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Ágnes Orsolya Páll-Szabó, Differential subordinations and
superordinations for analytic functions defined by Sălăgean
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Stud. Univ. Babeş-Bolyai Math. 64(2019), No. 4, 453–465
DOI: 10.24193/subbmath.2019.4.01

General inequalities related Hermite-Hadamard
inequality for generalized fractional integrals

Havva Kavurmacı-Önalan, Erhan Set and Abdurrahman Gözpınar

Abstract. In this article, we first establish a new general integral identity for
differentiable functions with the help of generalized fractional integral operators
introduced by Raina [8] and Agarwal et al. [1]. As a second, by using this identity
we obtain some new fractional Hermite-Hadamard type inequalities for functions
whose absolute values of first derivatives are convex. Relevant connections of the
results presented here with those involving Riemann-Liouville fractional integrals
are also pointed out.

Mathematics Subject Classification (2010): 26A33, 26D10, 26D15, 33B20.

Keywords: Hermite-Hadamard inequality, Riemann-Liouville fractional integral,
fractional integral operator.

1. Introduction and preliminaries

One of the most famous inequalities for convex functions is Hermite-Hadamard’s
inequality. This double inequality is stated as follows (see for example [3]).

Let f : I ⊂ R → R be a convex function on the interval I of real numbers and
a, b ∈ I with a < b. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)

Definition 1.1. The function f : [a, b] ⊂ R → R is said to be convex if the following
inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ [a, b] and λ ∈ [0, 1]. We say that f is concave if (−f) is convex.

Now, we will give some important definitions and mathematical preliminaries of
fractional calculus theory which are used throughout of this paper.
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Definition 1.2. [4] Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f
of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1 f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)
α−1

f(t)dt, x < b

respectively where

Γ(α) =

∞∫
0

e−uuα−1du.

Here is J0
a+f(x) = J0

b−f(x) = f(x). In the case of α = 1, the fractional integral
reduces to the classical integral.

In [5], Iqbal et al. proved a new identity for differentiable convex functions via
Riemann-Liouville fractional integrals.

Lemma 1.3. Let f :[a, b] → R be a differentiable function on (a, b) . If f ′ ∈ L′ [a, b] ,
then the following identity for Riemann-Liouville fractional integrals holds:

f

(
a+ b

2

)
− Γ (α+ 1)

2 (b− a)
α [Jαa+f(b) + Jαb−f(a)] =

∞∑
k=1

Ik,

where

I1 =

∫ 1
2

0

tαf ′ (tb+ (1− t) a) dt, I2 =

∫ 1
2

0

(−tα) f ′ (ta+ (1− t) b) dt,

I3 =

∫ 1

1
2

(tα − 1) f ′ (tb+ (1− t) a) dt, I4 =

∫ 1

1
2

(1− tα) f ′ (ta+ (1− t) b) dt.

By using the above identity, the authors obtained left-sided of Hermite-
Hadamard type inequalities for convex functions via Riemann-Liouville fractional
integrals. Some other results related to those inequalities involving Riemann-Liouville
fractional integrals can be found in the literature, for example, in [2, 7, 18, 16, 11]
and the references therein.

In [8], Raina introduced a class of functions defined formally by

Fσρ,λ(x) = Fσ(0), σ(1), ...ρ,λ (x) =

∞∑
k=0

σ(k)

Γ(ρk + λ)
xk (ρ, λ > 0; |x| < R) (1.2)

where the coefficients σ(k), (k ∈ N = N ∪ {0}), is a bounded sequence of positive
real numbers and R is the set of real numbers. With the help of (1.2), Raina [8] and
Agarwal et al. [1] defined the following left-sided and right-sided fractional integral
operators respectively, as follows:(

J σρ,λ,a+;wϕ
)

(x) =

∫ x

a

(x− t)λ−1Fσρ,λ[w(x− t)ρ]ϕ(t)dt (x > a), (1.3)
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(
J σρ,λ,b−;wϕ

)
(x) =

∫ b

x

(t− x)λ−1Fσρ,λ[w(t− x)ρ]ϕ(t)dt (x < b) (1.4)

where λ, ρ > 0, w ∈ R and ϕ(t) is such that the integral on the right side exits.

It is easy to verify that
(
J σρ,λ,a+;wϕ

)
(x) and

(
J σρ,λ,b−;wϕ

)
(x) are bounded integral

operators on L(a, b), if

M := Fσρ,λ+1[w(b− a)ρ] <∞. (1.5)

In fact, for ϕ ∈ L(a, b), we have

||J σρ,λ,a+;wϕ(x)||1 ≤M(b− a)λ||ϕ||1 (1.6)

and

||J σρ,λ,b−;wϕ(x)||1 ≤M(b− a)λ||ϕ||1 (1.7)

where

||ϕ||p :=

(∫ b

a

|ϕ(t)|pdt

) 1
p

.

Here, many useful fractional integral operators can be obtained by specializing the
coefficient σ(k). For instance the classical Riemann-Liouville fractional integrals Jαa+
and Jαb− of order α follow easily by setting λ = α, σ(0) = 1 and w = 0 in (1.3) and
(1.4). Also, to see more results and generalizations for convex and some other several
convex functions classes, as Q(I), P (I), SX(h, I) and r−convex, involving generalized
fractional integral operators, see [17, 14, 15, 10, 9, 13, 12, 19, 20] and references there
in.

In this paper, we will prove a generalization of the identity given by Iqbal et al.
in [5] by using generalized fractional integral operators. Then we will give some new
Hermite-Hadamard type inequalities for fractional integral operators.

2. Main results

We start by giving a generalization of Lemma 1, [5]. We will use an abbreviation
throughout of this study,

Mf (a, b;w; J) = Fσρ,λ+1[w(b− a)ρ]f

(
a+ b

2

)
− 1

2(b− a)λ
[(
J σρ,λ,a+;wf

)
(b) +

(
J σρ,λ,b−;wf

)
(a)
]

that is similar to the symbol ”Lf (a, b;w; J)” in [17].

Lemma 2.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b and
λ > 0. If f ′ ∈ L[a, b], then the following equality for generalized fractional integral
operators holds:

Mf (a, b;w; J) =
b− a

2
(I1 + I2 + I3 + I4)

where I1, I2, I3 and I4 given in the (2.1), (2.2), (2.3) and (2.4), respectively.
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Proof. Integrating by parts, we get

I1 =

∫ 1
2

0

tλFσρ,λ+1[w(b− a)ρtρ]f ′(tb+ (1− t)a)dt (2.1)

= tλFσρ,λ+1[w(b− a)ρtρ]
f(tb+ (1− t)a)

b− a

∣∣∣∣ 12
0

−
∫ 1

2

0

tλ−1Fσρ,λ[w(b− a)ρtρ]
f(tb+ (1− t)a)

b− a
dt

=
1

b− a

(
1

2

)λ
Fσρ,λ+1

[
w

(
b− a

2

)ρ]
f

(
a+ b

2

)
− 1

b− a

∫ 1
2

0

tλ−1Fσρ,λ[w(b− a)ρtρ]f(tb+ (1− t)a)dt.

Analogously:

I2 = −
∫ 1

2

0

tλFσρ,λ+1[w(b− a)ρtρ]f ′(ta+ (1− t)b)dt (2.2)

=
1

b− a

(
1

2

)λ
Fσρ,λ+1w

[(
b− a

2

)ρ]
f

(
a+ b

2

)
− 1

b− a

∫ 1
2

0

tλ−1Fσρ,λ[w(b− a)ρtρ]f(ta+ (1− t)b)dt

and

I3 =

∫ 1

1
2

[
tλFσρ,λ+1[w(b− a)ρtρ]−Fσρ,λ+1[w(b− a)ρ]

]
f ′(tb+ (1− t)a)dt (2.3)

= tλFσρ,λ+1[w(b− a)ρtρ]
f(tb+ (1− t)a)

b− a

∣∣∣∣1
1
2

−
∫ 1

1
2

tλ−1Fσρ,λ[w(b− a)ρtρ]
f(tb+ (1− t)a)

b− a
dt

−Fσρ,λ+1[w(b− a)ρ]
f(tb+ (1− t)a)

b− a

∣∣∣∣1
1
2

=
1

b− a
Fσρ,λ+1[w(b− a)ρ]f

(
a+ b

2

)
− 1

b− a

(
1

2

)λ
Fσρ,λ+1

[
w

(
b− a

2

)ρ]
f

(
a+ b

2

)
− 1

b− a

∫ 1

1
2

tλ−1Fσρ,λ[w(b− a)ρtρ]f(tb+ (1− t)a)dt.
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Analogously:

I4 =

∫ 1

1
2

[
Fσρ,λ+1[w(b− a)ρ]− tλFσρ,λ+1[w(b− a)ρtρ]

]
f ′(ta+ (1− t)b)dt (2.4)

=
1

b− a
Fσρ,λ+1[w(b− a)ρ]f

(
a+ b

2

)
− 1

b− a

(
1

2

)λ
Fσρ,λ+1

[
w

(
b− a

2

)ρ]
f

(
a+ b

2

)
− 1

b− a

∫ 1

1
2

tλ−1Fσρ,λ[w(b− a)ρtρ]f(ta+ (1− t)b)dt.

Adding the resulting equalities, we obtain

I1 + I2 + I3 + I4 =
2

b− a
Fσρ,λ+1[w(b− a)ρ]f

(
a+ b

2

)
(2.5)

− 1

b− a

∫ 1

0

tλ−1Fσρ,λ[w(b− a)ρtρ]f(ta+ (1− t)b)dt

− 1

b− a

∫ 1

0

tλ−1Fσρ,λ[w(b− a)ρtρ]f(tb+ (1− t)a)dt

=
2

b− a
Fσρ,λ+1[w(b− a)ρ]f

(
a+ b

2

)
− 1

(b− a)λ+1

[(
J σρ,λ,a+;wf

)
(b) +

(
J σρ,λ,b−;wf

)
(a)
]
.

According to (1.3) and (1.4), changing variables with x = tb+ (1− t)a, we get∫ 1

0

tλ−1Fσρ,λ[w(b− a)ρtρ]f(tb+ (1− t)a)dt =
1

(b− a)λ

(
J σρ,λ,a+;wf

)
(b)

and changing variables with x = ta+ (1− t)b, we have∫ 1

0

tλ−1Fσρ,λ[w(b− a)ρtρ]f(ta+ (1− t)b)dt =
1

(b− a)λ

(
J σρ,λ,b−;wf

)
(a).

Thus multiplying both sides of (2.5) by (b−a)
2 , we get desired result. �

Remark 2.2. Taking λ = α, σ(0) = 1 and w = 0, then the above equality reduces to
equality in Lemma 1, [5].

By using the above generalized new lemma, we obtain some new Hermite-
Hadamard type inequalities via generalized fractional integral operators.

Theorem 2.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
|f ′| is convex on [a, b], then the following inequality for generalized fractional integral
operators holds:

|Mf (a, b;w; J)| ≤ (b− a)

2
Fσ1

ρ,λ+1[|w| (b− a)ρ] [|f ′ (a)|+ |f ′ (b)|]
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where ρ, λ > 0, w ∈ R and σ1 (k) = σ (k)

(
1
2 +

( 1
2 )
λ+ρk−1

λ+ρk+1

)
.

Proof. Using Lemma 2 and the convexity of |f ′| , we have

|Mf (a, b;w; J)| ≤ b− a
2
{|I1|+ |I2|+ |I3|+ |I4|}

=
b− a

2

{∣∣∣∣∣
∫ 1

2

0

tλFσρ,λ+1[w(b− a)ρtρ]f ′(tb+ (1− t)a)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

2

0

(
−tλ

)
Fσρ,λ+1[w(b− a)ρtρ]f ′(ta+ (1− t)b)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

1
2

[
tλFσρ,λ+1[w(b− a)ρtρ]−Fσρ,λ+1[w(b− a)ρ]

]
f ′(tb+ (1− t)a)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

1
2

[
Fσρ,λ+1[w(b− a)ρ]− tλFσρ,λ+1[w(b− a)ρtρ]

]
f ′(ta+ (1− t)b)dt

∣∣∣∣∣
}

≤ b− a
2

{∫ 1
2

0

tλ
∣∣Fσρ,λ+1[w(b− a)ρtρ]

∣∣ |f ′(tb+ (1− t)a)| dt

+

∫ 1
2

0

tλ
∣∣Fσρ,λ+1[w(b− a)ρtρ]

∣∣ |f ′(ta+ (1− t)b)| dt

+

∫ 1

1
2

∣∣tλFσρ,λ+1[w(b− a)ρtρ]−Fσρ,λ+1[w(b− a)ρ]
∣∣ |f ′(tb+ (1− t)a)| dt

+

∫ 1

1
2

∣∣Fσρ,λ+1[w(b− a)ρ]− tλFσρ,λ+1[w(b− a)ρtρ]
∣∣ |f ′(ta+ (1− t)b)| dt

}

≤ b− a
2

∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)
×

{∫ 1
2

0

tλ+ρk [t |f ′ (b)|+ (1− t) |f ′ (a)|] dt

+

∫ 1
2

0

tλ+ρk [t |f ′ (a)|+ (1− t) |f ′ (b)|] dt

+

∫ 1

1
2

[
1− tλ+ρk

]
[t |f ′ (b)|+ (1− t) |f ′ (a)|] dt

+

∫ 1

1
2

[
1− tλ+ρk

]
[t |f ′ (a)|+ (1− t) |f ′ (b)|] dt

}

=
b− a

2

∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)

×

{
|f ′ (a)|

[∫ 1
2

0

tλ+ρk (1− t) dt+

∫ 1
2

0

tλ+ρk+1dt
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+

∫ 1

1
2

[
1− tλ+ρk

]
(1− t) dt+

∫ 1

1
2

[
1− tλ+ρk

]
tdt

]

+ |f ′ (b)|

[∫ 1
2

0

tλ+ρk+1dt+

∫ 1
2

0

tλ+ρk (1− t) dt

+

∫ 1

1
2

[
1− tλ+ρk

]
tdt+

∫ 1

1
2

[
1− tλ+ρk

]
(1− t) dt

]}

=

(
b− a

2

)
Fσρ,λ+1[w(b− a)ρ]

(
1

2
+

(
1
2

)λ+ρk − 1

λ+ ρk + 1

)
[|f ′ (a)|+ |f ′ (b)|]

where we used the facts that∫ 1
2

0

tλ+ρk (1− t) dt =

(
1
2

)λ+ρk+1

λ+ ρk + 1
−
(
1
2

)λ+ρk+2

λ+ ρk + 2
,∫ 1

2

0

tλ+ρk+1dt =

(
1
2

)λ+ρk+2

λ+ ρk + 2
,∫ 1

1
2

[
1− tλ+ρk

]
(1− t) dt =

1

8
+

(
1
2

)λ+ρk+1 − 1

λ+ ρk + 1
+

1−
(
1
2

)λ+ρk+2

λ+ ρk + 2
,

∫ 1

1
2

[
1− tλ+ρk

]
tdt =

3

8
+

(
1
2

)λ+ρk+2 − 1

λ+ ρk + 2
.

The proof is completed. �

Corollary 2.4. If we choose λ = α, σ (0) = 1 and w = 0 in Theorem 2.1, we have∣∣∣∣f (a+ b

2

)
− Γ (α+ 1)

2(b− a)α
[J αa+f(b) + J αb−f(a)]

∣∣∣∣
≤ b− a

4

(
α+ 21−α − 1

α+ 1

)
[|f ′ (a)|+ |f ′ (b)|] .

Remark 2.5. The above inequality is better than one that was given in Theorem 2 of
[5].

Remark 2.6. If we choose α = 1 in Corollary 1, we get the inequality in Theorem 2.2
in [6].

Theorem 2.7. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b.
If |f ′|q is convex on [a, b] for some fixed q > 1, then the following inequality for
generalized fractional integral operators holds:

|Mf (a, b;w; J)| ≤
(b− a)Fσ2

ρ,λ+1[|w| (b− a)ρ]

2

×

{(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

+

(
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

}
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where ρ, λ > 0, w ∈ R,

φ =

∫ 1

1
2

(
1− tλ+ρk

)p
dt

and

σ2 (k) = σ (k)

( ( 12)(λ+ρk)p+1

(λ+ ρk) p+ 1

) 1
p

+ φ
1
p

 .
Proof. By using Lemma 2 and properties of modulus, we have

|Mf (a, b;w; J)| ≤ b− a
2

[|I1|+ |I2|+ |I3|+ |I4|] . (2.6)

Then by using Hölder integral inequality and convexity of |f ′|q , we have

|I1| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)
(2.7)

×

(∫ 1
2

0

(
tλ+ρk

)p
dt

) 1
p
(∫ 1

2

0

[
t |f ′(b)|q + (1− t) |f ′(a)|q

]
dt

) 1
q

=

∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)

( (
1
2

)(λ+ρk)p+1

(λ+ ρk) p+ 1

) 1
p (

3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

,

|I2| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)
(2.8)

×

(∫ 1
2

0

(
tλ+ρk

)p
dt

) 1
p
(∫ 1

2

0

[
t |f ′(a)|q + (1− t) |f ′(b)|q

]
dt

) 1
q

=

∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)

( (
1
2

)(λ+ρk)p+1

(λ+ ρk) p+ 1

) 1
p (
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

,

|I3| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)
(2.9)

×

(∫ 1

1
2

(
1− tλ+ρk

)p
dt

) 1
p
(∫ 1

1
2

[
t |f ′(b)|q + (1− t) |f ′(a)|q

]
dt

) 1
q

=

∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)
φ

1
p

(
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q
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and

|I4| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)
(2.10)

×

(∫ 1

1
2

(
1− tλ+ρk

)p
dt

) 1
p
(∫ 1

1
2

[
t |f ′(a)|q + (1− t) |f ′(b)|q

]
dt

) 1
q

=

∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)
φ

1
p

(
|f ′ (b)|q + 3 |f ′ (a)|q

4

) 1
q

where φ =
∫ 1

1
2

(
1− tλ+ρk

)p
dt.

If we use the inequalities (2.7), (2.8), (2.9) and (2.10) in the inequality (2.6), we
get the desired result. So, the proof is completed. �

Corollary 2.8. If we choose λ = α, σ (0) = 1 and w = 0 in Theorem 2.2, we have∣∣∣∣f (a+ b

2

)
− Γ (α+ 1)

2(b− a)α
[J αa+f(b) + J αb−f(a)]

∣∣∣∣
≤ b− a

2


((

1
2

)αp+1

αp+ 1

) 1
p

+ Ω
1
p


×

{(
3 |f ′ (a)|q + |f ′ (b)|q

4

) 1
q

+

(
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

}

≤ b− a
2


((

1
2

)αp+1

αp+ 1

) 1
p

+ Ω
1
p


(

3
1
q + 1

4
1
q

)
[|f ′ (a)|+ |f ′ (b)|]

where we used the fact that

n∑
i=1

(ai + bi)
r ≤

n∑
i=1

ari +

n∑
i=1

bri (2.11)

for 0 ≤ r < 1, a1, a2, a3,..., an ≥ 0 and b1, b2, b3, ..., bn ≥ 0. Also,

Ω =

∫ 1

1
2

(1− tα)
p
dt.

The following result is obtained by using the well-known power-mean integral
inequality.

Theorem 2.9. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

|f ′|
p
p−1 is convex on [a, b] for some fixed p > 1 with q = p

p−1 , then the following
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inequality for generalized fractional integral operators holds:

|Mf (a, b;w; J)| ≤ b− a
2
Fσρ,λ+1[|w| (b− a)ρ] (|f ′ (a)|+ |f ′ (b)|) (2.12)

×


((

1
2

)λ+ρk+1

λ+ ρk + 1

)1− 1
q

µ1 +

(
1

2
+

(
1
2

)λ+ρk+1 − 1

λ+ ρk + 1

)1− 1
q

µ2


ρ, λ > 0, w ∈ R and where

µ1 =

((
1
2

)λ+ρk+2

λ+ ρk + 2

) 1
q

+

((
1
2

)λ+ρk+1

λ+ ρk + 1
−
(
1
2

)λ+ρk+2

λ+ ρk + 2

) 1
q

and

µ2 =

(
3

8
+

1−
(
1
2

)λ+ρk+2

λ+ ρk + 2

) 1
q

+

(
1

8
+

(
1
2

)λ+ρk+1 − 1

λ+ ρk + 1
+

1−
(
1
2

)λ+ρk+2

λ+ ρk + 2

) 1
q

.

Proof. By using Lemma 2 and properties of modulus, we have

|Mf (a, b;w; J)| ≤ b− a
2
{|I1|+ |I2|+ |I3|+ |I4|}

Then by using the power mean-integral inequality for p > 1, we have

|I1| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)
(2.13)

×

(∫ 1
2

0

tλ+ρkdt

)1− 1
q
(∫ 1

2

0

tλ+ρk |f ′(tb+ (1− t)a)|q dt

) 1
q

and by using convexity of |f ′|
p
p−1 in (2.13), we have∫ 1

2

0

tλ+ρk |f ′(tb+ (1− t)a)|q dt =

(
1
2

)λ+ρk+2

λ+ ρk + 2
|f ′ (b)|q

+

((
1
2

)λ+ρk+1

λ+ ρk + 1
−
(
1
2

)λ+ρk+2

λ+ ρk + 2

)
|f ′ (a)|q .

If we use last equality in inequality of (2.13), then we get the following inequality as

|I1| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)

×

((
1
2

)λ+ρk+1

λ+ ρk + 1

)1− 1
q
{(

1
2

)λ+ρk+2

λ+ ρk + 2
|f ′ (b)|q +

((
1
2

)λ+ρk+1

λ+ ρk + 1
−
(
1
2

)λ+ρk+2

λ+ ρk + 2

)
|f ′ (a)|q

}
.
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As similar to computation of |I1|, we can get |I2|, |I3| and |I4| as following:

|I2| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)

×

((
1
2

)λ+ρk+1

λ+ ρk + 1

)1− 1
q
{(

1
2

)λ+ρk+2

λ+ ρk + 2
|f ′ (a)|q +

((
1
2

)λ+ρk+1

λ+ ρk + 1
−
(
1
2

)λ+ρk+2

λ+ ρk + 2

)
|f ′ (b)|q

} 1
q

,

|I3| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)

(
1

2
+

(
1
2

)λ+ρk+1 − 1

λ+ ρk + 1

)1− 1
q

×

{(
3

8
+

1−
(
1
2

)λ+ρk+2

λ+ ρk + 2

)
|f ′ (b)|q

+

(
1

8
+

(
1
2

)λ+ρk+1 − 1

λ+ ρk + 1
+

1−
(
1
2

)λ+ρk+2

λ+ ρk + 2

)
|f ′ (a)|q

} 1
q

and

|I4| ≤
∞∑
k=0

σ (k) |w|k (b− a)
ρk

Γ (ρk + λ+ 1)

(
1

2
+

(
1
2

)λ+ρk+1 − 1

λ+ ρk + 1

)1− 1
q

×

{(
3

8
+

1−
(
1
2

)λ+ρk+2

λ+ ρk + 2

)
|f ′ (a)|q

+

(
1

8
+

(
1
2

)λ+ρk+1 − 1

λ+ ρk + 1
+

1−
(
1
2

)λ+ρk+2

λ+ ρk + 2

)
|f ′ (b)|q

} 1
q

.

Then by using the fact (2.11) in the inequalities of |I1|, |I2|, |I3| and |I4| and by using
necessary arrangement we get the desired result in (2.12). �

Corollary 2.10. If we choose λ = α, σ (0) = 1 and w = 0 in Theorem 2.3, we have∣∣∣∣f (a+ b

2

)
− Γ (α+ 1)

2(b− a)α
[J αa+f(b) + J αb−f(a)]

∣∣∣∣
≤ b− a

2


((

1
2

)α+1

α+ 1

)1− 1
q

η1 +

(
1

2
+

(
1
2

)α+1 − 1

α+ 1

)1− 1
q

η2

 [|f ′ (a)|+ |f ′ (b)|]

where

η1 =

((
1
2

)α+2

α+ 2

) 1
q

+

((
1
2

)α+1

α+ 1
−
(
1
2

)α+2

α+ 2

) 1
q

and

η2 =

(
3

8
+

1−
(
1
2

)α+2

α+ 2

) 1
q

+

(
1

8
+

(
1
2

)α+1 − 1

α+ 1
+

1−
(
1
2

)α+2

α+ 2

) 1
q

.
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[13] Set, E., Çelik, B., Generalized fractional Hermite-Hadamard type inequalities for m-
convex and (α, m)- convex functions, Commun. Fac. Sci. Univ. Ank. Ser. A1., 67(2018),
no. 1, 351-362.
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On subclasses of bi-convex functions defined
by Tremblay fractional derivative operator

Sevtap Sümer Eker and Bilal Şeker

Abstract. We introduce and investigate new subclasses of analytic and bi-
univalent functions defined by modified Tremblay operator in the open unit disk.
Also we obtain upper bounds for the coefficients of functions belonging to these
classes.
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1. Introduction

Let A denote the class of functions f(z) which are analytic in the open unit disk
U = {z : z ∈ C and |z| < 1} and normalized by the conditions f(0) = f ′(0) − 1 = 0
and having the form:

f (z) = z +

∞∑
n=2

anz
n. (1.1)

Also let S denote the subclass of functions in A which are univalent in U (for
details, see [7]).

The Koebe One Quarter Theorem (e.g., see [7]) ensures that the image of U
under every univalent function f(z) ∈ A contains the disk of radius 1/4. Thus every
univalent function f has an inverse f−1 satisfying

f−1 (f(z)) = z (z ∈ U)

and

f
(
f−1(w)

)
= w

(
|w| < r0(f), r0(f) ≥ 1

4

)
.
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In fact, the inverse function f−1 is given by

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · ·

= w +

∞∑
n=2

bnw
n. (1.2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent
in U. We denote by Σ the class of all bi-univalent functions in U given by the Taylor-
Maclaurin series expansion (1.1).

For a brief history and examples of functions in the class Σ, see [19] (see also
[5], [6], [11], [25]).

Coefficient bounds for various subclasses of bi-univalent functions were obtained
by several authors including Ali et al. [2], Caglar et al. [3], Deniz [4], Kumar et al. [10],
Magesh and Yamini [12], Srivastava et al. [17], [18], [22], Sümer Eker [1], [23], [24]. In
fact, judging by the remarkable flood of papers on the subject, the pioneering work
of Srivastava et al. [19] appears to have revived the study of analytic and bi-univalent
functions in recent years.

The following definition of fractional derivative will be required in our investi-
gation (see, for details, [13], [14], [20], [21]).

Definition 1.1. The fractional integral of order δ is defined, for a function f , by

D−δz f(z) =
1

Γ(δ)

∫ z

0

f(ξ)

(z − ξ)1−δ dξ ; (δ > 0),

where f is an analytic function in a simply-connected region of complex z-plane
containing the origin, and the multiplicity of (z − ξ)δ−1 is removed by requiring,
log(z − ξ) to be real when z − ξ > 0.

Definition 1.2. The fractional derivative of order δ is defined, for a function f , by

Dδ
zf(z) =

1

Γ(1− δ)
d

dz

∫ z

0

f(ξ)

(z − ξ)δ
dξ (0 ≤ δ < 1),

where f is constrained, and the multiplicity of (z − ξ)−δ is removed, as in Definition
1.1.

Definition 1.3. Under the hypotheses of Definition 2, the fractional derivative of order
(n+ δ) is defined by

Dn+δ
z f(z) =

dn

dzn
Dδ
zf(z) (0 ≤ δ < 1, n ∈ N0 = N ∪ {0})

By virtue of Definitions 1.1, 1.2 and 1.3, we have

D−δz zn =
Γ(n+ 1)

Γ(n+ δ + 1)
zn+δ (n ∈ N, δ > 0)

and

Dδ
zz
n =

Γ(n+ 1)

Γ(n− δ + 1)
zn−δ (n ∈ N, 0 ≤ δ < 1)
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Tremblay [26] studied a fractional calculus operator defined in terms of the Riemann-
Liouville fractional differential operator. Ibrahim and Jahangiri [9] extended and stud-
ied this operator in the complex plane.

Definition 1.4. The Tremblay fractional derivative operator Tµ,γz of a function f ∈ A
is defined, for all z ∈ U, by

Tµ,γz f(z) =
Γ(γ)

Γ(µ)
z1−γDµ−γ

z zµ−1f(z)

(0 < µ ≤ 1; 0 < γ ≤ 1; µ ≥ γ; 0 ≤ µ− γ < 1).

It is clear that, for µ = γ = 1, we have

T1,1
z f(z) = f(z).

Example 1.5. Let f(z) = zn. The Tremblay Fractional Derivative of f(z) is:

Tµ,γz f(z) =
Γ(γ)

Γ(µ)

Γ(n+ µ)

Γ(n+ γ)
zn,

and for µ = γ = 1, we have T1,1
z (zn) = zn.

Recently in [8], Esa et al. defined modified of Tremblay operator of analytic
functions in complex domain as follows:

Definition 1.6. Let f(z) ∈ A. The modified Tremblay operator denoted by Tµ,γ : A →
A and defined such as:

Tµ,γf(z) =
γ

µ
Tµ,γz f(z)

=
Γ(γ + 1)

Γ(µ+ 1)
z1−γDµ−γ

z zµ−1f(z)

= z +

∞∑
n=2

Γ(γ + 1)Γ(n+ µ)

Γ(µ+ 1)Γ(n+ γ)
anz

n.

The object of the present paper is to introduce a new subclass of the function
class Σ by using the modified Tremblay operator and find estimate on the coefficients
|a2| and |a3| for functions in this class.

We begin by introducing the function class Cµ,γΣ (α) by means of the following
definition.

2. Main results

Definition 2.1. A function f(z) given by (1.1) is said to be in the class Cµ,γΣ (α)
(0 < µ ≤ 1; 0 < γ ≤ 1; µ ≥ γ; 0 ≤ µ−γ < 1) if the following conditions are satisfied:

f ∈ Σ and

∣∣∣∣arg(1 +
z(Tf)′′(z)

Tf ′(z)

)∣∣∣∣ < απ

2
(0 < α ≤ 1, z ∈ U) (2.1)

and ∣∣∣∣arg(1 +
w(Tg)′′(w)

Tg′(w)

)∣∣∣∣ < απ

2
(0 < α ≤ 1, w ∈ U) (2.2)
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where the function g(w) is given by (1.2).

We first state and prove the estimates on the coefficients |a2| and |a3| for functions
in the class Cµ,γΣ (α).

Theorem 2.2. If f(z) given by (1.1) be in the class Cµ,γΣ (α), then

∣∣a2

∣∣ ≤ α(γ + 1)

√
(γ + 2)

(µ+ 1)[3α(µ+ 2)(γ + 1) + (1− 3α)(µ+ 1)(γ + 2)]
(2.3)

and ∣∣a3

∣∣ ≤ α(γ + 2)(γ + 1)2

(µ+ 1)(µγ − µ+ 4γ + 2)
. (2.4)

Proof. For f given by (1.1), we can write from (2.1) and (2.2)

1 +
z(Tf)′′(z)

Tf ′(z)
= [p(z)]α (2.5)

1 +
w(Tg)′′(w)

Tg′(w)
= [q(w)]α (2.6)

where p(z) and q(w) are in familiar Caratheódory Class P (see for details [7]) and
have the following series representations:

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · (2.7)

and

q(w) = 1 + q1w + q2w
2 + q3w

3 + · · · . (2.8)

Now, equating the coefficients (2.5) and (2.6), we find that

2
µ+ 1

γ + 1
a2 = αp1, (2.9)

6(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
a3 − 4

(
µ+ 1

γ + 1

)2

a2
2 = αp2 +

α(α− 1)

2
p2

1, (2.10)

−2
µ+ 1

γ + 1
a2 = αq1 (2.11)

and

6(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
(2a2

2 − a3)− 4

(
µ+ 1

γ + 1

)2

a2
2 = αq2 +

α(α− 1)

2
q2
1 . (2.12)

From (2.9) and (2.11), we get

p1 = −q1 (2.13)

and

8

(
µ+ 1

γ + 1

)2

a2
2 = α2(p2

1 + q2
1). (2.14)

Also from (2.10), (2.12) and 2.14, we get

a2
2 =

α2(p2 + q2)(γ + 2)(γ + 1)2

4(µ+ 1) [3α(µ+ 2)(γ + 1) + (1− 3α)(µ+ 1)(γ + 2)]
. (2.15)
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According to the Caratheódory Lemma (see [7]), |pn| ≤ 2 and |qn| ≤ 2 for n ∈ N.
Now taking the absolute value of (2.15) and applying the Carathéodory Lemma for
coefficients p2 and q2 we obtain∣∣a2

∣∣ ≤√ α2(γ + 2)(γ + 1)2

(µ+ 1) [3α(µ+ 2)(γ + 1) + (1− 3α)(µ+ 1)(γ + 2)]
.

This gives desired bound for |a2| as asserted in (2.3).
Now, in order to find the bound on |a3|, from (2.12) and (2.10) and (2.13), we can
write {

72(µ+ 2)2(µ+ 1)2

(γ + 2)2(γ + 1)2
− 48(µ+ 2)(µ+ 1)3

(γ + 2)(γ + 1)3

}
a3 (2.16)

= α

{(
12(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
− 4(µ+ 1)2

(γ + 1)2

)
p2 +

4(µ+ 1)2

(γ + 1)2
q2

}
+

6α(α− 1)(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
p2

1.

If α = 1 then

|a3| ≤
(γ + 2)(γ + 1)2

(µ+ 1)(µγ − µ+ 4γ + 2)
.

Now, we consider the case 0 < α < 1. From (2.16), we can write{
72(µ+ 2)2(µ+ 1)2

(γ + 2)2(γ + 1)2
− 48(µ+ 2)(µ+ 1)3

(γ + 2)(γ + 1)3

}
Re(a3) (2.17)

= αRe

{(
12(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
− 4(µ+ 1)2

(γ + 1)2

)
p2 +

4(µ+ 1)2

(γ + 1)2
q2

}
+Re

6α(α− 1)(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
p2

1.

From Herglotz’s Representation formula [15] for the functions p(z) and q(w), we have

p(z) =

∫ 2π

0

1 + ze−it

1− ze−it
dµ1(t),

and

q(w) =

∫ 2π

0

1 + we−it

1− we−it
dµ2(t),

where µi(t) are increasing on [0, 2π] and µi(2π)− µi(0) = 1 , i = 1, 2.
We also have

pn = 2

∫ 2π

0

e−intdµ1(t), n = 1, 2, . . .

qn = 2

∫ 2π

0

e−intdµ2(t), n = 1, 2, . . . .

Now (2.17) can be written as follows:{
72(µ+ 2)2(µ+ 1)2

(γ + 2)2(γ + 1)2
− 48(µ+ 2)(µ+ 1)3

(γ + 2)(γ + 1)3

}
Re(a3)
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= α

{(
12(µ+2)(µ+ 1)

(γ + 2)(γ+1)
− 4(µ+ 1)2

(γ + 1)2

)
2

∫ 2π

0

cos 2tdµ1(t)+
8(µ+1)2

(γ + 1)2

∫ 2π

0

cos 2tdµ2(t)

}
−24α(1− α)(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)

[(∫ 2π

0

cos tdµ1t

)2

−
(∫ 2π

0

sin tdµ1(t)

)2
]

≤ 2α

{(
12(µ+2)(µ+1)

(γ + 2)(γ + 1)
− 4(µ+ 1)2

(γ + 1)2

)∫ 2π

0

cos 2tdµ1(t) +
4(µ+1)2

(γ + 1)2

∫ 2π

0

cos 2tdµ2(t)

}
+

24α(1− α)(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)

(∫ 2π

0

sin tdµ1(t)

)2

= 2α

(
12(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
− 4(µ+ 1)2

(γ + 1)2

)∫ 2π

0

(1− 2 sin2 t)dµ1(t)

+
8α(µ+ 1)2

(γ + 1)2

∫ 2π

0

(1−2 sin2 t)dµ2(t)+
24α(1− α)(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)

(∫ 2π

0

sin tdµ1(t)

)2

.

By Jensen’s inequality ([16]), we have(∫ 2π

0

| sin t|dµ(t)

)2

≤
∫ 2π

0

sin2 tdµ(t).

Hence {
72(µ+ 2)2(µ+ 1)2

(γ + 2)2(γ + 1)2
− 48(µ+ 2)(µ+ 1)3

(γ + 2)(γ + 1)3

}
Re(a3)

≤ 2α

(
12(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
− 4(µ+ 1)2

(γ + 1)2

)
−4α

(
12(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
− 4(µ+ 1)2

(γ + 1)2

)∫ 2π

0

sin2 tdµ1(t)

+
8α(µ+ 1)2

(γ + 1)2
− 16α(µ+ 1)2

(γ + 1)2

∫ 2π

0

sin2 tdµ2(t)

+
24α(1− α)(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)

∫ 2π

0

sin2 tdµ1(t)

and thus

Re(a3) ≤ α(γ + 2)(γ + 1)2

(µ+ 1)(µγ − µ+ 4γ + 2)

which implies

|a3| ≤
α(γ + 2)(γ + 1)2

(µ+ 1)(µγ − µ+ 4γ + 2)
.

This completes the proof of theorem. �

If we take γ = µ, in the Theorem 2.2, we obtain following corollary.

Corollary 2.3. Let f(z) given by (1.1) be in the class Cµ,µΣ (α) (0 < α ≤ 1). Then

|a2| ≤ α and |a3| ≤
2α

(γ + 1)2
.
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3. Coefficient estimates for the function class Cµ,γΣ (β)

Definition 3.1. A function f(z) given by (1.1) is said to be in the class Cµ,γΣ (β)
(0 < µ ≤ 1; 0 < γ ≤ 1; µ ≥ γ; 0 ≤ µ−γ < 1) if the following conditions are satisfied:

f ∈ Σ and Re

{
1 +

z(Tf)′′(z)

Tf ′(z)

}
> β (0 ≤ β < 1, z ∈ U) (3.1)

and

Re

{
1 +

w(Tg)′′(w)

Tg′(w)

}
> β (0 ≤ β < 1, w ∈ U) (3.2)

where the function g is inverse of the function f given by (1.2).

For γ = µ, the class of Cµ,γΣ (β) is reduced to CΣ(β) of bi-convex of order β
(0 ≤ β < 1), which is introduced by Brannan and Taha [5], [6].

Theorem 3.2. If f(z) given by (1.1) be in the class Cµ,γΣ (β), then

∣∣a2

∣∣ ≤√ (1− β)(γ + 1)2(γ + 2)

(µ+ 1)(µγ − µ+ 4γ + 2)
(3.3)

and ∣∣a3

∣∣ ≤ (1− β)(γ + 1)2(γ + 2)

(µ+ 1)(µγ − µ+ 4γ + 2)
. (3.4)

Proof. The inequalities in (3.1) and (3.2) can be written in the following forms :

1 +
z(Tf)′′(z)

Tf ′(z)
= β + (1− β)p(z) (3.5)

and

1 +
w(Tg)′′(w)

Tg′(w)
= β + (1− β)q(w) (3.6)

where p(z) and q(w) have the forms (2.7) and (2.8), respectively. As in the proof of
Theorem 2.2, by equating coefficients (3.5) and (3.6) yields,

2
µ+ 1

γ + 1
a2 = (1− β)p1, (3.7)

6(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
a3 − 4

(
µ+ 1

γ + 1

)2

a2
2 = (1− β)p2, (3.8)

−2
µ+ 1

γ + 1
a2 = (1− β)q1 (3.9)

and
6(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
(2a2

2 − a3)− 4

(
µ+ 1

γ + 1

)2

a2
2 = (1− β)q2. (3.10)

From (3.7) and (3.9) we get
p1 = −q1 (3.11)

and

8

(
µ+ 1

γ + 1

)2

a2
2 = (1− β)2(p2

1 + q2
1). (3.12)
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Also from (3.8) and (3.10) we obtain

4(µ+ 1)(µγ − µ+ 4γ + 2)

(γ + 1)2(γ + 2)
a2

2 = (1− β)(p2 + q2). (3.13)

Thus, clearly we have

|a2|2 ≤
(1− β)(γ + 1)2(γ + 2)

4(µ+ 1)(µγ − µ+ 4γ + 2)
(|p2|+ |q2|) . (3.14)

Applying the Carathéodory Lemma for the coefficients p2 and q2 we find the bound
on |a2| as asserted in (3.3).
In order to find the bound on |a3|, we multiply

12(µ+ 2)(µ+ 1)

(γ + 2)(γ + 1)
− 4(µ+ 1)2

(γ + 1)2
and

4(µ+ 1)2

(γ + 1)2

to the relations (3.8) and (3.10) respectively and on adding them we obtain:{
24(µ+ 2)(µ+ 1)2(µγ − µ+ 4γ + 2)

(γ + 1)3(γ + 2)2

}
a3

= (1− β)

{
4(µ+ 1)(2µγ + µ+ 5γ + 4)

(γ + 2)(γ + 1)2
p2 +

4(µ+ 1)2

(γ + 1)2
q2

}
. (3.15)

Taking the absolute value of (3.15) and applying the Carathéodory Lemma for the
coefficients p2, q2 we find

|a3| ≤
(1− β)(γ + 1)2(γ + 2)

(µ+ 1)(µγ − µ+ 4γ + 2)
,

which is asserted in (3.4). �

If we take γ = µ, in the Theorem 3.2, we obtain following corollary.

Corollary 3.3. [5], [6] Let f(z) given by (1.1) belong to CΣ(β) (0 ≤ β < 1). Then

|a2| ≤
√

1− β and |a3| ≤ 1− β.
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Sevtap Sümer Eker
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Differential subordinations and superordinations
for analytic functions defined by Sălăgean
integro-differential operator

Ágnes Orsolya Páll-Szabó

Abstract. In this paper we consider the linear operator L n : A → A,

L nf (z) = (1− λ) Dnf (z) + λInf (z) ,

where Dn is the Sălăgean differential operator and In is the Sălăgean integral
operator. We give some results and applications for differential subordinations
and superordinations for analytic functions and we will determine some properties
on admissible functions defined with the new operator.

Mathematics Subject Classification (2010): 30C45, 30C80.

Keywords: Sălăgean integro-differential operator, differential subordination, dif-
ferential superordination, dominant, best dominant, ”sandwich-type theorem”.

1. Preliminaries

Let U be the unit disk in the complex plane:

U = {z ∈ C : |z| < 1} .

Let H = H(U) be the space of holomorphic functions in U and let

An =
{
f ∈ H(U) : f (z) = z + an+1z

n+1 + · · · , z ∈ U
}

with A1 = A. For a ∈ C and n a positive integer, let

H [a, n] =
{
f ∈ H(U) : f (z) = a+ anz

n + an+1z
n+1 + · · · , z ∈ U

}
.

Denote by

K =

{
f ∈ A : <zf

′′(z)

f ′(z)
+ 1 > 0, z ∈ U

}
the class of normalized convex functions in U .
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We denote by Q the set of functions f that are analytic and injective on U \ E(f),
where

E(f) =

{
ζ ∈ ∂U : lim

z→ζ
f(z) =∞

}
and such that f ′(ζ) 6= 0 for ζ ∈ ∂U \ E(f).

Definition 1.1. ([9], Definition 3.5.1, [4]) Let f, g ∈ H. We say that the function f is
subordinate to the function g or g is superordinate to f , if there exists a function w,
which is analytic in U and w(0) = 0; |w(z)| < 1; z ∈ U , such that f(z) = g(w(z));
∀z ∈ U. We denote by ≺ the subordination relation. If g is univalent, then f ≺ g if
and only if f(0) = g(0) and f (U) ⊆ g (U).

We omit the requirement ′′z ∈ U ′′ because the definition and conditions of the
functions, in the unit disk U .

Let ψ : C3 × U → C be a function and let h be univalent in U and q ∈ Q. In
article [6] it is studied the problem of determining conditions on admissible function
ψ such that

ψ
(
p (z) , zp′ (z) , z2p′′ (z) ; z

)
≺ h (z) , (z ∈ U) (1.1)

(second-order) differential subordination, implies p(z) ≺ q(z), ∀p ∈ H [a, n]. The uni-
valent function q is called a dominant of the solution of the differential subordination,
or more simply a dominant, if p ≺ q for all p satisfying (1.1).
A dominant q̃, which is the ”smallest” function with this property and satisfies q̃ ≺ q
for all dominants q of (1.1) is said to be the best dominant of (1.1). The best dominant
is unique up to a rotation of U .

Let ϕ : C3 × U → C be a function and let h ∈ H and q ∈ H [a, n]. If p
and ϕ

(
p (z) , zp′ (z) , z2p′′ (z) ; z

)
are univalent in U and satisfy the (second-order)

differential superordination

h (z) ≺ ϕ
(
p (z) , zp′ (z) , z2p′′ (z) ; z

)
, (z ∈ U) (1.2)

then p is called a solution of the differential superordination. In [7] the authors studied
the dual problem of determining properties of functions p that satisfy the differential
superordination (1.2). The analytic function q is called a subordinant of the solutions
of the differential superordination, or more simply a subordinant, if q ≺ p for all p
satisfying (1.2). An univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants q
of (1.2) is said to be the best subordinant of (1.2) and is the ”largest” function with
this property. The best subordinant is unique up to a rotation of U .

Definition 1.2. [11, 12] For f ∈ A, n ∈ N0, N0 = N∪{0} ,N = {1, 2, . . .}, the Sălăgean
differential operator Dn is defined by Dn : A → A,

D0f(z) = f(z),

Dn+1f(z) = z (Dnf (z))
′
, z ∈ U.

Remark 1.3. If f ∈ A and f(z) = z +

∞∑
k=2

akz
k, then

Dnf(z) = z +

∞∑
k=2

knakz
k, z ∈ U.
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Definition 1.4. [11] For f ∈ A, n ∈ N0, the operator In is defined by

I0f(z) = f(z),

Inf(z) = I
(
In−1f (z)

)
, z ∈ U, n ≥ 1.

Remark 1.5. If f ∈ A and f(z) = z +

∞∑
k=2

akz
k, then

Inf(z) = z +

∞∑
k=2

ak
kn
zk, z ∈ U, (n ∈ N0)

and z (Inf(z))
′

= In−1f(z).

Definition 1.6. Let λ ≥ 0, n ∈ N. Denote by L n the operator given by L n : A → A,

L nf (z) = (1− λ) Dnf (z) + λInf (z) , z ∈ U.

Remark 1.7. If f ∈ A and f(z) = z +

∞∑
k=2

akz
k, then

L nf (z) = z +

∞∑
k=2

[
kn (1− λ) + λ

1

kn

]
akz

k, z ∈ U. (1.3)

Lemma 1.8. [2] Let q be an univalent function in U and γ ∈ C∗ = C \ {0} such that

<
{

1 +
zq′′(z)

q′(z)

}
≥ max

{
0,−< 1

γ

}
.

If p is an analytic function in U , with p(0) = q(0) and

p(z) + γzp′(z) ≺ q(z) + γzq′(z), (1.4)

then p(z) ≺ q(z) and q is the best dominant of (1.4).

Lemma 1.9. [2] Let q be convex function in U , with q(a) = 0 and γ ∈ C such that
< γ > 0. If p ∈ H [a, 1] ∩Q and p(z) + γzp′(z) is univalent in U , then

q(z) + γzq′(z) ≺ p(z) + γzp′(z)⇒ q(z) ≺ p(z)

and q is the best subordinant.

S. S. Miller and P. T. Mocanu obtained special results related to differential
subordinations in [8] .

We follow Cot̂ırlă [3] and we generalise her results. Nechita obtained similar
results in [10] for generalized Sǎlǎgean differential operator (see also [1], [5]).
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2. Main results

Theorem 2.1. Let q be an univalent function in U with q(0) = 1, γ ∈ C∗ such that

<
{

1 +
zq′′(z)

q′(z)

}
≥ max

{
0,−< 1

γ

}
.

If f ∈ A and

L n+1f (z)

L nf (z)
+ γ

{
1−

L n+1f (z)
[
(1− λ) Dn+1f (z) + λIn−1f (z)

]
[L nf (z)]

2 +

+
(1− λ)

[
Dn+2f (z)−Dnf (z)

]
L nf (z)

}
≺ q(z) + γzq′(z), (2.1)

then
L n+1f (z)

L nf (z)
≺ q(z) (2.2)

and q is the best dominant of (2.1).

Proof. We define the function

p(z) :=
L n+1f (z)

L nf (z)
.

By calculating the logarithmic derivative of p, we obtain

zp′(z)

p(z)
= z

[
L n+1f (z)

]′
L n+1f (z)

− z [L nf (z)]
′

L nf (z)
. (2.3)

By using the identity

z
[
L n+1f (z)

]′
= (1− λ)Dn+2f (z) + λInf (z) (2.4)

we obtain from (2.3) that

zp′(z)

p(z)
=

1

p(z)
− (1− λ) Dn+1f (z) + λIn−1f (z)

L nf (z)

+
(1− λ)

(
Dn+2f (z)−Dnf (z)

)
L n+1f (z)

and

p(z) + γzp′(z) =
L n+1f (z)

L nf (z)
+ γ

{
1−

L n+1f (z)
[
(1− λ) Dn+1f (z) + λIn−1f (z)

]
[L nf (z)]

2

+
(1− λ)

[
Dn+2f (z)−Dnf (z)

]
L nf (z)

}
.

The subordination (2.1) becomes

p(z) + γzp′(z) ≺ q(z) + γzq′(z).

We obtain the conclusion of our theorem by applying Lemma 1.8. �

In the particular case λ = 0 and n = 0 we obtain:
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Corollary 2.2. Let q be an univalent function in U with q(0) = 1, γ ∈ C∗ such that

<
{

1 +
zq′′(z)

q′(z)

}
≥ max

{
0,−< 1

γ

}
.

If f ∈ A and

(1 + γ)
zf ′(z)

f(z)
+ γ

[
z2f ′′(z)

f(z)
−
(
zf ′(z)

f(z)

)2
]
≺ q(z) + γzq′(z)

then
zf ′(z)

f(z)
≺ q(z)

and q is the best dominant.

In the particular case λ = 0 and n = 1, we obtain:

Corollary 2.3. Let q be an univalent function in U with q(0) = 1, γ ∈ C∗ such that

<
{

1 +
zq′′(z)

q′(z)

}
≥ max

{
0,−< 1

γ

}
.

If f ∈ A and

1 + (1 + 3γ)
zf ′′(z)

f ′(z)
+ γ

[
1−

(
1 +

zf ′′(z)

f ′(z)

)2

+
z2f ′′′(z)

f ′(z)

]
≺ q(z) + γzq′(z)

then

1 +
zf ′′(z)

f ′(z)
≺ q(z)

and q is the best dominant.

When λ = 1 we get the Cot̂ırlă’s result [3]:

We select in Theorem 2.1 a particular dominant q.

Corollary 2.4. Let A,B, γ ∈ C, A 6= B such that |B| ≤ 1 and < γ > 0. If for f ∈ A

L n+1f (z)

L nf (z)
+ γ

{
1−

L n+1f (z)
[
(1− λ) Dn+1f (z) + λIn−1f (z)

]
[L nf (z)]

2

+
(1− λ)

[
Dn+2f (z)−Dnf (z)

]
L nf (z)

}
≺ 1 +Az

1 +Bz
+ γ

(A−B) z

(1 +Bz)
2 ,

then
L n+1f (z)

L nf (z)
≺ 1 +Az

1 +Bz

and q(z) =
1 +Az

1 +Bz
is the best dominant.
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Theorem 2.5. Let q be a convex function in U with q(0) = 1 and γ ∈ C such that
< γ > 0. If f ∈ A,

L n+1f (z)

L nf (z)
∈ H [1, 1] ∩Q,

L n+1f (z)

L nf (z)
+ γ

{
1−

L n+1f (z)
[
(1− λ) Dn+1f (z) + λIn−1f (z)

]
[L nf (z)]

2

+
(1− λ)

[
Dn+2f (z)−Dnf (z)

]
L nf (z)

}
is univalent in U and

q(z) + γzq′(z) ≺ L n+1f (z)

L nf (z)
+ γ

{
1−

L n+1f (z)
[
(1− λ) Dn+1f (z) + λIn−1f (z)

]
[L nf (z)]

2

+
(1− λ)

[
Dn+2f (z)−Dnf (z)

]
L nf (z)

}
,

(2.5)

then q(z) ≺ L n+1f (z)

L nf (z)
and q is the best subordinant .

Proof. Let

p(z) :=
L n+1f (z)

L nf (z)
.

If we proceed as in the proof of Theorem 2.1, the superordination (2.5) become

q(z) + γzq′(z) ≺ p(z) + γzp′(z).

The conclusion of this theorem follows by applying the Lemma 1.9. �

From the combination of Theorem 2.1 and Theorem 2.5 we get the following
”sandwich-type theorem”.

Theorem 2.6. Let q1 and q2 be convex functions in U with q1(0) = q2(0) = 1, γ ∈ C
such that < γ > 0. If f ∈ A,

L n+1f (z)

L nf (z)
∈ H [1, 1] ∩Q,

L n+1f (z)

L nf (z)
+ γ

{
1−

L n+1f (z)
[
(1− λ) Dn+1f (z) + λIn−1f (z)

]
[L nf (z)]

2

+
(1− λ)

[
Dn+2f (z)−Dnf (z)

]
L nf (z)

}
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is univalent in U and

q1(z) + γzq′1(z) ≺ L n+1f (z)

L nf (z)
+ γ

{
1−

L n+1f (z)
[
(1− λ) Dn+1f (z) + λIn−1f (z)

]
[L nf (z)]

2

+
(1− λ)

[
Dn+2f (z)−Dnf (z)

]
L nf (z)

}
≺ q2(z) + γzq′2(z), (2.6)

then

q1(z) ≺ L n+1f (z)

L nf (z)
≺ q2(z),

q1 is the best subordinant and q2(z) is the best dominant.

Theorem 2.7. Let q be a convex function in U with q(0) = 1, γ ∈ C∗ such that

<
{

1 +
zq′′(z)

q′(z)

}
≥ max

{
0,−< 1

γ

}
.

If f ∈ A and

(1 + γ) z
L nf (z)

[L n+1f (z)]
2 + γz

(1− λ) Dn+1f (z) + λIn−1f(z)

[L n+1f (z)]
2

−2γz
L nf (z)

[
(1− λ) Dn+2f (z) + λInf(z)

]
[L n+1f (z)]

3 ≺ q(z) + γzq′(z), (2.7)

then

z
L nf (z)

[L n+1f (z)]
2 ≺ q(z),

q is the best dominant.

Proof. Let

p(z) := z
L nf (z)

[L n+1f (z)]
2 .

By calculating the logarithmic derivative of p, we obtain

zp′(z)

p(z)
= 1+

(1− λ) Dn+1f (z) + λIn−1f(z)

L nf (z)
−2

(1− λ) Dn+2f (z) + λInf(z)

L n+1f (z)
. (2.8)

It follows that

p(z) + γzp′(z) = (1 + γ) z
L nf (z)

[L n+1f (z)]
2 + γz

(1− λ) Dn+1f (z) + λIn−1f(z)

[L n+1f (z)]
2

− 2γz
L nf (z)

[
(1− λ) Dn+2f (z) + λInf(z)

]
[L n+1f (z)]

3 .

The subordination (2.7) becomes

p(z) + γzp′(z) ≺ q(z) + γzq′(z). �

We consider n = 0 and λ = 0.
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Corollary 2.8. Let q be univalent in U with q(0) = 1, γ ∈ C∗ such that

<
{

1 +
zq′′(z)

q′(z)

}
≥ max

{
0,−< 1

γ

}
.

If f ∈ A and

(1− γ)
f(z)

z [f ′(z)]
2 + γ

 1

f ′(z)
−

(
2f(z) · f ′′(z)

[f ′(z)]
3

)2
 ≺ q(z) + γzq′(z)

then
f(z)

z [f ′(z)]
2 ≺ q(z)

and q is the best dominant.

Corollary 2.9. Let A,B, γ ∈ C, A 6= B such that |B| ≤ 1 and < γ > 0. If for f ∈ A

(1 + γ) z
L nf (z)

[L n+1f (z)]
2 + γz

(1− λ) Dn+1f (z) + λIn−1f(z)

[L n+1f (z)]
2

−2γz
L nf (z)

[
(1− λ) Dn+2f (z) + λInf(z)

]
[L n+1f (z)]

3 ≺ 1 +Az

1 +Bz
+ γ

(A−B) z

(1 +Bz)
2 , (2.9)

then

z
L nf (z)

[L n+1f (z)]
2 ≺

1 +Az

1 +Bz

and q(z) =
1 +Az

1 +Bz
is the best dominant.

Theorem 2.10. Let q be a convex function in U with q(0) = 1, γ ∈ C such that
< γ > 0. If f ∈ A

z
L nf (z)

[L n+1f (z)]
2 ∈ H [1, 1] ∩Q,

(1 + γ) z
L nf (z)

[L n+1f (z)]
2 + γz

(1− λ) Dn+1f (z) + λIn−1f(z)

[L n+1f (z)]
2

−2γz
L nf (z)

[
(1− λ) Dn+2f (z) + λInf(z)

]
[L n+1f (z)]

3

is univalent in U and

q(z) + γzq′(z) ≺ (1 + γ) z
L nf (z)

[L n+1f (z)]
2 + γz

(1− λ) Dn+1f (z) + λIn−1f(z)

[L n+1f (z)]
2

−2γz
L nf (z)

[
(1− λ) Dn+2f (z) + λInf(z)

]
[L n+1f (z)]

3 , (2.10)

then

q(z) ≺ z L nf (z)

[L n+1f (z)]
2 ,

q is the best subordinant.

From Theorem 2.7 and Theorem 2.10 we get the following ”sandwich-type theorem”.
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Theorem 2.11. Let q1 and q2 be convex functions in U with q1(0) = q2(0) = 1, γ ∈ C
such that < γ > 0. If f ∈ A

z
L nf (z)

[L n+1f (z)]
2 ∈ H [1, 1] ∩Q,

(1 + γ) z
L nf (z)

[L n+1f (z)]
2 + γz

(1− λ) Dn+1f (z) + λIn−1f(z)

[L n+1f (z)]
2

−2γz
L nf (z)

[
(1− λ) Dn+2f (z) + λInf(z)

]
[L n+1f (z)]

3

is univalent in U and

q1(z) + γzq′1(z) ≺ (1 + γ) z
L nf (z)

[L n+1f (z)]
2 + γz

(1− λ) Dn+1f (z) + λIn−1f(z)

[L n+1f (z)]
2

−2γz
L nf (z)

[
(1− λ) Dn+2f (z) + λInf(z)

]
[L n+1f (z)]

3 ≺ q2(z) + γzq′2(z), (2.11)

then

q1(z) ≺ z L nf (z)

[L n+1f (z)]
2 ≺ q2(z),

and q1 is the best subordinant and q2(z) is the best dominant.
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fined by generalized Sălăgean integral operator, Appl. Math. Lett., 24(2011), 1364-1368.
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Differential superordination for harmonic
complex-valued functions

Georgia Irina Oros and Gheorghe Oros

Abstract. Let Ω and ∆ be any sets in C, and let ϕ(r, s, t; z) : C3 × U → C.
Let p be a complex-valued harmonic function in the unit disc U of the form

p(z) = p1(z) + p2(z), where p1 and p2 are analytic in U . In [5] the authors
have determined properties of the function p such that p satisfies the differential
subordination

ϕ(p(z), Dp(z), D2p(z); z) ⊂ Ω⇒ p(U) ⊂ ∆.

In this article, we consider the dual problem of determining properties of the
function p, such that p satisfies the second-order differential superordination

Ω ⊂ ϕ(p(z), Dp(z), D2p(z); z)⇒ ∆ ⊂ p(U).

Mathematics Subject Classification (2010): 30C80, 30C46, 30A20, 34A40.

Keywords: Differential subordination, harmonic functions, differential superordi-
nation, subordinant, best subordinant, analytic function.

1. Introduction and preliminaries

The theory of differential subordinations (or the method of admissible functions)
for analytic functions was introduced by S.S. Miller and P.T. Mocanu in papers [6]
and [7] and later developed in [1], [8], [10], [11], [12], [13].

The theory of differential subordinations has been extended from the analytic
functions to the harmonic complex-valued functions in papers [2], [5], [14].

Let U = {z ∈ C : |z| < 1} be the open unit disc of the complex plane with

U = {z ∈ C : |z| ≤ 1} and ∂U = {z ∈ C : |z| = 1}.

Denote by H(U) the class of holomorphic functions in the unit disc U , and

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + . . .}, A1 = A.
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A harmonic complex-valued mapping of the simply connected region Ω is a
complex-valued function of the form

f(z) = h(z) + g(z), (1.1)

where h and g are analytic in Ω, with g(z0) = 0 for some prescribed point z0 ∈ Ω.
We call h and g analytic and co-analytic parts of f , respectively. If f is (locally)

injective, then f is called (locally) univalent. The Jacobian and the second complex
dilatation of f are given by

Jf (z) = |h′(z)|2 − |g′(z)|2

and
w(z) = g′(z)/h′(z), z ∈ Ω, respectively.

A function f ∈ C2(Ω), f(z) = u(z) + iv(z) which satisfies

∆f =
∂2f

∂x2
+
∂2f

∂y2
= 0

or

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0

and

∆v =
∂2v

∂x2
+
∂2v

∂y2
= 0

is called harmonic function.
By Har(U) we denote the class of complex-valued, sense-preserving harmonic

mappings in U . We note that each f of the form (1.1) is uniquely determined by
coefficients of the power series expansion [2]

h(z) = a0 +

∞∑
n=1

anz
n, g(z) = b0 +

∞∑
n=1

bnz
n, z ∈ U, (1.2)

where an ∈ C, n = 0, 1, 2, . . . and bn ∈ C, n = 0, 1, 2, . . .
Several fundamental informations about harmonic mappings in the plane can

also be found in [3].
For f ∈ Har(U), let the differential operator D be defined as follows

Df = z
∂f

∂z
− z ∂f

∂z
= zh′(z)− zg′(z), (1.3)

where
∂f

∂z
and

∂f

∂z
are the formal derivatives of function f

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
and

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (1.4)

The conditions (1.4) are satisfied for any function f ∈ C1(Ω) not necessarily
harmonic, nor analytic.

Moreover, we define n-th order differential operator by recurrence relation

D2f = D(Df) = Df + z2h′′ − z2g′′, Dnf = D(Dn−1f). (1.5)

Remark 1.1. If f ∈ H(U) (i.e. g(z) = 0) then Df(z) = zf ′(z).
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Now we present several properties of the differential operator Df .

Proposition 1.1. It is easy to prove that if f, g ∈ Har(U), then the linear operator D
satisfies the usual rules of differential calculus:

a) D(f · g) = fDg + gDf

b) D

(
f

g

)
=
gDf − fDg

g2

c) D(f ◦ g) =
∂f

∂g
·Dg +

∂f

∂g
·Dg

d) Df = −Df

e) DRe f = iImDf

f) DIm f = −iReDf

g) D|f | = i|f | · Im Df

f

h) D arg f = −iRe
Df

f

If z = reiθ, then

a)
∂f

∂θ
= iDf , r

∂Df

∂r
= D2f

b)
∂

∂θ
arg f = Re

Df

f
= Re

zh′(z)− zg′(z)
h(z) + g(z)

, (f(z) 6= 0)

c)
∂|f |
∂θ

= −|f | · Im Df

f
(f(z) 6= 0)

In order to prove the main results of this paper, we use the following definitions
and lemmas:

Definition 1.1. (Definition 2.2, [5]) By Q we denote the set of functions

q(z) = q1(z) + q2(z),

harmonic complex-valued and univalent on U \ E(q), where

E(q) =

{
ζ ∈ ∂U ; lim

z→ζ
f(z) =∞

}
.

Moreover, we assume that D(q(ζ)) 6= 0, for ζ ∈ ∂U \E(q). The set E(q) is called
an exception set. We note that the functions

q(z) = z, q(z) =
1 + z

1− z
are in Q, therefore Q is a non-empty set.

For the number 0 < r < 1, we denote by Ur = {z ∈ C : |z| < r}.
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Lemma 1.1. (Lemma 2.2 [5]) Let p, q ∈ Har(U), p(U) be simply connected and q be
univalent in U . Also, let p ∈ Q with p(0) = q(0) = 1, q(z) 6= 1. If q is not strongly
subordinate to p, then there exist points z0 = r0e

iθ0 and ζ0 ∈ ∂U \E(q) and a number
m ≥ 1 such that q(Ur0) ⊂ p(U), q(z0) = p(ζ0), and

i) Dq(z0) = mDp(ζ0);

ii) Re
D2q(z0)

Dq(z0)
≥ mRe

D2p(ζ0)

Dp(ζ0)
.

2. Main results

In paper [9], S.S. Miller and P.T. Mocanu have introduced the dual notion of
the differential superordination for analytic functions. In this paper we extend this
notion for the harmonic complex-valued functions following the classical theory of
differential superordination.

Definition 2.1. Let f and F be members of Har(U). The function f is said to be
subordinate to F , or F is said to be superordinate to f , if there exist a function w
analytic in U , with w(0) = 0 and |w(z)| < 1 such that f(z) = F (w(z)). In such a
case we write f(z) ≺ F (z). If F is univalent in U , then f(z) ≺ F (z) if and only if
f(0) = F (0) and f(U) ⊂ F (U).

Let Ω and ∆ be any sets in C, let p be a harmonic complex-valued function
in the unit disc U and let ϕ(r, s, t; z) : C3 × U → C. In this paper we consider the
problem of determining conditions on Ω, ∆ and ϕ for which the following implication
holds:

Ω ⊂ {ϕ(p(z), Dp(z), D2p(z); z) : z ∈ U} ⇒ ∆ ⊂ p(U). (2.1)

There are three distinct cases to consider in analyzing this implication, which
we list as the following problems:

Problem 1. Given Ω and ∆, find conditions on the function ϕ so that (2.1) holds.

Problem 2. Given ϕ and Ω, find a set ∆ such that (2.1) holds.
Furthermore, find the largest such ∆.

Problem 3. Given ϕ and ∆, find a set Ω, such that (2.1) holds.
Furthermore, find the smallest such Ω.

If either Ω or ∆ in (2.1) is a simply connected domain, then it may be possible
to rephrase (2.1) in terms of superordination. If p is harmonic univalent in U , and if ∆
is a simply connected domain with ∆ 6= C, then there is g a harmonic and univalent
function, conformal mapping of U onto ∆, such that q(0) = p(0).

In this case (2.1) can be rewritten as

(2.1′) Ω ⊂ {ϕ(p(z), Dp(z), D2p(z); z)} ⇒ q(z) ≺ p(z).

If Ω is also a simply connected domain with Ω 6= C, then there is a conformal
mapping h of U onto Ω, harmonic univalent function such that h(0) = ϕ(p(0), 0, 0; 0).
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If in addition, the function ϕ(p(z), Dp(z), D2p(z); z) is harmonic univalent in U , then
(2.1) can be rewritten as

h(z) ≺ ϕ(p(z), Dp(z), D2p(z); z)⇒ q(z) ≺ p(z), z ∈ U. (2.2)

In the special case when the set inclusion (2.1) can be replaced by the super-
ordination for harmonic complex-valued function (2.2), we can reinterpret the three
problems referred to above as follows:

Problem 1’. Given harmonic complex-valued functions h and q, find a class of admis-
sible functions Φ[h, q] such that (2.2) holds.

Problem 2’. Given the differential superordination for harmonic complex-valued func-
tions (2.2), find a subordinant q. Moreover, find the best subordinant.

Problem 3’. Given ϕ and subordinant q, find the largest class of harmonic complex-
valued functions h such that (2.2) holds.

Remark 2.1. A function f(z) = az+ b, a 6= 0, a, b ∈ C, which is a harmonic function,
is a conformal mapping of the complex plane into itself.

Let z = x + iy, z = x − iy, a = a1 + ia2, a1 6= 0 or a2 6= 0, b = b1 + ib2. Then
we let

f(z) = a1x+ a2y + b1 + i(a2x− a1y + b2).

Denote by

P (x, y) = a1x+ a2y + b1, Q(x, y) = a2x− a1y + b2.

The functions P and Q are continuous functions which admit partial derivatives with
respect to x and y. We have

∂P (x, y)

∂x
= a1,

∂Q(x, y)

∂y
= −a1,

∂P (x, y)

∂y
= a2,

∂Q(x, y)

∂x
= a2.

Since
∂2P (x, y)

∂x2
+
∂2P (x, y)

∂y2
= 0 and

∂2Q(x, y)

∂x2
+
∂2Q(x, y)

∂y2
= 0

we get that the function f is a harmonic function.
We now show that function f is a conformal mapping.
Let a = |a|eiφ, |a| = R > 0, φ = arg a, z = |z|eiθ = |z|eiθ, θ = arg z.
Then f(z) = Reiφz + b can be decomposed into three elementary substitutions:

(1) z1 = eiφz = |z|ei(θ+φ), meaning that the point z1 can be obtained by the
rotation of the entire complex plane around the origin by a constant angle φ. Rotation
preserves the angles of the rotated figures.

(2) z2 = Rz1, where R > 0, and a constant. This is a homothetic transformation.
It is well-known that the homothetic transformation only changes the dimensions of
the figures without changing the shape and it preserves the angles.

(3) w = z2 + b, which is a translation of the complex-plane, characterized by b.
Translation preserves dimensions and shape, hence it preserves the angles.

Since f(z) = az + b, is a combination between a rotation, a homothetic trans-
formation and a translation, f preserves angles, hence it is a conformal mapping.
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Definition 2.2. Let ϕ : C3 × U → C and let h be harmonic univalent in U . If p
and ϕ(p(z), Dp(z), D2p(z)) are harmonic univalent in U , and satisfy the second-order
differential superordination for harmonic complex-valued functions

h(z) ≺ ϕ(p(z), Dp(z), D2p(z); z) (2.3)

then p is called a solution of the differential superordination.
A harmonic univalent function q is called a subordinant of the solutions of the

differential superordination for harmonic complex-valued functions, or more simply a
subordinant if q ≺ p, for all p satisfying (2.3). An univalent harmonic subordinant q
that satisfies q ≺ q for all subordinants q of (2.3) is said to be the best subordinant.
The best subordinant is unique up to a rotation of U .

Remark 2.2. For Ω a set in C, with ϕ and p as given in Definition 2.2, suppose (2.3)
is replaced by

Ω ⊂ {ϕ(p(z), Dp(z), D2p(z) : z ∈ U}. (2.4)

Although this more general situation is a differential containment, the condition
in (2.4) will also be referred to as a differential superordination for harmonic complex-
valued functions, and the definitions of solution, subordinant and best subordinant
as given above can be extended to this generalization.

We next give the definition of the class of admissible function for harmonic
complex-valued functions.

Definition 2.3. Let Ω be a set in C and let q be a harmonic univalent function. The
class of admissible functions Φ[Ω, q] consists of those functions ϕ : C3 × U → C that
satisfy the admissibility condition

(A) ϕ(r, s, t; ζ) ∈ Ω

where

r = q(z), s =
Dq(z)

m
, Re

(
t

s
+ 1

)
≤ 1

m
Re

D2q(z)

Dq(z)
,

where ζ ∈ ∂U , z ∈ U and m ≥ 1.
If ϕ : C2 × U → C, the admissibility condition (A) reduces to

(A′) ϕ

(
q(z),

Dq(z)

m
; ζ

)
∈ Ω,

where z ∈ U , ζ ∈ ∂U and m ≥ 1.

In the special case when h is a harmonic complex-valued function conformal
mapping of U onto Ω 6= C, we denote the class Φ[h(U), q] by Φ[h, q].

The following theorems are important results for the theory of differential su-
perordinations for complex-valued harmonic functions.

Theorem 2.1. Let Ω ⊂ C, let q be a harmonic and univalent function with q(0) =
1 and let ϕ ∈ Φ[Ω, q]. If p ∈ Q, p(0) = 1, p(U) is simply connected and
ϕ(p(z), Dp(z), D2p(z) : z ∈ U) is harmonic and univalent in U , then

Ω ⊂ {ϕ(p(z), Dp(z), D2p(z) : z ∈ U)} (2.5)
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implies

q(z) ≺ p(z), z ∈ U.

Proof. Assume q 6≺ p. From Lemma 1.1, there exist points

z0 = r0e
iθ0 ∈ U and ζ0 ∈ ∂U \ E(q), m ≥ 1,

that satisfy

q(z0) = p(ζ0), Dq(z0) = mDp(z0), Re
D2q(z0)

q(z0)
≥ mRe

D2p(ζ0)

Dp(ζ0)
.

Let r = p(ζ0), s = Dp(ζ0), t = D2p(ζ0), and ζ = ζ0, in Definition 2.3, then we obtain

ϕ(p(ζ0), Dp(ζ0), D2p(ζ0); ζ0) ∈ Ω.

Since this contradicts (2.5), we have that the assumption made is false, hence
q(z) ≺ p(z), z ∈ U .

Remark 2.3. If h is a harmonic and univalent function in U , is a conformal mapping
and h(U) = Ω 6= C, then the class Φ[h(U), q] is written as Φ[h, q] and the following
result is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let q be a harmonic and univalent function in U , with q(0) = 1, let
h be harmonic and univalent in U , with p(0) = 1, p(U) is simply connected and
ϕ ∈ Φ[h(U), q]. If p ∈ Q and ϕ(p(z), Dp(z), D2p(z); z) is harmonic and univalent in
U , then

h(z) ≺ ϕ(p(z), Dp(z), D2p(z); z) (2.6)

implies

q(z) ≺ p(z), z ∈ U.

From Theorem 2.1 and Theorem 2.2, we see that we can obtain subordinants
of a differential superordination for harmonic complex-valued functions of the form
(2.5) and (2.6), by simply checking that the function ϕ is an admissible function.

The following theorem proves the existence of the best subordinant of (2.6) for
certain ϕ and also provides a method for finding the best subordinant.

Theorem 2.3. Let h be a harmonic and univalent function in U , h(U) is simply con-
nected and let ϕ : C3 × U → C. Suppose that the differential equation

ϕ(q(z), Dq(z), D2q(z); z) = h(z) (2.7)

has a solution q ∈ Q, harmonic and univalent in U . If ϕ ∈ Φ[h(U), q], p ∈ Q, p(0) = 1,
p(U) is simply connected and ϕ(p(z), Dp(z), D2p(z); z) is harmonic and univalent in
U , then

h(z) ≺ ϕ(p(z), Dp(z), D2p(z); z) (2.8)

implies

q(z) ≺ p(z), z ∈ U,
and q is the best subordinant.
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Proof. Since ϕ ∈ Φ[h(U), q] and is harmonic and univalent in U , by applying Theorem
2.2, we deduce that q is a subordinant of (2.8). Since q also satisfies (2.7), it is also a
solution of the differential subordination (2.8) and therefore all subordinants of (2.8)
will be subordinate to q. Hence q will be the best subordinant of (2.8).

From this theorem we see that the problem of finding the best subordinant of
(2.8) essentially reduces to showing that differential equation (2.8) has an univalent
solution and checking that ϕ ∈ Φ[h(U), q].

3. First-order differential superordinations for harmonic
complex-valued functions

We can simplify Theorem 2.1, 2.2 and 2.3 for the case of first-order differential
superordinations for harmonic complex-valued functions.

The following results are immediately obtained by using these theorems and
admissibility condition (A′).

Theorem 3.1. Let Ω ⊂ C, let q be a harmonic and univalent function with q(0) = 1
and ϕ ∈ Φ[Ω, q]. If p ∈ Q and ϕ(p(z), Dp(z); z ∈ U) is harmonic and univalent in U ,
then

(3.1) ϕ(q(z), tDq(z); ζ) ∈ Ω

for z ∈ U , ζ ∈ ∂U and 0 < t ≤ 1

m
≤ 1, m ≥ 1. If p ∈ Q, p(0) = 1, p(U) is simply

connected and ϕ(p(z), Dp(z); z) is harmonic and is univalent in U , then

Ω ⊂ {ϕ(p(z), Dp(z)); z ∈ U}

implies

q(z) ≺ p(z), z ∈ U.

Theorem 3.2. Let h, q be harmonic and univalent functions in U , ϕ : C2 × U → C,
and suppose that

ϕ(q(z), tDq(z); ζ) ∈ h(U),

for z ∈ U , ζ ∈ ∂U and 0 < t ≤ 1

m
≤ 1, m ≥ 1. If p ∈ Q, p(0) = 1, p(U) is simply

connected and ϕ(p(z), Dp(z); z ∈ U) is harmonic and univalent in U , then

h(z) ≺ ϕ(p(z), Dp(z); z)

implies

q(z) ≺ p(z), z ∈ U.
Furthermore, if ϕ(q(z), Dq(z); z) = h(z), has a univalent solution q ∈ Q, then q is
the best subordinant.

We next give an example of finding the best subordinant of a differential super-
ordination of harmonic functions.
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Example 3.1. Let q(z) = 1 + Mz + z, z ∈ U , M > 0 be a harmonic complex-valued
function in the unit disc.
Let z ∈ U , z = x+ iy, z = x− iy.
Then

q(z) = 1 + x+Mx+ i(My − y).

We denote

P (x, y) = 1 + x+Mx, Q(x, y) = My − y.
The functions P and Q are continuous functions in U which admit partial derivatives
with respect to x and y. We have

∂P (x, y)

∂x
= 1 +M,

∂P (x, y)

∂y
= 0,

∂Q(x, y)

∂x
= 0,

∂Q(x, y)

∂y
= M − 1.

Since
∂2P (x, y)

∂x2
+
∂2P (x, y)

∂y2
= 0 we have that P (x, y) is a harmonic function.

Since
∂2Q(x, y)

∂x2
+
∂2Q(x, y)

∂y2
= 0 we have that Q(x, y) is a harmonic function.

Hence, f(z) = P (x, y) + iQ(x, y) is a harmonic function.
The function q(z) = 1 +Mz + z is the univalent harmonic solution of the equation

h(z) = q(z) +Dq(z) +D2q(z) = 1 + 3Mz + z

which is an univalent harmonic function.
If

1 + 3Mz + z ≺ p(z) +Dp(z) +D2p(z),

then, using Theorem 2.3, we have that

1 +Mz + z ≺ p(z), z ∈ U

and q(z) = 1 +Mz + z is the best subordinant.
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Cărţii de Ştiinţă, Cluj-Napoca, 2005.

[2] Clunie, J.G., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn.
Math., 9(1984), 3-25.

[3] Duren, P.L., Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156,
Cambridge Univ. Press, 2004.

[4] Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull.
Amer. Math. Soc., 42(1936), 689-692.

[5] Kanas, S., Differential subordinations for harmonic complex-valued functions, arxiv:
1509.03751V1 [math. CV], 12 sep. 2015.

[6] Miller, S.S., Mocanu, P.T., Second order differential inequalities in the complex plane,
J. Math. Anal. Appl., 65(1978), 298-305.

[7] Miller, S.S., Mocanu, P.T., Differential subordinations and univalent functions, Michig.
Math. J., 28(1981), 157-171.



496 Georgia Irina Oros and Gheorghe Oros

[8] Miller, S.S., Mocanu, P.T., Differential Subordinations, Theory and Applications, Marcel
Dekker Inc., New York, Basel, 2000.

[9] Miller, S.S., Mocanu, P.T., Subordinants of differential superordinations, Complex Vari-
ables, 48(10)(2003), 815-826.
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On the periodicity of meromorphic functions
when sharing two sets IM

Molla Basir Ahamed

Abstract. In this paper, we have considered two sets sharing problems, and inves-
tigated on some sufficient conditions for the periodicity of meromorphic functions
and obtained two results improving the result of Bhoosnurmath-Kabbur [6], Qi-
Dou-Yang [17] and Zhang [20]. The results are:

Let S1 =

{
z :

∫ z−a

0

(t− a)n(t− b)4dt + 1 = 0

}
and S2 =

{
a, b

}
, where

n ≥ 4(n ≥ 2) be an integer. Let f(z) be a non-constant meromorphic (entire)

function satisfying Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) then f(z) ≡ f(z + c).
Some examples have been exhibited to show that, the meromorphic functions, we
have considered may be of infinite order, and also to show that the sets considered
in the main results, can’t be replace by some arbitrary sets. At the last section,
we have posed a question for the future research in this direction.

Mathematics Subject Classification (2010): 30D35.

Keywords: Meromorphic function, shared sets, finite and infinite order, shift op-
erator, periodicity.

1. Introduction

We assume that the reader is familiar with the elementary Nevanlinna theory,
see, e.g., [11, 13, 14, 18]. Meromorphic functions are always non-constant, unless
otherwise specified. For such a function f and a ∈ C =: C ∪ {∞}, each z with
f(z) = a will be called a-point of f . We will use here some standard definitions and
basic notations from this theory. In particular by N(r, a; f) (N(r, a; f)) we denote the
counting function (reduced counting function) of a-points of meromorphic functions
f , T (r, f) is the Nevanlinna characteristic function of f and S(r, f) is used to denote
each functions which is of smaller order than T (r, f) when r →∞.

We also denote C∗ := C \ {0}. As for the standard notation in the uniqueness
theory of meromorphic functions, suppose that f and g are meromorphic. Denoting
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Ef (a) (Ef (a)), the set of all a-points of f counting multiplicities (ignoring multiplic-
ities). We say that two meromorphic functions f , g share the value a CM (IM) if
Ef (a) = Eg(a) (Ef (a) = Eg(a)).

The classical results in the uniqueness theory of meromorphic functions are the
five-point, resp. four-point, theorems due to Nevanlinna [16]: If two meromorphic
functions f , g share five distinct values in the extended complex plane IM , then
f ≡ g. The beauty of this result lies in the fact that there is no counterpart of this
result in the real function theory. Similarly, if two meromorphic functions f, g share
four distinct values in the extended complex plane CM , then f ≡ T ◦ g, where T is
a Möbius transformation.

Clearly these results initiated the study of uniqueness of two meromorphic func-
tions f and g. The study becomes more interesting if the function g is related with f .

Definition 1.1. For a non-constant meromorphic function f and any set S ⊂ C, we
define

Ef (S) =
⋃
a∈S

{
(z, p) ∈ C× N : f(z) = a, with multiplicity p

}
,

Ef (S) =
⋃
a∈S

{
(z, 1) ∈ C× {1} : f(z) = a

}
.

If Ef (S) = Eg(S) (Ef (S) = Eg(S)) then we simply say f and g share S Counting
Multiplicities(CM) (Ignoring Multiplicities(IM)).

Evidently, if S contains one element only, then it coincides with the usual defi-
nition of CM(IM) sharing of values.

Definition 1.2. For a non-constant meromorphic function g and a ∈ C, we define

N (2

(
r,

1

g − a

)
the reduced counting function of those a-points of g of multiplicities

≥ 2.

In 1976, Gross [12] precipitated the research instigating the set sharing problem
with a more general set up made tracks various direction of research for the uniqueness
theory.

In connection with the question posed by Gross in[12], a sprinkling number of
results have been obtained by many mathematicians [2, 3, 5, 9, 19, 21] concerning the
uniqueness of meromorphic functions sharing two sets. But in most of the preceding
results, in the direction, one set has always been kept fixed as the set of poles of a
meromorphic function.

Recently set sharing corresponding to a function and its shift or difference op-
erator have been given priority by the researchers than that of the introductory one.

In what follows, c always means a non-zero constant. For a non-constant mero-
morphic function, we define its shift and difference operator respectively by f(z + c)
and ∆cf = f(z + c)− f(z).

Now-a-days among the researchers [1, 4, 6, 7, 8, 17, 20], an increasing amount
of interest has been found to find the possible relationship between a meromorphic
function f(z) and its shift f(z + c) or its difference ∆cf .
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At the earlier stage, several authors were devoted to find uniqueness problems
between two meromorphic functions f and g sharing two sets. But in this particular
direction, the first inspection for uniqueness of a meromorphic function and its shift
was due to Zhang [20].

In 2010, Zhang [20] obtained the following results.

Theorem A. [20] Let m ≥ 2, n ≥ 2m+4 with n and n−m having no common factors.
Let a and b be two non-zero constant such that the equation wn+awn−m+b = 0 has no
multiple roots. Let S1 = {w : wn+awn−m+b = 0} and S2 = {∞}. Suppose that f(z)
is a non-constant meromorphic function of finite order. Then Ef(z)(Sj) = Ef(z+c)(Sj)
(j = 1, 2) imply that f(z) ≡ f(z + c).

Remark 1.1. For meromorphic function, note that #(S1) = 9 when the nature of
sharing is CM .

Theorem B. [20] Let n ≥ 5 be an integer and let a, b be two non-zero constants such
that the equation wn + awn−1 + b = 0 has no multiple roots.
Denote S1 = {w : wn + awn−1 + b = 0}. Suppose that f is a non-constant entire
function of finite order. Then Ef(z)(S1) = Ef(z+c)(S1) implies f(z) ≡ f(z + c).

Remark 1.2. For entire function, note that #(S1) = 5, when the nature of sharing is
CM .

Thus we see that Zhang obtained the results for meromorphic function with the
cardinality of main range set as 9 and for entire function as 5.

Later, Qi-Dou-Yang [17] studied the case for m = 1 in Theorem A and with the
aid of some extra supposition and got #(S1) = 6 when the nture of sharing is CM .

Afterworlds, Bhoosnurmath-Kabbur [6] improved Theorem A by reducing the
lower bound of the cardinality of range set in a little different way and obtained the
following result.

Theorem C. [6] Let n ≥ 8 be an integer and c(6= 0, 1) is a constant such that the
equation

P (w) =
(n− 1)(n− 2)

2
wn − n(n− 2)wn−1 +

n(n− 1)

2
zn−2 − c.

Let us suppose that S1 = {w : P (w) = 0} and S2 = {∞}. Suppose that f(z) is
a non-constant meromorphic function of finite order. Then Ef(z)(Sj) = Ef(z+c)(Sj)
(j = 1, 2) imply that f(z) ≡ f(z + c).

Remark 1.3. For meromorphic function, we see that #(S1) = 8 when the nature of
sharing is CM .

The worth noticing fact is that, the lower bound of the cardinality of the main
range set for the meromorphic function has always been fixed to 8 without the help
of any extra supposition.

So for the improvement of all the above mentioned results it is quite natural to
investigate in this direction. Theorems A, B, C really motivates oneself for further
study in this direction by solving the following question.
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Question 1.1. Is it possible to diminish further the lower bound of the cardinalities of
the main range sets in Theorems A, B and C ?

We also note that no attempts have so far been made by any researchers, till
now to the best of our knowledge, to relax the nature of sharing the sets in connection
with the periodicity of a meromorphic function when sharing sets. So the following
question is inevitable.

Question 1.2. Can we relax the nature of sharing the sets from CM to IM in Theorems
A, B and C ?

It would be interesting to know what happens if we replace the set of poles {∞}
by new set in Theorems A, B, C.

In all the above mentioned results, the respective authors have considered mero-
morphic function with finite ordered and got their results. So a natural investigation
is that: Are Theorems A, B, C not valid for infinite ordered meromorphic function ?

The following examples show that Theorems A, B, C are true for infinite ordered
meromorphic functions also.

Example 1.1. Let

f(z) =
exp

(
exp

(
2πiz
c

))
exp

(
2πiz
c

)
− 1

.

Clearly f(z) and f(z + c) share the corresponding sets S1 and S2 in Theorems A, B,
C, and f(z) ≡ f(z + c).

Example 1.2. Let

f(z) =
exp

(
sin
(
2πz
c

))
tan

(
πz
c

)
− 1

.

Evidently, f(z) and f(z + c) share the corresponding sets S1 and S2 in Theorems A,
B, C, and f(z) ≡ f(z + c).

One can construct such examples plenty in numbers. Therefore, one natural
question arises as follows:

Question 1.3. Can we get a corresponding results like Theorems A, B, C by omitting
the term finite ordered ?

2. Main results

Answering all the questions affirmatively is the main motivation of writing this
paper. Throughout the paper, for an integer n ≥ 4, we will denote by

P(z) =

∫ z−a

0

(t− a)n(t− b)4dt+ 1, where a, b ∈ C with a 6= b.

Following are the two main result of this paper.
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Theorem 2.1. Let S1 = {z : P(z) = 0} and S2 =

{
a, b

}
, where a ∈ C∗, n ≥ 4 be an

integer. If f(z) be a non-constant meromorphic function satisfying

Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2)

then f(z) ≡ f(z + c).

Remark 2.1. For non-entire meromorphic function, one may observe that #(S1) = 9
when the nature of sharing is IM .

Theorem 2.2. Let S1 = {z : P(z) = 0} and S2 =

{
a, b

}
, where a ∈ C∗, n ≥ 2 be an

integer. If f(z) be a non-constant entire function satisfying Ef(z)(Sj) = Ef(z+c)(Sj),
(j = 1, 2), then f(z) ≡ f(z + c).

Remark 2.2. For entire function, we see that #(S1) = 7 when the nature of sharing
is IM .

The following examples satisfy Theorems 2.1 and 2.2 for “entire” as well as
“meromorphic” functions.

Example 2.1. Let us suppose that

f(z) =
tan

(πz
c

)
+ α

tan
(πz
c

)
− β

+

cos

(
2πz

c

)
+ γ

sin

(
2πz

c

)
− δ

,

where α, β, γ, δ, c ∈ C∗. It is clear that Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in
Theorem 2.1 and note that f(z) ≡ f(z + c).

Example 2.2. Let

f(z) =
α+ β sin2

(πz
c

)
γ − δ cos2

(πz
c

) ,
where p be an even positive integer, α, β, γ, δ, c ∈ C∗.
It is clear that Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in Theorem 2.1 and note that
f(z) ≡ f(z + c).

Example 2.3. Let

f(z) = aepz + b cos2
(πz
c

)
,

where p be an even positive integer, a, b , c ∈ C∗ with ec = −1. It is clear that
Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in Theorem 2.2 and note that f(z) ≡ f(z + c).

The next examples shows that the set considered in Theorem 2.1 for “entire”
and Theorem 2.2 for “meromorphic” functions respectively can not be replaced by
arbitrary sets.
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Example 2.4. Let us suppose that S1 = {ζ : ζ9 − 1 = 0} and S2 = {0,∞}. Let

f(z) =
aez

b− d sin2
(πz
c

) .
It is clear that Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in Theorem 2.1 with ec = ζ and
a, b, c, d ∈ C∗ and note that f(z) 6≡ f(z + c).

Example 2.5. Let us suppose that S1 = {ζ : ζ7 − 1 = 0} and S2 = {0, 1}. Let

f(z) = exp
(

cos
(πz
c

))
or exp

(
sin
(πz
c

))
.

Then f(z + c) = exp
(
− cos

(πz
c

))
or exp

(
− sin

(πz
c

))
respectively. It is clear that

Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2) in Theorem 2.2 and note that f(z) 6≡ f(z + c).

Example 2.6. Let

S1 =

{
− 1, 1, −i, 0, i, − 1√

2
,

1√
2

}
and S2 = {−2, 2}. Let f(z) = ez. It is clear that Ef(z)(Sj) = Ef(z+c)(Sj), (j = 1, 2)
in Theorem 2.2 with ec = −1, c ∈ C∗ and note that f(z) 6≡ f(z + c).

3. Auxiliary definitions and some lemmas

It was Fujimoto [10], who first discovered a special property of a polynomial,
reasonably called as critical injection property though initially Fujimoto [10] called it
as property (H).

Definition 3.1. Let P(w) be a non-constant monic polynomial. We call P(w) a unique-
ness polynomial if P(f) ≡ cP(g) implies f ≡ g for any non-constant meromorphic
functions f and g and any non-zero constant c. We also call P(w) a uniqueness poly-
nomial in a broad sense if P(f) ≡ P(g) implies f ≡ g.

Next we recall here the property (H) and critically injective polynomial. Let
P(w) be a monic polynomial without multiple zero whose derivative has mutually
distinct k-zeros e1, e2, . . . , ek with the multiplicities q1, q2, . . . , qk respectively.

Now, the property P(el) 6= P(em) for 1 ≤ l < m ≤ k is a known as property (H)
and a polynomial P(w) satisfying this property is called critically injective polynomial.

Given meromorphic functions f(z) and f(z + c) we associate F , G by

F = P(f), G = P(f(z + c)), (3.1)

to F , G we associate H and Φ by the following formulas

H =

(
1

F

)′′
(

1

F

)′ −
(

1

G

)′′
(

1

G

)′ =

(
F ′′

F ′
− 2F ′

F

)
−
(
G′′

G′
− 2G′

G

)
, (3.2)
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Φ =
F ′

F
− G

′

G
. (3.3)

Before proceeding to the actual proofs, we recall a few lemmas that take an
important role in the reasoning.

Lemma 3.1. [15] Let g be a non-constant meromorphic function and let

R#(g) =

n∑
i=1

aig
i

m∑
j=1

bjg
j

,

be an irreducible rational function in g with constant coefficients {ai}, {bj}, where
an 6= 0 and bm 6= 0. Then

T (r,R#(g)) = max{n,m} T (r, g) + S(r, g).

Lemma 3.2. [10] Let P(w) be a polynomial satisfying the property (H). Then, P(w)
is a uniqueness polynomial in a broad sense if and only if∑

1≤l<m≤k

q
l
q
m
>

k∑
l=1

q
l
. (3.4)

It can be easily verified that for the case k ≥ 4, the condition (3.4) is always
satisfied. Moreover, (3.4) holds when max{q1, q2, q3} ≥ 2 for the case k = 3 and when
min{q1, q2} ≥ 2 and q1 + q2 ≥ 5 for the case k = 2.

4. Proofs of the theorems

In this section, we give the proofs of our main results.

Proof of Theorem 2.1. Let f(z) and f(z + c) be any two non-constant meromorphic
functions. It is clear that

F ′ = (f(z)− a)n(f(z)− b)4f ′(z) and

G′ = (f(z + c)− a)n(f(z + c)− b)4f ′(z + c).

We now discuss the following two cases:

Case 1. There exists a λ > 1, I ⊂ R+ with measure of I as +∞ such that

2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
(4.1)

≥ λ

{
T (r, f(z)) + T (r, f(z + c))

}
+ S(r, f(z)) + S(r, f(z + c)),

where r → +∞, r ∈ I.
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Let Φ is defined as in (3.3). Our aim is to show that Φ = 0. Let if possible Φ 6≡ 0.
Then since n ≥ 4, so from the construction of Φ, we get

4N

(
r,

1

f(z)− a

)
+ 4N

(
r,

1

f(z)− b

)
≤ N

(
r,

1

Φ

)
. (4.2)

The possible poles of Φ occur at the following points: (i) poles of f(z), (ii) poles
of f(z + c), (iii) all the zeros of F of multiplicities ≥ 2 and (iv) all the zeros of G of
multiplicities ≥ 2.

So we have

N(r,Φ) ≤ N(r.f(z)) +N (2

(
r,

1

F

)
+N(r.f(z + c)) +N (2

(
r,

1

G

)
. (4.3)

By using First Fundamental Theorem and (4.2), (4.3), we get

4N

(
r,

1

f(z)− a

)
+ 4N

(
r,

1

f(z)− b

)
(4.4)

≤ N

(
r,

1

Φ

)
≤ N(r,Φ)

≤ N(r.f(z)) +N (2

(
r,

1

F

)
+N(r.f(z + c)) +N (2

(
r,

1

G

)
+S(r, f(z)) + S(r, f(z + c)).

Again since Ef(z)(S2) = Ef(z+c)(S2), so we must have

N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
(4.5)

= N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
.

Adding N

(
r,

1

F

)
+N

(
r,

1

G

)
on both sides of (4.4), we get

4N

(
r,

1

f(z)− a

)
+ 4N

(
r,

1

f(z)− b

)
+N

(
r,

1

F

)
(4.6)

+N

(
r,

1

G

)
≤ N(r.f(z)) +N

(
r,

1

F

)
+N(r.f(z + c)) +N

(
r,

1

G

)
+S(r, f(z)) + S(r, f(z + c)).
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Next using (4.5) in (4.6), we get

2

{
N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)}
(4.7){

N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)}
+N

(
r,

1

F

)
+N

(
r,

1

G

)
+

{
N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)}
≤ N(r.f(z)) +N

(
r,

1

F

)
+N(r.f(z + c)) +N

(
r,

1

G

)
+ S(r, f(z))

+S(r, f(z + c)).

By applying Second Fundamental Theorem, we get

(n+ 5)

{
T (r, f(z)) + T (r, f(z + c))

}
(4.8)

≤ N

(
r,

1

F

)
+N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
+N

(
r,

1

G

)
+N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f(z))

+S(r, f(z + c)).

Adding

2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
both sides in (4.8) and using (4.7), we get

(n+ 5)

{
T (r, f(z)) + T (r, f(z + c))

}
+ 2N

(
r,

1

f(z)− a

)
+2N

(
r,

1

f(z)− b

)
≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+N(r, f(z)) +N(r, f(z + c))

+S(r, f(z)) + S(r, f(z + c))

≤ (n+ 6)

{
T (r, f(z)) + T (r, f(z + c))

}
.

i.e.,

2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
≤
{
T (r, f(z)) + T (r, f(z + c))

}
,

which is not possible for λ > 1 in view of (4.1).
Thus, we get Φ ≡ 0. i.e., F ≡ AG, for A ∈ C \ {0}. Using Lemma 3.1, we have

T (r, f(z)) = T (r, f(z + c)) + S(r, f(z)). (4.9)
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Subcase 1.1. Let A 6= 1.
So from the relation F ≡ AG, we get

F −A ≡ A(G − 1). (4.10)

A simple calculation shows that the polynomial P(z)−A has all simple distinct
roots and let them be σj (j = 1, 2, . . . , n+ 5) and all σj 6= a, b. Also we note that the
polynomial P(z)−1 has roots as a of multiplicity n+ 1 and rest are δj (j = 1, 2, 3, 4).
Thus we see from (4.10) that

n+5∑
j=1

N

(
r,

1

f(z)− σj

)
(4.11)

= N

(
r,

1

f(z + c)− a

)
+

4∑
j=1

N

(
r,

1

f(z + c)− δj

)
.

By applying Second Fundamental Theorem and (4.9), we have

(n+ 3)T (r, f(z))

≤
n+5∑
j=1

N

(
r,

1

f(z)− σj

)
+ S(r, f(z))

≤ N

(
r,

1

f(z + c)− a

)
+

4∑
j=1

N

(
r,

1

f(z + c)− δj

)
+ S(r, f(z))

≤ 5T (r, f(z)) + S(r, f(z)),

which contradicts n ≥ 4.
Subcase 1.2. Let A = 1. i.e., we have F ≡ G. Thus we get P(f) ≡ P(f(z + c)). We

see that the polynomial P(z) =

∫ z−a

0

(t− a)n(t− b)4dt+ 1 satisfies the condition (H)

and (3.4) since P ′(z) = (z−a)n(z− b)4, k = 2, e1 = a, e2 = b and q1 = n ≥ 4, q2 = 4.
We next see that min{q1, q2} = min{n, 4} ≥ 2 and q1 + q2 = n+ 4 ≥ 5. Therefore by
Lemma 3.2, we see that the polynomial P(z) is a uniqueness polynomial in a broad
sense. Hence the relation P(f) ≡ P(f(z + c)) implies f(z) ≡ f(z + c).
Case 2. There exists I ⊂ R+ such that measure of I is +∞ such that

2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
(4.12)

≤
(

1 +
1

1000

){
T (r, (z)f) + T (r, f(z + c))

}
+ S(r, (z)f) + S(r, f(z + c).

We claim that H ≡ 0. Suppose that H 6≡ 0. Next in view of the definition H, we see
that

N
E

1)

(
r,

1

F

)
= N

E

1)

(
r,

1

G

)
≤ N

(
r,

1

H

)
. (4.13)

We see that the possible poles of H occur at the following points: (i) poles of f(z),
(ii) poles of f(z + c), (iii) zeros of f(z), (iv) 1-points of f(z), (v) all those zeros of
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f ′(z) which are not the zeros of f(z)(f(z) − 1) and (vi) all those zeros of f ′(z + c)
which are not the zeros of f(z + c)(f(z + c)− 1). Thus we get

N(r,H) ≤ N(r, f(z)) +N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
(4.14)

+ N(r, f(z + c)) +N0(r, 0; f ′(z)) +N0(r, 0; f ′(z + c)),

where N0

(
r,

1

f ′(z)

)
is the reduced counting function of all those zeros of f ′(z) which

are not the zeros of (f(z)− a)(f(z)− b). Similarly N0

(
r,

1

f ′(z + c)

)
is defined.

Therefore using First Fundamental Theorem, we get

N
E

1)

(
r,

1

F

)
r ≤ N

(
r,

1

H

)
(4.15)

≤ N(r,H)

≤ N(r, f(z)) +N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
+ N(r, f(z + c)) +N0(r, 0; f ′(z)) +N0(r, 0; f ′(z + c)).

We also note that

N (2

(
r,

1

F

)
≤ N0

(
r,

1

f ′(z)

)
, N (2

(
r,

1

G

)
≤ N0

(
r,

1

f ′(z + c)

)
.

We define

Ψ(z) :=
f ′(z)

[f(z)− a][(f(z)− b]
f ′(z + c)

[f(z + c)− a][f(z + c)− b
.

From the definition of Ψ and by using First Fundamental Theorem and (4.5), we get

N0

(
r,

1

f ′(z)

)
+N0

(
r,

1

f ′(z + c)

)
(4.16)

≤ N

(
r,

1

Ψ

)
≤ N(r,Ψ)

≤ N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
+N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
+ S(r, f(z)) + S(r, f(z + c))

≤ 2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
+ S(r, f(z)) + S(r, f(z + c)).

Adding

N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
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both sides of (4.15), we get

N
E

1)

(
r,

1

F

)
+N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+N

(
r,

1

f(z)− a

)
(4.17)

+ N

(
r,

1

f(z)− b

)
≤ N(r, f(z)) + 2N

(
r,

1

f(z)− a

)
+ 2N

(
r,

1

f(z)− b

)
+N(r, f(z + c))

+ 2N0

(
r,

1

f ′(z)

)
+ 2N0

(
r,

1

f ′(z + c)

)
.

i.e.,

N

(
r,

1

F

)
+N

(
r,

1

f(z)− a

)
+N

(
r,

1

f(z)− b

)
(4.18)

≤ N(r, f(z)) + 6N

(
r,

1

f(z)− a

)
+ 6N

(
r,

1

f(z)− b

)
+N(r, f(z + c))

+ S(r, f(z)) + S(r, f(z + c)).

Similarly, we get

N

(
r,

1

G

)
+N

(
r,

1

f(z + c)− a

)
+N

(
r,

1

f(z + c)− b

)
(4.19)

≤ N(r, f(z + c)) + 6N

(
r,

1

f(z + c)− a

)
+ 6N

(
r,

1

f(z + c)− b

)
+ N(r, f(z)) + S(r, f(z)) + S(r, f(z + c)).

By applying Second Fundamental Theorem and (4.12), (4.18) and (4.19), we get

(n+ 5)

{
T (r, f(z)) + T (r, f(z + c))

}
≤ N

(
r,

1

F

)
+N(r, f(z)) +N

(
r,

1

f(z)− a

)
+N

(
r,

1

G

)
+N(r, f(z + c))

+N

(
r,

1

f(z + c)− a

)
+ S(r, f(z)) + S(r, f(z + c))

≤ 2N(r, f(z)) + 2N(r, f(z + c)) + 6N

(
r,

1

f(z)− a

)
+ 6N

(
r,

1

f(z + c)− a

)
+ 6N

(
r,

1

f(z)− b

)
+ 6N

(
r,

1

f(z + c)− b

)
+ S(r, f(z)) + S(r, f(z + c))

≤
(

8 +
6

1000

){
T (r, f(z)) + T (r, f(z + c))

}
+ +S(r, f(z)) + S(r, f(z + c)),

which contradicts n ≥ 4.



On the periodicity of meromorphic functions 509

Therefore, we have H ≡ 0. Thus we get

1

F
≡ A
G

+ B, (4.20)

where A( 6= 0),B ∈ C. In view of Lemma 3.1, we see from (4.20) that

T (r, f(z)) = T (r, f(z + c)) + S(r, f(z)). (4.21)

Subcase 2.1. Let B 6= 0. Thus we must have

N(r, f(z)) = N(r,F) = N

r, 1

G +
A
B

 ≥ 3T (r, f(z + c)) + S(r, f(z + c)),

which is absurd in view of (4.21).
Subcase 2.2. So we have B = 0. Therefore (4.20) reduces to G = AF . Proceeding
exactly same way as done in Subcase 1.1, we get f(z) ≡ f(z + c). �

Proof of Theorem 2.2. Since f(z) is a non-constant entire function, so we must have
N(r, f(z)) = 0 and hence N(r, f(z + c)) = 0. Now keeping this in mind, the rest of
the proof follows the proof of Theorem 2.1. �

5. An open question

Question 5.1. Is it possible to reduce the cardinalities further of two sets sharing
problem (in case of IM sharing) for the periodicity of a meromorphic function f ?
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Analysis of fractional boundary value problem
with non local flux multi-point conditions
on a Caputo fractional differential equation

Muthaiah Subramanian, A Ramamurthy Vidhya Kumar and Thangaraj
Nandha Gopal

Abstract. A brief analysis of boundary value problem of Caputo fractional differ-
ential equation with nonlocal flux multi-point boundary conditions has been done.
The investigation depends on the Banach fixed point theorem, Krasnoselskii-
Schaefer fixed point theorem due to Burton and Kirk, fixed point theorem due to
O’Regan. Relevant examples illustrating the main results are also constructed.
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1. Introduction

In recent years, fractional differential equations are increasingly utilized to model
many problems in biology, chemistry, engineering, physics, economic and other areas
of applications. The fractional differential equations have become a useful tool for
describing nonlinear phenomena of science and engineering models. Also, researchers
found that fractional calculus was very suitable to describe long memory and hered-
itary properties of various materials and processes. we refer the reader to the texts
[16]-[14], [8], [9]-[6], and the references cited therein.

Fractional differential equations have attracted considerable interest because of
their ability to model complex artefacts. These equations capture non local relations
in space and time with memory essentials. Due to extensive applications of FDEs in
engineering and science, research in this area has grown significantly all around the
world., for instance, see [18], [11], [15] and the references cited therein. Recently, much
interest has been created in establishing the existence of solutions for various types of
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boundary value problem of fractional order with nonlocal multi-point boundary con-
ditions. Nonlocal multi-point conditions involving Liouville-Caputo derivative, first
of its kind was explored by Agarwal et.al. [1] on nonlinear fractional order boundary
value problem. Ahmad et.al. [2]-[5], [3], [7] profound the idea of new kind of non-
local multi-point boundary value problem of fractional integro-differential equations
involving multi-point strips integral boundary conditions.

In this paper the existence and uniqueness of solutions for the below fractional
differential equations with nonlocal multi-point boundary conditions are discussed.
Consider the fractional differential equation

CD
δ
p(z) = k(z, p(z)), z ∈ J = [0, 1], n− 1 < δ ≤ n, (1.1)

supplemented with the nonlocal multi-point integral boundary conditions

p(0) = ψ(p), p′(0) = ρp′(ν), p
′′
(0) = 0, p

′′′
(0) = 0, · · ·, pn−2(0) = 0,

p(1) = λ

∫ ς

0

p(σ)dσ + µ

m−2∑
j=1

ξjp(ζj),
(1.2)

where CDδ denote the Caputo fractional derivative and k: J×R to R and ψ: C(J,R)
to R, are given continuous functions, 0 < ν < ς < ζ1 < ζ2 < · · · < ζm−2 < 1,
ξj , j = 1, 2, · · ·,m − 2, ρ, λ, µ are positive real constants. The rest of the paper
is organised as follows: The preliminaries section is devoted to some fundamental
concepts of fractional calculus with basic lemma related to the given problem. In
section 3, the existence and uniqueness of solutions are obtained based on Banach
fixed point theorem, Krasnoselskii-Schaefer fixed point theorem due to Burton and
Kirk, and fixed point theorem due to O’Regan and also the validation of the results
is done by providing examples.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional calculus.

Definition 2.1. The fractional integral of order δ with the lower limit zero for a function
k is defined as

Iδk(z) =
1

Γ(δ)

∫ z

0

k(σ)

(z − σ)1−δ
dσ, z > 0, δ > 0,

provided the right hand-side is point-wise defined on [0,∞), where Γ(·) is the gamma
function, which is defined by Γ(δ) =

∫∞
0
zδ−1e−zdz.

Definition 2.2. The Riemann-Liouville fractional derivative of order δ > 0, n − 1 <
δ < n, n ∈ N is defined as

Dδ
0+k(z) =

1

Γ(n− δ)

(
d

dz

)n ∫ z

0

(z − σ)n−δ−1k(σ)dσ,

where the function k(z) has absolutely continuous derivative up to order (n− 1).
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Definition 2.3. The Caputo derivative of order δ for a function k : [0,∞)→ R can be
written as

CDδk(z) = Dδ
0+

(
k(z)−

n−1∑
j=0

zj

j!
k(j)(0)

)
, z > 0, n− 1 < δ < n.

Remark 2.4. If k(z) ∈ Cn[0,∞), then

CDδk(z) =
1

Γ(n− δ)

∫ z

0

kn(σ)

(z − σ)δ+1−n dσ

= In−δkn(z), z > 0, n− 1 < δ < n.

Lemma 2.5. For δ > 0, the general solution of the fractional differential equation
CDδp(z) = 0 is given by

p(z) = a0 + a1z + · · ·+ an−1z
n−1,

where ai ∈ R, i = 1, 2, . . . , n− 1 (n = [δ] + 1).

In view of Lemma 2.5, it follows that

IδCDδp(z) = p(z) + a0 + a1z + · · ·+ an−1z
n−1,

for some ai ∈ R, i = 1, 2, . . . , n− 1 (n = [δ] + 1).

Next, we present an auxiliary lemma which plays a key role in the sequel.

Lemma 2.6. For any k̂ ∈ C(J,R), the solution of the linear fractional differential
equation

CDδp(z) = k̂(z), n− 1 < δ ≤ n, (2.1)

supplemented with the boundary conditions (1.2) is given by

p(z) =

∫ z

0

(z − σ)δ−1

Γ(δ)
k̂(σ)dσ

+
[
1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]
ψ(p)

+
ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
k̂(σ)dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
k̂(θ)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
k̂(σ)dσ−

∫ 1

0

(1− σ)δ−1

Γ(δ)
k̂(σ)dσ

]
(2.2)
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where

$1 = 1− ρ, $2 = 1− λδ2

2
− µ

m−2∑
j=1

ξjζj (2.3)

υ1 = (n− 1)ρδn−2, υ2 = 1− λδn

n
− µ

m−2∑
j=1

ξjζ
n−1
j (2.4)

ϑ = $1υ2 +$2υ1 6= 0, (2.5)

Proof. It is evident that the general solution of the fractional differential equations in
(2.1) can be written as

p(z) =

∫ z

0

(z − σ)δ−1

Γ(δ)
k̂(σ)dσ + a0 + a1z + a2z

2 + · · ·+ an−1z
n−1 (2.6)

where ai ∈ R, (i = 0, 1, 2, ..., (n − 1)) are arbitrary constants. Using the boundary
conditions given by (1.2) in (2.6), we get a0 = ψ(p). On using the notations (2.3)-
(2.5) along with (1.2) in (2.6), we get

a1$1 − an−1υ1 = ρ

∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
k̂(σ)dσ (2.7)

a1$2 + an−1υ2 = λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
k̂(θ)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
k̂(σ)dσ

−
∫ 1

0

(1− σ)δ−1

Γ(δ)
k̂(σ)dσ. (2.8)

Solving the system (2.7) and (2.8) for a1, an−1, we get

a1 =
1

ϑ

[
υ2

(
ρ

∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
k̂(σ)dσ

)

+ υ1

(
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
k̂(θ)dθ

)
dσ

+ µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
k̂(σ)dσ + ψ(p)

(
λδ + µ

m−2∑
j=1

ξj − 1
)

−
∫ 1

0

(1− σ)δ−1

Γ(δ)
k̂(σ)dσ

)]
(2.9)
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an−1 =
−1

ϑ

[
$2

(
ρ

∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
k̂(σ)dσ

)

+$1

(
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
k̂(θ)dθ

)
dσ

+ µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
k̂(σ)dσ + ψ(p)

(
λδ + µ

m−2∑
j=1

ξj − 1
)

−
∫ 1

0

(1− σ)δ−1

Γ(δ)
k̂(σ)dσ

)]
. (2.10)

Substituting the values of a0, a1, an−1 in (2.6), we get the solution (2.2). This com-
pletes the proof.

3. Main results

We denote by G = C(J,R) be the Banach space of all continuous functions from
J→ R, equipped with the norm defined by

‖p‖ = sup
z∈J
|p(z)|, z ∈ J}.

Also by L1(J,R), we denote the Banach space of measurable functions p : J → R
which are Lebesgue integral and normed by

‖p‖L1 =

∫ 1

0

|p(z)|dz.

In view of Lemma 2.6, we define an operator T : G → G associated with problem
(1.1) as

(Tp)(z) =

∫ z

0

(z − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

+
[
1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]
ψ(p)

+
ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
k(σ, p(σ))dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
k(θ, p(θ))dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

−
∫ 1

0

(1− σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

]
(3.1)
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Let us define T1,T2 : G→ G by

(T1p)(z) =

∫ z

0

(z − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

+
ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
k(σ, p(σ))dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
k(θ, p(θ))dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

−
∫ 1

0

(1− σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

]
(3.2)

and

(T2p)(z) =
[
1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]
ψ(p) (3.3)

In the sequel, we use the notations:

η̂ =
1

Γ(δ + 1)

[
1 +

ρ|(υ2 −$2)|νδ−1

ϑδ
+

(υ1 +$1)

ϑ

(λςδ+1

δ + 1
+ µ

m−2∑
j=1

ξjζ
δ
j + 1

)]
(3.4)

and

ω̂ = 1 +
(υ1 +$1)

ϑ

(
λδ + µ

m−2∑
j=1

ξj + 1
)

(3.5)

Theorem 3.1. The continuous function k defined from J × R to R. Let us speculate
that
(E1) |k(z, p)− k(z, q)| ≤ S‖p− q‖, ∀z ∈ J,S > 0, p, q ∈ R.
(E2) The continuous function ψ defined from C(J,R) → R satisfying the condition:
|ψ(v)− ψ(w)| ≤ ε‖v − w‖, εω̂ < 1, ∀ v, w ∈ C(J,R), ε > 0.
(E3) Θ := Sη̂ + εω̂ < 1. Then the boundary value problem (1.1)-(1.2) has unique
solution on J.

Proof. For p, q ∈ G and for each z ∈ J, from the definition of T and assumptions (E1)
and (E2). We obtain

|(Tp)(z)− (Tq)(z)| ≤ sup
z∈J

{∫ z

0

(z − σ)δ−1

Γ(δ)
|k(σ, p(σ))− k(σ, q(σ))|dσ

+
∣∣∣[1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]∣∣∣|ψ(p)− ψ(q)|

+
∣∣∣ρ(zυ2 − zn−1$2)

ϑ

∣∣∣[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
|k(σ, p(σ))− k(σ, q(σ))|dσ

]



Analysis of fractional boundary value problem 517

+
∣∣∣(zυ1+zn−1$1)

ϑ

∣∣∣[λ∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
|k(θ, p(θ))− k(θ, q(θ))|dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
|k(σ, p(σ))− k(σ, q(σ))|dσ

+

∫ 1

0

(1− σ)δ−1

Γ(δ)
|k(σ, p(σ))− k(σ, q(σ))|dσ

]}

≤
∫ z

0

(z − σ)δ−1

Γ(δ)
(S‖p− q‖)dσ

+
∣∣∣[1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]∣∣∣|ψ(p)− ψ(q)|

+
∣∣∣ρ(zυ2 − zn−1$2)

ϑ

∣∣∣[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
(S‖p− q‖)dσ

]
+
∣∣∣ (zυ1 + zn−1$1)

ϑ

∣∣∣[λ ∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
(S‖p− q‖)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
(S‖p− q‖)dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
(S‖p− q‖)dσ

]

≤ S

Γ(δ + 1)

[
1 +

ρ|(υ2 −$2)|νδ−1

ϑδ
+

(υ1 +$1)

ϑ

(λςδ+1

δ + 1
+ µ

m−2∑
j=1

ξjζ
δ
j + 1

)]
‖p− q‖

+

[
1 +

(υ1 +$1)

ϑ

(
λδ + µ

m−2∑
j=1

ξj + 1
)]
ε‖p− q‖ ≤ (Sη̂ + εω̂)‖p− q‖.

Hence

‖(Tp)− (Tq)‖ ≤ Θ‖p− q‖.
As Θ < 1 by (E3), the operator T : G→ G is a contraction. Hence the conclusion of
the theorem follows by the Banach fixed point theorem. �

Example 3.2. Consider the fractional differential equation given by

CD
7
3 p(z) = sin z +

e−z sin p(z)

4
√
z6 + 16

, z ∈ J, (3.6)

subject to the boundary conditions

p(0) =
1

10
p(z), p′(0) =

1

4
x′
(1

5

)
p(1) =

∫ 1
3

0

p(σ)dσ +

4∑
j=1

ξjp(ζj). (3.7)

Here

2 < δ ≤ 3, λ = µ = 1, ρ =
1

4
, ν =

1

5
, ς =

1

3
,

ξ1 =
1

5
, ξ2 =

1

7
, ξ3 =

1

6
, ξ4 =

1

8
,
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ζ1 =
1

2
, ζ2 =

1

4
, ζ3 =

1

3
, ζ4 =

1

5
.

Using the given data, we find that

|k(z, p(z))| = sin z +
e−z sin p(z)

4
√
z6 + 16

, ψ(p) =
1

10
p(z).

Since

|k(z, p)− k(z, q) ≤ 1

16
‖p− q‖,

|ψ(v)− ψ(w)| ≤ 1

10
‖v − w‖,

therefore, (E1) and (E2) are respectively satisfied with S = 1
16 and ε = 1

10 . With the
given data, we find that η̂ = 5.18462, ω̂ = 2.62014, it is found that

Θ := Sη̂ + εω̂ ∼= 0.586053 < 1.

Thus, the assumptions of Theorem 3.1 hold and the problem (3.6)-(3.7) has at most
one solution on J.

Theorem 3.3. Let Y be a Banach space, and H1,H2 : Y → Y be two operators such
that H1 is a contraction and H2 is completely continuous. Then either
(i) the operator equation u = H1(u) + H2(u) has a solution, or
(ii) the set F = {w ∈ Y : κH1(wκ ) + κH2(w) = w} is unbounded for κ ∈ (0, 1).

Theorem 3.4. The continuous function k defined from J×R to R and condition (E2)
hold. Also let us understand that:
(E4) ψ(0) = 0.
(E5) there exists a function x ∈ L1(J,R+) such that |k(z, v)| ≤ x(z), for almost
everywhere each z ∈ J, and each v ∈ R.
Then the problem (1.1)-(1.2) has at least one solution on J.

Proof. To transform the problem (1.1)-(1.2) into a fixed point problem. we consider
the map T : G→ G given by (Tp)(z) = (T1p)(z) + (T2p)(z), z ∈ J, where T1 and T2

are defined by (3.2) and (3.3) respectively.
We shall show that the operators T1 and T2 satisfy all the conditions of Theorem 3.3.
Step 1. The operator T1 defined by (3.2) is continuous.
Let pn ⊂ Bθ = {p ∈ G : ‖p‖ ≤ θ} with ‖pn − p‖ → 0.
Then the limit ‖pn(z)−p(z)‖ → 0 is uniformly valid on J. From the uniform continuity
of k(z, p) on the compact set J× [−θ, θ], it follows that ‖k(z, pn(z))− k(z, p(z))‖ → 0
uniformly on J. Hence ‖T1pn − T1p‖ → 0 as n→∞ which implies that the operator
T1 is continuous.
Step 2. The operator T1 maps bounded sets into bounded sets in G.
It is indeed enough to show that for any θ > 0 there exists a positive constant S such
that for each

p ∈ Bθ = {p ∈ G : ‖p‖ ≤ θ},
we have

‖T1p‖ ≤ Q.
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Let p ∈ Bθ. Then

‖T1p‖ ≤
∫ z

0

(z − σ)δ−1

Γ(δ)
|k(σ, p(σ))|dσ

+
ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
|k(σ, p(σ))|dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
|k(θ, p(θ))|dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
|k(σ, p(σ))|dσ

+

∫ 1

0

(1− σ)δ−1

Γ(δ)
|k(σ, p(σ))|dσ

]
≤

∫ z

0

(z − σ)δ−1

Γ(δ)
x(σ)dσ

+
ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
x(σ)dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
x(θ)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
x(σ)dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
x(σ)dσ

]

≤ ‖x‖
Γ(δ + 1)

[
1 +

ρ|(υ2 −$2)|νδ−1

ϑδ

+
(υ1 +$1)

ϑ

(λςδ+1

δ + 1
+ µ

m−2∑
j=1

ξjζ
δ
j + 1

)]
:= Q

Step 3. The operator T1 maps bounded sets into equicontinuous sets in G.
Let %1, %2 ∈ J with %1 < %2 and p ∈ Bθ, we obtain

|(T1p)(%2)− (T1p)(%1)| ≤

∣∣∣∣∣
∫ %1

0

[(%2 − σ)δ−1 − (%1 − σ)δ−1]

Γ(δ)
× k(σ, p(σ))dσ

∣∣∣∣∣
+

∣∣∣∣∣
∫ %2

%1

(%2 − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

∣∣∣∣∣
+

∣∣∣∣∣ρ((%2 − %1)υ2 − (%n−12 − %n−11 )$2)

ϑ

∣∣∣∣∣[
∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
|k(σ, p(σ))|dσ

]

+
((%2 − %1)υ1 + (%n−12 − %n−11 )$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
|k(θ, p(θ))|dθ

)
dσ
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+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
|k(σ, p(σ))|dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
|k(σ, p(σ))|dσ

]

≤

∣∣∣∣∣
∫ %1

0

[(%2 − σ)δ−1 − (%1 − σ)δ−1]

Γ(δ)
× x(σ)dσ

∣∣∣∣∣+

∣∣∣∣∣
∫ %2

%1

(%2 − σ)δ−1

Γ(δ)
x(σ)dσ

∣∣∣∣∣
+

∣∣∣∣∣ρ((%2 − %1)υ2 − (%n−12 − %n−11 )$2)

ϑ

∣∣∣∣∣[
∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
|x(σ)|dσ

]

+
((%2 − %1)υ1 + (%n−12 − %n−11 )$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
|x(θ)|dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
|x(σ)|dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
|x(σ)|dσ

]

≤ ‖x‖
Γ(δ + 1)

[
[2(%2 − %1)δ + (%δ2 − %δ1)] +

ρ((%2 − %1)υ2 − (%n−12 − %n−11 )$2)νδ−1

ϑδ

+
((%2 − %1)υ1 + (%n−12 − %n−11 )$1)

ϑ

(λςδ+1

δ + 1
+ µ

m−2∑
j=1

ξjζ
δ
j + 1

)]

which is independent of p and tends to zero as %2−%1 → 0. Thus, T1 is equicontinuous.

Step 4. The operator T2 defined by (3.3) is continuous and Θ- contractive.
To show the continuity of T2 for z ∈ J, let us consider a sequence pn converging to p.
Then we have

‖T2pn − T2p‖ ≤
[
1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]
|ψ(pn)− ψ(p)|

≤
[
1 +

(υ1 +$1)

ϑ

(
λδ + µ

m−2∑
j=1

ξj + 1
)]
ε‖pn − p‖,

which, in view of E2, implies that T2 is continuous. Also is T2 is Θ- contractive, since

Θ =
[
1 +

(υ1 +$1)

ϑ

(
λδ + µ

m−2∑
j=1

ξj + 1
)]
ε = ω̂ε < 1.
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Step 5. It remains to show that the set F is bounded for every κ!. Let p ∈ F be a
solution of the integral equation

p(z) =

∫ z

0

κ(z − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

+κ
[
1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]
ψ(p)

+
κρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
k(σ, p(σ))dσ

]
+
κ(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
k(θ, p(θ))dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

−
∫ 1

0

(1− σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

]
, z ∈ J

Then, for each z ∈ J, we have

|p(z)| ≤
∫ z

0

(z − σ)δ−1

Γ(δ)
x(σ)dσ + κ

[
1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]

×

(∣∣∣ψ(p(σ)

κ

)
− ψ(0)

∣∣∣+ |ψ(0)|

)
+
ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
x(σ)dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
x(θ)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
x(σ)dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
x(σ)dσ

]
≤
∫ z

0

(z − σ)δ−1

Γ(δ)
x(σ)dσ +

ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
x(σ)dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
x(θ)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
x(σ)dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
x(σ)dσ

]

+
[
1 +

(υ1 +$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj + 1)
]
ε‖p‖

or

(1− ω̂ε)‖p‖ ≤
∫ z

0

(z − σ)δ−1

Γ(δ)
x(σ)dσ +

ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
x(σ)dσ

]
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+
(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
x(θ)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
x(σ)dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
x(σ)dσ

]
.

Consequently, we have

‖p‖ ≤ V :=
1

(1− ω̂ε)

{∫ z

0

(z − σ)δ−1

Γ(δ)
x(σ)dσ

+
ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
x(σ)dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
x(θ)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
x(σ)dσ

+

∫ 1

0

(1− σ)δ−1

Γ(δ)
x(σ)dσ

]}
which shows that the set F is bounded, since ω̂ε < 1. Hence, T has a fixed point
in J by Theorem 3.3, and consequently the problem (1.1)-(1.2) has a solution. This
completes the proof. �

Finally, we show that the existence of solutions for the boundary value problem
(1.1)-(1.2) by applying a fixed poin theorem due to O’Regan.

Lemma 3.5. Denote by X an open set in a closed, convex set A of a Banach space

H. Assume 0 ∈ X. Also assume that T(X̂) is bounded and that T : X̂ → A is given

by T = T1 + T2, in which T1 : X̂ → H is a nonlinear contraction (i.e., there exists a
nonnegative nondecreasing function ϕ : [0,∞)→ [0,∞) satisfying ϑ(y) < y for y > 0,

such that ‖T2(p)− T2(q)‖ ≤ ϑ(‖p− q‖) ∀ p, q ∈ X̂. Then, either

(W1) T has a fixed point x ∈ X̂; or

(W2) there exist a point x ∈ ∂X and κ ∈ (0, 1) with x = κT(x), where X̂ and ∂X,
respectively, represent the closure and boundary of X.

In the next result, we use the terminology:

∆θ = {p ∈ G : ‖p‖ < θ}, Vθ = max{|k(z, p)| : (z, p) ∈ J× [θ,−θ]}.
Theorem 3.6. The continuous function k defined from J × R to R and conditions
(E1),(E2),(E4) hold. Also let us understand that:
(E6) there exists a nonnegative function x ∈ C(J,R) and a nondecreasing function
φ : [0,∞)→ [0,∞) such that |k(z, v)| ≤ x(z)φ(‖v‖) for any (z, v) ∈ J× R;

(E7) sup
θ∈(0,∞)

θ

η̂φ(θ)‖x‖
>

1

1− ω̂ε
, where η̂ and ω̂ are defined in (3.4) and (3.5) re-

spectively. Then the problem (1.1)-(1.2) has at least one solution on J.
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Proof. By the assumption (E7), there exists a number θ̂ > 0 such that

θ̂

η̂φ(θ̂)‖x‖
>

1

1− ω̂ε
(3.8)

We shall show that the operators T1 and T2 defined by (3.2) and (3.3) respectively,
satisfy all the conditions of Lemma 3.5.

Step 1. The operator T1 is continuous and completely continuous. We first show that
T1(∆θ̂) is bounded. For any p ∈ ∆θ̂, we have

‖T1p‖ ≤
∫ z

0

(z − σ)δ−1

Γ(δ)
|k(σ, p(σ))|dσ

+
ρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
|k(σ, p(σ))|dσ

]
+

(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
|k(θ, p(θ))|dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
|k(σ, p(σ))|dσ

+

∫ 1

0

(1− σ)δ−1

Γ(δ)
|k(σ, p(σ))|dσ

]
≤ Vθ

∫ z

0

(z − σ)δ−1

Γ(δ)
x(σ)dσ

+
Vθρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
x(σ)dσ

]
+
Vθ(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
x(θ)dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
x(σ)dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
x(σ)dσ

]

≤ ‖x‖Vθ

Γ(δ + 1)

[
1 +

ρ|(υ2 −$2)|νδ−1

ϑδ

+
(υ1 +$1)

ϑ

(λςδ+1

δ + 1
+ µ

m−2∑
j=1

ξjζ
δ
j + 1

)]
= Vθ‖p‖η̂.

Thus the operator T1(Vθ̂) is uniformly bounded. Let %1, %2 ∈ J with %1 < %2 and
p ∈ Bθ. Then

|(T1p)(%2)− (T1p)(%1)| ≤ Vθ

∣∣∣∣∣
∫ %1

0

[(%2 − σ)δ−1 − (%1 − σ)δ−1]

Γ(δ)
× x(σ)dσ

∣∣∣∣∣
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+Vθ

∣∣∣∣∣
∫ %2

%1

(%2 − σ)δ−1

Γ(δ)
x(σ)dσ

∣∣∣∣∣
+

∣∣∣∣∣Vθρ((%2 − %1)υ2 − (%n−12 − %n−11 )$2)

ϑ

∣∣∣∣∣[
∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
|x(σ)|dσ

]
+
Vθ((%2 − %1)υ1 + (%n−12 − %n−11 )$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
|x(θ)|dθ

)
dσ

+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
|x(σ)|dσ +

∫ 1

0

(1− σ)δ−1

Γ(δ)
|x(σ)|dσ

]
≤ ‖x‖Vθ

Γ(δ + 1)

[
[2(%2 − %1)δ + (%δ2 − %δ1)] +

ρ((%2 − %1)υ2 − (%n−12 − %n−11 )$2)νδ−1

ϑδ

+
((%2 − %1)υ1 + (%n−12 − %n−11 )$1)

ϑ

(λςδ+1

δ + 1
+ µ

m−2∑
j=1

ξjζ
δ
j + 1

)]
which is independent of p and tends to zero as %2−%1 → 0. Thus, T1 is equicontinuous.
Hence, by the Arzela-Ascoli Theorem. T1(Vθ̂) is a relatively compact set. Now, let
pn ⊂ Vθ̂ with ‖pn − p‖ → 0. Then the ‖pn(z) − p(z)‖ → 0 is uniformly valid on J.

From the uniform continuity of k(z, p) on the compact set J× [θ̂,−θ̂], it follows that

‖k(z, pn(z))− k(z, p(z))| → 0

uniformly on J. Hence ‖T1pn − T1p‖ → 0 as n → ∞ which proves the continuity of
T1. This completes the proof Step 1.
Step 2. The operator T2 : Vθ̂ → C(J,R) is contractive. This is a consequence of (E2).
Step 3. The set T(Vθ̂) is bounded. The assumptions (E2) and (E4) imply that

‖T2p‖ ≤ ω̂εθ̂,
for any p ∈ Vθ̂. This, with the boundedness of the set T1(Vθ̂) implies that the set
T(Vθ̂) is bounded.
Step 4. Finally, it will be shown that the case W2 in Lemma 3.5 does not hold. On
the contrary, we suppose that W2 holds. Then, we have that there exist κ ∈ (0, 1)
and p ∈ ∂Vθ̂ such that p = κTp.

So, we have ‖p‖ = θ̂ and

p(z) =

∫ z

0

κ(z − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

+κ
[
1 +

(zυ1 + zn−1$1)

ϑ
(λδ + µ

m−2∑
j=1

ξj − 1)
]
ψ(p)

+
κρ(zυ2 − zn−1$2)

ϑ

[ ∫ ν

0

(ν − σ)δ−2

Γ(δ − 1)
k(σ, p(σ))dσ

]
+
κ(zυ1 + zn−1$1)

ϑ

[
λ

∫ ς

0

(∫ σ

0

(σ − θ)δ−1

Γ(δ)
k(θ, p(θ))dθ

)
dσ
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+µ

m−2∑
j=1

ξj

∫ ζj

0

(ζj − σ)δ−1

Γ(δ)
k(σ, p(σ))dσ −

∫ 1

0

(1− σ)δ−1

Γ(δ)
k(σ, p(σ))dσ

]
z ∈ J.

Using the assumptions (E4)-(E6), we get

θ̂ ≤ φ(θ̂)‖x‖
Γ(δ + 1)

[
1 +

ρ|(υ2 −$2)|νδ−1

ϑδ

+
(υ1 +$1)

ϑ

(λςδ+1

δ + 1
+ µ

m−2∑
j=1

ξjζ
δ
j + 1

)]

+θ̂ε
[
1 +

(υ1 +$1)

ϑ

(
λδ + µ

m−2∑
j=1

ξj + 1
)]
.

which yields

θ̂ ≤ η̂φ(θ̂)‖x‖+ ω̂ε.

Thus, we get a contradiction :

θ̂

η̂φ(θ̂)‖x‖
≤ 1

1− ω̂ε
.

Thus, the operators T1 and T2 satisfy all the conditions of Lemma 3.5. Hence, the
operator T has at least one fixed point p ∈ Vθ̂, which is a solution of the problem
(1.1)-(1.2). This completes the proof. �

Example 3.7. Consider the fractional differential equation given by

CD
5
2 p(z) =

e−z

2
√
z2 + 16

(1

2
+ z tan−1(z)

)
, z ∈ J, (3.9)

supplemented with the boundary conditions of Example 3.2.

Observe that |k(z, p)| ≤ x(z)φ(|p|) with

x(z) =
e−z

4
√
z2 + 16

, φ(|p|) = 1 + |p|

and ψ(0) = 0, ε = 1
10 as |ψ(v)− ψ(w)| ≤ 1

10 |v − w|. With

φ(θ) = 1 + θ, ‖x‖ =
1

16
, η̂ ∼= 1.0683, ω̂ ∼= 0.36416,

we have that (E7) holds, since

θ̂

η̂φ(θ̂)‖x‖
∼= 14.9771 > 1.03779 ∼=

1

1− ω̂ε
.

Thus, all the conditions of Theorem 3.6 is satisfied and here the problem (3.9) with
(3.7) has at least one solution on J.
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Statistical e−convergence of double sequences
on probabilistic normed spaces

Sevda Akdağ

Abstract. The concept of statistical convergence for double sequences on proba-
bilistic normed spaces was presented by Karakus and Demirci in 2007. The pur-
pose of this paper is to introduce the concept of statistical e−convergence for dou-
ble sequences and study some fundamental properties of statistical e−convergence
for double sequences on probabilistic normed spaces.

Mathematics Subject Classification (2010): 40A05, 40G15, 40B05.

Keywords: Double sequences, t-norm, probabilistic normed spaces, e−conver-
gence, statistical e−convergence.

1. Introduction

Statistical convergence which is a generalization of the notion of ordinary convergence
was first introduced by Fast [4] and Steinhaus [21] in 1951. Then several generalizations and
applications of this notion have been investigated by various authors [6], [11], [12], [14]. The
concept of statistical convergence for double sequences was studied by Mursaleen and Edely
[15]. Boos et al ([2], [3]) introduced and investigated the notion of e−convergence of double
sequences which is essentially weaker than the Pringsheim convergence. Recently, Sever and
Talo [19] have generalized the notion of e−convergence to statistical e−convergence for a
double sequence [see also [20]].

The theory of probabilistic normed spaces [5] originated from the concept of statistical
metric spaces which was introduced by Menger [13] and further studied by Schweizer and
Sklar [17], [18]. It provides an important method of generalizing the deterministic results
of normed linear spaces. It has also very useful applications in various fields, e.g., continu-
ity properties [1], topological spaces [5], study of boundedness [7], convergence of random
variables [8] etc.

The idea of statistical convergence of single sequences on probabilistic normed spaces
was studied by Karakus in [9]. Then, Karakus and Demirci extended the concept of statistical
convergence from single to double sequences in [10]. In this paper we introduce and study the
concept of statistical e−convergence for double sequences on probabilistic normed spaces.
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2. Background and preliminaries

First, we recall some notions and basic definitions those will be used in this paper.
Throughout this paper, N, R respectively denote the sets of positive integers and real numbers
whereas N× N denotes the usual product set.

Definition 2.1. [5] A function g : R → R+
0 is called a distribution function if the following

conditions holds:

a) it is non-decreasing,
b) it is left-continuous,
c) inf

t∈R
g (t) = 0 and sup

t∈R
g (t) = 1.

The set of all distribution functions will be denoted by E.

Definition 2.2. [18] A triangular norm or briefly t−norm is a continuous mapping ∗ : [0, 1]×
[0, 1] → [0, 1] such that ([0, 1] , ∗) is an abelian monoid with unit one and p ∗ q ≥ m ∗ n if
p ≥ m and q ≥ n for all m,n, p, q ∈ [0, 1] .

For example the ∗ operations

m ∗ n = mn, m ∗ n = min {m,n} and m ∗ n = max {m+ n− 1, 0}
are t−norms on [0, 1] .

Definition 2.3. [18] If D is a real vector space, η is a mapping from D into E (for x ∈ D the
distribution function η (x) is denoted by ηx and ηx (t) is the value of ηx at t ∈ R) and ∗ is a
t−norm satisfying the following conditions :

i) ηx (0) = 0,
ii) ηx (t) = 1 for all t > 0 if and only if x = 0,

iii) ηαx (t) = ηx
(

t
|α|

)
for all α ∈ R \ {0} and for all t > 0,

iv) ηx+y (s+ t) ≥ ηx (s) ∗ ηy (t) for all x, y ∈ D and s, t ∈ R+
0 ,

then (D, η, ∗) is called a probabilistic normed space (briefly, a PNS).

Definition 2.4. Let (D, η, ∗) be a PNS. Then, a sequence (xk) is said to be convergent to L ∈
D with respect to the probabilistic norm η, that is xk

η→ L if for every ε > 0 and λ ∈ (0, 1)
there exists a positive integer k0 such that ηxk−L (ε) > 1− λ whenever k ≥ k0. In this case
we write η − limxk = L as k →∞.

Remark 2.5. Let (D, ‖.‖) be a real normed space and

ηx (t) =
t

t+ ‖x‖

where x ∈ D and t ≥ 0 (standard x−norm induced by ‖.‖). Then we can see that xk
‖.‖→ x if

and only if xk
η→ x.

3. Statistical e−convergence of double sequence on PNS

In this section we study the concept of statistical e−convergence for double sequences
in probabilistic normed space. First, we recall the concept of statistical convergence.

Let K ⊆ N. Then the asymptotic (or natural) density of K denoted by δ (K) is given
by

δ (K) := lim
n

1

n
|{k ≤ n : k ∈ K}|
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whenever the limit exists, where the vertical bars denote the cardinality of the enclosed set.

A number sequence (xk) is said to be statistically convergent to the number L if for
each ε > 0 the set

K (ε) := {k ∈ N : |xk − L| ≥ ε}
has asymptotic density zero, i.e.

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case we write st− limxk = L as k →∞.
So we give the concept of statistical convergence of double sequences.

By the convergence of a double sequence we mean the convergence in the Pringsheim
sense that is, a double sequence (xkl) has Pringsheim limit L provided that given ε > 0 there
exists N ∈ N such that |xkl − L| < ε wherever k, l > N [16]. We write this as P − lim

k,l
xkl = L.

In case of this convergence, the row-index k and column-index l tend independently to
infinity.

We can give the analogue of Definition 2.4 for a double sequence as follows:

Definition 3.1. [10] Let (D, η, ∗) be a PNS. Then, a double sequence (xkl) is said to be

convergent to L ∈ D with respect to the probabilistic norm η, that is xkl
η→ L if for every

ε > 0 and λ ∈ (0, 1) there exists a positive integer k0 such that ηxkl−L (ε) > 1− λ whenever
k, l ≥ k0. In this case we write η2 − limxkl = L as k, l→∞.

Let K ⊆ N×N and K (n,m) be the numbers of (i, j) in K such that i ≤ n and j ≤ m.
Then the two dimensional analog of natural density can be defined as follows:

δ2 (K) := lim
n,m

K (n,m)

nm
.

For example, let K =
{(
i2, j2

)
: i, j ∈ N

}
. Then the set K has double natural density zero.

Definition 3.2. [15] A double sequence (xkl) is said to be statistically convergent to a number
α if for each ε > 0 the set

{(k, l) , k ≤ n, l ≤ m : |xkl − α| ≥ ε}

has double natural density zero. We write this as st2 − lim
k,l
xkl = α.

Definition 3.3. [10] Let (D, η, ∗) be a PNS. Then, a double sequence (xkl) is said to be
statistically convergent to L ∈ D with respect to the probabilistic norm η if for every ε > 0
and λ ∈ (0, 1) the set

{(k, l) , k ≤ n, l ≤ m : ηxkl−α (ε) ≤ 1− λ}

has double natural density zero. In this case we write stη2 − lim
k,l
xkl = α.

Boos, Leiger and Zeller [3] and Boos [2] introduced and investigated the notion of
e−convergence of double sequences, which is essentially weaker than the Pringsheim conver-
gence as follows:

Definition 3.4. A double sequence (xkl) is said to be e−convergent to a number α if

∀ε > 0, ∃l0 ∈ N ∀l ≥ l0, ∃kl ∈ N ∀k ≥ kl, |xkl − α| < ε.

We write this as e− lim
k,l
xkl = α.



532 Sevda Akdağ

In contrast to the Pringsheim notion of convergence, e−convergence states that the
row-index k depends on the column-index l whenever it tends to infinity.

Recently, Sever and Talo [19] have defined the concept of statistical e−convergence for
a double sequence as follows:

Definition 3.5. [19] A double sequence (xkl) is said to be statistically e−convergent to a
number α if for every ε > 0 the set

{l : δ ({k : |xkl − α| ≥ ε}) = 0}
has natural density 1, that is

δ ({l : δ ({k : |xkl − α| ≥ ε}) = 0}) = 1.

In this case, one writes st(e) − lim
k,l
xkl = α.

Now we give the analogue of these definitions with respect to the probabilistic norm η.

Definition 3.6. Let (D, η, ∗) be a PNS. A double sequence (xkl) is said to be e−convergent to
α ∈ D with respect to the probabilistic norm η provided that for every ε > 0 and λ ∈ (0, 1)

∃l0 ∈ N ∀l ≥ l0, ∃kl ∈ N ∀k ≥ kl, ηxkl−α (ε) > 1− λ.
In this case, one writes η(e) − lim

k,l
xkl = α. Also, the element α is called the η(e)−limit of the

double sequence (xkl) .

Definition 3.7. Let (D, η, ∗) be a PNS. A double sequence (xkl) is said to be statistically
e−convergent to α ∈ D with respect to the probabilistic norm η provided that for every
ε > 0 and λ ∈ (0, 1)

{l : δ ({k : ηxkl−α (ε) ≤ 1− λ}) = 0}
has natural density 1, that is

δ ({l : δ ({k : ηxkl−α (ε) ≤ 1− λ}) = 0}) = 1.

In this case, one writes stη(e) − lim
k,l
xkl = α. Also, the element α is called the stη(e)−limit of

the double sequence (xkl) .

The following theorem gives the relation between e−convergence and statistical
e−convergence on probabilistic normed spaces.

Lemma 3.8. Let (D, η, ∗) be a PNS. Then, for every ε > 0, α ∈ D and λ ∈ (0, 1) the following
statements are equivalent:

i) stη(e) − lim
k,l
xkl = α.

ii) δ ({l : δ ({k : ηxkl−α (ε) ≤ 1− λ}) = 0}) = 1.
iii) st(e) − lim

k,l
ηxkl−α (ε) = 1.

Proof. From Definition 3.7, the first two parts are equivalent.
(ii)⇒ (iii) Let L = {l : δ ({k : ηxkl−α (ε) ≤ 1− λ}) = 0}. So δ (L) = 1. Then for all

l ∈ L,

{k : |ηxkl−α (ε)− 1| ≥ λ} ⊆ {k : ηxkl−α (ε) ≥ 1 + λ} ∪ {k : ηxkl−α (ε) ≤ 1− λ} .
So, we get for l ∈ L,

δ ({k : |ηxkl−α (ε)− 1| ≥ λ}) = 0.

Then
δ ({l : δ ({k : |ηxkl−α (ε)− 1| ≥ λ}) = 0}) = 1

which completes the proof. �
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Theorem 3.9. Let (D, η, ∗) be a PNS and let (xkl) be a double sequence whose terms are in
the vector space D. If (xkl) is statistically e−convergent with respect to the probabilistic norm
η then its stη(e)−limit is unique.

Proof. Suppose that there exist α and β in D with α 6= β such that stη(e) − lim
k,l
xkl = α and

stη(e) − lim
k,l
xkl = β. Let ξ > 0, choose λ ∈ (0, 1) such that

(1− λ) ∗ (1− λ) ≥ (1− ξ) .

Let ε > 0 be given. Then we define the following sets:

Lη,1 (λ, ε) : = {l : δ ({k : ηxkl−α (ε) ≤ 1− λ}) = 0}
Lη,2 (λ, ε) : = {l : δ ({k : ηxkl−β (ε) ≤ 1− λ}) = 0}

and

Kη,1 (λ, ε) : = {k : ηxkl−α (ε) ≤ 1− λ}
Kη,2 (λ, ε) : = {k : ηxkl−β (ε) ≤ 1− λ} .

Since stη(e) − lim
k,l
xkl = α and stη(e) − lim

k,l
xkl = β then we have δ (Lη,1 (λ, ε)) = 1,

δ (Lη,2 (λ, ε)) = 1, δ (Kη,1 (λ, ε)) = 0 and δ (Kη,2 (λ, ε)) = 0, for all ε > 0. Let

Kη (λ, ε) = Kη,1 (λ, ε) ∩Kη,2 (λ, ε)

Lη (λ, ε) = Lη,1 (λ, ε) ∩ Lη,2 (λ, ε) .

So we can see that δ (N\Kη (λ, ε)) = 1 and δ (N\Lη (λ, ε)) = 0.
If (k, l) ∈ (N\Kη (λ, ε))× (N\Lη (λ, ε)), then we have

ηα−β (ε) ≥ ηxkl−α

( ε
2

)
∗ ηxkl−β

( ε
2

)
> (1− λ) ∗ (1− λ) ≥ (1− ξ) .

Since ξ > 0 was arbitrary, we get ηα−β (ε) = 1 for all ε > 0. So we get α = β from Definition
2.3 (ii). This completes the proof. �

Theorem 3.10. Let (D, η, ∗) be a PNS and let (xkl) be a double sequence whose terms are in
the vector space D. If there exists M = K × L ⊂ N × N such that δ (K) = 1 and δ (L) = 1
and η(e) − lim

(k,l)∈M
xkl = α then stη(e) − lim

k,l
xkl = α.

Proof. Suppose that there exists M = K × L such that δ (K) = 1 and δ (L) = 1 and
η(e) − lim

(k,l)∈M
xkl = α. Then for each ε > 0 and λ ∈ (0, 1) there exists lε such that for each

l ≥ lε, l ∈ L there exists kl such that for each k ≥ kl , k ∈ K we have ηxkl−α (ε) > 1 − λ.
So for such l we have

{k : ηxkl−α (ε) ≤ 1− λ} ⊆ N\ {K\ {k1, k2, ..., kl}} .

Since δ (K) = 1 we have δ ({k : ηxkl−α (ε) ≤ 1− λ}) = 0. On the other hand, this equation
holds for each l > lε, l ∈ L. Therefore

L\ {l1, l2, ..., lε} ⊆ {l : δ ({k : ηxkl−α (ε) ≤ 1− λ}) = 0} .

So we have

δ ({l : δ ({k : ηxkl−α (ε) ≤ 1− λ}) = 0}) = 1

which completes the proof. �
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So, if a double sequence (xkl) is e−convergent to α ∈ D with respect to the probabilistic
norm η then it is statistically e−convergent to α ∈ D on the PNS. But the converse of this
implication may not be true. The following examples show that the converse of Theorem
3.10 does not hold in general.

Example 3.11. Let (R, |.|) be a real normed space and ηx (t) = t
t+|x| where x ∈ R and t > 0.

In this case (R, η, |.|) is a PNS. Now we will give two examples in which our method of
statistical e−convergence works but the other convergence methods do not work:

(i) Let (xkl) be defined as

xkl :=


k + l, k ≤ l,
k, k > l and k is square,
0, k > l and k is not square.

Then for every λ ∈ (0, 1) and for any t > 0,

{k : ηxkl (t) ≤ 1− λ} =

{
k :

t

t+ |xkl|
≤ 1− λ

}
=

{
k : |xkl| ≥

λt

1− λ > 0

}
.

So we can get

δ ({l : δ ({k : ηxkl (t) ≤ 1− λ}) = 0}) = 1.

Also it is easy to see that η(e) − lim
k,l
xkl, η2 − lim

k,l
xkl, st2 − lim

k,l
xkl and stη2 − lim

k,l
xkl do not

exist. On the other hand, we can see from the above equality that stη(e) − lim
k,l
xkl = 0.

(ii) Let (αkl) be defined as follows:

αkl :=


k, k ≤ l,
1, k > l and k is square,
0, k > l and k is not square.

Then we can see that stη(e) − lim
k,l
αkl = 0. However η(e) − lim

k,l
αkl, η2 − lim

k,l
αkl, st2 − lim

k,l
αkl

and stη2 − lim
k,l
αkl do not exist.

Now we will show that the concept of statistical e−convergence of a double sequences
on a PNS has some basic properties.

Lemma 3.12. Let (D, η, ∗) be a PNS and let (xkl) and (ykl) be two double sequences on D.

(i) If stη(e) − lim
k,l
xkl = a and stη(e) − lim

k,l
ykl = b, then stη(e) − lim

k,l
(xkl + ykl) = a+ b.

(ii) If stη(e) − lim
k,l
xkl = a and α ∈ R, then stη(e) − lim

k,l
α · xkl = α · a.

(iii) If stη(e) − lim
k,l
xkl = a and stη(e) − lim

k,l
ykl = b, then stη(e) − lim

k,l
(xkl − ykl) = a− b.

Proof. (i) Let stη(e) − lim
k,l
xkl = a and stη(e) − lim

k,l
ykl = b, ε > 0 and ξ ∈ (0, 1). Choose

λ ∈ (0, 1) such that (1− λ) ∗ (1− λ) ≥ (1− ξ) . Then we examine the following sets:

Lη,1 (λ, ε) : = {l : δ ({k : ηxkl−a (ε) ≤ 1− λ}) = 0}
Lη,2 (λ, ε) : = {l : δ ({k : ηykl−b (ε) ≤ 1− λ}) = 0}

and

Kη,1 (λ, ε) : = {k : ηxkl−a (ε) ≤ 1− λ}
Kη,2 (λ, ε) : = {k : ηykl−b (ε) ≤ 1− λ} .
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Since the double sequences (xkl) and (ykl) are statistically e−convergent to a, b, respectively
then we have δ (Kη,1 (λ, ε)) = 0, δ (Kη,2 (λ, ε)) = 0, δ (Lη,1 (λ, ε)) = 1 and δ (Lη,2 (λ, ε)) = 1
for all ε > 0. Now let

Kη (λ, ε) = Kη,1 (λ, ε) ∩Kη,2 (λ, ε)

Lη (λ, ε) = Lη,1 (λ, ε) ∩ Lη,2 (λ, ε) .

So, δ (N\Kη (λ, ε)) = 1 and δ (N\Lη (λ, ε)) = 0.
If (k, l) ∈ (N\Kη (λ, ε))× (N\Lη (λ, ε)), then we have

η(xkl+ykl)−(a+b) (ε) = η(xkl−a)+(ykl−b) (ε)

≥ ηxkl−a

( ε
2

)
∗ ηykl−b

( ε
2

)
> (1− λ) ∗ (1− λ) ≥ (1− ξ) .

Then we see that

δ
({
k : η(xkl−a)+(ykl−b) (ε) ≤ 1− ξ

})
= 0

and

δ
({
l : δ

({
k : η(xkl−a)+(ykl−b) (ε) ≤ 1− ξ

})
= 0
})

= 1

so stη(e) − lim
k,l

(xkl + ykl) = a+ b.

(ii) Case 1: Take α = 0 and let stη(e) − lim
k,l
xkl = a. Let λ ∈ (0, 1) and ε > 0. Then we

can see that

η0·xkl−0·a (ε) = η0 (ε) = 1 > 1− λ.
So we get

δ ({k : η0·xkl−0·a (ε) ≤ 1− λ}) = δ ({∅}) = 0

and

δ ({l : δ ({k : η0·xkl−0·a (ε) ≤ 1− λ}) = 0}) = δ (N) = 1.

Hence we obtain stη(e) − lim
k,l

0 · xkl = 0.

Case 2: Take α 6= 0. Since stη(e) − lim
k,l
xkl = a, so for every ε > 0 and λ ∈ (0, 1), we

define the sets:

Lη (λ, ε) := {l : δ ({k : ηxkl−a (ε) ≤ 1− λ}) = 0}
and

Kη (λ, ε) := {k : ηxkl−a (ε) ≤ 1− λ} .
Then we see that δ (Kη (λ, ε)) = 0 and δ (Lη (λ, ε)) = 1. So δ (N\Kη (λ, ε)) = 1 and
δ (N\Lη (λ, ε)) = 0. If (k, l) ∈ (N\Kη (λ, ε))× (N\Lη (λ, ε)) then

ηα·xkl−α·a (ε) = ηxkl−a

(
ε

|α|

)
≥ ηxkl−a (ε) ∗ η0

(
ε

|α| − ε
)

= ηxkl−a (ε) ∗ 1

= ηxkl−a (ε) > 1− λ
for α ∈ R (α 6= 0). So

δ ({l : δ ({k : ηα·xkl−α·a (ε) ≤ 1− λ}) = 0}) = 1.

Hence we obtain stη(e) − lim
k,l
α · xkl = α · a.

(iii) The proof of (iii) can be obtained from (i) and (ii). �
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Λ2-statistical convergence and its application
to Korovkin second theorem

Valdete Loku and Naim L. Braha

Abstract. In this paper, we use the notion of strong (N,λ2)−summability to
generalize the concept of statistical convergence. We call this new method a
λ2−statistical convergence and denote by Sλ2 the set of sequences which are
λ2−statistically convergent. We find its relation to statistical convergence and
strong (N,λ2)−summability. We will define a new sequence space and will show
that it is Banach space. Also we will prove the second Korovkin type approxi-
mation theorem for λ2-statistically summability and the rate of λ2-statistically
summability of a sequence of positive linear operators defined from C2π(R) into
C2π(R).
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1. Introduction

By w, we denote the space of all real or complex valued sequences. If x ∈ w, then
we simply write x = (xk) instead of x = (xk)∞k=1. Let Λ = {λk : k = 0, 1, . . .} be a
nondecreasing sequence of positive numbers tending to ∞, as k →∞ and ∆2λn ≥ 0,
for each n ∈ N. The first difference is defined as follows: ∆λk = λk − λk−1, where
λ−1 = λ−2 = 0, and the second difference is defined as

∆2(λk) = ∆(∆(λk)) = λk − 2λk−1 + λk−2.

Let x = (xk) be a sequence of complex numbers, such that x−1 = x−2 = 0. We will
denote by

Λ2(x) =
1

λn − λn−1

n∑
k=0

(λkxk − 2λk−1xk−1 + λk−2xk−2). (1.1)
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A sequence x = (xk), is said to be strongly (N,λ2)− summable to a number L
(see [8]) if

lim
n

1

λn − λn−1

n∑
k=0

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| = 0.

Let us denote by

[N,λ2] =
{
x = (xn) : ∃L ∈ C,

lim
n→∞

1

λn − λn−1

n∑
k=1

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| = 0
}

for the sets of sequences x = (xn) which are strongly (N,λ2) summable to L, i.e.,
xk → L[N,λ2]. The idea of statistical convergence was introduced by Fast [12] and
studied by various authors (see [10], [13], [20], [5], [6]). A sequence x = (xk) is said to
be statistically convergent to the number L if for every ε > 0,

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0,

where the vertical bars indicate the number of elements in the enclosed set. In this
case, we write S − limn x = L or xk → L(S) and S denotes the set of all statis-
tically convergent sequences. In this paper, we introduce and study the concept of
λ2−statistical convergence and determine how it is related to [N,λ2] and S.

Definition 1.1. A sequence x = (xn) is said to be λ2−statistically convergent or
Sλ2−convergent to L if for every ε > 0

lim
n

1

λn − λn−1
|{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}| = 0.

In this case we write Sλ2 − limn xn = L or xn → L(Sλ2), and

Sλ2 = {x = (xn) : ∃L ∈ C, Sλ2 − lim
n
xn = L}.

Definition 1.2. A sequence x = (xn) is said to be λ2−statistically Cauchy if for every
ε > 0 exists a number N = N(ε), such that

lim
n

1

λn − λn−1

∣∣{k ≤ n :
∣∣∆2λk(xk)−∆2λN (xN )

∣∣ ≥ ε}∣∣ = 0.

A sequence of positive integers θ = (kr) is called lacunary if k0 = 0, 0 < kr < kr+1

and hr = kr − kr−1 → ∞ as r → ∞. And with Ir we will denote the following
interval:Ir = (kr−1, kr], respectively qr the ration: kr

kr−1
.

Definition 1.3. A sequence x = (xn) is said to be lacunary λ2−statistically convergent
or Sθλ2−convergent to L if for every ε > 0

lim
r

1

hr
|{k ∈ Ir : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}| = 0.

In this case we write Sθλ2 − limn xn = L or xn → L(Sθλ2), and

Sθλ2 = {x = (xn) : ∃L ∈ C, Sθλ2 − lim
n
xn = L}.
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Definition 1.4. A sequence x = (xn) is said to be lacunary λ2−statistically Cauchy if
for every ε > 0 exists a number N = N(ε), such that

lim
r

1

hr

∣∣{k ∈ Ir :
∣∣∆2λk(x)−∆2λN (x)

∣∣ ≥ ε}∣∣ = 0.

2. Some properties of [N, λ2] and Sλ2

In this section we will show relation between [N,λ2] and Sλ2 .

Theorem 2.1. Let (λn) be a sequence from Λ, then:

1. xn → L[N,λ2], then xn → L(Sλ2) and the inclusion is proper.
2. If ∆2λ(x) ∈ l∞ and xn → L(Sλ2), then xn → L[N,λ2].
3. Sλ2 ∩ l∞ = [N,λ2] ∩ l∞.

Proof. (1) Let us suppose that xn → L[N,λ2]. Then for every ε > 0 we have:

n∑
k=1

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

≥
n∑
k=1

|(λkxk−2λk−1xk−1+λk−2xk−2)−L|≥ε

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

≥ ε |{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}| .
Therefore xn → L[N,λ2] ⇒ xn → L(Sλ2). To prove the second part of the (1), we
will show this.

Example 2.2. Let x = xn defined as follows:

xn =

{
[
√
λn − λn−1], 0 ≤ k ≤ n

0, otherwise.

Then x = (xn) /∈ l∞ and for every ε > 0, we get that

lim
n

1

λn − λn−1
|{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− 0| ≥ ε}|

≤ lim
n

[
√
λn − λn−1]

λn − λn−1
= 0.

On the other hand

lim
n→∞

1

λn − λn−1

n∑
k=1

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− 0|

= lim
n

λn[
√
λn − λn−1]− 2λn−1[

√
λn−1 − λn−2] + λn−2[

√
λn−2 − λn−3]

λn − 2λn−1 + λn−2
=∞.
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(2) Let us suppose that xn → L(Sλ2) and ∆2λ(x) ∈ l∞, then we can consider that

|λkxk − 2λk−1xk−1 + λk−2xk−2 − L| ≤M.

For any given ε > 0 we get the following estimation:

1

λn − λn−1

n∑
k=1

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

=
1

λn − λn−1

n∑
k=1

|(λkxk−2λk−1xk−1+λk−2xk−2)−L|≥ε

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

+
1

λn − λn−1

n∑
k=1

|(λkxk−2λk−1xk−1+λk−2xk−2)−L|≤ε

|(λkxk − 2λk−1xk−1 + λk−2xk−2)− L|

≤ M

λn − λn−1
|{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}|+ ε,

which implies that xk → L[N,λ2].
(3) Follows immediately from (1) and (2). �

Proposition 2.3. If x = (xn) is λ2−statistically convergent to L, then it follows that
x is λ2−statistically Cauchy sequence.

Proof. Let us suppose that x converges Λ2−statistically to L and ε > 0. Then

1

λn − λn−1
|{k ≤ n : |(λkxk − 2λk−1xk−1 + λk−2xk−2)− L| ≥ ε}| ≤ ε

2

satisfies for almost all k, and if N is chosen such that

1

λN − λN−1
|{k ≤ N : |(λNxN − 2λN−1xN−1 + λN−2xN−2)− L| ≥ ε}| ≤ ε

2
,

then we have:
1

λn − λn−1

∣∣{k ≤ n :
∣∣∆2λk(x)−∆2λN (x)

∣∣ ≥ ε}∣∣ < ε

2
+
ε

2
= ε,

for almost k. Hence x is λ2−statistically Cauchy sequence. �

Proposition 2.4. If x = (xn) is lacunary λ2−statistically convergent to L, then it
follows that x is λ2−statistically lacunary Cauchy sequence.

Proposition 2.5. If x = (xn) is a sequence for which there is a λ2−statistically conver-
gent sequence y = (yn) such that ∆2λ(xk) = ∆2λ(yk) for almost all k, then it follows
that x is λ2−statistically convergent sequence.

Proof. Let us consider that ∆2λ(xk) = ∆2λ(yk) for almost all k. And yk → L(Sλ2).
Then for each ε > 0 and for every n we have:{

k ≤ n : |∆2λ(xk)− L| ≥ ε
}

⊂
{
k ≤ n : ∆2λ(xk) 6= ∆2λ(yk)

}
∪
{
k ≤ n : |∆2λ(yk)− L| ≥ ε

}
.
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From fact that yk → L(Sλ2), it follows that set
{
k ≤ n : |∆2λ(yk)− L| ≥ ε

}
has finite

numbers which are not depended from n, hence∣∣{k ≤ n : |∆2λ(yk)− L| ≥ ε
}∣∣

λn − λn−1
→ 0, n→∞.

On the other hand, from ∆2λ(xk) = ∆2λ(yk) for almost all k, we get:∣∣{k ≤ n : ∆2λ(xk) 6= ∆2λ(yk) ≥ ε
}∣∣

λn − λn−1
→ 0, n→∞.

From last two relations follows that:∣∣{k ≤ n : |∆2λ(xk)− L| ≥ ε
}∣∣

λn − λn−1
→ 0, n→∞. �

Proposition 2.6. If x = (xn) is a sequence for which there is a lacunary
λ2−statistically convergent sequence y = (yn) such that ∆2λ(xk) = ∆2λ(yk) for al-
most all k, then it follows that x is lacunary λ2−statistically convergent sequence.

Theorem 2.7. Let θ be a lacunary sequence, then

1. L(Sλ2) ⊂ L(Sθλ2) if and only if limr inf qr > 1.

2. L(Sθλ2) ⊂ L(Sλ2) if and only if limr sup qr <∞.

3. L(Sλ2) = L(Sθλ2) if and only if 1 < limr inf qr ≤ limr sup qr <∞.

Proof. Proof of the Proposition is omitted, because it is similar to Lemmas 2,3 in
[14]. �

We will denote by Λ2(X) = {x = (xn) ∈ w : Λ2(x) ∈ X}. It is know that
(Λ2(X), || · ||Λ2(X)) is a normed space where norm is given by (see [8]):

||x||Λ2(X) := sup
n≥0

1

λn − λn−1

n∑
k=0

|λkxk − 2λk−1xk−1 + λk−2xk−2|,

where x = (xk).

Theorem 2.8. Λ2(X) is Banach space.

Proof. Let (xn) be any Cauchy sequence in Λ2(X), where xs = (xs1, x
s
2, · · · , xsn, · · · ) .

Then there it follows that:

||xs − xt||Λ2(X) → 0, s, t→∞.

From last relation we get:

sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xsk − xtk)− 2λk−1(xsk−1 − xtk−1) + λk−2(xsk−2 − xtk−2)
∣∣→ 0,

t, s→∞.
Hence we obtain,

|xtk − xsk| → 0, t, s→∞,
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for every k ∈ N. Therefore (x1
k, x

2
k, · · · ) is a Cauchy sequences in C, the set of complex

numbers. Since C is complete, it is convergent. Let us say

lim
s
xsk = xk,

for every k ∈ N. Since (xs) is a Cauchy sequence, for each ε > 0, there exists a natural
number N = N(ε) such that

||xs − xt||Λ2(X) < ε

for all s, t ≥ N and for all k ∈ N. Hence

sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xsk − xtk)− 2λk−1(xsk−1 − xtk−1) + λk−2(xsk−2 − xtk−2)
∣∣ < ε,

for all s, t ≥ N and for all k ∈ N. If we pass with limit, in the last relation, when
t→∞, we get:

lim
t

sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xsk − xtk)− 2λk−1(xsk−1 − xtk−1) + λk−2(xsk−2 − xtk−2)
∣∣

= sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xsk − xk)− 2λk−1(xsk−1 − xk−1) + λk−2(xsk−2 − xk−2)
∣∣ < ε,

for all s ≥ N and for all k ∈ N. This implies that

||xs − x||Λ2(X) < ε,

for all s ≥ N, that is xs → x, as s→∞ where x = (xk).

Since

||x||Λ2(x) = sup
n≥0

1

λn − λn−1

n∑
k=0

|λkxk − 2λk−1xk−1 + λk−2xk−2|

= sup
n≥0

1

λn − λn−1

n∑
k=0

|λk(xk − xNk + xNk )− 2λk−1(xk−1 − xNk−1 + xNk−1)

+λk−2(xk−2 − xNk−2 + xNk−2)|

≤ sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λk(xk − xNk )− 2λk−1(xk−1 − xNk−1) + λk−2(xk−2 − xNk−2)
∣∣

+ sup
n≥0

1

λn − λn−1

n∑
k=0

∣∣λkxNk − 2λk−1x
N
k−1 + λk−2x

N
k−2

∣∣
≤ ||xN − x||Λ2(X) + ||xN ||Λ2(X) = O(1),

we obtain x ∈ Λ2(X). �
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3. A Korovkin second type theorem

We say that the sequence (xn) is Λ2− summable to L if limn Λ2 = L.

Definition 3.1. We say that the sequence (xn) is statistically summable to L by the
weighted method determined by the sequence Λ2 if st− limn Λ2 = L.

And we denote by Λ2(st) the set of all sequences which are statistically summable
Λ2. In the sequel we will use some notation related to the function spaces. With F (R)
we will denote the linear space of all real-valued functions defined in R. And with
C(R) we will denote the space of all bounded and continuous functions defined in R.
It is know fact that C(R) is a Banach space equipped with norm

||f ||∞ = sup
x∈R
|f(x)|, f ∈ C(R).

The space of all continuous and periodic functions with period 2π we will denote by
C2π(R), which is a Banach space under norm given by

||f ||2π = sup
x∈R
|f(x)|.

The classical Korovkin first and second theorems are given as follows (see [16, 17, 3]):

Theorem 3.2. Let (Tn) be a sequence of positive linear operators from C[0, 1] into
F [0, 1]. Then

lim
n→∞

||Tn(f, x)− f(x)||∞ = 0,

for all f ∈ C[0, 1] if and only if

lim
n→∞

||Tn(fi, x)− fi(x)||∞ = 0,

for i ∈ {0, 1, 2} where f0(x) = 1, f1(x) = x and f2(x) = x2.

Theorem 3.3. Let (Tn) be a sequence of positive linear operators from C2π(R) into
F (R). Then

lim
n→∞

||Tn(f, x)− f(x)||2π = 0,

for all f ∈ C2π(R) if and only if

lim
n→∞

||Tn(fi, x)− fi(x)||2π = 0,

for i ∈ {0, 1, 2} where f0(x) = 1, f1(x) = cosx and f2(x) = sinx.

The Korovkin type theorems are investigated by several mathematicians in gen-
eralization of them in many ways and several settings such as function spaces, abstract
Banach latices, Banach algebras, and so on. This theory is useful in real analysis, func-
tional analysis, harmonic analysis, and so on. For more results related to the Korovkin
type theorems see ([4, 11, 19, 21, 22, 24, 9, 7, 18, 2, 1, 23, 15]). In this paper we will
prove the second Korovkin-type theorem with the help of Λ2−statistically summabil-
ity method which is a generalization of that given in [19] and [16, 17].

For given sequence of linear operators Ln we say that they are positive if
Ln(f(x)) ≥ 0 for all f(x) ≥ 0, for given x.
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Theorem 3.4. Let (Tn) be a sequence of positive linear operators from C2π(R) into
C2π(R). Then

Λ2(st)- lim
n→∞

||Tn(f, x)− f(x)||2π = 0, forall f ∈ C2π(R) (3.1)

if and only if

Λ2(st)- lim
n→∞

||Tn(fi, x)− fi(x)||2π = 0, i = 0, 1, 2, (3.2)

where f0(x) = 1, f1(x) = cosx and f2(x) = sinx.

Proof. Let us consider that relation (3.1) is valid for all f ∈ C2π(R). Then it is valid
especially for the f(x) = 1, f(x) = cosx and f(x) = sinx, and condition (3.2) is valid.
Now we will prove the contrary. Let us suppose that relations (3.2) is valid and we
will prove that (3.1) is valid, too. Let I = (a, a + 2π] any subinterval of length 2π
from R. Let us fix x ∈ I. By the conditions given for f(x) it follows that:

(∀ε > 0)(∃δ(ε) > 0)→ |f(t)− f(x)| < ε, (3.3)

for all t, whenever |t−x| < δ. If |t−x| ≥ δ. Let us consider that t ∈ (x+δ, 2π+x+δ],
then we get:

|f(t)− f(x)| ≤ 2||f ||2π ≤
2||f ||2π
sin2 δ

2

ψ(t) (3.4)

where ψ(t) = sin2
(
t−x

2

)
. From relations (3.3) and (3.4) for any fixed x ∈ I and for

any t we obtain:

|f(t)− f(x)| ≤ 2||f ||2π
sin2 δ

2

ψ(t) + ε. (3.5)

Respectively,

−ε− 2||f ||2π
sin2 δ

2

ψ(t) < f(t)− f(x) <
2||f ||2π
sin2 δ

2

ψ(t) + ε.

Applying the operator Tn(1, x) in this inequality we have:

Tk(1, x)

(
−ε− 2||f ||2π

sin2 δ
2

ψ(t)

)
< Tk(1, x) (f(t)− f(x)) < Tk(1, x)

(
2||f ||2π
sin2 δ

2

ψ(t) + ε

)
.

Value of x is fixed, which means that f(x) is a constant and above relation takes this
form:

−εTk(1, x)− 2||f ||2π
sin2 δ

2

Tk(ψ(t), x) < Tk(f, x)− f(x)Tk(1, x)

<
2||f ||2π
sin2 δ

2

Tk(ψ(t), x) + εTk(1, x). (3.6)

On the other hand

Tk(f, x)− f(x) = Tk(f, x)− f(x)Tk(1, x) + f(x)[Tk(1, x)− 1]. (3.7)

From relations (3.6) and (3.7) we have:

Tk(f, x)− f(x) <
2||f ||2π
sin2 δ

2

Tk(ψ(t), x) + εTk(1, x) + f(x)[Tk(1, x)− 1]. (3.8)
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Let us now estimate the following expression:

Tk(ψ(t), x) = Tk

(
sin2

(
t− x

2

)
, x

)
= Tk

(
1

2
(1− cos t cosx− sin t sinx), x

)
=

1

2
{Tk(1, x)− cosxTk(cos t, x)− sinxTk(sin t, x)}

=
1

2
{[Tk(1, x)− 1]−cosx[Tk(cos t, x)− cosx]−sinx[Tk(sin t, x)− sinx]} .

Now, from the last relation and (3.8), we obtain that

Tk(f, x)− f(x) <
2||f ||2π
sin2 δ

2

1

2

{
[Tk(1, x)− 1]− cosx[Tk(cos t, x)− cosx]

− sinx[Tk(sin t, x)− sinx]
}

+ εTk(1, x) + f(x)[Tk(1, x)− 1]

= ε+ ε[Tk(1, x)− 1] + f(x)[Tk(1, x)− 1] +
2||f ||2π
sin2 δ

2

1

2

{
[Tk(1, x)− 1]

− cosx[Tk(cos t, x)− cosx]− sinx[Tk(sin t, x)− sinx]
}
.

Therefore,

|Tk(f, x)− f(x)| ≤ ε+

(
ε+ |f(x)|+ 2||f ||2π

sin2 δ
2

)
|Tk(1, x)− 1|

+
2||f ||2π
sin2 δ

2

{
| cosx| · |Tk(cos t, x)− cosx|

+ | sinx| · |Tk(sin t, x)− sinx|
}

≤ ε+

(
ε+ |f(x)|+ 2||f ||2π

sin2 δ
2

)
|Tk(1, x)− 1|

+
2||f ||2π
sin2 δ

2

{
|Tk(cos t, x)− cosx|+ |Tk(sin t, x)− sinx|

}
.

Now taking the supx∈I in the above relation, we get:

||Tk(f, x)− f(x)||2π ≤ ε+K
(
||Tk(1, x)− 1||2π + ||Tk(cos t, x)− cosx||2π

+ ||Tk(sin t, x)− sinx||2π
)
,

where

K = max

{
ε+ ||f ||2π +

2||f ||2π
sin2 δ

2

,
2||f ||2π
sin2 δ

2

}
.

Now replacing Tk(., x) by

Λ2(., x) =
1

λn − λn−1

n∑
k=0

(λkTk(., x)− 2λk−1Tk−1(., x) + λk−2Tk−2(., x))
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in the above inequality on both sides. For a given r > 0, we can choose ε1 such that
ε1 < r. Now we will define the following sets:

D =
{
k ≤ N : ||Λ2(f, x)− f(x)||2π ≥ r

}
,

Di =
{
k ≤ N : ||Λ2(fi, x)− fi(x)||2π ≥

r − ε1

3K

}
, i = 0, 1, 2.

Then D ⊂ ∪2
i=0Di and for their densities is satisfied relation:

δ(D) ≤ δ(D0) + δ(D1) + δ(D2).

Finally, from relations (3.2) and the above estimation we get:

Λ2(st)- lim
n
||Λ2(f, x)− f(x)||2π = 0,

which completes the proof. �

Remark 3.5. If we take λn = n2, then our Theorem 3.4 reduce to Theorem 2.1 of [19].

4. Rate of Λ2− statistically convergence

In this section we will show the rate of the Λ2− statistical convergence of positive
linear operators in C2π(R) spaces.

Definition 4.1. Let (an) be any positive, nondecreasing sequence of positive numbers.
We say that sequence x = (xn) is Λ2− statistical convergent to number L with rate
of convergence o(an), if for every ε > 0,

lim
n

1

an
|{m ≤ n : |Tm − L| ≥ ε}| = 0.

In this case, we write xn − L = Λ2(st)− o(an).

Lemma 4.2. Let (an) and (bn) be two positive nondecreasing positive numeric se-
quences. Let x = (xn) and y = (yn) be two sequences such that xn−L1 = Λ2(st)−o(an)
and yn − L2 = Λ2(st)− o(bn). Then

1. α(xn − L) = Λ2(st)− o(an), for any scalar α.
2. (xn − L1)± (yn − L2) = Λ2(st)− o(cn).
3. (xn − L1)(yn − L2) = Λ2(st)− o(anbn),

where cn = max {an, bn}.

Now let us recall the notion of the modules of continuity. The modulus of con-
tinuity for function f(x) ∈ C2π(R), is defined as follows:

ω(f, δ) = sup
|h|<δ

|f(x+ h)− f(x)|.

It is known that, for any value of the |x− y|, we get:

|f(x)− f(y)| ≤ ω(f, δ)

(
|x− y|
δ

+ 1

)
. (4.1)
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We have the following result:

Theorem 4.3. Let (Tn) be a sequence of positive linear operators from C2π(R) into
C2π(R). Suppose that

1. ||Tn(1, x)− 1||2π = Λ2(st)− o(an).

2. ω(f, λk) = Λ2(st)− o(bn), where λn =
√
Tn(φx, x) and φx(y) = (y − x)2.

Then for all f ∈ C2π(R), we have:

||Tn(f, x)− f(x)||2π = Λ2(st)− o(cn),

where cn = max {an, bn}.

Proof. Let f ∈ C2π(R) and x ∈ [−π, π]. From relations (3.7) and (4.1) we get this
estimation:

|Tn(f, x)− f(x)| ≤ |Tn(|f(y)− f(x)|, x)|+ |f(x)| · |Tn(1, x)− 1|

≤ Tn
(
|x− y|
δ

+ 1, x

)
ω(f, δ) + |f(x)| · |Tn(1, x)− 1|

(by Cauchy-Schwartz inequality)

≤ 1

δ
(Tn((x− y)2, x))

1
2 (Tn(1, x))

1
2ω(f, δ) + |f(x)| · |Tn(1, x)− 1|.

If we are putting δ = λn =
√
Tn(φx, x) in the last relation we obtain:

||Tn(f, x)− f(x)||2π ≤ ||f ||2π||Tn(1, x)− 1||2π + 2ω(f, λn)

+ ω(f, λn)||Tn(1, x)− 1||2π + ω(f, λn)
√
||Tn(1, x)− 1||2π

≤ C
{
||Tn(1, x)− 1||2π + ω(f, λn) + ω(f, λn)||Tn(1, x)− 1||2π

+ ω(f, λn)
√
||Tn(1, x)− 1||2π

}
,

where C = max
{
||f ||2π, 2

}
. Now replacing Tk(., x) by

Λ2(., x) =
1

λn − λn−1

n∑
k=0

(λkTk(., x)− 2λk−1Tk−1(., x) + λk−2Tk−2(., x)),

we get

||Λ2(f, x)− f(x)||2π ≤ C
{
||Λ2(1, x)− 1||2π + ω(f, λn) + ω(f, λn)||Λ2(1, x)− 1||2π

+
√
ω(f, λn)||Λ2(1, x)− 1||2π

}
.

The proof follows from the conditions (1) and (2). �

In the following example we show that Theorem 3.4 is stronger than Theorem 3.3.

Example 4.4. For any n ∈ N we will denote by Sn(f) the n−th partial sum of the
Fourier series of f , i.e.,

Sn(f) =
a0

2
+

n∑
k=1

ak cos kx+ bk sin kx.
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Let us consider the following expression:

Λ2(f, x) =
1

λn − λn−1

n∑
k=0

(λk − 2λk−1 + λk−2)Sk(f).

We know that limn→∞ Λ2(f, x) = f (see [8]). Let us denote by Ln : C2π(R)→ C2π(R)
defined by:

Ln(f, x) = (1 + xn)Λ2(f, x)

where (xn) is defined as follow:

xn :=

{
1 (n odd)

−1 (n even).
(4.2)

After some calculations we have:

Λ2(1, x) = 1,

Λ2(cos t, x) = cosx,

Λ2(sin t, x) = sinx.

We see that conditions (3.2) are satisfied, and by Theorem 3.4, it follows that

Λ2(st)- lim
n
||Ln(f, x)− f ||2π = 0,

but Theorem 3.3 does’t hold.

Remark 4.5. Based in the previous example and Remark 3.5, we show that our Theo-
rem 3.4 is also stronger than Theorem 2.1 due to Mohiuddine and Alotaibi [19].
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The study of the solution of a Fredholm-Volterra
integral equation by Picard operators
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Abstract. In this paper we will use the Picard operators technique, in order to
establish the existence and uniqueness, data dependence and Gronwall-type re-
sults for the solutions of a Fredholm-Volterra functional-integral equation. The
paper ends with a result of the Ulam-Hyers stability of this integral equation.
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1. Introduction

The theory of integral equations has many applications in describing of numerous
phenomena and problems from different research fields of the surrounding world, such
as: mathematical physics, engineering, biology, economics and others. In what follows,
we consider the following Fredholm-Volterra functional-integral equation:

x(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)), (1.1)

where we denote:

IFr(t, s, a, b, x,K1, h1) =

∫ b

a

K1(t, s) · h1(s, x(s), x(a), x(b))ds

IV o(t, s, a, x,K2, h2) =

∫ t

a

K2(t, s) · h2(s, x(s), x(a))ds

and

F : [a, b]× R3 → R, K1,K2 : [a, b]× [a, b]→ R,
h1 : [a, b]× R3 → R, h2 : [a, b]× R2 → R, g : [a, b]× R→ R,

and we will apply the Picard operators technique to prove the existence and unique-
ness, data dependence, comparison and Gronwall-type results for the solution of the
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equation (1.1). Many authors have applied this technique to study the functional-
integral equations of mixed type (see [1], [2], [6], [9], [19], [27], etc.). Also, many
authors studied the functional-integral equations of Fredholm and Volterra type and
we mention some of them (see [1], [3], [7], [8], [10], [11], [12], [13], [14], [16], [17], [18]
[23], [24], [25], [26], [28], etc.).

In this paper we will use the notations from [22], [23] and [25] and we recall some
of them.

Let (X, d) be a metric space and A : X → X an operator. We have:

P (X) := {Y ⊂ X / Y 6= ∅} − the set of all nonempty subsets of X,

I(A) := {Y ∈ P (X) / A(Y ) ⊂ Y } − the family of the nonempty subsets

of X, invariant for A,

FA := {x ∈ X|A(x) = x} − the fixed points set of A.

Also, we denote by A0 := 1X , A
1 := A, An+1 := A ◦ An, n ∈ N – the iterate

operators of A.
Below, we present the definitions of Picard operator, c-Picard operator and

weakly Picard operator.

Definition 1.1. Let (X, d) be a metric space. An operator A : X → X is called Picard
operator (briefly PO) if there exists x∗ ∈ X such that:

(a) FA = {x∗};
(b) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 1.2. Let (X, d) be a metric space and c > 0. An operator A : X → X is
called c-Picard operator (briefly c-PO) if A is PO and

d(x, x∗) ≤ c · d(x,A(x)) for all x ∈ X.

Definition 1.3. Let (X, d) be a metric space. An operator A : X → X is called weakly
Picard operator (briefly WPO) if the sequence (An(x0))n∈N converges for all x0 ∈ X
and the limit (which may depend on x0) is a fixed point of A.

If A is a WPO, then it can be considered the operator A∞ : X → X, defined by

A∞(x) := lim
n→∞

An(x)

and we observe that A∞(X) = FA.
In addition, if A is a PO and we denote by x∗ its unique fixed point, then

A∞(x) = x∗ , for all x ∈ X.
In the second section we study the existence and uniqueness of the solution of

the integral equation (1.1).
In order to obtain the presented results of this section, we applied the Picard

operators technique and the Contraction Principle.

Theorem 1.4 (Contraction Principle). Let (X, d) be a complete metric space and A :
X → X an α-contraction (α < 1). Under these conditions we have:

(i) FA = {x∗};
(ii) x∗ = lim

n→∞
An(x0), for all x0 ∈ X;
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(iii) d(x∗, An(x0)) ≤ αn

1−αd(x0, A(x0)).

In order to obtain several Gronwall-type and comparison results for the solution
of the integral equation (1.1), in the third section we will use the Abstract Compar-
ison Lemma, the Abstract Gronwall Lemma and the Abstract Gronwall-Comparison
Lemma, which we present below.

Lemma 1.5. (see [25]) Let (X, d,≤) be an ordered metric space and A : X → X an
operator. If:

(i) A is an increasing operator;
(ii) the operator A is a WPO,

then the operator A∞ is increasing.

Lemma 1.6 (Abstract Comparison Lemma). (see [22], [23], [25]) Let A,B,C : X → X
be three operators defined on the ordered metric space (X, d,≤). If:

(i) A ≤ B ≤ C;
(ii) A, B, C are WPOs;

(iii) the operator B is increasing,

then

x ≤ y ≤ z ⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

Remark 1.7. Let A,B,C be the operators defined in the Abstract Comparison
Lemma. In addition, we suppose that B is PO, i.e. FB = {x∗B}. Then we have

A∞(x) ≤ x∗B ≤ C∞(x), for all x ∈ X.

But A∞(X) = FA and C∞(X) = FC and therefore FA ≤ x∗B ≤ FC .

Lemma 1.8 (Abstract Gronwall Lemma). (see [22], [23], [25]) Let A : X → X be an
operator defined on the ordered metric space (X, d,≤). If:

(i) the operator A is PO and denote by x∗A the unique fixed point of A;
(ii) A is an increasing operator,

then

(a) x ≤ A(x)⇒ x ≤ x∗A;
(b) x ≥ A(x)⇒ x ≥ x∗A.

Lemma 1.9 (Abstract Gronwall-Comparison Lemma). (see [22], [23], [25]) Let A1, A2 :
X → X be two operators defined on the ordered metric space (X, d,≤). We assume
that:

(i) A1 is increasing;
(ii) A1 and A2 are POs;

(iii) A1 ≤ A2.

If we denote by x∗2 the unique fixed point of A2, then

x ≤ A1(x)⇒ x ≤ x∗2.

In the section 4 we prove a result of the continuous data dependence of the
solution of the integral equation (1.1) using the General Data Dependence Theorem.
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Theorem 1.10 (General Data Dependence Theorem). Let (X, d) be a complete metric
space, A,B : X → X two operators and suppose:

(i) A is c-PO with respect to the metric d and FA = {x∗A};
(ii) there exists x∗B ∈ FB;

(iii) there exists η > 0 such that d(A(x), B(x)) ≤ η, for all x ∈ X.

Under these conditions we have:

d(x∗A, x
∗
B) ≤ c · η.

The last section of this paper contains a result concerning the Ulam-Hyers stability
of the integral equation (1.1).

Definition 1.11. (I.A. Rus [21]) Let (X, d) be a metric space and A : X → X an
operator. The equation of fixed point

x = A(x). (1.2)

is Ulam-Hyers stable if there exists a real number cA > 0 such that for each ε > 0
and each solution y∗ of the inequation

d(y,A(y)) ≤ ε,

there exists a solution x∗ of equation (1.2) such that

d(y∗, x∗) ≤ cA · ε.

Also, in this section we will use the Remark 2.1 from I.A. Rus [21], that you can find
below.

Remark 1.12. (I.A. Rus [21], Remark 2.1) If A is a c-weakly Picard operator, then
the fixed point equation (1.2) is Ulam-Hyers stable.

Indeed, let ε > 0 and y∗ a solution of d(y,A(y)) ≤ ε. Since A is c-weakly Picard
operator, we have that

d(x,A∞(x)) ≤ c · d(x,A(x)), for all x ∈ X.

If we take x := y∗ and x∗ := A∞(y), then we have that d(y∗, x∗) ≤ cA · ε (see [20],
[21]).

2. Existence and uniqueness

In this section we present several results of existence and uniqueness for the
solution of the integral equation (1.1). These results were obtained by applying the
known standard techniques as in [1], [2], [5], [6] for particular integral equations.

We suppose that the following conditions are fulfilled:

(a1) K1,K2 ∈ C([a, b]×[a, b]), h1 ∈ C([a, b]×R3), h2 ∈ C([a, b]×R2), g ∈ C([a, b]×R);
(a2) F ∈ C([a, b]× R3).

Theorem 2.1. We assume that the conditions (a1) and (a2) are satisfied. In addition
we assume that:
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(i) there exist α, β, γ > 0, such that:

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ α|u1 − u2|+ β|v1 − v2|+ γ|w1 − w2|,
for all t ∈ [a, b], ui, vi, wi ∈ R, i = 1, 2;

(ii) there exist L1, L2, L3 > 0 such that:

|h1(s, u1, u2, u3)− h1(s, v1, v2, v3)| ≤ L1(|u1 − v1|+ |u2 − v2|+ |u3 − v3|),
for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2, 3;

|h2(s, u1, u2)− h2(s, v1, v2)| ≤ L2(|u1 − v1|+ |u2 − v2|),
for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2;

|g(t, u)− g(t, v)| ≤ L3|u− v|),
for all t ∈ [a, b], u, v ∈ R;

(iii) αL3 + (3βM1L1 + 2γM2L2)(b− a) < 1,
where we denoted by M1 and M2 respectively, two positive constants, such that
|K1(t, s)| ≤M1 and |K2(t, s)| ≤M2, for all t, s ∈ [a, b].

Under these conditions the integral equation (1.1) has a unique solution x∗ ∈ C[a, b],
that can be obtained by the successive approximations method starting at any element
x0 ∈ C[a, b].
In addition, if xn is the n-th successive approximation, then we have:

‖x∗ − xn‖C ≤
[αL3 + (3βM1L1 + 2γM2L2)(b− a)]n

1− αL3 − (3βM1L1 + 2γM2L2)(b− a)
· ‖x0 − x1‖C . (2.1)

Proof. Let X = (C[a, b], ‖ · ‖C) be a Banach space, where ‖ · ‖C is the Chebyshev’s
norm

‖x‖C = max
t∈[a,b]

|x(t)|, for all x ∈ C[a, b].

Also, we consider the operator A : X → X, defined by the relation:

A(x)(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)) (2.2)

for all t ∈ [a, b].
The set of the solutions of the integral equation (1.1) coincides with the set of

fixed points of the operator A. From Contraction Principle it results that the operator
A must be a contraction. We have:

|A(x)(t)−A(y)(t)| = |F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2))

− F (t, g(t, y(t)), IFr(t, s, a, b, y,K1, h1), IV o(t, s, a, y,K2, h2))|.
From (i) and (ii) and using the Chebyshev’s norm it results

‖A(x)−A(y)‖C[a,b] ≤ [αL3 + (3βM1L1 + 2γM2L2)(b− a)]‖x− y‖C[a,b] (2.3)

Consequently, from (iii) it results that the operator A is an LA-contraction with the
coefficient

LA = αL3 + (3βM1L1 + 2γM2L2)(b− a).

Now, from Contraction Principle it results that the operator A has a unique fixed
point FA = {x∗} and consequently, the integral equation (1.1) has a unique solution
x∗ ∈ C[a, b]; this solution can be obtained by the successive approximations method
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starting at any element x0 ∈ C[a, b] and, if xn is the n-th successive approximation,
then the estimation (2.1) is true. The proof is complete. �

Remark 2.2. In order to obtain the Theorem 2.1, of existence and uniqueness of the
solution of the integral equation (1.1) in the space C[a, b], we reduced the problem
of determination of the solutions of this integral equation to a fixed point problem.
Under the conditions of the Theorem 2.1, the operator A, defined by (2.2), is PO.

Remark 2.3. If we consider the Banach space X = (C[a, b], ‖ · ‖B), where ‖ · ‖B is the
Bielecki’s norm:

‖x‖B = max
t∈[a,b]

|x(t)|e−τ(t−a),

for all x ∈ C[a, b], and τ > 0 a parameter, and the operator A : X → X, defined by
(2.2), then we have another theorem of existence and uniqueness of the solution of
the integral equation (1.1) in the space C[a, b], that we present below.

Theorem 2.4. We assume that the conditions (a1) and (a2) are satisfied and also,
the conditions (i) and (ii) from Theorem 2.1 are fulfilled. Under these conditions the
integral equation (1.1) has a unique solution x∗ ∈ C[a, b].

Proof. We have

|A(x)(t)−A(y)(t)| ≤ αL3e
τ(t−a)‖x− y‖B + 3

βM1L1

τ
eτ(t−a)‖x− y‖B

+ 2
γM2L2

τ
eτ(t−a+b−t)‖x− y‖B

and therefore, using the Bielecki’s norm, we obtain:

‖A(x)−A(y)‖B ≤ [αL3 + 3
βM1L1

τ
+ 2

γM2L2

τ
eτ(b−a)]‖x− y‖B . (2.4)

It is clear that one can find a positive parameter τ , such that

αL3 + 3
βM1L1

τ
+ 2

γM2L2

τ
eτ(b−a) < 1,

and thus A is an LA-contraction with

LA = αL3 + 3
βM1L1

τ
+ 2

γM2L2

τ
eτ(b−a)

and the conclusion of theorem is obtained by applying the Contraction Principle
(Theorem 1.4). �

Example 2.5. The following equation is a particular case of the integral equation (1.1),
when g(t, x(t)) = x(t):

x(t) = F (t, x(t), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)), (2.5)

where we used the same notations for IFr and IV o as at the beginning of the first
section.

Let us consider this integral equation in the following hypotheses:

(i) F ∈ C([a, b]× R3), K1,K2 ∈ C([a, b]× [a, b]), h1 ∈ C([a, b]× R3),
h2 ∈ C([a, b]× R2);
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(ii) there exist α, β, γ > 0, such that:

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ α|u1 − u2|+ β|v1 − v2|+ γ|w1 − w2|,

for all t ∈ [a, b], ui, vi, wi ∈ R, i = 1, 2;
(iii) there exist L1, L2 > 0, such that:

|h1(s, u1, u2, u3)− h1(s, v1, v2, v3)| ≤ L1(|u1 − v1|+ |u2 − v2|+ |u3 − v3|),

for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2, 3;

|h2(s, u1, u2)− h1(s, v1, v2)| ≤ L2(|u1 − v1|+ |u2 − v2|),

for all s ∈ [a, b], ui, vi ∈ R, i = 1, 2;
(iv) α+ (3βM1L1 + 2γM2L2)(b− a) < 1,

where we denoted by M1 and M2 respectively, two positive constants, such that
|K1(t, s)| ≤M1 and |K2(t, s)| ≤M2, for all t, s ∈ [a, b].

Then the integral equation (1.1) has a unique solution x∗ ∈ C[a, b], that can be
obtained by the successive approximations method starting at any element x0 ∈
C[a, b]. Moreover, if xn is the n-th successive approximation, then we have:

‖x∗ − xn‖C ≤
[α+ (3βM1L1 + 2γM2L2)(b− a)]n

1− α− (3βM1L1 + 2γM2L2)(b− a)
· ‖x0 − x1‖C . (2.6)

In order to prove this result, we applied the Theorem 2.1 in particular case of

g(t, x(t)) = x(t).

Remark 2.6. A similar result can be obtained for the solution of integral equation

x(t) = F (t, x(a), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)), (2.7)

by applying the Theorem 2.1 in particular case of g(t, x(t)) = x(a).

Remark 2.7. In the paper [9] has been studied the existence and uniqueness of the
solution of nonlinear Fredholm-Volterra functional-integral equation:

x(t) = F (t, x(a),

∫ b

a

K1(t, s, x(g1(s)))ds,

∫ t

a

K2(t, s, x(g2(s)))ds). (2.8)

3. Comparison results and Gronwall lemmas

We present below a comparison result and two Gronwall-type lemmas for the
solution of the integral equation (1.1). These results have been obtained by using
the Picard operators technique and applying the Abstract Comparison Lemma, the
Abstract Gronwall Lemma and the Abstract Gronwall-Comparison Lemma as in [4],
[5], [15] for particular operatorial equations.

In order to obtain a comparison result, we consider the integral equations:

x(t) = Fi(t, g(t, x(t)), IiFr(t, s, a, b, x,K1, h
i
1), IiV o(t, s, a, x,K2, h

i
2)), (3.1)
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where we denoted:

IiFr(t, s, a, b, x,K1, h
i
1) =

∫ b

a

K1(t, s) · hi1(s, x(s), x(a), x(b))ds

IiV o(t, s, a, x,K2, h
i
2) =

∫ t

a

K2(t, s) · hi2(s, x(s), x(a))ds

where

Fi ∈ C([a, b]× R3), g ∈ C([a, b]× R),

K1,K2 ∈ C([a, b]× [a, b],R+), hi1 ∈ C([a, b]× R3),

hi2 ∈ C([a, b]× R2), i = 1, 2, 3.

We have:

Theorem 3.1. Suppose that:

(i) the functions Fi, g,K1,K2, h
i
1, h

i
2, i = 1, 2, 3 satisfy the conditions of Theorem

2.1, and let x∗i be the unique solution of the integral equation (3.1) corresponding
to Fi, h

i
1, h

i
2, i = 1, 2, 3;

(ii) the functions F2(t, ·, ·, ·), h21(t, ·, ·, ·), h22(t, ·, ·) are increasing;
(iii) F1 ≤ F2 ≤ F3, h11 ≤ h21 ≤ h31 and h12 ≤ h22 ≤ h32.

Then

x∗1 ≤ x∗2 ≤ x∗3.

Proof. We consider the Banach space X = (C[a, b], ‖ · ‖C) and the operators Ai :
X → X, defined by the relation (2.2) corresponding to functions Fi, g,K1,K2, h

i
1, h

i
2,

i = 1, 2, 3:

Ai(x)(t) = Fi(t, g(t, x(t)), IiFr(t, s, a, b, x,K1, h
i
1), IiV o(t, s, a, x,K2, h

i
2)).

From condition (i) it results that the operators Ai : X → X, i = 1, 2, 3 are PO’s and
therefore each of these operators has a unique fixed point, FAi

= {x∗i }.
From condition (ii) we deduce that the operator A2 is increasing and from condition
(iii) we obtain that A1 ≤ A2 ≤ A3.
Now, applying the Abstract Comparison Lemma (Lemma 1.6), it results that

x1 ≤ x2 ≤ x3 =⇒ A∞1 (x1) ≤ A∞2 (x2) ≤ A∞3 (x3),

but A1, A2, A3 are PO’s and then by Remark 1.7, the conclusion of this theorem
follows, i.e. x∗1 ≤ x∗2 ≤ x∗3. The proof is complete. �

For the solution of the integral equation (1.1) we present below, the following
two Gronwall-type lemmas.

Theorem 3.2. We suppose that:

(i) F ∈ C([a, b]× R3), K1,K2 ∈ C([a, b]× [a, b],R+), h1 ∈ C([a, b]× R3),
h2 ∈ C([a, b]× R2), g ∈ C([a, b]× R);

(ii) F,K1,K2, h1, h2, g satisfy the conditions (i)-(iii) of Theorem 2.1, and denote by
x∗ ∈ C[a, b] the unique solution of the integral equation (1.1);

(iii) h1(s, ·, ·, ·) : R3 → R, h2(s, ·, ·) : R2 → R are increasing functions for all s ∈ [a, b];
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(iv) F (t, ·, ·, ·) : R3 → R is increasing function for all t ∈ [a, b].

Under these conditions, the following statements are true:

(a) if x is a lower-solution of integral equation (1.1) then x ≤ x∗;
(b) if x is a upper-solution of integral equation (1.1) then x ≥ x∗.

Proof. We consider the operator A : X → X, defined by (2.2). From conditions (i)
and (ii) it results that this operator is PO and denote by x∗ the unique fixed point of
A. From the assumptions (i), (iii) and (iv) it results that the operator A is increasing.

Now, the conditions of the Abstract Gronwall Lemma (Lemma 1.8), being satis-
fied, it results that the conclusions of this theorem:

– if x is a lower-solution of the integral equation (1.1), i.e. x ≤ A(x), then x ≤ x∗;
– if x is a upper-solution of the integral equation (1.1), i.e. x ≥ A(x), then x ≥ x∗,

are true. The proof is complete. �

To obtain an effective Gronwall-type lemma, it can use the Abstract Gronwall-
Comparison Lemma (Lemma 1.9), and we obtain a result that we present below.

Theorem 3.3. We consider the integral equation (1.1) corresponding to Fi, g, K1, K2,
hi1, hi2, for i = 1, 2. We assume that:

(i) Fi ∈ C([a, b]× R3), K1,K2 ∈ C([a, b]× [a, b],R+), hi1 ∈ C([a, b]× R3),
hi2 ∈ C([a, b]× R2), g ∈ C([a, b]× R), i = 1, 2;

(ii) Fi, g,K1,K2, h
i
1, h

i
2 satisfy the conditions (i)-(iii) of Theorem 2.1, for i = 1, 2;

(iii) h11(s, ·, ·, ·) : R3 → R, h12(s, ·, ·) : R2 → R are increasing functions for all s ∈ [a, b];
(iv) F1(t, ·, ·, ·) : R3 → R, g(t, ·) : R→ R are increasing functions for all t ∈ [a, b].
(v) F1 ≤ F2, h

1
1 ≤ h21 and h12 ≤ h22.

If x is a solution of integral inequality

x(t) ≤ F1(t, g(t, x(t)), I1Fr(t, s, a, b, x,K1, h
1
1), I1V o(t, s, a, x,K2, h

1
2)), (3.2)

where

I1Fr(t, s, a, b, x,K1, h
1
1) =

∫ b

a

K1(t, s) · h11(s, x(s), x(a), x(b))ds

I1V o(t, s, a, x,K2, h
1
2) =

∫ t

a

K2(t, s) · h12(s, x(s), x(a))ds,

then x ≤ x∗2 , where x∗2 is the unique solution of integral equation (1.1) corresponding
to F2, g,K1,K2, h

2
1, h

2
2:

x(t) = F2(t, g(t, x(t)), I2Fr(t, s, a, b, x,K1, h
2
1), I2V o(t, s, a, x,K2, h

2
2)),

where

I2Fr(t, s, a, b, x,K1, h
2
1) =

∫ b

a

K1(t, s) · h21(s, x(s), x(a), x(b))ds

I2V o(t, s, a, x,K2, h
2
2) =

∫ t

a

K2(t, s) · h22(s, x(s), x(a))ds.
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Proof. We consider the operator A1, A2 defined by (2.2), corresponding to F1, g, K1,
K2, h11, h12 and F2, g, K1, K2, h21, h22.

From Theorem 2.1 we have that A1 and A2 are POs, and we denote by x∗i the
unique fixed point of operator Ai, i = 1, 2.

From condition (ii) it results that A1 is increasing and from condition (iii) we
obtain that A1 ≤ A2.

If x is a solution of (3.2), then x ≤ A1(x).

Now, we apply the Abstract Gronwall-Comparison Lemma (Lemma 1.9), and
we obtain the conclusion of the theorem. The proof is complete. �

4. Data dependence

In order to study the data dependence of the solution of the integral equation
(1.1) we consider the following perturbed integral equation:

x(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, k1), IV o(t, s, a, x,K2, k2)), (4.1)

where

IFr(t, s, a, b, x,K1, k1) =

∫ b

a

K1(t, s) · k1(s, x(s), x(a), x(b))ds

IV o(t, s, a, x,K2, k2) =

∫ t

a

K2(t, s) · k2(s, x(s), x(a))ds

and

F : [a, b]× R3 → R, K1,K2 : [a, b]× [a, b]→ R,
k1 : [a, b]× R3 → R, k2 : [a, b]× R2 → R, g : [a, b]× R→ R.

We have the following data dependence theorem of the solution of the integral equation
(1.1):

Theorem 4.1. Suppose that:

(i) F,K1,K2, h1, h2, g satisfy the conditions of Theorem 2.1 and we denote by x∗ ∈
C[a, b] the unique solution of integral equation (1.1);

(ii) k1 ∈ C([a, b]× R3), k2 ∈ C([a, b]× R2);
(iii) there exists η1, η2 > 0 such that

|h1(s, u, v, w)− k1(s, u, v, w)| ≤ η1, for all s ∈ [a, b], u, v, w ∈ R, and
|h2(s, u, v)− k2(s, u, v)| ≤ η2, for all s ∈ [a, b], u, v ∈ R.

Under these conditions, if y∗ ∈ C[a, b] is a solution of the integral equation (4.1), then
we have:

‖x∗ − y∗‖C ≤
(M1η1 +M2η2)(b− a)

1− αL3 − (3βM1L1 + 2γM2L2)(b− a)
. (4.2)
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Proof. We consider the operator from the proof of Theorem 2.1, A : C[a, b]→ C[a, b],
attached to integral equation (1.1) and defined by the relation (2.2):

A(x)(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2)),

for all t ∈ [a, b].
From condition (i) it results that the operator A is a LA-contraction with the

coefficient

LA = αL3 + (3βM1L1 + 2γM2L2)(b− a)

(Theorem 2.1) and therefore, A is c-PO with c = 1
1−LA

.

Also, we attach to the integral equation (4.1) the operator B : C[a, b]→ C[a, b],
defined by the relation:

B(x)(t) = F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, k1), IV o(t, s, a, x,K2, k2)) (4.3)

for all t ∈ [a, b].
From conditions (i) and (ii) it results that the operator B is correctly defined.
The set of the solutions of the perturbed integral equation (4.1) in the space C[a, b]
coincides with the fixed points set of the operator B defined by the relation (4.3).
We have:

|A(x)(t)−B(x)(t)| = |F (t, g(t, x(t)), IFr(t, s, a, b, x,K1, h1), IV o(t, s, a, x,K2, h2))

− F (t, g(t, y(t)), IFr(t, s, a, b, y,K1, k1), IV o(t, s, a, y,K2, k2))|

and from condition (iii) it results that

|A(x)(t)−B(x)(t)| ≤ (M1η1 +M2η2)(b− a), for all t ∈ [a, b].

Now, using the Chebyshev’s norm, we obtain:

‖A(x)−B(x)‖C ≤ (M1η1 +M2η2)(b− a) (4.4)

and applying the General Data Dependence Theorem (Theorem 1.10), with

c =
1

1− LA
and η = (M1η1 +M2η2)(b− a),

it results the estimation (4.2). The proof is complete. �

5. Ulam-Hyers stability

Theorem 5.1. Under the conditions of Theorem 2.1, the integral equation (1.1) is
Ulam-Hyers stable, i.e. for ε > 0 and y∗ ∈ C[a, b] a solution of the inequation

|y(t)− F (t, g(t, y(t)), IFr(t, s, a, b, y,K1, h1), IV o(t, s, a, y,K2, h2))| ≤ ε

for all t ∈ [a, b], there exists a solution of the integral equation (1.1), x∗ ∈ C([a, b],
such that

|y∗(t)− x∗(t)| ≤ 1

1− LA
ε, for all t ∈ [a, b],

where

LA = αL3 + (3βM1L1 + 2γM2L2)(b− a).
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Proof. We consider the operator A, defined by the relation (2.2). Under the conditions
of Theorem 2.1, it results that the operator A is a contraction and therefore, A is c-PO
with the constant c = 1

1−LA
,

LA = αL3 + (3βM1L1 + 2γM2L2)(b− a).

Now, the conclusion of this theorem is obtained as an application of the Remark 1.12
(I.A.Rus [21], Remark 2.1) anf the proof is complete. �
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Babeş-Bolyai Math., 51(2006), no. 1, 81-94.
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Stud. Univ. Babeş-Bolyai Math. 64(2019), No. 4, 565–580
DOI: 10.24193/subbmath.2019.4.10

Ascent, descent and additive preserving problems

Mourad Oudghiri and Khalid Souilah

Abstract. Given an integer n ≥ 1, we provide a complete description of all ad-
ditive surjective maps, on the algebra of all bounded linear operators acting on
a complex separable infinite-dimensional Hilbert space, preserving in both di-
rections the set of all bounded linear operators with ascent (resp. descent) non-
greater than n. In the context of Banach spaces, we consider the additive pre-
serving problem for semi-Fredholm operators with ascent or descent non-greater
than n.

Mathematics Subject Classification (2010): 47B49, 47L99, 47A55, 47B37.

Keywords: Linear preserver problems, ascent, descent, semi-Fredholm operators.

1. Introduction

Let X be an infinite-dimensional Banach space over the real or complex field K,
and let B(X) be the algebra of all bounded linear operators on X.

For a subset Λ ⊂ B(X), we say that a map Φ on B(X) preserves Λ in both
directions (or, equivalently, that Φ is a preserver of Λ in both directions) if for every
T ∈ B(X),

T ∈ Λ if and only if Φ(T ) ∈ Λ.

For an operator T ∈ B(X), write ker(T ) for its kernel, ran(T ) for its range and
T ∗ for its adjoint on the topological dual space X∗. The ascent a(T ) and descent d(T )
of T ∈ B(X) are defined by

a(T ) = inf{k ≥ 0 : ker(T k) = ker(T k+1)}
and

d(T ) = inf{k ≥ 0 : ran(T k) = ran(T k+1)},
where the infimum over the empty set is taken to be infinite (see [15, 19]). Clearly, a
bounded linear operator is injective (resp. surjective) if and only if its ascent (resp.
descent) is zero.

Over the last years, there has been a considerable interest in the so-called linear
preserver problems that concern the question of determining the form of all linear, or
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additive, maps on B(X) that leave invariant certain subsets. The most linear preserver
problems were solved in the finite-dimensional context, and extended later to the
infinite-dimensional one. For excellent expositions on linear preserver problems, the
reader is referred to [7, 11, 12, 13, 16] and the references therein.

One of the most famous problems in this direction is Kaplansky’s problem [8],
asking whether bijective unital linear maps Φ, between semi-simple Banach algebras,
preserving in both directions invertibility, are Jordan isomorphisms (i.e. Φ(a2) =
Φ(a)2 for all a). This problem was first solved in the finite-dimensional case [10], and
it was later extended to von Neumann algebras [1]. In the case of the algebra B(X),
A. A. Jafarian and A. R. Sourour established in [7] that every unital surjective linear
map Φ on B(X), preserving in both directions invertibility, has one of the following
two forms

T 7→ ATA−1 or T 7→ AT ∗A−1, (1.1)

where A is a bounded linear operator between suitable spaces. Later, it was shown in
[6] that every unital surjective additive preserver of injective operators or of surjective
operators in both directions takes one of the two forms (1.1).

Since injective and surjective operators are precisely those operators with zero
ascent and descent respectively, the following question arises: What can we say about
surjective linear maps on B(X) preserving in both directions operators of finite ascent
and descent, respectively?

Let H be a separable complex infinite-dimensional Hilbert space, and denote by
A(H) (resp. D(H)) the set of all operators in B(H) of finite ascent (resp. descent). In
[11], the authors showed that a surjective additive continuous map Φ : B(H)→ B(H)
preserves A(H) or D(H) in both directions if and only if

Φ(T ) = cATA−1 for all T ∈ B(H), (1.2)

where c is a non-zero scalar and A : H → H is an invertible bounded linear, or
conjugate linear, operator. An analog result was proved for A(H) ∪ D(H) by the
same authors, see [12]. It should be noted that the question of removing the continuity
condition or extending these results to the context of Banach spaces is still open.

The above results motivated us to continue the study of additive preservers
involving the ascent and descent. This study may be considered as a key step towards
a deeper understanding of operators with finite ascent or descent and their topological
properties. In this paper, we will show that if we limit the variation of the ascent
and the descent, then we obtain the same conclusion as in [11] without considering
continuous preservers.

For each integer n ≥ 1 let us introduce the following subsets of B(H):

1. An(H) the set of all operators T ∈ B(H) with a(T ) ≤ n;
2. Dn(H) the set of all operators T ∈ B(H) with d(T ) ≤ n.

Now, we summarize the first main result in the following theorem:

Theorem 1.1. Let Φ : B(H)→ B(H) be an additive surjective map. Then the following
assertions are equivalent:

1. Φ preserves An(H) in both directions;
2. Φ preserves Dn(H) in both directions;
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3. Φ preserves An(H) ∪ Dn(H) in both directions;
4. there exist a non-zero scalar c and a bounded invertible linear, or conjugate

linear, operator A : H → H such that

Φ(T ) = cATA−1 for all T ∈ B(H).

Unfortunately, the approach used here does not allow us to obtain an analogue
result in the context of Banach spaces. More precisely, one of the most important
steps in the proof of the previous theorem consists in determining the topological
interior of An(H), Dn(H), and An(H) ∪ Dn(H) using that of A(H) ∪ D(H), which
is known only in the context of separable Hilbert spaces, see [12].

Recall that an operator T ∈ B(X) is called upper (resp. lower) semi-Fredholm if
ran(T ) is closed and dim ker(T ) (resp. codim ran(T )) is finite. The following properties
will be used tacitly throughout the paper (see [15, Section 16]):

1. If the codimension of the range ran(T ) of an operator T ∈ B(X) is finite, then
ran(T ) is automatically closed;

2. The composition of two upper (resp. lower) semi-Fredholm operators is an upper
(resp. lower) semi-Fredholm operator;

3. If ST is an upper (resp. lower) semi-Fredholm operator, then T (resp. S) is upper
(resp. lower) semi-Fredholm.

In [14], the authors studied all linear maps Φ on B(H) preserving in both direc-
tions semi-Fredholm operators. It has been shown that such maps Φ preserve in both
directions the ideal of compact operators, and that the induced maps on the Calkin
algebra are Jordan automorphisms. The problem of determining the structure of such
maps on the whole space B(H) has remained open, and hence they conjectured that
Φ is of the form T 7→ ATB+Ψ(T ) where A,B ∈ B(H) are Fredholm operators and Ψ
is a linear map on B(H) whose range is contained in the ideal of compact operators.

In this paper, we prove that if we limit the variation of the ascent (resp. descent)
of upper (resp. lower) semi-Fredholm operators, then we obtain the complete descrip-
tion of all additive preservers of such operators in the context of Banach spaces. More
precisely, we consider additive preservers of the following subsets of B(X):

1. F+
n (X) the set of all upper semi-Fredholm operators T ∈ B(X) with a(T ) ≤ n;

2. F−n (X) the set of all lower semi-Fredholm operators T ∈ B(X) with d(T ) ≤ n;
3. F±n (X) = F+

n (X) ∪ F−n (X).

The second main result of the present paper is stated as follows:

Theorem 1.2. Let Φ : B(X) → B(X) be an additive surjective map preserving any
one of the subsets F+

n (X), F−n (X) or F±n (X) in both directions. Then there exist a
non-zero scalar c, and either a bounded invertible linear, or conjugate linear, operator
A : X → X such that

Φ(T ) = cATA−1 for all T ∈ B(X),

or, a bounded invertible linear, or conjugate linear, operator B : X∗ → X such that

Φ(T ) = cBT ∗B−1 for all T ∈ B(X).

As an application of Theorem 1.2, we derive the following corollary:
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Corollary 1.3. Let Φ : B(H)→ B(H) be an additive surjective map. Then the following
assertions are equivalent:

1. Φ preserves F+
n (H) in both directions;

2. Φ preserves F−n (H) in both directions;
3. Φ preserves F±n (H) in both directions;
4. there exist a non-zero scalar c and a bounded invertible linear, or conjugate

linear, operator A : H → H such that

Φ(T ) = cATA−1 for all T ∈ B(H).

The paper is organized as follows. In the second section, we give the topological
interior of each of the subsetsAn(H),Dn(H), andAn(H)∪Dn(H). The third section is
devoted to establish some useful results on rank-one perturbations of these topological
interiors. These results are needed for proving our theorems in the last section.

2. Topological interior of An(H), Dn(H), and An(H) ∪ Dn(H)

Recall that the hyper-kernel and the hyper-range of an operator T ∈ B(X) are

respectively the subspaces N∞(T ) =
⋃
k≥0

ker(T k) and R∞(T ) =
⋂
k≥0

ran(T k).

Let us introduce the following subsets of B(X):

1. B+n (X) = {T ∈ B(X) : ran(T ) is closed and dimN∞(T ) ≤ n};
2. B−n (X) = {T ∈ B(X) : codimR∞(T ) ≤ n};
3. B±n (X) = B+n (X) ∪ B−n (X).

One of the most important steps in the proof of our main theorems is to show
that the maps we are dealing with preserve the subsets B+n (X), B−n (X) and B±n (X) in
both directions. In order to prove this implication, we establish that the topological
interior of An(H), Dn(H) and An(H) ∪ Dn(H) is respectively B+n (H), B−n (H) and
B±n (H). Similar results are given for F+

n (X), F−n (X) and F±n (X).

It should be noted that the ascent and the hyper-kernel of an operator T ∈ B(X)
are related by the following inequality (see [17])

a(T ) ≤ dimN∞(T ). (2.1)

Similarly, the descent is related to the hyper-range by

d(T ) ≤ codimR∞(T ). (2.2)

Remark 2.1. For T ∈ B(X), it follows easily from the definition of the ascent and of
the descent that:

1. dim ker(Tn+1) ≤ n if and only if dimN∞(T ) ≤ n;
2. codim ran(Tn+1) ≤ n if and only if codimR∞(T ) ≤ n.

Proposition 2.2. B+n (X), B−n (X) and B±n (X) are open subsets of F+
n (X), F−n (X) and

F±n (X), respectively.
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Proof. It follows from (2.1) and (2.2) that B+n (X) and B−n (X) are subsets of F+
n (X)

and F−n (X) respectively, and so B±n (X) is a subset of F±n (X). Let S ∈ B+
n (X). In

particular, we have dim ker(Sn) = dim ker(Sn+1) ≤ n and Sn+1 is an upper semi-
Fredholm operator. Hence, it follows by [15, Theorem 16.11] that there exists η > 0
such that for T ∈ B(X) with ‖ T−Sn+1 ‖< η, we have that T is upper semi-Fredholm
and

dim ker(T ) ≤ dim ker(Sn+1) ≤ n. (2.3)

On the other hand, since the function T 7→ Tn+1 is continuous on B(X), there exists
ε > 0 such that

‖ Tn+1 − Sn+1 ‖< η for all T ∈ B(X) with ‖ T − S ‖< ε. (2.4)

Combining (2.4) and (2.3) we obtain that Tn+1 is upper semi-Fredholm and

dim ker(Tn+1) ≤ dim ker(Sn+1) ≤ n,

and so T ∈ B+
n (X) for all T ∈ B(X) with ‖ T − S ‖< ε. This shows that B+n (X) is

open.
Similarly, we prove that B−n (X) is open, and hence B±n (X) is also open. �

From [5, Lemma 1.1], given a non-negative integer d, we have

a(T ) ≤ d⇔ ker(Tm) ∩ ran(T d) = {0} for some m ≥ 1. (2.5)

Remark 2.3. Let T ∈ B(X). Then the following assertions hold:

1. If T has finite ascent and descent then a(T ) = d(T ) and X = ker(T k)⊕ ran(T k),
where k = a(T ) and the direct sum is topological (see [15, Corollary 20.5]).

2. If T = T1⊕T2 with respect to any decomposition of X, then it follows from [18,
Theorem 6.1] that

a(T ) = max{a(T1), a(T2)} and d(T ) = max{d(T1),d(T2)}.

The following example shows that B+n (X), B−n (X) and B±n (X) are proper subsets
of F+

n (X), F−n (X) and F±n (X), respectively, and that there exist operators with finite
ascent and descent which are not semi-Fredholm.

Example 2.4. Let Y ⊂ X be a closed subspace of dimension n+1, and write X = Y ⊕Z
where Z is a closed subspace of X. With respect to this decomposition, consider
the operator T = 0 ⊕ I. According to the previous remark, one can easily see that
a(T ) = d(T ) = 1. Since N∞(T ) = ker(T ) = Y and R∞(T ) = ran(T ) = Z, then T
belongs to F+

n (X) ∩ F−n (X) and not to B±n (X).
Similarly, for S = I −T , we have a(S) = d(S) = 1, ker(S) = Z and ran(S) = Y .

Thus, S is not a semi-Fredholm operator.

Recall that an operator T ∈ B(X) is called upper (resp. lower) semi-Browder if
it is upper (resp. lower) semi-Fredholm of finite ascent (resp. descent). Clearly, every
operator in F+

n (X) (resp. F−n (X)) is upper (resp. lower) semi-Browder.

Theorem 2.5. Let T ∈ B(X) be non-zero. The following assertions are equivalent:

1. T ∈ B±n (X) (resp. B+n (X), B−n (X));
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2. for every S ∈ B(X) there exists ε0 > 0 such that T+εS ∈ F±n (X) (resp. F+
n (X),

F−n (X)), for all numbers (equivalently, rational numbers) |ε| < ε0.

Proof. (1) ⇒ (2) follows immediately from the previous proposition.

(2) ⇒ (1). Suppose that for every S ∈ B(X) there exists ε0 > 0 such that
T + εS ∈ F±n (X) for all numbers |ε| < ε0. In particular, we have T ∈ F±n (X),
and so T is either upper semi-Browder or lower semi-Browder. It follows from [15,
Theorem 20.10] that there exist two closed T -invariant subspaces X1 and X2 such
that X = X1 ⊕X2, dimX1 < ∞, T1 = T|X1

is nilpotent and T|X2
is either bounded

below or onto, respectively. We claim that dimX1 ≤ n. Let {ei : 0 ≤ i ≤ p} be a
basis of X1 such that Te0 = 0 and Tei = εiei−1 for 1 ≤ i ≤ p where εi ∈ {0, 1}.
With respect to the decomposition of X, consider the operator S ∈ B(X) given by
S = S1 ⊕ 0 where S1e0 = 0 and S1ei = ei−1 for 1 ≤ i ≤ p. Clearly, for ε /∈ {−1, 0} we
have

(T1 + εS1)e0 = 0 and (T1 + εS1)ei = (εi + ε)ei−1 for 1 ≤ i ≤ p.

Hence (T1 + εS1)pep = λe0 6= 0 where λ = (εp + ε) . . . (ε1 + ε).
Therefore e0 ∈ ker(T1 + εS1) ∩ ran(T1 + εS1)p, and consequently

a(T1 + εS1) = d(T1 + εS1) ≥ p+ 1

by (2.5). But, we have also

a(T1 + εS1) ≤ a(T + εS) and d(T1 + εS1) ≤ d(T + εS).

Since T + εS ∈ F±n (X), then a(T + εS) ≤ n or d(T + εS) ≤ n. Thus dimX1 ≤ n.

Now, if T ∈ F+
n (X) (resp. F−n (X)) then T is upper (resp. lower) semi-Browder, and

so the space X1 (resp. X2) is uniquely determined and X1 = N∞(T ) (resp. X2 =
R∞(T )) (see [15, Theorem 20.10]). This proves that T ∈ B+n (X) (resp. B−n (X)). �

For a subset Γ ⊆ B(X), we write Int(Γ) for its interior. As a consequence of Theorem
2.5, we derive the following corollary.

Corollary 2.6. We have Int(F+
n (X)) = B+n (X), Int(F−n (X)) = B−n (X) and

Int(F±n (X)) = B±n (X).

Proof. Let us show that Int(F+
n (X)) = B+n (X). Note that B+n (X) ⊆ Int(F+

n (X))
because B+n (X) is open. Let T /∈ B+n (X), then Theorem 2.5 ensures the existence of an
operator S ∈ B(X) and a sequence (εk) converging to zero such that T+εkS /∈ F+

n (X)
for all k ≥ 0. Consequently, T /∈ Int(F+

n (X)).

Similarly, we prove that Int(F−n (X)) = B−n (X) and Int(F±n (X)) = B±n (X). �

Theorem 2.7. Let H be a separable complex infinite-dimensional Hilbert space and let
T ∈ B(H). Then the following assertions are equivalent:

1. T ∈ B±n (H) (resp. B+n (H), B−n (H));
2. for every S ∈ B(H) there exists ε0 > 0 such that T+εS ∈ An(H)∪Dn(H) (resp.
An(H), Dn(H)), for all numbers (equivalently, rational numbers) |ε| < ε0.
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Proof. (1) ⇒ (2) follows immediately from Proposition 2.2.
(2) ⇒ (1). Suppose that for every S ∈ B(H) there exists ε0 > 0 such that

T + εS ∈ An(H) ∪ Dn(H) for all |ε| < ε0. Then, using [12, Proposition 2.5], we get
that T is a semi-Browder operator. The rest of the proof is similar to the proof of
Theorem 2.5. �

Using a similar proof of Corollary 2.6, we get the following result.

Corollary 2.8. We have Int(An(H) ∪ Dn(H)) = B±n (H), Int(An(H)) = B+n (H) and
Int(Dn(H)) = B−n (H).

3. B+
n (X), B−

n (X) and B±
n (X) under rank-one perturbations

Let z ∈ X and let f ∈ X∗ be non-zero. We denote by z⊗f the rank-one operator
defined by (z ⊗ f)(x) = f(x)z for all x ∈ X. Note that every rank-one operator in
B(X) can be written in this form.

In [13], the authors proved that for a rank-one operator F ∈ B(X) and for T ∈
B(X) with dim ker(T ) ≤ n, we have either dim ker(T +F ) ≤ n or dim ker(T −F ) ≤ n.
In the following, we extend this result to the setting of the hyper-kernel subspace.

Proposition 3.1. Let T ∈ B(X) be such that dimN∞(T ) ≤ n, and let F ∈ B(X) be a
rank-one operator. Then either dimN∞(T + F ) ≤ n or dimN∞(T − F ) ≤ n.

Before giving the proof of this proposition, we need to establish some lemmas.
For T, F ∈ B(X), let

M(T, F ) = {x ∈ N∞(T ) : FT ix = 0 for all i ≥ 0}.

Clearly, M(T, F ) is a T -invariant subspace of N∞(T )∩ ker(F ). Furthermore, if T has
a finite ascent, then M(T, F ) is closed.

Lemma 3.2. Let T ∈ B(X) be non-zero, and let F = z ⊗ f be a rank-one operator
such that ker(T ) ∩ ker(F ) = {0}. Assume that there exist an integer m ≥ 0 and a
vector x ∈ ker(T + F )m+1 \ ker(T + F )m such that x /∈ M(T, F ). Then x is a linear
combination of linearly independent vectors xi, 0 ≤ i ≤ m, such that

(T + F )x0 = 0, (T + F )xi = xi−1 for 1 ≤ i ≤ m, and f(xi) = δi0 for 0 ≤ i ≤ m.

Proof. Let ui = (T +F )m−ix for 0 ≤ i ≤ m. It follows that ui, 0 ≤ i ≤ m, are linearly
independent vectors, (T + F )u0 = 0 and (T + F )ui = ui−1 for 1 ≤ i ≤ m. Since
ker(T ) ∩ ker(F ) = {0}, we infer that f(u0) 6= 0. Without loss of generality we may
assume that f(u0) = 1. Consider the scalars c0, c1, . . . , cm−1 defined inductively by

c0 = −f(u1)
c1 = −c0f(u1)− f(u2)
c2 = −c1f(u1)− c0f(u2)− f(u3)
...
cm−1 = −cm−2f(u1)− · · · − c0f(um−1)− f(um).
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This means that we have

f(ui) +

i∑
k=1

ci−kf(uk−1) = 0 for 1 ≤ i ≤ m. (3.1)

Let x0 = u0 and xi = ui +

i∑
k=1

ci−kuk−1 for 1 ≤ i ≤ m. Clearly, the vectors xi,

0 ≤ i ≤ m, are linearly independent. Moreover, it follows from (3.1) that f(xi) = δi0
for 0 ≤ i ≤ m. Furthermore, we have (T + F )x0 = (T + F )u0 = 0 and

(T + F )xi = (T + F )ui +

i∑
k=1

ci−k(T + F )uk−1 = ui−1 +

i∑
k=2

ci−kuk−2 = xi−1

for 1 ≤ i ≤ m. Finally, we have

x = um ∈ Span{ui : 0 ≤ i ≤ m} = Span{xi : 0 ≤ i ≤ m}.

This completes the proof. �

The following lemma is a special case of Proposition 3.1, and it will be required
for proving that proposition.

Lemma 3.3. Let T ∈ B(X) be such that dimN∞(T ) ≤ n, and let F ∈ B(X) be a
rank-one operator such that ker(T )∩ ker(F ) = {0}. Then either dimN∞(T +F ) ≤ n
or dimN∞(T − F ) ≤ n.

Proof. Write F = z ⊗ f where z ∈ X and f ∈ X∗ are non-zero. Clearly, if either
ker(T+F )n+1 or ker(T−F )n+1 is contained in M(T, F ), then either dimN∞(T+F ) ≤
n or dimN∞(T − F ) ≤ n respectively. Hence, we may assume that ker(T + F )n+1 *
M(T, F ) and ker(T − F )n+1 * M(T, F ). Let 0 ≤ m, p ≤ n be the biggest integers for
which there exist x ∈ ker(T+F )m+1\ker(T+F )m and y ∈ ker(T−F )p+1\ker(T−F )p

such that x, y /∈ M(T, F ). Without loss of generality we can assume that m ≤ p. We
will show that dimN∞(T + F ) ≤ n. Using the previous lemma, we infer that y is a
linear combination of linearly independent vectors yi, 0 ≤ i ≤ p, such that

(T − F )y0 = 0, (T − F )yi = yi−1 for 1 ≤ i ≤ p, and f(yi) = δi0 for 0 ≤ i ≤ p.

From this, one can easily see that (T + F )y0 = 2z and (T + F )yi = Tyi = yi−1 for
1 ≤ i ≤ p, and so (T + F )kyi = yi−k for 0 ≤ k ≤ i ≤ p. Thus, we get easily that

I +

p∑
i=0

yi ⊗ f(T + F )i =

p∏
i=0

(
I + yi ⊗ f(T + F )i

)
.

Furthermore, since f((T + F )iyi) = f(y0) = 1 for 0 ≤ i ≤ p, the above equation
defines an invertible operator denoted by S.

Let u ∈ ker(T + F )n+1 be an arbitrary non-zero vector, and let 0 ≤ r ≤ n be
such that u ∈ ker(T + F )r+1 \ ker(T + F )r. If u ∈ M(T, F ), then f(T iu) = 0, and so
(T + F )iu = T iu for every i ≥ 0. Hence, Su = u ∈ M(T, F ) ⊆ N∞(T ). Consider the
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case when u /∈ M(T, F ). Then, Lemma 3.2 asserts that u is a linear combination of
linearly independent vectors xi, 0 ≤ i ≤ r, satisfying

(T + F )x0 = 0, (T + F )xi = xi−1 for 1 ≤ i ≤ r, and f(xi) = δi0 for 0 ≤ i ≤ r.
It follows that (T + F )kxi = xi−k for k ≥ 0 and 0 ≤ i ≤ r, where we set formally
xj = 0 for j < 0. Now, by the definition of m, we have r ≤ m ≤ p. This allows
us to obtain easily that Sxi = xi + yi for 0 ≤ i ≤ r. It follows that T iSxi =
x0 + y0 ∈ ker(T ), and hence Sxi ∈ N∞(T ) for 0 ≤ i ≤ r. Consequently, we get that
Su ∈ N∞(T ). The vector u was arbitrary, therefore S ker(T + F )n+1 ⊆ N∞(T ). So
that dim ker(T +F )n+1 ≤ n. According to Remark 2.1, this completes the proof. �

For T, F ∈ B(X), we denote respectively by T̃ and F̃ the operators induced by

T and F on X/M(T, F ). Note that the hyper-kernels of T̃ +cF̃ and T +cF are related
by the following relation (see [17, Lemma 2.9])

N∞(T̃ + cF̃ ) = N∞(T + cF )/M(T, F ) for all c ∈ K. (3.2)

Proof of Proposition 3.1. Firstly, if F̃ = 0, then it follows from (3.2) that

N∞(T̃ + F̃ ) = N∞(T + F )/M(T, F ) = N∞(T̃ ) = N∞(T )/M(T, F ).

So that dimN∞(T + F ) = dimN∞(T ) ≤ n.

Now, consider the case F̃ 6= 0. Then z /∈ M(T, F ), and for every x ∈ X, we have

x+ M(T, F ) ∈ ker(T̃ ) ∩ ker(F̃ ) ⇔ Tx ∈ M(T, F ) and Fx = f(x)z ∈ M(T, F )

⇔ Tx ∈ M(T, F ) and f(x) = 0

⇔ x ∈ M(T, F ).

This implies that ker(T̃ ) ∩ ker(F̃ ) = {0}.
Since dimN∞(T̃ ) ≤ n− q where q = dim M(T, F ), the previous lemma ensures that

either dimN∞(T̃ + F̃ ) ≤ n− q or dimN∞(T̃ − F̃ ) ≤ n− q. Thus, we get that either
dimN∞(T + F ) ≤ n or dimN∞(T − F ) ≤ n. This completes the proof. �

Throughout the sequel, Λ will denote any of the subsets B+n (X), B−n (X) or
B±n (X). Also, the subset Bn(X) = B+n (X) ∩ B−n (X), introduced and studied in [17],
will be used in the rest of this paper.

Recall that for a semi-Fredholm operator T ∈ B(X), the index is defined by

ind(T ) = dim ker(T )− codim ran(T ),

and if the index is finite, T is said to be Fredholm. It should be noted that if ind(T ) = 0
then a(T ) = d(T ) (see [12, Lemma 2.3]). Moreover, in this case

T ∈ Λ ⇔ T ∈ Bn(X) ⇔ dimN∞(T ) ≤ n.

Proposition 3.4. Let T ∈ Λ and let F ∈ B(X) be a rank-one operator. Then either
T + F ∈ Λ or T − F ∈ Λ.

Before proving this proposition, a duality relation between B+n (X) and B−n (X) should
be established first. For a subset M ⊆ X, we denote by M⊥ = {f ∈ X∗ : M ⊆ ker(f)}
its annihilator.
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Lemma 3.5. Let T be a bounded operator on X. Then :

T ∈ B+n (X) (resp. B−n (X)) ⇔ T ∗ ∈ B−n (X∗) (resp. B+n (X∗)).

Proof. Suppose that T ∈ B+n (X). In particular, T is a semi-Fredholm operator, and
so ran(T k) is closed for every k ≥ 0. Since a(T ) ≤ n, it follows from [15, Corollary
A.1.17] that

ker(Tn+1)⊥ = ker(Tn)⊥ = ran((T ∗)n+1) = ran((T ∗)n).

Thus, d(T ∗) ≤ n. Using [15, Theorem A.1.20] we get that

codimR∞(T ∗) = codim ran((T ∗)n) = dim ker(Tn) = dimN∞(T ) ≤ n.
So that T ∗ ∈ B−n (X∗). The proofs of the converse and of the statement for B−n (X)
are similar. �

Proof of Proposition 3.4. Let T ∈ Λ, and let F ∈ B(X) be a rank-one operator.
It follows from [15, Theorem 16.16] that T + F and T − F are semi-Fredholm. If
T ∈ B+n (X) then Proposition 3.1 implies that either T+F ∈ B+n (X) or T−F ∈ B+n (X).

The case when T ∈ B−n (X) follows from the first one by duality. �

The following theorem, will play a crucial role in proving the main results.

Theorem 3.6. Let F ∈ B(X) be a non-zero operator. Then the following assertions
hold:

1. There exists an invertible operator T ∈ B(X) such that T + F /∈ Λ.
2. If dim ran(F ) ≥ 2, then there exists an invertible operator T ∈ B(X) such that
T + F /∈ Λ and T − F /∈ Λ.

Proof. Suppose first that ran(F ) has an infinite dimension. Then codim ker(F ) =∞,
and hence there exist linearly independent vectors xi, 0 ≤ i ≤ 2n + 1, that generate
a subspace having trivial intersection with ker(F ). It follows that the vectors Fxi,
0 ≤ i ≤ 2n+ 1, are linearly independent. Write

X = Span{xi : 0 ≤ i ≤ 2n+ 1} ⊕ Y = Span{Fxi : 0 ≤ i ≤ 2n+ 1} ⊕ Z,
where Y, Z are two closed subspaces and Y = F−1Z. Then there exists an invertible
operator T ∈ B(X) such that TY = Z, and Txi = (−1)iFxi for 0 ≤ i ≤ 2n+ 1.
Clearly, x2i+1 ∈ ker(T + F ) and x2i ∈ ker(T − F ) for 0 ≤ i ≤ n, and hence

dim ker(T ± F ) > n.

But, we have also

ran(T + F ) ⊆ Span{Fx2i : 0 ≤ i ≤ n} ⊕ Z,
and

ran(T − F ) ⊆ Span{Fx2i+1 : 0 ≤ i ≤ n} ⊕ Z.
Then codim ran(T ± F ) > n, and so T ± F /∈ Λ. This establishes the assertions (1)
and (2).

Assume now that F is finite-rank, and let p = min{dim ran(F ), 2}. It follows
from [17, Proposition 2.12] that there exists an invertible operator T ∈ B(X) such
that T + F /∈ Bn(X) and T − (−1)pF /∈ Bn(X). But, T + F and T − (−1)pF are
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Fredholm operators of index zero, then T+F /∈ Λ and T−(−1)pF /∈ Λ. This completes
the proof. �

4. Proofs of the main results

As a consequence of Theorem 3.6 and Proposition 3.4, we have the following
result.

Lemma 4.1. Let Φ : B(X)→ B(X) be an additive surjective map. If Φ preserves Λ in
both directions, then Φ is injective and it preserves the set of rank-one operators in
both directions.

Proof. Suppose on the contrary that there exists F 6= 0 such that Φ(F ) = 0. Then,
by Theorem 3.6, there exists an invertible operator T ∈ B(X) satisfying T + F /∈ Λ.
But, Φ(T + F ) = Φ(T ) ∈ Λ. This contradiction proves that Φ is injective.

Let F ∈ B(X) with dim ran(F ) ≥ 2. Then it follows again by Theorem 3.6 that
there exists an invertible operator T ∈ B(X) such that T +F and T −F do not belong
to Λ, and hence Φ(T + F ) and Φ(T − F ) do neither. Therefore, by Proposition 3.4,
we obtain that dim ran(Φ(F )) ≥ 2. Since Φ is bijective and Φ−1 satisfies the same
properties as Φ, we obtain that Φ preserves the set of rank-one operators in both
directions. �

Recall that an operator T ∈ B(X) is said to be algebraic if there exists a non-zero
complex polynomial P for which P (T ) = 0. Such an operator T has finite ascent and
descent (see [3, Theorem 2.7] and [4, Theorem 1.5]). Moreover, we have

T ∈ Λ ⇔ T ∈ Bn(X) ⇔ dimN∞(T ) ≤ n.

Lemma 4.2. Let Φ : B(X)→ B(X) be an additive surjective map preserving Λ in both
directions. Then Φ(I) = cI where c is a non-zero scalar.

Proof. We claim first that S = Φ(I) is an algebraic operator. Let x ∈ X be non-zero.
If the set {Six : 0 ≤ i ≤ 2n+1} is linearly independent, then there exists a linear form
f ∈ X∗ such that f(Six) = −δi,2n+1 for 0 ≤ i ≤ 2n+ 1. Let T = S+Sn+1x⊗ fSn+1.
It follows that

T (Six) = Si+1x, for 0 ≤ i ≤ n− 1, and T (Snx) = 0.

Hence a(T ) ≥ n+ 1. On the other hand, we have

T ∗(fSi) = fSi+1, for 0 ≤ i ≤ n− 1, and T ∗(fSn) = 0.

Then a(T ∗) ≥ n + 1, and so d(T ) ≥ n + 1. Thus T /∈ Λ. This contradiction shows
that {Six : 0 ≤ i ≤ 2n + 1} is a linearly dependent set. The vector x was arbitrary,
therefore it follows from [2, Theorem 4.2.7] that S is algebraic.

Now assume, on the contrary, that S is not a scalar multiple of the identity.
Then there exists y1 ∈ X such that the vectors y1 and Sy1 are linearly independent.
Since S ∈ Λ, the subspace ran(S) has an infinite dimension, and hence there exists



576 Mourad Oudghiri and Khalid Souilah

yi ∈ X, 2 ≤ i ≤ n, such that {y1, Syi : 1 ≤ i ≤ n} is a linearly independent set.
Consider linear forms gi ∈ X∗ such that

gi(y1) = 0 and gi(Syj) = −δij for 1 ≤ i, j ≤ n.

If we let F =
∑n

i=1 S
2yi ⊗ gi, we obtain easily that Syj ∈ ker(S + F ), for 1 ≤ j ≤ n,

and (S + F )y1 = Sy1 ∈ ker(S + F ). Consequently, dimN∞(S + F ) ≥ n + 1. But,
we have also that S + F is an algebraic operator (see [4, Proposition 3.6]), therefore
S + F /∈ Λ. By Lemma 4.1, Φ is bijective and preserves rank-one operators in both
directions. Hence, we obtain that K = Φ−1(F ) is of rank non-greater than n and
I + K /∈ Λ. However, I + K is algebraic and ker((I + K)n+1) ⊆ ran(K), and so
I +K ∈ Λ. This contradiction completes the proof. �

Let τ be a field automorphism of K. An additive map A : X → Y between two
Banach spaces is called τ -semi linear if A(λx) = τ(λ)Ax holds for all x ∈ X and λ ∈ K.
Moreover, we say simply that A is conjugate linear when τ is the complex conjugation.
Notice that if A is non-zero and bounded, then τ is continuous, and consequently, τ
is either the identity or the complex conjugation (see [9, Theorem 14.4.2 and Lemma
14.5.1]). Moreover, in this case, the adjoint operator A∗ : Y ∗ → X∗, defined by
A∗(g) = τ−1 ◦ g ◦A for all g ∈ Y ∗, is again τ -semi linear.

Lemma 4.3. Let Φ : B(X)→ B(X) be an additive surjective map preserving Λ in both
directions. Then there exists a non-zero scalar c, and either

1. there exists an invertible bounded linear, or conjugate linear, operator A : X →
X such that Φ(F ) = cAFA−1 for all finite-rank operators F ∈ B(X), or

2. there exists an invertible bounded linear, or conjugate linear, operator B : X∗ →
X such that Φ(F ) = cBF ∗B−1 for all finite-rank operators F ∈ B(X). In this
case, X is reflexive.

Proof. The existence of a non-zero scalar c such that Φ(I) = cI is ensured by Lemma
4.2. Clearly, we can suppose without loss of generality that Φ(I) = I. Since Φ is
bijective and preserves the set of rank-one operators in both directions, then by [16,
Theorems 3.1 and 3.3], there exist a ring automorphism τ : K → K and either two
bijective τ -semi linear mappings A : X → X and C : X∗ → X∗ such that

Φ(x⊗ f) = Ax⊗ Cf for all x ∈ X and f ∈ X∗, (4.1)

or two bijective τ -semi linear mappings B : X∗ → X and D : X → X∗ such that

Φ(x⊗ f) = Bf ⊗Dx for all x ∈ X and f ∈ X∗. (4.2)

Suppose that Φ satisfies (4.1), and let us show that

C(f)(Ax) = τ(f(x)) for all x ∈ X and f ∈ X∗. (4.3)

Clearly, it suffices to establish that for all x ∈ X and f ∈ X∗, f(x) = −1 if and only if
C(f)(Ax) = −1. Let x ∈ X and f ∈ X∗. We can choose linearly independent vectors
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z1, . . . , zn in ker(f) ∩ ker(C(f)A). Then, it follows from [17, Lemma 3.8] that

f(x) = −1 ⇔ ∃{gi}ni=1 ⊆ X∗ : I + x⊗ f +

n∑
i=1

zi ⊗ gi /∈ Bn(X)

⇔ ∃{gi}ni=1 ⊆ X∗ : I + x⊗ f +

n∑
i=1

zi ⊗ gi /∈ Λ

⇔ ∃{gi}ni=1 ⊆ X∗ : I +Ax⊗ Cf +

n∑
i=1

Azi ⊗ Cgi /∈ Λ

⇔ ∃{gi}ni=1 ⊆ X∗ : I +Ax⊗ Cf +

n∑
i=1

Azi ⊗ Cgi /∈ Bn(X)

⇔ C(f)(Ax) = −1.

Thus, relation (4.3) holds, and arguing as in [16], we get that τ , A, C are continuous,
τ is the identity or the complex conjugation, and C = (A−1)∗. Therefore, τ−1 = τ
and, for every u ∈ X, we have

Φ(x⊗ f)u = τ(fA−1u)Ax = A(f(A−1u)x) = A(x⊗ f)A−1u.

Thus, Φ(x ⊗ f) = A(x ⊗ f)A−1 for all x ∈ X and f ∈ X∗; that is, Φ(F ) = AFA−1

for all finite-rank operators F ∈ B(X).
Now suppose that Φ satisfies (4.2), and let us show that

D(x)(Bf) = τ(f(x)) for all x ∈ X and f ∈ X∗. (4.4)

Let x ∈ X and f ∈ X∗. Choose linearly independent linear forms h1, . . . , hn ∈ X∗
such that hi(x) = 0 and D(x)(Bhi) = 0 for 1 ≤ i ≤ n. Then, it follows from the
surjectivity of D and from [17, Lemma 3.8] that

D(x)(Bf) = −1 ⇔ ∃{ui}ni=1 ⊆ X : I +Bf ⊗Dx+

n∑
i=1

Bhi ⊗Dui /∈ Bn(X)

⇔ ∃{ui}ni=1 ⊆ X : I +Bf ⊗Dx+

n∑
i=1

Bhi ⊗Dui /∈ Λ

⇔ ∃{ui}ni=1 ⊆ X : I + x⊗ f +

n∑
i=1

ui ⊗ hi /∈ Λ

⇔ ∃{ui}ni=1 ⊆ X : I + x⊗ f +

n∑
i=1

ui ⊗ hi /∈ Bn(X)

⇔ ∃{ui}ni=1 ⊆ X : I + f ⊗ Jx+

n∑
i=1

hi ⊗ Jui /∈ Bn(X∗)

⇔ f(x) = −1,

where J : X → X∗∗ is the natural embedding. Thus, relation (4.4) holds, and arguing
as in [16], we get that τ , B, D are continuous, τ is the identity or the complex
conjugation, and D = (B−1)∗J. But, the operators D and (B−1)∗, and therefore also
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J are bijections, which implies the reflexivity of X. Furthermore, τ−1 = τ and, for
every u ∈ X, we have

Φ(x⊗ f)u = (Bf ⊗ (B−1)∗J(x))u = (B−1)∗J(x)(u) ·Bf
= τ(J(x)(B−1u)) ·Bf = B(J(x)(B−1u)f)

= B(f ⊗ J(x))B−1u = B(x⊗ f)∗B−1u.

Thus, Φ(x⊗ f) = B(x⊗ f)∗B−1 for all x ∈ X and f ∈ X∗. Hence, Φ(F ) = BF ∗B−1

for all finite-rank operator F ∈ B(X). This completes the proof. �

Theorem 4.4. Let Φ : B(X) → B(X) be an additive surjective map preserving Λ in
both directions. Then there exists a non-zero scalar c, and either

1. there exists an invertible bounded linear, or conjugate linear, operator A : X →
X such that Φ(T ) = cATA−1 for all T ∈ B(X), or

2. there exists an invertible bounded linear, or conjugate linear, operator B : X∗ →
X such that Φ(T ) = cBT ∗B−1 for all T ∈ B(X).

Proof. Since Φ preserves Λ in both directions, it follows that Φ takes one of the two
forms in Lemma 4.3.

Suppose that Φ(F ) = cAFA−1 for all finite-rank operators F ∈ B(X). Let

Ψ(T ) = c−1A−1Φ(T )A for all T ∈ B(X).

Clearly, Ψ satisfies the same properties as Φ. Furthermore, Ψ(I) = I and Ψ(F ) = F
for all finite-rank operators F ∈ B(X). Let T ∈ B(X) and choose an arbitrary rational
number λ such that T −λ and Ψ(T )−λ are invertible. Let F ∈ B(X) be a finite-rank
operator. Since T − λ+ F and Ψ(T )− λ+ F are Fredholm of index zero, then

T − λ+ F ∈ Bn(X) ⇔ T − λ+ F ∈ Λ ⇔ Ψ(T )− λ+ F ∈ Λ

⇔ Ψ(T )− λ+ F ∈ Bn(X).

Hence, we get by [17, Proposition 2.17] that Ψ(T ) = T .
This shows that Φ(T ) = cATA−1 for all T ∈ B(X).
Now suppose that Φ(F ) = cBF ∗B−1 for all finite-rank operators F ∈ B(X). Then
Lemma 4.3 ensures that X is reflexive. By considering

Γ(T ) = c−1J−1(B−1Φ(T )B)∗J for all T ∈ B(X),

we get in a similar way that Γ(T ) = T for all T ∈ B(X). Thus, Φ(T ) = cBT ∗B−1 for
all T ∈ B(X), as desired. This finishes the proof. �

With these results at hand, we are ready to prove our main results.

Proof of Theorem 1.1. (1)⇒ (4). Suppose that Φ preserves An(H) in both directions.
Using the fact that Φ is surjective, it follows by Theorem 2.7 that, for every T ∈ B(H),

T ∈ B+n (H)⇔ ∀S ∈ B(H),∃ε0 > 0 : {T + εS : ε ∈ Q and |ε| < ε0} ⊆ An(H)

⇔ ∀S ∈ B(H),∃ε0 > 0 : {Φ(T ) + εΦ(S) : ε ∈ Q and |ε| < ε0} ⊆ An(H)

⇔ ∀R ∈ B(H),∃ε0 > 0 : {Φ(T ) + εR : ε ∈ Q and |ε| < ε0} ⊆ An(H)

⇔ Φ(T ) ∈ B+n (H).



Ascent, descent and additive preserving problems 579

Thus Φ preserves B+n (H) in both directions. It follows that Φ takes one of the two
forms in Theorem 4.4. Let us show that Φ cannot take the form

Φ(T ) = cBT ∗B−1 for all T ∈ B(H). (4.5)

Suppose on the contrary that Φ takes the form (4.5). Let {en : n ≥ 0} be an arbitrary
orthonormal basis of H. Consider the weighted unilateral shift operator U ∈ B(H)
given by

Uen = (n+ 1)−1en+1 for every n ≥ 0. (4.6)

Clearly, U is an injective quasi-nilpotent operator.
Thus, a(U∗) = d(U∗) =∞, U ∈ B+n (H) and U∗ /∈ B±n (H).
So that Φ(U) = cBU∗B−1 /∈ B±n (H), a contradiction.

(2) ⇒ (4). Now, suppose that Φ preserves Dn(H) in both directions. As above,
using Theorem 2.7 we infer that Φ preserves B−n (H) in both directions, and so Φ takes
one of the two forms in Theorem 4.4. Consider the unilateral shift operator S ∈ B(H)
given by

Se0 = 0 and Sen = en−1 for n ≥ 1.

Clearly, S is surjective and a(S) =∞.
Thus, d(S∗) = ∞, S ∈ B−n (H) and S∗ /∈ B−n (H). This contradiction shows that Φ
cannot take the form (4.5).

(3) ⇒ (4) is similar to the first implication with the same example (4.6).
(4) ⇒ (1), (2) and (3) are obvious. �

Proof of Theorem 1.2. Follows from Theorems 2.5 and 4.4. �

Proof of Corollary 1.3. The proof is similar to the proof of Theorem 1.1. �
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Abstract. In this paper, we establish an Ekeland-type variational principle for
vector valued bifunctions defined on complete metric spaces with values in locally
convex spaces ordered by closed convex cones. The main improvement consists in
widening the class of bifunctions for which the variational principle holds. In order
to prove this principle, a weak notion of continuity for vector valued functions is
considered, and some of its properties are presented. We also furnish an existence
result for vector equilibria in absence of convexity assumptions, passing through
the existence of approximate solutions of an optimization problem.
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1. Introduction

Ekeland’s variational principle (see [11]) has many applications in nonlinear anal-
ysis and optimization, see [1, 4, 2, 3, 5, 6], [7], [14], [19], [10] and the reference therein.
Blum, Oettli [8] and Théra [18] showed that their existence result for a solution of
an equilibrium problem is equivalent to Ekeland-type variational principle for bifunc-
tions. Several authors have extended the Ekeland’s variational principle to the case
with a vector valued bifunction taking values in an ordered vector space, see [7], [2],
[6], [15]. Araya et. al. [6] established a version of Ekeland’s variational principle for
vector valued bifunctions, which is expressed by the existence of a strict approximate
minimizer for a weak vector equilibrium problem.
By a weak vector equilibrium problem we understand the problem of finding x ∈ X
such that

f(x, y) /∈ −intK, for all y ∈ X,
where f : X × X → Y is a given bifunction, (X, d) is a complete metric space and
(Y,K) is a Hausdorff topological vector space, ordered by the closed convex cone K.
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Recall that K ⊆ Y is said to be closed and convex cone if K is closed, αK ⊆ K for
all α > 0 and K +K ⊆ K.
The approach given in Araya et. al. [6] is based on the assumption that the equilibrium
bifunction f satisfies the following triangle property:

f(x, y) + f(y, z) ∈ f(x, z) +K, for all x, y, z ∈ X. (1.1)

We stress the fact that (1.1) is a rather strong condition and it is rarely verified when
the equilibrium problem is a variational inequality, see [10].
Motivated and inspired by [10], in this paper we shall give an improvement of Theorem
2.1 in Araya et. al. [6]. We widen the class of the vector bifunctions for which the
Ekeland’s variational principle is applicable. Further, some sufficient conditions for
existence of equilibria which do not involve any convexity concept, neither for the
domain nor for the bifunction are given, under a relaxed continuity concept for the
vector functions.
The rest of the paper is organized as follows. In Section 2 we collect some definitions
and results needed for further investigations. A weak notion of continuity for the vector
valued functions is also studied and some of its properties are presented. Sections 3 and
4 are devoted to Ekeland’s principles for the vector valued functions and bifunctions.
Section 5 is devoted to an existence result for the weak vector equilibria where the
vector bifunctions satisfy a property which generalizes the triangle inequality.

2. Preliminaries

Throughout this paper, unless otherwise specified, we assume that (X, d) is a
complete metric space, (Y,K) is a locally convex Hausdorff topological vector space
ordered by the nontrivial closed convex cone K ⊆ Y with intK 6= ∅, where intK
denotes the topological interior of K, as follows:

x ≤K y ⇔ y − x ∈ K.
We agree that any cone contains the origin, according to the following definition.

Definition 2.1. The set K ⊆ Y is called a cone iff λx ∈ K for all x ∈ K and λ ≥ 0.
The cone K is pointed iff K ∩ (−K) = {0}; proper iff K 6= Y and K 6= {0} .

Let k0 ∈ K \ (−K). The nonlinear scalarization function [20] (see also [16])
zK,k0 : Y → [−∞,∞] is defined as

zK,k0
(y) = inf{r ∈ R | y ∈ rk0 −K}.

We present some properties of the scalarization function which will be used in the
sequel.

Lemma 2.2. [16] For each r ∈ R and y ∈ Y , the following statements are true:

(i) zK,k0 is proper;
(ii) zK,k0 is lower semicontinuous;
(iii) zK,k0

is sublinear;
(iv) zK,k0

is K monotone;
(v) zK,k0

(y) ≤ r ⇔ y ∈ rk0 −K;



A generalized Ekeland’s variational principle for vector equilibria 583

(vi) zK,k0
(y) > r ⇔ y /∈ rk0 −K;

(vii) zK,k0
(y) ≥ r ⇔ y /∈ rk0 − intK;

(viii) zK,k0
(y) < r ⇔ y ∈ rk0 − intK;

(ix) zK,k0(y + λk0) = zK,k0(y) + λ, for every y ∈ Y and λ ∈ R.

As a corollary of the lemma above, Göpfert et al. [13] presented the following
nonconvex separation theorem, see also [16].

Lemma 2.3. [13] Assume that Y is a topological vector space, K a closed solid convex
and A ⊂ Y a nonempty set such that A ∩ (−intK) = ∅. Then zK,k0 is a finite valued
continuous function such that

zK,k0
(−y) < 0 ≤ zK,k0

(x) for all x ∈ A and y ∈ intK,
moreover zK,k0(x) > 0 for all x ∈ intA.

In the vector valued case there are several possible extensions of the scalar notion
of lower semicontinuity, see [9]. We recall here the concept of (k0,K)-lower semiconti-
nuity introduced by Chr. Tammer [19] which will be used in the sequel. This concept
is weaker than the K-lower semicontinuity which was introduced by Borwein et. al.
[9] (see also [12], [17] and [21].)

Definition 2.4. [19] A function ϕ : X −→ Y is said to be:

(i) (k0,K)-lower semicontinuous if for all r ∈ R, the set {x ∈ X : ϕ(x) ∈ rk0−K}
is closed;

(ii) (k0,K)-upper semicontinuous if for all r ∈ R, the set {x ∈ X : ϕ(x) ∈ rk0 +K}
is closed;

(iii) (k0,K)-continuous if it is both (k0,K)-lower semicontinuous as well as (k0,K)-
upper semicontinuous.

The function ϕ : X −→ Y is said to be K-bounded below if there exists y ∈ Y
such that ϕ(X) ⊆ y +K.
In [19], the following assertion was proved.

Lemma 2.5. [19]

(i) If ϕ is (k0,K)-lower semicontinuous, then zK,k0 ◦ ϕ is lower semicontinuous;
(ii) If ϕ is (k0,K)-upper semicontinuous, then zK,k0

◦ ϕ is upper semicontinuous.

Remark 2.6. It is well known that the sum of two K-lower semicontinuous mappings
is not a K-lower semicontinuous mapping in general, see [7]. Due to the following
example, we can obtain a similar conclusion for the (k0,K)-lower semicontinuity, i.e.,
if ϕ : X −→ Y is (k0,K)-lower semicontinuous, the function ϕ(·)−ϕ(x), where x ∈ X
is fixed, is not necessary (k0,K)-lower semicontinuous.

Example 2.7. Let us consider X = R2, Y = R2 and K = R2
+. Define ϕ : X → Y as:

ϕ(x) =

{
(1,−2), x1 > 0, x2 ∈ R,
(x1, x1), x1 ≤ 0, x2 ∈ R,

where x = (x1, x2).
This function is (k0,K)-lower semicontinuous with k0 = (1, 1). Now take x = (1, 0).
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We will prove that the function ϕ(·)−ϕ(x) is not (k0,K)-lower semicontinuous. Take
also r = 1 and consider the set

L = {y ∈ X : ϕ(y)− ϕ(x) ∈ (1, 1)−K}.
It is easy to observe that yn = ( 1

n ,
2
n ) ∈ L, n ∈ N, and yn → y0, where y0 = (0, 0).

On the other hand,

ϕ(y0)− ϕ(x) = (0, 0)− (1,−2) = (−1, 2) /∈ (1, 1)−K.
Hence y0 /∈ L, which shows that the set L is not closed, i.e., the conclusion.

In what follows, we will furnish some properties for this kind of continuity for the
vector functions.

Proposition 2.8. If ϕ : X −→ Y is (k0,K)-lower semicontinuous, then the function
−ϕ is (k0,K)-upper semicontinuous.

Theorem 2.9. If ϕ : X −→ Y is (k0,K)-lower semicontinuous and

ϕ(X) ⊂
⋃
t∈R
{tk0},

then the function ϕ(·)−ϕ(x), where x ∈ X is fixed, is (k0,K)-lower semicontinuous.

Proof. Let us fix x0 ∈ X and consider the function δ : X → Y defined by

δ(y) = ϕ(y)− ϕ(x0), y ∈ X.
Fix also r ∈ R and consider the set S = {y ∈ X : ϕ(y)− ϕ(x0) ∈ rk0 −K}.
We will prove that this set is closed.

Since ϕ(X) ⊂
⋃
t∈R
{tk0}, it follows that, for x0 ∈ X, there exists t0 ∈ R such that

ϕ(x0) = t0k0. We obtain

S = {y ∈ X : ϕ(y) ∈ (r + t0)k0 −K}.
Since r, t0 ∈ R are fixed and ϕ is (k0,K)-lower semicontinuous, it follows the set S is
closed, i.e., the conclusion. �

Corollary 2.10. If ϕ : X −→ Y is (k0,K)-lower semicontinuous and

ϕ(X) ⊂
⋃
t∈R
{tk0},

then the function ϕ(x)−ϕ(·), where x ∈ X is fixed, is (k0,K)-upper semicontinuous.

3. Ekeland’s variational principle for the vector functions

This section deals with an Ekeland’s variational principle for the vector valued
functions. Inspired by the results obtained in Theorem 3.1 Araya [5], we are able to
present our result when the vector function is (k0,K)-lower semicontinuous.

Theorem 3.1. If ϕ : X → Y is (k0,K)-lower semicontinuous is such that

(i) for each x ∈ X, there exists y ∈ Y such that (ϕ(X)− ϕ(x)) ∩ (y − intK) = ∅;
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(ii) ϕ(X) ⊂
⋃
t∈R
{tk0},

then, for every given ε > 0 and for every x̂ ∈ X there exists x ∈ X such that:

(a) ϕ(x)− ϕ(x̂) + εd(x, x̂)k0 ∈ −K;
(b) ϕ(x)− ϕ(x) + εd(x, x)k0 /∈ −K, for every x ∈ X,x 6= x.

Proof. Let us consider the functional

zK,k0 : Y → [−∞,∞],

defined by

zK,k0
(y) = inf{r ∈ R | y ∈ rk0 −K}.

For each x ∈ X, ε > 0 consider the set

S(x) = {y ∈ X | y = x or zK,k0
(ϕ(y)− ϕ(x)) + εd(x, y) ≤ 0}

It is obviously that x ∈ S(x), therefore S(x) 6= ∅ for all x ∈ X. By Theorem 2.9, since
ϕ is a (k0,K)-lower semicontinuous function, then the function δ(·) = ϕ(·) − ϕ(x),
where x ∈ X is fixed, is also (k0,K)-lower semicontinuous. From Lemma 2.5 it follows
that zK,k0

◦δ is lower semicontinuous and d(x, y) is continuous, therefore S(x) is closed
for every x ∈ X.
Now we show that zK,k0(ϕ(X)−ϕ(x)) := ∪y∈X{zK,k0(ϕ(y)−ϕ(x)}) is bounded from
below for all x ∈ X. By assumption (i) and Lemma 2.3 we have that

0 ≤ zK,k0
(ϕ(y)− ϕ(x)− y), for all y ∈ X.

Using (iii) of Lemma 2.2, we get

−∞ < −zK,k0
(−y) < zK,k0

(ϕ(y)− ϕ(x)) for any y ∈ X,
which implies that zK,k0(ϕ(X)− ϕ(x)) is bounded from below.
Let define the real valued function

v(x) = inf
y∈S(x)

zK,k0
(ϕ(y)− ϕ(x)). (3.1)

and set x = x̂ ∈ X. Since z ◦ δ is bounded below, we have

v(x̂) = inf
y∈S(x̂)

zK,k0
(ϕ(y)− ϕ(x̂)) > −∞.

Starting from x̂ ∈ X, a sequence xn of points of X can be defined such that xn+1 ∈
S(xn) such that

zK,k0
(ϕ(xn+1)− ϕ(xn)) ≤ v(xn) +

1

n+ 1
.

Let us take y ∈ S(xn+1) \ {xn+1}. It follows that

zK,k0
(ϕ(y)− ϕ(xn+1)) + εd(xn+1, y) ≤ 0. (3.2)

Since xn+1 ∈ S(xn), we also have

zK,k0
(ϕ(xn+1)− ϕ(xn)) + εd(xn+1, xn) ≤ 0. (3.3)

Adding (3.2) and (3.3) we obtain

zK,k0
(ϕ(xn+1)− ϕ(xn)) + zK,k0

(ϕ(y)− ϕ(xn+1)) + εd(xn+1, xn) + εd(xn+1, y) ≤ 0.
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Using the triangle inequality for the distance and taking into account that zK,k0
is

sublinear, it follows that

zK,k0(ϕ(y)− ϕ(xn)) + εd(xn, y) ≤ 0⇐⇒ y ∈ S(xn).

Therefore, y ∈ S(xn) implies that S(xn+1) ⊆ S(xn). In particular,

v(xn+1) = inf
y∈S(xn+1)

zK,k0
(ϕ(y)− ϕ(xn+1)) ≥ inf

y∈S(xn)
zK,k0

(ϕ(y)− ϕ(xn))

≥ inf
y∈S(xn)

zK,k0
(ϕ(y)− ϕ(xn))− zK,k0

(ϕ(xn+1)− ϕ(xn))

= v(xn)− zK,k0(ϕ(xn+1)− ϕ(xn)) ≥ − 1

n+ 1
(3.4)

Thus, for y ∈ S(xn+1) \ {xn+1}, from (3.1), (3.2) and (3.4) we obtain

εd(xn+1, y) ≤ −zK,k0
(ϕ(y)− ϕ(xn+1)) ≤ −v(xn + 1) ≤ 1

n+ 1
→ 0 as n→∞,

which entails

diam(S(xn))→ 0 as n→∞.
Since the sets S(xn) are closed and S(xn+1) ⊆ S(xn) we obtain from this that the
intersection of the sets S(xn) is a singleton {x} and S(x) = {x}. This implies that
x ∈ S(x̂), or equivalently

zK,k0(ϕ(x)− ϕ(x̂)) ≤ −εd(x̂, x).

From Lemma 2.2 (v), it follows that

ϕ(x)− ϕ(x̂) + εd(x̂, x)k0 ∈ −K.

Therefore, (a) holds. Moreover, if x 6= x, then x /∈ S(x), and we get

zK,k0
(ϕ(x)− ϕ(x)) > −εd(x, x).

Using again Lemma 2.2 (vi) we have

ϕ(x)− ϕ(x) /∈ −εd(x, x)k0 −K, for all x 6= x, (3.5)

which is the conclusion (b) of our theorem. �

Remark 3.2. In Araya [5], an important assumption is

(H) {y ∈ X | ϕ(y)− ϕ(x) + d(x, y)k0 ∈ −K} is closed for every x ∈ X.

On the other hand, we use the (k0,K)-lower semicontinuity for the function ϕ.
Before going further, we spend some time discussing on the comparison between the
condition (H) and the (k0,K)-lower semicontinuity. Taking into account Example 2.7
we can observe that if the function ϕ is (k0,K)-lower semicontinuous, not necessary
satisfies condition (H).
However, if the function ϕ satisfies the condition (H) then is not necessary (k0,K)-
lower semicontinuous, as the following example shows.
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Example 3.3. Let X = [0, 1], Y = l∞ and ϕ : X → Y defined as

ϕ(x) =


(

1
x+1 ,

1
x+2 , . . . ,

1
x+n , . . .

)
, x 6= 0;

(2, 12 , . . . ,
1
n , . . .), x = 0.

The ordering cone is Kl∞ = {y ∈ l∞ | yi ≥ 0 for all i ∈ N} and has nonempty
interior. Considering k0 =

(
1, 12 , . . . ,

1
n , . . .

)
and r = 1, by Definition 2.4, taking

xn → 0, xn ∈ S, it is easy to observe that the set

S = {x ∈ X : ϕ(x) ∈ rk0 −K}

is not closed, 0 /∈ S. On the other hand, ϕ satisfies the condition (H). Concluding, no
one implies the other.

4. Ekeland’s variational principle for the vector bifunctions

Araya et al. [6] obtained a vectorial version of Ekeland’s variational principle for
the bifunctions related to an equilibrium problem. They used the triangle inequality
in order to obtain the desired result. Further, instead the triangle inequality property
a suitable approximation from below of the bifunction f is required.
Let f : X × X → Y be a bifunction. Consider the following property : there exists
ϕ : X → Y such that

(P ) f(x, y) ∈ ϕ(y)− ϕ(x) +K for all x, y ∈ X.

Property (P ) is more general than the triangle inequality:

(T ) f(x, z) + f(z, y) ∈ f(x, y) +K, for all x, y, z ∈ X.

Indeed, take in triangle inequality, for example, ϕx̂ = f(x̂, ·), where x̂ ∈ X is fixed,
and property (P ) follows.
We illustrate that the property (P ) is more general than the triangle inequality con-
sidering the following example.

Example 4.1. Let X = [0, 1] and Y = l∞ and f : X ×X → Y defined as:

f(x, y) =



y
(
1
2 ,

1
4 , . . . ,

1
2n , . . .

)
, x 6= 1

2 , y 6=
1
2 ;

(0, 0, . . . , 0, . . .), x = 1
2 , y 6=

1
2 ;

(1− x)
(
1
2 ,

1
4 , . . . ,

1
2n , . . .

)
, x 6= 1

2 , y = 1
2 ;(

1
2 ,

1
4 , . . . ,

1
2n , . . .

)
, x = 1

2 , y = 1
2 .

The ordering cone is Kl∞ = {y ∈ l∞ | yi ≥ 0 for all i ∈ N}. The function f does not
satisfy the triangle inequality; take x = 1, y = 1

2 and z = 1
4 . We obtain

f

(
1,

1

2

)
+ f

(
1

2
,

1

4

)
/∈ f

(
1,

1

4

)
+K.
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On the other hand, there exists ϕ : X → Y , namely

ϕ(x) =

{(
x
2 ,

x
4 , . . . ,

x
2n , . . .

)
, x 6= 1

2 ;(
1
2 ,

1
4 , . . . ,

1
2n , . . .

)
, x = 1

2 ,

such that the property (P ) is satisfied.

The following result extends Theorem 2.1 in [6].

Theorem 4.2. Let f : X ×X → Y and assume that

(i) there exists ϕ : X → Y (k0,K)-lower semicontinuous such that

f(x, y) ∈ ϕ(y)− ϕ(x) +K, for all x, y ∈ X;

(ii) for each x ∈ X, there exists y ∈ Y such that (ϕ(X)− ϕ(x)) ∩ (y − intK) = ∅;
(iii) for each x ∈ X, {y ∈ X | (ϕ(y)− ϕ(x)) + d(x, y)k0 ∈ −K} is closed.

Then, for every ε > 0 and for every x̂ ∈ X, there exists x ∈ X such that

(a) ϕ(x)− ϕ(x̂) + εd(x, x̂)k0 ∈ −K;
(b) f(x, x) + εd(x, y)k0 /∈ −K, for all x ∈ X, x 6= x.

Proof. The function ϕ satisfies all the assumptions of Theorem 3.1 in [5]. Then there
exists x ∈ X such that item (a) is verified. From the property (P ) we have

f(x, x)− ϕ(x) + ϕ(x) ∈ K, for all x ∈ X,
and by item (iii) of Theorem 3.1 we get

ϕ(x)− ϕ(x) + εd(x, x)k0 /∈ −K, for every x ∈ X,x 6= x.

Adding these two relations we obtain item (b) of the theorem. �

Remark 4.3. We have to remark the fact that we do not need the assumption

f(x, x) = 0,

see Theorem 2.1 in [6].

We present now the following vectorial form of equilibrium version of Ekeland-type
variational principle, result which extends similar results from the literature, see [6],
[7] and [2].

Theorem 4.4. Let f : X ×X → Y such that

(i) there exists ϕ : X → Y (k0,K)-lower semicontinuos such that

f(x, y) ∈ ϕ(y)− ϕ(x) +K, for all x, y ∈ X;

(ii) for each x ∈ X, there exists y ∈ Y such that (ϕ(X)− ϕ(x)) ∩ (y − intK) = ∅;
(iii) ϕ(X) ⊂

⋃
t∈R
{tk0}.

Then, for every ε > 0 and for every x̂ ∈ X, there exists x ∈ X such that

(a) ϕ(x)− ϕ(x̂) + εd(x, x̂)k0 ∈ −K;
(b) f(x, x) + εd(x, x)k0 /∈ −K, for all x ∈ X, x 6= x.

Proof. The idea of the proof is like in Theorem 4.2 and is based on Theorem 3.1. �
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There are many cases where Theorem 2.1 [6] cannot be applied but all the assumptions
of Theorem 4.4 are satisfied.

Example 4.5. Let X = [0, 2], Y = R2 and f : X ×X → Y defined as:

f(x, y) =


(y, 2y), x > 0, y > 0;

(2− x, 0), x > 0, y = 0;

(y + 2, y), x = 0, y > 0;

(0, 0), x = 0, y = 0.

The ordering cone of Y is K = R2
+. The function f does not satisfy the triangle

inequality; take x = 2, y = 0 and z = 1. We obtain

f(2, 0) + f(0, 1) /∈ f(2, 1) +K.

On the other hand, there exists ϕ : X → Y , namely

ϕ(x) = (x, 0),

such that ϕ is (k0,K)-lower semicontinuous with k0 = (1, 0).

Moreover, ϕ(X) ⊂
⋃
t∈R
{tk0} and the property (P ) is satisfied.

We notice that x = 1 is a solution for the weak equilibria.

5. Existence solutions for the weak equilibria

The settings for this section are the same like in the section before.
Using Theorem 3.1, we are able to show the nonemptiness of the solution set of the
weak equilibria without any convexity requirements on the set X and the function f ,
going through the existence of approximate solutions of an optimization problem.
The next statement provides the existence of solution of an optimization problem
when the domain is compact.

Theorem 5.1. If C is a nonempty compact subset of X, ϕ : C → Y is (k0,K)-lower
semicontinuous such that

(i) for each x ∈ C, there exists y ∈ Y such that (ϕ(C)− ϕ(x)) ∩ (y − intK) = ∅;
(ii) ϕ(C) ⊂

⋃
t∈R
{tk0};

then there exists x ∈ C such that ϕ(y)− ϕ(x) /∈ −intK, for every y ∈ C.

Proof. From Theorem 3.1, for each n ∈ N, there exists xn ∈ C such that

ϕ(y)− ϕ(xn) +
1

n
d(xn, y)k0 /∈ −K, for all y ∈ C, y 6= xn.

By Lemma 2.2 (vi), we have

zK,k0
(ϕ(y)− ϕ(xn)) +

1

n
d(xn, y) > 0, for all y ∈ C, y 6= xn and n ∈ N.
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Since C is compact, we can choose a subsequence {xnk
} of xn such that xnk

→ x ∈ C
as k → ∞. Then, since ϕ(y) − ϕ(·), where y ∈ C is fixed, is (k0,K)-upper semicon-
tinuous, we obtain that zK,k0

(ϕ(y)− ϕ(·)) is upper semicontinuous, see Lemma 2.5.
Hence,

zK,k0
(ϕ(y)−ϕ(x)) ≥ lim sup

k→∞
(zK,k0

(ϕ(y)−ϕ(xnk
))+

1

nk
d(xnk

, x)) ≥ 0, for all y ∈ C.

Therefore, again by Lemma 2.2 (vii), it follows

ϕ(y)− ϕ(x) /∈ −intK, for all y ∈ C,

and thus, x is a solution for an optimization problem. �

The next result gives sufficient conditions for the existence of solutions when we move
to the wider class of bifunctions which satisfies the property (P ).

Theorem 5.2. Let C be a nonempty compact subset of X, f : C × C → Y a bifunc-
tion which satisfies property (P ) with respect to ϕ : C → Y which is (k0,K)-lower
semicontinuous. Assume that:

(i) for each x ∈ C, there exists y ∈ Y such that (ϕ(C)− ϕ(x)) ∩ (y − intK) = ∅;
(ii) ϕ(C) ⊂

⋃
t∈R
{tk0},

Then there exists x ∈ C such that f(x, y) /∈ −intK, for every y ∈ C.

Proof. The proof is based on Theorem 5.1 taking into account the property (P ). �

6. Concluding remarks

In this paper, we widen the class of vector bifunctions for which Ekeland’s varia-
tional principle holds and obtain a result which improves the main result in Araya et.
al [6]. In the literature, when dealing with vector equilibrium problems and the exis-
tence of their solutions, the most used assumptions are the convexity of the domain
and the generalized convexity and monotonicity, together with some weak continu-
ity assumptions of the vector function. In this paper, we focus on conditions that
do not involve any convexity concept, neither for the domain nor for the bifunction
involved. Sufficient conditions for the weak vector equilibria with bifunctions which
satisfy property (P ), in the absence of the convexity, are given for compact domains.
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[16] Khan, A., Tammer, Chr., Zălinescu, C., Set-valued optimization, An introduction with
application, Springer-Verlag, Berlin Heidelberg, 2015.

[17] Luc, D.T., Theory of Vector Optimization, Springer-Verlag, Germany, 1989.
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25, G. Bariţiu Street, 400027 Cluj-Napoca, Romania
e-mail: mihaela.miholca@yahoo.com
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Abstract. Almost contact B-metric manifolds of the lowest dimension 3 are con-
structed by a two-parametric family of Lie groups. Our purpose is to determine
the class of considered manifolds in a classification of almost contact B-metric
manifolds and their most important geometric characteristics and properties.
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1. Introduction

The study of the differential geometry of the almost contact B-metric manifolds
has initiated in [5]. The geometry of these manifolds is a natural extension of the
geometry of the almost complex manifolds with Norden metric [3, 6] in the case of
odd dimension. Almost contact B-metric manifolds are investigated and studied for
example in [5, 11, 12, 14, 15, 17, 18, 20].

Here, an object of special interest are the Lie groups considered as three-
dimensional almost contact B-metric manifolds. For example of such investigation
see [19].

The aim of the present paper is to make a study of the most important geometric
characteristics and properties of a family of Lie groups with almost contact B-metric
structure of the lowest dimension 3, belonging to the main vertical classes. These
classes are F4 and F5, where the fundamental tensor F is expressed explicitly by the
metric g, the structure (ϕ, ξ, η) and the vertical components of the Lee forms θ and
θ∗, i.e. in this case the Lee forms are proportional to η at any point. These classes
contain some significant examples as the time-like sphere of g and the light cone of
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the associated metric of g in the complex Riemannian space, considered in [5], as well
as the Sasakian-like manifolds studied in [7].

The paper is organized as follows. In Sec. 2, we give some necessary facts about
almost contact B-metric manifolds. In Sec. 3, we construct and study a family of Lie
groups as three-dimensional manifolds of the considered type.

2. Almost contact manifolds with B-metric

Let (M,ϕ, ξ, η, g) be a (2n + 1)-dimensional almost contact B-metric manifold,
i.e. (ϕ, ξ, η) is a triplet of a tensor (1,1)-field ϕ, a vector field ξ and its dual 1-form η
called an almost contact structure and the following identities holds:

ϕξ = 0, ϕ2 = −Id + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,

where Id is the identity. The B-metric g is pseudo-Riemannian and satisfies

g(ϕx, ϕy) = −g(x, y) + η(x)η(y)

for arbitrary tangent vectors x, y ∈ TpM at an arbitrary point p ∈M [5].
Further, x, y, z, w will stand for arbitrary vector fields on M or vectors in the

tangent space at an arbitrary point in M .
Let us note that the restriction of a B-metric on the contact distribution H =

ker(η) coincides with the corresponding Norden metric with respect to the almost
complex structure and the restriction of ϕ on H acts as an anti-isometry on the
metric on H which is the restriction of g on H.

The associated metric g̃ of g on M is given by g̃(x, y) = g(x, ϕy) + η(x)η(y). It
is a B-metric, too. Hence, (M,ϕ, ξ, η, g̃) is also an almost contact B-metric manifold.
Both metrics g and g̃ are indefinite of signature (n+ 1, n).

The structure group of (M,ϕ, ξ, η, g) is G×I, where I is the identity on span(ξ)
and G = GL(n;C) ∩ O(n, n).

The (0,3)-tensor F on M is defined by F (x, y, z) = g
(
(∇xϕ) y, z

)
, where ∇ is

the Levi-Civita connection of g. The tensor F has the following properties:

F (x, y, z) = F (x, z, y) = F (x, ϕy, ϕz) + η(y)F (x, ξ, z) + η(z)F (x, y, ξ).

A classification of the almost contact B-metric manifolds is introduced in [5],
where eleven basic classes Fi (i = 1, 2, . . . , 11) are characterized with respect to the
properties of F . The special class F0 is defined by the condition F (x, y, z) = 0 and
is contained in each of the other classes. Hence, F0 is the class of almost contact
B-metric manifolds with ∇-parallel structures, i.e. ∇ϕ = ∇ξ = ∇η = ∇g = ∇g̃ = 0.

Let gij , i, j ∈ {1, 2, . . . , 2n + 1}, be the components of the matrix of g with

respect to a basis {ei}2n+1
i=1 = {e1, e2, . . . , e2n+1} of TpM at an arbitrary point p ∈M ,

and gij – the components of the inverse matrix of (gij). The Lee forms associated
with F are defined as follows:

θ(z) = gijF (ei, ej , z), θ∗(z) = gijF (ei, ϕej , z), ω(z) = F (ξ, ξ, z).

In [12], the square norm of ∇ϕ is introduced by:

‖∇ϕ‖2 = gijgksg
(
(∇eiϕ) ek,

(
∇ejϕ

)
es
)
. (2.1)
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If (M,ϕ, ξ, η, g) is an F0-manifold then the square norm of ∇ϕ is zero, but the inverse
implication is not always true. An almost contact B-metric manifold satisfying the
condition ‖∇ϕ‖2 = 0 is called an isotropic-F0-manifold. The square norms of ∇η and
∇ξ are defined in [13] by:

‖∇η‖2 = gijgks (∇eiη) ek
(
∇ejη

)
es, ‖∇ξ‖2 = gijg

(
∇eiξ,∇ejξ

)
. (2.2)

Let R be the curvature tensor of type (1,3) of Levi-Civita connection ∇, i.e.
R(x, y)z = ∇x∇yz−∇y∇xz−∇[x,y]z. The corresponding tensor of R of type (0,4) is
defined by R(x, y, z, w) = g(R(x, y)z, w).

The Ricci tensor ρ and the scalar curvature τ for R as well as their as-
sociated quantities are defined by the following traces ρ(x, y) = gijR(ei, x, y, ej),
τ = gijρ(ei, ej), ρ

∗(x, y) = gijR(ei, x, y, ϕej) and τ∗ = gijρ∗(ei, ej), respectively.

An almost contact B-metric manifold is called Einstein if the Ricci tensor is
proportional to the metric tensor, i.e. ρ = λg, λ ∈ R.

Let α be a non-degenerate 2-plane (section) in TpM . It is known from [20] that
the special 2-planes with respect to the almost contact B-metric structure are: a totally
real section if α is orthogonal to its ϕ-image ϕα and ξ, a ϕ-holomorphic section if α
coincides with ϕα and a ξ-section if ξ lies on α.

The sectional curvature k(α; p)(R) of α with an arbitrary basis {x, y} at p re-
garding R is defined by

k(α; p)(R) =
R(x, y, y, x)

g(x, x)g(y, y)− g(x, y)2
. (2.3)

It is known from [12] that a linear connection D is called a natural connection
on an arbitrary manifold (M,ϕ, ξ, η, g) if the almost contact structure (ϕ, ξ, η) and
the B-metric g (consequently also g̃) are parallel with respect to D, i.e. Dϕ = Dξ =
Dη = Dg = Dg̃ = 0. In [18], it is proved that a linear connection D is natural on
(M,ϕ, ξ, η, g) if and only if Dϕ = Dg = 0. A natural connection exists on any almost
contact B-metric manifold and coincides with the Levi-Civita connection if and only
if the manifold belongs to F0.

Let T be the torsion tensor of D, i.e. T (x, y) = Dxy −Dyx − [x, y]. The corre-
sponding tensor of T of type (0,3) is denoted by the same letter and is defined by the
condition T (x, y, z) = g(T (x, y), z).

In [15], it is introduced a natural connection Ḋ on (M,ϕ, ξ, η, g) in all basic classes
by

Ḋxy = ∇xy + 1
2

{
(∇xϕ)ϕy + (∇xη) y · ξ

}
− η(y)∇xξ. (2.4)

This connection is called a ϕB-connection in [16]. It is studied for the main classes
F1,F4,F5,F11 in [15, 10, 11]. Let us note that the ϕB-connection is the odd-
dimensional analogue of the B-connection on the almost complex manifold with Nor-
den metric, studied for the class W1 in [4].
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In [17], a natural connection D̈ is called a ϕ-canonical connection on (M,ϕ, ξ, η, g) if

its torsion tensor T̈ satisfies the following identity:

T̈ (x, y, z)− T̈ (x, z, y)− T̈ (x, ϕy, ϕz) + T̈ (x, ϕz, ϕy)

= η(x)
{
T̈ (ξ, y, z)− T̈ (ξ, z, y)− T̈ (ξ, ϕy, ϕz) + T̈ (ξ, ϕz, ϕy)

}
+ η(y)

{
T̈ (x, ξ, z)− T̈ (x, z, ξ)− η(x)T̈ (z, ξ, ξ)

}
− η(z)

{
T̈ (x, ξ, y)− T̈ (x, y, ξ)− η(x)T̈ (y, ξ, ξ)

}
.

It is established that the ϕB-connection and the ϕ-canonical connection coincide if
and only if (M,ϕ, ξ, η, g) is in the class F1⊕F2⊕F4⊕F5⊕F6⊕F8⊕F9⊕F10⊕F11.

In [8] it is determined the class of all three-dimensional almost contact B-metric
manifolds. It is F1 ⊕F4 ⊕F5 ⊕F8 ⊕F9 ⊕F10 ⊕F11.

3. A family of Lie groups as three-dimensional (F4 ⊕F5)-manifolds

In this section we study three-dimensional real connected Lie groups with almost
contact B-metric structure. On a three-dimensional connected Lie group G we take a
global basis of left-invariant vector fields {e0, e1, e2} on G.

We define an almost contact structure on G by

ϕe0 = o, ϕe1 = e2, ϕe2 = −e1, ξ = e0;
η(e0) = 1, η(e1) = η(e2) = 0,

(3.1)

where o is the zero vector field and define a B-metric on G by

g(e0, e0) = g(e1, e1) = −g(e2, e2) = 1,
g(e0, e1) = g(e0, e2) = g(e1, e2) = 0.

(3.2)

We consider the Lie algebra g on G, determined by the following non-zero commuta-
tors:

[e0, e1] = −be1 − ae2, [e0, e2] = ae1 − be2, [e1, e2] = 0, (3.3)

where a, b ∈ R. We verify immediately that the Jacobi identity for g is satisfied.
Hence, G is a 2-parametric family of Lie groups with corresponding Lie algebra g.

Theorem 3.1. Let (G,ϕ, ξ, η, g) be a three-dimensional connected Lie group with almost
contact B-metric structure determined by (3.1), (3.2) and (3.3). Then it belongs to
the class F4 ⊕F5.

Proof. The well-known Koszul equality for the Levi-Civita connection ∇ of g

2g (∇eiej , ek) = g ([ei, ej ] , ek) + g ([ek, ei] , ej) + g ([ek, ej ] , ei) (3.4)

implies the following form of the components Fijk = F (ei, ej , ek) of F :

2Fijk = g ([ei, ϕej ]− ϕ [ei, ej ] , ek) + g (ϕ [ek, ei]− [ϕek, ei] , ej)

+ g ([ek, ϕej ]− [ϕek, ej ] , ei) .
(3.5)
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Using (3.5) and (3.3) for the non-zero components Fijk, we get:

F101 = F110 = −F202 = −F220 = a,

F102 = F120 = F201 = F210 = b.
(3.6)

Immediately we establish that the components in (3.6) satisfy the condition F =
F 4 + F 5 which means that the manifold belongs to F4 ⊕ F5. Here, the components
F s of F in the basic classes Fs (s = 4, 5) have the following form (see [8])

F4(x, y, z) = 1
2θ0

{
x1
(
y0z1 + y1z0

)
− x2

(
y0z2 + y2z0

)}
,

1
2θ0 = F101 = F110 = −F202 = −F220;

F5(x, y, z) = 1
2θ

∗
0

{
x1
(
y0z2 + y2z0

)
+ x2

(
y0z1 + y1z0

)}
,

1
2θ

∗
0 = F102 = F120 = F201 = F210.

(3.7)

where θ0 = θ(e0) and θ∗0 = θ∗(e0) are determined by θ0 = 2a, θ∗0 = 2b. Therefore, the
induced three-dimensional manifold (G,ϕ, ξ, η, g) belongs to the class F4 ⊕ F5 from
the mentioned classification. It is an F0-manifold if and only if (a, b) = (0, 0) holds.

Obviously, (G,ϕ, ξ, η, g) belongs to F4, F5 and F0 if and only if the parameters
θ∗0 vanishes if the manifold belongs to F4, and θ0 vanishes if it belong to F5, and
θ0 = θ∗0 vanishes if it belong to F0, respectively.

According to the above, the commutators in (3.3) take the form

[e0, e1] = − 1
2 (θ∗0e1 + θ0e2), [e0, e2] = 1

2 (θ0e1 − θ∗0e2),
[e1, e2] = 0,

(3.8)

in terms of the basic components of the Lee forms θ and θ∗. �

According to Theorem 3.1 and the consideration in [9], we can remark that the
Lie algebra determined as above belongs to the type Bia(V IIh), h > 0 of the Bianchi
classification (see [1, 2]).

Using (3.4) and (3.3), we obtain the components of ∇:

∇e1e0 = be1 + ae2, ∇e1e1 = −be0, ∇e1e2 = ae0,

∇e2e0 = −ae1 + be2, ∇e2e1 = ae0, ∇e2e2 = be0.
(3.9)

We denote by Rijkl = R(ei, ej , ek, el) the components of the curvature tensor R,
ρjk = ρ(ej , ek) of the Ricci tensor ρ, ρ∗jk = ρ∗(ej , ek) of the associated Ricci tensor

ρ∗ and kij = k(ei, ej) of the sectional curvature for ∇ of the basic 2-plane αij with
a basis {ei, ej}, where i, j ∈ {0, 1, 2}. On the considered manifold (G,ϕ, ξ, η, g) the
basic 2-planes αij of special type are: a ϕ-holomorphic section — α12 and ξ-sections
— α01, α02. Further, by (2.3), (3.2), (3.3) and (3.9), we compute

−R0101 = R0202 = 1
2ρ00 = k01 = k02 = 1

4 (θ20 − θ∗20 ),

R0102 = R0201 = −ρ12 = − 1
2ρ

∗
00 = − 1

2τ
∗ = − 1

2θ0θ
∗
0 ,

R1212 = ρ∗12 = k12 = − 1
4 (θ20 + θ∗20 ), ρ11 = −ρ22 = − 1

2θ
∗2
0 ,

τ = 1
2 (θ20 − 3θ∗20 ).

(3.10)

The rest of the non-zero components of R, ρ and ρ∗ are determined by (3.10) and the
properties Rijkl = Rklij , Rijkl = −Rjikl = −Rijlk, ρjk = ρkj and ρ∗jk = ρ∗kj .
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Taking into account (2.1), (2.2), (3.1), (3.2) and (3.9), we have

‖∇ϕ‖2 = −2 ‖∇η‖2 = −2 ‖∇ξ‖2 = θ20 − θ∗20 . (3.11)

Proposition 3.2. The following characteristics are valid for (G,ϕ, ξ, η, g):

1. The ϕB-connection Ḋ (respectively, ϕ-canonical connection D̈) is zero in the
basis {e0, e1, e2}.

2. The manifold is an isotropic-F0-manifold if and only if the condition θ0 = ±θ∗0
is valid.

3. The manifold is flat if and only if it belongs to F0.
4. The manifold is Ricci-flat (respectively, ∗-Ricci-flat) if and only if it is flat.

5. The manifold is scalar flat if and only if the condition θ0 = ±
√

3 θ∗0 holds.
6. The manifold is ∗-scalar flat if and only if it belongs to either F4 or F5.

Proof. Using (2.4), (3.1) and (3.9), we get immediately the assertion (1). Equation
(3.11) implies the assertion (2). The assertions (5), (3) and (6) hold, according to
(3.10). On the three-dimensional almost contact B-metric manifold with the basis
{e0, e1, e2}, bearing in mind the definitions of the Ricci tensor ρ and the ρ∗, we have

ρjk = R0jk0 +R1jk1 −R2jk2 ρ∗jk = R1kj2 +R2jk1.

By virtue of the latter equalities, we get the assertion (4). �

According to (3.6) and (3.10) we establish the truthfulness of the following

Proposition 3.3. The following properties are equivalent for the studied manifold
(G,ϕ, ξ, η, g):

1. it belongs to F4;
2. it is η-Einstein;
3. the Lee form θ∗ vanishes.

Using again (3.6) and (3.10)we establish the truthfulness of the following

Proposition 3.4. The following properties are equivalent for the studied manifold
(G,ϕ, ξ, η, g):

1. it belongs to F5;
2. it is Einstein;
3. it is a hyperbolic space form with k = − 1

4θ
∗2
0 ;

4. the Lee form θ vanishes.
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Book reviews

Vijay Gupta, Michael Th. Rassias,
Moments of Linear Positive Operators and Approximation,
Springer, 2019, viii + 96 p., ISBN 978-3-030-19454-3; 978-3-030-19455-0 (ebook).

In recent years the study of the linear methods of approximation became a
strongly ingrained part of Approximation Theory. In the investigation of the linear
positive operators the determination of their moments is extremely useful both in
obtaining the convergence of the respective sequences in various function spaces and
in establishing their asymptotic behavior.

The monograph is split into 3 chapters, each representing a specific direction
aimed at studying the moments of some classes of operators. It offers coverage of clas-
sical and recent material on linear positive operators. In the first chapter the moments
of 15 discrete type operators are established, among which Bernstein, Szász-Mirakjan,
Baskakov, Stancu, Jain, Balázs-Szabados, Abel-Ivan, Chlodowsky operators. Further,
integral operators are analyzed, such as Gamma, Post-Widder, Ismail-May, Phillips,
Lupaş, Durrmeyer type operators. Also, the reader is acquainted with various mixed
summation-integral operators. In the last chapter the authors approach approximation
properties of certain operators, these including evaluations of the rate of convergence
by using moduli of smoothness, preservation of some test functions through certain
families of operators and the study of the difference between two approximation pro-
cesses.

The presentation is distinguished by clarity and rigorous proofs. Also, it is es-
sentially self-contained. The results are based on numerous published papers, the bib-
liography including over fifty works of the authors. The material offers information
that put the reader at the forefront of current research and determines fruitful direc-
tions for future advanced study. It is addressed to researchers and graduate students
specialized in pure and applied mathematics who are interested in Korovkin-type
theory.

Octavian Agratini
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