bernoulli polynomials by means of the following generating
function:

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
, (2.1)

where Lik,q(t) =

∞∑
n=0

tn

[n]kq !
is the k-th q-polylogarithm function (see [6], [10], [23]).

When x = y = 0 in (2.1), β
(k)
n (λ) = Hβ

(k)
n (0, 0;λ) are called the q-analogue of

degenerate poly-Bernoulli numbers.
Note that

Hβ
(1)
n,q(x, y;λ) = Hβn,q(x, y;λ)

and
lim
λ−→0

Hβ
(k)
n,q(x, y;λ) = HB

(k)
n,q(x, y).

Remark 2.2. For y = 0 in (2.1), the result reduces to the q-analogue of degenerate
poly-Bernoulli polynomials of Jung and Ryoo [10, p. 32, Eq. (2.1)] defined as

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

β(k)
n,q(x;λ)

tn

n!
, (k ∈ Z). (2.2)

Theorem 2.3. For λ ∈ C, k ∈ Z and n ≥ 0, 0 ≤ q < 1, we have

Hβ
(k)
n,q(x, y;λ) =

n∑
l=0

(
n
l

)
β
(k)
l,q (λ)Hn−l(x, y;λ). (2.3)

Proof. By using definition (2.1), we have
∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=

∞∑
l=0

β
(k)
l,q (λ)

tl

l!

∞∑
n=0

Hn(x, y;λ)
tn

n!
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∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

∞∑
n=0

(
n∑
l=0

(
n
l

)
β
(k)
l,q (λ)Hn(x, y;λ)

)
tn

n!
.

Comparing the coefficients of tn

n! in both sides, we get (2.3). �

Theorem 2.4. For n ≥ 0, we have

Hβ
(2)
n,1(x, y;λ) =

n∑
m=0

(
n
m

)
Bm
m+ 1

Hβn−m(x, y;λ). (2.4)

Proof. Consider equation(2.1), we have
∞∑
n=0

Hβ
(k)
n,1(x, y;λ)

tn

n!
=

Lik,1(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=
(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

∫ t

0

1

ez − 1

∫ t

0

1

ez − 1
· · · 1

ez − 1

∫ t

0

z

ez − 1︸ ︷︷ ︸
(k−1)−times

dz · · · dz (2.5)

For k = 2 in (2.5), we have
∞∑
n=0

Hβ
(2)
n,1(x, y;λ)

tn

n!
=

(1 + λt)
x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

∫ t

0

z

ez − 1
dz

=

( ∞∑
m=0

Bm
m+ 1

tm

m!

)
(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

=

( ∞∑
m=0

Bm
m+ 1

tm

m!

)( ∞∑
n=0

Hβn(x, y;λ)
tn

n!

)
.

Replacing n by n−m in above equation, we have

=

∞∑
n=0

n∑
m=0

(
n
m

)
Bm
m+ 1

Hβn−m(x, y;λ)
tn

n!
.

On equating the coefficients of the like powers of t in the above equation, we get the
result (2.4). �

Theorem 2.5. For n ≥ 0, we have

Hβ
(k)
n,q(x, y;λ) =

n∑
p=0

(
n
p

)(p+1∑
l=1

(−1)l+p+1l!S2(p+ 1, l)

[l]kq (p+ 1)

)
Hβn−p(x, y;λ). (2.6)

Proof. From equation (2.1), we have
∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

(
Lik,q(1− e−t)

t

)(
t(1 + λt)

x
λ (1 + λt2)

y
λ

(1 + λt)
1
λ − 1

)
. (2.7)

Now
1

t
Lik,q(1− e−t) =

1

t

∞∑
l=1

(1− e−t)l

[l]kq
=

1

t

∞∑
l=1

(−1)l

lk
(1− e−t)l
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=
1

t

∞∑
l=1

(−1)l

[l]kq
l!

∞∑
p=l

(−1)pS2(p, l)
tp

p!

=
1

t

∞∑
p=1

p∑
l=1

(−1)l+p

[l]kq
l!S2(p, l)

tp

p!

=

∞∑
p=0

(
p+1∑
l=1

(−1)l+p+1

[l]kq
l!
S2(p+ 1, l)

p+ 1

)
tp

p!
. (2.8)

From equations (2.7) and (2.8), we have

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=

∞∑
p=0

(
p+1∑
l=1

(−1)l+p+1

[l]kq
l!
S2(p+ 1, l)

p+ 1

)
tp

p!

( ∞∑
n=0

Hβn(x, y;λ)
tn

n!

)
.

Replacing n by n− p in the r.h.s of above equation and comparing the coefficients of
tn, we get the result (2.6). �

Theorem 2.6. For n ≥ 1, we have

Hβ
(k)
n,q(x+ 1, y;λ)− Hβ

(k)
n (x, y;λ)

=

n∑
p=1

(
n
p

)(p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
Hn−p(x, y;λ). (2.9)

Proof. Using the Definition (2.1), we have

∞∑
n=0

Hβ
(k)
n,q(x+ 1, y;λ)

tn

n!
−
∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x+1
λ (1 + λt2)

y
λ − Lik,q(1− e−t)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

= Lik,q(1− e−t)(1 + λt)
x
λ (1 + λt2)

y
λ

=

∞∑
l=0

(1− e−t)l+1

[l + 1]kq
(1 + λt)

x
λ (1 + λt2)

y
λ

=

∞∑
p=1

(
p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
tp

p!
(1 + λt)

x
λ (1 + λt2)

y
λ

=

( ∞∑
p=1

(
p−1∑
l=0

(−1)l+p+1

[l + 1]kq
(l + 1)!S2(p, l + 1)

)
tp

p!

)( ∞∑
n=0

Hn(x, y;λ)
tn

n!

)
.

Replacing n by n− p in the above equation and comparing the coefficients of tn, we
get the result (2.9). �
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Theorem 2.7. For n ≥ 0, d ∈ N and k ∈ Z, we have

Hβ
(k)
n,q(x, y;λ)

=

d−1∑
a=0

n∑
l=0

l+1∑
p=1

(
n
l

)
dn−l−1

(−1)l+p+1p!S2(l + 1, p)

pk[l + 1]kq
Hβn−l

(
l + x

d
, y;

λ

d

)
. (2.10)

Proof. From equation (2.1), we can be written as

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=
Lik,q(1− e−t)
(1 + λt)

d
λ − 1

d−1∑
a=0

(1 + λt)
l+x
λ (1 + λt2)

y
λ

=

(
Lik,q(1− e−t)

t

)
1

d

d−1∑
a=0

dt

(1 + λt)
d
λ − 1

(1 + λt)
l+x
λ (1 + λt2)

y
λ

=

( ∞∑
l=0

(
l+1∑
p=1

(−1)l+p+1

pk
p!
S2(l + 1, p)

[l + 1]kq

)
tl

l!

)( ∞∑
n=0

dn−1
d−1∑
a=0

Hβn

(
l + x

d
, y;

λ

d

)
tn

n!

)
.

Replacing n by n − l in above equation and comparing the coefficient of tn, we get
the result (2.10). �

3. Summation formulae for degenerate Hermite poly-Bernoulli
polynomials with q-parameter

For the derivation of implicit formulae involving degenerate q-poly-

Bernoulli polynomials β
(k)
n,q(x;λ) and degenerate Hermite poly-Bernoulli polynomials

Hβ
(k)
n,q(x, y;λ) the same considerations as developed for the ordinary Hermite and re-

lated polynomials in Khan [14] and Hermite-Bernoulli polynomials in Pathan and
Khan [19], [20], [21], [22] holds as well. First we prove the following results involving

degenerate Hermite poly-Bernoulli polynomials with q-parameter Hβ
(k)
n,q(x, y;λ).

Theorem 3.1. The following implicit summation formulae involving degenerate Her-

mite polynomials Hβ
(k)
n,q(λ, µ;x, y) holds true:

Hβ
(k)
m+n,q(x, y;λ)

=

m,n∑
r,s=0

(
m
r

)(
n
s

)
(x− v)r+s

[
1

λ
log(1 + λ)

]r+s
Hβ

(k)
m+n−r−s,q(v, y;λ). (3.1)

Proof. Replacing t by t+ u in (2.1) and rewrite the generating function (2.1) as

Lik,q(1− e−(t+u))
(1 + λ(t+ u))

1
λ − 1

e
y(t+u)2

λ (log(1+λ))
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= e−
x(t+u)
λ (log(1+λ)

∞∑
m,n=0

Hβ
(k)
m+n,q(x, y;λ)

tm

m!

tn

n!
. (3.2)

Upon replacing x by v in the above equation, it is not difficult to observe that
∞∑

m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!
= e

x(t+u)(x−v)
λ log(1+λ)

∞∑
m,n=0

Hβ
(k)
m+n,q(λ; v, y)

tm

m!

tn

n!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ, µ;x, y)

tp

p!

tq

q!

=

∞∑
N=0

[x(t+u)(x−v)λ log(1 + λ)]N

N !

∞∑
p,q=0

Hβ
(k)
p+q(λ, µ; v, y)

tp

p!

tq

q!
.

Now, by applying the following known series identity [24, p. 52, Eq. 1.6(2)]:
∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
p,q=0

f(n+m)
xp

p!

yq

q!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!

=

∞∑
r,s=0

(x− v)r+s[
1

λ
log(1 + λ)]r+s

tr

r!

us

s!

∞∑
m,n=0

Hβ
(k)
m+n,q(λ; v, y)

tm

m!

tn

n!
.

On replacing m by m− r and n by n− s in above equation, we get
∞∑

m,n=0

Hβ
(k)
m+n,q(λ;x, y)

tm

m!

tn

n!

=

∞∑
m,n=0

p,q∑
r,s=0

(x− v)r+s
[

1

λ
log(1 + λ)

]r+s
Hβ

(k)
m+n−r−s,q(λ; v, y)

tm

(m− r)!r!
tn

(n− s)!s!
.

Comparing the coefficients of tm

m! and tn

n! , we get the result (3.1). �

Theorem 3.2. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x+ u, y + w;λ) =

n∑
m=0

(
n
m

)
Hβ

(k)
n−m,q(x, y;λ)Hm(u,w;λ). (3.3)

Proof. By the definition of q-degenerate poly-Bernoulli polynomials and the definition
(1.3), we have

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x+u
λ (1 + λt2)

y+w
λ

=

( ∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

)( ∞∑
m=0

Hm(u,w;λ)
tm

m!

)
.

Now replacing n by n − m and comparing the coefficients of tn, we get the result
(3.3). �
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Theorem 3.3. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x, y;λ)=

n−2j∑
m=0

[n2 ]∑
j=0

β(k)
m,q(λ)

(
−x
λ

)
n−m−2j

(−λ)n−m−j
(
− y
λ

)
j

n!

m!j!(n− 2j −m)!
.

(3.4)

Proof. Applying the definition (2.1) to the term
Lik,q(1−e−t)
(1+λt)

1
λ−1

and expanding the func-

tion (1 + λt)
x
λ (1 + λt2)

y
λ at t = 0 yields

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ

=

( ∞∑
m=0

β(k)
m,q(λ)

tm

m!

)( ∞∑
n=0

(
−x
λ

)
n

(−λt)n

n!

) ∞∑
j=0

(
− y
λ

)
j

(−λt2)j

j!



=

∞∑
n=0

(
n∑

m=0

(
n
m

)
β(k)
m,q(λ)

(
−x
λ

)
n−m

(−λ)n−m

)
tn

n!

 ∞∑
j=0

(
− y
λ

)
j

(−λt2)j

j!

 .

Replacing n by n− 2j, we have

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=

∞∑
n=0

n−2j∑
m=0

[n2 ]∑
j=0

(
n− 2j
m

)
β(k)
m,q(λ)

(
−x
λ

)
n−m−2j

(−λ)n−m−j
(
− y
λ

)
j

 tn

(n− 2j)!j!
.

(3.5)
Equating their coefficients of tn, we get the result (3.4). �

Theorem 3.4. For x, y ∈ R and n ≥ 0. Then

Hβ
(k)
n,q(x, y;λ) =

n∑
m=0

(
n
m

)(
− z
λ

)
n−m

(−λ)n−mHβ
(k)
m,q(x− z, y;λ). (3.6)

Proof. By exploiting the generating function (2.1), we can write the equation

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
=

Lik,q(1− e−t)
(1 + λt)

1
λ−1

(1 + λt)
x−z
λ (1 + λt2)

y
λ (1 + λt)

z
λ . (3.7)

=

( ∞∑
m=0

Hβ
(k)
m,q(x− z, y;λ)

tm

m!

)( ∞∑
n=0

(− z
λ

)n
(−λt)n

n!

)
.

Replacing n by n−m in above equation and equating their coefficients of tn leads to
formula (3.6). �
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Theorem 3.5. The following implicit summation formula involving degenerate Hermite

poly-Bernoulli polynomials with q-parameter Hβ
(k)
n,q(x, y;λ) holds true:

Hβ
(k)
n,q(x+ 1, y;λ) =

n∑
r=0

(
n
r

)(
− 1

λ

)
r

(−λ)rHβ
(k)
n−r,q(x, y;λ). (3.8)

Proof. By the definition of degenerate Hermite poly-Bernoulli polynomials with q-
parameter, we have

∞∑
n=0

Hβ
(k)
n,q(x+ 1, y;λ)

tn

n!
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=
Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ ((1 + λt)

1
λ + 1)

=

( ∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

)( ∞∑
r=0

(
− 1

λ

)
r

(−λt)r

r!

)
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!

=

∞∑
n=0

n∑
r=0

Hβ
(k)
n−r,q(x, y;λ)

(
− 1

λ

)
r

(−λ)r
tn

(n− r)!r!
+

∞∑
n=0

Hβ
(k)
n,q(x, y;λ)

tn

n!
.

Finally, equating the coefficients of the like powers of tn, we get (3.8). �

4. General symmetry identities

In this section, we establish symmetry identities for the q-degenerate poly-

Bernoulli polynomials β
(k)
n,q(x;λ) and the degenerate Hermite poly-Bernoulli polyno-

mials with q-parameter Hβ
(k)
n,q(x, y;λ) by applying the generating function(2.1) and

(2.2). The results extend some known identities of Khan [13], [14], [15], [16], Pathan
and Khan [19], [20], [21], [22].

Theorem 4.1. Let a, b > 0 and a 6= b. For x, y ∈ R, n ≥ 0, 0 ≤ q < 1, then the
following identity holds true:

n∑
m=0

(
n
m

)
bman−mHβ

(k)
n−m,q(bx, b

2y;λ)Hβ
(k)
m,q(ax, a

2y;λ)

=

n∑
m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(bx, b

2y;λ). (4.1)

Proof. Start with

G(t) =

(
Lik,q(1− e−at)Lik,q(1− e−bt)

((1 + λt)
a
λ − 1)((1 + λt)

b
λ − 1)

)
(1 + λt)

abx
λ (1 + λt2)

a2b2y
λ . (4.2)

Then the expression for G(t) is symmetric in a and b and we can expand G(t) into
series in two ways to obtain

G(t) =

∞∑
n=0

Hβ
(k)
n,q(bx, b

2y;λ)
(at)n

n!

∞∑
m=0

Hβ
(k)
m,q(ax, a

2y;λ)
(bt)m

m!
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=

∞∑
n=0

(
n∑

m=0

(
n
m

)
an−mbmHβ

(k)
n−m,q(bx, b

2y;λ)Hβ
(k)
m,q(ax, a

2y;λ)

)
tn

n!
.

On the similar lines we can show that

G(t) =

∞∑
n=0

Hβ
(k)
n,q(ax, a

2y;λ)
(bt)n

n!

∞∑
m=0

Hβ
(k)
m,q(bx, b

2y;λ)
(at)m

m!

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(bx, b

2y;λ)

)
tn

n!
.

Comparing the coefficients of t
n

n! on the right hand sides of the last two equations, we
arrive at the desired result. �

Remark 4.2. For b = 1, Theorem 4.1 reduces to

n∑
m=0

(
n
m

)
an−mHβ

(k)
n−m,q(x, y;λ)Hβ

(k)
m,q(ax, a

2y;λ)

=

n∑
m=0

(
n
m

)
amHβ

(k)
n−m,q(ax, a

2y;λ)Hβ
(k)
m,q(x, y;λ). (4.3)

Theorem 4.3. For all integers a > 0, b > 0 and n ≥ 0, 0 ≤ q < 1, the following
identity holds true:

n∑
m=0

(
n
m

)
an−mbmHβ

(k)
n−m,q

(
bx, b2z;λ

) m∑
i=0

(
m
i

)
σi(a− 1;λ)β

(k)
m−i,q(ay;λ)

=

n∑
m=0

(
n
m

)
ambn−mHβ

(k)
n−m,q

(
ax, a2z;λ

) m∑
i=0

(
m
i

)
σi(b− 1;λ)β

(k)
m−i,q(by;λ),

(4.4)
where generalized falling factorial sum σk(n;λ) is given by (1.15).

Proof. We now use

H(t) =
Lik,q(1− e−at)Lik,q(1− e−bt)((1 + λt)

ab
λ − 1)(1 + λt)

ab(x+y)
λ (1 + λt2)

a2b2z
λ

((1 + λt)
a
λ − 1)((1 + λt)

b
λ − 1)2

to find that

g(t) =

(
Lik,q(1− e−at)
(1 + λt)

a
λ − 1

)
(1 + λt)

abx
λ (1 + λt2)

a2b2z
λ

(
(1 + λt)

ab
λ − 1

(1 + λt)
b
λ − 1

)

×

(
Lik,q(1− e−bt)
(1 + λt)

b
λ − 1

)
(1 + λt)

aby
λ

=

∞∑
n=0

Hβ
(k)
n,q

(
bx, b2z;λ

) (at)n

n!

∞∑
n=0

σn(a− 1;λ)
(bt)n

n!

∞∑
n=0

β(k)
n,q(ay;λ)

(bt)n

n!
. (4.5)
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Using a similar plan, we get

g(t) =

∞∑
n=0

Hβ
(k)
n,q

(
ax, a2z;λ

) (bt)n

n!

∞∑
n=0

σn(b− 1;λ)
(at)n

n!

∞∑
n=0

β(k)
n,q(by;λ)

(at)n

n!
. (4.6)

By comparing the coefficients of tn on the right hand sides of the last two equations,
we arrive at the desired result. �

5. Conclusion

The degenerate Hermite-poly-Bernoulli polynomials with q-parameter

Hβ
(k)
n,q(x, y;λ) plays a major role in obtaining new expansions, identities and

representations. We can introduce and study a class of related generalized poly-
nomials by defining degenerate Gould-Hopper-poly-Bernoulli polynomials with
q-parameter

Lik,q(1− e−t)
(1 + λt)

1
λ − 1

(1 + λt)
x
λ (1 + λtr)

y
λ =

∞∑
n=0

Hβ
(k,r)
n,q (x, y;λ)

tn

n!
. (5.1)

The equation (2.1) may be derived from (5.1) for r = 2.
This process can easily be extended to establish degenerate multi-variable

Hermite-poly-Bernoulli polynomials with q-parameter and Apostle type Bernoulli
polynomials.
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Choquet integral analytic inequalities
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Abstract. Based on an amazing result of Sugeno [15], we are able to transfer
classic analytic integral inequalities to Choquet integral setting. We give Choquet
integral inequalities of the following types: fractional-Polya, Ostrowski, fractional
Ostrowski, Hermite-Hadamard, Simpson and Iyengar. We provide several exam-
ples for the involved distorted Lebesgue measure.

Mathematics Subject Classification (2010): 26A33, 26D10, 26D15, 28A25.

Keywords: Choquet integral, distorted Lebesgue measure, analytic inequalities,
fractional inequalities, monotonicity and convexity.

1. Background

We need the following fractional calculus background:

Let α > 0, m = [α] ([·] is the integral part), β = α−m, 0 < β < 1, f ∈ C ([a, b]),
[a, b] ⊂ R, x ∈ [a, b]. The gamma function Γ is given by Γ (α) =

∫∞
0
e−ttα−1dt. We

define the left Riemann-Liouville integral(
Ja+α f

)
(x) =

1

Γ (α)

∫ x

a

(x− t)α−1 f (t) dt, (1.1)

a ≤ x ≤ b. We define the subspace Cαa+ ([a, b]) of Cm ([a, b]):

Cαa+ ([a, b]) =
{
f ∈ Cm ([a, b]) : Ja+1−βf

(m) ∈ C1 ([a, b])
}
. (1.2)

For f ∈ Cαa+ ([a, b]), we define the left generalized α-fractional derivative of f over
[a, b] as

Dα
a+f :=

(
Ja+1−βf

(m)
)′
, (1.3)

see [1], p. 24. Canavati first in [5] introduced the above over [0, 1] .

Notice that Dα
a+f ∈ C ([a, b]) .

Furthermore we need:
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Let again α > 0, m = [α], β = α − m, f ∈ C ([a, b]), call the right Riemann-
Liouville fractional integral operator by(

Jαb−f
)

(x) :=
1

Γ (α)

∫ b

x

(t− x)
α−1

f (t) dt, (1.4)

x ∈ [a, b], see also [2], [9], [14]. Define the subspace of functions

Cαb− ([a, b]) :=
{
f ∈ Cm ([a, b]) : J1−β

b− f (m) ∈ C1 ([a, b])
}
. (1.5)

Define the right generalized α-fractional derivative of f over [a, b] as

Dα
b−f = (−1)

m−1
(
J1−β
b− f (m)

)′
, (1.6)

see [2]. We set D0
b−f = f . Notice that Dα

b−f ∈ C ([a, b]) .
We need the following fractional Polya type (see [12], [13], p. 62) integral in-

equality without any boundary conditions.

Theorem 1.1. ([4], p. 4) Let 0 < α < 1, f ∈ C ([a, b]). Assume f ∈ Cαa+
([
a, a+b2

])
and f ∈ Cαb−

([
a+b
2 , b

])
. Set

M (f) := max
{∥∥Dα

a+f
∥∥
∞,[a, a+b

2 ] ,
∥∥Dα

b−
∥∥
∞,[ a+b

2 ,b]

}
. (1.7)

Then ∣∣∣∣∣
∫ b

a

f (x) dx

∣∣∣∣∣ ≤
∫ b

a

|f (x)| dx ≤M (f)
(b− a)

α+1

Γ (α+ 2) 2α
. (1.8)

Inequality (1.8) is sharp, namely it is attained by

f∗ (x) =

{
(x− a)

α
, x ∈

[
a, a+b2

]
,

(b− x)
α
, x ∈

[
a+b
2 , b

] }
, 0 < α < 1. (1.9)

The famous Ostrowski ([11]) inequality motivates this work and has as follows:

Theorem 1.2. It holds∣∣∣∣∣ 1

b− a

∫ b

a

f (y) dy − f (x)

∣∣∣∣∣ ≤
(

1

4
+

(
x− a+b

2

)2
(b− a)

2

)
(b− a) ‖f ′‖∞ , (1.10)

where f ∈ C1 ([a, b]), x ∈ [a, b], and it is a sharp inequality.

Another motivation is author’s next fractional result, see [3], p. 44:

Theorem 1.3. Let [a, b] ⊂ R, α > 0, m = dαe (d·e ceiling of the number),

f ∈ ACm ([a, b]) (i.e. f (m−1) is absolutely continuous), and
∥∥∥Dα

x0−f
∥∥∥
∞,[a,x0]

,∥∥∥Dα

∗x0
f
∥∥∥
∞,[x0,b]

< ∞ (where D
α

x0−f,D
α

∗x0
f are the right ([2]) and left ([8], p. 50)

Caputo fractional derivatives of f of order α, respectively), x0 ∈ [a, b]. Assume
f (k) (x0) = 0, k = 1, ...,m− 1. Then∣∣∣∣∣ 1

b− a

∫ b

a

f (x) dx− f (x0)

∣∣∣∣∣ ≤ 1

(b− a) Γ (α+ 2)
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·
{∥∥∥Dα

x0−f
∥∥∥
∞,[a,x0]

(x0 − a)
α+1

+
∥∥∥Dα

∗x0
f
∥∥∥
∞,[x0,b]

(b− x0)
α+1

}
≤ 1

Γ (α+ 2)
max

{∥∥∥Dα

x0−f
∥∥∥
∞,[a,x0]

,
∥∥∥Dα

∗x0
f
∥∥∥
∞,[x0,b]

}
(b− a)

α
. (1.11)

In the next assume that (X,F) is a measurable space and (R+) R is the set of
all (nonnegative) real numbers.

We recall some concepts and some elementary results of capacity and the Cho-
quet integral [6, 7].

Definition 1.4. A set function µ : F → R+ is called a non-additive measure (or
capacity) if it satisfies

(1) µ (∅) = 0;
(2) µ (A) ≤ µ (B) for any A ⊆ B and A,B ∈ F .
The non-additive measure µ is called concave if

µ (A ∪B) + µ (A ∩B) ≤ µ (A) + µ (B) , (1.12)

for all A,B ∈ F . In the literature the concave non-additive measure is known as
submodular or 2-alternating non-additive measure. If the above inequality is reverse,
µ is called convex. Similarly, convexity is called supermodularity or 2-monotonicity,
too.

First note that the Lebesgue measure λ for an interval [a, b] is defined by
λ ([a, b]) = b− a, and that given a distortion function m, which is increasing (or non-
decreasing) and such that m (0) = 0, the measure µ (A) = m (λ (A)) is a distorted
Lebesgue measure. We denote a Lebesgue measure with distortion m by µ = µm. It
is known that µm is concave (convex) if m is a concave (convex) function.
The family of all the nonnegative, measurable function f : (X,F)→ (R+,B (R+)) is
denoted as L+

∞, where B (R+) is the Borel σ-field of R+. The concept of the integral
with respect to a non-additive measure was introduced by Choquet [6].

Definition 1.5. Let f ∈ L+
∞. The Choquet integral of f with respect to non-additive

measure µ on A ∈ F is defined by

(C)

∫
A

fdµ :=

∫ ∞
0

µ ({x : f (x) ≥ t} ∩A) dt, (1.13)

where the integral on the right-hand side is a Riemann integral.
Instead of (C)

∫
X
fdµ, we shall write (C)

∫
fdµ. If (C)

∫
fdµ <∞, we say that

f is Choquet integrable and we write

L1
C (µ) =

{
f : (C)

∫
fdµ <∞

}
.

The next lemma summarizes the basic properties of Choquet integrals [7].

Lemma 1.6. Assume that f, g ∈ L1
C (µ).

(1) (C)

∫
1Adµ = µ (A), A ∈ F .
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(2) (Positive homogeneity) For all λ ∈ R+, we have

(C)

∫
λfdµ = λ · (C)

∫
fdµ.

(3) (Translation invariance) For all c ∈ R, we have

(C)

∫
(f + c) dµ = (C)

∫
fdµ+ c.

(4) (Monotonicity in the integrand) If f ≤ g, then we have

(C)

∫
fdµ ≤ (C)

∫
gdµ.

(Monotonicity in the set function) If µ ≤ ν, then we have

(C)

∫
fdµ ≤ (C)

∫
fdν.

(5) (Subadditivity) If µ is concave, then

(C)

∫
(f + g) dµ ≤ (C)

∫
fdµ+ (C)

∫
gdµ.

(Superadditivity) If µ is convex, then

(C)

∫
(f + g) dµ ≥ (C)

∫
fdµ+ (C)

∫
gdµ.

(6) (Comonotonic additivity) If f and g are comonotonic, then

(C)

∫
(f + g) dµ = (C)

∫
fdµ+ (C)

∫
gdµ,

where we say that f and g are comonotonic, if for any x, x′ ∈ X, then

(f (x)− f (x′)) (g (x)− g (x′)) ≥ 0.

We next mention the amazing result from [15], which permits us to compute the
Choquet integral when the non-additive measure is a distorted Lebesgue measure.

Theorem 1.7. Let f be a nonnegative and measurable function on R+ and µ = µm be
a distorted Lebesgue measure. Assume that m (x) and f (x) are both continuous and
m (x) is differentiable. When f is an increasing (non-decreasing) function on R+, the
Choquet integral of f with respect to µm on [0, t] is represented as

(C)

∫
[0,t]

fdµm =

∫ t

0

m′ (t− x) f (x) dx, (1.14)

however, when f is a decreasing (non-increasing) function on R+, the Choquet integral
of f is

(C)

∫
[0,t]

fdµm =

∫ t

0

m′ (x) f (x) dx. (1.15)
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2. Main results

From now on we assume that f : R+ → R+ is a monotone continuous function,
and µ = µm i.e. µ (A) = m (λ (A)), denotes a distorted Lebesgue measure where m is
such that m (0) = 0, m is increasing (non-decreasing) and continuously differentiable.

By Theorem 1.7 and mean value theorem for integrals we get:
i) If f is an increasing (non-decreasing) function on R+, we have

(C)

∫
[0,t]

fdµm
(1.14)

=

∫ t

0

m′ (t− x) f (x) dx

= m′ (t− ξ)
∫ t

0

f (x) dx, where ξ ∈ (0, t) . (2.1)

ii) If f is a decreasing (non-increasing) function on R+, we have

(C)

∫
[0,t]

fdµm
(1.15)

=

∫ t

0

m′ (x) f (x) dx = m′ (ξ)

∫ t

0

f (x) dx, (2.2)

where ξ ∈ (0, t) .
We denote by

γ (t, ξ) :=

{
m′ (t− ξ) , when f is increasing (non-decreasing)
m′ (ξ) , when f is decreasing (non-increasing),

(2.3)

for some ξ ∈ (0, t) per case.
We give the following Choquet-fractional-Polya inequality:

Theorem 2.1. Let 0 < α < 1, f = f |[0,t], t ∈ R+, all considered as above in this

section. Assume further that f ∈ Cα0+
([

0, t2
])

and f ∈ Cαt−
([
t
2 , t
])

. Set

M∗ (f) (t) := max
{∥∥Dα

0+f
∥∥
∞,[0, t2 ] ,

∥∥Dα
t−f
∥∥
∞,[ t

2 ,t]

}
. (2.4)

Then

(C)

∫
[0,t]

fdµm ≤ γ (t, ξ)M∗ (f) (t)
tα+1

Γ (α+ 2) 2α
. (2.5)

Proof. By Theorem 1.1 and earlier comments. �

Usual Polya inequality with ordinary derivative requires boundary conditions
making a Choquet-Polya inequality impossible.

We give applications:

Remark 2.2. i) If m (t) = t
1+t , t ∈ R+, then m (0) = 0, m (t) ≥ 0, m′ (t) = 1

(1+t)2
> 0,

and m is increasing. Then γ (t, ξ) ≤ 1.
ii) If m (t) = 1 − e−t ≥ 0, t ∈ R+, then m (0) = 0, m′ (t) = e−t > 0, and m is

increasing. Then γ (t, ξ) ≤ 1.
iii) If m (t) = et−1 ≥ 0, t ∈ R+, m (0) = 0, m′ (t) = et > 0, and m is increasing.

Then γ (t, ξ) ≤ et.
iv) If m (t) = sin t, for t ∈

[
0, π2

]
, we get m (0) = 0, m′ (t) = cos t ≥ 0, and m is

increasing. Then γ (t, ξ) ≤ 1.

We continue with the Choquet-Ostrowski type inequalities:
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Theorem 2.3. Here f : R+ → R+ is a monotone continuous function, µm is a distorted
Lebesgue measure, where m is such that m (0) = 0, m is increasing and is twice
continuously differentiable on R+. Here 0 ≤ x0 ≤ t ∈ R+. Then

1) ∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (t− x0) f (x0)

∣∣∣∣∣
≤

(
1

4
+

(
x0 − t

2

)2
t2

)
t
∥∥∥(m′ (t− ·) f)

′
∥∥∥
∞,[0,t]

, (2.6)

if f is an increasing function on R+,
and

2) ∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (x0) f (x0)

∣∣∣∣∣
≤

(
1

4
+

(
x0 − t

2

)2
t2

)
t
∥∥∥(m′f)

′
∥∥∥
∞,[0,t]

, (2.7)

if f is a decreasing function on R+.

Proof. By (1.10) we have that (x0 ∈ [0, t])∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (t− x0) f (x0)

∣∣∣∣∣
(1.14)

=

∣∣∣∣1t
∫ t

0

m′ (t− x) f (x) dx−m′ (t− x0) f (x0)

∣∣∣∣
≤

(
1

4
+

(
x0 − t

2

)2
t2

)
t
∥∥∥(m′ (t− ·) f)

′
∥∥∥
∞,[0,t]

, (2.8)

when f is an increasing function on R+.
Also we have that ∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (x0) f (x0)

∣∣∣∣∣
(1.15)

=

∣∣∣∣1t
∫ t

0

m′ (x) f (x) dx−m′ (x0) f (x0)

∣∣∣∣
(1.10)

≤

(
1

4
+

(
x0 − t

2

)2
t2

)
t
∥∥∥(m′f)

′
∥∥∥
∞,[0,t]

, (2.9)

when f is a decreasing function on R+. �

We make
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Remark 2.4. (continuing from Remark 2.2) Assuming m is twice continuously differ-
entiable is quite natural. Indeed:

i) If m (t) = t
1+t , t ∈ R+, then m′ (t) = (1 + t)

−2
, m′′ (t) = −2 (1 + t)

−3
,

m(3) (t) = 6 (1 + t)
−4

, m(4) (t) = −24 (1 + t)
−5

, etc, all higher order derivatives exist
and are continuous.

ii) If m (t) = 1− e−t, t ∈ R+, then m′ (t) = e−t, m′′ (t) = −e−t, m(3) (t) = e−t,
m(4) (t) = −e−t, etc, all higher order derivatives exist and are continuous.

iii) If m (t) = et − 1, t ∈ R+, then m(i) (t) = et, i = 1, 2, ..., all derivatives exist
and are continuous.

iv) If m (t) = sin t, t ∈
[
0, π2

]
, then m′ (t) = cos t, m′′ (t) = − sin t, m(3) (t) =

− cos t, m(4) (t) = sin t, etc, all derivatives exist and are continuous.

We continue with fractional Choquet-Ostrowski type inequalities.

Theorem 2.5. Here f : R+ → R+ is an increasing continuous function, µm is a
distorted Lebesgue measure and 0 ≤ x0 ≤ t ∈ R+.

Let α > 0, m = dαe, (m′ (t− ·) f) ∈ ACm ([0, t]), and
∥∥∥Dα

x0− (m′ (t− ·) f)
∥∥∥
∞,[0,x0]

,∥∥∥Dα

∗x0
(m′ (t− ·) f)

∥∥∥
∞,[x0,t]

< ∞. Assume (m′ (t− ·) f)
(k)

(x0) = 0, k = 1, ...,m− 1.

Then ∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (t− x0) f (x0)

∣∣∣∣∣
≤ 1

tΓ (α+ 2)

{∥∥∥Dα

x0− (m′ (t− ·) f)
∥∥∥
∞,[0,x0]

xα+1
0

+
∥∥∥Dα

∗x0
(m′ (t− ·) f)

∥∥∥
∞,[x0,t]

(t− x0)
α+1

}
(2.10)

≤ tα

Γ (α+ 2)
max

{∥∥∥Dα

x0− (m′ (t− ·) f)
∥∥∥
∞,[0,x0]

,
∥∥∥Dα

∗x0
(m′ (t− ·) f)

∥∥∥
∞,[x0,t]

}
.

Proof. By Theorem 1.3. �

Theorem 2.6. Here f : R+ → R+ is a decreasing continuous function, µm is
a distorted Lebesgue measure and 0 ≤ x0 ≤ t ∈ R+. Let α > 0, m = dαe,
(m′f) ∈ ACm ([0, t]), and

∥∥∥Dα

x0− (m′f)
∥∥∥
∞,[0,x0]

,
∥∥∥Dα

∗x0
(m′f)

∥∥∥
∞,[x0,t]

< ∞. Assume

(m′f)
(k)

(x0) = 0, k = 1, ...,m− 1. Then∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −m′ (x0) f (x0)

∣∣∣∣∣
≤ 1

tΓ (α+ 2)

{∥∥∥Dα

x0− (m′f)
∥∥∥
∞,[0,x0]

xα+1
0 +

∥∥∥Dα

∗x0
(m′f)

∥∥∥
∞,[x0,t]

(t− x0)
α+1

}
≤ tα

Γ (α+ 2)
max

{∥∥∥Dα

x0− (m′f)
∥∥∥
∞,[0,x0]

,
∥∥∥Dα

∗x0
(m′f)

∥∥∥
∞,[x0,t]

}
. (2.11)

Proof. By Theorem 1.3. �
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We need the well-known Hermite-Hadamard inequality:

Theorem 2.7. Let f : [a, b]→ R be a continuous convex function, [a, b] ⊂ R. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
. (2.12)

We give the following Choquet-Hermite-Hadamard inequalities:

Theorem 2.8. Here f : R+ → R+ is a monotone continuous convex function, µm is
a distorted Lebesgue measure, where m is such that m (0) = 0, m is increasing and
continuously differentiable on R+. Here [a, b] ⊆ R+. Then

i) If f is decreasing, we have that

m′ (ξ) f

(
a+ b

2

)
≤ 1

b− a
(C)

∫
[a,b]

f (x) dµm (x) ≤ m′ (ξ) f (a) + f (b)

2
, (2.13)

for some ξ ∈ (0, b− a) .
ii) If f is increasing, we have that

m′ (b− a− ψ) f

(
a+ b

2

)
≤ 1

b− a
(C)

∫
[a,b]

f (x) dµm (x)

≤ m′ (b− a− ψ)
f (a) + f (b)

2
, (2.14)

for some ψ ∈ (0, b− a) .

Proof. Let f be a convex function from [a, b] ⊂ R+ into R+. Let t1, t2 ∈ [0, b− a],
these are of the form t1 = x− a, t2 = y − a, where x, y ∈ [a, b] .

Consider (λ ∈ (0, 1))

f (a+ λt1 + (1− λ) t2) = f (a+ λ (x− a) + (1− λ) (y − a))

= f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y)

= λf (a+ x− a) + (1− λ) f (a+ y − a)

= λf (a+ t1) + (1− λ) f (a+ t2) ,

proving that f (a+ ·) is convex over [0, b− a].
Also it holds

(C)

∫
[a,b]

f (x) dµm (x) = (C)

∫
[0,b−a]

f (a+ x) dµm (x) . (2.15)

Clearly, if f is increasing over [a, b], then f (a+ ·) is increasing on [0, b− a], and vice
verca. And if f is decreasing over [a, b], then f (a+ ·) is decreasing on [0, b− a], and
vice verca.

i) If f is decreasing, then

(C)

∫
[0,b−a]

f (a+ x) dµm (x)
(1.15)

=

∫ b−a

0

m′ (x) f (a+ x) dx

= m′ (ξ)

∫ b−a

0

f (a+ x) dx, for some ξ ∈ (0, b− a) . (2.16)
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By (2.12) we get

f

(
a+ b

2

)
≤ 1

b− a

∫ b−a

0

f (a+ x) dx ≤ f (a) + f (b)

2
, (2.17)

and then

f

(
a+ b

2

)
m′ (ξ) ≤ m′ (ξ)

b− a

∫ b−a

0

f (a+ x) dx ≤
(
f (a) + f (b)

2

)
m′ (ξ) . (2.18)

That is we proved (by (2.15), (2.16))

f

(
a+ b

2

)
m′ (ξ) ≤

(C)
∫
[a,b]

f (x) dµm (x)

b− a
≤
(
f (a) + f (b)

2

)
m′ (ξ) , (2.19)

for some ξ ∈ (0, b− a) .

ii) If f is increasing, then

(C)

∫
[0,b−a]

f (a+ x) dµm (x)
(1.14)

=

∫ b−a

0

m′ (b− a− x) f (a+ x) dx

= m′ (b− a− ψ)

∫ b−a

0

f (a+ x) dx, for some ψ ∈ (0, b− a) . (2.20)

Again by (2.12) we get

f

(
a+ b

2

)
≤ 1

b− a

∫ b−a

0

f (a+ x) dx ≤ f (a) + f (b)

2
, (2.21)

and

f

(
a+ b

2

)
m′ (b− a− ψ) ≤ m′ (b− a− ψ)

b− a

∫ b−a

0

f (a+ x) dx

≤
(
f (a) + f (b)

2

)
m′ (b− a− ψ) . (2.22)

That is we proved (by (2.15), (2.20))

f

(
a+ b

2

)
m′ (b− a− ψ) ≤

(C)
∫
[a,b]

f (x) dµm (x)

b− a

≤
(
f (a) + f (b)

2

)
m′ (b− a− ψ) , (2.23)

for some ψ ∈ (0, b− a) . �

We need the well-known Simpson inequality:

Theorem 2.9. If f : [a, b]→ R is four times continuously differentiable on (a, b) and∥∥∥f (4)∥∥∥
∞

= sup
x∈(a,b)

∣∣∣f (4) (x)
∣∣∣ <∞,
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then the Simpson inequality holds:∣∣∣∣∣ 1

b− a

∫ b

a

f (x) dx− 1

3

[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣ ≤ 1

2880

∥∥∥f (4)∥∥∥
∞

(b− a)
4
.

(2.24)

We give the corresponding Choquet-Simpson inequalities:

Theorem 2.10. Here f : R+ → R+ is a monotone function which is four times contin-
uously differentiable on R+, µm is a distorted Lebesgue measure, where m is such that
m (0) = 0, m is increasing and five times continuously differentiable on R+, t ∈ R+.
Then

i) if f is increasing, we have that∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −
1

3

[
m′ (t) f (0) +m′ (0) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣∣
≤ 1

2880

∥∥∥(m′ (t− ·) f)
(4)
∥∥∥
∞,[0,t]

t4, (2.25)

and
ii) if f is decreasing, we have that∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −
1

3

[
m′ (0) f (0) +m′ (t) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣∣
≤ 1

2880

∥∥∥(m′f)
(4)
∥∥∥
∞,[0,t]

t4. (2.26)

Proof. i) If f is increasing, then∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −
1

3

[
m′ (t) f (0) +m′ (0) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣∣
(1.14)

=

∣∣∣∣1t
∫ t

0

m′ (t− x) f (x) dx− 1

3

[
m′ (t) f (0) +m′ (0) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣
(2.24)

≤ 1

2880

∥∥∥(m′ (t− ·) f)
(4)
∥∥∥
∞,[0,t]

t4. (2.27)

ii) If f is decreasing, then∣∣∣∣∣1t (C)

∫
[0,t]

fdµm −
1

3

[
m′ (0) f (0) +m′ (t) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣∣
(1.15)

=

∣∣∣∣1t
∫ t

0

m′ (x) f (x) dx− 1

3

[
m′ (0) f (0) +m′ (t) f (t)

2
+ 2m′

(
t

2

)
f

(
t

2

)]∣∣∣∣
(2.24)

≤ 1

2880

∥∥∥(m′f)
(4)
∥∥∥
∞,[0,t]

t4. (2.28)

�

We need the famous Iyengar inequality [10] coming next:
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Theorem 2.11. Let f be a differentiable function on [a, b] ⊂ R and |f ′ (x)| ≤ M1.
Then∣∣∣∣∣

∫ b

a

f (x) dx− 1

2
(b− a) (f (a) + f (b))

∣∣∣∣∣ ≤ M1 (b− a)
2

4
− (f (b)− f (a))

2

4M1
. (2.29)

We present the corresponding Choquet-Iyengar inequalities:

Theorem 2.12. Here f : R+ → R+ is a monotone differentiable function on R+, µm
is a distorted Lebesgue measure, where m is such that m (0) = 0, m is increasing and
twice continuously differentiable on R+, t ∈ R+. Then

i) if f is increasing and
∣∣(m′ (t− ·) f)

′
(x)
∣∣ ≤M2, ∀ x ∈ [0, t], M2 > 0, we have

that ∣∣∣∣∣(C)

∫
[0,t]

f (x) dµm (x)− t

2
(m′ (t) f (0) +m′ (0) f (t))

∣∣∣∣∣
≤ M2t

2

4
− (m′ (0) f (t)−m′ (t) f (0))

2

4M2
. (2.30)

ii) if f is decreasing and
∣∣(m′f)

′
(x)
∣∣ ≤M3, ∀ x ∈ [0, t], M3 > 0, we have that∣∣∣∣∣(C)

∫
[0,t]

f (x) dµm (x)− t

2
(m′ (0) f (0) +m′ (t) f (t))

∣∣∣∣∣
≤ M3t

2

4
− (m′ (t) f (t)−m′ (0) f (0))

2

4M3
. (2.31)

Proof. i) If f is increasing and
∣∣(m′ (t− ·) f)

′
(x)
∣∣ ≤M2, ∀ x ∈ [0, t], then∣∣∣∣∣(C)

∫
[0,t]

f (x) dµm (x)− t

2
(m′ (t) f (0) +m′ (0) f (t))

∣∣∣∣∣
(1.14)

=

∣∣∣∣∫ t

0

m′ (t− x) f (x) dx− t

2
(m′ (t) f (0) +m′ (0) f (t))

∣∣∣∣
(2.29)

≤ M2t
2

4
− (m′ (0) f (t)−m′ (t) f (0))

2

4M2
. (2.32)

ii) If f is decreasing and
∣∣(m′f)

′
(x)
∣∣ ≤M3, ∀ x ∈ [0, t], then∣∣∣∣∣(C)

∫
[0,t]

f (x) dµm (x)− t

2
(m′ (0) f (0) +m′ (t) f (t))

∣∣∣∣∣
(1.15)

=

∣∣∣∣∫ t

0

m′ (x) f (x) dx− t

2
(m′ (0) f (0) +m′ (t) f (t))

∣∣∣∣
(2.29)

≤ M3t
2

4
− (m′ (t) f (t)−m′ (0) f (0))

2

4M3
. �

Note 2.13. One can transfer many analytic integral classic inequalities to Choquet
integral setting but we choose to stop here.
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1. Introduction

Fractional calculus has proven to be an useful tool in the description of various
complex phenomena in the real world problems. During the theoretical development of
the calculus of arbitrary order, numerous fractional integral and differential operators
are emerged and/or used by timely mathematicians, see [1, 3]-[7],[10]-[18],[23]-[28].
Although the well-developed theory and many more applications of Wyel, Liouville,
Riemann-Liouville, Hadamard operators, still this is a spotlight area of research in
applied sciences.

U. Katugampola in [24, 25] generalized the above mentioned fractional integral
and differential operators. In the same work, he obtained boundedness of general-
ized fractional integral in an extended Lebesgue measurable space. Further he stud-
ied existence and uniqueness of solution of initial value problem (IVP) for a class
of generalized fractional differential equations (FDEs) in [26]. R. Almeida, et al. [7]
studied these results with its Caputo counterpart. R. Almeida [6] discussed certain
problems of calculus of variations dependent on Lagrange function with the same ap-
proach for first and second order. In 2015, D. Anderson et al. [8] studied properties of
Katugampola fractional derivative with potential application in quantum mechanics
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as well constructed a Hamiltonian from its self adjoint operator and applied to the
particle in a box model. Recently, D. S. Oliveira, et al. [29] proposed a generaliza-
tion of Katugampola and Caputo-Katugampola fractional derivatives with the name
Hilfer-Katugampola fractional derivative. This new fractional derivative interpolates
the well-known fractional derivatives: Hilfer [20], Hilfer-Hadamard [23], Katugampola
[25], Caputo-Katugampola [7], Riemann-Liouville [27], Hadamard [28], Caputo [27],
Caputo-Hadamard [4], Liouville, Wyel as its particular cases. Following the results
of [20], they further obtained existence and uniqueness of solution of nonlinear FDEs
involving this generalized Katugampola derivative with initial condition [29].

The stability of functional equations was first posed by Ulam [30], thereafter,
this type of stability evolved as an interesting field of research. The concept of stabil-
ity of functional equations arises when the functional equation is being replaced by an
inequality which acts as a perturbation of the functional equation, see the monograph
[22] and the references cited therein. The considerable attention paid to recent devel-
opment of stability results for FDEs can be found in [2, 3, 14, 12, 9, 20, 22, 30, 31, 32].
The present work deals with following two IVPs.
Problem I: {(

ρDα,β
a+ x

)
(t) = f

(
t, x(t), (ρDα,β

a+ x)(t)
)
; t ∈ Ω,(

ρI1−γ
a+ x

)
(a) = c1, c1 ∈ R, γ = α+ β(1− α),

(1.1)

where α ∈ (0, 1), β ∈ [0, 1], ρ > 0,Ω = [a, b], f : Ω× R× R→ R is given function and
a > 0.
Problem II: {(

ρDα,β
a+ x

)
(t) = f(t, x(t)); t ∈ Ω,(

ρI1−γ
a+ x

)
(a) = c2, c2 ∈ R, γ = α+ β(1− α),

(1.2)

where α ∈ (0, 1), β ∈ [0, 1], ρ > 0, f : Ω×R→ R is given function. The operators ρDα,β
a+

and ρI1−γ
a+ involved herein are the generalized Katugampola fractional derivative (of

order α and type β) and Katugampola fractional integral (of order 1−γ) respectively.
The rest of paper is organized as follows: Section 2 introduces some preliminary

facts that we need in the sequel. Section 3 presents our main results on existence and
stability of considered problems. As an application of main results, two illustrative
examples are given in section 4. Concluding remarks are given in last section.

2. Preliminaries

Let Ω = [a, b](0 < a < b < ∞). As usual C denotes the Banach space of all
continuous functions x : Ω→ E with the superemum (uniform) norm

‖x‖∞ = sup
t∈Ω
‖x(t)‖E

and AC(Ω) be the space of absolutely continuous functions from Ω into E. Denote
AC1(Ω) the space defined by

AC1(Ω) =

{
x : Ω→ E| d

dt
x(t) ∈ AC(Ω)

}
.
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Throughout the paper, let δρ = tρ−1 d
dt , n = [α] + 1, and mention [α] as integer part

of α. Define the space

ACnδρ =
{
x : Ω→ E|δn−1

ρ x(t) ∈ AC(Ω)
}
, n ∈ N.

Here we define the weighted space of continuous functions g on Ω∗ = (a, b] by

Cγ,ρ(Ω) =

{
g : Ω∗ → R|

(
tρ − aρ

ρ

)1−γ

g(t) ∈ C(Ω)

}
, 0 < γ ≤ 1,

with the norm

‖g‖Cγ,ρ =

∥∥∥∥∥
(
tρ − aρ

ρ

)1−γ

g(t)

∥∥∥∥∥
C

= max
t∈Ω

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

g(t)

∣∣∣∣∣
and

C1
δρ,γ(Ω) = {g ∈ C(Ω) : δρg ∈ Cγ,ρ(Ω)}

with the norms

‖g‖C1
δρ,γ

= ‖g‖C + ‖δρg‖Cγ,ρ and ‖g‖C1
δρ

=

1∑
k=0

max
t∈Ω

∣∣δkρg(t)
∣∣.

Note that C0
δρ,γ

(Ω) = Cδρ,γ(Ω), C0,ρ(Ω) = C(Ω) and Cγ,ρ(Ω) is a complete metric

space [29].
Now we introduce some preliminaries from fractional calculus. For more details,

we refer the readers to [3, 24, 25, 29]:

Definition 2.1. [24] [Katugampola fractional integral] Let α ∈ R+, c ∈ R and
g ∈ Xp

c (a, b), where Xp
c (a, b) is the space of Lebesgue measurable functions. The

Katugampola fractional integral of order α is defined by

(ρIαa+g)(t) =

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
g(s)

Γ(α)
ds, t > a, ρ > 0,

where Γ(·) is a Euler’s gamma function.

Definition 2.2. [25] [Katugampola fractional derivative] Let α ∈ R+ \ N and ρ > 0.

The Katugampola fractional derivative ρDα,β
a+ of order α is defined by

(ρDα
a+g)(t) = δnρ (ρIn−αa+ g)(t)

=

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1

(
tρ − sρ

ρ

)n−α−1
g(s)

Γ(n− α)
ds.

Definition 2.3. [29] [Generalized Katugampola fractional derivative] The generalized
Katugampola fractional derivative of order α ∈ (0, 1) and type β ∈ [0, 1] with respect
to t and is defined by

(ρDα,β
a± g)(t) = (±ρIβ(1−α)

a± δρ
ρI

(1−β)(1−α)
a± g)(t), ρ > 0 (2.1)

for the function for which right hand side expression exists.
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Remark 2.4. The generalized Katugampola operator ρDα,β
a+ can be written as

ρDα,β
a+ = ρI

β(1−α)
a+ δρ

ρI1−γ
a+ = ρI

β(1−α)
a+

ρDγ
a+, γ = α+ β − αβ.

Lemma 2.5. [24] [Semigroup property] If α, β > 0, 1 ≤ p ≤ ∞, 0 < a < b < ∞ and
ρ, c ∈ R for ρ ≥ c. Then, for g ∈ Xp

c (a, b) the following relation hold:

(ρIαa+
ρIβa+g)(t) = (ρIα+β

a+ g)(t).

Lemma 2.6. [29] Let t > a, ρIαa+ and ρDα
a+ are as in Definition 2.1 and Definition

2.2, respectively. Then the following hold:

(i)
(
ρIαa+

(
sρ−aρ
ρ

)σ)
(t) = Γ(σ+1)

Γ(σ+α+1)

(
tρ−aρ
ρ

)σ+α

, α ≥ 0, σ > 0,

(ii) for σ = 0,
(
ρIαa+

(
sρ−aρ
ρ

)σ)
(t) =

(
ρIαa+1

)
(t) =

( t
ρ−aρ
ρ )

α

Γ(α+1) , α ≥ 0,

(iii) for 0 < α < 1,

(
ρDα

a+

(
sρ−aρ
ρ

)α−1
)

(t) = 0.

3. Main results

In this section, we present the results on existence, attractivity and Ulam stabil-
ity of solutions for fractional differential equations involving generalized Katugampola
fractional derivatives.

Denote BC = BC(I), I = [a,∞). Let D ⊂ BC is a nonempty set and let
G : D → D. Consider the solutions of equation

(Gx)(t) = x(t). (3.1)

We define the attractivity of solutions for equation (3.1) as follows:

Definition 3.1. A solutions of equation (3.1) are locally attractive if there exists a ball
B(x0, µ) in the space BC such that, for arbitrary solutions y(t) and z(t) of equation
(3.1) belonging to B(x0, µ) ∩D, we have

lim
t→∞

(y(t)− z(t)) = 0. (3.2)

Whenever limit (3.2) is uniform with respect to B(x0, µ) ∩ D, solutions of equation
(3.1) are said to be uniformly locally attractive.

Lemma 3.2. [14] If X ⊂ BC. Then X is relatively compact in BC if following condi-
tions hold:
1. X is uniformly bounded in BC,
2. The functions belonging to X are almost equicontinuous on R+, i.e. equicontinuous
on every compact of R+,
3. The functions from X are equiconvergent, i.e. given ε > 0 there corresponds
T (ε) > 0 such that |x(t)− lim

t→∞
x(t)| < ε for any t ≥ T (ε) and x ∈ X.
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Now we discuss the existence and attractivity of solutions of IVP (1.1). Through-
out the work, we mean BCγ,ρ = BCγ,ρ(I) is a weighted space of all bounded and
continuous functions defined by

BCγ,ρ =

{
x : (a,∞]→ R |

(
tρ − aρ

ρ

)1−γ

x(t) ∈ BC
}

with the norm

‖x‖BCγ,ρ = sup
t∈R+

∣∣∣∣( tρ − aρρ

)1−γ

x(t)

∣∣∣∣.
Theorem 3.3. [21][Schauder fixed point theorem] Let E be a Banach space and Q be
a nonempty bounded convex and closed subset of E and Λ : Q → Q is compact, and
continuous map. Then Λ has at least one fixed point in Q.

Definition 3.4. A solution of IVP (1.1) is a measurable function x ∈ BCγ,ρ satisfying

initial value (ρI1−γ
a+ x)(a+) = c1 and differential equation(

ρDα,β
a+ x

)
(t) = f

(
t, x(t), (ρDα,β

a+ x)(t)
)

on I.

From ([29], Theorem 3 pp. 9), we conclude the following lemma.

Lemma 3.5. Let γ = α + β(1 − α), where 0 < α < 1, 0 ≤ β ≤ 1 and ρ > 0. Let
f : Ω × R × R → R be such that f(·, x(·), y(·)) ∈ BCγ,ρ for any x, y ∈ BCγ,ρ. Then
IVP (1.1) is equivalent to Volterra integral equation

x(t) =
c1

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
g(s)

Γ(α)
ds,

where g(·) ∈ BCγ,ρ such that

g(t) = f

(
t,

c1
Γ(γ)

(
tρ − aρ

ρ

)γ−1

+ (ρIαa+g)(t), g(t)

)
. (3.3)

We use the following hypotheses in the sequel:

(H1). Function t 7−→ f(t, x, y) is measurable on I for each x, y ∈ BCγ,ρ, and
functions x 7−→ f(t, x, y) and y 7−→ f(t, x, y) are continuous on BCγ,ρ for a.e.
t ∈ I;

(H2). There exists a continuous function p : I → R+ such that

|f(t, x, y)| ≤ p(t)

1 + |x|+ |y|
, for a.e. t ∈ I, and each x, y ∈ R.

Moreover, assume that

lim
t→∞

(
tρ − aρ

ρ

)1−γ(
ρIαa+p

)
(t) = 0.

Set

p∗ = sup
t∈I

(
tρ − aρ

ρ

)1−γ(
ρIαa+p

)
(t).
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Theorem 3.6. Suppose that (H1) and (H2) hold. Then IVP (1.1) has at least one
solution on I. Moreover, solutions of IVP (1.1) are locally attractive.

Proof. For any x ∈ BCγ,ρ, define the operator Λ such that

(Λx)(t) =
c1

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
g(s)

Γ(α)
ds, (3.4)

where g ∈ BCγ,ρ given by (3.3). The operator Λ is well defined and maps BCγ,ρ into
BCγ,ρ. Indeed, the map Λ(x) is continuous on I for any x ∈ BCγ,ρ, and for each
t ∈ I, we have∣∣∣∣( tρ − aρρ

)1−γ

(Λx)(t)

∣∣∣∣ ≤ |c1|Γ(γ)
+

(
tρ − aρ

ρ

)1−γ ∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1 |g(s)|
Γ(α)

ds

≤ |c1|
Γ(γ)

+

(
tρ−aρ
ρ

)1−γ

Γ(α)

∫ t

a

sρ−1
( tρ − sρ

ρ

)α−1

p(s)ds

≤ |c1|
Γ(γ)

+

(
tρ − aρ

ρ

)1−γ (
ρIαa+p

)
(t).

Thus

‖Λ(x)‖BCγ,ρ ≤
|c1|
Γ(γ)

+ p∗ := M. (3.5)

Hence, Λ(x) ∈ BCγ,ρ. This proves that operator Λ maps BCγ,ρ into itself.

By Lemma 3.5, the IVP of finding the solutions of IVP (1.1) is reduced to the
finding solution of the operator equation Λ(x) = x. Equation (3.5) implies that Λ
transforms the ball BM := B(0,M) = {x ∈ BCγ,ρ : ‖x‖BCγ,ρ ≤M} into itself.

Now we show that the operator Λ satisfies all the assumptions of Theorem 3.3.
The proof is given in following steps:

Step 1: Λ is continuous.

Let {xn}n∈N be a sequence such that xn → x in BM . Then, for each t ∈ I, we
have ∣∣∣∣( tρ − aρρ

)1−γ

(Λxn)(t)−
(
tρ − aρ

ρ

)1−γ

(Λx)(t)

∣∣∣∣
≤
(
tρ−aρ
ρ

)1−γ
Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

|gn(s)− g(s)|ds, (3.6)

where gn, g ∈ BCγ,ρ,

gn(t) = f

(
t,

c1
Γ(γ)

(
tρ − aρ

ρ

)γ−1

+ (ρIαa+gn)(t), gn(t)

)
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and g is defined by (3.3). If t ∈ I, then from (3.6), we obtain∣∣∣∣( tρ − aρρ

)1−γ

(Λxn)(t)−
(
tρ − aρ

ρ

)1−γ

(Λx)(t)

∣∣∣∣
≤ 2

(
tρ−aρ
ρ

)1−γ
Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

p(s)ds. (3.7)

Since xn → x as n→∞ and
(
tρ−aρ
ρ

)1−γ(ρIαa+p
)
(t)→ 0 as t→∞ then (3.7) implies

that

‖Λ(xn)− Λ(x)‖BCγ,ρ → 0 as n→∞.

Step 2: Λ(BM ) is uniformly bounded.

This is clear since Λ(BM ) ⊂ BM and BM is bounded.

Step 3: Λ(BM ) is equicontinuous on every compact subset [a, T ] of I, T > a.

Let t1, t2 ∈ [a, T ], t1 < t2 and x ∈ BM . We have∣∣∣∣( t2ρ − aρρ

)1−γ

(Λx)(t2)−
(
t1
ρ − aρ

ρ

)1−γ

(Λx)(t1)

∣∣∣∣
≤
∣∣∣∣
(
t2
ρ−aρ
ρ

)1−γ
Γ(α)

∫ t2

a

sρ−1

(
t2
ρ − sρ

ρ

)α−1

g(s)ds

−
(
t1
ρ−aρ
ρ

)1−γ
Γ(α)

∫ t1

a

sρ−1

(
t1
ρ − sρ

ρ

)α−1

g(s)ds

∣∣∣∣,
with g(·) ∈ BCγ,ρ given by (3.3). Thus we get∣∣∣∣( t2ρ − aρρ

)1−γ

(Λx)(t2)−
(
t1
ρ − aρ

ρ

)1−γ

(Λx)(t1)

∣∣∣∣
≤
(
t2
ρ−aρ
ρ

)1−γ
Γ(α)

∫ t2

t1

sρ−1

(
t2
ρ − sρ

ρ

)α−1

|g(s)|ds

+

∫ t1

a

∣∣∣∣[( t2ρ − aρρ

)1−γ

sρ−1

(
t2
ρ − sρ

ρ

)α−1

−
(
t1
ρ − aρ

ρ

)1−γ

sρ−1

(
t1
ρ − sρ

ρ

)α−1]∣∣∣∣ |g(s)|
Γ(α)

ds

≤
(
t2
ρ−aρ
ρ

)1−γ
Γ(α)

∫ t2

t1

sρ−1

(
t2
ρ − sρ

ρ

)α−1

p(s)ds

+

∫ t1

a

∣∣∣∣[( t2ρ − aρρ

)1−γ

sρ−1

(
t2
ρ − sρ

ρ

)α−1

−
(
t1
ρ − aρ

ρ

)1−γ

sρ−1

(
t1
ρ − sρ

ρ

)α−1]∣∣∣∣ p(s)Γ(α)
ds.
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Thus, for p∗ = sup
t∈[a,T ]

p(t) and from the continuity of the function p, we obtain

∣∣∣∣( t2ρ − aρρ

)1−γ

(Λx)(t2)−
(
t1
ρ − aρ

ρ

)1−γ

(Λx)(t1)

∣∣∣∣
≤ p∗

(
Tρ−aρ
ρ

)1−γ+α

Γ(α+ 1)

(
tρ2 − t

ρ
1

ρ

)α
+

p∗
Γ(α)

∫ t1

a

∣∣∣∣( t2ρ − aρρ

)1−γ

sρ−1

(
t2
ρ − sρ

ρ

)α−1

−
(
t1
ρ − aρ

ρ

)1−γ

sρ−1

(
t1
ρ − sρ

ρ

)α−1∣∣∣∣ds.
As t1 → t2, the right hand side of the above inequation tends to zero.

Step 4: Λ(BM ) is equiconvergent.

Let t ∈ I and x ∈ BM , then we have

∣∣∣∣( tρ − aρρ

)1−γ

(Λx)(t)

∣∣∣∣ ≤ |c1|Γ(γ)
+

(
tρ−aρ
ρ

)1−γ
Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

|g(s)|ds

where g(·) ∈ BCγ,ρ is given by (3.3). Thus we get

∣∣∣∣( tρ − aρρ

)1−γ

(Λx)(t)

∣∣∣∣ ≤ |c1|Γ(γ)
+

(
tρ−aρ
ρ

)1−γ
Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

p(s)ds

≤ |c1|
Γ(γ)

+

(
tρ − aρ

ρ

)1−γ(
ρIαa+p

)
(t).

Since
(
tρ−aρ
ρ

)1−γ(ρIαa+p
)
(t)→ 0 as t→∞, then, we get

|(Λx)(t)| ≤ |c1|(
tρ−aρ
ρ

)1−γ
Γ(γ)

+

(
tρ−aρ
ρ

)1−γ(ρIαa+p
)
(t)(

tρ−aρ
ρ

)1−γ → 0 as t→∞.

Hence

|(Λx)(t)− (Λx)(+∞)| → 0 as t→∞.

In view of Lemma 3.2 and immediate consequence of Steps 1 to 4, we conclude that
Λ : BM → BM is continuous and compact. Theorem 3.3 implies that Λ has a fixed
point x which is a solution of IVP (1.1) on I.

Step 5: Local attactivity of solutions.
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Let x0 is a solution of IVP (1.1). Taking x ∈ B(x0, 2p
∗), we have∣∣∣∣( tρ − aρρ

)1−γ

(Λx)(t)−
(
tρ − aρ

ρ

)1−γ

x0(t)

∣∣∣∣
=

∣∣∣∣( tρ − aρρ

)1−γ

(Λx)(t)−
(
tρ − aρ

ρ

)1−γ

(Λx0)(t)

∣∣∣∣
≤
(
tρ−aρ
ρ

)1−γ
Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

|f(s, g(s))− f(s, g0(s))|ds,

where g0 ∈ BCγ,ρ and

g0(t) = f
(
t,

c1
Γ(γ)

(
tρ − aρ

ρ

)γ−1

+ (ρIαa+g0)(t), g0(t)
)
.

Then ∣∣∣∣( tρ − aρρ

)1−γ

(Λx)(t)−
(
tρ − aρ

ρ

)1−γ

x0(t)

∣∣∣∣
≤ 2

(
tρ−aρ
ρ

)1−γ
Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

p(s)ds.

We obtain

‖(Λ(x)− x0‖BCγ,ρ ≤ 2p∗.

Hence Λ is a continuous function such that Λ(B(x0, 2p
∗)) ⊂ B(x0, 2p

∗).

Moreover, if x is a solution of IVP (1.1), then

|x(t)− x0(t)| = |(Λx)(t)− (Λx0)(t)|

≤ 1

Γ(α)

∫ t

a

sρ−1

(
tρ − aρ

ρ

)α−1

|g(s)− g0(s)|ds

≤ 2(ρIαa+p)(t).

Thus

|x(t)− x0(t)| ≤ 2

(
tρ−aρ
ρ

)1−γ
(ρIαa+p)(t)(

tρ−aρ
ρ

)1−γ . (3.8)

With the fact that lim
t→∞

(
tρ − aρ

ρ

)1−γ

(ρIαa+p)(t) = 0 and inequation (3.8), we obtain

lim
t→∞

|x(t)− x0(t)| = 0.

Consequently, all solutions of IVP (1.1) are locally attractive. �

Now onwards in this section, we deal with existence of solutions and Ulam stability
for IVP (1.2).
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Lemma 3.7. Let γ = α + β(1 − α), where 0 < α < 1, 0 ≤ β ≤ 1 and ρ > 0. If
f : Ω×R→ R be such that f(·, x(·)) ∈ Cγ,ρ(Ω) for any x ∈ Cγ,ρ(Ω). Then IVP (1.2)
is equivalent to the Volterra integral equation

x(t) =
c2

Γ(γ)

( tρ − aρ
ρ

)γ−1

+ (ρIαa+f(·, x(·)))(t).

Let ε > 0,Φ : Ω → [0,∞) be a continuous function and consider the following
inequalities:

|
(
ρDα,β

a+ x
)
(t)− f(t, x(t))| ≤ ε; t ∈ Ω, (3.9)

|
(
ρDα,β

a+ x
)
(t)− f(t, x(t))| ≤ Φ(t); t ∈ Ω, (3.10)

|
(
ρDα,β

a+ x
)
(t)− f(t, x(t))| ≤ εΦ(t); t ∈ Ω. (3.11)

Definition 3.8. [1] IVP (1.2) is Ulam-Hyers stable if there exists a real number ψ > 0
such that for each ε > 0 and for each solution x ∈ Cγ,ρ of inequality (3.9) there exists
a solution x̄ ∈ Cγ,ρ of IVP (1.2) with

|x(t)− x̄(t)| ≤ εψ; t ∈ Ω.

Definition 3.9. [1] IVP (1.2) is generalized Ulam-Hyers stable if there exists Ψ :
C([0,∞), [0,∞)) with Ψ(0) = 0 such that for each ε > 0 and for each solution x ∈ Cγ,ρ
of inequality (3.9) there exists a solution x̄ ∈ Cγ,ρ of IVP (1.2) with

|x(t)− x̄(t)| ≤ Ψ(ε); t ∈ Ω.

Definition 3.10. [1] IVP (1.2) is Ulam-Hyers-Rassias stable with respect to Φ if there
exists a real number ψφ > 0 such that for each ε > 0 and for each solution x ∈ Cγ,ρ
of inequality (3.11) there exists a x̄ ∈ Cγ,ρ of IVP (1.2) with

|x(t)− x̄(t)| ≤ εψφΦ(t); t ∈ Ω.

Definition 3.11. [1] IVP (1.2) is generalized Ulam-Hyers-Rassias stable with respect
to Φ if there exists a real number ψφ > 0 such that for each solution x ∈ Cγ,ρ of
inequality (3.10) there exists a x̄ ∈ Cγ,ρ of IVP (1.2) with

|x(t)− x̄(t)| ≤ ψφΦ(t); t ∈ Ω.

Remark 3.12. It is clear that

(i). If the IVP (1.2) is Ulam-Hyers stable then, for a real number ψ > 0 as a
continuous function defined in Definition 3.9, it is generalized Ulam-Hyers stable.

(ii). If the IVP (1.2) is Ulam-Hyers-Rassias stable then it is generalized Ulam-
Hyers-Rassias stable.

(iii). If the IVP (1.2) is Ulam-Hyers-Rassias stable with respect to Φ then, for
Φ(·) = 1, it is Ulam-Hyers stable.

Definition 3.13. A solution of IVP (1.2) is a measurable function x ∈ Cγ,ρ that satisfies

initial condition
(
ρI1−γ
a+ x

)
(a) = c2 and differential equation

(
ρDα,β

a+ x
)
(t) = f(t, x(t))

on Ω.

Consider the following hypotheses:
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(H3). Function t 7−→ f(t, x) is measurable on Ω for each x ∈ Cγ,ρ and function
x 7−→ f(t, x) is continuous on Cγ,ρ for a.e. t ∈ Ω,

(H4). There exists a continuous function p : Ω→ [0,∞) such that

|f(t, x)| ≤ p(t)

1 + |x|
|x|, for a.e. t ∈ Ω, and each x ∈ R.

Set p∗ = sup
t∈Ω

p(t). Now we shall give the existence theorem in the following:

Theorem 3.14. Assume that (H3) and (H4) hold. Then IVP (1.2) has at least one
solution defined on Ω.

Proof. Consider the operator Λ : Cγ,ρ → Cγ,ρ such that

(Λx)(t) =
c2

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
f(s, x(s))

Γ(α)
ds. (3.12)

Clearly, the fixed points of this operator equation (Λx)(t) = x(t) are solutions of IVP
(1.2). For any x ∈ Cγ,ρ and each t ∈ Ω, we have∣∣∣∣( tρ − aρρ

)1−γ

(Λx)

∣∣∣∣ ≤ |c2|Γ(γ)
+

(
tρ − aρ

ρ

)1−γ ∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1 |f(s, x)|
Γ(α)

ds

≤ |c2|
Γ(γ)

+

(
tρ−aρ
ρ

)1−γ

Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

p(s)ds

≤ |c2|
Γ(γ)

+
p∗

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

ds

≤ |c2|
Γ(γ)

+
p∗

Γ(α+ 1)

(
tρ − aρ

ρ

)1−γ(
tρ − aρ

ρ

)α
≤ |c2|

Γ(γ)
+

p∗

Γ(α+ 1)

(
T ρ − aρ

ρ

)α+1−γ

.

Thus

‖Λx‖C ≤
|c2|
Γ(γ)

+
p∗

Γ(α+ 1)

(
T ρ − aρ

ρ

)α+1−γ

:= N. (3.13)

Thus Λ transforms the ball BN = B(0, N) = {z ∈ Cγ,ρ : ‖z‖C ≤ N} into itself. We
shall show that the operator Λ : BN → BN satisfies all the conditions of Theorem
3.16. The proof is given in following several steps.
Step 1: Λ : BN → BN is continuous.

Let {xn}n∈N be a sequence such that xn → x in BN . Then, for each t ∈ I, we
have∣∣∣∣( tρ − aρρ

)1−γ

(Λxn)(t)−
(
tρ − aρ

ρ

)1−γ

(Λx)(t)

∣∣∣∣
≤
(
tρ−aρ
ρ

)1−γ
Γ(α)

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

|f(s, xn(s))− f(s, x(s))|ds.

(3.14)
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Since xn → x as n→∞ and f is continuous, then by Lebesgue dominated convergence
theorem, inequality (3.14) implies ‖Λ(xn)− Λ(x)‖C → 0 as n→∞.
Step 2: Λ(BN ) is uniformly bounded.

Since Λ(BN ) ⊂ BN and BN is bounded. Hence, Λ(BN ) is uniformly bounded.

Step 3: Λ(BN ) is equicontinuous.

Let t1, t2 ∈ Ω, t1 < t2 and x ∈ BN . We have∣∣∣∣( t2ρ − aρρ

)1−γ

(Λx)(t2)−
(
t1
ρ − aρ

ρ

)1−γ

(Λx)(t1)

∣∣∣∣
≤
∣∣∣∣
(
t2
ρ−aρ
ρ

)1−γ
Γ(α)

∫ t2

a

sρ−1

(
t2
ρ − sρ

ρ

)α−1

f(s, x(s))ds

−
(
t1
ρ−aρ
ρ

)1−γ
Γ(α)

∫ t1

a

sρ−1

(
t1
ρ − sρ

ρ

)α−1

f(s, x(s))ds

∣∣∣∣
≤
(
t2
ρ−aρ
ρ

)1−γ
Γ(α)

∫ t2

t1

sρ−1

(
t2
ρ − sρ

ρ

)α−1

|f(s, x(s))|ds

+

∫ t1

a

∣∣∣∣[( t2ρ − aρρ

)1−γ

sρ−1

(
t2
ρ − sρ

ρ

)α−1

−
(
t1
ρ − aρ

ρ

)1−γ

sρ−1

(
t1
ρ − sρ

ρ

)α−1]∣∣∣∣ |f(s, x(s))|
Γ(α)

ds

≤
(
t2
ρ−aρ
ρ

)1−γ
Γ(α)

∫ t2

t1

sρ−1

(
t2
ρ − sρ

ρ

)α−1

p(s)ds

+

∫ t1

a

∣∣∣∣[( t2ρ − aρρ

)1−γ

sρ−1

(
t2
ρ − sρ

ρ

)α−1

−
(
t1
ρ − aρ

ρ

)1−γ

sρ−1

(
t1
ρ − sρ

ρ

)α−1]∣∣∣∣ p(s)Γ(α)
ds.

Thus, for p∗ = sup
t∈Ω

p(t) and from the continuity of the function p, we obtain

∣∣∣∣( t2ρ − aρρ

)1−γ

(Λx)(t2)−
(
t1
ρ − aρ

ρ

)1−γ

(Λx)(t1)

∣∣∣∣
≤ p∗

Γ(α+ 1)

(
T ρ − aρ

ρ

)1−γ+α(
tρ2 − t

ρ
1

ρ

)α
+

p∗
Γ(α)

∫ t1

a

∣∣∣∣( t2ρ − aρρ

)1−γ

sρ−1

(
t2
ρ − sρ

ρ

)α−1

−
(
t1
ρ − aρ

ρ

)1−γ

sρ−1

(
t1
ρ − sρ

ρ

)α−1∣∣∣∣ds.
As t1 → t2, the right hand side of the above inequality tends to zero.
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As a consequence of Steps 1 to 3 together with Arzela-Ascoli Theorem, we can
conclude that Λ is continuous and compact. By applying the Schauder fixed point
theorem, we conclude that Λ has a fixed point x which is a solution of IVP (1.2). �

Theorem 3.15. Assume that (H3), (H4) and the following hypotheses hold:

(H5). There exists λφ > 0 such that for each t ∈ Ω, we have

(ρIαa+Φ(t)) ≤ λφΦ(t);

(H6). There exists q ∈ C(Ω, [0,∞)) such that for each t ∈ Ω,

p(t) ≤ q(t)Φ(t).

Then, IVP (1.2) is generalized Ulam-Hyers-Rassias stable.

Proof. Consider the operator Λ : Cγ,ρ → Cγ,ρ defined in (3.12). Let x be a solution
of inequality (3.10), and let us assume that x̄ is a solution of IVP (1.2). Thus

x̄(t) =
c2

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
f(s, x̄(s))

Γ(α)
ds.

From inequality (3.10), for each t ∈ Ω, we have∣∣∣∣x(t)− c2
Γ(γ)

(
tρ − aρ

ρ

)γ−1

−
∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
f(s, x(s))

Γ(α)
ds

∣∣∣∣ ≤ Φ(t).

Set q∗ = sup
t∈Ω

q(t). From the hypotheses (H5) and (H6), for each t ∈ Ω, we get

∣∣x(t)− x̄(t)
∣∣ ≤ ∣∣x(t)− c2

Γ(γ)

(
tρ − aρ

ρ

)γ−1

−
∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
f(s, x(s))

Γ(α)
ds
∣∣

+

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1 |f(s, x(s))− f(s, x̄(s))|
Γ(α)

ds

≤ Φ(t) +

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
2q∗Φ(s)

Γ(α)
ds

≤ Φ(t) + 2q∗(ρIαa+Φ)(t)

≤ Φ(t) + 2q∗λφΦ(t)

= [1 + 2q∗λφ]Φ(t).

Thus

|x(t)− x̄(t)| ≤ ψφΦ(t).

Hence, IVP (1.2) is generalized Ulam-Hyers-Rassias stable. �

Define the metric

d(x, y) = sup
t∈Ω

(
tρ−aρ
ρ

)1−γ |x(t)− y(t)|
Φ(t)

in the space Cγ,ρ(Ω). Following fixed point theorem is used in our further result.
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Theorem 3.16. [19] Let Θ : Cγ,ρ → Cγ,ρ be a strictly contractive operator with a
Lipschitz constant L < 1. There exists a nonnegative integer k such that

d(Θk+1x,Θkx) <∞
for some x ∈ Cγ,ρ, then the following propositions hold true:
(A1) The sequence {Θkx}n∈N converges to a fixed point x∗ of Θ;

(A2) x∗ is a unique fixed point of Θ in X = {y ∈ Cγ,ρ(Ω) : d(Θkx, y) <∞};
(A3) If y ∈ X, then d(y, x∗) ≤ 1

1−Ld(y,Θx).

Theorem 3.17. Assume that (H5) and the following hypothesis hold:

(H7). There exists φ ∈ C(Ω, [0,∞)) such that for each t ∈ Ω, and all x, x̄ ∈ R, we
have

|f(t, x)− f(t, x̄)| ≤
(
tρ − aρ

ρ

)1−γ

φ(t)Φ(t)|x− x̄|.

If

L =

(
T ρ − aρ

ρ

)1−γ

φ∗λφ < 1,

where φ∗ = sup
t∈Ω

φ(t), then there exists a unique solution x0 of IVP (1.2), and IVP

(1.2) is generalized Ulam-Hyers-Rassias stable. Furthermore, we have

|x(t)− x̄(t)| ≤ Φ(t)

1− L
.

Proof. Let Λ : Cγ,ρ → Cγ,ρ be the operator defined in (3.12). Apply Theorem 3.16,
we have

|(Λx)(t)− (Λx̄)(t)| ≤
∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1 |f(s, x(s))− f(s, x̄(s))|
Γ(α)

ds

≤
∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

φ(s)

× Φ(s)
|
(
sρ−aρ
ρ

)1−γ
x(s)−

(
sρ−aρ
ρ

)1−γ
x̄(s)|

Γ(α)
ds

≤
∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1

φ∗(s)Φ(s)
‖x− x̄‖C

Γ(α)
ds

≤ φ∗(ρIαa+)Φ(t)‖x− x̄‖C
≤ φ∗λφΦ(t)‖x− x̄‖C .

Thus∣∣∣∣( tρ − aρρ

)1−γ

(Λx)−
(
tρ − aρ

ρ

)1−γ

(Λx̄)

∣∣∣∣ ≤ (T ρ − aρρ

)1−γ

φ∗λφΦ(t)‖x− x̄‖C .

Hence

d(Λ(x),Λ(x̄)) = sup
t∈Ω

‖(Λx)(t)− (Λx̄)(t)‖C
Φ(t)

≤ L‖x− x̄‖C

from which we conclude the theorem. �
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4. Examples

In this section we present some examples to illustrate our main results.

Example 4.1. Consider the following IVP involving generalized Katugampola frac-
tional derivative: {(

ρD
1
2 ,

1
2

a+ x
)
(t) = f(t, x, y); t ∈ [a, b],(

ρI
1
4
a+x

)
(a) = (1− a),

(4.1)

where α = 1
2 , β = 1

2 , ρ > 0, γ = 3
4 , 0 < a < b ≤ e, andf(t, x, y) = θ(t−a)−

1
4 sin (t−a)

64(1+
√
t−a)(1+|x|+|y|) ; t ∈ (a, b], x, y ∈ R,

f(a, x, y) = 0; x, y ∈ R.

Clearly, function f is continuous for each x, y ∈ R and (H2) is satisfied withp(t) = θ(t−a)−
1
4 | sin (t−a)|

64(1+
√
t−a)

; 0 < θ ≤ 1, t ∈ (a,+∞),

p(a) = 0.

Thus, all the conditions of Theorem 3.6 are satisfied. Hence, IVP (4.1) has at least
one solution defined on [a,+∞).

Also, we have(
tρ − aρ

ρ

)1−γ

(ρI
1
2
a+p)(t) =

(
tρ − aρ

ρ

) 1
4
∫ t

a

sρ−1

(
tρ − sρ

ρ

)− 1
2 p(s)

Γ( 1
2 )
ds

≤ 1

8

(
tρ − aρ

ρ

)− 1
4

→ 0 as t→ +∞.

This implies that solutions of IVP (4.1) are locally asymptotically stable.

Example 4.2. Consider the following IVP involving generalized Katugampola deriva-
tive: {(

ρD
1
2 ,

1
2

a+ x
)
(t) = f(t, x); t ∈ [a, b],(

ρI
1
4
a+x

)
(a) = (1− a),

(4.2)

where α = 1
2 , β = 1

2 , ρ > 0, γ = 3
4 , 0 < a < b ≤ e, andf(t, x) = θ(t−a)−

1
4 sin (t−a)

64(1+
√
t−a)(1+|x|) ; t ∈ (a, b], x ∈ R,

f(a, x) = 0; x ∈ R.

Clearly, function f is continuous for all x ∈ R and (H4) is satisfied withp(t) = θ(t−a)−
1
4 | sin (t−a)|

64(1+
√
t−a)

; 0 < θ ≤ 1, t ∈ (a, b], x ∈ R,
p(a) = 0.



44 Sandeep P. Bhairat

Hence, Theorem 3.14 implies that IVP (4.2) has at least one solution defined on [a, b].
Also, one can see that (H5) is satisfied with

Φ(t) = e3, and λφ =
1

Γ( 3
2 )
.

Consequently, Theorem 3.15 implies that IVP (4.2) is generalized Ulam-Hyers-Rassias
stable.

5. Concluding remarks

In this article, two IVPs involving generalized Katugampola fractional derivative
are considered. The existence and local attractivity of solution is obtained for first IVP
while Ulam-type stability of second IVP is obtained by using fixed point theorems.
Both the results are supported with suitable illustrative examples.

References

[1] Abbas, S., Benchohra, M., N’Guerekata, G.M., Topics in Fractional Differential Equa-
tions, New York, Springer, 2012.

[2] Abbas, S., Benchohra, M., Lagreg, J.E., Alsaedi, A., Zhou, Y., Existence and Ulam
stability for fractional differential equations of Hilfer-Hadamard type, Adv. Difference
Equat., 180(2017), no. 1, 14 pages, DOI: 10.1186/s13662-017-1231-1.

[3] Abbas, S., Benchohra, M., Lagreg, J.E., Zhou, Y., A survey on Hadamard and Hil-
fer fractional differential equations: Analysis and stability, Chaos Solitons Fractals,
102(2017), 47-71.

[4] Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T., On Cauchy problems with Caputo-
Hadamard fractional derivatives, J. Comp. Anal. Appl., 21(2016), no. 1, 661-681.

[5] Ahmad, B., Ntouyas, S.K., Initial value problem of fractional order Hadamard-type func-
tional differential equations, Electron. J. Differential Equations, 77(2015), 1-9.

[6] Almeida, R., Variational problems involving a Caputo-type fractional derivative, J. Op-
tim. Theory Appl., 174(2017), 276-294.

[7] Almeida, R., Malinowska, A.B., Odzijewicz, T., Fractional differential equations with
dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dynam.,
11(2016), no. 6, 11 pages.

[8] Anderson, D.R., Ulness, D.J., Properties of the Katugampola fractional derivative with
potential application in quantum mechanics, J. Math. Phys., 56(2015), 18 pages.

[9] Bhairat, S.P., On stability of generalized Cauchy-type problem, Special issue:
RAMSA-17, DCDIS: Series A - Mathematical Analysis (In Press), 9 pages.
arXiv:1808.03079v1[math.CA], 2018.

[10] Bhairat, S.P., New approach to existence of solution of weighted Cauchy-type problem,
arXiv:1808.03067v1[math.CA], 10 pages, 2018.

[11] Bhairat, S.P., Existence and continuation of solution of Hilfer fractional differential
equations, J. Math. Modeling., 7(2019), no. 1, 1-20, DOI: 10.22124/jmm.2018.9220.1136.

[12] Bhairat, S.P., Dhaigude, D.B., Ulam stability for system of nonlinear implicit fractional
differential equations, Progress in Nonlinear Dynamics and Chaos, 6(2018), no. 1, 29-38.



Existence and stability results for generalized FDEs 45

[13] Bhairat, S.P., Dhaigude, D.B., Existence of solution of generalized fractional differential
equation with nonlocal initial conditions, Mathematica Bohemica, 144(2019), no. 1, 1-18.

[14] Carduneanu, C., Integral Equations and Stability of Feedback Systems, New York, Aca-
demic Press, 1973.

[15] Chitalkar-Dhaigude, C.P., Bhairat, S.P., Dhaigude, D.B., Solution of fractional differ-
ential equations involving Hilfer fractional derivatives: Method of successive approxima-
tions, Bull. Marathwada Math. Soc., 18(2017), no. 2, 1-13.

[16] Dhaigude, D.B., Bhairat, S.P., Existence and uniqueness of solution of Cauchy-type
problem for Hilfer fractional differential equations, Commun. Appl. Anal., 22(2018), no.
1, 121-134.

[17] Dhaigude, D.B., Bhairat, S.P., On existence and approximation of solution of Hilfer
fractional differential equations, (Under review) arXiv:1704.02464v2 [math.CA], 2018.

[18] Dhaigude, D.B., Bhairat, S.P., Local existence and uniqueness of solution of Hilfer frac-
tional differential equations, Nonlinear Dyn. Syst. Theory., 18(2018), no. 2, 144-153.

[19] Diaz, J., Margolis, B., A fixed point theorem as the alternative for contractions on a
generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), no. 2, 305-309.

[20] Furati, K.M., Kassim, M.D., Tatar, N.-E., Existence and uniqueness for a problem in-
volving Hilfer fractional derivative, Computers Math. Appl., 64(2012), no. 6, 1616-1626.

[21] Granas, A., Dugundji, J., Fixed Point Theory, Springer, New York, 2003.

[22] Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical
Analysis, Hadronic Press, Palm Harbor, 2001.

[23] Kassim, M.D., Furati, K.M., Tatar, N.-E., On a differential equation involving
Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., (2012), 17 pages, DOI:
10.1155/2012/391062.

[24] Katugampola, U.N., New approach to a generalized fractional integral, Appl. Math.
Comput., 218(2011), 860-865.

[25] Katugampola, U.N., A new approach to generalized fractional derivatives, Bull. Math.
Anal. Appl., 6(2014), 1-15.

[26] Katugampola, U.N., Existence and uniqueness results for a class of generalized fractional
differenital equations, eprint arXiv:1411.5229v2 [math.CA], 2016.

[27] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of the Fractional
Differential Equations, 204. Elsevier, Amsterdam, 2006.

[28] Kilbas, A.A., Hadamard-type fractional calculus, J. Korean Math. Soc., 38(2001), no.6,
1191-1204.

[29] Oliveira, D.S., Oliveira, E.C., Hilfer-Katugampola fractional derivative, eprint
arXiv:1705.07733v1 [math.CA], 2017.

[30] Ulam, S.M., A Collection of Mathematical Problems, Interscience, New York, 1968.

[31] Vivek, D., Kanagrajan, K., Elsayed, E.M., Some existence and stability results for Hilfer
fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math.,
15:15(2018), DOI: 10.1007/s00009-017-1061-0.

[32] Wang, J., Lu, L., Zhou, Y., New concepts and results in stability of fractional differential
equations, Commun. Nonlinear Sci., 17(2012), 2530-2538.



46 Sandeep P. Bhairat

Sandeep P. Bhairat
“Institute of Chemical Technology” Mumbai,
Faculty of Engineering Mathematics,
Marathwada Campus, Jalna,
(M.S) - 431 203, India
e-mail: sp.bhairat@marj.ictmumbai.edu.in
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Abstract. In the present paper, we introduce new subclasses of the function class∑
of bi-univalent functions by using multiplier transformation. Furthermore, we

obtain estimates on the coefficients |a2|, |a3| and |a4| for functions of this class.
Relevant connections of the results presented here with various well-known results
are briefly indicated.
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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and satisfy the nor-
malization condition f(0) = f ′(0) − 1 = 0. Let S be the subclass of A consisting of
functions of the form (1.1) which are also univalent in U .

It is well known that every f ∈ S has an inverse f−1, defined by

f−1 (f(z)) = z, (z ∈ U)

and

f
(
f−1(ω)

)
= ω,

(
|ω| < r0(f), r0(f) ≥ 1

4

)
,

where

f−1(ω) = ω − a2ω
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)ω4 + . . .

A function f(z) ∈ A is said to be bi-univalent in U if both f(z) and f−1(z)
are univalent in U . Let Σ denote the class of bi-univalent functions in U given by
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the Taylor-Maclaurin series expansion (1.1). Examples of functions in the class Σ are
z

1−z , − log(1− z), 1
2 log

(
1+z
1−z

)
and so on.

However, the familiar Koebe function is not a member of Σ. Other common

examples of functions in S such as z − z2

2 and z
1−z2 are also not members of Σ.

Lewin [7] first investigated the bi-univalent function class Σ showed that

|a2| < 1.5.

Subsequently, Brannan and Clunie [2] conjectured that |a2| ≤
√

2.
Netanyahu [9], on the other hand, showed that maxf∈Σ|a2| = 4

3 .
The coeffiecient estimate problems for bi-univalent function class Σ is an inter-

esting problem of Geometric Function Theory. Several researchers e.g. (see [1], [6],
[11], [12], [14], [16], [17]), introduced the various new subclasses of the bi-univalent
function class Σ and obtained non-sharp bounds on the first two coefficients |a2| and
|a3|. Recently, Mishra and Soren [8] obtain coefficient bounds for bi-starlike analytic
functions and improve results of [3].

In order to prove our main results, we shall require the following lemma due to
[10].

Lemma 1.1. If h ∈ P then |ck| ≤ 2 for each k, where P is the family of all functions
h analytic in U for which <{h(z)} > 0,

h(z) = 1 + c1z + c2z
2 + c3z

3 + . . . for z ∈ U.

2. Coefficient bounds for the function class BΣ(n, β, λ, µ)

Cho and Srivastava [5], (see also [4]), introduced the operator Inλ : A → A
defined for the function f(z) of the form (1.1) as

Inλ f(z) = z +

∞∑
k=2

(
k + λ

1 + λ

)n
akz

k,

where n ∈ N0 = N ∪ {0} and −1 < λ ≤ 1. For λ = 1, the operator Inλ ≡ In was
studied by Uralegaddi and Somanatha [15] and for λ = 0 the operator Inλ reduces to
well-known Sălăgean operator introduced by Sălăgean [13].

Definition 2.1. A function f(z) given by (1.1) is said to be in the class BΣ(n, β, λ, µ),
(n ∈ N0, 0 < β ≤ 1, µ ≥ 1,−1 < λ < 1), if the following conditions are satisfied:

f ∈ Σ and

∣∣∣∣arg

{
(1− µ)Inλ f(z) + µIn+1

λ f(z)

z

}∣∣∣∣ < βπ

2
, (z ∈ U) (2.1)

and ∣∣∣∣arg

{
(1− µ)Inλ g(ω) + µIn+1

λ g(ω)

ω

}∣∣∣∣ < βπ

2
, (ω ∈ U), (2.2)

where the function g is given by

g(ω) = ω − a2ω
2 + (2a2

2 − a3)ω3 − (5a3
2 − 5a2a3 + a4)ω4 + . . . . (2.3)
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Throught this paper, we shall frequently use the notation

Mk =

[
(1− µ)

(
k + λ

1 + λ

)n
+ µ

(
k + λ

1 + λ

)n+1
]
, k = 2, 3, . . . .

By specializing the parameters in the class BΣ(n, β, λ, µ), we obtain the following
known subclasses studied earlier by various researchers.

1. BΣ(n, β, 0, µ) ≡ BΣ(n, β, µ) studied by Porwal and Darus [11].
2. BΣ(0, β, 0, µ) ≡ BΣ(β, µ) studied by Frasin and Aouf [6].
3. BΣ(0, β, 0, 1) ≡ BΣ(β) studied by Srivastava et al. [14].

Theorem 2.2. Let the function f(z) given by (1.1) be in the class BΣ(n, β, λ, µ), n ∈
N0, 0 < β ≤ 1 and µ ≥ 1,−1 < λ ≤ 1. Then

|a2| ≤
2β√

2M3β +M2
2 (1− β)

, (2.4)

|a3| ≤
2β

M3
, (2.5)

and

|a4| ≤


β
M4

[
2 + 4(1−β)

3

{
2M3β+(1−2β)M2

2

2M3β+M2
2(1−β)

}]
,
(
0 < β ≤ 1

2

)
β
M4

[
2 + 4(1−β)

3

{
2M3β+(2β−1)M2

2

2M3β+M2
2(1−β)

}]
,
(

1
2 ≤ β ≤ 1

) . (2.6)

Proof. It follows from (2.1) and (2.2) that

(1− µ)Inλ f(z) + µIn+1
λ f(z)

z
= [p(z)]

β
, (2.7)

and
(1− µ)Inλ g(ω) + µIn+1

λ g(ω)

ω
= [q(ω)]

β
, (2.8)

where p(z) and q(ω) in P and have the forms

p(z) = 1 + p1z + p2z
2 + p3z

3 + . . . (2.9)

and

q(ω) = 1 + q1ω + q2ω
2 + q3ω

3 + . . . (2.10)

Now, equating the coefficients in (2.7) and (2.8), we obtain

M2a2 = βp1 (2.11)

M3a3 = βp2 +
β(β − 1)

2
p2

1, (2.12)

M4a4 = βp3 + β(β − 1)p1p2 +
β(β − 1)(β − 2)

6
p3

1, (2.13)

−M2a2 = βq1, (2.14)

M3(2a2
2 − a3) = βq2 +

β(β − 1)

2
q2
1 , (2.15)

−M4(5a3
2 − 5a2a3 + a4) = βq3 + β(β − 1)q1q2 +

β(β − 1)(β − 2)

6
q3
1 , (2.16)
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where

Mk =

[
(1− µ)

(
k + λ

1 + λ

)n
+ µ

(
k + λ

1 + λ

)n+1
]
.

From (2.11) and (2.14), we obtain

p1 = −q1. (2.17)

We shall obtain a estimates on |p1| for use in the estimates of |a2|, |a3| and |a4|. For
this purpose we first add (2.12) and (2.15), we get

2M3a
2
2 = β(p2 + q2) +

β(β − 1)

2
(p2

1 + q2
1).

Using (2.17) in last equation, we have

2M3a
2
2 = β(p2 + q2) + β(β − 1)p2

1.

Putting a2 = βp1
M2

from (2.11), we have after simplification

p2
1 =

(p2 + q2)M2
2

2M3β +M2
2 (1− β)

. (2.18)

By applying |p2| ≤ 2 and |q2| ≤ 2, we get

|p1| ≤
2M2√

2M3β +M2
2 (1− β)

.

Therefore

|a2| ≤
2β√

2M3β +M2
2 (1− β)

.

To find a bound on |a3| we may express a3 in terms of p1, p2, q1 and q2. For this
purpose we first subtract (2.15) from (2.12), we get

2M3(a3 − a2
2) = β(p2 − q2) +

β(β − 1)

2
(p2

1 − q2
1).

Using (2.17) in last equations, we have

2M3a3 = 2M3a
2
2 + β(p2 − q2). (2.19)

Putting a2 = βp1
M2

from (2.11) and using (2.18), we get

2M3a3 = 2M3

(
βp1

M2

)2

+ β(p2 − q2)

=
2M3β

2 (p2 + q2)

2M3β +M2
2 (1− β)

+ β(p2 − q2)

= β

[(
4M3β +M2

2 (1− β)
)
p2 −M2

2 (1− β)q2

2M3β +M2
2 (1− β)

]
.

Using the inequalities |p2| ≤ 2 and |q2| ≤ 2 and after simple calculation, we have

|a3| ≤
2β

M3
.
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We shall next find an estimates on |a4|. At first we shall derive a relation connecting
p1, p2, p3, q1, q2 and q3. To this end, first we add the equations (2.13) and (2.16), we
get

−M4

(
5a3

2 − 5a2a3

)
= β(p3 + q3) + β(β − 1)(p1p2 + q1q2) +

β(β − 1)(β − 2)

6
(p3

1 + q3
1).

Using (2.17) and (2.19), we have

5M4β(p2 − q2)a2

2M3
= β(p3 + q3) + β(β − 1)p1(p2 − q2).

Using (2.11) and after simple calculation we have

p1(p2 − q2) =
2M2M3(p3 + q3)

5M4β + 2M2M3(1− β)
. (2.20)

We wish to express |a4| in terms of p1, p2, p3, q1, q2 and q3. For this purpose subtracting
equation (2.16) from (2.13), we get

M4

(
2a4 + 5a3

2 − 5a2a3

)
= β(p3 − q3) + β(β − 1)p1(p2 + q2)

+
β(β − 1)(β − 2)

6
(p3

1 − q3
1).

Using (2.17), (2.19) and after simple calculation we have

2M4a4 −
5M4a2β

2M3
(p2 − q2) = β(p3 − q3) + β(β − 1)p1(p2 + q2) +

β(β − 1)(β − 2)

3
p3

1.

Again using equations (2.11) and (2.18), we get

2M4a4 =
5M4β

2M3

βp1

M2
(p2 − q2) + β(p3 − q3) + β(β − 1)p1(p2 + q2)

+
β(β − 1)(β − 2)

3
p1

(p2 + q2)M2
2

2M3β +M2
2 (1− β)

.

Using (2.20) we have

2M4a4 = β

[
5M4β(p3 + q3)

5M4β + 2M2M3(1− β)
+ p3 − q3 + (β − 1)p1(p2 + q2)

+
(β − 1)(β − 2)

3
p1

(p2 + q2)M2
2

2M3β +M2
2 (1− β)

]
= β

[
(10M4β + 2M2M3(1− β)) p3 − 2M2M3(1− β)q3

5M4β + 2M2M3(1− β)

+(1− β)p1(p2 + q2)

{
(2− β)M2

2

3(2M3β +M2
2 (1− β))

− 1

}]
Using Lemma 1.1 and after simple calculation, we have

|a4| ≤


β
M4

[
2 +

4(1− β)

3

{
2M3β + (1− 2β)M2

2

2M3β +M2
2 (1− β)

}]
,
(
0 < β ≤ 1

2

)
β
M4

[
2 +

4(1− β)

3

{
2M3β + (2β − 1)M2

2

2M3β +M2
2 (1− β)

}]
,
(

1
2 ≤ β ≤ 1

)
.

�
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3. Coefficient bounds for the function class HΣ(n, γ, λ, µ)

Definition 3.1. A function f(z) given by (1.1) is said to be in the class HΣ(n, γ, λ, µ),
(n ∈ N0, 0 ≤ γ < 1, µ ≥ 1,−1 < λ ≤ 1), if the following conditions are satisfied:

f ∈ Σ and <
{

(1− µ)Inλ f(z) + µIn+1
λ f(z)

z

}
> γ, (z ∈ U) (3.1)

and

<
{

(1− µ)Inλ g(ω) + λIn+1
λ g(ω)

ω

}
> γ, (ω ∈ U), (3.2)

where the function g is defined by (2.3).

By specializing the parameters in the class HΣ(n, γ, λ, µ), we obtain the following
known subclasses studied earlier by various researchers

1. HΣ(n, γ, 0, µ) ≡ HΣ(n, γ, µ) studied by Porwal and Darus [11].
2. HΣ(0, γ, 0, µ) ≡ HΣ(γ, µ) studied by Frasin and Aouf [6].
3. HΣ(0, γ, 0, 1) ≡ HΣ(γ) studied by Srivastava et al. [14].

Theorem 3.2. Let the function f(z) given by (1.1) be in the class HΣ(n, γ, λ, µ),
n ∈ N0, 0 ≤ γ < 1, µ ≥ 1,−1 < λ ≤ 1. Then

|a2| ≤

√
2(1− γ)

M3
, (3.3)

|a3| ≤
2(1− γ)

M3
, (3.4)

and

|a4| ≤
2(1− γ)

M4
. (3.5)

Proof. It follows from (3.1) and (3.2) that there exists p(z) ∈ P and q(ω) ∈ P such
that

(1− µ)Inλ f(z) + µIn+1
λ f(z)

z
= γ + (1− γ)p(z) (3.6)

and
(1− µ)Inλ g(ω) + µIn+1

λ g(ω)

ω
= γ + (1− γ)q(ω), (3.7)

where p(z) and q(ω) have the forms (2.9) and (2.10), respectively. Equating coefficients
in (3.6) and (3.7) yields

M2a2 = (1− γ)p1, (3.8)

M3a3 = (1− γ)p2, (3.9)

M4a4 = (1− γ)p3, (3.10)

−M2a2 = (1− γ)q1, (3.11)

M3(2a2
2 − a3) = (1− γ)q2 (3.12)

and

−M4(5a3
2 − 5a2a3 + a4) = (1− γ)q3. (3.13)
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From (3.8) and (3.11), we have

p1 = −q1. (3.14)

Adding equation (3.9) and (3.14), we get

2M3a
2
2 = (1− γ)(p2 + q2).

Putting a2 = (1−γ)p1
M2

from (3.8), we have

p2
1 =

(p2 + q2)M2
2

2M3(1− γ)
. (3.15)

By applying the inequalities |p2| ≤ 2 and |q2| ≤ 2, we get

|p1| ≤

√
2

M3(1− γ)
M2.

Therefore

|a2| ≤

√
2(1− γ)

M3
.

To obtain a bound on |a3| we wish express in terms of p1, p2, q1 and q2. For this
purpose subtracting (3.12) from (3.9), we get

2M3(a3 − a2
2) = (1− γ)(p2 − q2). (3.16)

Using (3.8), (3.15) and after simple calculation, we have

2M3a3 = 2(1− γ)p2.

Using |p2| ≤ 2 we have

|a3| ≤
2(1− γ)

M3
.

We shall next find an estimate on |a4|. At first we shall derive a relation connecting
p1, p2, p3, q1, q2 and q3. To this end, we first add the equations (3.10) and (3.13), we
get

−M4(5a3
2 − 5a2a3) = (1− γ)(p3 + q3).

Using (3.8), (3.16) and after simple calculation, we get

p1(p2 − q2) =
2M2M3(p3 + q3)

5M4(1− γ)
. (3.17)

We wish to express a4 in terms of p1, p2, p3, q1, q2 and q3. Now subtracting (3.13) from
(3.10), we get

M4(2a4 + 5a3
2 − 5a2a3) = (1− γ)(p3 − q3).

Using (3.8), (3.16), (3.17) and after simple calculation

2M4a4 = 2(1− γ)p3.

Using inequality |p3| ≤ 2, we have

|a4| ≤
2(1− γ)

M4
. �
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Remark 3.3. If we put λ = 0 in Theorems 2.2 and 3.2, then our estimate on |a3|
improves the corresponding results of Porwal and Darus [11].

Remark 3.4. If we put n = 0, λ = 0 in Theorems 2.2 and 3.2, then our estimate on
|a3| improves the corresponding results due to Frasin and Aouf [6].

Remark 3.5. If we put n = 0, λ = 0, µ = 1 in Theorems 2.2 and 3.2, then our estimate
on |a3| improves the corresponding results due to Srivastava et al. [14].

Remark 3.6. Sharp estimates for the coefficients |a2|, |a3| and other coefficients of
functions belonging to the classes investigated in this paper are yet open problems.
Indeed it would be of interest even to find estimates (not necessarily sharp) for
|an|, n ≥ 5.

Acknowledgement. The authors are thankful to the referee for his valuable comments
and observations which helped in improving the paper.
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[13] Sălăgean, G.S., Subclasses of univalent functions, Complex Analysis-Fifth Romanian
Finish Seminar, Bucharest, 1(1983), 362-372.

[14] Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and bi-
univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.

[15] Uralegaddi, B.A., Somanatha, C., Certain classes of univalent functions, in ”Current
Topics in Analytic Function Theory”, 371-374, World Sci. Publishing, River Edge, NJ.

[16] Xu, Q.H., Gui, Y.C., Srivastava, H.M., Coefficient estimates for a certain subclass of
analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), no. 6, 990-994.

[17] Xu, Q.H., Xiao, H.G., Srivastava, H.M., A certain general subclass of analytic and bi-
univalent functions and associated coefficient estimate problems, Appl. Math. Comput.,
218(23)(2012), 11461-11465.

Saurabh Porwal
Lecturer Mathematics
Sri Radhey Lal Arya Inter College,
Aihan, Hathras-204101,
(U.P.), India

e-mail: saurabhjcb@rediffmail.com

Shivam Kumar
Department of Mathematics
UIET, CSJM University, Kanpur-208024
(U.P.), India
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class Σ′ which is defined by subordination. Further, we generalize and improve
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Mathematics Subject Classification (2010): 30C45, 30C50.

Keywords: Coefficient estimates, Faber polynomial expansion, meromorphic func-
tions, subordinate.

1. Introduction and preliminaries

Let A be a class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}
of the form

f(z) = z +

∞∑
n=2

anz
n. (1.1)

Also denote by S the class of all functions in A which are univalent and normalized
by the conditions f(0) = 0 = f ′(0) − 1. It is well known that every function f ∈ S
has an inverse f−1, which is defined by

f−1(f(z)) = z (z ∈ U) and f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥ 1

4

)
.

So, if F is the inverse of a function f ∈ S, then F has the following representation

F (w) = f−1(w) = w +

∞∑
n=2

ãnw
n (1.2)

which is valid in some neighborhood of the origin.
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In 1936, Robertson [23] introduced the concept of starlike functions of order α
for 0 ≤ α < 1. A function f ∈ A is said to be starlike of order α if

<
(
zf ′(z)

f(z)

)
> α (z ∈ U).

This class is denoted by ST (α). Note that ST (0) = ST .

Definition 1.1. [8] For two functions f and g which are analytic in U, we say that the
function f is subordinate to g in U, and write

f (z) ≺ g (z) (z ∈ U) ,

if there exists a Schwarz function ω, which is analytic in U with

ω (0) = 0 and |ω (z)| < 1 (z ∈ U) ,

such that
f (z) = g (ω (z)) (z ∈ U) .

In particular, if the function g is univalent in U, then f ≺ g if and only if f(0) = g(0)
and f(U) ⊆ g(U).

Ma and Minda [20] have given a unified treatment of various subclass consisting
of starlike functions by replacing the superordinate function q(z) = 1+z

1−z by a more
general analytic function. For this purpose, they considered an analytic function ϕ
with positive real part on U, satisfying ϕ(0) = 1, ϕ′(0) > 0 and ϕ maps the unit disk
U onto a region starlike with respect to 1, symmetric with respect to the real axis.
The class ST (ϕ) of Ma-Minda starlike functions consists of functions f ∈ S satisfying

zf ′(z)

f(z)
≺ ϕ(z), for z ∈ U.

It is clear that for special choices of ϕ, this class envelop several well-known subclasses
of univalent function as special cases. The idea of subordination was used for defining
many of classes of functions studied in the Geometric Function Theory, for example
see [7, 21].

Let Σ′ denote the class of meromorphic univalent functions g defined in ∆ :=
{z ∈ C : 1 < |z| <∞} of the form

g(z) = z +

∞∑
n=0

bn
zn
. (1.3)

Since g ∈ Σ′ is univalent, it has an inverse g−1 = G that satisfy

g−1(g(z)) = z (z ∈ ∆) and g(g−1(w)) = w (M < |w| <∞, M > 0).

Furthermore, the inverse function g−1 = G has a series expansion of the form

G(w) = g−1(w) = w +

∞∑
n=0

b̃n
wn

(M < |w| <∞). (1.4)

A simple calculation shows that the inverse function g−1 = G, is given by

G(w) = g−1(w) = w − b0 −
b1
w
− b2 + b0b1

w2
+ · · · . (1.5)
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Let (ST )
′
(ϕ) denote the class of functions g ∈ Σ′ which satisfy

1

z

g′(1/z)

g(1/z)
≺ ϕ(z), for z ∈ U.

The mapping f(z) 7→ g(z) := 1/f(1/z) establishes a one-to-one correspondence be-
tween functions in the classes S and Σ′ and also between functions in the classes
ST (ϕ) and (ST )

′
(ϕ) because (see for more details [5])

zg′(z)

g(z)
=
z(1/f(1/z))′

1/f(1/z)
=

1

z

f ′(1/z)

f(1/z)
, for |z| > 1.

Noth that if g ∈ (ST )
′
(ϕ), then there exists a unique function f ∈ ST (ϕ) such that

g(z) = 1/f(1/z). Also, it can be easily verified that G(w) = 1/F (1/w), where F (w)
is the inverse of f(z).

Analogous to the bi-univalent analytic functions, a function g ∈ Σ′ is said to
be meromorphic bi-univalent if g−1 ∈ Σ′. Examples of the meromorphic bi-univalent
functions are

z +
1

z
, z − 1, − 1

log
(
1− 1

z

) .
Determination of the sharp coefficient estimates of inverse functions in various

subclasses of the class of analytic and univalent functions is an interesting problem in
geometric function theory. Schiffer [24] obtained the estimate |b2| ≤ 2

3 for meromorphic
univalent functions g ∈ Σ′ with b0 = 0 and Duren [8] gave an elementary proof of the
inequality |bn| ≤ 2

n+1 on the coefficient of meromorphic univalent functions g ∈ Σ′

with bk = 0 for 1 ≤ k < n
2 . But the interest on coefficient estimates of the meromorphic

univalent functions keep on by many researchers, see for example, [18, 19, 25, 26].
Several authors by using Faber polynomial expansions obtained coefficient estimates
|an| for classes meromorphic bi-univalent functions and bi-univalent functions, see for
example [10, 12, 13, 14, 15, 16, 17, 28, 27]. First we recall some definitions and lemmas
that used in this work.

Faber [9] introduced the Faber polynomials which play an important role in
various areas of mathematical sciences, especially in geometric function theory. By
using the Faber polynomial expansion of functions g ∈ Σ′ of the form (1.3), the
coefficients of its inverse map g−1 = G defined in (1.5) may be expressed, (see for
details [2] and [3]),

G(w) = g−1(w) = w − b0 −
∑
n≥1

1

n
Kn
n+1

1

wn
, (1.6)

where

Kn
n+1 = nbn−10 b1 + n(n− 1)bn−20 b2 +

n(n− 1)(n− 2)

2
bn−30 (b3 + b21)

+
n(n− 1)(n− 2)(n− 3)

3!
bn−30 (b4 + 3b1b2) +

∑
j≥5

bn−j0 Vj ,

such that Vj with 5 ≤ j ≤ n is a homogeneous polynomial in the variables
b1, b2, · · · , bn, (see for details [3]).
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Definition 1.2. [4] Let ϕ is an analytic function with positive real part in the unit
disk U, satisfying ϕ(0) = 1, ϕ′(0) > 0, ϕ maps the unit disk U onto a region starlike
with respect to 1, symmetric with respect to the real axis. Such a function has series
expansion of the form

ϕ(z) = 1 +B1z +B2z
2 + · · · (B1 > 0). (1.7)

Lemma 1.3. [8] Let u(z) and v(z) be two analytic functions in the unit disk U with

u(0) = v(0) = 0 and max {|u(z)| , |v(z)|} < 1.

We suppose also that

u(z) =

∞∑
n=1

pnz
n and v(z) =

∞∑
n=1

qnz
n (z ∈ U). (1.8)

Then

|p1| ≤ 1, |p2| ≤ 1− |p1|2 , |q1| ≤ 1, |q2| ≤ 1− |q1|2 . (1.9)

Lemma 1.4. [1, 2] Let the function f ∈ A be given by (1.1). Then for any p ∈ Z, there
are the polynomials Kp

n, such that

(1 + a2z + a3z
2 + · · ·+ akz

k−1 + · · · )p = 1 +

∞∑
n=1

Kp
n(a2, a3, · · · , an+1)zn,

where

Kp
n(a2, · · · , an+1) = pan+1 +

p(p− 1)

2
D2
n +

p!

(p− 3)!3!
D3
n + · · ·+ p!

(p− n)!(n)!
Dn
n,

and

Dm
n (a2, a3, · · · , an) =

∞∑
n=2

m!(a2)µ1 · · · (an)µn

µ1! · · ·µn!
, for m ∈ N = {1, 2, . . .} and m ≤ n,

the sum is taken over all nonnegative integers µ1, ..., µn satisfying{
µ1 + µ2 + · · ·+ µn = m,
µ1 + 2µ2 + · · ·+ nµn = n.

It is clear that Dn
n(a2, a3, · · · , an) = an2 . In particular,

K1
n = an+1, K2

1 = 2a2, K2
2 = 2a3 + a22,

K2
3 = 2a4 + 2a2a3, K2

4 = 2a5 + 2a2a4 + a23.

Lemma 1.5. [2, 3] and [6, page 52] Let the function g ∈ Σ′ be given by (1.3). Then we
have the following expansion

zg′(z)

g(z)
= 1 +

∞∑
n=0

Fn+1(b0, b1, · · · bn)
1

zn+1
,

where

Fn+1(b0, b1, · · · bn) =
∑

i1+2i2+···+(n+1)in+1=n+1

A(i1, i2, · · · , in+1)(bi10 b
i2
1 · · · bin+1

n ),
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and

A(i1, i2, · · · , in+1) := (−1)(n+1)+2i1+···+(n+2)in+1
(i1 + i2 + · · ·+ in+1 − 1)!(n+ 1)

i1!i2! · · · in+1!
.

The first four terms of the Faber polynomials Fn are given by

F1 = −b0, F2 = b20 − 2b1, F3 = −b30 + 3b1b0 − 3b2,

F4 = b40 − 4b20b1 + 4b0b2 + 2b21 − 4b3.

In this work, by using the Faber polynomial expansion we find upper bounds
for |bn| coefficients by a new method for meromorphic bi-univalent functions class Σ′

which is defined by subordination. Further, we generalize and improve some of the
previously published results.

2. Main results

In this section, first we obtain estimates of coefficients |bn| of meromorphic bi-
univalent functions in the class (ST )

′
(ϕ). Next we obtain an improvement of the

bounds |b0| and |b1| for special choices of ϕ.

Theorem 2.1. Let the function g given by (1.3) and its inverse map g−1 = G given
by (1.4) be in the class (ST )

′
(ϕ), where ϕ is given by Definition 1.2. If bk = 0 for

0 ≤ k ≤ n− 1, then

|bn| ≤
B1

n+ 1
.

Proof. From g ∈ (ST )
′
(ϕ), we obtain

1

z

g′(1/z)

g(1/z)
=

1− b1z2 − 2b2z
3 − · · ·

1 + b0z + b1z2 + · · ·
= 1− b0z + (b20 − 2b1)z2 + · · · . (2.1)

Similar to Lemma 1.5, for function g ∈ (ST )
′
(ϕ) and for its inverse map g−1 = G,

we have

1

z

g′(1/z)

g(1/z)
= 1 +

∞∑
n=0

Fn+1(b0, b1, · · · bn)zn+1, (2.2)

1

w

G′(1/w)

G(1/w)
= 1 +

∞∑
n=0

Fn+1(b̃0, b̃1, · · · b̃n)wn+1, (2.3)

respectively, where b̃0 = −b0, b̃n = 1
nK

n
n+1.

On the other hand, since g, G ∈ (ST )
′
(ϕ), by the Definition 1.1, there exist two

Schwarz functions u, v : U→ U where u, v are given by (1.8), so that

1

z

g′(1/z)

g(1/z)
= ϕ(u(z)) = 1 +

∞∑
n=1

n∑
k=1

BkD
k
n(p1, p2, · · · , pn)zn, (2.4)

and

1

w

G′(1/w)

G(1/w)
= ϕ(v(w)) = 1 +

∞∑
n=1

n∑
k=1

BkD
k
n(q1, q2, · · · , qn)wn. (2.5)
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Comparing the corresponding coefficients of (2.2) and (2.4), we get that

Fn+1(b0, b1, · · · bn) =

n+1∑
k=1

BkD
k
n+1(p1, p2, · · · , pn+1). (2.6)

Similarly, by comparing the corresponding coefficients of (2.3) and (2.5), we get that

Fn+1(b̃0, b̃1, · · · b̃n) =
n+1∑
k=1

BkD
k
n+1(q1, q2, · · · , qn+1). (2.7)

Note that bk = 0 for 0 ≤ k ≤ n− 1, yields b̃n = −bn and hence from (2.6) and (2.7),
respectively, we get

−(n+ 1)bn = B1pn+1,

and

−[−(n+ 1)]bn = B1qn+1.

By solving either of the above two equations for bn and applying |pn+1| ≤ 1, |qn+1| ≤ 1,
we obtain

|bn| ≤
B1

n+ 1
,

this completes the proof. �

Corollary 2.2. Let the function g given by (1.3) and its inverse map g−1 = G given

by (1.4) be in the class (ST )
′
((

1+z
1−z

)α)
. If bk = 0 for 0 ≤ k ≤ n− 1, then

|bn| ≤
2α

n+ 1
(0 < α ≤ 1) .

Corollary 2.3. [13] Let the function g given by (1.3) and its inverse map g−1 = G

given by (1.4) be in the class (ST )
′
(

1+(1−2β)z
1−z

)
. If bk = 0 for 0 ≤ k ≤ n− 1, then

|bn| ≤
2(1− β)

n+ 1
(0 ≤ β < 1) .

Corollary 2.4. Let the function f given by (1.1) and its inverse map f−1 = F given
by (1.2) be in the class ST (ϕ). If ak = 0 for 2 ≤ k ≤ n− 1, then

|an| ≤
B1

n− 1
.

Proof. Setting f(1/z) := 1/g(z) and F (1/w) = 1/G(w) in Theorem 2.1 we obtain the
result and this completes the proof. �

Corollary 2.5. ([14, Theorem 2.1]) Let the function f given by (1.1) and its inverse

map f−1 = F given by (1.2) be in the class ST
(

1+Az
1+Bz

)
, where A and B are real

numbers so that −1 ≤ B < A ≤ 1. If ak = 0 for 2 ≤ k ≤ n− 1, then

|an| ≤
A−B
n− 1

.
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Theorem 2.6. Let the function g given by (1.3) and its inverse map g−1 = G given
by (1.4) be in the class (ST )

′
(ϕ), where ϕ is given by Definition 1.2. Then

|b0| ≤
B1

√
B1√

|B2
1 −B2|+B1

(2.8)

and

|b1| ≤
B1

2
. (2.9)

Proof. The equations (2.6) and (2.7) for n = 0 and n = 1, respectively, imply

−b0 = B1p1, (2.10)

b20 − 2b1 = B1p2 +B2p
2
1, (2.11)

b0 = B1q1, (2.12)

b20 + 2b1 = B1q2 +B2q
2
1 . (2.13)

From (2.10) and (2.12), we have

p1 = −q1 (2.14)

and

2b20 = B2
1

(
p21 + q21

)
. (2.15)

Also by adding (2.11) and (2.13), and considering (2.15) we have

2b20 = B1 (p2 + q2) +B2

(
p21 + q21

)
= B1 (p2 + q2) +

2B2b
2
0

B2
1

.

So we obtain

b20 =
B3

1 (p2 + q2)

2 (B2
1 −B2)

.

By (1.9), (2.10), (2.14) and the above equality give

|b0|2 ≤
B3

1

(
1− |p1|2

)
|B2

1 −B2|

≤ B3
1

|B2
1 −B2|

(
1− |b0|

2

B2
1

)
.

Therefore we obtain

|b0|2 ≤
B3

1

|B2
1 −B2|+B1

, (2.16)

which is the desired estimate on the coefficient |b0| as asserted in (2.8).
On the other hand, by subtracting (2.13) from (2.11) and considering (2.14) we get

−4b1 = B1 (p2 − q2) .

Taking the absolute values and considering (1.9) we obtain the desired estimate on
the coefficient |b1| as asserted in (2.9). This completes the proof. �
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Theorem 2.7. Let the function g given by (1.3) and its inverse map g−1 = G given

by (1.4) be in the class (ST )
′
((

1+z
1−z

)α)
. Then

|b0| ≤
2α√
α+ 1

,

and

|b1| ≤ α.

Remark 2.8. Theorem 2.7 is an refinement of estimate for |b0| obtained by Panigrahi
[22, Corollary 2.3 ]. Also, for |b1| if 1√

5
< α ≤ 1 and |b0|, Theorem 2.7 is an refinement

of estimates obtained by Halim et al. [11, Theorem 2 ].

Theorem 2.9. Let the function g given by (1.3) and its inverse map g−1 = G given

by (1.4) be in the class (ST )
′
(

1+(1−2β)z
1−z

)
. Then

|b0| ≤


√

2(1− β) , 0 ≤ β ≤ 1
2

√
2(1−β)√
β

, 1
2 ≤ β < 1

and

|b1| ≤ 1− β.

Remark 2.10. Theorem 2.9 is an improvement of the estimates obtained by Panigrahi
[22, Corollary 3.3] and also obtained by Halim et al. [11, Theorem 1].
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Some properties of a linear operator involving
generalized Mittag-Leffler function

Basem Aref Frasin, Tariq Al-Hawary and Feras Yousef

Abstract. This paper introduces a new class T γα,β,k(η) of analytic functions which
is defined by means of a linear operator involving generalized Mittag-Leffler func-
tion Hγ

α,β,k(f). The results investigated in this paper include, an inclusion rela-

tion for functions in the class T γα,β,k(η) and also some subordination results of

the linear operator Hγ
α,β,k(f). Several consequences of our results are also pointed

out.

Mathematics Subject Classification (2010): 33E12, 30C45.

Keywords: Analytic functions, univalent functions, Mittag-Leffler function, dif-
ferential subordination, convex function.

1. Introduction

Let A denote the class of the normalized functions of the form

f(z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, let f and g
be analytic functions in U, then we say that f is subordinate to g, written f ≺ g or
f(z) ≺ g(z), if there exists an analytic function w on U such that w(0) = 0, |w(z)| < 1
and f(z) = g(w(z)) for all z ∈ U. In particular, if g is univalent in U, then we have

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let Eα(z) be the Mittag-Leffler function [11] defined by

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, (z, α ∈ C; Re(α) > 0 ). (1.1)
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A more general function Eα,β generalizing Eα(z) was introduced by Wiman [14] and
defined by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, (z, α, β ∈ C; Re(α) > 0 ). (1.2)

Moreover, Srivastava and Tomovski [13] introduced the function Eγ,kα,β(z) as

Eγ,kα,β(z) =

∞∑
n=0

(γ)nkz
n

Γ(αn+ β)n!
, (α, β, γ ∈ C; Re(α) > max{0,Re(k)−1}; Re(k) > 0),

where (γ)n is Pochhammer symbol (or the shifted factorial, since (1)n = n!) is given
in term of the Gamma functions can be written as

(γ)n =
Γ(γ + n)

Γ(γ)
=

{
1, if n = 0;

γ(γ + 1)...(γ + n− 1), if n ∈ N.
(1.3)

The Mittag-Leffler function arises naturally in the solution of fractional order differ-
ential and integral equations, and especially in the investigations of fractional gen-
eralization of kinetic equation, random walks, Lévy flights, super-diffusive transport
and in the study of complex systems. Several properties of Mittag-Leffler function and
generalized Mittag-Leffler function can be found e.g. in [2, 3, 4, 6, 7, 8, 9, 11, 12, 13].

In [1], Attiya defined the operator Hγα,β,k(f) : A → A by

Hγα,β,k(f)(z) = Qγα,β,k(z) ∗ f(z), (z ∈ U),

where

Qγα,β,k(z) =
Γ(α+ β)

(γ)k

(
Eγ,kα,β(z)− 1

Γ(β)

)
, (z ∈ U),

(α, β, γ ∈ C; Re(α) > max{0,Re(k)− 1}; Re(k) > 0;

Re(α) = 0 when Re(k) = 1 with β 6= 0),

and the symbol (∗) denotes the Hadamard product (or convolution).

We note that,

Hγα,β,k(f)(z) = z +

∞∑
n=2

Γ(γ + nk)Γ(α+ β)

Γ(γ + k)Γ(β + αn)n!
anz

n. (1.4)

It can be easily verified from (1.4) that

z
(
Hγα,β,k(f)(z)

)′
=

(
γ + k

k

)
(Hγ+1

α,β,k(f)(z))− γ

k
(Hγα,β,k(f)(z)). (1.5)

Also we have

H1
0,β,1(f)(z) = f(z),H2

0,β,1(f)(z) =
1

2
(f(z) + zf ′(z)) and H0

0,β,1(f)(z) =

z∫
0

1

t
f(t)dt.
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Definition 1.1. We say that the function f ∈ A is in the class T γα,β,k(η), η ∈ [0, 1), if
f satisfies the condition

Re
[
Hγα,β,k(f)(z)

]′
> η, (z ∈ U). (1.6)

The object of this paper is to investigate an inclusion relation for functions in
the class T γα,β,k(η) and obtain some subordination results for functions defined by the

linear operator Hγα,β,k(f). Several consequences of our results are also discussed.

The following results will be required in our investigation.

Lemma 1.2. ([5]) If p(z) = 1 + p1z + p2z
2 + · · · is analytic in U and h(z) is convex

function in U with h(0) = 1 and µ is a complex constant such that Reµ > 0, then

p(z) +
zp′(z)

µ
≺ h(z), (1.7)

implies

p(z) ≺ q(z) ≺ h(z),

where

q(z) =
µ

zµ

z∫
0

h(t)tµ−1dt,

and q(z) is the best dominant.

Lemma 1.3. ([10]) Let q be a convex function in U and let

h(z) = q(z) + αzq′(z),

where α > 0. If

p(z) = q(0) + p1z + · · ·
and

p(z) + αzp′(z) ≺ h(z),

then

p(z) ≺ q(z),
and this result is sharp.

2. Inclusion relation

We begin by showing the following inclusion relation.

Theorem 2.1. If η ∈ [0, 1), then

T γ+1
α,β,k(η) ⊂ T γα,β,k(δ), (2.1)

where

δ = δ(η, γ, k) = 2η − 1 +
2(1− η)(γ + k)

k
B

(
γ + k

k

)
, (2.2)
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B being the Beta function defined by

B(x) =

1∫
0

tx−1

t+ 1
dt. (2.3)

Proof. Let f ∈ T γ+1
α,β,k(η) and define the function p(z) by

p(z) =
(
Hγα,β,k(f)(z)

)′
. (2.4)

Making use the identity (1.5), we get(
Hγ+1
α,β,k(f)(z)

)′
= p(z) +

k

γ + k
zp′(z), (z ∈ U). (2.5)

Since f ∈ T γ+1
α,β,k(η), from Definition 1.1 we have

Re
(
Hγ+1
α,β,k(f)(z)

)′
> η, (z ∈ U).

Using (2.5) we get

Re

(
p(z) +

k

γ + k
zp′(z)

)
> η,

which is equivalent to

p(z) +
k

γ + k
zp′(z) ≺ 1 + (2η − 1)z

1 + z
≡ h(z).

By using Lemma 1.2, with µ = γ+k
k we have

p(z) ≺ q(z) ≺ h(z),

where

q(z) =
γ + k

kz
γ+k
k

z∫
0

1 + (2η − 1)t

1 + t
t
γ+k
k −1dt

=
γ + k

kz
γ+k
k

z∫
0

[2η − 1 + 2(1− η)]
1

1 + t
t
γ+k
k −1dt

=
γ + k

kz
γ+k
k

z∫
0

(2η − 1)t
γ+k
k −1dt+

2(1− η) (γ + k)

kz
γ+k
k

z∫
0

t
γ+k
k −1

1 + t
dt

= 2η − 1 +
2(1− η) (γ + k)

kz
γ+k
k

z∫
0

t
γ+k
k −1

1 + t
dt.

The function q is convex and is the best dominant.
Since p(z) ≺ q(z), we get

Re
[
Hγα,β,k(f)(z)

]′
> q(1) = δ, (2.6)
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where

δ = δ(η, γ, k) = 2η − 1 +
2(1− η)(γ + k)

k
B

(
γ + k

k

)
.

From (2.6) we deduce that T γ+1
α,β,k(η) ⊂ T γα,β,k(δ). �

3. Subordination results

With the help of Lemma 1.3, we obtain the following result.

Theorem 3.1. Let q(z) be convex univalent in U with q(0) = 1 and let h be a function
such that

h(z) = q(z) +
k

γ + k
zq′(z). (3.1)

If f ∈ A and verifies the differential subordination(
Hγ+1
α,β,k(f)(z)

)′
≺ h(z), (3.2)

then (
Hγα,β,k(f)(z)

)′
≺ q(z), (3.3)

and the result is sharp.

Proof. From (2.5) and (3.2) we obtain

p(z) +
k

γ + k
zp′(z) ≺ q(z) +

k

γ + k
zq′(z) ≡ h(z),

then, by using Lemma 1.3 we get

p(z) ≺ q(z),
that is, (

Hγα,β,k(f)(z)
)′
≺ q(z), (z ∈ U),

and this result is sharp. �

Theorem 3.2. Let h ∈ A with h(0) = 1 and h′(0) 6= 0, which verifies the inequality

Re

[
1 +

zh′′(z)

h′(z)

]
> −1

2
, (z ∈ U). (3.4)

If f ∈ A and verifies the differential subordination(
Hγ+1
α,β,k(f)(z)

)′
≺ h(z), (3.5)

then (
Hγα,β,k(f)(z)

)′
≺ q(z), (3.6)

where

q(z) =
γ + k

kz
γ+k
k

z∫
0

h(t)t
γ+k
k −1dt.

The function q is convex and is the best dominant.
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Proof. If we let

p(z) =
(
Hγα,β,k(f)(z)

)′
,

and using the identity (1.5), we obtain(
Hγ+1
α,β,k(f)(z)

)′
= p(z) +

k

γ + k
zp′(z), (z ∈ U).

Therefore, (3.5) becomes

p(z) +
k

γ + k
zp′(z) ≺ h(z).

By using Lemma 1.2, we get

p(z) ≺ q(z) =
γ + k

kz
γ+k
k

z∫
0

h(t)t
γ+k
k −1dt,

that is, (
Hγα,β,k(f)(z)

)′
≺ q(z), (z ∈ U). �

Theorem 3.3. Let q(z) be convex univalent in U with q(0) = 1. And let h be a function
such that

h(z) = q(z) + zq′(z), (z ∈ U). (3.7)

If f ∈ A and verifies the differential subordination(
Hγα,β,k(f)(z)

)′
≺ h(z), (3.8)

then
Hγα,β,k(f)(z)

z
≺ q(z), (3.9)

and the result is sharp.

Proof. Let the function p(z) be defined by

p(z) =
Hγα,β,k(f)(z)

z
. (3.10)

Then, by differentiating (3.10), we get(
Hγα,β,k(f)(z)

)′
= p(z) + zp′(z), (z ∈ U). (3.11)

Thus (3.8) becomes

p(z) + zp′(z) ≺ q(z) + zq′(z) ≡ h(z),

and from Lemma 1.3 we get (3.9). �

Theorem 3.4. Let h ∈ A with h(0) = 1 and h′(0) 6= 0, which verifies the inequality
(3.4). If f ∈ A and verifies the differential subordination(

Hγα,β,k(f)(z)
)′
≺ h(z), (z ∈ U), (3.12)
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then
Hγα,β,k(f)(z)

z
≺ q(z), (z ∈ U, z 6= 0), (3.13)

where

q(z) =
1

z

z∫
0

h(t)dt.

The function q is convex and is the best dominant.

Proof. Let the function p(z) be defined as in (3.10). Then from (3.11) and (3.12),we
have

p(z) + zp′(z) ≺ h(z).

By using Lemma 1.2, we get

p(z) ≺ q(z) =
1

z

z∫
0

h(t)dt,

and q is convex and is the best dominant. �

If we set γ = 1, α = 0 and k = 1, in Theorems 3.1-3.4, we immediately have the
following special cases.

Corollary 3.5. Let q(z) be convex univalent in U with q(0) = 1 and let h be a function
such that

h(z) = q(z) +
1

2
zq′(z). (3.14)

If f ∈ A and verifies the differential subordination

f ′(z) +
1

2
zf ′′(z) ≺ h(z), (3.15)

then

f ′(z) ≺ q(z), (3.16)

and the result is sharp.

Corollary 3.6. Let h ∈ A with h(0) = 1 and h′(0) 6= 0, which verifies the inequality
(3.4). If f ∈ A and verifies the differential subordination

f ′(z) +
1

2
zf ′′(z) ≺ h(z), (3.17)

then

f ′(z) ≺ q(z), (3.18)

where

q(z) =
2

z2

z∫
0

h(t)tdt.

The function q is convex and is the best dominant.
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Corollary 3.7. Let q(z) be convex univalent in U with q(0) = 1 and let h be a function
such that

h(z) = q(z) + zq′(z), (z ∈ U). (3.19)

If f ∈ A and verifies the differential subordination

f ′(z) ≺ h(z), (3.20)

then
f(z)

z
≺ q(z), (3.21)

and the result is sharp.

Corollary 3.8. Let h ∈ A with h(0) = 1 and h′(0) 6= 0, which verifies the inequality
(3.4). If f ∈ A and verifies the differential subordination

f ′(z) ≺ h(z), (z ∈ U), (3.22)

then
f(z)

z
≺ q(z), (z ∈ U, z 6= 0), (3.23)

where

q(z) =
1

z

z∫
0

h(t)dt.

The function q is convex and is the best dominant.
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The critical point of a sigmoidal curve

Ayse Humeyra Bilge and Yunus Ozdemir

Abstract. Let y(t) be a monotone increasing curve with lim
t→±∞

y(n)(t) = 0 for all

n and let tn be the location of the global extremum of the nth derivative y(n)(t).
Under certain assumptions on the Fourier and Hilbert transforms of y(t), we
prove that the sequence {tn} is convergent. This implies in particular a preferred
choice of the origin of the time axis and an intrinsic definition of the even and odd
components of a sigmoidal function. In the context of phase transitions, the limit
point has the interpretation of the critical point of the transition as discussed in
previous work [3].

Mathematics Subject Classification (2010): 34A99.

Keywords: Sigmoidal curve, critical point, Fourier transform, Hilbert transform.

1. Introduction

A sigmoidal function y(t) is a monotone increasing function with horizontal
asymptotes as t → ±∞. Such functions occur in probability theory and in a variety
of applications that represent the passage between two stable states, in particular in
phase transitions.

In previous work [5] we have modeled the sol-gel transition of the polyacrylamide-
sodium alginate composite in terms of the Susceptible-Infected-Removed (SIR) epi-
demic model that represents the spread of an epidemic in a closed society. This model
was shown to be in good agreement with the aforementioned gelation phenomena and
we tried to take advantage of an exact mathematical model to search for the exact
instant of onset of the sol-gel transition [3, 4]. We computed higher derivatives of
the sigmoidal curve representing the phase transition, up to orders 20 to 30 and we
observed that the points where their reach their absolute extrema seemed to have a
limit point, as shown in Fig. 1.

This point agreed qualitatively with the gel point of the polyacrylamide-sodium
alginate composite and we proposed to define the “critical point of a sigmoidal curve”
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y(t) as the limit of the sequence of points where the higher derivatives y(n)(t) reach
their absolute extreme values [3].
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Figure 1. The Susceptible-Infected-Removed dynamical system
S′ = −kSI, I ′ = kSI − ηI, R′ = ηI, as a model for the gelation
phenomena. (a) The first 24 derivatives of R(t) normalized to 1 for
k = 5, η = 1 and S0 = 0.9 are plotted against S(t), which is a mono-
tone decreasing function of t. The phase transition point is indicated
by (∗). (b) The time domain plots of the solution curves S, I, R.
The phase transition point tc indicated by (o) is located between the
maximum of I, tm denoted by (∗) and the inflection point of I, ta
denoted by (+). The derivatives of the sigmoidal function R(t) are
plotted versus S(t), which is a monotone function of time.

Referring to Fig. 1(a), we first note that there seems to be a gap in the zero
set of the derivatives; that is, the normalized absolute values of the odd derivatives
agglomerate quickly near the point shown by (∗), while the absolute extrema of the
even derivatives approach this point much more slowly. On the other hand, the work
of Polya [9] on the zeros of the set of derivatives of an analytic function applied to a
smooth sigmoidal curve implies that there should be no gap in the set of zeros. Due to
the computational limitations of the SIR system, we worked with the logistic growth
function and we could in fact see that the gap closes when derivatives up to order
200 are included, as shown in Fig. 2. Nevertheless, despite the strong evidence for the
existence of a critical point, we were unable to prove even the simplest observed fact
that the absolute extreme values of the odd derivatives of the logistic growth curve
are located at t = 0.

The aim of the present work is the study of the existence and the location of the
“critical point of a sigmoidal curve” as described Section 2, Definition 1. In earlier
stages of this study, the existence of a critical point was thought to be a peculiarity
of the SIR system, but later on after working with numerous examples we came up
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Figure 2. The normalized derivatives of the logistic growth y′ =
(1− y2) (a) The plot of derivatives up to order 30 with respect to y.
All odd derivatives reach their absolute extremum at the origin but
there seems to be a gap in the zero set. (b) The distance of the first
zero of the nth derivative to the origin. The apparent gap seems to
close after n = 200.

with the belief that it is a consequence of the general properties of sigmoidal curves.
Intuitively, the critical point of an odd sigmoidal curve is expected to be t = 0, but
there was no guess on where the critical point of curves with no symmetry would be
located.

The main results of the paper are presented in Section 3. In Section 3.1, we prove
the existence of critical point for the general case (Proposition 2), then in Section 3.2,
we consider odd sigmoidal curves and use milder assumptions to prove that t = 0 is
the critical point. For the case with no symmetry, the location of the critical point
is crucially related to an appropriate choice of the origin of the time axis, in such a
way that the phase of the Fourier transform of the first derivative is asymptotically
constant. This leads to an intrinsic choice of origin, hence an intrinsic definition of
the even and odd components, provided that the relevant assumptions are satisfied.
With this choice of origin, t = 0 turns out to be the critical point, provided that it
exists.

The plan of the paper is as follows. The definitions and theorems necessary
for subsequent derivations are presented in Section 2. In Section 3.1, we first prove
the existence of the critical point for the general case, then, in Section 3.2, we give
alternative proofs for sigmoidal curves with symmetry, using weaker assumptions.
Basic properties of the Fourier and Hilbert transforms are given in the Appendix.
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2. Preliminaries

In Section 2.1, we illustrate the existence and non-existence of critical points
for certain sigmoidal curves. We define the critical point of a sigmoidal curve and
present our basic assumptions in Section 2.2. In Section 2.2, we define the intrinsically
even and odd components and in Section 2.3, we prove certain results related to the
properties of the envelope.

2.1. The existence and non-existence of the critical point

We will denote the sigmoidal curve as y(t) and its first derivative that is a
localized hump by f(t), hoping that there will be no confusion when we refer to even
and odd derivatives of y or f . Let tn be the point where the nth derivative y(n)(t)
reaches its extreme value and let yn = y(n)(tn). Based on our observations we expect
that the subsequences {t2k} and {t2k+1} converge at different rates. For example, in
the case of an odd sigmoidal curve, t2k+1 = 0 for each k, while {t2k} converges slowly
as seen from Fig. 2(b).

The standard and generalized logistic growth curves provide examples to the
existence of the critical point for symmetrical and asymmetrical growth. The standard
logistic growth curve is the sigmoidal curve y(t) = tanh(t), while the generalized
logistic growth curve with horizontal asymptotes at −1 and 1 is given by y(t) =

−1 + 2
[
1 + ke−βt

]−1/ν
, where k > 0, β > 0 and ν > 0. The parameter k can be

adjusted by a time shift, β corresponds to a scaling of time and ν is the key parameter
that determines the shape of the growth. For k = 1 the critical point is located at
t = 0 (see Example 2). In Fig. 3(a), all even derivatives of the sigmoidal function are
zero at t = 0; the apparent gap is still discernable despite a much higher number of
derivatives are plotted. The behavior of the generalized logistic growth (Fig. 3(b)) is
more or less the same except that the zeros of even derivatives are not fixed but they
agglomerate near t = 0.

The Gompertz function with the same asymptotes is given by y(t) = −1 +
2 exp(−e−βt). This function can be expressed as the limit of the generalized logistic
family for k = 1/n, ν = 1/n, as n→∞ and provides an example to the non-existence
of the critical point. As seen in Fig. 3(c), the normalized derivatives do not accumulate
and the critical point seems to have moved to negative infinity. The derivatives of the
Gompertz function of orders 20, 30 and 40 are presented in Fig. 4, in order to display
the shift of the wave packets towards minus infinity.

The standard logistic growth curve occurs as the solution of the “Susceptible-
Infected-Susceptible” (SIS) model. In a study of the formation of (reversible) physical
gels, [6], we showed that that generalized logistic growth curves are solutions to a
modified form of the (SIS) model and we used the results of Example 2, in Section 3,
to determine the gel point directly, using the approximation of experimental results
by generalized logistic growth curves, known also as “5-point sigmoids”.

In [2] we expressed sufficient conditions for the existence of a critical point of
a sigmoidal curve in terms of the Fourier transform of the first derivative. For the
sigmoidal curves that arise as solutions of the SIR model, we could only give numer-
ical evidence for the existence of the critical point. But for the solutions of the SIS



The critical point of a sigmoidal curve 81

model expressed in terms of generalized logistic growth functions, we could express
the location of the critical point in terms of the parameters of the generalized logistic
growth curve [6] where we used without proof the expression of the Fourier transform
of its first derivative.

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Normalized Derivatives of the Standard

-2 -1 1 2 3 4

-1.0

-0.5

0.5

1.0

Normalized Derivatives of the Generalized Logistic Growth

-4 -2 2 4

-1.0

-0.5

0.5

1.0

Normalized Derivatives of Gompertz Curve

(a) (b) (c)

Figure 3. (a) Normalized derivatives of the standard logistic
growth; (b) Normalized derivatives of the generalized logistic growth
(β = 1, k = 1, ν = 1/5) up to order 30. The apparent gap is still
discernable in both figures, despite the large number of derivatives
plotted. The behavior of the generalized logistic is more or less the
same except that the zeros of even derivatives are not fixed. (c) Nor-
malized derivatives of the Gompertz function. The Gompertz func-
tion is the limit of the generalized logistic family, the critical point
seems to have moved to negative infinity.
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Figure 4. The time domain plots of the 20th, 30th and 40th deriva-
tives of the Gompertz function respectively in (a), (b) and (c). The
wave packets are shifted to left towards minus infinity.

2.2. Basic definitions

A sigmoidal function y(t) is a monotone increasing function with horizontal

asymptotes y1 and y2 as t → ±∞ and with lim
t→±∞

y(n)(t) = 0 for all n ≥ 1. We

propose the following definition for the “critical point”.

Definition 2.1. Let y(t) be a sigmoidal curve and assume that the set of points where
the even derivatives and the odd derivatives reach their absolute extremum converge
to the same point. The common limit of these derivatives, if it exists, is called the
critical point of the sigmoidal curve.
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The location of the critical point brings into consideration an intrinsic definition
of being even or odd, hence a preferred choice of origin of the time axis. If f(t) is even,
then its Fourier transform F (ω) is real and even, but if f(t) is shifted in time, then
F (ω) is no longer real, but its phase is linear. The other way around we can recognize
an intrinsically even function by looking to the phase of its Fourier transform. From
this point of view, the preferred origin for the time axis is given by the shift that will
make F (ω) real.

In the general case where f(t) has no symmetry, F (ω) has a nonzero phase. But
if the phase has an oblique asymptote αω + φ0, then after a time shift, it will be
asymptotically constant. Thus, the preferred origin of time is obtained by the time
shift that makes the phase of F (t) asymptotically constant, provided that the phase
has an oblique asymptote.

We use this property to define the intrinsically even and intrinsically odd func-
tions via their Fourier transform.

Definition 2.2. Let f(t) be a function whose Fourier transform F (ω) exists. f(t) is
called intrinsically even if there is real number α such that e−iαωF (ω) is real. f(t)
is called intrinsically odd if there is real number α such that e−iαωF (ω) is pure
imaginary.

If there is no real number α such that f(t− α) is neither even or nor odd, then
we define its intrinsically even and odd components provided that the phase of F (ω) is
asymptotically linear, i.e, F (ω) = |F (ω)|eiφ(ω) where φ(ω) has an oblique asymptote
with slope α, as ω → ±∞.

Definition 2.3. Let f(t) be a function such that the Fourier transform F (ω) exists
and the phase of F (ω) has an oblique asymptote with slope α as ω → ±∞. Then, the
intrinsically even and odd components of f(t) are the inverse Fourier transforms of
the real and imaginary parts of e−iαωF (ω).

2.3. The envelope of the derivatives

Let f(t) be a derivative of a sigmoidal function. We will prove that the magnitude
of the analytic representation fA(t) (as defined in the Appendix) gives the envelope
of f(t) in the sense that f(t) touches |fA(t)| between any two consecutive zeros.

Proposition 2.4. Let f(t) be a real function whose Fourier and Hilbert transforms
exit. If t1 and t2 are any two consecutive zeros of f(t), then there is a t3 such that
t1 < t3 < t2 and f(t3) = ±|fA(t)|.
Proof. Writing fA(t) = A(t)eiϕ(t), we can express f(t) and fh(t) as

f(t) = |fA(t)| cos (ϕ(t)) , fh(t) = A(t) sin (ϕ(t)) .

If t1 and t2 are two consecutive zeros of f(t), then we should have ϕ(t1) = π
2 + kπ

and ϕ(t2) = π
2 + (k + 1)π. Thus, provided that ϕ(t) is continuous, there will be a

time t3, t1 < t3 < t2, such that ϕ(t3) = (k + 1)π, hence, fh(t3) = 0. Thus the zeros
of f(t) and fh(t) alternate. It follows that f(t3) = ± |fA(t3)| for some t1 < t3 < t2.
The local extremum of f(t) in between t1 and t2 is denoted by t4. If f(t) is positive
(negative) on (t1, t2) and f ′(t3) is negative (positive), then t4 < t3, while if f(t) is
positive (negative) on (t1, t2) but f ′(t3) is positive (negative), then t3 < t4. �
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3. The existence and the location of the critical point of a sigmoidal
curve

For the case with symmetry, i.e, for an odd sigmoidal curve y(t), the Fourier
transform of the first derivative, F (ω) is real. All odd derivatives of y(t) have a local
maximum at t = 0. We expect the local maximum to be located at t = 0. For a
sigmoidal curve with no symmetry, we will show that the location of the critical point
is given by the linear phase factor of F (ω).

The motivation for the choice of the assumptions in Proposition 2 is based on
the following observation. In the examples studied, higher derivatives of the sigmoidal
curve look like wave packets, hence in the frequency domain, the Fourier transform
of the derivatives should have a nearly band bass spectrum. If the Fourier transform
of all derivatives have the same (constant) phase, then in the time domain, the wave
packets are centered at the same point. As this condition is not satisfied for sigmoidal
curves without symmetry, the best that we can expect is that all derivatives have
asymptotically a constant phase (possibly after a shift of time) and the band pass
spectrum moves to infinity as the order of differentiation increases.

Before proceeding to the proofs, we start by examples to illustrate the behavior
of curves with no symmetry.

Example 3.1. If f(t) is an even localized hump, then its even derivatives are even and
its odd derivatives are odd functions. By adding these with appropriate multiples one
can generate positive pulses with no symmetry. As an example, the first derivative
of the standard logistic growth, sech2(t), is an even pulse. We obtain a positive pulse
with no symmetry by adding a multiple of its second derivative

f(t) = y(1)(t) = sech2(t)− λ
[
−2 sech2(t) tanh(t)

]
(0 < λ < 0.5),

the peak being located at the right of the point t = 0. The Fourier transform of f(t)
is

F (ω) = (1− iλω)

√
2

π

πω/2

sinh(πω/2)
.

The phase of F (ω) is φ(ω) = arctan (Im(F )/Re(F )) = arctan(−λω). As ω → ±∞,
φ(ω) approaches ∓π/2, hence F (ω) has asymptotically constant phase.

Example 3.2. The first derivative of the generalized logistic growth is

f(t) =
2kβ

ν
e−βt

(
1 + ke−βt

)−1−1/ν
.

The Fourier transform of f(t) is [1]

F (ω) =

√
2

π
k−

iω
β

Γ(1 + iω
β )Γ( 1

ν −
iw
β )

Γ( 1
ν )

.

Since k−
iω
β = e−i(

ln k
β )ω, it follows for k 6= 1, there is a linear phase factor in F (ω).

Let k = 1 and β = 1. For 1/ν = n, one can use the property Γ(z) = Γ(z) repeatedly
to see that

F (ω) =
1

Γ(n)
(1− iω)(2− iω) . . . (n− 1− iω) Fs(ω),
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Figure 5. a) Time domain plots of the first derivative of the gener-
alized logistic growth for 1/ν = 1, 1/4, 1/8, 1/12. b) The magnitude
of the Fourier transform, c) The angle of the Fourier transform.

where Fs(ω) is the Fourier transform of the standard logistic growth. The multiplica-
tive factor is a complex polynomial; in particular the zeros of its real part are bounded,
hence as ω → ±∞, the phase goes to a multiple of π/2. It follows that, for each n, the
phase is asymptotically constant (provided that k = 1). The time domain plot, the
magnitude and the phase of the Fourier transforms of the generalized logistic family
for ν = 1, 1/4, 1/8 and 1/12 are presented in Fig. 5. We note that as 1/ν increases,
the phase approaches to its horizontal asymptotes more and more slowly.

3.1. Existence of the critical point: The general case

We will now prove that if f(t) satisfies asymptotically constant phase and band-
pass hypotheses, to be specified below, then the critical point is located at t = 0.
Note that the asymptotically constant phase condition is trivially satisfied when f(t)
is even.

Proposition 3.3. Let f(t) be the first derivative of a sigmoidal curve y(t) and f (n)(t)
be its nth derivative. If
(i) the Fourier transform of f(t) has the form F (ω) = |F (ω)|e−iαωeiψ(ω) where α is
a constant and ψ(ω) has horizontal asymptotes,
(ii) for ω > 0, ωn|F (ω)| has a single maximum at ωn and the ωn’s are unbounded,
(iii) the spectrum is localized in the sense that there are constants ωa and ωb (depend-
ing on n), such that

lim
n→∞

∫
|ω|<ωa

ωn|F (ω)| dω = lim
n→∞

∫
|ω|>ωb

ωn|F (ω)| dω = 0,

then the sigmoidal curve y(t) has a critical point located at t = α.

Proof. For simplicity assume that α = 0. If the Fourier transform of f(t) is F (ω), then
the Fourier transform of f(t − α) is e−iαωF (ω). We will express |f (n)(t)| using the
Fourier inversion formula and compare it with |f (n)(0)|. The assumption (iii) implies
that for all ε, there is N > 0 such that for n > N , there are constants ωa and ωb
(depending on n), such that∫

|ω|<ωa
ωn|F (ω)| dω <

ε

8
and

∫
|ω|>ωb

ωn|F (ω)| dω <
ε

8
.
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Thus for n large, the contribution from low and high frequencies are negligible, hence
the main contribution comes from a neighborhood of ωn. By assumption (ii) the ωn’s
are unbounded and using the asymptotically constant phase assumption we obtain
the estimates below: ∫

ωa≤|ω|≤ωb
ωn|F (ω)|(1− eiψ(ω)) dω < ε

2

Letting I to be the set defined by ωa ≤ |ω| ≤ ωb, we obtain upper bounds for f (n)(t)
as below:
√

2π|f (n)(t)| =

∣∣∣∣∫ ∞
−∞

ωnF (ω)eiωt dω

∣∣∣∣ ≤ ∫ ∞
−∞

ωn|F (ω)| dω

=

∫
|ω|<ωa

ωn|F (ω)| dω +

∫
|ω|>ωb

ωn|F (ω)| dω +

∫
ω∈I

ωn|F (ω)| dω

=
ε

4
+

∫
ω∈I

ωn|F (ω)| dω

We estimate the integral above as∫
ω∈I

ωn|F (ω)| dω =

∣∣∣∣∫
ω∈I

ωn|F (ω)| dω
∣∣∣∣

=

∣∣∣∣∫
ω∈I

ωn|F (ω)|
(

1− eiψ(ω)
)
dω +

∫
ω∈I

ωn|F (ω)|eiψ(ω) dω
∣∣∣∣

≤
∣∣∣∣∫
ω∈I

ωn|F (ω)|
(

1− eiψ(ω)
)
dω

∣∣∣∣+

∣∣∣∣∫
ω∈I

ωn|F (ω)|eiψ(ω) dω
∣∣∣∣

≤ ε

2
+

∣∣∣∣∫
ω∈I

ωn|F (ω)|eiφ0eiψ(ω) dω

∣∣∣∣
≤ ε

2
+

∣∣∣∣∫
ω∈I

ωnF (ω) dω

∣∣∣∣ .
Finally we estimate the last term as∣∣∣∣∫
ω∈I

ωnF (ω) dω

∣∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞

ωnF (ω) dω −
∫
|ω|<ωa

ωnF (ω) dω −
∫
|ω|>ωb

ωnF (ω) dω

∣∣∣∣∣
≤
∣∣∣∣∫ ∞
−∞

ωnF (ω) dω

∣∣∣∣+

∣∣∣∣∣
∫
|ω|<ωa

ωnF (ω) dω

∣∣∣∣∣+

∣∣∣∣∣
∫
|ω|>ωb

ωnF (ω) dω

∣∣∣∣∣
≤
∣∣∣∣∫ ∞
−∞

ωnF (ω) dω

∣∣∣∣+

∫
|ω|<ωa

ωn|F (ω)| dω +

∫
|ω|>ωb

ωn|F (ω)| dω

≤ ε

4
+
√

2π
∣∣∣f (n)(0)

∣∣∣ .
It follows that f (n)(t) ≤ f (n)(0) + ε hence as t = 0 is the critical point. �

The sequence ωn can be obtained by maximizing ωn|F (ω)|, i.e, by equating its
first derivative to zero. We present in Fig. 6, a graphical display of the corresponding
equality ω/n = F (ω)/F ′(ω) for the standard logistic growth. The comparison of the
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Figure 6. Graphical solution of the equation ω/n = F (ω)/F ′(ω)
for the standard logistic growth.
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Figure 7. Comparison of the derivatives f (n)(t) of the standard

logistic function with sinusoids of frequency ωn modulating |f (n)A (t)|.

higher derivatives with sinusoids of frequency ωn modulating the amplitude of the
corresponding analytical representation are shown in Fig. 7.
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3.2. The existence of the critical point: Odd sigmoidal curves

In this section we will prove the existence of the critical point of an odd sigmoidal
curve under a different set of assumptions. We first prove that the odd derivatives of
an odd sigmoidal function y(t) reach their global extreme values at t = 0 (Proposition
3.4). Then we prove that the global extreme value of the even derivatives of y(t) is
the local extreme value that is closest to t = 0 (Proposition 3.5) and the sequence of
points where the even derivatives of y(t) reach their global extreme values converge
to t = 0 (Corollary 3.6). The time domain plots and the magnitude of the Fourier
and Hilbert transforms of the standard logistic growth are displayed in Fig. 8.
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Figure 8. Normalized graphs of the time domain variations, the
magnitude of the Fourier transform and the magnitude of the ana-
lytic representation for y(t), y(4)(t) and y(8)(t). As the order of dif-
ferentiation increases, the time domain pulses get narrower while the
frequency spectrum spreads out.

The simplest property that has to be proved is the fact that if f(t) is an even,
the local extremum at t = 0 is the global one. We prove this by requiring the “mono-
tonicity” of the envelope of y(n)(t), expressed in terms of its analytic representation.

Proposition 3.4. Let f(t) be a real, even function and assume that that the magnitude
of its analytical representation |fA(t)| has a single local maximum. Then

|f(t)| ≤ |f(0)|.

Proof. Recall that fA(t) = f(t) + ifh(t), where fh(t) is the Hilbert transform of f(t).
Since f2A(t) = f2(t) + f2h(t), |f(t)| ≤ |fA(t)|. When f(t) is even, fh(t) is odd, hence,
f(0) = fA(0). Since |fA(t)| is monotone decreasing, |f(t)| ≤ |fA(0)| = |f(0)|. �
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We next prove that the global extremum of the even derivatives of an odd sig-
moidal curve is the one closest to t = 0.

Proposition 3.5. Let f(t) be a real, odd function such that the magnitude of its ana-
lytical representation |fA(t)| has a single local maximum. Then |f(t)| ≤ |f(t0)| where
t0 is the location of the first local extremum of f(t) for t > 0.

Proof. Since f(t) is odd, f(0) = 0. For simplicity assume that f ′(0) > 0. Let t1 be
the first zero of f(t) for t > 0. By the alternation of roots, there is a point t2 < t1 at
which f(t2) = |fA(t2)| and since |fA(t)| is decreasing, f(t) is reaching its first local
maximum at some t0 < t2. It follows that |f(t)| < |f(t0)|. �

Finally we prove that the global extreme values of the derivatives converge to

t = 0, i.e, there is no gap between the maximum of |y(2k)A (t)| and the global extremum

of y(2k)(t).

Corollary 3.6. Let y(t) be an odd sigmoidal function and assume that for each n,∣∣∣y(n)A (t)
∣∣∣ has a single local maximum. Then t = 0 is the limit point of the global

extreme values of y(2k)(t).

Proof. For n = 2k + 1, Proposition 3.4 implies that the global extremum is at t = 0.
For n = 2k, we will prove that the global extremum of y(2k+2) occurs earlier than the
global extremum of y(2k). By Proposition 3.5 above, the global extremum is the first
local extremum. Let y(2k)(0) = 0, assume that y(2k+1)(0) > 0 and let t1 be the first

intersection of y(2k) with its envelope, y(2k)(t1) =
∣∣∣y(2k)A (t1)

∣∣∣. The global extreme value

of y(2k) is at some t2 < t1, since the envelope is decreasing. Then, y(2k+1)(t2) = 0,

y
(2k+1)
h (t2) is tangent to the envelope, hence it has its global extremum at t3 < t2.

Finally, y
(2k+2)
h (t3) = 0, hence y(2k+2)(t) is tangent to the envelope at this point and

it has its global extremum at some t4 < t3. Hence the global extreme values form a
decreasing sequence that converge to t = 0. �

Typical examples of the even and odd derivatives of the standard logistic growth
and their envelopes are presented in Fig. 9, as to illustrate how the proofs work.

For the case with no symmetry, we again need to assume that |y(n)A (t)| has a
single maximum, but the location of this maximum, that we denote as tn,∗ changes

with n. The comparison of |y(n)A (t)| for sigmoidal curves with and without symmetry
is given in Fig. 10.

Appendix A. The Fourier and Hilbert transforms

The Fourier transform: The Fourier transform of a function f(t), F(f) = F (ω) is
defined as

F (ω) =
1√
2π

∫ ∞
−∞

f(t) e−iωt dt,
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Figure 9. The envelope of the 10th (a) and of 11th (b) derivative
of the standard logistic growth function.
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Figure 10. Envelopes of normalized derivatives up to order 15: The
standard logistic growth function (a) and generalized logistic growth
function with β = 2, k = 1, ν = 1/5 (b).

provided that the integral exists in the sense of Cauchy principal value [8]. If f(t) is
in L1, then its Fourier transform exists. Since a sigmoidal function is finite as t→∞,
its first derivative is in L1. We can recover f(t) from the inverse transform by

f(t) =
1√
2π

∫ ∞
−∞

F (ω) eiωt dω.

The Fourier transform of the odd sigmoidal function exists in the sense of Cauchy
principal value.

The Hilbert transform and the analytic representation: For our purposes, the simplest
description of the Hilbert transform is given by its relation to the Fourier transform
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[7]. Given f(t) and its Fourier transform F (ω), we define the function FA(ω) by

FA(ω) =

{
2F (ω) , ω > 0

0 , ω < 0
.

The inverse transform is a complex function that is called the “analytic represen-
tation” fA(t) of f(t). The imaginary part of fA(t) is the Hilbert transform fh(t) of
f(t).

fA(t) = f(t) + ifh(t) =

√
2

π

∫ ∞
0

F (ω) eiωt dω.

The existence of the Hilbert transform necessitates that f(t) be in Lp for 1 < p <∞;
for L1 functions, it exists in L1,weak ([10], Lemma V.2.8).

Symmetry properties: The property, F
(
f(t)

)
= F (−ω) implies that if f(t) is real

then F (−ω) = F (ω). Thus if f(t) is real, F (ω) will be real provided that F (−ω) =
F (ω). The scaling property f(at)→ 1

|a|F
(
ω
a

)
implies that f(−t)→ F (−ω), hence if

f(t) is real and even, then F (ω) is real and even. Similarly, if f(t) is real and odd,
then F (ω) is pure imaginary and odd. We note that if f(t) is even (odd), its Hilbert
transform is odd (even).

Differentiation: The effect of differentiation in the time domain is multiplication by
iω in the frequency domain. Thus

f (n)(t)→ (iω)nF (ω).

Convolution and modulation: There is a correspondence between products and con-
volutions in the time and frequency domains; multiplication in the time domain leads
to convolution in the frequency domain, i.e,

f(t) g(t)→ 1√
2π

F (ω) ∗G(ω).

The “modulation” of a low frequency signal in the time domain is the multiplication
of this signal by a sinusoidal function of fixed (usually high) angular frequency ω0.
In the frequency domain, the Fourier transform of the low frequency function is con-
volved with the Fourier transform of the sinusoid. The Fourier transform of a pure
sinusoid is not defined in the usual sense, but it is represented as the Dirac δ functions
occurring at ±ω0 and convolution carries the spectrum of the low frequency signal
to the frequencies ±ω0. Since the Fourier transform of a complex exponential is a
δ-function, we have the correspondence below:

f(t)eiω0t → F (ω − ω0).

Time shift: As an analogue of multiplication with a complex exponential in the time
domain, the multiplication of a function in the frequency domain by a linear phase
factor leads to a shift in the time domain:

e−iαωF (ω)→ f(t− α).
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Integrodifferential evolution systems with
nonlocal initial conditions

Sylvain Koumla and Radu Precup

Abstract. The paper deals with systems of abstract integrodifferential equations
subject to general nonlocal initial conditions. In order to allow the nonlinear
terms of the equations to behave independently as much as possible, we use a
vector approach based on matrices, vector-valued norms and a vector version of
Krasnoselskii’s fixed point theorem for a sum of two operators. The assumptions
take into account the support of the nonlocal initial conditions and the hybrid
character of the system. Two examples are given to illustrate the theory.
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1. Introduction

In this paper, we are concerned with the existence of solutions to the semilinear
system of abstract integrodifferential equations with nonlocal initial conditions, of the
type  u′i (t) +Aiui(t) =

∫ t

0

Ki(t− s, us)ds+ Fi (t, ut) , t ∈ [0, T ]

ui (t) = αi (u) (t) , t ∈ [−τ, 0] , i = 1, ..., n.

(1.1)

Here n ≥ 1, and for each i ∈ I := {1, ..., n} , the linear operator −Ai : D(Ai) ⊆
Xi → Xi generates a C0-semigroup of contractions {Si(t); t ≥ 0} on a Banach space(
Xi, |.|Xi

)
, τ ≥ 0, u ∈ C ([−τ, T ] , X) , where X = X1 × ... × Xn, u = (u1, ..., un) ,

and for each t, ut is the restriction of u to [t− τ, t] shifted to the interval [−τ, 0] , i.e.,
ut ∈ C ([−τ, 0] , X) and

ut(s) = u(t+ s), s ∈ [−τ, 0] . (1.2)
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The nonlinear perturbations in equations are given by the continuous mappings Fi
from [0, T ]×C ([−τ, 0] , X) to Xi, Ki from [0, T ]×C ([−τ, 0] , X) to Xi, and the nonlo-
cal initial conditions are expressed by the continuous mappings αi from C ([−τ, T ] , X)
to C ([−τ, 0] , Xi) .

We note that the nonlocal initial conditions include in particular:

• the initial condition:

ui (t) = ϕi (t) , t ∈ [−τ, 0] , i = 1, ..., n

where ϕ = (ϕ1, ..., ϕn) ∈ C ([−τ, 0] , X) is given;
• linear multi-point conditions (linear nonlocal initial conditions of discrete type):

ui (t) = ϕi (t) +

mi∑
j=1

aij (t)ui (t+ tij) , t ∈ [−τ, 0] , i = 1, ..., n, (1.3)

where 0 < tij < ti,j+1 ≤ T for j = 1, ...,mi and i = 1, ..., n. The linear multi-
point conditions include in particular the initial condition, and the periodicity
condition

ui (t) = ui (T + t) , t ∈ [−τ, 0] , i = 1, ..., n;

• linear nonlocal initial conditions of continuous type, given by integrals:

ui (t) = ϕi (t) +

∫ T

0

ki (t, s)ui (t+ s) ds

= ϕi (t) +

∫ T+t

t

ki (t, s− t)ui (s) ds, t ∈ [−τ, 0] , i = 1, ..., n.

Starting with Volterra’s pioneering works on integrodifferential equations with
delayed effects in population dynamics and materials with memory, the theory of de-
lay differential equations has progressed continuously following the development of
functional analysis and being stimulated by numerous applications in physics, chem-
istry, biology, medicine, economy, etc., see e.g., [23]), aimed to described evolution
processes whose future states depend not only on the present, but also on the past
history.

As concerns differential equations with nonlocal initial conditions of multi-point
or integral type, we mention as some pioneering contributions, the papers of Cio-
ranescu [15], Whyburn [42] and Conti [16]). Among further developments, we refer
the readers to the works [2], [3], [7], [17], [21], [28], [29], [41], to the recent survey
paper [35], and the references therein.

Parabolic problems with nonlocal initial conditions were considered in the papers
of Kerefov [22], Vabishchevich [36], Chabrowski [14], Pao [33], Olmstead and Roberts
[31], and Chapter 10 in [26], as nonlocal versions of some deterministic models from
physics, mechanics, biology and medicine. Abstract evolution equations with nonlocal
initial conditions were considered by Byszewski [11], Jackson [20], Lin and Liu [24].
For more recent contributions, we refer the readers to the papers [4], [6], [8], [10], [12],
[19], [24], [25], [27], [30], [32], [39] and the recent monograph [9].
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This paper has a double motivation. First, it is motivated by the second author’s
recent paper [5], which mainly inspires the operator technique of proof, and secondly,
by the paper of Webb [40] for the class of integrodifferential equations.

There are several aspects in the present paper which are mixed together requiring
a laboured technique of proof and yielding to a very general result:

I The use of the notion of support of a nonlocal initial condition and of a
corresponding split norm. Throughout the paper, by [−τ, T0] we shall denote the
support of the nonlocal initial condition, that is the smallest subinterval [−τ, T0] of
[−τ, T ] with T0 ≥ 0 such that

αi (u) = αi (v) , i = 1, ..., n, for every u, v ∈ C ([−τ, T ] , X)

with u|[−τ,T0]
= v|[−τ,T0]

.

Here by u|[−τ,T0]
we mean the restriction of the function u to the interval [−τ, T0] .

Physically, this means that the evolution of a process is subjected to some constraints
until a given moment of time T0, and becomes free of any constraints after that
moment.

The notion of support of a nonlocal initial condition was first used in the papers
[7] and [8], and used after in [29], [2], [12], [4], [5]. As explained in these papers, and
as we shall see in the following, stronger conditions on nonlinearities have to be asked
on the support subinterval, compared to those required on the rest of the interval.
Mathematically, the integral equation equivalent to the nonlocal initial problem is of
Fredholm type on the support interval, and of Volterra type on the rest of the interval.
This makes useful to consider a split norm on the functional space where the problem
is studied. Thus, in connection with the delay system (1.1) and with the support
[−τ, T0] of the nonlocal initial condition, on a space of the type C ([−τ, T ] , E) , where
(E, |·|E) is a Banach space, we shall consider the split norm

|u|τ = max
{
|u|C([−τ,T0],E) , |u|Cθ([T0−τ,T ],E)

}
, (1.4)

where |u|C([−τ,T0],E) is the usual max norm

|u|C([−τ,T0],E) = max
t∈[−τ,T0]

|u(t)|E ,

while for any θ > 0, |u|Cθ([T0−τ,T ],E) is the Bielecki type norm on C ([T0 − τ, T ], E) ,

|u|Cθ([T0−τ,T ],E) = max
t∈[T0,T ]

(
|ut|C([−τ,0],E) e

−θ(t−T0)
)

= max
t∈[T0,T ]

(
|u|C([t−τ,t],E) e

−θ(t−T0)
)
.

In particular, when there is no a delay, i.e., when τ = 0, the norm (1.4) reduces to
the split norm previously considered in [7], [2], [28] and [29].

I The hybrid character of the system. The system is split into to subsystems:
the first m equations for which Lipschitz conditions are assumed to guarantee that
the corresponding integral operators are contractive, and the last n − m equations
(0 ≤ m ≤ n) for which only at most linear growth conditions are required on the
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nonlinear terms, but in return, the compactness of the semigroups of operators is
assumed to insure the compactness of the integral operators. In this way the proof
will be a perfect illustration of Krasnoselskii’s fixed point theorem for a sum of a
compact map and a contraction, more exactly of its vector version of Viorel [37].

I The presence of integral terms. There is not only the bounded delay in the
equations of system (1.1), but also cumulative integral terms which bring into the
equations the whole history of the process. Such kind of equations arise from math-
ematical modeling of many real processes with memory from physics, biology and
economics. These cumulative terms play a special role in the split analysis on two
intervals as discussed previously.

2. Preliminaries

For the treatment of systems we use the vector approach based on vector-valued
metrics and norms, and matrices instead of constants.

Let us make the convention that the elements of Rn are seen as column vectors.
By a vector-valued metric on a set E we mean a mapping d : E × E → Rn+ such
that d(x, y) = 0 if and only if x = y; d(x, y) = d(y, x) for all x, y ∈ E and d(x, y) ≤
d(x, z) + d(z, y) for all x, y, z ∈ E. Here by ≤ we mean the natural componentwise
order relation of Rn, more exactly, if r, s ∈ Rn, r = (r1, ..., rn), s = (s1, ..., sn), then
by r ≤ s one means that ri ≤ si for i = 1, ..., n. A set E together with a vector-valued
metric d is called a generalized metric space. For such a space, the notions of Cauchy
sequence, convergence, completeness, open and closed set, are similar to those in usual
metric spaces.

Similarly, a vector-valued norm on a linear space E, is defined as being a mapping
‖·‖ : E → Rn+ with ‖x‖ = 0 only for x = 0; ‖λx‖ = |λ| ‖x‖ for x ∈ E, λ ∈ R, and
‖x+ y‖ ≤ ‖x‖ + ‖y‖ for every x, y ∈ E. To any vector-valued norm ‖.‖ one can
associate the vector-valued metric d (x, y) := ‖x− y‖ . A linear space E endowed
with a vector-valued norm ‖·‖ is called a generalized Banach space if E is complete
with respect to the associated vector-valued metric d.

If (E, d) is a generalized metric space with d taking values in Rn, we say that a
mapping Γ : E → E is a generalized contraction (in Perov’s sense) if there exists a
square matrix M of size n with nonnegative entries such that its powers Mk tend to
the zero matrix 0 as k →∞, and

d(Γ(x),Γ(y)) ≤Md(x, y) for all x, y ∈ E.

Such a matrix is said to be a Lipschitz matrix. Notice that for a matrix M the property
Mk → 0 as k → ∞ is equivalent to the fact that the spectral radius ρ (M) of the
matrix M is less than one. The role of matrices with spectral radius less than one
in the study of operator systems was pointed out in [34], in connection with several
abstract principles from nonlinear functional analysis.

For generalized contractions, the following extension of Banach’s contraction
principle holds.
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Theorem 2.1 (Perov). If (E, d) is a complete generalized metric space, then any gen-
eralized contraction Φ : E → E with the Lipschitz matrix M has a unique fixed point
x∗, and

d(Φk(x), x∗) ≤Mk(J −M)−1d(x,Φ(x)),

for all x ∈ E and k ∈ N (where J stands for the identity matrix of the same size as
M).

In this paper we use the following generalization of Theorem 2.1, a vector version
of Krasnoselskii’s fixed point theorem for a sum of two operators, owed to Viorel [37].

Theorem 2.2. Let (E, ‖·‖) be a generalized Banach space, D ⊂ E a nonempty bounded
closed convex set and Γ : D → E a mapping such that

(i). Γ = Φ + Ψ with Φ : D → E a generalized contraction in Perov’s sense, and
Ψ : D → E a compact operator;

(ii). Φ (u) + Ψ (v) ∈ D for every u, v ∈ D.

Then Γ has at least one fixed point in D.

The following obvious proposition will be used in the proof of the main result.

Proposition 2.3. (a) If M ∈Mn×n (R+) is a matrix with ρ (M) < 1, then ρ
(
M̃
)
< 1

for every matrix M̃ ∈ Mn×n (R+) whose elements are close enough to the corre-
sponding elements of M.

(b) If M ∈ Mn×n (R+) is a matrix with ρ (M) < 1, then ρ
(
M̂
)
< 1 for every

matrix M̂ ∈Mn×n (R+) such that M̂ ≤M componentwise.

We conclude this preliminary section by a result about the compactness of the
solution operator associated to a non-homogenous evolution equation [1].

Lemma 2.4 (Baras-Hassan-Veron). Let A : D (A) ⊂ E → E be the generator of a
compact C0-semigroup {S (t) ; t ≥ 0} . Then for every uniformly integrable family of
functions F ⊂ L1 (0, T ;E) , the set of functions{∫ t

0

S (t− s) f (s) ds : f ∈ F
}

is relatively compact in C ([0, T ] , E) .

For other basic notions and results of semigroup theory we mention the books
[13], [18] and [38].
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3. Main result

Looking for mild solutions to the problem (1.1), with ui ∈ C ([−τ, T ] , Xi) for
i = 1, ..., n we are led in a standard way to the following integral system

ui (t) = αi (u) (t) , t ∈ [−τ, 0] ,

ui (t) = Si (t)αi (u) (0) +

∫ t

0

Si (t− s)
∫ s

0

Ki (s− σ, uσ) dσds

+

∫ t

0

Si (t− s)Fi (s, us) ds, t ∈ [0, T ] , i = 1, ..., n.

(3.1)

Our assumptions are given differently for two sets of indices,

I1 := {1, ...,m} and I2 := {m+ 1, ..., n} ,
where 0 ≤ m ≤ n, and it is understood that I1 = ∅ if m = 0, and I2 = ∅ if m = n.
Let p > 1 be any fixed number.

The hypotheses are:
(H0) (a) For each i ∈ I1, the linear operator −Ai : D(Ai) ⊂ Xi → Xi generates

a C0-semigroup of contractions on the Banach space Xi.
(b) For each i ∈ I2, the linear operator −Ai : D(Ai) ⊂ Xi → Xi generates a

compact C0-semigroup of contractions on the Banach space Xi.
(H1) (a) For each i ∈ I1, Ki : [0, T ] × C([−τ, 0], X) → Xi, is continuous, and

there exist aij ∈ C([0, T ] ,R+) for j ∈ I, such that

|Ki(t, u)−Ki(t, v)|Xi ≤
n∑
j=1

aij(t) |uj − vj |C([−τ,0],Xj)

for all u, v ∈ C ([−τ, 0] , X) and t ∈ [0, T ].
(b) For each i ∈ I2, Ki : [0, T ] × C([−τ, 0], X) → Xi, is continuous, and there

exist di, aij ∈ C ([0, T ] ,R+) for all j ∈ I, such that

|Ki(t, u)|Xi ≤
n∑
j=1

aij(t) |uj |C([−τ,0],Xj) + di(t)

for all u ∈ C ([−τ, 0] , X) and t ∈ [0, T ].
(H2) (a) For each i ∈ I1, Fi : [0, T ] × C ([−τ, 0] , X) → Xi is continuous and

there exists bij ∈ C ([0, T ] ,R+) for all j ∈ I, such that

|Fi(t, u)− Fi(t, v)|Xi ≤
n∑
j=1

bij (t) |uj − vj |C([−τ,0],Xj)

for u, v ∈ C([−τ, 0], X) and t ∈ [0, T ] .
(b) For each i ∈ I2, Fi : [0, T ] × C ([−τ, 0] , Xi) → Xi is continuous and there

exist fi, bij ∈ C ([0, T ] ,R+) for all j ∈ I, such that

|Fi(t, u)|Xi ≤
n∑
j=1

bij (t) |uj |C([−τ,0],Xj) + fi (t)

for all u ∈ C([−τ, 0], X) and t ∈ [0, T ] .
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(H3) For each i ∈ I, αi : C ([−τ, T ] , X) → C ([−τ, 0] , Xi) and there exist
cij ∈ R+ for all j ∈ I, such that

|αi (u)− αi (v)|C([−τ,0],Xi) ≤
n∑
j=1

cij |uj − vj |C([−τ,T0],Xj)

for all u, v ∈ C ([−τ, T ] , X) .

Theorem 3.1. Assume that the conditions (H0)-(H3) hold. In addition assume that
the spectral radius of the n× n square matrix M = [mij ] , where

mij = T0 |aij |L1(0,T0)
+ aij + |bij |L1(0,T0)

+ cij for i, j ∈ I, (3.2)

and

aij =

∫ T

T0

dξ

∫ T0

0

aij (ξ − σ) dσ,

is less than one.
Then the problem (1.1) has at least one mild solution u ∈ C ([−τ, T ] , X) . In case that
m = n, the solution u is unique.

Proof. The integral system (3.1) can be seen as a fixed point equation u = Γ (u) in
C ([−τ, T ] , X) for the nonlinear operator Γ from the space C ([−τ, T ] , X) to itself,
Γ = (Γ1, ...,Γn) , where Γi : C ([−τ, T ] , X)→ C ([−τ, T ] , Xi) are defined by

Γi (u) (t) = αi (u) (t) , t ∈ [−τ, 0] ,

Γi (u) (t) = Si (t)αi (u) (0) +

∫ t

0

Si (t− s)
∫ s

0

Ki (s− σ, uσ) dσds

+

∫ t

0

Si (t− s)Fi (s, us) ds, t ∈ [0, T ] .

(3.3)

Clearly, the operator Γ admits the representation Γ = Φ + Ψ, where

Φ = (Γ1, ...,Γm,Φm+1, ...,Φn) , Ψ = (0, ..., 0,Ψm+1, ...,Ψn) ,

where for i ∈ J2,

Φi (u) (t) =

{
αi (u) (t) , t ∈ [−τ, 0] ,
Si (t)αi (u) (0) , t ∈ [0, T ] ,

and

Ψi (u) (t)=


0, t ∈ [−τ, 0] ,∫ t

0

Si(t−s)
∫ s

0

Ki(s−σ, uσ)dσds+

∫ t

0

Si (t−s)Fi (s, us) ds, t ∈ [0, T ] .

We shall apply the vector version of Krasnoselskii’s fixed point theorem to the operator
Γ on the space

E := C ([−τ, T ] , X) = C ([−τ, T ] , X1)× ...× C ([−τ, T ] , Xn)

endowed with the vector-valued norm

‖u‖ = (|u1|τ , ..., |un|τ )
tr
,
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where for each i, by |ui|τ we mean the norm in C ([−τ, T ] , Xi) given by (1.4), with
θ > 0 large enough chosen below, and to a bounded closed convex subset D of the
form

D = {u = (u1, ..., un) ∈ C ([−τ, T ] , X) : |ui|τ ≤ Ri for i ∈ I}
= {u ∈ C ([−τ, T ] , X) : ‖u‖ ≤ R}

with conveniently chosen radii Ri, i ∈ I. Here the notation R stands for the vector
column (R1, ..., Rn)

tr
. The result will follow from Theorem 2.2 once the following

lemmas have been proved: �

Lemma 3.2. There exists R ∈ Rn+ such that ‖Φ (u) + Ψ (v)‖ ≤ R for all u, v
∈ C([−τ, T ] , X) satisfying ‖u‖ , ‖v‖ ≤ R.

Lemma 3.3. The operator Φ is a generalized contraction in Perov’s sense on
C ([−τ, T ] , X) .

Lemma 3.4. The operator Ψ is completely continuous on C ([−τ, T ] , X) .

Proof of Lemma 3.2. Let R ∈ Rn+. The result will follow once we have proved that

‖Φ (u) + Ψ (v)‖ ≤ M̃R+ Λ, (3.4)

for all u, v ∈ C ([−τ, T ] , X) with ‖u‖ , ‖v‖ ≤ R, and some vector Λ ∈ Rn+ and matrix

M̃ close enough M such that ρ
(
M̃
)
< 1. Indeed, in this case, we can find a vector

R ∈ Rn+ such that

M̃R+ Λ ≤ R,

that is
(
J − M̃

)
R ≥ Λ, for example, the vector R =

(
J − M̃

)−1
Λ. The vector R

belongs to Rn+ since the matrix J − M̃ is inverse-positive as a consequence of the fact

that ρ
(
M̃
)
< 1 (see, e.g., [34]).

Thus, in order to obtain (3.4) we need estimates of the norms
|Φi (u) + Ψi (v)|τ . Clearly, Φi (u) + Ψi (v) = Γi (u) for i ∈ I1.

First note that from (H1) (a) , for v = 0,

|Ki(t, u)|Xi ≤
n∑
j=1

aij(t) |uj |C([−τ,0],Xj) + |Ki (t, 0)|Xi ,

hence the inequality in (H1) (b) also holds for i ∈ I1, with di (t) = |Ki (t, 0)|Xi .
Similarly, the inequality in (H2) (b) holds for i ∈ I1 with fi = |Fi (0)|C([−τ,0],Xi) .

Also, from (H3), one has

|αi (u)|C([−τ,0],Xi) ≤
n∑
j=1

cij |uj |C([−τ,T0],Xj)
+ hi
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for all i ∈ I with hi = |αi (0)|C([−τ,0],Xi) .

For t ∈ [−τ, 0] , we have

|αi (u) (t)|Xi ≤ |αi (u)|C([−τ,0],Xi) ≤
n∑
j=1

cij |uj |C([−τ,T0],Xj)
+ hi (3.5)

≤
n∑
j=1

cij |uj |τ + hi ≤
n∑
j=1

cijRj + hi

For t ∈ [0, T0] and i ∈ I1, since the semigroups are of contractions,

|Γi (u) (t)|Xi ≤ |αi (u) (0)|Xi +

∫ t

0

∫ s

0

|Ki (s− σ, uσ)|Xi dσds

+

∫ t

0

|Fi (s, us)|Xi ds. (3.6)

From (3.5), the first term is estimated as above, that is

|αi (u) (0)|Xi ≤
n∑
j=1

cijRj + hi, (3.7)

while the integrals are estimated as follows:

∫ t

0

∫ s

0

|Ki (s− σ, uσ)|Xi dσds (3.8)

≤
∫ t

0

∫ s

0

 n∑
j=1

aij (s− σ)
∣∣(uj)σ∣∣C([−τ,0],Xj)

+ di (s− σ)

 dσds

=

n∑
j=1

∫ t

0

∫ s

0

aij (s− σ) |uj |C([σ−τ,σ],Xj) dσds+ T0 |di|L1(0,T0)

and

∫ t

0

|Fi (s, us)|Xi ds ≤
∫ t

0

 n∑
j=1

bij (s)
∣∣(uj)s∣∣C([−τ,0],Xj)

+ fi (s)

 ds (3.9)

=

n∑
j=1

∫ t

0

bij (s) |uj |C([s−τ,s],Xj) ds+ T0 |fi|L1(0,T0)
.

Since 0 ≤ s ≤ t ≤ T0, one has |uj |C([s−τ,s],Xj) ≤ |uj |C([−τ,T0],Xj)
≤ |uj |τ .
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Then (3.8) and (3.9) give∫ t

0

∫ s

0

|Ki (s− σ, uσ)|Xi dσds ≤
n∑
j=1

∫ t

0

∫ s

0

aij (s− σ) |uj |τ dσds+ T0|di|L1(0,T0)

=

n∑
j=1

|uj |τ
∫ t

0

∫ s

0

aij(s− σ)dσds+ T0|di|L1(0,T0)

≤ T0
n∑
j=1

|aij |L1(0,T0)Rj + T0|di|L1(0,T0) (3.10)

and ∫ t

0

|Fi (s, us)|Xi ds ≤
n∑
j=1

|bij |L1(0,T0)
Rj + |fi|L1(0,T0)

. (3.11)

Hence for t ∈ [−τ, T0] and all i ∈ I1, from (3.7), (3.10) and (3.11), we deduce that

|Γi (u) (t)|Xi ≤
n∑
j=1

(
T0 |aij |L1(0,T0)

+ |bij |L1(0,T0)
+ cij

)
|uj |τ + λi

=

n∑
j=1

(mij − aij) |uj |τ + λi (3.12)

where λi = T0 |di|L1(0,T0)
+ |fi|L1(0,T0)

+ hi. Therefore

|Γi (u)|C([−τ,T0],Xi)
≤

n∑
j=1

(mij − aij) |uj |τ + λi. (3.13)

Next we estimate

|Γi (u)|Cθ([T0−τ,T ],Xi)
= max
t∈[T0,T ]

(
|Γi (u)|C([t−τ,t],Xi) e

−θ(t−T0)
)

(i ∈ I1) .

To do this, take any t ∈ [T0, T ] and s ∈ [t− τ, t] . For s ≤ T0, we already have the
estimate given by (3.13). Let s ∈ [T0, t]. Then

Γi (u) (s)

= Γi (u) (T0) +

∫ s

T0

Si (s− ξ)Fi (ξ, uξ) dξ +

∫ s

T0

Si (s− ξ)
∫ ξ

0

Ki (ξ − σ, uσ) dσdξ

= Γi (u) (T0) +

∫ s

T0

Si (s− ξ)Fi (ξ, uξ) dξ +

∫ s

T0

Si (s− ξ)
∫ T0

0

Ki (ξ − σ, uσ) dσdξ

+

∫ s

T0

Si (s− ξ)
∫ ξ

T0

Ki (ξ − σ, uσ) dσdξ.

Using (H1)(b), one has∣∣∣∣∣
∫ s

T0

Si (s− ξ)
∫ T0

0

Ki (ξ − σ, uσ) dσdξ

∣∣∣∣∣
Xi

≤
n∑
j=1

aij |uj |τ + |fi|L1(0,T0)
,
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where

aij =

∫ T

T0

dξ

∫ T0

0

aij (ξ − σ) dσ.

Furthermore∣∣∣∣∣
∫ s

T0

Si (s− ξ)
∫ ξ

T0

Ki (ξ − σ, uσ) dσdξ

∣∣∣∣∣
Xi

≤
∫ s

T0

∫ ξ

T0

 n∑
j=1

aij (ξ − σ)
∣∣(uj)σ∣∣C([−τ,0],Zj)

e−θ(σ−T0)eθ(σ−T0) + di (ξ − σ)

 dσdξ

≤
n∑
j=1

|uj |τ
∫ s

T0

∫ ξ

T0

aij (ξ − σ) eθ(σ−T0)dσdξ + (T − T0) |di|L1(0,T−T0)
.

Next using Holder’s inequality gives∣∣∣∣∣
∫ s

T0

Si (s− ξ)
∫ ξ

T0

Ki (ξ − σ, uσ) dσdξ

∣∣∣∣∣
Xi

≤ 1

θ (qθ)
1/q

eθ(t−T0)
n∑
j=1

|aij |Lp(0,T−T0)
|uj |τ

+ (T − T0) |di|L1(0,T−T0)
.

Similar arguments yield∣∣∣∣∫ s

T0

Si (s− ξ)Fi (ξ, uξ) dξ

∣∣∣∣
Xi

≤ 1

θ
eθ(t−T0)

n∑
j=1

|bij |Lp(T0,T ) |uj |τ + |fi|L1(T0,T )

It follows that

|Γi (u) (s)|Xi ≤
n∑
j=1

m̃ij |uj |τ e
θ(t−T0) + Λi for s ∈ [t− τ, t] ,

where

m̃ij = mij +
1

θ (qθ)
1/q
|aij |L1(0,T−T0)

+
1

θ
|bij |Lp(T0,T ) ,

Λi = λi + |fi|L1(0,T ) + (T − T0) |di|L1(0,T−T0)
.

This gives the estimate

|Γi (u)|Cθ([T0−τ,T ],Xi)
≤

n∑
j=1

m̃ijRj + Λi.

Also taking into account (3.13), we may conclude that

|Φi (u) + Ψi (v)|τ = |Γi (u)|τ ≤
n∑
j=1

m̃ijRj + Λi for i ∈ I1.

Since for i ∈ I2, the structure of Φi (u) + Ψi (v) is analogue to that of Γi, we easily
see that we also have

|Φi (u) + Ψi (v)|τ ≤
n∑
j=1

m̃ijRj + Λi for i ∈ I2.



104 Sylvain Koumla and Radu Precup

Hence (3.4) holds with M̃ = [m̃ij ] and Λ = (Λ1, ...,Λn)
tr
. Clearly, the matrix M̃ is

close enough to M if θ is sufficiently large. �
Proof of Lemma 3.3. Similar estimations to those in the proof of Lemma 3.2 give for
i ∈ I1 and any u, v ∈ C ([−τ, T ] , X) ,

|Γi (u)− Γi (v)|C([−τ,T0],Xi)
≤

n∑
j=1

mij |uj − vj |C([−τ,T0],Xj)

and

|Γi (u)− Γi (v)|Cθ([T0−τ,T ],Xi)
≤

n∑
j=1

m̃ij |uj − vj |τ .

Hence

|Γi (u)− Γi (v)|τ ≤
n∑
j=1

m̃ij |uj − vj |τ (i ∈ I1) .

For i ∈ I2, from (H3), we obtain

|Φi (u)− Φi (v)|τ ≤
n∑
j=1

cij |uj − vj |τ (i ∈ I2) .

Consequently,

‖Φ (u)− Φ (v)‖ ≤ M̂ ‖u− v‖ , (3.14)

where M̂ is the n× n square matrix [m̂ij ] , with

m̂ij =

{
m̃ij for i ∈ I1, j ∈ I
cij for i ∈ I2, j ∈ I.

Clearly M̂ ≤ M̃, hence according to Proposition 2.3, the spectral radius of M̂ is less
than one. Then (3.14) shows that Φ is a generalized contraction in Perov’s sense. �
Proof of Lemma 3.4. The first components of Ψ for i ∈ I1 are zero, so compact. The
growth conditions for Fi and Ki (i ∈ I2) and the boundedness of D guarantee the
uniform integrability of the set {Ψi (u) : u ∈ D} . Since in addition for i ∈ I2, the
semigroups generated by Ai are compact, we may apply the compactness criterion
from Lemma 2.4 to conclude that the operator Ψi is compact on D for every i ∈ I2. �

Remark 3.5. It is useful to analyze the elements of the matrix M to conclude about
the contributions of the nonlinear terms to the sufficient condition for the existence
of solutions. They show that bij (t) can be however large for T0 < t ≤ T. The same
happens for aij (t) (t ∈ [0, T ]) and bij (t) (t ∈ [0, T0]) provided that T0 is sufficiently
small. Also note the special contribution of aij in connection with the ”convolution
type” integral term of problem (1.1), which is null if T0 = 0 or T0 = T.

We conclude by two examples illustrating our main result.

Example 3.6. Consider the semilinear integrodifferential equation

∂

∂t
u(t, x)−∆u(t, x) =

∫ t

0

κ(t− s, u(s, x))ds+ µ(t)u(t− τ, x), t ∈ [0, T ] , x ∈ Ω,
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subject to the Dirichlet condition u (t, x) = 0 for x ∈ ∂Ω, and to the nonlocal initial
condition

u (t, x) = λu (t+ T, x) , for x ∈ Ω, t ∈ [−τ, 0] .

Here Ω ⊂ RN is a smooth bounded domain, τ ≥ 0, 0 < λ < 1, κ : [0, T ] × R → R
and µ : [0, T ] → R are continuous functions. The problem is of type (1.1), where
n = m = 1, X = L2 (Ω) , A = −∆, D (A) = H2 (Ω) ∩H1

0 (Ω) , K, F, α are defined as
follows:

K,F : [0, T ]× C([−τ, 0], L2 (Ω))→ L2 (Ω) ,

K (t, v) = κ (t, v (0)) , v ∈ C
[
[−τ, 0] , L2 (Ω)

]
F (t, v) = µ (t) v (−τ) ;

α : C
(
[−τ, T ] , L2 (Ω)

)
→ C

(
[−τ, 0] , L2 (Ω)

)
, α (v) (t) = λv (t+ T ) .

It is clear that T0 = T and (H2) and (H3) hold with b11 (t) = µ (t) and c11 = λ. Also
(H1) holds if there is a function γ ∈ C ([0, T ] ,R+) such that

|κ (t, y)− κ (t, z)| ≤ γ (t) |y − z| for all t ∈ [0, T ] and y, z ∈ R.

It is easy to check that a11 (t) = γ (t). Also a11 = 0. Therefore, Theorem 3.1 yields
the following conclusion: If

T |γ|L1(0,T ) + |µ|L1(0,T ) < 1− λ,

then the problem has a unique mild solution u ∈ C
(
[−τ, T ] , L2 (Ω)

)
.

Example 3.7. Let us consider a semilinear reaction-diffusion integrodifferential system
with Neumann boundary conditions and multi-point nonlocal initial conditions

∂u

∂t
(t, x)−κ1∆u (t, x)=

∫ t

0

κ1(t−s, u(s, x))ds−λ1u(t, x)+µ1(t)v(t−τ, x),

in Q,

∂v

∂t
(t, x)−κ2∆v (t, x)=

∫ t

0

κ2(t−s, v(s, x))ds+µ2(t)u(t−τ, x)−λ2v(t, x),

in Q,

∂

∂ν
u (t, x) =

∂

∂ν
v (t, x) = 0, on Σ,

u (t, x) = ϕ (t) (x) +

p1∑
k=1

β1ku (t1k + t, x) , in Qτ ,

v (t, x) = ψ (t) (x) +

p2∑
k=1

β2kv (t2k + t, x) , in Qτ ,

(3.15)

where Q = [0, T ] × Ω, Σ = [0, T ] × ∂Ω, Qτ = [−τ, 0] × Ω, Ω ⊂ RN is a smooth
bounded domain, κ1,κ2, λ1, λ2 > 0, τ ≥ 0 and 0 < ti1 < . . . < tipi ≤ T for i = 1, 2.
We assume that κ1, κ2 : [0, T ] × R → R are continuous; ϕ, ψ ∈ C

(
[−τ, 0] , L2 (Ω)

)
,

and µi ∈ C ([0, T ] ;R+), i = 1, 2.
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We apply Theorem 3.1 with X1 = X2 = L2 (Ω), and to the operators Ai : D (Ai) →
L2 (Ω) (i = 1, 2) given by

D (Ai) =

{
u ∈ H2 (Ω) :

∂u

∂ν
= 0 on ∂Ω

}
,

Aiu = κi∆u− λiu,
which generate compact semigroups [9, Theorem 1.11.8].
Here I1 = ∅ and I2 = I = {1, 2},

cii =

pi∑
k=1

|βik| (i = 1, 2) ,

c12 = c21 = 0, b11 = b22 = 0

and

b12 (t) = µ1 (t) , b21 (t) = µ2 (t) .

Also T0 = max {tij : j = 1, . . . , pi; i = 1, 2} .
Assume that the functions κ1 and κ2 are bounded, i.e.,

|κi (t, y)| ≤ di, i = 1, 2, for all t ∈ [0, T ] and y ∈ R.

Then aij = 0 for i, j = 1, 2. Therefore, according to Theorem 3.1, if the spectral radius
of the matrix

M =

[ ∑p1
k=1 |β1k| |µ1|L1(0,T0)

|µ2|L1(0,T0)

∑p2
k=1 |β2k|

]
is less than one, then the problem (3.15) has at least one mild solution in C([−τ, T ] ,
L2 (Ω)× L2 (Ω)).
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Stud. Univ. Babeş-Bolyai Math. 65(2020), No. 1, 109–125
DOI: 10.24193/subbmath.2020.1.09

Existence and multiplicity of positive radial
solutions to the Dirichlet problem for nonlinear
elliptic equations on annular domains

Noureddine Bouteraa and Slimane Benaicha

Abstract. In this paper, we study the existence and nonexistence of monotone
positive radial solutions of elliptic boundary value problems on bounded annular
domains subject to local boundary condition. By using Krasnoselskii’s fixed point
theorem of cone expansion-compression type we show that there exists λ∗ ≥ λ∗ >
0 such that the elliptic equation has at least two, one and no radial positive
solutions for 0 < λ ≤ λ∗, λ∗ < λ ≤ λ∗ and λ > λ∗ respectively. We include an
example to illustrate our results.
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boundary, Green’s function.

1. Introduction

In this paper, we are interested in the existence of radial positive solutions to
the following, boundary value problem BVP{

−4u (x) = λf (|x| , u (x)) , x ∈ Ω,
u (x) = 0, x ∈ ∂Ω,

(1.1)

where Ω =
{
x ∈ RN : a < |x| < b

}
with 1 < a < b is an annulus in RN (N ≥ 3),

f ∈ C ([a, b]× [0,∞) , [0,∞)) and λ is a positive parameter.
The study of such problems is motivated by a lot of physical applications start-

ing from the well-known Poisson-Boltzmann equation (see [2, 20, 30]), also they serve
as models for some phenomena which arise in fluid mechanics, such as the exothermic
chemical reactions or autocatalytic reactions (see [27, Section 5.11.1]). The non-
linearity f in applications always has a special form and here we assume only the
continuity of f and some inequalities at some points for the values of this function.
However, we know that in the integrand should stay a superposition of u with a given
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function (usually the exponent of u in applications) instead of u alone, but we treat
this paper as the first step in this direction. The method we use is typical for local
boundary value problems. We shall formulate an equivalent fixed point problem and
look for its solution in the cone of nonnegative function in an appropriate Banach
space. The most popular fixed point theorem in a cone is the cone-compression and
cone-expansion theorem due to M. Krasnosel’skii [19] which we use in the form taken
from [16]. We also point out the fact that problems of type (1.1) when equation does
not contain parameter λ, are connected with the classical boundary value theory of
Bernstein [1] (see also the studies of Granas, Gunther and Lee [15] for some extensions
to nonlinear problems).

The existence and uniqueness of positive radial solutions for equations of type
(1.1) when equation does not contain paramete λ, were obtained in [5], [21], [32].

Wang [32] proved that if f : (0,∞)→ (0,∞) satisfies lim
z→0

f(z)
z =∞ and lim

z→∞
f(z)
z = 0

then problem (1.1) when equation does not contain paramete λ, has a positive radial
solution in Ω =

{
x ∈ RN , N > 2

}
. That result was extended for the systems of elliptic

equations by Ma [23]. We quote also the research of Ovono and Rougirel [28] where
the diffusion at each point depends on all the values of the solutions in a neighborhood
of this point and Chipot et al. [11], [12]. For example in [11] considered the solvability
of a class of nonlocal problems which admit a formulation in term of quasi-variational
inequalities. There is a wide literature that deals with existence multiplicity results
for various second-order, fourth-order and higher-order boundary value problems by
different approaches, see [5], [8], [6], [7], [10], [17], [25], [22].
In 2011, Bohneure et al. [4] Studied the existence of positive increasing radial solutions
for superlinear Neumann problem in the unit ball B in RN , N ≥ 2,

−∆u+ u = a (|x|) f (u) , in B,

u > 0, in B,

∂tu = 0, on ∂B,

where a ∈ C1 ([0, 1] ,R) , a (0) > 0 is nondecreasing, f ∈ C1 ([0, 1] ,R) , f (0) = 0,

lim
s→0+

f (s)

s
= 0 and lim

s→+∞

f (s)

s
>

1

a (0)
.

In 2011, Hakimi and Zertiti, [17] studied the nonexistence of radial positive solutions
for a nonpositone problem when the nonlinearity is superlinear and has more than
one zero, {

−4u (x) = λf (u (x)) , x ∈ Ω,
u (x) = 0, x ∈ ∂Ω,

where f ∈ C ([0,+∞) ,R).
In 2014, Sfecci [31], obtained the existence result by introduced the lim sup and lim inf
types of nonresonance condition below the first positive eigenvalue for the following
Neumann problems defined on the ball BR =

{
x ∈ RN , |x| < R

}
,{

−4u (x) = f (u (x)) + e (|x|) , in BR,

u (x) = 0, on ∂BR,
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where f ∈ C (R,R) and e ∈ C ([0, R] ,R).

In 2014, Butler et. al, [9] studied the positive radial solutions to the boundary value
problem 

−∆u+ u = λa (|x|) f (u) , x ∈ Ω,
∂u
∂η + c (u)u = 0, |x| = r0,

u (x)→ 0, |x| → ∞,

where f ∈ C ([0,∞) ,R) ,Ω =
{
x ∈ RN : N > 2, |x| > r0 with r0 > 0

}
, λ is a positive

parameter, a ∈ C ([r0,∞) ,R+) such that lim
r→∞

a (r) = 0, ∂
∂u is the outward normal

derivative and c ∈ C ([0,∞) , (0,∞)).

Instead of working directly with (1.1), we note that the change of variable

u(x) = u(|x|), t = |x|

transforms (1.1) into the following boundary value problem (for details, see [14]:{
−u′′ (t)− N−1

t u (t) = λf (t, u (t)) , t ∈ (a, b) ,

u (a) = u (b) = 0,

where λ ≥ 0 is a positive parameter and f ∈ C ([a, b]× [0,∞) , [0,∞)).

Inspired and motivated by the works mentioned above, we deal with existence
and nonexistence of radial positive solutions to the BVP (1.1) i.e., an equivalant
problem (2.1) by using of the fixed point theorem together with the properties of
Green’s function and we impose certain conditions on f . The paper is organized
as follows. In Section 2, we present that a nontrivial and nonnegative solution of
BVP (2.1) is monotone positive solution. In Section 3, we obtain some results of the
existence, multiplicity and nonexistence positive solutions for BVP (2.1) depends on
the parameter λ and we give an example to illustrate our results.

2. Preliminaries

We shall consider the Banach space E = C [a, b] equipped with sup norm

‖u‖ = max
a≤t≤b

|u (t)| ,

and C+ [a, b] is the cone of nonnegative functions in C [a, b], where 1 < a < b.

Definition 2.1. A nonempty closed and convex set P ⊂ E is called a cone of E if it
satisfies

(i) u ∈ P, r > 0 implies ru ∈ P,
(ii) u ∈ P, −u ∈ P implies u = θ, where θ denote the zero element of E.

Definition 2.2. A cone P is said to be normal if there exists a positive number N
called the normal constant of P , such that θ ≤ u ≤ v implies ‖u‖ ≤ N ‖v‖.
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We are interested in finding radial solutions for problem (1.1). We proceed as
in introduction, setting u (x) = u (|x|), t = |x|, we have the following equivalent
boundary value problem{

−u′′ (t)− N−1
t u (t) = λf (t, u (t)) , t ∈ (a, b) ,

u (a) = u (b) = 0.
(2.1)

We observe that the existence and nonexistence of radial positive solutions of
(1.1) is equivalent to the existence and nonexistence of positive solutions of the prob-
lem (2.1).

In arriving our results, we need the following six preliminary lemmas. The first
one is well known.

Lemma 2.3. (see [13]) Let y (·) ∈ C [a, b]. If u ∈ C4 [a, b], then the BVP{
−u′′ (t)− N−1

t u (t) = y (t) , t ∈ (a, b) ,

u (a) = u (b) = 0,

has a unique solution

u (t) =

b∫
a

sN−1G (t, s) y (s) ds, N > 2,

where

G (t, s) =


(
1−( a

s )
N−2

)(
( b

t )
N−2−1

)
(N−2)(bN−2−aN−2)

, a ≤ t ≤ s ≤ b,(
1−( a

t )
N−2

)(
( b

s )
N−2−1

)
(N−2)(bN−2−aN−2)

, a ≤ s ≤ t ≤ b.
(2.2)

Lemma 2.4. For any (t, s) ∈ [a, b]× [a, b], we have(
1−

(
a
t

)N−2)
(N − 2) (bN−2 − aN−2)

≤ G (t, s) ≤

((
b
t

)N−2 − 1
)

(N − 2) (bN−2 − aN−2)
, (2.3)

and

0 ≤ ∂G

∂t
(t, s) ≤

((
b
s

)N−2 − 1
)(

(N−2)b
aN−1

)
(N − 2) (bN−2 − aN−2)

, (t, s) ∈ [a, b]× [a, b] . (2.4)

Proof. The proof is evident, we omit it. �

Lemma 2.5. (see [10]) For y (·) ∈ C+ [a, b]. Then the unique solution u (t) of BVP{
−u′′ (t)− N−1

t u (t) = y (t) , t ∈ (a, b) ,

u (a) = u (b) = 0.

is nonnegative and satisfies
min

a1≤t≤b1
u (t) ≥ c ‖u‖ ,

where c =
min

{(
b
b1

)N−2
−1,1−

(
a
a1

)N−2
}

max
{
( b

a )
N−2−1,1−( a

b )
N−2

} and a1, b1 ∈ (a, b) with a1 < b1.
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If we let

P =

{
u ∈ C+ [a, b] : min

a1≤t≤b1
u (t) ≥ c ‖u‖

}
, (2.5)

then it is easy to see that P is a cone in C [a, b]. It is evident that BVP (2.1) has an
integral formulation given by

u (t) = λ

b∫
a

sN−1G (t, s) f (s, u (s)) ds,

where G defined in (2.2).
Now, we define an integral operator Tλ : P → C [a, b] by

(Tλu) (t) = λ

b∫
a

sN−1G (t, s) f (s, u (s)) ds.

Lemma 2.6. Let y ∈ C+ [a, b]. If u ∈ C2 [a, b] satisfies{
−u′′ (t)− N−1

t u(t) = y (t) , t ∈ (a, b),

u (a) = 0, u (b) = 0,

then
(i) u (t) ≥ 0 for t ∈ [a, b],
(ii) u′ (t) ≥ 0 for t ∈ [a, b].

Proof. From Lemma 2.4, we obtain u (t) ≥ 0 and u′ (t) ≥ 0 for t ∈ [a, b]. �

Lemma 2.7. Tλ (P ) ⊂ P .

Proof. For any u ∈ P , we have

min
a1≤t≤b1

Tλu (t) =
λ

(N − 2) (bN−2 − aN−2)
min

a1≤t≤b1


t∫
a

(
1−

(a
s

)N−2)
sN−1f (s, u (s))

×

((
b

t

)N−2
− 1

)
ds+

b∫
t

(
1−

(a
t

)N−2)(( b
s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥ λ

(N − 2) (bN−2 − aN−2)
min

a1≤t≤b1


t∫
a

(
1−

(a
s

)N−2)(( b

b1

)N−2
− 1

)

×sN−1f (s, u (s)) ds+

b∫
t

(
1−

(
a

a1

)N−2)((
b

s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥
λmin

{(
b
b1

)N−2
− 1, 1−

(
a
a1

)N−2}
(N − 2) (bN−2 − aN−2)

min
a1≤t≤b1


t∫
a

sN−1f (s, u (s))
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×
(

1−
(a
s

)N−2)
ds+

b∫
t

((
b

s

)N−2
− 1

)
sN−1f (s, u (s)) ds


=

λmin

{(
b
b1

)N−2
− 1, 1−

(
a
a1

)N−2}
(N − 2) (bN−2 − aN−2)

min
a1≤t≤b1


t∫
a

(
b
s

)N−2 − 1(
b
s

)N−2 − 1
sN−1f (s, u (s))

×
(

1−
(a
s

)N−2)
ds+

b∫
t

1−
(
a
s

)N−2
1−

(
a
s

)N−2
((

b

s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥
λmin

{(
b
b1

)N−2
− 1, 1−

(
a
a1

)N−2}
(N − 2) (bN−2 − aN−2)

min
a1≤t≤b1


t∫
a

(
b
s

)N−2 − 1(
b
a

)N−2 − 1
sN−1f (s, u (s))

×
(

1−
(a
s

)N−2)
ds+

b∫
t

1−
(
a
s

)N−2
1−

(
a
b

)N−2
((

b

s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥ cλ

(N − 2) (bN−2 − aN−2)
min

a1≤t≤b1


t∫
a

((
b

s

)N−2
− 1

)(
1−

(a
s

)N−2)

sN−1f (s, u (s)) ds+

b∫
t

(
1−

(a
s

)N−2)(( b
s

)N−2
− 1

)
sN−1f (s, u (s)) ds


=

cλ

(N − 2) (bN−2 − aN−2)

b∫
a

((
b

s

)N−2
− 1

)(
1−

(a
s

)N−2)
sN−1f (s, u (s) ds)

≥ cλ

(N − 2) (bN−2 − aN−2)
max
a≤t≤b


t∫
a

((
b

s

)N−2
− 1

)(
1−

(a
s

)N−2)

×sN−1f (s, u (s)) ds+

b∫
t

(
1−

(a
s

)N−2)(( b
s

)N−2
− 1

)
sN−1f (s, u (s)) ds


≥ cλ

(N − 2) (bN−2 − aN−2)
max
a≤t≤b


t∫
a

((
b

t

)N−2
− 1

)(
1−

(a
s

)N−2)

×sN−1f (s, u (s)) ds+

b∫
t

(
1−

(a
t

)N−2)(( b
s

)N−2
− 1

)
sN−1f (s, u (s)) ds


= c max

a≤t≤b
Tλu (t) = c ‖Tλu‖ .
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In other words, we find,

max
a1≤t≤b1

Tλu (t) = ‖Tλu‖ , ∀u ∈ P.

Thus, we get that Tλ : P → P is well defined. Moreover, it is easy to show that Tλ is
completely continuous. �

If we let

K = {u ∈ P/u (t) is nondecreasing} ,
then, it is easy to show that K ⊂ P is also a cone in E.

Lemma 2.8. Tλ (P ) ⊂ K.

Proof. It follows from Lemma 2.6 (ii) and Lemma 2.7. �

Lemma 2.9. Tλ : K → K is completely continuous.

Proof. Let D ⊂ K is a bounded subset. Then there exists a positive constanty M1

such that

‖u‖ ≤M1, ∀u ∈ D
Now, we shall prove that Tλ (D) is relatively compact in K.
Suppose that (yk)k∈N? ⊂ Tλ (D). Then there exist (xk)k∈N? ⊂ D, such that

yk = Axk

Let M2 = sup
a≤t≤b

|f (t, u (t))| for all (t, u) ∈ [a, b]× [0,M1]. For any k ∈ N∗, by Lemma

2.2, we have

|yk (t)| = |(Tnxk) (t)| = λ

∣∣∣∣∣∣
b∫
a

sN−1G (t, s) f (s, xk (s)) ds

∣∣∣∣∣∣
≤ λM2

b∫
a

sN−1G (t, s) ds

≤ 1

(N − 2) (bN−2 − aN−2)
λM2

((
b

t

)N−2
− 1

) b∫
a

sN−1ds

≤ bN − aN

N (N − 2) (bN−2 − aN−2)
λM2

((
b

a

)N−2
− 1

)
,

which implies that (yk (t))k∈N? is uniformly bounded.
Now, we show that Tλ is equicontinuous. For any u ∈ K, n ≥ 2, and t1, t2 ∈ [a, b]

with |t1 − t2| < δ, we have

|yk (t1)− yk (t2)| = |Tλu (t1)− Tλu (t2)|

≤

∣∣∣∣∣∣λ
b∫
a

sN−1 (G (t1, s)−G (t2, s)) f (s, xk (s)) ds

∣∣∣∣∣∣



116 Noureddine Bouteraa and Slimane Benaicha

≤ λM2

b∫
a

sN−1 |G (t1, s)−G (t2, s)| ds.

It follows from the uniform continuity of Green’s function G on [a, b]× [a, b], that for
any ε > 0, we have

|G (t1, s)−G (t2, s)| ≤
εN

λ (bN − aN )M2
, for t1, t2, s ∈ [a, b] , |t1 − t2| < δ.

Then
|yk (t1)− yk (t2)| = |Tλu (t1)− Tλu (t2)|

≤ λM2

b∫
a

sN−1 |G (t1, s)−G (t2, s)| ds

≤ ε.
Therefore, Tλ is equicontinuous. By the Ascoli-Arzela Theorem, we know that Tλ is
completely continuous. �

By Lemmas 2.8 and 2.9, we know that if u ∈ P \ θ is solution for BVP (2.1),
then u is positive solution for BVP (2.1) and it is obvious from Lemma 2.8 that if
u ∈ P \ {θ} is a solution for BVP (2.1) then u ∈ K \ {θ}.

3. Existence and nonexistence results

In this section we will apply theorem due Krasnoselskii to study the existence,
multiplicity and nonexistence of solutions for BVP (2.1) in K \ {θ}.

Theorem 3.1. (see [19]) Let E be a Banach space and K ⊂ E be a cone in E. Assume
Ω1 and Ω2 are open subset of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2, T : K ∩

(
Ω̄2 \ Ω1

)
→ K

be a completely continuous operator such that
(A) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω2; or
(B) ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω2

Then T has a fixed point in K ∩
(
Ω̄2 \ Ω1

)
.

We adopt the following assumptions:
(H1) f (t, u (t)) ∈ C ((a, b) , [0,∞)) is nondecreasing in u ∈ [0,∞) for fixed t ∈ [a, b].

(H2) Fa =

b∫
a

sN−1f (s, 0) ds > 0,

(H3) f∞ = lim
u→∞

min
t∈[ a

a+b ,b]

f(t,u)
u = +∞.

Set
Λ = {λ > 0/there exists uλ ∈ K \ {θ} such that Tλuλ = uλ} ,

and
λ∗ = supΛ.

Lemma 3.2. Suppose that (H1)− (H3) hold. If λ
′ ∈ Λ, then (0, λ′] ⊂ Λ.
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Proof. λ
′ ∈ Λ means that there exists uλ′ ∈ K\{θ} such that Tλ′uλ′ = uλ′ . Therefore,

for any λ ∈ (0, λ′] we have

Tλuλ′ ≤ Tλ′uλ′ = uλ′ ,

Set

w0 = uλ′ , wn = Tλwn−1, n = 1, 2, ...

From (H1), we obtain

w0 (t) ≥ w1 (t) ≥ ... ≥ wn (t) ≥ ... ≥ Faλ

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
,

by Lemma 2.9 and (H2), {wn} converges to fixed point of Tλ in K \ {θ}. Thus
(0, λ′] ⊂ Λ. The proof is complete. �

Let

λ∗ <

(
bN−2 − aN−2

)
Fb

, Fb =

b∫
a

sN−1f

(
s,

(
b

a

)N−2
− 1

)
ds,

u0 (t) =
λFa

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
, v0 (t) =

((
b

t

)N−2
− 1

)
,

and

F∞ = lim
u→∞

sup max
a≤t≤b

f (t, u)

u
.

Theorem 3.3. Suppose that (H1) − (H3) hold. Then Tλ has minimal and maximal
fixed point in [u0, v0] for λ ∈ (0, λ∗]. Moreover, there exists λ∗ ≥ λ∗ > 0 such that
Tλ has at least one and has no fixed points in K \ {θ} for 0 < λ < λ∗ and λ > λ∗,
respectively.

Proof. From (H1)− (H3) and (2.3), we have λ∗ > 0. For any λ ∈ (0, λ∗], we obtain

(Tλu0) (t) = λ

b∫
a

sN−1G (t, s) f (s, u0 (s)) ds

≥ λ
b∫
a

sN−1G (t, s) f (s, u0 (a)) ds

≥ λ

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2) b∫
a

sN−1f (s, 0) ds

≥ λFa
(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
= u0 (t) ,

and

(Tλv0) (t) = λ

b∫
a

sN−1G (t, s) f (s, v0 (s)) ds
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≤ λ*

b∫
a

sN−1G (t, s) f (s, v0 (b)) ds

≤ λ∗
(N − 2) (bN−2 − aN−2)

((
b

t

)N−2
− 1

) b∫
a

sN−1f (s, v0 (b)) ds

≤ λ∗Fb
(N − 2) (bN−2 − aN−2)

((
b

t

)N−2
− 1

)
≤ v0 (t) ,

Set

un = Tλun−1, vn = Tλvn−1, n = 1, 2, ...,

then from (H1), we have

u0 (t) ≤ u1 (t) ≤ ... ≤ un (t) ≤ ... ≤ v1 (t) ≤ v0 (t) . (3.1)

Lemma 2.9 implies that {un} and {vn} converge to fixed points uλ and vλ of Tλ,
respectively.
From (3.1) it is evident that uλ, vλ ∈ K \{θ} are the minimal fixed point and maximal
fixed point of Tλ in [u0, v0], respectively.

By the definition of λ∗, there exists a nondecreasing sequence {λn}+∞1 such that

lim
n→+∞

λn = λ∗. Let {uλn}
+∞
1 is bounded subset in K. Then there exists a constant

M > 0 such that

‖uλn
‖ ≤M, for n ∈ N∗,

which implies that {uλn
}+∞1 is uniformly bounded.

Now, we show that {uλn
}+∞1 is equicontinuous. For any uλn

∈ K, n ∈ N∗ and
t1, t2 ∈ [a, b], with |t1 − t2| < δ, we have

|xλn
(t1)− xλn

(t2)| ≤ λ∗
b∫
a

sN−1 |G (t1, s)−G (t2, s)| f (s,M) ds

≤ λ∗
b∫
a

sN−1 |G (t1, s)−G (t2, s)| f (s,M) ds,

which implies that {xλn
}+∞1 is equicontinuous subset in K. Consequently, by an

application of the Arzela-Ascoli theorem we conclude that {xλn
}+∞1 is a relatively

compact set in K. So, there exists a subsequence
{
xλni

}
⊂ {xλn} converging to

x∗ ∈ K. Note that

(
xλni

)
(t) = λni

b∫
a

sN−1G (t, s) f
(
s, xλni

(s)
)
ds.

By taking the limit we have x∗ (t) = (Tλ∗x
∗) (t). Therefore Tλ has at least one fixed

point for 0 < λ < λ∗. Finaly, for Tλ has no fixed point for λ > λ∗. The proof is
complete. �
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Theorem 3.4. Suppose that (H1) , (H3) and (2.3) hold. If (F+∞ < +∞), then when

F∞ > 0, there exists λ∗ ≥ N(N−2)(bN−2−aN−2)(bN−aN)
F∞

> 0 such that Tλ has at least

one and has no fixed points in K \{θ} for 0 < λ < λ∗ and λ > λ∗, respectively. When
F∞ = 0, Tλ has at least one fixed points in K \ {θ} for λ > 0.

Proof. Since F∞ <∞, for any ε > 0, there exists N0 > 0 such that

f (t, u) ≤ (F∞ + ε)u

for u > N0, t ∈ [a, b].

Let w0 (t) = N0

((
b
t

)N−2 − 1
)

and λ0 =
N(N−2)(bN−2−aN−2)(bN−aN)(

( b
a )

N−2−1
)
(F∞+ε)

, then λ0 > 0

and

(Tλ0
w0) (t) = λ0

b∫
a

sN−1G (t, s) f (s, w0 (s)) ds

≤ λ0
(N − 2) (bN−2 − aN−2)

((
b

t

)N−2
− 1

) b∫
a

sN−1 (F∞ + ε)w0 (t) ds

≤ λ0w0 (t) (F∞ + ε)

(N − 2) (bN−2 − aN−2)

((
b

t

)N−3
− 1

) b∫
a

sN−1ds

≤ λ0w0 (t) (F∞ + ε)

N (N − 2) (bN−2 − aN−2) (bN − aN )

((
b

a

)N−2
− 1

)
≤ w0 (t) ,

Now, set w0 (t) = N0

((
b
t

)N−2 − 1
)

,

wn = Tλn−1
wn−1, n = 1, 2, ....

From (H1), we obtain

w0 (t) ≥ w1 (t) ≥ ... ≥ wn (t) ≥ ... ≥ Faλ

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
. (3.2)

Therefore, the sequence {wn} is bounded in K \{θ}. By Lemma 2.9 and the definition
of λ∗, the operator Tλn

completely continuous. Hence the sequence {wn} is compact
in K \ {θ} , its also monotone. Then it is uniformly convergent to fixed points u∗ of
Tλn in K \ {θ}. When we pass to the limit we get

u∗ = Tλ∗u
∗

For λ > λ∗, there exists {λn}∞1 , with lim
n→∞

λn = λ, we prove that problem has no

positive solution. suppose the contrary that the problem has a positive solution xλn
,

then we get

‖uλn‖ = (Tλnuλn)

((
b

a

)N−2
− 1

)
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≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, uλn
(s)) ds

≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1 (F∞ + ε)uλn
(b) ds

≤
λn
(
bN − aN

)
N (N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

)
(F∞ + ε)uλn

(b)

≤
λn
(
bN − aN

)
N (N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

)
(F∞ + ε) ‖uλn

‖ < ‖uλ∗‖ .

Taking the limit we obtain

‖uλ‖ < ‖uλ‖ ,
which is a contradiction. The proof is complete. �

Lemma 3.5. Assume that (H1) , (H2) and (H3) hold. If Λ is nonempty, then
(i) Λ is bounded from above, that λ∗ < +∞.
(ii) λ∗ ∈ Λ.

Proof. Suppose to the contrary that there exists an increasing sequence {λn}+∞1 ⊂ Λ
such that lim

n→+∞
λn = +∞. Set xλn

∈ K/ {θ} is a fixed point of Tλn
that is ,

Tλn
uλn

= uλn
.

There are two cases to be considered.
Case 1. {uλn

}+∞1 is bounded, that is there exists a constant M > 0 such that

‖uλn
‖ ≤M, for n = 1, 2, . . . .

Hence, from (H1) , (H2) , and (H3) and Lemma 2.3, we have

M ≥ ‖uλn
‖ ≥ (Tλn

uλn
) (t)

≥ λn
(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f (s, 0) ds

=
λn

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2)
Fa → +∞,

which is a contradiction.
Case 2. {uλn}

+∞
1 is unbounded, that is there exists subsequence of {uλn}

+∞
1 still

denoted by {uλn
}+∞1 such that lim

n→+∞
‖uλn

‖ = +∞.

When (H3), take

L >
N (N − 2)

(
bN−2 − aN−2

)(
1−

(
a
b

)N−2)
λ1
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there exists N1 > 0 such that f (t, u) ≥ Lu, for u ≥ N1, t ∈ [a, b]. Choose n1 such
that

∥∥uλn1

∥∥ > NN1.

Thus, for t ∈ [a, b] , we have

f

(
t,

1

N

∥∥uλn1

∥∥) ≥ 1

N
L
∥∥uλn1

∥∥ .
Moreover, from (H1) and the definition of K, we have∥∥xλn1

∥∥ ≥ (Tλn1
uλn1

)
(t)

≥ λn1

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f
(
s, uλn1

(s)
)
ds

≥ λn1

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f

(
s,

1

6

∥∥uλn1
(s)
∥∥) ds

=
λn1

L
(

1−
(
a
b

)N−2)
N (N − 2) (bN−2 − aN−2)

∥∥uλn1

∥∥ > ∥∥uλn1

∥∥ ,
which is a contradiction.
Consequently, we find that Λ is bounded from above.

(ii) From the definition of λ∗, there exists a nondecreasing sequence {λn}+∞1
such that lim

n→+∞
λn = λ∗. Let {uλn

}+∞1 ∈ K \ {θ} be a fixed point of Tλn
. Arguing

similarly as above in Case 2, we can show that {uλn}
+∞
1 is bounded subset in K, that

is there exists a constant M > 0. Hence from (H1) , (H2) , and (H3), we have

‖uλn‖ = (Tλnuλn)

((
b

a

)N−2
− 1

)

≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, uλn
(s)) ds

≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, uλn (b)) ds

≤ λn
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, vλn
(b)) ds

=
λn

(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, 0) ds

=
λnFa

(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

)
→

λ∗Fa

((
b
a

)N−2)
(N − 2) (bN−2 − aN−2)

= M,

as n→∞.
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Therefore

‖uλn
‖ ≤M, n = 1, 2, ...

which shows that {uλn
}+∞1 is uniformly bounded.

From the proof of Theorem 3.3 we know that {uλn
}+∞1 is equicontinuous subset in

K and by an application of the Arzela-Ascoli theorem we conclude that {uλn
}+∞1

is a relatively compact set in K. So, there exists a subsequence
{
uλni

}
⊂ {uλn}

converging to u∗ ∈ K. Note that

(
uλni

)
(t) = λni

1∫
0

sN−1G (t, s) f
(
s, uλni

(s)
)
ds.

By taking the limit we have

u∗ (t) = (Tλ∗u
∗) (t) ≥ λ1Fa

(N − 2) (bN−2 − aN−2)

(
1−

(a
t

)N−2)
,

that is λ∗ ∈ Λ. The proof is complete. �

Theorem 3.6. Suppose that (H1)−(H3) holds. Then there exists λ∗ ≥ λ∗ > 0 such that
BVP (2.1) has at least two, one and no positive solutions for 0 < λ ≤ λ∗, λ∗ < λ ≤ λ∗
and λ > λ∗ respectively.

Proof. From (H1) , (H2) and (H3) we have (0, λ∗] ⊂ Λ. So λ∗ ≥ λ∗ > 0.
From Lemma 3.2 and 3.5, we have (0, λ∗] = Λ. Therefore, from the definition of λ∗

we only to prove that Tλ has at least two fixed points in K \ {θ} for λ ∈ (0, λ∗].
Now, given λ ∈ (0, λ∗]. Theorem 3.3 means that Tλ has at least one fixed point

uλ,1 ∈ K \ {θ} which satisfies ‖uλ,1‖ ≤
(
b
a

)N−2 − 1.
Let

K1 =

{
x ∈ K | ‖u‖ <

(
b

a

)N−2
− 1

}
.

For t ∈ [a, b], so for u ∈ K with ‖u‖ =
(
b
a

)N−2 − 1, i.e u ∈ ∂K1, we have

‖u‖ = ‖Tλu‖ = (Tλu)

((
b

a

)N−2
− 1

)

≤ λ

(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f (s, u (s)) ds

≤ λ∗
(N − 2) (bN−2 − aN−2)

((
b

a

)N−2
− 1

) b∫
a

sN−1f

(
s,

(
b

a

)N−2
− 1

)
ds

<

((
b
a

)N−2 − 1
)

N − 2
< ‖u‖ . (3.3)
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When (H3), take

L >
N (N − 2)

(
bN−2 − aN−2

)(
1−

(
a
b

)N−2)
λ1

there exists N1 > 0 such that f (t, u) ≥ Lu, for u ≥ N1, t ∈ [a, b].

Set K2 = {u : ‖u‖ < NN1}. Then K1 ⊂ K2. If u ∈ ∂K2, we have

‖u‖ = ‖Tλu‖ = (Tλu)

((
b

a

)N−2
− 1

)

≥ λ

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f (s, u (s)) ds

≥ λ

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f

(
s,

1

N
‖u‖
)
ds

≥ λ

(N − 2) (bN−2 − aN−2)

(
1−

(a
b

)N−2) b∫
a

sN−1f

(
s,

1

N
‖u (s)‖

)
ds

≥
λL
(

1−
(
a
b

)N−2)
N (N − 2) (bN−2 − aN−2)

‖u‖ > ‖u‖ .

Consequently, Applying Theorem 3.1 that Tλ has a fixed point uλ,2 ∈ K2 \K1.
Equation (3.3) implies that Tλ has no fixed point in ∂K1. In conclusion, for λ ∈ (0, λ∗],
Tλ has at least two fixed points uλ,1 and uλ,2 in K. The proof is complete. �

We present an example to illustrate the applicability of the results shown before.

Example 3.7. Consider in R3 the elliptic boundary value problem{
−4u (x) = λ (|x|+ u+ ln (1 + u)) , x ∈ Ω,
u (x) = 0, x ∈ ∂Ω,

(3.4)

To the system (3.4) we associate the the second order boundary value problem −u′′ (t)−
2

t
u(t) = λ (t+ u+ ln (1 + u)) , t ∈ (a, b) ,

u (a) = u (b) = 0,

By direct computation, we have

F∞ = 2, F0 =
1

4
, F1 =

1

2
+

2

3
(1 + ln (2)) and λ∗ =

48− 9π

6 + 8 (1 + ln (2))
.

So, the assumptions (H1) , (H2) and (H3) are satisfied, it follows from Theorem 3.4
there exists λ∗ = 3 ≥ λ∗ such that boundary value problem (3.4) has at least one
positive solution for 0 < λ ≤ 3 and has no positive solution for λ > λ∗.
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Abstract. We give a local convergence analysis for an eighth-order convergent
method in order to approximate a locally unique solution of nonlinear equation
for Banach space valued operators. In contrast to the earlier studies using hy-
potheses up to the seventh Fréchet-derivative, we only use hypotheses on the
first-order Fréchet-derivative and Lipschitz constants. Therefore, we not only ex-
pand the applicability of these methods but also provide the computable radius of
convergence of these methods. Finally, numerical examples show that our results
apply to solve those nonlinear equations but earlier results cannot be used.
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1. Introduction

One of the most basic and important problems in Numerical Analysis concerns
with approximating a locally unique solution x∗ of the equation of the form

F (x) = 0, (1.1)

where F : D ⊂ X → Y is a Fréchet-differentiable operator, X, Y are Banach spaces
and D is a convex subset of X. Let us also denote L(X, Y) as the space of bounded
linear operators from X to Y.

Approximating x∗ is very important, since numerous problems can be reduced
to equation (1.1) using mathematical modeling [4, 7, 12, 9, 16, 21, 23, 24]. However, it
is not always possible to find the solution x∗ in a closed form. Therefore, most of the
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methods are iterative to solve such type of problems. The convergence analysis of iter-
ative methods is usually divided into two categories: semi-local and local convergence
analysis. The semi-local convergence matter is, based on the information around an
initial point, to give criteria ensuring the convergence of iteration procedures. A very
important problem in the study of iterative procedures is the convergence domain.
Therefore, it is very important to propose the radius of convergence of the iterative
methods.

We study the local convergence of the three step eighth-order convergent method
defined for each n = 0, 1 2, . . . by

yn = xn − F ′(xn)−1F (xn),

zn = φ(xn, F (xn), F ′(xn), F ′(yn),

xn+1 = zn − βA−1n F (zn),

(1.2)

where x0 ∈ D is an initial point, for α, β ∈ S, An = (β − α)F ′(xn) + αF ′(yn), (S =
R or S = C) and the second sub step represents any iterative method, in which the
order of convergence is at least m = 1, 2, 3, . . . . It was shown in [9] using Taylor
series expansions when X = Y = R that method (1.2) is of order at least 2m, if m < 3
and of order at least m + 3, if m ≥ 3 provided that F is eighth times differentiable.
The hypotheses on the derivatives of F restrict the applicability of method (1.2). As
a motivational example, define function F on X = Y = R, D = [− 3

2 ,
1
2 ] by

F (x) =

{
x3lnx2 + x5 − x4, x 6= 0,
0, x = 0.

Then, we have that

F ′(x) = 3x2lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6xlnx2 + 20x3 − 12x2 + 10x

and

F ′′′(x) = 6lnx2 + 60x2 − 24x+ 22.

Then, obviously the third-order derivative of the involved function F ′′′(x) is not
bounded on D. Notice that, in particular there is a plethora of iterative methods
for approximating solutions of nonlinear equations [2, 1, 3, 4, 5, 7, 8, 6, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. These results show that initial guess should
be close to the required root for the convergence of the corresponding methods. But,
how close initial guess should be required for the convergence of the corresponding
method? These local results give no information on the radius of the ball convergence
for the corresponding method. We address this question for method (1.2) in the next
section 2.

In the present study, we expand the applicability of method (1.2) by using only
hypotheses on the first-order derivative of function F and generalized Lipschitz con-
ditions. Moreover, we we will avoid to use Taylor series expansions and use Lipschitz
parameters. In this way, there is no need to use the higher-order derivatives to show
the convergence of the scheme (1.2).
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The rest of the paper is organized as follows: in section 2 contains the local con-
vergence analysis of method (1.2). The numerical examples appear in the concluding
Section 3.

2. Local convergence

The local convergence uses some scalars functions and parameters. Let
v, w0, w, ḡ2 : [0, +∞) → [0, +∞) be continuous, increasing functions with
w0(0) = w(0) = 0 and α, β ∈ S. Define parameter r0 by

r0 = sup{t ≥ 0 : w0(t) < 1}. (2.1)

Moreover, define functions g1, h1, p and hp on the interval [0, r0) by

g1(t) =

∫ 1

0
w((1− θ)t)dθ
1− w0(t)

,

h1 = g1(t)− 1,

p(t) = |β|−1[|β − α|w0(t) + |α|w0(g1(t)t)], β 6= 0,

and
hp = p(t)− 1.

We have by (2.2) that h1(0) = hp(0) = −1 < 0 and h1(t) → +∞, hq(t) → +∞ as
t→ r−0 . Then, by the intermediate value theorem, we know that the functions h1 and
hp have zeros in the interval (0, r0). Denote by r1 and rp, respectively the smallest
such zeros of the function h1 and hp. Furthermore, define functions g2 and h2 on the
interval (0, r0) by

g2(t) = ḡ2(t)tm−1,

and
h2(t) = g2(t)− 1.

Suppose that
ḡ2(0) < 1, if m = 1 (2.2)

and
g2(t)→ a a number greater than one or +∞ (2.3)

as t→ r̄−0 for some r̄0 ≤ r0. Then, we have again by the intermediate value theorem
that function h2 has zeros in the interval (0, r̄0). Denote by r2 the smallest such zero.
Notice that, if m > 1 condition (2.2) is not needed to show h2(0) < 0, since in this
case h2(0) = g2(0) − 1 = 0 − 1 = −1 < 0. Finally, define functions g3 and h3 on the
interval [0, r̄p) by r̄p = min{rp, r2},

g3(t) =

(
1 +

∫ 1

0
v(θg2(t)t)dθ

1− p(t)

)
g2(t),

and
h3(t) = g3(t)− 1.

Suppose that
(1 + v(0))ḡ2(0) < 1, if m = 1, (2.4)
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we get by (2.4) that h3(0) = (1 + v(0))ḡ2(0) − 1 < 0 and h3(t) → +∞ or positive
number as t → r̄−p . Denote by r3 the smallest zero of function h3 in the interval
(0, rp). Define the radius of convergence r by

r = min{r1, r3}. (2.5)

Then, we have that for each t ∈ [0, r)

0 ≤ gi(t) < 1, i = 1, 2, 3. (2.6)

Let U(z, ρ), Ū(z, ρ), stand respectively for the open and closed balls in X with center
z ∈ X and of radius ρ > 0. Next, we present the local convergence analysis of method
(1.2) using the preceding notations.

Theorem 2.1. Let F : D ⊆ X → Y be a continuously Fréchet-differentiable operator.
Let v, w0, w, ḡ2 : [0, ∞)→ [0, ∞) be increasing continuous functions with w0(0) =
w(0) = 0 and let r0 ∈ [0, ∞), α ∈ S, β ∈ S − {0}, m ≥ 1 and r0 be defined by (2.1)
so that (2.1) and (2.2) are satisfied. Suppose that there exists x∗ ∈ D such that for
each x ∈ D parameter r0 be defined by (2.1).

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y, X) (2.7)

and

‖F ′(x∗)−1(F ′(x)− F ′(x∗)‖ ≤ w0(‖x− x∗‖). (2.8)

Moreover, suppose that for each x, y ∈ D0 := D ∩ U(x∗, r0)

‖F ′(x∗)−1
(
F ′(x)− F ′(y)

)
‖ ≤ w(‖x− y‖), (2.9)

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖), (2.10)

‖φ(x, F (x), F ′(x), F ′(y))‖ ≤ ḡ2(‖x− x∗‖)‖x− x∗‖m (2.11)

and

Ū(x∗, r) ⊆ D, (2.12)

where the radius of convergence r is defined by (2.3). Then, sequence {xn} generated
for x0 ∈ U(x∗, r) − {x∗} by method (1.2) is well defined, remains in U(x∗, r) for
each n = 0, 1, 2, . . . and converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.13)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (2.14)

and

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.15)

where the functions gi, i = 1, 2, 3 are defined above the Theorem. Furthermore, if∫ 1

0

w0(θR)dθ < 1, for R ≥ r, (2.16)

then the point x∗ is the only solution of equation F (x) = 0 in D1 := D ∩ Ū(x∗, R).
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Proof. We shall show using mathematical induction that the sequences {xn} is well
defined in U(x∗, r) and converges to x∗. By the hypothesis x0 ∈ U(x∗, r) − {x∗},
(2.1), (2.3) and (2.10), we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ w0(‖x0 − x∗‖) < w0(r) < 1. (2.17)

In view of (2.17) and the Banach Lemma on invertible operators [4, 7] that F ′(x0)−1 ∈
L(Y, X), y0 is well defined by the first two sub steps of method (1.2) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− w0(‖x0 − x∗‖)
· (2.18)

We get by (2.1), (2.5), (2.6) (for i = 1), (2.7) and (2.18) that

‖y0 − x∗‖ = ‖(x0 − x∗ − F ′(x0)−1F (x0))‖

≤ ‖F ′(x0)−1F (x∗)‖
∥∥∥∥ ∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))

− F ′(x0))(x0 − x∗)dθ
∥∥∥∥

≤
∫ 1

0
w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)
≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.19)

which implies (2.13) for n = 0 and y0 ∈ U(x∗, r). By (2.5), (2.6) (for i = 2) and
(2.11), we obtain in turn that

‖z0 − x∗‖ = ‖φ(x0, F (x0), F ′(x0), F ′(y0))‖
≤ ḡ2(‖x0 − x∗‖)‖x0 − x∗‖m

= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.20)

which shows (2.14) for n = 0 and z0 ∈ U(x∗, r). We must show that x1 exists. Using
(2.1), (2.5) and (2.8), we obtain in turn that∥∥(βF ′(x∗))−1 [(β − α)(F ′(x0)− F ′(x∗)) + α(F ′(y0)− F ′(x∗))]

∥∥
≤ |β|−1 [|β − α|w0(‖x0 − x∗‖) + |α|w0(‖y0 − x∗‖)]
≤ |β|−1 [|β − α|w0(‖x0 − x∗‖) + |α|w0(g1(‖x0 − x∗‖)‖x0 − x∗‖)]
= p(‖x0 − x∗‖) ≤ p(r) < 1,

(2.21)
so

‖((β − α)F ′(x0) + αF ′(y0))−1F ′(x∗)‖ ≤ 1

1− p(‖x0 − x∗‖)
· (2.22)
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Then, from the last sub step of method (2.1), (2.5), (2.6) (for i = 3), (2.10), (2.19),
(2.20) and (2.21), we get in turn that

‖x1 − x∗‖ = ‖z0 − x∗‖+ |β|
∫ 1

0

v(θ‖z0 − x∗‖)dθ‖x0 − x∗‖

≤

(
1 +
|β|
∫ 1

0
v(θg2(‖x0 − x∗‖))dθ

|β|(1− p(‖x0 − x∗‖))

)
g2(‖x0 − x∗‖)‖x0 − x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.23)

which shows (2.15) and x1 ∈ U(x∗, r). By simply replacing x0, y0, x1 by xk, yk,
xk+1 in the preceding estimates we arrive at (2.15) and (2.16). Then, in view of the
estimates

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, c = g2(‖x0 − x∗‖) ∈ [0, 1), (2.24)

we deduce that lim
k→∞

xk = x∗ and xk+1 ∈ U(x∗, r). Finally, to show the uniqueness

part, let y∗ ∈ D1 with F (y∗) = 0. Define Q =
∫ 1

0
F ′(x∗ + θ(x∗ − y∗))dθ. Using (2.5)

and (2.12), we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ ‖
∫ 1

0

w0(θ‖y∗ − x∗‖)dθ

≤
∫ 1

0

w0(θR)dθ < 1.

(2.25)

It follows from (2.25) that Q is invertible. Then, in view of the identity

0 = F (x∗)− F (y∗) = Q(x∗ − y∗), (2.26)

we conclude that x∗ = y∗. �

Remark 2.2. (a) It follows from (2.10) that condition (2.12) can be dropped and be
replaced by

v(t) = 1 + w0(t) or v(t) = 1 + w0(r0), (2.27)

since,

‖F ′(x∗)−1
[(
F ′(x)− F ′(x∗)

)
+ F ′(x∗)

]
‖ = 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + w0(‖x− x∗‖)
= 1 + w0(t) for ‖x− x∗‖ ≤ r0.

(2.28)

(b) If the function w0 is strictly increasing, then we can choose

r0 = w−10 (1) (2.29)

instead of (2.1).
(c) If w0, w, v are constants functions (the proof of Theorem 2.1 goes through

too in this case), then

r1 =
2

2w0 + w
(2.30)

and
r ≤ r1. (2.31)
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Therefore, the radius of convergence r can be larger than the radius of convergence
r1 for Newton’s method

xn+1 = xn − F ′(xn)−1F (xn). (2.32)

Notice also that the earlier radius of convergence given independently by Rheindoldt
[22] and Traub [24] is

rTR =
2

3w1
(2.33)

and by Argyros [4, 7]

rA =
2

2w0 + w1
, (2.34)

where w1 is the Lipschitz constant for (2.6) on D. But, we have

w ≤ w1, w0 ≤ w1, (2.35)

so

rTR ≤ rA ≤ r1 (2.36)

and
rTR

rA
→ 1

3
as

w0

w
→ 0. (2.37)

The radius of convergence q used in [9] is smaller than the radius rDS given by Dennis
and Schabel [4]

q < rSD =
1

2w1
< rTR. (2.38)

However, q can not be computed using the Lipschitz constants.
(d) The results obtained here can be used for operators F satisfying the au-

tonomous differential equation [4, 7] of the form

F ′(x) = P (F (x)) (2.39)

where P is a known continuous operator. Since F ′(x∗) = P (F (x∗)) = P (0), we
can apply the results without actually knowing the solution x∗. Let as an example
F (x) = ex − 1. Then, we can choose P (x) = x+ 1.

(e) Let us show how to choose functions φ, ḡ2, g2 and m. In addition, we assume
that X = Y = R. Define function φ on R4 by

φ(xn, F (xn), F ′(xn), F ′(yn)) = yn − F ′(yn)−1F (yn). (2.40)

Then, we can choose

g2(t) =

∫ 1

0
w((1− θ)g1(t)t)dθg1(t)

1− w0(g1(t)t)
. (2.41)

If w0, w, v are given in particular by w0(t) = L0t, w(t) = Lt and v(t) =< for some
L > 0, L > 0 and M ≥ 1, then we have that

ḡ2(t) =

L2

8(1−L0t)2

1− L0Lt2

2(1−L0t)

,

g2(t) = ḡ2(t)t3 and m = 4.

(2.42)
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(f) If β = 0, we can obtain the results for the two-step method

yn = xn − F ′(xn)−1F (xn),

xn+1 = φ(xn, F (xn), F ′(xn), F ′(yn))
(2.43)

by setting zn = xn+1 in Theorem 2.1.

3. Numerical examples and applications

In this section, we shall demonstrate the theoretical results which we have pro-
posed in the section 2. Therefore, we consider four numerical examples in this section,
which are defined as follows:

Example 3.1. Let X = Y = C[0, 1] and consider the nonlinear integral equation of
the mixed Hammerstein-type [13, 16], defined by

x(s) =

∫ 1

0

G(s, t)

(
x(t)

3
2 +

x(t)2

2

)
dt (3.1)

where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1] by

F (s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

(3.2)

The solution x∗(s) = 0 is the same as the solution of equation (1.1), where F :⊆
C[0, 1]→ C[0, 1] defined by

F (x)(s) = x(s)−
∫ t

0

G(s, t)

(
x(t)

3
2 +

x(t)2

2

)
dt. (3.3)

Notice that ∥∥∥∥∫ t

0

G(s, t)dt

∥∥∥∥ ≤ 1

8
· (3.4)

Then, we have that

F ′(x)y(s) = y(s)−
∫ t

0

G(s, t)

(
3

2
x(t)

1
2 + x(t)

)
dt,

so since F ′(x∗(s)) = I,∥∥F ′(x∗)−1(F ′(x)− F ′(y)
)∥∥ ≤ 1

8

(
3

2
‖x− y‖ 1

2 + ‖x− y‖
)
. (3.5)

Therefore, we can choose

w0(t) = w(t) =
1

8

(
3

2
t
1
2 + t

)
and by Remark 2.2(a)

v(t) = 1 + w0(t).

The results in [16, 9] can not be used to solve this problem, since F ′ is not Lipschitz.
However, our results can apply.



Ball convergence for combined three-step methods 135

Example 3.2. Suppose that the motion of an object in three dimensions is governed
by system of differential equations

f ′1(x)− f1(x)− 1 = 0

f ′2(y)− (e− 1)y − 1 = 0

f ′3(z)− 1 = 0

(3.6)

with x, y, z ∈ Ω for f1(0) = f2(0) = f3(0) = 0. then, the solution of the system is
given for w = (x, y, z)T by function F := (f1, f2, f3) : Ω→ R3 defined by

F (v) =

(
ex − 1,

e− 1

2
y2 + y, z

)T

. (3.7)

Then the Fréchet-derivative is given by

F ′(v) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Then, we have that w0(t) = L0t, w(t) = Lt, w1(t) = L1t, w0 = L0, w1 = L1 and

v(t) = M , where L0 = e − 1 < L = e
1

L0 = 1.789572397, L1 = e and M = e
1

L0 =
1.7896. Then, we get

r = 0.0039782.

Example 3.3. Let A1 = A2 = C[0, 1], be the space of continuous functions defined
on the interval [0, 1] and be equipped with max norm. Let Ω = Ū(0, 1) and B(x) =
F ′′(x) for each x ∈ Ω. Define F on Ω

F (ϕ)(x) = φ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.8)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ Ω. (3.9)

Then, we have that x∗ = 0, L0 = 7.5, L1 = L = 15 and M = 2. Using method (1.2)
for w0(t) = L0t, v(t) = 2 = M, w(t) = Lt, w1 = L and w0 = L0, we get

r = 0.0013404.

Example 3.4. Returning back to the motivation example at the introduction on this
paper, we have L = L0 = 96.662907 and M = 2. Using method (1.2) for w0(t) =
L0t, v(t) = 2 = M, w(t) = Lt, w1(t) = L and w0 = L0, we can choose

r = 0.00085.
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62(2017), no. 1, 127-135.

[18] Kou, J., A third-order modification of Newton method for systems of nonlinear equations,
Appl. Math. Comput., 191(2007), 117-121.

[19] Montazeri, H., Soleymani, F., Shateyi, S., Motsa, S.S., On a new method for computing
the numerical solution of systems of nonlinear equations, J. Appl. Math., 2012, Article
ID 751975.

[20] Petkovic, M.S., Neta, B., Petkovic, L., Džunič, J., Multipoint Methods for Solving Non-
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Viscous dissipative free convective flow from a
vertical cone with heat generation/absorption,
MHD in the presence of radiative non-uniform
surface heat flux

Bapuji Pullepu and Rayampettai Munisamy Kannan

Abstract. The problem of combined effect of heat generation/absorption and
thermal radiation on unsteady, laminar, natural convective movement with MHD,
viscous dissipation over a vertical cone in the presence of variable heat flux is con-
sidered. The converted FDE’s of the flow which is of partial natured, unsteady,
united and non-linear are solved numerically subject to proper boundary con-
ditions by Crank-Nicholson scheme which is an efficient, correct and absolutely
stable FDM. The velocity and thermal profiles are obtained and analyze to expose
the outcome of heat generation/absorption and thermal radiation at different val-
ues of the MHD, Prandtl numeral, viscous dissipation and the exponent in the
power law difference of the surface heat flux. The local as well as average shear
stress and heat transfer rate are accessible and analyzed. The present outcome is
compared by available outcome in literature and is originate to exist in excellent
conformity.

Mathematics Subject Classification (2010): 65M06, 76R10.

Keywords: Cone, finite difference method, heat generation/absorption, MHD,
thermal radiation, viscous dissipation variable heat flux.

Nomenclature:

F ′′0 (0) − Shear-Stress co-efficient in Ref: [12]
GrL − Grashof number
a − Constant
g − Rate of change of velocity due to gravity
k − Thermal conductivity
k∗ − Mean sink co-efficient
L − Reference span
M − Magnetic constraint
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n − Exponent in power law variation in surface temperature
Nux − Local Nusselt number
NuX − Dimensionless Local Nusselt numeral
Nu − Dimensionless average Nusselt numeral
Pr − Prandtl number
qw − Variable heat flux per unit area
R − Non- dimensional local radius of the cone
r − Local radius of the cone
T ′ − Temperature
T − Non-dimensional temperature
t′ − Time
t − Non-dimensional time
U − Non-dimensional velocity in X-direction
u − Velocity component in x-direction
V − Non-dimensional velocity in Y-direction
v − Rate component in y-direction
X − Non-dimensional spatial co-ordinate
x − Spatial coefficient along cone generator
Y − Non-dimensional spatial coefficient along the normal

− to the cone generator
y − Spatial coefficient along the normal to the cone generator

Greek Symbols:

α − Thermal diffusivity
β − Volumetric thermal expansion
σ − Electrical conductivity
σ∗ − Stefan-Boltzmann constant
∆ − Non-dimensional heat source/sink constraint
∆t − Non-dimensional time step
∆X − Non-dimensional finite difference grid size in X-direction
∆Y − Non-dimensional finite difference grid size in Y-direction
ε − Viscous dissipation parameter
φ − Semi vertical angle of the cone
µ − Dynamic viscosity
γ − Kinematic viscosity
ρ − Density
τx − Local skin friction
τX − Non-dimensional local skin friction
τ − Non-dimensional average skin friction

Subscripts:

w − Condition on the wall
∞ − Free stream condition
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1. Introduction

Free convection boundary layer flow and thermal transport over a vertical cone
has been the subject of attention of several investigators because these phenomenons
arise regularly in environment, as good as in industrialized and technical applications.
In the field of engineering, MHD has two areas of applications namely, Magneto hy-
drodynamic propulsion and power generation. MHD generator is based on the concept
of using ionized gases as the moving conductor. The effect of thermal diffusion on the
MHD free convection and mass transfer flow has important role in isotopes separation
and in mixtures between gases. MHD flowing in an electrically conducting fluid are
encountered in many industrial applications, such as purification of molten metals,
non-metallic intrusion, liquid metal, plasma studies, geothermal energy extraction,
nuclear reactor and the boundary layer control in the field of aerodynamics and aero-
nautic. Anjalidevi and Kandasamy [3] have analyzed the effects of chemical reaction,
temperature and mass transport on non-linear MHD laminar boundary layer flow over
a wedge among suction and injection. Analytical solution for the largely thermal and
mass transport on MHD movement of an unvaryingly expanded vertical permeable
surface with the effects of thermal source/sink and chemical response were obtainable
by Chamkha [5].
Hakeem et al. [1] reported the methodical solutions for thermal and mass transport by
laminar movement of an electrically performing fluid on a continuously vertical porous
surface in the occurrence of a radiation and chemical response effect. Elbashbeshy et
al. [10] investigated the laminar natural convection from a vertical circular cone with
uneven surface heat flux in the existence of the pressure effort. As the difference be-
tween the surface temperature and the ambient temperature is large. The radiation
upshots become vital. During the part of convection radiation, Viskanta and Grosh
[25] considered the effect of temperature radiation on the thermal sharing and the
thermal transport in an absorbing and emitting medium pouring in excess of a wedge
by using the Rosseland diffusion estimate. These guesses leads to a significant gener-
alization in the expression for the radiant flux. Muthucumarasamy and Ganesan [18]
discussed heat effects on flow past an on impulsively established infinite vertical plate
with uneven temperatures using the Laplace transform method.
Alam et al. [2] investigated the crisis of laminar free convective flow and thermal
transport from a vertical permeable round cone retained at a non-uniform surface
temperature with the force effort governed by the exponent law variation by the span
from the convection boundary-layer flow of a micro-polar fluid above a vertical perme-
able cone with a changeable wall temperature. Cheng [9] analyzed a free convection
boundary layer flow of a micro glacial fluid over a vertical permeable cone with a
non-uniform surface temperature. Chen et al. [8] explored the free convection on par-
allel, inclined and vertical plates by dissimilar combination of non-uniform surface
heat or changeable heat flux. Kabeir et al [11] used perturbation scheme to study
the outcome of temperature and mass transport on natural convection flow with an
unvarying suction and injection over a cone in a micro polar fluid. Makinde [14] ana-
lyzed hydromagnetic mixed convection flow and mass transport over a vertical porous
plate by stable heat flux surrounded in a porous medium. Chamkha and Khaled [6]
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considered hydromagnetic combined heat and mass transport by free convection from
a porous vertical plate embedded in a liquid saturated porous medium in the existence
of temperature production or assimilation. Patra et al. [20] investigated the outcome
of radiation on natural convection movement of a viscous and incompressible fluid
close to a vertical flat plate with inclined temperature. They compared the effects of
Radiative temperature transmit on free convection flow near a ramped temperature
plate by the flow close to a uniform plate.
Mohamed et al. [15] investigated transient MHD natural convection temperature and
mass transport boundary layer flow of viscous, incompressible, optically fat and elec-
trically conducting fluid throughout a permeable medium along an on impulsively
moving heat vertical plate in the existence of uniform chemical response of first order
and heat reliant temperature drop. They obtained analytical answer of the leading
equation in closed form by Laplace transform method. Mosa et al. [16] considered the
Bouger numeral effects or glowing MHD Ekman flow on a permeable platter, present
closed shape solution for together the optically lean and optically-thick case (achieve
when Bouger numeral >> 1, so that the mean free pathway of the emission is much
lesser than the distinguishing measurement (i.e.) the scatter case) performance that
for permanent magnetic field, the temperature distributions are powerfully affect by
radiative fluctuation.
Beg et al. [4] focused the temperature source/sink effects on oscillatory magneto
convection in a permeable medium using hypergeometrices. Chamkha et al. [7] con-
sidered combined temperature generation/absorption, emission and magnetic field
effects on forced convection temperature transfer over a wedge with stress work ef-
fects. Muralidharan and Muthucumarasamy [17] Radiative heat transport effects on
transient movement of viscous non-compressible fluid past an unvaryingly accelerated
never-ending vertical plate by changeable heat and homogeneous mass flux have been
investigated.
Sharma and Varshney [24] discussed the effects of temperature distribution and vis-
cous dissipation on the transient flow of a viscous incompressible dirty gas throughout
a hexagonal channel of regular cross-section under the influence of a magnetic field
and moment-dependent pressure gradient.

2. Mathematical analysis

A 2-dimensional uniform, consisting of laminar free convection of thermal
through a liquid or gas caused by molecular motion flow of a incapable of being
compressed viscous fluid over a vertical cone with non-isothermal surface tempera-
ture under the determination of reaction due to the presence of electrically conducting
and radiating liquid past a vertical cone with non-homogeneous heat flux by talking
into an account the effects of viscous dissipation is viewed or the sensation caused by
heat energy is carefully weighed with the following assumptions.

(i) The system is axi-symmetrical.
(ii) The Joule heating of the fluid (magnetic dissipation) is neglected.
(iii) The co-efficient of electrical conductivity is a stable throughout the fluid.
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Figure 1. Physical Model and Coordinate System

(iv) Transverse uniform magnetic field is applied perpendicular to the surface of the
cone.

(v) The attractive Reynolds number is little so that the induce magnetic field is
neglect and consequently, do not alter the magnetic field.

(vi) Thermal radiation is current in the appearance a unidirectional flux in the y
direction

(vii) The Radiative thermal flux into the x direction is regard as unimportant in
comparison with that in the y direction.

(viii) The magnetic field equation is the common electromagnetic and hydro magnetic
equation, but the communication between the flow and the attractive field is
taken in to account.

(ix) Maxwell’s dislocation current is ignored, so as to electric current is regard as
flow in closed circuits.

The co-ordinate system is chosen such to establish position is give an exhibition
of to an interested study has be consider as x-axis is in use on the surface of the
cone from the vertex x = 0 and y denotes the distance normally outward. The fluid
belongings are taken to be unvarying and take exception to density divergences which
stimulate perkiness strength term in the velocity equation and it maneuver key factor
the discussion. Here φ is the half vertical angle of the cone and r(x) is the local radius
of the cone.

Primarily at t
′ ≤ 0, it is moreover considered that the cone surface and the

enclosing fluid, which is at rest, have the same temperature T
′

∞. Then at t
′
> 0, the

temperature of cone surface is suddenly raised to inconsistently qw(x) = axn. It is con-
sidered that the fluid properties are non-varying except for density variations, which
induce buoyancy force term in the momentum equation. The governing boundary
layer equations of continuity”, an impelling force or strength and a thermodynamic
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quantity equivalent to the capacity of a physical system to do work which was proved
by an approximation given by Boussinesq are stated below:

Equation of continuity:

∂

∂x
(ru) +

∂

∂y
(rv) = 0 (2.1)

Equation of momentum:

∂u

∂t′
+ u

∂u

∂x
+ v

∂u

∂y
= gβ cosφ(T

′
− T

′

∞) + ν
∂2u

∂y2
− σB2

0u

ρ
(2.2)

Equation of energy:

∂T
′

∂t′
+ u

∂T
′

∂x
+ v

∂T
′

∂y
= α

∂2T
′

∂y2
+

µ

ρCP

(
∂u

∂y

)2

+
Q0

ρCP
(T
′
− T

′

∞)− 1

ρCP

∂qr
∂y

(2.3)

The primary and boundary condition are prescribed as

t
′ ≤ 0 : u = 0, v = 0, T

′
= T

′

∞ for allx and y

t
′
> 0 : u = 0, v = 0,

∂T
′

∂y
=
−qw(x)

k
at y = 0

u = 0, T
′

= T
′

∞ atx = 0

u→ 0, T
′ → T

′

∞ as y →∞


(2.4)

Using the Roseland estimate for radiation [23], Radiative heat flux is reduced.

qr =
−4σ∗

3k∗
∂T
′4

∂y
(2.5)

where σ∗ the Stefan-Boltzmann is stable and k∗ is the represent mean absorption co-
efficient. It must be prominent that by using the Roseland approximation, the current
study is restricted to optically substantial fluid. If temperature difference within the
flow is adequately small, then equation (2.5) can be linearized by expanding T

′4 in

Taylor series about T
′

∞ which after forgetting upper order conditions take the form:

T
′4 ∼= 4T

′3
∞T

′
− 3T

′4
∞ (2.6)

Using equations (2.5) and (2.6), the energy equation (2.3) becomes

∂T
′

∂t′
+ u

∂T
′

∂x
+ v

∂T
′

∂y
= α

∂2T
′

∂y2
+

µ

ρCP

(
∂u

∂y

)2

+
Q0

ρCP
(T
′
−T

′

∞) +
1

ρCP

16σ∗T
′3
∞

3k∗
∂2T

′

∂y2

(2.7)
Local skin-friction and local Nusselt number has been given by

τ
′

x = µ

(
∂u

∂y

)
y=0

;Nu
′

x =

−x

(
∂T
′

∂y

)
y=0

T ′w − T
′
∞

(2.8)
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Further, we introducing the subsequent dimensionless quantities:

X =
x

L
, Y =

y

L
(GrL)

1
5 , R =

r

L
where r = x sinφ,

t =
νt
′

L2
(GrL)

2
5 , T =

T
′ − T ′∞
qw(L)

k∗∗

(GrL)
1
5 , ε =

gβL

CP
,

U =
uL

ν
(GrL)

−2
5 , V =

vL

ν
(GrL)

−1
5 ,

γ =
µ

ρ
,∆ =

Q0L
2

CPµ
(GrL)

−1
5 , P r =

ν

α
,

M =
σB2

0L
2

µ
(GrL)

−2
5 , Rd =

k∗k

4σ∗T ′3∞
,

GrL =
gβ
qw(L)

k∗∗
L4 cosφ

ν2



(2.9)

Equations (2.1) to (2.3) can be written in the subsequent dimensionless form:

∂

∂X
(UR) +

∂

∂Y
(V R) = 0 (2.10)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= T −MU +

∂2U

∂Y 2
(2.11)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

(
1 +

4

3Rd

)
∂2T

∂Y 2
+ ∆T + ε

(
∂U

∂Y

)2

(2.12)

The following dimensionless primary and boundary condition are

t ≤ 0 : U = 0, V = 0, T = 0 for allXandY

t > 0 : U = 0, V = 0,
∂T

∂Y
= −Xn atY = 0

U = 0, T = 0 atX = 0

U → 0, T → 0 asY →∞


(2.13)

Shear stress and heat transfer rate in dimensionless form are given by

τX = (GrL)
3
5

(
∂U

∂Y

)
Y=0

(2.14)

NuX =
X

TY=0

(
−∂T
∂Y

)
Y=0

(GrL)
1
5 (2.15)

Also, the dimensionless average shear stress τ and the average heat transfer rate Nu
are able to write as

τ = 2Gr
3
5

L

∫ 1

0

X

(
∂U

∂Y

)
Y=0

dX (2.16)

Nu = 2Gr
1
5

L

∫ 1

0

X

TY=0

(
−∂T
∂Y

)
Y=0

dX (2.17)
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3. Method of solution

The transient, non-linear, coupled PDE (2.10) to (2.12) with (2.13) are worked
out by using Crank-Nicholson method. After applying the method the dimensionless
equation converted to the system of tri-diagonal equations. We work out the scheme
of equations by use well known Thomas algorithm by which we attain the desired
solution with convergence of this algorithm occurring in a brief period of time and
also it is unconditionally stable to change as discussed Bapuji et al. [22]. The integral
area is treated as a rectangle with Xmax = 1 and Ymax = 26 (the value for Y is taken
to be ∞) by analyzing in detail and considered in order to satisfy the ultimate and
penultimate conditions of (2.13) and we observed that it is fulfilled with accuracy up
to 10−5.
The mesh sizes has been permanent as ∆X = 0.05,∆Y = 0.05 with time step ∆t =
0.01. The computations are carried out first by reducing the spatial mesh sizes by 50%
in one way, and afterward in both direction by 50%. The computations are conceded
out first by reducing the spatial net sizes by 50%. The results are compared. It is
revealed that in all cases, the outcomes differ simply in the fifth decimal place. Hence,
the choice of the mesh sizes seem to be suitable.
The co-efficient of Uki,j and V ki,j appearing in the FDE‘s are treated as constants at
any one-time step. Here i designates the grid point along the X direction, j along the
Y direction and k along the time t. The values of V, U and T are known at all grid
points when t=0 from the initial conditions.
The computations of U, V and T at a time level (k+ 1), using the values at previous
time level k are carried out as follows. The FDE (2.12) at every internal nodal point
on a particular i - level constitutes a tri-diagonal scheme of equations and is solved
by Thomas algorithm as discussed in Bapuji et al [22]. Thus, the values of T are
found out at every lattice point at a particular i at (k+1)th time level. Similarly,
the values of U are calculated from equation (2.11), and finally the values of V are
calculated explicitly by using equation (2.10) at every mesh point on a particular i-
level at (k+1)th time level. In a similar, manner computations are carried out by
moving along i direction. Subsequent to calculating values corresponding to each i at
a time level, the values at the next time level are determined in a similar manner.
Computations are repeated until steady state is reached. The steady state solution is
assumed to have been reached when the absolute difference between the values of the
rate U, as well as temperature T at two successive time steps are less than 10−5 at
all grid points.

4. Results and discussions

This segment provides the behavior of a range of parameter involved in the
expressions velocity and temperature the near result in stable condition at X = 1.0
is established with accessible resemblance solution in literature. The momentum and
thermal boundary layer profile of the cone with isothermal surface heat flux when
Pr = 0.72, Rd = 2.0, M = 2.0 and surface temperature power law exponent n = 0.5
the numerical values of shear stress τX and rate of heat transfer Nux for distinct value
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of Prandtl number revealed in table (1) are examined with resemblance solution of
Lin [13] in steady state using a appropriate conversion.

(i.e.) Y = (20/9)1/5η, T = (20/9)1/5[−θ(0)], U = (20/9)1/5f
′
(η),

τX = (20/9)f
′′
(0).

In adding up, the local shear stress τX and rate of heat transfer Nux, for distinct
numerical quantities of Pr when heat flux gradient n = 0.50 and M = 0 at X = 1.00
instable situation are compared with the non-similarity result of Hossain and Paul
[12] in table 2. It is noticed that the results are in good agreement with each other. It
is also noticed that the current result concur well with those of Pop and Watanable
[21], Na and Chiou [19] (as pointed out in table 1).

The transitory velocity and temperature profile at X = 1.0 for dissimilar values
of Pr and M be plot in figs. 2 and 3. The viscous force increases and the thermal diffu-
sivity decrease by a rising Pr, which cause a decline in the velocity and temperature.
Also, the influence of magnetic constraint M against span-wise spatial distribution of
velocity and temperature are depicted. Application of attractive meadow usual to the
flow of an electrically conduct fluid give increase to an opposite force. These opposite
powers tend to slow downward the movement of the fluid along the cone and cause a
raise in its hotness and a decline in velocity as M increase. An increases in M from
1 although 2, 3 obviously reduce flow-wise velocity together in the close to-wall area
and distant-field regime of the boundary layer, while the surface temperature increase
as the bigger values of M .

Table 1: Relationship of steady - state shear stress and temperature values at
X = 1.0 with those of Lin [13] for isothermal surface heat flux.

∗ Values taken from Pop and Watanabe [21] when suction/injection is zero.
∗∗ Values taken from Na and Chiou [19] when solutions for flow over a full cone.

Pr
Temperature Local skin friction

Lin [13] results Present
values

Lin [13] results Present
values

−θ(0) −
(
20
9

)1/5
θ(0) T −f ′′(0)

(
20
9

)2/5
f
′′
(0) T

0.72 1.522878 1.7864 1.7714 0.88930,
0.88930∗

1.224 1.2105

1 1.39174 1.6327,
1.6329∗∗

1.6182 0.78446 1.0797 1.0669

2 1.16209 1.3633 1.3499 0.60252 0.8293 0.8182
4 0.98095 1.1508 1.1385 0.46307 0.6373 0.6275
6 0.89195 1.0464 1.0344 0.39688 0.5462 0.5371
8 0.83497 0.9796 0.9677 0.35563 0.4895 0.4808
10 0.79388 0.9314 0.9196 0.32655 0.4494 0.4411
100 0.48372 0.5675 0.5531 0.13371 0.184 0.1778
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Table 2: Comparison of steady-state shear stress and heat transfer rate values at
X = 1.0 with those of Hossain and Paul [12] for different values of Pr when n = 0.5

and M = 0 suction is zero.

Pr
Temperature Local Nusselt number

Hossain and Paul [12] Present
values

Hossain and Paul [12] Present
values

F
′′

0 (0) τX
Gr

3/5
L

1
φ0(0)

NuX

Gr
1/5
L

0.01 5.1345 5.1155 0.14633 0.1458
0.05 2.93993 2.9297 0.26212 0.2630
0.1 2.29051 2.2838 0.33174 0.3324

Figs. 4 and 5 shows the effect of different heat generation/absorption parameter
∆ and radiation constraint Rd on the dimensionless velocity and dimensionless ther-
mal for the Prandtl number Pr = 0.72, n = 0.5,M = 2 and ε = 0.5. It is revealed that
the velocity and temperature profile are increase with rising quantities of ∆. In rais-
ing Rd cause a considerable decreases in velocity with detachment into the boundary
layer (i.e.) decelerate the flow. We too note down that with growing values of Rd the
time taken to achieve the stable state is abridged. As estimated temperature value
are also considerably abridged with increases in Rd.

Figs. 6 and 7 represents the velocity and temperature profiles for dissimilar
values of n and viscous dissipative constraint ε. It is seen that the impulsive forces
are decreased by the side of the cone surface close to the apex with increases in
‘n’. Owing to this, the dissimilarity involving the sequential utmost and stable state
quantities decrease, the velocity with temperature decreases, the time requisite for
the achievement of a stable state increase and velocity and the temperature boundary
layer turn out to be thinner at lower values of n.

An increase viscous dissipative thermal cause an increase in the temperature, so
as to the momentum boundary layer and thermal boundary layer increases with ε. It
is as well see to facilitate the variation connecting the temporal utmost and stable
state values are abridged, even as the moment necessary for the achievement of a
steady state as well as the velocity and thermal boundary layer increases by ε.

Once, if temperature and velocity are found, it is interest to study local as
well as average shear stress and heat transfer rate distributions in transitory state.
The derivative in the equations (2.14) - (2.17) is acquired with the use of five-point
approximation formula and the integrals be calculated via the Newton-Cotes closed
integration method. Figures 8 and 9 illustrate local Nusselt number and shear stress
for various values of Pr and M . It is demonstrates that both quantity increases
with decreasing Pr and decrease with distance from the cone vertex. An increasing
magnetic parameter M leads to decreasing both local shear stress and local heat
transfer rate. Figs. 10 and 11 indicates the outcome of heat absorption/ generation
constraint ∆ and radiation constraint Rd. The local shear stress increases for the
higher values of ∆. But the trend is reversed the heat transfer rate case. Also, stronger
thermal radiations accelerate the flow but reduce Nusselt number hence the local skin-
friction got decreased due to the presence of radiation. Consequently, heat transfer
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rate increases for lower value of Rd. Figs. 12 and 13 depicts the effect of viscous
dissipative constraint and the exponent in the power rule difference n on the local
shear stress coefficient and Nusselt number are analyzed. From these graphs, it is
able to be seeing that increasing ε clearly boosts the wall shear stresses τX , which
grow powerfully from the directing boundary downstream alongside the cone surface.

Consequently, it enhances the viscous dissipative heats direct to a decline in the
local heat transfer rate NuX (i.e.) with a substantial increase in ε a strong reduce
in the surface heat transfer rate. In figs. 14 and 15 shows the influence of Prandtl
numeral and magnetic parameter over the average local skin friction and average
heat transfer rate are observed. The average shear stress decreases for smaller value
of Pr and larger value of magnetic parameter M . Also, it is noticed that the average
heat transfer rate decreases for increasing values of Prandtl numeral Pr and M .

Figs. 16 and 17 demonstrates the results of heat source/sink constraint and
radiation parameter Rd. Stronger thermal radiation accelerate the flow but reduces
average Nusselt number hence the average skin-friction got decreased due to the exis-
tence of magnetic field and radiation where as it boost for the higher values of thermal
absorption/ generation constraint ∆.

In figs. 18 and 19 depicts the variations of average shear stress and average
heat transfer rate for controlling parameter n and viscous dissipation parameter ε.
Average shear stress is more for lower values of n and average heat transfer rate is
almost negligible. Also, it boost in ε the viscous dissipative heat leads to boost in the
average skin-friction. But the trend is reversed in average Nusselt number cases.

Figure 2. Transient velocity profiles at X = 1.0 for different values
of Pr and M
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Figure 3. Transient temperature profiles at X = 1.0 for different
values of Pr and M

Figure 4. Transient velocity profiles at X = 1.0 for different values
of ∆ and Rd
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Figure 5. Transient temperature profiles at X = 1.0 for different
values of ∆ and Rd

Figure 6. Transient velocity profiles at X = 1.0 for different values
of n and ε
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Figure 7. Transient velocity profiles at X = 1.0 for different values
of n and ε

Figure 8. Local skin friction for different values of Pr and M in
transient period
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Figure 9. Local Nusselt number for different values of Pr and M
in transient period

Figure 10. Local skin friction for different values of ∆ and Rd in
transient period
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Figure 11. Local Nusselt number for different values of ∆ and Rd
in transient period

Figure 12. Average skin friction for different values of Pr and M
in transient period
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Figure 13. Average Nusselt Number for different values of Pr and
M in transient period

Figure 14. Average skin friction for different values of ∆ and Rd
in transient period
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Figure 15. Average Nusselt number for different values of ∆ and
Rd in transient period

Figure 16. Average skin friction for different values of n and ε in
transient period
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Figure 17. Average Nusselt number for different values of n and ε
in transient period

Figure 18. Local skin friction for different values of n and ε in
transient period
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Figure 19. Local Nusselt number for different values of n and ε in
transient period

5. Conclusion

A mathematical study of the flow past a variable vertical cone has been studied.
The family of leading partial differential equations are solved via an implicit finite
difference scheme of Crank-Nicholson type. The subsequent conclusions are drawn:

• The computations have shown that the velocity and temperature allocation de-
crease with growing the values of Pr, n and while the velocity and temperature
allocation increase with increasing the value of ∆, ε.

• The velocity increases and temperature decreases when the controlling parameter
M and radiation parameter Rd.

• The shear stress τX and heat transfer rate NuX values decrease as M,n,Rd and
Pr increases.

• Smaller values of heat generation /absorption parameter ∆ lead to decline in the
values of the shear stress coefficient while the local Nusselt number increases.

• The average shear stress is more for larger values of ∆, ε and smaller values of
Pr, n,Rd and M .

• The average heat transfer rate increases for bigger value of Pr, n and ε for lesser
value of ∆, Rd and M .
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Book reviews

John R. Graef, Johnny Henderson, Abdelghani Ouahab; Topological Methods for
Differential Equations and Inclusions, CRC Press, Taylor & Francis Group, Boca
Raton, FL, USA, 2019, xiv + 360 pp., ISBN 9781138332294 - CAT# K393112.

In the last 30 years, Nonlinear Analysis became a topic with a flourishing de-
velopment. Part of this field, Multi-valued Analysis has experienced a spectacular
growth, generating new research directions in various classical areas of mathematics.
In this respect, the study of integral and differential inclusions gets a strong evolution.
The present book brings an important contribution to these fields, by presenting, in a
unified and exhaustive manner, many interesting results from the theory of Differen-
tial Equations and Inclusions, via Multi-valued Analysis and Topological Fixed Point
Theory.

The contents of this monograph is organized in the following chapters: 1. Back-
ground in Multi-valued Analysis; 2. Hausdorff-Pompeiu Metric Topology; 3. Measurable
Multi-functions; 4. Continuous Selection Theorems; 5. Linear Multivalued Operators;
6. Fixed Point Theorems; 7. Generalized Metric and Banach Spaces; 8. Fixed Point
Theorems in Vector Metric and Banach Spaces; 9. Random Fixed Point Theorem;
10. Semi-groups, 11. Systems of Impulsive Differential Equations on the Half-line;
12. Differential Inclusions; 13. Random Systems of Differential Equations; 14. Random
Fractional Differential Equations via Hadamard Fractional Derivative; 15. Existence
Theory for Systems of Discrete Equations; 16. Discrete Inclusions; 17. Semi-linear
System of Discrete Equations; 18. Discrete Boundary Value Problems; 19. Appendix.

The monograph is well written, the concepts and the results are presented in a
clear and rigorous way. The material is based on numerous papers and books previ-
ously published by the authors. The bibliography includes 296 titles, most of them
from the last decades. The book will be very useful for graduate students, profes-
sors and researchers interested in the field of integral and differential equations and
inclusions, via topological methods of nonlinear functional analysis.

Adrian Petruşel
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Julian Havil; Curves for the Mathematically Curious: An Anthology of the Un-
predictable, Historical, Beautiful, and Romantic, Princeton University Press, 2019,
xviii+280 p. ISBN 978-0-691-18005-2/hbk; 978-0-691-19778-4/ebook.

The book contains ten chapters, each one describing a famous curve: 1. The Euler
curves; 2. The Weierstrass curve; 3. Bézier curves; 4. The rectangular hyperbola; 5. The
quadratrix of Hippias; 6. The space filling curves; 7. Curves of constant width; 8. The
normal curve; 9. The catenary, and 10. Elliptic curves.

Of course, this choice reflects author’s taste and ideas, an important omission
being that of conic sections (briefly mentioned in Appendix B as solutions of a dif-
ferential equation), but as the author says “not every anthology of poems contains
works by Shakespeare”.

The book is dedicated to a mathematically inclined large audience, so it is written
in a didactic style with a lot of mathematical details, historical detours and witty
remarks of the author. As he writes in the Preface:

We invite the reader to join us in this particular and eclectic mathe-
matical adventure, with stories bringing us into glancing contact with
(among others) Pablo Picasso, George II, Queen Victoria’s consort
(Prince Albert), the Inquisition, the Holy Roman Emperor (Frederick
II) and many mathematicians who existed over millennia.

The author is well-known for his popular books on various topics in mathemat-
ics: Gamma: Exploring Euler’s Constant (2003); Nonplussed! Mathematical Proof of
Implausible Ideas (2007); Impossible? Surprising Solutions to Counterintuitive Conun-
drums (2008); The Irrationals: A Story of the Numbers You Can’t Count On (2014),
and John Napier: Life, Logarithms, and Legacy (2014). All these books were published
with Princeton and each of them knew several editions (we quoted the year of the
first one). Two of them were translated into German.

Undoubtedly that this new one, written in the same entertaining unmistakable
style of the author and containing a lot of information – mathematical, historical and
general – will attract, as the previous ones, a large audience.

S. Cobzaş
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