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Conformable fractional approximation
by max-product operators

George A. Anastassiou

Abstract. Here we study the approximation of functions by a big variety of Max-
product operators under conformable fractional differentiability. These are posi-
tive sublinear operators. Our study is based on our general results about positive
sublinear operators. We produce Jackson type inequalities under conformable
fractional initial conditions. So our approach is quantitative by producing in-
equalities with their right hand sides involving the modulus of continuity of a
high order conformable fractional derivative of the function under approxima-
tion.

Mathematics Subject Classification (2010): 26A33, 41A17, 41A25, 41A36.
Keywords: positive sublinear operators, Max-product operators, modulus of con-
tinuity, conformable fractional derivative.

1. Introduction

The main motivation here is the monograph by B. Bede, L. Coroianu and S. Gal
[4], 2016.

Let N € N, the well-known Bernstein polynomials ([7]) are positive linear oper-
ators, defined by the formula

BNuvww=§j(Z)xku—mN*f(§),xemJLfecqau» (1.1)

k=0
T. Popoviciu in [8], 1935, proved for f € C ([0,1]) that

5 1
By (1) (@) - F@) < S (£ )« vae L, (1.2
where
S (h0)= s |f@) - fW), >0, (1.3
z,y€[0,1]:

|z—y|<é
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is the first modulus of continuity.
G.G. Lorentz in [7], 1986, p. 21, proved for f € C*([0,1]) that

By (@)~ F @) £ e (£ 2 ) Ve, (1.4)
4\F VN
In [4], p. 10, the authors introduced the basic Max-product Bernstein operators,

Vilopn (@) f ()
Vilo oy (@)

BY" (f) (x) = , NeN, (15)

where \/ stands for maximum, and

pa o) = () et -t

and f:[0,1] = R4 = [0, 00).

These are nonlinear and piecewise rational operators.

The authors in [4] studied similar such nonlinear operators such as: the Max-
product Favard-Szasz-Mirakjan operators and their truncated version, the Max-
product Baskakov operators and their truncated version, also many other similar
specific operators. The study in [4] is based on presented there general theory of sub-
linear operators. These Max-product operators tend to converge faster to the on hand
function.

So we mention from [4], p. 30, that for f : [0,1] — R continuous, we have the
estimate

‘BJ(VM) (f) () _f(x)‘ < 12w, (f’\/Nl;—i_1

Also from [4], p. 36, we mention that for f : [0,1] — R, being concave function we
get that

), forall NeN, z€[0,1], (1.6)

‘BI(VM) (@) - f (ac)‘ < 2wy (f7 ]1[) , forall z €[0,1], (1.7)

a much faster convergence.

In this article we expand the study in [4] by considering conformable fractional
smoothness of functions. So our inequalities are with respect to wy (D2 f,6), § > 0,
n € N, where D7 f is the nth order conformable a-fractional derivative, a € (0, 1], see
1], [6].

We present at first some background and general related theory of sublinear
operators and then we apply it to specific as above Max-product operators.

2. Background
We make

Definition 2.1. Let f : [0,00) — R and « € (0,1]. We say that f is an a-fractional
continuous function, iff Ve > 03§ > 0: for any =,y € [0,00) such that |2* —y®| <
we get that |f (z) — f (v)| <e.

We give
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Theorem 2.2. Owver [a,b] C [0,00), a € [0,1], a a-fractional continuous function is a
uniformly continuous function and vice versa, a uniformly continuous function is an
a-fractional continuous function.

(Theorem 2.2 is not valid over [0,00).)
Note. Let 2,y € [a,b] C [0,00), and g () = 2%, 0 < a < 1, then

g () = ax :xfi—a’ for x € (0,00) .

Slncea<:r<bthen7> ;> 0and %5 > %5 > 0.
Assume y > x. By the mean value theorem we get

(07 o o
y& — % = fia (y —z), where ¢ € (z,y). (2.1)
A similar to (2.1) equality when z > y is true.
Then we obtain
a {07 (03

bl—_a|yfx|§|y 2% =g
Thus, it holds
e 2l <y -2t (2.3)

Proof of Theorem 2.2.

(=) Assume that f is a-fractional continuous function on [a,b] C [0,00). It
means Ve > 030 > 0: whenever z,y € [a,b] : |[z* — y¥| <6, then |f (z) — f (y)| <e.
Let for {z,},cy € [a,0] : {xn, = X € [a,b] & x; — A°}, it implies f(z,) — f(A),
therefore f is continuous in . Therefore f is uniformly continuous over [a, b] .

For the converse we use the following criterion:

Lemma 2.3. A necessary and sufficient condition that the function f is not a-fractional
continuous (a € (0,1]) over [a,b] C [0,00) is that there exist g > 0, and two se-
quences X = (z,), Y = (yn) in [a,b] such that if n € N, then 2% —y%| < 1 and
|f(xn) - f(yn)‘ > &o-

Proof. Obvious. O
(Proof of Theorem 2.2 continuous) (<) Uniform continuity implies a-fractional con-
tinuity on [a,b] C [0,+00). Indeed: let f uniformly continuous on [a,b], hence f
continuous on [a,b]. Assume that f is not a-fractional continuous on [a,b]. Then by
Lemma 2.3 there exist g > 0, and two sequences X = (z,), Y = (y,) in [a,b] such

that if n € N, then |z& —y%| < 1 and
|f (xn) - f (yn)| > £€0- (24)

Since [a,b] is compact, the sequences {z,},{yn} are bounded. By the Bolzano-
Weierstrass theorem, there is a subsequence {xn(k)} of {x,} which converges to an
element z. Since [a, ] is closed, the limit z € [a, ], and f is continuous at z.
We have also that
@

m|$n—yn|§|$g— ynl <

(2.5)

S
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hence
11—«

|xn - yn| S an . (26)

It is clear that the corrsponding subsequence (yn(k)) of Y also converges to z. Hence
[ (®ny)) = f(2), and f (yo@r)) — f(2). Therefore, when k is sufficiently large we
have ’f (acn(k)) —f (yn(k))’ < &g, contradicting (2.4). O

‘We need

Definition 2.4. Let [a,b] C [0,00), o € [0,1]. We define the a-fractional modulus of
continuity:
wi (f,0):= sup |f(x)—f(y), §d>0. (2.7)
z,y€la,b]:
|z —y~|<6
The same definition holds over [0, c0).
Properties.
1) wi' (f,0) = 0.
2) w (f,0) — 0asd |0, iff fisin the set of all a-fractional continuous functions,
denoted as f € Cy, ([a,b] ,R) (= C([a,b],R)).
Proof. (=) Let w{ (f,d) > 0asd 0. ThenV e >0,36>0 with w(f,0) <e, ie.
Va,y €la,b]:|z*—y* < weget |f(z)— f(y)] <e Thatis f € Cy ([a,b],R).
(<) Let f € Cy([a,b],R). Then V e > 0,3 > 0 : whenever |z* —y*| < 9,
x,y € [a,b], it implies |f () — f(y)| < e, ie. Ve >0,36>0:w(f,d) <e. That is
wi (f,0) > 0,as 6] 0. O
3) w is > 0 and non-decreasing on R .
4) w¢ is subadditive:
wi' (fit1 +t2) S wi' (f,11) +wi (f,t2) (2.8)
Proof. If |z® —y®| < ¢1 + t2 (x,y € [a,b]), there is a point z € [a,b] for which
2% — 2% <y, [y* — 27| <o, and [f (2) = f (W) < |f (@) = F () +|f (2) = F ()] <
wi' (f,t1) + i (f, t2), implying wi* (f, &1 +t2) < Wi (f, 1) + wi* (f,12). 0

5) w{ is continuous on Ry.

Proof. We get

Wit (fs 1+ t2) — Wi (f 1) < wF (ft2) - (2.9)
By properties 2), 3), 4), we get that w (f,¢) is continuous at each ¢ > 0. O
6) Clearly it holds
wi (fitr 4 o+ tn) Swd (fit) + o+l (f, 1), (2.10)
for t =t; = ... = t,, we obtain
wi (f,nt) = nw (f, ). (2.11)

7) Let A >0, A ¢ N, we get
wi' (f; M) < A+ wi (f,1). (2.12)
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Proof. Let n € Zy : n < XA <n+ 1, we see that
wi' (f, M) Swi (f, (n+1)1) < (n+ Dwi (f,8) < (A+ 1wt (f,1). 0
Properties 1), 3), 4), 6), 7) are valid also for w{ defined over [0, o).
We notice that w$ (f,0) is finite when f is uniformly continuous on [a, b].
If f:]0,00) = R is bounded then w{ (f,d) is again finite.
We need

Definition 2.5. ([1], [6]) Let f : [0,00) — R. The conformable a-fractional derivative
for & € (0,1] is given by

f(t+et=) = f(t)

D f () := lim - , (2.13)
Daf (0) = lim Daf (1). (2.14)

If f is differentiable, then
Dof(t) = tl_ufl (t), (2.15)
where f’ is the usual derivative.
We define D7 f = D"~ (D, f).

If f:[0,00) = R is a-differentiable at tg > 0, a € (0, 1], then f is continuous at
to, see [6].
We will use

Theorem 2.6. (see [3]) (Taylor formula) Let o € (0,1] and n € N. Suppose f is (n+ 1)
times conformable a-fractional differentiable on [0,00), and s,t € [0,00), and D+ f
is assumed to be continuous on [0,00). Then we have

n

=3 (Y s & [ (T oy e eae

« «
k=0

The case n = 0 follows.

Corollary 2.7. Let o € (0,1]. Suppose f is a-fractional differentiable on [0,00), and
s,t € [0,00). Assume that Dy f is continuous on [0,00). Then

¢
f(t)=1(s) +/ Do f (1) 7% tdr. (2.17)
Note. Theorem 2.6 and Corollary 2.7 are also true for f : [a,b] = R, [a,b] C [0, 00),
s,t € [a,b].
Proof of Corollary 2.7. Denote I2 (f) (t) := f: 271 f (x) dz. By [6] we get that
Dol3 (f) (8) = f(t), fort=s, (2.18)

where f is any continuous function in the domain of I,, a € (0,1).
Assume that D, f is continuous, then

D, I (Dof) (t) = (Dof) (t), VE>s. (2.19)
Then, by [5], there exists a constant ¢ such that
I3 (Duf) (6) = (1) + . (2.20)
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Hence
0 =13 (Daf) (s) = f(s) +c, (2.21)
then ¢ = —f(s).
Therefore
LE(Daf) ) = £~ 1) = [ (Dap)(r) 7o lar (222)
The same proof applies for any s > t. O

3. Main results
We give

Theorem 3.1. Let o € (0,1] and n € Z,. Suppose [ is (n+ 1) times conformable
a-fractional differentiable on [0,00), and s,t € [0,00), and D" 1 f is assumed to be
continuous on [0,00) and bounded. Then

nal 1 @ _ ga k o DZ'H 75 n o — g™
f(t)kzok‘!< a8> Dgf(s)ﬁwtasa H{Nr'(”‘*‘;)‘”’
. (3.1)

v s,t € [0,00), § > 0.
Note. Theorem 3.1 is valid also for f : [a,b] = R, [a,b] C R, any s,t € [a,b].
Proof. We have that

1 t a _ ~a\" Dn+1 t a _ ~a\"
(t aT> DI f(s)ro tdr = == f(s)/ (t T) T ldr

n! Jq

n! !
(by €= = ar®~! = dr® = ar®~ldr = Ldr* = 1o~ 1dr)
D3+1f(8) ! « a\n (e

(byt<7<s=1t*<7%=:2)<s%)

D) [ e, DR (7 s
antip! J. (t% —2)"dz = antln) n+1

_ Datl(s) (1= s\
 (n+ 1) a ’
Therefore it holds
L[t —re\" DrHLf(s) [t — s\
= Dyt *ldr = = : 4
n! J, ( a ) o J(8)7 ’ (n+1)! ( e > (34)
By (2.16) and (2.17) we get:

a_ ga k
ro=> 5 (55) e (35)
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() 0o - ) et

n!
Call the remainder as

R (5,8) = il/t (ta - TQ)n (DA f (r) — DI () 72 . (3.6)

(07

We estimate R, (s,t).
Cases:
1) Let t > s. Then

o< [ (5
ai / (5 > ¢ (DR f e ) dr (3.7)
— m/ (t — )" (D"“f, 0 =57 aa_ sa)> dr®

wtlx (DZva 6) ¢ o a\m T — 5¢ o
< i /q =" (14 3 dr
Cwf (D”Jrlf7 ) t* o n z — 8%
= —ri /a t*—2)" (14 3 dz
w& DZ'Hf,(S n o2
I[Ny

et (027 19) [“a S AR NURS e

E) ity () - D 9] e

(6 >0)

antin! n+1 0 T(n+3)

_ wf“ (D;’;""lf’ (S) l(tﬁ — sa)n+1 n! (ta . Sa)n+2‘|

(t* — sa)"“] (3.8)

1
antlp) n+1 + 5 (n+2)!

@ D’I’L+1 6 a o n+1 a a\n+2
antlipl n+1 0 (n+ )(n+2)
« DTL-‘rl 6 a o
:wl ( «a f’ )(ta_sa)n-‘rl 1+(t S )
antl (n+1)! (n+2)6
We have proved that (case of t > s)
w? (Dg+1f7 5) o a\n+1 (ta - Sa)
< A\ Te DT o A ,

where § > 0.
2) case of t < s: We have

() ooyt e ar
t

n 7t Si
R (s5,)] < - .
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% /ts (Ta ; to‘>n (DI f (1) — DIt f () 7 Mdr
<o (F25) - pptse) e (1)
— ﬁ /t (1% — )" W (DIFLf, 5% — 7°) dr®
(0>0)
e AT O I

o

W DZ+1f,5 s% o 1 s N B o (n _
:WM (2 —t%) dz+5/t (57 = 2)* ! (z — )Y 1dz] (3.12)

e o

w§' (DEt1f,6) l(sa — )" 1T (n+1)

- o _ o n+2
antlip! n+1 + 0 T'(n+3) (s ) ]

. (,Ufé (DZ""lf’ 5) (Sa _ toz)nJrl 1 n! (Sa _ ta)nJrQ
- antlp) n+1 0 (n+2)!
« D’I’LJrl 6 o _ qa n+1 1 [ Te" n+2
— Wi ( a fv ) (S 13 ) 4= (S t ) (313)
antlinl n+1 0(n+1)(n+2)
« Dn+1 ’5 a __ a
:wl(a f)(sa_ta)n-‘rl 1+(s t).
antl (n+1)! (n+2)6
We have proved that (¢ < s)
wiX (D:+1f’ 6) n+1 (Sa - ta)
L (s )| < A e BT e ga 142 — ) 14
R (sv0)) < S B (o =) 14 (314)
0 >0.
Conclusion. We have proved that (§ > 0)
wi' (DRt f,96) nt1 |t — s
L (s,1)] < e D) e g 1+ —= 1|, Vs,tel0,00). 1
R (s.0) < St i — e 1 ] e o). (15)
The proof of the theorem now is complete. O

We proved that

Theorem 3.2. Let o € (0,1], n € N. Suppose f isn times conformable a-fractional dif-
ferentiable on [a,b] C [0,00), and let any s,t € [a,b]. Assume that DI f is continuous
on [a,b]. Then

’f(t) () b

k=0

w? (D2f75) « a|n |ta_8a|
< ZL 3 Tadn P e 12 =21
a™n! | i +(n+1)(5 ’
(3.16)

where § > 0.
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Proof. By Theorem 3.1. g

Corollary 3.3. (n =1 case of Theorem 3.2) Let o € (0,1]. Suppose [ is a-conformable
fractional differentiable on [a,b] C [0,00), and let any s,t € [a,b]. Assume that D, f
is continuous on [a,b]. Then

r -1 (555 par @

where § > 0.

¢ — 5°]

wi* (Daf,0)
«

<

Corollary 3.4. (to Theorem 3.2) Same assumptions as in Theorem 3.2. For specific
s € [a,b] assume that DEf(s) =0, k=1,....,n. Then

\f(ﬂ—f@)KM o — so|

ta_ a|n 1 L §
ann! | 5 { +(n+1)5

} . §>0. (3.18)

The case n = 1 follows:

Corollary 3.5. (to Corollary 3.4) For specific s € [a,b] assume that Do f (s) = 0. Then

w§ (Dyf, ) [t — s¥|
£ 1 () < D) li2 = =

‘We make

It — 5% [1+ ] §>0. (3.19)

Remark 3.6. For 0 < o <1, t, s > 0, we have
207 (2% 4 y®) < (w +y)* <2 +y* (3.20)
Assume that ¢t > s, then
t=t—s+s=>t"=({t—s+95)" <(t—s)"+s%

hence t* — 5@ < (t — 5)”.
Similarly, when s >t = s@ —t* < (s — ).
Therefore it holds

% — 5| < [t —s|%, Vit s€0,00). (3.21)

Corollary 3.7. (to Theorem 3.2) Same assumptions as in Theorem 3.2. For specific
s € [a,b] assume that DEf(s) =0, k=1,...,n. Then

w? (DZf,(S) no |t_5|a

t) — <L el Oy 1+-—

£ =1 (o) < R o |14

vVt € [a,b] C[0,00).

} . 6>0, (3.22)

Corollary 3.8. (to Corollary 3.3) Same assumptions as in Corollary 3.3. For specific
s € [a,b] assume that Dy f (s) = 0. Then

£(0)— £ (9] < Dl

vVt € [a,b] C[0,00).
‘We need

|t — s
26

[t — s|* [1 + } , 60>0, (3.23)
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Definition 3.9. Here Cy ([a,b]) := {f : [a,b] C [0,00) — R, continuous functions} .
Let Ly : Cy (Ja,b]) = C+ ([a, b]), operators, V N € N, such that

(1)

Ly (af)=aLy(f), Va>0,Vf e C4 ([a,b]), (3.24)
(ii) if f,g € C4 ([a,b]) : f < g, then
LN (f) < LN (g), VN € N7 (3'25)
(iii)
Ly (f+9) <Ln(f)+Ln(9), Vfg€Cr([ab]). (3.26)

We call {Ln} ey positive sublinear operators.
We need a Holder’s type inequality, see next:

Theorem 3.10. (see [2]) Let L : Cy ([a,b]) — C4 ([a,b]), be a positive sublinear op-

erator and f,g € Cy ([a,b]), furthermore let p,g > 1 : %—Fé = 1. Assume that

L((f()") (s4)5 L((g()7) (s4) > 0 for some s, € [a,b]. Then

L(f()g()(s0) < (LIS )P ()7 (L (g (D) ()7 (3.27)
‘We make
Remark 3.11. By [4], p. 17, we get: let f,g € C ([a, b]), then
Ly (f) (&) — Ly (9) (@) < L (If = gl) (@), ¥V €[a,b] C[0,00).  (3.28)

Furthermore, we also have that

[Ly (f) (@) = f (@) < Ly (I () = f(@)]) () + | f (@) [Ln (eo) () = 1], (3.29)
vV x € [a,b] C[0,00); eg (t) = 1.
From now on we assume that Ly (1) = 1. Hence it holds
\Ln (f) (2) = f (@) < Ln (IF () = f (@)]) (), V@ € [a,b] € [0,00). (3.30)
Next we use Corollary 3.8.
Here D,f (z) = 0 for a specific z € [a,b] C [0,00). We also assume that
Ly (\ - m|a+1) (z), Ly (( - J:)Q(O‘H)) (z) > 0. By (3.23) we have

a 2c
70— f (@) < A DalD [|-x|a+ — ] 50,  (331)
true over [a,b] C [0, 00).
By (3.30) we get
wf (Daf,0) Ly (|- = 2P) @)

\Ln (f) (z) = f(2)] <

«

[LN (1 = al*) () + —— ] (332)

O 3 of (Daf.0) {@V (1) ) L (2 2) <x>>“a“]
- o 20

(3.33)
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(choose & := ((LN (( — x)2(a+1)) (sc))ail>; > 0, hence
5= (L (= 2 ) (@) 7)
wi (Daf, (£ ((=2y*e) (x))““a*”)

{(LN (=21 @)+ 5 (L (6= 0@ (@) ”)] L)

We have proved:

Theorem 3.12. Let a € (0,1], [a,b] C [0,00). Suppose f is a-conformable frac-
tional differentiable on [a,b]. Do f is continuous on [a,b]. Let an = € [a,b] such that
Dof(x) =0, and Ly : Cy ([a,b]) into itself, positive sublinear operators. Assume

that Ly (1) = 1 and Ly (\- - m|‘*+1) (z), Ly ((. - x)m“)) (r) >0,V N eN.

Then
a(-Daf, L (._ )2(a+1) ( ) 2<aa+1>)
ILN(f)(ﬂc)—f(l“)lSw1 (N< :: >m> '
[(LN (I =a""") @) =y % (Lv (=2 ) (@) ‘“} , VN eN. (3.35)
We make
Remark 3.13. By Theorem 3.10, we get that

Ly (| =) (@) < (Ln (¢ =2 ) @) (3.36)

As N — 400, by (3.35) and (3.36), and Ly (( - $)2(a+1)) (x) — 0, we obtain that
Ly (f)(x) = f (2).

We continue with

[N

Remark 3.14. In the assumptions of Corollary 3.7 and (3.22) we can write over [a,b] C
[0,00), that

w? (Dgfv 5) no | - x‘(n+1)a
If(’)f(x)lganmll.x t 5| 9>0 (3.37)

By (3.30) we get
Ly (f) () = f (2)| € —27—

Ly (] —2") (z) + ﬁLN (|. — x|<n+1>a) (x)}

(o (3:27) Wit (D2 f, )

(3.38)

ann!
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KLN <|- - mln(aﬂ)) (x))ﬁl + ﬁ (LN ((. - $)<n+1><a+1>> (m))a‘il}

n+1
[(here is assumed Ly (1) =1, and Ly <| — a;|”(°‘+1)) (x),
LN (( _ $)(n+1)(a+1)) (SC) > O, VY N € N),

(We take 6 = (LN ((. — x)(n"rl)(@“rl)) (.’L‘)) (n+1)(a+1) > O’ then

sl — (LN (( _ x)(n+1)(a+1)) (x))%ﬂ)]

Wt (Dgfa (LN (( — x)("+1)(0‘+1)) (x)) <n+1;¥(a+1>)

ann!

|:(LN (| — x|”(a+1)> (:10))°*Tl + @ Jlr 5 (LN (( _ x)(n+1)(a+1)) (m))wﬁvw]
(3.39)

We have proved

Theorem 3.15. Let « € (0,1], n € N. Suppose f is n times conformable a-fractional
differentiable on [a,b] C [0,00), and DI f is continuous on [a,b]. For a fized x € [a, D]
we have DEf(x) = 0, k = 1,..,n. Let positive sublinear operators {Ln}Nen

from Cy ([a,b]) into itself, such that Ly (1) = 1, and Ly <|._J;‘n(a+1)) (z),
Ly (( - x)(n+1)(a+1)> (£) >0,V N € N. Then

wit (Dgf, (LN ((. - x)(n+1>(a+1)) (I)> <+1>"<+1>)

[Ln (f) (x) = f (@)] < — (3.40)
n(a FEay 1 n o %
|:<LN <| 7x| ( +1)> (:1;)) + —+ (n+ 1) (LN (( 7;17)( +1)( +1)> (.Z‘)) 1) (at :| ,
vV N eN.
We make
Remark 3.16. By Theorem 3.10, we get that
Ly (|- = ") (@) < (Lw (¢ = 2) ") @) (3.41)

As N — +o0o, by (3.40), (3.41), and Ly (( - x)("ﬂ)(aﬂ)) (x) — 0, we derive that
Ly (f)(x) = f (2).
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4. Applications

Here we apply Theorems 3.12 and 3.15 to well known Max-product operators.
We make

Remark 4.1. The Max-product Bernstein operators B](ém (f) (z) are defined by (1.5),

see also [4], p. 10; here f : [0,1] — Ry is a continuous function.

We have B](\,M) (1)=1, and

6
BM (. —2)) (2 <—, Vzel0,1],VNeEN,
see [4], p. 31.
BJ(\],W) are positive sublinear operators and thus they possess the monotonicity

property, also since |- — x| < 1, then |- — x|ﬁ <1,Vzel0,1],V s >0.
Therefore it holds

6
Bgnﬁ_ﬂfw)@)g¢ﬁii,VxemJLVNePav5>o (4.1)

Furthermore, clearly it holds that

BUD (=) @) > 0,Y NN, ¥ f > 0andany v € (0.1).  (42)

The operator BJ(VM) maps C4 ([0, 1]) into itself.

We have the following results:

Theorem 4.2. Let a € (0,1], f is a-conformable fractional differentiable on [0,1],
D, f is continuous on [0,1]. Let x € (0,1) such that Dy f (x) = 0. Then

N D
Wi (Dafa<\/1\?7+> )

[

M
[BY (1) () - £ ()] < - (4.3)
= | 2T
(=) 3 (=) | v e
N +1 2 N +1
Proof. By Theorem 3.12. d

Theorem 4.3. Let a € (0,1], f is n times conformable a-fractional differentiable on
[0,1], and D7 f is continuous on [0,1]. For a fized x € (0,1) we have DEf (z) = 0,

k=1,....n €N. Then
a( WD @ETD
w1 (Dafa (\/]37“) )

a™n!

6 ot 1 6 D et
() + ( )  VNeN
N+1 (n+1) \V/N+1

Proof. By Theorem 3.15. O

(4.4)

BO (N (@) - £ @) <
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Note. By (4.3) and/or (4.4), as N — 400, we get Bj(\iw) () (z) = f(2).
We continue with

Remark 4.4. The truncated Favard-Szasz-Mirakjan operators are given by
N
(M) _ Visosvr (@) f (%
Ty (f)(x) = N
Vi—o sn.k (2)
_ (No)*

sk (x) = “=7—, see also [4], p. 11.
By [4], p. 178-179, we get that

), x€[0,1], NeN, feCy([0,1]), (4.5)

T&”(I-wl)(z)é%, Veel01, VN eN. (4.6)
Clearly it holds

T (|- = 27) () < €01, YNENYE>0.  (47)

3
— V=
VN
The operators TJ(VM) are positive sublinear operators mapping C, ([0, 1]) into itself,
with 73 (1) = 1.
Furthermore it holds

N (N2)* |k A
700 (- - ) (@) = Yi=0 v <]

k! N

N (No)f >0, Vze (0,1, VA>1,VNEN.
Vk:O k!

(4.8)
We give the following results:

Theorem 4.5. Let o € (0,1], f is a-conformable fractional differentiable on [0, 1].
D, f is continuous on [0,1]. Let x € (0,1] such that Do f (x) = 0. Then

o (Por (7))

T30 () (@) = 1 ()] < - (49)
3 \&1 1/ 3 \ @D
[(m) (%) 1 Tren
Proof. By Theorem 3.12. g

Theorem 4.6. Let o € (0,1], f is n times conformable a-fractional differentiable on
[0,1], and D™ f is continuous on [0,1]. For a fized x € (0,1] we have D% f (x) = 0,

k=1,...,ne€N. Then
T () (@)~ f (@) < — -

(3)& 1 <3><n+fﬁi‘a+1> YN eN
— +—= == : eN.
VN (n+1) \VN

Proof. By Theorem 3.15. O

(4.10)
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Note. By (4.9) and/or (4.10), as N — 400, we get TI(VM) (f)(z) = f(x).
We continue with

Remark 4.7. Next we study the truncated Max-product Baskakov operators (see [4],
p. 11)

U](VM) (f) (1,) _ foVZO bN7k (1‘) f (%)

Vo bk (z)

L zel0,1], fecy(0,1), NeN, (411)

where .
N+k-1 ) x
b T) = . 4.12
wla) = (7 T (112)
From [4], pp. 217-218, we get (x € [0,1])
2V3 (V2 +2)
(M) _2v3(va+2)
<UN (I x\)) ()< =5 N22 NeN (4.13)
Let A > 1, clearly then it holds
2v3 (V2 +2)
O (1 — g P il >
(UN (| z| ))(x)_ T YNz2NeEN (4.14)

Also it holds UZ(VM) (1) =1, and UJ(VM) are positive sublinear operators from C ([0, 1])
into itself. Furthermore it holds

U (\- - a:|>‘> (z) >0, Yoe(0,1], YA>1 ¥ NeN. (4.15)
We give

Theorem 4.8. Let o € (0,1], f is a-conformable fractional differentiable on [0,1].
D, f is continuous on [0,1]. Let x € (0,1] such that Dy f (x) = 0. Then

o 0v3(vate) ) 2EFD
Wy <Dafa <(N+1)> )
<

U () @) - £ (@)] < a . (4.16)
2v3 (V2 +2) =1y 2v3 (V2 +2) D
(]V—f—l) +2<\/m , VN>2 NeN.
Proof. By Theorem 3.12. g

Theorem 4.9. Let o € (0,1], f is n times conformable a-fractional differentiable on
[0,1], and D" f is continuous on [0,1]. For a fized x € (0,1] we have D% f (x) = 0,

k=1,..,n €N. Then
o n 2\/§ \/5_;’_2 m
wy <Dafa <(N+1)> )

U () @) - £ ()] < —

2v3 (V2 +2) ot 1 2v3 (V2 +2) (R CEeY
N +1 +(n+1) N f1 ’

(4.17)
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VN>2 NeN.
Proof. By Theorem 3.15. O

Note. By (4.16) and/or (4.17), as N — 400, we get that U](VM) (f)(z) = f(x).
We continue with

Remark 4.10. Here we study the Max-product Meyer-Kéning and Zeller operators
(see [4], p. 11) defined by

Viosna @) f (%)
B \/ZO:() SN,k (.13)
sk (x) = ( N;k ) zF 2 €0,1].
By [4], p. 253, we get that
(14 V5) Vi (1 - )

7200 (f) (x)

L VNeEN, fed, (01])), (4.18)

8
ZM (|- = 2)) (2) < ,Vzel0,1],VN>4, NeN. (4.19)

3 N
As before we get that (for A > 1)
8(14+V5) Va(1—x)
O (1A () < .:
Zn (I z| ) (z) < 3 N p(z), (4.20)
Vxel0,1], N >4, N eN.
Also it holds Z](VM) (1) = 1, and Z](VM) are positive sublinear operators from
C4 ([0,1]) into itself. Also it holds
7 (\- - x|*) (z) >0, Vze(0,1), VA>1,VNeN. (4.21)
We give

Theorem 4.11. Let o € (0,1], f is a-conformable fractional differentiable on [0,1].
D, f is continuous on [0,1]. Let x € (0,1) such that Dy f (x) = 0. Then

of (Daf, (o @)™ )

200 (1) @) - £ (@) < . (1.2
(@) 4 @)™ |, v Nze, Nen
Proof. By Theorem 3.12. d

Theorem 4.12. Let o € (0,1], f is n times conformable a-fractional differentiable on
[0,1], and D7 f is continuous on [0,1]. For a fived x € (0,1) we have D f (z) = 0,
k=1,..,n€N. Then

wf (Daf. (p (@) 7= )

ann!

237 (£) (@) - £ ()] < (4.23)

1
(n+1)

o)+ ()T, v N 24 NeN
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Proof. By Theorem 3.15. g

Note. By (4.22) and/or (4.23), as N — 400, we get that Z(M) (f)(x) = f(x).
We continue with

Remark 4.13. Here we deal with the Max-product truncated sampling operators (see
[4], p. 13) defined by

N k k
Vi S bn) ¢ (k)

M
Wi (f) () = S Neh (4.24)
\/k 0 Nz—kn
and :
\/k Osm (Nz— kﬂ' f(i)
M Nz—kn)? N
KJ(V )(f) (JJ) ( sin?(Nz— kﬂ') ) (425)
\/k 0 (Na: km)?
Vael0,n], f:[0,7] = Ry a continuous function.
Following [4], p. 343, and making the convention % = 1 and denoting
SN,k (z) = %, we get that sy g (kﬂ) =1, and sy (%) =0, if & # 7,
furthermore W](VM) (f) (%) =f (W)? for all j € {0,...,N}.

Clearly W(M) (f) is a well-defined function for all « € [0, 7], and it is continuous
on [0, 7], also W(M) (1)=1.

By [4], p. 344, W](\, ) are positive sublinear operators.

Call If;(z) = {ke€{0,1,..,N};sni(z) >0}, and set zny = 57 &k €
{0,1,..., N}.

We see that
\/kg;(m) snk (@) f (2N k)

Wi () () = (4.26)
N \/keI;(z) snk (@)
By [4], p. 346, we have
wM (|- = 2)) (z) < % VNEN, Vaelon]. (4.27)
Notice also |zy — x| < m, V x € [0,7].
Therefore (A > 1) it holds
A1 A
(M) (1 _ A s T _ T
W (| 2| )(:c)_ =g Vaelm,VNeN. (4.28)
Ifz e (]ﬁ (j';)w), with j € {0,1,..., N}, we obtain nx — jm € (0,7) and thus
_ sin(Nx — jm)
sy, (@) = Nz —jn >0,

see [4], pp. 343-344.
Consequently it holds (A > 1)

Viert ) SNk (@) [ TNk — x|)‘
WA (1= o) (@) = =R >0, Vaelon], (429)

vkel;{,(ar) SNk ()
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such that © # xy, for any k € {0,1,...,N}.
We give

Theorem 4.14. Let o € (0,1], f is a-conformable fractional diﬁerentiable on [0, 7].
D, f is continuous on [0,7]. Let x € [0, 7] be such that x ;é , ke {0,1,...N},V

N eN, and D, f (z) =0. Then
( af,< 2(a+1))2(aa+1>)
- .

o T 1 2(a+1) 2(aa+1)
V-

(e

WP () @)~ 1 @) <

G

wi
(2N)2(a+1)

s

[ &],VNGN (4.30)
(a+1) 2 (QN) 2(a+1)

Proof. By Theorem 3.12. g

Theorem 4.15. Let o € (0,1], n € N. Suppose f is n times conformable a-fractional
differentiable on [0, 7], and D f is continuous on [0, ]. For a fited z € [0, 7] : z # KT

ke€{0,1,..,N},V N €N, we have DX f (x) =0, k =1,....n. Then

Oé "L
( af (2N) "FDGTD )

W () @)~ 1 @) <

a™n!
no no
G T |, VNeN (4.31)
(2N)@+D (n+1)(2N)®FDe+D
Proof. By Theorem 3.15. g

Note. (i) if z = &7, j € {0,..., N}, then the left hand sides of (4.30) and (4.31) are
zero, so these 1nequahtleb are trivially valid.
(ii) from (4.30) and/or (4.31), as N — +oo, we get that WI(VM) (f)(z) = f(x).
We make

Remark 4.16. Here we continue with the Max-product truncated sampling operators
(see [4], p. 13) defined by

Vil S e g (k)

V sin?2(Nz—kw) ’
k=0 (Nz—km)2

KQ" (f) (x) = (4.32)

YV x €[0,x], f:]0,7] = R4 a continuous function.

1n(0) .
=5~ =1 and denoting

Following [4], p. 350, and making the convention

sin® (Nz — km
st = S
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we get that sy (%’T) =1, and sy (JW) =0, if k # j, furthermore

(M) JTN _ (7
Ky (f)<N)_f<N>’
for all j € {0,...,N}.

Since sy ; (N) =1 it follows that

G () 2100

for all j € {0,1,..., N}. Hence K (f) is well-defined function for all z € [0, 7], and

it is continuous on [0, 7], also K( ) (1) = 1. By [4], p- 350, K](VM) are positive sublinear
operators.

Denote p j, := %”7 ke{0,1,..,N}.

By [4], p. 352, we have

KQY (- —2)) (@) € 5o YN EN, Yae0,n]. (4.33)

Notice also |y —z| <7, ¥V 2z € [0,7].
Therefore (A > 1) it holds

A—1 A
(M) (. _ A <7T T_ T
K (| | )(x)f =g Vaelm, VNeN. (4.34)

Itz e (JW U‘}”“), with j € {0,1,..., N}, we obtain nz — jr € (0,7) and thus

sin? (Nz — jm)

sy (z) = >0,
~j (%) (Nz — jm)*
see [4], pp. 350.
Consequently it holds (A > 1)
(M) A Vg s (@) o — )
Ky (|~ — )(x) = 1E=0 : >0, Vazel0m], (4.35)

Vo sk (%)
such that « # xy, for any k € {0,1,...,N}.

We give

Theorem 4.17. Let o € (0,1], f is a-conformable fractional diﬁer@ntiable on [0, 7].
Do f is continuous on [0,7]. Let x € [0,7] be such that x # %% k € {0,1,...,N}, V

N €N, and D, f () =0. Then
2t D)\ 3@rD
ot (Dt (252) ™)

o

K00 () @) - £ (@)] <

ey

g0\ GHT ]/ p2(et])\ D
' <2N) +2( 2N )
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(D / (2N 2<o<+1>> I @
= — + - , VN eN. (4.36)
a (2N)@+D

Proof. By Theorem 3.12. O

Theorem 4.18. Let « € (0,1], n € N. Suppose f is n times conformable a-fractional

. . ne - . . km
differentiable on [0, 7], and D], f is continuous on [0, 7]. For a fived x € [0,7] : x # 57,

ke {0,1,...,N},V N €N, we have DEf (x) =0, k =1,....n. Then

a nf, 1+1)
’K](VM) (f) (:c) _ (x)‘ < ( (2N) A FD (@ FT)

a™n!
) [ T |, ¥NeN (4.37)
(2N)@+D (n+1) (2N)&FDEFD
Proof. By Theorem 3.15. O

Note. (i) if x = ” , 7 €40,..., N}, then the left hand sides of (4.36) and (4.37) are
zero, so these mequahtles are trivially valid.

(ii) from (4.36) and/or (4.37), as N — +oo, we get that KJ(VM) () (z) = f(x).
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Generalizations of some fractional integral
inequalities for m-convex functions via
generalized Mittag-Leffler function

Ghulam Farid and Ghulam Abbas

Abstract. In this paper we are interested to present some general fractional in-
tegral inequalities for m-convex functions by involving generalized Mittag-Leffler
function. In particular we produce inequalities for several kinds of fractional inte-
grals. Also these inequalities have some connections with known integral inequal-
ities.
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1. Introduction

Inequalities play an essential role in mathematical and other kinds of analysis,
specially inequalities involving derivative and integral of functions are of great interest
for researchers.

Convex functions are very special in the study of functions defined on real line, a lot
of results, in particular inequalities in mathematical analysis based on their invention.
A convex function f: I — R is also equivalently defined by the Hadamard inequality

f(a—i—b) /f e < 1210

where a,b € I, a < b.
A close generalized form of convex functions is m-convex functions introduced by
Toader [23].

Definition 1.1. A function f : [0,b] — R, b > 0 is said to be m-convex function if for
all z,y € [0,b] and ¢t € [0,1]

[t +m(1—1t)y) <tf(z)+m(l—1)f(y)
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holds for m € [0,1].
Every m-convex function is not convex function.

Example 1.2. [16] Let f : [0,00] — R be defined by

1
g(t) = E(w‘l — 52° + 92?2 — 57)
16

is T7-convex function but it is not convex function.

For m = 1 the above definition becomes the definition of convex functions defined
on [0,b]. If we take m = 0, then we obtain the concept of starshaped functions on
[0,0]. A function f : [0,b] — R is said to be starshaped if f(tz) < tf(z) for all t € [0,1]
and z € [0, b].

If set of m-convex functions on [0, ] for which f(0) < 0 is denoted by K,,(b), then
we have

whenever m € (0,1). In the class K;(b) there are convex functions f : [0, — R for
which f(0) < 0 (see, [2]). There are a number of results and inequalities obtained via
m-convex functions for detail (see [2, 4, 7, 10]).

Recently, a number of authors are taking keen interest to obtain integral inequalities
of the Hadamard type via fractional integral operators of different kinds in the various
field of fractional calculus. For example one can see [5, 6, 11, 15, 17, 20, 22].

2. Preliminaries in fractional calculus and integral operators

Fractional calculus deals with the study of integral and differential operators
of non-integral order. Many mathematicians like Liouville, Riemann and Weyl made
major contributions to the theory of fractional calculus. The study on the fractional
calculus continued with contributions from Fourier, Abel, Lacroix, Leibniz, Grun-
wald and Letnikov. For detail (see, [11, 13, 15]). Riemann-Liouville fractional integral
operator is the first formulation of an integral operator of non-integral order.

Definition 2.1. [24] Let f € Lq[a,b]. Then Riemann-Liouville fractional integral of f
of order v is defined by

@) = g7 [ @0 0 2> a

I'(v
and
1P L
I f(z) = W/I (t— 2" f(t)dt, = < b.
In fact these formulations of fractional integral operators have been established
due to Letnikov [14], Sonin [21] and then by Laurent [12]. In these days a variety of
fractional integral operators have been produced and many are under discussion. A

number of generalized fractional integral operators are also very useful in generalizing
the theory of fractional integral operators [1, 11, 15, 18, 22, 24].
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Definition 2.2. [18] Let u,v,k,l,v be positive real numbers and w € R. Then the

generalized fractional integral operators containing Mittag-Leffler function e 6]; .
wvlw,a
7,0,k

w b for a real valued continuous function f is defined by:

and €

(Gt ad) @ = [ =0 B e — 00 0 2.1)
and

b
(68hen 1) @ = [ 6=y EpSH i - o) (0,

where the function EAY %, k is generalized Mittag-Leffler function defined as
o0 tn
E'y,é k _ (’Y)kn 7 929
[Llll() ;F(Mn‘i’l/)((s)ln ( )

(a)y, is the Pochhammer symbol, it defined as

(a)p =ala+1)(a+2)...(a+n—-1), (a)y=1.

v,0,k

L at reduces to an integral operator

If 6 =1 =11in (2.1), then integral operator €

Zilfw .+ containing generalized Mittag-Leffler function EW i ¥ introduced by Srivas-

tava and Tomovski in [22]. Along with 6 = [ = 1 in addition 1f k =1 then (2.1) reduces
to an integral operator defined by Prabhaker in [17] containing Mittag-Leffler function
E7 . For w =0 in (2.1), integral operator €, i”fw .+ reduces to the Riemann-Liouville
fractional integral operator [18].

In [18, 22] properties of generalized integral operator and generalized Mittag-
Leffler functions are studied in details. In [18] it is proved that EZif(t) is absolutely

convergent for k < [ + p. Let S be the sum of series of absolute terms of EZ,‘E;“( ).
We will use this property of Mittag-Leffler function in sequal.

Now a days a number of authors are working on inequalities involving fractional
integral operators and generalized fractional integral operators for example Riemann-
Liouville, Caputo, Hilfer, Canvati etc [8, 20]. Actually, fractional integral inequalities
are very useful to find the uniqueness of solutions for partial differential equations
of non-integral order. In this paper we give some fractional integral inequalities for
m-convex functions by involving generalized Mittag-Leffler function. Also we deduce
some main results of [3, 9, 19].

3. Fractional integral inequalities

First we prove the following lemma which would be helpful to obtain the main
results.

Lemma 3.1. Let f : I — R be a differentiable mapping on I, a,b € I with0 <a <b
and also let g : [a,mb] — R be a continuous function on [a,mb]. If f’',g € Lla, mb],
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then the following equality holds for v > 0
mb Sk v
</ 9($)EL (WS“)d8> [f(a) + f(mb)]
mb t v—1
o [T [ szt esas) OB @
a a

mb mb v—1
— 1// </ g(s)EZi;C (ws“)ds) g(t)EZ:if(wt“)f(t)dt
a t

- / " ( / t g(s)Ezjizﬂws“)ds)V f(t)dt

mb mb v
—/ </t g(s)EZ:if(ws"‘)ds) [/ (t)dt

where E;if is generalized Mittag-Leffler function.

Proof. One can have on integrating by parts

[ ([ sompstesnas) o

= ( / mbg(s)EZ;Z;?(ws“)ds) f(mb)

s
)

mb t v—1
—v / ( / g(s)Eg;if(wsﬂ)ds> gt EL T (wt*) f(t)dt.

And likewise

mb mb v
/a ( / g(s)E,z;i;ﬂws”)ds) £t

mb Y
- ( / g(s)EZ:i:f(wsws) ()

mb mb vl
v / ( / g(g)E;;ﬁ;f(wsﬂ)ds> g E) ) (wt?) f(t)dt.
a t

On substracting equation (3.3) from (3.2), we get the result.

We use Lemma 3.1 to establish the following fractional integral inequality.

(3.1)

(3.2)

Theorem 3.2. Let f: I — R be a differentiable mapping on I, a,b € I with0 <a <b
and also let g : [a,mb] — R be a continuous function on [a,mb]. If |f'| is m-convex
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function on [a,mb], then the following inequality holds

mb v
‘ ( / g(s)E:;izﬂws“)ds) (F(a) + f(mb)
mb t v—1
—v / ( / g(s)EZ;i:f(ws“)ds) g EY T (wt) f(t)dt

mb mb v—l
—v / ( / g(s)Egjif(wsﬂ)ds> gt BT (wt) f(t)dt
a t

(mb—a)y+1“g‘|gosu ’ /
< T (1f )|+ mls )

for k <1+ p, where || g ||co= sup |g(t)].

t€la,b]

Proof. By using Lemma 3.1, we have

mb v
( / g(s)Ez;i:ﬂws”)ds) (f(a) + f(mb)) (3.4)

-1

/mb /t Skl : ik
—v g(8)E) )y (wst)ds g B}y (wth) f(t)dt

mb mb v—l
—v / ( / g(s)EZ:if(ws“)ds) gt BT (wt) f(t)dt
a t

mb
<
a
mb
“f
a

By using || ¢ ||co= sup |g(¢)| and absolute convergence of Mittag-Leffler function, we
te(a,b]

v

/ (VBN wsyds| | (1)t

mb v
[ atE sk wsas| 1 wlat
t

have

mb v

‘( / g(s)El,’if(ws“)ds> (f(a) + f(mb)) (3.5)
mb t v—1

—v / < / g(s)E;;if(wsu)ds> g EY ) (wt?) f(t)dt
mb mb v—l

—v / ( /t g(s)E;;i;f(wsﬂ)ds> gt E) Dy (wt?) f(t)dt

mb mb
< Jlgll%5" ( / (t— a)"|f(t)]dt + / (mb—t)”lf’(t)ldt> .

a
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Since | f’] is m-convex function, therefore it can be written as

701 < 2L )+ 2D, gy (36)
for ¢ € [a, mb].
Using (3.6) in (3.5), we have
mb v
’ < / g(s)Ez;i:ﬂws“)ds) (F(a) + F(mb) (3.7

—1

mb t v
—v / ( / g(s)Eg;ﬁf(wsﬂ)ds) gt BT (wt) f(t)dt
’ ’ 7,6,k H v.8.k
—v g(s)EWJJ (wst)ds g(t)EW,J (wtt) f(t)dt
a t

mb mb — m(t —a
< flolis” (/ (0= o (2t + 2= o)) a

mb mb—a
mb
mb —t m(t — a)
b—1t)” ! ———|f'(b)] | dt | .
s [ - (B )+ 2= ) )
After simplification of above inequality we get the result. O

Remark 3.3. By taking particular values of parameters used in Mittag-Leffler func-
tion in above theorem several fractional integral inequalities can be obtained for cor-
responding fractional integrals. For example see the following results.

Corollary 3.4. If we take m =1 in Theorem 3.2, then we get the following inequality

b 1%
| ( / g(s)E;;i;ﬂws“)ds) (f(a) + £(b)
b t v—1
[ ( / g(s)E;;i;ﬂws“)ds) GO ) (1)t

b b v—1
v / ( / g(s)E;;S:ﬂws“)ds) GO ETSE (i) f (1)t

—a v+1 v v
< O= MBS ) 4 o).

Remark 3.5. In Theorem 3.2, for m = 1.

(i) If we put w = 0, then we get [19, Theorem 6].

(ii) If we take w = 0, v = £ and g(s) = 1, then we get [9, Corollary 2.3].
(iii) For g(s) = 1 along with w = 0 and v = py, then we get [19, Corollary 2].

Next we give another fractional integral inequality.
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Theorem 3.6. Let f: I — R be a differentiable mapping on I, a,b € I with0 < a <b
and also let g : [a,mb] — R be a continuous function on [a,mb]. If |f'|? is m-convex
function on [a,mb] for g > 1, then the following inequality holds

mb v
‘ ( / g(s)Ez;izﬂws“)ds) (F(a) + f(mb)
mb t v—1
—v / ( / g(s)EZ;i:f(ws“)ds) gt EY T (wt) f(t)dt

v—1

/mb /mb vk vk
v g(s)E,u,u,l ((US )dS g(t)E/L,l/J (Wt )f(t)dt
a t

< 2(mb — a)" g%, 8" <f’(a)|q + m|f’(b)|q>é
B (vp+ 1)% 2

for k <1+ p, where || g ||oo= sup |g(t)| and % + % =1.
t€la,b]

Proof. By using Lemma 3.1, we have

v

mb

‘( / g(s)E:;i:ms“)ds) (Fa) + F(mb) (33
mb t v—1

v / ( / g(s)El:i:?(ws“)ds) gL (wt) f(t)dt
mb mb v—1

v | ( / g(s)E;;i:ﬂws“)ds) o(OE () f (1)t

mb
<]
a
mb
“f
a

Using Holder inequality, we have

v

t
/ 9($) BN (ws)ds| |f(1)]dt

mb v
[ atEskwsas| 1 ®lat
t

mb v
|</ g(S)EZ,’i’f(ws“)d$> (f(a) + f(mb)) (3.9)

mb t v—1
—v / ( / g(s)Eg;;jf(wsﬂ)ds) g E) )T (wt?) f(t)dt

mb mb
v / ( / g(s)E,z;i;msﬂ)ds) g(O TSk (wt) f(t)dt
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< ( /" Vpdt) ( / mblf’(t)th)
. (/amb N dt)zl) </amb|f’(t)th>;. (3.10)

By using || ¢ ||lco= sup |g(¢)| and absolute convergence of Mittag-Leffler function, we
t€(a,b]

=
Q=

t
[ aeE sk wsas

mb
/ g(s)El’i’f(ws”)ds
t

have

mb v
|< / g(s)E:;i;ﬂws#)ds) (f(a) + f(mb)) (3.11)

mb t v—1
v / ( / g(s)E,z;i:ms“)ds) g() BTk (wt) £ ()t
v—1

mb mb
v | ( / g(s)Ez;i:ms“)ds) 9B S ) f (1t
a t

mb %

< |lgllZ. 8" ( ( [ —a|"pdt>
mb mb %
+</ |mb—t|”pdt> (/ f’(t)|th> .

Since |f’(t)]|? is m~convex, we have
b—t m(t —a)
e < m(t —a)

ol < =t

[ () + AL (3.12)
Using (3.12) in (3.11), we have

=

mb —

mb v
( / g(S)EZji’f(wS")d8> (f(a) + f(mb))

_ /mb /t 7,0,k m Y 7,0,k m
v g(s)EIWJ (wst)ds g(t)EW/J (wt™) f(t)dt

mb mb v—l
—v / ( / g(s)EZ:if(ws“)ds) gt BT (wt) f(t)dt (3.13)

1 1
mb P mb P
< llgll&s” ((/ It — a|”pdt> + </ |mb—t|””dt> )

mb - m(t—a !
(/ mb =t prayje 4 )If’(b)lq>-

mb—a mb—a
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After a simple calculation, we get the required result. O

Remark 3.7. It is remarkable that by taking particular values of parameters of Mittag-
Leffler function in above theorem several fractional integral inequalities can be ob-
tained for corresponding fractional integrals. For example some results are given be-
low.

Corollary 3.8. In Theorem 3.6 if we take m = 1, then we have the following integral
iequality

b 1%
|< / ofs )E;gms%) (f(a) + F(b)

[ b ( / e )E,Zi?(ws*‘)ds)u_l GBS (wt) (1)t

b b
_y/ (/t g(S)EZ:Sf(wsﬂ)ds> ()Eli;@( t”)f(t)dt

1

2 20— a)" " gll5 8" <|f’(a)|q + f'(b)q) ’
N (vp+1)7 2

Remark 3.9. In Theorem 3.6, for m = 1.

(i) If we put w = 0, then we get [19, Theorem 7).

(ii) If we take w = 0 along with v = £, then we get [9, Theorem 2.5].

(iii) If we take g(s) =1 and w = 0, then we get [3, Theorem 2.3].

(iv) If we put w = 0 and v = 1, then we get [3, Corollary 3].

In the next result we give the Hadamard type inequalities for m-convex func-
tions via generalized fractional integral operator containing generalized Mittag-LefHler
function.

Theorem 3.10. Let f : [a,mb] — R be a positive function with 0 < a < b and
f € Lla,mb]. If f is m-convex function, then the following inequalities for generalized
fractional integral hold

a + mb y.6.k
f( 2 ) (euulw“*mbwl)
v,8,k 7,8,k a
( v, l,w’ (“JrZ'"Lb ) (Eu v,l m“w’,(%)—f> (E)
< 1 [f(a) —mf (—)] (ewm 1) (mb)
~mb—a m?2 u,u+1,l,w’,(%’”b)+
v+1 a v:8,k a
et (10 +mf (15)) (G0 ez ) ()

2Hw
(mb—a)r -~

IN

where w' =

Proof. Using m-convexity of f, we have

() < He) it

(3.14)
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for z,y € [a, mb].
By taking « = fa + Ztmb, y = Z=La + Lb for t € [0,1] such that z,y € [a, mb],
inequality (3.14) becomes

2f(a+mb><f<;a+22t )+mf< o+ b) (3.15)

Multiplying both sides of (3.15) by t”*lE;’:f:f (wt*) and integrating with respect to ¢
on [0, 1]

2f<“+2mb> / (¢ ETOF )t (3.16)
0

1
</ (t"~ 1)EZ’3§“( tH) f <;a+22tmb> dt

2—-t t
v— 1 'y5k
+m/ " )E (W t“)f<2ma+2b>dt.

Setting u = §a + %tmb and v = 57ta + §b in (3.16), we have
a+mb 1 bk L
2 ( ) /ﬂ (mb — )" =L (W (mb — w)")du (3.17)
2
mb o
= /i (mb —u)" " BT (@ (mb — u)*) f (u)du
2 ofmb b1
Fmt [ (o ) B (e = ) (e
where w' = (mi‘:u;)u_
This implies
a+mb
2f ( ) (%Zi’,ﬁwu(%mbwl) (mb) (3.18)

~,8,k v,8,k g)
(08 g ) 0+ (G50 1) (2),

To prove the second inequality from m-convexity of f, we have

f(;a+m22_tb>+mf( L b) (3.19)

<4 (10 () o (00 ().
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Multiplying both sides of (3.19) by t”*lElzg’f (wt*) and integrating with respect to ¢
over [0, 1], we have

1 9
/ LB (wtt) f (;a—i-mth) dt (3.20)
b N2t
+m/ LB (wtt) f (2ma—|—b)
1
< - v ’Y,5k n
—z(f( m?f (= )/tE Bty de

:)
+m< ( ))/ LB (wtt) .

Setting u = £a + m25b and v = 2=La + £b in (3.20), we have
mb
[L L (mb— w) T EY DT (@ (mb — w)) f (u)du (3.21)
’ a«zl;'mb vl u
+/ (v - g) Elif (m”w' (v — ﬁ) ) f(v)dv
= m ” m
1 2 a " 8k ¢ 1
< B (f(a) —m*f (W)) [Hm (mb—w)"E} )7 (' (mb —u)t)dt
a+mb

NPt (f(b)—i—mf(%))/a 8 (v—%)y_ B0 (i (U—T‘;)”) dt.

m

This implies

(0o oty ) () (i:i’,’imuw,,<w>f) () (3.22)
= mbl— a (f(“) —m'f (%)) <€Z’i’i1,z,w',(%m>+1> (mb)
Fm (10 +mi (05)) (G epmy 1) ()

2m

Combining (3.18) and (3.22) we get the result. O

Corollary 3.11. In Theorem 3.10 if we take w = 0, then we get the following inequality
for Riemann-Liouville fractional integral operator

a+ mb 2 10w +1) 7, v a
! < 2 )S ey (Tesgy Smb) Ty £(2)) - (329)

i V@ (Gp)) + 5 0 ems (55))

Remark 3.12. If we put w =0, m = 1 and v = 1 in Theorem 3.10, then we get the
classical Hadamard inequality.
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Inequalities for the area balance of absolutely
continuous functions

Sever S. Dragomir

Abstract. We introduce the area balance function associated to a Lebesgue inte-
grable function f : [a,b] — C by

ABj (a,b,-) : [a,b] = C, ABy (a, b, z) [/f t)dt — / f@ dt}
We show amongst other that, if f: I — C is an absolutely continuous function

on the interval I and [a,b] C I, where I is the interior of I and such that f is of
bounded variation on [a,b], then we have the inequality

= (50 =2) o= L0 ()’ o]

1 2 a b 2 b /
[4(ba) +(xf ; ) \a/(f)
for any z € [a, b] .

If there exists the real numbers m, M such that

<

1
4

m< f (t) < M for ae. t € [a,b],

then also
2
AB; (a,b,7) (a;rbfm)f(x)fmZM J’;b) +i(ba)2}
1 2 a+b 2

for any z € [a, b] .
Mathematics Subject Classification (2010): 26D15, 25D10.

Keywords: Functions of bounded variation, Lipschitzian functions, convex func-
tions, integral inequalities.
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1. Introduction

For a Lebesgue integrable function f : [a,b] — C and a number x € (a,b) we

can naturally ask how far the integral f; f(t)dt is from the integral [ f(¢)dt. If f
is nonnegative and continuous on [a, ], then the above question has the geometrical
interpretation of comparing the area under the curve generated by f at the right of
the point x with the area at the left of x. The point z will be called a median point, if

/:f(t)dt/jf(t)dt

Due to the above geometrical interpretation, we can introduce the area balance func-
tion associated to a Lebesgue integrable function f : [a,b] — C defined as

ABy (a,b,-) : [a,b] = C, ABy (a,b,z) :== [/f dt—/ f(t dt]

Utilising the cumulative function notation F : [a,b] — C given by

:/:f(t)dt

AB; (a,bz) = %F(b)—F(x), 2 €lab].

then we observe that

b
If f is a probability density, i.e. f is nonnegative and / f(t)dt =1, then

ABf(a,b,x):%—F(x), x € [a,b].

In this paper we obtain some inequalities concerning the area balance for absolutely
continuous. Applications for differentiable functions whose derivatives are Lipschitzian
functions are provided. Bounds involving the Jensen difference

9(0) 1) _g<a;b>

are also established.
We notice that Jensen difference is closely related to the Hermite-Hadamard
type inequalities where various bounds for the quantities

fla)+f@® —a_/f

/ £t dt— (a+b>

and

are provided, see [1]-[6] and [ -[18
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2. Preliminary results
The following representation result holds:

Theorem 2.1. Let f : [a,b] — C be an absolutely continuous function on [a,b]. Then
we have the representation

ABy (a,b,) = <“;b x) f (@) 2.1)
T b
+% /a (t—a)f’(t)dt—k/w (b—t)f’(t)dt]

and

PRI (CE iGN ICES{ON )

—f/ t— ol 1 (¢

for any x € [a,b], where the integrals in the right hand side are taken in the Lebesgue
sense.

Proof. Since f is absolutely continuous on [a, b], then f is differentiable almost every-
where (a.e.) on [a,b] and the Lebesgue integrals in the right hand side of the equations
(2.1) and (2.2) exist.

Utilising the integration by parts formula for the Lebesgue integral, we have

T b
/ (t—a)f’(t)dt—i—/ (b—1) f (1) dt (2.3)

x b
=(t—a)f(t>|i§—/ f<t>dt+<b—t>f<t>|i+/ oy
b
w—a)f /f b dt - (a:)—l—/f(t)dt

=2z—-a—-10)f(zx)+2ABy (a,b,x)

for any « € [a,b].
Dividing (2.3) by 2 and rearranging the equation, we deduce (2.1).
Integrating by parts, we also have

b
[ 1=l s @ @4
T b

:/ (q;—t)f’(t)dt—i—/ (t—a) f'(t)dt

a x

T b
=(x—t)f(t)|§+/ f(t)dt+<t—x>f<t>\’;—/ £ (1)t

— —(@—a)f(a) + (b—2) f (b) — 24B; (a,b,2)
— bf (8) +af (@) — [f () + f (a)] « — 2AB; (a,b,2)
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for any x € [a,b].
Dividing (2.4) by 2 and rearranging the equation, we deduce (2.2). O

Corollary 2.2. Let f : [a,b] — R be an absolutely continuous function on [a,b].
If f'(t) > 0 for a.e. t € [a,b], then

S
bf(b);af(a) 3 f(b);f(a)xZABf (a,b, z) (2.5)

> (a;b—x>f(w)

for any x € [a,b].
In particular,

1 b

100 0) - 7@] = a8; (0. °5) 20 (26)
The constant % 1s a best possible constant in the sense that it cannot be replaced by a
smaller quantity.

Proof. The inequalities (2.5) follow from the representations (2.1) and (2.2) by taking
into account that f’ (¢) > 0 for a.e. t € [a, b].

The inequality (2.6) follows by (2.5) for z = 2£2.

Assume that the first inequality in (2.6) holds for a constant C' > 0, i.e.

a+b
Co-a)lf )~ 1 @) = 4By (a.“3) 2.7
Consider the function f, : [-1,1] — R given by
0 iftel-1,0]
fat)=2 nt ifte(0,1)

1 ifte [+ 1]

where n > 2, a natural number. This functions is absolutely continuous and f, (¢) > 0
for any ¢t € (—1,1). We have for a = -1,b=1

C(b—a)[fu(b) = fn(a)] =2C

and

ABy, (a,b,a;rb> - [/Olfn(t)dt— Ofn(t)dt]

Il
N = N~ N

7N
N
Sl

3

~

L

~

+
‘“\H

—

L

~
~_
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Replacing these values in (2.7) we get

1 1
20> - (1—-— 2.8
2 ( Qn) (28)
for any n > 2.
Taking the limit for n — oo in (2.8) we get C' > %, which proves that § is best
possible in the first inequality in (2.6) O

Remark 2.3. Let f : [a,b] — R be an absolutely continuous function on [a,b]. If
f'(t) > 0 for ae. t € [a,b], then ABy (a,b,z) >0 for x € [a, 2$2] ([2£2,0]).
Moreover, if f (b) # —f (a) and

bf (b) +af (a)

0T 7@ € [a, b] (2.9)
then bf (8) + af (a)
+af (a

Also, if f (a), f (b) > 0, then (2.9) holds and the inequality (2.10) is valid.

Corollary 2.4. Let f : [a,b] — C be an absolutely continuous function on [a,b] and
~v € C. Then we have the representation
b
+ (CH_ - a:) f(x) (2.11)

2

1 b\’ 1
ABf(a,b,a:):nyl(x—a; ) +1(b—a)2

. b
+% / (t—a)(f’(t)—v)dwr/x(b—t)(f’(t)—v)dt]
and
D e
2
o[-y o]

for any x € [a,b].

Proof. Let e (t) = t,t € [a,b]. If we write the equality (2.1) for the function f — e
we have

ABjy_re (a,b,z) = (

L ) (f (&) - 7o) (2.13)

[e—awo-na+ [ o-ouw-ya

for any « € [a,b].
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Observe that

ABj_+c(a,b,2) = ABf (a,b,x) — vAB. (a,b,x)

b x
/ tdt — / tdt
z a

and

AB. (a,b,x) =

N TN

N~ N

AB; (a,b,x) = <“;b - :c) (f (z) — o) + %v (a2 +b $2> (2.14)

for any x € [a,b].
Since

24+0° b\* 1
xzf(a+b)x+a —2|_ (xa;_ > +=(b-a)’

then from (2.14) we deduce the desired equality (2.11).

From (2.2) we have

2 2
ABf_Vﬁ(a”l%x): bf(b)+af(a) 77b _;_a B f(b);f(a)z*l“’ya;_b%

2
b
A S CACERL

and since

ABjf_e(a,b,x) = ABy (a,b,x) — yAB. (a,b, z)
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then

ABy (a,b,x) =

1 [a®+b? bf (b) +af (a)
(52 ) o

b2+a f(®)+ f(a) a+b
— — 2 T+ 7y 9 T

——/ t— | (' (£) — ) dt

b)+af(a) fO)+f(a)
2 2

a® +b?
2

—Ly {xz—(a—kb)m—i—

- }—i/ﬂbt—w'(t)—v)dt

which proves the desired equality (2.12). O

Remark 2.5. We have the following equalities

AB; (a,b, a;”’) = éw(b —a)? (2.16)
afb b
ty| [T o @-mas [ o-nw o=
and
A8y (a0, 2) = L0- 0 F 0 - @] - g 0-® 21D
b a
5[ -5 -

for any v € C.

3. Bounds for absolutely continuous functions

Now, for ,I' € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions

o (1,T) = {f  [a,b] = C|Re [(r — () (m - 7)} >0 for each t € [a, b]}

and

Apugy (1T) = {f b = € ‘f (- 1L

1
5 < = |I'—~| for each te[a,b]}.
The following representation result may be stated.

Proposition 3.1. For any v,I" € C, v # I', we have that (_][a,b] (v,T) and A[a,b] (v,T)
are nonempty, convex and closed sets and

U[(L,b] (77 F) = A[a,b] (77 F) . (31)
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Proof. We observe that for any z € C we have the equivalence

’z—M’ gl‘r_ﬂ
2
if and only if

Re[(I'=z)(z2=7)] = 0.

This follows by the equality

1 v+T 2 _
$I0=af = = T =Rl - 2) -9
that holds for any z € C.
The equality (3.1) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 3.2. For any v,I' € C, v # I', we have that
Ulag) (7, 1) ={f : [a,8] = C | (Rel' — Ref (t)) (Ref (t) — Rey) (3.2)
+ (ImI — Imf (¢)) (Imf (¢) — Imy) > 0 for each t € [a,b]}.
Now, if we assume that Re (I') > Re (7) and Im (T') > Im (), then we can define
the following set of functions as well:
Sfas) (1, 1) == {f : [a,0] = C | Re(T') > Ref (t) > Re(v) (3.3)
and Im (") > Imf (¢) > Im () for each ¢ € [a,b]}.
One can easily observe that S[G,b] (v,T) is closed, convex and
0 7é S[a,b] (771—‘) c U[a,b] (’Yvr) . (34)

Theorem 3.3. Let f : [a,b] — C be an absolutely continuous function on [a,b]. If there
exists v, I € C, v # I such that f" € Ujgyp (7,T) then

ABfmﬁﬂﬂ(a+bm>f@) (3.5)
_1}5 G—GQ€Y+iw—aﬁ

T —~| 1 5 a+b\>
< Z(b— _
< 1 b—a)+ |z 5

‘ABf (a,b,z) — + x (3.6)

and
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for any x € [a,b].
Proof. From the equality (2.11) we have
ABy (a,b,x) (3.7)

(m—a;—b>2+i(b—a)2 —(a;b—x)f(x)
/:(t—a)(f’(t) V;Lr>dt+/:(b—t)(f’(t) ”;F>dt1

for any x € [a, 0] . B
If ' € Uap) (7,1) = Ajap) (7, 1), then by taking the modulus in (3.7) we get

'ABf(a,b,x)( x)f(x)

(=) s Lomar
5[ - (ro- W;F)dw/:(b—t)(f’(t) ) a
;[/j(ta)<f’(t) ) a4 /:(bt)<f’(t) S ar
;Uj(ta) 70 - ”ﬂdm/:(bt)

< |F;7| l/:(t—a)dt+/:(b—t)dt]

P— [@=—a)’+ (-2 [F—9 |1 2 a+b\’
= [ ]z [4(b—a) +(x— )

_o+r
4

2

a+b

_a+D
4

1

IN

|

IN

") — ——|dt

4 2 4

for any « € [a,b], which proves the inequality (3.5).
From the equality (2.12) we have

ABy (o) - MOl O+, 6s)

aer 2 1 2
<:c 5 > +4(ba)]
1/b|tx| 7= a
2. 2
for any « € [a,b].

Taking the modulus in (3.8) and using the fact that
f €Uy (1,1) = Ay (7,T)

40
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we have
487 0. - O LS @), 020,
~+T a+b\? 1 9
+T (Z‘— 5 ) +4(b—a)]

_o+r
2

IN

@ ‘ dt

1 b
5[ lt-a

IN

4 2 4 4

for any « € [a,b], which proves the desired inequality (3.6).

|F;’Y| /abtxdt IFZWI [/az(mt)dtJr/:(tx)dt]

_ -1 l(mah(bx)g] ] [l(b—a)2+<x—

Remark 3.4. Let f : [a,b] — R be an absolutely continuous function on [a, b]. If there

exists the real numbers m, M such that
m< f'(t) < M for ae. t € [a,b],

then
a+b

‘AB“@&x)( x)f@)
(m—a;b>2+i(b—a)2]

L M-m [1(b—a)z+<m—a+b>2

m+ M
4

and

for any x € [a,b].

Corollary 3.5. With the assumptions of Theorem 3.3 we have

‘ABf (a,b,a+b) _ D g2 < B2

<
16 -

T (b—a)’

(3.9)

(3.10)

(3.11)
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and

1 v+T

{0-0U0 - r@l- 00— an; (an 50 a2

Theorem 3.6. Let f : I — R be an absolutely continuous function on the interval 1
and [a,b] C I, where I is the interior of I and such that [’ is of bounded variation on
[a,b] . Then we have the inequalities

‘AB]« (a,b,z) — (‘”b —x) f (@) (3.13)
*w (ma;b)eri(ba)Q]

11 ) a+b\?
<Z\|Z((p=— _
_4[4(b a)—f—(m 5 )

b
V()
and

+ x (3.14)

for any x € [a,b].

Proof. From (2.11) for v = M we have the representation

ABj (a,b, z) (3.15)
_7]0/(“);””(6) [(;p— a;rb>2+i(b—a)2] - (a;rb—x)f(:c)

+/:(b_ﬁ) <f,(t)_f’(a);rf’(b))dt1

for any « € [a,b].
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Taking the modulus in (3.15) we get

ABfm&Jﬂ—<a;b—m>f@) (3.16)

f'(a) + f' (b) a+b\? 1 2
4[<x 5 ) *4“’“)1

<3| a-alro- T 0
+/:(b—t) f’(t)—ﬁ(a)';f/(b)‘dt]

for any x € [a,b].
For t € [a,x] we have

f’(t)—W’ _ f’(t)—f’(a);rf’(t)—f’(b)‘
< U7 0~ F @I +176) - £ @)
1\

and similarly, for ¢ € [z, b] we have

and then by (3.16) we get

PBfmﬁﬂg—<a;b—x)fw)

—W [<x—a;b)2+1(b—a)2]

<3| [ e-ams [Comnal Vo

:% [i(b—af—i—( —a+b) \i/

for t € [a,b], and the inequality (3.13) is proved.
The second inequality goes along a similar way and we omit the details. O

Corollary 3.7. With the assumptions of Theorem 3.6 we have

a+b) _S@Ere),

AB —a)?
‘ f(”’b’ 2 16 @)

1 oy
StV e
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and
0= o) - @ - O EO 6oy (a0 ) eay

4. Bounds for Lipschitzian derivatives
We say that v is Lipschitzian with the constant L > 0, if
lv(t) —v(s)| < L[t — s

for any ¢, s € [a,b].

Theorem 4.1. Let f : I — R be an absolutely continuous function on the interval I
and [a,b] C I, where I is the interior of I and such that f’ is Lipschitzian with the

constant K > 0 on [a,b]. Then we have the inequalities

a+b

‘ABf (a,b, ) —( —a:) f(z)
_%f’(x) li(b—a)z—l- <x— “;b>2

< Bo-orfs(o- ) s Lo-o]

12

for any x € [a,b].
In particular, we have

a+b 1,/a+b 2

The constant 45 is best possible in (4.2).

Proof. We have from the equality (2.11) that
ABy (a,b,x)

—(“jb—x)f@o—;fcw[iw—af+(x—“;b)2

N b
_;V (t—a)[f/(t)*f/(:v)]dtJr/gC (bt)[f/(t)f’(xﬂdf]

for any « € [a,b].

(4.1)

(4.2)
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Taking the modulus on (4.3) we have

AB; (a,b,z) — (‘”b —a:) f (@)

,%ff(x) [i(ba)%(x“;bf

S%K [/ax(t—a)(x—t)dt—l—/b(b—t)(t—x)dt]

x

for any x € [a,b].
Since a simple calculation shows that

d 1
/(t—c)(d—t)dtzé(d—c)?’,

then
x b
/ (t—a)(a:—t)dzH—/ (b—1) (t—x)dt

é [(x —a)® + (b— 3:)3}

(l-'—b 2 1 2
=6(b—a)l3(a:— 5 ) —|—4(b—a)]
for any x € [a,b].

Utilising (4.4) we get the desired inequality (4.1).
Consider the function f : [a,b] — R,

—(t— ) ift e [a, 252)

—

(t—at2)?  ifee [22,p].

—2(t— k) ift € [a, %)
) =
2(t— b)) ifte [<Eb b,
_ Q‘t_a—H)
2
for ¢ € [a,b].
Since

) -1 (s)] = th_a;b‘_’S_a;b

210t — s

IN

x b
[/ <t—a>|f’<t>—f’<z>|dt+/ (b—t)f’(t)—f’(:c)ldt]
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for any ¢, s € [a,b] , we conclude that f’ is Lipschitzian with the constant K = 2.

‘We have
a+b 1 b 5t

ABf<ab ) 2[/Tf(t)dt— ]

b +

IRGCSETMGE S

2
10 a+b\> 1 3
= i/a (t— 9 ) dt—ﬂ(b—a)
If we replace these values in (4.2) we get in both sides the same quantity 2 (b — a)’.
O
The following result also holds:
Theorem 4.2. With the assumptions of Theorem 4.1 we have the inequalities
bf (b b
‘A3f<a,b,x>_ SO ofla) SO (), ws)
1, a+b\? 1 5
+§f (x) [(sc— 5 ) +i(b—a)
1 a+b\? 1 )
E(b—a)K l?) T-— ) +Z(b—a) ]

for any x € [a,b].
In particular, we have

To-alro-s@l- g (50) 0=t - as; (a0 50)| o
< % K (b—a).

The proof is similar to the above Theorem 4.1 and the details are omitted.

5. Inequalities for p-norms

For a Lebesgue measurable function f : [¢,d] — C we introduce the p-Lebesgue

norms as
/p

1 e.ap == (/ |f (t Ipdt> ifp>1

(e,d],00 1= €8S sup_|f (t)]
t€le,d]

and

provided these quantities are finite. We denote f € L, [¢,d] and f € Lo [c,d] .
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Proposition 5.1. Let f : [a,b] — C be an absolutely continuous function on [a,b]. Then

we have the inequalities

ABf(a,b,x)—(a+b—m>f(m)
T b
S;V (t=a)lf O+ [ 6=0lr (| = B @)

and

’bf(b)+af(a)_f(b)+f(a)x_AB (a,b, 2)
2 2 e

b
<5 [ le=allf Oldes= B2 @

for any x € [a,b].
Moreover, we have

[ 5@ = ) li0.000 if f' € Loc [a, 7]

if ' € Lg|a,x],

1
_ 1 141/
2 W(x—a) ||fl||[a,m],ﬂ i+%:1’a>1
(@ = a) |f lfau) 2
5 0= 120,00 if f' € Log [, ]
1 1+1 if f' € Ls [$7b]7
5 W(b_.’l;) Iy ||f/||[93,b],5 %+%:177>1
(0= 2) [/ NIz p1.1
and
2 .
3 (@ = a)" 1l 0,0,00 if ' € Loo [a, 2]
L if f' € Lg [a, ]
- 1 141/ B¢, )
S 2 m(x—a) ”f/”[a,w],,@ é+%:17f¥>1
(@ =a) [[f'ljq.011
2 .
3 (0= 1 w00 if ' € Los [, 0]
R if f' € Lg [z, ]
- 1 B 141/~ 5 450,
2 [CESVE (b—=x) I/ ||[rc,b],<5 % + % =1,y>1
=) 1"l 1.0

for any x € [a,b].

(5.1)

(5.2)

(5.3)

(5.4)
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Proof. From (2.1) and (2.2) we have by taking the modulus

‘ABf (a,b,2) — <a;rb x) f (@) (5.5)
1 “ ! b /
< 3 l j (t—a)f (t)dt‘—i— /x (b—t)f (t)dt‘|
1 T b
<s [/ t=a)lf @]+ [ (b—t)lf’(t)ldt]
and
<! / t—al | (1) dt
1 b
2[/ @=0lf O+ [ (tx)f’(t)ldt]
for any « € [a,b].
Using the Holder inequality we have
B1 (J})
3@ =) [ la.].o0 if f' € Log [a, 2]
1 oo if f' € Lg
< 3 X W(x—a)l-s—l/ 1" 0,21, if‘gz [ail
(== a) | ' la 211
3O =21 .00 if f' € Log [z, ]
1 if f' € Ls [2,b
+§ X W(b_x)l—‘rl/’y ||f ||xb]5 ii(l;e:él[’a;: i’l
O =2) [1F'400.1
O

and a similar inequality for Bs.
Remark 5.2. We observe that
1 1
(2= @ 1F lapoe + 7 0= 2 1 0 (5.7)

3
=04 300w {1y 1
1
2

[4 (b—a)®+ <x—“2+b)2

B1 (J}) <

IN

1M 1,00
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therefore
‘ABf (a,b,2) — (a;b$>]c(z) (5.8)
111 9 a+b 2 ,
< 5 [4 (b— a) —+ (:C— 2 > Hf ||[a,b],oo
for any x € [a,b].
Similarly,
’bf(b);af(a)_f(b);f(a)x—ABf(a,b,m) (5.9)
111 9 a+b\? /
! L R (e N [T
for any = € [a,b].
In particular, we have
a-+b 1
ABf (a7b7 2) ’ S g (b - a’>2 ||fl‘ [a,b],oo <510)
and
1 a+b 1
0=l 0) - @] - a8 (a0, 250) < g0 I g 62D

6. Applications for twice differentiable functions

If we write the equalities (2.11) and (2.12) for the function f = ¢’, where g :
I — R is a differentiable function on the interior of the interval I with the derivative
absolutely continuous on [a,b] C I, then we get

ABy (a,b,x) (6.1)

;VKI“QZ’)QQ@QV] (2 -0) @

z b
w51 o o-at [ o= o v)dt]
and
ABy (a,b,) = ) - ) o0 . 7o), (6.2)
2
(et o]
1 b
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and since

ABj (a,b,x) = %F (b) - F (),

where F (z) := /I f(t)dt, then

ABy(ab2) = 2lo0)—g(@)] - 9() +g(a)
IFICESIUN
and by (6.1) and (6.2) we get the representations
_9(@)+g(b)
g(@) = 127 (63)

and

g(x)= — + T (6.4)

b
+3 [ le=al - a

for any z € [a, b].
If we assume that ¢’ € U[a,b] (1, W) for some ¥,V € C, ¢ # VU, then, as above,
we have the inequalities

‘g(x) _9(a) ;rg(b) 65)
+$ ( —a;b)2+i(b— )? +(a;b— )g’(m)
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and
’g(x)_g(a);— g (b) bg'(@;ag’(a)_g’(b);g’(% (6.6)
Y+ a+b\* 1 2
N <— 5 ) +4(b—a)]
o — ] |1 9 a+b\?
§4l4<b‘a> +(o-15)
for any x € [a,b].
We have the particular inequalities
g(a—;b)_g(a);g(b)+¢;r6‘1’(b_a)2 (6.7)
§W(b—a)2
and
‘g (a;—b) _g(a);_g(b)—i—i(b—a) [¢' (b) — ¢ (a)] (6.8)
Y+ U 2
e 0
|¥ — | 2
ST(b_a)

Other similar results may be stated, however we do not present the details here.
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Applications of generalized fractional integral
operator to unified subclass of prestarlike
functions with negative coeflicients

Santosh B. Joshi, Sayali S. Joshi and Haridas Pawar

Abstract. In this paper, we have introduced and studied various properties of
unified class of prestarlike functions with negative coefficients in the unit disc U.
Also distortion theorem involving a generalized fractional integral operator for
functions in this class is established.
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1. Introduction

Let A denote the class of functions of the form
f(z) :z+Zan 2" (1.1)
n=2
which are analytic in the unit disc U= {z: |z| < 1}. Let S denote the subclass of A,

which consists of functions of the form (1.1) that are univalent in U.
A function f € S is said to be starlike of order (0 < p < 1) if and only if

Re{zf(z)}>u7 zeU

f(2)

and convex of order (0 < p < 1) if and only if

Re{1+ ZJJ:,(S)} >p, ze€ U

Denote these classes respectively by S*(u) and K(u).
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Let T denote subclass of S consisting of functions of the form
f(z) :z—Zan 2", an > 0. (1.2)
n=2

The classes obtained by taking intersections of the classes S*(u) and K(u)
with T" are denoted by T*(u) and K*(u) respectively. The classes T (u), K*(u)
were studied by Silverman [9].

The function

Su(z)=z2(1—2)720"0  0<pu<1, (1.3)

is the familiar extremal function for the class S*(u), setting

n

IT G—2w

i=2
_ 1 ={1,2.3,--- 14
Clum) = =5y meNV1), N={1,23,} (1.4
then
Su(z) =2+ C(p,n) 2" . (1.5)
n=2
We note that C(u,n) is a decreasing function in u, and that
1
00, u<g
1 = 1
e R
2
1
0 = .
) B> B

If f(z) is given by (1.2) and g(z) defined by
g(z):szbn z2", b, >0,
n=2
belonging to T, then convolution or Hadamard product of f and g is defined by
(fxg)(z)=2— Zan by, 2.
n=2

Let R, (a, B,7) be the subclass of A consisting functions f(z) such that
zh'(2)
h(z)

zh'(2) <8,

Th()
where, h(z) = (f * Su(2)), 0< a <1, 0<f<1, 0<y<1, 0<pu<l.
Also let C(«,3,7) be the subclass of A consisting of functions f(z), which
satisfy the condition

+1-(1+7a

2f'(2) € Ru(a, B,7).
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The classes R, (a, 8,7) and C,(a, ,7) of prestarlike functions was investigated by
Joshi [1]. In particular, the subclasses

Ru[aaﬂaf}/] = Rﬂ(avﬁa’)/) mTﬂ Cﬂ[oﬁﬂ,’ﬂ = Cy(%ﬂﬁ) nr )

were also studied by Joshi [1].
The following results will be required for our investigation.

Lemma 1.1. [1]. A function f defined by (1.2) is in the class R, [, B,7] if and only if
S Clun) {(n-1)+Bhn+1—(1+7)al} an <AI+N(1—0a).  (16)
n=2

The result (1.6) is sharp.
Lemma 1.2. [1]. A function f defined by (1.2) is in the class C,[c, 5,7] if and only if

> Clun)nf{(n—1)+Bhn+1-(1+val} an <B1L+y)(1—a). (17
n=2

The result (1.7) is sharp.

Further we note that such type of classes were extensively studied by Sheil-
Small et al. [8], Owa and Uralegaddi [4], Srivastava and Aouf [10] and Raina and
Srivastava [7].

In view of Lemma 1.1 and Lemma 1.2, we present here a unified study of the
classes R, [c, 8,7] and C),[a, B, 7] by introducing a new subclass P, («, 8,7, 0). Indeed,
we say that a function f(z) defined by (1.2) is in the class P,(«, 8,7, 0) if and only if

i =D+ Bhmt1-(ty)alf(l-oton) o0 0y (1.8)

A+ —a)

where, 0 < a<1,0<8<1,0<y<1,0<u<l, 0<o< 1.
Then clearly we have,

Py, 8,7,0) = (1 = o)Rula, B, 7] + 0Cple, B,7] (1.9)
where, 0 < o < 1. So that
PM(Q,B,’}/7O) = Rﬂ[aaﬁv,YL PH(CV,B7"/, 1) = Cﬂ[avﬁvw]' (110)

The main object of this paper is to investigate various interesting properties and
characterization of the general class P,(a, 3,7, 0). Also distortion theorem involving
a generalized fractional integral operator for functions in this class are obtained.

2. Main results
Theorem 2.1. A function f defined by (1.2) is in the class P,(«, 8,7,0) then

L B +9)(1-a)
"= Clum) (=) + Bhn+1— L+ y)al} (=0 +on)’

neN\{1}. (2.1)
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Equality holds true for the function f(z) given by

- 5L+ )(1— ) .
2) = Clp,n){n—=1)4+Byn+1—-1+v)a]}(1—0c+on) ’ GN\{;};)

Proof. The proof of Theorem 2.1 is straightforward and hence details are omitted. [

A distortion theorem for function f in the class P,(a, 5,7, 0) is given as follows:
Theorem 2.2. If the function f defined by (1.2) is in the class P,(c, 3,7,0) then
B+ —a)
— — 212 < [f(2)]
2{1+ 82y +1-(1+7)al} (1 -p)(1+o0)

Bl+~)(1-0a) )
A -ty aid-pa+a (2.3)

2| =

<zl +

and
_ Bl+v)(1—a) . "
1 {HB[%“—(H’Y)GHG—u)(1+o—)‘ | <1f'(2)
B+7)(1 -
§1+{1+ﬁ[27+1—(1+7)a]}(1_u)(1+0)|2|' (2.4)
Proof. Let

fz)=2- i anz"
n=2

Since f(z) € Py(«,B,7,0) and clearly C(u,n) defined by (1.4) is non-decreasing for
0<u< % and using (1.8) we get

- 50 +2)0 - a)
S I A - (o) "9

Then using (1.2) and (2.5) we get (for z € U),

FE < L2+ 132 lanl
n=2
B+ -«
< 2|+ 2{14_5[274_1—(1+'y)oz]}(1—,u)(1+0')|2|2
and
F@I = fel =122 Y Janl

_ 5(1 +FY)(1 70‘) |Z|2
2{1+ B2y +1-(14+y)a]} (1 -p)(d+0o)

which proves the assertion (2.3) of Theorem 2.2.

el
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Also for z € U, we find that

(=)l L+ 2] Y n fag)|
n=2

IN

U+ —-a)

1+ z
B 1 +al - wa+a)
and
1F() = 1= nlan]
n=2
> 1- ﬁ(l"i_’y)(l_a) |Z‘
- {I1+82y+1-QA+)al} (1 —-p)(1+0)
which proves the assertion (2.4) of Theorem 2.2
This completes the proof. O

We note that results (2.3) and (2.4) is sharp for the function f(z) given by

f(Z) - ﬂ(l +7>(1 — Oé) 22
2{1+ 82y +1-(1+7)e]} 1 -p)(1+0)

(2.6)

3. Closure theorems

In this section, we shall prove that the class P,(«, 8,7, o) is closed under linear
combination.

Theorem 3.1. The class P,(«, 3,7, 0) is closed under linear combination.

Proof. Suppose f(z), g(z) € Pu(«a,,7,0) and

f(z)=2—- Z anz"
n=2
and

g(z) =z — anz” .
n=2
It is sufficient to prove that the function H defined by
H(z) =Af(z) + (1= Ng(z) , (0<A<T)

is also in the class P,(a, 3,7, 0). Since
oo

H(z) =2=Y [Aan + (1= \bylz" .

We observe that

X {(n—=1)+Bm+1—(1+7)a]} (1 —0+on)
;2 Bl +7)(1—a)

Thus H € P,(«, B,7,0). This completes the proof. O

C(p,n)[Aan + (1 = XN)b,] < 1.
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Theorem 3.2. If
fiz) ==
and

o B(1+’y>(1_a) P n
S A (o . TR B (R Py Y (e To e IR

Then f € P,(a, B,7v,0) if and only if it can be expressed in the form

n=1

where/\nanndZ)\nzl.

n=1

Proof. Let
) = D Aafal2)
n=1

_ Ly B(L+)(1-a)
Z =)+ Bhm+1—(1+al} (1 —o+on)Clun)

o0
z— E an 2",
n=2

A 2"

where
_ Bl+v)(1—a) .
o {n=1)+B[ym+1-(1+9y)al}(1—0+0on)C(u,n) An 20, (n22).
Since,
3 B1+7)(1 - a)
n2:2|:{nl Jrﬂ ’7n+17(1+’y)a}}(1—0‘+0n)c(ﬂvn)
- +Bhm+1—-(1+7v)a]}(1—-0+0on)C(p,n) N
Bl+7)(1—a) "
:ikn=i/\n—A1:1—A1§1.

Therefore f(z) € P,(a, B,7,0).
Conversely, suppose that f € P,(a, 3,7,0) and since

AL+ -«

Ap =

Setting
{n=1D+8m+1-1Q+7)a]} (1 -0+ 0on)C(u,n)

An = B+ 7)1 - a)
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and -
A=1-)"A,.
We get . "
FE) =) Anfal2) -
This completes the proof. = O

4. Generalized fractional integral operator

In recent years the theory of fractional calculus operator have been fruitfully
applied to analytic functions. Moreover generalized operator of fractional integrals
(or derivatives) having kernels of different types of special functions (including Fox’s
H-function) have generated keen interest in this area. For details one may refer to
Kiryakova [2], Raina and Saigo [6], Srivastava and Owa [11] and Raina and Bolia [5].
Further we note that Riemann-Liouville fractional calculus operators have been used
to obtain basic results which include coefficient estimates, boundedness properties for
various subclasses of analytic and univalent functions.

A generalized fractional integral operator involving the celebrated Fox’s H-
function [2, 3] defined below.

Definition 4.1. Let m € N, 8 € R and vy, 6 € C, YV k = 1,2,--- ,m. Then the
integral operator

m)s(Om 3 Ym )5 (61, ,0m
I 1) = TG )
1 1
R P (R B
= 7/ Hm:'?n ~ L f(t)dta
z Jo z ( +1- L ;)
Vk Br’ B 1,m
for > Re(6x) >0, (4.1)

= f(z), fordy=---=6,,=0,

is said to be a multiple fractional integral operator of Riemann-Liouville type of mul-
tiorder 6 = (01, ,0m).

Following [2], let A denote a complex domain starlike with respect to the origin
z = 0, and A(A) denote the space of functions analytic in A. If A,(A) denote the
class of functions

Ap(A)={f(2) =2"f(2) : f(2) € A(A)}, p=0; (4.2)
then clearly A,(A) C Ay(A) C A(A) for p>v>0.
The fractional integral operator (4.1) includes various useful and important frac-

tional integral operators as special cases. For more details of these special cases, one
T(A+k)
IOV

may refer to Raina and Saigo [6]. Throughout this paper () stands for
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The following results will be required for our investigation.

Lemma 4.2. [2]. Let v, > -2 =1, 6, <0 (V k =1,---,m). Then the operator
((;:))_’7(3’") maps the class AP(G) into itself preserving the power functions f(z) = 2P
(up to a constant multiplier):
m (T (l e+ 1)
m),(Om B
g e =11 : = (43)

b D (& + e+ 0+ 1)

Theorem 4.3. Let m € N, hy € Ry, and vk, 0 € R such that 1 + v + 6 > 0

(k=1,---,m), and
m 1 2h
H (1 + 9%+ 2hi)y,, <1 (4.4)
P (1 + 9% + 0k + 2hi),,,

and f(z) defined by (1.2) be in the class P,(c, 3,7,0) with0 < a <1, 0 < f <
1,0<y<1,0<pu<3, 0<0 <1 Then

(Ym)+(dm) 1 SCR LR
I(hm)m f(z )‘ {H<F(1+7k+5k+hk)>
EE R )}
L 2Ry T el (o) S

(4.5)
and
70m) (6m) 2 L+ 9k + he)
Totyom 1z ‘S{U< 1+’Yk+5k+hk)>
[| . A*B(1+7)(1 - a) |z|2]}
2{1+B27+1-(1+7)e]} (1 —p)(1+0) ’
(4.6)

for z € U. The inequalities in (4.5) and (4.6) are attained by the function f(z) given

by (2.6), where
ﬁ (1 + vk + hi)y, (4.7)
i | (T + 0k + Py, | '

Proof. By using lemma 4.2, we get

" L (1+ 9%+ hi)
Fm o) _ { ;
(A" )5 1) s LD (L4 + 6k + hie)
=5 L'(1+9% +n he)
- W2 4.
ZH{F(l‘F’Yk-HSk-i-nhk)}az (48)

n=2 k=1
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Letting
T [T+, + 0+ he) |
G — 3 I ’YT),(ém)
) 1};[1 { (1 + 7y, + hi) } iy 1)
= z-— Z d(n) an 2", (4.9)
n=2
where,

L4 + 0k + )y (n—1)

H{ (1475 + P )iy (1) } (n e N\{1}). (4.10)

Under the hypothesis of Theorem 4.3 (along with the conditions (4.4)), we can see
that ¢(n) is non-increasing for integers n (n > 2), and we have

m { (14 vk + he)y,
(

0<¢(”)§¢(2>:l€1;[1 Ltk + 0k + i)y,

} — A" (neN\{1}).  (4.11)

Now in view equation (1.8) and (4.11), we have

G(2) = |2l = 6(2) [2* ) an
n=2
A T (14 + he)
- {l:ll(r(1+7k+5k+hk))
|:|Z|— A*5(1+7)(1_O‘) |Z|2:|}
' 2{14+B2v+1 -1 +y)a]} (1 —p)(1+0) '
and

IG(2)] < [zl +6(2) |2 Zan

i L1+~ + hg)
= {kl:[l (F(1+%+5k+hk)>
A8+ 7)1 - a)
'{'Z”2{1+m2v+1—<1+v>a]}<1—m<1+o>'z'2]} '

It can be easily verified that the following inequalities are attained by the function
f(2) given by (2.6).

LG (5m) 1 (T4 + he)
(hm sm 1z )‘ {k[[l (F(1+’Yk+5k+hk)>
- A8(1+7)(1— ) |}
' 2{1+B2y+1-(1+7)al}(1-p(1+0) ’
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LG o) - U (14 + h)
(Zm)m fle )‘ {H<F(1+’}’k+5k+hk)>

A8 )(1— a) )
{'Z'+2{1+m2~y+1<1+v> i ]} |

Which are as desired in (4.5) and (4.6). This completes the proof of Theorem 4.3. O
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Starlike and convex properties for Poisson
distribution series

Nanjundan Magesh, Saurabh Porwal and Chinnaswamy Abirami

Abstract. In this paper, we find the necessary and sufficient conditions, inclusion
relations for Poisson distribution series belonging to the classes .*(a, 8) and
¢ (a, B). Further, we consider an integral operator related to Poisson Distribu-
tion series.
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Keywords: Starlike functions, convex functions, Poisson distribution series.

1. Introduction

Let o7 denote the class of functions of the form
f(z) :z+Zanz" (1.1)
n=2

which are analytic and univalent in the open disc U= {z:z € C |z| < 1}. Let 7 be
a subclass of &7 consisting of functions whose non-zero coefficients from second on is
give by

fz)=2=) lanlz", z€U. (1.2)
n=2

In 2014, Porwal [4] introduced a power series whose coefficients are probabilities of
Poisson distribution

e n—1
m o m
H(m, z) ::z+n5=27(n_1)!6 2", zel,

where m > 0. By ratio test the radius of convergence of the above series is infinity.
Further, Porwal [4] defined a series

& n—1
F(m,z) = 22’—%’(771,;2):z—zie_mz”7 zeU.

n=2
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Corresponding to the series ¢ (m, z) using the Hadamard product for f € &7, Porwal
and Kumar [5] introduced a new linear operator .#(m) : & — <7 defined by

F(m)f(z): = H(m,z)xf(2)
= z+;hefmanz”, zel,

where * denotes the convolution (or Hadamard product) of two series

o0
z)zZanz" and g¢(z Zb 2"
n=0
is defined by

(fxg)(z Zanbz

Let .#*(«, B) be the subclass of .7 conswtmg of functions which satisfy the condition:
2z
HON.

zf'(2) _
) +1 -2«

where 0 < a<land 0 < B < 1.
Also, let €*(«, 8) be the subclass of 7 consisting of functions which satisfy the
condition:

< B, zeU,

o
T z < B, z e,
z}: ((2;) +2(1—a)

where 0 < a<land 0 < g < 1.

The classes .7*(a, 8) and €™*(«, 8), were introduced and studied by Gupta and
Jain [2] (see [3]). Also, we note that for § = 1 the classes .¥*(«, 8) and €*(a, )
reduce to the class of starlike and convex functions of order a(0 < a < 1) (see [6]).

A function f € <7 is said to be in the class Z7 (A, B), (1 € C\ {0}, -1 < B <
A < 1), if it satisfies the inequality

f'(z) -1
(A= B)7 = B[f'(z) — 1]
This class was introduced by Dixit and Pal [1].
Lemma 1.1. [2] A function f(z) of the form (1.2) is in /*(a, B) if and only if

o0

D 1+ B) =1+ B(1 —2a)] |a| < 28(1 — ). (1.3)

n=2

Lemma 1.2. [2] A function f(z) of the form (1.2) is in €* (o, B) if and only if

<1, z e U.

D nfn(l+p) =1+ B(1 —20)] |an| < 28(1 - a). (14)

n=2

To obtain our main results, we need the following lemmas:
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Lemma 1.3. [1] If f € Z7 (A, B) is of the form (1.1), then
al<@-5T nen (1.5)

In the present investigation, inspired by the works of Porwal [4] and Porwal and
Kumar [5], we find the necessary and sufficient conditions for .% (m, z) belonging to
the classes .¥*(«, ) and €™*(«, 8). Also, we obtain inclusion relations for aforecited
classes with 27 (A, B).

2. Necessary and sufficient conditions

Theorem 2.1. If m > 0,0 < a <1 and 0 < 8 <1, then F(m,z) € *(«a,p) if and
only if

e™m(l+ 8) <26(1 - a). (2.1)
Proof. Since
0 mn—1 o
F(m, z) :z—;me 2",

in view of Lemma 1.1, it is enough to show that

Sln(1+5) = 1+ 81 - 20)] e <200 - a)
Let o »
T = n;[na +8) — 1+ B(1 - 2)] (;”_ e
Now,
T = ) [n(1+B)—1+p(1-20) (;nill),em
n=2 .
> n—1
= e 2 [(n = DA+5) +26(1 - )] 7,
© mn—1 N
= e (1+ﬁ)n§::2 mmﬁ(l—a);—(n_ o

= e "[(1+B)me™ +26(1 — a)(e™ —1)]
1+ B8)m+28(1—a)(1l—e™).
But this last expression is bounded by 25(1 — «), if and only if (2.1) holds. This
completes the proof of Theorem 2.1. O
Theorem 2.2. If m > 0,0 < a <1 and 0 < B <1, then F(m,z) € €*(«, ) if and
only if
e™ [(1+B)m* +2(1+ B(2 — a))m] < 28(1 — a). (2.2)
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Proof. Since

_ oo mnfl o
F(m, z) :zfn; (n—l)!e z,
in view of Lemma 1.2, it is enough to show that
o'} n—1
;n[n(l )~ 1481~ 20)] gy < 26(1 ~a).
Let
[e’) mnfl o
T, = ;n[n(l +8) =1+ B(1 - 2a)] (n— 1)16 :
Therefore,
L e’} mn—l
T, =e L;(n —1D(n—-2)(1+7) 1)
[e%e} mn_l o mn—l
+Y (n=1DB1+6) -1+ 5(1 - 2a)] ] +2 2801 -a) (n = 1)11
n=2 ’ n=2 ’
. > mn—l
= (1 +ﬁ)§m
oo mn—l
+2[1+B(2—a)]72m+26(1— ]

:6_m[(1+5) 2m_|_2(1+ﬁ(2_a))me —|—2ﬁ1—0{ _
= (14 B)m? + 214 B2 = a))m +28(1 — a)(1 — ™).

But this last expression is bounded by 28(1 — «), if and only if (2.2) holds. This
completes the proof of Theorem 2.2. O

3. Inclusion results

Theorem 3.1. Let m > 0, 0 < aa < 1 and 0 < B < 1. If f € #™(A,B), then
F(m)f € S*(«a,B) if and only if

(ﬂ(l — 20&) — 1)(

— 1—e™™—me™™)| <26(1 - a).

(3.1)

(4- B)r| [(1 LB+

Proof. In view of Lemma 1.1, it suffices to show that

& n—1

P = Z[n(l +6) -1+ 8(1 - 2a)] (Zlf 1)!

e Man| <26(1 - ).
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Since f € Z7 (A, B), then by Lemma 1.3, we have

|an| < %.
Therefore,
P < 2[71(1 +8) — 1+ B(1—2a)] (:ill)!em (4 _nB)M
= (A= B)rle™™ nsz[nu +8) =1+ (1 - 20) m;_l
= (A Bl |14 p) i R i ”H
= (A= B)[rle™ [(1 +B)(e™ —1) + W(em —1- m)]
(BA—-2a)—-1)

= (A-DB)|7| [(14—5)[1—67”]4— (l—em—mem)} .

m

But this last expression is bounded by 28(1 — «), if (3.1) holds. This completes the
proof of Theorem 3.1. O

Theorem 3.2. Let m > 0,0 < a < 1 and 0 < B8 < 1. If f € Z" (A, B), then
F(m)f € € (a,B) if and only if

(A= B)|r|[m(1+ 8) +28(1 — a)(1 —e™)] < 28(1 - a). (3.2)

Proof. In view of Lemma 1.2, it suffices to show that

Py = gzn[n(l +8) — 1+ B(1 - 20)] (;ni_l)!e‘mlanl <26(1 - o).

Since f € Z7 (A, B), then by Lemma 1.3, we have

(A= B)lr|

lan| <
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Therefore,
P < Z n(l+B) — 1+ B(1 — 2a)] (;ni_ll)!e—m (4 _nB)M
= A= B Y1+ 5) ~ 1+ 81— 20)) P
= (A= B)lrle ™ Y (- )1+ 8) +28(1 - @) :)'
n=2 .
- - B L) s ey
n=2 ( 2) n= 2 )
> mnfl e mnfl
= A-B)rle™|[1+8)) m+2ﬂ Z 1

= (A=DB)|rle ™ [me™(1+8) +26(1 —a)(e™ —1)].

But this last expression is bounded by 28(1 — «), if (3.2) holds. This completes the
proof of Theorem 3.2. 0

4. An integral operator

Theorem 4.1. If m >0,0<a <1 and0< p <1, then

g(m,z):/gz(;n’t)
0

is in €*(a, B) if and only if inequality (2.1) is satisfied.

Proof. Since

e e—mmn—1 ,n > e~ Mmn—1

9 = — L R S n
(m, 2) z nz:; I z 1;2 p z
by Lemma 1.2, we need only to show that
e n—1
m

> a1+ ) — 1+ B(1 - 20)] e " <28(1 - a).
n=2 ’

Let

o0

Q=Y nn(l+5) —1+5(1 —20)] mn! e,

n=2




Starlike and convex properties for Poisson distribution series 7

Now,
o) g n(l+p8) — 14 8(1 —2a)] (nmn_ll)!e_m
_ e—mz[(n—1)(1+ﬁ)+2ﬂ(1—a)l ﬁ
n=2 .
- lzwmw +Z2ﬂ <ml>]
n=2 '
_ (H@); (ZL_Q)!+25(10¢)7;2 (nm_w]

= e "[(14B)me™ +28(1 —a)(e™ —1)]

= 14+8m+28(l—a)(l—e™).
But this last expression is bounded by 25(1 — «), if and only if (2.1) holds. This
completes the proof of Theorem 4.1. O

Theorem 4.2. Ifm >0,0<a <1 and0< p <1, then
s ar
t
%(m,z):/ij(? ) gt
0

is in *(a, B) if and only if

(B(1—2a) —1)

1+l —-e™)+ (I—e™—me ™) <281 — a).

The proof of Theorem 4.2 is lines similar to the proof of Theorem 4.1, so we
omitted the proof of Theorem 4.2.

Acknowledgement. The authors are thankful to the referee for his/her valuable com-
ments and observations which helped in improving the paper.

References

[1] Dixit, K.K., Pal, S.K., On a class of univalent functions related to complex order, Indian
J. Pure Appl. Math., 26(1995), no. 9, 889-896.

[2] Gupta, V.P., Jain, P.K., Certain classes of univalent functions with negative coefficients,
Bull. Aust. Math. Soc., 14(1976), 409-416.

[3] Mostafa, A.O., Starlikeness and convezity results for hypergeometric functions, Comput.
Math. Appl., 59(2010), 2821-2826.

[4] Porwal, S., An application of a Poisson distribution series on certain analytic functions,
J. Complex Anal., 2014, Art. ID 984135, 3 pp.

[5] Porwal, S., Kumar, M., A unified study on starlike and convex functions associated with
Poisson distribution series, Afr. Mat., 27(5)(2016), 1021-1027.

[6] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc.,
51(1975), 109-116.



78 Nanjundan Magesh, Saurabh Porwal and Chinnaswamy Abirami

Nanjundan Magesh

Post-Graduate and Research Department of Mathematics
Government Arts College for Men

Krishnagiri 635001, Tamilnadu, India

e-mail: nmagi20000@gmail.com

Saurabh Porwal

Department of Mathematics, U.LLE.T., C.S.J.M. University
Kanpur-208024, (U.P.), India

e-mail: saurabhjcb@rediffmail.com

Chinnaswamy Abirami

Faculty of Engineering and Technology, SRM University
Kattankulathur-603203, Tamilnadu, India

e-mail: shreelekha07@yahoo.com



Stud. Univ. Babes-Bolyai Math. 63(2018), No. 1, 79-108
DOLI: 10.24193/subbmath.2018.1.06

Solvability of BVPs for impulsive fractional
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1. Introduction

Impulsive fractional differential equations is an important area of study [1]. In
recent years, boundary value problems (BVPs) or initial value problems (IVPs) for
impulsive fractional differential equations (IFDEs) have been studied by many au-
thors. For example, in [2, 4, 3, 9, 11, 14, 15], the authors studied the existence or
uniqueness of solutions of BVPs for IFDEs with Caputo type fractional derivatives
and multiple starting points.

In [8], Kosmatov studied the following problem:

D2 a(t) = f(t (), t € [0,1]\ {tr,tar b,
(1.1)
D§+I(t-]:) - Dfx(t;) = Jk?(x(tk))7 i = 17 27 T, My, Ié;ax(O) = Zo,
where a € (0,1), D, is the standard Riemann-Liouville fractional derivative of order
¥, Be€(0,a),x0 ER,0=tp<t1 < - <t <tm1=1,Jp :R>R, f:[0,1] xR —
R are suitable functions.
The author was supported by the Natural Science Foundation of Guangdong province

(No: S2011010001900) and the Natural science research project for colleges and universities of Guang-
dong Province (No: 2014KTSCX126).
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In [9], Liu studied the solvability of two classes of initial value problems of
nonlinear impulsive multi-term fractional differential equations on half lines. One
(IVP (1) for short) is as follows:

D& a(t) + q(t) f(t,x(t), DE x(t)) =0, t€ (tirtip1),i € Ny,

: 11—« _
im0 (t) = o, (1.2)

lim (¢ — t:)1 "~ w(t) = I(t;, o(t;), Dl a(t:))),i € Ny,
t—t}
and
Dya(t) + () fi(t, x(t), D} x(t)) =0, t€ (titit1),i € N,

i

lim t1=%x(t) = zo, (1.3)

t—0t

lim (t — ti)l_a.’lﬁ(t) = Il(ti, Q?(ti),Der Qi(ti))J S NT,
t—t tia

where a € (0,1), 0 < p < a, DZ+ is the standard Riemann-Liouville fractional

derivative of order b > 0 with starting point a, 2o € R, No™ = {0,1,2,--- ,m} and

NT = {1,2,37"‘ ,TTL}, O=th<ti <ta<tzg<---<tp <tm41 = 1,q: (0,1) — R

is continuous and satisfies that there exists [ € (—1,—a) such that |g(¢)] < ¢ for

m
all t € (0,1), ¢1 : U (ti,tit1) — R is continuous and satisfies that there exists

=0
k1 > —1,1; <0 such that |q(¢)] < (t — t;)¥ (t;y1 — )1 for all t € (t;,t;11)(i € Ny),
f:(0,1) x R? — R is a [-Carathéodory function, f; : (U (ti,ti+1)) x R? — R is
=0

a II-Carathéodory function, I, I; : {t; : i € N} x R? — R are discrete Carathéodory
functions.

In [14], the authors studied the existence of solutions of the following BVP for
IFDE

Dy, a(t) + At)z(t) = f(t,2(1), t € [0,1]\{tr, 2, tm},

IS x(th) — I8 (t7) = Ji(z(ty)), i=1,2,--+ ,m, "7 %(t)]=0 + t' "% (t)]1=1 = 0,
(1.4)
where ¢,a € (0,1), Dg+ is the Riemann-Liouville fractional derivative, I, is the
Riemann-Liouville fractional integral, 0 = ¢ty < t; < -+ < ty < t1 = 1, A €

C°([0,1],R) satisfies \g =: m[ax]/\(t) > 0, Ji : R — R is continuous, f is a given
te[0,1
piecewise continuous function. The following special case play a large role in the proof

of the main theorem:
Dg,x(t) + Xox(t) = f(t, (1), t € [0,1]\ {t1,t2,--- ,tm},

Ingl'(tj_) - Ig+ (tz_) = Jl(x(tl))a i=1,2,---,m, tl_qx(t”t:() + tl_q‘x(t”t:l =0
(1.5)
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In [17], Zhao studied the following higher-order nonlinear Riemann-Liouville
fractional differential equation with Riemann-Stieltjes integral boundary value condi-
tions and impulses

—Dg.x(t) = Aa(t) (¢, (2)), ¢ \ {t:}iZs,

#(0) = a'(0) = - =al"=2(0) = 0, #/(1) = [§ x(s)dH (s),
where Df, is the standard Riemann-Liouville fractional derivative of order n — 1 <
a < n with n > 3, the impulsive point sequence 0 = tg < t1 < tg < -+ <ty <

tmt1 = 1L,LA >0, f € C([0,1] x [0, 4+0),[0,+0)), a € C((0,1), [0, +00)), the integral
fol x(s)dH (s) is the Riemann-Stieltjes integral with H : [0,1] — R with

1
§=: /0 s*rdH(s) # a— 1.

Motivated by [8, 17], we investigate the solvability of the following two boundary
value problems for impulsive fractional differential equations

Dg,x(t) — Ax(t) = f(t,x(t)),a.e.,t € (t;, tip1],i € NT,
AL a(t) = 10 a(t]) — 10, a(t;) = L(t;, o(t)),i € Ny,

ADG a(ty) =: Dy w(tF) — Dy () = It w(t:)). i € Ny, j € Ny,

127°0(0) = 2, DETIw(0) = 25,5 € NP,
(1.7)
and

Dgya(t) = f(t,2(8)),t\ {t:i}i2s,

ADS T x(t) = Ij(ti, a(t;)),i € NP, j € NP1,
(1.8)
AIST%w(t; = In(ti, x(t;)),1 € N

I3 2(0) = Doy T2(0) = 0,7 € N»—2 DT (1) = folx s)dH (s

where m,n are positive integers, « € (n —1,n), 8 >0, A €R, 0=ty <t; < --- <
tm < tm+1 =1, 2; € R(j € N}, f:(0,1) x R = R is a Carathéodory fraction,
I :{t; : 1 e NJ"} x R — R is a discrete Carathéodory function (j € N7}).

The purposes of this paper are to establish existence results for solutions of IVP
(1.7) (e« — B —n = 0) and existence results for solutions of BVP(1.8) respectively.
The method used is based upon the fixed point theorems. The results in this paper
complement known ones in [8, 17] and generalize known ones [10].
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A function z : (0,1] — N is called a solution of IVP (1.7) (or IVP (1.8)) if

x € C(t;, tiy1], lim ( t;)" "%z (t) is finite for i € Ni* and D, |, 1,,1] = AT\t t,01] €
1=t}

L'(t;,ti11), and z satisfies all equations in (1.6) (or (1.8)).

The remainder of this paper is divided into three sections. In Section 2, we
present related definitions and preliminary results. In Section 3, we establish existence
results for IVP (1.7) and BVP(1.8) respectively. In Section 4, we give comments on
some published papers.

7‘,+1

2. Preliminary results

For the convenience of the readers, we firstly present the necessary definitions
from the fractional calculus theory. These definitions can be found in the literature
[5, 6, 7].

Let a < b. Denote L!(a,b) the set of all integrable functions on (a,b), C°(a, b]
the set of all continuous functions on (a,b]. For ¢ € L'(a,b), denote

b
6l = / 16(5)\ds.

For ¢ € C°a,b], denote ||¢[|o = m[a)é] lo(2)].

For two integers a < b, denote N2 = {a,a +1,--- ,b}.
Let the Gamma and beta functions I'(«), B(p, ¢) and the Mitag-Leffler function

E, s(z) be defined by
+oo
I(«) :/ z* te % dx,
0

1
Blp.q) = [ o1 -0,
0
o
Ea 7 oD, 75
s(@ Zrk o) P > 0.

Definition 2.1. The Riemann-Liouville fractional integral of order oz > 0 of a function
g:(0,00) — R (may be piecewise continuous) is given by

ealt) = e [ =9 gl

provided that the right-hand side exists.
Definition 2.2. The Riemann-Liouville fractional derivative of order a > 0 of a function
g:(0,00) — R (may be piecewise continuous) is given by

Ldm [t g(s)
D - —
090 = T oy am /0 (t — s)a—nt1®
where n — 1 < a < n, provided that the right-hand side exists.

Remark 2.1. For a piecewise continuous function g which is continuous on (¢;,;41]
(i S N()",O =t <t < - <t < <y < g1 = 1), and t € (ti,ti+1]7 the
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Riemann-Liouville fractional integral of order o > 0 of g on (0,t] with ¢ € (¢;,¢;41] is

given by

1 ! a—1
T / (t— )2 g(s)ds

O ) glds [ () gl)ds
Z/ ot T

i

Iéig(t) =

provided that each term in the right-hand side exists.

Let @ € (n — 1,n) with n being a positive integer. For a piecewise continuous
function g which is continuous on (t;,t;41] (1 € N, 0 =tg <t1 < -+ < t; < -+ <
tm < tma1 = 1), and t € (t;,t;41], the Riemann-Liouville fractional derivative of order
a>0of gon (0,t] with t € (t;,t;41] is given by

1 (n)

D59(8) = Fr=y [ / (1 — 5o g(s)ds

| (n)
lﬁﬁ?w_@wwm@m+ﬁv—ﬂ“”@@“]

I(n—a)

provided that each term in the right-hand side exists.
Definition 2.3. We call F': (0,1) x R — R a Carathéodory function if it satisfies the
followings:

(i) t — F (¢, (t — t;)" *u) are measurable on (t;,;41)(i € N§*) for any u € R,

(ii) u+— F (¢, (t — t;)" “u) is continuous on R for all t € (t;,t,41)(i € NT),

(iii) for each r > 0, there exists M, > 0 such that |F' (¢, (t —t;)" %u)| < M, for
all t € (t;,ti41)(t € N§*) and |u| < 7.
Definition 2.4. We call G : {t; : i € NT"} xR — R a discrete I-Carathéodory function
if it satisfies the followings:

(i) w— G (i, (t; — t;—1)" *u) is continuous on R for all i € N7,

(ii) for each r > 0, there exists M,. > 0 such that |G (¢;, (t; — t;—1)" %u) | < M,
for all i € NT* and |u| < r.

Suppose that « € (n — 1,n), 0 =ty < t; < -+ < typy1 = 1. Denote

T|(ti,ti41] € Co(tiati+1],i € N¢°,

PCh_o(0,T]=¢x:(0,1] » R: ) .
lim (¢t —¢;)"*x(t), i € N{* are finite

t—tF
Define
[lz]| = ||z]|n-a = max{ sup (t — ;)" *x(t)],i € Na”} )
te(ti tiy1]
Then PC,,_,, is a Banach space with the norm || - || defined.

Theorem 2.1. Suppose that « € (n —1,n), A € R, h: (0,1) = R is continuous and
satisfies |h(t)| < t*(1 —t)! for all t € (0,1), where k > —1,1 <0 with 1 +k +1 > 0.
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Then x € PC,,_,(0,1] is a piecewise continuous solution of
Dgva(t) — Ax(t) = h(t), a.e., t € (ti,tig1],i € N
if and only if there exist constants ¢, € R(v € N}, k € Ny) such that

() = /O (t = ) B0 (At — 8)%)h(s)ds

j n
+ 3D et — 1) Baa—vsr (At — t)%),t € (1, t511],5 € NY.

k=0v=1
Proof. We have

t’ﬂ*Oé

/o (t —8)* "B o (At — 8)*)h(s)ds

e AR /t Afxa k !
<o —_— t—s)” X*gf(1 — s)'ds
- XEZ:OF(XOM—&) 0( ) ( )

e A /1 _
= th—« "N xata 1— at+l—1+xa kd
2 Taray T

< gn—o Z | | txa+k+a+l/ (1 _ w)a+l—1wkdw
=" L Thata) ;

=B(a+ 1,k + 1)Eq (Mt - 0ast — 0.
Then t — ("~ fot(t — 8)* 1B, o (A\(t — 5)¥)h(s)ds is continuous on [0, 1].

(2.1)

(2.2)

Step 1. Assume z € PC,,_,(0,1] is a solution of (2.1). We prove x satisfies (2.2).

From (5.1)-(5.3) in [7], there exist constants ¢,o € R such that

t n
o(t) = / (t— )2 B a(A(t = 8))h(s)ds + 3 ot o vy 1 (M), ¢ € (to, t].
0 v=1

It follows that (2.2) holds for j = 0. Now suppose that (3.7) holds for i = 0,1,--- ,w <

m, i.e.,

x(t) = /0 (t —8)*  By.a(At — s)*)h(s)ds

7 n
)N ent = tr) Baa—vr1 (At — 1))t € (t),t541],5 € NG

k=0v=1

(2.3)

We will prove that (2.2) holds for i = w+1. Then by mathematical induction method,
(2.2) holds for all ¢ € Nj*. In order to get the exact expression of x on (t,41,tu+2],

we suppose that there exists ® such that

(1) :<I>(t)+/0 (t = ) Baa (At — 8)%)h(s)ds

YO ekt — th)*  Basamvi1 (Mt = t1)*),t € (futor, tusal-
k=0v=1

(2.4)



Solvability of BVPs for impulsive fractional differential equations 85

Using Definition 2.2, (2.3) and (2.4), we know for ¢ € (ty1,tw+2] by direct computa-
tion that

[fot(t - s)”_a_lx(s)ds} .

D0+x( ) F(?’l—O()

(n)
[Z ftt:-&-l(t_ S)n_a_ll'(s)d5+ﬁi+l(t_ s)n—a—lx(s)dS]

p=0

I'(n—a)

[i /: (t—s)n (/OS@ —w)* T By o (A(s — w)*)h(u)du

P

P n (n)
+ Z Z k(s —th) "B a—vt1(A(s — i) ) ] /F n—q)
k=0v=1

ol (=9 (806 + [ 6= 0 B s — 0 (i

w (n)
D> k(s = 1) Easa—vp1(A(s — tk)“)> ds] /F(n —a)

k=0v=1
= D D(t)
Ld+1
(n)
= 2 = tpo+1 n—a—1 a—v «@
Zo kzo 21 Cuk ftp (t—s) (s — tk) Ea,a*l/+1()‘(3 —tx) )ds
p=0k=0v=
+ L(n—a)

/O (t — s)n—o— /0 (5 — 0)* Eu a(A(s — u)*)h(u)duds

w n ¢ (n)
+3 ) e /t (t—s)"—a—l(s—tk)a—"Em,,H(A(s—tk)a)ds} /F(n—a)

— D% ()

u+1

(n)
Z Z Z Cvk ti,p+1(t - 5)n7a71(5 - tk)aﬂlEa,a—u-&-lO‘(s - tk)a)d5‘|

k=0 p=kv=1
+ I'(n—a)
t —g)nmae-l Ss—u"‘1 s—u uds
[t [ 0t B~ 0 hludud
+Zchk/t (t—8)"""Us —t1)* VBa.a—vii(A(s — tr)* ] /anoz
k=0v=1 w1
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(n)

_D (I)(t)+ |:f0t(t— n a— 1f — Oé 1Eaa()\(8_u)a)h(u)duds}
w+1 F(’I’L—a)
(n)
|:Z > Cukft (t—s) o™ 1(3—tk)04 Eq,a— V+1()‘(5_tk)a)dsj|

k=0v=1
’ F(n—a)

(n)
t_s mme (s — u)* XY dsh(u)du
O F X06+oc)

=Dy ®(t
i 20+ RS
(n)
kzo ”Z:l o XZO F(XO“JFO‘ v+1) ftk ) (s — tk)a_V+XadS]
+ S
by
S—Uu —w s — tk _
t—u - ’ t— tk -
(n)
t —u)xotn-1 L1~ w)yr—o—lye—14+xa guh(u)du
0 F(xoum) A
=Dy ot
w+1 ( )+ F(n - a)
at+n—v 1 e . N
kzo Zl o ZO re Xa+a Thata=vtD) (¢ = te)xe™ fo (1—w) Lya—v+x dw]
v X
+ (n -
(n)
)\X t—u) Xa-i-n 1
— .D w+1 t / Xa + n h(u)du]
XW:ZC MX(t — ¢y, )xotn—v (n)
=0 v—1 ka “T(xa+n—v+1)
)\Xt_ux+ Z0NX(t — )X
w)du + ¢ M (t = tg)x
w+1 / 162:0; kX 11_‘XQ V+1)
Thus
)\X t— yxet—1
D§ a(t) — Aa(t) = D% (t / ) Mt
w+1

AX(t — tg)X
+ZZ VkZFXa V—|—1)

k=0v=1 x=1

-\ |:(D<t) +/() (t — s)a—lEa’a()\(t _ S)Q)h(s)ds
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+2 D et = 1) Baavn (Mt — 1)) | = Dt ®(t) = A(t) + h(2).
k=0v=1

From D§, x(t) — Axz(t) = h(t), we have DfﬁrH(I)(t) —AP(t) =0 on (ty41, twt2]-
By (5.1)-(5.3) in [7], we know that there exists constants ¢,,+1 € R such that

D) = 3 rursr(t = tur)) B (At~ ts1)).

v=1
Substituting ® into (2.4). We know that (2.2) holds for ¢ = w + 1. By mathematical
induction method, we know that (2.2) holds for ¢ € Nj".
Step 2. We prove that = is a piecewise continuous solution of (2.1) if = satisfies (2.2).
Since z satisfies (2.2), we know that x|, ;] € C°(ti, tiy1] (i € N§*) and
lim (¢ —t;)" “z(¢)
t—tf
exists and is finite for all ¢ € N§'. Furthermore, by direct computation similarly to
Step 1, by Definition 2.1, we can get for t € (t;,t;41] that

fot(t — )" "ty (s)ds
I'a)

I7%x(t) =

j—1
Z ft”+1(t—s)nfafll’(s)dSJrfttj(t*s)niailx(s)ds

I'(n —a)

t o0 )\X Yo+ lh d
— t— at+n—
/ 5 Fra gt~ O

7 n

- AX xT+n—vrv
+ZZCW€ZF(on-l-n—v—i-l)(t_tk)x ’

k=0v=1 x=0

t
:/ (t— )" B (Mt — 5)%) ds+§ :chk (t = t1)" " Bamv i1 (At — t1)%).
0

k=0v=1
By Definition 2.2, we get for i € Ny~ t € (t;t;41] that

Uot (t—s) "> lz(s)ds
I(e)

} (n—1i)

DeCa(t) =

(n—1)
[Z ftp+1 n alx(s)ds_’_fti(t_s)nalir(s)ds‘|

I'(n—a)

(n—1) (n—1)
t O yx(+ _ . \xat+n—1
= /ZA (t—v) h(u)du
o 2 Thatn)

J )\X t— tk)anrn v

chykz Mxa+n—v+1)

k=0v=1
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)XaJrz 1
/ ———————h(u)du
Xa—i—z
J n
)\X(t—tk yxatizv t—tk

- /O (t = 0)i " B (Mt — w)®)h(u)du + Z Z ot — 1) By i1 (At — %)

k=0v=1

n
XY D et — te) T T Baasiovr1 (At — t)%).
k=0 v=i+1
We see that '
I(;L-F_ax|(tj,tj+1]? Dg:le(tj,tj+1](i € N;L_lhj € Ngl)
are continuous and the limits
lim I""“x(t), lim D 'x(t) (i€ NP~' je NI
t—tf 0 t—tf 0

are finite. By Definition 2.2, a € (n — 1,n), for ¢ € (t;,t;41], we have

[fg(t —s) 2 y(s)ds
I'a)

]("—i)

Diga(t) =

(n—1)
lz ft *1 yrmomly(s)ds + fttj (t — 8)na1$(3)d5]

I'n—a)
(n) j (n)
)\X t— u)xa+n 1 J n )\X t— tk)xa+n v
h(u)d v
[/ I(xa+n) (w)du * I;J;Ckz MNxa+n—-—v+1)
)\X t—u) I AX(t — ty)Xet—v
/ du—!—Zchk _—V_’_l),t S (t],t_]_;,_l]

k=0v=1 x=1
Then
Dgra(t) — Ax(t) = h(t), te (tj,tj+1], j €Ny~
So zx is a piecewise continuous solution of (2.1). The proof is completed. O
Remark 2.1. Lemma 2.1 (when A = 0) is one of the main results in [10] (see Theorem
3.2 in [10]). So our results generalizes the one in [10].
Theorem 2.2. Suppose that x is a solution of (2.1) and is defined by (2.2). Then

t
Ig+:17(t) = /0 (t — 5)* TP By 0t s(A(t — 8)%)h(s)ds
J n
+ Z Z o (t — tk)a+ﬁ_uEa,a+Bfu+1()‘(t — 1)),
k=0v=1
te (tj,thrl],j S N(Y)n (25)
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Ig;ax(t) = Z Z cuk(t — )" Ean—vr1 (At —t,)%)

k=0v=1
t
+/ (£ — u)" B n (Mt — w)*)h(w)du,
0
t € (ti,tiy1], i € N, (2.6)

and

DS a(t chyk t—t5) "V Ea iy (At — t)%)

k=0v=1

+ A Z Z Cuk(t - tk)a+j_VEa,a+j—V+1(/\(t - tk)a)

k=0v=j+1

t
+ / (t —u) " By j(A(t — u)*)h(uw)du,
0
t € (tiytizq), i €Np, j e NP1 (2.7)
Proof. We firstly prove (2.5). For t € (t;,t;11], by (2.2) and Definition 2.1, we get

ZZ [l (= 8)P L (s)ds + ftt (t = 5)a(s)ds

=0
10 a(t) =

L'(B)

—Fl e —g)F1 szuo‘*l s —u)*)h(uw)du
zzj/ (1= ([ 6= 0 Banl3s = 0w
+3 3 eunl(s = k) Eaamvr1(A(s — ) > ds/F

k=0v=1

Jr/tt(t — )t </Os(s —u)* T Eq.0(A(s —u)*)h(u)du

+ Z Z k(s —te)* VEq,a—v+1(A(s — i) > ds/F

ii:l ft“ﬂ (t =)~ i i k(s —te)* VEq a—vt1(A(s — tg)¥)ds

07t k=0v=1
- L'(B)
JEt =971 S S conls — 1)°  Baa—u1 (A(s — 1))ds
+ k=0v=1
IN()

[t = )P~ [ (s — u)* ' Ea,a(Ms — u)*)h(u)duds
I'(8)
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i—1 1—1

> Z1 vk ftt:ﬂ (8= )77 (s = t)™" Z F(Xa+a (s — tk)Xds

_ F=0p=kv=
L'(3)
= Z Cn J,,(t = )P (s — t)o Z oy (5 — k)X ds
L(3)
(:fi(t - 8)571( - )a ! Z F(x(y+(y) (5 - U)XadSh(u)du
’ e
i—1 i—1

n o0
D Cuk Dl Wx—u—&-l) [l (= 8)P (s — ty) 2TV TXds

"

I'(B)
Z Z Cuk Z F(XaJra v+1) ft t_s)ﬂ 1(S_tk)a vixa s
+
I'(B)
Z F(Xa+a) fO f t— 8 ﬂ 1( u)a_l-‘rxadsh(u)d’u,
+
I'(B)
n tput1—tk
E Ek; Zl Cuk Z F()(a-i-a y+1)t —tk)xa+a+ﬁ DIM th (1 _w)ﬁ—lwa—v+xadw
_ v =t}
I'(B)
i n o0 atatp—v 1 B—1, a—vtxa
Z Z vk Z F(XomLa T(xata—v+1) (t_tk)x fti’tk (1 —’IU) w X daw
+k:0 v=1 =ty
I'(B)
Z F(Xa-‘ra) fO tfu)XOri’aJrB 1f lfw) 1wa71+xadwh(u)du
+
I'(B)
S at+a+B8—v 1 -1, a—vt+xa
kX_:O 21 vk Z 1“(><Oc+0¢ v+1) (= tr)xe® o fo (1 *w)ﬁ LTV du
- )
Z (Xa+a) fO t_u xa+a+pB— 1f 1_ ) 1wa—1+xadwh(u)du
x=0
+
I'(B)
X
= » t—t xata+p—v
kz‘;;ckz X0é+0z+,5—1/+1)( k)

A ! at+a+pB—1
%Wwﬁ)/o (¢ =W ()
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_ /O (t = )P 1B 0 s(A(t — 5)*)h(s)ds

+ Z Z ok (t — tk)a+B_VEa,a+va+1(>‘(t —t)*),t € (i tiva] i € Ng'
k=0v=1

Thus (2.5) is proved. Hence (2.6) holds by 5 =n — a.

Now, we prove (2.7). In fact, for ¢ € (¢;,t;11], we have by using 2.2 and Definition 2.2
that

(n—3)
[J}f(t - 3)”_a_1x(s)ds}
D0+ x( )= T(n—a)

i—1 (n—3)

lzo(t — )"y (s)ds + f; (t— S)n_a_lx(s)d3‘|
._ I'(n—a)

tut1 7877,70471 s Siuail e .

L;/t (t—s) </0( )e 1 B a(A(s — u)®)h(u)d

noon

(n—j)
DD conls = )" Baa—usi (A(s = tk)a)> ds] /F(n —a)
k=0v=1
+ [/tt(t - s)"*afl (-/05(8 — u)aflana()\(s . U)a)h(u)du

7 n (n—j)
+3°5 enls — )™ Baacwri (A(s — m%) ds} / T'(n—a)

k=0v=1

(n—j)
lz ft;wrl _ n a—1 Z Z Cyk(S_tk) Ea7a_u+1(A(S—tk)a)dS]

I'(n—a)
(n—3)
[ftﬁ(t— yn—a-1 z S (s — t)o~ Ea,wﬂ(A(s—t,@)Q)ds]
) =0v=1
+ I(n—a)
‘ (n—3)
[yt = 9= (s = u)* "B a(A(s — w)*)h(u)duds|
I(n—a)
= +1 1 s AX (n ])
Z Zk Z Con [Tt = )" (s — 1) XZOW(S — ty)Xds
= u V_ =
I'n— )
) (n—3)
>3 ek fy (=) T s — 1) Y rraramry (8 — te)¥ds
n k=0v=1 x=0

I'(n—a)
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(n—3)
t pt n—o— a— x o
fO fu(t o s) 1(‘9 - u) ! ZO F(X)\TXJrQ)(S - U)X dSh(u)du]
X=

i I(n—a)
i—1i=1 n . (n—j)
[z Z X e 3 wrtamarm o 8" “—1<s—tk>a—v+xadj
]CIO[L:}CI/Zl X=O

I'(n—a)

3

(n—3)
3 3 X ¢ n—oa— a—v+xa
X 2 vk 2 ToataorD) Ju, (=)™ (s — )27 Hx ds]
= V= X:

i I'(n—a)
(n—j)
Z F(Xa+a) Jy it —s)mmei(s u)"‘lJrX“dsh(u)du]
" I'(n—a)
i—1 i—1 n [e's)
AX
Cuk Z (t _ tk)xa+n—y
k=0 p=k v=1 X()FXO‘+O‘*V+1)
tut1—tk (n—j
o e
tu—tk
i n o (n—3)
at+n—v 1 n—o— a—vtya
> D ek X omtasrrn (E— )XY fuzn (1 - w) Lya—vtx dw]
k=0v=1 x=0 t—tp

|

I(n—a)

(n—j)
lz F(Xa+a) fo (t —u)xetn= 1f w)nalwa1+xadwh(u)du]

>

k=

I'(n—a)

(n—3)
n 0o o - )
Z Cvk Z an+oz V+1)(t_tk)xa+n Vfo (l_w)n amlye V+Xad'w]
v=1 0

0 X=

I'in—a)

(n—j)
[Z F(Xa+a fo (t —u)xetn=t f w)7l_a_1wa_1+xadwh(u)du]

I(n—a)
% n [eS) X (n—3)
> T
[ o S That+n—v+l)
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o0

AX ¢ Xa+”_1h d ")
+ ;F(Xoﬂrn)/o(t_u) (u)du

v : - )\X (03 v
722% u+1)(t £~ +ch”kzrxa+] u+1)(t*t’“)x +i-

k=0v=1 k=0v=1 x=1

> s [ up
+ —_— t—u)X* 7 h(uw)du
XZOF(XOH'J) 0

iJ

; g Xa+]_y+ )(t—tk)xwrj—y

k=0

% n 00 AX
5 t— ty)Xetizv
DID LD e B

k=0v=j+1

+/O (t—u)! " Eq (At —w)*)h(u)du

= Z Z okt — te) VBt (A — te)®)

k=0v=1

+A Z Z C,,k(t — tk)a+j7VEa,a+j_y+1(/\(t — tk)a)

k=0v=j+1

‘ _ )it ; — uw)Nh(u)du.
+Aa V1B (At — w)*)h(u)d

Banach space PC,,_,(0,1]. Let n be a positive integer, a € (n — 1,n) and 0 = t5 <
t1 < -+ <tme1 = 1. Choose

$|(ti,t¢+1] € Co(ti’tiJrl]ai € Ngb’

PCh_0(0,1]]=¢2:(0,]] » R: ) )
lim (¢ — ;)" “x(t), i € N§* are finite

t—t]

Define

[lz]| = ||z]|n-a = max{ sup (t—¢;)""x(t)],7 € N(’)"} .

te(titiva]

Then PC,,_,(0,1] is a Banach space with the norm || - || defined.
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Theorem 2.3. Suppose that a+ 3 =n, h € L'(0,1] aj;,b; € R. Then x € PC,,_,(0,1]

s a solution of

Dg,x(t) — Ax(t), a.e., t € (ti, tip1],4 € NY° h(t),a.e.,t € (ti,tiy1],7 € Ny
AlST%w(t;),i € N ani,t € N
ADS 7 x(t;),i € NP, j € Np—* = ajii € NP j e Nyt
I “x(0) by,
Dy (0),j € Ny~ bj,j €Ny~
(2.8)

if and only if

2(t) = /0 (t = 8)°  Ea,a(A(t — $))A(s)ds + > byt Eq ampr1 (M)

v=1

i n
+ Z Z auk(t - tk)a_VEa,a7V+1()\(t - tk)a)vt € (tj7 tj+1]aj € Ngn
k=1v=1

Proof. Suppose that x is a solution of (2.15). By Theorem 2.1, there exist constants

e € R(v € N7, k € Np) such that

() = /O (t = ) Baa (At — 8)%)h(s)ds

7 n
)0 en(t = 1) Baa—vr1 (At — t)%),
k=0v=1
te (tj,tj+1], j € Nan

Then Theorem 2.2 implies

o) = [ (6= )" B (A= 5) ()

YD ekt =) PV Eaarpovin (At — £1)%),

k=0v=1
te (tj,tj+1], j € Nom

I(;L-%— ax Z Z Cuk t - tk: Ea,n—l/+1(/\(t - tk)a)

k=0v=1

t — )t —u)*)h(u)du
+ /O<t )" B (At — w)°)h(u)du,

t € (ti,tiv1], i € Ny,

(2.10)

(2.11)
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and

DO+ l‘ Z Z Cuk t — tk Ea’jfy+1()\(t — tk)a)

k=0v=1

FAD D anlt =) T Eaar vt (A(E — 8)®)
k=0 v=j+1

' _qu)it : —w)Y)h(u)du
+ / (t — u)I " B (A(t — u)®)h(u)du,

t € (titig], i €NJ', jeNPL (2.12)

By D{772(0) = b; and (2.12), we get cjo = b;,j € Ny L.

By I %x(0) = b, and (2.11), we get cpo = by.

By ADg.” oty = aji, i € NP, j € NP1 and (2.12), we get ¢;; = aj; for i € NJ*,
n— 1

j € Nj

By Alg;aac(t ) = an;,i € NT* and (2.11), we get ¢ = ani, @ € N

Hence

x(t) = /0 (t —8)* ' "Eya(At — 8)*)h(s)ds + Z bt " Eq a—v41(AtY)

v=1

J n
+ Z Z auk(t - tk)a_uEa,a—u+1 ()\(t - tk) ) te (tjat]+l] ] € I\IO
k=1v=1

The proof is completed. O
Theorem 2.4. Suppose that

SozfnJrl

1 M ptutr
M=t [ g
MNa—n+2) = MNa—n+2)

H(s)#0, he L'(0,1], aji,b; € R.

Then x € PC,_4(0,1] is a solution of

Dg,x(t), a.e.,t € (titiy1],i € N h(t),a.e.,t € (t;, tiy1],7 € N
Al %x(t;),i € N Gpi, i € N
ADS 7 a(t;),i € NP, j € N1 aji,i € NP j € Ny~
17°z(0) - 0
DE72(0) = 0,5 € Np2 0,j € Ny ~?

DA (1) — [ a(s)dH(s) 0
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if and only if

§— 1) (1 —tp)> po—n+1
+kzluz‘:ayk </t mdms)* r(a_y+1)) T(a—n+2)

(t— )" ,
+22ayk t e (t;,t;], j € NP

—1v=1 Ma—v+1)

Proof. By using Theorem 2.1 (A = 0), we get the proof similarly to that of Theorem
2.3 and the proof is omitted. O
Define the nonlinear operators Ty, T» on PC,,_,(0,1] by

(Thz)(t) = /0 (t —8)* ' Ba.a(Mt — 8)%) f(s,2(s))ds + Z Tt VEq,q—vt1(ALY)

v=1

n J
N (= 1) Baa it A= 1)) L (b, 2(th)), € (4, t511], € NG
v=1 k=1
and

(Ty)(t) = / “_P(i);f(s,x(s))ds

n. o m 1 S—t 1 — ¢ )V tafnJrl
+ZZ( r((a_ky+ dH(S)_r((a_l;)+1)>f"(t’“’x(t’“)) Ta—n+2)

n J
(t—tk a v )
F 0D Py et w0, L€ (tstial, G E NG

Theorem 2.5. Both Ty : PC,_,(0,1] — PC,_,(0,1] and To : PC,_,(0,1] —
PCp—4(0,1] are well defined and are completely continuous and x is a solution of
IVP (1.7) if and only if x is a fized point of Th, x is a solution of BVP(1.8) if and
only if x is a fized point of Ts.

Proof. The proof is standard and is omitted. O

3. Main results

In this section, we establish existence results for IVP (1.6) when ao+ 5 > n.
Theorem 3.1. Suppose o + 8 = n and there exist constants o, A, B,C; > 0 and mea-
surable function ¢ € L*(0,1) such that

|f(t7 (t - tz)a_nu) - qj)(t)' < A|u‘oat € (ti7ti+1]ai € N6nau € Rv

|Ij(t,’, (ti — ti_l)a_"u) — Oz| < B|u\",i S NT,’U, € R.
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Then IVP (1.7) has at least one solution if o € [0,1) or o =1 with

Eoo(JA -
# +mZEa,a—V+1(|)‘|) <1

v=1

or o > 1 with
Bl 4 B ()] (527) Rl <
where

B(t) = /O (t = 8)" B a(A(t — 5)")6(s)ds + 3 2t B i1 (A7)

v=1
nJ
YD (=) Eaa—vr1 (At — t:)*)Cyy t € (t,t501], j € NG
v=1k=1
Proof. By the definition of ®, we know ® € PC,,_,(0,1]. For r > 0, denote
Q, ={x € PC,,_p(0,1] : ||z — || < r}.

We will seek r > 0 such that 779, C ,.. Then Schauder’s fixed point theorem implies
that 77 has a fixed point in §2,.. Thus IVP (1.7) has a solution by Theorem 2.5.
For z € Q,, we have ||z|| < r + ||®|| and

[f(t2(t) — ()] = [f (£ (£ = )" " (t = )" x(t)) — o(1)]
S A=) 2(0)]” < All2||” < Alr+ (|27, ¢ € (&, tia], @ € NG,
|1 (ti, 2(t:)) — Ci| < Bl[[|” < Blr + [[®[]7, i € NY".
For t € (t;,t;41], we have
(t —t;)"|(Th)(t) — @ ()]

S (t _ tj)n—a

/0 (t— )% B a (At — 8)%) [/ (s, 2(s)) — $(s)]ds

Z(t — )Y "B a—v1 (At — )| L (e, (tr)) — Ck|
1h=1

NE

+

v

noJ

(t =) "Eaa(ADlr +[1217ds + > Baacvr1(A)[r +[[2[])7

v=1k=1

<(t=t)"

S~

M + mZEa7a—y+1(|)‘D

v=1

Case 1. 0 €[0,1). It is easy to see that there exists r > 0 such that

[+ [12[]7

B 4 8 B (D] -+ 0] <

a
v=1
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Case 2. o = 1. It is easy to see that there exists » > 0 such tha

E,. () -
# + mz Ea7a—l/+1(|)\|)

v=1

[r 2l <

by
Eo.o(|A])

- +m > Baa-vi(A]) < L.

v=1

Case 3. o > 1. Choose r = % > 0. By

|:E°‘=€;(/\|) +m Z Ea,a—u+1()‘|):| (ﬁ) ||@HU*1 < #’

v=1

we know that
Eq,a(|A)

o +mZEa,afu+l(|/\|)

v=1
From above discussion, we know 719, C ,. Then Schauder’s fixed point theorem
implies that 77 has a fixed point in §2,. Thus IVP (1.7) has a solution by Theorem
2.5. The proof is completed. O
Theorem 3.2. Suppose that there exist non-decreasing functions ¢y, ¢ : [0,00) —
[0,00) such that

Lf(t, (t— 1) u)| < dp(|ul), t € (i tiya], i € NG, v €R,

[r+[[[[)7 <

|Ij(ti, (ti — ti,l)"‘_"u)| < ¢Z(|u|), 1€ Nin, u € R.
Then VP (1.8) has at least one solution if there exists r > 0 such that

f (i amo - S ) st

k=

+er(afu+1)

v=

1 1 1
[I‘(a+1) +Wr(a—n+2)

11
IM|T(a—n+2)

NE

+

v

Il
3 =

or(r) <r.

Proof. For r > 0, denote Q, = {x € PCp,_»(0,1] : ||z]| < r}. We will seek r > 0 such
that 750, C Q... Then Schauder’s fixed point theorem implies that T has a fixed
point in €2,.. Thus VP(1.6)8 has a solution by Theorem 2.5.
For = € Q,., we have
[fQ (@) = |f( (= 2)" " (= ta)" ()] < op(I(t = )" z(t))])
< ¢s(llzll),t € (ti; tia], @ € N,
12 (i, x(ta))| < di(ll=]]), i € NP".

For t € (tj,tj+1], we have
t _ e\a—1
| S s atsas
0

(t —t;)" |(Tax) ()] = (¢t = 15)" "
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v [ (] S ams) - S st

ta—n+1

n m 1 (s_t)a—u (1_t)(x_y
B8 ([ i () )]

+ Z > Ffoj_tkyj_ 0 I (te, x(tk))

v=1k=1

a—1

<=t [l s lelas

RIS D G o C) R ) i DTN
Jr\M|1“(a—n+2)/0 (/ I'(a) dH(s) T(a) >¢f(|| [)d

1 n o m 1 (S_tk)a—u (1_tk)a_y
|M\Fo¢—n+2 ;;1(/ wdH(s)_w>¢I(lw|l)
HE—t) ZZF(E; S or(lel
< ooy (llal)

S T(at+1) 7
L; 1 1 (S—u)Oﬁl B (1 7u)a71 N
M T@—n+t2) / </u T(a) dH(s) Ta) >¢f(|| D
n m 5 — tk) (1 _ tk)a—u
\M|ra—n+2 ZZ(/ a—l/—i—l)dH(S)_I‘(a_y_,_l)> ¢1([l])

v=1k=1

+; mdn(llzl\)
1 1 1
< +

< [r<+1> sl ([ St - )

v=1 k=1

Jrzl“ 1/+1

By the assumption of theorem, we have (¢t — ;)" |(Tox)(t)| < r for all t € (¢;,ti41],
i € N§'. Then ||T2z|| < r. Hence T8, C €,.. The proof is completed. O

} b5(r)

1 1
|M|T( —n +2)

¢](T).
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4. Comments on published paprs

We have the following result:
Theorem 4.1. Consider the homogenous form of BVP(1.7):

Dgﬁrfﬂ(t) — )\(E(t) =0,te (ti,ti+1]77; S N6n7
AP a(ty) = I0, a(t]) — IP «(t;) = 0,i € NP,

(4.1)
ADg? () = DD‘+JJ:( ) —Dgs Tx(t;) =0,ie NJ*, j e N7~ 1,

I"*2(0) = Dy 72(0) = 0,5 € Ny~

Then IVP (4.1) has infinitely many solutions if a+ 5 > n and IVP (4.1) has a unique
solution z(t) =0 if a + 5 =n.

Proof. By Theorem 2.1 and D, x(t) — Ax(t) = 0,t € (t;,ti41],4 € NI, we get that
there exist constants ¢, € R such that

=3 Y cunlt — 1) Baavr1 (At — tr)%),t € (ti tiga],i € Ny
k=0v=1
By Theorem 2.2, we get

1) S0 3 et — )" Bt (AE — 1)%),1 € (b1, tig], i € N,
k=0v=1

% n
= Z Z Cuk(t - tk)a—i_ﬁ_yEa,oH»ﬁvarl()\(t - tk)a)u te (tia tiJrl]vi € N7On7

k=0v=1
DY a(t chyk (t—t1)Y " Eaj w1 (At — tr)%)
k=0v=1
K3 n
XYY cn(t—t) T Ba s jovrt (At —tR)%), t € (i, tin], i € NG, j € NPT
k=0v=j+1

(i) By Igf‘)‘x(O) = 0 and the expression of I\, “z, we get cno = 0.

(i) By D§72(0) = 0,5 € Ny~ and and the expression of Dg:jx, we get
cjo =0 for all j € Ny~ 1

(iii) By AD;’x(t;) = 0,i € N{*,j € N7~ and the expression of Dgfjx, we
get cj; =0 for all i € N7, j € NP~ 1.
Then

)= can(t — tr)* "Ba,acns1 (Mt — 1))t € (£, tiga],i € N

and

$) P B apont1 (At — tr)¥),t € (ti,tip1],i € Ny
k=1
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Case 1. a+ 3 =n.
By AP a(t;) = IV (t]) — IV, x(t;) = 0,i € NY*, we get c,,; = 0 for all i € N},
It follows that 2(t) = 0 is a unique solution.
Case 2. a+ (3 >n.
By AIngx(ti) =: I('?er(tj) - Iéia:(ti) = 0,7 € NJ", we get
i—1
= ennlti — tr) P Baatponi1 (Mt — £,)*) =0, i € NJ".
k=1

Hence c,,; = 0 for all 7 € N’ln_l.

Then
0, t€ (titipa],i € NI,
x(t) = (4.2)
Cnm(t - tm)a_nEa,afnJrl(A(t - tm)a)yt € (tm; tm+1]-
Here ¢, € R is a constants. Hence it has infinitely many solutions defined. O

In [8], Kosmatov studied the solvability of IVP (1.1).
Define the operator T, : PC,(0,] = PC,(0,1] by

(Tar)lt) = prstet 4 o ( ) t,iw-ajk(m(tk))) =

0<tp<t

t a—1
(t—>s)
— ds, t € (0,1].
+ [ S reatods, te 0.1]
Result 4.1. (see page 1296 in [8]). x is a solution of (1.1) if and only if z is a fixed
point of T,, in PC,(0,1].

Remark 4.1. By Lemma 2.1 (n = 1, A = 0), x is a solution of Df, z(t) = f(t,x(t)),
t€[0,1]\ {t1,t2, - ,tm} if and only if there exist constants ¢; € R such that

d t a—1
a— (t — S) . m
J?(t) = ;Cj(t — tj) 1 +A Wf(s,x(s))ds,t S (tiati+1]az S NO .
We can get by direct computation that

g _ S)oz—ﬁ—l

D) = 32 i et =+ [ st

t € (ti,tit1], 1 € NJ.
By 8 € (0,a), we know a — § — 1 < 0. We find that D}, 2(t) is singular at ¢t = t;.
Hence the impulse functions are unsuitable.

From above discussion, we know that Result 4.1 [8] is unsuitable. O
Result 4.2. (Lemma 2.7 in [14]). Suppose that ¢,a € (0,1). Then z is a solution of
(1.3) if and only if z is a fixed point of the operator T, : PC,(0,1] — PC,(0, 1], where
T, is defined by
L(q)t" By o (= Aot?)

1+ T(q)Eqq(—Xo0)

(Toz)(t) =
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" Ji(x(t:)) ! q-1 _ —8)N) f(s, z(s))ds
g [; D(Q)tS T By g ra(—Aot?) 7/0 (1= 8)T " Eqq(=Ao(L = 5)")f(s,2(s))d
Ji(z(t:))

—t17 B, (= ot?) —
4,9 Z ¢ +q 1Eq,q+o¢(_>\0t;’1)

t<t;<1 i

+/ (t — )1 By o (= Xo(t — 5)7) f(s,2(s))ds. (4.4)
0

Remark 4.2. Result 4.2 is incorrect.
Proof. By Lemma 2.1 ((n = 1)), if « is a solution of BVP (4.3), then there exists
constants ¢; (i € N*) such that

z(t) = Z co(t — tv)q_lEq,q(_)‘O(t — 1))

v=0
+/0 (t— s)qflEq,q(—)\o(t — ) f(s,xz(s))ds, t € (t;,t;41], J € Ng*.  (4.5)

By Definition 2.1, we get for t € (¢;,t;41] that

Ep_ gja-l jil f::“ (t —s)* La(s)ds + ftt] (t —s)* La(s)ds
IS x(t) :/0 (t F((i) z(s)ds = =2 (o)

T

- <j§:1 /tT+1 (t=a [Z co(s = 1)1 B q(—Ao(s — ,)7)
r=0"tr v=0
+/0 (s—u)q1Eq’q(—)\0(s—u)q)f(u,x(u))du} ds) /F(a)

+ (/t (t— )t lzcv(s—tv)q-lEq,q(—Ao(s—tv)q)

J v=0

[ s =0 Byl — ()] s ) /1)

T

T 5 e [ (= )0 (s — )0 By g(—No(s — £,)0)ds

_ 7=0v=0
INE))

change the order of sum and integral

+ (Z Co /t (t—5)* s —t,) T By q(—o(s — t,)V)ds
v=0 J

# [0 [ =0 Bl — ) atw)duds ) /1)

0
I i tri1 1 1
Zo 2 Co ftT (t—98)* s —t,)T ' Eq o(=Ao(s — t,)?)ds

I(a)
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change the order of sum

+ (;cv /tj (t = $)* (s — t,) T "By q(—o(s — £,)9)ds
+/Ot/ut(t—S)Q—l(S—u)q—lquq(—)\O(s—u) Vds f (u, 2 (u du) /F

change the order of integral

= <Uz_%cv /tu(t_s)a1(5_tv)q1Eq,q(_>‘0(5—tv)q)ds
+/0t/ut(t—s)°‘1(s—u)qlqu( No(s — w))ds f (u, x(u du) /F

<zz/

v=0 x=0
t
/ + /(tfs)o‘*l(s w)XI Vs f (u, z(u) ) du /F a)
Xq q
by
s —ty S—u
_ = w7 = W
t—1, t—u
J o — o)X (t—ty xq+a+qg—1 1 a— _
ZO Co ZO (=X0) (Ft(xtqlq) fo (1—w) LypXxata—1 g
_ = X=
- I'(a)
X Xq+a+q 1
ot ZO( Ao)* 1(“(Xq+q) fo (1 — w)oLwXa+ a1y £ (u, z(u))du
x=
* I(a)
J o -
)\ t—t Xq+a+g—1
Soe, Yy Aot
== I(xq+a+q)
t (=o)X (t — u)xatata-l
+/ flu, z(u))du
(ot (xq+a+q) (w2{w)

=3 et — 1) T By g (—Ao(t — £,)7)

v=0

+/ (= u)™ T By (Mot — 0)?) f(u, 2())du.
0
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It follows that

J
Igea(t) = Z Co(t — 1) T By atq(—Ao(t — £,)7)

v=0
t
4 / (t— w2 T By oo (<No(t — u)?) (s 2(us))ds,
0
t € (tj,tj+1], j € Ng" (4.6)

Case 1. a+q < 1. From Ig,z(t]) —Ig (t;) = Ji(z(t;)),i = 1,2,--- ,m, and (14.11),
we get J;(x(t;)) = oo(i € NT*). This is a contradiction. So BVP (4.2) is unsuitable
proposed.

Case 2. a+gq =1 From I, z(t])—I5 (t;) = Ji(z(t;)),i =1,2,--- ,m, and (14.11),
we get J;(x(t;)) = ¢;(i € NT*). From t'792(t)|;=0 + t'792(t)|t=1 = 0 and (14.10), we
get

oty cv(Hv)q—lEq,q(_xoa_tv)m/o (1=8)9 By o (= Ao(1—8)) £ (5, 2(s))ds = 0.
v=0

Then

+f (1= 57 B (a1 - f(s2(s))ds) /(14 Byg(-a).

Hence z is a solution of BVP (4.2) if and only if

a(t) = — <Z Jo(@(t)) (1 = )" Egq(=Ao(1 — t0)7)

+/0 (1- S)q_lEq,q(_)‘O(l —8)")f (s, x(s))d8> /(1 + Eq,q(_)‘O))tq_lEq,q(_)‘(th)
+ Z Ly (z(t))(t - tv)q_lEq,q(_)‘O(t —t,)9)

[ (= 9T By (Nl = ) (5,05t (b G € NG

Case 3. a+q > 1. From I§, a(t]) — I, (t7) = Ji(z(t;)),i = 1,2,--- ,m, and (14.11),
we get J;(z(t;)) = 0(i € N7*). From t'792(t)|;=¢ + t' ~%2(t)|4=1 = 0 and (14.10), we
get similarly as in Case 2 that
> Cv(l_tv)q_lqu(_)‘O(l - tv)q)+fol(1_S)Q_lEq,q(_)‘O(l_S)q)f<5ax(s))ds
v=1

14+ Eg4q4(—Xo)

Co=——
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Hence z is a solution of BVP (4.2) if and only if

5 eo(1=00)7 By g (Ao(1—10))+ o (1)1 By g (-Ao(1-5)7) (s, 2(s))ds
1+ Eg.(—Xo)

i
Xt B (= Aot?) + Y eu(t — 1) By g(—Xo(t — 1))

v=1
t
—l—/ (t —8)T "By o (= ot — 8)1) f(s,2(s))ds, t € (tj, tj41],5 € NG
0
Then x is a solution of BVP (4.2) if and only if
Y colt—t,) T By 4 (Ao (1—1,) 1)+ [ (1 EaaCAo(1=5)1)f (s, 2(5))ds
14+ Egq4(—Xo)

J
<t B g (= Aot?) + Y et — 1)1 By g (= Xo(t — £,)7)

+/0 (t— s)qflEq,q(f)\o(t —8)N) f(s,z(s))ds,t € (tj,tj41],5 € Ny

and J;(z(t;)) = 0(i € NT*).
Hence from Case 1-Case 3 Result 4.2 is incorrect. O
In [17], Zhao studied the existence of solutions of BVP(1.7) for the higher-order
nonlinear Riemann-Liouville fractional differential equation with Riemann-Stieltjes
integral boundary value conditions and impulses Lemma 2.4 [17] claimed:
Result 4.3. If H is a function of bounded variation

1
0= / s*YdH(s)a — 1
0
and h € C([0,1]), then the unique solution of

—Dgrx(t) = (D), t\ {t:}ile,
ASC(tl) = [1(I(tz))7 1= 1,27 cee M,

1

2(0)=2'(0)=---=2"20=0, 2’(1) = | (s s
| (0) = 2/(0) 0=0, /(1) / (s)dH (s),
/Gts §)ds + 71 Z BT e(ty), te (0,1, (47)

where G(t,s) = G1(t,s) + Ga(t, s) and

101 (1-g)* "2 _($—g)*~ 1
(o) , 0<s<t<1,

Gl(t,s) =
Pl (1 gy 2

(o) , 0<t<s<1,
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t(x 1 1
Golt, s) = m/o G (7, 8)dH (7).

Remark 4.3. Result 4.3 is wrong.
In fact, we re-write (4.7) by

B t (t _ S)a—l a1 m+1
w(t) == | gy hs)ds + Myt t € (toa, ta] b € NPT
0 ()

where

m 1 _ )2
My, = t57I;(a(ty) +/0 uwl)h(s)ds
j=k

1 1 1
T /O /O G (v, 8)dH (7)h(s)ds.

One finds from Definition 2.2 for ¢ € (¢;,¢;41] that

[fot(t - s)”_"‘_lx(s)ds} "

D0+x( ) F(TL—O&)

(n)
[Zo ft Y Yy ly(s)ds + ftt (t— s)”“lx(s)ds]

I'n— )
B ()
[Z ftlwl et (_ fos (S_pl(b()l) h(u)du + MM+1Sa_1) ds]
B I'(n—a)
s (s—u a—1 a— (’I’L)
[j;t (t —s)n—ot (— Jo ( F(L) h(u)du + M; 15 1) ds}
I'in —a)

) (n)
i—1
tuti,  A\n—a—1,a—1 (n)
lﬂ;o M;H—l ftu (t 5) S dS] [MiJrl ftt (t o s)nfaflsaflds}

- I'in—a) * I(n—a)
[— fot(t -t [0 (S_F’g;ﬂ h(u)duds} "
I(n—«)

) (n)
i—1

tut _ n—a—1_a—1 (n)
e e R Y ety

I'(n—a) - I'(n—«a)

[ fof (t—s)"" a—1(s= F( ) dsh( )du}(n)
I'(n—a)
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vt
t

. (n)
i—1 tptl
[E My t" =t [0 (1— w)"‘a_lwa_ldw]
=0 =+

I'(n—a)

1 o1 1 (n)
[MH_l f%(lfw)" a~lye dw}

I'n—«a)
t t n—1 1 1 n—a—1 wo‘_ld hiuw)d ™)
. [ Jo (==t [ (1= w) e e dwh(u)du
I(n—a)
- t (n)
= Iptl
Z M;J,Jrltn_l ft;tt (1 _ w)n—a—lwa—ldw‘|
n=0 a
= —h(t
() + L(n—a)
(n)
[Mi+1 [e(1— w)"’o‘*lwo‘*ldw}
I'(n— «) '
It is easy to see that D, x(t) # —h(t) on (t1,12]. In fact, we find that D, x(t) # —h(t)
on (t1,t9] if and only if My = Ms. O
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theorem of Bahyrycz, Pales and Piszczek
on Cauchy differences to generalized cocycles
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Abstract. We prove some straightforward analogues and generalizations of a re-
cent asymptotic stability theorem of A. Bahyrycz, Zs. Pales and M. Piszczek on
Cauchy differences to semi-cocycles and pseudo-cocycles introduced in a former
paper by the present author.
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1. Introduction
The first results on a certain stability property of the Cauchy functional equation

fle+y) = fle)+ fy) (1.1)

were proved by Pélya and Szegé [63, p. 171 | in 1925 and Hyers [38] in 1941.
In particular, Pélya and Szegd proved the following statement in two rather
difficult ways.

Theorem 1.1. Suppose that the number sequence ai,as,as,... satisfies the condition
am +an —1 < amyn < am +a, + 1.

Then, there exists the limit

. 427
lim — =w;
n—soo n
and even more w is finite, and for alln =1,2,3,... there holds

wn—1<a, <wn+ 1.
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Remark 1.2. The significance of this theorem was not recognized either by Pélya and
Szegd or the mathematical community for a long time. It was first cited by Kuczma
[50, p. 424] in 1985 at the suggestion of R. Ger. However, in contrast to [5, 11], several
authors have still not been mentioning it.

By R. Ger [34, p. 4] and some communications with Ger and M. Laczkovich, his
attention to this theorem was first drawn by Laczkovich, at an undetectable confer-
ence, who indicated that the real-valued particular case of Hyers’s stability theorem
can be derived from it. His proof, reconstructed with the help of Ger and M. Sablik,
can be found in [77, p. 633].

Hyers, giving a partial answer to a general problem proposed by S. M. Ulam
before the Mathematics Club of the University of Wisconsin in 1940, proved the
following fundamental theorem in a quite simple way.

An obvious generalization of his theorem to a function of a commutative semi-
group to a Banach space [30, p. 216] already includes Theorem 1.1. Moreover, by
Remark 1.2 and [30, Theorem 3], the two theorems are actually equivalent.

Theorem 1.3. Let E and E’ be Banach spaces and let f(x) be a 0-linear transformation
of E into E’. Then the limit l(x) = lim,, o f(2"2)/2" exists for each x in E, l(x) is
a linear transformation, and the inequality || f(x) — I(2)|| < § is true for all x in E.

Remark 1.4. Moreover, Hyers also stated that {(z) is the only linear transformation
satisfying this inequality.

Here, in contrast to the recent terminology, Hyers used the term ”linear” instead
of ”additive”. Thus, his é-linearity of f(x) means only that

[f(z+y) = f(z) = f(y)l| <o forallz,y € E.
Now, because of {(nz) = nl(x), we also have
1f (nz)/n —U(x)|| = |[f(nz) — Unz)||/n < 6/n

for all n € N and z € E. Therefore, analogously to Theorem 1.1 of Pélya and Szegd,
we can also state that [(x) = lim,,_, f(nz)/n for all z € X.

The above basic Theorem 1.3 of Hyers has been generalized, in one direction, by
Aoki [6], Th. M. Rassias [65], J. M. Rassias [64], Gavruta [32] (see also [43]), and in
other directions by several further mathematicians.

Moreover, some counterexamples, showing the necessity of certain extra assump-
tions in the corresponding stability theorems, such as commutativity and completeness
for instance, have also been provided.

The interested reader can get a rapid overview on this enormous subject by
consulting some of the numerous survey papers [39, 34, 31, 66, 67, 68, 69, 82, 56, 70,
71, 23, 21, 12, 17, 57] and the fundamental books [40, 44, 22, 49, 46].

The above works show that some local, restricted, asymptotic, super and hyper
stability results have also been proved for the Cauchy equation. Moreover, some close
relationships with invariant means, sandwich and fixed point theorems have also been
established. And, quite early, some set-valued generalizations have also been given.
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These set-valued generalizations show that Hyers’s stability theorem is actually
an additive selection theorem for a subadditive relation. Therefore, some of its gen-
eralizations should be derived from those of the Hahn—Banach extension theorems.
(For some ideas in this respect, see [22, Chapter 34] and [35, 77, 36].)

However, it is now more important to note that recently Bahyrycz, Péales and
Piszczek [9] have proved a new type, asymptotic stability theorem for the Cauchy
functional equation by using metric Abelian groups instead of normed spaces.

They called a triple (X, +, d) to be a metric abelian group if (X, +) is an abelian
group and d is a translation invariant metric on X in the sense that

d(x+ z,y + z) =d(z,y) for all z,y,z € X.

In this case, they defined ||z||4 = d(z,0) for all z € X, and noticed that || || is an
even subadditive function function on X which is not, in general, even 2-homogeneous.

In [74, 83, 13, 48], metric groups and groupoids have been used in different senses.
From Remarks 3.1 of [83, 13], we can see that a metric d on a group X is translation
invariant if and only if d(z +y,z+ w) < d(x,z) + d(y,w) for all z,y,z,w € X.

Thus, if in particular d is a translation invariant metric on a group X, then the
addition in X is continuous. Moreover, in this case we can also note that

d(—z,—y) =d(0,z —y) = d(y,z) = d(x,y) for all z,y € X.

Thus, in particular the inversion in X is also continuous.
In particular, in [9], Bahyrycz, Pales and Piszczek have proved the following
asymptotic stability theorem.

Theorem 1.5. Let (X, +,d) and (Y,4+,p) be metric abelian groups such that X is
unbounded by d. Let € > 0 and assume that f : X — Y possesses the asymptotic
stability property

limsup  [[f(z+y)— f(z) - fW)ll, <e,

min(||z||a,||lylla) =00
then
[fx+y)— f@)—fWl, <5 forall z,yeX.

Remark 1.6. Moreover, by taking £ > 0 and 2y € X \ {0}, and defining
f(zo) = 3¢ and fx)=¢ for xze€ X\ {xo},
they have also proved that 5 is the smallest possible constant in the above theorem.

The most closely related related results to Theorem 1.5 are [52, Theorem 1] of
Losonczi with the same constant 5, and the results of Jung, Moslehian, and Sahoo
[45, 47] and Chung [18, 19, 20] with some other natural constants in the concluded
estimates.

The origins of these investigations go back to Skof [72, 73], Hyers, Isac and
Rassias [41] and Gavruta [33]. (See also [54].) In the real-valued case, Volkmann [84]
proved the best estimate.

From Theorem 1.5, by taking ¢ = 0, Bahyrycz, Pdles and Piszczek could imme-
diately derive the following asymptotic hyperstability result.
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Corollary 1.7. Let (X,+,d) and (Y,+,p) be metric abelian groups such that X is
unbounded by d. If f : X — Y satisfies

limsup —[[f(z+y) = f(z) = fF(W)], =0,

min(||z| a,[lylla) o0
then
f+y)=f@)+fly), =zyeX

Hyperstability results, for the Cauchy equation and its generalizations, have also
been proved by Maksa and Péles [53], Najati and Rassias [59], Alimohammady and
Sadeghi [3], and Brzdek [14, 15, 16], Piszczek [61, 62], Almahalebi, Charifi and Kabbaj
[4], Bahyrycz and Olko [7, 8], Aiemsomboon and Sintunavarat [1, 2], Molaei, Najati
and Park [55, 58].

Moreover, several interesting asymptotic stability and hyperstability theorems
for additive functions have also been proved by using some other functional equations
than the Cauchy and generalized Cauchy ones.

In the present paper, we shall improve and generalize Theorem 1.5 of Bahyrycz,
Pales and Piszczek. For this, we shall use preseminormed groups instead of the metric
ones. Moreover, we shall use generalized cocycles introduced in [78], instead of the
Cauchy difference

F(x,y) = f(z +y) — f(x) = f(y). (1.2)

Some basic definitions and results on these fundamental objects, which are cer-
tainly unfamiliar to the reader, will be briefly laid out in the next preparatory section.

2. A few basic facts on preseminorms and generalized cocycles

Motivated by the corresponding definitions of [76, 80] and the proofs of our

forthcoming theorems, an even subadditive function || || of a group X to R will be
called a preseminorm on X.
Thus, under the notation ||z|| = || ||(x), we have ||0] = ||0+0]] < ||0]| + ||0]|, and

thus 0 < |[|0]|. And more generally, ||0|| = ||z + (—z)|| < ||z||+ || — z|| = 2||z||, and thus
0 < |z for all z € X.

Therefore, if ||0]] # 0, then by defining ||z||* = 0 for x = 0, and ||z||* = ||z for
x € X \ {0}, we can obtain a new preseminorm || |* on X such that ||0]|* = 0 already
holds.

By using induction and the corresponding definitions, we can also easily see that

|Inz|| < nllz||, and thus ||[(—n)z| = ||[n(—z)|| < n|| — z|| = n||z|| for all n € N and
zc X.
Therefore, the preseminorm || || may be naturally called a seminorm if n||z| <

|Inz|| for all x € X. Namely, thus we have ||kz|| = |k|||z| for all z € X and k € Z\ {0}.
(If |0]] = 0, then this also holds for k = 0.)

Note that a nonzero seminorm cannot be bounded. While, if || || is a seminorm
(preseminorm) on X, then for instance the function defined by ||z|* = min{1, ||z||}
for all x € X is a bounded preseminorm on X.
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Now, a seminorm (preseminorm) || || on X may be naturally called a norm
(prenorm) if ||z|| = 0 implies x = 0 for all z € X. If X = Zx for all z € X \ {0}, then
each nonzero preseminorm on X is a prenorm.

In [79, Remark 3.14], with the help of G. Horvéth, it was proved that the latter
condition is equivalent to the requirement that the cardinality of X is prime, or
equivalently X has no nontrival proper subgroup.

Now, for instance, an ordered pair X (|| ||) = (X,]| ||) consisting a group X and
a preseminorm || || on X, may be naturally called a preseminormed group. And, we
may simply write X instead of X (|| ||).

If X is a preseminormed group, then because of the subadditivity and evenness
of the corresponding preseminorm, for any =,y € X, we have

Izl =llz+y =yl < llz+yll+ 1 —yll = llz+yl + llyl
and
lyll =l —z+z+yl <l -2 +lz+yl=z]+lz+yl
Therefore,
Nzl = llyll] < llz+yll and [llz] = lyl| = [zl = I = ll| < llz =yl

However, it is now more important to note that Bahyrycz, Pales and Piszczek,
in the proof of their Theorem 1.5, have used, but not explicitly stated, the equality

f@+y) = f(@) = fly) = flz —u) + fu) = f(z)
T fy—0)+ )= fly)+flety—u—v) = flz—u) - fly—v)
+ fluto) = flw) = flo)+ fla+y) - fle+ty—u—v) = flutv). (21)
In a former paper [78], by using the Cauchy difference (1.2), we have noticed
that, instead of equation (2.1), it is more convenient to consider the equation

F(z,y) = F(u,v) — F(z —u,u) — F(y — v,v)
+Fz-—uy—v)+Flz+y—u—v,u+0o). (2.2)

Namely, thus Theorem 1.5 can be easily extended to the solutions of (2.2). More-
over, we can prove that every symmetric cocycle F on X to Y is a solution of this
equation.

That is, if F is a function of X2 to Y such that F(x,y) = F(y, ) and

F(z,y)+ F(z+y,2) = Flz,y+ 2) + F(y, 2) (2.3)

for all ,y,2z € X, then (2.2) also holds for all z,y,u,v € X.
It is well-known that every Cauchy—difference is a symmetric cocycle. Moreover,

Davison and Ebanks [24, Lemma 2] have proved that if F' is a symmetric cocycle on
X to Y, then

Flz+y,u+v)=Fle+uy+v)+ F(z,u)+ Fy,v) — F(z,y) — F(u,v) (2.4)

also holds for all z,y,u,v € X.

At first seeing, I considered equations (2.2) and (2.4) to be very similar, but still
quite independent. However, Gyula Maksa, my close colleague, has noticed that they
are actually equivalent.
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Namely, (2.4) can be immediately derived from (2.2) by replacing x by x +w and
y by y 4+ v. And conversely, (2.2) can be immediately derived from (2.4) by replacing
2 by x —u and y by y — v. Thus, equation (2.1) is a consequence of (2.4) too.

Inspired by the above observations, in our former paper [78], we have also con-
sidered the more difficult equations

F(z,y) + F(u,y +v) + F(z + y,u + )
= F(z,u) + F(y,u+v) + F(z 4+ u,y +v) (2.5)

and

F(z,y)+ F(z —u,u) + Fly —v,u) + F(y — v,v)
= F(u,v)+ Flu,y —v) + Flx —u,y —v)+ Flx +y —u—v,u+v). (2.6)

Note that if in particular F' is symmetric, then equation (2.6) is equivalent to
(2.2), which is in turn equivalent to (2.4). Moreover, it can be easily shown that if F'
is additive in its second variable, then equations (2.5) and (2.6) are also equivalent.

In our former paper [78], by using some more difficult computations, we have
also proved that equations (2.5) and (2.6) are also natural generalizations of (2.3) too.
Therefore, their solutions may be naturally called semi-cocycles and pseudo-cocycles,
respectively.

In the light of the above observations, it seems to be a reasonable research pro-
gram to extend some of the basic theorems on cocycles to these generalized cocycles.
And, to establish some deeper relationships among the various generalizations of co-
cycles mentioned in [78].

However, in the sequel, we shall only prove some straightforward analogues and
generalizations of Theorem 1.5 to semi-cocycles and pseudo—cocycles.

3. Analogues of Theorem 1.5 for generalized cocycles

Notation 3.1. In the sequel, we shall assume that F is a function of an unbounded,
commutative preseminormed group X to a commutative preseminormed group Y .

Remark 3.2. Note that now, by defining
(z,y) + (u,v) = (z +u, y+v)
and
@)l =zl v Iyl = max{|l=[l, [lyll}

for all z,y,u,v € X, the set X2 can also be turned into an unbounded commutative
preseminormed group.

Thus, by using a more simple argument than that used by Bahyrycz, Péles and
Piszczek in [9], we can prove the following natural analogue of Theorem 1.5.

Theorem 3.3. If F' is a semi-cocycle and

e= lim [F(z)],

Izl =00
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then
[ F(2)]| < 5e

for all z € X2.
Proof. By the corresponding definitions, for any n > €, we have

inf sup ||F(2)]| <n.
"0 >

Therefore, there exists r > 0 such that sup,, [|[F(2)]| <7, and thus

I1E)I <n
for all z € X2 with ||z]| > r.
Hence, since ||z|| = ||(21,22)| > ||zi]| for i = 1,2, it is clear that in particular
we have
1EGs, )l <n

for all s,t € X with either ||s|| > r or ||t]| > r.
Now, by taking x,y € X and using equation (2.5), we can see that

[E(z, )l = |1 F(x,u) + F(y,u+v) — Fu,y +v)
+F@+u,y+v) - Fle+yuto)
< [F (@, w)l| + 1F(y, u+ )| + |F(u,y + o)
+[|F(z+u,y+ )|+ ||F(x +y,u+v)]| <5y
whenever for instance u,v € X such that
el > r, |luw+v] > r, |z 4+ ul| > 7.
Therefore, if such u and v exist, then
|E(z,v)| < 5n, and thus | E(z,y)| < 5e

Now, to complete the proof, it remains to show only that the required u and v
exist. For this, we can note that, because of the assumed unboundedness of X, there
exist u,v € X such that

Jull >r+ [zl and ol > 7+ [lu].
Thus, we evidently have ||u|| > r. Moreover, by using the inequality ||s-+t|| > [|t]|—||s]|,
we can also see that
o +ull = flull =Nzl > 7+ [lof] = [lz]| = r
and
u+oll = ol = llull > 7+ [Jul] = [jull = r. O
From equation (2.6) and the proof of Theorem 3.3, it is clear that we also have

Theorem 3.4. If F' is a pseudo-cocycle and
e= lim [F(z)],

|| z]|—=+o0

then
[F(2)]] < Te

for all z € X2.
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Now, as an immediate consequence of the above two theorems, we can also state

Corollary 3.5. IfY is prenormed, F is either a semi or pseudo cocycle, and

lim [|F(z)] =0,

2l —+o0
then F(z) =0 for all z € X?.

Remark 3.6. However, from Theorems 3.3 and 3.4 we cannot get proper generaliza-
tions of Theorem 1.5. Therefore, in the next section we shall prove some modification
and improvement of Theorem 3.4.

4. Proper and partial generalizations of Theorem 1.5 to
pseudo-cocycles

Remark 4.1. Because of the condition of Theorem 1.5, in the sequel we shall also use
the quantity

K @ y) b= llzll Allyll = min{ (], [lyll},

for all (x,y) € X? instead of the natural preseminorm considered in Remark 3.2.
Thus, the function Jf Jf is not a preseminorm on X?2. However, despite this, it can be
well used to measure the magnitude of the points of X?2.

Moreover, it can as well be used to prove the following proper and partial gene-
ralizations of Theorem 1.5 to pseudo-cocycles. The proof of the first one is quite
similar to the second one. Therefore, it will be omitted.

Theorem 4.2. If F' is a symmetric pseudo-cocycle and

e= lim |F(2)|,
g IFE)]

then
[ F(2)| < 5e

for all z € X?2.

The proof of the following theorem is again quite similar, but a little more
readable, than the one given by Bahyrycz, Pales and Piszczek in [9].

Theorem 4.3. If I is a pseudo-cocycle and

e= lim |F(2)|,
Jm1FG)]

then
[1F(2)[| < 7e
for all z € X2.
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Proof. By the corresponding definitions, for any n > ¢, we have
inf sup ||F(2)]| <n.
>0 yoh>r

Therefore, there exists r > 0 such that supy.y-, [|[F(2)] <7, and thus
I1E()I <n

for all z € X2 with Jfz }f>r.
Hence, since Jf z f =} (21, 22) }f = min{||z1||, ||22]|}, it is clear that in particular
we have
[1E (s, )l <n
for all s,t € X with ||s|| > r and ||t|| > 7.
Now, by taking x,y € X and using equation (2.6), we can see that

[F(z, )| = [|1F(u,v) + F(u,y —v) = F(y — v,u)
—Flz—uu)—Fly—v,0)+ Flz—u,y—v)+ Flx+y—u—v,u+0)|
< |[F(u, )| + [ F(u,y = v)[| + [|[F(y — v,u)||
+|F(x —u,w)|| + [|[F(y —v,0)| + | F(z —u,y — )|
+||Flz4+y—u—v,ut+v)|| <7y

whenever u,v € X such that
full > 7, o]l >, |z —ull >r,  Jly—of >
lu+ || > r le+y—u—wv| >r
Therefore, if such u and v exist, then
[F(z,y) <7n,  andthus  [[F(z,y)| < 7e.

Now, to complete the proof, it remains only to show that the required u and
v exist. For this, following the arguments given [9], we can note that because of the
assumed unboundedness of X there exist u,v € X such that

[ull >+ lzl - and of} > 7+ [zl + [yl + Jull
Thus, we evidently have |ju|| > 7 and ||v]] > r. Moreover, by using the facts that
IIs +t|| > |It]] — |Is]| and || — ¢|| = ||t]|, we can also see that
& = ull > ffull = =[] > r + [l=]] = [l=]| =,

ly = ol = ol = Iyl > v+ [zl + llyll + el = [zl =7+ lyl + l[ull =,
and
[u+ ol = [Joll = llull > r + [l + 1yl + llull = lull = 7+ =] + [yl =7,
o +y—u—ol = [lutvl| =llz+yll >r+ |zl + [yl = [l =yl =
Namely, because of the inequality ||z]| + ||y|| > ||z + yl|, we also have
—llz+yll = ==l = [yl O

From this theorem, we can immediately derive
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Corollary 4.4. IfY is prenormed, F' is a pseudo-cocycle and

lim ||F(2)]| =0,
L IFG)

then F(z) =0 for all z € X?.

Remark 4.5. Recall that a Cauchy-difference is a symmetric cocycle. Moreover, a
cocycle is both a semi-cocycle and a pseudo-cocycle.

Therefore, in Theorem 4.2, F' may, in particular, be a Cauchy-difference or a
symmetric cocycle. While, in Theorems 3.3, 3.4 and 4.3 and their corollaries, F' may
already be an arbitrary cocycle.

5. Some supplementary notes

Remark 5.1. If for instance f is a function of X to Y and € > 0 such that there exists
r > 0 such that

1f(@+y) = flz) - fly)ll <e
for all z,y € X with ||z||, ||y|| > r, then by Remark 4.1 and the definition of the upper
limit we have

im | f(z+y) - f@) - fWll <e.

#(@y)ff—+oo
Thus, by Remark 4.5 and Theorem 4.2, we can state that

1f(x+y) = fz) = F)l < 5e

for all z,y € X. Therefore, Theorem 1.5 follows from Theorem 4.2.

Now, if in particular Y is the additive group of a Banach space, then by using
a slight generation of Theorem 1.3 we can also state that there exists an additive
function g of X to Y such that

1f(z) = g(a)[| <5e
for all z € X.
Remark 5.2. While, if f is an arbitrary and ¢ is an additive function of X to Y such
that

I1f(z) — g(z)|| < 5e

for all x € X, then we can only state that

1f(x+y) = f(@) = fFWl = [If (& +y) —g(z+y) +9(z) — f2) +9(y) = W)

<|flz+y) —glz+yll +lgl@) = f@)] + lgy) — fFW)Il
< 15¢

for all z,y € X. Therefore, Theorem 1.5 is sharper than the one derivable from the
usual asymptotic stability theorems.

This clearly reveal that the corresponding theorems on restricted and assymp-
totic stabilities have to split into two parts. This idea is also apparent from the proofs
of those theorems.
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Remark 5.3. Concerning our former results, it is also worth mentioning that in The-
orems 3.3 and 3.4 and Corollary 3.5, instead of the ”supremum preseminorm”

@, )l = (@, )]0 = max{[l], [ly]}

considered in Remark 3.2, we may also naturally use an ” L,—preseminorm”, defined
by

Il = )l = (el + o)

for some 1 < p < +oo and all (z,y) € X?2. Namely, this also has the important
property that |z < ||z| for i = 1,2, whenever z € X2,

Remark 5.4. Moreover, we can also note that ||z|| >} z }Jf for all 2 € X2. Therefore,

(F(z): fzh>r} C{F(z): |2 >},

and thus
sup [|[F(z)] < sup [[F(2)]|
Yzl >r [|z]|>r
for all > 0. Consequently,
lim ||F(2)|| = inf sup ||F <1nfsupF = lim ||F(2)|.
S IFG = jnf sup [FG)) < jnf sup [FG) = Tm 1G]
Therefore, the results obtained with || || are usually much weaker than that obtained

with }f }f. However, the former ones are, in a certain sense, still more natural since }f }f
is not a preseminorm on X?2.

6. Suggestions for further investigations

Cauchy differences, in the theory of functional equations, were first characterized
by Kurepa [51] and Erdés [29] with the help of the equation

Fle,y) + F(x +y,2) = F(z,y + 2) + F(y, 2) (6.1)

(For the algebraic origins and several further developments on this cocycle equation,
see the book [75] by Stetkaer.)

Quadratic differences were first characterized by Székelyhidi [81] with the help
of the equation

Flx+y,2)+ Flx—y,2) —2F(y,2) = F(z,y+ 2) + F(a,y — z) — 2F(z,y). (6.2)

(For some closely related results, see also Ebanks and Ng [25, 28].)
Some results on equations (6.1) and (6.2) were extended by Péles [60] to the
more attractive equation

ZFH@ ZFm y+ 6i(2)) + Fly, 2). (6.3)

(Later, this important equation has only been studied by Maksa and Péles [53].)
Recently, Leibniz differences has been characterized by Ebanks [27] with the help
of the equation
F(zy,z) + aF(z,y) = F(z,yz) + 2F(y, 2). (6.4)
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(For some earlier results, see Jessen, Karpf and Thorup [42], Ebanks [26] and Gsel-
mann and Péles [37].)

Moreover, affine differences has been characterized by Boros [10] with the help
of the equation

F(s, re+ (1 —r)y, tx+ (1 —t)y) = F(sr+ (1 - s)t, z,y)
—sF(r,z,y) — (1 — s)F(t,z,y). (6.5)

Thus, it is certainly true that several further important differences, such as for
instance the Jensen one, can also be characterized with the help of some functional
equations containing a little more variables than the corresponding differences.

Therefore, it seems to be a reasonable research program to prove some counter-
parts of the results of Bahyrycz, Pdles and Piszczek [9] and the present author for such
equations and their generalizations. First of all, some analogues and generalizations
of [9, Theorem 2] could be proved.

Added in Proof. The original version of this paper (Tech. Rep., Inst. Math., Univ.
Debrecen 20016/2, 12 pp.) was planned to be published in the Proceedings of the
Conference on Ulam’s Type Stability, 2016, Cluj-Napoca, Romania. However, it was
later submitted to the present journal.

Here, to improve the presentation, some useful changes have been suggested by
the referee and the editor. In particular, according to a general regulation of the
journal, all items of References have to be cited in the text. Therefore, my original
manuscript has been substantially rewritten.
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Abstract. In this work, we introduce the Korovkin type approximation theorems
on modular spaces via statistical .A-summation process for double sequences of
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imation theorem but does not satisfy the classical one.
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1. Introduction and preliminaries

Summability theory is the theory of the assignment of limits in the case of real or
complex sequences which are divergent. There are many types of summability meth-
ods especially regular summability methods, for example, Abel and Borel methods
[6]. Another regular summability method introduced by Fast ([8]) and which is not
equivalent to any regular matrix method is called statistical convergence which is
also known as (C,1) statistical convergence. Furthermore, in recent years, various
statistical approximation results and theorems have been proved via the concept of
statistical convergence ([9, 11, 19]) and the motivation using this type of convergence
comes from that the obtained results are more powerful than the classical version
of the approximations. One of these frequently used approximation method is the
Korovkin-type approximation theorems. As it is known Korovkin theorems allows us
to check the convergence with a minimum of computations. In this paper, our main
purpose is to study a further generalization of classical Korovkin theorem by consid-
ering certain matrix summability process in the frame of statistical convergence in
abstract spaces (namely, modular spaces) for double sequences. We also introduce an
example satisfying new approximation theorem but does not satisfy the classical one.
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Now, let us mention the notion of statistical convergence for double sequences
introduced by Moricz [15].

The double sequence x = {z; ;} is statistically convergent to L provided that
for every € > 0,

1
P—lim—|{i<m, j<n: |z,;—L|>e}| =0,
lim - [{i <m, j<n: |rg; - L] 2 €}

where P—convergent denotes Pringsheim limit ([22]). In that case we write

sty — limz; ; = L.
ij

It can be easily seen that a P—convergent double sequence is statistically convergent
to the same value but its converse is not always true. Also, it is crucial to state that a
convergent single sequence needs to be bounded even though this necessity does not
exist always for the double sequences. A convergent double sequence does not need
to be bounded. For example, take into consideration the double sequence z = {z; ;}
defined by

1, otherwise.

Then, clearly st; — limz; ; = 1 but not P—convergent and also, it is not bounded.
]

)

{ ij, 1 and j are squares
T 5 = .
The characterization for the statistical convergence for double sequences is given in
[15] as indicated below :

A double sequence x = {x; ;} is statistically convergent to L if and only if there
exists a set S C N2 such that the natural density of S is 1 and

P - ) hm Ti,j = L.
i,j—00
and (i,j)€S

In [7] the concepts of statistical superior limit and inferior limit for double sequences

have been introduced by Cakan and Altay. For any real double sequence = = {z; ;},
the statistical limit superior of z is defined by

sup G, if G, # 9,

. ifG, = o,

where G, :={C € R: 02 ({(4,7) : 2;,; > C}) # 0} and & denotes the empty set. Note
that, in general, by ds (K) # 0 we mean either d5 (K) > 0 or K fails to have the
double natural density. Similarly, the statistical limit inferior of x is given by

inf B, if F, # 2,

o0, if F, =@,

where F,, := {D € R: 8 ({(3,)) : ®ij < D}) #0}. As in the ordinary superior or
inferior limit, it was proved that

sty — 1imsupxi}j = { o

,J

sty — liminfx; ; = {
0]

sty — liminfx, ; < sty — limsupx;
i, ij

and also that, for any double sequence « = {x; ;} satisfying

62 ({(4,5) « |lwij| > M}) =0
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for some M > 0,

sty —limz; j = L iff sty — liminfx; ; = sty — limsupz; j = L.
1, 1,J @7
Let A= [akii,], k,1,4,7 € N, be a four-dimensional infinite matrix.
The A—transform of x = {z; ;}, denoted by Az := {(Ax)y,;}, is defined by

(Az)p = Z Ok,,5%i5, kI €N,
(4,7)€N2

provided the double series converges in Pringsheim’s sense for every (k, 1) € N2. Then,
a double sequence = is A—summable to L if the A—transform of = exists for all k,] € N
and convergent in the Pringsheim’s sense i.e.,

—hmZZaklm:E” = Y, and Pfhmykl =L.

=1 j=1

Now let A := {A m ”)} {a k"; i j)} be a sequence of four-dimensional infinite matrices

with non-negative real entries. For a given double sequence of real numbers, = {z; ; }
is said to be A—summable to L if

(m,n) _
—hm E aklwxm =L
! (i,5)EN?

uniformly in m and n. If A0™") = A, four-dimensional infinite matrix, then
A—summability is the A—summability for four-dimensional infinite matrix. Some
results concerning matrix summability method for double sequences may be attained
n [9], [21], [24].

Now, we recall some definitions and notations on modular spaces.

Let I = [a, b] be a bounded interval of the real line R provided with the Lebesgue
measure. Then, let X (I 2) denote the space of all real-valued measurable functions
on I? = [a, b] x [a, b] provided with equality a.e. As usual, let C' (I?) denote the space
of all continuous real-valued functions, and C*° (I 2) denote the space of all infinitely
differentiable functions on I2. A functional p : X (I%) — [0, +o00] is called a modular
on X (I?) if it satisfies the following conditions:

(i) p(f) = 0if and only if f =0 a.e. in I?,

(i1) p(—f) = (f)foreveryfeX(F)7

(i13) p (af + Bg) < p(f)+p(g) for every f,g € X(I?) and for any «, 8 > 0 with
a+p=1.

A modular p is said to be N—quasi convez if there exists a constant N > 1 such
that p (af + Bg9) < Nap(Nf) + NBp(Ng) holds for every f,g € X (I?), a,8 >0
with o + § = 1. In particular, if N =1, then p is called convez.

A modular p is said to be N—quasi semiconver if there exists a constant N > 1
such that p(af) < Nap(N f) holds for every f € X (I?) and a € (0, 1].

It is clear that every N —quasi convex modular is N —quasi semiconvex. Bardaro
et. al. introduced and worked through the above two concepts in [3, 5].
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We now present some acquired vector subspaces of X (I?) via a modular p as
follows:
The modular space L* (I 2) generated by p is defined by

L (I?) = {f € X(1%): lim p(Af) = 0} :
and the space of the finite elements of L” (I 2) is given by
Ef (I?) :=={f €L’ (I?) : p(Af) < 00 forall A>0}.
Observe that if p is N—quasi semiconvex, then the space
{feX (I?): p(A\f) < +oo for some A >0}

coincides with L* (I 2) . The notions about modulars are introduced in [16] and widely
discussed in [3] (see also [13, 17]).

Bardaro and Mantellini [4] introduced some Korovkin type approximation the-
orems via the notions of modular convergence and strong convergence. Afterwards
Karakug et al. [11] investigated the modular Korovkin-type approximation theorem
via statistical convergence and then, Orhan and Demirci [20] extended these type
of approximations to the spaces of double sequences of positive linear operators as
follows:

Definition 1.1. [20] A function sequence {f;;} in L” (I?) is said to be statistically
modularly convergent to a function f € L” (12) iff

stg —limp (Ao (fi,; — f)) =0 for some Ay > 0. (1.1)
Z’j

Also, {fi,;} is statistically F—norm convergent (or, statistically strongly convergent)
to fiff
sto —limp (A (fi; — f)) =0 for every A > 0. (1.2)
i

It is known from [16] that (1.1) and (1.2) are equivalent if and only if the modular p
satisfies the As—condition, i.e.
there exists a constant M > 0 such that p (2f) < Mp (f) for every f € X (I?).

Recently, Orhan and Demirci [19] have introduced the notion of .A—summation
process on the one dimensional modular space X (I). Now we introduce the notion
of the A—summation process for double sequences as follows:

A sequence T := {T; ;} of positive linear operators of D into X (12) is called
an A—summation process on D if {T;; (f)} is A—summable to f (with respect to
modular p) for every f € D, i.e.,

P — l;i.f?p (A (A}EJ,m’n (f) = f)] =0, uniformly in m, n (1.3)

for some A > 0, where for all k,I,m,n € N, f € D the series

AL i ()= D a0 f (1.4)

(i,5)eN?
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is absolutely convergent almost everywhere with respect to Lebesgue measure and
we denote the value of T; ;f at a point (z,y) € I? by T;;(f(u,v);z,y) or briefly,

Our goal in the present work is to give the Korovkin theorem for double se-
quences of positive linear operators using statistical A—summation process on a mod-
ular space. Some results concerning summation processes in the space Ly [a,b] of
Lebesgue integrable functions on a compact interval may be found in [18, 23].

It is required to give the following assumptions on a modular p :

A modular p is monotone if p(f) < p(g) for |f] < |g|, p is said to be finite if x4 €
Lr (I 2) whenever A is measurable subset of I2 such that u (A) < oco. If p is finite and,
for every € > 0, A > 0, there exists a 6 > 0 such that p (Axp) < ¢ for any measurable
subset B C I? with p (B) <, then p is absolutely finite and if x;2 € E* (I?), then
p is strongly finite. A modular p is absolutely continuous provided that there exists
an o > 0 such that, for every f € X (12) with p (f) < 400, the following condition
holds:

e for every € > 0 there is § > 0 such that p(afxs) < € whenever B is any
measurable subset of 12 with u (B) < 4.

Observe now that (see [4, 5]) if a modular p is monotone and finite, then we
have C(I?) C L (I?). Similarly, if p is monotone and strongly finite, then C(I?) C
Er (I 2). Also, if p is monotone, absolutely finite and absolutely continuous, then

C> (I?) = L* (I?) . (See for more details [2, 3, 14, 17]).

2. Main results

Let p be a monotone and finite modular on X (I 2) . Assume that D is a set
satisfying C'*° (12) cDclLr (12) . (Such a subset D can be constructed when p is
monotone and finite, see [4]). Also, assume that T := {7 ;} is a sequence of positive
linear operators from D into X (I 2) for which there exists a subset X1t C D with
(Gl (12) C Xr such that

sty — limsup p (A (A} (h))) < Rp(Ah), uniformly in m,n, (2.1)

k,l,m,n
holds for every h € Xt, A > 0 and for an absolute positive constant R.
We will use the test functions f,. (r = 0,1,2,3) defined by fo(z,y) = 1
fi(2,y) =@, fa(x,y) =y and f3 (z,y) = 22 + * throughout the paper.
We now prove the following Korovkin type theorem.

)

Theorem 2.1. Let A = {A(m’”)} be a sequence of four dimensional infinite non-
negative real matrices and let p be a monotone, strongly finite, absolutely continuous
and N —quasi semiconvexr modular on X (12) . Let T := {T; ;} be a sequence of positive
linear operators from D into X (12) satisfying (2.1) for each f € D. Suppose that

sty — llicr?p (A (Agl’m’n (fr) = fr)) =0, uniformly in m,n (2.2)
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for every A >0 and r =0,1,2,3. Now let f be any function belonging to L (12) such
that f — g € Xt for every g € C* (IQ) . Then we have

sto — l]icnllp (Ao (Ag,l,m,n (f)=f)) =0, uniformly in m,n (2.3)

for some Ag > 0.
Proof. We first claim that

sty — llicr?p (n (Aghm,n (9) — g)) = 0 uniformly in m,n (2.4)

for every g € C(I?) N D and n > 0 where
Aklmn Z a](c”lll"] i,39-
(4,5)EN?

To see this assume that g belongs to C (I 2) N D and 7 is any positive number. By
the continuity of ¢ on I? and in consequence of the linearity and positivity of the
operators T; ;, we can easily see that (see, for instance [20]), for a given € > 0, there
exists a number § > 0 such that for all (u,v), (z,y) € I?

9(u,0) — 9(a. )] <+ 2 {w—0)* + -9}

where M := sup |g(,y)|. Since T; ; is linear and positive, we get
(zy)er?

ST AT (i) — g (2,y)

(4,5)EN?

= | > T (g(L) —g(@y)iay)

(4,5)EN?

+g(@y) [ DD oI (foszy) — fo (z,y)

(4,5)EN?
< N AT (g (L) = g ()] s,y)
(i,5)€EN2
g @l S aly T (forx,y) — fo (x,y)
(i,5)EN?
m,n 2M 2 2
D T C S (R S

(i,4)EN?

g @yl Y ;(J?qj)T (fosz,y) — fo(z,y)

(i,5)EN?
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= cte+M)| Y aly T (forx,y) — fo(x,y)

(i,7)€N?
2M mon
t57 ST AT (s y) — f3 ()
(i,j)EN?
4M m,n)
+§T |f1(x,y)| Z aklzy ij flvmy) f1(377y)
(i,5)€N2

+1f2 (2,9)] Z oI T (Fai e y) — fo (2,y)

(i,5)EN?

2M mn
+ 1fa (@) Z av Ty (foiw,y) — fo (2,y)

(i,5)€N?

for every x,y € I and m,n € N. Therefore, from the the last inequality we get

Z ag?llln])T g,l’,y)—g(m,y)

(i,5)€N?
4AM 2 mon
< E+(E+M+ 52 ) Z gcllj ,j(fO’:Ey) f0($7y)
(i,j)€N?
4Me m,n)
+ 52 Z aklz] ,j fh‘r y) fl(l)y)
(i,5)€N?
4Me m,n)
+ 52 Z aklzg ,j fQ,(E y) f2(377y)
(i,5)€N?
2M mon
T S aliT (fsa,y) — fs (2,y)
(i,5)€N2

where ¢ := max {|f1 (z,y)|,|f2 (z,y)|} .

AMc? AMce 2M
So, denoting by K := max<e+ M + 526,520’52}’

ST AT (g5 x,y) — g (x,y)
(4,7)EN2?

<e+ K Z a,(:r;fj)Tu (fo;z,y) — fo (z,y)
(4,)EN?
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+ Z ECWZLZFL] 0,J (fhaj y) fl (may>

(4,5)EN?

+ Z aklznj ,j f273j y) f2($7y)

(i,5)EN?

+ Z aklznj ,j fdwr y) f3($7y)

(i,5)€EN2

Hence, we obtain, for any n > 0, that

n| 3 T (g5 w,y) — g (x,y)
(Z,J)EN2

< me+nK Q| S aly T (forx,y) — fo(2,y)
(i.4)EN?

+ Y a,ﬁ"{flj i (fis2,y) = fi(z,y)

(4,7)eN?

+ VT (faie,y) — fa (2,y)
(2,7)€EN?

+| Y @ vIT (i) — £ (2,y)

(4,7)eN?

Now we apply the modular p in the both-sides of the above inequality and since p is
monotone, we get

p (1 (A% tnn (9) = 9)) < p (0 + 0K (AL g n (fo) = fo)
+77K(Aklmn(fl) f1)+nK(Aklmn(f2) f2)+nK(Aklmn(f3)7f3))

So, we may write that

p (1 (AL imn (9)—9)) < p(ne) +p (50K (Aym.n (fo) = fo))
+p (50K (A} (1) = f1))
+p (5nK (Ak Lmon (f2) = f2))
+p (5nK (Ak,l,m,n (fs) = f3)) .



Statistical A-summation process 133

Since p is N—quasi semiconvex and strongly finite, we have, assuming 0 < e <1
p (0 (Al pmin (9) = 9)) < Nep(5nN) + p (50K (A7 nn (fo) = fo))
+p (5nK (Ak L (f1) = f1))
+p (50K (A} 1 n (f2) = f2))
+0 (50K (Afpmn (f3) = f3)) -

For a given ¢* > 0, choose an € € (0,1] such that Nep (5nN) < £*. Now we define the
following sets:

{ ( (Aklmn(g)*g))zg*}a
{ p (50K (AL 1 (Fr) = 1)) = E‘N”("’"N)} 7

4

3
r=0,1,2,3. Then, it is easy to see that G, C |J Gy,,. So, we can write that
r=0

3
52 (G) 302 (G
r=0

Using the hypothesis (2.2), we get

02 (Gn) =0,
which proves our claim (2.4). Obviously, (2.4) also holds for every g € C*°(I?). Now
let f € L? (I?) satisfying f—g € Xr for every g € C (I?) . Since p (I?) < co and p is
strongly finite and absolutely continuous, it can be seen that p is also absolutely finite

on X (I?) (see [2]). So, it is known from [3, 14] that the space C*°(I?) is modularly
dense in L* (I?), i.e., there exists a sequence {gj,;} C C*° (I?) such that

pP— 1Ii€r§1p (3A5 (gky — f)) =0 for some Aj > 0,
which means, for every € > 0, there is a positive number kg = ko(g) so that

p(BX; (gra — f)) <e  for every k,l > k. (2.5)

In addition to that, because the operators T; ; are linear and positive, we can write
that

N ST AT (frey) — )

(4,7)eN?

IN

)\S Z al(cnll:j) 7f;](f gk:07k07-’13 y)
(i,5)eN?

AL DTl T gk kot T2 Y) — Gko ko (2, Y)
(4,§)EN?

+)‘6 |gk0>k0($>y) - f(377y)| s
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holds for every x,y € I and m,n € N. Applying the modular p and moreover consid-
ering the monotonicity of p, we have

P (AS (A'l]g,l,m,n (f) = f)) < p (3)\3 (Ag,l,m,n (f = gko,ko)))
+0 (305 (A% L (ho,ko) = Gro ko))
0 (3G (gkoko — f)) - (2.6)
Then, it follows from (2.5) and (2.6) that

P ()‘3 (Ag,l,m,n (f) - f)) < e+ P (3/\8 (Ag,l,m,n (.f - gko,ko)))
+p (3)‘8 (Ag,l,m,n (gkoyko) - gko,ko)) . (27)

So, taking statistical limit superior as k,I — oo in the both-sides of (2.7) and also
using the facts that gg, x, € C°(I?) and f — gk, .k, € X1, We obtain from (2.1) that

Sto — liHIiSlllpP ()‘Ek) (Ag,l,m,n (f) - f))

< e+ R,O (3)\3(f - gko,ko))
+sto — hHiSlupp (3)\8 (Arg’l,m,n (gko,ko) - gkmko)) )

which gives
sty — limsup p (A5 (A 1. (f) = f))

)

< e(R+1)+sty — limsup p (A (A%t (Groko) — Groko)) - (2:8)

)

By (2.4), since

sty — llicr?p (3A5 (Ag’l’m’n (Gkosko) — Ghoke)) = 0, uniformly in m, n,

we get

sta — limsup p (3A] (Ag’l’m’n (Gosko) — Gkoko)) = 0, uniformly in m, n. (2.9)
el

From (2.8) and (2.9), we conclude that
st — hn;slupp (/\3 (Ajkr',l,m,n (f) - f)) < 8(R + 1)

Since € > 0 was arbitrary, we find
sty — limsup p (A§ (Aq,g’l’m,n (f) = f)) = 0 uniformly in m,n.
k.l

)

Furthermore, since p ()\3 (AT (f) — f)) is non-negative for all k,I,m,n € N, we

k,l,m,n
can easily see that

sty — llicr’?p (X (Ag,l’m’n (f) = f)) =0, uniformly in m,n,

which completes the proof. O

If the modular p satisfies the Ay—condition, then one can get immediately the
following result from Theorem 2.1.
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Theorem 2.2. Let A = {A(m’")} be a sequence of four dimensional infinite non-
negative real matrices. Let p and T = {T;;} be the same as in Theorem 2.1. If p
satisfies the Aqo—condition, then the statements (a) and (b) are equivalent:

(a) sty —lliCIIllp ()\ ( kil (fr) = fr)) =0 uniformly in m,n, for every A > 0 and
r=0,1,2,3,

(b) sty — l}icr?p( (Aglm o (f)— f)) =0 uniformly in m,n, for every A > 0 pro-

vided that f is any function belonging to LP(I?) such that f — g € Xt for every
geC>(I?).

If one replaces the matrices A(™™ by the identity matrix and taking P—limit,
then the condition (2.1) reduces to
P —limsup p (A (T ;1)) < Rp (Ah) (2.10)
i,
for every h € X1, A > 0 and for an absolute positive constant R. In this case, the next

results which were obtained by Orhan and Demirci [20] immediately follows from our
Theorems 2.1 and 2.2.

Corollary 2.3. ([20]) Let p be a monotone, strongly finite, absolutely continuous and N -
quast semiconver modular on X (12) . Let T:={T; ;} be a sequence of positive linear
operators from D into X (I?) satisfying (2.10)‘. If {T; ; fr} is strongly convergent to
fr for each r =0,1,2,3, then {T; ; f} is modularly convergent to f provided that f is
any function belonging to LP (12) such that f — g € Xt for every g € C* (12) .

Corollary 2.4. ([20]) Let T = {T; ;} and p be the same as in Corollary 2.3. If p satisfies
the As—condition, then the following statements are equivalent:

(@){T;,; fr} is strongly convergent to f, for each r=0,1,2,3,

(b{T;,; f} is strongly convergent to f provided that f is any function belonging
to LP(I?) such that f — g € Xt for every g € C™ (I2) )

In the following, we construct an example of positive linear operators satisfying
the conditions of Theorem 2.1.

Example 2.5. Take I = [0,1] and let ¢ : [0,00) — [0, 00) be a continuous function for
which the following conditions hold:

e ( is convex,
e ©(0)=0, ¢(u)>0for u>0and li_>m v (u) = oo.

Hence, let us consider the functional p? on X (I?) defined by

1)

In this case, p¥ is a convex modular on X (I 2) , which satisfies all assumptions listed
in Section 1 (see [4]). Let us consider the Orlicz space generated by ¢ as follows:

L‘;(IQ) ={f€X(I?):p? (\f) < +oo for some A >0} .

1
o (|f (x,y)]) dedy for feX(IQ). (2.11)

—

0
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Then let us consider the following bivariate Bernstein-Kantorovich operator

U:= {Uiﬂ'}
on the space L, (I 2) which is defined by:

(k+1)/(i+1) (+1)/(G+1)

Ui;(fiz,y) ZZ])(” y)(E+1)(G+1) / / f(t,s)dsdt

k=01=0 k/(i+1) 1/(j+1)
(2.12)

for z,y € I, where p( ) (z,y) defined by

i (@) = (;) (‘3) ehyt (1 —z) F (1 —y)

Also, it is clear that,

i J o
SN (@y) =1 (2.13)

k=01=0
Observe that the operators U; ; map the Orlicz space LY, (I 2) into itself. Because of

(2.13), as in the proof of [4] Lemma 5.1 and similar to Example 1[20], we obtain that
for every f € LY, (Ig) and ¢,7 € N there is an absolute constant M > 0 such that

p?(Ui;f) < Mp?(f).
Then, we know that, for any function f € L, (12) such that f — g € Xy for every

geC> (12) , {Ui,; f} is modularly convergent to f, with the choice of Xy := Lfo(IQ).
Now define {s; ;} by

1, if4, j are squares
Si,j =

0 otherwise. (214)

Now observe that, sto —lim; ; s; ; = 0. Also, assume that

A=At} = Lo

is a sequence of four dimensional infinite matrices defined by

m,n 1 . . .
a,%l)’i’;:HlfmSsz—Fk—l, n<j<n+l-1, (mn=12,..)

and a,(:'llzn ]) = 0 otherwise. Then, using the operators U; ;, we define the sequence of

positive linear operators V := {V; ;} on L2 (1?) as follows:

Vij(fizy) =0 +s,;)Ui;(fix,y) for fe Lg([z), x,y €10,1] and ¢,5 € N.
(2.15)
As in the proof of Lemma 5.1 [4] and using the convexity of ¢ we get, for every
he Xy:= Lg(IQ), A > 0 and for positive constant M, that

sty — limsup p? (A (Ag,lnn,n (R))) < Mp# (AR), uniformly in m,n,
k.l

)
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where
At ) =3 a2 WVish
(i,5)€EN2

as in (1.4). Therefore the condition (2.1) works for our operators V; ; given by (2.15)
with the choice of Xy = Xu = L/ (I?). We now claim that

sty — llicr?p“’ (A (Axl’m’n (fr) = fr)) =0, uniformly in m,n; r=0,1,2,3.  (2.16)

)

Observe that
T 1

Ui,j (fO;xuy) = ]-7 Ui,j (fl;xmy) = it 1 + m7

Jy 1
Ui’ s Ly = + .
and
i(i—1)x2 2ix 1 i —1)y? 27y 1
Usj(fs;z,y) = (. )2 + ( )

; st st 7 T st 2"
(i+1) t+1)" 33Gi+1) G+1) G+1)° 3(GF+1)
So, we can see,
m—+k— 1n+lll

v ()\ (AX,l,m,n (fO) - fO)) = p‘P A Z Z kl ]_ + szg -1

m+k—1n+l— 1

e A Z Z ] (1+4s;4) — dxdy

1
0/ i=m

I
o—__

mtk—1n4+i—1

Z Z %(1-&-81"]‘)—1 ,
i=m j=n

because of
1! 2, if i, j are squares
k;l Z Z (1+si5) = { 1 otherwise. My =1,2, .
and using continuity of ¢, we get
mtk—lntl-1
sty — llivl?lup A Z Z kl (1+si;) =0, uniformly in m,n  (2.17)

and hence

sty — llignllp“" (A (AY 1 mm (fo) = fo)) =0, uniformly in m,n,

)
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which guarantees that (2.16) holds true for » = 0. Also, since
Lp(/\( klmn(fl) fl))

m+k In+i—1 . 1’m,+k—l’n.+l—l 1
< (o g Z Zl—l—l e 3)\(kl L L2+
7n+k In+l—1 1
o7 3 kl 27;1 ZS”( 2(i+1))))
m+k In+l—1 . 1m+k—1n+l—1 1
R k:l zﬂ; Zz+1 i 3>\(l~cl & = 2t
m+k—1n+l—1 .
+p | 3A 1 Z st<l+ ,1 ))
ki =~ = i+1 2(i+1)
Since
rrL+k In+i—1 .
st =g { s sz: §:z+1 =0
77L+k In+l—1
stz —lim %?u ;; §: z+¢ =0
and
m+k: In+l—1 1
stz —Jjrp | sup kl;; ZS”(ZH 2@+D) -
we have,

sty — 11131;)“0 (M (A himm (f1) = f1)) =0, uniformly in m,n.
So (2.16) holds true for r = 1. Similarly, we have
slo 1 (A (A{ n (f2) = f2)) =0, uniformly in m,n

Finally, since

p? (A (AL L (f3) = f3))

N mil"il A4, -V 2 1
P P O T LA YT

G-y 2jy 1 (a2 42
R +<j+1>2+3<j+1>2> ( “’)))
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m+k 1n+i-1

1
<% | 3 k:l Z Z (1+si) +1)2)—1

m+k 1In+i-1

+p? | 3) kl Z Z 1+s;;) -1 _

+ 1)2

m+k In+l-1 2 1 2] 1
P13N| = 1 i
(S e <(.+1)2+ L e tn))

b 3(i+1) G+1)° 3(G+1)

Hence we can easﬂy see that
sty — llicr?p‘P (A (A) pimn (f3) = f3)) =0, uniformly in m,n.

So, our claim (2.16) holds true for each r =0, 1,2, 3. {V; ;} satisfies all hypothesis of
Theorem 2.1 and we immediately see that,

sty — lli}?p“" (A (A 1 mn (f) = f)) =0, uniformly in m,n,

on I? = [0,1] x [0, 1] for all f € LA (I?). Also, since {s; ;} does not converge modularly,
{Vi,;} does not satisfy Corollary 2.3.
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Quintic B-spline method for numerical solution
of fourth order singular perturbation boundary
value problems

Ram Kishun Lodhi and Hradyesh Kumar Mishra

Abstract. In this communication, we have studied an efficient numerical approach
based on uniform mesh for the numerical solutions of fourth order singular pertur-
bation boundary value problems. Such type of problems arises in various fields of
science and engineering, like electrical network and vibration problems with large
Peclet numbers, Navier-Stokes flows with large Reynolds numbers in the theory
of hydrodynamics stability, reaction-diffusion process, quantum mechanics and
optimal control theory etc. In the present study, a quintic B-spline method has
been discussed for the approximate solution of the fourth order singular pertur-
bation boundary value problems. The convergence analysis is also carried out
and the method is shown to have convergence of second order. The performance
of present method is shown through some numerical tests. The numerical results
are compared with other existing method available in the literature.

Mathematics Subject Classification (2010): 65L10.

Keywords: Fourth order singular perturbation boundary value problem, quintic
B-spline, quasilinearization, uniform mesh, convergence analysis.

1. Introduction

We consider the fourth order singular perturbation boundary value problem
—ey" (1) —pO)y" ) +a@®)y" @) +rt)yt)=f(t), tela, b, (L.1)

y@=m, y®)=m, y'@=mnm v 0 =n (1.2)
where 11, 12, 13 and 74 are finite real constants and ¢ is a small positive parameter,
such that 0 < ¢ < 1. Moreover, we assume that the functions p (t),q (t) ,~ () and
f (t) are sufficiently smooth. Further, the problem (1.1) is called non-turning point
problem if p(t) > a > 0 throughout the interval [a, b], where « is some positive
constant and boundary layer will be in the neighbourhood of ¢ = a [9]. In the same
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vein, if the p (¢) vanishes at ¢ = 0, then it becomes a turning point problem. In that
scenario, the boundary layer will be at both the end points ¢ = a and t = b [2].

Singular perturbation problems are engendered by multiplication of a small pos-
itive parameter € to highest derivative term of differential equation with boundary
conditions. Many scholars have studied the analytical and numerical solutions of these
problems, but sometimes they found that the classical numerical methods failed to
get good approximate solutions of singular perturbation problems. That’s why they
have gone for the non classical methods. In the last few decades, many researchers
have discussed the numerical solutions of singular perturbation problems. Most of
the researchers have studied the numerical solutions of second order singular pertur-
bation problems [5, 10, 11, 12, 13, 17, 19, 20, 21, 22, 29]. Only a few researchers
have focused the numerical solutions of higher order singular perturbation problems
[3, 24, 23, 28, 27]. Lodhi and Mishra [14, 15] have suggested the computational tech-
nique for numerical solutions of fourth order singular singularly perturbed and self
adjoint boundary value problems. Raja and Tamilselvan [23] have designed a shoot-
ing method on a Shishkin mesh to solve reaction-diffusion type problems. Mishra and
Saini [18] have used initial value technique for the numerical solution of fourth or-
der singularly perturbed boundary value problems. Sarakhsi et al [25] have studied
the existence of boundary layer problem. Parameter uniform numerical scheme to
solve fourth order singularly perturbed turning points problems have been presented
by Geetha and Tamilselvan [7]. Sharma et al. [26] have done the survey on singularly
perturbed turning point and interior layers problem. Geetha et al. [8] have applied pa-
rameter uniform numerical method based on Shishkin mesh for third order singularly
perturbed turning point problems exhibiting boundary layers.

This paper describes a quintic B-spline approach for the numerical solution of
fourth order singular perturbation boundary value problems and it has been proved
to be second order convergence. The paper is organized as follows: In section 2, we
describe the quintic B-spline method. Convergence analysis is established in section
3. Quasilinearization method is discussed in section 4. Section 5 gives the numerical
results which substantiate the theoretical aspects. Finally, we discuss the conclusions
in section 6.

2. Quintic B-spline Method

We divide the interval [a, b] into N equal subinterval and we choose piecewise
uniform mesh points represented by m = {tg, 1,12, ...,tn} ,such that tg = a, ty = b
and h = b_T“ is the piecewise uniform spacing. We define Ls [a, b] as a vector space of
all the integrable functions on [a, b], and X be the linear subspace of Ls [a, b]. Now
we define
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(t—t;i_3)°, ift € [ti_s, i o]

h® + 5% (t — ti,Q) + 10A8 (t — ti,2)2 + 10h2 (t — ti,Q)S

+5h (t —ti_o)t =5 (t —t;_2)” , ift € [ti_o, tii]

26h° + 50R* (t — t;_1) + 2003 (t —t;_1)> — 20h2 (t — ;)"

L 20n(t—ti) 10— t0)” ift e [ti1, t]

Bi(t) = 35 26h° + 500" (tixs — 1) + 20 (tif1 — )2 — 20R2 (tipq —t)°

—20h (ti+1 - 33)4 + 10 (t¢+1 — t)5 R ift € [ti, ti-&-l}

h5 4+ 5h4 (tiys —t) + 10R3 (tipo — t)° + 1082 (tio — t)°

+5h (tH_Q — t)4 -9 (tH_Q — t)5 s ift € [ti—i-h tH_Q]

(ti+3 — t)5 s ift € [ti+2, ti+3]

0 otherwise, fori=20,1,2,...N.

(2.1)

We introduce six additional knots as t_3 <t_o < t_; <tg and tyy3 > tnyo >
ty+1 > tn. From equation (2.1), we can easily check that each of the functions B;(¢)
is four times continuously differentiable on the entire real line. Also, the values of
B; (t),B.(t),B! (t),B! (t) and B (t)at the nodal points are given in Table 1.

Table 1. Quintic B-spline basis and its derivative function values at nodal points

B (t) ti—3 ti—2 ti—1 t tit1 Lito Lits
B; (t) 0 1 26 66 26 1 0
Bi (t) 0 5/h 50/h 0 —50/h —5/h 0
B! (t) 0 20/h2 40/h2 —120/h2 40/h2 20/h2 0
B! (t) 0 6O/h3 —120/h3 0 120/h3 —60/h3 0
B (t) 0 120/h*  —480/h* 720/h*  —480/h* 120/h* 0O
Let Q = {B,Q,Bfl,Bo,Bl, ...... ,BN,17BN,BN+1,BN+2} and let ¢5 (’R’) =

span Q. The function Q is linearly independent on [a, b], thus ¢5 (7) is (N + 5)-
dimensional. Even one can show that ¢5 (7) Ceubspace X- Let L be a linear operator
whose domain is X and whose range is also in X. Now we define

N+2

S(t)="> eBi(t), (2.2)

i=—2
be the approximate solution of the problem (1.1) with boundary conditions (1.2),
where ¢}s is an unknown coefficient and B; (t)'s a fifth degree spline function. To
solve fourth order singularly perturbed two point boundary value problems, the spline
functions are evaluated at nodal points t = ¢; (¢ = 0,1,2, ..., N) which are needed for
the solution.
From Table 1 and equation (2.2), we obtain the following relationships:

y (tz) =5 (tl) = Cj—2 + 2661'71 + 6601 + 260i+1 + Ci42 (23)

1
m (tl) = S/ (tl) = E (—501',2 — 50Ci71 + 500i+1 + 5Ci+2) (24)
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1

M; = s (ti) = ﬁ (20Ci_2 + 40¢;—1 — 120¢; 4+ 40c¢;y1 + 206,‘+2) (25)
1
T, = s (ti) = ﬁ (—6001‘,2 4+ 120¢;—1 — 120¢; 41 + 600i+2) (26)
. 1
Fl‘ = Sw (tl) = ﬁ (1206i_2 — 48001‘_1 + 72001 — 48061‘4_1 + 12001’—}-2) (27)

Moreover, m;, M;, T; and F; can be used to approximate values of y' (¢;), y” (¢;),
Yy (t;) and y** (&;) .

Since S (t) is an approximate solution, it will satisfy equation (1.1) with boundary
conditions (1.2). Hence we get

—eS™ (1) —p (1) " (1) +q (1) 8" (t) +7 (1) S (t) = f (1), (2.8)
and
S(a)=m, S®)=mn, S5"(a)=ns, 5" (b)=ns (2.9)
Discretizing equation (2.8) at the nodal points ¢;(i = 0,1, ..., N), we have
—eS™ (t:) = p(t:) " (t:) + q (t:) 8" (t:) + 7 (t:) S (t:) = f (t:) ,
Using equations (2.3)-(2.7) in above equation and simplifying, we obtain
—% {12001',2 —480¢;—1 + 720c; — 480c¢;4+1 + 1200i+2}
—% {—6001'—2 + 12002',1 — 12OCi+1 + 60Ci+2}
—l—% {2001‘,2 + 40¢;—1 — 120¢; + 40c;41 + 200i+2}’
—+7r; {Ci_g + 26¢;_1 + 66¢; + 26¢,4+1 + CH_Q} = fih4,
where p; = p(t;),¢s = q(t;),ri = r(t;) and f; = f(t;). After simplifying above
equation, we get
Y1 (t) cica + v2 (t) cic1 + s (i) ci + va (t) cipr + 5 (i) ciga = fil®, (2.11)

where

(2.10)

t;) = —120e + 60p;h + 20q;h? + r;h*,

t;) = 480e — 120p;h + 40¢;h* + 267;h*,

t;) = —720e — 120¢;h* + 667;h*,

ti) = 480¢ + 120p;h + 4Oqih2 + 267“ih4,

vs (t;) = —120e — 60p;h + QOqihQ + ’I“ih4, for ¢ =0,1,...,N.

From the boundary conditions, we get the following equations

71 (
72 (
73(
Ya (

c_o 4+ 26¢c_1 + 66¢cq + 26¢1 + c2 = 141, (2.12)
CN—2 + 26cn_1 + 66cy + 26N 11 + CNy2 = 72, (2.13)
20c_g + 40c_1 — 120¢q 4 40¢1 + 20¢y = n3h?, (2.14)
and
20cn—_2 + 40cy_1 — 120cy + 40cn 41 + 20y 12 = nah?. (2.15)

Coupling equations (2.11)-(2.15) lead to a system of (N + 5) linear equations AY = D
in the (V + 5) unknowns, where

y — T
*[6—236—13603613"'7CN—1acNaCN+1aCN+2} )

T
D = [7717 773h27 f0h4a f1h4a SRR) fN71h4aho47 774h27 772]
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and the coefficient matrix A is given by

1 26 66 26 1 0
20 40 —120 40 20 0
7 (to) 72 (to) 3 (to) ~va(to) s (to) 0
0 () 2 (t) v3(t1) 7a(t) s (1)
0 0 : : :
A= 0 0 0 7 (t:) 2 (t:) 3 (t:)
0 0 0 0 71 (tN—l)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Ya (t:) s (ti) 0 0 0
: : : 0 0
Yo (tn-1) 73 (tnv-1) va(tnv-1) 5 (n-1) O
T(tn)  2(n)  wy)  ya(y) s ()
20 40 —120 40 20
1 26 66 26 1]
(2.16)
Since A is a non-singular matrix, so we can solve the system AY = D for
€—2,€-1,€0,C1,C2,- - - CN—2,CN—1,CN,CN+1,CN+2 Substituting these values into equation

(2.2), we get the required approximate solution.

3. Derivation for convergence

In this section, a technique is portrayed which will ascertain the truncation error
for the quintic B-spline method over the whole range a < t < b. Here, we suppose
that function y (¢) has continuous derivatives in the whole range.

We calculate the following relationships by comparing the coefficients of
¢ (1=-2,-1,0,1,...,N,N +1,N + 2). From equations (2.3)-(2.7), we have

S'(ti—2) + 265" (t;i—1) + 665" (t;) + 265" (tir1) + S (tive)

. 3.1

— LBy (tig) — 50y(ts_1) + 50y(ter) + 5ylives)} (3-1)

S//(ti_g) + 265”(ti_1) + 665"('@') + QGS/I(ti+1) + S”(ti_l,_Q) (3 2)
= 77 {20y(ti—2) + 40y(ti—1) — 120y(t;) + 40y(tig1) + 20y(tiy2)} '

S (t_o) + 265" (t;_1) + 665" (t:) + 268" (tis1) + S (tis) (33)

= 5 {—60y(ti—2) + 120y(ti—1) — 120y (ti1) + 60y (tiv2)}
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Sw(ti_g) + 265“)(1*,1‘_1) + 665“)(251‘) =+ 265“}(751‘4_1) =+ Sw(ti_i_g)

3.4
= {120y (t,_5) — 430y (ti_1) + T20y(t;) — A80y(tis1) + 120y(tina)} OV
Using the operator notation [6, 16], the equations (3.1)-(3.4) can we written as
1/ —5E~2 —-50E~! +50F + 5E?
S'(t) =+ | == — 5 | y(ti) (3.5)
h\E2+26E-1+66]+26F+ F
1 [20E~2+40E~! — 1201 + 40F + 20E?2
S"(t) = o ey o TR (t:) (3.6)
h2 E-2+26E-1 4661 +26F + E2
1 /—60E~2+4+120E~! — 120E + 60E?
Sl”(t’i) = 73 9 1 2 ( Z) (37)
h E-24+26E-1+66] +26F + F
1 (120E-2 — 480E~" + 720 — 480E + 12052
S (tz) = 71 ) ] 2 (tl) (38)
h E-24+26E-1+66] +26F+ F

where the operators are defined as Ey(t;) = y(t; + h), Dy(t;) = ¢'(¢;) and Iy(t;) =
y(t;). Let E = e"P and expand them in powers of hD, we get

1 1
7]16 7 t;) — 7h8 9 t;
soa0™ ¥ %) ~ 51600™ Y )+ 1536800

S//(ti) = y ( )+ Th4 6( z) - %hG 8( )Jr 86400h8 10( Z)

S'(t;) =y (t;) + ROyt () + 0(h') (3.9)

3.10

+%th 2(t:) +0(h) 1)

S"(t:) = y" (i) — 5 h " (t) + 3107y () — seggeh®y™ () (3.11)
+1maomsoo Y (t:) + 0(h')

S(t:) =y (t:) — 15h®y°(ti) + zigh*y® (t:) — 7o h®y"° (t:) (3.12)

907200h8 12( )+ 1592g$200h10 14( )+0(h’11)

We now define e (t) = y (t) — S (t) and substitute equations (3.9)-(3.12) in the
Taylor series expansion of e (¢; + 6h) we obtain

e (ti+00) = (155 — 245 ) oy + (8 — 19 ) W77 (1)
Jr(*6(;720Jr 5760) hBy®(t:) + 0(R?)

where a < 6 < b. We abridge the above results in the following theorem:

Theorem 3.1. Let y (t) be the exact solution and S (t) be the numerical solution of
the singularly perturbed fourth order boundary value problem (1.1) with the boundary
conditions (1.2) for sufficiently small h which further gives the truncation error of
(0] (hG) and method of convergence of O (hz) .

(3.13)

4. Quasilinearization method
Let us consider the boundary value problem
—ey ) =F (v, y",y"), t=]a, V],

Yy (a/) =M, Yy (b> =12, y// (a) =13, yl/ (b) = N4,

—
i
[NCYR—-

= £
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where F' (t, y, y”, v""’) is a smooth function such that

Fy”’ (t7 ya y”7 y/”) Z a > 07
Fy” (t7 Y, yl/a y///) 2 5 > 07 te [CL, b] ) (43)
0>F,(t vy, v, y")>-x A>0.

In order to obtain the numerical solution of the boundary value problem (4.1) and
(4.2), Newton’s method of quasilinearization [1, 4] is applied to generate the sequence
of {yx}, of successive approximations with a proper selection of initial guess yo. We
define yi41, for each fixed non-negative integer k,to be solution of the following linear
problem:

—eyiter () —pr () iy () +a () vy )47k () yrgr (£) = fu (8), t€[a, b], (4.4)

Yrt1 (@) =m1, Y1 (0) =m2, Y1 (@) =n3,  Ypyq () = N4, (4.5)
where
pk (t):F”' (t yka ykvy;g”)7 ( ): ( 7yk7yk7y;g”)
Ty (t) = Fy (t, yk»ykay;”) ()=Fy (t yk,ymy}é’)
—ku (t, yr, yi, yZ’)— Y Fyr (t, yies vt yi')
=y Eyr (t, Yrs Ui Y ) -

We make the following observations:

i) If the initial guess yo is sufficiently close to the solution y () of (4.1) and (4.5),
then the sequence {y;}, converges to y(x). One can see the proof given in [4].
From (4.3), it follows that, for each fixed k,

pr (t) = Fyo (t, y, ¥, y") > a >0,
ax (t) = Fyr (t, y, 9", y") =2 B >0, (4.6)
0>r,(t)=F,(t, y, vy, y") > =X, A>0.

ii) Problem (4.4) with the boundary conditions (4.5), for each fixed k,is a linear
fourth order boundary value problem which is in the form of (1.1) and (1.2).
Hence it can be solved by the method described in section 2.

iii) The following convergence criterion is used to terminate the iteration:

Hyk-i-l (tz) — Yk (tz)” <e L€ [a’ b] , k>0. (4'7)

5. Numerical results

In the present section, we have presented numerical results of the considered
examples with the help of MATLAB software which verifies theoretical estimates.
When the exact solutions of the considered examples are available then the maximum
absolute errors E™V are evaluated using the following formula for the present method,
which is given by

EY = max |yE ;) — Sév(ti)|, (5.1)
ti€la, b)
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When the exact solutions of the considered examples are not available then the maxi-
mum absolute errors Eév are evaluated using the double mesh principle for the present
method, which is given by

EY = max ]Sév(ti) — S2N ()], (5.2)
t; G[a, b]
The numerical order of convergence is computed using the following formula
InEN —In E?V
OrdV = ———— 5.3
3 In2 (5:3)

The exact and approximate solutions are denoted by y» and S¥ respectively.
Example 5.1 Consider the following singular perturbation boundary value problem

[27]:
—ey™ (t) — 4y (t) =1, telo, 1],
y(o) = 17 y(l) = 17 yl/ (O) = 717 yl/ (1) =-L
The exact solution of Example 5.1 is given by

4t

y(t) = ———~ {—35 e”c — T2t% — 8% + 80t — 3te? + 192 + 3¢?

et (<192 4+ 962 + 86 — 104t 4 312) |

Table 2. Maximum absolute errors and order of convergence of
Example 5.1 for different values of € and V.

N e=21% Ord e=270 Ord e=20 Ord e=2"7 Ord e=2" Ord
64 9.5153E-06 2.0442 1.1597E-05 2.2186 9.3841E-06 1.6594 7.6100E-06 1.6904 1.0217E-05 2.4174
128 2.3070E-06  2.0097 2.4916E-06  2.0418 2.9708E-06  2.2173 2.3579E-06  1.6494 1.9126E-06  1.6944
256 5.7289E-07  2.0010 6.0512E-07  2.0095 6.3885E-07  2.0421 7.5163E-07  2.2142 5.9098E-07  1.6435
512 1.4312E-07 2.1459 1.5029E-07 1.4799 1.5512E-07 2.0623 1.6198E-07 2.0885 1.8916E-07 2.2051
1024 3.2339E-08 5.3882E-08 3.7140E-08 3.8086E-08 4.1024E-08

Example 5.2. Consider the following singular perturbation boundary value problem
[7]:
—ey™ (t) + 5ty (t) +4y” (t) + 2y (t) =0, te[-1, 1],

y(-H=1, y)=1, ' (-)=1, y'(1)=L

Table 3. Comparison of maximum absolute error and order of convergence of
Example 5.2 for different values of N and ¢ = 274

N Geetha and Tamilselvan [7] Present Method
EY Ord EY Ord
64 3.9249E-2 0.9770 4.4948E-04 2.5794
128  1.9940E-2 0.9886 7.5204E-05 2.0864
256  1.0049E-2 0.9944 1.7708E-05 2.0177
512 5.0440E-3 0.9972 4.3731E-06 2.3071

1024 2.5269E-3 8.8366E-07
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Example 5.3. Consider the following singular perturbation boundary value problem
[7]:

—ey () +5ty" () + A+ )y )+ (2+ ) y(t) = —€' +5, te[-1, 1],

Table 4. Comparison of maximum absolute error and order of convergence of
Example 5.3 for different values of N and ¢ = 2%

N Geetha and Tamilselvan [7] Present Method

EY Ord EY Ord
64 3.3778E-2 0.9823 4.1824E-04  2.5806
128 1.7097E-2 0.9913 6.9920E-05  2.0866
256  8.6002E-3 0.9957 1.6462E-05 2.0306
512 4.3130E-3 0.8693 4.0291E-06 2.1087
1024 2.3610E-3 9.3418E-07

Example 5.4. Consider the following singular perturbation boundary value problem
[7]:
—ey™ (1) +5ty" () + (4 + 1) y" (1) + 27 (1) =0, te[-1, 1],

y(-1)=1, y() =1, " (-1)=2 4" (1)=2

Table 5. Comparison of maximum absolute error and order of convergence of
Example 5.4 for different values of N and ¢ = 27*

N Geetha and Tamilselvan [7] Present Method
EY Ord EY Ord
64 7.5762E-02 0.9731 1.1620e-03  2.5795
128  3.8593E-02 0.9867 1.9440e-04  2.0863
256  1.9475E-02 0.9934 4.5777e-05  2.0215
512 9.7821E-03 0.9967 1.1275e-05  1.7449
1024  4.9021E-03 - 3.3639e-06 -

6. Conclusions

In this article, we have used the quintic B-spline method for finding the approx-
imate solution of fourth order linear and non-linear singular perturbation boundary
value problems. We linearised the non-linear boundary value problem via quasilin-
earization method and solved the problem. It is a computationally proficient tech-
nique and the algorithm can easily be applied on a computer. The results obtained
through this method are better than the existing method [7] with the same number
of nodal points.



150 Ram Kishun Lodhi and Hradyesh Kumar Mishra
References
[1] Bellman, R.E., Kalaba, R.E., Quasilinearization and Nonlinear Boundary Value Prob-

2]

3]

[6]

[7]

8]

[9]

[15]

[16]

lems, American Elsevier, New York, 1965.

Berger, A.E., Han, H., Kellogg, R.B., A priori estimates and analysis of a numerical
method for a turning point problem, Mathematics of Computation, 42(1984), 465-492.

Chen, S., Wang, Y., A rational spectral collocation method for third-order singularly
perturbed problems, Journal of Computational and Applied Mathematics, 307(2016),
93-105.

Doolan, E.P., Miller, J.J.H., Schildres, W.H.A., Uniform Numerical Method for Problems
with Initial and Boundary Layers, Dublin, Boole Press, 1980.

Farrell, P.A., Hagarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I., Robust Compu-
tational Techniques for Boundary Layers, Boca Raton, Chapman and Hall/CRC Press,
2000.

Fyfe, D.J., The use of the cubic spline in the solution of two point boundary value
problems, Computing Journal, 12(1969), 188-192.

Geetha, N., Tamilselvan, A., Parameter uniform numerical method for fourth order
singularly perturbed turning point problems exhibiting boundary layers, Ain Shams En-
gineering Journal, http://dx.doi.org/10.1016/j.asej.2016.04.018, 2016.

Geetha, N., Tamilselvan, A., Subburayan, V., Parameter uniform numerical method
for third order singularly perturbed turning point problems exhibiting boundary layers,
International Journal of Applied and Computational Mathematics, 2(2016), 349-364.

Howes, F.A., The asymptotic solution of a class of third-order boundary value problem
arising in the theory of thin film flow, SIAM Journal of Applied Mathematics, 43(1983),
993-1004.

Kadalbajoo, M.K., Patidar, K.C., A survey of numerical techniques for solving singu-
larly perturbed ordinary differential equations, Applied Mathematics and Computations,
130(2002), 457-510.

Kadalbajoo, M.K., Yadaw, A.S., Kumar, D., Comparative study of singularly perturbed
two-point BV Ps via: Fitted-mesh finite difference method, B-spline collocation method
and finite element method, Applied Mathematics and Computation, 204(2008), 713-725.

Khan, A., Khan, 1., Aziz, T., Sextic spline solution of a singularly perturbed boundary-
value problems, Applied Mathematics and Computation, 181(2006), 432-439.

Kumar, M., Singh, P., Mishra, H.K., A recent survey on computational techniques for
solving singularly perturbed boundary value problems, International Journal of Computer
Mathematics, 84(2007), 1439-1463.

Lodhi, R.K., Mishra, H.K., Computational approach for fourth-order self-adjoint sin-
gularly perturbed boundary value problems via non-polynomial quintic spline, Iranian
Journal of Science and Technology, Transactions A: Science, DOI 10.1007/s40995-016-
0116-6, 2016.

Lodhi, R.K., Mishra, H.K., Solution of a class of fourth order singular singularly per-
turbed boundary value problems by quintic B-spline method, Journal of the Nigerian
Mathematical Society, 35(2016), 257-265.

Lucas, T.R., Error bounds for interpolating cubic splines under various end conditions,
SIAM Journal Numerical Analysis, 11(1974), 569-584.



[17]

18

[19

25

26

27

S
hes)

[29]

Quintic B-spline method 151

Miller, J.J.H., O’Riordan, E., Shishkin, G.I., Fitted numerical methods for singularly
perturbed problems. Error estimates in the mazximum norm for linear problems in one
and two dimensions, Singapore: World Scientific Publishing Co. Pvt. Ltd., 2012.
Mishra, H.K., Saini, S., Fourth order singularly perturbed boundary value problems via
initial value techniques, Applied Mathematical Sciences, 8(2014), 619-632.

O’Malley, R.E., Introduction to Singular Perturbations, New York, Academic Press,
1974.

Pandit, S., Kumar, M., Haar wavelet approach for numerical solution of two parame-
ters singularly perturbed boundary value problems, Applied Mathematics & Information
Sciences, 6(2014), 2965-2974.

Rai, P., Sharma, K.K., Numerical analysis of singularly perturbed delay differential turn-
ing point problem, Applied Mathematics and Computation, 218(2011), 3486-3498.

Rai, P., Sharma, K.K., Numerical study of singularly perturbed differential — difference
equation arising in the modeling of neuronal variability, Computers & Mathematics with
Applications, 63(2012), 118-132.

Roja, J.C., Tamilselvan,A., Shooting method for singularly perturbed fourth-order ordi-
nary differential equations of reaction-diffusion type, International Journal of Compu-
tational Methods, http://dx.doi.org/10.1142/S0219876213500412, Vol. 10, 1350041 (21
pages), (2013).

Roos, H.G., Stynes, M., Tobiska, L., Numerical Method for Singularly Perturbed Differ-
ential Equation Convection-Diffusion and Flow Problems, Springer, 2006.

Sarakhsi, A.R., Ashrafi, S., Jahanshahi, M., Sarakhsi, M., Investigation of boundary
layers in some singular perturbation problems including fourth order ordinary differential
equations, World Applied Sciences Journal, 22(2013), 1695-1701.

Sharma, K.K., Rai, P., Patidar, K.C., A review on singularly perturbed differential equa-
tions with turning points and interior layers, Applied Mathematics and Computation,
219(2013), 10575-106009.

Shanthi, V., Ramanujam, N., A boundary value technique for boundary value prob-
lems for singularly perturbed fourth-order ordinary differential equations, Computers
and Mathematics with Applications, 47(2004), 1673-1688.

Valarmathi, S., Ramanujam, N.; A computational method for solving third order singu-
larly perturbed ordinary differential equations, Applied Mathematics and Computation,
129(2002), 345-373.

Zhang, Y., Naidu, D. S., Cai, C., Zou, Y., Singular perturbations and time scales in
control theories and applications: An overview 2002-2012, International Journal of In-
formation and Systems Sciences, 9(2014), 1-35.

Ram Kishun Lodhi

Department of Mathematics, Jaypee University of Engineering & Technology
AB Road Raghogarh, Guna-473226 (M.P.), India

e-mail: ramkishun.lodhi@gmail.com

Hradyesh Kumar Mishra

Corresponding author

Department of Mathematics, Jaypee University of Engineering & Technology
AB Road Raghogarh, Guna-473226 (M.P.), India

e-mail: hk.mishraQjuet.ac.in



	0_cover1
	0_editorial_i_ii
	00Contents_1_2
	01Anastassiou_3_22
	02Farid_Abbas_23_35
	03Dragomir_37_57
	04Joshi_etal_59_69
	05Magesh_etal_71_78
	06Liu_79_108
	07Szaz_109_124
	08Orhan_Kolay_125_140
	09Lodhi_Mishra_141_151



