
MATHEMATICA

4/2018



STUDIA 
UNIVERSITATIS BABEŞ-BOLYAI 

MATHEMATICA 

4/2018 



EDITORIAL BOARD OF  
STUDIA UNIVERSITATIS BABEŞ -BOLYAI MATHEMATICA 

EDITORS: 
Radu Precup, Babeş-Bolyai University, Cluj-Napoca, Romania (Editor-in-Chief)  
Octavian Agratini, Babeş-Bolyai University, Cluj-Napoca, Romania  
Simion Breaz, Babeş-Bolyai University, Cluj-Napoca, Romania  
Csaba Varga, Babeş-Bolyai University, Cluj-Napoca, Romania 

MEMBERS OF THE BOARD: 
Ulrich Albrecht, Auburn University, USA 
Francesco Altomare, University of Bari, Italy 
Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca, Romania 
Silvana Bazzoni, University of Padova, Italy 
Petru Blaga, Babeş-Bolyai University, Cluj-Napoca, Romania 
Wolfgang Breckner, Babeş-Bolyai University, Cluj-Napoca, Romania 
Teodor Bulboacă, Babeş-Bolyai University, Cluj-Napoca, Romania 
Gheorghe Coman, Babeş-Bolyai University, Cluj-Napoca, Romania 
Louis Funar, University of Grenoble, France 
Ioan Gavrea, Technical University, Cluj-Napoca, Romania 
Vijay Gupta, Netaji Subhas Institute of Technology, New Delhi, India  
Gábor Kassay, Babeş-Bolyai University, Cluj-Napoca, Romania 
Mirela Kohr, Babeş-Bolyai University, Cluj-Napoca, Romania 
Iosif Kolumbán, Babeş-Bolyai University, Cluj-Napoca, Romania 
Alexandru Kristály, Babeş-Bolyai University, Cluj-Napoca, Romania 
Andrei Mărcuş, Babeş-Bolyai University, Cluj-Napoca, Romania 
Waclaw Marzantowicz, Adam Mickiewicz, Poznan, Poland 
Giuseppe Mastroianni, University of Basilicata, Potenza, Italy
Mihail Megan, West University of Timişoara, Romania
Gradimir V. Milovanović, Megatrend University, Belgrade, Serbia
Boris Mordukhovich, Wayne State University, Detroit, USA 
András Némethi, Rényi Alfréd Institute of Mathematics, Hungary 
Rafael Ortega, University of Granada, Spain 
Adrian Petruşel, Babeş-Bolyai University, Cluj-Napoca, Romania 
Cornel Pintea, Babeş-Bolyai University, Cluj-Napoca, Romania 
Patrizia Pucci, University of Perugia, Italy 
Ioan Purdea, Babeş-Bolyai University, Cluj-Napoca, Romania 
John M. Rassias, National and Capodistrian University of Athens, Greece 
Themistocles M. Rassias, National Technical University of Athens, Greece 
Ioan A. Rus, Babeş-Bolyai University, Cluj-Napoca, Romania 
Grigore Sălăgean, Babeş-Bolyai University, Cluj-Napoca, Romania 
Mircea Sofonea, University of Perpignan, France  
Anna Soós, Babeş-Bolyai University, Cluj-Napoca, Romania 
András Stipsicz, Rényi Alfréd Institute of Mathematics, Hungary  
Ferenc Szenkovits, Babeş-Bolyai University, Cluj-Napoca, Romania 
Michel Théra, University of Limoges, France 

BOOK REVIEWS: 
Ştefan Cobzaş, Babeş-Bolyai University, Cluj-Napoca, Romania 

SECRETARIES OF THE BOARD: 
Teodora Cătinaş, Babeş-Bolyai University, Cluj-Napoca, Romania 
Hannelore Lisei, Babeş-Bolyai University, Cluj-Napoca, Romania 

TECHNICAL EDITOR: 
Georgeta Bonda, Babeş-Bolyai University, Cluj-Napoca, Romania 



YEAR (LXIII) 2018
MONTH DECEMBER
ISSUE 4

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI
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Truong Cong Quynh and Serap Şahinkaya, Goldie absolute direct
summand rings and modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Mouffak Benchohra, Soufyane Bouriah and Juan J. Nieto,
Existence and stability results for nonlocal initial value problems
for differential equations with Hilfer fractional derivative . . . . . . . . . . . . . . . . . . 447

Ghulam Farid, Udita N. Katugampola and Muhammad Usman,
Ostrowski-type fractional integral inequalities for mappings whose
derivatives are h-convex via Katugampola fractional integrals . . . . . . . . . . . . . 465

Eszter Szatmari, Differential subordinations obtained by using
a fractional operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Andriy Bandura and Oleh Skaskiv, Sufficient conditions of
boundedness of L-index and analog of Hayman’s Theorem for
analytic functions in a ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .483

Tayeb Blouhi and Mohamed Ferhat, Existence and topological
structure of solution sets for ϕ-Laplacian impulsive stochastic
differential systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
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The Faber polynomial expansion method and
its application to the general coefficient problem
for some subclasses of bi-univalent functions
associated with a certain q-integral operator

Hari Mohan Srivastava, Shahid Khan, Qazi Zahoor Ahmad, Nazar
Khan and Saqib Hussain

Abstract. In our present investigation, we first introduce several new subclasses
of analytic and bi-univalent functions by using a certain q-integral operator in
the open unit disk U = {z : z ∈ Cand |z| < 1}. By applying the Faber polynomial
expansion method as well as the q-analysis, we then determine bounds for the
nth coefficient in the Taylor-Maclaurin series expansion for functions in each of
these newly-defined analytic and bi-univalent function classes subject to a gap
series condition. We also highlight some known consequences of our main results.

Mathematics Subject Classification (2010): 05A30, 30C45, 11B65, 47B38.

Keywords: Analytic functions, univalent functions, Taylor-Maclaurin series rep-
resentation, Faber polynomials, bi-inivalent functions, q-derivative operator, q-
hypergeometric functions, q-integral operators.

1. Introduction and definitions

Let A be the class of all functions f which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}
and normalized by

f(0) = 0 = f ′(0)− 1.

Thus, clearly, the function f ∈ A has the following Taylor-Maclaurin series represen-
tation:

f(z) = z +

∞∑
n=2

anz
n (z ∈ U) . (1.1)

Further, by S ⊂ A we shall denote the class of all functions which are univalent in U.
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For two functions f, g ∈ A, the function f is said to be subordinate to the function g
in U, denoted by

f (z) ≺ g (z) (z ∈ U) ,

if there exists a function

w ∈ B0 := {w : w ∈ A, w (0) = 0 and |w (z)| < 1 (z ∈ U)}

such that

f (z) = g
(
w (z)

)
(z ∈ U) .

In the case when the function g is univalent in U, we have the following equivalence:

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Next, for a function f ∈ A given by (1.1) and another function g ∈ A given by

g(z) = z +

∞∑
n=2

bnz
n (z ∈ U) ,

the convolution (or the Hadamard product) of the functions f and g is defined by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ f)(z). (1.2)

It is well known that every univalent function f has an inverse f−1, defined by

f−1
(
f(z)

)
= z = f

(
f−1(z)

)
(z ∈ U)

and

f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) =

1

4

)
,

where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (1.3)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. We denote the class of all such functions by Σ. In recent years, the pioneering
work of Srivastava et al. [22] essentially revived the investigation of various subclasses
of the analytic and bi-univalent function class Σ. In fact, in a remarkably large number
of sequels to the pioneering work of Srivastava et al. [22], several different subclasses of
the analytic and bi-univalent function class Σ were introduced and studied analogously
by the many authors (see, for example, [5], [7], [9], [23], [24], [25], [28] and [29]).
However, only non-sharp estimates on the initial coefficients |a2| and |a3| in the Taylor-
Maclaurin series expansion (1.1) were obtained in these recent papers.

The Faber polynomials introduced by Faber [11] play an important rôle in various
areas of mathematical sciences, especially in Geometric Function Theory of Complex
Analysis (see, for details, [27]). Recently, several authors (see, for example, [13] and
[26]; see also [6], [8], [12] and [20]) investigated some interesting and useful properties
for analytic functions by applying the Faber polynomial expansion method. Motivated
by these and other recent works (see, for example, [1], [14] and [30]), here we make
use of the q-analysis in order to define new subclasses of analytic and bi-univalent
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functions in U and (by means of the Faber polynomial expansion method) we deter-
mine estimates for the general coefficient |an| (n = 3) in the Taylor-Maclaurin series
expansion (1.1) of functions in each of these subclasses.

We begin by recalling here some basic definitions and other concept details of
the q-calculus (0 < q < 1), which will be used in this paper.

Definition 1.1. Let q ∈ (0, 1) and define the q-number [κ]q by

[κ]q =


1− qκ

1− q
(κ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · ·+ qn−1 (κ = n ∈ N),

where N denotes the set of positive integers and N0 := N ∪ {0}.

Definition 1.2. Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! =


1 (n = 0)

n∏
k=1

[k]q (n ∈ N).

Definition 1.3. (see [15] and [16]) The q-derivative (or the q-difference) Dqf of a
function f is defined, in a given subset of C, by

(
Dqf

)
(z) =


f(z)− f(qz)

(1− q)z
(z 6= 0)

f ′(0) (z = 0),

(1.4)

provided that f ′(0) exists.

We note from Definition 1.3 that

lim
q→1−

(
Dqf

)
(z) = lim

q→1−

f(z)− f(qz)

(1− q)z
= f ′(z)

for a function f which is differentiable in a given subset of C. It is readily deduced
from (1.1) and (1.4) that (

Dqf
)
(z) = 1 +

∞∑
n=2

[n]q anz
n−1.

Definition 1.4. The q-Pochhammer symbol [κ]n,q (κ ∈ C; n ∈ N0) is defined as
follows:

[κ]n,q =
(qκ; q)n
(1− q)n

:=

 1 (n = 0)

[κ]q[κ+ 1]q[κ+ 2]q · · · [κ+ n− 1]q (n ∈ N).

Moreover, the q-gamma function Γq(z) is defined by the following recurrence relation:

Γq(z + 1) = [z]q Γq(z) and Γq(1) = 1.
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Definition 1.5. [17] For f ∈ A, let the Ruscheweyh q-derivative operator be defined
as follows:

Iλq f(z) = f(z) ∗ Fq,λ+1(z) (z ∈ U; λ > −1),

where

Fq,λ+1(z) = z +

∞∑
n=2

Γq(λ+ n)

[n− 1]q!Γq(λ+ 1)
zn = z +

∞∑
n=2

[λ+ 1]q,n−1

[n− 1]q!
zn

in terms the Hadamard product (or convolution) given by (1.2).

We next define a certain q-integral operator by using the same technique as that
used by Noor [19].

Definition 1.6. For f ∈ A, let the q-integral operator Fq,λ be defined by

F−1
q,λ+1(z) ∗ Fq,λ+1(z) = zDqf(z).

Then

Iλq f(z) = f(z) ∗ F−1
q,λ+1(z)

= z +

∞∑
n=2

Ψn−1 anz
n (z ∈ U; λ > −1), (1.5)

where

F−1
q,λ+1(z) = z +

∞∑
n=2

Ψn−1 z
n

and

Ψn−1 =
[n]q!Γq(λ+ 1)

Γq(λ+ n)
=

[n]q!

[λ+ 1]q,n−1
.

Clearly, we have

I0
q f(z) = zDqf(z) and I1

q f(z) = f(z).

We note also that, in the limit case when q → 1−, the q-integral operator Fq,λ given
by Definition 1.6 would reduce to the integral operator which was studied by Noor
[18].

The following identity can be easily verified:

zDq

(
Iλ+1
q f(z)

)
=

(
1 +

[λ]q
qλ

)
Iλq f(z)− [λ]q

qλ
Iλ+1
q f(z). (1.6)

When q → 1−, this last identity (1.6) implies that

z
(
Iλ+1f(z)

)′
= (1 + λ) Iλf(z)− λIλ+1f(z),

which is the well-known recurrence relation for the above-mentioned integral operator
which studied by Noor [18].

The above-defined q-calculus provides valuable tools that have been extensively
used in order to examine several subclasses of A. Even though Ismail et al. [14]
were the first to use the q-derivative operator Dq in order to study a certain q-
analogue of the class S∗ of starlike functions in U, yet a rather significant usage of
the q-calculus in the context of Geometric Function Theory of Complex Analysis was
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basically furnished and the basic (or q-) hypergeometric functions were first used in
Geometric Function Theory in a book chapter by Srivastava (see, for details, [21, pp.
347 et seq.]; see also [23]).

We now introduce the following subclasses of the analytic and bi-univalent func-
tion class Σ.

Definition 1.7. For a function f ∈ Σ, we say that

f ∈ Rq (Σ, α, γ) (0 5 α < 1; γ = 0)

if and only if ∣∣∣∣Dqf(z) + γzD2
qf(z)− 1− αq

1− q

∣∣∣∣ < 1− α
1− q

(z ∈ U)

and ∣∣∣∣Dqg(w) + γwD2
qg(w)− 1− αq

1− q

∣∣∣∣ < 1− α
1− q

(w ∈ U) .

Equivalently, by using the principle of subordination between analytic functions, we
can write the above conditions as follows (see, for details, [30]):

Dqf(z) + γzD2
qf(z) ≺ 1 + [1− α(1 + q)] z

1− qz
(z ∈ U)

and

Dqg(w) + γwD2
qg(w) ≺ 1 + [1− α(1 + q)]w

1− qw
(w ∈ U) ,

respectively, where g(w) = f−1(w) is given by (1.3).

Definition 1.8. For a function f ∈ Σ, we say that

f ∈ Rq (Σ, α, γ, λ) (0 5 α < 1; γ = 0; λ = 0)

if and only if

DqIλq f (z) + γzD2
qIλq f (z) ≺ 1 + [1− α(1 + q)] z

1− qz
(z ∈ U)

and

DqIλq g(w) + λwD2
qIλq g(w) ≺ 1 + [1− α(1 + q)]w

1− qw
(w ∈ U) ,

where g(w) = f−1(w) is given by (1.3).

2. The Faber polynomial expansion method and its applications

In this section, by using the Faber polynomial expansion of a function f ∈ A of
the form (1.1), we observe that the coefficients of its inverse map g = f−1 may be
expressed as follows (see [4]; see also [13] and [26]):

g(w) = f−1(w) = w +

∞∑
n=2

1

n
K−nn−1 (a2, a3, · · · , an)wn, (2.1)
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where

K−nn−1 =
(−n)!

(−2n+ 1)!(n− 1)!
an−1

2 +
(−n)!

(2(−n+ 1))!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4

+
(−n)!

(2(−n+ 2))!(n− 5)!
an−5

2

[
a5 + (−n+ 2)a2

3

]
+

(−n)!

(−2n+ 5)!(n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4]

+
∑
j=7

an−j2 Vj . (2.2)

Here, and in what follows, such expressions as (for example) (−n)! occurring in (2.2)
are to be interpreted symbolically by

(−n)! ≡ Γ(1− n) := (−n)(−n− 1)(−n− 2) · · ·
(
n ∈ N0

)
and Vj (7 5 j 5 n) is a homogeneous polynomial in the variables a2, a3, · · · , an.
In particular, the first three terms of K−nn−1 are given below:

K−2
1 = −2a2, K−3

2 = 3
(
2a2

2 − a3

)
and

K−4
3 = −4

(
5a3

2 − 5a2a3 + a4

)
.

In general, an expansion of Kp
n is given by (see, for details, [3])

Kp
n = pan +

p(p− 1)

2
E2
n +

p!

(−3)!3!
E3
n + · · ·+ p!

(p− n)!n!
Enn (p ∈ Z),

where Z := {0,±1,±2, · · · } and

Ep
n = Ep

n (a2, a3, · · · ) .
It is clearly seen that

Enn(a1, a2, · · · , an) = an1 .

and

Emn−1(a2, · · · , an) =

∞∑
n=2

m!(a2)µ1 · · · (an)µn−1

µ1!, · · · , µn−1!
(m 5 n) .

We also have (see [2])
En−1
n−1 (a2, · · · , an) = an−1

2

and

Emn (a1, a2, · · · , an) =
∑(

m!

µ1! · · ·µn!

)
aµ1

1 · · · aµn
n (m 5 n),

where a1 = 1 and the sum is taken over all non-negative integers µ1, · · · , µn satisfying
the following conditions:

µ1 + µ2 + · · ·+ µn = m

and
µ1 + 2µ2 + · · ·+ nµn = n.
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By a similar argument, we note that

Enn(a1, · · · , an) = En1

and that the first and the last polynomials are given by

Enn = an1 and E1
n = an.

We now state and prove our main results. Throughout our discussion, the parameters
L and M are given by

L := [1− α(1 + q)] and M := −q.

Theorem 2.1. For 0 5 α < 1 and γ = 0, let f ∈ Rq (Σ, α, γ) . If

am = 0 (2 5 m 5 n− 1),

then

|an| 5
|1− α+ q(1− α)|

[n]q + γ [n]q [n− 1]q
(n = 3). (2.3)

Proof. For the function f ∈ Rq (Σ, α, γ) of the form (1.1), we have

Dqf(z) + γzD2
qf(z) = 1 +

∞∑
n=2

(
[n]q + γ [n]q [n− 1]q

)
anz

n−1 (2.4)

and, for its inverse map g = f−1, we get

Dqg(w) + γwD2
qg(w) = 1 +

∞∑
n=2

(
[n]q + γ [n]q [n− 1]q

)
bnw

n−1, (2.5)

where

bn =
1

[n]q
K−nn−1 (a2, a3, · · · , an) .

Since both the function f and its inverse map g = f−1 are in Rq (Σ, α, γ) , by the
definition of subordination, there exist two Schwarz functions p(z) and q(w) given by

p(z) =

∞∑
n=1

cnz
n and q(w) =

∞∑
n=1

dnw
n (z, w ∈ U),

so that we have

Dqf(z) + γzD2
qf(z) =

1 + Lp(z)
1 +Mp(z)

= 1−
∞∑
n=1

(L −M)K−1
n (c1, c2, · · · , cn,M) zn (2.6)

and

Dqg(w) + γwD2
qg(w) =

1 + Lq(w)

1 +Mq(w)

= 1−
∞∑
n=1

(L −M)K−1
n (d1, d2, · · · , dn,M)wn. (2.7)
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In general, for any p ∈ N and n = 2, we have the following expansion of
Kp
n(k1, k2, · · · , kn,M) (see [3] and [4]):

Kp
n(k1, k2, · · · , kn,M)

=
p!

(p− n)!n!
kn1Mn−1 +

p!

(p− n+ 1)!(n− 2)!
kn−2

1 k2Mn−2

+
p!

(p− n+ 2)!(n− 3)!
· kn−3

1 k3Mn−3

+
p!

(p− n+ 3)!(n− 4)!
kn−4

1

[
k4Mn−4 +

p− n+ 3

2
k2

3M
]

+
p!

(p− n+ 4)!(n− 5)!
kn−5

1

[
k5Mn−5 + (p− n+ 4)k3k4M

]
+
∑
j=6

kn−1
1 Xj , (2.8)

where Xj is a homogeneous polynomial of degree j in the variables k1, k2, · · · , kn.
For the coefficients of the Schwarz functions p(z) and q(w), we have (see [10])

|cn| 5 1 and |dn| 5 1.

Thus, upon comparing with the corresponding coefficients in (2.4) and (2.6), we find
that (

[n]q + γ [n]q [n− 1]q

)
an = −(L −M)K−1

n−1(c1, c2, · · · , cn−1,M). (2.9)

Similarly, in view of the corresponding coefficients in (2.5) and (2.7), we have(
[n]q + γ [n]q [n− 1]q

)
bn = −(L −M)K−1

n (d1, d2, · · · , dn,M). (2.10)

We note for

am = 0 (2 5 m 5 n− 1) and bn = −an,
that (

[n]q + γ [n]q [n− 1]q

)
an = −(L −M)cn−1 (2.11)

and

−
(

[n]q + γ [n]q [n− 1]q

)
an = −(L −M)dn−1. (2.12)

Taking the moduli in (2.11) and (2.12), we thus obtain

|an| 5
|L −M|

[n]q + γ [n]q [n− 1]q
|cn−1|

=
|L −M|

[n]q + γ [n]q [n− 1]q
|dn−1| .

Therefore, we have

|an| 5
|1− α+ q(1− α)|

[n]q + γ [n]q [n− 1]q
(n = 3),

which completes the proof of the assertion (2.3) of Theorem 2.1. �
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If we let q → 1− in Theorem 2.1 above, we obtain the following known result
given by Srivastava et al. [26].

Corollary 2.2. (see [26]) Let f given by (1.1) be in the class

Rα,γΣ (0 5 α < 1; γ = 0).

If

am = 0 (2 5 m 5 n− 1),

then

|an| 5
2 (1− α)

n [1 + γ(n− 1)]
(n ∈ N \ {1, 2}).

Theorem 2.3. For 0 5 α < 1 and 0 5 γ, let f ∈ Rq (Σ, α, γ). Then

|a2| 5 min

 |1− α+ q(1− α)|
[2]q + γ [2]q [1]q

,

√√√√2(1 + q) |1− α+ q(1− α)|

[2]q

(
[3]q + γ [3]q [2]q

)
 ,

|a3| 5 min

{
|1− α+ q(1− α)|

[1]q + [1]q

(
[2]q |1− α+ q(1− α)|(

[2]q + γ [2]q [1]q
)2 +

2

[3]q + γ [3]q [2]q

)
,

2 (q + 2) |1− α+ q(1− α)|(
[1]q + [1]q

)(
[3]q + γ [3]q [2]q

)} ,
∣∣∣a3 − [2]q a

2
2

∣∣∣ 5 (1 + q) |1− α+ q(1− α)|
[3]q + γ [3]q [2]q

and ∣∣∣∣a3 −
[2]q

[1]q + [1]q
a2

2

∣∣∣∣ 5 2 |1− α+ q(1− α)|∣∣∣([1]q + [1]q
)(

[3]q + γ [3]q [2]q
)∣∣∣ .

Proof. Upon setting n = 2 and n = 3 in (2.9) and (2.10), respectively, we get(
[2]q + γ [2]q [1]q

)
a2 = −(L −M)c1, (2.13)

(
[3]q + γ [3]q [2]q

)
a3 = −(L −M)(Mc21 − c2), (2.14)

−
(

[2]q + γ [2]q [1]q

)
a2 = −(L −M)d1 (2.15)

and (
[3]q + γ [3]q [2]q

)(
[2]q a

2
2 − a3

)
= −(L −M)(Md2

1 − d2). (2.16)
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From (2.13) and (2.15), we have

|a2| 5
|L −M|

[2]q + γ [2]q [1]q
|c1|

=
|L −M|

[2]q + γ [2]q [1]q
|d1|

5
|1− α+ q(1− α)|

[2]q + γ [2]q [1]q
. (2.17)

Adding (2.14) and (2.16), we find that

[2]q

(
[3]q + γ [3]q [2]q

)
a2

2 = −(L −M)
[
M
(
c21 + d2

1

)
− (c2 + d2)

]
, (2.18)

which, upon taking the moduli on both sides, yields

|a2|2 =
2 |L −M| (|M|+ 1)

[2]q

(
[3]q + γ [3]q [2]q

) .
This last equation can be written as follows:

|a2| 5

√√√√2(1 + q) |1− α+ q(1− α)|

[2]q

(
[3]q + γ [3]q [2]q

) . (2.19)

Now, in order to find |a3| , by subtracting (2.16) from (2.14), we obtain

a3 =
(L −M)

[
M
(
d2

1 − c21
)
− (c2 − d2)

]
([1]q + [1]q)

(
[3]q + γ [3]q [2]q

) +
[2]q

([1]q + [1]q)
a2

2. (2.20)

Taking the moduli in (2.20) and using the fact that d2
1 = c21, we have

|a3| 5
2 |L −M|

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

) +
[2]q

[1]q + [1]q
|a2|2 . (2.21)

Using (2.17) in (2.21), we obtain

|a3| 5
|1− α+ q(1− α)|

[1]q + [1]q

·

 [2]q |1− α+ q(1− α)|(
[2]q + γ [2]q [1]q

)2 +
2

[3]q + γ [3]q [2]q

 . (2.22)

Again, by using the equation (2.19) in (2.21), we have

|a3| 5
2 (q + 2) |1− α+ q(1− α)|

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

) . (2.23)

We also find from (2.16) that∣∣∣a3 − [2]q a
2
2

∣∣∣ 5 (1 + q) |1− α+ q(1− α)|
[3]q + γ [3]q [2]q

.
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From (2.20) and using the fact that d2
1 = c21, we have

a3 −
[2]q

[1]q + [1]q
a2

2 =
(L −M) (c2 − d2)

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

) . (2.24)

Finally, by taking the moduli in (2.24), we finally obtain∣∣∣∣a3 −
[2]q

[1]q + [1]q
a2

2

∣∣∣∣ 5 2 |1− α+ q(1− α)|∣∣∣([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)∣∣∣ .
The proof of Theorem 2.3 is thus completed. �

In the limit case when q → 1−, Theorem 2.3 yields the following bounds on |a2|
and |a3| given by Srivastava et al. [26].

Corollary 2.4. (see [26]) Let f given by (1.1) be in the class

Rα,γΣ (0 5 α < 1; γ = 0).

Then

a2 5



√
2(1− α)

3(1 + 2γ)

(
0 5 α 5

1 + 2γ − 2γ2

3(1 + 2γ)

)
1− α
1 + γ

(
1 + 2γ − 2γ2

3(1 + 2γ)
5 α < 1

)
and

a3 5
2(1− α)

3(1 + 2γ)
.

Theorem 2.5. For 0 5 α < 1 and 0 5 γ, let f ∈ Rq (Σ, α, γ, λ). If

am = 0 (2 5 m 5 n− 1),

then

|an| 5
|1− α+ q(1− α)| [λ+ 1]q,n−1(

[n]q + γ [n]q [n− 1]q

)
[n]q!

(n = 3). (2.25)

Proof. For the function f ∈ Rq (Σ, α, γ, λ) of the form (1.1), we have

DqIλq f (z) + γzD2
qIλq f (z)

= 1 +

∞∑
n=2

(
[n]q + γ [n]q [n− 1]q

)
Ψn−1anz

n−1. (2.26)

Also, for its inverse mapping g = f−1, we have

DqIλq g(w) + γwD2
qIλq g(w)

= 1 +

∞∑
n=2

(
[n]q + γ [n]q [n− 1]q

)
Ψn−1bnw

n−1, (2.27)
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where

bn =
1

[n]q
K−nn−1 (a2, a3, · · · , an) .

Since, both f and its inverse g = f−! are in the function class Rq (Σ, α, γ, λ) , by the
definition of subordination, there exist two Schwarz functions p(z) and q(w) given by

p(z) =

∞∑
n=1

cnz
n and q(w) =

∞∑
n=1

dnw
n (z, w ∈ U),

so that we have

DqIλq f (z) + γzD2
qIλq f (z)

=
1 + Lp(z)
1 +Mp(z)

= 1−
∞∑
n=1

(L −M)K−1
n (c1, c2, · · · , cn,M) zn (2.28)

and

DqIλq g(w) + γwD2
qIλq g(w)

=
1 + Lq(w)

1 +Mq(w)

= 1−
∞∑
n=1

(L −M)K−1
n (d1, d2, · · · , dn,M)wn. (2.29)

In general, for any p ∈ N and n = 2, an expansion of

Kp
n (k1, k2, · · · , kn,M)

is given by (2.8) (see [3] and [4]). Moreover, the coefficients of the Schwarz functions
p(z) and q(w) are constrained by (see [10])

|cn| 5 1 and |dn| 5 1.

Thus, upon comparing the corresponding coefficients in (2.26) and (2.28), we find
that (

[n]q + γ [n]q [n− 1]q

)
Ψn−1an

= −(L −M)K−1
n−1 (c1, c2, · · · , cn−1,M) . (2.30)

Similarly, by comparing the corresponding coefficients in (2.27) and (2.29), we have(
[n]q + γ [n]q [n− 1]q

)
Ψn−1bn

= −(L −M)K−1
n (d1, d2, · · · , dn,M) . (2.31)

We note also that, for

am = 0 (2 5 m 5 n− 1) and bn = −an,
we have (

[n]q + γ [n]q [n− 1]q

)
Ψn−1an = −(L −M)cn−1 (2.32)
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and

−
(

[n]q + γ [n]q [n− 1]q

)
Ψn−1an = −(L −M)dn−1. (2.33)

Finally, by taking the moduli in (2.32) and (2.33), we obtain

|an| 5
|L −M|(

[n]q + γ [n]q [n− 1]q

)
Ψn−1

|cn−1|

=
|L −M|(

[n]q + γ [n]q [n− 1]q

)
Ψn−1

|dn−1| .

Consequently, we have

|an| 5
|1− α+ q(1− α)| [λ+ 1]q,n−1(

[n]q + γ [n]q [n− 1]q

)
[n]q!

(n = 3),

which completes the proof of the assertion (2.25) of Theorem 2.5. �

Theorem 2.6. For 0 5 α < 1 and γ = 0, let f ∈ Rq (Σ, α, γ, λ). Then

|a2| 5 min

 |1− α+ q(1− α)| [λ+ 1]q,1(
[2]q + γ [2]q [1]q

)
[2]q!

,

√√√√2(1 + q) |1− α+ q(1− α)| [λ+ 1]q,2

[2]q

(
[3]q + γ [3]q [2]q

)
[3]q!

 , (2.34)

|a3| 5 min

{
|1− α+ q(1− α)|

[1]q + [1]q

(
([λ+ 1]q,1)

2
[2]q |1− α+ q(1− α)|

([2]q!)
2
(

[2]q + γ [2]q [1]q

)2

+
2[λ+ 1]q,2(

[3]q + γ [3]q [2]q

)
[3]q!

)
,

2 (q + 2) |1− α+ q(1− α)| [λ+ 1]q,2

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)
[3]q!

}
, (2.35)

∣∣∣a3 − [2]q a
2
2

∣∣∣ 5 (1 + q) |1− α+ q(1− α)| [λ+ 1]q,2(
[3]q + γ [3]q [2]q

)
[3]q!

(2.36)

and ∣∣∣∣a3 −
(

[2]q
[1]q + [1]q

)
a2

2

∣∣∣∣ 5 2 |1− α+ q(1− α)| [λ+ 1]q,2∣∣∣([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)∣∣∣ [3]q!
. (2.37)
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Proof. Upon setting n = 2 and n = 3 in (2.30) and (2.31), respectively, we have(
[2]q + γ [2]q [1]q

)
Ψ1a2 = −(L −M)c1, (2.38)(

[3]q + γ [3]q [2]q

)
Ψ2a3 = −(L −M)(Mc21 − c2), (2.39)

−
(

[2]q + γ [2]q [1]q

)
Ψ1a2 = −(L −M)d1 (2.40)

and (
[3]q + γ [3]q [2]q

)
Ψ2

(
[2]q a

2
2 − a3

)
= −(L −M)(Md2

1 − d2). (2.41)

Making use of (2.38) and (2.40), we find that

|a2| 5
|L −M|(

[2]q + γ [2]q [1]q

)
Ψ1

|c1|

=
|L −M|(

[2]q + γ [2]q [1]q

)
Ψ1

|d1|

5
|1− α+ q(1− α)| [λ+ 1]q,1(

[2]q + γ [2]q [1]q

)
[2]q!

. (2.42)

Also, by adding (2.39) and (2.41), we have

[2]q

(
[3]q + γ [3]q [2]q

)
Ψ2a

2
2 = −(L −M)

[
M
(
c21 + d2

1

)
− (c2 + d2)

]
. (2.43)

Now, if we take the moduli in both sides of (2.43), we obtain

|a2|2 =
2 |L −M| (|M|+ 1)

[2]q

(
[3]q + γ [3]q [2]q

)
Ψ2

,

so that

|a2| 5

√√√√2(1 + q) |1− α+ q(1− α)| [λ+ 1]q,2

[2]q

(
[3]q + γ [3]q [2]q

)
[3]q!

. (2.44)

In order to find |a3| , we subtract (2.41 ) from (2.39), We thus obtain

a3 =
(L −M)

[
M
(
d2

1 − c21
)
− (c2 − d2)

]
([1]q + [1]q)

(
[3]q + γ [3]q [2]q

)
Ψ2

+

(
[2]q

([1]q + [1]q)

)
a2

2, (2.45)

which, after taking the moduli and using the fact that

d2
1 = c21,

yields

|a3| 5
2 |L −M|

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)
Ψ2

+

(
[2]q

[1]q + [1]q

)
|a2|2 . (2.46)
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Using (2.42) in (2.46), we have

|a3| 5
|1− α+ q(1− α)|

[1]q + [1]q

 ([λ+ 1]q,1)
2

[2]q |1− α+ q(1− α)|

([2]q!)
2
(

[2]q + γ [2]q [1]q

)2

+
2[λ+ 1]q,2(

[3]q + γ [3]q [2]q

)
[3]q!

 . (2.47)

Again, by using (2.44) in (2.46), we get

|a3| 5
2 (q + 2) |1− α+ q(1− α)| [λ+ 1]q,2

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)
[3]q!

.

It follows from (2.41) that∣∣∣a3 − [2]q a
2
2

∣∣∣ 5 (1 + q) |1− α+ q(1− α)| [λ+ 1]q,2(
[3]q + γ [3]q [2]q

)
[3]q!

.

Using the fact that

d2
1 = c21

in (2.45), we have

a3 −
(

[2]q
[1]q + [1]q

)
a2

2 =
(L −M) (c2 − d2)

([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)
Ψ2

. (2.48)

By taking the moduli on both sides of (2.48), we finally obtain∣∣∣∣a3 −
(

[2]q
([1]q + [1]q)

)
a2

2

∣∣∣∣ 5 2 |1− α+ q(1− α)| [λ+ 1]q,2∣∣∣([1]q + [1]q)
(

[3]q + γ [3]q [2]q

)∣∣∣ [3]q!
,

which completes the proof of Theorem 2.6. �

3. Concluding remarks and observations

Here, in our present investigation, we have successfully applied the Faber polyno-
mial expansion method as well as the q-analysis in our study of several new subclasses
of analytic and bi-univalent functions by using a certain q-integral operator in the open
unit disk U. We have derived bounds for the nth coefficient in the Taylor-Maclaurin
series expansion for functions in each of these newly-defined analytic and bi-univalent
function classes subject to a gap series condition. By means of corollaries of our main
theorems, we have also highlighted some known consequences of our main results,
which were given recently by Srivastava et al. [26].
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Goldie absolute direct summand rings and
modules

Truong Cong Quynh and Serap Şahinkaya

Abstract. In the present paper, we introduce and study Goldie ADS modules
and rings, which subsume two generalizations of Goldie extending modules due
to Akalan et al. [3] and ADS-modules due to Alahmadi et al. [7]. A module M
will be called a Goldie ADS module if for every decomposition M = S ⊕ T of
M and every complement T ′ of S, there exists a submodule D of M such that
T ′βD and M = S⊕D. Various properties concerning direct sums of Goldie ADS
modules are established.
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1. Introduction

The purpose of the present paper is to introduce and study Goldie ADS modules,
which allow us to give a unified approach of Goldie extending modules and ADS-
modules, introduced by E. Akalan et al. [3] and A. Alahmadi et al. [7], respectively. We
define a Goldie ADS module by the property that for every decomposition M = S⊕T
of M and every complement T ′ of S, there exists a submodule D of M such that
T ′βD and M = S ⊕ D. We study these modules, generalizing several results both
on Goldie extending modules and ADS-modules. We show that a non-singular Goldie
ADS module is an ADS module. We emphasize that our properties are of the same type
as those for Goldie extending modules and ADS-modules, sharing similar limitations
in studying certain properties, such as the closure of the respective class of modules
under direct sums. We also analyze when a direct summand of Goldie ADS modules
is a Goldie ADS and also when a direct sum of Goldie ADS module is Goldie ADS,
by using the concepts of relative ejectivity. In the last section, we look at Goldie ADS
property of some ring extensions.
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2. Definitions and notions

In this paper, R will present an associative ring with identity and all modules
over R are unitary right modules. We also write MR to indicate that M is a right
R-module. We shall denote the fact that a submodule N is essential in a module M
by N ≤e M . The following generalization of relative injectivity is introduced in [3,
Definition 2.1]. Let N and M be modules. N is called M -ejective if, for each K ≤M
and each homomorphism f : K → N , there exist a homomorphism f : M → N
and a X ≤e K such that f(x) = f(x), for all x ∈ X. M and N is called mutually
ejective if M is N -ejective and N is M -ejective. A submodule K of M is called fully
invariant if f(K) ⊆ K for every f ∈ EndR(M). Clearly 0 and M are fully invariant
submodules of M . The right R-module M is called a duo module provided every
submodule of M is fully invariant. The singular submodule of a module M will be
denoted by Z(M) = {m ∈ M : mI = 0 for some I ≤e RR}. A module M is called
singular (respectively non-singular) if Z(M) = M (respectively Z(M) = 0).

(CS): Every complement submodule of M is a direct summand of M .
(C2): Every submodule of M that is isomorphic to a direct summand of M is

itself a direct summand of M .
(C3): For any two direct summands A and B of M with A ∩ B = 0, the sum

A+B is a direct summand of M .
A module M is called is called continuous (respectively, quasi continuous) if M

satisfies (CS) and (C2) (respectively, (CS) and (C3)).
Let M be an R-module and X,Y ≤ M . In [3], the notion of β relation on

submodules X,Y of M , denoted by XβY , is defined such as XβY if and only if
X ∩ A = 0 implies Y ∩ A = 0 and Y ∩ B = 0 implies X ∩ B = 0 for all A,B ≤ M .
A right module M is Goldie extending if for each X ≤ M , there exists a direct
summand D of M such that XβD. M is Goldie extending if and only if for each
closed submodule C of M there is a direct summand D of M such that CβD.

Another notion generalizing extending property, ADS (Absolute Direct Sum-
mand) modules, was recently considered in [7]. It was introduced by Fuchs [10] for
abelian groups and for general modules by Alahmadi, Jain and Leroy [7]. As the au-
thors pointed out in [7], if R is commutative then every cyclic R-module is ADS. Also
every right quasi-continuous module is ADS, but the converse is not true. However,
a right ADS module which is also CS is quasi-continuous. Also in [14], Quynh and
Koşan proved that every ADS module satisfies (C3). Hence, this is a class of modules
between quasi-continuous modules and modules satisfying the (C3) condition. Quynh
and Koşan gave also different characterizations of ADS modules and showed how to
characterize semisimple modules and semisimple artinian rings using the ADS. The
SC and SI rings were also characterized by the ADS notion in [14].

3. Goldie absolute direct summand modules

A module M is called Goldie absolute direct summand (Goldie ADS) if, for
every decomposition M = S ⊕ T of M and every complement T ′ of S, there exists a
submodule D of M such that T ′βD and M = S ⊕D.
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A ring R right Goldie ADS if the (right) R-module R is Goldie ADS. We know
that extending modules are Goldie extending, but need not be ADS. Similarly, Goldie
extending modules do not necessarily satisfy Goldie ADS. Hence, the notions extend-
ing, Goldie extending, ADS and the property Goldie ADS are not directly related.

Example 3.1. Let R = Z2[x1, x2, ...], where xi are commuting indeterminants satisfy-
ing the relations: x3i = 0 for all i, xixj = 0 for all i 6= j, and x2i = x2j for all i and j.
Then R is a commutative, semiprimary ring with simple essential socle. But R is not a
self-injective ring (see [13, Example 5.45]). On the other hand, RR is soc-RR-injective
by [8, Example 5.7]. It follows that RR is soc-(RR ⊕ RR)-injective by [8, Theorem
2.2(4)]. We have Soc(RR⊕RR) = Soc(RR)⊕Soc(RR) is finitely generated. Therefore
RR ⊕ RR is soc-(RR ⊕ RR)-injective by [8, Theorem 2.10]. Since Soc(RR ⊕ RR) is
essential in RR⊕RR, then RR⊕RR is self-ejective by [3, Corollary 2.5(iii)]. It follows
that for each decomposition RR ⊕ RR = A ⊕ B, A and B are mutually ejective by
Lemma 3.11(2). It shows that RR ⊕ RR is Goldie ADS by Lemma 3.6. On the other
hand, RR⊕RR is not ADS. Indeed, if RR⊕RR is ADS, then R must be self-injective,
a contradiction.

Example 3.2. Let R be a triangle matrix ring over a field K. Then RR is CS. Note
that RR is non-singular. Since RR is not a C3-module, RR is not ADS. It follows that
RR is not Goldie ADS by Corollary 3.7.

Example 3.3 ([14, Example 2.10]). Let K be a field and let R = K[x, y]/〈x2, xy, y2〉.
Assume that S is any simple injective R-module. Let M = R ⊕ S. Then M is not a
CS-module (since R is indecomposable and not uniform). On the other hand, R,S are
relatively injective, and any two decompositions of M are isomorphic (since R and
End(S) are local rings). Hence M is an ADS module.

Let us mention the following equivalent conditions for Goldie ADS modules.

Lemma 3.4. The following conditions are equivalent for a module M .

1. M is Goldie ADS.
2. For every decomposition M = S ⊕ T of M and every complement T ′ of S, there

exists a submodule D of M and X of M such that X ≤e T ′, X ≤e D and
M = S ⊕D.

Proof. (1) ⇒ (2). Assume that M is Goldie ADS and M has a decomposition M =
S ⊕ T . Let T ′ be a complement of S. Then there exists a submodule D of M such
that T ′βD and M = S ⊕D. Let X = T ′ ∩D. Hence X ≤e T

′, X ≤e D.
(2)⇒ (1) is obvious. �

It is well-known that in general the class of extending modules is not closed under
direct sums, and this behavior is also carried on by Goldie extending modules and
ADS-modules. Finding necessary and sufficient conditions for ensuring the closure of
such classes under direct sums has been one of the most important open problems in
the theory of extending modules and their generalizations. In the next parts of our
work, we shall deal with such a problem for Goldie ADS modules.
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In order to obtain when a direct sum of two Goldie ADS modules has the same
property, the following concept generalizing relative injectivity will be useful.

Lemma 3.5 ([3, Theorem 2.7]). Let M1 and M2 be modules such that M = M1 ⊕M2.
Then M1 is M2-ejective if and only if for every K ≤M such that K ∩M1 = 0, there
exists M3 ≤M such that M = M1 ⊕M3 and K ∩M3 ≤e K.

In [7, Lemma 3.1], it is shown that an R-module M is ADS if and only if for
each decomposition M = A⊕B, A and B are mutually injective.

Lemma 3.6. An R-module M is Goldie ADS if and only if for each decomposition
M = A⊕B, A and B are mutually ejective.

Proof. Suppose M = A⊕B is Goldie ADS. We will show that A is B-ejective. Let K
be a submodule of M such that K ∩ A = 0. So K is contained in a complement, say
C, of A. Then, by hypothesis, there exists D ≤ M such that CβD and M = A⊕D.
It is easy to see that K ∩D ≤e K. Thus, we have A is B-ejective by Lemma 3.5.

Conversely, suppose for each decomposition M = A⊕B, A and B are mutually
ejective. Let C be a complement of A. By Lemma 3.5, there exists and D ≤M such
that M = A⊕D and C∩D ≤e C. So, A⊕ (C∩D) ≤e M . It follows that C∩D ≤e D.
So we are done by Lemma 3.4. �

Let M1 and M2 be modules with Z(M1) = 0 and M = M1⊕M2. In [3, Corollary
2.8], it is shown that M1 is M2-injective if and only if M1 is M2-ejective. As the authors
pointed out in [3], if Z(M) = 0 and M is R-ejective, then M is injective (because of
the Baer criterion).

Corollary 3.7. A non-singular Goldie ADS module is ADS.

Proof. By Lemma 3.6 and [3, Corollary 2.8]. �

We collect, in the following theorem, some fundamental properties of Goldie ADS
modules.

Theorem 3.8. Assume that M is Goldie ADS. Then the following statements hold.

1. Every direct summand of M is Goldie ADS.
2. M satisfies (C3) condition on fully invariant summands.
3. For any decomposition M = A⊕B and any b ∈ B, A is bR-ejective.

Proof. (1) Assume that A is a direct summand of M , i.e., M = A ⊕ B for some
B ≤ M . Let A = A1 ⊕ A2 and K be a complement of A1 in A. Then we have
M = A1 ⊕ (A2 ⊕ B). First we show that K ⊕ B is a complement of A1 in M . Let
C ≤M such that K⊕B ≤ C and C∩A1 = 0. Then K ≤ C∩A and (C∩A)∩A1 = 0.
Since K is a complement of A1 in A, we can obtain that K = C ∩A. It follows that

K ⊕B = (C ∩A)⊕B = C ∩ (A⊕B) = C.

Since M is Goldie ADS, there exists a submodule D of M such that (K ⊕B)βD and
M = A1 ⊕D. Hence A = A1 ⊕ (D ∩A). It is easy to see that Kβ(D ∩A).

(2) Let A and B be fully invariant direct summands ofM such that A∩B = 0. We
shall show that A⊕B is a direct summand of M . Write M = A⊕A′ and M = B⊕B′
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for some submodules A′, B′ of M . By Lemma 3.6, A is A′-ejective. Hence there exists
M ′ ≤M such that M = M ′ ⊕A and B ∩M ′ ≤e B by Lemma 3.5. Inasmuch as B is
a fully invariant submodule of M , B = (M ′ ∩B)⊕ (A∩B) = M ′ ∩B. It follows that
B ≤M ′. Then M ′ = B ⊕ (M ′ ∩B′) and so M = A⊕B ⊕ (M ′ ∩B′).

(3) Suppose M has a decomposition M = A ⊕ B. By Lemma 3.6, the module
A is B-ejective. Let K = A⊕ bR and X be a submodule of K such that X ∩ A = 0.
Since A is B-ejective, there exists C ≤M such that M = A⊕C and X ∩C ≤e X by
Lemma 3.5. Note that K = A⊕ (C ∩K). It follows that (C ∩K)∩X = X ∩C ≤e X.
Now A is bR-ejective for any b ∈ B by Lemma 3.5. �

A module MR is called Goldie quasi continuous if M is Goldie extending and
satisfies (C3) (see [3]).

Proposition 3.9. Every Goldie quasi continuous module is Goldie ADS.

Proof. Assume that M has a decomposition M = S⊕T and T ′ is a complement of S
in M . Since M is Goldie extending, there exists a direct summand D of M such that
T ′βD. Since T ′ ∩ S = 0 we have D ∩ S = 0 by the equivalence relation β. We have
S ⊕ (T ′ ∩ D) ≤e M and obtain that S ⊕ D ≤e M . So, by (C3) property, we obtain
that M = S ⊕D. �

In [11], Kuratomi defined the GQC (generalized quasi continuous) modules by
using Goldie extending modules. M is said to be GQC if for every submodule X1

and X2 of M with X1 ∩ X2 = 0 there exists an essential submodules Yi ≤e Xi and
a decomposition M = A1 ⊕ A2 such that Yi is a submodule of Ai for i = 1, 2. Let
{Mi : i ∈ I} be a family of modules. The direct sum decomposition M = ⊕IMi is said
to be exchangeable if, for any direct summand X of M , there exists M i ≤Mi (i ∈ I)
such that M = X⊕ (⊕IM i). A module M is said to have the finite internal exchange
property (FIEF) if, any finite direct sum decomposition M = M1 ⊕M2 ⊕ · · · ⊕Mn is
exchangeable.

Corollary 3.10. The following statements are equivalent for a duo module M :

1. M is Goldie extending and Goldie ADS.
2. M is Goldie quasi continuous.
3. M is GQC with FIEP.

Proof. By Theorem 3.8, Proposition 3.9 and [11, Theorem 3.4]. �

We have the following direct sum decomposition theorem for Goldie extending
submodules.

Lemma 3.11 ([11, Proposition 2.1]). Let M,N , Mi and Ni be modules.

1. If N is M1-ejective and M2-ejective, then N is M1 ⊕M2-ejective.
2. Let M1 be a direct summand of M and N1 a direct summand of N . If M is
N -ejective, then M1 is N1-ejective.

3. If M1 and M2 are N -ejective modules then so is M1 ⊕M2.

The proof of the following proposition uses the similar argument as in [14].
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Proposition 3.12. Let M =
n⊕

i=1

Mi be direct sum of fully invariant submodules Mi’s .

Then M is Goldie ADS if and only if each Mi is Goldie ADS and Mi is Mj-ejective
for all i, j = 1, 2, . . . , n and i 6= j.

Proof. =⇒: By Theorem 3.8 (1), Mi’s are Goldie ADS. Again by Theorem 3.8 (2),
Mi ⊕Mj , which is a direct summand of M for i 6= j, is Goldie ADS. But by Lemma
3.6, Mi is Mj-ejective for i 6= j.

⇐=: Let M = A ⊕ B. We claim that A is B-ejective. Since each Mi is fully
invariant, we can obtain that Mi = (A∩Mi)⊕ (B∩Mi) for all i = 1, 2, . . . , n by [2]. It

follows that A =
n⊕

i=1

(A∩Mi) and B =
n⊕

i=1

(B∩Mi). Since Mi is Goldie ADS, (A∩Mi)

is (B ∩Mi)-ejective. Since Mi is Mj-ejective then (A ∩Mi) is (B ∩Mj)-ejective for
all i, j = 1, 2, . . . , n by Lemma 3.11(2). It follows that A ∩Mi is B-ejective for all
i = 1, 2, . . . , n by Lemma 3.11(1). Thus A is B-ejective by Lemma 3.11(3). �

E(−) denotes the injective hull for a module.

Theorem 3.13. The following conditions are equivalent for a module M :

1. M is Goldie ADS.
2. For every decomposition M = A⊕B, for all f ∈ Hom(E(B), E(A)), there exists
D ≤M such that M = A⊕D and DβX, where X = {b+f(b)| b ∈ B, f(b) ∈ A}.

Proof. (1) ⇒ (2) We show that X = {b + f(b)|b ∈ B, f(b) ∈ A} is a complement of
A in M . First, we note that that A ∩X = 0. Let L be a submodule of M such that
L ∩A = 0 and X ≤ L. Consider the the natural projections πA and πB of M onto A
and B, respectively.

Claim: πA(x) = fπB(x) for all x ∈ L. Assume that there exists x ∈ L such that (πA−
fπB)(x) 6= 0. Since A ≤e E(A), there exists r ∈ R such that 0 6= (πA−fπB)(xr) ∈ A.
But πA(xr)−fπB(xr) = xr− (πB(xr)+fπB(xr)) ∈ A∩L = 0, a contradiction. Thus
πA(x) = fπB(x) for all x ∈ L.

Now, let x ∈ L. Hence x = a+ b, where a ∈ A and b ∈ B. Then πA(x) = a. By
the claim, we can obtain πA(x) = a = fπB(x) for all x ∈ L. Therefore, x = a + b =
fπB(x) + b ∈ X. It follows that L = X. The rest is clear from the definition of Goldie
ADS.
(2)⇒ (1) Let M = A⊕B, and T be a complement of A in M .
Then T = {k+f(k)| k ∈ K} for some K ≤ B and f ∈ Hom(E(B), E(A)). In fact, let
πB : A⊕B → B be the canonical projection. There exists f : E(B)→ E(A) such that
fπB(t) = t−πB(t) for all t ∈ T . Thus T = {k+f(k)| k ∈ πB(T )}. By (2), there exists
D ≤ M such that M = A ⊕ D and DβX, where X = {b + f(b)| b ∈ B, f(b) ∈ A}.
Note that f(πB(T )) ≤ A and so D ∩ T ≤e T . Now we show that T ∩ D ≤e D. Let
d ∈ D, d 6= 0. Assume T ∩ dR = 0. If (T ⊕ dR) ∩ A 6= 0, write a = c + dr 6= 0 for
some a ∈ A, c ∈ T and r ∈ R. We have c 6= 0 and obtain that there exists r′ ∈ R
such that cr′ ∈ T ∩ D and cr′ 6= 0. Therefore ar′ = cr′ + drr′ ∈ A ∩ D = 0, which
implies cr′ + drr′ = 0. It follows that cr′ = −drr′ ∈ T ∩ dR = 0 hence cr′ = 0, a
contradiction. Thus (T ⊕ dR) ∩ A = 0 and then T = T ⊕ dR by the maximality of
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T . It follows that d = 0, again a contradiction. Thus we get T ∩ dR 6= 0. Hence there
exists y ∈ R such that dy ∈ T ∩D and dy 6= 0. So D ∩ T ≤e D. �

4. Goldie ADS rings

A ring R is called a right Goldie ADS ring if RR is a Goldie ADS module.
We start this section with the following ring extension.

Theorem 4.1. Let M be a S −R-bimodule. Assume that

T =

(
S M
0 R

)
is right Goldie ADS. Then

1. R is right Goldie ADS
2. MR is Goldie ADS.

Proof. (1) Let RR = A⊕B, I ≤ A and f : I → B an R-homomorphism. Let

Ā =

(
0 0
0 A

)
, B̄ =

(
0 0
0 B

)
and Ī =

(
0 0
0 I

)
.

It is easy to see that Ā⊕ B̄ is a direct summand of TT . We define θ : Ī → B̄ via

θ

((
0 0
0 r

))
=

(
0 0
0 f(r)

)
.

Then θ is a T -homomorphism. By the hypothesis, there exists a T -homomorphism
φ : Ā→ B̄ and J̄ ≤e Ī such that φ(j̄) = θ(j̄) for every j̄ ∈ J̄ , where

J̄ =

(
0 0
0 J

)
.

It is clear that φ is an R-homomorphism. Let ι : A→ Ā via

ι(a) =

(
0 0
0 a

)
and π : B̄ → B via

π

((
0 0
0 b

))
= b.

Then ι and π are R-homomorphisms. Since J̄ ≤e Ī then J ≤e I. Let say f̄ := πφι. So

f̄(j) = πφι(j) = πφ

((
0 0
0 j

))
= πθ

((
0 0
0 j

))
= π

((
0 0
0 f(j)

))
= f(j)

for every j ∈ J so we are done by Lemma 3.6.
(2) Assume that that MR = M1 ⊕ M2, N ≤ M1 and f : N → M2 is an R-
homomorphism. Let

M̄1 =

(
S M1

0 0

)
, M̄2 =

(
0 M2

0 R

)
and N̄ =

(
0 N
0 0

)
.
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It is easy to see that TT = M̄1 ⊕ M̄2. We define θ : N̄ → M̄2 via

θ

((
0 n
0 0

))
=

(
0 f(n)
0 0

)
.

Then θ is a T -homomorphism. By the hypothesis, there exists a T -homomorphism
φ : M̄1 → M̄2 and J̄ ≤e N̄ such that φ(j̄) = θ(j̄) for all j̄ ∈ J̄ . Then φ is an
R-homomorphism. Let ι : M1 → M̄1 via

ι(m) =

(
0 m
0 0

)
and π : M̄2 →M2 via

π

((
0 m
0 r

))
= m.

Then ι and π are R-homomorphisms. Since J̄ ≤e N̄ then J ≤e N . Say f̄ := πφι so
f̄(j) = f(j). �

We recall the following useful lemma proved in [5, Lemma 5].

Lemma 4.2. Let M be a right R-module, and let L be a submodule of M , where
R = ReR for some e2 = e ∈ R and S = eRe. Then:

1. L is essential in M if and only if Le is essential in (Me)S;
2. L is a complement in M if and only if Le is a complement in (Me)S;
3. L is a direct summand of M if and only if Le is a direct summand of (Me)S.

Proposition 4.3. Let M be a right R-module, where R = ReR for some e2 = e ∈ R
and S = eRe. Then:

1. (Me)S is a Goldie ADS module if and only if MR is a Goldie ADS module.
2. (Re)S is a Goldie ADS if and only if RR is Goldie ADS.

Proof. (1) Assume that (Me)S is a Goldie ADS module. Let MR = X ⊕ Y and Z
be a submodule of M with Z ∩ X = 0. Then Me = Xe ⊕ Y e and, by Lemma 4.2,
Ze ∩Xe = 0. Since (Me)S is a Goldie ADS module, there exists a submodule D of
Me such that Ze ∩ D is essential in Ze and Me = Xe ⊕ D. Hence MR = X ⊕ DR
and Z ∩ DR is essential in Z. They imply that X is Y -ejective by Lemma 3.5, and
hence MR is a Goldie ADS module by Lemma 3.6.

Assume that MR is a Goldie ADS module. Let Me = D ⊕ T and K be a
submodule of (Me)S with K ∩ D = 0. Then M = DR ⊕ TR and, by Lemma 4.2,
KR∩DR = 0. Since MR is a Goldie ADS module, there exists a submodule X of M
such that KR ∩X is essential in KR and M = DR ⊕X. Hence Me = (DR)e⊕XS
and (KR)e ∩ XeR ≤ XS. Now DRe = DeRe = D and KRe = KeRe = K. This
implies that Me = D ⊕XS and K ∩XS is essential in K. Thus D is T -ejective by
Lemma 3.5, and hence (Me)S is a Goldie ADS module by Lemma 3.6.
(2) It is a direct consequence of (1). �

Theorem 4.4. Mn(R) is Goldie ADS if and only if (⊕n
i=1Ri)R is Goldie ADS, where

each Ri = R.
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Proof. It is easy to obtain that Mn(R) = Mn(R)eMn(R), where e is the matrix unit
with 1 in the (1, 1)th position and zero elsewhere. The rest is follows by Proposition
4.3. �
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Existence and stability results for nonlocal initial
value problems for differential equations with
Hilfer fractional derivative

Mouffak Benchohra, Soufyane Bouriah and Juan J. Nieto

Abstract. In this paper, we establish sufficient conditions for the existence and
stability of solutions for a class of nonlocal initial value problems for differential
equations with Hilfer’s fractional derivative, The arguments are based upon the
Banach contraction principle. Two examples are included to show the applicabil-
ity of our results.
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1. Introduction

In our paper, we study the following nonlocal initial value problem

Dα,β
0+ y(t) = f(t, y(t), Dα,β

0+ y(t)), for every t ∈ (0, T ], T > 0, (1.1)

I1−γ0+ y(0+) =

m∑
i=1

λiy(τi), τi ∈ (0, T ], (1.2)

where 0 < α < 1, 0 ≤ β ≤ 1, γ = α+β−αβ, f : (0, T ]×R×R −→ R, τi, i = 1, 2, . . . ,m
are pre-fixed points satisfying 0 < τ1 ≤ · · · ≤ τm < T, λi are real numbers and

m∑
i=1

λiτ
γ−1
i 6= Γ(γ),

Dα,β
0+ denotes the generalized Riemann-Liouville derivative operator introduced by

Hilfer in [7].
In the recent years, fractional calculus has gained much interest mainly thanks

to the increasing presence of research works in the applied sciences considering models
based on fractional operators see for example [1, 2, 6, 9, 12, 16, 17, 21]. Beside that, the
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mathematical study of fractional calculus has proceeded, leading to intersections with
other mathematical fields such as probability and the study of stochastic processes.
In the literature, several different definitions of fractional integrals and derivatives
are present. Some of them such as the Riemann-Liouville integral, the Caputo and
the Riemann-Liouville derivatives are thoroughly studied and actually used in applied
models. Hilfer has introduced a generalized form of the Riemann-Liouville fractional

derivative [7]. In short, Hilfer fractional derivative Dα,β
0+ is an interpolation between

the Riemann-Liouville and Caputo fractional derivatives, see [10, 13, 17, 19]. It has
many applications in fractional evolutions equations [8], and physical problems [15].
Also in the theoretical simulation of dielectric relaxation in glass forming materials.
In [4], Furati et al. considered an initial value problem for a class of nonlinear frac-
tional differential equations involving Hilfer fractional derivative. In [3], the authors
consider the Ulam stability for nonlinear implicit fractional differential equations with
Hadamard derivative. In [18], the solution of a fractional diffusion equation with a
Hilfer time fractional derivative was obtained in terms of Mittag-Leffler functions
and Fox’s H-function. To the best of our knowledge, there has no results about the
stability of differential equations with Hilfer fractional derivative.

Motivated by the works [3, 19], we prove in this paper the existence, uniqueness
and stability for the non-linear nonlocal problem (1.1)-(1.2) in a weighted space of
continuous functions. The present work is organized as follows. In Section 2, some
notations are introduced and we recall some concepts of preliminaries about fractional
calculus and auxiliary results. The proof for the main results is presented in Section
3 by applying the Banach fixed point theorem. In Section 4, the Ulam stability of our
problem will be study. Finally, in the last section, we give two examples to illustrate
the applicability of our main results.

2. Preliminaries

In this section, we recall some basic definitions and results concerning the frac-
tional calculus, that we will use in the next sections .

Let J := [0, T ]. By C(J), AC(J) and Cn(J) we denote the spaces of contin-
uous, absolutely continuous and n times continuously differentiable functions on J ,
respectively. We denote by Lp(J), p ≥ 0, the space of Lebesgue integrable functions
on J .

We consider the weighted spaces of continuous functions

Cγ(J) = {y : (0, T ]→ R : tγy(t) ∈ C(J)}, 0 ≤ γ < 1,

Cnγ (J) = {y ∈ Cn−1(J) : y(n) ∈ Cγ(J)}, n ∈ N,

C0
γ(J) = Cγ(J),

with the norms

‖y‖Cγ = ‖tγy(t)‖∞ = sup
t∈J
|tγy(t)|
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and

‖y‖Cnγ =

n−1∑
k=0

‖y(k)‖∞ + ‖y(n)‖Cγ .

These spaces satisfy the following properties.

• C0(J) = C(J).
• Cnγ (J) ⊂ ACn(J).
• Cγ1(J) ⊂ Cγ2(J), 0 ≤ γ1 < γ2 < 1.

Definition 2.1. ([10, 13]). The fractional (arbitrary) order integral of the function
h ∈ L1([0, T ],R+) of order α ∈ R+ called the left-sided Riemann-Liouville integral of
the function h is defined by

(Iα0+h)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0.

The following lemmas provide some mapping properties of Iα0+ . The proofs can be
found in [11].

Lemma 2.2. For α > 0, Iα0+ maps C(J) into C(J).

Lemma 2.3. Let α > 0 and 0 ≤ γ < 1. Then, Iα0+ is bounded from Cγ(J) into Cγ(J)

Lemma 2.4. Let α > 0 and 0 ≤ γ < 1. If γ ≤ α, then Iα0+ is bounded from Cγ(J) into
C(J).

Lemma 2.5. [4] Let 0 ≤ γ < 1 and y ∈ Cγ(J). Then

Iα0+y(0) := lim
t→0+

Iα0+y(t) = 0, 0 ≤ γ < α.

Definition 2.6. [5] The Riemann-Liouville left-sided fractional derivative Dα
0+ of order

α is defined by

(Dα
0+y)(t) = D(I1−α0+ y)(t),

(
t > 0, 0 < α < 1, D =

d

dt

)
,

that is

(Dα
0+y)(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)αy(s)ds,

when α = 1 we have (Dα
0+y) = Dy. In particular, when α = 0, (D0

0+y) = y.

Lemma 2.7. [4] For t > 0, we have

[Iα0+t
β−1](t) =

Γ(β)

Γ(α+ β)
tβ+α−1, α ≥ 0, β > 0.

[Dα
0+t

α−1](t) = 0, 0 < α < 1.

The following lemmas follows by direct calculations using Dirichlet formula
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Lemma 2.8. Let α > 0, β > 0 and y ∈ L1(J). Then

Iα0+I
β
0+y(t) = Iα+β0+ y(t), a.e. t ∈ J.

In particular, if y ∈ Cγ(J) or y ∈ C(J), then equality holds at every t ∈ (0, T ] or
t ∈ [0, T ], respectively.

Lemma 2.9. Let α > 0, 0 ≤ γ < 1 and y ∈ Cγ(J). Then

Dα
0+I

α
0+y(t) = y(t), for all t ∈ (0, T ].

Lemma 2.10. [17] Let 0 < α < 1, 0 ≤ γ < 1. If y ∈ Cγ(J) and I1−α0+ y ∈ C1
γ(J), then

Iα0+D
α
0+y(t) = y(t)−

I1−α0+ y(0)

Γ(α)
tα−1, for all t ∈ (0, T ].

Let α ∈ (0, 1), β ∈ [0, 1] and y ∈ L1(J,Rn). We say that the function y possesses
the left-sided generalized Riemann-Liouville derivative (so called Hilfer derivative)

Dα,β
0+ of order α and type β, if the function I

(1−α)(1−β)
0+ y is absolutely continuous on

J and then

(Dα,β
0+ y)(t) :=

(
I
β(1−α)
0+ DI

(1−α)(1−β)
0+ y

)
(t), a.e. t ∈ J. (2.1)

The operator Dα,β
0+ y, given by (2.1), was introduced by Hilfer in [7].

Remark 2.11. [4]

1. The Hilfer derivative Dα,β
0+ y can be written as

(Dα,β
0+ y)(t) :=

(
I
β(1−α)
0+ DI

(1−γ)
0+ y

)
(t) = (I

β(1−α)
0+ Dγ

0+y)(t) = (Iγ−α0+ Dγ
0+y)(t)

for a.e. t ∈ J, where γ = α+ β − αβ.
2. The Dα,β

0+ y derivative is considered as an interpolator between the Riemann-
Liouville and Caputo derivative since

Dα,β
0+ y =

{
Dα

0+y, β = 0
CDα

0+y, β = 1.
(2.2)

3. The parameter γ satisfies

0 < γ ≤ 1, γ ≥ α, γ > β, 1− γ < 1− β(1− α).

We introduce the spaces

Cα,β1−γ(J) = {y ∈ C1−γ(J), Dα,β
0+ y ∈ C1−γ(J)},

and

Cγ1−γ(J) = {y ∈ C1−γ(J), Dγ
0+y ∈ C1−γ(J)}.

Since Dα,β
0+ y = I

β(1−α)
0+ Dγ

0+y, it follows from Lemma 2.3 that

Cγ1−γ(J) ⊂ Cα,β1−γ(J) ⊂ C1−γ(J)

The following lemma follows directly from semigroup property in Lemma 2.8.
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Lemma 2.12. Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α+ β − αβ. If y ∈ Cγ1−γ(J), then

Iγ0+D
γ
0+y = Iα0+D

α,β
0+ y,

and

Dγ
0+I

α
0+y = D

β(1−α)
0+ y.

For the proof of the following lemmas, we can see [4].

Lemma 2.13. Let y ∈ L1(J). If D
β(1−α)
0+ y exists and in L1(J) then

Dα,β
0+ Iα0+y = I

β(1−α)
0+ D

β(1−α)
0+ y.

Lemma 2.14. Let 0 < α < 1, 0 ≤ β ≤ 1, and γ = α + β − αβ. If y ∈ C1−γ(J) and

I
1−β(1−α)
0+ y ∈ C1

1−γ(J) then Dα,β
0+ Iα0+y exists in (0, T ] and

Dα,β
0+ Iα0+y(t) = y(t), t ∈ (0, T ].

Lemma 2.15. ([20]) Let υ : [0, T ] −→ [0,+∞) be a real function and ω(·) is a non-
negative, locally integrable function on [0, T ]. Assume that there are constants a > 0
and 0 < α ≤ 1 such that

υ(t) ≤ ω(t) + a

∫ t

0

(t− s)−αυ(s)ds,

then, there exists a constant K = K(α) such that

υ(t) ≤ ω(t) +Ka

∫ t

0

(t− s)−αω(s)ds, for every t ∈ [0, T ].

For the implicit fractional-order differential equation (1.1), we adopt the definition
in Rus ([14]) for Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-
Rassias stability and generalized Ulam-Hyers-Rassias stability.

Definition 2.16. The equation (1.1) is Ulam-Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and for each solution z ∈ Cγ1−γ(J), of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε, t ∈ (0, T ],

there exists a solution y ∈ Cγ1−γ(J) of equation (1.1) with

|z(t)− y(t)| ≤ cf ε, t ∈ (0, T ].

Definition 2.17. The equation (1.1) is generalized Ulam-Hyers stable if there exists
ψf ∈ C(R+,R+), ψf (0) = 0, such that for each solution z ∈ Cγ1−γ(J) of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε, t ∈ (0, T ],

there exists a solution y ∈ Cγ1−γ(J) of the equation (1.1) with

|z(t)− y(t)| ≤ ψf (ε), t ∈ (0, T ].
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Definition 2.18. The equation (1.1) is Ulam-Hyers-Rassias stable with respect to ϕ ∈
C(J,R+) if there exists a real number cf > 0 such that for each ε > 0 and for each
solution z ∈ Cγ1−γ(J) of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ εϕ(t), t ∈ (0, T ],

there exists a solution y ∈ Cγ1−γ(J) of equation (1.1) with

|z(t)− y(t)| ≤ cf εϕ(t), t ∈ (0, T ].

Definition 2.19. The equation (1.1) is generalized Ulam-Hyers-Rassias stable with
respect to ϕ ∈ C(J,R+) if there exists a real number cf,ϕ > 0 such that for each
solution z ∈ Cγ1−γ(J) of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ϕ(t), t ∈ (0, T ],

there exists a solution y ∈ Cγ1−γ(J) of equation (1.1) with

|z(t)− y(t)| ≤ cf,ϕϕ(t), t ∈ (0, T ].

Remark 2.20. A function z ∈ Cγ1−γ(J) is a solution of the inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε, t ∈ (0, T ],

if and only if there exists a function φ ∈ Cγ1−γ(J) (which depends on solution y) such
that

i). |φ(t)| ≤ ε, t ∈ (0, T ].

ii). Dα,β
0+ z(t) = f(t, z(t), Dα,β

0+ z(t)) + φ(t), t ∈ (0, T ].

Remark 2.21. Clearly,

i). Definition (2.6)⇒ Definition (2.7)
ii). Definition (2.8)⇒ Definition (2.9).

Remark 2.22. A solution of the implicit differential inequality

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε, t ∈ (0, T ],

with fractional order is called an fractional ε− solution of the implicit fractional
differential equation (1.1).

3. Existence of solutions

Let γ = α+ β − αβ where 0 < α < 1 and 0 ≤ β ≤ 1, let f : (0, T ]× R× R→ R
be a function such that f(·, y(·), u(·)) ∈ C1−γ(J) for any y, u ∈ C1−γ(J) and let the
operator N : C1−γ(J)→ C1−γ(J) defined by

Ny(t) = w(t) +
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ (0, T ], (3.1)

where

w(t) =
tγ−1

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds
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and g : (0, T ]→ R be a function satisfies the functional equation

g(t) = f(t, y(t), g(t)).

Clearly, w ∈ C1−γ(J) and g ∈ C1−γ(J). Also, by Lemma 2.3, Ny ∈ C1−γ(J).

Theorem 3.1. If y ∈ Cγ1−γ(J), then y satisfies the problem (1.1)− (1.2) if and only if
y is the fixed point of operator N .

Proof. First, we prove the necessity. Let y ∈ Cγ1−γ(J) be a solution of problem (1.1)−
(1.2). We want to prove that y is a fixed point of N. By the definition of Cγ1−γ(J),
Lemma 2.4 and Definition 2.6, we have

I1−γ0+ y ∈ C(J) and Dγ
0+y = D(I1−γ0+ y) ∈ C1−γ(J).

Thus, we have
I1−γ0+ y ∈ C1

1−γ(J).

Now, applying Lemma 2.10 to obtain

Iγ0+D
γ
0+y(t) = y(t)−

I1−γ0+ y(0+)

Γ(γ)
tγ−1, t ∈ (0, T ]. (3.2)

Since Dγ
0+y ∈ C1−γ(J), Lemma 2.12 yields(

Iγ0+D
γ
0+y
)

(t) =
(
Iα0+D

α,β
0+ y

)
(t) = Iα0+g(t), t ∈ (0, T ] (3.3)

From (3.2) and (3.3), we obtain

y(t) =
I1−γ0+ y(0+)

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ (0, T ]. (3.4)

Next, we substitute t = τi into the above equation

y(τi) =
I1−γ0+ y(0+)

Γ(γ)
τγ−1i +

1

Γ(α)

∫ τi

0

(τi − s)α−1g(s)ds, t ∈ (0, T ], (3.5)

by multiplying λi to both sides of (3.5), we can write

λiy(τi) =
I1−γ0+ y(0+)

Γ(γ)
λiτ

γ−1
i +

λi
Γ(α)

∫ τi

0

(τi − s)α−1g(s)ds.

Thus, we have

I1−γ0+ y(0+) =

m∑
i=1

λiy(τi)

=
I1−γ0+ y(0+)

Γ(γ)

m∑
i=1

λiτ
γ−1
i +

1

Γ(α)

m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds,

which implies

I1−γ0+ y(0+) =
Γ(γ)

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds. (3.6)
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Submitting (3.6) to (3.4), we get for each t ∈ (0, T ]

y(t) = w(t) +
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, (3.7)

which is the fixed point of N . Now, we prove the sufficiency. Let y ∈ Cγ1−γ(J) the

fixed point of operator N , which can be written as (3.7). Applying the operator Dγ
0+

to both sides of (3.7), it follows from Lemmas 2.12 and 2.7 that

Dγ
0+y = D

β(1−α)
0+ g. (3.8)

From (3.8), Definition 2.6 and Dγ
0+y ∈ C1−γ(J), we have

DI
1−β(1−α)
0+ g = D

β(1−α)
0+ g ∈ C1−γ(J). (3.9)

Also, since g ∈ C1−γ(J), by Lemma 2.4, we have

I
1−β(1−α)
0+ g ∈ C(J). (3.10)

It follows from (3.9), (3.10) that

I
1−β(1−α)
0+ g ∈ C1

1−γ(J).

Thus, g and I
1−β(1−α)
0+ g satisfy the conditions of Lemma 2.10.

Now, applying I
β(1−α)
0+ to both sides of (3.8) and using Remark 2.11 and Lemma 2.10,

we can write

Dα,β
0+ y(t) = g(t)−

[
I
1−β(1−α)
0+ g

]
(0)

Γ(β(1− α))
tβ(1−α)−1. (3.11)

Since 1− γ < 1− β(1− α), Lemma 2.5 implies that[
I
1−β(1−α)
0+ g

]
(0) = 0.

Hence, the relation (3.11) reduces to

Dα,β
0+ y(t) = g(t), t ∈ (0, T ].

Now, we show that the initial condition (1.2) also holds.

We apply I1−γ0+ to both sides of (3.7), we have

I1−γ0+ y(t) =
I1−γ0+ tγ−1

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds+ I1−γ0+ Iα0+g(t),

using the Lemmas 2.10 and 2.11,

I1−γ0+ y(t) =
Γ(γ)

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds+ I
1−β(1−α)
0+ g(t).
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Since 1− γ < 1− β(1− α), Lemma 2.5 can be used when taking the limit as t→ 0,

I1−γ0+ y(0) =
Γ(γ)

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds. (3.12)

Substituting t = τi into (3.7), we have

y(τi) =
τγ−1i

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds

+
1

Γ(α)

∫ τi

0

(τi − s)α−1g(s)ds.

Then, we derive
m∑
i=1

λiy(τi) =
1

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds

m∑
i=1

λiτ
γ−1
i

+
1

Γ(α)

m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds

=
1

Γ(α)

m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds


m∑
i=1

λiτ
γ−1
i

Γ(γ)−
m∑
i=1

λiτ
γ−1
i

+ 1

 .

Thus
m∑
i=1

λiy(τi) =
Γ(γ)

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1g(s)ds. (3.13)

It follows (3.12) and (3.13) that

I1−γ0+ y(0) =

m∑
i=1

λiy(τi). �

Theorem 3.2. Let the hypotheses

(H1). The function f : (0, T ]× R× R→ R such that

f(·, u(·), v(·)) ∈ Cβ(1−α)1−γ for any u, v ∈ C1−γ(J)

(H2). There exist constants K > 0 and 0 < K < 1 such that

|f(t, u, v)− f(t, u, v)| ≤ K|u− u|+K|v − v| for any u, v, u, v ∈ R and t ∈ (0, T ].
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If

KΓ(γ)

(1−K)Γ(α+ γ)


m∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ Tα

 < 1, (3.14)

then, there exists a unique solution for the Cauchy-type problem (1.1) − (1.2) in the
space Cγ1−γ(J).

Proof. The proof will be given in two steps.
Step 1. We show that the operator N defined in (3.1) has a unique fixed point y∗ in
C1−γ(J). Let y, u ∈ C1−γ(J) and t ∈ (0, T ], then, we have

|Ny(t)−Nu(t)| ≤ tγ−1

Γ(α)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λi

∫ τi

0

(τi − s)α−1|g(s)− h(s)|ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|g(s)− h(s)|ds,

where g, h ∈ C1−γ(J) such that

g(t) = f(t, y(t), g(t)).

h(t) = f(t, u(t), h(t)).

By (H2), we have

|g(t)− h(t)| = |f(t, y(t), g(t))− f(t, u(t), h(t))|
≤ K|y(t)− u(t)|+K|g(t)− h(t)|.

Then

|g(t)− h(t)| ≤ K

1−K
|y(t)− u(t)|.

Therefore, for each t ∈ (0, T ]

|Ny(t)−Nu(t)|≤ Ktγ−1

(1−K)Γ(α)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λi

∫ τi

0

(τi−s)α−1|y(s)−u(s)|ds

+
K

(1−K)Γ(α)

∫ t

0

(t− s)α−1|y(s)− u(s)|ds

=
Ktγ−1

(1−K)Γ(α)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λi

∫ τi

0

(τi − s)α−1sγ−1|s1−γ [y(s)− u(s)] |ds

+
K

(1−K)Γ(α)

∫ t

0

(t− s)α−1sγ−1|s1−γ [y(s)− u(s)] |ds
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≤
Ktγ−1‖y − u‖C1−γ

(1−K)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λiI
α
0+(τγ−1i ) +

K‖y − u‖C1−γ

1−K
Iα0+(tγ−1).

By Lemma 2.7, we have

|Ny(t)−Nu(t)| ≤
KΓ(γ)tγ−1‖y − u‖C1−γ

Γ(α+ γ)(1−K)

∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
m∑
i=1

λiτ
α+γ−1
i

+
KΓ(γ)tα+γ−1

(1−K)Γ(α+ γ)
‖y − u‖C1−γ ,

hence

|t1−γ(Ny(t)−Nu(t))| ≤ KΓ(γ)

(1−K)Γ(α+ γ)


m∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ tα

 ‖y − u‖C1−γ

≤ KΓ(γ)

(1−K)Γ(α+ γ)


m∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ Tα

 ‖y − u‖C1−γ ,

which implies that

‖Ny −Nu‖C1−γ ≤
KΓ(γ)

(1−K)Γ(α+ γ)


m∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
m∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ Tα

 ‖y − u‖C1−γ .

By (3.14), the operator N is a contraction. Hence, by Banach’s contraction principle,
N has a unique fixed point y∗ ∈ C1−γ(J).

Step 2. We show that such a fixed point y∗ ∈ C1−γ(J) is actually in Cγ1−γ(J).

Since y∗ is the unique fixed point of operator N in C1−γ(J), then, for each t ∈ (0, T ],
we have

y∗(t) = w(t) + Iα0+g(t)

=
tγ−1

Γ(α)

(
Γ(γ)−

m∑
i=1

λiτ
γ−1
i

) m∑
i=1

λi

∫ τi

0

(τi − s)α−1f(s, y∗(s), g(s))ds

+ Iα0+f(t, y∗(t), g(t)).
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Applying Dγ
0+ to both sides and by Lemma 2.7, we have

Dγ
0+y
∗(t) = Dγ

0+

[
Iα0+f(t, y∗(t), g(t))

]
= Dγ−α

0+ f(t, y∗(t), g(t))

= D
β(1−α)
0+ f(t, y∗(t), g(t)).

Since γ ≥ α, by (H1), the right hand side is in C1−γ(J) and thus Dγ
0+y
∗ ∈ C1−γ(J)

which implies that y∗ ∈ Cγ1−γ(J). As a consequence of Step 1 and 2 together with

Theorem 3.1, we can conclude that the problem (1.1)-(1.2) has a unique solution in
Cγ1−γ(J). �

4. Ulam-Hyers-Rassias stability

Theorem 4.1. Assume that (H1), (H2) and (3.14) are satisfied, then the problem (1.1)-
(1.2) is Ulam-Hyers stable.

Proof. Let ε > 0 and let z ∈ Cγ1−γ(J) be a function which satisfies the inequality:

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ ε for any t ∈ (0, T ] (4.1)

and let y ∈ Cγ1−γ(J) be the unique solution of the following Cauchy problem

Dα,β
0+ y(t) = f(t, y(t), Dα,β

0+ y(t)), for every t ∈ (0, T ], T > 0,

I1−γ0+ y(0+) = I1−γ0+ z(0+) =

m∑
i=1

λiy(τi).

Using Theorem 3.1, we obtain

y(t) =
I1−γ0+ y(0+)

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ (0, T ],

where g : (0, T ]→ R be a function satisfies the functional equation

g(t) = f(t, y(t), g(t)).

Now, applying Iα0+ to both sides of the inequality (4.1), we obtain∣∣∣∣Iα0+Dα,β
0+ z(t)− 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣ ≤ εtα

Γ(α+ 1)
≤ εTα

Γ(α+ 1)
, (4.2)

where h : (0, T ]→ R be a function satisfies the functional equation

h(t) = f(t, z(t), h(t)).

By the definition of Cγ1−γ(J), Lemma 2.4 and Definition 2.6, we have

I1−γ0+ z ∈ C(J) and Dγ
0+z = D(I1−γ0+ z) ∈ C1−γ(J).

Thus, we have

I1−γ0+ z ∈ C1
1−γ(J).
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Now, applying Lemma 2.10 to obtain

Iγ0+D
γ
0+z(t) = z(t)−

I1−γ0+ z(0+)

Γ(γ)
tγ−1, t ∈ (0, T ]. (4.3)

Since Dγ
0+z ∈ C1−γ(J), Lemma 2.12 yields(

Iγ0+D
γ
0+z
)

(t) =
(
Iα0+D

α,β
0+ z

)
(t), t ∈ (0, T ]. (4.4)

From (4.3) and (4.4), we get(
Iα0+D

α,β
0+ z

)
(t) = z(t)−

I1−γ0+ z(0+)

Γ(γ)
tγ−1, t ∈ (0, T ] (4.5)

By replacing (4.5) in (4.2), we have∣∣∣∣∣z(t)− I1−γ0+ z(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣∣ ≤ εTα

Γ(α+ 1)
.

We have for any t ∈ (0, T ]

|z(t)− y(t)| =

∣∣∣∣∣z(t)− I1−γ0+ y(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1(h(s)− g(s))ds

∣∣∣∣
≤

∣∣∣∣∣z(t)− I1−γ0+ z(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣∣
+

1

Γ(α)

∫ t

0

(t− s)α−1|h(s)− g(s)|ds.

Thus

|z(t)− y(t)| ≤ εTα

Γ(α+ 1)
+

1

Γ(α)

∫ t

0

(t− s)α−1|h(s)− g(s)|ds, t ∈ (0, T ]. (4.6)

By (H2), we have for each t ∈ (0, T ]

|h(t)− g(t)| = |f(t, z(t), h(t))− f(t, y(t), g(t))|
≤ K|z(t)− y(t)|+K|h(t)− g(t)|.

Then

|h(t)− g(t)| ≤ K

1−K
|z(t)− y(t)|. (4.7)

Using (4.6) and (4.7), we obtain

|z(t)− y(t)| ≤ εTα

Γ(α+ 1)
+

K

(1−K)Γ(α)

∫ t

0

(t− s)α−1|z(s)− y(s)|ds, t ∈ (0, T ].

By Lemma 2.15, we have

|z(t)− y(t)| ≤ εTα

Γ(α+ 1)

[
1 +

δKTα

(1−K)Γ(α+ 1)

]
:= cε
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where δ = δ(α) a constant, which completes the proof of the theorem. Moreover, if
we set ψ(ε) = cε;ψ(0) = 0, then the problem (1.1)-(1.2) is generalized Ulam-Hyers
stable. �

Theorem 4.2. Assume that (H1), (H2), (3.14) and
(H3) there exists an increasing function ϕ ∈ C(J,R+) and there exists λϕ > 0 such
that for any t ∈ (0, T ]

Iα0+ϕ(t) ≤ λϕϕ(t)

are satisfied, then, the problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable.

Proof. Let z ∈ Cγ1−γ(J) be a function which satisfies the inequality:

|Dα,β
0+ z(t)− f(t, z(t), Dα,β

0+ z(t))| ≤ εϕ(t) for any t ∈ (0, T ] , ε > 0 (4.8)

and let y ∈ Cγ1−γ(J) be the unique solution of the following Cauchy problem

Dα,β
0+ y(t) = f(t, y(t), Dα,β

0+ y(t)), for every t ∈ (0, T ], T > 0,

I1−γ0+ y(0+) = I1−γ0+ z(0+) =

m∑
i=1

λiy(τi).

Using Theorem 3.1, we obtain

y(t) =
I1−γ0+ y(0+)

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ (0, T ],

where g : (0, T ]→ R be a function satisfies the functional equation

g(t) = f(t, y(t), g(t)).

Now, applying Iα0+ to both sides of the inequality (4.8), we obtain∣∣∣∣Iα0+Dα,β
0+ z(t)− 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣ ≤ ε

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds,

where h : (0, T ]→ R be a function satisfies the functional equation

h(t) = f(t, z(t), h(t)).

Using (H3), we have for each t ∈ (0, T ]∣∣∣∣Iα0+Dα,β
0+ z(t)− 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣ ≤ ελϕϕ(t).

From the proof of Theorem 4.1, we obtain∣∣∣∣∣z(t)− I1−γ0+ z(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣∣ ≤ ελϕϕ(t).
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We have for any t ∈ (0, T ]

|z(t)− y(t)| =

∣∣∣∣∣z(t)− I1−γ0+ y(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1 [h(s)− g(s)] ds

∣∣∣∣
≤

∣∣∣∣∣z(t)− I1−γ0+ z(0+)

Γ(γ)
tγ−1 − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

∣∣∣∣∣
+

1

Γ(α)

∫ t

0

(t− s)α−1|h(s)− g(s)|ds.

Thus

|z(t)− y(t)| ≤ ελϕϕ(t) +
1

Γ(α)

∫ t

0

(t− s)α−1|h(s)− g(s)|ds, t ∈ (0, T ]. (4.9)

By (H2), we have for each t ∈ (0, T ]

|h(t)− g(t)| = |f(t, z(t), h(t))− f(t, y(t), g(t))|
≤ K|z(t)− y(t)|+K|h(t)− g(t)|,

then

|h(t)− g(t)| ≤ K

1−K
|z(t)− y(t)|. (4.10)

Using (4.9) and (4.10), we have

|z(t)− y(t)| ≤ ελϕϕ(t) +
K

(1−K)Γ(α)

∫ t

0

(t− s)α−1|z(s)− y(s)|ds, t ∈ (0, T ].

By Lemma 2.15, we obtain

|z(t)− y(t)| ≤ ελϕϕ(t) +
δ1εKλϕ

(1−K)Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds,

where δ1 = δ1(α) is constant, and by (H2), we have

|z(t)− y(t)| ≤ ελϕϕ(t) +
δ1εKλ

2
ϕϕ(t)

1−K
=

(
1 +

δ1Kλϕ

1−K

)
ελϕϕ(t).

Then, for any t ∈ (0, T ]

|z(t)− y(t)| ≤
[(

1 +
δ1Kλϕ

1−K

)
λϕ

]
εϕ(t) = cεϕ(t),

which completes the proof of Theorem 4.2. �
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5. Examples

Example 5.1. Consider the following problem of non-linear implicit fractional differ-
ential equations

D
1
2 ,0

0+ y(t) =
1

10e−t+2
(

1 + |y(t)|+
∣∣∣D 1

2 ,0

0+ y(t)
∣∣∣) +

1√
t

for each t ∈ (0, 1] (5.1)

I
1
2

0+y(0+) = 3y

(
1

3

)
+ 2y

(
1

2

)
. (5.2)

Set

f(t, u, v) =
1

10e−t+2(1 + |u|+ |v|)
+

1√
t
, t ∈ (0, 1], u, v ∈ R.

We have

C
β(1−α)
1−γ ([0, 1]) = C0

1
2
([0, 1]) =

{
h : (0, 1]→ R : t

1
2h ∈ C([0, 1])

}
,

with γ = α =
1

2
and β = 0. Clearly, the function f ∈ C 1

2
([0, 1]).

Hence condition (H1) is satisfied.
For each u, ū, v, v̄ ∈ R and t ∈ (0, 1], we have

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

10e
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = K =
1

10e
.

The condition

KΓ(γ)

(1−K)Γ(α+ γ)


2∑
i=1

λiτ
α+γ−1
i∣∣∣∣∣Γ(γ)−
2∑
i=1

λiτ
γ−1
i

∣∣∣∣∣
+ Tα

 ≈ 0.122 < 1,

is satisfied with λ1 = 3, λ2 = 2, τ1 =
1

3
, τ2 =

1

2
and T = 1. It follows from Theorem 3.2

that the problem (5.1)–(5.2) has a unique solution in the space C
1
2
1
2

([0, 1]). Moreover,

Theorem 4.1, implies that the problem (5.1)–(5.2) is Ulam-Hyers stable.

Example 5.2. Consider the following initial value problem

D
1
2 ,0

0+ y(t) =
1

9 + e−t

[
|y(t)|

1 + |y(t)|
−
|D

1
2 ,0

0+ y(t)|

1 + |D
1
2 ,0

0+ y(t)|

]
+
t+ 1√
t
, t ∈ (0, 1] (5.3)

I
1
2

0+y(0+) = 2y

(
1

2

)
. (5.4)

Set

f(t, u, v) =
1

9 + e−t

[
u

1 + u
− v

1 + v

]
+
t+ 1√
t
, t ∈ (0, 1], u, v ∈ [0,+∞).
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We have

C
β(1−α)
1−γ ([0, 1]) = C0

1
2
([0, 1]) =

{
h : (0, 1]→ R : t

1
2h ∈ C([0, 1])

}
,

with γ = α =
1

2
and β = 0. Clearly, the function f ∈ C 1

2
([0, 1]).

Hence condition (H1) is satisfied.
For each u, ū, v, v̄ ∈ R and t ∈ (0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

9 + e−t
(|u− ū|+ |v − v̄|)

≤ 1

9 + e−1
(|u− ū|+ |v − v̄|) .

Hence condition (H2) is satisfied with K = K =
1

9 + e−1
.

The condition

KΓ(γ)

(1−K)Γ(α+ γ)

 λ1τ
α+γ−1
1∣∣∣Γ(γ)− λ1τγ−11

∣∣∣ + Tα

 ≈ 0.6077 < 1,

is satisfied with λ1 = 2, τ1 =
1

2
and T = 1. It follows from Theorem 3.2 that the

problem (5.3)-(5.4) has a unique solution in the space C
1
2
1
2

([0, 1]), and by Theorem

4.1, the problem (5.3)-(5.4) is Ulam-Hyers stable.
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Ostrowski-type fractional integral inequalities
for mappings whose derivatives are h-convex
via Katugampola fractional integrals
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Abstract. In this paper we generalize some Riemann-Liouville fractional integral
inequalities of Ostrowski-type for h-convex functions via Katugampola fractional
integrals, generalizations of the Riemann-Liouville and the Hadamard fractional
integrals. Also we deduce some known results by using p-functions, convex func-
tions and s-convex functions.
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1. Introduction

The following inequality is known as Ostrowski inequality [17] (see also, [16,
page 468]) which gives an upper bound for approximation of the integral average by
the value f(x) at a point x ∈ [a, b]. It is proved by Ostrowski in 1938.

Theorem 1.1. Let f : I → R, where I is an interval in R, be a differentiable mapping
in I◦, the interior of I and a, b ∈ I◦, a < b. If

∣∣f ′(t)∣∣ ≤ M for all t ∈ [a, b], then we
have ∣∣∣∣f(x)− 1

(b− a)

∫ b

a

f(t)dt

∣∣∣∣ ≤
[

1

4
+

(x− a+b
2 )2

(b− a)2

]
(b− a)M,

where x ∈ [a, b].

Ostrowski and Ostrowski-type inequalities have great importance in numerical
analysis as they provide the bounds of different quadrature rules [1]. Over the years
researchers are working to obtain Ostrowski-type inequalities for different kinds of
functions. Recently Ostrowski-type inequalities via Riemann-Liouville fractional in-
tegrals are in focus (see [3, 4, 5, 6, 14, 15] and references therein).
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Definition 1.2. A function f is called convex function on the interval [a, b] if for any
two points x, y ∈ [a, b] and any t, where 0 ≤ t ≤ 1,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Definition 1.3. [2] A non-negative function f : I → R is said to be p-function, if for
any two points x, y ∈ I and t ∈ [0, 1],

f (tx+ (1− t)y) ≤ f(x) + f(y).

Definition 1.4. [7] A function f : I → R is said to be Godunova-Levin function, if for
any two points x, y ∈ I and t ∈ (0, 1),

f (tx+ (1− t)y) ≤ f(x)

t
+
f(y)

1− t
.

s-convex functions in the second sense have been introduced by Hudzik and Ma-
ligranda in [10] as follows.

Definition 1.5. [10] A function f : [0,∞)→ R is called s−convex in the second sense
on the interval [0,∞) if for any two points x, y ∈ [0,∞) and any t where 0 ≤ t ≤ 1
and for some fixed s ∈ (0, 1],

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y).

Definition 1.6. [19] Let J ⊆ R be an interval containing (0, 1) and let h : J → R be a
positive function. We say f : I → R is a h-convex function, if f is non-negative and

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) (1.1)

for all x, y ∈ I and t ∈ (0, 1). If above inequality is reversed, then f is called h-concave.

It is easy to see that
(i) If h(t) = t, then (1.1) gives non-negative convex function.

(ii) If h(t) =
1

t
, then (1.1) gives Godunova-levin function.

(iii) If h(t) = 1, then (1.1) gives p-function.
(iv) If h(t) = ts where s ∈ (0, 1), then (1.1) gives s-convex function in the second
sense.
In a paper by Sonin in 1869 [18], he used the Cauchy’s integral formula as a starting
point to reach the differentiation with arbitrary index. Letnikov [13] extended the
idea of Sonin a short time later in 1872. Both tried to define fractional derivatives
by utilizing a closed contour. Finally, Laurent in [12] used a contour given as an
open circuit instead of a closed circuit, led to the definition of the Riemann-Liouville
fractional integral, which is due to a little known paper published by Holmgren in
1865 [9].

Definition 1.7. [12] Let f ∈ L1[a, b]. The Riemann-Liouville fractional integrals Jαa+f
and Jαb−f of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a



Ostrowski-type fractional integral inequalities 467

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b,

where

Γ(α) =

∫ ∞
0

e−uuα−1du

is the integral representation of Euler gamma function. Here

J0
a+f(x) = J0

b−f(x) = f(x).

In case of α = 1, the Riemann-Liouville fractional integrals reduces to the classical
integral.

Definition 1.8. J. Hadamard introduced the Hadamard fractional integral in [8], and
is given by

Iαa+f(x) =
1

Γ(α)

∫ x

a

(
log

x

τ

)α−1
f(τ)

dτ

τ
,

for Re(α) > 0, x > a ≥ 0.

Recently Katugampola generalized Riemann-Liouville and Hadamard fractional
integrals into a unique form as follows.

Definition 1.9. [11] Let [a, b] be a finite interval in R. Then the Katugampola fractional
integrals of order α > 0 for a real valued function f are defined by

ρIαa+f (x) =
ρ1−α

Γ (α)

∫ x

a

tρ−1 (xρ − tρ)α−1 f (t) dt

and

ρIαb−f (x) =
ρ1−α

Γ (α)

∫ b

x

tρ−1 (tρ − xρ)α−1 f (t) dt

with a < x < b and ρ > 0, if the integrals exist, where Γ (α) is the Euler gamma func-
tion. For ρ = 1, Katugampola fractional integrals give Riemann-Liouville fractional
integrals, while ρ→ 0+ produces the Hadamard fractional integral. For its proof one
can refer [11].

We organize the paper as follows:
In this paper we prove some Ostrowski-type inequalities for mappings whose

derivatives are h-convex via Katugampola fractional integrals. We deduce some known
results by using p-functions, convex functions and s-convex functions. In particular
we find Ostrowski-type inequalities for Riemann-Liouville fractional integrals.

2. Ostrowski-type fractional inequalities for h-convex functions via
Katugampola fractional integral

In this section we present some Ostrowski-type inequalities for h-convex func-
tions via Katugampola fractional integrals. The following lemma is very useful to
obtain our results.
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Lemma 2.1. Let f : [aρ, bρ] → R be a differentiable mapping on (aρ, bρ) with a < b
such that f ′ ∈ L1[a, b]. Then we have the following equality

f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

]
=
ρ(xρ − aρ)

2

∫ 1

0

tαρ+ρ−1f ′(tρxρ + (1− tρ)aρ)dt

− (bρ − xρ)
2

∫ 1

0

tαρ+ρ−1f ′(tρxρ + (1− tρ)bρ)dt; x ∈ (a, b), (2.1)

with α, ρ > 0.

Proof. It is easy to see that∫ 1

0

tαρ+ρ−1f ′(tρxρ + (1− tρ)aρ)dt

=
tαρ+ρ−1f(tρxρ + (1− tρ)aρ)

ρtρ−1(xρ − aρ)

∣∣∣∣1
0

− αρ+ ρ− 1

ρ(xρ − aρ)

∫ 1

0

tαρ−1f(tρxρ + (1− tρ)aρ)dt

=
f(xρ)

ρ(xρ − aρ)
− αρ+ ρ− 1

ρ(xρ − aρ)

∫ x

a

(
yρ − aρ

xρ − aρ

)α−1
yρ−1f(yρ)

xρ − aρ
dy

=
f(xρ)

ρ(xρ − aρ)
−

ρIαx−f(aρ)(αρ+ ρ− 1)Γ(α)

ρ2−α(xρ − aρ)α+1
(2.2)

and ∫ 1

0

tαρ+ρ−1f ′(tρxρ + (1− tρ)bρ)dt

=
tαρ+ρ−1f(tρxρ + (1− tρ)bρ)

ρtρ−1(xρ − bρ)

∣∣∣∣1
0

− αρ+ ρ− 1

ρ(xρ − bρ)

∫ 1

0

tαρ−1f(tρxρ + (1− tρ)bρ)dt

=
−f(xρ)

ρ(bρ − xρ)
+
αρ+ ρ− 1

ρ(bρ − xρ)

∫ b

x

(
yρ − bρ

xρ − bρ

)α−1
yρ−1f(yρ)

xρ − bρ
dy

=
−f(xρ)

ρ(bρ − xρ)
+

ρIαx+f(bρ)(αρ+ ρ− 1)Γ(α)

ρ2−α(bρ − xρ)α+1
. (2.3)

Multiplying (2.2) by
ρ(xρ − aρ)

2
and (2.3) by

ρ(bρ − xρ)
2

, then adding resulting equa-

tions we get (2.1). �

Theorem 2.2. Let f : [aρ, bρ] ⊆ [0,∞) → R be a differentiable mapping on (aρ, bρ)
with a < b such that f ′ ∈ L1[a, b]. If

∣∣f ′∣∣ is h-convex on [aρ, bρ] and
∣∣f ′(xρ)∣∣ ≤ M ,
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x ∈ [a, b], then the following inequality for Katugampola fractional integrals holds∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ Mρ(bρ − aρ)

2

∫ 1

0

tαρ+ρ−1 [h(tρ) + h(1− tρ)] dt;x ∈ (a, b), (2.4)

with α, ρ > 0.

Proof. Using Lemma 2.1, h-convexity of
∣∣f ′∣∣, and upper bound of

∣∣f ′(xρ)∣∣ we have∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ ρ(xρ − aρ)

2

∫ 1

0

tαρ+ρ−1
∣∣f ′(tρxρ + (1− tρ)aρ)

∣∣dt
+
ρ(bρ − xρ)

2

∫ 1

0

tαρ+ρ−1
∣∣f ′(tρxρ + (1− tρ)bρ)

∣∣dt
≤ ρ(xρ − aρ)

2

∫ 1

0

tαρ+ρ−1
[
h(tρ)

∣∣f ′(xρ)∣∣+ h(1− tρ)
∣∣f ′(aρ)∣∣] dt

+
ρ(bρ − xρ)

2

∫ 1

0

tαρ+ρ−1
[
h(tρ)

∣∣f ′(xρ)∣∣+ h(1− tρ)
∣∣f ′(bρ)∣∣] dt

≤ Mρ(xρ − aρ)
2

∫ 1

0

tαρ+ρ−1 [h(tρ) + h(1− tρ)] dt

+
Mρ(bρ − xρ)

2

∫ 1

0

tαρ+ρ−1 [h(tρ) + h(1− tρ)] dt

=
Mρ(bρ − aρ)

2

∫ 1

0

tαρ+ρ−1 [h(tρ) + h(1− tρ)] dt.

This completes the proof. �

Corollary 2.3. In Theorem 2.2, if we take h(t) = 1, which means that
∣∣f ′∣∣ is p-function,

then (2.4) becomes the following inequality∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ M(bρ − aρ)

α+ 1
;x ∈ [a, b], (2.5)

with α, ρ > 0.

Remark 2.4. (i) If we put ρ = 1 in (2.4) we get [15, Theorem 1].

(ii) If we put ρ = 1, α = 1 and x =
a+ b

2
in (2.4) we get [15, Corollary 3].

(iii) If we put ρ = 1 and h(t) = t, which means that
∣∣f ′∣∣ is convex function in (2.4),

then we get [15, Corollary 1].
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(iv) If we put ρ = 1 and h(t) = ts, which means that
∣∣f ′∣∣ is h-convex function in

(2.4), then we get [15, Corollary 2].

Theorem 2.5. Let f : [aρ, bρ] ⊆ [0,∞)→ R be a differentiable mapping on (aρ, bρ) with

a < b such that f ′ ∈ L1[a, b]. If
∣∣f ′∣∣q, q > 1, is h-convex on [aρ, bρ] and

∣∣f ′(xρ)∣∣ ≤M ,
x ∈ [a, b], then the following inequality for Katugampola fractional integrals holds∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ Mρ(bρ − aρ)

2 (p(αρ+ ρ− 1) + 1)
1
p

(∫ 1

0

[h(tρ) + h(1− tρ)] dt
) 1

q

; x ∈ (a, b), (2.6)

with α, ρ > 0 and 1
p + 1

q = 1.

Proof. Using Lemma 2.1 and Holder’s inequality we have∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ ρ(xρ − aρ)

2

∫ 1

0

tαρ+ρ−1
∣∣f ′(tρxρ + (1− tρ)aρ)

∣∣dt
+
ρ(bρ − xρ)

2

∫ 1

0

tαρ+ρ−1
∣∣f ′(tρxρ + (1− tρ)bρ)

∣∣dt
≤ ρ(xρ − aρ)

2

(∫ 1

0

tp(αρ+ρ−1)dt

) 1
p
(∫ 1

0

∣∣f ′(tρxρ + (1− tρ)aρ)
∣∣qdt) 1

q

+
ρ(bρ − xρ)

2

(∫ 1

0

tp(αρ+ρ−1)dt

) 1
p
(∫ 1

0

∣∣f ′(tρxρ + (1− tρ)aρ)
∣∣qdt) 1

q

.

Since
∣∣f ′∣∣q is h-convex and

∣∣f ′(xρ)∣∣ ≤M , x ∈ [a, b], therefore we have for x ∈ (a, b)∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ ρ(xρ − aρ)

2

(∫ 1

0

tp(αρ+ρ−1)dt

) 1
p
(∫ 1

0

[
h(tρ)

∣∣f ′(x)
∣∣q + h(1− tρ)

∣∣f ′(aρ)∣∣q] dt) 1
q

+
ρ(bρ − xρ)

2

(∫ 1

0

tp(αρ+ρ−1)dt

) 1
p
(∫ 1

0

[
h(tρ)

∣∣f ′(x)
∣∣q + h(1− tρ)

∣∣f ′(bρ)∣∣q] dt) 1
q

≤ Mρ(xρ − aρ)
2p(αρ+ ρ− 1) + 1)

1
p

(∫ 1

0

[h(tρ) + h(1− tρ)] dt
) 1

q

+
Mρ(bρ − xρ)

2(p(αρ+ ρ− 1) + 1)
1
p

(∫ 1

0

[h(tρ) + h(1− tρ)] dt
) 1

q
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=
Mρ(bρ − aρ)

2 (p(αρ+ ρ− 1) + 1)
1
p

(∫ 1

0

[h(tρ) + h(1− tρ)] dt
) 1

q

.

This completes the proof. �

Corollary 2.6. In Theorem 2.5, if we take h(t) = 1, which means that
∣∣f ′∣∣q is p-

function, then (2.6) becomes the following inequality∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ (2)

1
q−1Mρ(bρ − aρ)

(p(αρ+ ρ− 1) + 1)
1
p

; x ∈ [a, b], (2.7)

with α, ρ > 0 and 1
p + 1

q = 1.

Remark 2.7. (i) If we put ρ = 1 in (2.6) we get [15, Theorem 2].

(ii) If we put ρ = 1, α = 1 and x =
a+ b

2
in (2.6) we get [15, Corollary 6].

(iii) If we put ρ = 1 and h(t) = t in (2.6), which means that
∣∣f ′∣∣ is convex function,

then we get [15, Corollary 4].
(iv) If we put ρ = 1 and h(t) = ts, which means that

∣∣f ′∣∣ is h-convex function in
(2.6), then we get [15, Corollary 5].

Theorem 2.8. Let f : [aρ, bρ] ⊆ [0,∞)→ R be a differentiable mapping on (aρ, bρ) such

that f ′ ∈ L1[a, b], where a < b. If
∣∣f ′∣∣q, q > 1 is h-convex on [aρ, bρ] and

∣∣f ′(xρ)∣∣ ≤M ,
x ∈ [a, b], then the following inequality for Katugampola fractional integrals holds for
x ∈ (a, b)∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ Mρ(bρ − aρ)

2

(
1

ρ(α+ 1)

)1− 1
q
(∫ 1

0

tαρ+ρ−1 [h(tρ) + h(1− tρ)] dt
) 1

q

, (2.8)

with α, ρ > 0.

Proof. Using Lemma 2.1 and power mean inequality we have∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ ρ(xρ − aρ)

2

∫ 1

0

tαρ+ρ−1
∣∣f ′(tρxρ + (1− tρ)aρ)

∣∣dt
+
ρ(bρ − xρ)

2

∫ 1

0

tαρ+ρ−1
∣∣f ′(tρxρ + (1− tρ)bρ)

∣∣dt
≤ ρ(xρ − aρ)

2

(∫ 1

0

tαρ+ρ−1dt

)1− 1
q
(
tαρ+ρ−1

∫ 1

0

∣∣f ′(tρxρ + (1− tρ)aρ)
∣∣qdt) 1

q
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+
ρ(bρ − xρ)

2

(∫ 1

0

tαρ+ρ−1dt

)1− 1
q
(∫ 1

0

tαρ+ρ−1
∣∣f ′(tρxρ + (1− tρ)aρ)

∣∣qdt) 1
q

.

Since
∣∣f ′∣∣q is h-convex and

∣∣f ′(xρ)∣∣ ≤M , x ∈ [a, b], there for we have for x ∈ (a, b)∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ ρ(xρ − aρ)

2

(
1

ρ(α+ 1)

)1− 1
q

×(∫ 1

0

tαρ+ρ−1
[
h(tρ)

∣∣f ′(x)
∣∣q + h(1− tρ)

∣∣f ′(aρ)∣∣q] dt) 1
q

+
ρ(bρ − xρ)

2

(
1

ρ(α+ 1)

)1− 1
q

×(∫ 1

0

tαρ+ρ−1
[
h(tρ)

∣∣f ′(x)
∣∣q + h(1− tρ)

∣∣f ′(bρ)∣∣q] dt) 1
q

≤ Mρ(xρ − aρ)
2

(
1

ρ(α+ 1)

)1− 1
q
(∫ 1

0

tαρ+ρ−1 [h(tρ) + h(1− tρ)] dt
) 1

q

+
Mρ(bρ − xρ)

2

(
1

ρ(α+ 1)

)1− 1
q
(∫ 1

0

tαρ+ρ−1 [h(tρ) + h(1− tρ)] dt
) 1

q

=
Mρ(bρ − aρ)

2

(
1

ρ(α+ 1)

)1− 1
q
(∫ 1

0

tαρ+ρ−1 [h(tρ) + h(1− tρ)] dt
) 1

q

.

This completes the proof. �

Remark 2.9. (i) If we put ρ = 1 in (2.8) we get [15, Theorem 3].

(ii) If we put ρ = 1, α = 1 and x =
a+ b

2
in (2.8), we get [15, Corollary 9].

(iii) If we put ρ = 1 and h(t) = t in (2.8) which means that
∣∣f ′∣∣ is convex function,

then we get [15, Corollary 7].
(iv) If we put ρ = 1 and h(t) = ts, which means that

∣∣f ′∣∣ is h-convex function in
(2.8), then we get [15, Corollary 8].

Corollary 2.10. In Theorem 2.8, if we take h(t) = 1, which means that
∣∣f ′∣∣q is p-

function, then (2.8) becomes the following inequality∣∣∣∣∣f(xρ)− (αρ+ ρ− 1)Γ(α)

ρ1−α

[ ρIαx−f(aρ)

2(xρ − aρ)α
+

ρIαx+f(bρ)

2(bρ − xρ)α

] ∣∣∣∣∣
≤ (2)

1
q−1M(bρ − aρ)
ρ(α+ 1)

; x ∈ (a, b), (2.9)

with α, ρ > 0.
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Conclusion. Due to the fact that the Katugampola fractional integrals are the general-
izations of both the Riemann-Liouville fractional integrals and Hadamard fractional
integrals, so in our paper by taking ρ = 1 we have deduced the known results for
Riemann-Liouville fractional integrals. All results proved in this research paper can
also be deduced for the Hadamard fractional integrals by taking limits when param-
eter ρ→ 0+.
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[2] Dragomir, S.S., Pečarić, J., Persson, L.E., Some inequalities of Hadamard type, Soochow
J. Math., 21(1995), 335-341.

[3] Farid, G., Some new Ostrowski-type inequalities via fractional integrals, Int. J. Anal.
App., 14(2017), no. 1, 64-68.

[4] Farid, G., Katugampola, U.N., Usman, M., Ostrowski-type fractional integral inequalities
for S-Godunova-Levin functions via Katugampola fractional integrals, Open J. Math.
Sci., 1(2017), no. 1, 97–110.

[5] Farid, G., Rafique, S., Rehman, A. Ur., More on Ostrowski and Ostrowski-Gruss type
inequalities, Commun. Optim. Theory, 2017(2017), ArtID 15, 9 pages.

[6] Farid, G., Usman, M., Ostrowski-type k-fractional integral inequalities for MT-convex
and h-convex functions, Nonlinear Funct. Anal. Appl., 22(2017), no. 3, 627-639.

[7] Godunova, E.K., Levin, V.I., Inequalities for functions of a broad class that contains con-
vex, monotone and some other forms of functions, Numerical Mathematics and Mathe-
matical Physics (Russian), Moskov. Gos. Ped. Inst. Moscow, (1985), 138-142.

[8] Hadamard, J., Essai sur l’etude des fonctions donnees par leur developpment de Taylor,
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Differential subordinations obtained by using
a fractional operator

Eszter Szatmari

Abstract. We investigate several differential subordinations using the fractional
operator Dν,nλ : A → A, for −∞ < λ < 2, ν > −1, n ∈ N0 = {0, 1, 2, . . .},
introduced in [7].

Mathematics Subject Classification (2010): 30C45.

Keywords: Differential subordination, analytic function, fractional operator, con-
vex function.

1. Introduction

Let H(U) denote the class of functions which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}.

For a ∈ C and k ∈ N = {1, 2, . . .}, let

H[a, k] = {f ∈ H(U) : f(z) = a+ akz
k + ak+1z

k+1 + . . .},

and

A = {f ∈ H(U) : f(z) = z + a2z
2 + a3z

3 + . . . , z ∈ U}.

In [3], the fractional integral operator D−µz of order µ, µ > 0, for the function f ∈ A,
is defined by

D−µz f(z) =
1

Γ(µ)

z∫
0

f(t)

(z − t)1−µ dt, z ∈ U,

where the multiplicity of (z− t)µ−1 is removed by requiring log(z− t) to be real when
z − t > 0.
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Also, the fractional derivative operator Dλ
z of order λ, λ ≥ 0, for the function

f ∈ A, is defined by

Dλ
z f(z) =

 1
Γ(1−λ)

d
dz

z∫
0

f(t)
(z−t)λ dt, 0 ≤ λ < 1

dn

dznD
λ−n
z f(z), n ≤ λ < n+ 1

, n ∈ N0,

where the multiplicity of (z − t)−λ is understood in a similar way.
In [4] is defined the fractional differintegral operator Ωλz : A → A,−∞ < λ < 2,

by
Ωλzf(z) = Γ(2− λ)zλDλ

z f(z), z ∈ U,
where Dλ

z f(z) is the fractional integral of orderλ,−∞ < λ < 0, and a fractional
derivative of order λ, 0 ≤ λ < 2.

In [6], the Sǎlǎgean operator Dn of order n, n ∈ N0, for f ∈ A, is defined by

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

Dnf(z) = D(Dn−1f(z)), n ∈ N.
In [5], the Ruscheweyh operator Rλ : A → A for λ ≥ −1 is defined by

Rλf(z) =
z

(1− z)1+λ
∗ f(z), z ∈ U,

where ” ∗ ” is the Hadamard product or convolution.
For λ ∈ N0 this operator is defined by

Rλf(z) =
z(zλ−1f(z))λ

λ!
, z ∈ U.

In [7], the fractional operator Dν,nλ : A → A for −∞ < λ < 2, ν > −1, n ∈ N0, is
defined as a composition of fractional differintegral operator, the Sǎlǎgean operator
and the Ruscheweyh operator:

Dν,nλ f(z) = RνDnΩλzf(z).

The series expression of Dν,nλ f(z) for f ∈ A of the form f(z) = z+
∞∑
k=1

ak+1z
k+1

is given by

Dν,nλ f(z) = z +

∞∑
k=1

(ν + 1)k
(2− λ)k

(k + 1)n+1ak+1z
k+1,

−∞ < λ < 2, ν > −1, n ∈ N0, z ∈ U , where the symbol (γ)k denotes the usual
Pochhammer symbol, for γ ∈ C, defined by

(γ)k =

{
1, k = 0

γ(γ + 1) . . . (γ + k − 1), k ∈ N
=

Γ(γ + k)

Γ(γ)
, γ ∈ C \ Z−0 .

Remark 1.1. [7] The fractional operator Dν,00 is precisely the Ruscheweyh derivative

operator Rν of order ν, ν > −1, and D0,0
λ is the fractional differintegral operator Ωλz

of order λ,−∞ < λ < 2, while D0,n
0 = Dn and D1−λ,n

λ = Dn+1 are the Sǎlǎgean
operators, respectively, of order n and n+1, n ∈ N0.



Differential subordinations obtained by using a fractional operator 477

Remark 1.2. [7] The operator Dν,nλ satisfies the following identity:

Dν+1,n
λ f(z) =

ν

ν + 1
Dν,nλ f(z) +

1

ν + 1
z(Dν,nλ f(z))′, (1.1)

where −∞ < λ < 2, ν > −1, n ∈ N0.

Remark 1.3. [8] The operator Dν,nλ satisfies the following identities:

Dν,n+1
λ f(z) = z(Dν,nλ f(z))′, (1.2)

where −∞ < λ < 2, ν > −1, n ∈ N0, and

Dν,nλ+1f(z) = − λ

1− λ
Dν,nλ f(z) +

1

1− λ
z(Dν,nλ f(z))′, (1.3)

where −∞ < λ < 1, ν > −1, n ∈ N0.

Definition 1.4. [1, p. 4] Let f, F ∈ H(U). The function f is said to be subordinate to
F , written f ≺ F , or f(z) ≺ F (z), if there exists a function w ∈ H(U), with w(0) = 0
and

∣∣w(z)
∣∣ < 1, z ∈ U , such that f(z) = F

[
w(z)

]
, z ∈ U.

In order to prove our results we shall need the following lemma.

Lemma 1.5. [2] Let q be a convex function in U and let

h(z) = q(z) + nαzq′(z),

where α > 0 and n is a positive integer. If

p(z) = q(0) + pnz
n + . . . ∈ H[q(0), n]

and

p(z) + αzp′(z) ≺ h(z)

then

p(z) ≺ q(z),
and this result is sharp.

2. Main results

Theorem 2.1. Let g be a convex function, g(0) = 1 and let h be a function such that

h(z) = g(z) +
1

ν + 1
zg′(z), ν > −1.

If f ∈ A verifies the differential subordination(
Dν+1,n
λ f(z)

)′ ≺ h(z) (2.1)

then (
Dν,nλ f(z)

)′ ≺ g(z).

The result is sharp.
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Proof. If we denote by

p(z) =
(
Dν,nλ f(z)

)′
,

where p(z) ∈ H[1, 1], then, by (1.1), we get(
Dν+1,n
λ f(z)

)′
= p(z) +

1

ν + 1
zp′(z), z ∈ U. (2.2)

From (2.1) and (2.2) we obtain

p(z) +
1

ν + 1
zp′(z) ≺ g(z) +

1

ν + 1
zg′(z) ≡ h(z).

Applying Lemma 1, we get

p(z) ≺ g(z)

or (
Dν,nλ f(z)

)′ ≺ g(z).

This result is sharp. �

Theorem 2.2. Let g be a convex function, g(0) = 1 and let h be a function such that

h(z) = g(z) +
1

1− λ
zg′(z),−∞ < λ < 1.

If f ∈ A verifies the differential subordination(
Dν,nλ+1f(z)

)′ ≺ h(z) (2.3)

then (
Dν,nλ f(z)

)′ ≺ g(z).

The result is sharp.

Proof. If we denote by

p(z) =
(
Dν,nλ f(z)

)′
,

where p(z) ∈ H[1, 1], then, by (1.3), we get(
Dν,nλ+1f(z)

)′
= p(z) +

1

1− λ
zp′(z), z ∈ U. (2.4)

From (2.3) and (2.4) we obtain

p(z) +
1

1− λ
zp′(z) ≺ g(z) +

1

1− λ
zg′(z) ≡ h(z).

Applying Lemma 1, we get

p(z) ≺ g(z)

or (
Dν,nλ f(z)

)′ ≺ g(z).

This result is sharp. �
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Theorem 2.3. Let g be a convex function, g(0) = 1 and let h be a function such that

h(z) = g(z) + zg′(z), n ∈ N0.

If f ∈ A verifies the differential subordination(
Dν,n+1
λ f(z)

)′ ≺ h(z) (2.5)

then (
Dν,nλ f(z)

)′ ≺ g(z).

The result is sharp.

Proof. If we denote by

p(z) =
(
Dν,nλ f(z)

)′
,

where p(z) ∈ H[1, 1], then, by (1.2), we get(
Dν,n+1
λ f(z)

)′
= p(z) + zp′(z), z ∈ U. (2.6)

From (2.5) and (2.6) we obtain

p(z) + zp′(z) ≺ g(z) + zg′(z) ≡ h(z).

Applying Lemma 1, we get

p(z) ≺ g(z)

or (
Dν,nλ f(z)

)′ ≺ g(z).

This result is sharp. �

Theorem 2.4. Let g be a convex function, g(0) = 1 and let h be a function such that

h(z) = g(z) + zg′(z), z ∈ U.
If f ∈ A verifies the differential subordination(

Dν,nλ f(z)
)′ ≺ h(z), z ∈ U (2.7)

then
Dν,nλ f(z)

z
≺ g(z).

The result is sharp.

Proof. Let

p(z) =
Dν,nλ f(z)

z
, z ∈ U.

Differentiating we obtain

p′(z) =

(
Dν,nλ f(z)

)′
z

− p(z)

z
.

We get (
Dν,nλ f(z)

)′
= p(z) + zp′(z).

The subordination (2.7) becomes

p(z) + zp′(z) ≺ g(z) + zg′(z).
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Applying Lemma 1, we get
p(z) ≺ g(z)

or
Dν,nλ f(z)

z
≺ g(z).

This result is sharp. �

Theorem 2.5. Let g be a convex function, g(0) = 1 and let h be a function such that

h(z) = g(z) + zg′(z), z ∈ U.
If f ∈ A verifies the differential subordination(

zDν+1,n
λ f(z)

Dν,nλ f(z)

)′
≺ h(z), z ∈ U, (2.8)

then
Dν+1,n
λ f(z)

Dν,nλ f(z)
≺ g(z), z ∈ U.

The result is sharp.

Proof. Let

p(z) =
Dν+1,n
λ f(z)

Dν,nλ f(z)
.

We obtain (
zDν+1,n

λ f(z)

Dν,nλ f(z)

)′
= p(z) + zp′(z).

The subordination (2.8) becomes

p(z) + zp′(z) ≺ g(z) + zg′(z).

Applying Lemma 1, we get
p(z) ≺ g(z)

or
Dν+1,n
λ f(z)

Dν,nλ f(z)
≺ g(z), z ∈ U.

This result is sharp. �

Theorem 2.6. Let g be a convex function, g(0) = 1 and let h be a function such that

h(z) = g(z) + zg′(z), z ∈ U.
If f ∈ A verifies the differential subordination(

zDν,nλ+1f(z)

Dν,nλ f(z)

)′
≺ h(z), z ∈ U,−∞ < λ < 1, (2.9)

then
Dν,nλ+1f(z)

Dν,nλ f(z)
≺ g(z), z ∈ U.

The result is sharp.
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Proof. Let

p(z) =
Dν,nλ+1f(z)

Dν,nλ f(z)
.

We obtain (
zDν,nλ+1f(z)

Dν,nλ f(z)

)′
= p(z) + zp′(z).

The subordination (2.9) becomes

p(z) + zp′(z) ≺ g(z) + zg′(z).

Applying Lemma 1, we get
p(z) ≺ g(z)

or
Dν,nλ+1f(z)

Dν,nλ f(z)
≺ g(z), z ∈ U.

This result is sharp. �

Theorem 2.7. Let g be a convex function, g(0) = 1 and let h be a function such that

h(z) = g(z) + zg′(z), z ∈ U.
If f ∈ A verifies the differential subordination(

zDν,n+1
λ f(z)

Dν,nλ f(z)

)′
≺ h(z), z ∈ U, (2.10)

then
Dν,n+1
λ f(z)

Dν,nλ f(z)
≺ g(z), z ∈ U.

The result is sharp.

Proof. Let

p(z) =
Dν,n+1
λ f(z)

Dν,nλ f(z)
.

We obtain (
zDν,n+1

λ f(z)

Dν,nλ f(z)

)′
= p(z) + zp′(z).

The subordination (2.10) becomes

p(z) + zp′(z) ≺ g(z) + zg′(z).

Applying Lemma 1, we get
p(z) ≺ g(z)

or
Dν,n+1
λ f(z)

Dν,nλ f(z)
≺ g(z), z ∈ U.

This result is sharp. �
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Sufficient conditions of boundedness of L-index
and analog of Hayman’s Theorem for analytic
functions in a ball

Andriy Bandura and Oleh Skaskiv

Abstract. We generalize some criteria of boundedness of L-index in joint variables
for analytic in an unit ball functions. Our propositions give an estimate maximum
modulus of the analytic function on a skeleton in polydisc with the larger radii
by maximum modulus on a skeleton in the polydisc with the lesser radii. An
analog of Hayman’s Theorem for the functions is obtained. Also we established
a connection between class of analytic in ball functions of bounded lj-index in
every direction 1j , j ∈ {1, . . . , n} and class of analytic in ball of functions of
bounded L-index in joint variables, where L(z) = (l1(z), . . . , ln(z)), lj : Bn → R+

is continuous function, 1j = (0, . . . , 0, 1︸︷︷︸
j−th place

, 0, . . . , 0) ∈ Rn
+, z ∈ Cn.

Mathematics Subject Classification (2010): 32A05, 32A10, 32A30, 32A40, 30H99.

Keywords: Analytic function, unit ball, bounded L-index in joint variables, max-
imum modulus, partial derivative, bounded L-index in direction.

1. Introduction

Recently, there was introduced a concept of analytic function in a ball in Cn
of bounded L-index in joint variables [8]. We also obtained criterion of boundedness
of L-index in joint variables which describes a local behavior of partial derivatives
on a skeleton in the polydisc and established other important properties of analytic
functions in a ball of bounded L-index in joint variables. Those investigations used
an idea of exhaustion of a ball in Cn by polydiscs.

The presented paper is a continuation of our investigations from [8]. We set the
goal to prove new analogues of criteria of boundedness of L-index in joint variables for
analytic in a ball functions. Particular, we prove an estimate of maximum modulus on
a greater polydisc by maximum modulus on a lesser polydisc (Theorems 3.1, 3.2) and
obtain an analog of Hayman’s Theorem for analytic functions in a ball of bounded
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L-index in joint variables (Theorems 4.1 and 4.2). For entire functions similar propo-
sitions were obtained by A. I. Bandura, M. T. Bordulyak, O. B. Skaskiv [4, 5] in a case
L(z) = (l1(z), . . . , ln(z)), z ∈ Cn. Also A. I. Bandura, N.V. Petrechko, O. B. Skaskiv
[6, 7] deduced same results for analytic in a polydisc functions. Hayman’s Theorem and
its generalizations for different classes of analytic functions [1, 3, 5, 7, 12, 15, 20, 21]
are very important in theory of functions of bounded index. The criterion is helpful
[1, 9] to investigate boundedness of index of entire solutions of ordinary or partial
differential equations.

Note that the corresponding theorems for entire functions of bounded l-index
and of bounded L-index in direction were also applied to investigate infinite products
(see bibliography in [21, 1]). Thus, those generalizations for analytic in a ball functions
are necessary to study L-index in joint variables of analytic solutions of PDE’s, its
systems and multidimensional counterparts of Blaschke products. At the end of the
paper, we present a scheme of application of Hayman’s Theorem to study properties
of analytic solutions in the unit ball.

2. Main definitions and notations

We need some standard notations. Denote
R+ = (0,+∞), 0 = (0, . . . , 0), 1 = (1, . . . , 1),
1j = (0, . . . , 0, 1︸︷︷︸

j−th place

, 0, . . . , 0) ∈ Rn+,

R = (r1, . . . , rn) ∈ Rn+, z = (z1, . . . , zn) ∈ Cn, |z| =
√∑n

j=1 |zj |2.
For A = (a1, . . . , an) ∈ Rn, B = (b1, . . . , bn) ∈ Rn we will use formal notations

without violation of the existence of these expressions
AB = (a1b1, · · · , anbn), A/B = (a1/b1, . . . , an/bn),

AB = ab11 a
b2
2 · . . . · abnn , ‖A‖ = a1 + · · ·+ an,

and the notation A < B means that aj < bj , j ∈ {1, . . . , n}; the relation A ≤ B
is defined similarly. For K = (k1, . . . , kn) ∈ Zn+ denote K! = k1! · . . . · kn!. The
polydisc {z ∈ Cn : |zj − z0j | < rj , j = 1, . . . , n} is denoted by Dn(z0, R), its skeleton

{z ∈ Cn : |zj − z0j | = rj , j = 1, . . . , n} is denoted by Tn(z0, R), and the closed

polydisc {z ∈ Cn : |zj − z0j | ≤ rj , j = 1, . . . , n} is denoted by Dn[z0, R]. The

open ball {z ∈ Cn : |z − z0| < r} is denoted by Bn(z0, r), its boundary is a sphere
Sn(z0, r) = {z ∈ Cn : |z− z0| = r}, the closed ball {z ∈ Cn : |z− z0| ≤ r} is denoted
by Bn[z0, r], Bn = Bn(0, 1), D = B1 = {z ∈ C : |z| < 1}.

For K = (k1, . . . , kn) ∈ Zn+ and the partial derivatives of an analytic in Bn
function F (z) = F (z1, . . . , zn) we use the notation

F (K)(z) =
∂‖K‖F

∂zK
=

∂k1+···+knF

∂zk11 . . . ∂zknn
.

Let L(z) = (l1(z), . . . , ln(z)), where lj(z) : Bn → R+ is a continuous function such
that

(∀z ∈ Bn) : lj(z) > β/(1− |z|), j ∈ {1, . . . , n}, (2.1)
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where β >
√
n is a some constant. For a polydisc A.I. Bandura, N.V. Petrechko and

O.B. Skaskiv [6, 7] imposed the restriction (∀z ∈ Dn(0,1)) : lj(z) > β/(1− |zj |),
j ∈ {1, . . . , n}. A similar condition is used in one-dimensional case by S.N. Strochyk,
M.M. Sheremeta, V.O. Kushnir [22, 14, 21].

Note that if R ∈ Rn+, |R| ≤ β, z0 ∈ Bn and z ∈ Dn[z0, R/L(z0)] then z ∈ Bn
(see Remark 1 in [8]).

An analytic function F : Bn → C is said to be of bounded L-index (in joint
variables), if there exists n0 ∈ Z+ such that for all z ∈ Bn and for all J ∈ Zn+

|F (J)(z)|
J !LJ(z)

≤ max

{
|F (K)(z)|
K!LK(z)

: K ∈ Zn+, ‖K‖ ≤ n0
}
. (2.2)

The least such integer n0 is called the L-index in joint variables of the function F
and is denoted by N(F,L,Bn) (see [8]). Entire and analytic in polydisc functions of
bounded L-index in joint variables are considered in [4, 5, 6, 7, 10, 13, 19, 18, 16, 17].

ByQ(Bn) we denote the class of functions L, which satisfy (2.1) and the following
condition

(∀R ∈ Rn+, |R| ≤ β, j ∈ {1, . . . , n}) : 0 < λ1,j(R) ≤ λ2,j(R) <∞, (2.3)

where λ1,j(R) = inf
z0∈Bn

inf
{
lj(z)/lj(z

0) : z ∈ Dn
[
z0, R/L(z0)

]}
,

λ2,j(R) = sup
z0∈Bn

sup
{
lj(z)/lj(z

0) : z ∈ Dn
[
z0, R/L(z0)

]}
.

Λ1(R) = (λ1,1(R), . . . , λ1,n(R)), Λ2(R) = (λ2,1(R), . . . , λ2,n(R)).
We need the following results.

Theorem 2.1 ([8]). Let L ∈ Q(Bn). An analytic in Bn function F has bounded L-index
in joint variables if and only if for each R ∈ Rn+, |R| ≤ β, there exist n0 ∈ Z+, p0 > 0
such that for every z0 ∈ Bn there exists K0 ∈ Zn+, ‖K0‖ ≤ n0, and

max

{
|F (K)(z)|
K!LK(z)

: ‖K‖ ≤ n0, z ∈ Dn
[
z0, R/L(z0)

]}
≤ p0

|F (K0)(z0)|
K0!LK0(z0)

. (2.4)

Denote L̃(z) = (l̃1(z), . . . , l̃n(z)). The notation L � L̃ means that there exist

Θ1 = (θ1,j , . . . , θ1,n) ∈ Rn+, Θ2 = (θ2,j , . . . , θ2,n) ∈ Rn+

such that ∀z ∈ Bn θ1,j l̃j(z) ≤ lj(z) ≤ θ2,j l̃j(z) for each j ∈ {1, . . . , n}.

Theorem 2.2 ([8]). Let L ∈ Q(Bn), L � L̃, β|Θ1| >
√
n. An analytic in Bn function F

has bounded L̃-index in joint variables if and only if F has bounded L-index in joint
variables.

3. Local behaviour of maximum modulus of analytic in ball function

For an analytic in Bn function F we put

M(r, z0, F ) = max{|F (z)| : z ∈ Tn(z0, r)},
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where z0 ∈ Bn, r ∈ Rn+. Then M(R, z0, F ) = max{|F (z)| : z ∈ Dn[z0, R]}, because
the maximum modulus for an analytic function in a closed polydisc is attained on its
skeleton.

The following proposition uses an idea about the possibility of replacing universal
quantifier by existential quantifier in sufficient conditions of index boundedness [2]. To
prove an analog of Hayman’s Theorem we need this theorem which has an independent
interest.

Theorem 3.1. Let L ∈ Qn, F : Bn → C be analytic function. If there exist R′,
R′′ ∈ Rn+, R′ < R′′, |R′′| < β and p1 = p1(R′, R′′) ≥ 1 such that for every z0 ∈ Cn

M

(
R′′

L(z0)
, z0, F

)
≤ p1M

(
R′

L(z0)
, z0, F

)
(3.1)

then F is of bounded L-index in joint variables.

Proof. At first, we assume that 0 < R′ < 1 < R′′.

Let z0 ∈ Bn be an arbitrary point. We expand a function F in power series

F (z) =
∑
K≥0

bK(z − z0)K =
∑

k1,...,kn≥0

bk1,...,kn(z1 − z01)k1 . . . (zn − z0n)kn , (3.2)

where bK = bk1,...,kn = F (K)(z0)
K! .

Let µ(R, z0, F ) = max{|bK |RK : K ≥ 0} be a maximal term of power series (3.2)
and

ν(R) = ν(R, z0, F ) = (ν01(R), . . . , ν0n(R))

be a set of indices such that

µ(R, z0, F ) = |bν(R)|Rν(R),

‖ν(R)‖ =

n∑
j=1

νj(R) = max{‖K‖ : K ≥ 0, |bK |RK = µ(R, z0, F )}.

In view of inequality (3.8) we obtain for any |R| < 1− |z0|,

µ(R, z0, F ) ≤M(R, z0, F ).

Then for given R′ and R′′ with 0 < |R′| < 1 < |R′′| < β we conclude

M(R′R, z0, F ) ≤
∑
k≥0

|bk|(R′R)k ≤
∑
k≥0

µ(R, z0, F )(R′)k

= µ(R, z0, F )
∑
k≥0

(R′)k =

n∏
j=1

1

1− r′j
µ(R, z0, F ).
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Besides,

lnµ(R, z0, F ) = ln{|bν(R)|Rν(R)} = ln

{
|bν(R)|(RR′′)ν(R) 1

(R′′)ν(R)

}
= ln{|bν(R)|(RR′′)ν(R)}+ ln

{
1

(R′′)ν(R)

}
≤ lnµ(R′′R, z0, F )− ‖ν(R)‖ ln min

1≤j≤n
r′′j .

This implies that

‖ν(R)‖ ≤ 1

ln min1≤j≤n r′′j
(lnµ(R′′R, z0, F )− lnµ(R, z0, F ))

≤ 1

ln min1≤j≤n r′′j

lnM(R′′R, z0, F )− ln(

n∏
j=1

(1− r′j)M(R′R, z0, F ))


≤ 1

ln min1≤j≤n r′′j

(
lnM(R′′R, z0, F )−lnM(R′R, z0, F )

)
−
∑n
j=1 ln(1− r′j)

min1≤j≤n r′′j

=
1

min1≤j≤n r′′j
ln
M(R′′R, z0, F )

M(R′R, z0, F )
−
∑n
j=1 ln(1− rj)

min1≤j≤n r′′j
. (3.3)

Put R = 1
L(z0) . Now let N(F, z0,L) be the L-index of the function F in joint variables

at point z0 i. e. it is the least integer for which inequality (2.2) holds at point z0.
Clearly that

N(F, z0,L) ≤ ν
(

1

L(z0)
, z0, F

)
= ν(R, z0, F ). (3.4)

But

M
(
R′′/L(z0), z0, F

)
≤ p1(R′, R′′)M

(
R′/L(z0), z0, F

)
. (3.5)

Therefore, from (3.3), (3.4), (3.5) we obtain that ∀z0 ∈ Bn

N(F, z0,L) ≤
−
∑2
j=1 ln(1− r′j)

ln min{r′′1 , r′′2}
+

ln p1(R′, R′′)

ln min{r′′1 , r′′2}
.

This means that F has bounded L-index in joint variables, if 0 < R′ < 1 < R′′,
|R′′| < β.

Now we will prove the theorem for any 0 < R′ < R′′, |R′′| < β. From (3.1) with
0 < R1 < R2 it follows that

max

{
|F (z)| : z ∈ Tn

(
z0,

2R′′

R′ +R′′
R′ +R′′

2L(z0)

)}
≤ P1 max

{
|F (z)| : z ∈ Tn

(
z0,

2R′

R′ +R′′
R′ +R′′

2L(z0)

)}
.
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Denoting L̃(z) = 2L(z)
R′+R′′ , we obtain

max

{
|F (z)| : z ∈ Tn

(
z0,

2R′′

(R′ +R′′)L̃(z0)

)}

≤P1 max

{
|F (z)| : z ∈ Tn

(
z0,

2R′′

(R′ +R′′)L̃(z0)

)}
,

where 0 < 2R′

R′+R′′ < 1 < 2R′′

R′+R′′ . Taking into account the first part of the proof, we

conclude that the function F has bounded L̃-index in joint variables. By Theorem
2.2, the function F is of bounded L-index in joint variables. �

Also the corresponding necessary conditions are valid.

Theorem 3.2. Let L ∈ Q(Bn). If an analytic in Bn function F has bounded L-index
in joint variables then for any R′, R′′ ∈ Rn+, R′ < R′′, |R′′| ≤ β, there exists a number
p1 = p1(R′, R′′) ≥ 1 such that for every z0 ∈ Bn inequality (3.1) holds.

Proof. Let N(F,L) = N < +∞. Suppose that inequality (3.1) does not hold i.e. there
exist R′, R′′, 0 < |R′| < |R′′| < β, such that for each p∗ ≥ 1 and for some z0 = z0(p∗)

M

(
R′′

L(z0)
, z0, F

)
> p∗M

(
R′

L(z0)
, z0, F

)
. (3.6)

By Theorem 2.1, there exists a number p0 = p0(R′′) ≥ 1 such that for every z0 ∈ Bn
and some K0 ∈ Zn+, ‖K0‖ ≤ N, (i.e. n0 = N , see proof of necessity of Theorem 2.1
in [8]) one has

M

(
R′′

L(z0)
, z0, F (K0)

)
≤ p0|F (K0)(z0)|. (3.7)

We put

b1 = p0

 n∏
j=2

λN2,j(R
′′)

 (N !)n−1

 N∑
j=1

(N − j)!
(r′′1 )j

(r′′1 r′′2 . . . r′′n
r′1r
′
2 . . . r

′
n

)N
,

b2 = p0

( n∏
j=3

λN2,j(R
′′)

)
(N !)n−2

( N∑
j=1

(N − j)!
(r′′2 )j

)(
r′′2 . . . r

′′
n

r′2 . . . r
′
n

)N{
1,

1

(r′1)N

}
,

. . .

bn−1 = p0λ
N
2,n(R′)N !

 N∑
j=1

(N − j)!
(r′′n−1)j

(r′′n−1r′′n
r′n−1r

′
n

)N
max

{
1,

1

(r′1 . . . r
′
n−2)N

}
,

bn = p0

 N∑
j=1

(N − j)!
(r′′n)j

(r′′n
r′n

)N
max

{
1,

1

(r′1 . . . r
′
n−1)N

}
and

p∗ = (N !)np0

(
r′′1 r
′′
2 . . . r

′′
n

r′1r
′
2 . . . r

′
n

)N
+

n∑
k=1

bk + 1.
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Let z0 = z0(p∗) be a point for which inequality (3.6) holds and K0 be such that (3.7)
holds and

M

(
R′

L(z0)
, z0, F

)
= |F (z∗)|, M

(
r′′

L(z0)
, z0, F (J)

)
= |F (J)(z∗J)|

for every J ∈ Zn+, ‖J‖ ≤ N. We apply Cauchy’s inequality

|F (J)(z0)| ≤ J !

(
L(z0)

R′

)J
|F (z∗)| (3.8)

for estimate the difference

|F (J)(z∗J,1, z
∗
J,2, . . . , z

∗
J,n)− F (J)(z01 , z

∗
J,2, . . . , z

∗
J,n)|

=

∣∣∣∣∣
∫ z∗J,1

z01

∂‖J‖+1F

∂zj1+1
1 ∂zj22 . . . ∂zjnn

(ξ, z∗J,2, . . . , z
∗
J,n)dξ

∣∣∣∣∣
≤

∣∣∣∣∣ ∂‖J‖+1F

∂zj1+1
1 ∂zj22 . . . ∂zjnn

(z∗(j1+1,j2,...,jn)
)

∣∣∣∣∣ r′′1
l1(z0)

. (3.9)

Taking into account (z01 , z
∗
J,2, . . . , z

∗
J,n) ∈ Dn[z0, R′′

L(z0) ], for all k ∈ {1, . . . , n},

|z∗J,k − z0k| =
r′′k

lk(z0)
, lk(z01 , z

∗
J,2, . . . , z

∗
J,n) ≤ λ2,k(R′′)lk(z0)

and (3.8) with J = K0, by Theorem 2.1 we have

|F (J)(z01 , z
∗
J,2, . . . , z

∗
J,n)|

≤
J !lj11 (z01 , z

∗
J,2, . . . , z

∗
J,n)

∏n
k=2 l

jk
k (z01 , z

∗
J,2, . . . , z

∗
J,n)

K0!LK0(z0)
p0|F (K0)(z0)|

≤
J !LJ(z0)

∏n
k=2 λ

jk
2,k(R′′)

K0!LK0(z0)
p0K

0!

(
L(z0)

R′

)K0

|F (z∗)|

=
p0J !LJ(z0)

∏n
k=2 λ

jk
2,k(R′′)

(R′)K0 |F (z∗)|. (3.10)

From inequalities (3.9) and (3.10) it follows that∣∣∣∣∣ ∂‖J‖+1F

∂zj1+1
1 ∂zj22 . . . ∂zjnn

(z∗(j1+1,j2,...,jn)
)

∣∣∣∣∣
≥ l1(z0)

r′′1

{
|F (J)(z∗j )| − |F (J)(z01 , z

∗
J,2, . . . , z

∗
J,n)|

}
≥ l1(z01)

r′′1
|F (J)(z∗j )| −

p0J !L(j1+1,j2,...,jn)(z0)
∏n
k=2 λ

jk
2,k(R′′)

r′′1 (R′)K0 |F (z∗)|.

Then

|F (K0)(z∗K0)| ≥ l1(z0)

r′′1

∣∣∣∣∣ ∂‖K
0‖−1f

∂z
k01−1
1 ∂z

k02
2 . . . ∂z

k0n
n

(z∗(k01−1,k02,...,k0n)
)

∣∣∣∣∣
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−
p0(k01 − 1)!k02! . . . k0n!LK

0

(z0)
∏n
i=2 λ

k0i
2,i(R

′′)

r′′1 (R′)K0 |F (z∗)|

≥ l21(z0)

(r′′1 )2

∣∣∣∣∣ ∂‖K
0‖−2f

∂z
k01−2
1 ∂z

k02
2 . . . ∂z

k0n
n

(z∗(k01−2,k02,...,k0n)
)

∣∣∣∣∣
−
p0(k01 − 2)!k02! . . . k0n!LK

0

(z0)
∏n
i=2 λ

k0i
2,i(R

′′)

(r′′1 )2(R′)K0 |F (z∗)|

−
p0(k01 − 1)!k02! . . . k0n!LK

0

(z0)
∏n
i=2 λ

k0i
2,i(r

′′
i )

r′′1 (R′)K0 |F (z∗)|
. . .

≥ l
k01
1 (z0)

(r′′1 )k
0
1

∣∣∣∣∣ ∂‖K
0‖−k01f

∂z
k02
2 . . . ∂z

k0n
n

(z∗(0,k02,...,k0n)
)

∣∣∣∣∣
− p0

(R′)K0 L
K0

(z0)

(
n∏
i=2

λ
k0i
2,i(R

′′)

)
k02! . . . k0n!

k01∑
j1=1

(k01 − j1)!

(r′′1 )j1
|F (z∗)| . . .

≥ l
k01
1 (z0)

(r′′1 )k
0
1

l
k02
2 (z0)

(r′′2 )k
0
2

∣∣∣∣∣∂‖K
0‖−k01−k

0
2f

∂z
k03
3 . . . ∂z

k0n
n

(z∗(0,0,k03,...,k0n)
)

∣∣∣∣∣
− l

k01
1 (z0)p0L

(0,k02,...,k
0
n)(z0)

(r′′1 )k
0
1 (R′)K0

(
n∏
i=3

λ
k0i
2,i(R

′′)

)
k03! . . . k0n!

k02∑
i2=1

(k02 − j2)!

(r′′2 )j2
|F (z∗)|

− p0
(R′)K0 L

K0

(z0)

(
n∏
i=2

λ
k0i
2,i(R

′′)

)
k02! . . . k0n!

k01∑
j1=1

(k01 − j1)!

(r′′1 )j1
|F (z∗)|

. . .

≥
(
L(z0)

R′′

)
|F (z∗0)| − |F (z∗)|

b∑
i=1

b̃i, (3.11)

where in view of the inequalities λ2,i(R
′′) ≥ 1 and R′′ ≥ R′ we have

b̃1 =
p0

(R′)K0 L
K0

(z0)

(
n∏
i=2

λ
k0i
2,i(R

′′)

)
k02! . . . k0n!

k01∑
j1=1

(k01 − j1)!

(r′′1 )j1

=

(
L(z0)

R′′

)K0(
R′′

R′

)K0

p0

(
n∏
i=2

λ
k0i
2,i(R

′′)

)
k02! . . . k0n!

k01∑
j1=1

(k01 − j1)!

(r′′1 )j1
≤
(
L(z0)

R′′

)K0

b1,

b̃2 =
p0

(R′)K0 L
K0

(z0)

( n∏
i=3

λ
k0i
2,i(R

′′)

)
k03! . . . k0n!

(r′′1 )k
0
1

k02∑
j2=1

(k02 − j2)!

(r′′2 )j2
≤
(
L(z0)

R′′

)K0

b2,

. . .
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b̃n−1 =
p0

(R′)K0 L
K0

(z0)λ
k0n
2,n(R′′)

k0n!

(r′′1 )k
0
1 . . . (r′′n−2)k

0
n−2

×

×
k0n−1∑
jn−1=1

(k0n−1 − jn−1)!

(r′′n−1)jn−1
≤
(
L(z0)

R′′

)K0

bn−1,

b̃n =
p0

(R′)K0 L
K0

(z0)
1

(r′′1 )k
0
1 . . . (r′′n−1)k

0
n−1

k0n∑
jn=1

(k0n − jn)!

(r′′n)jn
≤
(
L(z0)

R′′

)K0

bn.

Thus, (3.11) implies that

|F (K0)(z∗K0)| ≥
(
L(z0)

R′′

)K0

|F (z∗)|

 |F (z∗0)|
|F (z∗)|

−
n∑
j=1

bj

 .

But in view of (3.6) and a choice of p∗ we have

|F (z∗0)|
|F (z∗)|

≥ p∗ >
n∑
j=1

bj .

Thus, (3.7) and (3.8) imply

|F (K0)(z∗K0)| ≥
(
L(z0)

R′′

)K0

|F (z∗)|

p∗ −
n∑
j=1

bj


≥
(
L(z0)

R′′

)K0
p∗ −

n∑
j=1

bj

 |F (K0)(z0)|(R′)K0

K0!LK0(z0)

≥
(
r′1 . . . r

′
n

r′′1 . . . r
′′
n

)Np∗ −
n∑
j=1

bj

 |F (K0)(z∗K0)|
p0(n!)n

.

Hence, we have p∗ ≤ p0
( r′1...r′n
r′′1 ...r

′′
n

)N
(N !)n +

∑n
j=1 bj , but this contradicts the choice of

p∗. �

4. Analogue of Theorem of Hayman for analytic in a ball function of
bounded L-index in joint variables

Theorem 4.1. Let L ∈ Q(Bn). An analytic function F in Bn has bounded L-index in
joint variables if and only if there exist p ∈ Z+ and c ∈ R+ such that for each z ∈ Bn

max

{
|F (J)(z)|
LJ(z)

: ‖J‖ = p+ 1

}
≤ c ·max

{
|F (K)(z)|
LK(z)

: ‖K‖ ≤ p
}
. (4.1)

Proof. Let N = N(F,L,Bn) < +∞. The definition of the boundedness of L-index in
joint variables yields the necessity with p = N and c = ((N + 1)!)n.

We prove the sufficiency. For F ≡ 0 theorem is obvious. Thus, we suppose that
F 6≡ 0. Denote β = ( β√

n
, . . . , β√

n
).



492 Andriy Bandura and Oleh Skaskiv

Assume that (4.1) holds, z0 ∈ Bn, z ∈ Dn[z0, β
L(z0) ]. For all J ∈ Zn+, ‖J‖ ≤ p+1,

one has

|F (J)(z)|
LJ(z0)

≤ ΛJ2 (β)
|F (J)(z)|
LJ(z)

≤ c · ΛJ2 (β) max

{
|F (K)(z)|
LK(z)

: ‖K‖ ≤ p
}

≤ c · ΛJ2 (β) max

{
Λ−K1 (2)

|F (K)(z)|
LK(z0)

: ‖K‖ ≤ p
}
≤ BG(z), (4.2)

where B = c ·max{ΛK2 (β) : ‖K‖ = p+ 1}max{Λ−K1 (β) : ‖K‖ ≤ p}, and

G(z) = max

{
|F (K)(z)|
LK(z0)

: ‖K‖ ≤ p
}
.

We choose

z(1) =(z
(1)
1 , . . . , z(1)n )∈Tn(z0,

1

2β
√
nL(z0)

)

and

z(2) =(z
(2)
1 , . . . , z(2)n ) ∈ Tn(z0,

β

L(z0)
)

such that F (z(1)) 6= 0 and

|F (z(2))| = M

(
β

L(z0)
, z0, F

)
6= 0. (4.3)

These points exist, otherwise if F (z) ≡ 0 on skeleton

Tn
(
z0,

1

2β
√
nL(z0)

)
or Tn

(
z0,

β

L(z0)

)
then by the uniqueness theorem F ≡ 0 in Bn. We connect the points z(1) and z(2)

with plane

α =


z2 = k2z1 + c2,
z3 = k3z1 + c3,

. . .
zn = knz1 + cn,

where

ki =
z
(2)
i − z

(1)
i

z
(2)
1 − z(1)1

, ci =
z
(1)
i z

(2)
1 − z(2)i z

(1)
1

z
(2)
1 − z(1)1

, i = 2, . . . , n.

It is easy to check that z(1) ∈ α and z(2) ∈ α. Let G̃(z1) = G(z)|α be a restriction of
the function G onto α.

For every K ∈ Zn+ the function F (K)(z)
∣∣
α

is analytic function of variable z1

and G̃(z
(1)
1 ) = G(z(1))

∣∣
α
6= 0 because F (z(1)) 6= 0. Hence, all zeros of the function

F (K)(z)
∣∣
α

are isolated as zeros of a function of one variable. Thus, zeros of the function

G̃(z1) are isolated too. Therefore, we can choose piecewise analytic curve γ onto α as
following

z = z(t) = (z1(t), k2z1(t) + c2, . . . , knz1(t) + cn), t ∈ [0, 1],
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which connect the points z(1), z(2) and such that G(z(t)) 6= 0 and∫ 1

0

|z′1(t)|dt ≤ 2β√
nl1(z01)

.

For a construction of the curve we connect z
(1)
1 and z

(2)
1 by a line

z∗1(t) = (z
(2)
1 − z(1)1 )t+ z

(1)
1 , t ∈ [0, 1].

The curve γ can cross points z1 at which the function G̃(z1) = 0. The number of such
points m = m(z(1), z(2)) is finite. Let (z∗1,k) be a sequence of these points in ascending

order of the value |z(1)1 − z∗1,k|, k ∈ {1, 2, ...,m}. We choose

r < min
1≤k≤m−1

{|z∗1,k − z∗1,k+1|, |z∗1,1 − z
(1)
1 |, |z∗1,m − z

(2)
1 |,

2β2 − 1

2π
√
nβl1(z0)

}.

Now we construct circles with centers at the points z∗1,k and corresponding radii

r
′

k <
r
2k

such that G̃(z1) 6= 0 for all z1 on the circles. It is possible, because F 6≡ 0.
Every such circle is divided onto two semicircles by the line z∗1(t). The required

piecewise-analytic curve consists with arcs of the constructed semicircles and segments
of line z∗1(t), which connect the arcs in series between themselves or with the points

z
(1)
1 , z

(2)
1 . The length of z1(t) in C (but not z(t) in Cn!) is lesser than

β/
√
n

l1(z0)
+

1

2
√
nβl1(z0)

+ πr ≤ 2β√
nl1(z0)

.

Then ∫ 1

0

|z′s(t)|dt = |ks|
∫ 1

0

|z′1(t)|dt ≤ |z
(2)
s − z(1)s |
|z(2)1 − z(1)1 |

2β√
nl1(z0)

≤ 2β2 + 1

2
√
nβls(z0)

2
√
nβl1(z0)

2β2 − 1

2β√
nl1(z0)

≤ 2β(2β2 + 1)

(2β2 − 1)
√
nls(z0)

, s ∈ {2, . . . , n}.

Hence, ∫ 1

0

n∑
s=1

ls(z
0)|z′s(t)|dt ≤

2β(2β2 + 1)
√
n

2β2 − 1
= S. (4.4)

Since the function z = z(t) is piece-wise analytic on [0, 1], then for arbitrary K ∈ Zn+,
J ∈ Zn+, ‖K‖ ≤ p, either

|F (K)(z(t))|
LK(z0)

≡ |F (J)(z(t))|
LJ(z0)

, (4.5)

or the equality

|F (K)(z(t))|
LK(z0)

=
|F (J)(z(t))|
LJ(z0)

(4.6)

holds only for a finite set of points tk ∈ [0; 1].

Then for function G(z(t)) as maximum of such expressions |F
(J)(z(t))|
LJ (z0)

by all

‖J‖ ≤ p two cases are possible:
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1. In some interval of analyticity of the curve γ the function G(z(t)) identically
equals simultaneously to some derivatives, that is (4.5) holds. It means that

G(z(t)) ≡ |F (J)(z(t))|
LJ (z0)

for some J, ‖J‖ ≤ p. Clearly, the function F (J)(z(t)) is

analytic. Then |F (J)(z(t))| is continuously differentiable function on the in-
terval of analyticity except points where this partial derivative equals zero
|F (j1,j2)(z1(t), z2(t))| = 0. However, there are not the points, because in the
opposite case G(z(t)) = 0. But it contradicts the construction of the curve γ.

2. In some interval of analyticity of the curve γ the function G(z(t)) equals si-
multaneously to some derivatives at a finite number of points tk, that is (4.6)
holds. Then the points tk divide interval of analyticity onto a finite number of
segments, in which of them G(z(t)) equals to one from the partial derivatives,

i. e. G(z(t)) ≡ |F (J)(z(t))|
LJ (z0)

for some J, ‖J‖ ≤ p. As above, in each from these

segments the functions |F (J)(z(t))|, and G(z(t)) are continuously differentiable
except the points tk.

The inequality

d

dt
|f(t)| ≤

∣∣∣∣df(t)

dt

∣∣∣∣
holds for complex-valued functions of real argument outside a countable set of points.
In view of this fact and (4.2) we have

d

dt
G(z(t)) ≤ max

{ 1

LJ(z0)

∣∣∣ d
dt
F (J)(z(t))

∣∣∣ : ‖J‖ ≤ p
}

≤ max
{ n∑
s=1

∣∣∣ ∂‖J‖+1F

∂zj11 . . . ∂zjs+1
s . . . ∂zjnn

(z(t))
∣∣∣ |z′s(t)|
Lj(z0)

: ‖J‖ ≤ p
}

≤ max
{ n∑
s=1

∣∣∣ ∂‖J‖+1F

∂zj11 . . . ∂zjs+1
s . . . ∂zjnn

(z(t))
∣∣∣ ls(z

0)|z′s(t)|
lj11 (z0) . . . lj1+1

s (z0) . . . ljnn (z0)
:

‖J‖ ≤ p
}
≤
( n∑
s=1

ls(z
0)|z′s(t)|

)
max

{ |F (j)(z(t))|
LJ(z0)

: ‖J‖ ≤ p+ 1
}

≤
( n∑
s=1

ls(z
0)|z′s(t)|

)
BG(z(t)).

Therefore, (4.4) yields∣∣∣ ln G(z(2))

G(z(1))

∣∣∣ =
∣∣∣ ∫ 1

0

1

G(z(t))

d

dt
G(z(t))dt

∣∣∣ ≤ B ∫ 1

0

n∑
s=1

ls(z
0)|z′s(t)|dt ≤ S ·B.

Using (4.3), we deduce

M

(
β

L(z0)
, z0, F

)
≤ G(z(2)) ≤ G(z(1))eSB .
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Since z(1) ∈ Tn(z0, 1
2β
√
nL(z0)

), the Cauchy inequality holds

|F (J)(z(1))|
LJ(z0)

≤ J !(2β
√
n)‖J‖M

(
1

2β
√
nL(z0)

, z0, F

)
.

for all J ∈ Zn+. Therefore, for ‖J‖ ≤ p we obtain

G(z(1)) ≤ (p!)n(2β
√
n)pM

(
1

2β
√
nL(z0)

, z0, F

)
,

M

(
β

L(z0)
, z0, F

)
≤ eSB(p!)n(2β

√
n)pM

(
1

2β
√
nL(z0)

, z0, F

)
.

Hence, by Theorem 3.1 the function F has bounded L-index in joint variables. �

The following result was also obtained for other classes of holomorphic functions
in [21, 11, 7].

Theorem 4.2. Let L ∈ Q(Bn). An analytic function F in Bn has bounded L-index in
joint variables if and only if there exist c ∈ (0; +∞) and N ∈ N such that for each
z ∈ Bn the inequality

N∑
‖K‖=0

|F (K)(z)|
K!LK(z)

≥ c
∞∑

‖K‖=N+1

|F (K)(z)|
K!LK(z)

. (4.7)

Proof. Let 1
β < θj < 1, j ∈ {1, . . . , n}, Θ = (θ1, . . . , θn). If the function F has

bounded L-index in joint variables then by Theorem 2.2 F has bounded L̃-index

in joint variables, where L̃ = (l̃1(z), . . . , l̃n(z)), l̃j(z) = θj lj(z), j ∈ {1, . . . , n}. Let

Ñ = N(F, L̃,Bn). Therefore,

max

{
|F (K)(z)|
K!LK(z)

: ‖K‖ ≤ Ñ
}

= max

{
ΘK |F (K)(z)|
K!L̃K(z)

: ‖K‖ ≤ Ñ

}

≥
n∏
s=1

θÑs max

{
|F (K)(z)|
K!L̃K(z)

: ‖K‖≤Ñ
}
≥

n∏
s=1

θÑs
|F (J)(z)|
J !L̃J(z)

=

n∏
s=1

θÑ−jss

|F (J)(z)|
J !LJ(z)

for all J ≥ 0 and

∞∑
‖J‖=Ñ+1

|F (J)(z)|
J !Lj(z)

≤ max

{
|F (K)(z)|
K!LK(z)

: ‖K‖ ≤ Ñ
} ∞∑
‖J‖=Ñ+1

θjs−Ñs

=

n∏
i=1

θs
1− θs

max

{
|F (K)(z)|
K!LK(z)

: ‖K‖ ≤ Ñ
}
≤

n∏
i=1

θs
1− θs

Ñ∑
‖K‖=0

|F (K)(z)|
K!LK(z)

.

Hence, we obtain (4.7) with N = Ñ and

c =

n∏
i=1

θs
1− θs

.
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On the contrary, inequality (4.7) implies

max

{
|F (J)(z)|
J !LJ(z)

: ‖J‖ = N + 1

}
≤

∞∑
‖K‖=N+1

|F (K)(z)|
K!LK(z)

≤ 1

c

N∑
‖K‖=0

|F (K)(z)|
K!LK(z)

≤ 1

c

N∑
i=0

Cin+i−1 max

{
|F (K)(z)|
K!LK(z)

: ‖K‖ ≤ N
}

and by Theorem 4.1 F is of bounded L-index in joint variables. �

5. Some application for PDE: a scheme

Here we present a scheme of application of Hayman’s Theorem to PDE. This is
also appilcable in a more general situation.

Let us consider the following system of partial differential equations:{
F (2,0)(z1, z2) = 2πz2 tan(πz1z2)F (1,0)(z1, z2),

F (0,2)(z1, z2) = 2πz1 tan(πz1z2)F (0,1)(z1, z2).

Differentiate in variables z1 and z2 we deduce

F (3,0)(z1, z2) =
2π2z22

cos2(πz1z2)
F (1,0)(z1, z2) + 2πz2 tan(πz1z2)F (2,0)(z1, z2),

F (2,1)(z1, z2) = 2π tan(πz1z2)F (1,0)(z1, z2) + 2π2z1z2
cos2(πz1z2)

F (1,0)(z1, z2)+

+2πz2 tan(πz1z2)F (1,1)(z1, z2),

F (1,2)(z1, z2) = 2π tan(πz1z2)F (0,1)(z1, z2) + 2π2z1z2
cos2(πz1z2)

F (1,0)(z1, z2)+

+2πz1 tan(πz1z2)F (1,1)(z1, z2),

F (0,3)(z1, z2) =
2π2z21

cos2(πz1z2)
F (1,0)(z1, z2) + 2πz1 tan(πz1z2)F (2,0)(z1, z2),

(5.1)

Let

L(z1, z2) = (l1(z1, z2), l2(z1, z2)) =

(
|z2|+ 1

(1− |z|)| 12 − z1z2|
,

|z1|+ 1

(1− |z|)| 12 − z1z2|

)
,

where z = (z1, z2), |z| =
√
|z1|2 + |z2|2. Now we will estimate all third order partial

derivatives of the function F (z1, z2) by its first and second order partial derivatives.
From the first equation of system (5.1) we have for all z ∈ B2 :

|F (3,0)(z1, z2)|
l31(z1, z2)

≤ 2π2|z2|2|F (1,0)(z1, z2)|
| cos2(πz1z2)|l31(z1, z2)

+ 2π|z2 tan(πz1z2)| |F
(2,0)(z1, z2)|
l31(z1, z2)

≤
(

2π2|z2|2

| cos2(πz1z2)|l21(z1, z2)
+

2π|z2 tan(πz1z2)|
l1(z1, z2)

)
max
j∈{1,2}

{
|F (j,0)(z1, z2)|
lj1(z1, z2)

}

≤
(

2π2 (1− |z|)2| 12 − z1z2|
2

| cos2(πz1z2)|
+ 2π| tan(πz1z2)|(1− |z|)

∣∣∣∣12 − z1z2
∣∣∣∣)
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×max

{
|F (j,0)(z1, z2)|
lj1(z1, z2)

: j ∈ {1, 2}

}

=

(
(1− |z|)2|π2 − πz1z2|

2

| sin2(π2 − πz1z2)|
+ 2| sin(πz1z2)|(1− |z|)

|π2 − πz1z2|
| sin(π2 − πz1z2)|

)

×max

{
|F (j,0)(z1, z2)|
lj1(z1, z2)

: j ∈ {1, 2}

}
≤C max

{
|F (j,0)(z1, z2)|
lj1(z1, z2)

: j ∈ {1, 2}

}
.

Similarly, the second equation of system (5.1) yields

|F (2,1)(z1, z2)|
l21(z1, z2)l2(z1, z2)

≤
(

2π| tan(πz1z2)|
l1(z1, z2)l2(z1, z2)

+
2π2|z1z2|

| cos2(πz1z2)|l1(z1, z2)l2(z1, z2)

)
×|F

(1,0)(z1, z2)|
l1(z1, z2)

+
2π|z2 tan(πz1z2)|

l1(z1, z2)

|F (1,1)(z1, z2)|
l1(z1, z2)l2(z1, z2)

≤
(

2π| sin(πz1z2)|(1− |z|)2| 12 − z1z2|
2

| cos(πz1z2)|

+
2π2(1− |z|)2| 12 − z1z2|

2

| cos2(πz1z2)|
+

2π| sin(πz1z2)|(1− |z|)| 12 − z1z2|
| cos(πz1z2)|

)
×max

{
|F (1,j)(z1, z2)|

l1(z1, z2)lj2(z1, z2)
: j ∈ {0, 1}

}

≤

(
2π| sin(πz1z2)|(1− |z|)2| 12 − z1z2|

2

| sin(π2 − πz1z2)|
+

2(1− |z|)2|π2 − πz1z2|
2

| sin2(π2 − πz1z2)|

+
2| sin(πz1z2)|(1− |z|)|π2 − πz1z2|

| sin(π2 − πz1z2)|

)
max

{
|F (1,j)(z1, z2)|

l1(z1, z2)lj2(z1, z2)
: j ∈ {0, 1}

}
≤ C max

{
|F (1,j)(z1, z2)|

l1(z1, z2)lj2(z1, z2)
: j ∈ {0, 1}

}
.

By analogy, we can prove similar estimates for the third and the fourth equation of
system (5.1). Combining all estimates, one has

max

{
|F (k,3−k)(z1, z2)|

lk1(z1, z2)l3−k2 (z1, z2)
: k ∈ {0, 1, 2, 3}

}
≤ C max

{
|F (k,j)(z1, z2)|

lk1(z1, z2)lj2(z1, z2)
: 0 ≤ k + j ≤ 2

}
.

Hence, by Theorem 4.1 every analytic solution in B2 of system (5.1) has bounded
L-index in joint variables with

L(z1, z2) =

(
|z2|+ 1

(1− |z|)| 12 − z1z2|
,

|z1|+ 1

(1− |z|)| 12 − z1z2|

)
.
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Particularly, the function F (z1, z2) = tan(πz1z2) has the bounded L-index in joint
variables. Indeed, it is easy to see that the function F is analytic solution in B2 of
system (5.1).

6. Boundedness of lj-index in every direction 1j

This section shows another application of Theorem 3.1. The boundedness of lj-
index of a function F in every variable zj , generally speaking, does not imply the
boundedness of L-index in joint variables (see example in [4]). But, if F has bounded
lj-index in every direction 1j , j ∈ {1, . . . , n}, then F is a function of bounded L-index
in joint variables.

Let b = (b1, . . . , bn) ∈ Cn \ {0} be a given direction, L : Bn → R+ be a

continuous function such that for all z ∈ Bn L(z) > β|b|
1−|z| , β > 1.

For η ∈ [0, β], z ∈ Bn, we define
λb1 (z, η, L) = inf{L(z + tb)/L(z) : |t| ≤ η

L(z)},
λb1 (η, L) = inf{λb1 (z, η, L) : z ∈ Bn},
λb2 (z, η, L) = sup{L(z + tb)/L(z) : |t| ≤ η

L(z)},
λb2 (η, L)= sup{λb2 (z, η, L) : z ∈ Bn}.

By Qb,β(Bn) we denote the class of all functions L satisfying ∀η ∈ [0, β],

0 < λb1 (η, L) ≤ λb2 (η, L) < +∞.

Analytic in Bn function F (z) is called a function of bounded L-index in the
direction b, if there exists m0 ∈ Z+ that for every m ∈ Z+ and for every z ∈ Bn the
following inequality is valid

1

m!Lm(z)

∣∣∣∣∂mF (z)

∂bm

∣∣∣∣ ≤ max

{
1

k!Lk(z)

∣∣∣∣∂kF (z)

∂bk

∣∣∣∣ : 0 ≤ k ≤ m0

}
, (6.1)

where

∂0F (z)

∂b0
= F (z),

∂F (z)

∂b
=

n∑
j=1

∂F (z)

∂zj
bj , b〉,

∂kF (z)

∂bk
=

∂

∂b

(∂k−1F (z)

∂bk−1

)
, k ≥ 2.

The least such integer m0 is called the L-index in the direction b of the analytic
function F and is denoted by Nb(F,L) = m0. In the case n = 1, b = 1 and L = l we
obtain a definition of analytic in an unit disc function of bounded l-index [22, 21].

We need the following theorem.

Theorem 6.1 ([3]). Let β > 1, L ∈ Qb,β(Bn). Analytic in Bn function F (z) is of
bounded L-index in the direction b ∈ Cn if and only if for any r1 and any r2 with
0 < r1 < r2 ≤ β, there exists number P1 = P1(r1, r2) ≥ 1 such that for each z0 ∈ Bn

max
{
|F (z0 + tb)| : |t| = r2

L(z0)

}
≤ P1 max

{
|F (z0 + tb)| : |t| = r1

L(z0)

}
. (6.2)

It is easy to see that if L(z) = (l1(z), . . . , ln(z)) and L ∈ Q(Bn), then

lj ∈ Q1j ,β/
√
n(Bn), j ∈ {1, . . . , n}.
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Theorem 6.2. Let L(z) = (l1(z), . . . , ln(z)), L ∈ Q(Bn). If an analytic in Bn function
F has bounded lj-index in the direction 1j for every j ∈ {1, . . . , n}, then F is of
bounded L-index in joint variables.

Proof. Let F be an analytic in Bn function of bounded lj-index in every direction 1j .

Then by Theorem 6.1 for every j ∈ {1, . . . , n} and arbitrary 0 < r′j < 1 < r′′j ≤
β√
n

there exists a number pj = pj(r
′, r′′) such that for every

(z1, . . . , zj−1, z
0
j , zj+1, . . . , zn) ∈ Bn,

max

{
|F (z)| : |zj − z0j | =

r′′j
lj(z1, . . . , zj−1, z0j , zj+1, . . . , zn)

}
≤ pj(r′j , r′′j )

×max

{
|F (z)| : |zj − z0j | =

r′j
lj(z1, . . . , zj−1, z0j , zj+1, . . . , zn)

}
. (6.3)

Obviously, if for every j ∈ {1, . . . , n} lj ∈ Q1j ,β/
√
n(Bn) then L ∈ Q(Bn). Let z0 be

an arbitrary point in Bn, and a point z∗ ∈ Tn(z0, R′′

L(z0) ) is such that

M

(
R′′

L(z0)
, z0, F

)
= |F (z∗)|.

We choose R′′ and R′ such that 1 < R′′ ≤ ( β√
n
, . . . , β√

n
) and R′ < Λ1(R′′). Then

inequality (6.3) implies that

M

(
R′′

L(z0)
, z0, F

)
≤ max

{
|F (z1, z

∗
2 , z
∗
3 , . . . , z

∗
n)| : |z1 − z01 | =

r′′1
l1(z0)

}
=max

{
|F (z1, z

∗
2 , . . . , z

∗
n)| : |z1 − z01 | =

r′′1
l1(z01 , z

∗
2 , . . . , z

∗
n)

l1(z01 , z
∗
2 , . . . , z

∗
n)

l1(z0)

}
≤ max

{
|F (z1, z

∗
2 , . . . , z

∗
n)| : |z1 − z01 | =

r′′1λ2,1(R′′)

l1(z01 , z
∗
2 , . . . , z

∗
n)

}
≤p1(r′1, r

′′
1λ2,1(R′′))max

{
|F (z1, z

∗
2 , . . . , z

∗
n)| : |z1 − z01 | =

r′1
l1(z01 , z

∗
2 , . . . , z

∗
n)

}
= p1(r′1, r

′′
1λ2,1(R′′))

×max

{
|F (z1, z

∗
2 , . . . , z

∗
n)| : |z1 − z01 | =

r′1
l1(z0)

l1(z0)

l1(z01 , z
∗
2 , . . . , z

∗
n)

}
≤p1(r′1, r

′′
1λ2,1(R′′))max

{
|F (z1, z

∗
2 , . . . , z

∗
n)| : |z1 − z01 | =

r′1
λ1,1(R′′)l1(z0)

}
= p1(r′1, r

′′
1λ2,1(R′′))|F (z∗∗1 , z∗2 , . . . , z

∗
n)| ≤ p1(r′1, r

′′
1λ2,1(R′′))

×max

{
|F (z∗∗1 , z2, z

∗
3 , . . . , z

∗
n)| : |z2 − z02 | =

r′′2
l2(z0)

}
= p1(r′1, r

′′
1λ2,1(R′′))

×max

{
|F (z∗∗1 , z2, . . . , z

∗
n)| : |z2 − z02 | =

r′′2
l2(z∗∗1 , z02 , . . . , z

∗
n)

l2(z∗∗1 , z02 , . . . , z
∗
n)

l2(z0)

}
≤p1(r′1, r′′1λ2,1(R′′)) max

{
|F (z∗∗1 , z2, . . . , z

∗
n)| : |z2−z02 |=

r′′2λ2,2(R′′)

l2(z∗∗1 , z02 , . . . , z
∗
n)

}
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≤
2∏
j=1

pj(r
′
j , r
′′
j λ2,j(R

′′))

×max

{
|F (z∗∗1 , z2, . . . , z

∗
n)| : |z2 − z02 | =

r′2
l2(z∗∗1 , z02 , . . . , z

∗
n)

}
≤

2∏
j=1

pj(r
′
j , r
′′
j λ2,j(R

′′))max

{
|F (z∗∗1 , z2, . . . , z

∗
n)| : |z2−z02 |=

r′2
λ1,2(R′′)l2(z0)

}

=

2∏
j=1

pj(r
′
j , r
′′
j λ2,j(R

′′))|F (z∗∗1 , z∗∗2 , z∗3 , . . . , z
∗
n)|≤ . . .≤

n∏
j=1

pj(r
′
j , r
′′
j λ2,j(R

′′))

×max

{
|F (z1, z2, . . . , zn)| : |zj − z0j | =

r′j
λ1,j(R′′)lj(z0)

, j ∈ {1, . . . , n}
}

=

n∏
j=1

pj(r
′
j , r
′′
j λ2,j(R

′′))M

(
R′

Λ1(R′′)L(z0)
, z0, F

)
.

Hence, by Theorem 3.1 the function F is of bounded L-index in joint variables. �
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Existence and topological structure of solution
sets for ϕ-Laplacian impulsive stochastic
differential systems

Tayeb Blouhi and Mohamed Ferhat

Abstract. In this article, we present results on the existence and the topological
structure of the solution set for initial-value problems relating to the first-order
impulsive differential equation with infinite Brownian motions are proved. The
approach is based on nonlinear alternative Leray-Schauder type theorem in gen-
eralized Banach spaces.
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47H10.

Keywords: φ-Laplacian stochastic differential equation, Wiener process, impulsive
differential equations, matrix convergent to zero, generalized Banach space, fixed
point.

1. Introduction

Differential equations with impulses were considered for the first time by Milman
and Myshkis [18] and then followed by a period of active research which culminated
with the monograph by Halanay and Wexler [13]. Many phenomena and evolution
processes in physics, chemical technology, population dynamics, and natural sciences
may change state abruptly or be subject to short-term perturbations. These perturba-
tions may be seen as impulses. Impulsive problems arise also in various applications in
communications, mechanics (jump discontinuities in velocity), electrical engineering,
medicine and biology fields. A comprehensive introduction to the basic theory is well
developed in the monographs by Benchohra et al [3], Graef et al [11], Laskshmikan-
tham et al. [1], Samoilenko and Perestyuk [26].For instance, in the periodic treatment
of some diseases, impulses correspond to the administration of a drug treatment or a
missing product.In environmental sciences, impulses correspond to seasonal changes
of the water level of artificial reservoirs.
Random differential and integral equations play an important role in characterizing
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many social, physical, biological and engineering problems; see for instance the mono-
graph of Da Prato and Zabczyk [7], Gard [9], Gikhman and Skorokhod [10], Sobzyk
[27] and Tsokos and Padgett [28]. For example, a stochastic model for drug distri-
bution in a biological system was described by Tsokos and Padgett [28] to a closed
system with a simplified heat, one organ or capillary bed, and re-circulation of a blood
with a constant rate of flow, where the heart is considered as a mixing chamber of
constant volume. For the basic theory concerning stochastic differential equations see
the monographs of Wu et al [30], Bharucha-Reid [4], Mao[16], Øksendal, [20], Tsokos
and Padgett [28], Da Prato and Zabczyk [7].
In this paper, we study the existence theory for initial-value problems with impulse
effects.

(φ(x′(t)))′ = f1(t, x(t), y(t))dt

+

∞∑
l=1

σ1
l (t, x(t), y(t))dW l(t), t ∈ [0, T ], t 6= tk,

(φ(y′(t)))′ = f2(t, x(t), y(t))dt

+

∞∑
l=1

σ2
l (t, x(t), y(t))dW l(t), t ∈ [0, T ], t 6= tk,

∆x(t) = Ik(x(tk)), ∆x′(t) = I1k(x′(tk)), t = tk, k = 1, 2, . . . ,m,

∆y(t) = Ik(y(tk)), ∆y′(t) = I
2

k(y′(tk)), t = tk, k = 1, 2, . . . ,m,

x(0) = A0, y(0) = B0,

x′(0) = A1, y′(0) = B1,

(1.1)

where 0 = t0 < t1 < . . . < tm < tm+1 = T, J := [0, T ]. f1l , f
2
l : J × R2 → R is a

given function, σ1
l , σ

2
l : J ×R2 → R is a given function and W l is an infinite sequence

of independent standard Brownian motions, l = 1, 2, . . . and φ : R → R is a suitable

monotone homeomorphism, I1k , I
1

k, I
2

k, I
2
k ∈ C(R,R), (k = 1, 2, . . . ,m) and Aj , Bj ∈ R

for each j = 0, 1, ∆x|t=tk = x(t+k ) − x(t−k ),∆y|t=tk = y(t+k ) − y(t−k ) and ∆x′|t=tk =

x′(t+k )−x′(t−k ),∆y′|t=tk = y′(t+k )− y′(t−k ). The notations y(t+k ) = lim
h→0+

y(tk +h) and

y(t−k ) = lim
h→0+

y(tk − h) stand for the right and the left limits of the function y at

t = tk, respectively. Set fi(., x, y) = (f i1(., x, y), f i2(., x, y), . . .),

‖fi(., x, y)‖ =
(∑∞

l=1(f il )
2(., x, y)

) 1
2

,
(1.2)

where i = 1, 2, fi(., x, y) ∈ l2 for all x ∈ R .
This paper is organized as follows: In Section 2, we introduce all the back- ground
material used in this paper such as stochastic calculus. In Section 3, to provide some
existence results and to establish the compactness of solution sets to the above prob-
lems are quoted.
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2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.
Let (Ω,F ,P) be a complete probability space with a filtration (F = Ft)t≥0 satisfying
the usual conditions (i.e. right continuous and F0 containing all P-null sets). Assume
W (t) is an infinite sequence of independent standard Brownian motions, defined on
(Ω,F ,P) that is, W (t) = (W 1(t),W 2(t), . . .)T . An R-valued random variable is an
F-measurable function x(t) : Ω→ R and the collection of random variables

S = {x(t, ω) : Ω→ R| t ∈ J}

is called a stochastic process. Generally, we write x(t) instead of x(t, ω).

Definition 2.1. An F-adapted process X on [0, T ] × Ω is elementary processes if for
a partition φ = {t = 0 < t1 < . . . < tn = T} and (Fti)-measurable random variables
(Xti)i<n, Xt satisfies

Xt(ω) =

n−1∑
i=0

Xi(ω)χ[ti,ti+1)(t), for 0 ≤ t ≤ T, ω ∈ Ω.

The Itô integral of the simple process X is defined as∫ T

0

X(s)dW l(s) =

n−1∑
i=0

Xl(ti)(W
l(ti+1)−W l(ti)), (2.1)

whenever Xti ∈ L2(Fti) for all i ≤ n.

The following result is one of the elementary properties of square-integrable
stochastic processes [20, 16].

Lemma 2.2. (Itô Isometry for Elementary Processes) Let (Xl)l∈N be a sequences of
elementary processes. Assume that∫ T

0

E|X(s)|2ds <∞,

where |X|2 =

( ∞∑
l=1

X2
l

)
. Then

E

( ∞∑
l=1

∫ T

0

Xl(s)dW
l(s)

)2

= E

( ∞∑
l=1

∫ T

0

X2
l (s)ds

)
. (2.2)

Remark 2.3. For a square integrable stochastic process X on [0, T ], its Itô integral is
defined by ∫ T

0

X(s)dW (s) = lim
n→∞

∫ T

0

Xn(s)dW (s),

taking the limit in L2, with Xn is defined in definition 2.1. Then the Itô isometry
holds for all Itô-integrable X.
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The next result is known as the Burholder-Davis-Gundy inequalities. It was
first proved for discrete martingales and p > 0 by Burkholder [5] in 1966. In 1968,
Millar [17] extended the result to continuous martingales. In 1970, Davis [8] extended
the result for discrete martingales to p = 1. The extension to p > 0 was obtained
independently by Burkholder and Gundy [6] in 1970 and Novikov [19] in 1971.

Theorem 2.4. [23] For each p > 0 there exist constants cp, Cp ∈ (0,∞), such that for

any progressive process x with the property that for some t ∈ [0,∞),
∫ t
0
X2
sds <∞ a.s,

we have

cpE

(∫ t

0

X2
sds

) p
2

≤ E

(
sup
s∈[0,t]

∫ t

0

XsdW (s)

)p
≤ CpE

(∫ t

0

X2
sds

) p
2

. (2.3)

2.1. Some results on fixed point theorems and set-valued analysis

The classical Banach contraction principle was extended for contractive maps
on spaces endowed with vector-valued metric space by Perov [21] in 1964 and Precup
[22].
For x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we mean xi ≤ yi for all
i = 1, . . . , n.
Also |x| = (|x1|, . . . , |xn|) and max(x, y) = max(max(x1, y1), . . . ,max(xn, yn)).
If c ∈ R, then x ≤ c means xi ≤ c for each i = 1, . . . , n.

Definition 2.5. Let X be a nonempty set. A vector-valued metric on X is a map
d : X ×X → Rn with the following properties:

(i) d(u, v) ≥ 0 for all u, v ∈ X; if d(u, v) = 0 then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.
The pair (X, d) is said to be a generalized metric space.

For r = (r1, . . . , rn) ∈ Rn+, we will denote by

B(x0, r) = {x ∈ X : d(x0, x) < r},
the open ball centered in x0 with radius r and

B(x0, r) = {x ∈ X : d(x0, x) ≤ r}
the closed ball centered in x0 with radius r. We mention that for generalized metric
space, the notation of open subset, closed set, convergence, Cauchy sequence and
completeness are similar to those in usual metric spaces.

Definition 2.6. A generalized metric space (X, d), where

d(x, y) :=

 d1(x, y)
· · ·

dn(x, y)

 ,

is complete if (X, di) is a complete metric space for every i = 1, . . . , n.

Definition 2.7. The map f : J ×X → X is said to be L2-Caratheodory if

i) t 7→ f(t, u) is measurable for each u ∈ X;
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ii) u 7→ f(t, u) is continuous for almost all t ∈ J ;
iii) For each q > 0, there exists αq ∈ L1(J,R+) such that

E|f(t, u)|2X ≤ αq , for all u ∈ X such that E|u|2X ≤ q and for a.e. t ∈ J.

Lemma 2.8 (Grönwall-Bihari [2]). Let I = [0, b] and let u, g : I → R be positive con-
tinuous functions. Assume there exist c > 0 and a continuous nondecreasing function
h : [0,∞)→ (0,+∞) such that

u(t) ≤ c+ g(s)h(u(s))ds, ∀t ∈ I.

Then

u(t) ≤ H−1
(∫ t

p

g(s)ds
)
, ∀t ∈ I,

provided ∫ +∞

c

dy

h(y)
>

∫ q

p

g(s)ds,

where H−1 refers to inverse of the function H(u) =
∫ u
c

dy
h(y) for u ≥ c.

In the paper [14], the case of a single system of differential equations was analyzed
based on the technique of applying the nonlinear alternative of Leray-Schauder type.
In the present paper we extend these results to the more general case of coupled
stochastic differential systems with infinite Brownian motions, and we will apply a
different technique to obtain our results.
Next, we quote the version of nonlinear alternative Leary-Schauder type theorem in
generalized Banach space[29].

Theorem 2.9. Let C ⊂ E be a closed convex subset and U ⊂ C a bounded open neigh-
borhood of zero (with respect to topology of C). If N : U → E is compact continuous
then

i) Either N has a fixed point in U, or
ii) There exists x ∈ ∂U such that x = λN(x) for some λ ∈ (0, 1).

3. Main results

Let Jk = (tk, tk+1], k = 1, 2, . . . ,m. In order to define a solution for Problem
(1.1), consider the following space of piece-wise continuous functions.

Let us introduce the spaces

H2([0, T ];L2(Ω,R)) = {x : J → L2(Ω,R) , x |(tk,tk+1]∈ C((tk, tk+1], L2(Ω,R)),

k = 1, 2, ..,m and there exist x(t+k ) for k = 1, 2, ..,m},
and

H ′2([0, T ];L2(Ω,R)) = {x : J → L2(Ω,R) , x |(tk,tk+1]∈ C
1((tk, tk+1], L2(Ω,R)),

k = 1, 2, ..,m and there exist x(t+k ) for k = 1, 2, ..,m}.
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It is clear that H2([0, T ];L2(Ω,R)) endowed with the norm

‖x‖H2
= sup
s∈[0,T ]

(E|x(s, .)|2)
1
2 .

It is easy to see that H ′2 is a Banach space with the norm ‖x‖H′
2

= ‖x‖H2
+ ‖x′‖H2

.
Finally, let the space

PC = {x : [0, T ]→ L2(Ω,R) andx |J∈ H ′2 such that

sup
t∈[0,T ]

E|x(t, .)|2 <∞ almost surely},

endowed with the norm

‖x‖PC = sup
s∈[0,T ]

(E|x(s, .)|2)
1
2 .

It is not difficult to check that PC is a Banach space with norm ‖ · ‖PC .
Let us now prove the existence and uniqueness of solutions to our problem which

will be obtained by applying the Leary-Schauder fixed point theorem. To this end we
first need to introduce the following hypotheses:

(H1) f i, σi : [0, T ]× R× R→ R is an Carathéodory function and
E|φ−1(X)|2 ≤ φ−1(E|X|2) with X ∈ R, Ik, Īk ∈ C(R,R).

(H2) There exist constants ai, bi, ci ∈ R+ such that each

|f i(t, x, y)|2 ≤ ai|x|2 + bi|y|2 + ci, i = 1, 2.

for all x, y ∈ R, and a.e. t ∈ J.
(H3) There exist constants αi ∈ R+ and βi, ci ∈ R+ such that

‖σi(t, x, y)‖2 ≤ αi|x|2 + βi|y|2 + ci, i = 1, 2

for all x, y ∈ R, and a.e. t ∈ J.

Theorem 3.1. Assume that (H1)-(H3) hold. Then, problem (1.1) has at least one
solution and the solution set

Sc = {(x, y) ∈ PC × PC : (x, y) is a solution of (1.1)}

is compact.

Proof. The proof involves several steps.
Step 1. Consider the problem

(φ(x′(t)))′ = f1(t, x(t), y(t))dt+

∞∑
l=1

σ1
l (t, x(t)), y(t))dW l(t), t ∈ [0, t1],

(φ(y′(t)))′ = f2(t, x(t), y(t))dt+

∞∑
l=1

σ2
l (t, x(t)), y(t))dW l(t), t ∈ [0, t1],

x(0) = A0 , y(0) = B0,
x′(0) = A1 , y′(0) = B1.

(3.1)

Let

Ĉt0 = {x : [0, t1]→ L2(Ω,R) , x |[0,t1]∈ C
1([0, t1], L2(Ω,R)), k = 1, 2, ..,m,
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and there exists

x(t+1 ) for k = 1, 2, ..,m},

with

Ct0 = {x : [0, t1]→ L2(Ω,R) andx |[0,t1]∈ Ĉt0 such that

sup
t∈[0,t1]

E|x(t, .)|2 <∞ almost surely},

Consider the operator

P 0 : Ct0 × Ct0 → Ct0 × Ct0
defined by

P 0(x, y) = (P 0
1 (x, y), P 0

2 (x, y)), (x, y) ∈ Ct0 × Ct0
where

P 0
1 (x, y) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

P 0
2 (x, y) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

(3.2)
Clearly, the fixed points of P 0 = (P 0

1 , P
0
2 ) are solutions of the problem (3.1).

To apply the nonlinear alternative of Leray-Schauder type, we first show that P 0 is
completely continuous. The proof will be given in several steps.

Claim 1. P 0 sends bounded sets into bounded sets in Ct0 × Ct0 . Indeed, it is enough
to show that for any q > 0, there exists a positive constant κ such that for each

(x, y) ∈ Bq = {(x, y) ∈ Ct0 × Ct0 : sup
t∈[0,t1]

E|x(t, ·)|2 ≤ q, sup
t∈[0,t1]

E|x(t, ·)|2 ≤ q},

we have

‖P 0(x, y)‖ ≤ κ = (κ1, κ2).

Then for each t ∈ [0, t1], we have

E|P 0
1 (x, y)|2 ≤ 2E|A0|2 + 2

∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds
∣∣∣2.
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From Lemma 2.4, we obtain

E
∣∣∣φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr +

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

∣∣∣2
≤ 3|φ(A1)|2X + 3t1

∫ s

0

(a1|x(r)|2X + b1|y(r)|2 + c1)dr

+3C2

∫ s

0

(α1|x(r)|2 + β1|y(r)|2 + c1)dr,

it follows that

E
∣∣∣φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr +

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW (r)

∣∣∣2 ∈ B(0, l1),

where

l1 = 3E|φ(A1)|2 + 3t1

∫ s

0

(a1E|x(r)|2 + b1E|y(r)|2 + c1)dr

+3C2

∫ s

0

(α1E|x(r)|2 + β1E|y(r)|2 + c1)dr.

Since φ−1 is continuous,

sup
η1∈B(0,l1)

|φ−1(η1)| <∞.

Thus

E|P 0
1 (x, y)|2 ≤ 2E|A0|2 + 2t1 sup

η1∈B(0,l1)

|φ−1(η1)| := κ1.

Similarly,

E|P 0
2 (x, y)|2 ≤ 2E|B0|2 + 2t1 sup

η2∈B(0,l2)

|φ−1(η2)| := κ2,

where

l2 = 3E|φ(B1)|2 + 3t1

∫ s

0

(a2E|x(r)|2 + b2E|y(r)|2 + c2)dr

+3C2

∫ s

0

(α2E|x(r)|2 + β2E|y(r)|2 + c2)dr.

Since φ−1 is continuous,

sup
η1∈B(0,l1)

|φ−1(η1)| <∞.
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Claim 2. P 0 maps bounded sets into equicontinuous sets. Let l1, l2 ∈ [0, t1], l1 < l2
and Bq be a bounded set of Ct0 × Ct0 as in Claim 1. Let (x, y) ∈ Bq. Then

E|(P 0
1 (x, y))′(t)|2 = E

∣∣∣φ−1(φ(A1) +

∫ t

0

f1(s, x(s), y(s))dr

+

∞∑
l=1

∫ t

0

σ1
l (s, x(s), y(s))dW l(s)

)
− φ−1(φ(A1))

∣∣∣2
≤ E

∣∣∣φ−1(φ(A1) +

∫ t

0

f1(s, x(s), y(s))dr

+

∞∑
l=1

∫ t

0

σ1
l (s, x(s), y(s))dW l(s)

)∣∣∣2 + E
∣∣∣A1

∣∣∣2
≤ sup
η1∈B(0,l1)

|φ−1(η1)|+ E|A1| := r′.

Using the mean value theorem, we obtain

E|(P 0
1 (x, y))(l2)− (P 0

1 (x, y))(l1)| = E|(P 0
1 (x, y))′(ξ, ξ)(l2 − l1)| ≤ r′|l2 − l1|.

As l2 → l1 the right-hand side of the above inequality tends to zero.
Similarly,

E|(P 0
2 (x, y))′(t)|2X = E

∣∣∣φ−1(φ(B1) +

∫ t

0

f2(s, x(s), y(s))dr

+

∞∑
l=1

∫ t

0

σ2
l (s, x(s), y(s))dW l(s)

)
− φ−1(φ(B1))

∣∣∣2
≤
∣∣∣φ−1(φ(B1) +

∫ t

0

f2(s, x(s), y(s))dr

+

∞∑
l=1

∫ t

0

σ2
l (s, x(s), y(s))dW l(s)

)∣∣∣2 +
∣∣∣B1

∣∣∣2
≤ sup
η2∈B(0,l2)

|φ−1(η2)|+ |B1| := r′.

Using the mean value theorem, we obtain

E|(P 0
2 (x, y))(l2)− (P 0

2 (x, y))(l1)| = E|(P 0
2 (x, y))′(ξ, ξ)(l2 − l1)| ≤ r′|l2 − l1|.

As l2 → l1 the right-hand side of the above inequality tends to zero.
Claim 3. P 0 is continuous. Let (xn, yn)n∈N be a sequence such that (xn, yn)→ (x, y)
in Ct0 × Ct0 . Then there is an integer q such that

sup
t∈[0,t1]

E|xn(t, ·)|2 ≤ q, sup
t∈[0,t1]

E|yn(t, ·)|2 ≤ q ≤ q for all n ∈ N

and

sup
t∈[0,t1]

E|x(t, ·)|2 ≤ q, sup
t∈[0,t1]

E|y(t, ·)|2 ≤ q, (xn, yn) ∈ Bq and (x, y) ∈ Bq.
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Then for each t ∈ [0, t1], we have

E|P 0
1 (xn, yn)− P 0

1 (x, y)|2X ≤
∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
−φ−1

(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr)

+

∞∑
l=1

∫ s

0

σ1(r, x(r), y(r))dW l(r)
)∣∣∣2ds.

Using the dominated convergence theorem, we have

E
∣∣∣φ(A1) +

∫ s

0

f1(r, xn(r), yn(r))dr +

∞∑
l=1

∫ s

0

σ1(r, xn(r), yn(r))dW l(r),

−φ(A1)−
∫ s

0

f(r, x(r), y(r))dr −
∞∑
l=1

∫ s

0

σ1(r, x(r), y(r))dW l(r)
∣∣∣2
X
→ 0 as n→∞,

since φ−1 is continuous. Then using the dominated convergence theorem, we have

sup
t∈[0,t1]

E|P 0
1 (xn, yn)− P 0

1 (x, y)|2

≤
∫ t1

0

E|φ−1[φ(B) +

∫ s

0

f1(r, xn, yn)dr +

∞∑
l=1

∫ s

0

σ1(r, xn(r), yn(r))dW l(r)]

− φ−1[φ(B) +

∫ s

0

f1(r, x, y)dr +

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)]2ds→ 0,

as n→∞. Thus P 0
1 is continuous.

Similarly,

sup
t∈[0,t1]

E|P 0
2 (xn, yn)− P 0

2 (x, y)|2

≤
∫ t1

0

E|φ−1[φ(B) +

∫ s

0

f2(r, xn, yn)dr +

∞∑
l=1

∫ s

0

σ2
l (r, xn(r), yn(r))dW l(r)]

− φ−1[φ(B) +

∫ s

0

f2(r, x, y)dr +

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW (r)]|2ds→ 0,

as n→∞. Thus P 0
2 is continuous.

Claim 4. Apriori estimate. Now we show that there exists a constant M0 such that
sup

t∈[0,t1]
E|x(t, ·)|2X ≤ M0 where (x, y) is a solution of the problem (3.1). Let (x, y) a
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solution of (3.1):

x(t) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

y(t) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

(3.3)

From Lemma 2.4, we obtain

E|x(t)|2 ≤ E|A0|2 +

∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1(r, x(r), y(r))dW l(r)
)∣∣∣2ds

≤ 2E|A0|2 + 2t1 sup
η1∈B(0,l1)

|φ−1(η1)| =: M0

where

l1 = 3E|φ(A1)|2 + 3t1

∫ s

0

(a1E|x(r)|2X + b1E|y(r)|2 + c1)dr

+3C2

∫ s

0

(α1E|x(r)|2 + β1E|y(r)|2 + c1)dr.

Thus,

sup
t∈[0,t1]

E|x(t)|2 ≤M0,

and

E|y(t)|2 ≤ E|B0|2 +

∫ t

0

E
∣∣∣φ−1(φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ2(r, x(r), y(r))dW l(r)
)∣∣∣2ds

≤ 2E|B0|2 + 2t1 sup
η2∈B(0,l2)

|φ−1(η2)| =: M0

where

l2 = 3E|φ(A1)|2 + 3t1

∫ s

0

(a1E|x(r)|2 + b1E|y(r)|2 + c1)dr

+3C2

∫ s

0

(α1E|x(r)|2 + β1E|y(r)|2 + c1)dr.
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Thus,

sup
t∈[0,t1]

E|y(t)|2 ≤M0.

Set

U = {y ∈ C([0, t1],R) : sup
t∈[0,t1]

E|x(t)|2 < M0 + 1, sup
t∈[0,t1]

E|y(t)|2 < M0 + 1}.

As a consequence of Claims 1-4 and the Ascoli-Arzela theorem, we can conclude that
the map P 0 : U → Ct0 ×Ct0 is compact. From the choice of U there is no (x, y) ∈ ∂U
such that (x, y) = λP 0(x, y) for any λ ∈ (0, 1). And from the consequence of the
nonlinear alternative of Leray-Schauder we deduce that P 0 has a fixed point denoted
by (x0, y0) ∈ U which is solution of the problem (3.1).

Step 2. Now consider the problem

(φ(x′(t)))′ = f1(t, x(t), y(t))dt+

∞∑
l=1

σ1
l (t, x(t)), y(t))dW (t), t ∈ (t1, t2],

(φ(y′(t)))′ = f2(t, x(t), y(t))dt+

∞∑
l=1

σ2
l (t, x(t)), y(t))dW (t), t ∈ (t1, t2],

x(t+1 ) = x0(t−1 ) + I1(x0(t−1 )) , x′(t+1 ) = x′0(t−1 ) + I11 (x0(t−1 )),

y(t+1 ) = y0(t−1 ) + I1(x0(t−1 )) , y′(t+1 ) = y′0(t−1 ) + I
2

1(y0(t−1 )).

(3.4)

Let

Ĉt1 = {x : (t1, t2]→ L2(Ω,R), x |(t1,t2]∈ C
1((t1, t2], L2(Ω,R)), k = 1, 2, ..,m

and there exists

x(t+2 ) for k = 1, 2, ..,m},

with

Dt1 = {x : (t1, t2]→ L2(Ω,R) and x(t) |(t1,t2]∈ Ĉt1 such that

sup
t∈(t1,t2]

E|x(t, .)|2 <∞ almost surely}.

Set

C1 = Ct0 ∩Dt1 .

Consider the operator P 1 : C1 × C1 → C1 × C1 defined by

P 1(x, y) = (P 1
1 (x, y), P 1

2 (x, y)), (x, y) ∈ C1 × C1.
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It is clear that all solutions of (3.4) are fixed points of the multi-valued operator
P 1
i : C1 × C1 → C1, for each i = 1, 2 defined by

P 1
1 (x, y) = A3 +

∫ t

t1

φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ (t1, t2], a.e. ω ∈ Ω.

P 1
2 (x, y) = B3 +

∫ t

t1

φ−1
(
φ(B4) +

∫ s

t1

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2(r, x(r), y(r))dW l(r)
)
ds, t ∈ (t1, t2], a.e. ω ∈ Ω.

(3.5)
and

A3 = x1(t1) + I1(x1(t1)), A4 = x′1(t−1 ) + I11 (x1(t−1 )),

B3 = y1(t1) + I1(y1(t1)), B4 = y′1(t−1 ) + I
2

1(y1(t−1 )).

As in Step 1, we can prove that P 1 has at least one fixed point which is a solution to
(3.4).
Step 3. We continue this process taking into account that

(xm, ym) := (x
∣∣
(tm,T ]

, y
∣∣
(tm,T ]

)

is a solution to the problem

(φ(x′(t)))′ = f1(t, x(t), y(t))dt+

∞∑
l=1

σ1
l (t, x(t)), y(t))dW l(t), t ∈ (tm, T ],

(φ(y′(t)))′ = f2(t, x(t), y(t))dt+

∞∑
l=1

σ2
l (t, x(t)), y(t))dW l(t), t ∈ ((tm, T ],

x(t+m) = xm−1(t−m) + Im(x0(t−m−1)),
x′(t+m) = x′m−1(t−m) + I1m(xm−1(t−m)),
y(t+m) = ym−1(t−m) + Im(x0(t−m−1)),

y′(t+m) = y′m−1(t−m) + I
2

m(ym−1(t−m)).

(3.6)

A solution (x, y) of problem (3.6) is ultimately defined by

(x(t), y(t)) =


(x0(t), y0(t)), if t ∈ [0, t1],

(x1(t), y1(t)), if t ∈ (t1, t2],

. . .

(xm(t), ym(t)), if t ∈ (tm, T ].

Step 4. Now we show that the set

Sc = {(x, y) ∈ PC × PC : (x, y) is a solution of (1.1)}
is compact. Let (xn, yn)n∈N be a sequence in Sc. We put

B = {(xn, yn) : n ∈ N} ⊆ PC × PC.
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Then from earlier parts of the proof of this theorem, we conclude that B is bounded
and equicontinuous and from the Ascoli-Arzela theorem, we can also conclude that B
is compact.
Recall that J0 = [0, t1] and Jk = (tk, tk+1], k = 1, . . . ,m. Hence:

• (xn, yn)|J0 has a subsequence

(xnm , ynm)nm∈N ⊂ Sc1 = {(x, y) ∈ Ct0 × Ct0 : (x, y) is a solution of (3.1)}

such that (xnm , ynm) converges to (x, y). Let

z0(t) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1(r, x(r), y(r))dW l(r)
)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

z0(t) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2(r, x(r), y(r))dW l(r)
)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

(3.7)

E
∣∣∣xnm(t)− z0(t)

∣∣∣2
X
≤
∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, xnm(r), ynm(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, xnm

(r), ynm
(r))dW l(r)

)
− φ−1

(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)∣∣∣2
X
ds,

and

E
∣∣∣ynm(t)− z0(t)

∣∣∣2
X
≤
∫ t

0

E
∣∣∣φ−1(φ(B1) +

∫ s

0

f1(r, xnm(r), ynm(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, xnm

(r), ynm
(r))dW l(r)

)
− φ−1

(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)∣∣∣2
X
ds.



Existence and topological structure of solution sets 517

As nm → +∞, (xnm
, ynm

)→ (z0(t), z0(t)), then

x(t) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

y(t) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW l(r)

)
ds.

• (xn, yn)|J1 has a subsequence relabeled as (xnm
, ynm

) ⊂ Sc2 converging to (x, y) in
C1 × C1 where

Sc2 = {(x, y) ∈ C1 × C1 : (x, y) is a solution of (3.4)}.

Let

z1(t) = A3 +

∫ t

t1

φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

z1(t) = B3 +

∫ t

t1

φ−1
(
φ(B4) +

∫ s

t1

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ2
l (r, x(r), y(r))dW l(r)

)
ds.

Then

E
∣∣∣xnm

(t)− z1(t)
∣∣∣2 ≤ ∫ t

t1

E
∣∣∣φ−1(φ(A4) +

∫ s

t1

f1(r, xnm
(r), ynm

(r))dr

+

∞∑
l=1

∫ s

t1

σ1
l (r, xnm

(r), ynm
(r))dW l(r)

)
− φ−1

(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

t1

σ1(r, x(r), y(r))dW l(r)
)∣∣∣2ds,
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and

E
∣∣∣ynm

(t)− z1(t)
∣∣∣2 ≤ ∫ t

t1

E
∣∣∣φ−1(φ(B4) +

∫ s

t1

f1(r, xnm
(r), ynm

(r))dr

+

∞∑
l=1

∫ s

t1

σ1(r, xnm
(r), ynm

(r))dW l(r)
)

− φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

t1

σ1(r, x(r), y(r))dW l(r)
)∣∣∣2ds.

As nm → +∞, (xnm(t), ynm(t))→ (z1(t), z1(t)), and then

x(t) = A3 +

∫ t

t1

φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

y(t) = B3 +

∫ t

t1

φ−1
(
φ(B4) +

∫ s

t1

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ2(r, x(r), y(r))dW l(r)
)
ds.

•We continue this process, and we conclude that {(xn, yn) | n ∈ N} has a subsequence
converging to

zm(t) = Am+2 +

∫ t

tm

φ−1
(
φ(Am+3) +

∫ s

tm

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

tm

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

zm(t) = Bm+2 +

∫ t

tm

φ−1
(
φ(Bm+3) +

∫ s

tm

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

tm

σ2
l (r, x(r), y(r))dW l(r)

)
ds.

Hence Sc is compact. �

Next we replace (H2) and (H3) in Theorem 3.1 by
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(H3)′ Then there exist a function pi ∈ L1(J,R+) and a continuous nondecreasing
function ψi : [0,∞)→ [0,∞)for each i = 1, 2 such that

E|f i(t, x, y)|2 ≤ pi(t)ψi(E(|x|2 + |y|2)),

and

E||σi(t, x, y)||2 ≤ pi(t)ψi(E(|x|2 + |y|2)).

Theorem 3.2. Under assumption (H3)′, problem (1.1) has at least one solution and
the solution set is compact.

Proof. As in the proof of Theorem 3.1 we can show that (1.1) has at least one solution
by applying the nonlinear alternative of Leray-Schauder. We show only the estimation
of a solution (x, y) of (1.1).

• For t ∈ [0, t1], we have

x(t) = A0 +

∫ t

0

φ−1
(
φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

y(t) = B0 +

∫ t

0

φ−1
(
φ(B1) +

∫ s

0

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

0

σ2
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1], a.e. ω ∈ Ω.

(3.8)

Then

E|x(t)|2 ≤ 2E|A0|2 + 2

∫ t

0

E
∣∣∣φ−1(φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

)∣∣∣2ds.
Consider functions µ, µ defined on t ∈ [0, t1] by

µ(t) = sup{E|x(s)|2 : 0 ≤ s ≤ t}, µ(t) = sup{E|y(s)|2 : 0 ≤ s ≤ t}.

From Lemma 2.4, we obtain

E
∣∣∣φ(A1) +

∫ s

0

f1(r, x(r), y(r))dr +

∞∑
l=1

∫ s

0

σ1
l (r, x(r), y(r))dW l(r)

∣∣∣2
≤ 3E|φ(A1)|2X + 3

∫ s

0

p1(r)ψ1(E(|x(r)|2 + |y(r)|2))dr

+3C2

∫ s

0

p1(r)ψ1(E(|x(r)|2X + |y(r)|2))dr

≤ 3E|φ(A1)|2 + ||p||L1ψ1(µ(s) + µ(s)),
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where ||p||L1 = (3t1 + 3C2)‖p1‖L1 , and, consequently,

µ(t) ≤ 2E|A0|2 +

∫ t

0

ψ̂1(µ(s) + µ(s)), t ∈ [0, t1],

where ψ̂1 = (φ−1 ◦ ψ̃1) and ψ̃
1
(u) = 3E|φ(A1)|2 + ||p1||L1ψ1(u). and similarly

µ(t) ≤ 2E|B0|2 +

∫ t

0

ψ̂2(µ(s) + µ(s))ds, t ∈ [0, t1],

where ψ̂2 = (φ−1 ◦ ψ̃2) and ψ̃2(u) = 3E|φ(B1)|2 + ||p2||L1ψ1(u), combining µ(t) and
µ(t),

µ(t) + µ(t) ≤ 2E|A0|2 + 2E|B0|2 +

∫ t

0

ψ̂1(µ(s) + µ(s))ds

+

∫ t

0

ψ̂2(µ(s) + µ(s))ds, t ∈ [0, t1].

Using the nonlinear Grönwall-Bihari inequality (Lemma 2.8), we infer the bound

µ(t) + µ(t) ≤ H−1(t) ≤M0.

Consequently, there exists a constant M1 which only depends on t1, t2 such that

sup
t∈[0,t1]

E|x(t)|2 ≤ M0, and sup
t∈[0,t1]

E|y(t)|2 ≤M0,

where H(t) =

∫ t

2E|A0|2X+2E|B0|2X

dτ

(φ−1 ◦ ψ̃1(τ) + φ−1 ◦ ψ̃2(τ)
.

• For t ∈ (t1, t2], we have

x(t) = A3 +

∫ t

t1

φ−1
(
φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1] .

y(t) = B3 +

∫ t

t1

φ−1
(
φ(B4) +

∫ s

t1

f2(r, x(r), y(r))dr+

+

∞∑
l=1

∫ s

t1

σ2
l (r, x(r), y(r))dW l(r)

)
ds, t ∈ [0, t1] .

(3.9)

Then

E|x(t)|2 ≤ 2E|A3|2 + 2

∫ t

t1

E
∣∣∣φ−1(φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

)∣∣∣2
X
ds.

Consider functions µ, µ defined on t ∈ (t1, t2] by

µ(t) = sup{E|x(s)|2 : t1 ≤ s ≤ t}, µ(t) = sup{E|y(s)|2 : t1 ≤ s ≤ t}.
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E
∣∣∣φ(A4) +

∫ s

t1

f1(r, x(r), y(r))dr +

∞∑
l=1

∫ s

t1

σ1
l (r, x(r), y(r))dW l(r)

∣∣∣2
X

≤ 3E|φ(A4)|2 + 3

∫ s

t1

p1(r)ψ1(E(|x(r)|2 + |y(r)|2X))dr

+3C2

∫ s

t1

p1(r)ψ1(E(|x(r)|2X + |y(r)|2))dr

≤ 3E|φ(A4)|2 + ||p||L1ψ1(µ(s) + µ(s)),

where ||p||L1 = (3t2 + 3C2)‖p1‖L1 , and, consequently,

µ(t) ≤ 2E|A3|2X +

∫ t

t1

ψ̂1(µ(s) + µ(s)), t ∈ (t1, t2],

where ψ̂1 = (φ−1 ◦ ψ̃1) and ψ̃
1
(u) = 3E|φ(A4)|2X + ||p1||L1ψ1(u). and similarly

µ(t) ≤ 2E|B0|2X +

∫ t

t1

ψ̂2(µ(s) + µ(s))ds, t ∈ (t1, t2],

where ψ̂2 = (φ−1 ◦ ψ̃2) and ψ̃2(u) = 3E|φ(B1)|2X + ||p2||L1ψ1(u). Now, taking into
account all the previous estimates we can write

µ(t) + µ(t) ≤ 2E|A3|2 + 2E|B3|2 +

∫ t

t1

ψ̂1(µ(s) + µ(s))ds

+

∫ t

t1

ψ̂2(µ(s) + µ(s))ds, t ∈ (t1, t2],

By the nonlinear Grönwall-Bihari inequality (Lemma 2.8), we infer the bound

µ(t) + µ(t) ≤ H−1(t) ≤M1.

Consequently, there exists a constant M1 which only depends on t1, t2 such that

sup
t∈(t1,t2]

E|x(t)|2 ≤ M1, and sup
t∈(t1,t2]

E|y(t)|2 ≤M1.

where H(t) =

∫ t

2E|A3|2+2E|B3|2

dτ

(φ−1 ◦ ψ̃1(τ) + φ−1 ◦ ψ̃2(τ)
.

• For t ∈ (tm, T ], we have

x(t) = Am+2 +

∫ t

tm

φ−1
(
φ(Am+3) +

∫ s

tm

f1(r, x(r), y(r))dr+

∞∑
l=1

∫ s

tm

σ1
l (r, x(r), y(r))dW l(r)

)
ds,

and

y(t) = Bm+2 +

∫ t

tm

φ−1
(
φ(Bm+3) +

∫ s

tm

f2(r, x(r), y(r))dr

+

∞∑
l=1

∫ s

tm

σ2(r, x(r), y(r))dW l(r)
)
ds.
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As in the pattern shown above, there exists Mm > 0 such that

µ(t) + µ(t) ≤ H−1(t) ≤Mm.

Consequently, there exists a constant M1 which only depends on tm, T such that

sup
t∈(tm,T ]

E|x(t)|2 ≤ Mm, and sup
t∈(tm,T ]

E|y(t)|2 ≤Mm.

where H(t) =

∫ t

2E|Am+2|2X+2E|Bm+2|2X

dτ

(φ−1 ◦ ψ̃1(τ) + φ−1 ◦ ψ̃2(τ)
.

Hence
‖x‖PC ≤ max(M0,M1, . . . ,Mm) = M,

and
‖y‖PC ≤ max(M0,M1, . . . ,Mm) = M.

The proof is complete. �

Acknowledgments. The authors would like to thank very much the anonymous referees
for their careful reading and valuable comments on this work.

References

[1] Bainov, D.D., Lakshmikantham, V., Simeonov, P.S., Theory of Impulsive Differential
Equations, World Sci., Singapore, 1989.

[2] Bainov, D.D., Simeonov, P.S., Integral Inequalities and Applications, in: Mathematics
and its Applications, vol. 57, Kluwer Academic Publishers, Dordrecht, 1992.

[3] Benchohra, M., Henderson, J., Ntouyas, S.K., Impulsive differential equations and in-
clusions, Hindawi. Pub. Cor, New York, 2(2006).

[4] Bharucha-Reid, A.T., Random Integral Equations, Academic Press, New York, 1972.

[5] Burkholder, D.L., Martingale transforms, Ann. Math. Statist., 37(1966), 1494-1504.

[6] Burkholder, D.L., Gundy, R.F., Extrapolation and interpolation of quasi-linear operators
on martingales, Acta. Math., 124(1970), 249-304.

[7] Da Prato, G., Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge
Univ. Press, Cambridge, 1992.

[8] Davis, B., On the integrability of the martingale square function, Israel. J. Math.,
8(1970), 187-190.

[9] Gard, T.C., Introduction to Stochastic Differential Equations, Marcel Dekker, New York,
1988.

[10] Gikhman, I.I., Skorokhod, A., Stochastic Differential Equations, Springer-Verlag, 1972.

[11] Graef, J.R., Henderson, J., Ouahab, A., Impulsive differential inclusions. A fixed point
approach, De Gruy. Ser. Nonlinear. Anal. Appl 20. Berlin, de Gruyter, 2013.

[12] Guilan, C., Kai, H., On a type of stochastic differential equations driven by countably
many Brownian motions, J. Funct. Anal., 203(2003), 262-285.

[13] Halanay, A., Wexler, D., Teoria calitativă a sistemelor cu impulsuri, (Romanian), Edi-
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On Lupaş-Jain operators

Gülen Başcanbaz-Tunca, Murat Bodur and Dilek Söylemez

Abstract. In this paper, linear positive Lupaş-Jain operators are constructed and
a recurrence formula for the moments is given. For the sequence of these oper-
ators; the weighted uniform approximation, also, monotonicity under convexity
are obtained. Moreover, a preservation property of each Lupaş-Jain operator is
presented.
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1. Introduction

In [13], Jain generalized the well known Százs-Mirakjan operators by construct-
ing the linear positive operators given by

Sβn (f) (x) =

∞∑
k=0

nx (nx+ kβ)
k−1

k!
e−(nx+kβ)f

(
k

n

)
, (1.1)

where f : [0,∞) → R, n ∈ N, x > 0 and 0 ≤ β < 1, with β may depend only on
n. For some interesting works related to Jain’s operators we refer to [2], [1], [5], [8],
[17], [18] and references cited therein.

In [3], Agratini studied some approximation properties of the following linear
positive operators

Ln (f) (x) = 2−nx
∞∑
k=0

(nx)k
2kk!

f

(
k

n

)
(1.2)

for n ∈ N, x ≥ 0 and some suitable f : [0,∞) → R that the operator Ln (f) makes
sense. These operators are special form of the well-known operators defined by Lupaş
in [15] and resemble the familiar Százs-Mirakjan operators. In the paper [3], the
author obtained some estimates for the order of approximation on a finite interval
as well as proved a Voronovskaya type theorem. Moreover, Agratini also considered
the Kantorovich extension of Ln (f) for f belonging to the class of local integrable
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functions on [0,∞) and studied the degree of approximation [4]. Some approximation
results and basic history concerning Lupaş operators can be found in [9], [10], [7].

Recently, Patel and Mishra extended the Lupaş operators given by (1.2) as

Lβn (f) (x) =

∞∑
k=0

(nx+ kβ)k
2kk!

2−(nx+kβ)f

(
k

n

)
(1.3)

for real valued functions f on [0,∞), where they assumed that

(nx+ kβ)0 = 1, (nx+ kβ)1 = nx

and

(nx+ kβ)k = nx (nx+ kβ) (nx+ kβ + 1) ... (nx+ kβ + k − 1) , k ≥ 2

[19]. Here, the authors studied direct approximation results and gave Kantorovich
and Durrmeyer types modifications of (1.3).

In this work, we also construct a generalization of the Lupaş operators Ln in the
sense of Jain in [13]. Here, we point out that our expression is different from Lβn given
by (1.3) in such a way that in the construction, we take the negative subscript “−1”
of the Pochhammer symbol into consideration, in which case the calculations become
simpler in a remarkable degree. By using analogous Abel and Jensen combinatorial
formulas for factorial powers (see, e.g., [20]), we show the monotonicity property of
these operators for n under the convexity of f . We investigate that the Lupaş-Jain
operator can retain the properties of the modulus of continuity function. Moreover, we
study the weighted uniform approximation of functions from the polynomial weighted
space given in [11].

In what follows, let α and β be real parameters such that 0 < α < ∞ and 0 ≤
β < 1. Then, as in [13], Taking into account of the Lagrange inversion formula

φ (z) = φ (0) +

∞∑
k=1

1

k!

[
dk−1

dzk−1
(f (z))

k
φ′ (z)

]
z=0

(
z

f (z)

)k
for

φ (z) =
1

(1− z)α
and f (z) =

1

(1− z)β
, |z| < 1,

we obtain

1

(1− z)α
= 1 +

∞∑
k=1

α (α+ 1 + kβ)k−1
k!

zk (1− z)kβ , (1.4)

where

(a)n =

{
a (a+ 1) ... (a+ n− 1) n ∈ N
1 n = 0, a 6= 0,

is the well-known Pochhammer symbol, from which we have

(a)−n =
1

(a− 1) (a− 2) ... (a− n)
=

1

(a− n)n
=

(−1)
n

(1− a)n
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for negative subscripts when a 6= 1, 2, ..., n (see, e.g., p.5 of [12]). Hence, we immedi-
ately get that (α+ 1)−1 = 1

(α)1
= 1

α . Now, we have

1 =

∞∑
k=0

α (α+ 1 + kβ)k−1
2kk!

2−(α+kβ) (1.5)

for 0 < α <∞ and 0 ≤ β < 1. So, denoting

L (0, α, β) :=

∞∑
k=0

(α+ 1 + kβ)k−1
2kk!

2−(α+kβ) (1.6)

it readily follows from (1.5) that

αL (0, α, β) = 1. (1.7)

Hence, we present the following recurrence formula.

Lemma 1.1. Let 0 < α <∞, 0 ≤ β < 1, r ∈ N and

L (r, α, β) :=

∞∑
k=0

(α+ 1 + kβ)k+r−1
2kk!

2−(α+kβ). (1.8)

Then we have

L (r, α, β) =

∞∑
k=0

(
β + 1

2

)k
(α+ r − 1 + kβ)L (r − 1, α+ kβ, β) .

Proof. Taking the fact

(α+ 1 + kβ)k+r−1 = (α+ 1 + kβ)k+r−2 (α+ r − 1 + k (β + 1))

into consideration, then one finds

L (r, α, β) = (α+ r − 1)L (r − 1, α, β) +
β + 1

2
L (r, α+ β, β) .

Recursive application of the last formula gives the result. �

For the calculation of moments of the operators, we can use the well-known
property of the geometric series given below (see, e.g., [21]).

Remark 1.2. ([21]) Consider the geometric series

hn (x) :=

∞∑
k=0

knxk − 1 < x < 1, n ∈ N

and

h0 (x) :=
1

1− x
=

∞∑
k=0

xk. (1.9)

Term-wise differentiation gives that

h′n (x) =

∞∑
k=1

kn+1xk−1,
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which satisfies the following

xh′n (x) =

∞∑
k=1

kn+1xk = hn+1 (x) .

From this recurrence, one has

h1 (x) =
x

(1− x)
2 =

∞∑
k=1

kxk, (1.10)

h2 (x) =
x2 + x

(1− x)
3 =

∞∑
k=1

k2xk. (1.11)

Lemma 1.3. For the auxiliary function L (r, α, β) defined by (1.8), one has

L (1, α, β) =
2

1− β
,

L (2, α, β) =
22 (α+ 1)

(1− β)
2 +

22β (β + 1)

(1− β)
3 .

Proof. Since 0 ≤ β < 1, then (1.9), (1.10) and (1.11), with x = β+1
2 , give that

∞∑
k=0

(
β + 1

2

)k
=

2

1− β
,

∞∑
k=1

k

(
β + 1

2

)k
=

2 (β + 1)

(1− β)
2 ,

∞∑
k=1

k2
(
β + 1

2

)k
=

2
(
β2 + 4β + 3

)
(1− β)

3 .

Combining these results with (1.6), (1.7) and (1.8), it readily follows that

L (1, α, β) =

∞∑
k=0

(
β + 1

2

)k
(α+ kβ)L (0, α+ kβ, β)

=
2

1− β
. (1.12)

Also, L (2, α, β) is obtained as

L (2, α, β) =

∞∑
k=0

(
β + 1

2

)k
(α+ 1 + kβ)L (1, α+ kβ, β)

=
2 (α+ 1)

1− β

∞∑
k=0

(
β + 1

2

)k
+

2β

1− β

∞∑
k=0

k

(
β + 1

2

)k
=

4 (α+ 1)

(1− β)
2 +

4β (β + 1)

(1− β)
3 . (1.13)

�
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2. Construction of the operators

Taking α = nx, n ∈ N, x > 0 in (1.5), we consider the following linear positive
operators

Lβn (f) (x) =

∞∑
k=0

nx (nx+ 1 + kβ)k−1
2kk!

2−(nx+kβ)f

(
k

n

)
, x ∈ (0,∞) (2.1)

and Lβn (f) (0) = f (0) for real valued bounded functions f on [0,∞), where 0 ≤
β < 1, depending only on n. We call the operators Lβn as Lupaş-Jain. Obviously,
Lupaş-Jain operators reduce to Lupaş operators in [3] when β = 0.

Lemma 2.1. Let ei (t) := ti, i = 0, 1, 2. For the Lupaş-Jain operators, one has

Lβn (e0) (x) = 1,

Lβn (e1) (x) =
x

1− β
,

Lβn (e2) (x) =
x2

(1− β)
2 +

2x

n (1− β)
3 .

Proof. It is clear from (1.5) that Lβn (e0) (x) = 1. By taking f = e1 in (2.1) and using
(1.12) in the result, we easily get

Lβn (e1) (x) =

∞∑
k=1

nx (nx+ 1 + kβ)k−1
2kk!

2−(nx+kβ)
(
k

n

)

= x

∞∑
k=0

(nx+ β + 1 + kβ)k
2k+1k!

2−(nx+β+kβ)

=
x

2
L (1, nx+ β, β)

=
x

1− β
.

By taking f = e2 and using (1.12) and (1.13) we find

Lβn (e2) (x) =

∞∑
k=1

nx (nx+ 1 + kβ)k−1
2kk!

2−(nx+kβ)
(
k

n

)2

=
x

n

∞∑
k=0

(nx+ β + 1 + kβ)k
2k+1k!

2−(nx+β+kβ) (k + 1)

=
x

n

{
1

22
L (2, nx+ 2β, β) +

1

2
L (1, nx+ β, β)

}
=

x

n

{
(nx+ 1 + 2β)

(1− β)
2 +

β (β + 1)

(1− β)
3 +

1

1− β

}

=
x2

(1− β)
2 +

2x

n (1− β)
3 .

�
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3. Weighted approximation

In this section, we deal with the weighted uniform approximation result of the
sequence of the Lupaş-Jain operators Lβn by using Gadjiev’s theorem in [11], for which
we have the following settings:

We take ϕ (x) = 1+x2 as the suitable weight function and, for simplicity, denote
R+ := [0,∞). Related to ϕ, we take the space

Bϕ(R+) =
{
f : R+ → R

∣∣|f(x)| ≤Mfϕ (x) , x ∈ R+
}
,

where Mf is a constant depending on f. Bϕ(R+) is a normed space with the norm

‖f‖ϕ = sup
x∈R+

|f(x)|
ϕ (x)

.

Moreover, we denote, as usual, by Cϕ(R+), Ckϕ(R+) the following subspaces of

Bϕ(R+)

Cϕ(R+) :
{
f ∈ Bϕ(R+) : f is continuous

}
,

Ckϕ(R+) =

{
f ∈ Cϕ(R+)

∣∣∣∣ lim
x→∞

f(x)

ϕ(x)
= kf

}
,

respectively, where kf is a constant depending on f . We have the following two results
due to Gadjiev in [11]:

Lemma 3.1. The linear positive operators Tn, n ∈ N, act from Cϕ(R+) to Bϕ(R+) if
and only if

|Tn (ϕ) (x)| ≤ Kϕ(x),

where K is a positive constant.

Theorem 3.2. Let {Tn}n∈N be a sequence of linear positive operators mapping
Cϕ(R+) into Bϕ(R+) and satisfying the conditions

lim
n→∞

‖Tn (ei)− ei‖ϕ = 0, for i = 0, 1, 2.

Then for any f ∈ Ckϕ(R+) one has

lim
n→∞

‖Tn (f)− f‖ϕ = 0.

Now, we treat weighted uniform approximation for Lupaş-Jain operators
Lβn acting on Cϕ(R+). In order to get an approximation result, as in [13], we need
to make an adjustment to the parameter β by taking it as a sequence such that
β = βn, 0 ≤ βn < 1 and lim

n→∞
βn = 0.

Theorem 3.3. Let {βn}n∈N be a sequence such that 0 ≤ βn < 1 and lim
n→∞

βn = 0. Then

for each f ∈ Ckϕ(R+) we have

lim
n→∞

∥∥Lβn
n (f)− f

∥∥
ϕ

= 0.
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Proof. According to Lemmas 2.1 and 3.1 we get that the operators Lβn
n act from

Cϕ(R+) to Bϕ(R+). Now, it only remains to show the sufficient conditions of the
Theorem 3.2 for Lβn

n . Using Lemma 2.1 and the hypothesis on βn, we obtain that

lim
n→∞

∥∥Lβn
n (e0)− e0

∥∥
ϕ

= 0

and that ∥∥Lβn
n (e1)− e1

∥∥
ϕ
≤ βn

1− βn
,

which gives

lim
n→∞

∥∥Lβn
n (e1)− e1

∥∥
ϕ

= 0.

Finally, since 2x ≤ 1 + x2, we get∥∥Lβn
n (e2)− e2

∥∥
ϕ

= sup
x∈R+

∣∣Lβn
n (e2)− e2

∣∣
1 + x2

= sup
x∈R+

∣∣∣∣∣ 1

1 + x2

(
x2

(1− βn)
2 +

2x

n (1− βn)
3 − x

2

)∣∣∣∣∣
= sup

x∈R+

∣∣∣∣∣ x2

1 + x2
2βn − β2

n

(1− βn)
2 +

2x

1 + x2
1

n (1− βn)
3

∣∣∣∣∣
≤ 2βn − β2

n

(1− βn)
2 +

1

n (1− βn)
3 ,

which clearly gives that

lim
n→∞

∥∥Lβn
n (e2)− e2

∥∥
ϕ

= 0.

This completes the proof. �

4. The monotonicity of the sequence of Lupaş-Jain operators

Recall that a continuous function f is said to be convex in D ⊆ R, if

f

(
n∑
i=1

αiti

)
≤

n∑
i=1

αif (ti)

for every t1, t2, ..., tn ∈ D and for every nonnegative numbers α1, α2, ..., αn such that
α1 + α2 + ...+ αn = 1.

For the proof of the main result of this section, we need the corresponding
definition of the well-known Jensen and Abel combinatorial formulas for factorial
powers. Below, we reproduce these formulas from the work of Stancu and Occorsio
(pp.175-176 of [20]) for the increment −1, respectively.

(u+ v) (u+ v + 1 +mβ)m−1

=

m∑
k=0

(
m

k

)
u (u+ 1 + kβ)k−1 v (v + 1 + (m− k)β)m−k−1 (4.1)
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and

(u+ v +mβ)m =

m∑
k=0

(
m

k

)
(u+ kβ)k v (v + 1 + (m− k)β)m−k−1 . (4.2)

Note that the monotonicity of Százs-Mirakjan operators of convex function was
proved by Cheney and Sharma [6]. On the other hand, the same result for the Lupaş
operators was obtained by Erençin et al. [7]. Now, we present the monotonicity of
each Lupaş-Jain operator Lβn (f) for n, when f is a convex function.

Theorem 4.1. Let f be a convex function defined on [0,∞). Then, for all n, Lβn (f) is
non-increasing in n.

Proof. For x = 0, the result is obvious. So, for x > 0, we can write

2x =

∞∑
k=0

x (x+ 1 + kβ)k−1
2kk!

2−kβ

by (1.5) with α = x. Using this formula we can write

Lβn (f) (x)− Lβn+1 (f) (x)

= 2x
∞∑
k=0

nx (nx+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n

)

−
∞∑
k=0

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n+ 1

)

=

∞∑
l=0

x (x+ 1 + lβ)l−1
2ll!

2−lβ
∞∑
k=0

nx (nx+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n

)

−
∞∑
k=0

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n+ 1

)

=

∞∑
l=0

x (x+ 1 + lβ)l−1
2ll!

2−lβ

×
∞∑
k=l

nx (nx+ 1 + (k − l)β)k−l−1
2k−l (k − l)!

2−[(n+1)x+(k−l)β]f

(
k − l
n

)

−
∞∑
k=0

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n+ 1

)
.

Changing the order of the above summations, we obtain that

Lβn (f) (x)− Lβn+1 (f) (x)

=

∞∑
k=0

k∑
l=0

x (x+ 1 + lβ)l−1
l!

nx (nx+ 1 + (k − l)β)k−l−1
2k (k − l)!

2−[(n+1)x+kβ]f

(
k − l
n

)

−
∞∑
k=0

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
2kk!

2−[(n+1)x+kβ]f

(
k

n+ 1

)
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=

∞∑
k=0

{
k∑
l=0

nx (nx+ 1 + lβ)l−1
l!

x (x+ 1 + (k − l)β)k−l−1
2k (k − l)!

f

(
l

n

)

−
(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1

2kk!
f

(
k

n+ 1

)}
2−[(n+1)x+kβ] (4.3)

Now, denote

αl :=

(
k

l

)
nx (nx+ 1 + lβ)l−1 x (x+ 1 + (k − l)β)k−l−1

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1
> 0

and

tl :=
l

n
.

Taking u = nx, v = x and m = k in (4.1) one has

(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1

=

k∑
l=0

(
k

l

)
nx (nx+ 1 + lβ)l−1 x (x+ 1 + (k − l)β)k−l−1 ,

which clearly gives that
k∑
l=0

αl = 1.

On the other hand, taking u = nx + β + 1, v = x and m = k − 1 in (4.2), it follows
that

((n+ 1)x+ 1 + kβ)k−1
= (nx+ β + 1 + x+ (k − 1)β)k−1

=

k−1∑
l=0

(
k − 1

l

)
(nx+ β + 1 + lβ)l x (x+ 1 + (k − 1− l)β)k−l−2 .

Taking into account of the above fact, it follows that

k∑
l=0

αltl =

k∑
l=1

(
k
l

)
nx (nx+ 1 + lβ)l−1 x (x+ 1 + (k − l)β)k−l−1

(
l
n

)
(n+ 1)x ((n+ 1)x+ 1 + kβ)k−1

=

k
k−1∑
l=0

(
k−1
l

)
nx (nx+ β + 1 + lβ)l x (x+ 1 + (k − 1− l)β)k−l−2

n (n+ 1)x ((n+ 1)x+ 1 + kβ)k−1

=
k

n+ 1

k−1∑
l=0

(
k−1
l

)
(nx+ β + 1 + lβ)l x (x+ 1 + (k − 1− l)β)k−l−2

((n+ 1)x+ 1 + kβ)k−1

=
k

n+ 1
.
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Hence, making use of the convexity of f, (4.3) gives that

Lβn (f) (x) ≥ Lβn+1 (f) (x)

for all n ∈ N, which completes the proof. �

5. A preservation property

We recall the following definition for the subsequent result.

Definition 5.1. A continuous, and non-negative function ω defined on [0,∞) is called
a function of modulus of continuity, if each of the following conditions is satisfied:

i) ω(u+ v) ≤ ω(u) + ω(v) for u, v ∈ [0,∞), i.e., ω is subadditive,
ii) ω(u) ≥ ω(v) for u ≥ v, i.e., ω is non-decreasing,
iii) limu→0+ ω(u) = ω(0) = 0 ([16]).

In [14], Li noticed a new preservation property that the Bernstein polynomials
Bn, n ∈ N satisfy. Li proved that if ω(x) is a modulus of continuity function, then
for each n ∈ N, Bn(ω;x) is also a modulus of continuity function. The same result for
the Lupaş operators was obtained in [7]. Below, we show that this result is satisfied
by the Lupaş-Jain operators as well.

Theorem 5.2. Let ω be a modulus of continuity function. Then, for all n, Lβn (ω) is
also a modulus of continuity function.

Proof. Let x, y ∈ [0,∞) and x ≤ y. Then from the definition of Lβn, we have

Lβn (ω) (y) =

∞∑
k=0

ny (ny + 1 + kβ)k−1
2kk!

2−(ny+kβ)ω

(
k

n

)
.

Taking nx and n (y − x) in place of u and v, respectively in (4.1), we obtain

ny (ny + 1 +mβ)m−1 (5.1)

=

k∑
i=0

(
k

i

)
nx (nx+ 1 + iβ)i−1 n (y − x) (n (y − x) + 1 + (k − i)β)

k−i−1

which implies

Lβn (ω) (y)

=

∞∑
k=0

k∑
i=0

ω

(
k

n

)(
k

i

)
nx (nx+ 1 + iβ)i−1

2kk!
2−(ny+kβ)

×n (y − x) (n (y − x) + 1 + (k − i)β)
k−i−1

.

Interchanging the order of the above summations gives that

Lβn (ω) (y)

=

∞∑
i=0

∞∑
k=i

ω

(
k

n

)
1

i! (k − i)!
nx (nx+ 1 + iβ)i−1

2−(ny+kβ)

2k
(5.2)

n (y − x) (n (y − x) + 1 + (k − i)β)
k−i−1

.
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Taking k − i = l, (5.2) reduces to

Lβn (ω) (y)

=

∞∑
i=0

∞∑
l=0

ω

(
i+ l

n

)
nx (nx+ 1 + iβ)i−1

2−(ny+(i+l)β)

2i+li!l!
(5.3)

×n (y − x) (n (y − x) + 1 + lβ)
l−1

.

On the other hand, Lβn (ω) (x) can be written as

Lβn (ω) (x) =

∞∑
i=0

ω

(
i

n

)
nx (nx+ 1 + iβ)i−1

2−(nx+iβ)

2ii!
(5.4)

=

∞∑
i=0

ω

(
i

n

)
nx (nx+ 1 + iβ)i−1

2−(ny+iβ)2n(y−x)

2ii!
.

Since

2n(y−x) =

∞∑
l=0

n (y − x) (n (y − x) + 1 + lβ)l−1
2−lβ

2ll!

then, one may write

Lβn (ω) (x) =

∞∑
i=0

∞∑
l=0

ω

(
i

n

)
nx (nx+ 1 + iβ)i−1

2−(ny+(i+l)β)

2i+li!l!
(5.5)

×n (y − x) (n (y − x) + 1 + lβ)l−1 .

Subtracting (5.5) from (5.3)

Lβn (ω) (y)− Lβn (ω) (x) (5.6)

=

∞∑
i=0

∞∑
l=0

[
ω

(
i+ l

n

)
− ω

(
i

n

)]
nx (nx+ 1 + iβ)i−1

2−(ny+(i+l)β)

2i+li!l!

×n (y − x) (n (y − x) + 1 + lβ)l−1

and using the hypothesis that ω is a modulus of continuity function, one obtains

≤
∞∑
i=0

∞∑
l=0

ω

(
l

n

)
nx (nx+ 1 + iβ)i−1

2−(ny+(i+l)β)

2i+li!l!

×n (y − x) (n (y − x) + 1 + lβ)l−1

=

∞∑
i=0

nx (nx+ 1 + iβ)i−1
2−iβ

2ii!

×
∞∑
l=0

ω

(
l

n

)
n (y − x) (n (y − x) + 1 + lβ)l−1

2−(ny+lβ)

2ll!

=

∞∑
l=0

ω

(
l

n

)
n (y − x) (n (y − x) + 1 + lβ)l−1

2−(n(y−x)+lβ)

2ll!

= Lβn (ω) (y − x)) . (5.7)
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This shows that Lβn (ω) satisfies the subadditivity property. Since ω is non-decreasing,
then (5.6) provides that Lβn (ω) (y) ≥ Lβn (ω) (x) when y ≥ x, namely, Lβn (ω) is non-
decreasing. From the definition of Lβn it is obvious that limx→0 L

β
n (ω;x) = Lβn (ω; 0) =

ω(0) = 0. Therefore, Lβn (ω) is a function of modulus of continuity. �
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[7] Erençin, A., Başcanbaz-Tunca, G., Taşdelen, F., Some properties of the operators defined
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Abstract. In the introduction of the article we given an overview of the results
for set-valued equations. Further we considered the set-valued discrete-time dy-
namical systems and substantiates the averaging method for nonlinear set-valued
discrete-time systems with a small parameter.
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1. Introduction

As it is well known, there are two main types of dynamical systems: differential
equations and discrete-time equations. Differential equation describes the continuous
time evaluation of the system, whereas discrete-time equation describes the discrete
time evaluation of the system. The theory of discrete dynamical systems and difference
equations developed greatly during the last decades (see [8, 18, 34] and references cited
there).

In 1969, F.S. de Blasi and F. Iervolino [5] begun studying of set-valued differential
equations in semilinear metric spaces. Later, the development of calculus in metric
spaces became an object of attention of many researchers (see [7, 19, 20, 22, 30,
31, 27, 32, 40] and the references therein) and transformed into the theory of set-
valued equations as an independent discipline. Set-valued equations are useful in other
areas of mathematics. For example, set-valued differential equations are used as an
auxiliary tool to prove the existence results for differential inclusions [19, 22, 27, 40].
Also, one can employ set-valued differential equations in the investigation of fuzzy
differential equations [20, 30]. Moreover, set-valued differential equations are a natural
generalization of usual ordinary differential equations in finite (or infinite) dimensional
Banach spaces [40]. Clearly, in many cases, when modeling real-world phenomena,
information about the behavior of a dynamical system is uncertain and one has to
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consider these uncertainties to gain better understanding of the full models. The set-
valued equations can be used to model dynamical systems subjected to uncertainties.

This article deals with discrete set-valued dynamical systems, where time is
measured by the number of iterations carried out, the dynamics are not continuous and
values at each iteration is a set. In applications this would imply that the solutions are
observed at discrete time intervals and also under uncertainty or interference effects
[9, 13, 24, 35, 36, 38, 41]. Recurrence relations can be used to construct mathematical
models of discrete systems under uncertainty. They are also used extensively to solve
many differential equations with set-valued right-hand side which do not have an
analytic solution; the set-valued differential equations are represented by recurrence
relations (or difference equations) that can be solved numerically on a computer [1,
4, 24, 41].

Averaging theory for ordinary differential equations has a rich history, dating to
back to the work of N.M. Krylov and N.N. Bogoliubov [17]. Also is well known, the
averaging methods combined with the asymptotic representations began to be applied
as the basic constructive tool for solving the complicated problems of analytical dy-
namics described by the differential equations [3, 27, 37] and the references therein.
The possibility of using some averaging schemes for set-valued equations was studied
in [11, 12, 14, 15, 16, 22, 23, 25, 30, 26, 29, 27, 39]. Throughout the years, many
authors have published papers on averaging methods for different kinds of differential
systems and discrete-time system [2, 21, 28]. The bulk of this article is concerned with
the averaging method for nonlinear discrete-time set-valued systems.

2. Preliminaries

Let conv(Rn) be a space of all nonempty convex compact subsets of Rn with
the Hausdorff metric

h(A,B) = min
r≥0
{B ⊂ Sr(A), A ⊂ Sr(B)}

where A,B ∈ conv(Rn), Sr(A) be a r-neighborhood of the set A.
The usual set operations, i.e., well-known as Minkowski addition and scalar

multiplication, are defined as follows

A+B = {a+ b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A, λ ∈ R}.

Lemma 2.1. [32] The following properties hold:

1. (conv(Rn), h) is a complete metric space,
2. h(A+ C,B + C) = h(A,B),
3. h(λA, λB) = |λ|h(A,B) for all A,B,C ∈ conv(Rn) and λ ∈ R.

For any A ∈ conv(Rn), it can be seen A + (−1)A 6= {0} in general, thus the
opposite of A is not the inverse of A with respect to the Minkowski addition unless
A = {a} is a singleton. To partially overcome this situation, the Hukuhara difference
has been introduced [10].

Definition 2.2. [10] Let X,Y ∈ conv(Rn). A set Z ∈ conv(Rn) such that X = Y + Z
is called a Hukuhara difference of the sets X and Y and is denoted by X hY.
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An important property of Hukuhara difference is that AhA = {0}, ∀A ∈
conv(Rn) and (A + B)hB = A, ∀A,B ∈ conv(Rn); Hukuhara difference is unique,

but a necessary condition for AhB to exist is that A contains a translate {c}+B of
B.

Now consider the non-autonomous set-valued discrete-time equations

Xi+1 = Xi + F (i,Xi), (2.1)

and

Xi+1 = Xi
h
F (i,Xi), (2.2)

where i ∈ I = {0, 1, ..., N}, Xi ∈ conv(Rn), F : I × conv(Rn) → conv(Rn). If
one starts with an initial value, say, X0, then iteration of (2.1) (or (2.2)) leads to a
sequence of the form

{Xi : i = 0 toN} = {X0, X1, ..., XN}.

Definition 2.3. A solution to the set-valued discrete-time equation (2.1) (or (2.2)) is a
discrete-time set-valued trajectory, {Xi}Ni=0, that satisfies this equation at any point
i ∈ I.

Remark 2.4. It is obvious that the solution of (2.1) exists for any X0 ∈ conv(Rn) and
I.

Remark 2.5. Obviously, the differences in (2.2) may not always exist. For example,

1) let n ≥ 1, X0 = {a ∈ Rn : ‖a‖ ≤ 1}, F (i,Xi) = (i+ 2)Xi, i.e. F (0, X0) = {b ∈
Rn : ‖b‖ ≤ 2}. In this case, the difference in (2.2) does not exist for i = 0;

2) let n = 2, X0 = {a ∈ R2 : |ak| ≤ 1, k = 1, 2},

K(i) =

(
cos(i+ 1) sin(i+ 1)
−sin(i+ 1) cos(i+ 1)

)
,

F (i,Xi) = K(i)Xi. Also, the difference in (2.2) does not exist for i = 0.

Let CC(Rn) (n ≥ 2) be a space of all nonempty strictly convex closed sets of
Rn and all elements of Rn [33].

Remark 2.6. If A,B ∈ CC(Rn) and A+ C = B then C ∈ CC(Rn) [33].

Remark 2.7. If A,B ∈ CC(Rn) and there exists c ∈ Rn such that A + c ⊂ B, then
there exists C ∈ CC(Rn) such that A+ C = B, i.e. C = B hA [33].

Then the following theorem holds.

Theorem 2.8. Let the following conditions hold:
1) F (i,X) ∈ CC(Rn) for any i ∈ I and X ∈ CC(Rn);
2) the following inequality

|C(X,ψ) + C(X,−ψ)| ≥ |C(F (i,X), ψ) + C(F (i,X),−ψ)|
holds for all ψ ∈ Rn (‖ψ‖ = 1), i ∈ I and X ∈ CC(Rn), where

C(A,ψ) = max
a∈A

(a1ψ1 + ...+ anψn), A ∈ CC(Rn).

Then the solution of (2.2) exists for any X0 ∈ CC(Rn) and I.
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Proof. We put any set X0 ∈ CC(Rn). By condition 1) of the theorem, we have
F (0, X0) ∈ CC(Rn). By condition 2) of the theorem, we obtain

|C(X0, ψ) + C(X0,−ψ)| ≥ |C(F (0, X0), ψ) + C(F (0, X0),−ψ)|
for all ψ ∈ Rn, ‖ψ‖ = 1. Then, there exists c ∈ Rn such that F (0, X0) + c ⊂ X0

[33]. By remark 2.7, we have the set C ∈ CC(Rn) such that F (0, X0) + C = X0.
Therefore, X1 = C = X0

hF (0, X0) and X1 ∈ CC(Rn). Further, applying the method

of mathematical induction, we obtain Xi+1 = Xi
hF (i,Xi) and Xi+1 ∈ CC(Rn) for

all i ∈ I. The theorem is proved. �

3. The method of averaging

Now consider the non-autonomous set-valued discrete-time equations with a small
parameter

Xi+1 = Xi + εF (i,Xi), (3.1)

and

Xi+1 = Xi
h
εF (i,Xi), (3.2)

where ε > 0 be a small parameter, L > 0 is any real number, N = [Lε−1], [·] is floor
function.

3.1. Case (3.1).

In the beginning we consider the equation (3.1). We associate with the equation
(3.1) the following averaged set-valued discrete-time equation with a small parameter

Xi+1 = Xi + εF (i,Xi), (3.3)

where F (i,X) such that

lim
n→∞

h

(
1

n

n−1∑
i=0

F (i,X),
1

n

n−1∑
i=0

F (i,X)

)
= 0. (3.4)

The main theorem of this subsection is on averaging for set-valued discrete-time
equation with a small parameter. It establishes nearness of solutions of (3.1) and (3.3),
and reads as follows.

Theorem 3.1. Let in the domain Q = { (i,X) : i ∈ I,X ⊂ B ⊂ Rn } the following
conditions hold:

1) mappings F (i,X) and F (i,X) satisfy a Lipschitz condition, i.e. there is a
constant λ > 0 such that

h(F (i,X ′), F (i,X”)) ≤ λh(X ′, X”), h(F (i,X ′), F (i,X”)) ≤ λh(X ′, X”),

whenever (i,X ′), (i,X”) ∈ Q;
3) there exists γ > 0 such that h(F (i,X), {0}) ≤ γ, h(F (i,X), {0}) ≤ γ for

every (i,X) ∈ Q;
4) limit (3.4) exists uniformly with respect to X in the domain B;
5) the solution of the problem (3.3) together with a ρ−neighborhood belong to the

domain B for ε ∈ (0, ε̄].



Partial averaging of discrete-time set-valued systems 543

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) ∈ (0, ε̄] such that for all
ε ∈ (0, ε0] and i ∈ I the following inequality holds

h(Xi, Xi) < η (3.5)

where {Xi}Ni=0, {Xi}Ni=0 are the solutions of initial and averaged problems.

Proof. We write the equations (3.1) and (3.3) in the form

Xi+1 = X0 + ε

i∑
j=0

F (j,Xj), (3.6)

Xi+1 = X0 + ε

i∑
j=0

F (j,Xj). (3.7)

By (3.6) and (3.7), we have

h(Xi+1, Xi+1) = h

ε i∑
j=0

F (j,Xj), ε

i∑
j=0

F (j,Xj)


≤ ε

i∑
j=0

h(F (j,Xj), F (j,Xj)) + εh

 i∑
j=0

F (j,Xj),

i∑
j=0

F (j,Xj)


≤ λε

i∑
j=0

h(Xj , Xj) + φ, (3.8)

where

φ = εh

 i∑
j=0

F (j,Xj),

i∑
j=0

F (j,Xj)

 .

Now we will estimate φ on I. Divide the interval I into partial intervals by the points
tk = kl(ε), k = 0,m, tm−1 < Lε−1 ≤ tm, where l(ε) is integer and

lim
ε→0

l(ε) =∞, lim
ε→0

εl(ε) = 0. (3.9)

Let kl(ε) < i ≤ (k + 1)l(ε). Then we have

φ = εh

 i∑
j=0

F (i,Xi),

i∑
j=0

F (j,Xj)


≤ ε

k−1∑
ζ=0

h

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xj),

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xj)


+εh

 i∑
j=kl(ε)

F (j,Xj),

i∑
j=kl(ε)

F (j,Xj)


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≤ ε
k−1∑
ζ=0

h

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xj),

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xζl(ε))


+ε

k−1∑
ζ=0

h

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε)),

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε))


+ε

k−1∑
ζ=0

h

(ζ+1)l(ε)−1∑
j=hζ+1

F (j,Xζl(ε)),

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xj)


+ε

i∑
j=kl(ε)

h(F (j,Xj), F (j,Xj)). (3.10)

Now we will estimate terms in (3.10)

εh

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xj),

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

F (j,Xζl(ε))


≤ ε

(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

h(F (j,Xj), F (j,Xζl(ε))) ≤ λ
(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

h(Xj , Xζl(ε))

≤ ε2 λ
(ζ+1)l(ε)−1∑
j=l(ε)ζ+1

j−1∑
r=kζ

∥∥F (Xj)
∥∥ ≤ ε2λγl(ε)2/2. (3.11)

Also, we obtain

εh

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xj),

(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε))

 ≤ ε2λγl(ε)2/2. (3.12)

Obviously,

ε

i∑
j=kl(ε)

δ(F (j,Xkl(ε)), F (j,Xkl(ε))) ≤ 2εγl(ε). (3.13)

From the condition 4) of the theorem there exists an increasing function µ(l), such
that

1) lim
t→∞

µ(t) = 0;

2) ε
k−1∑
ζ=0

h

(
(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε)),
(ζ+1)l(ε)−1∑
j=l(ε)ζ

F (j,Xζl(ε))

)
≤ mεl(ε)µ(l(ε)) ≤ Lµ(l(ε)). (3.14)

Combining (3.10) – (3.14), we obtain

φ ≤ εl(ε)γ(λL+ 2) + Lµ(l(ε)). (3.15)

By (3.9), we take ε0 ∈ (0, ρ] such that

eλL[εl(ε)γ(λL+ 2) + Lφ(l(ε))] < η (3.16)
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for all ε ∈ (0, ε0].

From (3.8), (3.15), (3.16) we obtain (3.5). The theorem is proved. �

Remark 3.2. If F (i,Xi) = ∆ · G(t0 + i∆, Xi), G : R × conv(Rn) → conv(Rn),
Xi = X(t0 + i∆), discrete-time equation (2.1) is a Euler polygonal curve for the
differential equation with Hukuhara derivative [6]

DhX(t) = G(t,X(t)), X(t0) = X0,

where X : R → conv(Rn) is set-valued mapping, DhX(t) is Hukuhara derivative
[6, 10]. Thus, Theorem 3.1 is a discrete analogue of the first Bogolyubov theorem for
a differential equation with derivative Hukuhara [15, 16, 25, 30, 27].

3.2. Case (3.2).

We associate with the equation (3.2) the following averaged set-valued discrete-
time equation with a small parameter

Xi+1 = Xi
h
εF (i,Xi), (3.17)

where F (i,X) such that limit (3.4) exists.

Theorem 3.3. Let in the domain Q = { (i,X) : i ∈ I,X ∈ CC(Rn), X ⊂ B ⊂ Rn }
the following conditions hold:

1) mappings F (i,X), F (i,X) ∈ CC(Rn) for any (i,X) ∈ Q;

2) the inequality

|C(X,ψ) + C(X,−ψ)| ≥ |C(εF (i,X), ψ) + C(εF (i,X),−ψ)|,

|C(X,ψ) + C(X,−ψ)| ≥ |C(εF (i,X), ψ) + C(εF (i,X),−ψ)|
are true for all ψ ∈ Rn (‖ψ‖ = 1), ε ∈ (0, ε̄], i ∈ I and X ⊂ B;

3) mappings F (i,X) and F (i,X) satisfy a Lipschitz condition

h(F (i,X ′), F (i,X”)) ≤ λh(X ′, X”), h(F (i,X ′), F (i,X”)) ≤ λh(X ′, X”),

with a Lipschitz constant λ > 0;

4) there exists γ > 0 such that h(F (i,X), {0}) ≤ γ, h(F (i,X), {0}) ≤ γ for
every (i,X) ∈ Q;

5) limit (3.4) exists uniformly with respect to X in the domain B;

6) the solution of the problem (3.17) together with a ρ−neighborhood belong to
the domain B for ε ∈ (0, ε̄].

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) ∈ (0, ε̄] such that for all
ε ∈ (0, ε0] and i ∈ I the inequality (3.5) holds.

Proof. We write the equations (3.2) and (3.17) in the form

Xi+1 = X0
h
ε

i∑
j=0

F (j,Xj), and Xi+1 = X0
h
ε

i∑
j=0

F (j,Xj). (3.18)
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By (3.18), we have

h(Xi+1, Xi+1) = h

ε i∑
j=0

F (j,Xj), ε

i∑
j=0

F (j,Xj)

 .

Further, Theorem 3.3 is proved similarly to Theorem 3.1. This concludes the proof. �

Remark 3.4. If F (i,X) ≡ F (X), i.e.

lim
n→∞

h

(
1

n

n−1∑
i=0

F (i,X),
1

n

n−1∑
i=0

F (X)

)
= 0,

then the validity of the full averaging scheme for (3.1) and (3.2) follows from the
theorems 3.1 and 3.3.
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Approximations of bi-criteria optimization
problem
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Abstract. In this article we study approximation methods for solving bi-criteria
optimization problems. Initial problem is approximated by a new one consisting
of the second order approximation of feasible set and components of objective
function might be initial function, first or second approximation of it. Conditions
such that efficient solution of the approximate problem will remain efficient for
initial problem and reciprocally are studied. Numerical examples are developed
to emphasize the importance of these conditions.
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1. Introduction

Bi-criteria optimization problems are quite often used to solve theoretical and
practical problems from areas as portfolio theory [4], energy field [5], data analysis
[3], logistics [6].
”Scalarization” methods [2] (weighting problem, k th objective Lagrangian problem,
k th objective ε - constrained problem) are common methods for solving this type of
problems. Highly complex mathematical models are reducing the efficiency of ”scalar-
ization” methods and approximation might represent a good alternative.
This article is analyzing conditions such that efficient solution of a certain approximate
problem will remain efficient for the initial problem and reciprocally. Approximate
problem consists of replacing components of objective function and also constraints
with their approximate functions.
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2. Basic concepts

Let X be a set in Rn, x0 an interior point of X, η : X ×X → X and f : X → R
functions. If f is differentiable at x0 then we denote:

F 1 (x) = f (x0) +∇f (x0) η (x, x0)

and call it first η−approximation of f
and if f is twice differentiable at x0 then we denote:

F 2 (x) = f (x0) +∇f (x0) η (x, x0) +
1

2
η (x, x0)

T ∇2f (x0) η (x, x0) .

and call it second η−approximation of f .

Definition 2.1. Let X be a nonempty set of Rn, x0 an interior point of X, f : X → R
a function differentiable at x0 and η : X ×X → X. Then function f is:
invex at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≥ ∇f (x0) η (x, x0)

or equivalently:

f (x) ≥ F 1 (x) ;

incave at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≤ ∇f (x0) η (x, x0)

or equivalently

f (x) ≤ F 1 (x) ;

avex at x0 with respect to η if it is both invex and incave at x0 w.r.t. η.

If function f is invex, respectively incave or avex we denote invex1, respectively
incave1 or avex1.

Definition 2.2. Let X be a nonempty set of Rn, x0 an interior point of X, f : X → R
a function twice differentiable at x0 and η : X ×X → X. Then function f is:
second order invex at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≥ ∇f (x0) η (x, x0) +
1

2
η (x, x0)

T ∇2f (x0) η (x, x0)

or equivalently:

f (x) ≥ F 2 (x) ;

second order incave at x0 with respect to η if for all x ∈ X we have:

f (x)− f (x0) ≤ ∇f (x0) η (x, x0) +
1

2
η (x, x0)

T ∇2f (x0) η (x, x0)

or equivalently:

f (x) ≤ F 2 (x) ;

second order avex at x0 with respect to η if it is both second order invex and second
order incave at x0 w.r.t. η.



Approximations of bi-criteria optimization problem 551

If function f is second order invex, respectively second order incave or second
order avex we denote invex2, respectively incave2 or avex2.

Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X → X, T and
S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S) functions.

We consider the bi-criteria optimization problem
(
P 0,0
0

)
, defined as:

min (f1, f2) (x)
x = (x1, x2, ...xn) ∈ X
gt (x) ≤ 0, t ∈ T
hs (x) = 0, s ∈ S.

Assuming that functions f1, f2, are differentiable of order i, j ∈ {1, 2} and
functions gt, (t ∈ T ) , hs, (s ∈ S) are second order differentiable, we will approximate

original problem
(
P 0,0
0

)
by problems

(
P i,j2

)
:

min
(
F i1, F

j
2

)
(x)

x = (x1, x2, ...xn) ∈ X
G2
t (x) ≤ 0, t ∈ T

H2
s (x) = 0, s ∈ S

where (i, j) ∈ {(1, 0) , (1, 1) , (2, 0) , (2, 1) , (2, 2)} and F 0
1 = f1, F

0
2 = f2. We denote

by

Fk =
{
x ∈ X : Gkt (x) ≤ 0, t ∈ T, Hk

s (x) = 0, s ∈ S
}
, k ∈ {0, 1, 2}

the set of feasible solutions for bi-criteria optimization problem
(
P i,jk

)
, where (i, j) ∈

{(1, 0) , (1, 1) , (2, 0) , (2, 1) , (2, 2)} and k ∈ {0, 1, 2}.

3. Approximate problems and relation to initial problem

In this section we will study the conditions such that efficient solution of ap-

proximated problems
(
P 1,0
2

)
,
(
P 2,0
2

)
,
(
P 2,1
2

)
and

(
P 2,2
2

)
will remain efficient also

for original problem
(
P 0,0
0

)
and reciprocally.

Case
(
P 1,1
2

)
was studied in [1], where also conditions such that F0 ⊆ F2 and

F2 ⊆ F0 were analyzed. We will use them in our work, so we will briefly present the
Theorems stating these inclusions.

Theorem 3.1 (Boncea and Duca [1]). Let X be a nonempty set of Rn, x0 an interior
point of X, η : X ×X → X, and gt, hs : X → R, (t ∈ T, s ∈ S).

Assume that:

a. for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at x0 with
respect to η,

b. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with
respect to η,
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then

F0 ⊆ F2.

Theorem 3.2 (Boncea and Duca [1]). Let X be a nonempty set of Rn, x0 an interior
point of X, η : X ×X → X, and gt, hs : X → R, (t ∈ T, s ∈ S).

Assume that

a. for each t ∈ T , the function gt is twice differentiable at x0 and incave2 at x0
with respect to η,

b. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with
respect to η,

then

F2 ⊆ F0.

Theorem 3.3. Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X →
X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

Assume that:

a. x0 ∈ F0,
b. for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at x0 with

respect to η,
c. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with

respect to η,
d. f1 is twice differentiable at x0 and invex2 at x0 with respect to η,
e. f2 is differentiable at x0 and invex1 at x0 with respect to η,
f. η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,1
2

)
, then x0 is an efficient solution for

(
P 0,0
0

)
.

Proof. x0 being an efficient solution for
(
P 2,1
2

)
, implies that

@x ∈ F2 s.t.
(
F 2
1 (x) , F 1

2 (x)
)
≤
(
F 2
1 (x0) , F 1

2 (x0)
)
.

Conditions b) and c) imply that

F0 ⊆ F2

and thus

@x ∈ F0 s.t.
(
F 2
1 (x) , F 1

2 (x)
)
≤
(
F 2
1 (x0) , F 1

2 (x0)
)
. (3.1)

Let’s assume that x0 is not an efficient solution for
(
P 0,0
0

)
. Then

∃y ∈ F0 s.t. (f1 (y) , f2 (y)) ≤ (f1 (x0) , f2 (x0))

which implies that ∃y ∈ F0 s.t. {
f1 (y) < f1 (x0)
f2 (y) 5 f2 (x0)

(3.2)

or {
f1 (y) 5 f1 (x0)
f2 (y) < f2 (x0) .

(3.3)
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Because f1 is invex2 at x0 with respect to η we get F 2
1 (y) ≤ f1 (y) , ∀y ∈ F0.

Because f2 is invex1 at x0 with respect to η we get F 1
2 (y) ≤ f2 (y) , ∀y ∈ F0.

Because η (x0 x0) = 0 we get f1 (x0) = F 2
1 (x0) and f2 (x0) = F 1

2 (x0).
Thus from (3.2) we get that ∃y ∈ F0 s.t.{

F 2
1 (y) < F 2

1 (x0)
F 1
2 (y) 5 F 1

2 (x0)

which contradicts (3.1) and from (3.3) we get that ∃y ∈ F0 s.t.{
F 2
1 (y) 5 F 2

1 (x0)
F 1
2 (y) < F 1

2 (x0)

which contradicts (3.1).

In conclusion x0 is an efficient solution for
(
P 0,0
0

)
. �

Theorem 3.4. Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X →
X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

Assume that:

a. x0 ∈ F2,
b. for each t ∈ T , the function gt is twice differentiable at x0 and incave2 at x0

with respect to η,
c. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with

respect to η,
d. f1 is twice differentiable at x0 and incave2 at x0 with respect to η,
e. f2 is differentiable at x0 and incave1 at x0 with respect to η,
f. η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution for

(
P 2,1
2

)
.

Proof. x0 being an efficient solution for
(
P 0,0
0

)
, implies that

@x ∈ F0 s.t. (f1 (x) , f2 (x)) ≤ (f1 (x0) , f2 (x0)) .

Conditions b) and c) imply that
F2 ⊆ F0

and thus
@x ∈ F2 s.t. (f1 (x) , f2 (x)) ≤ (f1 (x0) , f2 (x0)) . (3.4)

Let’s assume that x0 is not an efficient solution for
(
P 2,1
2

)
. Then

∃y ∈ F2 s.t.
(
F 2
1 (y) , F 1

2 (y)
)
≤
(
F 2
1 (x0) , F 1

2 (x0)
)

which implies that ∃y ∈ F2 s.t. {
F 2
1 (y) < F 2

1 (x0)
F 1
2 (y) 5 F 1

2 (x0)
(3.5)

or {
F 2
1 (y) 5 F 2

1 (x0)
F 1
2 (y) < F 1

2 (x0) .
(3.6)
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Because f1 is incave2 at x0 with respect to η we get f1 (y) ≤ F 2
1 (y) , ∀y ∈ F2.

Because f2 is incave1 at x0 with respect to η we get f2 (y) ≤ F 1
2 (y) , ∀y ∈ F2.

Because η (x0 x0) = 0 we get f1 (x0) = F 2
1 (x0) and f2 (x0) = F 1

2 (x0).
Thus from (3.5) we get that ∃y ∈ F2 s.t.{

f1 (y) < f1 (x0)
f2 (y) 5 f2 (x0)

which contradicts (3.4) and from (3.6) we get that ∃y ∈ F2 s.t.{
f1 (y) 5 f1 (x0)
f2 (y) < f2 (x0)

which contradicts (3.4).

In conclusion x0 is an efficient solution for
(
P 2,1
2

)
. �

Theorem 3.5. Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X →
X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

Assume that:

a. x0 ∈ F0,
b. for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at x0 with

respect to η,
c. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with

respect to η,
d. f1 is differentiable at x0 and invex1 at x0 with respect to η,
e. η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 1,0
2

)
, then x0 is an efficient solution for

(
P 0,0
0

)
.

Proof. Proof is similar with Theorem 3.3. �

Theorem 3.6. Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X →
X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

Assume that:

a. x0 ∈ F2,
b. for each t ∈ T , the function gt is twice differentiable at x0 and incave2 at x0

with respect to η,
c. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with

respect to η,
d. f1 is differentiable at x0 and incave1 at x0with respect to η,
e. η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution for

(
P 1,0
2

)
.

Proof. Proof is similar with Theorem 3.4. �
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Theorem 3.7. Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X →
X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

Assume that:

a. x0 ∈ F0,
b. for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at x0 with

respect to η,
c. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with

respect to η,
d. f1 is twice differentiable at x0 and invex2 at x0 with respect to η,
e. η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,0
2

)
, then x0 is an efficient solution for

(
P 0,0
0

)
.

Proof. Proof is similar with Theorem 3.3. �

Theorem 3.8. Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X →
X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

Assume that:

a. x0 ∈ F2,
b. for each t ∈ T , the function gt is twice differentiable at x0 and incave2 at x0

with respect to η,
c. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with

respect to η,
d. f1 is twice differentiable at x0 and incave2 at x0 with respect to η,
e. η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution for

(
P 2,0
2

)
.

Proof. Proof is similar with Theorem 3.4. �

Theorem 3.9. Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X →
X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

Assume that:

a. x0 ∈ F0,
b. for each t ∈ T , the function gt is twice differentiable at x0 and invex2 at x0 with

respect to η,
c. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with

respect to η,
d. f1 is twice differentiable at x0 and invex2 at x0 with respect to η,
e. f2 is twice differentiable at x0 and invex2 at x0 with respect to η,
f. η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 2,2
2

)
, then x0 is an efficient solution for

(
P 0,0
0

)
.

Proof. Proof is similar with Theorem 3.3. �
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Theorem 3.10. Let X be a nonempty set of Rn, x0 an interior point of X, η : X×X →
X, T and S index sets, f = (f1, f2) : X → R2 and gt, hs : X → R, (t ∈ T, s ∈ S)
functions.

Assume that:

a. x0 ∈ F2,
b. for each t ∈ T , the function gt is twice differentiable at x0 and incave2 at x0

with respect to η,
c. for each s ∈ S, the function hs is twice differentiable at x0 and avex2 at x0 with

respect to η,
d. f1 is twice differentiable at x0 and incave2 at x0 with respect to η,
e. f2 is twice differentiable at x0 and incave2 at x0 with respect to η,
f. η (x0, x0) = 0.

If x0 is an efficient solution for
(
P 0,0
0

)
, then x0 is an efficient solution for

(
P 2,2
2

)
.

Proof. Proof is similar with Theorem 3.4. �

4. Numerical examples

In the above theorems, conditions referring to invexity, incavity or avexity of
functions are essential to ensure that efficient solution of the initial problem remains
efficient for the approximate problem and reciprocally. If those conditions are not
fulfill it is possible either that efficient solution of initial problem remains efficient for
the approximate problem (and reciprocally) or it does not remain efficient.

Example 4.1. Let the initial bi-criteria optimization problem
(
P 0,0
0

)
be:

min
(
−
(
x1 − 3π

5

)2 − (x2 − 2π
5 − 1

)2
;−x1 + x2

)
−x1 − sinx1 + x2 ≤ 0
x1 − 5π

2 ≤ 0
x1;x2 ≥ 0

An efficient solution of problem
(
P 0,0
0

)
is x0 = (π2 , 1 + π

2 ) ∈ F0.

Second order approximate functions for the constraints are:

G2
t (x) = gt (x0) +∇gt (x0) η (x, x0) +

1

2
η (x, x0)

T ∇2gtη (x, x0) , t ∈ {1, 2, 3, 4}

Considering η (x, x0) = x− x0 we get:

G2
1 (x) = −x1 + x2 +

1

2

(
x1 −

π

2

)2
− 1,

G2
2 (x) = x1 −

5π

2
,

G2
3 (x) = x1, G

2
4 (x) = x2.
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Consequently, the approximate problem
(
P 0,0
2

)
is:

min
(
−
(
x1 − 3π

5

)2 − (x2 − 2π
5 − 1

)2
;−x1 + x2

)
−x1 + x2 + 1

2

(
x1 − π

2

)2 − 1 ≤ 0
x1 − 5π

2 ≤ 0
x1;x2 ≥ 0

Calculating the values of objective function for problem
(
P 0,0
2

)
in

x0 =
(π

2
, 1 +

π

2

)
∈ F2 and x =

(
3π

4
;

3π

4
+ 1− π2

32

)
∈ F2

we obtain:

f

(
3π

4
;

3π

4
+ 1− π2

32

)
=

(
−58π2

400
+

14π3

640
− π4

32
; 1− π2

32

)
and

f
(π

2
, 1 +

π

2

)
=

(
−π

2

50
, 1

)
.

Because (− 58π2

400 + 14π3

640 −
π4

32 ; 1 − π2

32 ) < (−π
2

50 , 1) it follows that x0 = (π2 , 1 + π
2 ) is

not an efficient solution for approximate problem
(
P 0,0
2

)
.

Example 4.2. Let’s consider the same initial problem as in Example 4.1. First order
approximations for the components of the objective function are

F 1
p (x) = fp (x0) +∇fp (x0) η (x, x0) , p ∈ {1, 2} .

Considering η (x, x0) = x− x0 we get:

F 1
1 (x) = −π

5
x1 −

π

5
x2 +

9π2

50
+
π

5

and

F 1
2 (x) = −x1 + x2.

Approximate functions for the constrains are the same computed at Example 4.1.

Consequently the approximate problem
(
P 1,1
2

)
is:

min
(
−π5x1 −

π
5x2 + 9π2

50 + π
5 ; −x1 + x2

)
−x1 + x2 + 1

2

(
x1 − π

2

)2 − 1 ≤ 0
x1 − 5π

2 ≤ 0
x1;x2 ≥ 0

Calculating the values for the objective function of problem
(
P 1,1
2

)
in

x0 =
(π

2
, 1 +

π

2

)
∈ F2 and x =

(
3π

4
;

3π

4
+ 1− π2

32

)
∈ F2
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we get that

F 1

(
3π

4
;

3π

4
+ 1− π2

32

)
< F 1

(π
2
, 1 +

π

2

)
which proves that x0 = (π2 , 1 + π

2 ) is not an efficient solution for problem
(
P 1,1
2

)
.

Example 4.3. Let’s consider the same initial problem as in Example 4.1. Second order
approximations for the components of the objective function are

F 2
p (x) = fp (x0) +∇fp (x0) η (x, x0) +

1

2
η (x, x0)

T ∇2fp (x0) η (x, x0) , p ∈ {1, 2} .

Considering η (x, x0) = x− x0 we get:

F 2
1 (x) = −π

2

(
x1 −

π

2

)2
− π + 2

2

(
x2 − 1− π

2

)2
− π

5
x1 −

π

5
x2 +

9π2

50
+
π

5
and

F 2
2 (x) = −x1 + x2.

Approximate functions for the constrains are the same computed at Example 4.1.

Consequently the approximate problem
(
P 2,2
2

)
is:

min
(
−π2

(
x1 − π

2

)2 − π+2
2

(
x2 − 1− π

2

)2 − π
5x1 −

π
5x2 + 9π2

50 + π
5 ; −x1 + x2

)
−x1 + x2 + 1

2

(
x1 − π

2

)2 − 1 ≤ 0
x1 − 5π

2 ≤ 0
x1;x2 ≥ 0

Calculating the values for the objective function of problem
(
P 2,2
2

)
in

x0 =
(π

2
, 1 +

π

2

)
∈ F2 and x =

(
3π

4
;

3π

4
+ 1− π2

32

)
∈ F2

we get that

F 2

(
3π

4
;

3π

4
+ 1− π2

32

)
< F 2

(π
2
, 1 +

π

2

)
which proves that x0 = (π2 , 1 + π

2 ) is not an efficient solution for problem
(
P 2,2
2

)
.
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Book reviews

Boris S. Mordukhovich; Variational Analysis and Applications,
Springer Monographs in Mathematics. Springer, Cham, 2018. xix+622 p.
ISBN: 978-3-319-92773-2/hbk; 978-3-319-92775-6/ebook.

Although variational principles in mathematical physics and mechanics were
known since the 18th century, variational analysis, in its current acceptance, is a
relatively new discipline. Its aim is to treat optimization and control problems via
perturbations, approximations and generalized differentiation of nonsmooth or set-
valued maps. As the author mentions in Preface, the first monograph dedicated to
variational analysis in finite dimensions is that by R. T. Rockafellar and R. J.B.
Wets, Springer 1998, where this very name was coined. The infinite-dimensional case
is treated at large in the impressive two-volume monograph of the author, Variational
analysis and generalized differentiation. I: Basic theory (579 p), II: Applications (610
p), Springer 2006 (a review of these volumes is published in vol. 52 (2007), no. 1, of
the present journal).

The present book can be viewed as a companion to the two-volume monograph
mentioned above. The first 6 chapters of the book are dedicated to a presentation
of variational analysis in finite-dimensional spaces. This restriction allows to present
simplified proofs (ad usum Delphini) of the main results, being accessible to graduate
students in mathematics as well as to those in applied sciences and engineering. Each
chapter is completed by a consistent section of exercises containing further results,
including infinite dimensional ones. The most difficult of them are accompanied by
hints or references.

The contents of this part is well illustrated by the headings of its chapters:
1. Constructions of generalized differentiation; 2. Fundamental principles of varia-
tional analysis; 3. Well-posedness and coderivative calculus; 4. First-order subdiffer-
ential calculus; 5. Coderivatives of maximal monotone operators; 6. Nondifferentiable
and bilevel optimization.

The second part of the book, Chapters 7 to 10, is dedicated to applications
of variational analysis to optimization and economics (in Ch. 10. Set-valued opti-
mization and economics), and to other domains. Here the topics are treated in full
infinite-dimensional generality, being addressed to researchers, graduate students and
practitioners. As the author mention in Preface:
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The results obtained demonstrate the strength of variational analysis
and dual-space constructions in solving concrete problems that may
not even be of a variational nature.

Again, each chapter ends with a large number of exercises. As the author men-
tions, the exercise sections (containing some open problems and conjectures as well)
play a crucial role in the organization of the book, providing the reader with a handy
reference source to the enormous material available in first-order variational analysis,
as well as with ideas for further research and developments.

Besides exercises, each chapter ends with a consistent section of Commentaries,
containing references for the results included in the chapter or to other related results.

The book is very well organized – besides the Subject Index, it contains a List of
Statements and a Glossary of Notations and Acronyms. The rich bibliography counts
790 items.

In conclusion, written by an expert in the areas of variational analysis and op-
timization and based on his didactic experience, this is an excellent textbook. By the
wealth of information contained in the second part of the book and in exercises, it can
be also used by researchers in optimization theory and its applications as a reference
text.

S. Cobzaş
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