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Conformable fractional approximation
by max-product operators

George A. Anastassiou

Abstract. Here we study the approximation of functions by a big variety of Max-
product operators under conformable fractional differentiability. These are posi-
tive sublinear operators. Our study is based on our general results about positive
sublinear operators. We produce Jackson type inequalities under conformable
fractional initial conditions. So our approach is quantitative by producing in-
equalities with their right hand sides involving the modulus of continuity of a
high order conformable fractional derivative of the function under approxima-
tion.

Mathematics Subject Classification (2010): 26A33, 41A17, 41A25, 41A36.

Keywords: positive sublinear operators, Max-product operators, modulus of con-
tinuity, conformable fractional derivative.

1. Introduction

The main motivation here is the monograph by B. Bede, L. Coroianu and S. Gal
[4], 2016.

Let N ∈ N, the well-known Bernstein polynomials ([7]) are positive linear oper-
ators, defined by the formula

BN (f) (x) =

N∑
k=0

(
N
k

)
xk (1− x)

N−k
f

(
k

N

)
, x ∈ [0, 1] , f ∈ C ([0, 1]) . (1.1)

T. Popoviciu in [8], 1935, proved for f ∈ C ([0, 1]) that

|BN (f) (x)− f (x)| ≤ 5

4
ω1

(
f,

1√
N

)
, ∀ x ∈ [0, 1] , (1.2)

where

ω1 (f, δ) = sup
x,y∈[0,1]:
|x−y|≤δ

|f (x)− f (y)| , δ > 0, (1.3)
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is the first modulus of continuity.
G.G. Lorentz in [7], 1986, p. 21, proved for f ∈ C1 ([0, 1]) that

|BN (f) (x)− f (x)| ≤ 3

4
√
N
ω1

(
f ′,

1√
N

)
, ∀ x ∈ [0, 1] , (1.4)

In [4], p. 10, the authors introduced the basic Max-product Bernstein operators,

B
(M)
N (f) (x) =

∨N
k=0 pN,k (x) f

(
k
N

)∨N
k=0 pN,k (x)

, N ∈ N, (1.5)

where
∨

stands for maximum, and

pN,k (x) =

(
N
k

)
xk (1− x)

N−k

and f : [0, 1]→ R+ = [0,∞).
These are nonlinear and piecewise rational operators.
The authors in [4] studied similar such nonlinear operators such as: the Max-

product Favard-Szász-Mirakjan operators and their truncated version, the Max-
product Baskakov operators and their truncated version, also many other similar
specific operators. The study in [4] is based on presented there general theory of sub-
linear operators. These Max-product operators tend to converge faster to the on hand
function.

So we mention from [4], p. 30, that for f : [0, 1] → R+ continuous, we have the
estimate∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ 12ω1

(
f,

1√
N + 1

)
, for all N ∈ N, x ∈ [0, 1] , (1.6)

Also from [4], p. 36, we mention that for f : [0, 1] → R+ being concave function we
get that ∣∣∣B(M)

N (f) (x)− f (x)
∣∣∣ ≤ 2ω1

(
f,

1

N

)
, for all x ∈ [0, 1] , (1.7)

a much faster convergence.
In this article we expand the study in [4] by considering conformable fractional

smoothness of functions. So our inequalities are with respect to ω1 (Dn
αf, δ), δ > 0,

n ∈ N, where Dn
αf is the nth order conformable α-fractional derivative, α ∈ (0, 1], see

[1], [6].
We present at first some background and general related theory of sublinear

operators and then we apply it to specific as above Max-product operators.

2. Background

We make

Definition 2.1. Let f : [0,∞) → R and α ∈ (0, 1]. We say that f is an α-fractional
continuous function, iff ∀ ε > 0 ∃ δ > 0 : for any x, y ∈ [0,∞) such that |xα − yα| ≤ δ
we get that |f (x)− f (y)| ≤ ε.

We give
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Theorem 2.2. Over [a, b] ⊆ [0,∞), α ∈ [0, 1], a α-fractional continuous function is a
uniformly continuous function and vice versa, a uniformly continuous function is an
α-fractional continuous function.

(Theorem 2.2 is not valid over [0,∞).)
Note. Let x, y ∈ [a, b] ⊆ [0,∞), and g (x) = xα, 0 < α ≤ 1, then

g′ (x) = αxα−1 =
α

x1−α
, for x ∈ (0,∞) .

Since a ≤ x ≤ b, then 1
x ≥

1
b > 0 and α

x1−α ≥ α
b1−α > 0.

Assume y > x. By the mean value theorem we get

yα − xα =
α

ξ1−α
(y − x) , where ξ ∈ (x, y) . (2.1)

A similar to (2.1) equality when x > y is true.
Then we obtain

α

b1−α
|y − x| ≤ |yα − xα| = α

ξ1−α
|y − x| . (2.2)

Thus, it holds
α

b1−α
|y − x| ≤ |yα − xα| . (2.3)

Proof of Theorem 2.2.
(⇒) Assume that f is α-fractional continuous function on [a, b] ⊆ [0,∞). It

means ∀ ε > 0 ∃ δ > 0 : whenever x, y ∈ [a, b] : |xα − yα| ≤ δ, then |f (x)− f (y)| ≤ ε.
Let for {xn}n∈N ∈ [a, b] : {xn → λ ∈ [a, b]⇔ xαn → λα}, it implies f (xn) → f (λ),
therefore f is continuous in λ. Therefore f is uniformly continuous over [a, b] .

For the converse we use the following criterion:

Lemma 2.3. A necessary and sufficient condition that the function f is not α-fractional
continuous (α ∈ (0, 1]) over [a, b] ⊆ [0,∞) is that there exist ε0 > 0, and two se-
quences X = (xn), Y = (yn) in [a, b] such that if n ∈ N, then |xαn − yαn | ≤ 1

n and
|f (xn)− f (yn)| > ε0.

Proof. Obvious. �
(Proof of Theorem 2.2 continuous) (⇐) Uniform continuity implies α-fractional con-
tinuity on [a, b] ⊆ [0,+∞). Indeed: let f uniformly continuous on [a, b], hence f
continuous on [a, b]. Assume that f is not α-fractional continuous on [a, b]. Then by
Lemma 2.3 there exist ε0 > 0, and two sequences X = (xn), Y = (yn) in [a, b] such
that if n ∈ N, then |xαn − yαn | ≤ 1

n and

|f (xn)− f (yn)| > ε0. (2.4)

Since [a, b] is compact, the sequences {xn} , {yn} are bounded. By the Bolzano-
Weierstrass theorem, there is a subsequence

{
xn(k)

}
of {xn} which converges to an

element z. Since [a, b] is closed, the limit z ∈ [a, b], and f is continuous at z.
We have also that

α

b1−α
|xn − yn| ≤ |xαn − yαn | ≤

1

n
, (2.5)
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hence

|xn − yn| ≤
b1−α

αn
. (2.6)

It is clear that the corrsponding subsequence
(
yn(k)

)
of Y also converges to z. Hence

f
(
xn(k)

)
→ f (z), and f

(
yn(k)

)
→ f (z). Therefore, when k is sufficiently large we

have
∣∣f (xn(k))− f (yn(k))∣∣ < ε0, contradicting (2.4). �

We need

Definition 2.4. Let [a, b] ⊆ [0,∞), α ∈ [0, 1]. We define the α-fractional modulus of
continuity:

ωα1 (f, δ) := sup
x,y∈[a,b]:
|xα−yα|≤δ

|f (x)− f (y)| , δ > 0. (2.7)

The same definition holds over [0,∞).
Properties.

1) ωα1 (f, 0) = 0.
2) ωα1 (f, δ)→ 0 as δ ↓ 0, iff f is in the set of all α-fractional continuous functions,

denoted as f ∈ Cα ([a, b] ,R) (= C ([a, b] ,R)).

Proof. (⇒) Let ωα1 (f, δ) → 0 as δ ↓ 0. Then ∀ ε > 0, ∃ δ > 0 with ωα1 (f, δ) ≤ ε, i.e.
∀ x, y ∈ [a, b] : |xα − yα| ≤ δ we get |f (x)− f (y)| ≤ ε. That is f ∈ Cα ([a, b] ,R) .

(⇐) Let f ∈ Cα ([a, b] ,R). Then ∀ ε > 0, ∃ δ > 0 : whenever |xα − yα| ≤ δ,
x, y ∈ [a, b] , it implies |f (x)− f (y)| ≤ ε, i.e. ∀ ε > 0, ∃ δ > 0 : ωα1 (f, δ) ≤ ε. That is
ωα1 (f, δ)→ 0, as δ ↓ 0. �

3) ωα1 is ≥ 0 and non-decreasing on R+.
4) ωα1 is subadditive:

ωα1 (f, t1 + t2) ≤ ωα1 (f, t1) + ωα1 (f, t2) . (2.8)

Proof. If |xα − yα| ≤ t1 + t2 (x, y ∈ [a, b]), there is a point z ∈ [a, b] for which
|xα − zα| ≤ t1, |yα − zα| ≤ t2, and |f (x)− f (y)| ≤ |f (x)− f (z)|+ |f (z)− f (y)| ≤
ωα1 (f, t1) + ωα1 (f, t2), implying ωα1 (f, t1 + t2) ≤ ωα1 (f, t1) + ωα1 (f, t2) . �

5) ωα1 is continuous on R+.

Proof. We get
|ωα1 (f, t1 + t2)− ωα1 (f, t1)| ≤ ωα1 (f, t2) . (2.9)

By properties 2), 3), 4), we get that ωα1 (f, t) is continuous at each t ≥ 0. �

6) Clearly it holds

ωα1 (f, t1 + ...+ tn) ≤ ωα1 (f, t1) + ...+ ωα1 (f, tn) , (2.10)

for t = t1 = ... = tn, we obtain

ωα1 (f, nt) = nωα1 (f, t) . (2.11)

7) Let λ ≥ 0, λ /∈ N, we get

ωα1 (f, λt) ≤ (λ+ 1)ωα1 (f, t) . (2.12)
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Proof. Let n ∈ Z+ : n ≤ λ < n+ 1, we see that

ωα1 (f, λt) ≤ ωα1 (f, (n+ 1) t) ≤ (n+ 1)ωα1 (f, t) ≤ (λ+ 1)ωα1 (f, t) . �

Properties 1), 3), 4), 6), 7) are valid also for ωα1 defined over [0,∞).
We notice that ωα1 (f, δ) is finite when f is uniformly continuous on [a, b].

If f : [0,∞)→ R is bounded then ωα1 (f, δ) is again finite.
We need

Definition 2.5. ([1], [6]) Let f : [0,∞) → R. The conformable α-fractional derivative
for α ∈ (0, 1] is given by

Dαf (t) := lim
ε→0

f
(
t+ εt1−α

)
− f (t)

ε
, (2.13)

Dαf (0) = lim
t→0+

Dαf (t) . (2.14)

If f is differentiable, then
Dαf (t) = t1−αf ′ (t) , (2.15)

where f ′ is the usual derivative.
We define Dn

αf = Dn−1
α (Dαf) .

If f : [0,∞)→ R is α-differentiable at t0 > 0, α ∈ (0, 1], then f is continuous at
t0, see [6].

We will use

Theorem 2.6. (see [3]) (Taylor formula) Let α ∈ (0, 1] and n ∈ N. Suppose f is (n+ 1)
times conformable α-fractional differentiable on [0,∞), and s, t ∈ [0,∞), and Dn+1

α f
is assumed to be continuous on [0,∞). Then we have

f (t) =

n∑
k=0

1

k!

(
tα − sα

α

)k
Dk
αf (s) +

1

n!

∫ t

s

(
tα − τα

α

)n
Dn+1
α f (τ) τa−1dτ. (2.16)

The case n = 0 follows.

Corollary 2.7. Let α ∈ (0, 1]. Suppose f is α-fractional differentiable on [0,∞), and
s, t ∈ [0,∞). Assume that Dαf is continuous on [0,∞). Then

f (t) = f (s) +

∫ t

s

Dαf (τ) τa−1dτ. (2.17)

Note. Theorem 2.6 and Corollary 2.7 are also true for f : [a, b] → R, [a, b] ⊆ [0,∞),
s, t ∈ [a, b] .

Proof of Corollary 2.7. Denote Isα (f) (t) :=
∫ t
s
xα−1f (x) dx. By [6] we get that

DαI
s
α (f) (t) = f (t) , for t ≥ s, (2.18)

where f is any continuous function in the domain of Iα, α ∈ (0, 1) .
Assume that Dαf is continuous, then

DαI
s
α (Dαf) (t) = (Dαf) (t) , ∀ t ≥ s. (2.19)

Then, by [5], there exists a constant c such that

Isα (Dαf) (t) = f (t) + c. (2.20)
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Hence

0 = Isα (Dαf) (s) = f (s) + c, (2.21)

then c = −f (s) .
Therefore

Isα (Dαf) (t) = f (t)− f (s) =

∫ t

s

(Dαf) (τ) τα−1dτ. (2.22)

The same proof applies for any s ≥ t. �

3. Main results

We give

Theorem 3.1. Let α ∈ (0, 1] and n ∈ Z+. Suppose f is (n+ 1) times conformable
α-fractional differentiable on [0,∞), and s, t ∈ [0,∞), and Dn+1

α f is assumed to be
continuous on [0,∞) and bounded. Then∣∣∣∣∣f (t)−

n+1∑
k=0

1

k!

(
tα − sα

α

)k
Dk
αf (s)

∣∣∣∣∣ ≤ ωα1
(
Dn+1
α f, δ

)
αn+1 (n+ 1)!

|tα − sα|n+1

[
1 +
|tα − sα|
(n+ 2) δ

]
,

(3.1)
∀ s, t ∈ [0,∞), δ > 0.

Note. Theorem 3.1 is valid also for f : [a, b]→ R, [a, b] ⊆ R+, any s, t ∈ [a, b] .

Proof. We have that

1

n!

∫ t

s

(
tα − τα

α

)n
Dn+1
α f (s) τα−1dτ =

Dn+1
α f (s)

n!

∫ t

s

(
tα − τα

α

)n
τα−1dτ

(by dτα

dτ = ατα−1 ⇒ dτα = ατα−1dτ ⇒ 1
αdτ

α = τα−1dτ)

=
Dn+1
α f (s)

αn+1n!

∫ t

s

(tα − τα)
n
dτα (3.2)

(by t ≤ τ ≤ s⇒ tα ≤ τα(=: z) ≤ sα)

=
Dn+1
α f (s)

αn+1n!

∫ tα

sα
(tα − z)n dz =

Dn+1
α f (s)

αn+1n!

(tα − sα)
n+1

n+ 1

=
Dn+1
α f (s)

(n+ 1)!

(
tα − sα

α

)n+1

. (3.3)

Therefore it holds

1

n!

∫ t

s

(
tα − τα

α

)n
Dn+1
α f (s) τα−1dτ =

Dn+1
α f (s)

(n+ 1)!

(
tα − sα

α

)n+1

. (3.4)

By (2.16) and (2.17) we get:

f (t) =

n+1∑
k=0

1

k!

(
tα − sα

α

)k
Dk
αf (s) + (3.5)
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1

n!

∫ t

s

(
tα − τα

α

)n (
Dn+1
α f (τ)−Dn+1

α f (s)
)
τα−1dτ.

Call the remainder as

Rn (s, t) :=
1

n!

∫ t

s

(
tα − τα

α

)n (
Dn+1
α f (τ)−Dn+1

α f (s)
)
τα−1dτ. (3.6)

We estimate Rn (s, t).
Cases:

1) Let t ≥ s. Then

|Rn (s, t)| ≤ 1

n!

∫ t

s

(
tα − τα

α

)n ∣∣Dn+1
α f (τ)−Dn+1

α f (s)
∣∣ τα−1dτ

≤ 1

αn!

∫ t

s

(
tα − τα

α

)n
ωα1
(
Dn+1
α f, τα − sα

)
dτα (3.7)

=
1

αn+1n!

∫ t

s

(tα − τα)
n
ωα1

(
Dn+1
α f,

δ (τα − sα)

δ

)
dτα

(δ > 0)

≤
ωα1
(
Dn+1
α f, δ

)
αn+1n!

∫ t

s

(tα − τα)
n

(
1 +

τα − sα

δ

)
dτ

α

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

∫ tα

sα
(tα − z)n

(
1 +

z − sα

δ

)
dz

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

[∫ tα

sα
(tα − z)n dz +

1

δ

∫ tα

sα
(tα − z)(n+1)−1

(z − sα)
2−1

dz

]

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

[
(tα − sα)

n+1

n+ 1
+

1

δ

Γ (n+ 1) Γ (2)

Γ (n+ 3)
(tα − sα)

n+2

]
(3.8)

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

[
(tα − sα)

n+1

n+ 1
+

1

δ

n!

(n+ 2)!
(tα − sα)

n+2

]

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

[
(tα − sα)

n+1

n+ 1
+

1

δ

(tα − sα)
n+2

(n+ 1) (n+ 2)

]
(3.9)

=
ωα1
(
Dn+1
α f, δ

)
αn+1 (n+ 1)!

(tα − sα)
n+1

[
1 +

(tα − sα)

(n+ 2) δ

]
.

We have proved that (case of t ≥ s)

|Rn (s, t)| ≤
ωα1
(
Dn+1
α f, δ

)
αn+1 (n+ 1)!

(tα − sα)
n+1

[
1 +

(tα − sα)

(n+ 2) δ

]
, (3.10)

where δ > 0.
2) case of t ≤ s: We have

|Rn (s, t)| ≤ 1

n!

∣∣∣∣∫ s

t

(
tα − τα

α

)n (
Dn+1
α f (τ)−Dn+1

α f (s)
)
τα−1dτ

∣∣∣∣



10 George A. Anastassiou

1

n!

∣∣∣∣∫ s

t

(
τα − tα

α

)n (
Dn+1
α f (τ)−Dn+1

α f (s)
)
τα−1dτ

∣∣∣∣
≤ 1

αn!

∫ s

t

(
τα − tα

α

)n ∣∣Dn+1
α f (τ)−Dn+1

α f (s)
∣∣ dτα (3.11)

=
1

αn+1n!

∫ s

t

(τα − tα)
n
ωα1
(
Dn+1
α f, sα − τα

)
dτα

(δ > 0)

≤
ωα1
(
Dn+1
α f, δ

)
αn+1n!

∫ s

t

(τα − tα)
n

(
1 +

sα − τα

δ

)
dτα

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

∫ sα

tα
(z − tα)

n

(
1 +

sα − z
δ

)
dz

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

[∫ sα

tα
(z − tα)

n
dz +

1

δ

∫ sα

tα
(sα − z)2−1 (z − tα)

(n+1)−1
dz

]
(3.12)

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

[
(sα − tα)

n+1

n+ 1
+

1

δ

Γ (2) Γ (n+ 1)

Γ (n+ 3)
(sα − tα)

n+2

]

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

[
(sα − tα)

n+1

n+ 1
+

1

δ

n!

(n+ 2)!
(sα − tα)

n+2

]

=
ωα1
(
Dn+1
α f, δ

)
αn+1n!

[
(sα − tα)

n+1

n+ 1
+

1

δ

(sα − tα)
n+2

(n+ 1) (n+ 2)

]
(3.13)

=
ωα1
(
Dn+1
α f, δ

)
αn+1 (n+ 1)!

(sα − tα)
n+1

[
1 +

(sα − tα)

(n+ 2) δ

]
.

We have proved that (t ≤ s)

|Rn (s, t)| ≤
ωα1
(
Dn+1
α f, δ

)
αn+1 (n+ 1)!

(sα − tα)
n+1

[
1 +

(sα − tα)

(n+ 2) δ

]
, (3.14)

δ > 0.
Conclusion. We have proved that (δ > 0)

|Rn (s, t)| ≤
ωα1
(
Dn+1
α f, δ

)
αn+1 (n+ 1)!

|tα − sα|n+1

[
1 +
|tα − sα|
(n+ 2) δ

]
, ∀ s, t ∈ [0,∞). (3.15)

The proof of the theorem now is complete. �

We proved that

Theorem 3.2. Let α ∈ (0, 1], n ∈ N. Suppose f is n times conformable α-fractional dif-
ferentiable on [a, b] ⊆ [0,∞), and let any s, t ∈ [a, b]. Assume that Dn

αf is continuous
on [a, b]. Then∣∣∣∣∣f (t)−

n∑
k=0

1

k!

(
tα − sα

α

)k
Dk
αf (s)

∣∣∣∣∣ ≤ ωα1 (Dn
αf, δ)

αnn!
|tα − sα|n

[
1 +
|tα − sα|
(n+ 1) δ

]
,

(3.16)
where δ > 0.
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Proof. By Theorem 3.1. �

Corollary 3.3. (n = 1 case of Theorem 3.2) Let α ∈ (0, 1]. Suppose f is α-conformable
fractional differentiable on [a, b] ⊆ [0,∞), and let any s, t ∈ [a, b]. Assume that Dαf
is continuous on [a, b]. Then∣∣∣∣f (t)− f (s)−

(
tα − sα

α

)
Dαf (s)

∣∣∣∣ ≤ ωα1 (Dαf, δ)

α
|tα − sα|

[
1 +
|tα − sα|

2δ

]
, (3.17)

where δ > 0.

Corollary 3.4. (to Theorem 3.2) Same assumptions as in Theorem 3.2. For specific
s ∈ [a, b] assume that Dk

αf (s) = 0, k = 1, ..., n. Then

|f (t)− f (s)| ≤ ωα1 (Dn
αf, δ)

αnn!
|tα − sα|n

[
1 +
|tα − sα|
(n+ 1) δ

]
, δ > 0. (3.18)

The case n = 1 follows:

Corollary 3.5. (to Corollary 3.4) For specific s ∈ [a, b] assume that Dαf (s) = 0. Then

|f (t)− f (s)| ≤ ωα1 (Dαf, δ)

α
|tα − sα|

[
1 +
|tα − sα|

2δ

]
, δ > 0. (3.19)

We make

Remark 3.6. For 0 < α ≤ 1, t, s ≥ 0, we have

2α−1 (xα + yα) ≤ (x+ y)
α ≤ xα + yα. (3.20)

Assume that t > s, then

t = t− s+ s⇒ tα = (t− s+ s)
α ≤ (t− s)α + sα,

hence tα − sα ≤ (t− s)α .
Similarly, when s > t⇒ sα − tα ≤ (s− t)α.
Therefore it holds

|tα − sα| ≤ |t− s|α , ∀ t, s ∈ [0,∞). (3.21)

Corollary 3.7. (to Theorem 3.2) Same assumptions as in Theorem 3.2. For specific
s ∈ [a, b] assume that Dk

αf (s) = 0, k = 1, ..., n. Then

|f (t)− f (s)| ≤ ωα1 (Dn
αf, δ)

αnn!
|t− s|nα

[
1 +

|t− s|α

(n+ 1) δ

]
, δ > 0, (3.22)

∀ t ∈ [a, b] ⊆ [0,∞).

Corollary 3.8. (to Corollary 3.3) Same assumptions as in Corollary 3.3. For specific
s ∈ [a, b] assume that Dαf (s) = 0. Then

|f (t)− f (s)| ≤ ωα1 (Dαf, δ)

α
|t− s|α

[
1 +
|t− s|α

2δ

]
, δ > 0, (3.23)

∀ t ∈ [a, b] ⊆ [0,∞).

We need
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Definition 3.9. Here C+ ([a, b]) := {f : [a, b] ⊆ [0,∞)→ R+, continuous functions} .
Let LN : C+ ([a, b])→ C+ ([a, b]), operators, ∀ N ∈ N, such that

(i)
LN (αf) = αLN (f) , ∀α ≥ 0,∀f ∈ C+ ([a, b]) , (3.24)

(ii) if f, g ∈ C+ ([a, b]) : f ≤ g, then

LN (f) ≤ LN (g) , ∀N ∈ N, (3.25)

(iii)
LN (f + g) ≤ LN (f) + LN (g) , ∀ f, g ∈ C+ ([a, b]) . (3.26)

We call {LN}N∈N positive sublinear operators.

We need a Hölder’s type inequality, see next:

Theorem 3.10. (see [2]) Let L : C+ ([a, b]) → C+ ([a, b]), be a positive sublinear op-
erator and f, g ∈ C+ ([a, b]), furthermore let p, q > 1 : 1

p + 1
q = 1. Assume that

L ((f (·))p) (s∗) , L ((g (·))q) (s∗) > 0 for some s∗ ∈ [a, b]. Then

L (f (·) g (·)) (s∗) ≤ (L ((f (·))p) (s∗))
1
p (L ((g (·))q) (s∗))

1
q . (3.27)

We make

Remark 3.11. By [4], p. 17, we get: let f, g ∈ C+ ([a, b]), then

|LN (f) (x)− LN (g) (x)| ≤ LN (|f − g|) (x) , ∀ x ∈ [a, b] ⊆ [0,∞). (3.28)

Furthermore, we also have that

|LN (f) (x)− f (x)| ≤ LN (|f (·)− f (x)|) (x) + |f (x)| |LN (e0) (x)− 1| , (3.29)

∀ x ∈ [a, b] ⊆ [0,∞); e0 (t) = 1.
From now on we assume that LN (1) = 1. Hence it holds

|LN (f) (x)− f (x)| ≤ LN (|f (·)− f (x)|) (x) , ∀ x ∈ [a, b] ⊆ [0,∞). (3.30)

Next we use Corollary 3.8.
Here Dαf (x) = 0 for a specific x ∈ [a, b] ⊆ [0,∞). We also assume that

LN

(
|· − x|α+1

)
(x) , LN

(
(· − x)

2(α+1)
)

(x) > 0. By (3.23) we have

|f (·)− f (x)| ≤ ωα1 (Dαf, δ)

α

[
|· − x|α +

|· − x|2α

2δ

]
, δ > 0, (3.31)

true over [a, b] ⊆ [0,∞).
By (3.30) we get

|LN (f) (x)− f (x)| ≤ ωα1 (Dαf, δ)

α

LN (|· − x|α) (x) +
LN

(
|· − x|2α

)
(x)

2δ

 (3.32)

(by (3.27))

≤ ωα1 (Dαf, δ)

α

(LN (|· − x|α+1
)

(x)
) α
α+1

+

(
LN

(
(· − x)

2(α+1)
)

(x)
) α
α+1

2δ


(3.33)
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(choose δ :=

((
LN

(
(· − x)

2(α+1)
)

(x)
) α
α+1

) 1
2

> 0, hence

δ2 =
(
LN

(
(· − x)

2(α+1)
)

(x)
) α
α+1

)

=

ωα1

(
Dαf,

(
LN

(
(· − x)

2(α+1)
)

(x)
) α

2(α+1)

)
α

·[(
LN

(
|· − x|α+1

)
(x)
) α
α+1

+
1

2

(
LN

(
(· − x)

2(α+1)
)

(x)
) α

2(α+1)

]
. (3.34)

We have proved:

Theorem 3.12. Let α ∈ (0, 1], [a, b] ⊆ [0,∞). Suppose f is α-conformable frac-
tional differentiable on [a, b]. Dαf is continuous on [a, b]. Let an x ∈ [a, b] such that
Dαf (x) = 0, and LN : C+ ([a, b]) into itself, positive sublinear operators. Assume

that LN (1) = 1 and LN

(
|· − x|α+1

)
(x) , LN

(
(· − x)

2(α+1)
)

(x) > 0, ∀ N ∈ N.

Then

|LN (f) (x)− f (x)| ≤
ωα1

(
Dαf,

(
LN

(
(· − x)

2(α+1)
)

(x)
) α

2(α+1)

)
α

·[(
LN

(
|· − x|α+1

)
(x)
) α
α+1

+
1

2

(
LN

(
(· − x)

2(α+1)
)

(x)
) α

2(α+1)

]
, ∀ N ∈ N. (3.35)

We make

Remark 3.13. By Theorem 3.10, we get that

LN

(
|· − x|α+1

)
(x) ≤

(
LN

(
(· − x)

2(α+1)
)

(x)
) 1

2

. (3.36)

As N → +∞, by (3.35) and (3.36), and LN

(
(· − x)

2(α+1)
)

(x) → 0, we obtain that

LN (f) (x)→ f (x) .

We continue with

Remark 3.14. In the assumptions of Corollary 3.7 and (3.22) we can write over [a, b] ⊆
[0,∞), that

|f (·)− f (x)| ≤ ωα1 (Dn
αf, δ)

αnn!

[
|· − x|nα +

|· − x|(n+1)α

(n+ 1) δ

]
, δ > 0. (3.37)

By (3.30) we get

|LN (f) (x)− f (x)| ≤ ωα1 (Dn
αf, δ)

αnn!
·[

LN (|· − x|nα) (x) +
1

(n+ 1) δ
LN

(
|· − x|(n+1)α

)
(x)

]
(by (3.27))

≤ ωα1 (Dn
αf, δ)

αnn!
· (3.38)
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LN

(
|· − x|n(α+1)

)
(x)
) α
α+1

+
1

(n+ 1) δ

(
LN

(
(· − x)

(n+1)(α+1)
)

(x)
) α
α+1

]
[(here is assumed LN (1) = 1, and LN

(
|· − x|n(α+1)

)
(x) ,

LN

(
(· − x)

(n+1)(α+1)
)

(x) > 0, ∀ N ∈ N),

(we take δ :=
(
LN

(
(· − x)

(n+1)(α+1)
)

(x)
) α

(n+1)(α+1)

> 0, then

δn+1 =
(
LN

(
(· − x)

(n+1)(α+1)
)

(x)
) α
α+1

)]

=

ωα1

(
Dn
αf,
(
LN

(
(· − x)

(n+1)(α+1)
)

(x)
) α

(n+1)(α+1)

)
αnn!

·

[(
LN

(
|· − x|n(α+1)

)
(x)
) α
α+1

+
1

(n+ 1)

(
LN

(
(· − x)

(n+1)(α+1)
)

(x)
) nα

(n+1)(α+1)

]
.

(3.39)

We have proved

Theorem 3.15. Let α ∈ (0, 1], n ∈ N. Suppose f is n times conformable α-fractional
differentiable on [a, b] ⊆ [0,∞), and Dn

αf is continuous on [a, b]. For a fixed x ∈ [a, b]
we have Dk

αf (x) = 0, k = 1, ..., n. Let positive sublinear operators {LN}N∈N
from C+ ([a, b]) into itself, such that LN (1) = 1, and LN

(
|· − x|n(α+1)

)
(x) ,

LN

(
(· − x)

(n+1)(α+1)
)

(x) > 0, ∀ N ∈ N. Then

|LN (f) (x)− f (x)| ≤
ωα1

(
Dn
αf,
(
LN

(
(· − x)

(n+1)(α+1)
)

(x)
) α

(n+1)(α+1)

)
αnn!

· (3.40)

[(
LN

(
|· − x|n(α+1)

)
(x)
) α
α+1

+
1

(n+ 1)

(
LN

(
(· − x)

(n+1)(α+1)
)

(x)
) nα

(n+1)(α+1)

]
,

∀ N ∈ N.

We make

Remark 3.16. By Theorem 3.10, we get that

LN

(
|· − x|n(α+1)

)
(x) ≤

(
LN

(
(· − x)

(n+1)(α+1)
)

(x)
) n
n+1

. (3.41)

As N → +∞, by (3.40), (3.41), and LN

(
(· − x)

(n+1)(α+1)
)

(x) → 0, we derive that

LN (f) (x)→ f (x) .
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4. Applications

Here we apply Theorems 3.12 and 3.15 to well known Max-product operators.
We make

Remark 4.1. The Max-product Bernstein operators B
(M)
N (f) (x) are defined by (1.5),

see also [4], p. 10; here f : [0, 1]→ R+ is a continuous function.

We have B
(M)
N (1) = 1, and

B
(M)
N (|· − x|) (x) ≤ 6√

N + 1
, ∀ x ∈ [0, 1] , ∀ N ∈ N,

see [4], p. 31.

B
(M)
N are positive sublinear operators and thus they possess the monotonicity

property, also since |· − x| ≤ 1, then |· − x|β ≤ 1, ∀ x ∈ [0, 1], ∀ β > 0.
Therefore it holds

B
(M)
N

(
|· − x|1+β

)
(x) ≤ 6√

N + 1
, ∀ x ∈ [0, 1] , ∀ N ∈ N, ∀ β > 0. (4.1)

Furthermore, clearly it holds that

B
(M)
N

(
|· − x|1+β

)
(x) > 0, ∀ N ∈ N, ∀ β ≥ 0 and any x ∈ (0, 1) . (4.2)

The operator B
(M)
N maps C+ ([0, 1]) into itself.

We have the following results:

Theorem 4.2. Let α ∈ (0, 1], f is α-conformable fractional differentiable on [0, 1],
Dαf is continuous on [0, 1]. Let x ∈ (0, 1) such that Dαf (x) = 0. Then

∣∣∣B(M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dαf,

(
6√
N+1

) α
2(α+1)

)
α

· (4.3)[(
6√
N + 1

) α
α+1

+
1

2

(
6√
N + 1

) α
2(α+1)

]
, ∀ N ∈ N.

Proof. By Theorem 3.12. �

Theorem 4.3. Let α ∈ (0, 1], f is n times conformable α-fractional differentiable on
[0, 1], and Dn

αf is continuous on [0, 1]. For a fixed x ∈ (0, 1) we have Dk
αf (x) = 0,

k = 1, ..., n ∈ N. Then

∣∣∣B(M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dn
αf,
(

6√
N+1

) α
(n+1)(α+1)

)
αnn!

· (4.4)[(
6√
N + 1

) α
α+1

+
1

(n+ 1)

(
6√
N + 1

) nα
(n+1)(α+1)

]
, ∀ N ∈ N.

Proof. By Theorem 3.15. �
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Note. By (4.3) and/or (4.4), as N → +∞, we get B
(M)
N (f) (x)→ f (x) .

We continue with

Remark 4.4. The truncated Favard-Szász-Mirakjan operators are given by

T
(M)
N (f) (x) =

∨N
k=0 sN,k (x) f

(
k
N

)∨N
k=0 sN,k (x)

, x ∈ [0, 1] , N ∈ N, f ∈ C+ ([0, 1]) , (4.5)

sN,k (x) = (Nx)k

k! , see also [4], p. 11.
By [4], p. 178-179, we get that

T
(M)
N (|· − x|) (x) ≤ 3√

N
, ∀ x ∈ [0, 1] , ∀ N ∈ N. (4.6)

Clearly it holds

T
(M)
N

(
|· − x|1+β

)
(x) ≤ 3√

N
, ∀ x ∈ [0, 1] , ∀ N ∈ N, ∀ β > 0. (4.7)

The operators T
(M)
N are positive sublinear operators mapping C+ ([0, 1]) into itself,

with T
(M)
N (1) = 1.

Furthermore it holds

T
(M)
N

(
|· − x|λ

)
(x) =

∨N
k=0

(Nx)k

k!

∣∣ k
N − x

∣∣λ∨N
k=0

(Nx)k

k!

> 0, ∀ x ∈ (0, 1], ∀ λ ≥ 1, ∀ N ∈ N.

(4.8)

We give the following results:

Theorem 4.5. Let α ∈ (0, 1], f is α-conformable fractional differentiable on [0, 1].
Dαf is continuous on [0, 1]. Let x ∈ (0, 1] such that Dαf (x) = 0. Then

∣∣∣T (M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dαf,

(
3√
N

) α
2(α+1)

)
α

· (4.9)[(
3√
N

) α
α+1

+
1

2

(
3√
N

) α
2(α+1)

]
, ∀ N ∈ N.

Proof. By Theorem 3.12. �

Theorem 4.6. Let α ∈ (0, 1], f is n times conformable α-fractional differentiable on
[0, 1], and Dn

αf is continuous on [0, 1]. For a fixed x ∈ (0, 1] we have Dk
αf (x) = 0,

k = 1, ..., n ∈ N. Then

∣∣∣T (M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dn
αf,
(

3√
N

) α
(n+1)(α+1)

)
αnn!

· (4.10)[(
3√
N

) α
α+1

+
1

(n+ 1)

(
3√
N

) nα
(n+1)(α+1)

]
, ∀ N ∈ N.

Proof. By Theorem 3.15. �
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Note. By (4.9) and/or (4.10), as N → +∞, we get T
(M)
N (f) (x)→ f (x) .

We continue with

Remark 4.7. Next we study the truncated Max-product Baskakov operators (see [4],
p. 11)

U
(M)
N (f) (x) =

∨N
k=0 bN,k (x) f

(
k
N

)∨N
k=0 bN,k (x)

, x ∈ [0, 1] , f ∈ C+ ([0, 1]) , N ∈ N, (4.11)

where

bN,k (x) =

(
N + k − 1

k

)
xk

(1 + x)
N+k

. (4.12)

From [4], pp. 217-218, we get (x ∈ [0, 1])(
U

(M)
N (|· − x|)

)
(x) ≤

2
√

3
(√

2 + 2
)

√
N + 1

, N ≥ 2, N ∈ N. (4.13)

Let λ ≥ 1, clearly then it holds(
U

(M)
N

(
|· − x|λ

))
(x) ≤

2
√

3
(√

2 + 2
)

√
N + 1

, ∀ N ≥ 2, N ∈ N. (4.14)

Also it holds U
(M)
N (1) = 1, and U

(M)
N are positive sublinear operators from C+ ([0, 1])

into itself. Furthermore it holds

U
(M)
N

(
|· − x|λ

)
(x) > 0, ∀ x ∈ (0, 1], ∀ λ ≥ 1, ∀ N ∈ N. (4.15)

We give

Theorem 4.8. Let α ∈ (0, 1], f is α-conformable fractional differentiable on [0, 1].
Dαf is continuous on [0, 1]. Let x ∈ (0, 1] such that Dαf (x) = 0. Then

∣∣∣U (M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dαf,

(
2
√
3(
√
2+2)√

N+1

) α
2(α+1)

)
α

· (4.16)(2
√

3
(√

2 + 2
)

√
N + 1

) α
α+1

+
1

2

(
2
√

3
(√

2 + 2
)

√
N + 1

) α
2(α+1)

 , ∀ N ≥ 2, N ∈ N.

Proof. By Theorem 3.12. �

Theorem 4.9. Let α ∈ (0, 1], f is n times conformable α-fractional differentiable on
[0, 1], and Dn

αf is continuous on [0, 1]. For a fixed x ∈ (0, 1] we have Dk
αf (x) = 0,

k = 1, ..., n ∈ N. Then

∣∣∣U (M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dn
αf,

(
2
√
3(
√
2+2)√

N+1

) α
(n+1)(α+1)

)
αnn!

· (4.17)(2
√

3
(√

2 + 2
)

√
N + 1

) α
α+1

+
1

(n+ 1)

(
2
√

3
(√

2 + 2
)

√
N + 1

) nα
(n+1)(α+1)

 ,
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∀ N ≥ 2, N ∈ N.

Proof. By Theorem 3.15. �

Note. By (4.16) and/or (4.17), as N → +∞, we get that U
(M)
N (f) (x)→ f (x) .

We continue with

Remark 4.10. Here we study the Max-product Meyer-Köning and Zeller operators
(see [4], p. 11) defined by

Z
(M)
N (f) (x) =

∨∞
k=0 sN,k (x) f

(
k

N+k

)
∨∞
k=0 sN,k (x)

, ∀ N ∈ N, f ∈ C+ ([0, 1]) , (4.18)

sN,k (x) =

(
N + k
k

)
xk, x ∈ [0, 1].

By [4], p. 253, we get that

Z
(M)
N (|· − x|) (x) ≤

8
(
1 +
√

5
)

3

√
x (1− x)√

N
, ∀ x ∈ [0, 1] , ∀ N ≥ 4, N ∈ N. (4.19)

As before we get that (for λ ≥ 1)

Z
(M)
N

(
|· − x|λ

)
(x) ≤

8
(
1 +
√

5
)

3

√
x (1− x)√

N
:= ρ (x) , (4.20)

∀ x ∈ [0, 1], N ≥ 4, N ∈ N.
Also it holds Z

(M)
N (1) = 1, and Z

(M)
N are positive sublinear operators from

C+ ([0, 1]) into itself. Also it holds

Z
(M)
N

(
|· − x|λ

)
(x) > 0, ∀ x ∈ (0, 1), ∀ λ ≥ 1, ∀ N ∈ N. (4.21)

We give

Theorem 4.11. Let α ∈ (0, 1], f is α-conformable fractional differentiable on [0, 1].
Dαf is continuous on [0, 1]. Let x ∈ (0, 1) such that Dαf (x) = 0. Then∣∣∣Z(M)

N (f) (x)− f (x)
∣∣∣ ≤ ωα1

(
Dαf, (ρ (x))

α
2(α+1)

)
α

· (4.22)[
(ρ (x))

α
α+1 +

1

2
(ρ (x))

α
2(α+1)

]
, ∀ N ≥ 4, N ∈ N.

Proof. By Theorem 3.12. �

Theorem 4.12. Let α ∈ (0, 1], f is n times conformable α-fractional differentiable on
[0, 1], and Dn

αf is continuous on [0, 1]. For a fixed x ∈ (0, 1) we have Dk
αf (x) = 0,

k = 1, ..., n ∈ N. Then∣∣∣Z(M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dn
αf, (ρ (x))

α
(n+1)(α+1)

)
αnn!

· (4.23)[
(ρ (x))

α
α+1 +

1

(n+ 1)
(ρ (x))

nα
(n+1)(α+1)

]
, ∀ N ≥ 4, N ∈ N.
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Proof. By Theorem 3.15. �

Note. By (4.22) and/or (4.23), as N → +∞, we get that Z
(M)
N (f) (x)→ f (x) .

We continue with

Remark 4.13. Here we deal with the Max-product truncated sampling operators (see
[4], p. 13) defined by

W
(M)
N (f) (x) =

∨N
k=0

sin(Nx−kπ)
Nx−kπ f

(
kπ
N

)∨N
k=0

sin(Nx−kπ)
Nx−kπ

, (4.24)

and

K
(M)
N (f) (x) =

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(
kπ
N

)
∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2

, (4.25)

∀ x ∈ [0, π], f : [0, π]→ R+ a continuous function.

Following [4], p. 343, and making the convention sin(0)
0 = 1 and denoting

sN,k (x) = sin(Nx−kπ)
Nx−kπ , we get that sN,k

(
kπ
N

)
= 1, and sN,k

(
jπ
N

)
= 0, if k 6= j,

furthermore W
(M)
N (f)

(
jπ
N

)
= f

(
jπ
N

)
, for all j ∈ {0, ..., N} .

Clearly W
(M)
N (f) is a well-defined function for all x ∈ [0, π], and it is continuous

on [0, π], also W
(M)
N (1) = 1.

By [4], p. 344, W
(M)
N are positive sublinear operators.

Call I+N (x) = {k ∈ {0, 1, ..., N} ; sN,k (x) > 0}, and set xN,k := kπ
N , k ∈

{0, 1, ..., N}.
We see that

W
(M)
N (f) (x) =

∨
k∈I+N (x) sN,k (x) f (xN,k)∨

k∈I+N (x) sN,k (x)
. (4.26)

By [4], p. 346, we have

W
(M)
N (|· − x|) (x) ≤ π

2N
, ∀ N ∈ N, ∀ x ∈ [0, π] . (4.27)

Notice also |xN,k − x| ≤ π, ∀ x ∈ [0, π] .
Therefore (λ ≥ 1) it holds

W
(M)
N

(
|· − x|λ

)
(x) ≤ πλ−1π

2N
=

πλ

2N
, ∀ x ∈ [0, π] , ∀ N ∈ N. (4.28)

If x ∈
(
jπ
N ,

(j+1)π
N

)
, with j ∈ {0, 1, ..., N}, we obtain nx− jπ ∈ (0, π) and thus

sN,j (x) =
sin (Nx− jπ)

Nx− jπ
> 0,

see [4], pp. 343-344.
Consequently it holds (λ ≥ 1)

W
(M)
N

(
|· − x|λ

)
(x) =

∨
k∈I+N (x) sN,k (x) |xN,k − x|λ∨

k∈I+N (x) sN,k (x)
> 0, ∀ x ∈ [0, π] , (4.29)
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such that x 6= xN,k, for any k ∈ {0, 1, ..., N} .

We give

Theorem 4.14. Let α ∈ (0, 1], f is α-conformable fractional differentiable on [0, π].
Dαf is continuous on [0, π]. Let x ∈ [0, π] be such that x 6= kπ

N , k ∈ {0, 1, ..., N}, ∀
N ∈ N, and Dαf (x) = 0. Then

∣∣∣W (M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dαf,

(
π2(α+1)

2N

) α
2(α+1)

)
α

·[(
πα+1

2N

) α
α+1

+
1

2

(
π2(α+1)

2N

) α
2(α+1)

]
=

ωα1

(
Dαf,

πα

(2N)
α

2(α+1)

)
α

[
πα

(2N)
α

(α+1)
+

πα

2 (2N)
α

2(α+1)

]
, ∀ N ∈ N. (4.30)

Proof. By Theorem 3.12. �

Theorem 4.15. Let α ∈ (0, 1], n ∈ N. Suppose f is n times conformable α-fractional
differentiable on [0, π], and Dn

αf is continuous on [0, π]. For a fixed x ∈ [0, π] : x 6= kπ
N ,

k ∈ {0, 1, ..., N} , ∀ N ∈ N, we have Dk
αf (x) = 0, k = 1, ..., n. Then

∣∣∣W (M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dn
αf,

πα

(2N)
α

(n+1)(α+1)

)
αnn!

·[
πnα

(2N)
α

(α+1)
+

πnα

(n+ 1) (2N)
nα

(n+1)(α+1)

]
, ∀ N ∈ N. (4.31)

Proof. By Theorem 3.15. �

Note. (i) if x = jπ
N , j ∈ {0, ..., N}, then the left hand sides of (4.30) and (4.31) are

zero, so these inequalities are trivially valid.

(ii) from (4.30) and/or (4.31), as N → +∞, we get that W
(M)
N (f) (x)→ f (x) .

We make

Remark 4.16. Here we continue with the Max-product truncated sampling operators
(see [4], p. 13) defined by

K
(M)
N (f) (x) =

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(
kπ
N

)
∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2

, (4.32)

∀ x ∈ [0, π], f : [0, π]→ R+ a continuous function.

Following [4], p. 350, and making the convention sin(0)
0 = 1 and denoting

sN,k (x) =
sin2 (Nx− kπ)

(Nx− kπ)
2 ,
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we get that sN,k
(
kπ
N

)
= 1, and sN,k

(
jπ
N

)
= 0, if k 6= j, furthermore

K
(M)
N (f)

(
jπ

N

)
= f

(
jπ

N

)
,

for all j ∈ {0, ..., N} .
Since sN,j

(
jπ
N

)
= 1 it follows that

N∨
k=0

sN,k

(
jπ

N

)
≥ 1 > 0,

for all j ∈ {0, 1, ..., N}. Hence K
(M)
N (f) is well-defined function for all x ∈ [0, π], and

it is continuous on [0, π], also K
(M)
N (1) = 1. By [4], p. 350, K

(M)
N are positive sublinear

operators.
Denote xN,k := kπ

N , k ∈ {0, 1, ..., N}.
By [4], p. 352, we have

K
(M)
N (|· − x|) (x) ≤ π

2N
, ∀ N ∈ N, ∀ x ∈ [0, π] . (4.33)

Notice also |xN,k − x| ≤ π, ∀ x ∈ [0, π] .
Therefore (λ ≥ 1) it holds

K
(M)
N

(
|· − x|λ

)
(x) ≤ πλ−1π

2N
=

πλ

2N
, ∀ x ∈ [0, π] , ∀ N ∈ N. (4.34)

If x ∈
(
jπ
N ,

(j+1)π
N

)
, with j ∈ {0, 1, ..., N}, we obtain nx− jπ ∈ (0, π) and thus

sN,j (x) =
sin2 (Nx− jπ)

(Nx− jπ)
2 > 0,

see [4], pp. 350.
Consequently it holds (λ ≥ 1)

K
(M)
N

(
|· − x|λ

)
(x) =

∨N
k=0 sN,k (x) |xN,k − x|λ∨N

k=0 sN,k (x)
> 0, ∀ x ∈ [0, π] , (4.35)

such that x 6= xN,k, for any k ∈ {0, 1, ..., N} .

We give

Theorem 4.17. Let α ∈ (0, 1], f is α-conformable fractional differentiable on [0, π].
Dαf is continuous on [0, π]. Let x ∈ [0, π] be such that x 6= kπ

N , k ∈ {0, 1, ..., N}, ∀
N ∈ N, and Dαf (x) = 0. Then

∣∣∣K(M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dαf,

(
π2(α+1)

2N

) α
2(α+1)

)
α

·

[(
πα+1

2N

) α
α+1

+
1

2

(
π2(α+1)

2N

) α
2(α+1)

]
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=

ωα1

(
Dαf,

πα

(2N)
α

2(α+1)

)
α

[
πα

(2N)
α

(α+1)
+

πα

2 (2N)
α

2(α+1)

]
, ∀ N ∈ N. (4.36)

Proof. By Theorem 3.12. �

Theorem 4.18. Let α ∈ (0, 1], n ∈ N. Suppose f is n times conformable α-fractional
differentiable on [0, π], and Dn

αf is continuous on [0, π]. For a fixed x ∈ [0, π] : x 6= kπ
N ,

k ∈ {0, 1, ..., N} , ∀ N ∈ N, we have Dk
αf (x) = 0, k = 1, ..., n. Then

∣∣∣K(M)
N (f) (x)− f (x)

∣∣∣ ≤ ωα1

(
Dn
αf,

πα

(2N)
α

(n+1)(α+1)

)
αnn!

·

[
πnα

(2N)
α

(α+1)
+

πnα

(n+ 1) (2N)
nα

(n+1)(α+1)

]
, ∀ N ∈ N. (4.37)

Proof. By Theorem 3.15. �

Note. (i) if x = jπ
N , j ∈ {0, ..., N}, then the left hand sides of (4.36) and (4.37) are

zero, so these inequalities are trivially valid.

(ii) from (4.36) and/or (4.37), as N → +∞, we get that K
(M)
N (f) (x)→ f (x) .
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Stud. Univ. Babeş-Bolyai Math. 63(2018), No. 1, 23–35
DOI: 10.24193/subbmath.2018.1.02

Generalizations of some fractional integral
inequalities for m-convex functions via
generalized Mittag-Leffler function

Ghulam Farid and Ghulam Abbas

Abstract. In this paper we are interested to present some general fractional in-
tegral inequalities for m-convex functions by involving generalized Mittag-Leffler
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grals. Also these inequalities have some connections with known integral inequal-
ities.
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1. Introduction

Inequalities play an essential role in mathematical and other kinds of analysis,
specially inequalities involving derivative and integral of functions are of great interest
for researchers.
Convex functions are very special in the study of functions defined on real line, a lot
of results, in particular inequalities in mathematical analysis based on their invention.
A convex function f : I → R is also equivalently defined by the Hadamard inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2

where a, b ∈ I, a < b.
A close generalized form of convex functions is m-convex functions introduced by
Toader [23].

Definition 1.1. A function f : [0, b]→ R, b > 0 is said to be m-convex function if for
all x, y ∈ [0, b] and t ∈ [0, 1]

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)
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holds for m ∈ [0, 1].

Every m-convex function is not convex function.

Example 1.2. [16] Let f : [0,∞]→ R be defined by

g(t) =
1

12
(x4 − 5x3 + 9x2 − 5x)

is 16
17 -convex function but it is not convex function.

Form = 1 the above definition becomes the definition of convex functions defined
on [0, b]. If we take m = 0, then we obtain the concept of starshaped functions on
[0, b]. A function f : [0, b]→ R is said to be starshaped if f(tx) ≤ tf(x) for all t ∈ [0, 1]
and x ∈ [0, b].
If set of m-convex functions on [0, b] for which f(0) < 0 is denoted by Km(b), then
we have

K1(b) ⊂ Km(b) ⊂ K0(b)

whenever m ∈ (0, 1). In the class K1(b) there are convex functions f : [0, b] → R for
which f(0) ≤ 0 (see, [2]). There are a number of results and inequalities obtained via
m-convex functions for detail (see [2, 4, 7, 10]).
Recently, a number of authors are taking keen interest to obtain integral inequalities
of the Hadamard type via fractional integral operators of different kinds in the various
field of fractional calculus. For example one can see [5, 6, 11, 15, 17, 20, 22].

2. Preliminaries in fractional calculus and integral operators

Fractional calculus deals with the study of integral and differential operators
of non-integral order. Many mathematicians like Liouville, Riemann and Weyl made
major contributions to the theory of fractional calculus. The study on the fractional
calculus continued with contributions from Fourier, Abel, Lacroix, Leibniz, Grun-
wald and Letnikov. For detail (see, [11, 13, 15]). Riemann-Liouville fractional integral
operator is the first formulation of an integral operator of non-integral order.

Definition 2.1. [24] Let f ∈ L1[a, b]. Then Riemann-Liouville fractional integral of f
of order ν is defined by

Iνa+f(x) =
1

Γ(ν)

∫ x

a

(x− t)ν−1f(t)dt, x > a

and

Iνb−f(x) =
1

Γ(ν)

∫ b

x

(t− x)ν−1f(t)dt, x < b.

In fact these formulations of fractional integral operators have been established
due to Letnikov [14], Sonin [21] and then by Laurent [12]. In these days a variety of
fractional integral operators have been produced and many are under discussion. A
number of generalized fractional integral operators are also very useful in generalizing
the theory of fractional integral operators [1, 11, 15, 18, 22, 24].
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Definition 2.2. [18] Let µ, ν, k, l, γ be positive real numbers and ω ∈ R. Then the

generalized fractional integral operators containing Mittag-Leffler function εγ,δ,kµ,ν,l,ω,a+

and εγ,δ,kµ,ν,l,ω,b−
for a real valued continuous function f is defined by:(
εγ,δ,kµ,ν,l,ω,a+f

)
(x) =

∫ x

a

(x− t)ν−1Eγ,δ,kµ,ν,l (ω(x− t)µ)f(t)dt, (2.1)

and (
εγ,δ,kµ,ν,l,ω,b−

f
)

(x) =

∫ b

x

(t− x)ν−1Eγ,δ,kµ,ν,l (ω(t− x)µ)f(t)dt,

where the function Eγ,δ,kµ,ν,l is generalized Mittag-Leffler function defined as

Eγ,δ,kµ,ν,l (t) =

∞∑
n=0

(γ)knt
n

Γ(µn+ ν)(δ)ln
, (2.2)

(a)n is the Pochhammer symbol, it defined as

(a)n = a(a+ 1)(a+ 2)...(a+ n− 1), (a)0 = 1.

If δ = l = 1 in (2.1), then integral operator εγ,δ,kµ,ν,l,ω,a+ reduces to an integral operator

εγ,1,kµ,ν,1,ω,a+ containing generalized Mittag-Leffler function Eγ,1,kµ,ν,1 introduced by Srivas-

tava and Tomovski in [22]. Along with δ = l = 1 in addition if k = 1 then (2.1) reduces
to an integral operator defined by Prabhaker in [17] containing Mittag-Leffler function

Eγµ,ν . For ω = 0 in (2.1), integral operator εγ,δ,kµ,ν,l,ω,a+ reduces to the Riemann-Liouville

fractional integral operator [18].

In [18, 22] properties of generalized integral operator and generalized Mittag-

Leffler functions are studied in details. In [18] it is proved that Eγ,δ,kµ,ν,l (t) is absolutely

convergent for k < l + µ. Let S be the sum of series of absolute terms of Eγ,δ,kµ,ν,l (t).
We will use this property of Mittag-Leffler function in sequal.

Now a days a number of authors are working on inequalities involving fractional
integral operators and generalized fractional integral operators for example Riemann-
Liouville, Caputo, Hilfer, Canvati etc [8, 20]. Actually, fractional integral inequalities
are very useful to find the uniqueness of solutions for partial differential equations
of non-integral order. In this paper we give some fractional integral inequalities for
m-convex functions by involving generalized Mittag-Leffler function. Also we deduce
some main results of [3, 9, 19].

3. Fractional integral inequalities

First we prove the following lemma which would be helpful to obtain the main
results.

Lemma 3.1. Let f : I → R be a differentiable mapping on I, a, b ∈ I with 0 ≤ a < b
and also let g : [a,mb] → R be a continuous function on [a,mb]. If f ′, g ∈ L[a,mb],



26 Ghulam Farid and Ghulam Abbas

then the following equality holds for ν > 0(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
[f(a) + f(mb)] (3.1)

− ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

− ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

=

∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
f ′(t)dt

−
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
α)ds

)ν
f ′(t)dt

where Eγ,δ,kµ,ν,l is generalized Mittag-Leffler function.

Proof. One can have on integrating by parts∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
f ′(t)dt (3.2)

=

(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
f(mb)

− ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt.

And likewise∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
f ′(t)dt (3.3)

= −

(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
f(a)

+ ν

∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt.

On substracting equation (3.3) from (3.2), we get the result. �

We use Lemma 3.1 to establish the following fractional integral inequality.

Theorem 3.2. Let f : I → R be a differentiable mapping on I, a, b ∈ I with 0 ≤ a < b
and also let g : [a,mb] → R be a continuous function on [a,mb]. If |f ′| is m-convex
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function on [a,mb], then the following inequality holds∣∣∣∣∣
(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb))

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤ (mb− a)ν+1‖g‖ν∞Sν

ν + 1
(|f ′(a)|+m|f ′(b)|)

for k < l + µ, where ‖ g ‖∞= sup
t∈[a,b]

|g(t)|.

Proof. By using Lemma 3.1, we have∣∣∣∣∣
(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb)) (3.4)

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤
∫ mb

a

∣∣∣∣∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

∣∣∣∣ν |f ′(t)|dt
+

∫ mb

a

∣∣∣∣∣
∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

∣∣∣∣∣
ν

|f ′(t)|dt.

By using ‖ g ‖∞= sup
t∈[a,b]

|g(t)| and absolute convergence of Mittag-Leffler function, we

have ∣∣∣∣∣
(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb)) (3.5)

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤ ‖g‖ν∞Sν

(∫ mb

a

(t− a)ν |f ′(t)|dt+

∫ mb

a

(mb− t)ν |f ′(t)|dt

)
.
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Since |f ′| is m-convex function, therefore it can be written as

|f ′(t)| ≤ mb− t
mb− a

|f ′(a)|+ m(t− a)

mb− a
|f ′(b)| (3.6)

for t ∈ [a,mb].
Using (3.6) in (3.5), we have∣∣∣∣∣

(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb)) (3.7)

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)µ−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤ ‖g‖ν∞Sν

(∫ mb

a

(t− a)ν
(
mb− t
mb− a

|f ′(a)|+ m(t− a)

mb− a
|f ′(b)|

)
dt

+

∫ mb

a

(mb− t)ν
(
mb− t
mb− a

|f ′(a)|+ m(t− a)

mb− a
|f ′(b)|

)
dt

)
.

After simplification of above inequality we get the result. �

Remark 3.3. By taking particular values of parameters used in Mittag-Leffler func-
tion in above theorem several fractional integral inequalities can be obtained for cor-
responding fractional integrals. For example see the following results.

Corollary 3.4. If we take m = 1 in Theorem 3.2, then we get the following inequality∣∣∣∣∣
(∫ b

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(b))

−ν
∫ b

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ b

a

(∫ b

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤ (b− a)ν+1‖g‖ν∞Sν

ν + 1
(|f ′(a)|+ |f ′(b)|).

Remark 3.5. In Theorem 3.2, for m = 1.
(i) If we put ω = 0, then we get [19, Theorem 6].
(ii) If we take ω = 0, ν = µ

k and g(s) = 1, then we get [9, Corollary 2.3].
(iii) For g(s) = 1 along with ω = 0 and ν = µ, then we get [19, Corollary 2].

Next we give another fractional integral inequality.
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Theorem 3.6. Let f : I → R be a differentiable mapping on I, a, b ∈ I with 0 ≤ a < b
and also let g : [a,mb] → R be a continuous function on [a,mb]. If |f ′|q is m-convex
function on [a,mb] for q > 1, then the following inequality holds∣∣∣∣∣

(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb))

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤ 2(mb− a)ν+1‖g‖ν∞Sν

(νp+ 1)
1
q

(
|f ′(a)|q +m|f ′(b)|q

2

) 1
q

for k < l + µ, where ‖ g ‖∞= sup
t∈[a,b]

|g(t)| and 1
p + 1

q = 1.

Proof. By using Lemma 3.1, we have∣∣∣∣∣
(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb)) (3.8)

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤
∫ mb

a

∣∣∣∣∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

∣∣∣∣ν |f ′(t)|dt
+

∫ mb

a

∣∣∣∣∣
∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

∣∣∣∣∣
ν

|f ′(t)|dt.

Using Hölder inequality, we have∣∣∣∣∣
(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb)) (3.9)

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
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≤

(∫ mb

a

∣∣∣∣∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

∣∣∣∣νp dt
) 1
p
(∫ mb

a

|f ′(t)|qdt

) 1
q

+

(∫ mb

a

∣∣∣∣∣
∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

∣∣∣∣∣
νp

dt

) 1
p
(∫ mb

a

|f ′(t)|qdt

) 1
q

. (3.10)

By using ‖ g ‖∞= sup
t∈[a,b]

|g(t)| and absolute convergence of Mittag-Leffler function, we

have ∣∣∣∣∣
(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb)) (3.11)

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤ ‖g‖ν∞Sν

(∫ mb

a

|t− a|νpdt

) 1
p

+

(∫ mb

a

|mb− t|νpdt

) 1
p

(∫ mb

a

|f ′(t)|qdt

) 1
q

.

Since |f ′(t)|q is m-convex, we have

|f ′(t)|q ≤ mb− t
mb− a

|f ′(a)|q +
m(t− a)

mb− a
|f ′(b)|q. (3.12)

Using (3.12) in (3.11), we have∣∣∣∣∣
(∫ mb

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(mb))

−ν
∫ mb

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ mb

a

(∫ mb

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣ (3.13)

≤ ‖g‖ν∞Sν
(∫ mb

a

|t− a|νpdt

) 1
p

+

(∫ mb

a

|mb− t|νpdt

) 1
p


×

(∫ mb

a

mb− t
mb− a

|f ′(a)|q +
m(t− a)

mb− a
|f ′(b)|q

) 1
q

.
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After a simple calculation, we get the required result. �

Remark 3.7. It is remarkable that by taking particular values of parameters of Mittag-
Leffler function in above theorem several fractional integral inequalities can be ob-
tained for corresponding fractional integrals. For example some results are given be-
low.

Corollary 3.8. In Theorem 3.6 if we take m = 1, then we have the following integral
inequality ∣∣∣∣∣

(∫ b

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν
(f(a) + f(b))

−ν
∫ b

a

(∫ t

a

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

−ν
∫ b

a

(∫ b

t

g(s)Eγ,δ,kµ,ν,l (ωs
µ)ds

)ν−1
g(t)Eγ,δ,kµ,ν,l (ωt

µ)f(t)dt

∣∣∣∣∣∣
≤ 2(b− a)ν+1‖g‖ν∞Sν

(νp+ 1)
1
q

(
|f ′(a)|q + |f ′(b)|q

2

) 1
q

.

Remark 3.9. In Theorem 3.6, for m = 1.
(i) If we put ω = 0, then we get [19, Theorem 7].
(ii) If we take ω = 0 along with ν = µ

k , then we get [9, Theorem 2.5].
(iii) If we take g(s) = 1 and ω = 0, then we get [3, Theorem 2.3].
(iv) If we put ω = 0 and ν = 1, then we get [3, Corollary 3].

In the next result we give the Hadamard type inequalities for m-convex func-
tions via generalized fractional integral operator containing generalized Mittag-Leffler
function.

Theorem 3.10. Let f : [a,mb] → R be a positive function with 0 ≤ a < b and
f ∈ L[a,mb]. If f is m-convex function, then the following inequalities for generalized
fractional integral hold

f

(
a+mb

2

)(
εγ,δ,k
µ,ν,l,ω′,( a+mb2 )+

1
)

(mb)

≤
(
εγ,δ,k
µ,ν,l,ω′,( a+mb2 )+

f
)

(mb) +
(
εγ,δ,k
µ,ν,l,mµω′,( a+mb2m )−

f
)( a

m

)
≤ 1

mb− a

[
f(a)−mf

( a

m2

)](
εγ,δ,k
µ,ν+1,l,ω′,( a+mb2 )+

1
)

(mb)

+mν+1
(
f(b) +mf

( a

m2

))(
εγ,δ,k
µ,ν,l,mµω′,( a+mb2m )+

1
)( a

m

)
where ω′ = 2µω

(mb−a)µ .

Proof. Using m-convexity of f , we have

f

(
x+my

2

)
≤ f(x) +mf(y)

2
(3.14)
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for x, y ∈ [a,mb].
By taking x = t

2a + 2−t
2 mb, y = 2−t

2m a + t
2b for t ∈ [0, 1] such that x, y ∈ [a,mb],

inequality (3.14) becomes

2f

(
a+mb

2

)
≤ f

(
t

2
a+

2− t
2

mb

)
+mf

(
2− t
2m

a+
t

2
b

)
. (3.15)

Multiplying both sides of (3.15) by tν−1Eγ,δ,kµ,ν,l (ωt
µ) and integrating with respect to t

on [0, 1]

2f

(
a+mb

2

)∫ 1

0

(tν−1)Eγ,δ,kµ,ν,l (ωt
µ)dt (3.16)

≤
∫ 1

0

(tν−1)Eγ,δ,kµ,ν,l (ωt
µ)f

(
t

2
a+

2− t
2

mb

)
dt

+m

∫ 1

0

(tν−1)Eγ,δ,kµ,ν,l (ωt
µ)f

(
2− t
2m

a+
t

2
b

)
dt.

Setting u = t
2a+ 2−t

2 mb and v = 2−t
2m a+ t

2b in (3.16), we have

2f

(
a+mb

2

)∫ mb

a+mb
2

(mb− u)ν−1Eγ,δ,kµ,ν,l (ω
′(mb− u)µ)du (3.17)

≤
∫ mb

a+mb
2

(mb− u)ν−1Eγ,δ,kµ,ν,l (ω
′(mb− u)µ)f(u)du

+mν+1

∫ a+mb
2m

a
m

(
v − a

m

)ν−1
Eγ,δ,kµ,ν,l

(
mµω′(v − a

m
)µ
)
f(v)dv

where ω′ = 2µω
(mb−a)µ .

This implies

2f

(
a+mb

2

)(
εγ,δ,k
µ,ν,l,ω′,( a+mb2 )+

1
)

(mb) (3.18)

≤
(
εγ,δ,k
µ,ν,l,ω′,( a+mb2 )+

f
)

(mb) +
(
εγ,δ,k
µ,ν,l,mµω′,( a+mb2m )−

f
)( a

m

)
.

To prove the second inequality from m-convexity of f , we have

f

(
t

2
a+m

2− t
2

b

)
+mf

(
2− t
2m

a+
t

2
b

)
(3.19)

≤ t

2

(
f(a)−m2f

( a

m2

))
+m

(
f(b) +mf

( a

m2

))
.
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Multiplying both sides of (3.19) by tν−1Eγ,δ,kα,β,l(ωt
α) and integrating with respect to t

over [0, 1], we have∫ 1

0

tν−1Eγ,δ,kµ,ν,l (ωt
µ)f

(
t

2
a+m

2− t
2

b

)
dt (3.20)

+m

∫ 1

0

tν−1Eγ,δ,kµ,ν,l (ωt
µ)f

(
2− t
2m

a+
t

2
b

)
≤ 1

2

(
f(a)−m2f

( a

m2

))∫ 1

0

tνEγ,δ,kµ,ν,l (ωt
µ)dt

+m
(
f(b) +mf

( a

m2

))∫ 1

0

tν−1Eγ,δ,kµ,ν,l (ωt
µ)dt.

Setting u = t
2a+m 2−t

2 b and v = 2−t
2m a+ t

2b in (3.20), we have∫ mb

a+mb
2

(mb− u)ν−1Eγ,δ,kµ,ν,l (ω
′(mb− u)µ)f(u)du (3.21)

+

∫ a+mb
2m

a
m

(
v − a

m

)ν−1
Eγ,δ,kµ,ν,l

(
mµω′

(
v − a

m

)µ)
f(v)dv

≤ 1

2

(
f(a)−m2f

( a

m2

))∫ mb

a+mb
2

(mb− u)νEγ,δ,kµ,ν,l (ω′(mb− u)µ) dt

+mν+1
(
f(b) +mf

( a

m2

))∫ a+mb
2m

a
m

(
v − a

m

)ν−1
Eγ,δ,kµ,ν,l

(
mµω′

(
v − a

m

)µ)
dt.

This implies(
εγ,δ,k
µ,ν,l,ω′,( a+mb2 )+

f
)

(mb) +mν+1

(
εγ,δ,k
µ,ν,l,mµω′,( a+mb2m )−

f

)( a
m

)
(3.22)

≤ 1

mb− a

(
f(a)−m2f

( a

m2

))(
εγ,δ,k
µ,ν+1,l,ω′,( a+mb2 )+

1
)

(mb)

+mν+1
(
f(b) +mf

( a

m2

))(
εγ,δ,k
µ,ν,l,mµω′,( a+mb2m )−

1
)( a

m

)
.

Combining (3.18) and (3.22) we get the result. �

Corollary 3.11. In Theorem 3.10 if we take ω = 0, then we get the following inequality
for Riemann-Liouville fractional integral operator

f

(
a+mb

2

)
≤ 2ν−1Γ(ν + 1)

(mb− a)µ

(
Iν
( a+mb2 )+

f(mb) +mν+1Iν
( a+mb2m )−

f
( a
m

))
(3.23)

≤ ν

4(ν + 1)

(
f(a)−m2f

( a

m2

))
+
m

2

(
f(b) +mf

( a

m2

))
.

Remark 3.12. If we put ω = 0, m = 1 and ν = 1 in Theorem 3.10, then we get the
classical Hadamard inequality.
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Babeş-Bolyia. Math., 38(1993), no. 1, 21-28.

[5] Farid, G., A treatment of the Hadamard inequality due to m-convexity via generalized
fractional integrals, J. Fract. Calc. Appl. , 9(2018), no. 1, 8-14.

[6] Farid, G., Hadamard and Fejér-Hadamard inequalities for generalized fractional integrals
involving special functions, Konuralp J. Math., 4(2016), no. 1, 108-113.

[7] Farid, G., Marwan, M., Rehman, A.U., New mean value theorems and generalization of
Hadamard inequality via coordinated m-convex functions, J. Inequal. Appl., Article ID
283, (2015), 11 pp.
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Inequalities for the area balance of absolutely
continuous functions

Sever S. Dragomir

Abstract. We introduce the area balance function associated to a Lebesgue inte-
grable function f : [a, b]→ C by

ABf (a, b, ·) : [a, b]→ C, ABf (a, b, x) :=
1

2

[∫ b

x

f (t) dt−
∫ x

a

f (t) dt

]
.

We show amongst other that, if f : I → C is an absolutely continuous function

on the interval I and [a, b] ⊂ I̊ , where I̊ is the interior of I and such that f ′ is of
bounded variation on [a, b] , then we have the inequality∣∣∣∣∣ABf (a, b, x)−

(
a + b

2
− x

)
f (x)− f ′ (a) + f ′ (b)

4

[(
x− a + b

2

)2

+
1

4
(b− a)2

]∣∣∣∣∣
≤ 1

4

[
1

4
(b− a)2 +

(
x− a + b

2

)2
]

b∨
a

(
f ′)

for any x ∈ [a, b] .

If there exists the real numbers m,M such that

m ≤ f ′ (t) ≤M for a.e. t ∈ [a, b] ,

then also∣∣∣∣∣ABf (a, b, x)−
(
a + b

2
− x

)
f (x)− m + M

4

[(
x− a + b

2

)2

+
1

4
(b− a)2

]∣∣∣∣∣
≤ 1

4

[
1

4
(b− a)2 +

(
x− a + b

2

)2
]

(M −m)

for any x ∈ [a, b] .

Mathematics Subject Classification (2010): 26D15, 25D10.

Keywords: Functions of bounded variation, Lipschitzian functions, convex func-
tions, integral inequalities.
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1. Introduction

For a Lebesgue integrable function f : [a, b] → C and a number x ∈ (a, b) we

can naturally ask how far the integral
∫ b
x
f (t) dt is from the integral

∫ x
a
f (t) dt. If f

is nonnegative and continuous on [a, b] , then the above question has the geometrical
interpretation of comparing the area under the curve generated by f at the right of
the point x with the area at the left of x. The point x will be called a median point, if∫ b

x

f (t) dt =

∫ x

a

f (t) dt.

Due to the above geometrical interpretation, we can introduce the area balance func-
tion associated to a Lebesgue integrable function f : [a, b]→ C defined as

ABf (a, b, ·) : [a, b]→ C, ABf (a, b, x) :=
1

2

[∫ b

x

f (t) dt−
∫ x

a

f (t) dt

]
.

Utilising the cumulative function notation F : [a, b]→ C given by

F (x) :=

∫ x

a

f (t) dt

then we observe that

ABf (a, b, x) =
1

2
F (b)− F (x) , x ∈ [a, b] .

If f is a probability density, i.e. f is nonnegative and

∫ b

a

f (t) dt = 1, then

ABf (a, b, x) =
1

2
− F (x) , x ∈ [a, b] .

In this paper we obtain some inequalities concerning the area balance for absolutely
continuous. Applications for differentiable functions whose derivatives are Lipschitzian
functions are provided. Bounds involving the Jensen difference

g (a) + g (b)

2
− g

(
a+ b

2

)
are also established.

We notice that Jensen difference is closely related to the Hermite-Hadamard
type inequalities where various bounds for the quantities

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

and

1

b− a

∫ b

a

f (t) dt− f
(
a+ b

2

)
are provided, see [1]-[6] and [8]-[18].



Inequalities for the area balance 39

2. Preliminary results

The following representation result holds:

Theorem 2.1. Let f : [a, b] → C be an absolutely continuous function on [a, b]. Then
we have the representation

ABf (a, b, x) =

(
a+ b

2
− x
)
f (x) (2.1)

+
1

2

[∫ x

a

(t− a) f ′ (t) dt+

∫ b

x

(b− t) f ′ (t) dt

]
and

ABf (a, b, x) =
bf (b) + af (a)

2
− f (b) + f (a)

2
x (2.2)

− 1

2

∫ b

a

|t− x| f ′ (t) dt

for any x ∈ [a, b] , where the integrals in the right hand side are taken in the Lebesgue
sense.

Proof. Since f is absolutely continuous on [a, b] , then f is differentiable almost every-
where (a.e.) on [a, b] and the Lebesgue integrals in the right hand side of the equations
(2.1) and (2.2) exist.

Utilising the integration by parts formula for the Lebesgue integral, we have∫ x

a

(t− a) f ′ (t) dt+

∫ b

x

(b− t) f ′ (t) dt (2.3)

= (t− a) f (t)|xa −
∫ x

a

f (t) dt+ (b− t) f (t)|bx +

∫ b

x

f (t) dt

= (x− a) f (x)−
∫ x

a

f (t) dt− (b− x) f (x) +

∫ b

x

f (t) dt

= (2x− a− b) f (x) + 2ABf (a, b, x)

for any x ∈ [a, b] .
Dividing (2.3) by 2 and rearranging the equation, we deduce (2.1).
Integrating by parts, we also have∫ b

a

|t− x| f ′ (t) dt (2.4)

=

∫ x

a

(x− t) f ′ (t) dt+

∫ b

x

(t− x) f ′ (t) dt

= (x− t) f (t)|xa +

∫ x

a

f (t) dt+ (t− x) f (t)|bx −
∫ b

x

f (t) dt

= − (x− a) f (a) + (b− x) f (b)− 2ABf (a, b, x)

= bf (b) + af (a)− [f (b) + f (a)]x− 2ABf (a, b, x)
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for any x ∈ [a, b] .

Dividing (2.4) by 2 and rearranging the equation, we deduce (2.2). �

Corollary 2.2. Let f : [a, b]→ R be an absolutely continuous function on [a, b].
If f ′ (t) ≥ 0 for a.e. t ∈ [a, b] , then

bf (b) + af (a)

2
− f (b) + f (a)

2
x ≥ ABf (a, b, x) (2.5)

≥
(
a+ b

2
− x
)
f (x)

for any x ∈ [a, b] .

In particular,

1

4
(b− a) [f (b)− f (a)] ≥ ABf

(
a, b,

a+ b

2

)
≥ 0. (2.6)

The constant 1
4 is a best possible constant in the sense that it cannot be replaced by a

smaller quantity.

Proof. The inequalities (2.5) follow from the representations (2.1) and (2.2) by taking
into account that f ′ (t) ≥ 0 for a.e. t ∈ [a, b].

The inequality (2.6) follows by (2.5) for x = a+b
2 .

Assume that the first inequality in (2.6) holds for a constant C > 0, i.e.

C (b− a) [f (b)− f (a)] ≥ ABf
(
a, b,

a+ b

2

)
(2.7)

Consider the function fn : [−1, 1]→ R given by

fn (t) =


0 if t ∈ [−1, 0]

nt if t ∈
(
0, 1

n

)
1 if t ∈

[
1
n , 1
]

where n ≥ 2, a natural number. This functions is absolutely continuous and f ′n (t) ≥ 0
for any t ∈ (−1, 1) . We have for a = −1, b = 1

C (b− a) [fn (b)− fn (a)] = 2C

and

ABfn

(
a, b,

a+ b

2

)
=

1

2

[∫ 1

0

fn (t) dt−
∫ 0

−1
fn (t) dt

]
=

1

2

(∫ 1
n

0

ntdt+

∫ 1

1
n

1dt

)

=
1

2

(
1

2n
+ 1− 1

n

)
=

1

2

(
1− 1

2n

)
.
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Replacing these values in (2.7) we get

2C ≥ 1

2

(
1− 1

2n

)
(2.8)

for any n ≥ 2.
Taking the limit for n→∞ in (2.8) we get C ≥ 1

4 , which proves that 1
4 is best

possible in the first inequality in (2.6) �

Remark 2.3. Let f : [a, b] → R be an absolutely continuous function on [a, b]. If
f ′ (t) ≥ 0 for a.e. t ∈ [a, b] , then ABf (a, b, x) ≥ 0 for x ∈

[
a, a+b2

] ([
a+b
2 , b

])
.

Moreover, if f (b) 6= −f (a) and

bf (b) + af (a)

f (b) + f (a)
∈ [a, b] (2.9)

then

ABf

(
a, b,

bf (b) + af (a)

f (b) + f (a)

)
≤ 0. (2.10)

Also, if f (a) , f (b) > 0, then (2.9) holds and the inequality (2.10) is valid.

Corollary 2.4. Let f : [a, b] → C be an absolutely continuous function on [a, b] and
γ ∈ C. Then we have the representation

ABf (a, b, x) =
1

2
γ

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
+

(
a+ b

2
− x
)
f (x) (2.11)

+
1

2

[∫ x

a

(t− a) (f ′ (t)− γ) dt+

∫ b

x

(b− t) (f ′ (t)− γ) dt

]
and

ABf (a, b, x) =
bf (b) + af (a)

2
− f (b) + f (a)

2
x (2.12)

− 1

2
γ

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]

− 1

2

∫ b

a

|t− x| (f ′ (t)− γ) dt

for any x ∈ [a, b] .

Proof. Let e (t) = t, t ∈ [a, b] . If we write the equality (2.1) for the function f − γe
we have

ABf−γe (a, b, x) =

(
a+ b

2
− x
)

(f (x)− γx) (2.13)

+
1

2

[∫ x

a

(t− a) (f ′ (t)− γ) dt+

∫ b

x

(b− t) (f ′ (t)− γ) dt

]
for any x ∈ [a, b] .
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Observe that

ABf−γe (a, b, x) = ABf (a, b, x)− γABe (a, b, x)

and

ABe (a, b, x) =
1

2

(∫ b

x

tdt−
∫ x

a

tdt

)

=
1

2

(
b2 − x2

2
− x2 − a2

2

)
=

1

2

(
a2 + b2

2
− x2

)
.

From (2.13) we have

ABf (a, b, x) =

(
a+ b

2
− x
)

(f (x)− γx) +
1

2
γ

(
a2 + b2

2
− x2

)
(2.14)

+
1

2

[∫ x

a

(t− a) (f ′ (t)− γ) dt+

∫ b

x

(b− t) (f ′ (t)− γ) dt

]

=

(
a+ b

2
− x
)
f (x) +

1

2
γ

(
a2 + b2

2
− x2

)
− γ

(
a+ b

2
− x
)
x

+
1

2

[∫ x

a

(t− a) (f ′ (t)− γ) dt+

∫ b

x

(b− t) (f ′ (t)− γ) dt

]
(2.15)

=
1

2
γ

[
x2 − (a+ b)x+

a2 + b2

2

]
+

(
a+ b

2
− x
)
f (x)

+
1

2

[∫ x

a

(t− a) (f ′ (t)− γ) dt+

∫ b

x

(b− t) (f ′ (t)− γ) dt

]

for any x ∈ [a, b] .

Since

x2 − (a+ b)x+
a2 + b2

2
=

(
x− a+ b

2

)2

+
1

4
(b− a)

2

then from (2.14) we deduce the desired equality (2.11).

From (2.2) we have

ABf−γe (a, b, x) =
bf (b) + af (a)

2
− γ b

2 + a2

2
− f (b) + f (a)

2
x+ γ

a+ b

2
x

− 1

2

∫ b

a

|t− x| (f ′ (t)− γ) dt

and since

ABf−γe (a, b, x) = ABf (a, b, x)− γABe (a, b, x)
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then

ABf (a, b, x) =
1

2
γ

(
a2 + b2

2
− x2

)
+
bf (b) + af (a)

2

− γ b
2 + a2

2
− f (b) + f (a)

2
x+ γ

a+ b

2
x

− 1

2

∫ b

a

|t− x| (f ′ (t)− γ) dt

=
bf (b) + af (a)

2
− f (b) + f (a)

2
x

− 1

2
γ

[
x2 − (a+ b)x+

a2 + b2

2

]
− 1

2

∫ b

a

|t− x| (f ′ (t)− γ) dt

which proves the desired equality (2.12). �

Remark 2.5. We have the following equalities

ABf

(
a, b,

a+ b

2

)
=

1

8
γ (b− a)

2
(2.16)

+
1

2

[∫ a+b
2

a

(t− a) (f ′ (t)− γ) dt+

∫ b

a+b
2

(b− t) (f ′ (t)− γ) dt

]
and

ABf

(
a, b,

a+ b

2

)
=

1

4
(b− a) [f (b)− f (a)]− 1

8
γ (b− a)

2
(2.17)

− 1

2

∫ b

a

∣∣∣∣t− a+ b

2

∣∣∣∣ (f ′ (t)− γ) dt

for any γ ∈ C.

3. Bounds for absolutely continuous functions

Now, for γ,Γ ∈ C and [a, b] an interval of real numbers, define the sets of
complex-valued functions

Ū[a,b] (γ,Γ) :=
{
f : [a, b]→ C|Re

[
(Γ− f (t))

(
f (t)− γ

)]
≥ 0 for each t ∈ [a, b]

}
and

∆̄[a,b] (γ,Γ) :=

{
f : [a, b]→ C|

∣∣∣∣f (t)− γ + Γ

2

∣∣∣∣ ≤ 1

2
|Γ− γ| for each t ∈ [a, b]

}
.

The following representation result may be stated.

Proposition 3.1. For any γ,Γ ∈ C, γ 6= Γ, we have that Ū[a,b] (γ,Γ) and ∆̄[a,b] (γ,Γ)
are nonempty, convex and closed sets and

Ū[a,b] (γ,Γ) = ∆̄[a,b] (γ,Γ) . (3.1)
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Proof. We observe that for any z ∈ C we have the equivalence∣∣∣∣z − γ + Γ

2

∣∣∣∣ ≤ 1

2
|Γ− γ|

if and only if
Re [(Γ− z) (z̄ − γ̄)] ≥ 0.

This follows by the equality

1

4
|Γ− γ|2 −

∣∣∣∣z − γ + Γ

2

∣∣∣∣2 = Re [(Γ− z) (z̄ − γ̄)]

that holds for any z ∈ C.
The equality (3.1) is thus a simple consequence of this fact. �

On making use of the complex numbers field properties we can also state that:

Corollary 3.2. For any γ,Γ ∈ C, γ 6= Γ, we have that

Ū[a,b] (γ,Γ) = {f : [a, b]→ C | (ReΓ− Ref (t)) (Ref (t)− Reγ) (3.2)

+ (ImΓ− Imf (t)) (Imf (t)− Imγ) ≥ 0 for each t ∈ [a, b]} .

Now, if we assume that Re (Γ) ≥ Re (γ) and Im (Γ) ≥ Im (γ) , then we can define
the following set of functions as well:

S̄[a,b] (γ,Γ) := {f : [a, b]→ C | Re (Γ) ≥ Ref (t) ≥ Re (γ) (3.3)

and Im (Γ) ≥ Imf (t) ≥ Im (γ) for each t ∈ [a, b]} .

One can easily observe that S̄[a,b] (γ,Γ) is closed, convex and

∅ 6= S̄[a,b] (γ,Γ) ⊆ Ū[a,b] (γ,Γ) . (3.4)

Theorem 3.3. Let f : [a, b]→ C be an absolutely continuous function on [a, b]. If there
exists γ,Γ ∈ C, γ 6= Γ such that f ′ ∈ Ū[a,b] (γ,Γ) then∣∣∣∣ABf (a, b, x)−

(
a+ b

2
− x
)
f (x) (3.5)

−γ + Γ

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ |Γ− γ|

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

and ∣∣∣∣ABf (a, b, x)− bf (b) + af (a)

2
+
f (b) + f (a)

2
x (3.6)

+
γ + Γ

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ |Γ− γ|

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]
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for any x ∈ [a, b] .

Proof. From the equality (2.11) we have

ABf (a, b, x) (3.7)

− γ + Γ

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
−
(
a+ b

2
− x
)
f (x)

=
1

2

[∫ x

a

(t− a)

(
f ′ (t)− γ + Γ

2

)
dt+

∫ b

x

(b− t)
(
f ′ (t)− γ + Γ

2

)
dt

]
for any x ∈ [a, b] .

If f ′ ∈ Ū[a,b] (γ,Γ) = ∆̄[a,b] (γ,Γ), then by taking the modulus in (3.7) we get∣∣∣∣ABf (a, b, x)−
(
a+ b

2
− x
)
f (x)

−γ + Γ

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
=

1

2

∣∣∣∣∣
∫ x

a

(t− a)

(
f ′ (t)− γ + Γ

2

)
dt+

∫ b

x

(b− t)
(
f ′ (t)− γ + Γ

2

)
dt

∣∣∣∣∣
≤ 1

2

[∣∣∣∣∫ x

a

(t− a)

(
f ′ (t)− γ + Γ

2

)
dt

∣∣∣∣+

∣∣∣∣∣
∫ b

x

(b− t)
(
f ′ (t)− γ + Γ

2

)
dt

∣∣∣∣∣
]

≤ 1

2

[∫ x

a

(t− a)

∣∣∣∣f ′ (t)− γ + Γ

2

∣∣∣∣ dt+

∫ b

x

(b− t)
∣∣∣∣f ′ (t)− γ + Γ

2

∣∣∣∣ dt
]

≤ |Γ− γ|
4

[∫ x

a

(t− a) dt+

∫ b

x

(b− t) dt

]

=
|Γ− γ|

4

[
(x− a)

2
+ (b− x)

2

2

]
=
|Γ− γ|

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]
,

for any x ∈ [a, b] , which proves the inequality (3.5).
From the equality (2.12) we have

ABf (a, b, x)− bf (b) + af (a)

2
+
f (b) + f (a)

2
x (3.8)

+
γ + Γ

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]

= −1

2

∫ b

a

|t− x|
(
f ′ (t)− γ + Γ

2

)
dt

for any x ∈ [a, b] .
Taking the modulus in (3.8) and using the fact that

f ′ ∈ Ū[a,b] (γ,Γ) = ∆̄[a,b] (γ,Γ)
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we have∣∣∣∣ABf (a, b, x)− bf (b) + af (a)

2
+
f (b) + f (a)

2
x

+
γ + Γ

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ 1

2

∫ b

a

|t− x|
∣∣∣∣f ′ (t)− γ + Γ

2

∣∣∣∣ dt
≤ |Γ− γ|

4

∫ b

a

|t− x| dt =
|Γ− γ|

4

[∫ x

a

(x− t) dt+

∫ b

x

(t− x) dt

]

=
|Γ− γ|

4

[
(x− a)

2
+ (b− x)

2

2

]
=
|Γ− γ|

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

for any x ∈ [a, b] , which proves the desired inequality (3.6). �

Remark 3.4. Let f : [a, b]→ R be an absolutely continuous function on [a, b]. If there
exists the real numbers m,M such that

m ≤ f ′ (t) ≤M for a.e. t ∈ [a, b] ,

then ∣∣∣∣ABf (a, b, x)−
(
a+ b

2
− x
)
f (x) (3.9)

−m+M

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ M −m

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

and ∣∣∣∣ABf (a, b, x)− bf (b) + af (a)

2
+
f (b) + f (a)

2
x (3.10)

+
m+M

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ M −m

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

for any x ∈ [a, b] .

Corollary 3.5. With the assumptions of Theorem 3.3 we have∣∣∣∣ABf (a, b, a+ b

2

)
− γ + Γ

16
(b− a)

2

∣∣∣∣ ≤ |Γ− γ|16
(b− a)

2
(3.11)
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and ∣∣∣∣14 (b− a) [f (b)− f (a)]− γ + Γ

16
(b− a)

2 −ABf
(
a, b,

a+ b

2

)∣∣∣∣ (3.12)

≤ |Γ− γ|
16

(b− a)
2
.

Theorem 3.6. Let f : I → R be an absolutely continuous function on the interval I
and [a, b] ⊂ I̊ , where I̊ is the interior of I and such that f ′ is of bounded variation on
[a, b] . Then we have the inequalities∣∣∣∣ABf (a, b, x)−

(
a+ b

2
− x
)
f (x) (3.13)

−f
′ (a) + f ′ (b)

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ 1

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

b∨
a

(f ′)

and ∣∣∣∣ABf (a, b, x)− bf (b) + af (a)

2
+
f (b) + f (a)

2
x (3.14)

+
f ′ (a) + f ′ (b)

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ 1

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

b∨
a

(f ′)

for any x ∈ [a, b] .

Proof. From (2.11) for γ = f ′(a)+f ′(b)
2 we have the representation

ABf (a, b, x) (3.15)

− f ′ (a) + f ′ (b)

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
−
(
a+ b

2
− x
)
f (x)

=
1

2

[∫ x

a

(t− a)

(
f ′ (t)− f ′ (a) + f ′ (b)

2

)
dt

+

∫ b

x

(b− t)
(
f ′ (t)− f ′ (a) + f ′ (b)

2

)
dt

]

for any x ∈ [a, b] .
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Taking the modulus in (3.15) we get∣∣∣∣ABf (a, b, x)−
(
a+ b

2
− x
)
f (x) (3.16)

−f
′ (a) + f ′ (b)

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ 1

2

[∫ x

a

(t− a)

∣∣∣∣f ′ (t)− f ′ (a) + f ′ (b)

2

∣∣∣∣ dt
+

∫ b

x

(b− t)
∣∣∣∣f ′ (t)− f ′ (a) + f ′ (b)

2

∣∣∣∣ dt
]

for any x ∈ [a, b] .
For t ∈ [a, x] we have∣∣∣∣f ′ (t)− f ′ (a) + f ′ (b)

2

∣∣∣∣ =

∣∣∣∣f ′ (t)− f ′ (a) + f ′ (t)− f ′ (b)
2

∣∣∣∣
≤ 1

2
[|f ′ (t)− f ′ (a)|+ |f ′ (b)− f ′ (t)|]

≤ 1

2

b∨
a

(f ′)

and similarly, for t ∈ [x, b] we have∣∣∣∣f ′ (t)− f ′ (a) + f ′ (b)

2

∣∣∣∣ ≤ 1

2

b∨
a

(f ′)

and then by (3.16) we get∣∣∣∣ABf (a, b, x)−
(
a+ b

2
− x
)
f (x)

−f
′ (a) + f ′ (b)

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ 1

4

[∫ x

a

(t− a) dt+

∫ b

x

(b− t) dt

]
b∨
a

(f ′)

=
1

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

b∨
a

(f ′)

for t ∈ [a, b] , and the inequality (3.13) is proved.
The second inequality goes along a similar way and we omit the details. �

Corollary 3.7. With the assumptions of Theorem 3.6 we have∣∣∣∣ABf (a, b, a+ b

2

)
− f ′ (a) + f ′ (b)

16
(b− a)

2

∣∣∣∣ ≤ 1

16
(b− a)

2
b∨
a

(f ′) (3.17)
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and ∣∣∣∣14 (b− a) [f (b)− f (a)]− f ′ (a) + f ′ (b)

16
(b− a)

2 −ABf
(
a, b,

a+ b

2

)∣∣∣∣ (3.18)

≤ 1

16
(b− a)

2
b∨
a

(f ′) .

4. Bounds for Lipschitzian derivatives

We say that v is Lipschitzian with the constant L > 0, if

|v (t)− v (s)| ≤ L |t− s|

for any t, s ∈ [a, b] .

Theorem 4.1. Let f : I → R be an absolutely continuous function on the interval I
and [a, b] ⊂ I̊ , where I̊ is the interior of I and such that f ′ is Lipschitzian with the
constant K > 0 on [a, b] . Then we have the inequalities∣∣∣∣ABf (a, b, x)−

(
a+ b

2
− x
)
f (x) (4.1)

−1

2
f ′ (x)

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]∣∣∣∣∣

≤ 1

12
(b− a)K

[
3

(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
for any x ∈ [a, b] .

In particular, we have∣∣∣∣ABf (a, b, a+ b

2

)
− 1

8
f ′
(
a+ b

2

)
(b− a)

2

∣∣∣∣ ≤ 1

48
K (b− a)

3
. (4.2)

The constant 1
48 is best possible in (4.2).

Proof. We have from the equality (2.11) that

ABf (a, b, x) (4.3)

−
(
a+ b

2
− x
)
f (x)− 1

2
f ′ (x)

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

=
1

2

[∫ x

a

(t− a) [f ′ (t)− f ′ (x)] dt+

∫ b

x

(b− t) [f ′ (t)− f ′ (x)] dt

]
for any x ∈ [a, b] .
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Taking the modulus on (4.3) we have∣∣∣∣ABf (a, b, x)−
(
a+ b

2
− x
)
f (x) (4.4)

−1

2
f ′ (x)

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]∣∣∣∣∣

≤ 1

2

[∫ x

a

(t− a) |f ′ (t)− f ′ (x)| dt+

∫ b

x

(b− t) |f ′ (t)− f ′ (x)| dt

]

≤ 1

2
K

[∫ x

a

(t− a) (x− t) dt+

∫ b

x

(b− t) (t− x) dt

]
for any x ∈ [a, b] .

Since a simple calculation shows that∫ d

c

(t− c) (d− t) dt =
1

6
(d− c)3 ,

then ∫ x

a

(t− a) (x− t) dt+

∫ b

x

(b− t) (t− x) dt

=
1

6

[
(x− a)

3
+ (b− x)

3
]

=
1

6
(b− a)

[
3

(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
for any x ∈ [a, b] .

Utilising (4.4) we get the desired inequality (4.1).
Consider the function f : [a, b]→ R,

f (t) :=


−
(
t− a+b

2

)2
if t ∈

[
a, a+b2

)
(
t− a+b

2

)2
if t ∈

[
a+b
2 , b

]
.

Then f is differentiable and

f ′ (t) =

 −2
(
t− a+b

2

)
if t ∈

[
a, a+b2

)
2
(
t− a+b

2

)
if t ∈

[
a+b
2 , b

]
.

= 2

∣∣∣∣t− a+ b

2

∣∣∣∣
for t ∈ [a, b] .
Since

|f ′ (t)− f ′ (s)| = 2

∣∣∣∣∣∣∣∣t− a+ b

2

∣∣∣∣− ∣∣∣∣s− a+ b

2

∣∣∣∣∣∣∣∣
≤ 2 |t− s|
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for any t, s ∈ [a, b] , we conclude that f ′ is Lipschitzian with the constant K = 2.
We have

ABf

(
a, b,

a+ b

2

)
=

1

2

[∫ b

a+b
2

f (t) dt−
∫ a+b

2

a

f (t) dt

]

=
1

2

[∫ b

a+b
2

(
t− a+ b

2

)2

dt+

∫ a+b
2

a

(
t− a+ b

2

)2

dt

]

=
1

2

∫ b

a

(
t− a+ b

2

)2

dt =
1

24
(b− a)

3
.

If we replace these values in (4.2) we get in both sides the same quantity 1
24 (b− a)

3
.
�

The following result also holds:

Theorem 4.2. With the assumptions of Theorem 4.1 we have the inequalities∣∣∣∣ABf (a, b, x)− bf (b) + af (a)

2
+
f (b) + f (a)

2
x (4.5)

+
1

2
f ′ (x)

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ 1

12
(b− a)K

[
3

(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
for any x ∈ [a, b] .

In particular, we have∣∣∣∣14 (b− a) [f (b)− f (a)]− 1

8
f ′
(
a+ b

2

)
(b− a)

2 −ABf
(
a, b,

a+ b

2

)∣∣∣∣ (4.6)

≤ 1

48
K (b− a)

3
.

The proof is similar to the above Theorem 4.1 and the details are omitted.

5. Inequalities for p-norms

For a Lebesgue measurable function f : [c, d]→ C we introduce the p-Lebesgue
norms as

‖f‖[c,d],p :=

(∫ b

a

|f (t)|p dt

)1/p

if p ≥ 1

and

‖f‖[c,d],∞ := ess sup
t∈[c,d]

|f (t)|

provided these quantities are finite. We denote f ∈ Lp [c, d] and f ∈ L∞ [c, d] .
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Proposition 5.1. Let f : [a, b]→ C be an absolutely continuous function on [a, b]. Then
we have the inequalities∣∣∣∣ABf (a, b, x)−

(
a+ b

2
− x
)
f (x)

∣∣∣∣ (5.1)

≤ 1

2

[∫ x

a

(t− a) |f ′ (t)| dt+

∫ b

x

(b− t) |f ′ (t)| dt

]
:= B1 (x)

and ∣∣∣∣bf (b) + af (a)

2
− f (b) + f (a)

2
x−ABf (a, b, x)

∣∣∣∣ (5.2)

≤ 1

2

∫ b

a

|t− x| |f ′ (t)| dt := B2 (x)

for any x ∈ [a, b] .
Moreover, we have

B1 (x) ≤ 1

2
×



1
2 (x− a)

2 ‖f ′‖[a,x],∞ if f ′ ∈ L∞ [a, x]

1
(α+1)1/α

(x− a)
1+1/α ‖f ′‖[a,x],β

if f ′ ∈ Lβ [a, x] ,
1
α + 1

β = 1, α > 1

(x− a) ‖f ′‖[a,x],1

(5.3)

+
1

2
×



1
2 (b− x)

2 ‖f ′‖[x,b],∞ if f ′ ∈ L∞ [x, b]

1
(γ+1)1/γ

(b− x)
1+1/γ ‖f ′‖[x,b],δ

if f ′ ∈ Lδ [x, b] ,
1
γ + 1

δ = 1, γ > 1

(b− x) ‖f ′‖[x,b],1
and

B2 (x) ≤ 1

2
×



1
2 (x− a)

2 ‖f ′‖[a,x],∞ if f ′ ∈ L∞ [a, x]

1
(α+1)1/α

(x− a)
1+1/α ‖f ′‖[a,x],β

if f ′ ∈ Lβ [a, x] ,
1
α + 1

β = 1, α > 1

(x− a) ‖f ′‖[a,x],1

(5.4)

+
1

2
×



1
2 (b− x)

2 ‖f ′‖[x,b],∞ if f ′ ∈ L∞ [x, b]

1
(γ+1)1/γ

(b− x)
1+1/γ ‖f ′‖[x,b],δ

if f ′ ∈ Lδ [x, b] ,
1
γ + 1

δ = 1, γ > 1

(b− x) ‖f ′‖[x,b],1
for any x ∈ [a, b] .
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Proof. From (2.1) and (2.2) we have by taking the modulus∣∣∣∣ABf (a, b, x)−
(
a+ b

2
− x
)
f (x)

∣∣∣∣ (5.5)

≤ 1

2

[∣∣∣∣∫ x

a

(t− a) f ′ (t) dt

∣∣∣∣+

∣∣∣∣∣
∫ b

x

(b− t) f ′ (t) dt

∣∣∣∣∣
]

≤ 1

2

[∫ x

a

(t− a) |f ′ (t)| dt+

∫ b

x

(b− t) |f ′ (t)| dt

]
and ∣∣∣∣bf (b) + af (a)

2
− f (b) + f (a)

2
x−ABf (a, b, x)

∣∣∣∣ (5.6)

≤ 1

2

∫ b

a

|t− x| |f ′ (t)| dt

=
1

2

[∫ x

a

(x− t) |f ′ (t)| dt+

∫ b

x

(t− x) |f ′ (t)| dt

]
for any x ∈ [a, b] .

Using the Hölder inequality we have

B1 (x)

≤ 1

2
×



1
2 (x− a)

2 ‖f ′‖[a,x],∞ if f ′ ∈ L∞ [a, x]

1
(α+1)1/α

(x− a)
1+1/α ‖f ′‖[a,x],β

if f ′ ∈ Lβ [a, x] ,
1
α + 1

β = 1, α > 1

(x− a) ‖f ′‖[a,x],1

+
1

2
×



1
2 (b− x)

2 ‖f ′‖[x,b],∞ if f ′ ∈ L∞ [x, b]

1
(γ+1)1/γ

(b− x)
1+1/γ ‖f ′‖[x,b],δ

if f ′ ∈ Lδ [x, b] ,
1
γ + 1

δ = 1, γ > 1

(b− x) ‖f ′‖[x,b],1
and a similar inequality for B2. �

Remark 5.2. We observe that

B1 (x) ≤ 1

4
(x− a)

2 ‖f ′‖[a,x],∞ +
1

4
(b− x)

2 ‖f ′‖[x,b],∞ (5.7)

≤
[

1

4
(x− a)

2
+

1

4
(b− x)

2

]
max

{
‖f ′‖[a,x],∞ , ‖f ′‖[x,b],∞

}
=

1

2

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]
‖f ′‖[a,b],∞
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therefore ∣∣∣∣ABf (a, b, x)−
(
a+ b

2
− x
)
f (x)

∣∣∣∣ (5.8)

≤ 1

2

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]
‖f ′‖[a,b],∞

for any x ∈ [a, b] .
Similarly, ∣∣∣∣bf (b) + af (a)

2
− f (b) + f (a)

2
x−ABf (a, b, x)

∣∣∣∣ (5.9)

≤ 1

2

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]
‖f ′‖[a,b],∞

for any x ∈ [a, b] .
In particular, we have∣∣∣∣ABf (a, b, a+ b

2

)∣∣∣∣ ≤ 1

8
(b− a)

2 ‖f ′‖[a,b],∞ (5.10)

and ∣∣∣∣14 (b− a) [f (b)− f (a)]−ABf
(
a, b,

a+ b

2

)∣∣∣∣ ≤ 1

8
(b− a)

2 ‖f ′‖[a,b],∞ . (5.11)

6. Applications for twice differentiable functions

If we write the equalities (2.11) and (2.12) for the function f = g′, where g :
I → R is a differentiable function on the interior of the interval I with the derivative
absolutely continuous on [a, b] ⊂ I̊ , then we get

ABg′ (a, b, x) (6.1)

=
1

2
γ

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
+

(
a+ b

2
− x
)
g′ (x)

+
1

2

[∫ x

a

(t− a) (g′′ (t)− γ) dt+

∫ b

x

(b− t) (g′′ (t)− γ) dt

]
and

ABg′ (a, b, x) =
bg′ (b) + ag′ (a)

2
− g′ (b) + g′ (a)

2
x (6.2)

− 1

2
γ

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]

− 1

2

∫ b

a

|t− x| (g′′ (t)− γ) dt
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and since

ABf (a, b, x) =
1

2
F (b)− F (x) ,

where F (x) :=

∫ x

a

f (t) dt, then

ABg′ (a, b, x) =
1

2
[g (b)− g (a)]− g (x) + g (a)

=
g (a) + g (b)

2
− g (x)

and by (6.1) and (6.2) we get the representations

g (x) =
g (a) + g (b)

2
(6.3)

− 1

2
γ

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
−
(
a+ b

2
− x
)
g′ (x)

− 1

2

[∫ x

a

(t− a) (g′′ (t)− γ) dt+

∫ b

x

(b− t) (g′′ (t)− γ) dt

]

and

g (x) =
g (a) + g (b)

2
− bg′ (b) + ag′ (a)

2
+
g′ (b) + g′ (a)

2
x (6.4)

+
1

2
γ

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]

+
1

2

∫ b

a

|t− x| (g′′ (t)− γ) dt

for any x ∈ [a, b] .

If we assume that g′′ ∈ Ū[a,b] (ψ,Ψ) for some ψ,Ψ ∈ C, ψ 6= Ψ, then, as above,
we have the inequalities∣∣∣∣g (x)− g (a) + g (b)

2
(6.5)

+
ψ + Ψ

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]
+

(
a+ b

2
− x
)
g′ (x)

∣∣∣∣∣
≤ |Ψ− ψ|

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]



56 Sever S. Dragomir

and ∣∣∣∣g (x)− g (a) + g (b)

2
+
bg′ (b) + ag′ (a)

2
− g′ (b) + g′ (a)

2
x (6.6)

−ψ + Ψ

4

[(
x− a+ b

2

)2

+
1

4
(b− a)

2

]∣∣∣∣∣
≤ |Ψ− ψ|

4

[
1

4
(b− a)

2
+

(
x− a+ b

2

)2
]

for any x ∈ [a, b] .
We have the particular inequalities∣∣∣∣g(a+ b

2

)
− g (a) + g (b)

2
+
ψ + Ψ

16
(b− a)

2

∣∣∣∣ (6.7)

≤ |Ψ− ψ|
16

(b− a)
2

and ∣∣∣∣g(a+ b

2

)
− g (a) + g (b)

2
+

1

4
(b− a) [g′ (b)− g′ (a)] (6.8)

−ψ + Ψ

16
(b− a)

2

∣∣∣∣
≤ |Ψ− ψ|

16
(b− a)

2

Other similar results may be stated, however we do not present the details here.
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operator to unified subclass of prestarlike
functions with negative coefficients
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Abstract. In this paper, we have introduced and studied various properties of
unified class of prestarlike functions with negative coefficients in the unit disc U .
Also distortion theorem involving a generalized fractional integral operator for
functions in this class is established.
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

an z
n (1.1)

which are analytic in the unit disc U= {z : |z| < 1}. Let S denote the subclass of A,
which consists of functions of the form (1.1) that are univalent in U.

A function f ∈ S is said to be starlike of order µ(0 ≤ µ < 1) if and only if

Re

{
zf
′
(z)

f(z)

}
> µ, z ∈ U

and convex of order µ(0 ≤ µ < 1) if and only if

Re

{
1 +

zf
′′
(z)

f ′(z)

}
> µ, z ∈ U.

Denote these classes respectively by S∗(µ) and K(µ).
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Let T denote subclass of S consisting of functions of the form

f(z) = z −
∞∑
n=2

an z
n, an ≥ 0. (1.2)

The classes obtained by taking intersections of the classes S∗(µ) and K(µ)
with T are denoted by T ∗(µ) and K∗(µ) respectively. The classes T ∗(µ), K∗(µ)
were studied by Silverman [9].

The function

Sµ(z) = z(1− z)−2(1−µ) , 0 ≤ µ < 1 , (1.3)

is the familiar extremal function for the class S∗(µ), setting

C(µ, n) =

n∏
i=2

(i− 2µ)

(n− 1)!
, n ∈ N\{1}, N = {1, 2, 3, · · · } , (1.4)

then

Sµ(z) = z +

∞∑
n=2

C(µ, n) zn . (1.5)

We note that C(µ, n) is a decreasing function in µ, and that

lim
n→∞

C(µ, n) =


∞ , µ <

1

2

1 , µ =
1

2

0 , µ >
1

2
.

If f(z) is given by (1.2) and g(z) defined by

g(z) = z −
∞∑
n=2

bn z
n, bn ≥ 0 ,

belonging to T , then convolution or Hadamard product of f and g is defined by

(f ∗ g)(z) = z −
∞∑
n=2

an bn z
n.

Let Rµ(α, β, γ) be the subclass of A consisting functions f(z) such that∣∣∣∣∣∣∣∣
zh′(z)

h(z)
− 1

γ
zh′(z)

h(z)
+ 1− (1 + γ)α

∣∣∣∣∣∣∣∣ < β ,

where, h(z) = (f ∗ Sµ(z)), 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ γ ≤ 1, 0 ≤ µ < 1.
Also let Cµ(α, β, γ) be the subclass of A consisting of functions f(z), which

satisfy the condition

zf ′(z) ∈ Rµ(α, β, γ).
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The classes Rµ(α, β, γ) and Cµ(α, β, γ) of prestarlike functions was investigated by
Joshi [1]. In particular, the subclasses

Rµ[α, β, γ] = Rµ(α, β, γ) ∩ T, Cµ[α, β, γ] = Cµ(α, β, γ) ∩ T ,

were also studied by Joshi [1].
The following results will be required for our investigation.

Lemma 1.1. [1]. A function f defined by (1.2) is in the class Rµ[α, β, γ] if and only if

∞∑
n=2

C(µ, n) {(n− 1) + β [γn+ 1− (1 + γ)α]} an ≤ β(1 + γ)(1− α). (1.6)

The result (1.6) is sharp.

Lemma 1.2. [1]. A function f defined by (1.2) is in the class Cµ[α, β, γ] if and only if

∞∑
n=2

C(µ, n) n {(n− 1) + β [γn+ 1− (1 + γ)α]} an ≤ β(1 + γ)(1− α). (1.7)

The result (1.7) is sharp.

Further we note that such type of classes were extensively studied by Sheil-
Small et al. [8], Owa and Uralegaddi [4], Srivastava and Aouf [10] and Raina and
Srivastava [7].

In view of Lemma 1.1 and Lemma 1.2, we present here a unified study of the
classes Rµ[α, β, γ] and Cµ[α, β, γ] by introducing a new subclass Pµ(α, β, γ, σ). Indeed,
we say that a function f(z) defined by (1.2) is in the class Pµ(α, β, γ, σ) if and only if

∞∑
n=2

{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)

β(1 + γ)(1− α)
C(µ, n)an ≤ 1 , (1.8)

where, 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ γ ≤ 1, 0 ≤ µ < 1, 0 ≤ σ ≤ 1.
Then clearly we have,

Pµ(α, β, γ, σ) = (1− σ)Rµ[α, β, γ] + σCµ[α, β, γ] , (1.9)

where, 0 ≤ σ ≤ 1. So that

Pµ(α, β, γ, 0) = Rµ[α, β, γ], Pµ(α, β, γ, 1) = Cµ[α, β, γ]. (1.10)

The main object of this paper is to investigate various interesting properties and
characterization of the general class Pµ(α, β, γ, σ). Also distortion theorem involving
a generalized fractional integral operator for functions in this class are obtained.

2. Main results

Theorem 2.1. A function f defined by (1.2) is in the class Pµ(α, β, γ, σ) then

an ≤
β(1 + γ)(1− α)

C(µ, n) {(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)
, n ∈ N\{1}. (2.1)
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Equality holds true for the function f(z) given by

f(z) = z − β(1 + γ)(1− α)

C(µ, n) {(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)
zn, n ∈ N\{1}.

(2.2)

Proof. The proof of Theorem 2.1 is straightforward and hence details are omitted. �

A distortion theorem for function f in the class Pµ(α, β, γ, σ) is given as follows:

Theorem 2.2. If the function f defined by (1.2) is in the class Pµ(α, β, γ, σ) then

|z| − β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2 ≤ |f(z)|

≤ |z|+ β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2 , (2.3)

and

1− β(1 + γ)(1− α)

{1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z| ≤ |f ′(z)|

≤ 1 +
β(1 + γ)(1− α)

{1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z| . (2.4)

Proof. Let

f(z) = z −
∞∑
n=2

anz
n

Since f(z) ∈ Pµ(α, β, γ, σ) and clearly C(µ, n) defined by (1.4) is non-decreasing for
0 ≤ µ ≤ 1

2 and using (1.8) we get

∞∑
n=2

an ≤
β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
, n ∈ N\{1}. (2.5)

Then using (1.2) and (2.5) we get (for z ∈ U),

|f(z)| ≤ |z|+ |z|2
∞∑
n=2

|an|

≤ |z|+ β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2

and

|f(z)| ≥ |z| − |z|2
∞∑
n=2

|an|

≥ |z| − β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2.

which proves the assertion (2.3) of Theorem 2.2.
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Also for z ∈ U , we find that

|f ′(z)| ≤ 1 + |z|
∞∑
n=2

n |an|

≤ 1 +
β(1 + γ)(1− α)

{1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|

and

|f ′(z)| ≥ 1− |z|
∞∑
n=2

n |an|

≥ 1− β(1 + γ)(1− α)

{1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|.

which proves the assertion (2.4) of Theorem 2.2
This completes the proof. �

We note that results (2.3) and (2.4) is sharp for the function f(z) given by

f(z) = z − β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
z2. (2.6)

3. Closure theorems

In this section, we shall prove that the class Pµ(α, β, γ, σ) is closed under linear
combination.

Theorem 3.1. The class Pµ(α, β, γ, σ) is closed under linear combination.

Proof. Suppose f(z), g(z) ∈ Pµ(α, β, γ, σ) and

f(z) = z −
∞∑
n=2

anz
n

and

g(z) = z −
∞∑
n=2

bnz
n .

It is sufficient to prove that the function H defined by

H(z) = λf(z) + (1− λ)g(z) , (0 ≤ λ ≤ 1)

is also in the class Pµ(α, β, γ, σ). Since

H(z) = z −
∞∑
n=2

[λan + (1− λ)bn]zn .

We observe that
∞∑
n=2

{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)

β(1 + γ)(1− α)
C(µ, n)[λan + (1− λ)bn] ≤ 1.

Thus H ∈ Pµ(α, β, γ, σ). This completes the proof. �
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Theorem 3.2. If

f1(z) = z

and

fn(z) = z − β(1 + γ)(1− α)

{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)C(µ, n)
zn , (n ≥ 2).

Then f ∈ Pµ(α, β, γ, σ) if and only if it can be expressed in the form

f(z) =

∞∑
n=1

λnfn(z)

where λn ≥ 0 and

∞∑
n=1

λn = 1 .

Proof. Let

f(z) =

∞∑
n=1

λnfn(z)

= z −
∞∑
n=2

β(1 + γ)(1− α)

{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)C(µ, n)
λnz

n

= z −
∞∑
n=2

an z
n ,

where

an =
β(1 + γ)(1− α)

{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)C(µ, n)
λn ≥ 0, (n ≥ 2).

Since,
∞∑
n=2

[
β(1 + γ)(1− α)

{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)C(µ, n)

{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)C(µ, n)

β(1 + γ)(1− α)

]
λn

=

∞∑
n=2

λn =

∞∑
n=1

λn − λ1 = 1− λ1 ≤ 1 .

Therefore f(z) ∈ Pµ(α, β, γ, σ).
Conversely, suppose that f ∈ Pµ(α, β, γ, σ) and since

an =
β(1 + γ)(1− α)

{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)C(µ, n)
λn ≥ 0, (n ≥ 2).

Setting

λn =
{(n− 1) + β [γn+ 1− (1 + γ)α]} (1− σ + σn)C(µ, n)

β(1 + γ)(1− α)
, (n ≥ 2)
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and

λ1 = 1−
∞∑
n=2

λn .

We get

f(z) =

∞∑
n=1

λnfn(z) .

This completes the proof. �

4. Generalized fractional integral operator

In recent years the theory of fractional calculus operator have been fruitfully
applied to analytic functions. Moreover generalized operator of fractional integrals
(or derivatives) having kernels of different types of special functions (including Fox’s
H-function) have generated keen interest in this area. For details one may refer to
Kiryakova [2], Raina and Saigo [6], Srivastava and Owa [11] and Raina and Bolia [5].
Further we note that Riemann-Liouville fractional calculus operators have been used
to obtain basic results which include coefficient estimates, boundedness properties for
various subclasses of analytic and univalent functions.

A generalized fractional integral operator involving the celebrated Fox’s H-
function [2, 3] defined below.

Definition 4.1. Let m ∈ N, βk ∈ R and γk, δk ∈ C, ∀ k = 1, 2, · · · ,m. Then the
integral operator

I
(γm),(δm)
(βm);m f(z) = I

(γ1,··· ,γm),(δ1,··· ,δm)
(β1,··· ,βm);m f(z)

=
1

z

∫ z

0

Hm,0
m,m

 t
z

(
γk + δk + 1− 1

βk
, 1
βk

)
1,m(

γk + 1− 1
βk
, 1
βk

)
1,m

 f(t)dt,

for

m∑
i

Re(δk) > 0, (4.1)

= f(z), for δ1 = · · · = δm = 0 ,

is said to be a multiple fractional integral operator of Riemann-Liouville type of mul-
tiorder δ = (δ1, · · · , δm).

Following [2], let ∆ denote a complex domain starlike with respect to the origin
z = 0, and A(∆) denote the space of functions analytic in ∆. If Aρ(∆) denote the
class of functions

Aρ(∆) = {f(z) = zρf̄(z) : f̄(z) ∈ A(∆)}, ρ ≥ 0; (4.2)

then clearly Aρ(∆) ⊆ Av(∆) ⊆ A(∆) for ρ ≥ v ≥ 0 .
The fractional integral operator (4.1) includes various useful and important frac-

tional integral operators as special cases. For more details of these special cases, one

may refer to Raina and Saigo [6]. Throughout this paper (λ)k stands for Γ(λ+k)
Γ(λ) .
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The following results will be required for our investigation.

Lemma 4.2. [2]. Let γk > − p
βk
− 1, δk ≤ 0 (∀ k = 1, · · · ,m). Then the operator

I
(γm),(δm)
(βm);m maps the class ∆p(G) into itself preserving the power functions f(z) = zp

(up to a constant multiplier):

I
(γm),(δm)
(βm);m {zp} =

m∏
k=1

 Γ
(
p
βk

+ γk + 1
)

Γ
(
p
βk

+ γk + δk + 1
)
 zp . (4.3)

Theorem 4.3. Let m ∈ N, hk ∈ R+, and γk, δk ∈ R such that 1 + γk + δk > 0
(k = 1, · · · ,m), and

m∏
k=1

{
(1 + γk + 2hk)hk

(1 + γk + δk + 2hk)hk

}
≤ 1 (4.4)

and f(z) defined by (1.2) be in the class Pµ(α, β, γ, σ) with 0 ≤ α < 1, 0 < β ≤
1, 0 ≤ γ ≤ 1, 0 ≤ µ ≤ 1

2 , 0 ≤ σ ≤ 1. Then∣∣∣I(γm),(δm)

(h−1
m );m

f(z)
∣∣∣ ≥ { m∏

k=1

(
Γ (1 + γk + hk)

Γ (1 + γk + δk + hk)

)
.

[
|z| − A∗β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2
]}

,

(4.5)

and∣∣∣I(γm),(δm)

(h−1
m );m

f(z)
∣∣∣ ≤ { m∏

k=1

(
Γ (1 + γk + hk)

Γ (1 + γk + δk + hk)

)
.

[
|z|+ A∗β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2
]}

,

(4.6)

for z ∈ U . The inequalities in (4.5) and (4.6) are attained by the function f(z) given
by (2.6), where

A∗ =

m∏
k=1

{
(1 + γk + hk)hk

(1 + γk + δk + hk)hk

}
. (4.7)

Proof. By using lemma 4.2, we get

I
(γm),(δm)

(h−1
m );m

f(z) =

m∏
k=1

{
Γ (1 + γk + hk)

Γ (1 + γk + δk + hk)

}
z

−
∞∑
n=2

m∏
k=1

{
Γ (1 + γk + n hk)

Γ (1 + γk + δk + n hk)

}
anz

n . (4.8)



Applications of generalized fractional integral operator 67

Letting

G(z) =

m∏
k=1

{
Γ (1 + γk + δk + hk)

Γ (1 + γk + hk)

}
I

(γm),(δm)

(h−1
m );m

f(z)

= z −
∞∑
n=2

φ(n) an z
n , (4.9)

where,

φ(n) =

m∏
k=1

{
(1 + γk + hk)hk(n−1)

(1 + γk + δk + hk)hk(n−1)

}
, (n ∈ N\{1}) . (4.10)

Under the hypothesis of Theorem 4.3 (along with the conditions (4.4)), we can see
that φ(n) is non-increasing for integers n (n ≥ 2), and we have

0 < φ(n) ≤ φ(2) =

m∏
k=1

{
(1 + γk + hk)hk

(1 + γk + δk + hk)hk

}
= A∗ , (n ∈ N\{1}) . (4.11)

Now in view equation (1.8) and (4.11), we have

|G(z)| ≥ |z| − φ(2) |z|2
∞∑
n=2

an

≥

{
m∏
k=1

(
Γ (1 + γk + hk)

Γ (1 + γk + δk + hk)

)
.

[
|z| − A∗β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2
]}

.

and

|G(z)| ≤ |z|+ φ(2) |z|2
∞∑
n=2

an

≤

{
m∏
k=1

(
Γ (1 + γk + hk)

Γ (1 + γk + δk + hk)

)
.

[
|z|+ A∗β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2
]}

.

It can be easily verified that the following inequalities are attained by the function
f(z) given by (2.6).∣∣∣I(γm),(δm)

(h−1
m );m

f(z)
∣∣∣ ≥ { m∏

k=1

(
Γ (1 + γk + hk)

Γ (1 + γk + δk + hk)

)
.

[
|z| − A∗β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2
]}

,
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and∣∣∣I(γm),(δm)

(h−1
m );m

f(z)
∣∣∣ ≤ { m∏

k=1

(
Γ (1 + γk + hk)

Γ (1 + γk + δk + hk)

)
.

[
|z|+ A∗β(1 + γ)(1− α)

2 {1 + β [2γ + 1− (1 + γ)α]} (1− µ)(1 + σ)
|z|2
]}

.

Which are as desired in (4.5) and (4.6). This completes the proof of Theorem 4.3. �

Acknowledgments. The work of second author (Sayali S. Joshi) is supported by NBHM
research project (2/48(7)/2016/NBHM/RP/R and D II/14977). Also, the authors
wish to express their sincere thanks to the referee of this paper for several useful
comments and suggestions.

References

[1] Joshi, S.B., On subclasses of prestarlike functions with negative coefficients, Stud. Univ.
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Starlike and convex properties for Poisson
distribution series
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Abstract. In this paper, we find the necessary and sufficient conditions, inclusion
relations for Poisson distribution series belonging to the classes S ∗(α, β) and
C ∗(α, β). Further, we consider an integral operator related to Poisson Distribu-
tion series.
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic and univalent in the open disc U = {z : z ∈ C |z| < 1}. Let T be
a subclass of A consisting of functions whose non-zero coefficients from second on is
give by

f(z) = z −
∞∑
n=2

|an|zn, z ∈ U. (1.2)

In 2014, Porwal [4] introduced a power series whose coefficients are probabilities of
Poisson distribution

K (m, z) := z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn, z ∈ U,

where m > 0. By ratio test the radius of convergence of the above series is infinity.
Further, Porwal [4] defined a series

F (m, z) = 2z −K (m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn, z ∈ U.



72 Nanjundan Magesh, Saurabh Porwal and Chinnaswamy Abirami

Corresponding to the series K (m, z) using the Hadamard product for f ∈ A , Porwal
and Kumar [5] introduced a new linear operator I (m) : A → A defined by

I (m)f(z) : = K (m, z) ∗ f(z)

= z +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n, z ∈ U,

where ∗ denotes the convolution (or Hadamard product) of two series

f(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n

is defined by

(f ∗ g)(z) =

∞∑
n=0

anbnz
n.

Let S ∗(α, β) be the subclass of T consisting of functions which satisfy the condition:∣∣∣∣∣∣
zf ′(z)
f(z) − 1

zf ′(z)
f(z) + 1− 2α

∣∣∣∣∣∣ < β, z ∈ U,

where 0 ≤ α < 1 and 0 < β ≤ 1.
Also, let C ∗(α, β) be the subclass of T consisting of functions which satisfy the

condition: ∣∣∣∣∣∣
zf ′′(z)
f ′(z)

zf ′′(z)
f ′(z) + 2(1− α)

∣∣∣∣∣∣ < β, z ∈ U,

where 0 ≤ α < 1 and 0 < β ≤ 1.
The classes S ∗(α, β) and C ∗(α, β), were introduced and studied by Gupta and

Jain [2] (see [3]). Also, we note that for β = 1 the classes S ∗(α, β) and C ∗(α, β)
reduce to the class of starlike and convex functions of order α(0 ≤ α < 1) (see [6]).

A function f ∈ A is said to be in the class Rτ (A,B), (τ ∈ C \ {0}, −1 ≤ B <
A ≤ 1), if it satisfies the inequality∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, z ∈ U.

This class was introduced by Dixit and Pal [1].

Lemma 1.1. [2] A function f(z) of the form (1.2) is in S ∗(α, β) if and only if
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)] |an| ≤ 2β(1− α). (1.3)

Lemma 1.2. [2] A function f(z) of the form (1.2) is in C ∗(α, β) if and only if
∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)] |an| ≤ 2β(1− α). (1.4)

To obtain our main results, we need the following lemmas:
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Lemma 1.3. [1] If f ∈ Rτ (A,B) is of the form (1.1), then

|an| ≤ (A−B)
|τ |
n
, n ∈ N \ {1}. (1.5)

In the present investigation, inspired by the works of Porwal [4] and Porwal and
Kumar [5], we find the necessary and sufficient conditions for F (m, z) belonging to
the classes S ∗(α, β) and C ∗(α, β). Also, we obtain inclusion relations for aforecited
classes with Rτ (A,B).

2. Necessary and sufficient conditions

Theorem 2.1. If m > 0, 0 ≤ α < 1 and 0 < β ≤ 1, then F (m, z) ∈ S ∗(α, β) if and
only if

emm(1 + β) ≤ 2β(1− α). (2.1)

Proof. Since

F (m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn,

in view of Lemma 1.1, it is enough to show that
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m ≤ 2β(1− α).

Let

T1 =

∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m.

Now,

T1 =

∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m

= e−m
∞∑
n=2

[(n− 1)(1 + β) + 2β(1− α)]
mn−1

(n− 1)!

= e−m

[
(1 + β)

∞∑
n=2

mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]
= e−m [(1 + β)mem + 2β(1− α)(em − 1)]

= (1 + β)m+ 2β(1− α)(1− e−m).

But this last expression is bounded by 2β(1 − α), if and only if (2.1) holds. This
completes the proof of Theorem 2.1. �

Theorem 2.2. If m > 0, 0 ≤ α < 1 and 0 < β ≤ 1, then F (m, z) ∈ C ∗(α, β) if and
only if

em
[
(1 + β)m2 + 2(1 + β(2− α))m

]
≤ 2β(1− α). (2.2)
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Proof. Since

F (m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn,

in view of Lemma 1.2, it is enough to show that

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m ≤ 2β(1− α).

Let

T2 =

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m.

Therefore,

T2 = e−m

[ ∞∑
n=2

(n− 1)(n− 2)(1 + β)
mn−1

(n− 1)!

+

∞∑
n=2

(n− 1)[3(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
+

∞∑
n=2

2β(1− α)
mn−1

(n− 1)!

]

= e−m

[
(1 + β)

∞∑
n=3

mn−1

(n− 3)!

+2[1 + β(2− α)]

∞∑
n=2

mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]
= e−m

[
(1 + β)m2em + 2(1 + β(2− α))mem + 2β(1− α)(em − 1)

]
= (1 + β)m2 + 2(1 + β(2− α))m+ 2β(1− α)(1− e−m).

But this last expression is bounded by 2β(1 − α), if and only if (2.2) holds. This
completes the proof of Theorem 2.2. �

3. Inclusion results

Theorem 3.1. Let m > 0, 0 ≤ α < 1 and 0 < β ≤ 1. If f ∈ Rτ (A,B), then
I (m)f ∈ S ∗(α, β) if and only if

(A−B)|τ |
[
(1 + β)(1− e−m) +

(β(1− 2α)− 1)

m
(1− e−m −me−m)

]
≤ 2β(1− α).

(3.1)

Proof. In view of Lemma 1.1, it suffices to show that

P1 =

∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m|an| ≤ 2β(1− α).
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Since f ∈ Rτ (A,B), then by Lemma 1.3, we have

|an| ≤
(A−B)|τ |

n
.

Therefore,

P1 ≤
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m

(A−B)|τ |
n

= (A−B)|τ |e−m
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

n!

= (A−B)|τ |e−m
[

(1 + β)

∞∑
n=2

mn−1

(n− 1)!
+

(β(1− 2α)− 1)

m

∞∑
n=2

mn

n!

]

= (A−B)|τ |e−m
[
(1 + β)(em − 1) +

(β(1− 2α)− 1)

m
(em − 1−m)

]
= (A−B)|τ |

[
(1 + β)[1− e−m] +

(β(1− 2α)− 1)

m
(1− e−m −me−m)

]
.

But this last expression is bounded by 2β(1 − α), if (3.1) holds. This completes the
proof of Theorem 3.1. �

Theorem 3.2. Let m > 0, 0 ≤ α < 1 and 0 < β ≤ 1. If f ∈ Rτ (A,B), then
I (m)f ∈ C ∗(α, β) if and only if

(A−B)|τ |
[
m(1 + β) + 2β(1− α)(1− e−m)

]
≤ 2β(1− α). (3.2)

Proof. In view of Lemma 1.2, it suffices to show that

P2 =

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m|an| ≤ 2β(1− α).

Since f ∈ Rτ (A,B), then by Lemma 1.3, we have

|an| ≤
(A−B)|τ |

n
.
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Therefore,

P2 ≤
∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m

(A−B)|τ |
n

= (A−B)|τ |e−m
∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!

= (A−B)|τ |e−m
∞∑
n=2

[(n− 1)(1 + β) + 2β(1− α)]
mn−1

(n− 1)!

= (A−B)|τ |e−m
[ ∞∑
n=2

(1 + β)
mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]

= (A−B)|τ |e−m
[

(1 + β)

∞∑
n=2

mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]
= (A−B)|τ |e−m [mem(1 + β) + 2β(1− α)(em − 1)] .

But this last expression is bounded by 2β(1 − α), if (3.2) holds. This completes the
proof of Theorem 3.2. �

4. An integral operator

Theorem 4.1. If m > 0, 0 ≤ α < 1 and 0 < β ≤ 1, then

G (m, z) =

z∫
0

F (m, t)

t
dt

is in C ∗(α, β) if and only if inequality (2.1) is satisfied.

Proof. Since

G (m, z) = z −
∞∑
n=2

e−mmn−1

(n− 1)!

zn

n
= z −

∞∑
n=2

e−mmn−1

n!
zn

by Lemma 1.2, we need only to show that

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

n!
e−m ≤ 2β(1− α).

Let

Q1 =

∞∑
n=2

n[n(1 + β)− 1 + β(1− 2α)]
mn−1

n!
e−m.
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Now,

Q1 =

∞∑
n=2

[n(1 + β)− 1 + β(1− 2α)]
mn−1

(n− 1)!
e−m

= e−m
∞∑
n=2

[(n− 1)(1 + β) + 2β(1− α)]
mn−1

(n− 1)!

= e−m

[ ∞∑
n=2

(n− 1)(1 + β)
mn−1

(n− 1)!
+

∞∑
n=2

2β(1− α)
mn−1

(n− 1)!

]

= e−m

[
(1 + β)

∞∑
n=2

mn−1

(n− 2)!
+ 2β(1− α)

∞∑
n=2

mn−1

(n− 1)!

]
= e−m [(1 + β)mem + 2β(1− α)(em − 1)]

= (1 + β)m+ 2β(1− α)(1− e−m).

But this last expression is bounded by 2β(1 − α), if and only if (2.1) holds. This
completes the proof of Theorem 4.1. �

Theorem 4.2. If m > 0, 0 ≤ α < 1 and 0 < β ≤ 1, then

G (m, z) =

z∫
0

F (m, t)

t
dt

is in S ∗(α, β) if and only if

(1 + β)(1− e−m) +
(β(1− 2α)− 1)

m
(1− e−m −me−m) ≤ 2β(1− α).

The proof of Theorem 4.2 is lines similar to the proof of Theorem 4.1, so we
omitted the proof of Theorem 4.2.
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Abstract. In this paper, we study two classes of BVPs for impulsive fractional
differential equations. Some existence results for these boundary value problems
are established. Some comments on three published papers are made.
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1. Introduction

Impulsive fractional differential equations is an important area of study [1]. In
recent years, boundary value problems (BVPs) or initial value problems (IVPs) for
impulsive fractional differential equations (IFDEs) have been studied by many au-
thors. For example, in [2, 4, 3, 9, 11, 14, 15], the authors studied the existence or
uniqueness of solutions of BVPs for IFDEs with Caputo type fractional derivatives
and multiple starting points.

In [8], Kosmatov studied the following problem:
Dα

0+x(t) = f(t, x(t)), t ∈ [0, 1] \ {t1, t2, · · · , tm},

Dβ
0+x(t+k )−Dβ

+x(t−k ) = Jk(x(tk)), i = 1, 2, · · · ,m, I1−α
0+ x(0) = x0,

(1.1)

where α ∈ (0, 1), D∗0+ is the standard Riemann-Liouville fractional derivative of order
∗, β ∈ (0, α), x0 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = 1, Jk : R→ R, f : [0, 1]×R→
R are suitable functions.

The author was supported by the Natural Science Foundation of Guangdong province
(No: S2011010001900) and the Natural science research project for colleges and universities of Guang-

dong Province (No: 2014KTSCX126).
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In [9], Liu studied the solvability of two classes of initial value problems of
nonlinear impulsive multi-term fractional differential equations on half lines. One
(IVP (1) for short) is as follows:

Dα
0+x(t) + q(t)f(t, x(t), Dp

0+x(t)) = 0, t ∈ (ti, ti+1), i ∈ Nm
0 ,

lim
t→0+

t1−αx(t) = x0,

lim
t→t+i

(t− ti)1−αx(t) = I(ti, x(ti), D
p
0+x(ti))), i ∈ Nm

1 ,

(1.2)

and 

Dα
t+i
x(t) + q1(t)f1(t, x(t), Dp

t+i
x(t)) = 0, t ∈ (ti, ti+1), i ∈ Nm

0 ,

lim
t→0+

t1−αx(t) = x0,

lim
t→t+i

(t− ti)1−αx(t) = I1(ti, x(ti), D
p

t+i−1

x(ti)), i ∈ Nm
1 ,

(1.3)

where α ∈ (0, 1), 0 < p < α, Db
a+ is the standard Riemann-Liouville fractional

derivative of order b > 0 with starting point a, x0 ∈ R, N0
m = {0, 1, 2, · · · ,m} and

Nm
1 = {1, 2, 3, · · · ,m}, 0 = t0 < t1 < t2 < t3 < · · · < tm < tm+1 = 1, q : (0, 1) 7→ R

is continuous and satisfies that there exists l ∈ (−1,−α) such that |q(t)| ≤ tl for

all t ∈ (0, 1), q1 :
m⋃
i=0

(ti, ti+1) 7→ R is continuous and satisfies that there exists

k1 > −1, l1 ≤ 0 such that |q1(t)| ≤ (t − ti)k1(ti+1 − t)l1 for all t ∈ (ti, ti+1)(i ∈ N0),

f : (0, 1) ×R2 7→ R is a I-Carathéodory function, f1 :

(
m⋃
i=0

(ti, ti+1)

)
×R2 7→ R is

a II-Carathéodory function, I, I1 : {ti : i ∈ N} ×R2 7→ R are discrete Carathéodory
functions.

In [14], the authors studied the existence of solutions of the following BVP for
IFDE

Dq
0+x(t) + λ(t)x(t) = f(t, x(t)), t ∈ [0, 1] \ {t1, t2, · · · , tm},

Iα0+x(t+i )− Iα0+(t−i ) = Ji(x(ti)), i = 1, 2, · · · ,m, t1−qx(t)|t=0 + t1−qx(t)|t=1 = 0,
(1.4)

where q, α ∈ (0, 1), Dq
0+ is the Riemann-Liouville fractional derivative, Iα0+ is the

Riemann-Liouville fractional integral, 0 = t0 < t1 < · · · < tm < tm+1 = 1, λ ∈
C0([0, 1],R) satisfies λ0 =: max

t∈[0,1]
λ(t) > 0, Jk : R 7→ R is continuous, f is a given

piecewise continuous function. The following special case play a large role in the proof
of the main theorem:

Dq
0+x(t) + λ0x(t) = f(t, x(t)), t ∈ [0, 1] \ {t1, t2, · · · , tm},

Iα0+x(t+i )− Iα0+(t−i ) = Ji(x(ti)), i = 1, 2, · · · ,m, t1−qx(t)|t=0 + t1−qx(t)|t=1 = 0
(1.5)
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In [17], Zhao studied the following higher-order nonlinear Riemann-Liouville
fractional differential equation with Riemann-Stieltjes integral boundary value condi-
tions and impulses

−Dα
0+x(t) = λa(t)f(t, x(t)), t \ {ti}mi=1,

∆x(ti) = Ii(x(ti)), i = 1, 2, · · · ,m,

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x′(1) =
∫ 1

0
x(s)dH(s),

(1.6)

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order n − 1 <

α ≤ n with n ≥ 3, the impulsive point sequence 0 = t0 < t1 < t2 < · · · < tm <
tm+1 = 1,λ > 0, f ∈ C([0, 1]× [0,+∞), [0,+∞)), a ∈ C((0, 1), [0,+∞)), the integral∫ 1

0
x(s)dH(s) is the Riemann-Stieltjes integral with H : [0, 1]→ R with

δ =:

∫ 1

0

sα−1dH(s) 6= α− 1.

Motivated by [8, 17], we investigate the solvability of the following two boundary
value problems for impulsive fractional differential equations

Dα
0+x(t)− λx(t) = f(t, x(t)), a.e., t ∈ (ti, ti+1], i ∈ Nm0 ,

∆Iβ0+x(ti) =: Iβ0+x(t+i )− Iβ0+x(ti) = In(ti, x(ti)), i ∈ Nm1 ,

∆Dα−j
0+ x(ti) =: Dα−j

0+ x(t+i )−Dα−j
0+ x(ti) = Ij(ti, x(ti)), i ∈ Nm1 , j ∈ Nn−1

1 ,

In−α0+ x(0) = xn, D
α−j
0+ x(0) = xj , j ∈ Nn−1

1 ,
(1.7)

and 

Dα
0+x(t) = f(t, x(t)), t \ {ti}mi=1,

∆Dα−j
0+ x(ti) = Ij(ti, x(ti)), i ∈ Nm1 , j ∈ Nn−1

1 ,

∆In−α0+ x(ti = In(ti, x(ti)), i ∈ Nm1 ,

In−α0+ x(0) = Dα−j
0+ x(0) = 0, j ∈ Nn−2

1 , Dα−n+1
0+ x(1) =

∫ 1

0
x(s)dH(s),

(1.8)

where m,n are positive integers, α ∈ (n − 1, n), β > 0, λ ∈ R, 0 = t0 < t1 < · · · <
tm < tm+1 = 1, xj ∈ R(j ∈ Nn1 , f : (0, 1) × R → R is a Carathéodory fraction,
Ij : {ti : i ∈ Nm1 } × R→ R is a discrete Carathéodory function (j ∈ Nn1 ).

The purposes of this paper are to establish existence results for solutions of IVP
(1.7)(α − β − n = 0) and existence results for solutions of BVP(1.8) respectively.
The method used is based upon the fixed point theorems. The results in this paper
complement known ones in [8, 17] and generalize known ones [10].
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A function x : (0, 1] → N is called a solution of IVP (1.7) (or IVP (1.8)) if
x ∈ C(ti, ti+1], lim

t→t+i
(t−ti)n−αx(t) is finite for i ∈ Nm0 and Dα

0+x|(ti,ti+1]−λx|(ti,ti+1] ∈

L1(ti, ti+1), and x satisfies all equations in (1.6) (or (1.8)).
The remainder of this paper is divided into three sections. In Section 2, we

present related definitions and preliminary results. In Section 3, we establish existence
results for IVP (1.7) and BVP(1.8) respectively. In Section 4, we give comments on
some published papers.

2. Preliminary results

For the convenience of the readers, we firstly present the necessary definitions
from the fractional calculus theory. These definitions can be found in the literature
[5, 6, 7].

Let a < b. Denote L1(a, b) the set of all integrable functions on (a, b), C0(a, b]
the set of all continuous functions on (a, b]. For φ ∈ L1(a, b), denote

||φ||1 =

∫ b

a

|φ(s)|ds.

For φ ∈ C0[a, b], denote ||φ||0 = max
t∈[a,b]

|φ(t)|.

For two integers a < b, denote Nba = {a, a+ 1, · · · , b}.
Let the Gamma and beta functions Γ(α), B(p, q) and the Mitag-Leffler function

Eα,δ(x) be defined by

Γ(α) =

∫ +∞

0

xα−1e−xdx,

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx,

Eα,δ(x) =

∞∑
k=0

xk

Γ(kα+ δ)
, α, p, q, δ > 0.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function
g : (0,∞) 7→ R (may be piecewise continuous) is given by

Iα0+g(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds,

provided that the right-hand side exists.
Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a function
g : (0,∞) 7→ R (may be piecewise continuous) is given by

Dα
0+g(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

g(s)

(t− s)α−n+1
ds,

where n− 1 < α < n, provided that the right-hand side exists.
Remark 2.1. For a piecewise continuous function g which is continuous on (ti, ti+1]
(i ∈ Nm

0 , 0 = t0 < t1 < · · · < ti < · · · < tm < tm+1 = 1), and t ∈ (ti, ti+1], the
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Riemann-Liouville fractional integral of order α > 0 of g on (0, t] with t ∈ (ti, ti+1] is
given by

Iα0+g(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds

=

i∑
j=0

∫ tj+1

tj

(t− s)α−1g(s)ds

Γ(α)
+

∫ t

ti

(t− s)α−1g(s)ds

Γ(α)
,

provided that each term in the right-hand side exists.
Let α ∈ (n − 1, n) with n being a positive integer. For a piecewise continuous

function g which is continuous on (ti, ti+1] (i ∈ Nm
0 , 0 = t0 < t1 < · · · < ti < · · · <

tm < tm+1 = 1), and t ∈ (ti, ti+1], the Riemann-Liouville fractional derivative of order
α > 0 of g on (0, t] with t ∈ (ti, ti+1] is given by

Dα
0+g(t) =

1

Γ(n− α)

[∫ t

0

(t− s)n−α−1g(s)ds

](n)

=

[
i∑

j=0

∫ tj+1

tj
(t− s)n−α−1g(s)ds+

∫ t
ti

(t− s)n−α−1g(s)ds

](n)

Γ(n− α)

provided that each term in the right-hand side exists.
Definition 2.3. We call F : (0, 1)×R 7→ R a Carathéodory function if it satisfies the
followings:

(i) t 7→ F (t, (t− ti)n−αu) are measurable on (ti, ti+1)(i ∈ Nm
0 ) for any u ∈ R,

(ii) u 7→ F (t, (t− ti)n−αu) is continuous on R for all t ∈ (ti, ti+1)(i ∈ Nm
0 ),

(iii) for each r > 0, there exists Mr ≥ 0 such that |F (t, (t− ti)n−αu) | ≤Mr for
all t ∈ (ti, ti+1)(i ∈ Nm

0 ) and |u| ≤ r.
Definition 2.4. We call G : {ti : i ∈ Nm

1 }×R 7→ R a discrete I-Carathéodory function
if it satisfies the followings:

(i) u 7→ G (ti, (ti − ti−1)n−αu) is continuous on R for all i ∈ Nm
1 ,

(ii) for each r > 0, there exists Mr ≥ 0 such that |G (ti, (ti − ti−1)n−αu) | ≤Mr

for all i ∈ Nm
1 and |u| ≤ r.

Suppose that α ∈ (n− 1, n), 0 = t0 < t1 < · · · < tm+1 = 1. Denote

PCn−α(0, T ] =

x : (0, 1] 7→ R :

x|(ti,ti+1] ∈ C0(ti, ti+1], i ∈ Nm
0 ,

lim
t→t+i

(t− ti)n−αx(t), i ∈ Nm
0 are finite

 .

Define

||x|| = ||x||n−α = max

{
sup

t∈(ti,ti+1]

(t− ti)n−α|x(t)|, i ∈ Nm
0

}
.

Then PCn−α is a Banach space with the norm || · || defined.
Theorem 2.1. Suppose that α ∈ (n − 1, n), λ ∈ R, h : (0, 1) → R is continuous and
satisfies |h(t)| ≤ tk(1− t)l for all t ∈ (0, 1), where k > −1, l ≤ 0 with 1 + k + l > 0.



84 Yuji Liu

Then x ∈ PCn−α(0, 1] is a piecewise continuous solution of

Dα
0+x(t)− λx(t) = h(t), a.e., t ∈ (ti, ti+1], i ∈ Nm0 (2.1)

if and only if there exist constants cνk ∈ R(ν ∈ Nn1 , k ∈ N0) such that

lx(t) =

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds

+

j∑
k=0

n∑
ν=1

cνk(t− tk)α−νEα,α−ν+1(λ(t− tk)α), t ∈ (tj , tj+1], j ∈ Nm0 . (2.2)

Proof. We have

tn−α
∣∣∣∣∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds

∣∣∣∣
≤ tn−α

∞∑
χ=0

|λ|χ

Γ(χα+ α)

∫ t

0

(t− s)α−1+χαsk(1− s)lds

= tn−α
∞∑
χ=0

|λ|χ

Γ(χα+ α)
tχα+α

∫ 1

0

(1− w)α+l−1+χαwkdw

≤ tn−α
∞∑
χ=0

|λ|χ

Γ(χα+ α)
tχα+k+α+l

∫ 1

0

(1− w)α+l−1wkdw

= B(α+ l, k + 1)Eα,α(|λ|tα)tn+k+l → 0 as t→ 0.

Then t→ tn−α
∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)h(s)ds is continuous on [0, 1].

Step 1. Assume x ∈ PCn−α(0, 1] is a solution of (2.1). We prove x satisfies (2.2).
From (5.1)-(5.3) in [7], there exist constants cν0 ∈ R such that

x(t) =

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds+

n∑
ν=1

cν0t
α−νEα,α−ν+1(λtα), t ∈ (t0, t1].

It follows that (2.2) holds for j = 0. Now suppose that (3.7) holds for i = 0, 1, · · · , ω <
m, i.e.,

x(t) =

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds

+

j∑
k=0

n∑
ν=1

cνk(t− tk)α−νEα,α−ν+1(λ(t− tk)α), t ∈ (tj , tj+1], j ∈ Nω0 . (2.3)

We will prove that (2.2) holds for i = ω+1. Then by mathematical induction method,
(2.2) holds for all i ∈ Nm0 . In order to get the exact expression of x on (tω+1, tω+2],
we suppose that there exists Φ such that

x(t) = Φ(t) +

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds

+

ω∑
k=0

n∑
ν=1

cνk(t− tk)α−νEα,α−ν+1(λ(t− tk)α), t ∈ (tω+01, tω+2]. (2.4)
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Using Definition 2.2, (2.3) and (2.4), we know for t ∈ (tω+1, tω+2] by direct computa-
tion that

Dα
0+x(t) =

[∫ t
0
(t− s)n−α−1x(s)ds

](n)

Γ(n− α)

=

[
ω∑
ρ=0

∫ tρ+1

tρ
(t− s)n−α−1x(s)ds+

∫ t
tω+1

(t− s)n−α−1x(s)ds

](n)

Γ(n− α)

=

[
ω∑
ρ=0

∫ tρ+1

tρ

(t− s)n−α−1

(∫ s

0

(s− u)α−1Eα,α(λ(s− u)α)h(u)du

+

ρ∑
k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)

)
ds

](n)/
Γ(n− α)

+

[∫ t

tω+1

(t− s)n−α−1

(
Φ(s) +

∫ s

0

(s− u)α−1Eα,α(λ(s− u)α)h(u)du

+

ω∑
k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)

)
ds

](n)/
Γ(n− α)

= Dα
t+ω+1

Φ(t)

+

[
ω∑
ρ=0

ρ∑
k=0

n∑
ν=1

cνk
∫ tρ+1

tρ
(t− s)n−α−1(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

](n)

Γ(n− α)

+

[∫ t

0

(t− s)n−α−1

∫ s

0

(s− u)α−1Eα,α(λ(s− u)α)h(u)duds

+

ω∑
k=0

n∑
ν=1

cνk

∫ t

tω+1

(t− s)n−α−1(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

](n)/
Γ(n− α)

= Dα
t+ω+1

Φ(t)

+

[
ω∑
k=0

ω∑
ρ=k

n∑
ν=1

cνk
∫ tρ+1

tρ
(t− s)n−α−1(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

](n)

Γ(n− α)

+

[∫ t

0

(t− s)n−α−1

∫ s

0

(s− u)α−1Eα,α(λ(s− u)α)h(u)duds

+

ω∑
k=0

n∑
ν=1

cνk

∫ t

tω+1

(t− s)n−α−1(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

](n)/
Γ(n− α)
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= Dα
t+ω+1

Φ(t) +

[∫ t
0
(t− s)n−α−1

∫ s
0

(s− u)α−1Eα,α(λ(s− u)α)h(u)duds
](n)

Γ(n− α)

+

[
ω∑
k=0

n∑
ν=1

cνk
∫ t
tk

(t− s)n−α−1(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

](n)

Γ(n− α)

= Dα
t+ω+1

Φ(t) +

[∫ t
0

∞∑
χ=0

λχ

Γ(χα+α)

∫ t
u
(t− s)n−α−1(s− u)α−1+χαdsh(u)du

](n)

Γ(n− α)

+

[
ω∑
k=0

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1)

∫ t
tk

(t− s)n−α−1(s− tk)α−ν+χαds

](n)

Γ(n− α)

by
s− u
t− u

= w,
s− tk
t− tk

= w

= Dα
t+ω+1

Φ(t)+

[∫ t
0

∞∑
χ=0

λχ

Γ(χα+α) (t− u)χα+n−1
∫ 1

0
(1− w)n−α−1wα−1+χαdwh(u)du

](n)

Γ(n− α)

+

[
ω∑
k=0

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1) (t− tk)χα+n−ν ∫ 1

0
(1− w)n−α−1wα−ν+χαdw

](n)

Γ(n− α)

= Dα
t+ω+1

Φ(t) + h(t) +

[∫ t

0

∞∑
χ=0

λχ(t− u)χα+n−1

Γ(χα+ n)
h(u)du

](n)

+

[
ω∑
k=0

n∑
ν=1

cνk

∞∑
χ=0

λχ(t− tk)χα+n−ν

Γ(χα+ n− ν + 1)

](n)

−Dα
t+ω+1

Φ(t) +

∫ t

0

∞∑
χ=1

λχ(t− u)χα+−1

Γ(χα)
h(u)du+

ω∑
k=0

n∑
ν=1

cνk

∞∑
χ=1

λχ(t− tk)χα−ν

Γ(χα− ν + 1)
.

Thus

Dα
0+x(t)− λx(t) = Dα

t+ω+1

Φ(t) + h(t) +

∫ t

0

∞∑
χ=1

λχ(t− u)χα+−1

Γ(χα)
h(u)du

+

ω∑
k=0

n∑
ν=1

cνk

∞∑
χ=1

λχ(t− tk)χα−ν

Γ(χα− ν + 1)

−λ
[
Φ(t) +

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds
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+

ω∑
k=0

n∑
ν=1

cνk(t− tk)α−νEα,α−ν+1(λ(t− tk)α)

]
= Dα

t+ω+1

Φ(t)− λΦ(t) + h(t).

From Dα
0+x(t)− λx(t) = h(t), we have Dα

t+ω+1

Φ(t)− λΦ(t) = 0 on (tω+1, tω+2].

By (5.1)-(5.3) in [7], we know that there exists constants cνω+1 ∈ R such that

Φ(t) =
n∑
ν=1

cνω+1(t− tω+1)α−νEα,α(λ(t− tω+1)α).

Substituting Φ into (2.4). We know that (2.2) holds for i = ω + 1. By mathematical
induction method, we know that (2.2) holds for i ∈ Nm0 .
Step 2. We prove that x is a piecewise continuous solution of (2.1) if x satisfies (2.2).
Since x satisfies (2.2), we know that x|(ti,ti+1] ∈ C0(ti, ti+1] (i ∈ Nm0 ) and

lim
t→t+j

(t− tj)n−αx(t)

exists and is finite for all i ∈ Nm0 . Furthermore, by direct computation similarly to
Step 1, by Definition 2.1, we can get for t ∈ (tj , tj+1] that

In−α0+ x(t) =

∫ t
0
(t− s)n−α−1x(s)ds

Γ(α)

=

j−1∑
ρ=0

∫ tρ+1

tρ
(t− s)n−α−1x(s)ds+

∫ t
tj

(t− s)n−α−1x(s)ds

Γ(n− α)

=

∫ t

0

∞∑
χ=0

λχ

Γ(χα+ n)
(t− u)χα+n−1h(u)du

+

j∑
k=0

n∑
ν=1

cνk

∞∑
χ=0

λχ

Γ(χα+ n− ν + 1)
(t− tk)χα+n−ν

=

∫ t

0

(t− u)n−1Eα,n(λ(t− s)α)h(s)ds+

j∑
k=0

n∑
ν=1

cνk(t− tk)n−νEα,n−ν+1(λ(t− tk)α).

By Definition 2.2, we get for i ∈ Nn−1
1 , t ∈ (tjtj+1] that

Dα−i
0+ x(t) =

[∫ t
0
(t− s)n−α−1x(s)ds

](n−i)
Γ(α)

=

[
j−1∑
ρ=0

∫ tρ+1

tρ
(t− s)n−α−1x(s)ds+

∫ t
tj

(t− s)n−α−1x(s)ds

](n−i)

Γ(n− α)

=

[∫ t

0

∞∑
χ=0

λχ(t− u)χα+n−1

Γ(χα+ n)
h(u)du

](n−i)

+

[
j∑

k=0

n∑
ν=1

cνk

∞∑
χ=0

λχ(t− tk)χα+n−ν

Γ(χα+ n− ν + 1)

](n−i)
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=

∫ t

0

∞∑
χ=0

λχ(t− u)χα+i−1

Γ(χα+ i)
h(u)du

+

j∑
k=0

n∑
ν=1

cνk

∞∑
χ=1

λχ(t− tk)χα+i−ν

Γ(χα+ i− ν + 1)
+

j∑
k=0

i∑
ν=1

cνk
(t− tk)i−ν

Γ(i− ν + 1)

=

∫ t

0

(t− u)i−1Eα,i(λ(t− u)α)h(u)du+

j∑
k=0

i∑
ν=1

cνk(t− tk)i−νEα,i−ν+1(λ(t− tk)α)

+λ

j∑
k=0

n∑
ν=i+1

cνk(t− tk)α+i−νEα,α+i−ν+1(λ(t− tk)α).

We see that
In−α0+ x|(tj ,tj+1], D

α−i
0+ x|(tj ,tj+1](i ∈ Nn−1

1 , j ∈ Nm0 )

are continuous and the limits

lim
t→t+j

In−α0+ x(t), lim
t→t+j

Dα−i
0+ x(t) (i ∈ Nn−1

1 , j ∈ Nm0 )

are finite. By Definition 2.2, α ∈ (n− 1, n), for t ∈ (tj , tj+1], we have

Dα
0+x(t) =

[∫ t
0
(t− s)n−α−1x(s)ds

](n−i)
Γ(α)

=

[
j−1∑
ρ=0

∫ tρ+1

tρ
(t− s)n−α−1x(s)ds+

∫ t
tj

(t− s)n−α−1x(s)ds

](n−i)

Γ(n− α)

=

[∫ t

0

∞∑
χ=0

λχ(t− u)χα+n−1

Γ(χα+ n)
h(u)du

](n)

+

[
j∑

k=0

n∑
ν=1

cνk

∞∑
χ=0

λχ(t− tk)χα+n−ν

Γ(χα+ n− ν + 1)

](n)

= h(t)+

∫ t

0

∞∑
χ=1

λχ(t− u)χα−1

Γ(χα)
h(u)du+

j∑
k=0

n∑
ν=1

cνk

∞∑
χ=1

λχ(t− tk)χα+−ν

Γ(χα− ν + 1)
, t ∈ (tj , tj+1].

Then
Dα

0+x(t)− λx(t) = h(t), t ∈ (tj , tj+1], j ∈ Nm0 .
So x is a piecewise continuous solution of (2.1). The proof is completed. �
Remark 2.1. Lemma 2.1 (when λ = 0) is one of the main results in [10] (see Theorem
3.2 in [10]). So our results generalizes the one in [10].
Theorem 2.2. Suppose that x is a solution of (2.1) and is defined by (2.2). Then

Iβ0+x(t) =

∫ t

0

(t− s)α+β−1Eα,α+β(λ(t− s)α)h(s)ds

+

j∑
k=0

n∑
ν=1

cνk(t− tk)α+β−νEα,α+β−ν+1(λ(t− tk)α),

t ∈ (tj , tj+1], j ∈ Nm0 (2.5)
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In−α0+ x(t) =

i∑
k=0

n∑
ν=1

cνk(t− tk)n−νEα,n−ν+1(λ(t− tk)α)

+

∫ t

0

(t− u)n−1Eα,n(λ(t− u)α)h(u)du,

t ∈ (ti, ti+1], i ∈ Nm0 , (2.6)

and

Dα−j
0+ x(t) =

i∑
k=0

j∑
ν=1

cνk(t− tk)j−νEα,j−ν+1(λ(t− tk)α)

+ λ

i∑
k=0

n∑
ν=j+1

cνk(t− tk)α+j−νEα,α+j−ν+1(λ(t− tk)α)

+

∫ t

0

(t− u)j−1Eα,j(λ(t− u)α)h(u)du,

t ∈ (ti, ti+1], i ∈ Nm0 , j ∈ Nn−1
1 . (2.7)

Proof. We firstly prove (2.5). For t ∈ (ti, ti+1], by (2.2) and Definition 2.1, we get

Iβ0+x(t) =

i−1∑
µ=0

∫ tµ+1

tµ
(t− s)β−1x(s)ds+

∫ t
ti

(t− s)β−1x(s)ds

Γ(β)

=

i−1∑
µ=0

∫ tµ+1

tµ

(t− s)β−1

(∫ s

0

(s− u)α−1Eα,α(λ(s− u)α)h(u)du

+

µ∑
k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)

)
ds
/

Γ(β)

+

∫ t

ti

(t− s)β−1

(∫ s

0

(s− u)α−1Eα,α(λ(s− u)α)h(u)du

+

i∑
k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)

)
ds
/

Γ(β)

=

i−1∑
µ=0

∫ tµ+1

tµ
(t− s)β−1

µ∑
k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

Γ(β)

+

∫ t
ti

(t− s)β−1
i∑

k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

Γ(β)

+

∫ t
0
(t− s)β−1

∫ s
0

(s− u)α−1Eα,α(λ(s− u)α)h(u)duds

Γ(β)
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=

i−1∑
k=0

i−1∑
µ=k

n∑
ν=1

cνk
∫ tµ+1

tµ
(t− s)β−1(s− tk)α−ν

∞∑
χ=0

λχ

Γ(χα+α−ν+1) (s− tk)χαds

Γ(β)

+

i∑
k=0

n∑
ν=1

cνk
∫ t
ti

(t− s)β−1(s− tk)α−ν
∞∑
χ=0

λχ

Γ(χα+α−ν+1) (s− tk)χαds

Γ(β)

+

∫ t
0

∫ t
u
(t− s)β−1(s− u)α−1

∞∑
χ=0

λχ

Γ(χα+α) (s− u)χαdsh(u)du

Γ(β)

=

i−1∑
k=0

i−1∑
µ=k

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1)

∫ tµ+1

tµ
(t− s)β−1(s− tk)α−ν+χαds

Γ(β)

+

i∑
k=0

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1)

∫ t
ti

(t− s)β−1(s− tk)α−ν+χαds

Γ(β)

+

∞∑
χ=0

λχ

Γ(χα+α)

∫ t
0

∫ t
u
(t− s)β−1(s− u)α−1+χαdsh(u)du

Γ(β)

=

i−1∑
k=0

i−1∑
µ=k

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1) t− tk)χα+α+β−ν ∫ tµ+1−tk
t−tk

tµ−tK
t−tk

(1− w)β−1wα−ν+χαdw

Γ(β)

+

i∑
k=0

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1) (t− tk)χα+α+β−ν ∫ 1
ti−tk
t−tk

(1− w)β−1wα−ν+χαdw

Γ(β)

+

∞∑
χ=0

λχ

Γ(χα+α)

∫ t
0
(t− u)χα+α+β−1

∫ 1

0
(1− w)β−1wα−1+χαdwh(u)du

Γ(β)

=

i∑
k=0

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1) (t− tk)χα+α+β−ν ∫ 1

0
(1− w)β−1wα−ν+χαdw

Γ(β)

+

∞∑
χ=0

λχ

Γ(χα+α)

∫ t
0
(t− u)χα+α+β−1

∫ 1

0
(1− w)β−1wα−1+χαdwh(u)du

Γ(β)

=

i∑
k=0

n∑
ν=1

cνk

∞∑
χ=0

λχ

Γ(χα+ α+ β − ν + 1)
(t− tk)χα+α+β−ν

+

∞∑
χ=0

λχ

Γ(χα+ α+ β)

∫ t

0

(t− u)χα+α+β−1h(u)du
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=

∫ t

0

(t− s)α+β−1Eα,α+β(λ(t− s)α)h(s)ds

+

i∑
k=0

n∑
ν=1

cνk(t− tk)α+β−νEα,α+β−ν+1(λ(t− tk)α), t ∈ (ti, ti+1], i ∈ Nm0

Thus (2.5) is proved. Hence (2.6) holds by β = n− α.
Now, we prove (2.7). In fact, for t ∈ (ti, ti+1], we have by using 2.2 and Definition 2.2
that

Dα−j
0+ x(t) =

[∫ t
0
(t− s)n−α−1x(s)ds

](n−j)
Γ(n− α)

=

[
i−1∑
µ=0

(t− s)n−α−1x(s)ds+
∫ t
ti

(t− s)n−α−1x(s)ds

](n−j)

Γ(n− α)

=

[
i−1∑
µ=0

∫ tµ+1

tµ

(t− s)n−α−1

(∫ s

0

(s− u)α−1Eα,α(λ(s− u)α)h(u)du

+

µ∑
k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)

)
ds

](n−j)/
Γ(n− α)

+

[∫ t

ti

(t− s)n−α−1

(∫ s

0

(s− u)α−1Eα,α(λ(s− u)α)h(u)du

+

i∑
k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)

)
ds

](n−j)/
Γ(n− α)

=

[
i−1∑
µ=0

∫ tµ+1

tµ
(t− s)n−α−1

µ∑
k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

](n−j)

Γ(n− α)

+

[∫ t
ti

(t− s)n−α−1
i∑

k=0

n∑
ν=1

cνk(s− tk)α−νEα,α−ν+1(λ(s− tk)α)ds

](n−j)

Γ(n− α)

+

[∫ t
0
(t− s)n−α−1

∫ s
0

(s− u)α−1Eα,α(λ(s− u)α)h(u)duds
](n−j)

Γ(n− α)

=

[
i−1∑
k=0

i−1∑
µ=k

n∑
ν=1

cνk
∫ tµ+1

tµ
(t− s)n−α−1(s− tk)α−ν

∞∑
χ=0

λχ

Γ(χα+α−ν+1) (s− tk)χαds

](n−j)

Γ(n− α)

+

[
i∑

k=0

n∑
ν=1

cνk
∫ t
ti

(t− s)n−α−1(s− tk)α−ν
∞∑
χ=0

λχ

Γ(χα+α−ν+1) (s− tk)χαds

](n−j)

Γ(n− α)
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+

[∫ t
0

∫ t
u
(t− s)n−α−1(s− u)α−1

∞∑
χ=0

λχ

Γ(χα+α) (s− u)χαdsh(u)du

](n−j)

Γ(n− α)

=

[
i−1∑
k=0

i−1∑
µ=k

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1)

∫ tµ+1

tµ
(t− s)n−α−1(s− tk)α−ν+χαds

](n−j)

Γ(n− α)

+

[
i∑

k=0

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1)

∫ t
ti

(t− s)n−α−1(s− tk)α−ν+χαds

](n−j)

Γ(n− α)

+

[
∞∑
χ=0

λχ

Γ(χα+α)

∫ t
0

∫ t
u
(t− s)n−α−1(s− u)α−1+χαdsh(u)du

](n−j)

Γ(n− α)

=

i−1∑
k=0

i−1∑
µ=k

n∑
ν=1

cνk

∞∑
χ=0

λχ

Γ(χα+ α− ν + 1)
(t− tk)χα+n−ν

×
∫ tµ+1−tk

t−tk

tµ−tk
t−tk

(1− w)n−α−1wα−ν+χαdw

(n−j)/
Γ(n− α)

+

[
i∑

k=0

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1) (t− tk)χα+n−ν ∫ 1
ti−tk
t−tk

(1− w)n−α−1wα−ν+χαdw

](n−j)

Γ(n− α)

+

[
∞∑
χ=0

λχ

Γ(χα+α)

∫ t
0
(t− u)χα+n−1

∫ 1

0
(1− w)n−α−1wα−1+χαdwh(u)du

](n−j)

Γ(n− α)

=

[
i∑

k=0

n∑
ν=1

cνk
∞∑
χ=0

λχ

Γ(χα+α−ν+1) (t− tk)χα+n−ν ∫ 1

0
(1− w)n−α−1wα−ν+χαdw

](n−j)

Γ(n− α)

+

[
∞∑
χ=0

λχ

Γ(χα+α)

∫ t
0
(t− u)χα+n−1

∫ 1

0
(1− w)n−α−1wα−1+χαdwh(u)du

](n−j)

Γ(n− α)

=

[
i∑

k=0

n∑
ν=1

cνk

∞∑
χ=0

λχ

Γ(χα+ n− ν + 1)
(t− tk)χα+n−ν

](n−j)
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+

[ ∞∑
χ=0

λχ

Γ(χα+ n)

∫ t

0

(t− u)χα+n−1h(u)du

](n−j)

=

i∑
k=0

j∑
ν=1

cνk
1

Γ(j − ν + 1)
(t−tk)j−ν+

i∑
k=0

n∑
ν=1

cνk

∞∑
χ=1

λχ

Γ(χα+ j − ν + 1)
(t−tk)χα+j−ν

+

∞∑
χ=0

λχ

Γ(χα+ j)

∫ t

0

(t− u)χα+j−1h(u)du

=

i∑
k=0

j∑
ν=1

cνk

∞∑
χ=0

λχ

Γ(χα+ j − ν + 1)
(t− tk)χα+j−ν

+

i∑
k=0

n∑
ν=j+1

cνk

∞∑
χ=1

λχ

Γ(χα+ j − ν + 1)
(t− tk)χα+j−ν

+

∫ t

0

(t− u)j−1Eα,j(λ(t− u)α)h(u)du

=

i∑
k=0

j∑
ν=1

cνk(t− tk)j−νEα,j−ν+1(λ(t− tk)α)

+λ

i∑
k=0

n∑
ν=j+1

cνk(t− tk)α+j−νEα,α+j−ν+1(λ(t− tk)α)

+

∫ t

0

(t− u)j−1Eα,j(λ(t− u)α)h(u)du.

Banach space PCn−α(0, 1]. Let n be a positive integer, α ∈ (n − 1, n) and 0 = t0 <
t1 < · · · < tm+1 = 1. Choose

PCn−α(0, 1] =

x : (0, 1] 7→ R :

x|(ti,ti+1] ∈ C0(ti, ti+1], i ∈ Nm
0 ,

lim
t→t+i

(t− ti)n−αx(t), i ∈ Nm
0 are finite

 .

Define

||x|| = ||x||n−α = max

{
sup

t∈(ti,ti+1]

(t− ti)n−α|x(t)|, i ∈ Nm
0

}
.

Then PCn−α(0, 1] is a Banach space with the norm || · || defined.
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Theorem 2.3. Suppose that α+ β = n, h ∈ L1(0, 1] aji, bi ∈ R. Then x ∈ PCn−α(0, 1]
is a solution of

Dα
0+x(t)− λx(t), a.e., t ∈ (ti, ti+1], i ∈ Nm0

∆In−α0+ x(ti), i ∈ Nm1

∆Dα−j
0+ x(ti), i ∈ Nm1 , j ∈ Nn−1

1

In−α0+ x(0)

Dα−j
0+ x(0), j ∈ Nn−1

1


=



h(t), a.e., t ∈ (ti, ti+1], i ∈ Nm0

ani, i ∈ Nm1

aji, i ∈ Nm1 , j ∈ Nn−1
1

bn

bj , j ∈ Nn−1
1


(2.8)

if and only if

x(t) =

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds+

n∑
ν=1

bνt
α−νEα,α−ν+1(λtα)

+

j∑
k=1

n∑
ν=1

aνk(t− tk)α−νEα,α−ν+1(λ(t− tk)α), t ∈ (tj , tj+1], j ∈ Nm0 .

Proof. Suppose that x is a solution of (2.15). By Theorem 2.1, there exist constants
cνk ∈ R(ν ∈ Nn1 , k ∈ N0) such that

x(t) =

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds

+

j∑
k=0

n∑
ν=1

cνk(t− tk)α−νEα,α−ν+1(λ(t− tk)α),

t ∈ (tj , tj+1], j ∈ Nm0 . (2.9)

Then Theorem 2.2 implies

Iβ0+x(t) =

∫ t

0

(t− s)α+β−1Eα,α+β(λ(t− s)α)h(s)ds

+

j∑
k=0

n∑
ν=1

cνk(t− tk)α+β−νEα,α+β−ν+1(λ(t− tk)α),

t ∈ (tj , tj+1], j ∈ Nm0 (2.10)

In−α0+ x(t) =

i∑
k=0

n∑
ν=1

cνk(t− tk)n−νEα,n−ν+1(λ(t− tk)α)

+

∫ t

0

(t− u)n−1Eα,n(λ(t− u)α)h(u)du,

t ∈ (ti, ti+1], i ∈ Nm0 , (2.11)



Solvability of BVPs for impulsive fractional differential equations 95

and

Dα−j
0+ x(t) =

i∑
k=0

j∑
ν=1

cνk(t− tk)j−νEα,j−ν+1(λ(t− tk)α)

+ λ

i∑
k=0

n∑
ν=j+1

cνk(t− tk)α+j−νEα,α+j−ν+1(λ(t− tk)α)

+

∫ t

0

(t− u)j−1Eα,j(λ(t− u)α)h(u)du,

t ∈ (ti, ti+1], i ∈ Nm0 , j ∈ Nn−1
1 . (2.12)

By Dα−j
0+ x(0) = bj and (2.12), we get cj0 = bj , j ∈ Nn−1

1 .

By In−α0+ x(0) = bn and (2.11), we get cn0 = bn.

By ∆Dα−j
0+ x(ti) = aji, i ∈ Nm1 , j ∈ Nn−1

1 and (2.12), we get cji = aji for i ∈ Nm1 ,

j ∈ Nn−1
1 .

By ∆In−α0+ x(ti) = ani, i ∈ Nm1 and (2.11), we get cni = ani, i ∈ Nm1 .
Hence

x(t) =

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)h(s)ds+

n∑
ν=1

bνt
α−νEα,α−ν+1(λtα)

+

j∑
k=1

n∑
ν=1

aνk(t− tk)α−νEα,α−ν+1(λ(t− tk)α), t ∈ (tj , tj+1], j ∈ Nm0 .

The proof is completed. �
Theorem 2.4. Suppose that

M =:
1

Γ(α− n+ 2)
+

m∑
µ=0

∫ tµ+1

tµ

sα−n+1

Γ(α− n+ 2)
dH(s) 6= 0, h ∈ L1(0, 1], aji, bi ∈ R.

Then x ∈ PCn−α(0, 1] is a solution of

Dα
0+x(t), a.e., t ∈ (ti, ti+1], i ∈ Nm0

∆In−α0+ x(ti), i ∈ Nm1

∆Dα−j
0+ x(ti), i ∈ Nm1 , j ∈ Nn−1

1 ,

In−α0+ x(0)

Dα−j
0+ x(0) = 0, j ∈ Nn−2

1

Dα−n+1
0+ x(1)−

∫ 1

0
x(s)dH(s)


=



h(t), a.e., t ∈ (ti, ti+1], i ∈ Nm0

ani, i ∈ Nm1

aji, i ∈ Nm1 , j ∈ Nn−1
1

0

0, j ∈ Nn−2
1

0


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if and only if

x(t) =

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+

1

M

[∫ 1

0

(∫ 1

u

(s− u)α−1

Γ(α)
dH(s)− (1− u)α−1

Γ(α)

)
h(u)du

+

m∑
k=1

n∑
ν=1

aνk

(∫ 1

tk

(s− tk)α−ν

Γ(α− ν + 1)
dH(s)− (1− tk)α−ν

Γ(α− ν + 1)

)]
tα−n+1

Γ(α− n+ 2)

+

j∑
k=1

n∑
ν=1

aνk
(t− tk)α−ν

Γ(α− ν + 1)
, t ∈ (tj , tj+1], j ∈ Nm0 .

Proof. By using Theorem 2.1 (λ = 0), we get the proof similarly to that of Theorem
2.3 and the proof is omitted. �

Define the nonlinear operators T1, T2 on PCn−α(0, 1] by

(T1x)(t) =

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)f(s, x(s))ds+

n∑
ν=1

xνt
α−νEα,α−ν+1(λtα)

+

n∑
ν=1

j∑
k=1

(t− tk)α−νEα,α−ν+1(λ(t− tk)α)Iν(tk, x(tk)), t ∈ (tj , tj+1], j ∈ Nm0

and

(T2x)(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds

+
1

M

[∫ 1

0

(∫ 1

u

(s− u)α−1

Γ(α)
dH(s)− (1− u)α−1

Γ(α)

)
f(u, x(u))du

+

n∑
ν=1

m∑
k=1

(∫ 1

tk

(s− tk)α−ν

Γ(α− ν + 1)
dH(s)− (1− tk)α−ν

Γ(α− ν + 1)

)
Iν(tk, x(tk))

]
tα−n+1

Γ(α− n+ 2)

+

n∑
ν=1

j∑
k=1

(t− tk)α−ν

Γ(α− ν + 1)
Iν(tk, x(tk)), t ∈ (tj , tj+1], j ∈ Nm0 .

Theorem 2.5. Both T1 : PCn−α(0, 1] → PCn−α(0, 1] and T2 : PCn−α(0, 1] →
PCn−α(0, 1] are well defined and are completely continuous and x is a solution of
IVP (1.7) if and only if x is a fixed point of T1, x is a solution of BVP(1.8) if and
only if x is a fixed point of T2.
Proof. The proof is standard and is omitted. �

3. Main results

In this section, we establish existence results for IVP (1.6) when α+ β ≥ n.
Theorem 3.1. Suppose α + β = n and there exist constants σ,A,B,Ci ≥ 0 and mea-
surable function φ ∈ L1(0, 1) such that

|f(t, (t− ti)α−nu)− φ(t)| ≤ A|u|σ, t ∈ (ti, ti+1], i ∈ Nm0 , u ∈ R,

|Ij(ti, (ti − ti−1)α−nu)− Ci| ≤ B|u|σ, i ∈ Nm1 , u ∈ R.
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Then IVP (1.7) has at least one solution if σ ∈ [0, 1) or σ = 1 with

Eα,α(|λ|)
α

+m

n∑
ν=1

Eα,α−ν+1(|λ|) < 1

or σ > 1 with[
Eα,α(|λ|)

α +m
n∑
ν=1

Eα,α−ν+1(|λ|)
](

σ
σ−1

)σ
||Φ||σ−1 < 1

σ−1 .

where

Φ(t) =

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)φ(s)ds+

n∑
ν=1

xνt
α−νEα,α−ν+1(λtα)

+

n∑
ν=1

j∑
k=1

(t− tk)α−νEα,α−ν+1(λ(t− tk)α)Cν , t ∈ (tj , tj+1], j ∈ Nm0 .

Proof. By the definition of Φ, we know Φ ∈ PCn−α(0, 1]. For r > 0, denote

Ωr = {x ∈ PCn−α(0, 1] : ||x− Φ|| ≤ r}.

We will seek r > 0 such that T1Ωr ⊆ Ωr. Then Schauder’s fixed point theorem implies
that T1 has a fixed point in Ωr. Thus IVP (1.7) has a solution by Theorem 2.5.

For x ∈ Ωr, we have ||x|| ≤ r + ||Φ|| and

|f(t, x(t))− φ(t)| = |f(t, (t− ti)α−n(t− ti)n−αx(t))− φ(t)|

≤ A|(t− ti)n−αx(t))|σ ≤ A||x||σ ≤ A[r + ||Φ||]σ, t ∈ (ti, ti+1], i ∈ Nm0 ,

|Ij(ti, x(ti))− Ci| ≤ B||x||σ ≤ B[r + ||Φ||]σ, i ∈ Nm1 .
For t ∈ (tj , tj+1], we have

(t− tj)n−α|(T1x)(t)− Φ(t)|

≤ (t− tj)n−α
∣∣∣∣∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)[f(s, x(s))− φ(s)]ds

+

n∑
ν=1

j∑
k=1

(t− tk)α−νEα,α−ν+1(λ(t− tk)α)|Iν(tk, x(tk))− Ck|

∣∣∣∣∣
≤ (t− tj)n−α

∫ t

0

(t− s)α−1Eα,α(|λ|)[r + ||Φ||]σds+

n∑
ν=1

j∑
k=1

Eα,α−ν+1(|λ|)[r + ||Φ||]σ

≤

[
Eα,α(|λ|)

α
+m

n∑
ν=1

Eα,α−ν+1(|λ|)

]
[r + ||Φ||]σ

Case 1. σ ∈ [0, 1). It is easy to see that there exists r > 0 such that[
Eα,α(|λ|)

α +m
n∑
ν=1

Eα,α−ν+1(|λ|)
]

[r + ||Φ||]σ ≤ r.
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Case 2. σ = 1. It is easy to see that there exists r > 0 such tha[
Eα,α(|λ|)

α
+m

n∑
ν=1

Eα,α−ν+1(|λ|)

]
[r + ||Φ||]σ ≤ r

by

Eα,α(|λ|)
α

+m

n∑
ν=1

Eα,α−ν+1(|λ|) < 1.

Case 3. σ > 1. Choose r = ||Φ||
σ−1 > 0. By[

Eα,α(|λ|)
α +m

n∑
ν=1

Eα,α−ν+1(|λ|)
](

σ
σ−1

)σ
||Φ||σ−1 < 1

σ−1 ,

we know that [
Eα,α(|λ|)

α
+m

n∑
ν=1

Eα,α−ν+1(|λ|)

]
[r + ||Φ||]σ ≤ r.

From above discussion, we know T1Ωr ⊂ Ωr. Then Schauder’s fixed point theorem
implies that T1 has a fixed point in Ωr. Thus IVP (1.7) has a solution by Theorem
2.5. The proof is completed. �
Theorem 3.2. Suppose that there exist non-decreasing functions φf , φI : [0,∞) →
[0,∞) such that

|f(t, (t− ti)α−nu)| ≤ φf (|u|), t ∈ (ti, ti+1], i ∈ Nm0 , u ∈ R,

|Ij(ti, (ti − ti−1)α−nu)| ≤ φi(|u|), i ∈ Nm1 , u ∈ R.
Then VP (1.8) has at least one solution if there exists r > 0 such that[

1

Γ(α+ 1)
+

1

|M |
1

Γ(α− n+ 2)

∣∣∣∣∫ 1

0

(∫ 1

u

(s− u)α−1

Γ(α)
dH(s)− (1− u)α−1

Γ(α)

)∣∣∣∣]φf (r)

+

[
1

|M |
1

Γ(α− n+ 2)

∣∣∣∣∣
n∑
ν=1

m∑
k=1

(∫ 1

tk

(s− tk)α−ν

Γ(α− ν + 1)
dH(s)− (1− tk)α−ν

Γ(α− ν + 1)

)∣∣∣∣∣
+

n∑
ν=1

m

Γ(α− ν + 1)

]
φI(r) ≤ r.

Proof. For r > 0, denote Ωr = {x ∈ PCn−α(0, 1] : ||x|| ≤ r}. We will seek r > 0 such
that T2Ωr ⊆ Ωr. Then Schauder’s fixed point theorem implies that T2 has a fixed
point in Ωr. Thus VP(1.6)8 has a solution by Theorem 2.5.

For x ∈ Ωr, we have

|f(t, x(t))| = |f(t, (t− ti)α−n(t− ti)n−αx(t))| ≤ φf (|(t− ti)n−αx(t))|)
≤ φf (||x||), t ∈ (ti, ti+1], i ∈ Nm0 ,
|Ij(ti, x(ti))| ≤ φi(||x||), i ∈ Nm1 .

For t ∈ (tj , tj+1], we have

(t− tj)n−α|(T2x)(t)| = (t− tj)n−α
∣∣∣∣∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds
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+
1

M

[∫ 1

0

(∫ 1

u

(s− u)α−1

Γ(α)
dH(s)− (1− u)α−1

Γ(α)

)
f(u, x(u))du

+

n∑
ν=1

m∑
k=1

(∫ 1

tk

(s− tk)α−ν

Γ(α− ν + 1)
dH(s)− (1− tk)α−ν

Γ(α− ν + 1)

)
Iν(tk, x(tk))

]
tα−n+1

Γ(α− n+ 2)

+

n∑
ν=1

j∑
k=1

(t− tk)α−ν

Γ(α− ν + 1)
Iν(tk, x(tk))

∣∣∣∣∣
≤ (t− tj)n−α

∫ t

0

(t− s)α−1

Γ(α)
φf (||x||)ds

+
1

|M |
1

Γ(α− n+ 2)

∫ 1

0

(∫ 1

u

(s− u)α−1

Γ(α)
dH(s)− (1− u)α−1

Γ(α)

)
φf (||x||)du

+
1

|M |
1

Γ(α− n+ 2)

n∑
ν=1

m∑
k=1

(∫ 1

tk

(s− tk)α−ν

Γ(α− ν + 1)
dH(s)− (1− tk)α−ν

Γ(α− ν + 1)

)
φI(||x||)

+(t− tj)n−α
n∑
ν=1

j∑
k=1

(t− tk)α−ν

Γ(α− ν + 1)
φI(||x||)

≤ 1

Γ(α+ 1)
φf (||x||)

+
1

|M |
1

Γ(α− n+ 2)

∣∣∣∣∫ 1

0

(∫ 1

u

(s− u)α−1

Γ(α)
dH(s)− (1− u)α−1

Γ(α)

)∣∣∣∣φf (||x||)

+
1

|M |
1

Γ(α− n+ 2)

∣∣∣∣∣
n∑
ν=1

m∑
k=1

(∫ 1

tk

(s− tk)α−ν

Γ(α− ν + 1)
dH(s)− (1− tk)α−ν

Γ(α− ν + 1)

)∣∣∣∣∣φI(||x||)
+

n∑
ν=1

m

Γ(α− ν + 1)
φI(||x||)

≤
[

1

Γ(α+ 1)
+

1

|M |
1

Γ(α− n+ 2)

∣∣∣∣∫ 1

0

(∫ 1

u

(s− u)α−1

Γ(α)
dH(s)− (1− u)α−1

Γ(α)

)∣∣∣∣]φf (r)

+

[
1

|M |
1

Γ(α− n+ 2)

∣∣∣∣∣
n∑
ν=1

m∑
k=1

(∫ 1

tk

(s− tk)α−ν

Γ(α− ν + 1)
dH(s)− (1− tk)α−ν

Γ(α− ν + 1)

)∣∣∣∣∣
+

n∑
ν=1

m

Γ(α− ν + 1)

]
φI(r).

By the assumption of theorem, we have (t− tj)n−α|(T2x)(t)| ≤ r for all t ∈ (ti, ti+1],
i ∈ Nm0 . Then ||T2x|| ≤ r. Hence T2Ωr ⊂ Ωr. The proof is completed. �
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4. Comments on published paprs

We have the following result:
Theorem 4.1. Consider the homogenous form of BVP(1.7):

Dα
0+x(t)− λx(t) = 0, t ∈ (ti, ti+1], i ∈ Nm0 ,

∆Iβ0+x(ti) =: Iβ0+x(t+i )− Iβ0+x(ti) = 0, i ∈ Nm1 ,

∆Dα−j
0+ x(ti) =: Dα−j

0+ x(t+i )−Dα−j
0+ x(ti) = 0, i ∈ Nm1 , j ∈ Nn−1

1 ,

In−α0+ x(0) = Dα−j
0+ x(0) = 0, j ∈ Nn−1

1 .

(4.1)

Then IVP (4.1) has infinitely many solutions if α+β > n and IVP (4.1) has a unique
solution x(t) = 0 if α+ β = n.
Proof. By Theorem 2.1 and Dα

0+x(t) − λx(t) = 0, t ∈ (ti, ti+1], i ∈ Nm0 , we get that
there exist constants cνk ∈ R such that

x(t) =

i∑
k=0

n∑
ν=1

cνk(t− tk)α−νEα,α−ν+1(λ(t− tk)α), t ∈ (ti, ti+1], i ∈ Nm0 .

By Theorem 2.2, we get

In−α0+ x(t)

i∑
k=0

n∑
ν=1

cνk(t− tk)n−νEα,n−ν+1(λ(t− tk)α), t ∈ (ti, ti+1], i ∈ Nm0 ,

Iβ0+x(t) =

i∑
k=0

n∑
ν=1

cνk(t− tk)α+β−νEα,α+β−ν+1(λ(t− tk)α), t ∈ (ti, ti+1], i ∈ Nm0 ,

Dα−j
0+ x(t) =

i∑
k=0

j∑
ν=1

cνk(t− tk)j−νEα,j−ν+1(λ(t− tk)α)

+λ

i∑
k=0

n∑
ν=j+1

cνk(t−tk)α+j−νEα,α+j−ν+1(λ(t−tk)α), t ∈ (ti, ti+1], i ∈ Nm0 , j ∈ Nn−1
1 .

(i) By In−α0+ x(0) = 0 and the expression of In−α0+ x, we get cn0 = 0.

(ii) By Dα−j
0+ x(0) = 0, j ∈ Nn−1

1 and and the expression of Dα−j
0+ x, we get

cj0 = 0 for all j ∈ Nn−1
1 .

(iii) By ∆Dα−j
0+ x(ti) = 0, i ∈ Nm1 , j ∈ Nn−1

1 and the expression of Dα−j
0+ x, we

get cji = 0 for all i ∈ Nm1 , j ∈ Nn−1
1 .

Then

x(t) =

i∑
k=1

cnk(t− tk)α−nEα,α−n+1(λ(t− tk)α), t ∈ (ti, ti+1], i ∈ Nm0

and

Iβ0+x(t) =

i∑
k=1

cnk(t− tk)α+β−nEα,α+β−n+1(λ(t− tk)α), t ∈ (ti, ti+1], i ∈ Nm0 .
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Case 1. α+ β = n.

By ∆Iβ0+x(ti) =: Iβ0+x(t+i )− Iβ0+x(ti) = 0, i ∈ Nm1 , we get cni = 0 for all i ∈ Nm1 .
It follows that x(t) = 0 is a unique solution.

Case 2. α+ β > n.

By ∆Iβ0+x(ti) =: Iβ0+x(t+i )− Iβ0+x(ti) = 0, i ∈ Nm1 , we get

−
i−1∑
k=1

cnk(ti − tk)α+β−nEα,α+β−n+1(λ(ti − tk)α) = 0, i ∈ Nm1 .

Hence cni = 0 for all i ∈ Nm−1
1 .

Then

x(t) =

 0, t ∈ (ti, ti+1], i ∈ Nm−1
0 ,

cnm(t− tm)α−nEα,α−n+1(λ(t− tm)α), t ∈ (tm, tm+1].
(4.2)

Here cnm ∈ R is a constants. Hence it has infinitely many solutions defined. �
In [8], Kosmatov studied the solvability of IVP (1.1).
Define the operator Tα : PCα(0, ]→ PCα(0, 1] by

(Tαx)(t) =
x0

Γ(α)
tα−1 +

Γ(α− β)

Γ(α)

( ∑
0<tk<t

t1+β−α
k Jk(x(tk))

)
tα−1

+

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds, t ∈ (0, 1].

Result 4.1. (see page 1296 in [8]). x is a solution of (1.1) if and only if x is a fixed
point of Tα in PCα(0, 1].
Remark 4.1. By Lemma 2.1 (n = 1, λ = 0), x is a solution of Dα

0+x(t) = f(t, x(t)),
t ∈ [0, 1] \ {t1, t2, · · · , tm} if and only if there exist constants ci ∈ R such that

x(t) =

i∑
j=0

cj(t− tj)α−1 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds, t ∈ (ti, ti+1], i ∈ Nm0 .

We can get by direct computation that

Dβ
0+x(t) =

i∑
j=0

Γ(α)

Γ(α− β)
cj(t− tj)α−β−1 +

∫ t

0

(t− s)α−β−1

Γ(α− β)
f(s, x(s))ds,

t ∈ (ti, ti+1], i ∈ Nm0 .
By β ∈ (0, α), we know α − β − 1 < 0. We find that Dβ

0+x(t) is singular at t = ti.
Hence the impulse functions are unsuitable.

From above discussion, we know that Result 4.1 [8] is unsuitable. �
Result 4.2. (Lemma 2.7 in [14]). Suppose that q, α ∈ (0, 1). Then x is a solution of
(1.3) if and only if x is a fixed point of the operator Tq : PCq(0, 1] 7→ PCq(0, 1], where
Tq is defined by

(Tqx)(t) =
Γ(q)tq−1Eq,q(−λ0t

q)

1 + Γ(q)Eq,q(−λ0)
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×

[
m∑
i=1

Ji(x(ti))

Γ(q)tα+q−1
i Eq,q+α(−λ0t

q
i )
−
∫ 1

0

(1− s)q−1Eq,q(−λ0(1− s)q)f(s, x(s))ds

]

−tq−1Eq,q(−λ0t
q)
∑

t≤ti<1

Ji(x(ti))

tα+q−1
i Eq,q+α(−λ0t

q
i )

+

∫ t

0

(t− s)q−1Eq,q(−λ0(t− s)q)f(s, x(s))ds. (4.4)

Remark 4.2. Result 4.2 is incorrect.
Proof. By Lemma 2.1 ((n = 1)), if x is a solution of BVP (4.3), then there exists
constants ci (i ∈ Nm

0 ) such that

x(t) =

j∑
v=0

cv(t− tv)q−1Eq,q(−λ0(t− tv)q)

+

∫ t

0

(t− s)q−1Eq,q(−λ0(t− s)q)f(s, x(s))ds, t ∈ (tj , tj+1], j ∈ Nm
0 . (4.5)

By Definition 2.1, we get for t ∈ (tj , tj+1] that

Iα0+x(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds =

j−1∑
τ=0

∫ tτ+1

tτ
(t− s)α−1x(s)ds+

∫ t
tj

(t− s)α−1x(s)ds

Γ(α)

=

(
j−1∑
τ=0

∫ tτ+1

tτ

(t− s)α−1

[
τ∑
v=0

cv(s− tv)q−1Eq,q(−λ0(s− tv)q)

+

∫ s

0

(s− u)q−1Eq,q(−λ0(s− u)q)f(u, x(u))du

]
ds

)/
Γ(α)

+

(∫ t

tj

(t− s)α−1

[
j∑

v=0

cv(s− tv)q−1Eq,q(−λ0(s− tv)q)

+

∫ s

0

(s− u)q−1Eq,q(−λ0(s− u)q)f(u, x(u))du

]
ds

)/
Γ(α)

=

j−1∑
τ=0

τ∑
v=0

cv
∫ tτ+1

tτ
(t− s)α−1(s− tv)q−1Eq,q(−λ0(s− tv)q)ds

Γ(α)

change the order of sum and integral

+

(
j∑

v=0

cv

∫ t

tj

(t− s)α−1(s− tv)q−1Eq,q(−λ0(s− tv)q)ds

+

∫ t

0

(t− s)α−1

∫ s

0

(s− u)q−1Eq,q(−λ0(s− u)q)f(u, x(u))duds

)/
Γ(α)

=

j−1∑
v=0

j−1∑
τ=v

cv
∫ tτ+1

tτ
(t− s)α−1(s− tv)q−1Eq,q(−λ0(s− tv)q)ds

Γ(α)
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change the order of sum

+

(
j∑

v=0

cv

∫ t

tj

(t− s)α−1(s− tv)q−1Eq,q(−λ0(s− tv)q)ds

+

∫ t

0

∫ t

u

(t− s)α−1(s− u)q−1Eq,q(−λ0(s− u)q)dsf(u, x(u))du

)/
Γ(α)

change the order of integral

=

(
j∑

v=0

cv

∫ t

tv

(t− s)α−1(s− tv)q−1Eq,q(−λ0(s− tv)q)ds

+

∫ t

0

∫ t

u

(t− s)α−1(s− u)q−1Eq,q(−λ0(s− u)q)dsf(u, x(u))du

)/
Γ(α)

=

(
j∑

v=0

cv

∞∑
χ=0

(−λ0)χ

Γ(χq + q)

∫ t

tv

(t− s)α−1(s− tv)χq+q−1ds

+

∫ t

0

∞∑
χ=0

(−λ0)χ

Γ(χq + q)

∫ t

u

(t− s)α−1(s− u)χq+q−1dsf(u, x(u))du

)/
Γ(α)

by
s− tv
t− tv

= w,
s− u
t− u

= w

=

j∑
v=0

cv
∞∑
χ=0

(−λ0)χ(t−tv)χq+α+q−1

Γ(χq+q)

∫ 1

0
(1− w)α−1wχq+q−1dw

Γ(α)

+

∫ t
0

∞∑
χ=0

(−λ0)χ(t−u)χq+α+q−1

Γ(χq+q)

∫ 1

0
(1− w)α−1wχq+q−1dwf(u, x(u))du

Γ(α)

=

j∑
v=0

cv

∞∑
χ=0

(−λ0)χ(t− tv)χq+α+q−1

Γ(χq + α+ q)

+

∫ t

0

∞∑
χ=0

(−λ0)χ(t− u)χq+α+q−1

Γ(χq + α+ q)
f(u, x(u))du

=

j∑
v=0

cv(t− tv)α+q−1Eq,α+q(−λ0(t− tv)q)

+

∫ t

0

(t− u)α+q−1Eq,α+q(−λ0(t− u)q)f(u, x(u))du.
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It follows that

Iα0+x(t) =

j∑
v=0

cv(t− tv)α+q−1Eq,α+q(−λ0(t− tv)q)

+

∫ t

0

(t− u)α+q−1Eq,α+q(−λ0(t− u)q)f(u, x(u))du,

t ∈ (tj , tj+1], j ∈ Nm
0 . (4.6)

Case 1. α+ q < 1. From Iα0+x(t+i )− Iα0+(t−i ) = Ji(x(ti)), i = 1, 2, · · · ,m, and (14.11),
we get Ji(x(ti)) = ∞(i ∈ Nm

1 ). This is a contradiction. So BVP (4.2) is unsuitable
proposed.

Case 2. α+ q = 1. From Iα0+x(t+i )− Iα0+(t−i ) = Ji(x(ti)), i = 1, 2, · · · ,m, and (14.11),
we get Ji(x(ti)) = ci(i ∈ Nm1 ). From t1−qx(t)|t=0 + t1−qx(t)|t=1 = 0 and (14.10), we
get

c0+

m∑
v=0

cv(1−tv)q−1Eq,q(−λ0(1−tv)q)+
∫ 1

0

(1−s)q−1Eq,q(−λ0(1−s)q)f(s, x(s))ds = 0.

Then

c0 = −

(
m∑
v=1

Jv(x(tv))(1− tv)q−1Eq,q(−λ0(1− tv)q)

+

∫ 1

0

(1− s)q−1Eq,q(−λ0(1− s)q)f(s, x(s))ds

)/
(1 + Eq,q(−λ0)).

Hence x is a solution of BVP (4.2) if and only if

x(t) = −

(
m∑
v=1

Jv(x(tv))(1− tv)q−1Eq,q(−λ0(1− tv)q)

+

∫ 1

0

(1− s)q−1Eq,q(−λ0(1− s)q)f(s, x(s))ds

)/
(1 + Eq,q(−λ0))tq−1Eq,q(−λ0t

q)

+

j∑
v=1

Iv(x(tv))(t− tv)q−1Eq,q(−λ0(t− tv)q)

+

∫ t

0

(t− s)q−1Eq,q(−λ0(t− s)q)f(s, x(s))ds, t ∈ (tj , tj+1], j ∈ Nm
0 .

Case 3. α+ q > 1. From Iα0+x(t+i )− Iα0+(t−i ) = Ji(x(ti)), i = 1, 2, · · · ,m, and (14.11),
we get Ji(x(ti)) = 0(i ∈ Nm1 ). From t1−qx(t)|t=0 + t1−qx(t)|t=1 = 0 and (14.10), we
get similarly as in Case 2 that

c0 =−

m∑
v=1

cv(1−tv)q−1Eq,q(−λ0(1− tv)q)+
∫ 1

0
(1−s)q−1Eq,q(−λ0(1−s)q)f(s, x(s))ds

1 + Eq,q(−λ0)
.
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Hence x is a solution of BVP (4.2) if and only if

x(t)=−

m∑
v=1

cv(1−tv)q−1Eq,q(−λ0(1−tv)q)+
∫ 1

0
(1−s)q−1Eq,q(−λ0(1−s)q)f(s, x(s))ds

1 + Eq,q(−λ0)

×tq−1Eq,q(−λ0t
q) +

j∑
v=1

cv(t− tv)q−1Eq,q(−λ0(t− tv)q)

+

∫ t

0

(t− s)q−1Eq,q(−λ0(t− s)q)f(s, x(s))ds, t ∈ (tj , tj+1], j ∈ Nm
0 .

Then x is a solution of BVP (4.2) if and only if

x(t)=−

m∑
v=1

cv(t−tv)q−1Eq,q(−λ0(1−tv)q)+
∫ 1

0
(1−s)q−1Eq,q(−λ0(1−s)q)f(s, x(s))ds

1 + Eq,q(−λ0)

×tq−1Eq,q(−λ0t
q) +

j∑
v=1

cv(t− tv)q−1Eq,q(−λ0(t− tv)q)

+

∫ t

0

(t− s)q−1Eq,q(−λ0(t− s)q)f(s, x(s))ds, t ∈ (tj , tj+1], j ∈ Nm
0

and Ji(x(ti)) = 0(i ∈ Nm
1 ).

Hence from Case 1-Case 3 Result 4.2 is incorrect. �
In [17], Zhao studied the existence of solutions of BVP(1.7) for the higher-order

nonlinear Riemann-Liouville fractional differential equation with Riemann-Stieltjes
integral boundary value conditions and impulses Lemma 2.4 [17] claimed:
Result 4.3. If H is a function of bounded variation

δ =

∫ 1

0

sα−1dH(s)α− 1

and h ∈ C([0, 1]), then the unique solution of

−Dα
0+x(t) = h(t), t \ {ti}mi=1,

∆x(ti) = Ii(x(ti)), i = 1, 2, · · · ,m,

x(0) = x′(0) = · · · = x(n−2)0 = 0, x′(1) =

∫ 1

0

x(s)dH(s),

is

x(t) =

∫ 1

0

G(t, s)h(s)ds+ tα−1
∑

t≤tk<1

t1−αk Ik(x(tk)), t ∈ [0, 1], (4.7)

where G(t, s) = G1(t, s) +G2(t, s) and

G1(t, s) =


tα−1(1−s)α−2−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−2

Γ(α) , 0 ≤ t ≤ s ≤ 1,
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G2(t, s) =
tα−1

α− 1− δ

∫ 1

0

G1(τ, s)dH(τ).

Remark 4.3. Result 4.3 is wrong.
In fact, we re-write (4.7) by

x(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+Mkt

α−1, t ∈ (tk−1, tk], k ∈ Nm+1
1 ,

where

Mk =

m∑
j=k

t1−αj Ij(x(tj) +

∫ 1

0

(1− s)α−2

Γ(α)
h(s)ds

+
1

α− 1− δ

∫ 1

0

∫ 1

0

G1(τ, s)dH(τ)h(s)ds.

One finds from Definition 2.2 for t ∈ (ti, ti+1] that

Dα
0+x(t) =

[∫ t
0
(t− s)n−α−1x(s)ds

](n)

Γ(n− α)

=

[
i−1∑
µ=0

∫ tµ+1

tµ
(t− s)n−α−1x(s)ds+

∫ t
ti

(t− s)n−α−1x(s)ds

](n)

Γ(n− α)

=

[
i−1∑
µ=0

∫ tµ+1

tµ
(t− s)n−α−1

(
−
∫ s

0
(s−u)α−1

Γ(α) h(u)du+Mµ+1s
α−1

)
ds

](n)

Γ(n− α)

+

[∫ t
ti

(t− s)n−α−1
(
−
∫ s

0
(s−u)α−1

Γ(α) h(u)du+Mi+1s
α−1

)
ds
](n)

Γ(n− α)

=

[
i−1∑
µ=0

Mµ+1

∫ tµ+1

tµ
(t− s)n−α−1sα−1ds

](n)

Γ(n− α)
+

[
Mi+1

∫ t
ti

(t− s)n−α−1sα−1ds
](n)

Γ(n− α)

+

[
−
∫ t

0
(t− s)n−α−1

∫ s
0

(s−u)α−1

Γ(α) h(u)duds
](n)

Γ(n− α)

=

[
i−1∑
µ=0

Mµ+1

∫ tµ+1

tµ
(t− s)n−α−1sα−1ds

](n)

Γ(n− α)
+

[
Mi+1

∫ t
ti

(t− s)n−α−1sα−1ds
](n)

Γ(n− α)

+

[
−
∫ t

0

∫ t
u
(t− s)n−α−1 (s−u)α−1

Γ(α) dsh(u)du
](n)

Γ(n− α)
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=

[
i−1∑
µ=0

Mµ+1t
n−1

∫ tµ+1
t

tµ
t

(1− w)n−α−1wα−1dw

](n)

Γ(n− α)

+

[
Mi+1

∫ 1
ti
t

(1− w)n−α−1wα−1dw
](n)

Γ(n− α)

+

[
−
∫ t

0
(t− u)n−1

∫ 1

0
(1− w)n−α−1wα−1

Γ(α) dwh(u)du
](n)

Γ(n− α)

= −h(t) +

[
i−1∑
µ=0

Mµ+1t
n−1

∫ tµ+1
t

tµ
t

(1− w)n−α−1wα−1dw

](n)

Γ(n− α)

+

[
Mi+1

∫ 1
ti
t

(1− w)n−α−1wα−1dw
](n)

Γ(n− α)
.

It is easy to see that Dα
0+x(t) 6= −h(t) on (t1, t2]. In fact, we find that Dα

0+x(t) 6= −h(t)
on (t1, t2] if and only if M1 = M2. �
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Generalizations of an asymptotic stability
theorem of Bahyrycz, Páles and Piszczek
on Cauchy differences to generalized cocycles

Árpád Száz

Abstract. We prove some straightforward analogues and generalizations of a re-
cent asymptotic stability theorem of A. Bahyrycz, Zs. Páles and M. Piszczek on
Cauchy differences to semi-cocycles and pseudo-cocycles introduced in a former
paper by the present author.
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1. Introduction

The first results on a certain stability property of the Cauchy functional equation

f(x+ y) = f(x) + f(y) (1.1)

were proved by Pólya and Szegő [63, p. 171 ] in 1925 and Hyers [38] in 1941.

In particular, Pólya and Szegő proved the following statement in two rather
difficult ways.

Theorem 1.1. Suppose that the number sequence a1, a2, a3, . . . satisfies the condition

am + an − 1 < am+n < am + an + 1.

Then, there exists the limit

lim
n→∞

an
n

= ω;

and even more ω is finite, and for all n = 1, 2, 3, . . . there holds

ωn− 1 < an < ωn+ 1.
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Remark 1.2. The significance of this theorem was not recognized either by Pólya and
Szegő or the mathematical community for a long time. It was first cited by Kuczma
[50, p. 424] in 1985 at the suggestion of R. Ger. However, in contrast to [5, 11], several
authors have still not been mentioning it.

By R. Ger [34, p. 4] and some communications with Ger and M. Laczkovich, his
attention to this theorem was first drawn by Laczkovich, at an undetectable confer-
ence, who indicated that the real-valued particular case of Hyers’s stability theorem
can be derived from it. His proof, reconstructed with the help of Ger and M. Sablik,
can be found in [77, p. 633].

Hyers, giving a partial answer to a general problem proposed by S. M. Ulam
before the Mathematics Club of the University of Wisconsin in 1940, proved the
following fundamental theorem in a quite simple way.

An obvious generalization of his theorem to a function of a commutative semi-
group to a Banach space [30, p. 216] already includes Theorem 1.1. Moreover, by
Remark 1.2 and [30, Theorem 3], the two theorems are actually equivalent.

Theorem 1.3. Let E and E′ be Banach spaces and let f(x) be a δ-linear transformation
of E into E′. Then the limit l(x) = limn→∞ f(2nx)/2n exists for each x in E, l(x) is
a linear transformation, and the inequality ‖f(x)− l(x)‖ ≤ δ is true for all x in E.

Remark 1.4. Moreover, Hyers also stated that l(x) is the only linear transformation
satisfying this inequality.

Here, in contrast to the recent terminology, Hyers used the term ”linear” instead
of ”additive”. Thus, his δ–linearity of f(x) means only that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ for all x, y ∈ E.

Now, because of l(nx) = nl(x), we also have

‖f(nx)/n− l(x)‖ = ‖f(nx)− l(nx)‖/n ≤ δ/n

for all n ∈ N and x ∈ E. Therefore, analogously to Theorem 1.1 of Pólya and Szegő,
we can also state that l(x) = limn→∞ f(nx)/n for all x ∈ X.

The above basic Theorem 1.3 of Hyers has been generalized, in one direction, by
Aoki [6], Th. M. Rassias [65], J. M. Rassias [64], Gǎvruţǎ [32] (see also [43]), and in
other directions by several further mathematicians.

Moreover, some counterexamples, showing the necessity of certain extra assump-
tions in the corresponding stability theorems, such as commutativity and completeness
for instance, have also been provided.

The interested reader can get a rapid overview on this enormous subject by
consulting some of the numerous survey papers [39, 34, 31, 66, 67, 68, 69, 82, 56, 70,
71, 23, 21, 12, 17, 57] and the fundamental books [40, 44, 22, 49, 46].

The above works show that some local, restricted, asymptotic, super and hyper
stability results have also been proved for the Cauchy equation. Moreover, some close
relationships with invariant means, sandwich and fixed point theorems have also been
established. And, quite early, some set-valued generalizations have also been given.
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These set-valued generalizations show that Hyers’s stability theorem is actually
an additive selection theorem for a subadditive relation. Therefore, some of its gen-
eralizations should be derived from those of the Hahn–Banach extension theorems.
(For some ideas in this respect, see [22, Chapter 34] and [35, 77, 36].)

However, it is now more important to note that recently Bahyrycz, Páles and
Piszczek [9] have proved a new type, asymptotic stability theorem for the Cauchy
functional equation by using metric Abelian groups instead of normed spaces.

They called a triple (X,+, d) to be a metric abelian group if (X,+) is an abelian
group and d is a translation invariant metric on X in the sense that

d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X.

In this case, they defined ‖x‖d = d(x, 0) for all x ∈ X, and noticed that ‖ ‖d is an
even subadditive function function onX which is not, in general, even 2–homogeneous.

In [74, 83, 13, 48], metric groups and groupoids have been used in different senses.
From Remarks 3.1 of [83, 13], we can see that a metric d on a group X is translation
invariant if and only if d(x+ y, z + w) ≤ d(x, z) + d(y, w) for all x, y, z, w ∈ X.

Thus, if in particular d is a translation invariant metric on a group X, then the
addition in X is continuous. Moreover, in this case we can also note that

d(−x,−y) = d(0, x− y) = d(y, x) = d(x, y) for all x, y ∈ X.

Thus, in particular the inversion in X is also continuous.
In particular, in [9], Bahyrycz, Páles and Piszczek have proved the following

asymptotic stability theorem.

Theorem 1.5. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is
unbounded by d. Let ε ≥ 0 and assume that f : X → Y possesses the asymptotic
stability property

lim sup
min(‖x‖d,‖y‖d)→∞

‖f(x+ y)− f(x)− f(y)‖ρ ≤ ε,

then

‖f(x+ y)− f(x)− f(y)‖ρ ≤ 5ε for all x, y ∈ X.

Remark 1.6. Moreover, by taking ε > 0 and x0 ∈ X \ {0}, and defining

f(x0) = 3ε and f(x) = ε for x ∈ X \ {x0},

they have also proved that 5 is the smallest possible constant in the above theorem.

The most closely related related results to Theorem 1.5 are [52, Theorem 1] of
Losonczi with the same constant 5, and the results of Jung, Moslehian, and Sahoo
[45, 47] and Chung [18, 19, 20] with some other natural constants in the concluded
estimates.

The origins of these investigations go back to Skof [72, 73], Hyers, Isac and
Rassias [41] and Gǎvruţǎ [33]. (See also [54].) In the real-valued case, Volkmann [84]
proved the best estimate.

From Theorem 1.5, by taking ε = 0, Bahyrycz, Páles and Piszczek could imme-
diately derive the following asymptotic hyperstability result.
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Corollary 1.7. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is
unbounded by d. If f : X → Y satisfies

lim sup
min(‖x‖d,‖y‖d)→∞

‖f(x+ y)− f(x)− f(y)‖ρ = 0,

then

f(x+ y) = f(x) + f(y), x, y ∈ X.

Hyperstability results, for the Cauchy equation and its generalizations, have also
been proved by Maksa and Páles [53], Najati and Rassias [59], Alimohammady and
Sadeghi [3], and Brzdek [14, 15, 16], Piszczek [61, 62], Almahalebi, Charifi and Kabbaj
[4], Bahyrycz and Olko [7, 8], Aiemsomboon and Sintunavarat [1, 2], Molaei, Najati
and Park [55, 58].

Moreover, several interesting asymptotic stability and hyperstability theorems
for additive functions have also been proved by using some other functional equations
than the Cauchy and generalized Cauchy ones.

In the present paper, we shall improve and generalize Theorem 1.5 of Bahyrycz,
Páles and Piszczek. For this, we shall use preseminormed groups instead of the metric
ones. Moreover, we shall use generalized cocycles introduced in [78], instead of the
Cauchy difference

F (x, y) = f(x+ y)− f(x)− f(y). (1.2)

Some basic definitions and results on these fundamental objects, which are cer-
tainly unfamiliar to the reader, will be briefly laid out in the next preparatory section.

2. A few basic facts on preseminorms and generalized cocycles

Motivated by the corresponding definitions of [76, 80] and the proofs of our
forthcoming theorems, an even subadditive function ‖ ‖ of a group X to R will be
called a preseminorm on X.

Thus, under the notation ‖x‖ = ‖ ‖(x), we have ‖0‖ = ‖0 + 0‖ ≤ ‖0‖+ ‖0‖, and
thus 0 ≤ ‖0‖. And more generally, ‖0‖ = ‖x+(−x)‖ ≤ ‖x‖+‖−x‖ = 2‖x‖, and thus
0 ≤ ‖x‖ for all x ∈ X.

Therefore, if ‖0‖ 6= 0, then by defining ‖x‖? = 0 for x = 0, and ‖x‖? = ‖x‖ for
x ∈ X \ {0}, we can obtain a new preseminorm ‖ ‖? on X such that ‖0‖? = 0 already
holds.

By using induction and the corresponding definitions, we can also easily see that
‖nx‖ ≤ n‖x‖, and thus ‖(−n)x‖ = ‖n(−x)‖ ≤ n‖ − x‖ = n‖x‖ for all n ∈ N and
x ∈ X.

Therefore, the preseminorm ‖ ‖ may be naturally called a seminorm if n‖x‖ ≤
‖nx‖ for all x ∈ X. Namely, thus we have ‖kx‖ = |k|‖x‖ for all x ∈ X and k ∈ Z\{0}.
(If ‖0‖ = 0, then this also holds for k = 0.)

Note that a nonzero seminorm cannot be bounded. While, if ‖ ‖ is a seminorm
(preseminorm) on X, then for instance the function defined by ‖x‖∗ = min{1, ‖x‖}
for all x ∈ X is a bounded preseminorm on X.
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Now, a seminorm (preseminorm) ‖ ‖ on X may be naturally called a norm
(prenorm) if ‖x‖ = 0 implies x = 0 for all x ∈ X. If X = Zx for all x ∈ X \ {0}, then
each nonzero preseminorm on X is a prenorm.

In [79, Remark 3.14], with the help of G. Horváth, it was proved that the latter
condition is equivalent to the requirement that the cardinality of X is prime, or
equivalently X has no nontrival proper subgroup.

Now, for instance, an ordered pair X(‖ ‖) = (X, ‖ ‖) consisting a group X and
a preseminorm ‖ ‖ on X, may be naturally called a preseminormed group. And, we
may simply write X instead of X(‖ ‖).

If X is a preseminormed group, then because of the subadditivity and evenness
of the corresponding preseminorm, for any x, y ∈ X, we have

‖x‖ = ‖x+ y − y‖ ≤ ‖x+ y‖+ ‖ − y‖ = ‖x+ y‖+ ‖y‖
and

‖y‖ = ‖ − x+ x+ y‖ ≤ ‖ − x‖+ ‖x+ y‖ = ‖x‖+ ‖x+ y‖.
Therefore,∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x+ y‖ and

∣∣‖x‖ − ‖y‖∣∣ =
∣∣‖x‖ − ‖ − y‖∣∣ ≤ ‖x− y‖.

However, it is now more important to note that Bahyrycz, Páles and Piszczek,
in the proof of their Theorem 1.5, have used, but not explicitly stated, the equality

f(x+ y)− f(x)− f(y) = f(x− u) + f(u)− f(x)

+ f(y − v) + f(v)− f(y) + f(x+ y − u− v)− f(x− u)− f(y − v)

+ f(u+ v)− f(u)− f(v) + f(x+ y)− f(x+ y − u− v)− f(u+ v). (2.1)

In a former paper [78], by using the Cauchy difference (1.2), we have noticed
that, instead of equation (2.1), it is more convenient to consider the equation

F (x, y) = F (u, v)− F (x− u, u)− F (y − v, v)

+ F (x− u, y − v) + F (x+ y − u− v, u+ v). (2.2)

Namely, thus Theorem 1.5 can be easily extended to the solutions of (2.2). More-
over, we can prove that every symmetric cocycle F on X to Y is a solution of this
equation.

That is, if F is a function of X2 to Y such that F (x, y) = F (y, x) and

F (x, y) + F (x+ y, z) = F (x, y + z) + F (y, z) (2.3)

for all x, y, z ∈ X, then (2.2) also holds for all x, y, u, v ∈ X.
It is well-known that every Cauchy–difference is a symmetric cocycle. Moreover,

Davison and Ebanks [24, Lemma 2] have proved that if F is a symmetric cocycle on
X to Y , then

F (x+ y, u+ v) = F (x+ u, y + v) + F (x, u) + F (y, v)− F (x, y)− F (u, v) (2.4)

also holds for all x, y, u, v ∈ X.
At first seeing, I considered equations (2.2) and (2.4) to be very similar, but still

quite independent. However, Gyula Maksa, my close colleague, has noticed that they
are actually equivalent.
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Namely, (2.4) can be immediately derived from (2.2) by replacing x by x+u and
y by y + v. And conversely, (2.2) can be immediately derived from (2.4) by replacing
x by x− u and y by y − v. Thus, equation (2.1) is a consequence of (2.4) too.

Inspired by the above observations, in our former paper [78], we have also con-
sidered the more difficult equations

F (x, y) + F (u, y + v) + F (x+ y, u+ v)

= F (x, u) + F (y, u+ v) + F (x+ u, y + v) (2.5)

and

F (x, y) + F (x− u, u) + F (y − v, u) + F (y − v, v)

= F (u, v) + F (u, y − v) + F (x− u, y − v) + F (x+ y − u− v, u+ v). (2.6)

Note that if in particular F is symmetric, then equation (2.6) is equivalent to
(2.2), which is in turn equivalent to (2.4). Moreover, it can be easily shown that if F
is additive in its second variable, then equations (2.5) and (2.6) are also equivalent.

In our former paper [78], by using some more difficult computations, we have
also proved that equations (2.5) and (2.6) are also natural generalizations of (2.3) too.
Therefore, their solutions may be naturally called semi-cocycles and pseudo-cocycles,
respectively.

In the light of the above observations, it seems to be a reasonable research pro-
gram to extend some of the basic theorems on cocycles to these generalized cocycles.
And, to establish some deeper relationships among the various generalizations of co-
cycles mentioned in [78].

However, in the sequel, we shall only prove some straightforward analogues and
generalizations of Theorem 1.5 to semi-cocycles and pseudo–cocycles.

3. Analogues of Theorem 1.5 for generalized cocycles

Notation 3.1. In the sequel, we shall assume that F is a function of an unbounded,
commutative preseminormed group X to a commutative preseminormed group Y .

Remark 3.2. Note that now, by defining

(x, y) + (u, v) = (x+ u, y + v)

and

‖(x, y)‖ = ‖x‖ ∨ ‖y‖ = max
{
‖x‖, ‖y‖

}
for all x, y, u, v ∈ X, the set X2 can also be turned into an unbounded commutative
preseminormed group.

Thus, by using a more simple argument than that used by Bahyrycz, Páles and
Piszczek in [9], we can prove the following natural analogue of Theorem 1.5.

Theorem 3.3. If F is a semi-cocycle and

ε = lim
‖z‖→+∞

‖F (z)‖,
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then
‖F (z)‖ ≤ 5ε

for all z ∈ X2.

Proof. By the corresponding definitions, for any η > ε, we have

inf
r>0

sup
‖z‖>r

‖F (z)‖ < η.

Therefore, there exists r > 0 such that sup‖z‖>r ‖F (z)‖ < η, and thus

‖F (z)‖ < η

for all z ∈ X2 with ‖z‖ > r.
Hence, since ‖z‖ = ‖(z1, z2)‖ ≥ ‖zi‖ for i = 1, 2, it is clear that in particular

we have
‖F (s, t)‖ < η

for all s, t ∈ X with either ‖s‖ > r or ‖t‖ > r.
Now, by taking x, y ∈ X and using equation (2.5), we can see that

‖F (x, y)‖ = ‖F (x, u) + F (y, u+ v)− F (u, y + v)

+ F (x+ u, y + v)− F (x+ y, u+ v)‖
≤ ‖F (x, u)‖+ ‖F (y, u+ v)‖+ ‖F (u, y + v)‖
+ ‖F (x+ u, y + v)‖+ ‖F (x+ y, u+ v)‖ < 5η

whenever for instance u, v ∈ X such that

‖u‖ > r, ‖u+ v‖ > r, ‖x+ u‖ > r.

Therefore, if such u and v exist, then

‖F (x, y)‖ < 5η, and thus ‖F (x, y)‖ ≤ 5ε

Now, to complete the proof, it remains to show only that the required u and v
exist. For this, we can note that, because of the assumed unboundedness of X, there
exist u, v ∈ X such that

‖u‖ > r + ‖x‖ and ‖v‖ > r + ‖u‖.
Thus, we evidently have ‖u‖ > r. Moreover, by using the inequality ‖s+t‖ ≥ ‖t‖−‖s‖,
we can also see that

‖x+ u‖ ≥ ‖u‖ − ‖x‖ > r + ‖x‖ − ‖x‖ = r

and
‖u+ v‖ ≥ ‖v‖ − ‖u‖ > r + ‖u‖ − ‖u‖ = r. �

From equation (2.6) and the proof of Theorem 3.3, it is clear that we also have

Theorem 3.4. If F is a pseudo-cocycle and

ε = lim
‖z‖→+∞

‖F (z)‖,

then
‖F (z)‖ ≤ 7ε

for all z ∈ X2.
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Now, as an immediate consequence of the above two theorems, we can also state

Corollary 3.5. If Y is prenormed, F is either a semi or pseudo cocycle, and

lim
‖z‖→+∞

‖F (z)‖ = 0,

then F (z) = 0 for all z ∈ X2.

Remark 3.6. However, from Theorems 3.3 and 3.4 we cannot get proper generaliza-
tions of Theorem 1.5. Therefore, in the next section we shall prove some modification
and improvement of Theorem 3.4.

4. Proper and partial generalizations of Theorem 1.5 to
pseudo-cocycles

Remark 4.1. Because of the condition of Theorem 1.5, in the sequel we shall also use
the quantity

∦ (x, y) ∦= ‖x‖ ∧ ‖y‖ = min
{
‖x‖, ‖y‖

}
,

for all (x, y) ∈ X2 instead of the natural preseminorm considered in Remark 3.2.
Thus, the function ∦ ∦ is not a preseminorm on X2. However, despite this, it can be
well used to measure the magnitude of the points of X2.

Moreover, it can as well be used to prove the following proper and partial gene-
ralizations of Theorem 1.5 to pseudo-cocycles. The proof of the first one is quite
similar to the second one. Therefore, it will be omitted.

Theorem 4.2. If F is a symmetric pseudo-cocycle and

ε = lim
∦z∦→+∞

‖F (z)‖,

then

‖F (z)‖ ≤ 5ε

for all z ∈ X2.

The proof of the following theorem is again quite similar, but a little more
readable, than the one given by Bahyrycz, Páles and Piszczek in [9].

Theorem 4.3. If F is a pseudo-cocycle and

ε = lim
∦z∦→+∞

‖F (z)‖,

then

‖F (z)‖ ≤ 7ε

for all z ∈ X2.
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Proof. By the corresponding definitions, for any η > ε, we have

inf
r>0

sup
∦z∦>r

‖F (z)‖ < η.

Therefore, there exists r > 0 such that sup∦z∦>r ‖F (z)‖ < η, and thus

‖F (z)‖ < η

for all z ∈ X2 with ∦ z ∦> r.
Hence, since ∦ z ∦ = ∦ (z1, z2) ∦ = min{‖z1‖, ‖z2‖}, it is clear that in particular

we have

‖F (s, t)‖ < η

for all s, t ∈ X with ‖s‖ > r and ‖t‖ > r.
Now, by taking x, y ∈ X and using equation (2.6), we can see that

‖F (x, y)‖ = ‖F (u, v) + F (u, y − v)− F (y − v, u)

− F (x− u, u)− F (y − v, v) + F (x− u, y − v) + F (x+ y − u− v, u+ v)‖
≤ ‖F (u, v)‖+ ‖F (u, y − v)‖+ ‖F (y − v, u)‖
+ ‖F (x− u, u)‖+ ‖F (y − v, v)|+ ‖F (x− u, y − v)‖
+ ‖F (x+ y − u− v, u+ v)‖ < 7η

whenever u, v ∈ X such that

‖u‖ > r, ‖v‖ > r, ‖x− u‖ > r, ‖y − v‖ > r,

‖u+ v‖ > r, ‖x+ y − u− v‖ > r.

Therefore, if such u and v exist, then

‖F (x, y)‖ < 7η, and thus ‖F (x, y)‖ ≤ 7ε.

Now, to complete the proof, it remains only to show that the required u and
v exist. For this, following the arguments given [9], we can note that because of the
assumed unboundedness of X there exist u, v ∈ X such that

‖u‖ > r + ‖x‖ and ‖v‖ > r + ‖x‖+ ‖y‖+ ‖u‖.

Thus, we evidently have ‖u‖ > r and ‖v‖ > r. Moreover, by using the facts that
‖s+ t‖ ≥ ‖t‖ − ‖s‖ and ‖ − t‖ = ‖t‖, we can also see that

‖x− u‖ ≥ ‖u‖ − ‖x‖ > r + ‖x‖ − ‖x‖ = r,

‖y − v‖ ≥ ‖v‖ − ‖y‖ > r + ‖x‖+ ‖y‖+ ‖u‖ − ‖x‖ = r + ‖y‖+ ‖u‖ ≥ r,
and

‖u+ v‖ ≥ ‖v‖ − ‖u‖ > r + ‖x‖+ ‖y‖+ ‖u‖ − ‖u‖ = r + ‖x‖+ ‖y‖ ≥ r,

‖x+ y − u− v‖ ≥ ‖u+ v‖ − ‖x+ y‖ > r + ‖x‖+ ‖y‖ − ‖x‖ − ‖y‖ = r.

Namely, because of the inequality ‖x‖+ ‖y‖ ≥ ‖x+ y‖, we also have

−‖x+ y‖ ≥ −‖x‖ − ‖y‖. �

From this theorem, we can immediately derive
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Corollary 4.4. If Y is prenormed, F is a pseudo-cocycle and

lim
∦z∦→+∞

‖F (z)‖ = 0,

then F (z) = 0 for all z ∈ X2.

Remark 4.5. Recall that a Cauchy-difference is a symmetric cocycle. Moreover, a
cocycle is both a semi-cocycle and a pseudo-cocycle.

Therefore, in Theorem 4.2, F may, in particular, be a Cauchy-difference or a
symmetric cocycle. While, in Theorems 3.3, 3.4 and 4.3 and their corollaries, F may
already be an arbitrary cocycle.

5. Some supplementary notes

Remark 5.1. If for instance f is a function of X to Y and ε ≥ 0 such that there exists
r > 0 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
for all x, y ∈ X with ‖x‖, ‖y‖ > r, then by Remark 4.1 and the definition of the upper
limit we have

lim
∦(x,y)∦→+∞

‖f(x+ y)− f(x)− f(y)‖ ≤ ε.

Thus, by Remark 4.5 and Theorem 4.2, we can state that

‖f(x+ y)− f(x)− f(y)‖ ≤ 5ε

for all x, y ∈ X. Therefore, Theorem 1.5 follows from Theorem 4.2.
Now, if in particular Y is the additive group of a Banach space, then by using

a slight generation of Theorem 1.3 we can also state that there exists an additive
function g of X to Y such that

‖f(x)− g(x)‖ ≤ 5ε

for all x ∈ X.

Remark 5.2. While, if f is an arbitrary and g is an additive function of X to Y such
that

‖f(x)− g(x)‖ ≤ 5ε

for all x ∈ X, then we can only state that

‖f(x+ y)− f(x)− f(y)‖ = ‖f(x+ y)− g(x+ y) + g(x)− f(x) + g(y)− f(y)‖
≤ ‖f(x+ y)− g(x+ y)‖+ ‖g(x)− f(x)‖+ ‖g(y)− f(y)‖
≤ 15ε

for all x, y ∈ X. Therefore, Theorem 1.5 is sharper than the one derivable from the
usual asymptotic stability theorems.

This clearly reveal that the corresponding theorems on restricted and assymp-
totic stabilities have to split into two parts. This idea is also apparent from the proofs
of those theorems.
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Remark 5.3. Concerning our former results, it is also worth mentioning that in The-
orems 3.3 and 3.4 and Corollary 3.5, instead of the ”supremum preseminorm”

‖(x, y)‖ = ‖(x, y)‖∞ = max
{
‖x‖, ‖y‖

}
considered in Remark 3.2, we may also naturally use an ”Lp–preseminorm”, defined
by

‖(x, y)‖ = ‖(x, y)‖p =
(
‖x‖p + ‖y‖p

)1/p
for some 1 ≤ p < +∞ and all (x, y) ∈ X2. Namely, this also has the important
property that ‖zi‖ ≤ ‖z‖ for i = 1, 2, whenever z ∈ X2.

Remark 5.4. Moreover, we can also note that ‖z‖ ≥∦ z ∦ for all z ∈ X2. Therefore,{
F (z) : ∦ z ∦> r

}
⊆
{
F (z) : ‖z‖ > r

}
,

and thus
sup

∦z∦>r
‖F (z)‖ ≤ sup

‖z‖>r
‖F (z)‖

for all r > 0. Consequently,

lim
∦z∦→+∞

‖F (z)‖ = inf
r>0

sup
∦z∦>r

‖F (z)‖ ≤ inf
r>0

sup
‖z‖>r

‖F (z)‖ = lim
‖z‖→+∞

‖F (z)‖.

Therefore, the results obtained with ‖ ‖ are usually much weaker than that obtained
with ∦ ∦. However, the former ones are, in a certain sense, still more natural since ∦ ∦
is not a preseminorm on X2.

6. Suggestions for further investigations

Cauchy differences, in the theory of functional equations, were first characterized
by Kurepa [51] and Erdős [29] with the help of the equation

F (x, y) + F (x+ y, z) = F (x, y + z) + F (y, z) (6.1)

(For the algebraic origins and several further developments on this cocycle equation,
see the book [75] by Stetkaer.)

Quadratic differences were first characterized by Székelyhidi [81] with the help
of the equation

F (x+ y, z) + F (x− y, z)− 2F (y, z) = F (x, y + z) + F (x, y − z)− 2F (x, y). (6.2)

(For some closely related results, see also Ebanks and Ng [25, 28].)
Some results on equations (6.1) and (6.2) were extended by Páles [60] to the

more attractive equation

F (x, y) +
1

n

n∑
i=1

F
(
x+ φi(y), z

)
=

1

n

n∑
i=1

F
(
x, y + φi(z)

)
+ F (y, z). (6.3)

(Later, this important equation has only been studied by Maksa and Páles [53].)
Recently, Leibniz differences has been characterized by Ebanks [27] with the help

of the equation
F (xy, z) + xF (x, y) = F (x, yz) + xF (y, z). (6.4)
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(For some earlier results, see Jessen, Karpf and Thorup [42], Ebanks [26] and Gsel-
mann and Páles [37].)

Moreover, affine differences has been characterized by Boros [10] with the help
of the equation

F
(
s, rx+ (1− r)y, tx+ (1− t)y

)
= F

(
sr + (1− s)t, x, y

)
− sF (r, x, y)− (1− s)F (t, x, y). (6.5)

Thus, it is certainly true that several further important differences, such as for
instance the Jensen one, can also be characterized with the help of some functional
equations containing a little more variables than the corresponding differences.

Therefore, it seems to be a reasonable research program to prove some counter-
parts of the results of Bahyrycz, Páles and Piszczek [9] and the present author for such
equations and their generalizations. First of all, some analogues and generalizations
of [9, Theorem 2] could be proved.

Added in Proof. The original version of this paper (Tech. Rep., Inst. Math., Univ.
Debrecen 20016/2, 12 pp.) was planned to be published in the Proceedings of the
Conference on Ulam’s Type Stability, 2016, Cluj-Napoca, Romania. However, it was
later submitted to the present journal.

Here, to improve the presentation, some useful changes have been suggested by
the referee and the editor. In particular, according to a general regulation of the
journal, all items of References have to be cited in the text. Therefore, my original
manuscript has been substantially rewritten.
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[32] Gǎvruţǎ, P., A generalization of the Hyers–Ulam–Rassias stability of approximately ad-
ditive mappings, J. Math. Anal. Appl., 184(1994), 431–436
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1. Introduction and preliminaries

Summability theory is the theory of the assignment of limits in the case of real or
complex sequences which are divergent. There are many types of summability meth-
ods especially regular summability methods, for example, Abel and Borel methods
[6]. Another regular summability method introduced by Fast ([8]) and which is not
equivalent to any regular matrix method is called statistical convergence which is
also known as (C, 1) statistical convergence. Furthermore, in recent years, various
statistical approximation results and theorems have been proved via the concept of
statistical convergence ([9, 11, 19]) and the motivation using this type of convergence
comes from that the obtained results are more powerful than the classical version
of the approximations. One of these frequently used approximation method is the
Korovkin-type approximation theorems. As it is known Korovkin theorems allows us
to check the convergence with a minimum of computations. In this paper, our main
purpose is to study a further generalization of classical Korovkin theorem by consid-
ering certain matrix summability process in the frame of statistical convergence in
abstract spaces (namely, modular spaces) for double sequences. We also introduce an
example satisfying new approximation theorem but does not satisfy the classical one.
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Now, let us mention the notion of statistical convergence for double sequences
introduced by Moricz [15].

The double sequence x = {xi,j} is statistically convergent to L provided that
for every ε > 0,

P − lim
m,n

1

mn
|{i ≤ m, j ≤ n : |xi,j − L| ≥ ε}| = 0,

where P−convergent denotes Pringsheim limit ([22]). In that case we write

st2 − lim
i,j
xi,j = L.

It can be easily seen that a P−convergent double sequence is statistically convergent
to the same value but its converse is not always true. Also, it is crucial to state that a
convergent single sequence needs to be bounded even though this necessity does not
exist always for the double sequences. A convergent double sequence does not need
to be bounded. For example, take into consideration the double sequence x = {xi,j}
defined by

xi,j =

{
ij, i and j are squares
1, otherwise.

.

Then, clearly st2 − lim
i,j
xi,j = 1 but not P−convergent and also, it is not bounded.

The characterization for the statistical convergence for double sequences is given in
[15] as indicated below :

A double sequence x = {xi,j} is statistically convergent to L if and only if there
exists a set S ⊂ N2 such that the natural density of S is 1 and

P − lim
i,j→∞

and (i,j)∈S

xi,j = L.

In [7] the concepts of statistical superior limit and inferior limit for double sequences
have been introduced by Çakan and Altay. For any real double sequence x = {xi,j} ,
the statistical limit superior of x is defined by

st2 − lim sup
i,j

xi,j =

{
supGx, if Gx 6= ∅,
−∞, if Gx = ∅,

where Gx := {C ∈ R : δ2 ({(i, j) : xi,j > C}) 6= 0} and ∅ denotes the empty set. Note
that, in general, by δ2 (K) 6= 0 we mean either δ2 (K) > 0 or K fails to have the
double natural density. Similarly, the statistical limit inferior of x is given by

st2 − lim inf
i,j

xi,j =

{
inf Fx, if Fx 6= ∅,
∞, if Fx = ∅,

where Fx := {D ∈ R : δ2 ({(i, j) : xi,j < D}) 6= 0} . As in the ordinary superior or
inferior limit, it was proved that

st2 − lim inf
i,j

xi,j ≤ st2 − lim sup
i,j

xi,j

and also that, for any double sequence x = {xi,j} satisfying

δ2 ({(i, j) : |xi,j | > M}) = 0
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for some M > 0,

st2 − lim
i,j
xi,j = L iff st2 − lim inf

i,j
xi,j = st2 − lim sup

i,j
xi,j = L.

Let A = [ak,l,i,j ], k, l, i, j ∈ N, be a four-dimensional infinite matrix.
The A−transform of x = {xi,j}, denoted by Ax := {(Ax)k,l}, is defined by

(Ax)k,l =
∑

(i,j)∈N2

ak,l,i,jxi,j , k, l ∈ N,

provided the double series converges in Pringsheim’s sense for every (k, l) ∈ N2. Then,
a double sequence x is A−summable to L if the A−transform of x exists for all k, l ∈ N
and convergent in the Pringsheim’s sense i.e.,

P − lim
p,q

p∑
i=1

q∑
j=1

ak,l,i,jxi,j = yk,l and P − lim
k,l

yk,l = L.

Now letA :=
{
A(m,n)

}
=
{
a
(m,n)
k,l,i,j

}
be a sequence of four-dimensional infinite matrices

with non-negative real entries. For a given double sequence of real numbers, x = {xi,j}
is said to be A−summable to L if

P − lim
k,l

∑
(i,j)∈N2

a
(m,n)
k,l,i,jxi,j = L

uniformly in m and n. If A(m,n) = A, four-dimensional infinite matrix, then
A−summability is the A−summability for four-dimensional infinite matrix. Some
results concerning matrix summability method for double sequences may be attained
in [9], [21], [24].

Now, we recall some definitions and notations on modular spaces.

Let I = [a, b] be a bounded interval of the real line R provided with the Lebesgue
measure. Then, let X

(
I2
)

denote the space of all real-valued measurable functions

on I2 = [a, b]× [a, b] provided with equality a.e. As usual, let C
(
I2
)

denote the space

of all continuous real-valued functions, and C∞
(
I2
)

denote the space of all infinitely

differentiable functions on I2. A functional ρ : X
(
I2
)
→ [0,+∞] is called a modular

on X
(
I2
)

if it satisfies the following conditions:

(i) ρ (f) = 0 if and only if f = 0 a.e. in I2,

(ii) ρ (−f) = ρ (f) for every f ∈ X
(
I2
)
,

(iii) ρ (αf + βg) ≤ ρ (f) +ρ (g) for every f, g ∈ X(I2) and for any α, β ≥ 0 with
α+ β = 1.

A modular ρ is said to be N−quasi convex if there exists a constant N ≥ 1 such
that ρ (αf + βg) ≤ Nαρ (Nf) + Nβρ (Ng) holds for every f, g ∈ X

(
I2
)
, α, β ≥ 0

with α+ β = 1. In particular, if N = 1, then ρ is called convex.

A modular ρ is said to be N−quasi semiconvex if there exists a constant N ≥ 1
such that ρ(af) ≤ Naρ(Nf) holds for every f ∈ X

(
I2
)

and a ∈ (0, 1].

It is clear that every N−quasi convex modular is N−quasi semiconvex. Bardaro
et. al. introduced and worked through the above two concepts in [3, 5].
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We now present some acquired vector subspaces of X(I2) via a modular ρ as
follows:

The modular space Lρ
(
I2
)

generated by ρ is defined by

Lρ
(
I2
)

:=

{
f ∈ X(I2) : lim

λ→0+
ρ (λf) = 0

}
,

and the space of the finite elements of Lρ
(
I2
)

is given by

Eρ
(
I2
)

:=
{
f ∈ Lρ

(
I2
)

: ρ (λf) < +∞ for all λ > 0
}
.

Observe that if ρ is N−quasi semiconvex, then the space{
f ∈ X

(
I2
)

: ρ (λf) < +∞ for some λ > 0
}

coincides with Lρ
(
I2
)
. The notions about modulars are introduced in [16] and widely

discussed in [3] (see also [13, 17]).
Bardaro and Mantellini [4] introduced some Korovkin type approximation the-

orems via the notions of modular convergence and strong convergence. Afterwards
Karakuş et al. [11] investigated the modular Korovkin-type approximation theorem
via statistical convergence and then, Orhan and Demirci [20] extended these type
of approximations to the spaces of double sequences of positive linear operators as
follows:

Definition 1.1. [20] A function sequence {fi,j} in Lρ
(
I2
)

is said to be statistically

modularly convergent to a function f ∈ Lρ
(
I2
)

iff

st2 − lim
i,j

ρ (λ0 (fi,j − f)) = 0 for some λ0 > 0. (1.1)

Also, {fi,j} is statistically F−norm convergent (or, statistically strongly convergent)
to f iff

st2 − lim
i,j

ρ (λ (fi,j − f)) = 0 for every λ > 0. (1.2)

It is known from [16] that (1.1) and (1.2) are equivalent if and only if the modular ρ
satisfies the ∆2−condition, i.e.

there exists a constant M > 0 such that ρ (2f) ≤Mρ (f) for every f ∈ X
(
I2
)
.

Recently, Orhan and Demirci [19] have introduced the notion of A−summation
process on the one dimensional modular space X (I) . Now we introduce the notion
of the A−summation process for double sequences as follows:

A sequence T := {Ti,j} of positive linear operators of D into X
(
I2
)

is called
an A−summation process on D if {Ti,j (f)} is A−summable to f (with respect to
modular ρ) for every f ∈ D, i.e.,

P − lim
k,l
ρ
[
λ
(
AT
k,l,m,n (f)− f

)]
= 0, uniformly in m,n (1.3)

for some λ > 0, where for all k, l,m, n ∈ N, f ∈ D the series

AT
k,l,m,n (f) :=

∑
(i,j)∈N2

a
(m,n)
k,l,i,jTi,jf (1.4)
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is absolutely convergent almost everywhere with respect to Lebesgue measure and
we denote the value of Ti,jf at a point (x, y) ∈ I2 by Ti,j(f(u, v);x, y) or briefly,
Ti,j(f ;x, y).

Our goal in the present work is to give the Korovkin theorem for double se-
quences of positive linear operators using statistical A−summation process on a mod-
ular space. Some results concerning summation processes in the space Lp [a, b] of
Lebesgue integrable functions on a compact interval may be found in [18, 23].

It is required to give the following assumptions on a modular ρ :

A modular ρ is monotone if ρ(f) ≤ ρ(g) for |f | ≤ |g| , ρ is said to be finite if χA ∈
Lρ
(
I2
)

whenever A is measurable subset of I2 such that µ (A) <∞. If ρ is finite and,
for every ε > 0, λ > 0, there exists a δ > 0 such that ρ (λχB) < ε for any measurable
subset B ⊂ I2 with µ (B) < δ, then ρ is absolutely finite and if χI2 ∈ Eρ

(
I2
)
, then

ρ is strongly finite. A modular ρ is absolutely continuous provided that there exists
an α > 0 such that, for every f ∈ X

(
I2
)

with ρ (f) < +∞, the following condition
holds:

• for every ε > 0 there is δ > 0 such that ρ (αfχB) < ε whenever B is any
measurable subset of I2 with µ (B) < δ.

Observe now that (see [4, 5]) if a modular ρ is monotone and finite, then we
have C(I2) ⊂ Lρ

(
I2
)
. Similarly, if ρ is monotone and strongly finite, then C(I2) ⊂

Eρ
(
I2
)
. Also, if ρ is monotone, absolutely finite and absolutely continuous, then

C∞ (I2) = Lρ
(
I2
)
. (See for more details [2, 3, 14, 17]).

2. Main results

Let ρ be a monotone and finite modular on X
(
I2
)
. Assume that D is a set

satisfying C∞
(
I2
)
⊂ D ⊂ Lρ

(
I2
)
. (Such a subset D can be constructed when ρ is

monotone and finite, see [4]). Also, assume that T := {Ti,j} is a sequence of positive
linear operators from D into X

(
I2
)

for which there exists a subset XT ⊂ D with

C∞
(
I2
)
⊂ XT such that

st2 − lim sup
k,l

ρ
(
λ
(
AT
k,l,m,n (h)

))
≤ Rρ (λh) , uniformly in m,n, (2.1)

holds for every h ∈ XT, λ > 0 and for an absolute positive constant R.

We will use the test functions fr (r = 0, 1, 2, 3) defined by f0 (x, y) = 1,
f1 (x, y) = x, f2 (x, y) = y and f3 (x, y) = x2 + y2 throughout the paper.

We now prove the following Korovkin type theorem.

Theorem 2.1. Let A =
{
A(m,n)

}
be a sequence of four dimensional infinite non-

negative real matrices and let ρ be a monotone, strongly finite, absolutely continuous
and N−quasi semiconvex modular on X

(
I2
)
. Let T := {Ti,j} be a sequence of positive

linear operators from D into X
(
I2
)

satisfying (2.1) for each f ∈ D. Suppose that

st2 − lim
k,l

ρ
(
λ
(
AT
k,l,m,n (fr)− fr

))
= 0, uniformly in m,n (2.2)
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for every λ > 0 and r = 0, 1, 2, 3. Now let f be any function belonging to Lρ
(
I2
)

such

that f − g ∈ XT for every g ∈ C∞
(
I2
)
. Then we have

st2 − lim
k,l

ρ
(
λ0
(
AT
k,l,m,n (f)− f

))
= 0, uniformly in m,n (2.3)

for some λ0 > 0.

Proof. We first claim that

st2 − lim
k,l

ρ
(
η
(
AT
k,l,m,n (g)− g

))
= 0 uniformly in m,n (2.4)

for every g ∈ C(I2) ∩D and η > 0 where

AT
k,l,m,n (g) =

∑
(i,j)∈N2

a
(m,n)
k,l,i,jTi,jg.

To see this assume that g belongs to C
(
I2
)
∩ D and η is any positive number. By

the continuity of g on I2 and in consequence of the linearity and positivity of the
operators Ti,j , we can easily see that (see, for instance [20]), for a given ε > 0, there
exists a number δ > 0 such that for all (u, v) , (x, y) ∈ I2

|g(u, v)− g(x, y)| < ε+
2M

δ2

{
(u− x)

2
+ (v − y)

2
}
.

where M := sup
(x,y)∈I2

|g(x, y)| . Since Ti,j is linear and positive, we get

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (g;x, y)− g (x, y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (g (., .)− g (x, y) ;x, y)

+g (x, y)

 ∑
(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
≤

∑
(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (|g (., .)− g (x, y)| ;x, y)

+ |g (x, y)|

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
≤

∑
(i,j)∈N2

a
(m,n)
k,l,i,jTi,j

(
ε+

2M

δ2

{
(.− x)

2
+ (.− y)

2
}

;x, y

)

+ |g (x, y)|

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣



Statistical A-summation process 131

= ε+ (ε+M)

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
+

2M

δ2

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f3;x, y)− f3 (x, y)

∣∣∣∣∣∣
+

4M

δ2

|f1 (x, y)|

∣∣∣∣∣∣
∞∑

(i,j)∈N2

a
(m,n)
k,l,i,jTij (f1;x, y)− f1 (x, y)

∣∣∣∣∣∣
+ |f2 (x, y)|

∣∣∣∣∣∣
∞∑

(i,j)∈N2

a
(m,n)
k,l,i,jTij (f2;x, y)− f2 (x, y)

∣∣∣∣∣∣


+
2M

δ2
|f3 (x, y)|

∣∣∣∣∣∣
∞∑

(i,j)∈N2

a
(m,n)
k,l,i,jTij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
for every x, y ∈ I and m,n ∈ N. Therefore, from the the last inequality we get∣∣∣∣∣∣

∑
(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (g;x, y)− g (x, y)

∣∣∣∣∣∣
≤ ε+

(
ε+M +

4Mc2

δ2

) ∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
+

4Mc

δ2

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f1;x, y)− f1 (x, y)

∣∣∣∣∣∣
+

4Mc

δ2

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f2;x, y)− f2 (x, y)

∣∣∣∣∣∣
+

2M

δ2

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f3;x, y)− f3 (x, y)

∣∣∣∣∣∣
where c := max {|f1 (x, y)| , |f2 (x, y)|} .

So, denoting by K := max

{
ε+M +

4Mc2

δ2
,

4Mc

δ2
,

2M

δ2

}
,∣∣∣∣∣∣

∑
(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (g;x, y)− g (x, y)

∣∣∣∣∣∣
≤ ε+K


∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f1;x, y)− f1 (x, y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f2;x, y)− f2 (x, y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f3;x, y)− f3 (x, y)

∣∣∣∣∣∣
 .

Hence, we obtain, for any η > 0, that

η

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (g;x, y)− g (x, y)

∣∣∣∣∣∣
≤ ηε+ ηK


∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f1;x, y)− f1 (x, y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f2;x, y)− f2 (x, y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j (f3;x, y)− f3 (x, y)

∣∣∣∣∣∣
 .

Now we apply the modular ρ in the both-sides of the above inequality and since ρ is
monotone, we get

ρ
(
η
(
AT
k,l,m,n (g)− g

))
≤ ρ

(
ηε+ ηK

(
AT
k,l,m,n (f0)− f0

)
+ηK

(
AT
k,l,m,n (f1)− f1

)
+ ηK

(
AT
k,l,m,n (f2)− f2

)
+ ηK

(
AT
k,l,m,n (f3)− f3

))
.

So, we may write that

ρ
(
η
(
AT
k,l,m,n (g)− g

))
≤ ρ(5ηε) + ρ

(
5ηK

(
AT
k,l,m,n (f0)− f0

))
+ρ
(
5ηK

(
AT
k,l,m,n (f1)− f1

))
+ρ
(
5ηK

(
AT
k,l,m,n (f2)− f2

))
+ρ
(
5ηK

(
AT
k,l,m,n (f3)− f3

))
.
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Since ρ is N−quasi semiconvex and strongly finite, we have, assuming 0 < ε ≤ 1

ρ
(
η
(
AT
k,l,m,n (g)− g

))
≤ Nερ (5ηN) + ρ

(
5ηK

(
AT
k,l,m,n (f0)− f0

))
+ρ
(
5ηK

(
AT
k,l,m,n (f1)− f1

))
+ρ
(
5ηK

(
AT
k,l,m,n (f2)− f2

))
+ρ
(
5ηK

(
AT
k,l,m,n (f3)− f3

))
.

For a given ε∗ > 0, choose an ε ∈ (0, 1] such that Nερ (5ηN) < ε∗. Now we define the
following sets:

Gη : =
{

(k, l) : ρ
(
η
(
AT
k,l,m,n (g)− g

))
≥ ε∗

}
,

Gη,r : =

{
(k, l) : ρ

(
5ηK

(
AT
k,l,m,n (fr)− fr

))
≥ ε∗ −Nερ (5ηN)

4

}
,

r = 0, 1, 2, 3. Then, it is easy to see that Gη ⊆
3⋃
r=0

Gη,r. So, we can write that

δ2 (Gη) ≤
3∑
r=0

δ2 (Gη,r) .

Using the hypothesis (2.2), we get

δ2 (Gη) = 0,

which proves our claim (2.4). Obviously, (2.4) also holds for every g ∈ C∞(I2). Now
let f ∈ Lρ

(
I2
)

satisfying f−g ∈ XT for every g ∈ C∞
(
I2
)
. Since µ

(
I2
)
<∞ and ρ is

strongly finite and absolutely continuous, it can be seen that ρ is also absolutely finite
on X(I2) (see [2]). So, it is known from [3, 14] that the space C∞(I2) is modularly
dense in Lρ

(
I2
)
, i.e., there exists a sequence {gk,l} ⊂ C∞

(
I2
)

such that

P − lim
k,l

ρ (3λ∗0 (gk,l − f)) = 0 for some λ∗0 > 0,

which means, for every ε > 0, there is a positive number k0 = k0(ε) so that

ρ (3λ∗0 (gk,l − f)) < ε for every k, l ≥ k0. (2.5)

In addition to that, because the operators Ti,j are linear and positive, we can write
that

λ∗0

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j(f ;x, y)− f(x, y)

∣∣∣∣∣∣
≤ λ∗0

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j(f − gk0,k0 ;x, y)

∣∣∣∣∣∣
+λ∗0

∣∣∣∣∣∣
∑

(i,j)∈N2

a
(m,n)
k,l,i,jTi,j(gk0,k0 ;x, y)− gk0,k0(x, y)

∣∣∣∣∣∣
+λ∗0 |gk0,k0(x, y)− f(x, y)| ,
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holds for every x, y ∈ I and m,n ∈ N. Applying the modular ρ and moreover consid-
ering the monotonicity of ρ, we have

ρ
(
λ∗0
(
AT
k,l,m,n (f)− f

))
≤ ρ

(
3λ∗0

(
AT
k,l,m,n (f − gk0,k0)

))
+ρ
(
3λ∗0

(
AT
k,l,m,n (gk0,k0)− gk0,k0

))
+ρ (3λ∗0 (gk0,k0 − f)) . (2.6)

Then, it follows from (2.5) and (2.6) that

ρ
(
λ∗0
(
AT
k,l,m,n (f)− f

))
≤ ε+ ρ

(
3λ∗0

(
AT
k,l,m,n (f − gk0,k0)

))
+ρ
(
3λ∗0

(
AT
k,l,m,n (gk0,k0)− gk0,k0

))
. (2.7)

So, taking statistical limit superior as k, l → ∞ in the both-sides of (2.7) and also
using the facts that gk0,k0 ∈ C∞(I2) and f − gk0,k0 ∈ XT, we obtain from (2.1) that

st2 − lim sup
k,l

ρ
(
λ∗0
(
AT
k,l,m,n (f)− f

))
≤ ε+Rρ (3λ∗0(f − gk0,k0))

+st2 − lim sup
k,l

ρ
(
3λ∗0

(
AT
k,l,m,n (gk0,k0)− gk0,k0

))
,

which gives

st2 − lim sup
k,l

ρ
(
λ∗0
(
AT
k,l,m,n (f)− f

))
≤ ε(R+ 1) + st2 − lim sup

k,l
ρ
(
3λ∗0

(
AT
k,l,m,n (gk0,k0)− gk0,k0

))
. (2.8)

By (2.4), since

st2 − lim
k,l
ρ
(
3λ∗0

(
AT
k,l,m,n (gk0,k0)− gk0,k0

))
= 0, uniformly in m,n,

we get

st2 − lim sup
k,l

ρ
(
3λ∗0

(
AT
k,l,m,n (gk0,k0)− gk0,k0

))
= 0, uniformly in m,n. (2.9)

From (2.8) and (2.9), we conclude that

st2 − lim sup
k,l

ρ
(
λ∗0
(
AT
k,l,m,n (f)− f

))
≤ ε(R+ 1).

Since ε > 0 was arbitrary, we find

st2 − lim sup
k,l

ρ
(
λ∗0
(
AT
k,l,m,n (f)− f

))
= 0 uniformly in m,n.

Furthermore, since ρ
(
λ∗0

(
AT
k,l,m,n (f)− f

))
is non-negative for all k, l,m, n ∈ N, we

can easily see that

st2 − lim
k,l

ρ
(
λ∗0
(
AT
k,l,m,n (f)− f

))
= 0, uniformly in m,n,

which completes the proof. �

If the modular ρ satisfies the ∆2−condition, then one can get immediately the
following result from Theorem 2.1.
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Theorem 2.2. Let A =
{
A(m,n)

}
be a sequence of four dimensional infinite non-

negative real matrices. Let ρ and T = {Ti,j} be the same as in Theorem 2.1. If ρ
satisfies the ∆2−condition, then the statements (a) and (b) are equivalent:

(a) st2− lim
k,l

ρ
(
λ
(
AT
k,l,m,n (fr)− fr

))
= 0 uniformly in m,n, for every λ > 0 and

r = 0, 1, 2, 3,

(b) st2 − lim
k,l

ρ
(
λ
(
AT
k,l,m,n (f)− f

))
= 0 uniformly in m,n, for every λ > 0 pro-

vided that f is any function belonging to Lρ(I2) such that f − g ∈ XT for every
g ∈ C∞

(
I2
)
.

If one replaces the matrices A(m,n) by the identity matrix and taking P−limit,
then the condition (2.1) reduces to

P − lim sup
i,j

ρ (λ (Ti,jh)) ≤ Rρ (λh) (2.10)

for every h ∈ XT, λ > 0 and for an absolute positive constant R. In this case, the next
results which were obtained by Orhan and Demirci [20] immediately follows from our
Theorems 2.1 and 2.2.

Corollary 2.3. ([20]) Let ρ be a monotone, strongly finite, absolutely continuous and N -
quasi semiconvex modular on X

(
I2
)
. Let T := {Ti,j} be a sequence of positive linear

operators from D into X
(
I2
)

satisfying (2.10)̇. If {Ti,jfr} is strongly convergent to
fr for each r = 0, 1, 2, 3, then {Ti,jf} is modularly convergent to f provided that f is
any function belonging to Lρ

(
I2
)

such that f − g ∈ XT for every g ∈ C∞
(
I2
)
.

Corollary 2.4. ([20]) Let T = {Ti,j} and ρ be the same as in Corollary 2.3. If ρ satisfies
the ∆2−condition, then the following statements are equivalent:

(a){Ti,jfr} is strongly convergent to fr for each r = 0, 1, 2, 3,
(b){Ti,jf} is strongly convergent to f provided that f is any function belonging

to Lρ(I2) such that f − g ∈ XT for every g ∈ C∞
(
I2
)
.

In the following, we construct an example of positive linear operators satisfying
the conditions of Theorem 2.1.

Example 2.5. Take I = [0, 1] and let ϕ : [0,∞)→ [0,∞) be a continuous function for
which the following conditions hold:

• ϕ is convex,
• ϕ (0) = 0, ϕ (u) > 0 for u > 0 and lim

u→∞
ϕ (u) =∞.

Hence, let us consider the functional ρϕ on X(I2) defined by

ρϕ(f) :=

1∫
0

1∫
0

ϕ (|f (x, y)|) dxdy for f ∈ X
(
I2
)
. (2.11)

In this case, ρϕ is a convex modular on X
(
I2
)
, which satisfies all assumptions listed

in Section 1 (see [4]). Let us consider the Orlicz space generated by ϕ as follows:

Lρϕ(I2) :=
{
f ∈ X

(
I2
)

: ρϕ (λf) < +∞ for some λ > 0
}
.
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Then let us consider the following bivariate Bernstein-Kantorovich operator

U := {Ui,j}

on the space Lρϕ
(
I2
)

which is defined by:

Ui,j(f ;x, y) =

i∑
k=0

j∑
l=0

p
(i,j)
k,l (x, y) (i+ 1) (j + 1)

(k+1)/(i+1)∫
k/(i+1)

(l+1)/(j+1)∫
l/(j+1)

f (t, s) dsdt

(2.12)

for x, y ∈ I, where p
(i,j)
k,l (x, y) defined by

p
(i,j)
k,l (x, y) =

(
i

k

)(
j

l

)
xkyl (1− x)

i−k
(1− y)

j−l
.

Also, it is clear that,
i∑

k=0

j∑
l=0

p
(i,j)
k,l (x, y) = 1. (2.13)

Observe that the operators Ui,j map the Orlicz space Lρϕ
(
I2
)

into itself. Because of
(2.13), as in the proof of [4] Lemma 5.1 and similar to Example 1[20], we obtain that
for every f ∈ Lρϕ

(
I2
)

and i, j ∈ N there is an absolute constant M > 0 such that

ρϕ(Ui,jf) ≤Mρϕ(f).

Then, we know that, for any function f ∈ Lρϕ
(
I2
)

such that f − g ∈ XU for every

g ∈ C∞
(
I2
)
, {Ui,jf} is modularly convergent to f, with the choice of XU := Lρϕ(I2).

Now define {si,j} by

si,j =

{
1, if i, j are squares
0 otherwise.

(2.14)

Now observe that, st2 − limi,j si,j = 0. Also, assume that

A :=
{
A(m,n)

}
=
{
a
(m,n)
k,l,i,j

}
is a sequence of four dimensional infinite matrices defined by

a
(m,n)
k,l,i,j =

1

kl
if m ≤ i ≤ m+ k − 1, n ≤ j ≤ n+ l − 1, (m,n = 1, 2, ...)

and a
(m,n)
k,l,i,j = 0 otherwise. Then, using the operators Ui,j , we define the sequence of

positive linear operators V := {Vi,j} on Lρϕ(I2) as follows:

Vi,j(f ;x, y) = (1 + si,j)Ui,j (f ;x, y) for f ∈ Lρϕ(I2), x, y ∈ [0, 1] and i, j ∈ N.
(2.15)

As in the proof of Lemma 5.1 [4] and using the convexity of ϕ we get, for every
h ∈ XV := Lρϕ(I2), λ > 0 and for positive constant M, that

st2 − lim sup
k,l

ρϕ
(
λ
(
AV
k,l,m,n (h)

))
≤Mρϕ (λh) , uniformly in m,n,
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where

AV
k,l,m,n (h) =

∞∑
(i,j)∈N2

a
(m,n)
k,l,i,jVi,jh

as in (1.4). Therefore the condition (2.1) works for our operators Vi,j given by (2.15)
with the choice of XV = XU = Lρϕ(I2). We now claim that

st2 − lim
k,l
ρϕ
(
λ
(
AV
k,l,m,n (fr)− fr

))
= 0, uniformly in m,n; r = 0, 1, 2, 3. (2.16)

Observe that

Ui,j (f0;x, y) = 1, Ui,j (f1;x, y) =
ix

i+ 1
+

1

2 (i+ 1)
,

Ui,j (f2;x, y) =
jy

j + 1
+

1

2 (j + 1)

and

Ui,j (f3;x, y) =
i (i− 1)x2

(i+ 1)
2 +

2ix

(i+ 1)
2 +

1

3 (i+ 1)
2 +

j (j − 1) y2

(j + 1)
2 +

2jy

(j + 1)
2 +

1

3 (j + 1)
2 .

So, we can see,

ρϕ
(
λ
(
AV
k,l,m,n (f0)− f0

))
= ρϕ

λ
m+k−1∑

i=m

n+l−1∑
j=n

1

kl
(1 + si,j)− 1


=

1∫
0

1∫
0

ϕ

∣∣∣∣∣∣λ
m+k−1∑

i=m

n+l−1∑
j=n

1

kl
(1 + si,j)− 1

∣∣∣∣∣∣
 dxdy

= ϕ

λ
m+k−1∑

i=m

n+l−1∑
j=n

1

kl
(1 + si,j)− 1

 ,

because of

1

kl

m+k−1∑
i=m

n+l−1∑
j=n

(1 + si,j) =

{
2, if i, j are squares
1 otherwise.

,m, n = 1, 2, ...

and using continuity of ϕ, we get

st2 − lim
k,l
ϕ

λ
m+k−1∑

i=m

n+l−1∑
j=n

1

kl
(1 + si,j)− 1

 = 0, uniformly in m,n (2.17)

and hence

st2 − lim
k,l
ρϕ
(
λ
(
AV
k,l,m,n (f0)− f0

))
= 0, uniformly in m,n,
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which guarantees that (2.16) holds true for r = 0. Also, since

ρϕ
(
λ
(
AV
k,l,m,n (f1)− f1

))
= ρϕ

λ
m+k−1∑

i=m

n+l−1∑
j=n

1

kl
(1 + si,j)

(
ix

i+ 1
+

1

2(i+ 1)

)
− x


≤ ρϕ

3λ

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

i

i+ 1
− 1

+ ρϕ

3λ

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

1

2(i+ 1)


+ρϕ

3λ

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

si,j

(
i

i+ 1
+

1

2(i+ 1)

)
= ϕ

3λ

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

i

i+ 1
− 1

+ ϕ

3λ

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

1

2(i+ 1)


+ϕ

3λ

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

si,j

(
i

i+ 1
+

1

2(i+ 1)

)
Since

st2 − lim
k,l

sup
m,n

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

i

i+ 1
− 1

 = 0,

st2 − lim
k,l

sup
m,n

1

kl

m+k−1∑
i=m

n+l−1∑
j=n

1

2(i+ 1)

 = 0

and

st2 − lim
k,l

sup
m,n

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

si,j

(
i

i+ 1
+

1

2(i+ 1)

) = 0

we have,

st2 − lim
k,l
ρϕ
(
λ
(
AV
k,l,m,n (f1)− f1

))
= 0, uniformly in m,n.

So (2.16) holds true for r = 1. Similarly, we have

st2 − lim
k,l
ρϕ
(
λ
(
AV
k,l,m,n (f2)− f2

))
= 0, uniformly in m,n.

Finally, since
ρϕ
(
λ
(
AV
k,l,m,n (f3)− f3

))
= ρϕ

λ
m+k−1∑

i=m

n+l−1∑
j=n

1

kl
(1 + si,j)

(
i (i− 1)x2

(i+ 1)
2 +

2ix

(i+ 1)
2 +

1

3 (i+ 1)
2

+
j (j − 1) y2

(j + 1)
2 +

2jy

(j + 1)
2 +

1

3 (j + 1)
2

)
−
(
x2 + y2

)))



Statistical A-summation process 139

≤ ρϕ
3λ

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

(1 + si,j)
i (i− 1)

(i+ 1)
2 − 1


+ρϕ

3λ

 1

kl

m+k−1∑
i=m

n+l−1∑
j=n

(1 + si,j)
j (j − 1)

(j + 1)
2 − 1


+ρϕ

3λ

1

kl

m+k−1∑
i=m

n+l−1∑
j=n

(1 + si,j)

(
2i

(i+ 1)
2 +

1

3 (i+ 1)
2 +

2j

(j + 1)
2 +

1

3 (j + 1)
2

)))
Hence we can easily see that

st2 − lim
k,l
ρϕ
(
λ
(
AV
k,l,m,n (f3)− f3

))
= 0, uniformly in m,n.

So, our claim (2.16) holds true for each r = 0, 1, 2, 3. {Vi,j} satisfies all hypothesis of
Theorem 2.1 and we immediately see that,

st2 − lim
k,l
ρϕ
(
λ
(
AV
k,l,m,n (f)− f

))
= 0, uniformly in m,n,

on I2 = [0, 1]×[0, 1] for all f ∈ Lρϕ(I2). Also, since {si,j} does not converge modularly,
{Vi,j} does not satisfy Corollary 2.3.
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Quintic B-spline method for numerical solution
of fourth order singular perturbation boundary
value problems

Ram Kishun Lodhi and Hradyesh Kumar Mishra

Abstract. In this communication, we have studied an efficient numerical approach
based on uniform mesh for the numerical solutions of fourth order singular pertur-
bation boundary value problems. Such type of problems arises in various fields of
science and engineering, like electrical network and vibration problems with large
Peclet numbers, Navier-Stokes flows with large Reynolds numbers in the theory
of hydrodynamics stability, reaction-diffusion process, quantum mechanics and
optimal control theory etc. In the present study, a quintic B-spline method has
been discussed for the approximate solution of the fourth order singular pertur-
bation boundary value problems. The convergence analysis is also carried out
and the method is shown to have convergence of second order. The performance
of present method is shown through some numerical tests. The numerical results
are compared with other existing method available in the literature.

Mathematics Subject Classification (2010): 65L10.

Keywords: Fourth order singular perturbation boundary value problem, quintic
B-spline, quasilinearization, uniform mesh, convergence analysis.

1. Introduction

We consider the fourth order singular perturbation boundary value problem

−εyiv (t)− p (t) y′′′ (t) + q (t) y′′ (t) + r (t) y (t) = f (t) , t ∈ [a, b] , (1.1)

y (a) = η1, y (b) = η2, y′′ (a) = η3, y′′ (b) = η4. (1.2)

where η1, η2, η3 and η4 are finite real constants and ε is a small positive parameter,
such that 0 < ε � 1. Moreover, we assume that the functions p (t) ,q (t) ,r (t) and
f (t) are sufficiently smooth. Further, the problem (1.1) is called non-turning point
problem if p (t) ≥ α > 0 throughout the interval [a, b], where α is some positive
constant and boundary layer will be in the neighbourhood of t = a [9]. In the same
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vein, if the p (t) vanishes at t = 0, then it becomes a turning point problem. In that
scenario, the boundary layer will be at both the end points t = a and t = b [2].

Singular perturbation problems are engendered by multiplication of a small pos-
itive parameter ε to highest derivative term of differential equation with boundary
conditions. Many scholars have studied the analytical and numerical solutions of these
problems, but sometimes they found that the classical numerical methods failed to
get good approximate solutions of singular perturbation problems. That’s why they
have gone for the non classical methods. In the last few decades, many researchers
have discussed the numerical solutions of singular perturbation problems. Most of
the researchers have studied the numerical solutions of second order singular pertur-
bation problems [5, 10, 11, 12, 13, 17, 19, 20, 21, 22, 29]. Only a few researchers
have focused the numerical solutions of higher order singular perturbation problems
[3, 24, 23, 28, 27]. Lodhi and Mishra [14, 15] have suggested the computational tech-
nique for numerical solutions of fourth order singular singularly perturbed and self
adjoint boundary value problems. Raja and Tamilselvan [23] have designed a shoot-
ing method on a Shishkin mesh to solve reaction-diffusion type problems. Mishra and
Saini [18] have used initial value technique for the numerical solution of fourth or-
der singularly perturbed boundary value problems. Sarakhsi et al [25] have studied
the existence of boundary layer problem. Parameter uniform numerical scheme to
solve fourth order singularly perturbed turning points problems have been presented
by Geetha and Tamilselvan [7]. Sharma et al. [26] have done the survey on singularly
perturbed turning point and interior layers problem. Geetha et al. [8] have applied pa-
rameter uniform numerical method based on Shishkin mesh for third order singularly
perturbed turning point problems exhibiting boundary layers.

This paper describes a quintic B-spline approach for the numerical solution of
fourth order singular perturbation boundary value problems and it has been proved
to be second order convergence. The paper is organized as follows: In section 2, we
describe the quintic B-spline method. Convergence analysis is established in section
3. Quasilinearization method is discussed in section 4. Section 5 gives the numerical
results which substantiate the theoretical aspects. Finally, we discuss the conclusions
in section 6.

2. Quintic B-spline Method

We divide the interval [a, b] into N equal subinterval and we choose piecewise
uniform mesh points represented by π = {t0, t1, t2, ..., tN} ,such that t0 = a, tN = b
and h = b−a

N is the piecewise uniform spacing. We define L2 [a, b] as a vector space of
all the integrable functions on [a, b] , and X be the linear subspace of L2 [a, b] . Now
we define
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Bi(t) =
1

h5



(t− ti−3)
5
, if t ∈ [ti−3, ti−2]

h5 + 5h4 (t− ti−2) + 10h3 (t− ti−2)
2

+ 10h2 (t− ti−2)
3

+5h (t− ti−2)
4 − 5 (t− ti−2)

5
, if t ∈ [ti−2, ti−1]

26h5 + 50h4 (t− ti−1) + 20h3 (t− ti−1)
2 − 20h2 (t− ti−1)

3

−20h (t− ti−1)
4

+ 10 (t− ti−1)
5
, if t ∈ [ti−1, ti]

26h5 + 50h4 (ti+1 − t) + 20h3 (ti+1 − t)2 − 20h2 (ti+1 − t)3

−20h (ti+1 − x)
4

+ 10 (ti+1 − t)5 , if t ∈ [ti, ti+1]

h5 + 5h4 (ti+2 − t) + 10h3 (ti+2 − t)2 + 10h2 (ti+2 − t)3

+5h (ti+2 − t)4 − 5 (ti+2 − t)5 , if t ∈ [ti+1, ti+2]

(ti+3 − t)5 , if t ∈ [ti+2, ti+3]
0 otherwise, for i = 0, 1, 2, ...N.

(2.1)
We introduce six additional knots as t−3 < t−2 < t−1 < t0 and tN+3 > tN+2 >

tN+1 > tN . From equation (2.1), we can easily check that each of the functions Bi(t)
is four times continuously differentiable on the entire real line. Also, the values of
Bi (t) ,B′i (t) ,B′′i (t) ,B′′′i (t) and Bivi (t)at the nodal points are given in Table 1.

Table 1. Quintic B-spline basis and its derivative function values at nodal points
B (t) ti−3 ti−2 ti−1 t ti+1 ti+2 ti+3

Bi (t) 0 1 26 66 26 1 0
B′i (t) 0 5/h 50/h 0 −50/h −5/h 0
B′′i (t) 0 20

/
h2 40

/
h2 −120

/
h2 40

/
h2 20

/
h2 0

B′′′i (t) 0 60
/
h3 −120

/
h3 0 120

/
h3 −60

/
h3 0

Bivi (t) 0 120
/
h4 −480

/
h4 720

/
h4 −480

/
h4 120

/
h4 0

Let Ω = {B−2, B−1, B0, B1, . . . . . . , BN−1, BN , BN+1, BN+2} and let φ5 (π) =
span Ω. The function Ω is linearly independent on [a, b] , thus φ5 (π) is (N + 5)-
dimensional. Even one can show that φ5 (π) ⊆subspace X. Let L be a linear operator
whose domain is X and whose range is also in X. Now we define

S (t) =

N+2∑
i=−2

ciBi (t) , (2.2)

be the approximate solution of the problem (1.1) with boundary conditions (1.2),
where c′is is an unknown coefficient and Bi (t)

′
s a fifth degree spline function. To

solve fourth order singularly perturbed two point boundary value problems, the spline
functions are evaluated at nodal points t = ti (i = 0, 1, 2, . . . , N) which are needed for
the solution.
From Table 1 and equation (2.2), we obtain the following relationships:

y (ti) = S (ti) = ci−2 + 26ci−1 + 66ci + 26ci+1 + ci+2 (2.3)

m (ti) = S′ (ti) =
1

h
(−5ci−2 − 50ci−1 + 50ci+1 + 5ci+2) (2.4)
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Mi = S′′ (ti) =
1

h2
(20ci−2 + 40ci−1 − 120ci + 40ci+1 + 20ci+2) (2.5)

Ti = S′′′ (ti) =
1

h3
(−60ci−2 + 120ci−1 − 120ci+1 + 60ci+2) (2.6)

Fi = Siv (ti) =
1

h4
(120ci−2 − 480ci−1 + 720ci − 480ci+1 + 120ci+2) (2.7)

Moreover, mi, Mi, Ti and Fi can be used to approximate values of y′ (ti) , y
′′ (ti) ,

y′′′ (ti) and yiv (ti) .
Since S (t) is an approximate solution, it will satisfy equation (1.1) with boundary
conditions (1.2). Hence we get

−εSiv (t)− p (t)S′′′ (t) + q (t)S′′ (t) + r (t)S (t) = f (t) , (2.8)

and
S (a) = η1, S (b) = η2, S′′ (a) = η3, S′′ (b) = η4. (2.9)

Discretizing equation (2.8) at the nodal points ti(i = 0, 1, . . . , N), we have

−εSiv (ti)− p (ti)S
′′′ (ti) + q (ti)S

′′ (ti) + r (ti)S (ti) = f (ti) ,

Using equations (2.3)-(2.7) in above equation and simplifying, we obtain

− ε
h4 {120ci−2 − 480ci−1 + 720ci − 480ci+1 + 120ci+2}
− pi
h3 {−60ci−2 + 120ci−1 − 120ci+1 + 60ci+2}

+ qi
h2 {20ci−2 + 40ci−1 − 120ci + 40ci+1 + 20ci+2}

+ri {ci−2 + 26ci−1 + 66ci + 26ci+1 + ci+2} = fih
4,

(2.10)

where pi = p (ti) ,qi = q (ti) ,ri = r (ti) and fi = f (ti) . After simplifying above
equation, we get

γ1 (ti) ci−2 + γ2 (ti) ci−1 + γ3 (ti) ci + γ4 (ti) ci+1 + γ5 (ti) ci+2 = fih
4, (2.11)

where

γ1 (ti) = −120ε+ 60pih+ 20qih
2 + rih

4,
γ2 (ti) = 480ε− 120pih+ 40qih

2 + 26rih
4,

γ3 (ti) = −720ε− 120qih
2 + 66rih

4,
γ4 (ti) = 480ε+ 120pih+ 40qih

2 + 26rih
4,

γ5 (ti) = −120ε− 60pih+ 20qih
2 + rih

4, for i = 0, 1, . . . , N.

From the boundary conditions, we get the following equations

c−2 + 26c−1 + 66c0 + 26c1 + c2 = η1, (2.12)

cN−2 + 26cN−1 + 66cN + 26cN+1 + cN+2 = η2, (2.13)

20c−2 + 40c−1 − 120c0 + 40c1 + 20c2 = η3h
2, (2.14)

and
20cN−2 + 40cN−1 − 120cN + 40cN+1 + 20cN+2 = η4h

2. (2.15)

Coupling equations (2.11)-(2.15) lead to a system of (N + 5) linear equations AY = D
in the (N + 5) unknowns, where

Y = [c−2, c−1, c0, c1, . . . , cN−1, cN , cN+1, cN+2]
T
,

D =
[
η1, η3h

2, f0h
4, f1h

4, . . . , fN−1h
4, fNh

4, η4h
2, η2

]T
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and the coefficient matrix A is given by

A =



1 26 66 26 1 0
20 40 −120 40 20 0

γ1 (t0) γ2 (t0) γ3 (t0) γ4 (t0) γ5 (t0) 0
0 γ1 (t1) γ2 (t1) γ3 (t1) γ4 (t1) γ5 (t1)

0 0
...

...
...

...
0 0 0 γ1 (ti) γ2 (ti) γ3 (ti)
...

...
...

...
...

...
0 0 · · · 0 0 γ1 (tN−1)
0 0 · · · 0 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0

0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

γ4 (ti) γ5 (ti) 0 0 0
...

...
... 0 0

γ2 (tN−1) γ3 (tN−1) γ4 (tN−1) γ5 (tN−1) 0
γ1 (tN ) γ2 (tN ) γ3 (tN ) γ4 (tN ) γ5 (tN )

20 40 −120 40 20
1 26 66 26 1



.

(2.16)
Since A is a non-singular matrix, so we can solve the system AY = D for

c−2,c−1,c0,c1,c2,. . . ,cN−2,cN−1,cN ,cN+1,cN+2 substituting these values into equation
(2.2), we get the required approximate solution.

3. Derivation for convergence

In this section, a technique is portrayed which will ascertain the truncation error
for the quintic B-spline method over the whole range a ≤ t ≤ b. Here, we suppose
that function y (t) has continuous derivatives in the whole range.

We calculate the following relationships by comparing the coefficients of
ci (i = −2,−1, 0, 1, . . . , N,N + 1, N + 2) . From equations (2.3)-(2.7), we have

S′(ti−2) + 26S′(ti−1) + 66S′(ti) + 26S′(ti+1) + S′(ti+2)
= 1

h {−5y(ti−2)− 50y(ti−1) + 50y(ti+1) + 5y(ii+2)} (3.1)

S′′(ti−2) + 26S′′(ti−1) + 66S′′(ti) + 26S′′(ti+1) + S′′(ti+2)
= 1

h2 {20y(ti−2) + 40y(ti−1)− 120y(ti) + 40y(ti+1) + 20y(ti+2)} (3.2)

S′′′(ti−2) + 26S′′′(ti−1) + 66S′′′(ti) + 26S′′′(ti+1) + S′′′(ti+2)
= 1

h3 {−60y(ti−2) + 120y(ti−1)− 120y(ti+1) + 60y(ti+2)} (3.3)
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Siv(ti−2) + 26Siv(ti−1) + 66Siv(ti) + 26Siv(ti+1) + Siv(ti+2)
= 1

h4 {120y(ti−2)− 480y(ti−1) + 720y(ti)− 480y(ti+1) + 120y(ti+2)} (3.4)

Using the operator notation [6, 16], the equations (3.1)-(3.4) can we written as

S′(ti) =
1

h

(
−5E−2 − 50E−1 + 50E + 5E2

E−2 + 26E−1 + 66I + 26E + E2

)
y(ti) (3.5)

S′′(ti) =
1

h2

(
20E−2 + 40E−1 − 120I + 40E + 20E2

E−2 + 26E−1 + 66I + 26E + E2

)
y(ti) (3.6)

S′′′(ti) =
1

h3

(
−60E−2 + 120E−1 − 120E + 60E2

E−2 + 26E−1 + 66I + 26E + E2

)
y(ti) (3.7)

Siv(ti) =
1

h4

(
120E−2 − 480E−1 + 720I − 480E + 120E2

E−2 + 26E−1 + 66I + 26E + E2

)
y(ti) (3.8)

where the operators are defined as Ey(ti) = y(ti + h), Dy(ti) = y′(ti) and Iy(ti) =
y(ti). Let E = ehD and expand them in powers of hD, we get

S′(ti) = y′(ti) +
1

5040
h6y7(ti)−

1

21600
h8y9(ti) +

1

1036800
h10y11(ti) + 0(h11) (3.9)

S′′(ti) = y′′(ti) + 1
720h

4y6(ti)− 1
3360h

6y8(ti) + 1
86400h

8y10(ti)
+ 221

239500800h
10y12(ti) + 0(h11)

(3.10)

S′′′(ti) = y′′′(ti)− 1
240h

4y7(ti) + 11
30240h

6y9(ti)− 1
28800h

8y11(ti)
+ 37

11404800h
10y13(ti) + 0(h11)

(3.11)

Siv(ti) = yiv(ti)− 1
12h

2y6(ti) + 1
240h

4y8(ti)− 1
7560h

6y10(ti)
− 13

907200h
8y12(ti) + 643

159667200h
10y14(ti) + 0(h11)

(3.12)

We now define e (t) = y (t) − S (t) and substitute equations (3.9)-(3.12) in the
Taylor series expansion of e (ti + θh) we obtain

e (ti + θh) =
(

θ2

1440 −
5θ4

1440

)
h6y6(ti) +

(
θ

5040 −
θ2

1440

)
h7y7(ti)

+
(
− θ2

6720 + θ4

5760

)
h8y8(ti) + 0(h9)

(3.13)

where a ≤ θ ≤ b. We abridge the above results in the following theorem:
Theorem 3.1. Let y (t) be the exact solution and S (t) be the numerical solution of
the singularly perturbed fourth order boundary value problem (1.1) with the boundary
conditions (1.2) for sufficiently small h which further gives the truncation error of
O
(
h6
)

and method of convergence of O
(
h2
)
.

4. Quasilinearization method

Let us consider the boundary value problem

−εyiv (t) = F (t, y, y′′, y′′′) , t = [a, b] , (4.1)

y (a) = η1, y (b) = η2, y′′ (a) = η3, y′′ (b) = η4, (4.2)
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where F (t, y, y′′, y′′′) is a smooth function such that Fy′′′ (t, y, y
′′, y′′′) ≥ α > 0,

Fy′′ (t, y, y
′′, y′′′) ≥ β > 0, t ∈ [a, b] ,

0 ≥ Fy (t, y, y′′, y′′′) ≥ −λ, λ > 0.
(4.3)

In order to obtain the numerical solution of the boundary value problem (4.1) and
(4.2), Newton’s method of quasilinearization [1, 4] is applied to generate the sequence
of {yk}∞0 of successive approximations with a proper selection of initial guess y0. We
define yk+1, for each fixed non-negative integer k,to be solution of the following linear
problem:

−εyivk+1 (t)−pk (t) y′′′k+1 (t)+qk (t) y′′k+1 (t)+rk (t) yk+1 (t) = fk (t) , t ∈ [a, b] , (4.4)

yk+1 (a) = η1, yk+1 (b) = η2, y′′k+1 (a) = η3, y′′k+1 (b) = η4, (4.5)

where

pk (t) = Fy′′′ (t, yk, y
′′
k , y

′′′
k ) , qk (t) = Fy′′ (t, yk, y

′′
k , y

′′′
k ) ,

rk (t) = Fy (t, yk, y
′′
k , y

′′′
k ) , fk (t) = Fy (t, yk, y

′′
k , y

′′′
k )

−ykFy (t, yk, y
′′
k , y

′′′
k )− y′′kFy′′ (t, yk, y′′k , y′′′k )

−y′′′k Fy′′′ (t, yk, y′′k , y′′′k ) .

We make the following observations:

i) If the initial guess y0 is sufficiently close to the solution y (t) of (4.1) and (4.5),
then the sequence {yk}∞0 converges to y(x). One can see the proof given in [4].
From (4.3), it follows that, for each fixed k,

pk (t) = Fy′′′ (t, y, y
′′, y′′′) ≥ α > 0,

qk (t) = Fy′′ (t, y, y
′′, y′′′) ≥ β > 0,

0 ≥ rk (t) = Fy (t, y, y′′, y′′′) ≥ −λ, λ > 0.
(4.6)

ii) Problem (4.4) with the boundary conditions (4.5), for each fixed k,is a linear
fourth order boundary value problem which is in the form of (1.1) and (1.2).
Hence it can be solved by the method described in section 2.

iii) The following convergence criterion is used to terminate the iteration:

‖yk+1 (ti)− yk (ti)‖ ≤ ε, ti ∈ [a, b] , k ≥ 0. (4.7)

5. Numerical results

In the present section, we have presented numerical results of the considered
examples with the help of MATLAB software which verifies theoretical estimates.
When the exact solutions of the considered examples are available then the maximum
absolute errors EN are evaluated using the following formula for the present method,
which is given by

EN = max
ti∈[a, b]

∣∣yNε (ti)− SNε (ti)
∣∣ , (5.1)
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When the exact solutions of the considered examples are not available then the maxi-
mum absolute errors ENd are evaluated using the double mesh principle for the present
method, which is given by

ENd = max
ti∈[a, b]

∣∣SNε (ti)− S2N
ε (ti)

∣∣ , (5.2)

The numerical order of convergence is computed using the following formula

OrdN =
lnEN − lnE2N

ln 2
. (5.3)

The exact and approximate solutions are denoted by yNε and SNε respectively.
Example 5.1 Consider the following singular perturbation boundary value problem
[27]:

−εyiv (t)− 4y′′′ (t) = 1, t ∈ [0, 1] ,

y (0) = 1, y (1) = 1, y′′ (0) = −1, y′′ (1) = −1.

The exact solution of Example 5.1 is given by

y (t) = 1

192
(
1−e−

4
ε

) {−3ε2e−
4t
ε − 72t2 − 8t3 + 80t− 3tε2 + 192 + 3ε2

+ e−
4
ε

(
−192 + 96t2 + 8t3 − 104t+ 3tε2

)}
.

Table 2. Maximum absolute errors and order of convergence of
Example 5.1 for different values of ε and N.

N ε = 2−4 Ord ε = 2−5 Ord ε = 2−6 Ord ε = 2−7 Ord ε = 2−8 Ord
64 9.5153E-06 2.0442 1.1597E-05 2.2186 9.3841E-06 1.6594 7.6100E-06 1.6904 1.0217E-05 2.4174
128 2.3070E-06 2.0097 2.4916E-06 2.0418 2.9708E-06 2.2173 2.3579E-06 1.6494 1.9126E-06 1.6944
256 5.7289E-07 2.0010 6.0512E-07 2.0095 6.3885E-07 2.0421 7.5163E-07 2.2142 5.9098E-07 1.6435
512 1.4312E-07 2.1459 1.5029E-07 1.4799 1.5512E-07 2.0623 1.6198E-07 2.0885 1.8916E-07 2.2051
1024 3.2339E-08 5.3882E-08 3.7140E-08 3.8086E-08 4.1024E-08

Example 5.2. Consider the following singular perturbation boundary value problem
[7]:

−εyiv (t) + 5ty′′′ (t) + 4y′′ (t) + 2y (t) = 0, t ∈ [−1, 1] ,

y (−1) = 1, y (1) = 1, y′′ (−1) = 1, y′′ (1) = 1.

Table 3. Comparison of maximum absolute error and order of convergence of
Example 5.2 for different values of N and ε = 2−4.

N Geetha and Tamilselvan [7] Present Method
ENd Ord ENd Ord

64 3.9249E-2 0.9770 4.4948E-04 2.5794
128 1.9940E-2 0.9886 7.5204E-05 2.0864
256 1.0049E-2 0.9944 1.7708E-05 2.0177
512 5.0440E-3 0.9972 4.3731E-06 2.3071
1024 2.5269E-3 8.8366E-07
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Example 5.3. Consider the following singular perturbation boundary value problem
[7]:

−εyiv (t) + 5ty′′′ (t) + (4 + t) y′′ (t) +
(
2 + t2

)
y (t) = −et + 5, t ∈ [−1, 1] ,

y (−1) = 1, y (1) = 1, y′′ (−1) = 2, y′′ (1) = 2.

Table 4. Comparison of maximum absolute error and order of convergence of
Example 5.3 for different values of N and ε = 2−4

N Geetha and Tamilselvan [7] Present Method
ENd Ord ENd Ord

64 3.3778E-2 0.9823 4.1824E-04 2.5806
128 1.7097E-2 0.9913 6.9920E-05 2.0866
256 8.6002E-3 0.9957 1.6462E-05 2.0306
512 4.3130E-3 0.8693 4.0291E-06 2.1087
1024 2.3610E-3 9.3418E-07

Example 5.4. Consider the following singular perturbation boundary value problem
[7]:

−εyiv (t) + 5ty′′′ (t) + (4 + t) y′′ (t) + 2y2 (t) = 0, t ∈ [−1, 1] ,

y (−1) = 1, y (1) = 1, y′′ (−1) = 2, y′′ (1) = 2.

Table 5. Comparison of maximum absolute error and order of convergence of
Example 5.4 for different values of N and ε = 2−4

N Geetha and Tamilselvan [7] Present Method
ENd Ord ENd Ord

64 7.5762E-02 0.9731 1.1620e-03 2.5795
128 3.8593E-02 0.9867 1.9440e-04 2.0863
256 1.9475E-02 0.9934 4.5777e-05 2.0215
512 9.7821E-03 0.9967 1.1275e-05 1.7449
1024 4.9021E-03 - 3.3639e-06 -

6. Conclusions

In this article, we have used the quintic B-spline method for finding the approx-
imate solution of fourth order linear and non-linear singular perturbation boundary
value problems. We linearised the non-linear boundary value problem via quasilin-
earization method and solved the problem. It is a computationally proficient tech-
nique and the algorithm can easily be applied on a computer. The results obtained
through this method are better than the existing method [7] with the same number
of nodal points.
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