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Quadratic refinements of matrix means

Mohammad Sababheh

Abstract. The main target of this article is to present refinements of the matrix
arithmetic-geometric mean inequality. The main difference between these refine-
ments and the ones in the literature is the quadratic behavior of the refining
terms. These refinements include the Löewner partial ordering, determinants,
trace and unitarily invariant norms refinements.

Mathematics Subject Classification (2010): 15A39, 15B48, 47A30, 47A63.

Keywords: Positive matrices, matrix means, norm inequalities, Young’s inequal-
ity.

1. Introduction and motivation

Let Mn be the algebra of n × n complex matrices, M+
n be the cone of positive

semidefinite matrices in Mn and M++
n be the cone of strictly positive matrices in Mn.

For two Hermitian matrices A and B, we write A ≥ B or B ≤ A to mean A−B ∈M+
n ,

while we write A > B or B < A to mean A−B ∈M++
n .

Comparison between Hermitian matrices is receiving a considerable attention
these days, where the possible comparison between the means of these matrices is
extensively considered.

In this article, we compare between matrices using the partial ordering ≤ defined
above and using invariant norms. Recall that a norm ‖| ‖| on Mn is called invariant,
if ‖|UAV ‖| = ‖|A‖| for all A ∈ Mn and all unitary matrices U, V. Among the most
useful invariant norms, is the Hilbert-Schmidt norm ‖ ‖2 defined as follows

‖A‖2 =

 n∑
i,j=1

|aij |2
 1

2

, A = [aij ].

Notice that this is equivalent to ‖A‖2 =
√

tr|A|2, where |A|2 = A∗A and tr is the
trace functional.
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Another possible comparison between matrices is the comparison between their
determinants, where the identity detA =

∏n
i=1 λi(A) becomes handy. In this context,

{λi(A)} refers to the set of eigenvalues of A.
Further, for A,B ∈ M++

n and 0 ≤ t ≤ 1, we define the weighted arithmetic and
geometric means, respectively, as follows

A∇tB = (1− t)A+ tB and A#tB = A
1
2

(
A−

1
2BA−

1
2

)t
A

1
2 .

When t = 1
2 , it is customary to drop it from the notation. So we write A∇B to denote

A∇ 1
2
B, for example. Among the most well established comparisons between matrices

is the following inequality known as the “arithmetic-geometric mean inequality”

A#tB ≤ A∇tB, 0 ≤ t ≤ 1.

Then this means’ inequality is refined and reversed in many ways. Before stating
these refinements, we remind the reader that obtaining such matrix inequalities is done
in different ways, but the most common technique is by a corresponding numerical
inequality. For this, we need to look at the numerical forms of the above inequality.
For the positive numbers a, b and 0 ≤ t ≤ 1, we define the weighted means by
a∇tb = (1 − t)a + tb and a#tb = a1−tbt. The above matrix mean inequality can be
simply proved using the known numerical inequality

a#tb ≤ a∇tb, 0 ≤ t ≤ 1.

This inequality is well known by Young’s inequality. We explain how to move from a
numerical inequality to a matrix inequality in Theorem 2.10 below.

Since the matrix versions are obtained from numerical versions, refinements and
reverses of numerical inequalities imply certain refinements and reverses of matrix
inequalities. We mention here a few refinements known in the literature. In [5] it is
proved that

a#tb+ min{t, 1− t}(
√
a−
√
b)2 ≤ a∇tb (1.1)

or simply
a#tb+ L1(t)f1(a, b) ≤ a∇tb,

for a piecewise linear function L1 and some positive function f1(a, b). On the other
hand, a two-term refinement has been proved in [16]

a#tb+ L1(t)f1(a, b) + L2(t)f2(a, b) ≤ a∇tb,
for another piecewise linear function L2 and another positive function f2. These re-
finements then were generalized in [13], [14] as

a#tb+

N∑
i=1

Li(t)fi(a, b) ≤ a∇tb,N ∈ N

for piecewise linear functions Li and positive functions fi.
Moreover, the reversed version

a∇tb ≤ a#tb+ max{t, 1− t}(
√
a−
√
b)2, 0 ≤ t ≤ 1 (1.2)

was proved in [6], and a generalization was presented recently in [13].
Further related results can be found in [1], [5], [12], [15], [16], [17].
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What is common among these different refinements and reverses is the fact that
all refining terms are linear in t.

In the recent paper [8], a quadratic refinement and reverse of Young’s inequality
were proved. Namely, it is shown that if a, b > 0 and 0 ≤ t ≤ 1 are such that
(b− a)(2t− 1) ≥ 0 then

a#tb+ 2t(1− t)
(√

a−
√
b
)2
≤ a∇tb, (1.3)

while we have the reversed inequality if (b − a)(2t − 1) ≤ 0. Notice that the refining

term in this inequality is 2t(1− t)
(√

a−
√
b
)2

which is quadratic in t.

Our motivation of the current work begins with this observation. In fact, even
(1.3) follows from a more general quadratic refinement. Our main target in this
paper is to show that certain quadratic refinements and reverses can be shown
for the arithmetic-geometric mean inequality, in both multiplicative and additive
forms. Among many other matrix versions, we prove the following inequalities for
A,B ∈M++

n and X ∈Mn under some ordering condition,

τ(1− τ) (A∇νB −A#νB) ≤ ν(1− ν) (A∇τB −A#τB) ,

det(A#νB)
1
n +

ν(1− ν)

τ(1− τ)
det (A∇τB −A#τB)

1
n ≤ det(A∇νB)

1
n ,

tr|A1−νBν |+ ν(1− ν)

τ(1− τ)
(tr(A∇tB)− trA#τ trB) ≤ tr(A∇νB),

and

‖(1− ν)AX + νXB‖22 − ‖AνXB1−ν‖22
ν(1− ν)

≤ ‖(1− τ)AX + τXB‖22 − ‖AτXB1−τ‖22
τ(1− τ)

.

A common aspect of all the refinements in this paper is the quadratic refining
term ν(1− ν) or τ(1− τ).

We remark that in the recent paper [7], quadratic refinements of Heinz inequality
have been shown.

The organization of this paper will be as follows. In the first part, we prove the
needed numerical inequalities, and these will be done by some calculus computations.
Then we present the matrix versions in the same order of the numerical ones to make
it easier for the reader to follow.

2. Main results

Our main results section is divided into two parts. The first part will treat
numerical versions needed to accomplish the matrix versions presented in the second
part of the section.
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2.1. The numerical versions

In the following computations, the reader must be careful about moving from
one variable to another.

Lemma 2.1. For c > 0, let

f(t) =
1∇tc− 1#tc

t(1− t)
, 0 < t < 1.

Then

1. f is increasing on (0, 1) if c > 1.
2. f is decreasing on (0, 1) if c < 1.

Proof. Direct computations show that

f ′(t) =
g(c)

t2(1− t)2
,

where, considering t as a constant,

g(c) = −1 + ct(1− 2t) + 2t+ (c− 1)t2 + ct(t− 1)t log c.

Then
g′(c) = t2h(c), where h(c) = 1− ct−1(1 + (1− t) log c).

Furthermore,
h′(c) = (1− t)2ct−2 log c.

Now if c > 1, then h′(c) > 0 while h′(c) < 0 when c < 1. Therefore h = h(c) attains
its minimum at c = 1. That is h(c) ≥ h(1) = 0. Consequently, g′(c) > 0 and g(c) is
increasing on (0,∞).
If c > 1 then g(c) ≥ g(1) = 0 and f ′(t) > 0. This proves the first statement.
On the other hand, if c < 1, g(c) ≤ g(1) = 0 and f ′(t) < 0. This proves the second
statement. �

This entails the following quadratic refinement and reverse of Young’s inequality.

Proposition 2.2. Let a, b > 0 and 0 ≤ ν, τ ≤ 1. If (b− a)(τ − ν) ≥ 0, then

τ(1− τ)(a∇νb− a#νb) ≤ ν(1− ν)(a∇τ b− a#τ b).

On the other hand, if (b− a)(τ − ν) ≤ 0 then

τ(1− τ)(a∇νb− a#νb) ≥ ν(1− ν)(a∇τ b− a#τ b).

Proof. Letting c = b
a in the function f(t) = 1∇tc−1#tc

t(1−t) and using the monotonicity of

Lemma 2.1 imply both inequalities. �

Letting ν = 1
2 in the above proposition implies the following [8].

Corollary 2.3. Let a, b > 0 and 0 ≤ ν ≤ 1. If (b− a)
(
τ − 1

2

)
≥ 0 then

a#τ b+ 4τ(1− τ)(a∇b− a#b) ≤ a∇τ b.
On the other hand, if (b− a)

(
τ − 1

2

)
≤ 0 then

a#τ b+ 4τ(1− τ)(a∇b− a#b) ≥ a∇τ b.
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This explains the generality of these inequalities. Then squared versions that we
can use to prove some Hilbert-Schmidt norm forms can be obtained as follows.

Proposition 2.4. For c > 0, define f : (0, 1)→ [0,∞) by

f(t) =
(1∇tc)2 − (1#tc)

2

t(1− t)
.

1. If c < 1, then f is decreasing on (0, 1) and
2. if c > 1, then f is increasing on (0, 1).

Proof. Direct computations show that

f ′(t) =
g(c)

t2(1− t)2
, g(c) = −1 + 2t− t2 + c2t2 + c2t(1− 2t+ 2(−1 + t)t log c).

Further,

g′(c) =
2t2

c
h(t), h(t) = c2 + c2t(−1 + 2(−1 + t) log c)

and
h′(t) = 4c2t(t− 1) log2 c.

Clearly h′(t) < 0, hence h(t) ≥ h(1) = 0 and g′(c) ≥ 0. If c < 1, then g(c) ≤
g(1) = 0 and f is decreasing. On the other hand, if c > 1, g(c) ≥ g(1) = 0 and f is
increasing. �

Corollary 2.5. Let a, b > 0 and 0 < ν, τ < 1. If (b− a)(τ − ν) ≥ 0 then

(a∇νb)2 − (a#νb)
2

ν(1− ν)
≤ (a∇τ b)2 − (a#τ b)

2

τ(1− τ)
.

The inequality is reversed if (b− a)(τ − ν) ≤ 0.

Again, letting τ = 1
2 , we obtain the corresponding inequality from [8].

The above two refinements are “additive” versions, where the refining term is
added to one side of the original inequality. Our next result presents a multiplicative
form of these inequalities.

Lemma 2.6. For c > 0, define f : (0, 1)→ [0,∞) by

f(t) =

(
1∇tc
1#tc

) 1
t(1−t)

.

Then

1. f is increasing on (0, 1) if c < 1 and
2. f is decreasing on (0, 1) if c > 1.

Proof. Let F (t) = log f(t). That is

F (t) =
log(1− t+ tc)− t log c

t(1− t)
.

Then

F ′(t) =
g(c)

(1− t)2t2(1− t+ tc)
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where

g(c) = t(c− 1 + t− tc+ t(t− 1− tc) log c) + (2t− 1)(1− t+ tc) log(1− t+ tc).

Now

g′(c) = − t
c
h(c) for h(c) = (c− 1)(t− 1)t+ ct2 log c+ c(1− 2t) log(1− t+ tc).

Furthermore,

h′(c) = t2 log c+ (2t− 1)

[
(c− 1)(t− 1)t

1− t+ tc
− log(1− t+ tc)

]
and

h′′(c) =
(1− t)2t(2c+ (c− 1)2t)

c(1− t+ tc)2
.

Now clearly h′′(c) ≥ 0, hence h′ is increasing in c.
If c < 1, then h′(c) ≤ h′(1) = 0 and h is decreasing when c ≤ 1. That is,

h(c) ≥ h(1) = 0 and g′(c) ≤ 0 when c ≤ 1. Thus, g is decreasing when c ≤ 1, and
hence g(c) ≥ g(1) = 0. Consequently, F ′(t) ≥ 0 and F is increasing in t, when c ≤ 1.
This proves the first assertion. When c > 1, a similar argument implies that F is
decreasing in t. �

As a consequence, we obtain the following multiplicative refinement and reverse
of Young’s inequality.

Corollary 2.7. Let a, b > 0 and 0 < ν, τ < 1. If (b− a)(τ − ν) > 0 then

a#τ b

(
a∇νb
a#νb

) τ(1−τ)
ν(1−ν)

≥ a∇τ b.

On the other hand, if (b− a)(τ − ν) < 0 then

a#τ b

(
a∇νb
a#νb

) τ(1−τ)
ν(1−ν)

≤ a∇τ b.

Proof. Let c = b
a in

f(t) =

(
1∇tc
1#tc

) 1
t(1−t)

.

If b < a, then f is increasing, by Lemma 2.6. Therefore, when ν < τ we have f(ν) ≤
f(τ). This completes the proof of the first inequality. A similar argument implies the
second inequality. �

Remark 2.8. Having introduced our numerical quadratic refinements and reverses, we
compare these results with the linear inequalities. We have seen that, for a, b > 0 and
0 ≤ t ≤ 1, one has

r(t)(
√
a−
√
b)2 ≤ a∇tb− a#tb ≤ R(t)(

√
a−
√
b)2,

where r(t) = min{t, 1− t} and R(t) = max{t, 1− t}. On the other hand, under certain
ordering conditions, we have the quadratic refinement or reverse

a∇tb− a#tb ≤ (≥)2t(1− t)(
√
a−
√
b)2.
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It is natural to ask about the advantage of introducing a quadratic refinement or
reverse over the linear ones.
Direct calculations show that, for 0 ≤ t ≤ 1, one has r(t) ≤ 2t(1 − t) and R(t) ≥
2t(1− t). Therefore, when (b− a)(2t− 1) ≥ 0, we have

a#tb+ r(t)(
√
b−
√
a)2 ≤ a#tb+ 2t(1− t)(

√
b−
√
a)2 ≤ a∇tb,

which is a refinement of the refinement (1.1). On the other hand, if (b−a)(2t−1) ≤ 0,
we have the

a#tb+R(t)(
√
b−
√
a)2 ≥ a#tb+ 2t(1− t)(

√
b−
√
a)2 ≥ a∇tb,

which is a refinement of the reversed version (1.2). Therefore, introducing quadratic
refinements serves as introducing one-term refinements of the already existing linear
refinements.
A similar argument applies for the multiplicative versions.

We conclude this section by the following observation. The inequalities in Propo-
sition 2.2 and Corollary 2.5 give rise to the following quotients

a∇νb− a#νb

a∇τ b− a#τ b
and

(a∇νb)2 − (a#νb)
2

(a∇τ b)2 − (a#τ b)2
.

It is natural to ask about the relation between these quantities. Denoting these quo-

tients by Aν,τ (a, b) and A
(2)
ν,τ (a, b), respectively, we have the following comparison.

Proposition 2.9. Let a, b > 0 and 0 ≤ ν, τ ≤ 1. If (b− a)(τ − ν) ≥ 0, then

A(2)
ν,τ (a, b) ≤ Aν,τ (a, b).

On the other hand, if (b− a)(τ − ν) ≤ 0, then

A(2)
ν,τ (a, b) ≥ Aν,τ (a, b).

Proof. Let f(t) = a∇tb + a#tb. Then, clearly, f is increasing when b > a and is
decreasing if b < a. Now, if (b−a)(τ−ν) ≥ 0, then f(τ) ≥ f(ν), whether b > a or b < a.

Simplifying the inequality f(ν) ≤ f(τ) implies the inequality A
(2)
ν,τ (a, b) ≤ Aν,τ (a, b),

when (b − a)(τ − ν) ≥ 0. A similar argument implies the reversed inequality when
(b− a)(τ − ν) ≤ 0. �

2.2. Matrix versions

Now we present the matrix versions one can obtain from the numerical versions
proved above.

Theorem 2.10. Let A,B ∈M++
n and 0 ≤ ν, τ ≤ 1. If (τ − ν)(B −A) ≥ 0 then

τ(1− τ) (A∇νB −A#νB) ≤ ν(1− ν) (A∇τB −A#τB) .

The inequality is reversed if (τ − ν)(B −A) ≤ 0.

Proof. If (τ − ν)(B − A) ≥ 0, let X = A−
1
2BA−

1
2 . Notice that if τ > ν then B ≥ A

and λi(X) ≥ 1,∀i. That is, (τ − ν)(λi(X) − 1) ≥ 0. A similar conclusion is achieved
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if τ < ν. Now since (τ − ν)(λi(X) − 1) ≥ 0, we may apply the first inequality of
Proposition 2.2, using a = 1 and b = λi(X). This implies

τ(1− τ) (1∇νλi(X)− 1#νλi(X)) ≤ ν(1− ν) (1∇τλi(X)− 1#τλi(X)) ,

which implies

τ(1− τ) (In∇νdiag(λi(X))− In#νdiag(λi(X)))

≤ ν(1− ν) (In∇τdiag(λi(X))− In#τdiag(λi(X))) .

Now since X is Hermitian, X = Udiag(λi(X))U∗ for some unitary matrix U . Conju-
gating the above inequality by U and noticing that conjugation is order preserving,
we get

τ(1− τ) (In∇νX − In#νX) ≤ ν(1− ν) (In∇τX − In#τX) .

Now conjugating this inequality with A
1
2 implies the first desired inequality. The

second inequality follows similarly. �

On the other hand, a determinant version may be obtained as follows. First, we
recall Minkowski inequality, [3], p. 560,(

n∏
i=1

ai

) 1
n

+

(
n∏
i=1

bi

) 1
n

≤

(
n∏
i=1

(ai + bi)

) 1
n

, (2.1)

for the positive numbers {ai, bi : 1 ≤ i ≤ n}.

Theorem 2.11. Let A,B ∈M++
n and 0 < ν, τ < 1. If (τ − ν)(B −A) ≤ 0 then

det(A#νB)
1
n +

ν(1− ν)

τ(1− τ)
det (A∇τB −A#τB)

1
n ≤ det(A∇νB)

1
n . (2.2)

Proof. Let X = A−
1
2BA−

1
2 . If (τ −ν)(B−A) ≤ 0 then (τ −ν)(λi(X)−1) ≤ 0, which

justifies the application of the second inequality of Proposition 2.2 in the following
computations. Now

det (In∇νX)
1
n =

n∏
i=1

λi ((1− ν)In + νX)
1
n

=

n∏
i=1

(1− ν + νλi(X))
1
n (now apply Proposition 2.2 then (2.1))

≥
n∏
i=1

(
ν(1− ν)

τ(1− τ)
(1∇τλi(X)− 1#τλi(X)) + 1#νλi(X)

) 1
n

≥
n∏
i=1

(
ν(1− ν)

τ(1− τ)
(1∇τλi(X)− 1#τλi(X))

) 1
n

+

n∏
i=1

(1#νλi(X))
1
n

=
ν(1− ν)

τ(1− τ)

n∏
i=1

λ
1
n
i (In∇τX − In#τX) +

n∏
i=1

λ
1
n
i (In#νX) .
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Now multiplying both sides with detA
1
2 and using basic properties of the determinant

imply the desired inequality. �

Notice that if we set τ = 1
2 in (2.2), we get

det(A#νB)
1
n + 4ν(1− ν) det (A∇B −A#B)

1
n ≤ det(A∇νB)

1
n ,

when (1− 2ν)(B −A) ≤ 0. Raising both sides to the power n implies

det(A1−νBν) + 4nνn(1− ν)n det (A∇B −A#B)

≤
(

det(A#νB)
1
n + 4ν(1− ν) det (A∇B −A#B)

1
n

)n
≤ det((1− ν)A+ νB).

In [8], it is proved that

det(A1−νBν) + 4nνn(1− ν)n det (A∇B −A#B) ≤ det((1− ν)A+ νB).

Therefore, (2.2) provides a refinement and a generalization of the corresponding result
in this reference. On the other hand, Proposition 2.5 maybe used to obtain squared
determinant versions as follows.

Proposition 2.12. Let A,B ∈M++
n and let 0 < ν, τ < 1. If (τ − ν)(B −A) ≥ 0, then

det(A#νB)
2
n +

ν(1− ν)

τ(1− τ)
det (A∇τB −A#τB)

2
n ≤ det(A∇νB)

2
n .

Proof. Following the same notations of Theorem 2.11, we have

det(In∇νX)
2
n =

(
n∏
i=1

(1∇νλi(X))2

) 1
n

(apply Proposition 2.5 then (2.1))

≥
n∏
i=1

(
(1#νλi(X))2 +

ν(1− ν)

τ(1− τ)

[
(1∇τλi(X))2 − (1#τλi(X))2

]) 1
n

≥
n∏
i=1

(
(1#νλi(X))2

) 1
n +

n∏
i=1

(
ν(1−ν)

τ(1−τ)

[
(1∇τλi(X))2−(1#τλi(X))2

]) 1
n

≥
n∏
i=1

(λi(In#νX))
2
n +

ν(1− ν)

τ(1− τ)

n∏
i=1

(1∇τλi(X)− 1#τλi(X))
2
n

= det(In#νX)
2
n +

ν(1− ν)

τ(1− τ)
[det(In∇τX)− det(In#τX)]

2
n ,

where we have used the simple inequality (a2 − b2) ≥ (a − b)2 when a > b > 0 to
obtain the last inequality in the above proof. Now multiplying the last inequality with
detA implies the desired inequality. �

In the following result, we use the well known inequality [4]

tr|A1−νBν | ≤ (trA)1−ν(trB)ν , A,B ∈M+
n . (2.3)
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Proposition 2.13. Let A,B ∈ M++
n and let 0 < ν, τ < 1. If (τ − ν)(trB − trA) ≤ 0,

then

tr|A1−νBν |+ ν(1− ν)

τ(1− τ)
(tr(A∇tB)− trA#τ trB) ≤ tr(A∇νB).

Proof. Under the condition (τ − ν)(trB − trA) ≤ 0, we have

tr(A∇νB) = trA∇νtrB

≥ ν(1− ν)

τ(1− τ)
(trA∇τ trB − trA#τ trB) + trA#νtrB

≥ tr|A1−νBν |+ ν(1− ν)

τ(1− τ)
(tr(A∇tB)− trA#τ trB) ,

where we have used (2.3) to obtain the last inequality and used Proposition 2.2 to
obtain the first inequality. �

On the other hand, the squared version in Proposition 2.5 entails the following
Hilbert-Schmidt norm inequality. For the next result, {λi} will denote the eigenvalues
of A arranged in a decreasing order and {µj} will denote the eigenvalues of B arranged
in a decreasing order too. Moreover, the notation X ◦ Y will mean the Schur product
of X and Y .

Theorem 2.14. Let A,B ∈M+
n and X ∈Mn. If τ > ν and B ≥ λ1In, or if τ < ν and

B ≤ λnIn then

‖(1− ν)AX + νXB‖22 − ‖AνXB1−ν‖22
ν(1− ν)

≤ ‖(1− τ)AX + τXB‖22 − ‖AτXB1−τ‖22
τ(1− τ)

.

The inequality is reversed if τ > ν and B ≤ λnIn or if τ < ν and B ≥ λ1In.

Proof. Since A,B ∈M+
n , there exist unitary matrices U, V and nonnegative numbers

λi, µj such that
A = Udiag(λi)U

∗ and B = V diag(µj)V
∗.

Letting Y = U∗XV , we have

(1− ν)AX + νXB = U ([(1− ν)λi + νµj ] ◦ Y )V ∗.

Notice that the condition B ≥ λ1In implies µj ≥ λi,∀i, j and the condition B ≤ λnIn
implies µj ≤ λi,∀i, j. Therefore, the conditions τ > ν and B ≥ λ1In, or if τ < ν and
B ≤ λnIn imply (τ − ν)(µj − λi) ≥ 0,∀i, j. Under these conditions, and noting that
‖ ‖2 is unitarily invariant, we have

‖(1− ν)AX + νXB‖22
=
∑
i,j

{
(λi∇νµj)2|yij |2

}
(now apply Corollary 2.5)

≤
∑
i,j

{
(λi#νµj)

2 +
ν(1− ν)

τ(1− τ)

(
(λi∇τµj)2 − (λi#τµj)

2
)}
|yij |2

= ‖A1−νXBν‖22 +
ν(1− ν)

τ(1− τ)

(
‖(1− τ)AX + τXB‖22 − ‖A1−τXBτ‖22

)
,
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which completes the proof for the first set of conditions. A similar argument implies
the reversed inequality for the other conditions. �

Notice that the above inequalities provide a refinement and a reverse of the
inequality ‖A1−τXBτ‖2 ≤ ‖(1− τ)AX + τXB‖2.

Next, we present a matrix version of Corollary 2.7. For this result, we adopt the
notation of Theorem 2.14.

Theorem 2.15. Let A,B ∈ M++
n , X ∈ Mn, 0 < ν, τ < 1 and let m,M be two positive

numbers such that mIn ≤ A,B ≤ MIn. If τ > ν and B ≥ λ1In, or if τ < ν and
B ≤ λnIn then

‖A1−τXBτ‖22 ≥
(m
M

) 2τ(1−τ)
ν(1−ν) ‖(1− τ)AX + τXB‖22.

Proof. Adopting the notation of Theorem 2.14, notice that the condition mIn ≤ A,
B ≤MIn implies m ≤ λi, µj ≤M and hence

m

M
≤ λi#νµj
λi∇νµj

≤ M

m
,∀i, j.

Furthermore, the conditions τ > ν and B ≥ λ1In, or if τ < ν and B ≤ λnIn imply
that (µj − λi)(τ − ν) ≥ 0,∀i, j. Therefore, applying Corollary 2.7 we have

‖A1−τXBτ‖22 =
∑
i,j

(λi#τµj)
2 |yij |2

≥
∑
i,j

(
λi#νµj
λi∇νµj

) 2τ(1−τ)
ν(1−ν)

(λi∇τµj)2|yij |2

≥
(m
M

) 2τ(1−τ)
ν(1−ν) ∑

i,j

(λi∇τµj)2|yij |2

=
(m
M

) 2τ(1−τ)
ν(1−ν) ‖(1− τ)AX + τXB‖22.

This completes the proof. �

Notice that Theorem 2.15 provides a reverse of the well known inequality
‖A1−τXBτ‖2 ≤ ‖(1− τ)AX + τXB‖2. Further, notice that the condition B ≥ λ1In
means thatB ≥ ‖A‖ In where ‖A‖ is the operator norm, while the conditionB ≤ λnIn
means that A ≥ ‖B‖ In.

On the other hand, unitarily invariant norm inequalities can be obtained as
follows. Recall first that for A,B ∈ M++

n and X ∈ Mn, we have the well known
Hölder inequality [4]

‖|A1−tXBt‖| ≤ ‖|AX‖1−t‖|XB‖|t, 0 ≤ t ≤ 1, (2.4)

for any unitarily invariant norm ‖| ‖| on Mn. Applying Young’s inequality on the left
side implies the known matrix Young inequality

‖|A1−tXBt‖| ≤ (1− t)‖|AX‖|+ t‖|XB‖|.
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We remark that the inequality ‖|A1−tXBt‖| ≤ ‖|(1 − t)AX + tXB‖| is not true in
general, however, it is true for the norm ‖ ‖2.

In [11], it has been shown that the function f(t) = ‖|A1−tXBt‖|, 0 ≤ t ≤ 1 is
log-convex. We use this fact to present the following reverse of (2.4).

Lemma 2.16. Let A,B ∈ M++
n , X ∈ Mn and ‖| ‖| be a unitarily invariant norm on

Mn such that ‖|A1−tXBt‖| 6= 0 for any 0 ≤ t ≤ 1. Then

‖|A1−tXBt‖|
(
‖|AX‖| ‖|XB‖|
‖|A 1

2XB
1
2 ‖|2

)R(t)

≥ ‖|AX‖1−t‖|XB‖|t, (2.5)

where R(t) = max{t, 1− t}.
Proof. Let f(t) = ‖|A1−tXBt‖|. Then f is log-convex. For 0 ≤ t ≤ 1

2 , notice that

1

2
= αt+ (1− α) where α =

1

2− 2t
.

Using log-convexity of f , we have

f

(
1

2

)
≤ fα(t)f1−α(1).

Simplifying this inequality implies the result for 0 ≤ t ≤ 1
2 . Similar computations

yield the result for 1
2 ≤ t ≤ 1. �

On the other hand, notice that the function f(t) = ‖|(1 − t)AX + tXB‖| is
convex. This fact follows immediately because ‖| ‖| is a norm. This entails the
following reverse of ‖|(1 − t)AX + tXB‖| ≤ (1 − t)‖|AX‖| + t‖|XB‖|. The proof
is similar to the above one. However, the reader is encouraged to look at [10] for a
general discussion of these refinements and reverses of convex functions.

Lemma 2.17. Let A,B ∈ M++
n , X ∈ Mn and ‖| ‖| be a unitarily invariant norm on

Mn. Then

‖|(1− t)AX + tXB‖|+R(t) (‖|AX‖|+ ‖|XB‖| − ‖|AX +XB‖|)
≤ (1− t)‖|AX‖|+ t‖|XB‖|. (2.6)

Now we are ready to find quadratic refinements and reverses of

‖|A1−tXBt‖| ≤ ‖|AX‖|1−t‖|XB‖|t ≤ (1− t)‖|AX‖|+ t‖|XB‖|.
Theorem 2.18. Let A,B ∈M++

n , X ∈Mn and ‖| ‖| be a unitarily invariant norm on
Mn such that ‖|A1−tXBt‖| 6= 0 for any 0 ≤ t ≤ 1. If (‖|XB‖| − ‖|AX‖|) (τ − ν) > 0
then

‖|(1− τ)AX + τXB‖|
≤ (1− τ)‖|AX‖|+ τ‖|XB‖|

≤ ‖|AX‖|1−τ‖|XB‖|τ
(

(1− ν)‖|AX‖|+ ν‖|XB‖|
‖|AX‖|1−ν‖|XB‖|ν

) τ(1−τ)
ν(1−ν)

≤ ‖|A1−τXBτ‖|
(
‖|AX‖| ‖|XB‖|
‖|A 1

2XB
1
2 ‖|2

)R(τ)(
(1− ν)‖|AX‖|+ ν‖|XB‖|

‖|A1−νXBν‖|

) τ(1−τ)
ν(1−ν)

.
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On the other hand, if (‖|XB‖| − ‖|AX‖|) (τ − ν) < 0, then

‖|A1−τXBτ‖|

(
‖|A 1

2XB
1
2 ‖|2

‖|AX‖| ‖|XB‖|

)R(ν)(
‖|(1− ν)AX + νXB‖|
‖|A1−νXBν‖|

) τ(1−τ)
ν(1−ν)

≤ ‖|AX‖|1−τ‖|XB‖|τ
(

(1− ν)‖|AX‖|+ ν‖|XB‖|
‖|AX‖|1−ν‖|XB‖|ν

) τ(1−τ)
ν(1−ν)

≤ (1− τ)‖|AX‖|+ τ‖|XB‖|
≤ ‖|(1− τ)AX + τXB‖|+R(τ) (‖|AX‖|+ ‖|XB‖| − ‖|AX +XB‖|) .

Proof. When (‖|XB‖| − ‖|AX‖|) (τ − ν) > 0, the first inequality follows immediately
because ‖| ‖| is a norm. The second inequality follows from Corollary 2.7 on replacing
(a, b) by (‖|AX‖|, ‖|XB‖|). Then the third inequality follows from (2.5) and the fact
that ‖A1−νXBν‖| ≤ ‖|AX‖|1−ν‖|XB‖|ν .

Now when (‖|XB‖| − ‖|AX‖|) (τ − ν) < 0, we apply Corollary 2.7, (2.4), (2.5)
and (2.6) to obtain the desired inequalities. �
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Abstract. The authors establish sufficient conditions for the existence of solu-
tions to boundary value problems for fractional differential inclusions involving
the Hadamard type fractional derivative of order α ∈ (1, 2] in Banach spaces.
Their approach uses Mönch’s fixed point theorem and the Kuratowski measure
of noncompacteness.
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1. Introduction

In this paper we are concerned with the existence of solutions to boundary value
problems (BVP for short) for fractional order differential inclusions. In particular, we
consider the boundary value problem

HDry(t) ∈ F (t, y(t)), for a.e. t ∈ J = [1, T ], 1 < r ≤ 2, (1.1)

y(1) = 0, y(T ) = yT , (1.2)

where HDr is the Hadamard fractional derivative, (E, | · |) is a Banach space, P(E)
is the family of all nonempty subsets of E, F : [1, T ] × E → P(E) is a multivalued
map, and yT ∈ R.

Differential equations of fractional order are valuable in modeling phenomena in
various fields of science and engineering. They can be found in viscoelasticity, electro-
chemistry, control, porous media, electromagnetism, etc. The monographs of Hilfer
[18], Kilbas et al. [19], Podlubny [23], and Momani et al. [21] are very good sources on
the background mathematics and various applications of fractional derivatives. The
literature on Hadamard-type fractional differential equations has not undergone as
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much development as it has for the Caputo and Riemann-Liouville fractional deriva-
tives; see, for example, the papers of Ahmed and Ntouyas [2], Benhamida, Graef, and
Hamani [10], and Thiramanus, Ntouyas, and Tariboon [24].

The fractional derivative that Hadamard [16] introduced in 1892 differs from
other fractional derivatives in the sense that the kernel of the integral in the defini-
tion of the Hadamard derivative contains a logarithmic function with an arbitrary
exponent. A detailed description of the Hadamard fractional derivative and integral
can be found in [11, 12, 13].

In this paper, we present existence results for the problem (1.1)-(1.2) in the
case where the right hand side is convex valued. This result relies on the set-valued
analog of Mönch’s fixed point theorem combined with the technique of measure of
noncompactness. Recently, this has proved to be a valuable tool in studying fractional
differential equations and inclusions in Banach spaces; for additional details, see the
papers of Laosta et al. [20], Agarwal et al. [1], and Benchohra et al. [7, 8, 9]. Our
results here extend to the multivalued case some previous results in the literature and
constitutes what we hope is an interesting contribution to this emerging field. We
include an example to illustrate our main results.

2. Preliminaries

This section contains definitions, concepts, lemmas, and preliminary facts that
will be used in the remainder of this paper. Let C(J,E) be the Banach space of all
continuous functions from J into E with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J},
and let L1(J,E) be the Banach space of Lebesgue integrable functions y : J → E
with the norm

‖y‖L1 =

∫ T

1

|y(t)|dt.

The space AC1(J,E) is the space of functions y : J → E that are absolutely contin-
uous and have an absolutely continuous first derivative.

For any Banach space X, we set
Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact}, and
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

A multivalued map G : X → P(X) is convex (closed) valued if G(X) is convex
(closed) for all x ∈ X. We say that G is bounded on bounded sets if G(B) = ∪x∈BG(x)
is bounded in X for all B ∈ Pb(X) (i.e., supx∈B{sup{|y| : y ∈ G(x)}} is bounded).

The mapping G is upper semi-continuous (u.s.c) on X if for each x0 ∈ X, the
set G(x0) is a nonempty closed subset of X, and for each open set N of X containing
G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N . A map G
is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c if and only if G has a closed graph (i.e., xn → x∗, yn → y∗,
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yn ∈ G(xn) imply y∗ ∈ G(x∗)). The mapping G : X → P(X) has a fixed point if
there exists x ∈ X such that x ∈ G(x). The set of fixed points of the multivalued
operator G will be denoted by FixG. A multivalued map G : J → Pcl(X) is said to
be measurable if for every y ∈ X, the function

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 2.1. A multivalued map F : J × E → P(E) is said to be Carathéodory if:

(1) t→ F (t, u) is measurable for each u ∈ E;
(2) u→ F (t, u) is upper semicontinuous for a.e. t ∈ J .

For each y ∈ AC1(J,E), define the set of selections of F by

SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.

Let (X, d) be a metric space induced from the normed space (X, | · |). The function
Hd : P(X)× P(X)→ R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

is known as the Hausdorff-Pompeiu metric.
For more details on multivalued maps, see the books of Aubin and Cellina [4],

Aubin and Frankowska [5], Castaing and Valadier [14], and Deimling [15].
For convenience, we first recall the definitions of the Kuratowski measure of

noncompacteness and summarize the main properties of this measure.

Definition 2.2. ([3, 6]) Let E be a Banach space and let ΩE be the bounded subsets of
E. The Kuratowski measure of noncompactness is the map β : ΩE → [0,∞) defined
by

β(B) = inf{ε > 0 : B ⊂
m⋃
j=1

Bj and diam(Bj) ≤ ε} .

Properties: The Kuratowski measure of noncompactness satisfies the following prop-
erties (for more details see [3, 6]):

(P1) β(B) = 0 if and only if B is compact (B is relatively compact).

(P2) β(B) = β(B).

(P3) A ⊂ B implies β(A) ≤ β(B).

(P4) β(A+B) ≤ β(A) + β(B).

(P5) β(cB) = |c|β(B), c ∈ R.

(P6) β(convB) = β(B).

Here B and conv B denote the closure and the convex hull of the bounded set B,
respectively.

For a given set V of functions u : J → E, we set

V (t) = {u(t) : u ∈ V }, t ∈ J,
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and

V (J) = {u(t) : u ∈ V (t), t ∈ J}.

Theorem 2.3. ([17], [22, Theorem 1.3]) Let E be a Banach space and let C be a
countable subset of L1(J,E) such that there exists h ∈ L1(J,R+) with |u(t)| ≤ h(t)
for a.e. t ∈ J and every u ∈ C. Then the function ϕ(t) = β(C(t)) belongs to L1(J,R+)
and satisfies

β

({∫ T

0

u(s)ds : u ∈ C

})
≤ 2

∫ T

0

β(C(s))ds.

Lemma 2.4. ([20, Lemma 2.6]) Let J be a compact real interval, F be a Carathéodory
multivalued map, and let θ be a linear continuous map from L1(J,E) → C(J,E).
Then the operator

θ ◦ SF,y : L1(J,E)→ Pcp,c(C(J,E)), y → (θ ◦ SF,y)(y) = θ(SF,y)

is a closed graph operator in L1(J,E)× C(J,E).

In what follows, log(·) = loge(·), and n = [r] + 1 where [r] denotes the integer
part of r.

Definition 2.5. ([19]) The Hadamard fractional integral of order r for a function h :
[1,+∞)→ R is defined by

Irh(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

s
ds, r > 0,

provided the integral exists.

Definition 2.6. ([19]) For a function h on the interval [1,+∞), the Hadamard fractional
derivative of h of order r is defined by

(HDrh)(t) =
1

Γ(n− r)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−r−1
h(s)

s
ds, n− 1 < r < n, n = [r] + 1.

Let us now recall Mönch’s fixed point theorem.

Theorem 2.7. ([22, Theorem 3.2]) Let K be a closed and convex subset of a Banach
space E, U be a relatively open subset of K, and N : U → P(K). Assume that graphN
is closed, N maps compact sets into relatively compact sets, and for some x0 ∈ U , the
following two conditions are satisfied:

(i) M ⊂ U , M ⊂ conv(x0 ∪ N(M)), M = C, with C a countable subset of M ,
implies M is compact;

(ii) x 6∈ (1− λ)x0 + λN(x) for all x ∈ U \ U , λ ∈ (0, 1).

Then there exists x ∈ U with x ∈ N(x).
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3. Main results

Let us start by defining what we mean by a solution of the problem (1.1)-(1.2).

Definition 3.1. A function y ∈ AC1(J,E) is said to be a solution of (1.1)-(1.2) if
there exist a function v ∈ L1(J,E) with v(t) ∈ F (t, y(t)) for a.e. t ∈ J , such that
HDαy(t) = v(t) on J , and the conditions y(1) = 0 and y(T ) = yT are satisfied.

Lemma 3.2. Let h : J → E be a continuous function. A function y is a solution of
the fractional integral equation

y(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

ds

s
+

(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
h(s)

ds

s

]
(3.1)

if and only if y is a solution of the fractional BVP
HDry(t) = h(t), for a.e. t ∈ J = [1, T ], 1 < r ≤ 2, (3.2)

y(1) = 0, y(T ) = yT . (3.3)

Proof. Applying the Hadamard fractional integral of order r to both sides of (3.2),
we obtain

y(t) = c1(log t)r−1 + c2(log t)r−2 + HIrh(t). (3.4)

From (3.3), we have c2 = 0 and

c1 =
1

(log T )r−1
[yT − HIrh(T )].

Hence, we obtain (3.1). Conversely, it is clear that if y satisfies equation (3.1), then
(3.2)-(3.3) hold. �

Theorem 3.3. Let R > 0, B = {x ∈ E : ‖x‖ ≤ R}, U = {x ∈ C(J,E) : ‖x‖ ≤ R},
and assume that:

(H1) F : J × E → Pcp,p(E) is a Carathéodory multi-valued map;
(H2) For each R > 0, there exists a function p ∈ L1(J,E) such that

‖F (t, u)‖P = sup{|v| : v(t) ∈ F (t, y)} ≤ p(t)
for each (t, y) ∈ J × E with |y| ≥ R, and

lim inf
R→∞

∫ T
0
p(t)dt

R
= δ <∞;

(H3) There exists a Carathéodory function ψ : J × [1, 2R]→ R+ such that

β(F (t,M)) ≤ ψ(t, β(M)) a.e. t ∈ J and each M ⊂ B;

(H4) The function ϕ = 0 is the unique solution in C(J, [1, 2R]) of the inequality

ϕ(t) ≤ 2

{
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
ψ(s, ϕ(s))

ds

s

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
ψ(s, ϕ(s))

ds

s

]}
for t ∈ J . (3.5)
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Then the BVP (1.1)-(1.2) has at least one solution in C(J,B), provided that

δ <
Γ(r + 1)

(log T )r
. (3.6)

Proof. We wish to transform the problem (1.1)-(1.2) into a fixed point problem, so
consider the multivalued operator

N(y) =

{
h ∈ C(J,R) : h(t) =

1

Γ(r)

∫ t

1

(
log

t

s

)r−1
v(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
v(s)

ds

s

]
, v ∈ SF,y

}
.

Clearly, from Lemma 3.2, the fixed points of N are solutions to (1.1)-(1.2). We shall
show that N satisfies the assumptions of Mönch’s fixed point theorem. The proof will
be given in several steps. First note that U = C(J,B).

Step 1: N(y) is convex for each y ∈ C(J,B).

Take h1, h2 ∈ N(y); then there exist v1, v2 ∈ SF,y such that for each t ∈ J , we have

hi(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vi(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vi(s)

ds

s

]
for i = 1, 2. Let 0 ≤ d ≤ 1; then for each t ∈ J ,

(dh1 + (1− d)h2)(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
[dv1 + (1− d)v2]

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
[dv1 + (1− d)v2]

ds

s

]
.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2: N(M) is relatively compact for each compact M ⊂ U .

Let M ⊂ U be a compact set and let {hn} be any sequence of elements of
N(M). We will show that {hn} has a convergent subsequence by using the Arzelà-
Ascoli criterion of compactness in C(J,B). Since hn ∈ N(M), there exist yn ∈ M
and vn ∈ SF,y such that

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vn(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vn(s)

ds

s

]
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for n ≥ 1. Using Theorem 2.3 and the properties of the Kuratowski measure of
noncompactness, we have

β({hn(t)}) ≤ 2

{
1

Γ(r)

∫ t

1

β

({(
log

t

s

)r−1
vn(s)

s
: n ≥ 1

})
ds

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

β

({(
log

T

s

)r−1
vn(s)

s
: n ≥ 1

})
ds

]}
.

(3.7)

On the other hand, since M(s) is compact in E, the set {vn(s) : n ≥ 1} is compact.
Consequently, β({vn(s) : n ≥ 1}) = 0 for a.e. s ∈ J . Furthermore,

β

({(
log

t

s

)r−1
vn(s)

s

})
=

(
log

t

s

)r−1
1

s
β({vn(s) : n ≥ 1}) = 0

and

β

({(
log

T

s

)r−1
vn(s)

s

})
=

(
log

T

s

)r−1
1

s
β({vn(s) : n ≥ 1}) = 0

for a.e. t, s ∈ J . Hence, from this and (3.7), {hn(t) : n ≥ 1} is relatively compact in
B for each t ∈ J . In addition, for each t1, t2 ∈ J with t1 < t2, we have

|hn(t2)− hn(t1)| =

∣∣∣∣∣ 1

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1
−
(

log
t1
s

)α−1]
vn(s)

s
ds

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
vn(s)

s
ds

∣∣∣∣∣
≤ p(t)

Γ(α)

∫ t1

1

[(
log

t2
s

)α−1
−
(

log
t1
s

)α−1]
ds

s

+
p(t)

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
ds

s
.

As t1 → t2, the right hand side of the above inequality tends to zero. This shows that
{hn : n ≥ 1} is equicontinuous. Consequently, {hn : n ≥ 1} is relatively compact in
C(J,B).

Step 3: N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We need to show that h∗ ∈ N(y∗). Now
hn ∈ N(yn) means that there exists vn ∈ SF,y such that, for each t ∈ J ,

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vn(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vn(s)

ds

s

]
.



434 John R. Graef, Nassim Guerraiche and Samira Hamani

Consider the continuous linear operator θ : L1(J,E)→ C(J,E) defined by

θ(v)(t)→ hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vn(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vn(s)

ds

s

]
.

Clearly, ‖hn(t) − h∗(t)‖ → 0 as n → ∞. From Lemma 2.4 it follows that θ ◦ SF is a
closed graph operator. Moreover, hn(t) ∈ θ(SF,yn). Since yn → y, Lemma 2.4 implies

h(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
v(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
v(s)

ds

s

]
.

Step 4: M is relatively compact in C(J,B).

Suppose M ⊂ U , M ⊂ conv({0} ∪N(M)), and M = C for some countable set
C ⊂ M . Using an argument similar to the one used in Step 2 shows that N(M) is
equicontinuous. Then, since M ⊂ conv({0}∪N(M)), we see that M is equicontinuous
as well. To apply the Arzelà-Ascoli theorem, it remains to show that M(t) is relatively
compact in E for each t ∈ J . Since C ⊂M ⊂ conv({0} ∪N(M)) and C is countable,
we can find a countable set H = {hn : n ≥ 1} ⊂ N(M) with C ⊂ conv({0} ∪ H).
Then, there exist yn ∈M and vn ∈ SF,yn such that

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
vn(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
vn(s)

ds

s

]
.

Since M ⊂ C ⊂ conv({0} ∪ H)), from the properties of the Kuratowski measure of
noncompactness, we have

β(M(t)) ≤ β(C(t)) ≤ β(H(t)) = β({hn(t) : n ≥ 1}).
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Using (3.7) and the fact that vn(s) ∈M(s), we obtain

β(M(t)) ≤ 2

{
1

Γ(r)

∫ t

1

β

({(
log

t

s

)r−1
vn(s)

s
: n ≥ 1

})
ds

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

β

({(
log

T

s

)r−1
vn(s)

s
: n ≥ 1

})
ds

]}

≤ 2

{
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
β(M(s))

ds

s

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
β(M(s))

ds

s

]}

≤ 2

{
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
ψ(s, β(M(s)))

ds

s

+
(log t)r−1

(log T )r−1

[
yT +

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
ψ(s, β(M(s)))

ds

s

]}
.

We also have that the function ϕ given by ϕ(t) = β(M(t)) belongs to
C(J, [1, 2R]). Consequently, by (H4), ϕ = 0; that is, β(M(t)) = 0 for all t ∈ J .
Now, by the Arzelà-Ascoli theorem, M is relatively compact in C(J,B).

Step 5: Let h ∈ N(y) with y ∈ U . We claim that N(U) ⊂ U . If this were not the case,
then in view of (H2), there exists functions v ∈ SF,y and p ∈ L1(J,E) such that

h(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
v(s)

ds

s

+
(log t)r−1

(log T )r−1

[
yT −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
v(s)

ds

s

]
,

and

R < ‖N(y)‖P ≤
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
|v(s)|ds

s

+
(log t)r−1

(log T )r−1

[
|yT |+

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
|v(s)|ds

s

]

≤ (log T )r

Γ(r + 1)

∫ t

1

p(s)ds+
(log T )r

Γ(r + 1)

∫ T

1

p(s)ds

≤ 2
(log T )r

Γ(r + 1)

∫ t

1

p(s)ds.

Dividing both sides by R and taking the lim inf as R→∞, we have

2

[
(log T )r

Γ(r + 1)

]
δ ≥ 1
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which contradicts (3.6). Hence, N(U) ⊂ U .
As a consequence of Steps 1-5 and Mönch’s Theorem (Theorem 2.7 above), N

has a fixed point y ∈ C(J,B) that in turn is a solution of problem (1.1)-(1.2). �

4. An example

We conclude this paper with an example to illustrate our main result, namely,
Theorem 3.3 above.

Consider the fractional differential inclusion

HDαy(t) ∈ F (t, y(t)), for a.e. t ∈ J = [1, e], 0 < α ≤ 1, (4.1)

y(1) = 0, y(e) = 1. (4.2)

Here, F : [1, e]× R→ P(R) is a multivalued map satisfying

F (t, y) = {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)},
where f1, f2 : [1, e] × R → R, f1(t, ·) is lower semi-continuous (i.e., the set {y ∈ R :
f1(t, y) > µ} is open for each µ ∈ R), and f2(t, ·) is upper semi-continuous (i.e., the
set the set {y ∈ R : f2(t, y) < µ} is open for each µ ∈ R). We assume that there is a
function p ∈ L1(J,R) such that

‖F (t, u)‖P = sup{|v|, v(t) ∈ F (t, y)}
= max(|f1(t, y)|, |f2(t, y)|} ≤ p(t), t ∈ [1, e], y ∈ R.

It is clear that F is compact and convex valued, and is upper semi-continuous.
Choose C(s) to be the space of linear functions and choose ϕ(t) = β(C(t)) such that

β(u(s)) =
u(s)

2

with

u(s) = as, a > 0,
2

a
≤ s ≤ 4R

a
.

For (t, y) ∈ J × R with |y| ≥ R, we have

lim inf
R→∞

∫ e
0
p(t)dt

R
= δ <∞.

Finally, we assume that there exists a Carathéodory function ψ : J [1, 2R]→ R+ such
that

β(F (t,M)) ≤ ψ(t, β(M)) a.e. t ∈ J and each M ⊂ B = {x ∈ R : |x| ≤ R},
and ϕ = 0 is the unique solution in C(J, [1, 2R]) of the inequality

ϕ(t) ≤ 2

{
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
ψ(s, ϕ(s))

ds

s

+ (log t)r−1
[
1 +

1

Γ(r)

∫ e

1

(
log

e

s

)r−1
ψ(s, ϕ(s))

ds

s

]}
.

for t ∈ J .
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Since all the conditions of Theorem 3.3 are satisfied, problem (4.1)-(4.2) has at
least one solution y on [1, e].
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Laboratoire des Mathématiques Appliqués et Pures
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Hermite-Hadamard type fractional integral
inequalities for MT(m,ϕ)-preinvex functions

Artion Kashuri and Rozana Liko

Abstract. In the present paper, a new class of MT(m,ϕ)-preinvex functions is in-
troduced and some new integral inequalities for the left-hand side of Gauss-Jacobi
type quadrature formula involving MT(m,ϕ)-preinvex functions are given. More-
over, some generalizations of Hermite-Hadamard type inequalities for MT(m,ϕ)-
preinvex functions that are twice differentiable via Riemann-Liouville fractional
integrals are established. At the end, some applications to special means are given.
These general inequalities give us some new estimates for Hermite-Hadamard type
fractional integral inequalities.
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1. Introduction and preliminaries

The following notations are used throughout this paper. We use I to denote an
interval on the real line R = (−∞,+∞) and I0 to denote the interior of I. For any
subset K ⊆ Rn,K0 is used to denote the interior of K. Rn is used to denote a n-
dimensional vector space. The nonnegative real numbers are denoted by R0 = [0,+∞).
The set of integrable functions on the interval [a, b] is denoted by L1[a, b].

The following inequality, named Hermite-Hadamard inequality, is one of the
most famous inequalities in the literature for convex functions.

Theorem 1.1. Let f : I ⊆ R −→ R be a convex function on I and a, b ∈ I with a < b.
Then the following inequality holds:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)
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In (see [12]) and the references cited therein, Tunç and Yidirim defined the
following so-called MT-convex function:

Definition 1.2. A function f : I ⊆ R −→ R is said to belong to the class of MT(I), if
it is nonnegative and for all x, y ∈ I and t ∈ (0, 1) satisfies the following inequality:

f(tx+ (1− t)y) ≤
√
t

2
√

1− t
f(x) +

√
1− t
2
√
t
f(y). (1.2)

In recent years, various generalizations, extensions and variants of such inequal-
ities have been obtained. For other recent results concerning Hermite-Hadamard type
inequalities through various classes of convex functions, (see [13]) and the references
cited therein, also (see [3], [4], [5], [8], [9], [10], [17], [20]) and the references cited
therein.

Fractional calculus (see [13]) and the references cited therein, was introduced at
the end of the nineteenth century by Liouville and Riemann, the subject of which has
become a rapidly growing area and has found applications in diverse fields ranging
from physical sciences and engineering to biological sciences and economics.

Definition 1.3. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, b > x,

where Γ(α) =

∫ +∞

0

e−uuα−1du. Here J0
a+f(x) = J0

b−f(x) = f(x).

In the case of α = 1, the fractional integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to
study fractional Hermite-Hadamard type inequalities for functions of different classes
(see [8], [11], [13] [14], [15], [16], [18], [19]) and the references cited therein.

Definition 1.4. (see [7]) A nonnegative function f : I ⊆ R −→ R0 is said to be
P -function or P -convex, if

f(tx+ (1− t)y) ≤ f(x) + f(y), ∀x, y ∈ I, t ∈ [0, 1].

Definition 1.5. (see [1]) A set K ⊆ Rn is said to be invex with respect to the mapping
η : K ×K −→ Rn, if x+ tη(y, x) ∈ K for every x, y ∈ K and t ∈ [0, 1].

Notice that every convex set is invex with respect to the mapping η(y, x) = y−x,
but the converse is not necessarily true. For more details please see (see [1], [19]) and
the references therein.

Definition 1.6. (see [15]) The function f defined on the invex set K ⊆ Rn is said to
be preinvex with respect η, if for every x, y ∈ K and t ∈ [0, 1], we have that

f (x+ tη(y, x)) ≤ (1− t)f(x) + tf(y).
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The concept of preinvexity is more general than convexity since every convex
function is preinvex with respect to the mapping η(y, x) = y − x, but the converse is
not true.

The Gauss-Jacobi type quadrature formula has the following∫ b

a

(x− a)p(b− x)qf(x)dx =

+∞∑
k=0

Bm,kf(γk) +R?m|f |, (1.3)

for certain Bm,k, γk and rest R?m|f | (see [18]).
Recently, Liu (see [11]) obtained several integral inequalities for the left-hand

side of (1.3) under the Definition 1.4 of P -function.

Also in (see [14]), Özdemir et al. established several integral inequalities concerning
the left-hand side of (1.3) via some kinds of convexity.

Motivated by these results, in Section 2, the notion of MT(m,ϕ)-preinvex func-
tion is introduced and some new integral inequalities for the left-hand side of (1.3)
involving MT(m,ϕ)-preinvex functions along with beta function are given. In Section
3, some generalizations of Hermite-Hadamard type inequalities for MT(m,ϕ)-preinvex
functions that are twice differentiable via fractional integrals are given. In Section 4,
some applications to special means, conclusions and future research are given. These
general inequalities give us some new estimates for Hermite-Hadamard type fractional
integral inequalities.

2. New integral inequalities for MT(m,ϕ)-preinvex functions

Definition 2.1. (see [6]) A set K ⊆ Rn is said to be m-invex with respect to the
mapping η : K ×K × (0, 1] −→ Rn for some fixed m ∈ (0, 1], if mx+ tη(y,mx) ∈ K
holds for each x, y ∈ K and any t ∈ [0, 1].

Remark 2.2. In Definition 2.1, under certain conditions, the mapping η(y,mx) could
reduce to η(y, x). For example when m = 1, then the m-invex set degenerates an
invex set on K.

We next give new definition, to be referred as MT(m,ϕ)-preinvex function.

Definition 2.3. Let K ⊆ R be an open m-invex set with respect to η : K×K×(0, 1] −→
K and ϕ : I −→ K a continuous function. For f : K −→ R and some fixed m ∈ (0, 1],
if

f(mϕ(y) + tη(ϕ(x), ϕ(y),m)) ≤ m
√
t

2
√

1− t
f(ϕ(x)) +

m
√

1− t
2
√
t

f(ϕ(y)), (2.1)

is valid for all x, y ∈ I and t ∈ (0, 1), then we say that f(x) belong to the class of
MT(m,ϕ)(K) with respect to η.

Remark 2.4. In Definition 2.3, it is worthwhile to note that the class MT(m,ϕ)(K) is
a generalization of the class MT(I) given in Definition 1.2 on K = I with respect to
η(ϕ(x), ϕ(y),m) = ϕ(x)−mϕ(y), ϕ(x) = x, ∀x, y ∈ I and m = 1.

Let give below a nontrivial example for motivation of this new interesting class
of MT(m,ϕ)-preinvex functions.
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Example 2.5. f, g : (1,∞) −→ R, f(x) = xp, g(x) = (1 + x)p, p ∈
(
0, 1

1000

)
; h :

[1, 3/2] −→ R, h(x) = (1+x2)k, k ∈
(
0, 1

100

)
, are simple examples of the new class of

MT(m,x)-preinvex functions with respect to η(ϕ(x), ϕ(y),m) = ϕ(x)−mϕ(y), ϕ(x) =
x, for any fixed m ∈ (0, 1], but they are not convex.

In this section, in order to prove our main results regarding some new integral
inequalities involving MT(m,ϕ)-preinvex functions along with beta function, we need
the following new interesting Lemma:

Lemma 2.6. Let ϕ : I −→ K be a continuous function. Assume that

f : K = [mϕ(a),mϕ(a) + η(ϕ(b), ϕ(a),m)] −→ R

is a continuous function on K0 with η(ϕ(b), ϕ(a),m) > 0.
Then for some fixed m ∈ (0, 1] and p, q > 0, we have∫ mϕ(a)+η(ϕ(b),ϕ(a),m)

mϕ(a)

(x−mϕ(a))p(mϕ(a) + η(ϕ(b), ϕ(a),m)− x)qf(x)dx

= η(ϕ(b), ϕ(a),m)p+q+1

∫ 1

0

tp(1− t)qf(mϕ(a) + tη(ϕ(b), ϕ(a),m))dt.

Proof. It is easy to observe that∫ mϕ(a)+η(ϕ(b),ϕ(a),m)

mϕ(a)

(x−mϕ(a))p(mϕ(a) + η(ϕ(b), ϕ(a),m)− x)qf(x)dx

= η(ϕ(b), ϕ(a),m)

∫ 1

0

(mϕ(a) + tη(ϕ(b), ϕ(a),m)−mϕ(a))p

×(mϕ(a) + η(ϕ(b), ϕ(a),m)−mϕ(a)− tη(ϕ(b), ϕ(a),m))q

×f(mϕ(a) + tη(ϕ(b), ϕ(a),m))dt

= η(ϕ(b), ϕ(a),m)p+q+1

∫ 1

0

tp(1− t)qf(mϕ(a) + tη(ϕ(b), ϕ(a),m))dt. �

The following definition will be used in the sequel.

Definition 2.7. The Euler Beta function is defined for x, y > 0 as

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
.

Theorem 2.8. Let ϕ : I −→ K be a continuous function. Assume that

f : K = [mϕ(a),mϕ(a) + η(ϕ(b), ϕ(a),m)] −→ R

is a continuous function on K0 with η(ϕ(b), ϕ(a),m) > 0.

If k > 1 and |f |
k
k−1 is a MT(m,ϕ)-preinvex function on an open m-invex set K with

respect to η : K × K × (0, 1] −→ K for some fixed m ∈ (0, 1], then for any fixed
p, q > 0,∫ mϕ(a)+η(ϕ(b),ϕ(a),m)

mϕ(a)

(x−mϕ(a))p(mϕ(a) + η(ϕ(b), ϕ(a),m)− x)qf(x)dx
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≤
(mπ

4

) k−1
k

η(ϕ(b), ϕ(a),m)p+q+1
[
β(kp+ 1, kq + 1)

] 1
k

×
(
|f(ϕ(a))|

k
k−1 + |f(ϕ(b))|

k
k−1

) k−1
k

.

Proof. Since |f |
k
k−1 is a MT(m,ϕ)-preinvex function on K, combining with Lemma 2.6,

Definition 2.7 and Hölder inequality for all t ∈ (0, 1) and for some fixed m ∈ (0, 1],
we get∫ mϕ(a)+η(ϕ(b),ϕ(a),m)

mϕ(a)

(x−mϕ(a))p(mϕ(a) + η(ϕ(b), ϕ(a),m)− x)qf(x)dx

≤ |η(ϕ(b), ϕ(a),m)|p+q+1

[∫ 1

0

tkp(1− t)kqdt

] 1
k

×

[∫ 1

0

∣∣f(mϕ(a) + tη(ϕ(b), ϕ(a),m))
∣∣ k
k−1 dt

] k−1
k

≤ η(ϕ(b), ϕ(a),m)p+q+1
[
β(kp+ 1, kq + 1)

] 1
k

×

[∫ 1

0

(
m
√
t

2
√

1− t
|f(ϕ(b))|

k
k−1 +

m
√

1− t
2
√
t
|f(ϕ(a))|

k
k−1

)
dt

] k−1
k

=
(mπ

4

) k−1
k

η(ϕ(b), ϕ(a),m)p+q+1
[
β(kp+ 1, kq + 1)

] 1
k

×
(
|f(ϕ(a))|

k
k−1 + |f(ϕ(b))|

k
k−1

) k−1
k

. �

Theorem 2.9. Let ϕ : I −→ K be a continuous function. Assume that

f : K = [mϕ(a),mϕ(a) + η(ϕ(b), ϕ(a),m)] −→ R

is a continuous function on K0 with η(ϕ(b), ϕ(a),m) > 0.
If l ≥ 1 and |f |l is a MT(m,ϕ)-preinvex function on an open m-invex set K with
respect to η : K × K × (0, 1] −→ K for some fixed m ∈ (0, 1], then for any fixed
p, q > 0,∫ mϕ(a)+η(ϕ(b),ϕ(a),m)

mϕ(a)

(x−mϕ(a))p(mϕ(a) + η(ϕ(b), ϕ(a),m)− x)qf(x)dx

≤
(m

2

) 1
l

η(ϕ(b), ϕ(a),m)p+q+1
[
β(p+ 1, q + 1)

] l−1
l

×

[
|f(ϕ(a))|lβ

(
p+

1

2
, q +

3

2

)
+ |f(ϕ(b))|lβ

(
p+

3

2
, q +

1

2

)] 1
l

.
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Proof. Since |f |l is a MT(m,ϕ)-preinvex function on K, combining with Lemma 2.6,
Definition 2.7 and Hölder inequality for all t ∈ (0, 1) and for some fixed m ∈ (0, 1],
we get∫ mϕ(a)+η(ϕ(b),ϕ(a),m)

mϕ(a)

(x−mϕ(a))p(mϕ(a) + η(ϕ(b), ϕ(a),m)− x)qf(x)dx

= η(ϕ(b), ϕ(a),m)p+q+1

×
∫ 1

0

[
tp(1− t)q

] l−1
l
[
tp(1− t)q

] 1
l

f(mϕ(a) + tη(ϕ(b), ϕ(a),m))dt

≤ |η(ϕ(b), ϕ(a),m)|p+q+1

[∫ 1

0

tp(1− t)qdt

] l−1
l

×

[∫ 1

0

tp(1− t)q
∣∣f(mϕ(a) + tη(ϕ(b), ϕ(a),m))

∣∣ldt] 1
l

≤ η(ϕ(b), ϕ(a),m)p+q+1
[
β(p+ 1, q + 1)

] l−1
l

×

[∫ 1

0

tp(1− t)q
(

m
√
t

2
√

1− t
|f(ϕ(b))|l +

m
√

1− t
2
√
t
|f(ϕ(a))|l

)
dt

] 1
l

=
(m

2

) 1
l

η(ϕ(b), ϕ(a),m)p+q+1
[
β(p+ 1, q + 1)

] l−1
l

×

[
|f(ϕ(a))|lβ

(
p+

1

2
, q +

3

2

)
+ |f(ϕ(b))|lβ

(
p+

3

2
, q +

1

2

)] 1
l

. �

3. Hermite-Hadamard type fractional integral inequalities for
MT(m,ϕ)-preinvex functions

In this section, in order to prove our main results regarding some generalizations
of Hermite-Hadamard type inequalities for MT(m,ϕ)-preinvex functions via fractional
integrals, we need the following new fractional integral identity:

Lemma 3.1. Let ϕ : I −→ K be a continuous function. Suppose K ⊆ R be an open
m-invex subset with respect to η : K ×K × (0, 1] −→ K for some fixed m ∈ (0, 1] and
let η(ϕ(b), ϕ(a),m) > 0. Assume that f : K −→ R be a twice differentiable function
on K0 and f ′′ is integrable on [mϕ(a),mϕ(a) + η(ϕ(b), ϕ(a),m)]. Then for α > 0, we
have

−ηα+1(ϕ(x), ϕ(a),m)f ′(mϕ(a))− ηα+1(ϕ(x), ϕ(b),m)f ′(mϕ(b))

(α+ 1)η(ϕ(b), ϕ(a),m)

+
ηα(ϕ(x), ϕ(a),m)f(mϕ(a) + η(ϕ(x), ϕ(a),m)) + ηα(ϕ(x), ϕ(b),m)f(mϕ(b) + η(ϕ(x), ϕ(b),m))

η(ϕ(b), ϕ(a),m)

− Γ(α+ 1)

η(ϕ(b), ϕ(a),m)
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×
[
Jα(mϕ(a)+η(ϕ(x),ϕ(a),m))−f(mϕ(a)) + Jα(mϕ(b)+η(ϕ(x),ϕ(b),m))−f(mϕ(b))

]
=

ηα+2(ϕ(x), ϕ(a),m)

(α+ 1)η(ϕ(b), ϕ(a),m)

∫ 1

0

(1− tα+1)f ′′(mϕ(a) + tη(ϕ(x), ϕ(a),m))dt

+
ηα+2(ϕ(x), ϕ(b),m)

(α+ 1)η(ϕ(b), ϕ(a),m)

∫ 1

0

(1− tα+1)f ′′(mϕ(b) + tη(ϕ(x), ϕ(b),m))dt, (3.1)

where Γ(α) =

∫ +∞

0

e−uuα−1du is the Euler Gamma function.

Proof. A simple proof of the equality can be done by performing two integration by
parts in the integrals from the right side and changing the variable. The details are
left to the interested reader. �

Let us denote
If,η,ϕ(x;α,m, a, b)

=
ηα+2(ϕ(x), ϕ(a),m)

(α+ 1)η(ϕ(b), ϕ(a),m)

∫ 1

0

(1− tα+1)f ′′(mϕ(a) + tη(ϕ(x), ϕ(a),m))dt

+
ηα+2(ϕ(x), ϕ(b),m)

(α+ 1)η(ϕ(b), ϕ(a),m)

∫ 1

0

(1− tα+1)f ′′(mϕ(b) + tη(ϕ(x), ϕ(b),m))dt. (3.2)

Using Lemma 3.1 and the relation (3.2), the following results can be obtained for the
corresponding version for power of the absolute value of the second derivative.

Theorem 3.2. Let ϕ : I −→ A be a continuous function. Suppose A ⊆ R be an open
m-invex subset with respect to η : A× A× (0, 1] −→ A for some fixed m ∈ (0, 1] and
let η(ϕ(b), ϕ(a),m) > 0. Assume that f : A −→ R be a twice differentiable function
on A0. If |f ′′|q is a MT(m,ϕ)-preinvex function on [mϕ(a),mϕ(a) + η(ϕ(b), ϕ(a),m)],

q > 1, p−1 + q−1 = 1 and |f ′′| ≤M, then for α > 0, we have

|If,η,ϕ(x;α,m, a, b)| ≤ M

(1 + α)1+
1
p

(mπ
2

) 1
q

Γ(p+ 1)Γ
(

1
α+1

)
Γ
(
p+ 1 + 1

α+1

)


1
p

×

[
|η(ϕ(x), ϕ(a),m)|α+2 + |η(ϕ(x), ϕ(b),m)|α+2

η(ϕ(b), ϕ(a),m)

]
. (3.3)

Proof. Suppose that q > 1. Using Lemma 3.1, MT(m,ϕ)-preinvexity of |f ′′|q, Hölder
inequality, the fact that |f ′′| ≤M and taking the modulus, we have

|If,η,ϕ(x;α,m, a, b)|

≤ |η(ϕ(x), ϕ(a),m)|α+2

(α+ 1)|η(ϕ(b), ϕ(a),m)|

∫ 1

0

|1− tα+1||f ′′(mϕ(a) + tη(ϕ(x), ϕ(a),m))|dt

+
|η(ϕ(x), ϕ(b),m)|α+2

(α+ 1)|η(ϕ(b), ϕ(a),m)|

∫ 1

0

|1− tα+1||f ′′(mϕ(b) + tη(ϕ(x), ϕ(b),m))|dt

≤ |η(ϕ(x), ϕ(a),m)|α+2

(α+ 1)η(ϕ(b), ϕ(a),m)

(∫ 1

0

(1− tα+1)pdt

) 1
p
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×
(∫ 1

0

|f ′′(mϕ(a) + tη(ϕ(x), ϕ(a),m))|qdt
) 1
q

+
|η(ϕ(x), ϕ(b),m)|α+2

(α+ 1)η(ϕ(b), ϕ(a),m)

(∫ 1

0

(1− tα+1)pdt

) 1
p

×
(∫ 1

0

|f ′′(mϕ(b) + tη(ϕ(x), ϕ(b),m))|qdt
) 1
q

≤ |η(ϕ(x), ϕ(a),m)|α+2

(α+ 1)η(ϕ(b), ϕ(a),m)

(∫ 1

0

(1− tα+1)pdt

) 1
p

×

[∫ 1

0

(
m
√
t

2
√

1− t
|f ′′(ϕ(x))|q +

m
√

1− t
2
√
t
|f ′′(ϕ(a))|q

)
dt

] 1
q

+
|η(ϕ(x), ϕ(b),m)|α+2

(α+ 1)η(ϕ(b), ϕ(a),m)

(∫ 1

0

(1− tα+1)pdt

) 1
p

×

[∫ 1

0

(
m
√
t

2
√

1− t
|f ′′(ϕ(x))|q +

m
√

1− t
2
√
t
|f ′′(ϕ(b))|q

)
dt

] 1
q

≤ M

(1 + α)1+
1
p

(mπ
2

) 1
q

Γ(p+ 1)Γ
(

1
α+1

)
Γ
(
p+ 1 + 1

α+1

)


1
p

×

[
|η(ϕ(x), ϕ(a),m)|α+2 + |η(ϕ(x), ϕ(b),m)|α+2

η(ϕ(b), ϕ(a),m)

]
. �

Theorem 3.3. Let ϕ : I −→ A be a continuous function. Suppose A ⊆ R be an open
m-invex subset with respect to η : A× A× (0, 1] −→ A for some fixed m ∈ (0, 1] and
let η(ϕ(b), ϕ(a),m) > 0. Assume that f : A −→ R be a twice differentiable function
on A0. If |f ′′|q is a MT(m,ϕ)-preinvex function on [mϕ(a),mϕ(a) + η(ϕ(b), ϕ(a),m)],
q ≥ 1 and |f ′′| ≤M, then for α > 0, we have

|If,η,ϕ(x;α,m, a, b)| ≤ M

α+ 1

(
α+ 1

α+ 2

)1− 1
q (m

2

) 1
q

(
π −
√
π(α+ 1)Γ

(
α+ 3

2

)
Γ(α+ 3)

) 1
q

×

[
|η(ϕ(x), ϕ(a),m)|α+2 + |η(ϕ(x), ϕ(b),m)|α+2

η(ϕ(b), ϕ(a),m)

]
. (3.4)

Proof. Suppose that q ≥ 1. Using Lemma 3.1, MT(m,ϕ)-preinvexity of |f ′′|q, the well-
known power mean inequality, the fact that |f ′′| ≤ M and taking the modulus, we
have

|If,η,ϕ(x;α,m, a, b)|

≤ |η(ϕ(x), ϕ(a),m)|α+2

(α+ 1)|η(ϕ(b), ϕ(a),m)|

∫ 1

0

|1− tα+1||f ′′(mϕ(a) + tη(ϕ(x), ϕ(a),m))|dt
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+
|η(ϕ(x), ϕ(b),m)|α+2

(α+ 1)|η(ϕ(b), ϕ(a),m)|

∫ 1

0

|1− tα+1||f ′′(mϕ(b) + tη(ϕ(x), ϕ(b),m))|dt

≤ |η(ϕ(x), ϕ(a),m)|α+2

(α+ 1)η(ϕ(b), ϕ(a),m)

(∫ 1

0

(1− tα+1)dt

)1− 1
q

×
(∫ 1

0

(1− tα+1)|f ′′(mϕ(a) + tη(ϕ(x), ϕ(a),m))|qdt
) 1
q

+
|η(ϕ(x), ϕ(b),m)|α+2

(α+ 1)η(ϕ(b), ϕ(a),m)

(∫ 1

0

(1− tα+1)dt

)1− 1
q

×
(∫ 1

0

(1− tα+1)|f ′′(mϕ(b) + tη(ϕ(x), ϕ(b),m))|qdt
) 1
q

≤ |η(ϕ(x), ϕ(a),m)|α+2

(α+ 1)η(ϕ(b), ϕ(a),m)

(∫ 1

0

(1− tα+1)dt

)1− 1
q

×

[∫ 1

0

(1− tα+1)

(
m
√
t

2
√

1− t
|f ′′(ϕ(x))|q +

m
√

1− t
2
√
t
|f ′′(ϕ(a))|q

)
dt

] 1
q

+
|η(ϕ(x), ϕ(b),m)|α+2

(α+ 1)η(ϕ(b), ϕ(a),m)

(∫ 1

0

(1− tα+1)dt

)1− 1
q

×

[∫ 1

0

(1− tα+1)

(
m
√
t

2
√

1− t
|f ′′(ϕ(x))|q +

m
√

1− t
2
√
t
|f ′′(ϕ(b))|q

)
dt

] 1
q

≤ M

α+ 1

(
α+ 1

α+ 2

)1− 1
q (m

2

) 1
q

(
π −
√
π(α+ 1)Γ

(
α+ 3

2

)
Γ(α+ 3)

) 1
q

×

[
|η(ϕ(x), ϕ(a),m)|α+2 + |η(ϕ(x), ϕ(b),m)|α+2

η(ϕ(b), ϕ(a),m)

]
. �

4. Applications to special means

In the following we give certain generalizations of some notions for a positive
valued function of a positive variable.

Definition 4.1. (see [2]) A function M : R2
+ −→ R+, is called a Mean function if it

has the following properties:

1. Homogeneity: M(ax, ay) = aM(x, y), for all a > 0,
2. Symmetry: M(x, y) = M(y, x),
3. Reflexivity: M(x, x) = x,
4. Monotonicity: If x ≤ x′ and y ≤ y′, then M(x, y) ≤M(x′, y′),
5. Internality: min{x, y} ≤M(x, y) ≤ max{x, y}.

We consider some means for arbitrary positive real numbers α, β (α 6= β).
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1. The arithmetic mean:

A := A(α, β) =
α+ β

2

2. The geometric mean:

G := G(α, β) =
√
αβ

3. The harmonic mean:

H := H(α, β) =
2

1
α + 1

β

4. The power mean:

Pr := Pr(α, β) =

(
αr + βr

2

) 1
r

, r ≥ 1.

5. The identric mean:

I := I(α, β) =

{
1
e

(
ββ

αα

)
, α 6= β;

α, α = β.

6. The logarithmic mean:

L := L(α, β) =
β − α

ln(β)− ln(α)
.

7. The generalized log-mean:

Lp := Lp(α, β) =

[
βp+1 − αp+1

(p+ 1)(β − α)

] 1
p

; p ∈ R \ {−1, 0}.

8. The weighted p-power mean:

Mp

(
α1, α2, · · · , αn
u1, u2, · · · , un

)
=

(
n∑
i=1

αiu
p
i

) 1
p

where 0 ≤ αi ≤ 1, ui > 0 (i = 1, 2, . . . , n) with
∑n
i=1 αi = 1.

It is well known that Lp is monotonic nondecreasing over p ∈ R with L−1 := L
and L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤ I ≤ A.
Now, let a and b be positive real numbers such that a < b. Consider the function
M := M(ϕ(a), ϕ(b)) : [ϕ(a), ϕ(a) + η(ϕ(b), ϕ(a))] × [ϕ(a), ϕ(a) + η(ϕ(b), ϕ(a))] −→
R+, which is one of the above mentioned means and ϕ : I −→ A be a continuous
function, therefore one can obtain various inequalities using the results of Section 3
for these means as follows: Replace η(ϕ(x), ϕ(y),m) with η(ϕ(x), ϕ(y)) and setting
η(ϕ(x), ϕ(y)) = M(ϕ(x), ϕ(y)), ∀x, y ∈ I for value m = 1 in (3.3) and (3.4), one can
obtain the following interesting inequalities involving means:∣∣∣∣∣−Mα+1(ϕ(a), ϕ(x))f ′(ϕ(a))−Mα+1(ϕ(b), ϕ(x))f ′(ϕ(b))

(α+ 1)M(ϕ(a), ϕ(b))

+
Mα(ϕ(a), ϕ(x))f(ϕ(a)+M(ϕ(a), ϕ(x))) +Mα(ϕ(b), ϕ(x))f(ϕ(b) +M(ϕ(b), ϕ(x)))

M(ϕ(a), ϕ(b))
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− Γ(α+ 1)

M(ϕ(a), ϕ(b))

[
Jα(ϕ(a)+M(ϕ(a),ϕ(x)))−f(ϕ(a)) + Jα(ϕ(b)+M(ϕ(b),ϕ(x)))−f(ϕ(b))

]∣∣∣∣∣
≤ M

(1 + α)1+
1
p

(π
2

) 1
q

Γ(p+ 1)Γ
(

1
α+1

)
Γ
(
p+ 1 + 1

α+1

)


1
p

×

[
Mα+2(ϕ(a), ϕ(x)) +Mα+2(ϕ(b), ϕ(x))

M(ϕ(a), ϕ(b))

]
, (4.1)∣∣∣∣∣−Mα+1(ϕ(a), ϕ(x))f ′(ϕ(a))−Mα+1(ϕ(b), ϕ(x))f ′(ϕ(b))

(α+ 1)M(ϕ(a), ϕ(b))

+
Mα(ϕ(a), ϕ(x))f(ϕ(a)+M(ϕ(a), ϕ(x))) +Mα(ϕ(b), ϕ(x))f(ϕ(b) +M(ϕ(b), ϕ(x)))

M(ϕ(a), ϕ(b))

− Γ(α+ 1)

M(ϕ(a), ϕ(b))

[
Jα(ϕ(a)+M(ϕ(a),ϕ(x)))−f(ϕ(a)) + Jα(ϕ(b)+M(ϕ(b),ϕ(x)))−f(ϕ(b))

]∣∣∣∣∣
≤ M

α+ 1

(
α+ 1

α+ 2

)1− 1
q
(

1

2

) 1
q

(
π −
√
π(α+ 1)Γ

(
α+ 3

2

)
Γ(α+ 3)

) 1
q

×

[
Mα+2(ϕ(a), ϕ(x)) +Mα+2(ϕ(b), ϕ(x))

M(ϕ(a), ϕ(b))

]
. (4.2)

Letting M(ϕ(x), ϕ(y)) = A,G,H, Pr, I, L, Lp,Mp, ∀x, y ∈ I in (4.1) and (4.2), we
get the inequalities involving means for a particular choices of a twice differentiable
MT(1,ϕ)-preinvex function f. The details are left to the interested reader.

These general inequalities give us some new estimates for the left-hand side of
Gauss-Jacobi type quadrature formula and Hermite-Hadamard type fractional inte-
gral inequalities.

Motivated by this new interesting class of MT(m,ϕ)-preinvex functions we can
indeed see to be vital for fellow researchers and scientists working in the same domain.

We conclude that our methods considered here may be a stimulant for further in-
vestigations concerning Hermite-Hadamard type integral inequalities for various kinds
of preinvex functions involving classical integrals, Riemann-Liouville fractional inte-
grals, k-fractional integrals and conformable fractional integrals.
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Abstract. In this paper, some Hermite-Hadamard type inequalities for products
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other results proved by Pachpette for convex functions.
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1. Introduction

In recent years, very large number of studies of error estimations have been done
for Hermite-Hadamard type inequalities. It is known that Hermite-hadamard integral
inequality was built on a convex function. In time, Hermite-Hadamrd inequality is
developed other kinds of convex functions. For some results which generalize, improve,
and extend the Hermite-Hadamard inequality see [1, 7, 10, 18, 20] and references
therein.

Hermite-Hadamard type inequalities for products of two convex functions are
interesting problem and firstly developed by Pachpatte in [16]. In [17], Pachpette also
established Hermite-hadamard type inequalities involving two log-convex functions. In
[11], Kırmacı et. al. proved several Hermite-Hadamard type inequalities for products
of two convex and s-convex functions. In [19], Sarıkaya et. al. proved some Hermite-
Hadamard type inequalities for products of two h-convex functions. In [2], Bakula et.
al. established Hermite-Hadamard type inequalities for products of two m-convex and
(α,m)-convex functions. In [4, 6], Chen and Wu obtained some Hermite-Hadamard
type inequalities for products of two convex and harmonically s-convex functions. In
[21], Yin and Qi established some Hermite-Hadamard type inequalities for products
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of two convex functions. In [5], Chen obtained some new Hermite-Hadamard type
inequalities for products of two convex functions via Riemann-Liouville fractional
integrals and in [3] he extended this problem tom-convex and (α,m)-convex functions.

In this work, we establish Hermite-Hadamard type inequalities for products of
two GA-convex functions via Hadamard fractional integrals. Our results are analogous
generalization for some results in [16].

2. Preliminaries

Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers
and a, b ∈ I with a < b. The inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(2.1)

is well known in the literature as Hermite-Hadamard’s inequality [8].
In [16], Pachpette established following two Hermite-Hadamard type inequalities

for products of convex functions as follows:

Theorem 2.1. Let f and g be real-valued, non-negative and convex functions on [a, b].
Then

1

b− a

∫ b

a

f (x) g (x) dx ≤ 1

3
M (a, b) +

1

6
N (a, b) (2.2)

and

2f

(
a+ b

2

)
g

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) g (x) dx

+
1

6
M (a, b) +

1

3
N (a, b) (2.3)

where M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Definition 2.2. [14, 15]. A function f : I ⊆ (0,∞) → R is said to be GA-convex
(geometric-arithmetically convex) if

f(xty1−t) ≤ tf(x) + (1− t) f(y)

for all x, y ∈ I and t ∈ [0, 1].

We will now give definitions of the right-hand side and left-hand side Hadamard
fractional integrals which are used throughout this paper.

Definition 2.3. [12]. Let f ∈ L [a, b]. The right-hand side and left-hand side Hadamard
fractional integrals Jαa+f and Jαb−f of order α > 0 with b > a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(
ln
x

t

)α−1
f(t)

dt

t
, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(
ln
t

x

)α−1
f(t)

dt

t
, x < b
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respectively, where Γ(α) is the Gamma function defined by

Γ(α) =

∫ ∞
0

e−ttα−1dt.

In [9], İşcan represented Hermite-Hadamard’s inequalities for GA-convex func-
tions in fractional integral forms as follows.

Theorem 2.4. Let f : I ⊆ (0,∞)→ R be a function such that f ∈ L [a, b] where a, b ∈ I
with a < b. If f is a GA-convex function on [a, b], then the following inequalities for
fractional integrals hold:

f
(√

ab
)
≤ Γ(α+ 1)

2
(
ln b

a

)α [Jαa+f(b) + Jαb−f(a)
]
≤ f(a) + f(b)

2
(2.4)

with α > 0.

In [13], Kunt and İşcan established new Hermite-Hadamard type inequality for
GA-convex function in fractional integral forms as follows:

Theorem 2.5. Let f : [a, b] ⊆ (0,∞)→ R be a GA-convex function with a < b and
f ∈ L [a, b], then the following inequalities for fractional integrals hold:

f
(√

ab
)
≤ Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) + Jα√
ab+

f (b)
]
≤ f (a) + f (b)

2
. (2.5)

3. General results

Theorem 3.1. Let f and g : [a, b] ⊆ (0,∞)→ R be non-negative and GA-convex
functions with a < b and f ∈ L [a, b], then the following inequality for fractional
integrals hold:

Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) g (b) + Jαb−f (a) g (a)
]

≤
(

α

α+ 2
− α

α+ 1
+

1

2

)
M (a, b) +

α

(α+ 2) (α+ 1)
N (a, b) (3.1)

where α > 0, M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Proof. Since f and g are non-negative and GA-convex functions on [a, b], we have for
all t ∈ [0, 1]

f(atb1−t) ≤ tf(a) + (1− t) f(b), (3.2)

and

g(atb1−t) ≤ tg(a) + (1− t) g(b). (3.3)

From products of (3.2) and (3.3), we have

f(atb1−t)g(atb1−t) ≤ t2f (a) g (a) + (1− t)2 f (b) g (b)

+t (1− t) [f (a) g (b) + f (b) g (a)] . (3.4)
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Similarly (3.4), we have

f(a1−tbt)g(a1−tbt) ≤ (1− t)2 f (a) g (a) + t2f (b) g (b)

+t (1− t) [f (a) g (b) + f (b) g (a)] . (3.5)

The sum of (3.4) and (3.5), we have

f(atb1−t)g(atb1−t) + f(a1−tbt)g(a1−tbt)

≤
(
2t2 − 2t+ 1

)
M (a, b) + 2t (1− t)N (a, b) (3.6)

Multiplying both sides of (3.6) by tα−1 α2 , then integrating the obtained inequality
with respect to t over [0, 1], we have

α

2

[∫ 1

0

tα−1f(atb1−t)g(atb1−t)dt+

∫ 1

0

tα−1f(a1−tbt)g(a1−tbt)dt

]

=
α

2

∫ b

a

(
ln b

u

ln b
a

)α−1
f (u) g (u)

du

u ln b
a

+

∫ b

a

(
ln v

a

ln b
a

)α−1
f (v) g (v)

du

v ln b
a


=

α

2
(
ln b

a

)α
[∫ b

a

(
ln
b

u

)α−1
f (u) g (u)

du

u
+

∫ b

a

(
ln
v

a

)α−1
f (v) g (v)

du

v

]

=
Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) g (b) + Jαb−f (a) g (a)
]

≤ α

2

[
M (a, b)

∫ 1

0

tα−1
(
2t2 − 2t+ 1

)
dt+N (a, b)

∫ 1

0

tα−12t (1− t) dt
]

=

(
α

α+ 2
− α

α+ 1
+

1

2

)
M (a, b) +

α

(α+ 2) (α+ 1)
N (a, b)

and this completes the proof. �

Remark 3.2. Theorem 3.1 is an analogous generalization of (2.2) for GA-convex func-
tions.

Corollary 3.3. In Theorem 3.1, if we take g : [a, b]→ R as g (x) = 1 for all x ∈ [a, b],
then we have

Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) + Jαb−f (a)
]
≤ f (a) + f (b)

2

which is the right hand side of (2.4).

Corollary 3.4. In Theorem 3.1, if we take α = 1, then we have

1

ln b− ln a

∫ b

a

f (x) g (x)
dx

x
≤ 1

3
M (a, b) +

1

6
N (a, b)

for GA-convex functions.
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Theorem 3.5. Let f and g : [a, b] ⊆ (0,∞)→ R be non-negative and GA-convex
functions with a < b and f ∈ L [a, b], then the following inequality for fractional
integrals hold:

2f
(√

ab
)
g
(√

ab
)
≤ Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) g (b) + Jαb−f (a) g (a)
]

+
α

(α+ 2) (α+ 1)
M (a, b) +

(
α

α+ 2
− α

α+ 1
+

1

2

)
N (a, b) (3.7)

where α > 0, M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Proof. It is clear for all t ∈ [0, 1]
√
ab =

√
atb1−t.a1−tbt =

√
atb1−t

√
a1−tbt.

Since f and g are non-negative and GA-convex functions on [a, b], we have for all
t ∈ [0, 1]

f
(√

ab
)
g
(√

ab
)

= f
(√

atb1−t
√
a1−tbt

)
g
(√

atb1−t
√
a1−tbt

)
≤ 1

4

[
f
(
atb1−t

)
+ f

(
a1−tbt

)] [
g
(
atb1−t

)
+ g

(
a1−tbt

)]
=

1

4

[
f
(
atb1−t

)
g
(
atb1−t

)
+ f

(
a1−tbt

)
g
(
a1−tbt

)]
+

1

4

[
f
(
atb1−t

)
g
(
a1−tbt

)
+ f

(
a1−tbt

)
g
(
atb1−t

)]
≤ 1

4

[
f
(
atb1−t

)
g
(
atb1−t

)
+ f

(
a1−tbt

)
g
(
a1−tbt

)]
+

1

4
[tf (a) + (1− t) f (b)] [(1− t) g (a) + tg (b)]

+
1

4
[(1− t) f (a) + tf (b)] [tg (a) + (1− t) g (b)]

=
1

4

[
f
(
atb1−t

)
g
(
atb1−t

)
+ f

(
a1−tbt

)
g
(
a1−tbt

)]
+

1

4
{2t (1− t) [f (a) g (a) + f (b) g (b)]

+
(
2t2 − 2t+ 1

)
[f (a) g (b) + f (b) g (a)]

}
(3.8)

Multiplying both sides of (3.8) by 2αtα−1, then integrating the obtained inequality
with respect to t over [0, 1], we have

2f
(√

ab
)
g
(√

ab
)
≤ Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) g (b) + Jαb−f (a) g (a)
]

+
α

(α+ 2) (α+ 1)
M (a, b) +

(
α

α+ 2
− α

α+ 1
+

1

2

)
N (a, b)

and this completes the proof. �

Remark 3.6. Theorem 3.5 is an analogous generalization of (2.3) for GA-convex func-
tions.
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Corollary 3.7. In Theorem 3.5, if we take g : [a, b]→ R as g (x) = 1 for all x ∈ [a, b],
then we have

2f
(√

ab
)
≤ Γ (α+ 1)

2
(
ln b

a

)α [Jαa+f (b) + Jαb−f (a)
]

+
f (a) + f (b)

2
.

Corollary 3.8. In Theorem 3.5, if we take α = 1, then we have

2f
(√

ab
)
g
(√

ab
)
≤ 1

ln b− ln a

∫ b

a

f (x) g (x)
dx

x
+

1

6
M (a, b) +

1

3
N (a, b)

for GA-convex functions.

Theorem 3.9. Let f and g : [a, b] ⊆ (0,∞)→ R be non-negative and GA-convex
functions with a < b and f ∈ L [a, b], then the following inequality for fractional
integrals hold:

Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) g (a) + Jα√
ab+

f (b) g (b)
]

≤
(

α

4 (α+ 2)
− α

2 (α+ 1)
+

1

2

)
M (a, b) +

α2 + 3α

4 (α+ 2) (α+ 1)
N (a, b) (3.9)

where α > 0, M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Proof. Since f and g are non-negative and GA-convex functions on [a, b], multiplying
both sides of (3.6) by tα−1 α

21−α , then integrating the obtained inequality with respect

to t over
[
0, 12
]
, we have

α

21−α

[∫ 1
2

0

tα−1f(atb1−t)g(atb1−t)dt+

∫ 1
2

0

tα−1f(a1−tbt)g(a1−tbt)dt

]

=
α

21−α

∫ b

√
ab

(
ln b

u

ln b
a

)α−1
f (u) g (u)

du

u ln b
a

+

∫ √ab
a

(
ln v

a

ln b
a

)α−1
f (v) g (v)

du

v ln b
a


=

α

21−α
(
ln b

a

)α
[∫ b

√
ab

(
ln
b

u

)α−1
f (u) g (u)

du

u
+

∫ √ab
a

(
ln
v

a

)α−1
f (v) g (v)

du

v

]

=
Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab+f (b) g (b) + Jα√
ab−f (a) g (a)

]
≤ α

21−α

[
M (a, b)

∫ 1
2

0

tα−1
(
2t2 − 2t+ 1

)
dt+N (a, b)

∫ 1
2

0

tα−12t (1− t) dt

]

=

(
α

4 (α+ 2)
− α

2 (α+ 1)
+

1

2

)
M (a, b) +

α2 + 3α

4 (α+ 2) (α+ 1)
N (a, b)

and this completes the proof. �

Remark 3.10. Theorem 3.9 is an other analogous generalization of (2.2) for GA-convex
functions.



Hermite-Hadamard type inequalities 457

Corollary 3.11. In Theorem 3.9, if we take g : [a, b]→ R as g (x) = 1 for all x ∈ [a, b],
then we have

Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) + Jα√
ab+

f (b)
]
≤ f (a) + f (b)

2

which is the right hand side of (2.5).

Corollary 3.12. In Theorem 3.9, if we take α = 1, then we have

1

ln b− ln a

∫ b

a

f (x) g (x)
dx

x
≤ 1

3
M (a, b) +

1

6
N (a, b)

for GA-convex functions.

Theorem 3.13. Let f and g : [a, b] ⊆ (0,∞)→ R be non-negative and GA-convex
functions with a < b and f ∈ L [a, b], then the following inequality for fractional
integrals hold:

2f
(√

ab
)
g
(√

ab
)
≤ Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) g (a) + Jα√
ab+

f (b) g (b)
]

+
α2 + 3α

4 (α+ 2) (α+ 1)
M (a, b) +

(
α

4 (α+ 2)
− α

2 (α+ 1)
+

1

2

)
N (a, b) (3.10)

where α > 0, M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a) .

Proof. Multiplying both sides of (3.8) by 21+ααtα−1, then integrating the obtained
inequality with respect to t over

[
0, 12
]
, we have desired result. �

Remark 3.14. Theorem 3.13 is an other analogous generalization of (2.3) for GA-
convex functions.

Corollary 3.15. In Theorem 3.13, if we take g : [a, b]→ R as g (x) = 1 for all x ∈ [a, b],
then we have

2f
(√

ab
)
≤ Γ (α+ 1)

21−α
(
ln b

a

)α [Jα√ab−f (a) + Jα√
ab+

f (b)
]

+
f (a) + f (b)

2
.

Corollary 3.16. In Theorem 3.13, if we take α = 1, then we have

2f
(√

ab
)
g
(√

ab
)
≤ 1

ln b− ln a

∫ b

a

f (x) g (x)
dx

x
+

1

6
M (a, b) +

1

3
N (a, b)

for GA-convex functions.
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known results.
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1. Introduction

Let A denote the class of functions of the form:

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. Let g ∈ A where

g(z) = z +

∞∑
k=2

bkz
k. (1.2)

Let N = {0, 1, 2, . . . , n, . . .}.

Definition 1.1. [3] For f ∈ A, λ ≥ 0 and n ∈ N, the operator Dn
λ is defined by

Dn
λ : A → A,

D0
λf(z) = f(z),

D1
λf(z) = (1− λ) f (z) + λzf ′ (z) = Dλf(z), . . .

Dn+1
λ f(z) = (1− λ) Dn

λ f (z) + λz (Dn
λ f (z))

′
= Dλ (Dn

λ f(z)) , z ∈ U
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Remark 1.2. If f ∈ A and f(z) = z +

∞∑
k=2

akz
k, then

Dn
λ f(z) = z +

∞∑
k=2

[1 + (k − 1)λ]
n
akz

k, z ∈ U.

Remark 1.3. For λ = 1 in the above definition we obtain the Sălăgean differential
operator [10].

Definition 1.4. [8] For f ∈ A, n ∈ N, the operator Rn is defined by Rn : A → A,

R0f(z) = f(z), R1f(z) = zf ′ (z) , . . .

(n+ 1) Rn+1f(z) = z (Rnf (z))
′
+ nRnf (z) , z ∈ U.

Remark 1.5. If f ∈ A and f(z) = z +

∞∑
k=2

akz
k, then

Rnf(z) = z +

∞∑
k=2

(n+ k − 1)!

n! (k − 1)!
akz

k, z ∈ U.

Definition 1.6. [1] Let γ, λ ≥ 0, n ∈ N. Denote by L n the operator given by

L n : A → A, L nf (z) = (1− γ) Rnf (z) + γDn
λ f (z) , z ∈ U.

Remark 1.7. If f ∈ A and f(z) = z +

∞∑
k=2

akz
k, then

L nf (z) = z +

∞∑
k=2

{
γ [1 + (k − 1)λ]

n
+ (1− γ)

(n+ k − 1)!

n! (k − 1)!

}
akz

k, z ∈ U.

Definition 1.8. [6] Let f and g be analytic functions in U . We say that the function
f is subordinate to the function g, if there exists a function w, which is analytic in U
and w(0) = 0, |w(z)| < 1, z ∈ U , such that f(z) = g(w(z)), ∀z ∈ U. We denote by ≺
the subordination relation.

Definition 1.9. For λ̃ ≥ 0;−1 ≤ A < B ≤ 1; 0 < B ≤ 1;n ∈ N let L(n, λ̃, A,B) denote
the subclass of A which contain functions f(z) of the form (1.1) such that

(1− λ̃)(L nf(z))′ + λ̃(L n+1f(z))′ ≺ 1 +Az

1 +Bz
. (1.3)

Attiya and Aouf defined in [4] the class R(n, λ,A,B) with a condition like (1.3), but
there instead of the operator L n they used the Ruscheweyh operator.

Definition 1.10. [12],[9]A function f(z) of the form (1.1) is said to be in the class V (θk)
if f ∈ A and arg(ak) = θk ,∀k ≥ 2. If ∃δ ∈ R such that θk + (k − 1)δ ≡ π(mod 2π),
∀k ≥ 2 then f(z) is said to be in the class V (θk, δ). The union of V (θk, δ) taken over
all possible sequences {θk} and all possible real numbers δ is denoted by V .

Let V L(n, λ̃, A,B) denote the subclass of V consisting of functions

f(z) ∈ L(n, λ̃, A,B).
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Definition 1.11. The modified Hadamard product of two functions f and g of the
form (1.1) and (1.2), and which belong to V (θk, δ) is defined by (see also [5], [9], [11])

(f ∗ g)(z) = z −
∞∑
k=2

akbkz
k = (g ∗ f)(z). (1.4)

Theorem 1.12. [7] Let the function f(z) defined by (1.1) be in V. Then

f(z) ∈ V L(n, λ̃, A,B), if and only if
∞∑
k=2

kCk (1 +B) |ak| ≤ (B −A), (1.5)

where

Ck = γ [1 + (k − 1)λ]
n
[
1 + λ̃λ(k − 1)

]
+

(n+ k − 1)!

n! (k − 1)!
(1− γ)

[
1 + λ̃

k − 1

n+ 1

]
.

The extremal functions are:

f(z) = z +
B −A

kCk (1 +B)
eiθkzk, (k ≥ 2).

2. Main results

Theorem 2.1. If f ∈ V L(n, λ̃, A1, B), g ∈ V L(n, λ̃, A2, B) then

f ∗ g ∈ V L(n, λ̃, A∗, B), where A∗ = B − (B −A1)(B −A2)

2C2 (1 +B)
.

The result is sharp.

Proof. Let f ∈ V L(n, λ̃, A1, B), g ∈ V L(n, λ̃, A2, B) and suppose they have the form

(1.1). Since f ∈ V L(n, λ̃, A1, B) we have
∞∑
k=2

kCk (1 +B) |ak|

B −A1
≤ 1 (2.1)

and for g ∈ V L(n, λ̃, A2, B) we have
∞∑
k=2

kCk (1 +B) |bk|

B −A2
≤ 1. (2.2)

We know from Theorem 1.12 that f ∗ g ∈ V L(n, λ̃, A∗, B) if and only if
∞∑
k=2

kCk (1 +B) |akbk|

B −A∗
≤ 1. (2.3)

By using the Cauchy-Schwarz inequality for (2.1) and (2.2) we have
∞∑
k=2

kCk (1 +B)
√
|akbk|√

(B −A1)(B −A2)
≤ 1.
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We note that
∞∑
k=2

kCk (1 +B) |akbk|

B −A∗
≤

∞∑
k=2

kCk (1 +B)
√
|akbk|√

(B −A1)(B −A2)

implies (2.3). But this is implied by

|akbk|
B −A∗

≤
√
|akbk|√

(B −A1)(B −A2)

or √
|akbk| ≤

B −A∗√
(B −A1)(B −A2)

, (k ≥ 2) . (2.4)

From Theorem 1.12 we have:

|ak| ≤
B −A1

kCk (1 +B)
and |bk| ≤

B −A2

kCk (1 +B)
, (k ≥ 2)

this implies that √
|akbk| ≤

√
(B −A1)(B −A2)

kCk (1 +B)
, (k ≥ 2). (2.5)

From (2.5) we obtain that (2.4) holds if√
(B −A1)(B −A2)

kCk (1 +B)
≤ B −A∗√

(B −A1)(B −A2)

or equivalently

A∗ ≤ B − (B −A1)(B −A2)

kCk (1 +B)
.

But kCk < (k + 1)Ck+1, (k ≥ 2) so

B − (B −A1)(B −A2)

kCk (1 +B)
≥ B − (B −A1)(B −A2)

2C2 (1 +B)
, (k ≥ 2)

⇒ A∗ = B − (B −A1)(B −A2)

2C2 (1 +B)
.

The result is sharp, because if

f(z) = z +
B −A1

2C2 (1 +B)
eiθ1z2 ∈ V L(n, λ̃, A1, B)

g(z) = z +
B −A2

2C2 (1 +B)
eiθ2z2 ∈ V L(n, λ̃, A2, B)

then f ∗ g ∈ V L(n, λ̃, A∗, B) and satisfy (1.5) with equality. Indeed,

2C2 (1 +B)
(B −A1)(B −A2)

22C2
2 (1 +B)

2 = B −A∗

because

B −A∗ =
(B −A1)(B −A2)

2C2 (1 +B)
. �
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Corollary 2.2. If f, g ∈ V L(n, λ̃, A,B) then f ∗ g ∈ V L(n, λ̃,A∗, B), where

A∗ = B − (B −A)2

2C2 (1 +B)
.

The result is sharp.

Theorem 2.3. If f ∈ V L(n, λ̃, A,B1), g ∈ V L(n, λ̃, A,B2) then f∗g ∈ V L(n, λ̃, A,B∗),
where

B∗ = A+
(B1 −A)(B2 −A) (A+ 1)

2C2 (1 +B1) (1 +B2)− (B1 −A) (B2 −A)
.

The result is sharp.

Proof. Let f ∈ V L(n, λ̃, A,B1), g ∈ V L(n, λ̃, A,B2) and suppose they have the form

(1.1). Since f ∈ V L(n, λ̃, A,B1) we have

∞∑
k=2

kCk (1 +B1) |ak|

B1 −A
≤ 1 (2.6)

and for g ∈ V L(n, λ̃, A,B2) we have

∞∑
k=2

kCk (1 +B2) |bk|

B2 −A
≤ 1. (2.7)

We know from Theorem 1.12 that f ∗ g ∈ V L(n, λ̃, A,B∗) if and only if

∞∑
k=2

kCk (1 +B∗) |akbk|

B∗ −A
≤ 1. (2.8)

By using the Cauchy-Schwarz inequality for (2.6) and (2.7) we have

∞∑
k=2

kCk
√

(1 +B1) (1 +B2)
√
|akbk|√

(B1 −A)(B2 −A)
≤ 1.

We note that
∞∑
k=2

kCk (1 +B∗) |akbk|

B∗ −A
≤

∞∑
k=2

kCk
√

(1 +B1) (1 +B2)
√
|akbk|√

(B1 −A)(B2 −A)

implies (2.8). But this is implied by

|akbk| (1 +B∗)

B∗ −A
≤
√
|akbk|

√
(1 +B1) (1 +B2)√

(B1 −A)(B2 −A)

or √
|akbk| ≤

(B∗ −A)
√

(1 +B1) (1 +B2)

(1 +B∗)
√

(B1 −A)(B2 −A)
, (k ≥ 2) . (2.9)
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From Theorem 1.12 we have:

|ak| ≤
B1 −A

kCk (1 +B1)
and |bk| ≤

B2 −A
kCk (1 +B2)

, (k ≥ 2)

this implies that √
|akbk| ≤

√
(B1 −A)(B2 −A)

kCk
√

(1 +B1) (1 +B2)
, (k ≥ 2). (2.10)

from (2.10) we obtain that (2.9) holds if√
(B1 −A)(B2 −A)

kCk
√

(1 +B1) (1 +B2)
≤

(B∗ −A)
√

(1 +B1) (1 +B2)

(1 +B∗)
√

(B1 −A)(B2 −A)

or equivalently

B∗ ≥ A+
(B1 −A)(B2 −A) (A+ 1)

kCk (1 +B1) (1 +B2)− (B1 −A) (B2 −A)
.

But kCk < (k + 1)Ck+1, (k ≥ 2) so:

A+
(B1 −A)(B2 −A) (A+ 1)

kCk (1 +B1) (1 +B2)− (B1 −A) (B2 −A)

≤ A+
(B1 −A)(B2 −A) (A+ 1)

2C2 (1 +B1) (1 +B2)− (B1 −A) (B2 −A)
, (k ≥ 2)

⇒ B∗ = A+
(B1 −A)(B2 −A) (A+ 1)

2C2 (1 +B1) (1 +B2)− (B1 −A) (B2 −A)
.

The result is sharp, because if

f(z) = z +
B1 −A

2C2 (1 +B1)
eiθ1z2 ∈ V L(n, λ̃, A,B1)

g(z) = z +
B2 −A

2C2 (1 +B2)
eiθ2z2 ∈ V L(n, λ̃, A,B2)

then f ∗ g ∈ V L(n, λ̃, A,B∗) and satisfy (1.5) with equality. Indeed,

(1 +B∗) 2C2
(B1 −A)(B2 −A)

22C2
2 (1 +B1) (1 +B2)

= B∗ −A

because

B∗ −A =
(B1 −A)(B2 −A) (A+ 1)

2C2 (1 +B1) (1 +B2)− (B1 −A) (B2 −A)
. �

Corollary 2.4. If f, g ∈ V L(n, λ̃, A,B) then f ∗ g ∈ V L(n, λ̃, A,B∗), where

B∗ = A+
(B −A)2 (A+ 1)

2C2 (1 +B)
2 − (B −A)

2 .

The result is sharp.
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Theorem 2.5. If fj ∈ V L(n, λ̃, Aj , B), j = 1,m, m ∈ {2, 3, 4, . . .} then

f1 ∗ f2 ∗ . . . ∗ fm ∈ V L(n, λ̃, A(m−1)∗, B),

where

A(m−1)∗ = B −

m∏
j=1

(B −Aj)

2m−1Cm−12 (1 +B)
m−1 .

The result is sharp.

Proof. For the proof we use the mathematical induction method and suppose that
fj ,∀j have the form (1.1).

Let m = 2. If fj ∈ V L(n, λ̃, Aj , B), j = 1, 2 then f1 ∗ f2 ∈ V L(n, λ̃, A∗, B) where

A∗ = B − (B −A1)(B −A2)

2C2 (1 +B)
, from Theorem 2.1 is true.

Assume that the result is true for m = k, that is,

f1 ∗ f2 ∗ . . . ∗ fk ∈ V L(n, λ̃, A(k−1)∗, B)

where A(k−1)∗ = B −

k∏
j=1

(B −Aj)

2k−1Ck−12 (1 +B)
k−1 .

Next, we prove that the result is true for k + 1:

then f1 ∗ f2 ∗ . . . ∗ fk ∗ fk+1 ∈ V L(n, λ̃, Ak∗, B), where

Ak∗ = B − (B −A(k−1)∗)(B −Ak+1)

2C2 (1 +B)

= B −

k∏
j=1

(B −Aj)

2k−1Ck−12 (1 +B)
k−1 (B −Ak+1)

2C2 (1 +B)
= B −

k+1∏
j=1

(B −Aj)

2kCk2 (1 +B)
k
.

The result is sharp, because if

fj(z) = z +
B −Aj

2C2 (1 +B)
eiθjz2 ∈ V L(n, λ̃, Aj , B), j = 1,m,

then

f1 ∗ f2 ∗ . . . ∗ fm (z) = z +

m∏
j=1

(B −Aj)

2m−1Cm−12 (1 +B)
m−1 e

i(θ1+θ2+...+θm)z2

satisfy (1.5) with equality. Indeed,

2C2 (1 +B)

m∏
j=1

(B −Aj)
1

2mCm2 (1 +B)
m = B −A(m−1)∗. �
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Theorem 2.6. If fj ∈ V L(n, λ̃, A,Bj), j = 1,m,m ∈ {2, 3, 4, . . .} then

f1 ∗ f2 ∗ . . . ∗ fm ∈ V L(n, λ̃, A,B(m−1)∗),

where

B(m−1)∗ = A+

(A+ 1)
m∏
j=1

(Bj −A)

2m−1Cm−12

m∏
j=1

(1 +Bj)−
m∏
j=1

(Bj −A)
.

The result is sharp.

Proof. The proof is similar to the demonstration for Theorem 2.5. �
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[9] Sălăgean, G.S., Convolution properties of some classes of analytic functions with negative
coefficients, Proc. Int. Symposium New. Develop. Geometric Function Th. and its Appl.
GFTA, Univ. Kebangsaan Malaysia, 10-13 Nov. 2008, 12-16.
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Babeş-Bolyai University
Faculty of Mathematics and Computer Sciences
Cluj-Napoca, Romania
e-mail: pallszaboagnes@math.ubbcluj.ro
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Abstract. In the present paper we study quasi-subordination under a multivalent
function and we consider a certain subclass of (normalized) analytic functions
based on quasi-subordination. Applications and consequences of the main results
are also cosidered which some of them extend the earlier issues.
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1. Introduction

Let A be the class of (normalized) analytic functions f(z) in the open unit disk

D = {z ∈ C : |z| < 1},

which have Taylor series expansion

f(z) = z + a2z
2 + ... ; (z ∈ D).

We denote by S the subclass of A containing univalent functions. For two analytic
functions f, g we say that f is subordinate to g (or g is superordinate to f), and write
f ≺ g (orf(z) ≺ g(z)) if there exists an analytic function w(z),

w(z) ∈ Ω = {w : |w(z)| 6 |z|, z ∈ D}

such that f(z) = g(w(z)). In the special case if g is univalent in D, then we have the
following equivalence

f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(D) ⊆ g(D).

A survey on articles shows that the notation of subordination was used frequently in
the literature, see for example [4, 5, 6]. As an example, consider the following two
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classes of (normalized) analytic functions,

S∗(φ) =

{
f ∈ A :

zf ′(z)

f(z)
≺ φ(z), z ∈ D

}
(1.1)

and

K(φ) =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ φ(z), z ∈ D

}
, (1.2)

where φ(z) is analytic in D with φ(0) = 1. For φ(z) = 1+z
1−z we obtain the well-known

classes S∗ and K of starlike and convex functions, respectively. By taking

φ(z) =
1 + (1− 2α)z

1− z
, 0 ≤ α < 1

in (1.1) and (1.2) we obtain the class of starlike and convex functions of order α,
respectively, while the choice

φ(z) =

(
1 + z

1− z

)α
with 0 < α ≤ 1 gives the class of strongly starlike and strongly conex functions of
order α, respectively.

As an extension of subordination, Robertson [7] (see also [1]) introduced the
concept of quasi-subordination. Let f, g be analytic functions. We say that f is quasi-
subordinated to g, and write f ≺q g if there exist analytic functions φ and w with
|φ(z)| ≤ 1 and w(z) ∈ Ω such that f(z) = φ(z)g(w(z)). It is clear that for φ(z) = 1
we have f ≺ g. In [3] authors considered the following two classes:

S∗(n,A,B) =

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 +Azn

1 +Bzn
, z ∈ D

}
and

K(n,A,B) =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ 1 +Azn

1 +Bzn
, z ∈ D

}
with −1 ≤ B < A ≤ 1, and proved certain results about the subordination proper-
ties of these two classes. Applying the notation of quasi-subordination we define the
following two classes.

Definition 1.1. Let n ∈ N, λ ∈ C − {0} and −1 ≤ B < A ≤ 1. We say that f ∈ A is
in the class S∗q (n, λ,A,B) if there exists a −π2 < θ < π

2 , such that

eiθ
(

1 +
1

λ

(
zf ′(z)

f(z)
− 1

))
≺q

1

n

n∑
k=1

1 +Azk

1 +Bzk
(1.3)

Definition 1.2. Let n ∈ N, λ ∈ C − {0} and −1 ≤ B < A ≤ 1. We say that f ∈ A is
in the class Kq(n, λ,A,B) if there exists a θ, −π2 < θ < π

2 , such that

eiθ(1 +
1

λ

zf ′′(z)

f ′(z)
) ≺q

1

n

n∑
k=1

1 +Azk

1 +Bzk
(1.4)
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It is clear that

f ∈ Kq(n, λ,A,B)⇐⇒ zf ′(z) ∈ S∗q (n, λ,A,B).

Note that the function ψ(z) = 1+Azn

1+Bzn , A 6= B,n ∈ N is multivalent and maps D onto
a disk or a half plane.

The classes S∗q (n, λ,A,B) and Kq(n, λ,A,B) reduce to the classes which were
introduced by Janowski [2] if we consider θ = 0, n = λ = 1 = φ(z). Also, by taking
n = λ = 1, A = 1, B = −1 and φ(z) = 1 the class S∗q (n, λ,A,B) becomes the well-
known class Sθ of θ − spirallike functions, (see [[6],p. 9]).

In the present paper, we aim to prove special results associated with the quasi-
subordination for subclasses of (normalized) analytic functions. Some consequencees
and applications are also considered.

In order to prove our main results, we shall use each of the following theorems.

Theorem 1.3. ([[6],p.70]) Let h be conex in D and let P : D −→ C with ReP (z) > 0.
If p(z) is analytic in D, then

p(z) + P (z)zp′(z) ≺ h(z) =⇒ p(z) ≺ h(z).

Theorem 1.4. ([[6],p.86]) Let β, γ ∈ C with β 6= 0 and n ∈ N. Suppose that Rβa+γ,n(z)
is the “open door function” with Re(βa + γ) > 0,(see [[6],p. 46]), and that h(z) is
analytic in D with h(0) = a. If

βh(z) + γ ≺ Rβa+γ,n(z)

then the solution q(z) of

q(z) +
nzq′(z)

βq(z) + γ
= h(z) (1.5)

with q(0) = a is analytic in D and satisfies Re(βq(z) + γ) > 0. If a 6= 0, then the
solution q is given by

q(z) =

[
β

n

∫ 1

0

(
H(tz)

H(z)

) βa
n

· t(
γ
n )−1dt

]−1
− γ

β

where

H(z) = z exp

(∫ z

0

h(t)− a
at

dt

)
.

2. The classes S∗
q (n, λ,A,B) and Kq(n, λ,A,B)

We begin this section with the following theorem, which gives a characterization
of the functions in S∗q (n, λ,A,B).

Theorem 2.1. Let the function f(z) belongs to the class S∗q (n, λ,A,B). Then there
exists an analytic function p(z),

p(z) ≺q
1

n

n∑
k=1

1 +Azk

1 +Bzk
; (2.1)
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such that

f(z) = z exp

(
λ

∫ z

0

e−iθp(t)− 1

t
dt

)
. (2.2)

If, in addition, the analytic function p(z) satisfies (2.1), then the function of the form
(2.2) belongs to S∗q (n, λ,A,B).

Proof. Suppose that f ∈ S∗q (n, λ,A,B). For a fixed θ, −π2 < θ < π
2 the analytic

function p defined by

p(z) = eiθ(1 +
1

λ
(
zf ′(z)

f(z)
− 1)) (2.3)

satisfies (2.1). An integration in (2.3) shows that

f(z) = z exp

(
λ

∫ z

0

e−iθp(t)− 1

t
dt

)
. (2.4)

Conversely, let f is given by (2.2), where p(z) satisfies (2.1). By differentiating loga-
rithmically of (2.4), we obtain:

p(z) = eiθ
(

1 +
1

λ

(
zf ′

f
− 1

))
,

so,

eiθ
(

1 +
1

λ

(
zf ′(z)

f(z)
− 1

))
≺q

1

n

n∑
k=1

1 +Azk

1 +Bzk

and f ∈ S∗q (n, λ,A,B). �

Corollary 2.2. Let the function f(z) belongs to the class Kq(n, λ,A,B). Then there
exists an analytic function p,

p(z) ≺q
1

n

n∑
k=1

1 +Azk

1 +Bzk
,

such that

f(z) =

∫ z

0

exp(λ

∫ w

0

e−iθp(t)− 1

t
dt)dw, (z ∈ D) (2.5)

Moreover, if the analytic function p(z) satisfies

p(z) ≺q
1

n

n∑
k=1

1 +Azk

1 +Bzk
,

then the function f of the form (2.5) belongs to Kq(n, λ,A,B).

Proof. This is a simple consequence of Theorem 2.1. In fact f(z) ∈ Kq(n, λ,A,B) if
and only if zf ′(z) ∈ S∗q (n, λ,A,B). Equivalently g ∈ S∗q (n, λ,A,B) if and only if

f(z) =

∫ z

0

g(w)

w
dw

is in the class Kq(n, λ,A,B). �

Remark 2.3. Theorem 2.1 and Corollary 2.2 remain true for complex A,B and A 6= B
too.
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Next, consider the class S∗q (n, λ,A,B) with complex A,B satisfying |A| ≤ 1, |B| ≤ 1
and A 6= B.

Theorem 2.4. Let A,B ∈ C, |A| ≤ 1 and |B| ≤ 1 with A 6= B. If the function
f is in the class S∗q (n, λ,A,B), then there exist functions fk, fk ∈ S∗q (1, λ, A,B),
k = 1, 2, · · · , n, such that

fn(z) =

n∏
k=1

fk(z), (z ∈ D).

On the other hand, if there exist functions fk ∈ S∗q (1, λ, A,B) such that

fn(z) =

n∏
k=1

fk(z),

then f ∈ S∗q (n, λ,A,B).

Proof. Let f ∈ S∗q (n, λ,A,B). By Theorem 2.1 there exists analytic functions
p(z), φ(z) and w(z) with w(z) ∈ Ω, such that

p(z) =
1

n
φ(z)

n∑
k=1

1 +Awk(z)

1 +Bwk(z)
; (z ∈ D),

and

fn(z) = zn exp

(
nλ

∫ z

0

e−iθp(t)− 1

t
dt

)
.

As easy calculation yields

fn(z) = zn exp

λ ∫ z

0

e−iθφ(t)
∑n
k=1

{
1+Awk(t)
1+Bwk(t)

− n
}

t
dt


= zn exp

(
λ

∫ z

0

n∑
k=1

(
e−iθφ(t)

1 +Awk(t)

1 +Bwk(t)
− 1

)
dt

t

)

=

n∏
k=1

z exp

(
λ

∫ z

0

(
e−iθφ(t)

1 +Awk(t)

1 +Bwk(t)
− 1

)
dt

t

)

=

n∏
k=1

fk(z),

where

fk(z) = z exp

(
λ

∫ z

0

(
e−iθφ(t)

1 +Awk(t)

1 +Bwk(t)
− 1

)
dt

t

)
By taking

pk(z) = φ(z)
1 +Awk(z)

1 +Bwk(z)

it follows that

pk(z) ≺q
1 +Azk

1 +Bzk
≺q

1 +Az

1 +Bz
.
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So, the function fk(z), (k = 1, 2, ..., n) are in the class S∗q (1, λ, A,B). On the other
hand, if there exist functions fk ∈ S∗q (1, λ, A,B) such that

fn(z) =

n∏
k=1

fk(z),

then by Theorem 2.1 the functions fk must have the form:

fk(z) = z exp

(
λ

∫ z

0

(
e−iθφ(t)

1 +Awk(t)

1 +Bwk(t)
− 1

)
dt

t

)
.

This shows that the product

n∏
k=1

fk(z) is a function fn(z) such that f ∈ S∗q (n, λ,A,B).

�

Here, we obtain another representation for the functions in S∗q (n, λ,A,B). Suppose
that

p(z) ≺q F (n,A,B) =
1

n

n∑
k=1

1 +Azk

1 +Bzk

with complex parameters A,B, |A| ≤ 1, |B| ≤ 1, A 6= B and A 6= 0, B 6= 0. By
defination, there exist analytic functions φ(z), w(z), (|φ(z)| ≤ 1 and w(z) ∈ Ω) such
that

p(z) =
1

n
φ(z)

n∑
k=1

1 +Awk(z)

1 +Bwk(z)
.

If akk = A, bkk = B and ξik = k
√
−1 for i = 1, 2, ..., k and k = 1, 2, ..., n, then

p(z) =
1

n
φ(z)

n∑
k=1

1 + (akw(z)k

1 + (bkw(z))k

=
1

n
φ(z)

n∑
k=1

(akw(z))k − (ξik)k

(bkw(z))k − (ξik)k

=
1

n
φ(z)

n∑
k=1

(akw(z)− ξ1k)(akw(z)− ξ2k)...(akw(z)− ξkk)

(bkw(z)− ξ1k)(bkw(z)− ξ2k)...(bkw(z)− ξkk)
.

Therefore

p(z) =
1

n
φ(z)

n∑
k=1

k∏
i=1

akw(z)− ξik
bkw(z)− ξik

=

n∑
k=1

1

n
φ(z)

k∏
i=1

1 +Aikw(z)

1 +Bikw(z)

=

n∑
k=1

pk(z)
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where Aik = akξ
k−1
ik , Bik = bkξ

k−1
ik and

pk(z) =
1

n
φ(z)

k∏
i=1

1 +Aikw(z)

1 +Bikw(z)
≺q

k∏
i=1

1 +Aikz

1 +Bikz

=

k∏
i=1

F (1, Aik, Bik).

3. The class Mq(n, α, λ,A,B)

It is interesting to consider the conditions in which 1 + 1
λ ( zf

′

f − 1) and 1 + 1
λ
zf ′′

f ′

are joined. In [3] authors introduced the class M(α, n,A,B) as following

M(α, n,A,B) =

{
f ∈ A : α

(
1 +

zf ′′

f ′

)
+ (1− α)

zf ′

f
≺ 1 +Azn

1 +Bzn
, z ∈ D

}
where α ∈ R and −1 ≤ B < A ≤ 1. For the class M(α, n,A,B) we have

M(α, n,A,B) ⊆M(α, 1, A,B) ⊆M(α)

where M(α) is the class of α− convex functions, (see [[6],p. 10]).

In the same way, we consider the class

Mq(n, α, λ,A,B)=

{
f ∈A : α

(
1 +

1

λ

(
zf ′

f
−1

))
+(1−α)

(
1 +

1

λ

zf ′′

f ′

)
≺q

1 +Azn

1 +Bzn

}
(3.1)

where α ∈ R and −1 ≤ B < A ≤ 1. By taking λ = 1 and φ(z) = 1 (related to the
definition of quasi-subordination) in (3.1) we obtain the class M(α, n,A,B). We aim
to obtain the same result concerning this class. The next result involves a condition
for finding a solution of Briot-Bouquet differential equation.

Theorem 3.1. Let −1 < B < A ≤ 1, α < 1 and λ ∈ C−{0}. In addition, assume that

|λ|1 +A

1 +B
+ |1− λ| ≤

√
(1− α)(3− α). (3.2)

If f ∈Mq(n, α, λ,A,B), then f is starlike with respect to the origin. Also,

zf ′(z)

f(z)
=

(
1

1− α

∫ 1

0

(
H(tz)

H(z)

) λ
1−α

t
α−λ
1−α

)−1
where

H(z) = z exp

∫ z

0

(φ(t)− 1) + (Aφ(t)−B)wn(t)

t(1 +Bwn(t))
dt,

in which φ(z) and w(z) are analytic in D, such that |φ(z)| ≤ 1 and w(z) ∈ Ω.
In the special case if φ(z) = 1, then the condition f ∈ Mq(n, α, λ,A,B) implies
f ∈ S∗q (1, λ, A,B).
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Proof. Put

q(z) = 1 +
1

λ

(
zf ′(z)

f(z)
− 1

)
.

By a straightforward calculation we see that the equation

α

(
1 +

1

λ

(
zf ′

f
− 1

))
+ (1− α)

(
1 +

1

λ

zf ′′

f ′

)
= h(z)

becomes,

q(z) +
zq′(z)

λ
1−αq(z) + 1−λ

1−α
= h(z). (3.3)

By the assumption of the theorem, there exist analytic functions φ(z) and w(z) in D,
|φ(z)| ≤ 1 and w(z) ∈ Ω such that

h(z) = φ(z)
1 +Awn(z)

1 +Bwn(z)
.

We have to verify conditions of the Theorem 1.4. We have

β =
λ

1− α
, γ =

1− λ
1− α

, h(0) = 1 = a

and

Re(βa+ γ) = Re

(
1

1− α

)
> 0.

Next, we investigate the condition

βh(z) + γ ≺ Rβa+γ,m(z) = R 1
1−α ,1

(z). (3.4)

We know that the set R 1
1−α ,1

(D) is the complex plane with slits along the half-lines

Rez = 0 and |Imz| ≥
√

1 + 2
1−α =

√
3−α
1−α (see [[6],p. 46]). Easy calculations show

that

|βh(z) + γ| ≤ |λ|
1− α

.
|1 +Awn(z)|
|1 +Bwn(z)|

+
|1− λ|
1− α

≤ |λ|
1− α

.
1 +A

1 +B
+
|1− λ|
1− α

=
1

1− α
(|λ|1 +A

1 +B
+ |1− λ|).

So, in order to have (3.4) it must be

1

1− α

(
|λ|1 +A

1 +B
+ |1− λ|

)
<

√
3− α
1− α

or equivalently,

|λ|1 +A

1 +B
+ |1− λ| <

√
(1− α)(3− α). (3.5)
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If α and λ satisfy in (3.5), then we have βh(z) + γ ≺ R 1
1−α ,1

(z). So, all conditions of

the Theorem 1.4 are satisfied and we obtain

0 < Re (βq(z) + γ) =
1

1− α
Re

(
zf ′

f

)
which means that f ∈ S∗. Also, we obtain the following representation for zf ′

f :

zf ′

f
=

(
1

1− α

∫ 1

0

(
H(tz)

H(z)

) λ
1−α

t
α−λ
1−α

)−1
where

H(z) = z exp

∫ z

0

h(t)− 1

t
dt

= z exp

∫ z

0

(φ(t)− 1) + (Aφ(t)−B)wn(t)

t(1 +Bwn(t))
dt.

In the special case if φ(z) = 1, then h(z) = 1+Awn(z)
1+Bwn(z) and we have

q(z) +
zq′(z)

λ
1−αq(z) + 1−λ

1−α
≺ 1 +Az

1 +Bz
= h1(z),

where h1(z) is convex-univalent function in D. Now by Theorem 1.3 we conclude that

q(z) = 1 +
1

λ

(
zf ′

f
− 1

)
≺ 1 +Az

1 +Bz
,

hence f ∈ S∗q (1, λ, A,B). �
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Approximation with an arbitrary order
by generalized Kantorovich-type and
Durrmeyer-type operators on [0,+∞)

Sorin Trifa

Abstract. Given an arbitrary sequence λn > 0, n ∈ N, with the property that
limn→∞ λn = 0 as fast we want, in this note we introduce modified/ gene-
ralized Szász-Kantorovich, Baskakov-Kantorovich, Szász-Durrmeyer-Stancu and
Baskakov-Szász-Durrmeyer-Stancu operators in such a way that on each compact
subinterval in [0,+∞) the order of uniform approximation is ω1(f ;

√
λn). These

modified operators uniformly approximate a Lipschitz 1 function, on each com-
pact subinterval of [0,∞) with the arbitrary good order of approximation

√
λn.

The results obtained are of a definitive character (that is are the best possible)
and also have a strong unifying character, in the sense that for various choices
of the nodes λn, one can recapture previous approximation results obtained for
these operators by other authors.

Mathematics Subject Classification (2010): 41A36, 41A25.

Keywords: Generalized Szász-Kantorovich operators, generalized Baskakov-
Kantorovich operators, generalized Szász-Durrmeyer-Stancu operators, general-
ized Baskakov-Szász-Durrmeyer-Stancu operators, linear and positive operators,
modulus of continuity, arbitrary order of approximation.

1. Introduction

It is known that the classical Baskakov operators are given by the formula (see,
e.g., [2])

Vn(f)(x) =

∞∑
j=0

(
n+ j − 1

j

)
xj

(1 + x)n+j
f

(
j

n

)
= (1 + x)−n

∞∑
j=0

(n+ j − 1)!

j!(n− 1)!

xj

(1 + x)j

= (1 + x)−n
∞∑
j=0

n(n+ 1) . . . (n+ j − 1)

j!

xj

(1 + x)j
.
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In the recent paper [9], this operator was modified by replacing n with 1
λn

, where

limn→∞ λn = 0 as fast we want, and the approximation properties (of arbitrary good
order depending on λn) of the new obtained Baskakov operator defined by the formula

Vn(f ;λn)(x) = (1+x)
−1
λn

∞∑
j=0

1

j!

1

λn

(
1+

1

λn

)
. . .

(
j−1 +

1

λn

)(
x

1 + x

)j
f(jλn), x≥ 0,

were obtained. Above by convention,

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)
= 1 for j = 0.

The complex variable case for Vn(f ;λn) was studied in [10]. Also, in [6], the above idea
was applied to the Jakimovski-Leviatan-Ismail kind generalization of Szász-Mirakjan
operators.

The goal of the present paper is that based on the above idea, to introduce modi-
fied/generalized Szász-Kantorovich, Baskakov-Kantorovich, Szász-Durrmeyer-Stancu
and Baskakov-Szász-Durrmeyer-Stancu operators in such a way that on each compact
subinterval in [0,+∞) the order of uniform approximation is ω1(f ;

√
λn). These mod-

ified operators can uniformly approximate a Lipschitz 1 function, on each compact
subinterval of [0,∞) with the arbitrary good order of approximation

√
λn given at

the beginning.
In conclusion, it is worth mentioning for these generalized operators that since

λn ca be chosen with λn ↘ 0 arbitrary fast, in fact it follows that the order of
convergence ω1(f ;

√
λn) is arbitrary good. For this reason, the results obtained by

this paper have a definitive character (that is they are the best possible). In the same
time, the results also have a strong unifying character, in the sense that for various
choices of the nodes λn one can recapture previous approximation results obtained
by other authors.

2. Generalized Baskakov-Kantorovich operators

In this section we deal with the Baskakov-Kantorovich operators.
It is known that the classical Baskakov-Kantorovich operators are defined by

(see, e.g., [3])

Kn(f)(x) =

∞∑
j=0

(
n+ j − 1

j

)
xj

(1 + x)n+j
n

∫ (j+1)/n

j/n

f(v)dv

= (1 + x)−n
∞∑
j=0

n(n+ 1) . . . (n+ j − 1)

j!

xj

(1 + x)j
n

∫ (j+1)/n

j/n

f(v)dv.

If we replace n with 1
λn

, then we obtain the generalized Baskakov-Kantorovich oper-
ators, defined by the formula

Kn(f ;λn)(x)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)
xj

(1 + x)j
1

λn

∫ (j+1)λn

jλn

f(v)dv.
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Denote everywhere in the paper ek(x) = xk, k = 0, 1, 2, . . .
This section deals with the approximation properties of the operator

Kn(f ;λn)(x). For our purpose, firstly we need the following auxiliary result.
Lemma 2.1. We have:

(i) Kn(e0;λn)(x) = 1; Kn(e1;λn)(x) = x+ 1
2 · λn;

Kn(e2;λn)(x) = x2 + 2λnx+ λnx
2 +

1

3
· λ2n;

(ii) Kn((t− x)2;λn)(x) = λn
(
x2 + x+ 1

3 · λn
)
.

Proof. By using the formulas in Corollary 2.1 in [9],

Vn(e0;λn)(x) = 1, Vn(e1;λn)(x) = x

and
Vn(e2;λn)(x) = x2 + λnx(1 + x),

we will calculate Kn(e0;λn)(x), Kn(e1;λn)(x), Kn(e2;λn)(x), Kn((t− x)2;λn)(x).
(i) Therefore,

Kn(e0;λn)(x)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn

∫ (j+1)λn

jλn

dv

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn
(jλn + λn − jλn)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
= Vn(e0;λn)(x) = 1.

Also,
Kn(e1;λn)(x)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn

∫ (j+1)λn

jλn

vdv

= (1 + x)−
1
λn

·
∞∑
j=0

1

j!λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

2λn
(j2λ2n + λ2n + 2jλ2n − j2λ2n)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn

(
1

2
λ2n + jλ2n

)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn

1

2
λ2n

+(1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn
jλ2n

= Vn(e1;λn)(x) +
1

2
λn(1 + x)−

1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
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= Vn(e1;λn)(x) +
1

2
λnVn(e0;λn)(x) = x+

1

2
λn.

Then,
Kn(e2;λn)(x)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn

∫ (j+1)λn

jλn

v2dv

= (1+x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn

1

3
((j+1)3λ3n−j3λ3n)

= (1 + x)−
1
λn

·
∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j−1 +

1

λn

)(
x

1 + x

)j
1

λn

1

3
(j3λ3n+3j2λ3n+3jλ3n+λ3n−j3λ3n)

= (1 +x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn
(j2λ3n+ jλ3n+

1

3
λ3n)

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn
j2λ3n

+(1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn
jλ3n

+(1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
1

λn

1

3
λ3n

= (1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
j2λ2n

+(1 + x)−
1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
jλ2n

+
1

3
(1 + x)−

1
λn

∞∑
j=0

1

j!

1

λn

(
1 +

1

λn

)
. . .

(
j − 1 +

1

λn

)(
x

1 + x

)j
λ2n

= Vn(e2;λn)(x) + λnVn(e1;λn)(x) +
1

3
λ2nVn(e0;λn)(x)

= x2 + 2λnx+ λnx
2 +

1

3
λ2n.

(ii) Finally, we get

Kn((t− x)2;λn)(x) = Kn(t2 − 2tx+ x2;λn)(x)

= Kn(t2;λn)(x)−Kn(2tx;λn)(x) +Kn(x2;λn)(x)

= Kn(e2;λn)(x)− 2xKn(e1;λn)(x) + x2Kn(e0;λn)(x)

= x2 + 2λnx+ λnx
2 +

1

3
λ2n − 2x2 − xλn + x2 = λn(x+ x2 +

1

3
λn). �

The main result of this section is the following.
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Theorem 2.2. Let λn ↘ 0 (with n → ∞) as fast we want and suppose that f :
[0,+∞)→ R is uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we
have

|Kn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
x2 + x+ λn/3),

where ω1(f ; δ) = sup{|f(x) − f(y)|;x, y ∈ R, |x − y| ≤ δ} denotes the modulus of
continuity of f with the step δ.
Proof. By the classical theory (see, e.g., Shisha-Mond [14] or, e.g., [1], Proposition
1.6.3) (where although the result is proved for continuous functions on compact inter-
vals, the reasonings are similar for uniformly continuous functions on [0,+∞)), for any
positive and linear operator L defined on the set of uniformly continuous functions
UC[0,+∞), we obtain

|L(f)(x)− f(x)| ≤ (1 + δ−1
√
L(ϕ2

x)(x))ω(f ; δ),

for all f ∈ UC[0,+∞), x ∈ [0,+∞), δ > 0, where ϕx(t) = |t− x|.
Replacing above L by Kn and taking into account that by Lemma 2.1, (ii) we have√

Kn((t− x)2;λn)(x) =

√
λn(x+ x2 +

1

3
λn) =

√
λn ·

√
x+ x2 +

1

3
λn,

this implies

|Kn(f ;λn)(x)− f(x)| ≤ (1 + δ−1
√
λn ·

√
x+ x2 + λn/3)ω1(f ; δ).

Choosing now here δ =
√
λn ·

√
x2 + x+ λn/3 we get

|Kn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn
√
x+ x2 + λn/3),

which proves the estimate in the statement. �
As an immediate consequence of Theorem 2.2 we get the following.

Corollary 2.3. Let λn ↘ 0 as fast we want and suppose that f is a Lipschitz function,
that is there exists M > 0 such that |f(x) − f(y)| ≤ M |x − y|, for all x, y ∈ [0,∞).
Then, for all x ∈ [0,+∞) and n ∈ N we have

|Kn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
x+ x2 + λn/3.

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for

all δ > 0. Choosing now δ =
√
λn ·

√
x+ x2 + λn/3 and applying Theorem 2.2, we

get the desired estimate. �
Remarks. 1) Since f ∈ UC[0,+∞), it is well-known that we get limδ↘0 ω1(f ; δ) = 0.
Therefore, since λn ↘ 0, passing to limit with n→∞ in the estimate in Theorem 2.2,
it follows that Kn(f ;λn)(x)→ f(x), pointwise for any x ∈ [0,+∞). Now, in order to

get uniform convergence in the above results, the expression
√
x+ x2 + λn/3 must

be bounded, fact which holds when x belongs to a compact subinterval of [0,+∞).
2) If f ∈ UC[0,+∞), then Kn(f ;λn)(x) is well defined (that is |Kn(f ;λn)(x)| <

+∞ for all x ∈ [0,+∞) and n ∈ N). Indeed, if f is uniformly continuous on [0,+∞)
then it is well known that its growth on [0,+∞) is linear, i.e. there exist α, β > 0
such that |f(x)| ≤ αx+ β, for all x ∈ [0,+∞) (see e.g. [4], p. 48, Problème 4, or [5]).
This immediately implies

|Kn(f ;λn)(x)| ≤ Kn(|f |;λn)(x) ≤ α ·Kn(e1;λn)(x) + β = α(x+ λn/2) + β,
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for all x ∈ [0,+∞), n ∈ N.
3) The optimality of the estimates in Theorem 2.2 and Corollary 2.3 consists

in the fact that given an arbitrary sequence of strictly positive numbers (γn)n, with
limn→∞ γn = 0, we always can find a sequence λn satisfying

2ω1(f ;
√
λn ·

√
x+ x2 + λn/3) ≤ γn

for all n ∈ N and x belonging to a compact subinterval of [0,+∞) in the case of

Theorem 2.2 and
√
λn ·

√
x+ x2 + λn/3) ≤ γn for all n ∈ N and x in a compact

subinterval of [0,+∞), in the case of Corollary 2.3.

3. Generalized Szász-Kantorovich operators

The formula for the classic, linear and positive Szász-Kantorovich operators is
given by (see, e.g., [16])

Sn(f)(x) = e−nx
∞∑
j=0

(nx)j

j!
n

∫ j+1
n

j
n

f(v)dv = e−nx
∞∑
j=0

(nx)j

j!

∫ 1

0

f(
t+ j

n
)dt.

Replacing above n with 1
λn

, we obtain the generalized Szász-Kantorovich operators,
defined by the formula

Sn(f ;λn)(x) = e−
x
λn

∞∑
j=0

xj

λjnj!

1

λn

∫ (j+1)λn

jλn

f(v)dv

= e−
x
λn

∞∑
j=0

xj

λjnj!

∫ 1

0

f(λn(t+ j))dt.

In this section we study the approximation properties of the operator Sn(f ;λn)(x).
Firstly we need the following lemma.
Lemma 3.1. We have:

(i) Sn(e0;λn)(x) = 1; Sn(e1;λn)(x) = x+ 1
2 · λn;

Sn(e2;λn)(x) = x2 + 2λnx+
1

3
· λ2n;

(ii) Sn((t− x)2;λn)(x) = λn
(
x+ 1

3 · λn
)
.

Proof. (i) We have

Sn(e0;λn)(x) = e−x/λn
∞∑
j=0

xj

j!λjn
= 1,

for all x ≥ 0 and n ∈ N. Then,

Sn(e1;λn)(x) = e−x/λn
∞∑
j=0

xj

j!λjn

1

λn
· 1

2

{
[(j + 1)λn]2 − (jλn)2

}
= e−x/λn

∞∑
j=0

xj

j!λjn

1

2λn
·
(
2λ2nj + λ2n

)
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= e−x/λn
∞∑
j=0

xj

j!λjn

λn
2

+ λn · e−x/λn
∞∑
j=0

xj · j
j!λjn

=
λn
2

+ x · e−x/λn
∞∑
j=1

xj−1

(j − 1)!λj−1n

=
λn
2

+ x · e−x/λn
∞∑
k=0

xk

k!λkn
=
λn
2

+ x.

Also,

Sn(e2;λn)(x) = e−x/λn
∞∑
j=0

xj

j!λjn

1

λn
· 1

3

{
[(j + 1)λn]3 − (jλn)3

}
= e−x/λn

∞∑
j=0

xj

j!λjn

1

3λn
·
{

(3j2 + 3j + 1)λ3n
}

=
λ2n
3

+ e−x/λn
∞∑
j=1

xjj2λ2n

j!λjn
+ e−x/λn

∞∑
j=1

xjjλ2n

j!λjn

=
λ2n
3

+ e−x/λn
∞∑
j=1

xjj(j − 1)λ2n

j!λjn
+ 2e−x/λn

∞∑
j=1

xjjλ2n

j!λjn
= x2 + 2xλn +

λ2n
3
.

(ii) Concluding, we get

Sn((· − x)2;λn)(x) = Kn(λn; e2)(x)− 2x ·Kn(λn; e1)(x) + x2

= xλn + λ2n/3 = λn(x+ λn/3). �

The main result of this section is the following.
Theorem 3.2. Let λn ↘ 0 (with n → ∞) as fast we want and suppose that f :
[0,+∞)→ R is uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we
have

|Sn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
x+ λn/3),

where ω1(f ; δ) = sup{|f(x) − f(y)|;x, y ∈ R, |x − y| ≤ δ} denotes the modulus of
continuity of f with the step δ.
Proof. Reasoning exactly as in the proof of Theorem 2.2, we can write

|Sn(f ;λn)(x)− f(x)| ≤ (1 + δ−1
√
Sn(ϕ2

x;λn)(x))ω1(f ; δ).

Choosing here δ =
√
Sn(ϕ2

x;λn)(x) an using Lemma 3.1, (ii), we obtain

|Sn(f ;λn)(x)− f(x)| ≤ 2ω1

(
f ;
√
λn ·

√
x+

1

3
λn

)
≤ 2ω1

(
f ;
√
λn ·

√
x+

1

3
λn

)
,

which proves the theorem. �
As an immediate consequence of Theorem 3.2 we get the following.

Corollary 3.3. Let λn ↘ 0 as fast we want and suppose that f is a Lipschitz function,
that is there exists M > 0 such that |f(x) − f(y)| ≤ M |x − y|, for all x, y ∈ [0,∞).
Then, for all x ∈ [0,+∞) and n ∈ N we have

|Sn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
x+ λn/3.
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Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for

all δ > 0. Choosing now δ =
√
λn ·

√
x+ λn/3 and applying Theorem 3.2, we get the

desired estimate. �
Remark. All the Remarks 1)-3) made at the end of the previous section remain valid
for the generalized Szász-Kantorovich operators too.

4. Generalized Szász-Durrmeyer-type operators

Let us recall that the classical Szász-Durrmeyer operators are given by the for-
mula (see, e.g., [13])

SDn(f)(x) = n

∞∑
j=0

sn,j(x)

∫ ∞
0

sn,j(t)f(t)dt,

where sn,j(x) = e−nx (nx)j

j! .

If we replace n with 1
λn

, then we obtain the generalized Szász-Durrmeyer oper-
ators, defined by the formula

SDn(f ;λn)(x) =
1

λn

∞∑
j=0

e−
x
λn · x

j

λjnj!

∫ ∞
0

e−
t
λn · tj

λjnj!
f(t)dt.

In the first part of this section we study the approximation properties of the operator
SDn(f ;λn)(x). Firstly we need the following lemma.
Lemma 4.1. We have:

(i) SDn(e0;λn)(x) = 1; SDn(e1;λn)(x) = x+ λn;

SDn(e2;λn)(x) = x2 + 4λnx+ 2λ2n;

(ii) SDn((t− x)2;λn)(x) = λn (2x+ 2λn).
Proof. (i) Denoting

Ij(f) =

∫ ∞
0

e−
t
λn

( t
λn

)j

j!
f(t)dt,

we can write

SDn(f ;λn)(x) =
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
· Ij(f).

Now, taking f(t) = tp and making the change of variable v = t
λn

it follows

Ij(ep) = λn

∫ ∞
0

e−v · v
j

j!
· λpn · vpdv =

λp+1
n

j!
·
∫ ∞
0

e−vvp+jdv

=
λp+1
n

j!
· Γ(p+ j + 1− 1) =

λp+1
n

j!
· (p+ j)!,

where Γ is the Euler’s gamma function.
So, for p = 0, we have Ij(e0) = λn

j! j! = λn, which implies

SDn(e0, λn)(x) =
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
λn =

1

λn
λn = 1.
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Now, for p = 1 we have Ij(e1) = (λn)
2

j! (j + 1)! = (j + 1)λ2n, which implies

SDn(e1, λn)(x) =
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
(j + 1)λ2n

=
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
jλ2n +

1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
λ2n = x+ λn.

Finally, for p = 2, we have Ij(e2) = (λn)
3

j! (j + 2)! = (j + 1)(j + 2)λ3n, which implies

SDn(e2, λn)(x) =
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
(j2 + 3j + 2)λ3n

=
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
j2λ3n +

1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
3jλ3n

+
1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!
2λ3n = (x2 + λnx) + 3λnx+ 2λ2n = x2 + 4λnx+ 2λ2n.

(ii) Concluding, we get

SDn((t− x)2;λn)(x) = SDn(t2, λn)(x)− SDn(2tx, λn)(x) + SDn(x2, λn)(x)

= x2 + 4λnx+ 2λ2n − 2x(x+ λn) + x2 = 2λnx+ 2λ2n,

which proves the lemma. �
The first main result of this section is the following.

Theorem 4.2. Let λn ↘ 0 as fast we want and suppose that f : [0,+∞) → R is
uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we have

|SDn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
2x+ 2λn).

Proof. Reasoning exactly as in the proof of Theorem 2.2, we can write

|SDn(f ;λn)(x)− f(x)| ≤ (1 + δ−1
√
SDn(ϕ2

x;λn)(x))ω1(f ; δ).

Choosing here δ =
√
SDn(ϕ2

x;λn)(x) and using Lemma 4.1, (ii), we obtain

|Sn(f ;λn)(x)− f(x)| ≤ 2ω1(f ;
√
λn ·

√
2x+ 2λn),

which proves the theorem. �
As an immediate consequence of Theorem 4.2 we get the following.

Corollary 4.3. Let λn ↘ 0 as fast we want and suppose that f is a Lipschitz function,
that is there exists M > 0 such that |f(x) − f(y)| ≤ M |x − y|, for all x, y ∈ [0,∞).
Then, for all x ∈ [0,+∞) and n ∈ N we have

|Sn(f ;λn)(x)− f(x)| ≤ 2M
√
λn ·

√
2x+ 2λn.

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for
all δ > 0. Choosing now δ =

√
λn ·
√

2x+ 2λn and applying Theorem 4.2, we get the
desired estimate. �
Remark. All the Remarks 1)-3) made at the end of Section 2 remain valid for the
generalized Szász-Durrmeyer, SDn(f ;λn), operators too.
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In what follows we will introduce and study the generalized Szász-Durrmeyer-
Stancu operators. Thus it is well-known that the classical Szász-Durrmeyer-Stancu
operators are given by the formula (see, e.g., [8])

SD(α,β)
n (f)(x) = n

∞∑
j=0

sn,j(x)

∫ ∞
0

sn,j(t)f

(
nt+ α

n+ β

)
dt,

where 0 ≤ α ≤ β and sn,j(x) = e−nx (nx)j

j! .

If we replace n with 1
λn

, we obtain:

SD(α,β)
n (f ;λn)(x) =

1

λn

∞∑
j=0

e−
x
λn

( x
λn

)j

j!

∫ ∞
0

e−
x
λn

( x
λn

)j

j!
f

(
t
λn

+ α
1

λn+β

)
dt.

Firstly we prove the following lemma.
Lemma 4.4. We have:

(i) SD
(α,β)
n (e0;λn)(x) = 1; SD

(α,β)
n (e1;λn)(x) = x

1+λnβ
+ λn(α+1)

1+λnβ
;

SD(α,β)
n (e2;λn)(x) =

x2

(1 + λnβ)2
+
λn(2α+ 3)

(1 + λnβ)2
x+

λ2n(α2 + 2α+ 2)

(1 + λnβ)2
;

(ii) SD
(α,β)
n ((t− x)2;λn)(x)

=
λ2nβ

2

(1 + λNβ)2
x2 +

λn(1− 2β(α+ 1)λn)

(1 + λnβ)2
x+

λ2n(α2 + 2α+ 2)

(1 + λnβ)2
.

Proof. (i) Firstly, we calculate T
(α,β)
n,k (x) := SD

(α,β)
n (ek)(x), k = 0, 1, 2. For this pur-

pose, we will use the following formula in Lemma 2.1 in [8]

T
(α,β)
n,k =

k∑
j=0

(
k

j

)
njαk−j

(n+ β)k
Tn,j(x), (4.1)

where Tn,k(x) = SDn(ek)(x).
Therefore, before that we need to calculate Tn,k(x). For the calculation of

Tn,k(x), we use the recurrence formula in Lemma 2.2 in [7]

T ′n,k(x) =
n

x
Tn,k+1(x)−

(
n+

k + 1

x

)
Tn,k(x), (4.2)

taking into account that Tn,0(x) = 1.
Thus, taking in (4.2) k = 0 we immediately get

0 =
n

x
Tn,1(x)− (n+ 1/x)Tn,0(x),

which implies

Tn,1(x) = (n+ 1/x) · x
n

= x+ 1/n.

Taking in (4.2) k = 1, it follows

1 =
n

x
Tn,2(x)−

(
n+

2

x

)(
x+

1

n

)
,
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which implies

Tn,2(x) =

(
nx+ 3 +

2

nx

)(
x+

1

n

)
= x2 +

3x

n
+

2

n2
.

Returning now to the formula (4.1), for k = 0 we obtain T
(α,β)
n,0 (x) = 1, for k = 1 we

obtain

T
(α,β)
n,1 =

1∑
j=0

(
1

j

)
njα1−j

(n+ β)1
Tn,j(x) =

α

n+ β
+

n

n+ β

(
x+

1

n

)
=

n

n+ β
x+

α+ 1

n+ β
,

while for k = 1 we get

T
(α,β)
n,2 (x) =

2∑
j=0

(
2

j

)
njα2−j

(n+ β)2
Tn,j(x)

=
α2

(n+ β)2
+

2nα

(n+ β)2

(
x+

1

n

)
+

n2

(n+ β)2

(
x2 +

3x

n
+

2

n2

)
=

n2

(n+ β)2
x2 +

n(2α+ 3)

(n+ β)2
x+

α2 + 2α+ 2

(n+ β)2
.

Now, if we replace n with 1
λn

we easily obtain

SD(α,β)
n (e0;λn)(x) = 1,

SD(α,β)
n (e1;λn)(x) =

x

1 + λnβ
+
λn(α+ 1)

1 + λnβ
,

SD(α,β)
n (e2;λn)(x) =

x2

(1 + λnβ)2
+
λn(2α+ 3)

(1 + λnβ)2
x+

λ2n(α2 + 2α+ 2)

(1 + λnβ)2
.

(ii) We have

SD(α,β)
n ((t− x)2;λn)(x)

= SD(α,β)
n (e2;λn)(x)− 2xSD(α,β)

n (e1;λn)(x) + x2SD(α,β)
n (e0;λn)(x)

= x2
[

1

(1 + λnβ)2
− 2

1 + λnβ
+ 1

]
+ x

[
λn(2α+ 3)

(1 + λnβ)2
− 2λn(α+ 1)

1 + λnβ

]
+
λ2n(α2 + 2α+ 2)

(1 + λnβ)2
=

λ2nβ
2

(1 + λnβ)2
x2 +

λn(1− 2β(α+ 1)λn)

(1 + λnβ)2
x

+
λ2n(α2 + 2α+ 2)

(1 + λnβ)2
,

which proves the lemma. �
The second main result of this section is the following.

Theorem 4.5. Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want and suppose that f : [0,+∞)→
R is uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we have

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
E

(α,β)
n (x)),
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where

E(α,β)
n (x) =

λnβ
2

(1 + λnβ)2
x2 +

1− 2β(α+ 1)λn
(1 + λnβ)2

x+
λn(α2 + 2α+ 2)

(1 + λnβ)2
.

Proof. Reasoning exactly as in the proof of Theorem 2.2, we can write

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ (1 + δ−1

√
SD

(α,β)
n (ϕ2

x;λn)(x))ω1(f ; δ).

Choosing here δ =

√
SD

(α,β)
n (ϕ2

x;λn)(x) and using Lemma 4.1, (ii), we obtain

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
E

(α,β)
n (x)),

which proves the theorem. �
As an immediate consequence of Theorem 4.5 we get the following.

Corollary 4.6. Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want and suppose that f is a
Lipschitz function, that is there exists M > 0 such that |f(x)− f(y)| ≤M |x− y|, for
all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞) and n ∈ N we have

|SD(α,β)
n (f ;λn)(x)− f(x)| ≤ 2M

√
λn ·

√
E

(α,β)
n (x).

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for

all δ > 0. Choosing now δ =
√
λn ·

√
E

(α,β)
n (x) and applying Theorem 4.5, we get the

desired estimate. �
Remark. All the Remarks 1)-3) made at the end of Section 2 remain valid for the

generalized Szász-Durrmeyer-Stancu, SD
(α,β)
n (f ;λn), operators too.

5. Generalized Baskakov-Szász-Durrmeyer-Stancu operators

For 0 ≤ α ≤ β, the classical Baskakov- Szász-Durrmeyer-Stancu operators are
given by the formula (see, e.g., [12])

V (α,β)
n (f)(x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)f(
nt+ α

n+ β
dt,

where, sn,j(x) = e−nx (nx)j

j! and

bn,j(x) =

(
n+ j − 1

j

)
xj

(1 + x)n+j
= (1 + x)−n

n(n+ 1) . . . (n+ j − 1)

j!

xj

(1 + x)j
.

If we replace n with 1
λn

we obtain the formula:

V (α,β)
n (f ;λn)(x) =

1

λn

∞∑
j=0

(1 + x)−
1
λn

1
λn

( 1
λn

+ 1) . . . ( 1
λn

+ j − 1)

j!

xj

(1 + x)j

·
∫ ∞
0

e−
t
λn ·

( t
λn

)j

j!
f(

t
λn

+ α
1
λn

+ β
)dt.

Firstly we need the following auxiliary result.
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Lemma 5.1. We have:
(i) V

(α,β)
n (e0;λn)(x) = 1; V

(α,β)
n (e1;λn)(x) = 1

1+λnβ
x+ λn+λnα

1+λnβ
;

V (α,β)
n (e2;λn)(x) =

1 + λn
(1 + λnβ)2

x2 +
4λn + 2λnα

(1 + λnβ)2
x+

λ2nα
2 + 2λ2nα+ 2λ2n
(1 + λnβ)2

;

(ii) V
(α,β)
n ((t− x)2;λn)(x)

=
λn + λ2nβ

2

(1 + λnβ)2
x2 +

2λn − 2λ2nβ − 2λ2nαβ

(1 + λnβ)2
x+

λ2nα
2 + 2λ2nα+ 2λ2n
(1 + λnβ)2

.

Proof. (i) We will make the calculations in three steps:

Step 1. We calculate U
(0,0)
n,k (x) := V

(0,0)
n (ek)(x), k = 1, 2 by using the recurrence

formula (see, e.g., Lemma 2 in [11])

U
(0,0)
n,k (x) =

x(1 + x)

n
·
[
U

(0,0)
n,k (x)

]′
+
nx+ k + 1

n
U

(0,0)
n,k (x), (5.1)

and by taking into account that U
(0,0)
n,0 (x) = 1. Taking k = 0 in (5.1), we obtain

U
(0,0)
n,1 (x) =

x(1 + x)

n
· (1)′ +

nx+ 1

n
· 1 =

nx+ 1

n
= x+

1

n
.

For k = 1 in (5.1), we get

U
(0,0)
n,2 (x) =

x(1 + x)

n
·
(
nx+ 1

n

)′
+
nx+ 2

n
· nx+ 1

n
=
x(1 + x)

n
+

(nx+ 2)(nx+ 1)

n2

=
nx(1 + x) + (nx+ 1)(nx+ 2)

n2
= x2 +

x2 + 4x

n
+

2

n2
.

Step 2. By direct calculation and based on the results obtained at Step 1, we will

obtain the values for V
(α,β)
n (ek)(x) := U

(α,β)
n,k (x), k = 0, 1, 2. Indeed, based on the

formulas

nt+ α

n+ β
=

n

n+ β
t+

α

n+ β
, U

(α,β)
n,k (x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)f(
nt+ α

n+ β
)dt, (5.2)

for k = 0 in (5.2) we obtain

U
(α,β)
n,0 (x) = V (α,β)

n (e0)(x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)dt = U
(0,0)
n,0 (x) = 1.

Then, for k = 1 in (5.2) it follows

U
(α,β)
n,1 (x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)
nt+ α

n+ β
dt

= n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)
n

n+ β
tdt+

α

n+ β
n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)dt

=
n

n+ β

n ∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)tdt

+
α

n+ β
· U (0,0)

n,0 (x)
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=
n

n+ β
· U (0,0)

n,1 (x) +
α

n+ β
=

n

n+ β

nx+ 1

n
+

α

n+ β
=

n

n+ β
x+

α+ 1

n+ β
.

Finally, for k = 2 in (5.2) we obtain

U
(α,β)
n,2 (x) = V (α,β)

n (e2)(x) = n

∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)(
nt+ α

n+ β
)2dt

=
n2

(n+ β)2

n ∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)t
2dt


+

2nα

(n+ β)2

n ∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)tdt


+

α2

(n+ β)2

n ∞∑
j=0

bn,j(x)

∫ ∞
0

sn,j(t)dt


=

n2

(n+ β)2
· U (0,0)

n,2 (x) +
2nα

(n+ β)2
· U (0,0)

n,1 (x) +
α2

(n+ β)2
· U (0,0)

n,0 (x)

=
n2

(n+ β)2
nx(1 + x) + (nx+ 1)(nx+ 2)

n2
+

2nα

(n+ β)2
nx+ 1

n
+

α2

(n+ β)2

=
nx(1 + x) + (nx+ 1)(nx+ 2) + 2α(nx+ 1) + α2

(n+ β)2

=
n2 + n

(n+ β)2
x2 +

4n+ 2αn

(n+ β)2
x+

α2 + 2α+ 2

(n+ β)2
.

Step 3. We calculate U
(α,β)
n,k (x), k = 0, 1, 2, by replacing at Step 2, n with 1

λn
.

It immediately follows

V (α,β
n (e0;λn)(x) = U

(α,β)
n,0 (x;λn) = 1,

V (α,β)
n (e1;λn)(x) = U

(α,β)
n,1 (x;λn) =

1

1 + λnβ
x+

λn + λnα

1 + λnβ
,

V (α,β)
n (e2;λn)(x)=U

(α,β)
n,2 (x;λn)=

1 + λn
(1+λnβ)2

x2 +
4λn+2λnα

(1 + λnβ)2
x+

λ2nα
2+2λ2nα+2λ2n
(1 + λnβ)2

.

(ii) We have V
(α,β)
n ((t− x)2;λn)(x)

= V (α,β)
n (e2;λn)(x)− 2xV (α,β)

n (e1;λn)(x) + x2V (α,β)
n (e0;λn)(x)

=
1 + λn

(1 + λnβ)2
x2 +

4λn + 2λnα

(1 + λnβ)2
x+

λ2nα
2 + 2λ2nα+ 2λ2n
(1 + λnβ)2

−2x

(
1

1 + λnβ
x+

λn + λnα

1 + λnβ

)
+ x2

=
λn + λ2nβ

2

(1 + λnβ)2
x2 +

2λn − 2λ2nβ − 2λ2nαβ

(1 + λnβ)2
x+

λ2nα
2 + 2λ2nα+ 2λ2n
(1 + λnβ)2

,

which proves the lemma. �
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The main result of this section is the following.
Theorem 5.2. Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want and suppose that f : [0,+∞)→
R is uniformly continuous on [0,+∞). For all x ∈ [0,+∞) and n ∈ N, we have

|V (α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
F

(α,β)
n (x)),

where

F (α,β)
n (x) =

1 + λnβ
2

(1 + λnβ)2
x2 +

2− 2λnβ − 2λnαβ

(1 + λnβ)2
x+

λnα
2 + 2λnα+ 2λn
(1 + λnβ)2

.

Proof. Reasoning exactly as in the proof of Theorem 2.2, we can write

|V (α,β)
n (f ;λn)(x)− f(x)| ≤ (1 + δ−1

√
V

(α,β)
n (ϕ2

x;λn)(x))ω1(f ; δ).

Choosing here δ =

√
V

(α,β)
n (ϕ2

x;λn)(x) and using Lemma 5.1, (ii), we obtain

|S(α,β)
n (f ;λn)(x)− f(x)| ≤ 2ω1(f ;

√
λn ·

√
F

(α,β)
n (x)),

which proves the theorem. �
As an immediate consequence of Theorem 5.2 we get the following.

Corollary 5.3. Let 0 ≤ α ≤ β, λn ↘ 0 as fast we want and suppose that f is a
Lipschitz function, that is there exists M > 0 such that |f(x)− f(y)| ≤M |x− y|, for
all x, y ∈ [0,∞). Then, for all x ∈ [0,+∞) and n ∈ N we have

|V (α,β)
n (f ;λn)(x)− f(x)| ≤ 2M

√
λn ·

√
F

(α,β)
n (x).

Proof. Since by hypothesis f is a Lipschitz function, we easily get ω1(f ; δ) ≤Mδ, for

all δ > 0. Choosing now δ =
√
λn ·

√
F

(α,β)
n (x) and applying Theorem 5.2 we get the

desired estimate. �
Remarks. 1) All the Remarks 1)-3) made at the end of Section 2 remain valid for the

generalized Baskakov-Szász-Durrmeyer-Stancu, V
(α,β)
n (f ;λn), operators too.

2) Note that in Theorems 2.2, 3.2, 4.2 and 5.2, for any δ > 0 and f : [0,+∞)→ R
uniformly continuous, the modulus of continuity ω1(f ; δ) is finite. For the reader’s
convenience, we present below the proof. Indeed, for a fixed ε0, from the definition
of the uniform continuity of f , there exists a δ0 > 0, such that |f(x) − f(y)| < ε0,
for all x, y ∈ [0,+∞) with |x − y| ≤ δ0. Passing here to supremum after these x, y,
it immediately follows that ω1(f ; δ0) ≤ ε0 < +∞. Let now δ > δ0 be arbitrary.
Evidently that there exists a sufficiently large p ∈ N, such that δ ≤ p · δ0. Using now
the monotonicity and the subadditivity of ω1(f ; δ) as function of δ, we get

ω1(f ; δ) ≤ ω1(f ; pδ0) ≤ p · ω1(f ; δ0) < +∞.

Finally, we may conclude that the approximation results obtained for all the
operators in this paper are of a definitive character, i.e. they furnish arbitrary good
orders of approximation. It is also worth noting that the method in this paper does
not work for the positive and linear operators expressed by finite sums (like Bernstein
polynomials, Kantorovich polynomials, etc).
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Abstract. In the present article, we study some fixed point theorems for a hybrid
class of generalized contractive operators in the context of b-rectangular metric
spaces. Examples justifying theorems and an open problem regarding to further
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1. Introduction and preliminaries

In this section we shall present some useful lemmas and definitions regarding
rectangular and b-rectangular metric spaces. Also, we shall present some recent results
in the field of fixed point theory concerning expansive operators and some generalized
contraction mappings.
In [6], A. Branciari introduced a new metric-type space, when triangle inequality
is replaced by an inequality which involves four different elements. This is called a
rectangular metric space or a generalized metric space (g.m.s.)

Definition 1.1. Let X 6= ∅, d : X × X → [0,∞), such that for each x, y ∈ X and
u, v ∈ X (each distinct from x and y), we have that

(1) d(x, y) = 0⇐⇒ x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Furthermore, from [10] we mention that convergent sequences and Cauchy se-
quences can be introduced in a similar manner as in metric spaces.
Also, from the same paper, we know that if (X, d) is a rectangular metric space and
if (xn) is a b-rectangular Cauchy sequence with the property that xn 6= xm, for each
n 6= m, then (xn) converge to at most one point, i.e. the property that (X, d) is
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Haussdorf becomes superfluous.
Moreover, from [8], [9], [22], we recall the definition of b-rectangular metric spaces (or
b-generalized metric spaces), briefly b-g.m.s.

Definition 1.2. Let X 6= ∅, s ≥ 1 be a given real number and d : X × X → [0,∞),
such that for each x, y ∈ X and u, v ∈ X (each distinct from x and y), we have that

(1) d(x, y) = 0⇐⇒ x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ s [d(x, u) + d(u, v) + d(v, y)].

As in metric spaces, we recall the basic notions regarding sequences in b-g.m.s:

Definition 1.3. Let (X, d) be a b-g.m.s, x ∈ X and (xn) ⊂ X be a given sequence.
Then

(a) (xn) is convergent in (X, d) to an element x ∈ X, if for each ε > 0, there
exists n0 ∈ N, such that d(xn, x) < ε, for each n > n0. We denote this by lim

n→∞
xn = x.

(b) (xn) is Cauchy in (X, d) (or b-rectangular Cauchy, briefly b-g.m.s.), if for
each ε > 0, there exists n0 ∈ N, such that d(xn, xn+p) < ε, for each n > n0 and for
each p > 0. We denote this by lim

n→∞
d(xn, xn+p) = 0, for each p > 0.

(c) (X, d) is said to be complete b-g.m.s, if every Cauchy sequence in X converges
to some x ∈ X.

We recall the following important remark from [8]:

Remark 1.4. (1) Every metric space and every rectangular metric space (g.m.s) is
b-g.m.s.

(2) The limit of a sequence in a b-rectangular metric space is not unique.
(3) Every convergent sequence in a b-g.m.s is not necessarily a b-g.m.s Cauchy.

For this, we recall a crucial lemma from [8], i.e. (Lemma 1.5), that specify when
a b-rectangular Cauchy sequence can’t have two limits in a b-g.m.s.

Lemma 1.5. Let (X, d) be a b-rectangular metric space, with the coefficient s ≥ 1. Let
(xn) be a b-rectangular Cauchy sequence in X, such that xn 6= xm, for each n 6= m.
Then (xn) can converge to at most one point.

Also, we recall from [12] and [8] the following crucial lemma.

Lemma 1.6. Let (X, d) be a b-rectangular metric space, with the coefficient s ≥ 1. Also,
let (xn) be a sequence for which xn 6= xm, for every n 6= m, with lim

n→∞
d(xn, xn+1) = 0.

If (xn) is not a b-rectangular Cauchy sequence, then there exists ε > 0, such that for
each k ∈ N, there exists (m(k)) and (n(k)) two sequences of positive integers, such
that

d(xm(k), xn(k)) ≥ ε,
ε

s
≤ lim sup

k→∞
d(xm(k), xn(k)−2) ≤ ε and

ε

s
≤ lim sup

k→∞
d(xm(k)+1, xn(k)−1).
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In [22], another crucial lemma regarding sequences in b-rectangular metric spaces
was presented. For convenience, we remind it below.

Lemma 1.7. Let (X, d) be a b-g.m.s., with coefficient s ≥ 1.
(a) Consider two sequences (xn) and (yn), such that xn converges to x ∈ X and

yn converges to y ∈ X, with x 6= y. Also, suppose that for each n ∈ N, xn 6= x and
yn 6= y. Then

1

s
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ sd(x, y).

(b) Consider an element y ∈ X and a b-rectangular Cauchy sequence (xn), such
that xn 6= xm, for each n 6= m. Moreover, suppose that the sequence (xn) converges
to an element x 6= y. Then

1

s
d(x, y) ≤ lim inf

n→∞
d(xn, y) ≤ lim sup

n→∞
d(xn, y) ≤ sd(x, y).

Finally, for the convenience of the reader, we recall some important results in b-
rectangular metric spaces. In [9], George et.al.studied basic contraction-type mappings
in b-rectangular metric spaces, like Kannan operators, i.e.

d(Tx, Ty) ≤ λ [d(x, Tx) + d(y, Ty)] , with λ ∈
[
0,

1

s+ 1

]
.

In [8], Radenovic et.al. extended the results to mappings satisfying

d(fx, gy) ≤ ad(gx, gy) + b [d(gx, fx) + d(gy, fy)] ,

for each x, y ∈ X and studied unique coincidence and common fixed points for the
pair of operators (f, g) that satisfies some additional assumptions.
Also, for more results in b-rectangular metric spaces and for a consistent survey on
different generalized metric-type spaces, we recommend [11] and [12].
Now, regarding generalized contraction mappings we recall some recent advances in
this subfield of fixed point theory.
In [13], Karapinar studied unique fixed points for some generalized contractions on
cone Banach spaces satisfying the following contractive-type conditions

d(x, Tx) + d(y, Ty) ≤ pd(x, y), where p ∈ [0, 2)

and

ad(Tx, Ty) + b [d(x, Tx) + d(y, Ty)] ≤ sd(x, y), with 0 ≤ s+ |a| − 2b < 2(a+ b).

Moreover, in 2009, Kumar [14] presented some theorems for two maps satisfying the
following

d(fx, fy) ≥ qd(gx, gy), with q > 1,

where f is onto and g is one-to-one.
Moosaei, Azizi, Asadi and Wang generalized the results of Karapinar as follows
In [15], Moosaei used Krasnoselskii’s iteration defined in convex metric spaces, for the
following mappings, that satisfy

d(Tx, Ty) + d(x, Tx) + d(y, Ty) ≤ rd(x, y), where r ∈ [2, 5),
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respectively

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y), with 2b− |c| ≤ k < 2(a+ b+ c)− |c|.

In [17], Moosaei and Azizi extended the results to generalized contraction-type oper-
ators, studying coincidence points for various mappings, such as

ad(Sx, Tx) + bd(Sy, Ty) + cd(Tx, Ty) ≤ ed(x, y),

where T (K) ⊂ S(K), K and S(K) are closed and convex subsets of a convex metric
space and the coefficients satisfy

2b− |c| ≤ e < 2(a+ b+ c)− |c|.

Nevertheless, in 2014, Moosaei [16] studied a more generalized pair of contractions
(S, T ), where

αd(Tx, Ty) + β [d(Sx, Tx) + d(Sy, Ty)] + γ [d(Sx, Ty) + d(Sy, Tx)] ≤ ηd(Sx, Sy),

with some assumptions on contractive-coefficients, i.e.

2β + γ − |γ| − α ≤ η < α+ 2β + 3γ − |γ| and β + γ ≤ 0.

Asadi in [3], using the same iteration (Krasnoselskii) on convex metric spaces, studied
fixed points for generalized Hardy-Rogers type-mappings, as follows

ad(x, Tx) + bd(y, Ty) + cd(Tx, Ty) + ed(Ty, x) + fd(y, Tx) ≤ kd(x, y),

where

b+ e− |f |(1− λ)− |c|λ
1− λ

≤ k < a+ b+ c+ e+ f − |c|λ− |f |(1− λ)

1− λ
,

and λ ∈ [0, 1] is the coefficient of Krasnoselskii’s iteration.
Furthermore, Wang and Zhang, in [23] extended the above results for pairs of gener-
alized Hardy-Rogers type contractions.
Now, expansive and expansive-type mappings can be considered a particular case of
generalized contractions. Regarding the former ones, we recall some recent develop-
ment into the study of this type of operators.
In 2011, Aage [1] considered expansive mappings in cone metric spaces. The more
general form of these mappings, with some underlying assumptions, are

d(Tx, Ty) ≥ kd(x, y) + ld(x, Tx) + pd(y, Ty),

where T satisfies K ≥ −1, p < 1, l > 1 and k + l + p > 1.
Aydi et.al. studied in [4] some interesting fixed point theorems for pairs of expansive
mappings for spaces endowed with c-distances. We recall them using the standard
notations for metric spaces, i.e.

d(Tx, Ty) ≥ ad(fx, fy) + bd(Tx, fx) + cd(Ty, fy),

with b < 1, a 6= 0, f(X) ⊆ T (X) and (T (X), d) ⊂ (X, d) complete.
Also, in cone rectangular metric spaces, some fixed point theorems were developed.
For example, in [20], pair of mappings satisfying

d(fx, fy) ≥ αd(gx, gy) + βd(fx, gx) + γd(fy, gy)
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were studied, with some assumptions on the coefficients α, β and γ and on the range
of g and f .
These pairs of generalized mappings were extended by Olaoluwa and Olaleru in [18],
but in the framework of b-metric spaces and for a pair of four mappings, as follows

d(fx, gy) ≥ a1d(Sx, Ty) + a2d(fx, Sx) + a3d(gy, Ty) + a4d(fx, Ty) + a5d(gy, Sx).

Also, for the sake of convenience, we recall other studies in metric-type spaces and
for expansive-type mappings, as follows: in [24] generalized mappings were studied on
cone rectangular metric spaces using the technique of scalarizing, in [21] mappings
that satisfy

d(Tx, Ty) ≤ ϕ(d(x, y))

were studied on cone rectangular metric spaces and in [19], fixed point theorems for
a general type of expansive mappings were developed, satisfying

φ(d(S2x, TSy)) ≥ 1

3

[
d(Sx, S2x) + d(TSy, Sy) + d(Sx, Sy)

]
.

Also, in the context of dislocated metric spaces, Daheriya et.al. [7] studied rational-
type expansive mappings, and in [2] Alghamdi studied fixed points for generalized
expansive mappings in b-metric like spaces.
The purpose of this work is to extend some fixed results for a hybrid class of general-
ized contractive-type mappings and for some expansive-type operators in the context
of b-rectangular metric spaces. Moreover, at the end of the second section, we shall
let and open problem.

2. Main results

Moosaei in [15] used Krasnoselskii iteration to develop fixed point theorems for
generalized contractions on convex metric spaces. It is easily seen that we can use
Picard instead of Krasnoselkii sequences in metric spaces.
In this section, our aim is to extend the results of Moosaei [15] for generalized con-
traction mappings from metric spaces to b-rectangular metric spaces. Also, we extend
and develop the fixed point results of Aage [1] from cone metric spaces to b-g.m.s.
Furthermore, we extend results from [20] of Patil, from rectangular metric spaces to
b-rectangular ones (b-g.m.s).
Also, examples similar to those in [1], [12] and [20] justifying our theorems are given.
Now, let’s consider generalized contractions f : X → X on a b-g.m.s. X, satisfying
the following condition:

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y).

We will analyze two separate cases: when c > 0 and c < 0. Also, for expansive-type
mappings, i.e. when c < 0, we consider two types of sequence, namely the classical
Picard iteration xn+1 = fxn, for each n ∈ N and the ’inverse’ Picard iteration, i.e.
xn = fxn+1, for each n ∈ N, for which we require that the operator f is onto.
Our first result is a theorem for the existence and uniqueness of the fixed point of a
mapping satisfying the contractive condition from above. The technique we will use
is based on the (Lemma 1.6 ).
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Theorem 2.1. Let (X, d) be a complete b-rectangular metric space (b-gms), with co-
efficient s > 1. Consider a mapping f : X → X, satisfying the following contractive
condition

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y), where 0 ≤ k − b < a+ c

s
.

Also, suppose the following assumptions are satisfied

(A) If c > 0 and k ≥ 0, then
k

c
<

1

s
,

(B) If c > 0 and k ≤ 0, then we have no additional conditions,

(C) If c < 0 and k < 0, then
k

c
> s2.

Then, the Picard sequence (xn), defined as xn+1 = fxn, for each n ∈ N converges to
a fixed point of the mapping f .

Proof. We consider the Picard iterative process (xn), defined as xn+1 = fxn, for each
n ∈ N. Applying the contractive condition for the pair (xn−1, xn), we get that

ad(xn, fxn) + bd(xn−1, fxn−1) + cd(fxn−1, fxn) ≤ kd(xn−1, xn)

ad(xn, xn+1) + bd(xn−1, xn) + cd(xn, xn+1) ≤ kd(xn−1, xn)

(a+ c)d(xn, xn+1) ≤ (k − b)d(xn−1, xn)

So d(xn, xn+1) ≤ δd(xn−1, xn), where δ :=
k − b
a+ c

∈
[
0,

1

s

)
from the theorem’s as-

sumptions, since 0 ≤ k − b < a+ c

s
.

So d(xn, xn+1) ≤ δnd(x0, x1). Since δ ∈
[
0,

1

s

)
, it follows that lim

n→∞
d(xn, xn+1) = 0.

Also, by a routine argument (by reductio ad absurdum), it follows easily that
xn 6= xn+1, for each n ∈ N and that xn 6= xm, for each n 6= m.
The next step is to show that the sequence (xn) is b-rectangular Cauchy. We will use
(Lemma 1.6) and we shall apply it on three different cases
(1) Case c > 0: Let’s suppose that the sequence (xn) is not b-rectangular Cauchy.
Then, there exists ε > 0 and two sequences of nonnegative real numbers (m(k)) and
(n(k)), such that the assumptions from (Lemma 1.6) are satisfied.
Now, we will apply the contraction condition for x = xm(k) and y = xn(k)−2. It follows
that

ad(xm(k), xm(k)+1) + bd(xn(k)−2, xn(k)−1) + cd(xm(k)+1, xn(k)−1) ≤ kd(xm(k), xn(k)−2)

cd(xm(k)+1, xn(k)−1) ≤ kd(xm(k), xn(k)−2)−ad(xm(k), xm(k)+1)−bd(xn(k)−2, xn(k)−1).

Because c > 0, we have that

d(xm(k)+1, xn(k)−1) ≤ k

c
d(xm(k), xn(k)−2)− a

c
d(xm(k), xm(k)+1)− b

c
d(xn(k)−2, xn(k)−1).

Now, we want to apply the limit superior. We make the following necessary remark
and consider the following cases

If a ≥ 0, then −a
c
≤ 0, so −a

c
d(xm(k), xm(k)+1) ≤ 0, so an upper bound for this

element is 0.
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If a ≤ 0, then −a
c
≥ 0, so −a

c
d(xm(k), xm(k)+1) ≥ 0. Applying the limit superior, we

get that

lim sup
k→∞

(
−a
c

)
d(xm(k), xm(k)+1) =

(
−a
c

)
lim sup
k→∞

d(xm(k), xm(k)+1)

=
(
−a
c

)
lim
k→∞

d(xm(k), xm(k)+1) = 0.

The same reasoning can be made about the sign of the coefficient b and about the
limit superior of the sequence (d(xn(k)−2, xn(k)−1)) as a subsequence of (d(xn, xn−1)).

Case (A): When k ≥ 0.

Since k ≥ 0, we have that
k

c
≥ 0. We know that lim sup

k→∞
d(xm(k), xn(k)−2) ≤ ε.

Multiplying by

(
k

c

)
and taking the limit superior, we get that

lim sup
k→∞

(
k

c

)
d(xm(k), xn(k)−2) = lim sup

k→∞

∣∣∣k
c

∣∣∣d(xm(k), xn(k)−2)

=
k

c
lim sup
k→∞

d(xm(k), xn(k)−2) ≤ k

c
ε.

From (Lemma 1.6), it follows that
ε

s
≤ lim sup

k→∞
d(xm(k)+1, xm(k)−1) ≤ k

c
ε, so

1

s
≤ k

c
.

This is a contradiction with the assumption that in this case we have
k

c
<

1

s
.

Case (B): When k ≤ 0.

In this case we have that
k

c
≤ 0, so

k

c
d(xm(k), xn(k)−2) ≤ 0, then we can take 0 as an

upper bound for it. By (Lemma 1.6), we have that
ε

s
≤ 0. Since ε > 0 and s ≥ 1, we

got a contradiction.
Now, in the two cases from above, we have shown that (xn) is b-rectangular Cauchy.
Moreover, we have said that xn 6= xm, for each n 6= m.
Since (X, d) is complete, it implies that there exists u ∈ X, such that xn → u, i.e.

lim
n→∞

d(xn, u) = 0.

Now, we shall show that u is a fixed point for f

d(u, fu) ≤ s [d(u, xn) + d(xn, xn+1) + d(xn+1, fu)]

= s [d(u, xn) + d(xn, xn+1) + d(fxn, fu)]

Since c > 0, then

d(fxn, fu) ≤ k

c
d(xn, u)− b

c
d(xn, xn+1)− a

c
d(u, fu).

So

d(u, fu) ≤ s
[
d(u, xn) + d(xn, xn+1) +

k

c
d(xn, u)− b

c
d(xn, xn+1)− a

c
d(u, fu)

]
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Taking the limit when n→∞, we get(
1 + s

a

c

)
d(u, fu) ≤ 0,

so (c+ sa)d(u, fu) ≤ 0. Furthermore, since c > 0 and 0 < (a+ c) < (a+ cs), then u
is a fixed point for f .

(2) Case c < 0: We have that

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y)

cd(fx, fy) ≤ kd(x, y)− ad(x, fx)− bd(y, fy)

So

d(fx, fy) ≥ k

c
d(x, y)− a

c
d(x, fx)− b

c
d(y, fy).

This is a case of expansive-type mapping. By (Lemma 1.6), there exists ε > 0, such
that for every k ∈ N, there exists (m(k)), (n(k)) two sequences of nonnegative real
numbers such that the assumptions in the already mentioned lemma are true. By
b-rectangular inequality, we have that

d(xn(k)−2, xm(k)) ≤ s
[
d(xm(k)−1, xn(k)−3) + d(xn(k)−3, xn(k)−2) + d(xm(k)−1, xm(k))

]
sd(xm(k)−1, xn(k)−3) ≥ d(xn(k)−2, xm(k))− sd(xn(k)−3, xn(k)−2)− sd(xm(k)−1, xm(k))

Dividing by s ≥ 1, we obtain the following

d(xm(k)−1, xn(k)−3) ≥ 1

s
d(xn(k)−2, xm(k))− d(xn(k)−3, xn(k)−2)− d(xm(k)−1, xm(k)).

Case (C): When k < 0: Here we have that
k

c
≥ 0. Multiplying by

(
k

c

)
, it implies

that

k

c
d(xm(k)−1, xn(k)−3) ≥ k

cs
d(xn(k)−2, xm(k))−

k

c
d(xn(k)−3, xn(k)−2)

− k

c
d(xm(k)−1, xm(k)).

Now, we apply the contractive condition for x = xm(k)−1 and y = xn(k)−3, i.e.

d(xm(k), xn(k)−2) ≥ k

c
d(xm(k)−1, xn(k)−3)−a

c
d(xm(k)−1, xm(k))−

b

c
d(xn(k)−3, xn(k)−2).

So, combining the above inequalities, we get that

d(xm(k), xn(k)−2) ≥ k

cs
d(xn(k)−2, xm(k))−

k

c
d(xn(k)−3, xn(k)−2)− k

c
d(xm(k)−1, xm(k))

− a

c
d(xm(k)−1, xm(k))−

b

c
d(xn(k)−3, xn(k)−2).
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From the limit superior, we have get the following

lim sup
k→∞

(
−k
c

)
d(xn(k)−3, xn(k)−2) =

k

c
lim sup
k→∞

−d(xn(k)−3, xn(k)−2)

= −k
c

lim inf
k→∞

d(xn(k)−3, xn(k)−2)

=

(
−k
c

)
lim
k→∞

d(xn(k)−3, xn(k)−2) = 0

We have the same reasoning for d(xm(k)−1, xm(k)), with coefficient −k
c

. Also, for

coefficients a and b, we have that

If a ≥ 0, then −a
c
≥ 0, so

(
−a
c

)
d(xm(k)−1, xm(k)) ≥ 0, so we can make the lower

bound 0.

If a ≤ 0, then −a
c
≤ 0, so

(
−a
c

)
d(xm(k)−1, xm(k)) ≤ 0, so taking the limit superior,

it follows that:

lim sup
k→∞

(
−a
c

)
d(xm(k)−1, xm(k)) =

a

c
lim sup
k→∞

−d(xm(k)−1, xm(k))

= −a
c

lim inf
k→∞

d(xm(k)−1, xm(k))

= −a
c

lim
k→∞

d(xm(k)−1, xm(k)) = 0

Same remarks can be made about the coefficient b and for d(xn(k)−3, xn(k)−2).
By (Lemma 1.6), we get that

ε ≥ lim sup
k→∞

d(xm(k), xn(k)−2) ≥ k

cs
lim sup
k→∞

d(xm(k), xn(k)−2) ≥ εk

cs2
.

So
1

s2
≤ c

k
. This is a contradiction with the fact that in this case

k

c
> s2.

Now, since xn 6= xm, for each n 6= m, d(xn, xn+1) → 0, (xn) Cauchy b-rectangular
and (X, d) is complete, then there exists u ∈ X, such that xn → u. We shall show
that u is a fixed point for the mapping f.
Applying the contractive condition on the pair (u, xn), we get

ad(u, fu) + bd(xn, fxn) + cd(fu, fxn) ≤ kd(u, xn)

ad(u, fu) + bd(xn, xn+1) + cd(fu, xn+1) ≤ kd(u, xn)

Letting n → ∞, we have (a + c)d(u, fu) ≤ 0 and since we know that a + c > 0, it
follows that u is a fixed point for the mapping f . �

Relative to (Theorem 2.1 ), we give two examples that validate cases (A) and(C):
From [12], we recall an example of a complete b-rectangular metric space.

Example 2.2. Let X = A ∪ B, where A =
{ 1

n

∣∣∣n = 2, 5
}

and B = [1, 2]. We define

d : X ×X → [0,∞), such that d(x, y) = d(y, x) and

d

(
1

2
,

1

3

)
= d

(
1

4
,

1

5

)
=

3

100
,
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d

(
1

2
,

1

5

)
= d

(
1

3
,

1

4

)
=

2

100
,

d

(
1

4
,

1

3

)
= d

(
1

5
,

1

3

)
=

6

100
,

d(x, y) = (x− y)2, otherwise.
Then (X, d) is a complete b-rectangular metric space, with coefficient s = 3. Further-
more, (X, d) is not a metric space or a rectangular metric space.

Regarding case (A) of (Theorem 2.1 ), we give the following example.

Example 2.3. Let (X, d) be the b-rectangular metric space defined above, with s = 3.
Also, define f : X → X, such as

f(x) =


1

3
, x ∈ A

1

5
, x ∈ B

It is easy to observe that f has a unique fixed point
1

3
. Moreover, we shall show that

f satisfies

1 · d(fx, fy) ≤ 1

52
d(x, y) +

1

4
d(x, fx) +

23

100
d(y, fy),

for each x, y ∈ X.

Let’s define: a =
−1

4
, b =

−23

100
, k =

1

52
, c = 1 and s = 3.

We have the following cases

1) x ∈ A and y ∈ A: d(fx, fy) = d

(
1

3
,

1

3

)
= 0, so the above inequality is valid.

2) x ∈ B and y ∈ B: d(fx, fy) = d

(
1

5
,

1

5

)
= 0, so the inequality of f is true.

Now, for the non-trivial cases, it follows that:
3) x ∈ A and y ∈ B:

d(fx, fy) =

(
1

3
,

1

5

)
=

6

100
,

d(x, fx) = d

(
x,

1

3

)
≥ min

x∈A
d

(
x,

1

3

)
=

1

200
,

d(y, fy) = d

(
y,

1

5

)
=

(
y − 1

5

)2

= y2 − 2

5
y +

1

25
≥ min

y∈[1,2]
= 1− 1

4
+

1

25
=

6

25
.

Also d(x, y) = (y − x)2 = |y − x|2.
We have that

d(fx, fy) ≤ kd(x, y) + (−a) min
x∈A

d(x, fx) + (−b) min
y∈B

d(y, fy).

So
6

100
≤ 1

52
|y − x|2 +

1

4
· 1

200
+

23

100
· 6

25
,



Contractions of b-g.m.s. 505

so
1

52
|y − x|2 ≥ −6619

12000
, which is obviously true.

4) x ∈ B and y ∈ A

d(fx, fy) =

(
1

3
,

1

5

)
=

6

100
,

d(x, fx) ≥ min
x∈B

d (x, fx) =
6

25
,

d(y, fy) ≥ min
y∈A

=
1

200

and

d(x, y) = (y − x)2 = |y − x|2.
We have that

6

100
≤ 1

52
|y − x|2 +

1

4
· 6

25
+

23

100
· 1

200
,

so
1

52
|y − x|2 ≥ −419

6000
, which is also true.

Moreover, we show that the conditions from (Theorem 2.1) - case (A) on the coeffi-
cients are satisfied

c > 0⇔ 1 > 0

k > 0⇔ 1

52
> 0

a+ c = 1− 1

4
=

3

4
> 0

b ≤ k ⇔ − 23

100
≤ 1

52
k

c
<

1

s
⇔ k <

1

3
⇔ 3 < 52

k < b+
a+ c

s
⇔ 1

52
+

23

100
<

1

4
⇔ 324 < 325

Now, we construct an example of a complete b-rectangular metric space, which will
be used further in this section.

Example 2.4. Let X = {1, 2, 3, 4} and define d : X ×X → [0,∞), such as

d(1, 2) = d(2, 1) =
6

10

d(1, 3) = d(3, 1) =
1

10

d(2, 3) = d(3, 2) =
1

10

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) =
2

10

We will prove that (X, d) is a b-rectangular metric space with coefficient s =
3

2
, which

is not a rectangular metric space.
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For a b-rectangular metric space, we have that d(x, y) ≤ s [d(x, u) + d(u, v) + d(v, y)],
for each u, v 6∈ {x, y}, with u, v being distinct. We have the following cases.
• When x = y, the right hand side is 0, so the above inequality remains valid.
• When x 6= y, we employ the following sub-cases
Case (1): If x = 1 and y = 2 (x = 2 and y = 1 by symmetry):

6

10
≤ s [d(1, u) + d(u, v) + d(v, 2)] , for u, v 6∈ {1, 2}, i.e. u, v ∈ I1 = {3, 4}

6

10
= d(1, 2) ≤ s

[
min
u∈I1

d(1, u) + d(3, 4) + min
v∈I1

d(v, 2)

]
6

10
≤ s

[
1

10
+

2

10
+

1

10

]
, so s ≥ 3

2

Case (2): If x = 3 and y = 1 (x = 1 and y = 3 by symmetry):

1

10
≤ s [d(3, u) + d(u, v) + d(v, 1)] , for u, v 6∈ {1, 3}, i.e. u, v ∈ I2 = {2, 4}

1

10
= d(3, 1) ≤ s

[
min
u∈I2

d(3, u) + d(2, 4) + min
v∈I2

d(v, 1)

]
1

10
≤ s

[
1

10
+

2

10
+

1

10

]
, so s ≥ 1

4

Case (3): If x = 4 and y = 1 (x = 1 and y = 4 by symmetry):

2

10
≤ s [d(3, u) + d(u, v) + d(v, 1)] , for u, v 6∈ {1, 4}, i.e. u, v ∈ I3 = {2, 3}

2

10
= d(4, 1) ≤ s

[
min
u∈I3

d(4, u) + d(2, 3) + min
v∈I3

d(v, 1)

]
2

10
≤ s

[
2

10
+

1

10
+

1

10

]
, so s ≥ 1

2

Case (4): If x = 2 and y = 4 (x = 4 and y = 2 by symmetry):

2

10
≤ s [d(2, u) + d(u, v) + d(v, 4)] , for u, v 6∈ {2, 4}, i.e. u, v ∈ I4 = {1, 3}

2

10
= d(4, 2) ≤ s

[
min
u∈I4

d(2, u) + d(1, 3) + min
v∈I4

d(v, 4)

]
2

10
≤ s

[
1

10
+

1

10
+

2

10

]
, so s ≥ 1

2

Case (5): If x = 3 and y = 4 (x = 4 and y = 3 by symmetry):

2

10
≤ s [d(3, u) + d(u, v) + d(v, 4)] , for u, v 6∈ {3, 4}, i.e. u, v ∈ I5 = {1, 2}

2

10
= d(3, 4) ≤ s

[
min
u∈I5

d(3, u) + d(1, 2) + min
v∈I5

d(4, v)

]
2

10
≤ s

[
1

10
+

6

10
+

2

10

]
, so s ≥ 2

9
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So s ≥ 3

2
> 1,so we can take s =

3

2
.

Furthermore, (X, d) is not a b-g.m.s., because

6

10
= d(1, 2) > d(1, 3) + d(3, u) + d(u, 2) =

1

10
+

2

10
+

2

10
=

5

10
,

so 6 > 5, which is valid.

Now, we construct an example, justifying case (C) of (Theorem 2.1).

Example 2.5. Let X = {1, 2, 3, 4} the b-rectangular metric space defined above, with

coefficient s =
3

2
.

Let f(x) =

{
3, x 6= 4

1, x = 4
a self-mapping defined on X.

We shall show that f satisfies

d(fx, fy) ≥ (−3)d(x, y)− 5d(x, fx) + 3d(y, fy)

and also the conditions from case (C) of (Theorem 2.1).
Let f satisfy cd(fx, fy) ≥ kd(x, y) − ad(x, fx) − bd(y, fy). Let’s normalize the con-
tractive condition, by taking c = −1 < 0 We shall determine the coefficients k, a, b,
with k < 0, a > 0 and b < 0. We have the following cases

1) If x = y, then d(fx, fy) = d(fx, fx) = 0, so the left hand side is 0. Now, the
right hand side is k · 0 − ad(x, fx) − bd(x, fx) = −(a + b)d(x, f). This implies that
(a+ b)d(x, fx) ≥ 0. We have two sub-cases:
If x = 3, then d(x, fx) = d(3, 3) = 0, so the inequality is valid. Also, if 6= 3, then
d(x, fx) > 0, so we have the condition that −b ≤ a.

2) If 6= y, we have the following sub-cases

a) For x = 4 and y 6= 4, it follows that d(fy, fx) = d(fy, 1). Since y 6= 4, then

fy = 3, so d(fx, fy) = d(1, 3) =
1

10
.

Moreover, one can easily verify that d(x, y) = d(4, y) =
2

10
, for each y 6= 4,

d(x, fx) = d(4, fx) =
2

10
, for each x ∈ X and d(y, fy) = d(y, 3) ≤ max

y 6=4
d(y, 3) =

2

10
.

b) For y = 4 and x 6= 4, it follows that d(fx, fy) =
1

10
.

Moreover, we have that d(x, y) = d(4, x) =
2

10
, for each x 6= 4,

d(x, fx) = d(x, 3) =≥ min
x 6=4

d(x, 3) =
1

10
and d(y, fy) = d(4, fy) =

2

10
, for each value

of fy.

c) For y 6= y 6= 4 (simultaneously), it follows that d(fx, fy) = d(3, 3) = 0. Also

kd(x, y)− ad(x, fx)− bd(y, fy) ≤ 0, so kd(x, y)− bd(x, y) ≤ ad(x, fx).
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Now d(x, y) ≥ min
x,y∈X

d(x, y) =
1

10
.

Furthermore, we have that

d(y, fy) = d(y, 3) ≤ max
y 6=4

d(y, 3) =
2

10
and d(x, fx) = d(x, 3) ≥ min

x 6=4
d(x, 3) =

1

10
.

Now, we analyze the conditions on f .
For the case (1), we get −b ≤ a. For the case (2a), we get that

d(fx, fy) =
1

10
≥ kd(x, y)− ad(x, fx)− bmax

y 6=4
d(y, fy)

=
2k

10
− 2a

10
− 2b

10
≥ 2k

10
− 2a

10
− bd(y, fy),

because b < 0. So k < a+ b+
1

2
.

For the case (2b), we obtain

d(fx, fy) =
1

10
≥ kd(x, y)− amin

x 6=4
d(x, fx)− bd(y, fy)

=
2k

10
− a

10
− 2b

10
≥ 2k

10
− 2b

10
− ad(x, fx),

because a > 0. So k <
a

2
+ b+

1

2
.

For the case (2c), it follows that

d(fx, fy) = 0 ≥ k min
x 6=y 6=4

d(x, y)− amin
x 6=4

d(x, fx)− bmax
y 6=4

d(y, fy)

=
k

10
− a

10
− 2b

10
kd(x, y)− ad(x, fx)− bd(y, fy),

because b, k < 0 and a > 0, so k − sb ≤ a.
Additionally, f satisfies the conditions from (Theorem 2.1) - Case (C).

Let’s take k = −3, c = −1, a = 5, b = −3, with s =
3

2
. We verify that the coefficients

a, b, c, k verify all of the above conditions

−b ≤ a⇔ 3 ≤ 5, k < a+ b+
1

2
⇔ −3 < 2 +

1

2

k <
a

2
+ b+

1

2
⇔ 10 +

1

2
> 0, k − 2b ≤ a⇔ 3 > 1

b ≤ k ⇔ −3 ≤ −3,
k

c
> s2 ⇔ 12 > 9

k < b+
a+ c

s
⇔ 6 > 0, a+ c > 0⇔ 6 > 0

Remark 2.6. We observe that the contractive condition when c > 0, can be written
as:

d(fx, fy) ≤ k

c
d(x, y)− a

c
d(x, fx)− b

c
d(y, fy), for each x, y ∈ X.

Taking k > 0, a < 0 and b < 0, it follows that the operator f is of Reich-type, so the
above theorem (when k > 0) is similar with the results of [8].
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Now, we present an useful lemma for expansive-type mappings in b-rectangular
metric spaces, following the technique used in [18].

Lemma 2.7. Let (X, d) a b-rectangular metric space. Also, consider λ ∈ R and
x, y, z, w arbitrary elements of X, each distinct from each other. Then

λd(x, z) ≥
[

1 + s2

2s
λ+

1− s2

2s
|λ|
]
d(x, y) +

[
s− 1

2
λ− s+ 1

2
|λ|
]
d(z, w)

+

[
s− 1

2
λ− s+ 1

2
|λ|
]
d(w, y).

Proof. Let x, y, z, w arbitrary points from X, each distinct from each other. We ana-
lyze two cases for the parameter λ ∈ R:
Case (1): Let λ ≥ 0. From the b-rectangular inequality, we get that:

d(x, y) ≤ s [d(x, z) + d(z, w) + d(w, y)]

sd(x, z) ≥ d(x, y)− sd(z, w)− sd(w, y)

d(x, z) ≥ 1

s
d(x, y)− d(z, w)− d(w, y)

λd(x, z) ≥ λ

s
d(x, y)− λd(z, w)− λd(w, y)

Case (2): Let λ ≤ 0. From the b-rectangular inequality, it follows that:

d(x, z) ≤ s [d(x, y) + d(y, w) + d(w, z)]

λd(x, z) ≥ λsd(x, y) + λsd(y, w) + λsd(w, z)

So, from the above inequality, we have thatλd(x, z) ≥ λ

s
d(x, y)− λd(z, w)− λd(w, y), λ ≥ 0

λd(x, z) ≥ λsd(x, y) + λsd(y, w) + λsd(w, z), λ ≤ 0

Combining these cases, it follows that
λd(x, z) ≥ ϕ(λ)d(x, y) + ψ(λ)d(z, w) + ψ(λ)d(w, y), where

ϕ(λ) :=


λ

s
, λ ≥ 0

sλ, λ ≤ 0
and ψ(λ) :=

{
−λ, λ ≥ 0

sλ, λ ≤ 0

Similar to [18], we get thatϕ(λ) :=
1 + s2

2s
λ+

1− s2

2s
|λ|

ψ(λ) :=
s− 1

2
λ− s+ 1

2
|λ|

Also, as a final remark, we observe that ψ(λ) ≤ 0, for each λ ∈ R. �

For expansive-type mappings, i.e. when c < 0, we make the following important
remark.
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Remark 2.8. We have studied contraction-type mappings, that satisfied

ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y)

cd(fx, fy) ≤ kd(x, y)− ad(x, fx)− bd(y, fy)

d(fx, fy) ≥ k

c
d(x, y)− a

c
d(x, fx)− b

c
d(y, fy)

By some substitutions we can make the mapping f satisfy

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy),

where 
α =

k

c
β = −a

c

γ = −b
c

We will analyze the cases when α ≤ 0 and α ≥ 0, so, when k ≥ 0, c < 0, respectively
k ≤ 0, c < 0.

Now, involving rate of convergence, we present a constructive fixed point theorem
for expansive-type mappings in b-rectangular metric spaces, using Picard iterative
process.

Theorem 2.9. Let (X, d) a complete b-rectangular metric space, endowed with coeffi-
cient s ≥ 1. Also, consider f : X → X a mapping satisfying

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy), for each x, y ∈ X.

Moreover, suppose the following conditions are satisfied

(i) β < 1− s, γ > s, α+ γ <
1− β
s

,

(ii) If α > γ, then we have the additional assumptions α+ 1 < γ

(
1 +

1

s

)
.

If α < γ, then we have the additional assumptions α > 1 and 1− α < γ

(
1

s
− 1

)
.

Then, the mapping f has a fixed point.

Proof. In the proof of (Theorem 2.1), we have shown that the Picard sequence for
generalized contraction satisfy d(xn, xn+1) ≤ δd(xn−1, xn), for each n ∈ N, where

δ =
k − b
a+ c

. This is also valid for the situation of expansive-type mappings, when

c < 0. The condition that the Picard sequence is asymptotically regular was that

0 ≤ k − b < a+ c

s
.

In our case,

δ =
k − b
a+ c

=

k

c
− b

c
a

c
+ 1

=
α+ γ

1− β
.
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Now δ ∈
[
0,

1

s

)
, by hypothesis assumptions: β < 1, α+ γ > 0 and α+ γ <

1− β
s

.

By the contractive-type condition, we have that

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy)

and applying it for the pair (xn−1, xn+1), we obtain

d(xn, xn+2) ≥ αd(xn−1, xn+1) + βd(xn−1, xn) + γd(xn+1, xn+2) (2.1)

Now, we will try to evaluate an upper bound for d(xn, xn+2), for each n ∈ N, i.e.
using (Lemma 2.7), we obtain that

γd(xn+1, xn+2) ≥ ϕ(γ)d(xn, xn+2) + ψ(γ)d(xn, xn−1) + ψ(γ)d(xn−1, xn+1).

Now, let’s denote by d∗n := d(xn, xn+2) and by dn := d(xn−1, xn), for each n ∈ N.
From (2.1) we have

d∗n ≥ αd∗n−1 + βdn + ϕ(γ)d∗n + ψ(γ)dn + ψ(γ)d∗n−1.

This means that

[ϕ(γ)− 1] d∗n ≤ [−ψ(γ)− α] d∗n−1 + [−ψ(γ)− β] dn ≤ |ψ(γ) + α|d∗n−1 + |ψ(γ) + β|dn.

Let’s denote by a2 :=
|α+ ψ(γ)|
ϕ(γ)− 1

and by a1 :=
|β + ψ(γ)|
ϕ(γ)− 1

.

From the hypothesis, we know that ϕ(γ) > 1, i.e. γ > s > 0, since ϕ(γ) =
γ

s
. Then it

follows that a1 and a2 are positive.

Furthermore, since γ > 0, we have that ψ(γ) = −γ < 0. So a2 =
|α− γ|
γ

s
− 1

. For a2 < 1,

we get that |α− γ| < γ

s
− 1. So, we have two cases:

• When α > γ, i.e. α− γ > 0:

Then, the condition that a2 < 1 becomes α+ 1 <
γ

s
+ γ, i.e. α+ 1 < γ

(
1 +

1

s

)
.

Now, since γ + 1 < α + 1 < γ

(
1 +

1

s

)
, then s < γ, which is true. Also, since

γ + 1 < α+ 1 < γ

(
1 +

1

s

)
< 2γ, then 1 < γ, which is a valid assumption.

Moreover, from the hypothesis condition that α+γ <
1− β
s

, we employ two sub-cases

If β > 0, then 1− β < 1, i.e. α+ γ <
1

s
< 1, so α+ γ < 1. Since α, γ > s > 1, this is

obviously not true.
If β < 0, then β < 1, so 1− β > 0 (the denominator in δ is positive, so δ is positive).

Since β < 0, then
1− β
s

>
1

s
. Moreover, since α+γ > 1, then we get β < 1−s, which

is valid from hypothesis (ii).
Finally, we can verify easily that since s > 1, then β < 1 and since 1 − s < 1, then
s > 0, which are evidently true.
• We know verify the case when α < γ, i.e. α− γ < 0:
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Since |α− γ| = γ − α < γ

s
− 1, then 1− α < γ

(
1

s
− 1

)
, which is true by hypothesis

(ii).

Moreover, since
1

s
− 1 < 0, then α > 1 is obviously true, also by hypothesis. Also,

since γ > α > 1, then γ > 1, which is valid by the fact that γ > s.

Also, as in previous case, by the assumption on δ that α+ γ <
1− β
s

, if β > 0, then

α+ γ <
1− β
s

< 1, which contradicts the fact that α, γ > 1.

So β < 0 and from the assumption that β < 1 − s means that the right hand side
1− β
s

> 1, so 1 < α+ γ <
1− β
s

, which is valid.

So d∗n ≤ a2d∗n−1 + a1dn, for each n ∈ N. We know that

dn = d(xn−1, xn) ≤ δd(xn−1, xn−2) ≤ . . . ≤ δn−1D0,

where D0 := d1 = d(x0, x1), with x0 an arbitrary fixed element.
So d∗n ≤ a2d∗n−1 + a1δ

n−1D0.
We take a major bound for d∗n :

d∗n ≤ a2d∗n−1 + a1δ
n−1D0 ≤ a2(a2d

∗
n−2 + a1δ

n−2D0) + a1δ
n−1D0

= a22d
∗
n−2 + a2a1δ

n−2D0 + a1δ
n−1D0

≤ a22(a2d
∗
n−3 + a1δ

n−3D0) + a1a2δn−2D0 + a1δ
n−1D0

= a32d
∗
n−3 +D0a1

(
δn−1 + a2δ

n−2 + a22δ
n−3)D0 ≤ . . .

≤ ak2d∗n−k + a1
(
δn−1 + a2δ

n−2 + . . .+ ak−12 δn−k
)
D0

The last term is d∗0 = d(x2, x0), so n− k = 0 =⇒ k = n. This means that

d∗n ≤ an2d∗0 + a1D0

(
a02δ

n−1 + a2δ
n−2 + . . .+ an−12 δ0

)
Let’s denote by S := a02δ

n−1 + a2δ
n−2 + . . . + an−12 δ0. The first term in the sum is

δn−1. This is a geometric progression, with general term bn and
b3
b2

= a2
δn−3

δn−2
=
a2
δ

,

so

S =
δn−1 ·

(
1−

(a2
δ

)n)
1−

(a2
δ

) =
δn − an2
δ − a2

.

So d∗n ≤ an2d∗0+
δn − an2
δ − a2

a1D0.Now we can show that the sequence (xn) is b-rectangular

Cauchy. We shall evaluate d(xn, xn+p), for each n ∈ N and p > 0 fixed. We divide
in two cases: the first one, when p = 2m, with m ≥ 2 and the second one, when
p = 2m+ 1, with m ≥ 1:
Case (i): When p = 2m+ 1, with m ≥ 1. We evaluate

d(xn, xn+p) = d(xn, xn+2m+1) ≤ s [d(xn, xn+1) + d(xn+1, xn+1) + d(xn+2, xn+2m+1)]

≤ s [dn+2 + dn+1] + s2 [d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m+1)]

≤ s [dn+2 + dn+1] + s2 [dn+3 + dn+4] + s3 [dn+5 + dn+6] + . . .+ smdn+2m,
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where dn+2m = d(xn+2m, xn+2m+1). So, we get the following estimation

d(xn, xn+2m+1) ≤ s
[
δnD0 + δn+1D0

]
+ s2

[
δn+2D0 + δn+3D0

]
+ s3

[
δn+4D0 + δn+5D0

]
+ . . .+ smδn+2mD0

≤ sδn
[
1 + sδ2 + s2δ4 + . . .+

]
D0 + sδn+1

[
1 + sδ2 + s2δ4 + . . .+

]
D0

=
1 + δ

1− sδ2
sδnD0,

and by hypothesis we know that sδ2 < 1 is satisfied. So, d(xn, xn+2m+1) → 0, when
n→∞ and m ≥ 1 fixed.

Case (ii): When p = 2m, with m ≥ 2. We evaluate

d(xn, xn+2m) ≤ s [d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]

≤ s [dn+2 + dn+1] + sd(xn+2, xn+2m)

≤ s [dn+2 + dn+1] + s2 [dn+4 + dn+3] + s3 [dn+6 + dn+5] + . . .+

+ sm−1 [d2m−3 + d2m−2] + sm−1d(xn+2m−2, xn+2m)

≤ s
[
δnD0 + δn+1D0

]
+ s2

[
δn+2D0 + δn+3D0

]
+ . . .+

+ sm−1
[
δ2m−4D0 + δ2m−3D0

]
+ sm−1d(xn+2m−2, xn+2m)

≤ sδn
[
1 + sδ2 + s2δ4 + . . .

]
D0

+ sδn+1
[
1 + sδ2 + s2δ4 + . . .

]
D0 + sm−1d∗n+2m

=
1 + δ

1− sδ2
sδnD0 + sm−1d∗n+2m

Also, we have shown that d∗n ≤ an2d∗0 +
δn − an2
δ − a2

a1D0. So d∗n+2m ≤ an+2m
2 d∗0 +Qa1D0,

where Q :=
δn+2m − an+2m

2

δ − a2
.

Now, we have two cases: if δ − a2 > 0, then Q =
δn+2m − an+2m

2

δ − a2
≤ δn+2m

δ − a2
and this

converge to 0 as n→∞. In a similar manner, if δ − a2 < 0, then

Q =
an+2m
2 − δn+2m

a2 − δ
≤ an+2m

2

a2 − δ
,

and this converge to 0 as n → ∞. This reasoning is valid, since, from the theorem’s

assumptions, we know that 0 ≤ a2 < 1 and δ <
1

s
< 1. So, in this case, since Q→ 0,

then d(xn, xn+2m)→ 0, as n→∞.
So, from both cases, we have shown that (xn) is a b-rectangular Cauchy sequence.
Also, we know that xn 6= xm, for each n 6= m and that (X, d) is complete. This means
that there exists u ∈ X, such that lim

n→∞
xn = u.

Moreover, since the contractive condition can be reduced to the original form, i.e.
ad(x, fx) + bd(y, fy) + cd(fx, fy) ≤ kd(x, y), then, as in the proof of (Theorem 2.1),
there exists a unique point u of f , as long as a+ c > 0 and c < k. �
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Finally, we give an example regarding (Theorem 2.9 ).

Example 2.10. Let (X, d), with X = {1, 2, 3, 4} be the b-rectangular metric space,
endowed with the b-rectangular metric from (Example 2.2 ). Define a self-mapping f ,
by: f(1) = 2, f(2) = 3, f(3) = 1 and f(4) = 4. It is obviously that f has as a unique
fixed point the element 4 ∈ X. We will determine the coefficients α, β and γ, such
that f satisfies d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy):

By x = 2 and y = 1, we get that
1

10
≥ α 6

10
+ β

1

10
+ γ

6

10
(2.2)

By x = 1 and y = 2, we get that
1

10
≥ α 6

10
+ β

6

10
+ γ

1

10
(2.3)

By x = 1 and y = 3, we get that
6

10
≥ α 1

10
+ β

6

10
+ γ

1

10
(2.4)

By x = 3 and y = 1, we get that
6

10
≥ α 1

10
+ β

1

10
+ γ

6

10
(2.5)

By x = 1 and y = 4, we get that
2

10
≥ α 2

10
+ β

6

10
+ γ

2

10
(2.6)

By x = 4 and y = 1, we get that
2

10
≥ α 2

10
+ β

2

10
+ γ

6

10
(2.7)

By x = 3 and y = 2, we get that
1

10
≥ α 1

10
+ β

1

10
+ γ

1

10
(2.8)

By x = 2 and y = 3, we get that
1

10
≥ α 1

10
+ β

1

10
+ γ

1

10
(2.9)

By x = 4 and y = 2, we get that
2

10
≥ α 2

10
+ β

2

10
+ γ

1

10
(2.10)

By x = 2 and y = 4, we get that
2

10
≥ α 2

10
+ β

1

10
+ γ

2

10
(2.11)

By x = 4 and y = 3, we get that
2

10
≥ α 2

10
+ β

2

10
+ γ

1

10
(2.12)

By x = 3 and y = 4, we get that
2

10
≥ α 2

10
+ β

1

10
+ γ

2

10
(2.13)

By x = y, we get that β + γ ≤ 0 (2.14)

Now, we observe that (2.11) and (2.14) are equivalent relations. Also, we shall employ
the more restrictive conditions on the coefficients α, β and γ, i.e. inequalities (2.11),
(2.3), (2.5), (2.7), (2.8) and (2.14). Furthermore, we shall impose more restrictive
conditions such that the number of inequalities is reduced: instead of (2.11) and
(2.3), we impose that 1 ≥ 6α+β+ 2γ, instead of (2.7) and (2.8) we require only (2.7)
and instead of 1 ≥ 6α+β+2γ and (2.5), we require 1 ≥ 6α+β+6γ. We mention that
all of the above reasoning was made under the assumptions that β ≤ 0 and γ > 0.
Now, we have only two conditions, along with the conditions from (Theorem 2.9 ),
when α > γ 

β + γ ≤ 0, 1 ≥ 6α+ β + 6γ

β < 1− s, γ > s, αγ

α+ γ <
1− β
s

, α+ 1 < γ

(
1 +

1

s

)
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Now, taking account of the fact that s =
3

2
, we can find some values for the coefficients

α, β and γ. For example, the inequalities are satisfied when α =
9

50
, β = −101

5
and

γ =
17

100
.

Now, we recall (Lemma 2) from [5], that is crucial for inequalities involving
difference inequations.

Lemma 2.11. Let (an) and (bn) be two sequences of nonnegative real numbers, such
that

an+1 ≤ α1an + α2an−1 + . . .+ αkan−k+1 + bn, where n ≥ k − 1.

If α1, . . . , αk ∈ [0, 1),
k∑

i=1

αi < 1 and lim
n→∞

bn = 0, then it follows that lim
n→∞

an = 0.

Remark 2.12. In the previous proof, we have shown that the following estimation is
valid

d∗n = d(xn+2, xn) ≤ an2d∗0 +
δn − an2
δ − a2

a1D0.

So, based on this lemma, we give a nonconstructive approach for evaluating (xn) as
a Cauchy sequence.
In the above lemma, let’s take k = 1. Then, we get that an+1 ≤ α1an + bn, with
α1 ∈ [0, 1) and lim

n→∞
bn = 0. Then lim

n→∞
an = 0.

Now, we have proved that d∗n ≤ a2d∗n−1 + a1δ
n−1D0.

Let’s define the following: α1 := a2 and bn := a1D0δ
n−1. Since δ <

1

s
< 1 and

a2 ∈ [0, 1), then apply (Lemma 2) from [5] with the particular case when k = 1, we
get that lim

n→∞
d∗n = 0.

Now, we give a proof for expansive-type mappings under the new assumption
such that the mapping f is onto and we shall use the ’inverse’ Picard iterative process.

Theorem 2.13. Let (X, d) be a complete b-rectangular metric space and f : X → X a
mapping satisfying

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy).

Let f continuous and onto. Suppose that

(i) β < 1, α+ γ > 0 and 1− β < α+ γ

s
.

Also, suppose the following additional assumptions
Case (E1), i.e. α > 0: Suppose that the following assumptions are satisfied:

(ii) α > 1
Case (E2), i.e. α < 0: Suppose the following assumptions are satisfied:

(ii) α < −1, γ > 0

(iii) s

(
1− α

γ

)
< 1 +

1

α
Then, the mapping f has a fixed point in X.
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Proof. Here, we know that f is continuous and onto. Let x0 be an arbitrary point.
As we have shown in the previous theorem, i.e. (Theorem 2.9), we reduce the con-
tractive condition to

d(fx, fy) ≥ αd(x, y) + βd(x, fx) + γd(y, fy).

Because f is an onto mapping, by definition, we have that for each y ∈ X, there exists
x ∈ X, such that y = fx.
Now, for x0 ∈ X, there exists x1 ∈ X, such that x0 = fx1. Also, for x1 ∈ X, there
exists x2 ∈ X, such that x1 = fx2. Inductively, we get that xn = fxn+1, for each
n ∈ N.
Applying the contractive condition on the pair (xn+1, xn), it follows that:

d(fxn+1, fxn) ≥ αd(xn, xn+1) + βd(xn, fxn) + γd(xn+1, fxn+1)

d(xn, xn−1) ≥ αd(xn, xn+1) + βd(xn, xn−1) + γd(xn+1, xn)

=⇒ (α+ γ)d(xn+1, xn) ≤ (1− β)d(xn−1, xn)

=⇒ d(xn, xn+1) ≤ θd(xn−1, xn),

where θ :=
1− β
α+ γ

. From the hypothesis,we know that θ ∈
[
0,

1

s

)
, because β < 1,

α+γ > 0 and 1−β < α+ γ

s
. Furthermore, we have that dn+1 := d(xn+1, xn) ≤ θnd1.

For simplicity, let’s denote by D0 := d1 = d(x1, x0).
Furthermore, as in the previous theorem, let d∗n := d(xn, xn+2), for each n ∈ N.
Now, we shall analyze two different cases for estimation of d(xn, xn+2)

Case (E1): When α > 0, or with the original notation,
k

c
> 0. Since c < 0, we get

that k < 0.
Applying the expansive-type condition on the pair (xn, xn+2), it follows that

d(xn−1, xn+1) = d(fxn, fxn+2) ≥ αd(xn, xn+2) + βd(xn, fxn) + γd(xn+2, fxn+2)

= αd(xn, xn+2) + βd(xn, xn−1) + γd(xn+1, xn+2) =⇒
αd(xn, xn+2) ≤ d(xn−1, xn+1)− βd(xn−1, xn)− γd(xn+1, xn+2)

d(xn, xn+2) ≤ 1

α
d∗n−1 +

(
−β
α

)
dn +

(
−γ
α

)
dn+2

d(xn, xn+2) ≤ 1

α
d∗n−1 +

(∣∣∣β
α

∣∣∣) dn +
(∣∣∣γ
α

∣∣∣) dn+2

Since dn+1 ≤ θnD0, so dn ≤ θn−1D0, it follows that

d∗n ≤
1

α
d∗n−1 + θn−1QD0, where Q :=

∣∣∣β
α

∣∣∣+
∣∣∣γ
α

∣∣∣θ3.
Since θ ∈

[
0,

1

s

)
⊂ [0, 1) and α > 1, we get, by (Lemma 2) in [5] and by (Lemma

2.11), that lim
n→∞

d∗n = 0. Now, as in the proof of (Theorem 2.9), we give a constructive

approach for the upper bound of d(xn, xn+p). Furthermore, we shall omit the details.

We know that d∗n ≤ a2d
∗
n−1 + a1θ

n−1D0, briefly d∗n ≤ an2d
∗
0 +

θn − an2
θ − a2

a1D0, where
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a1 := Q and a2 :=
1

α
. When p = 2m+ 1, then d(xn, xn+2m+1) ≤ 1 + θ

1− sθ2
sθnD0, and,

by hypothesis, sθ2 < 1, then d(xn, xn+2m+1) converges to 0.

When p = 2m, then d∗n+2m ≤ an+2m
2 d∗0 +

θn+2m − an+2m
2

θ − a2
a1D0. Since θ <

1

s
< 1 and

a2 < 1, by theorem’s assumptions, then d∗n+2m converges to 0.

Moreover, d(xn, xn+2m) ≤ 1 + θ

1− sθ2
sθnD0 + sm−1d∗n+2m.

Case (E2): When α < 0. We shall use (Lemma 2.7):
We know that d(xn, xn+1) ≤ θd(xn−1, xn), for each n ≥ 1.
As in the previous case, with the remark that we divide by α < 0, we get that

d(xn, xn+2) ≥ Ad∗n−1 +Bdn + Cdn+1, where A :=
1

α
, B :=

β

|α|
and C :=

γ

|α|
.

By (Lemma 2.7), we get that

Cdn+1 ≥ ϕ(C)d∗n+1 + ψ(C)dn+3 + ψ(C)d∗n

d∗n ≥ Ad∗n−1 +Bdn + ϕ(C)d∗n+1 + ψ(C)dn+3 + ψ(C)d∗n

ϕ(C)d∗n+1 ≤ d∗n [1− ψ(C)] + (−A) d∗n−1 − ϕ(C)dn+3 −Bdn
Since, by theorem’s assumptions, ϕ(C) > 0, we get that

d∗n+1 ≤
1− ψ(C)

ϕ(C)
d∗n −Ad∗n−1 − [ϕ(C)dn+3 +Bdn]

d∗n+1 ≤
1− ψ(C)

ϕ(C)
d∗n −Ad∗n−1 + [|ϕ(C)|dn+3 + |B|dn]

d∗n+1 ≤
1− ψ(C)

ϕ(C)
d∗n −Ad∗n−1 +

[
|ϕ(C)|θ2 + |B|

]
θnD0

On the other hand, let’s denote by bn :=
[
|ϕ(C)|θ2 + |B|

]
θnD0, α1 :=

1− ψ(C)

ϕ(C)
and

by α2 := −A. Since γ > 0 and C =
γ

|α|
> 0, then ϕ(C) =

C

s
> 0. Also, from C > 0,

then ψ(C) = −C < 0. Now, α1 > 0 requires that −C < 1 and this is true since C > 0.

Moreover, α2 = −A = − 1

α
> 0, because α < 0 and so

1

α
< 0. This means that α1

and α2 are positive, so the sum of these two is positive. Now, we want to validate if
the sum of α1 and α2 is less than 1.

α1 + α2 =
1− ψ(C)

ϕ(C)
−A =

1 + C
C

s

− 1

α
.

So α1 + α2 < 1 is equivalent to s

(
1 + C

C

)
< 1 +

1

α
. Since C =

γ

|α|
=

γ

−α
, then

s

(
1− α

γ

)
< 1 +

1

α
. Now, we have two sub-cases.

If 1− α

γ
< 0, then α− γ > 0, i.e. α > γ, so this is false, because α < 0 and γ > 0.
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So, the only valid case is when 1 − α

γ
> 0, so α < γ. Since α and γ have different

signs, this is also valid. Now, because s

(
1− α

γ

)
< 1 +

1

α
and by the fact that the

right hand side is positive, it follows that 1 +
1

α
> 0, i.e. α < −1, which is valid by

hypothesis assumptions. Since θ ∈
[
0,

1

s

)
⊂ [0, 1), then lim

n→∞
bn = 0.

Also, since α1 + α2 ∈ [0, 1), α1 ∈ [0, 1) and α2 ∈ [0, 1), then lim
n→∞

d∗n = 0. The rest of

the proof follows as usual. �

Now, we give an example of a b-rectangular metric space, which is b-rectangular
and validate (Theorem 2.13) through another example, showing that the hypotheses
and conclusion of the already mentioned theorem are true also in b-metric spaces.

Example 2.14. Let X = [0,∞), endowed with d : X ×X → R+, such that d(x, y) =
(x− y)2, for each x, y ∈ X. Then (X, d) is a complete b-metric space, with coefficient
s = 2. Then, it is also a complete b-rectangular metric space, with coefficient s = 4.

Example 2.15. Let X = [0,∞), where d is the above b-rectangular metric, with

s = 4. Define f : X → X as f(x) =
x+ δ1
δ2

, with δ1, δ2 ≥ 0. It is easy to see that f is

continuous. Also, for each y ∈ X, there exists x = yδ2 − δ1 ≥ 0,, since δ1 and δ2 are
positive, so f is onto. Moreover:

d(fx, fy) = (fx− fy)2 =
∣∣∣x+ δ1

δ2
− y + δ1

δ2

∣∣∣ =
1

δ2
|x− y|2 =

1

δ2
d(x, y).

Let’s take β = 0, γ = 0 and α = 10. Also, let δ <
1

s
, i.e. δ2 <

1

4
. For example: δ2 =

1

10
and δ1 = 1.
Then f satisfies d(fx, fy) ≥ 10d(x, y), for each x, y ∈ X.

As an open problem with respect to generalized contractions in b-rectangular
metric spaces, we give the following.

Open Problem. Following [3], consider a self-mapping f defined on a complete b-
rectangular space (X, d) with coefficient s ≥ 1, that satisfy

ad(x, fx) + bd(y, fy) + cd(fx, fy) + ed(x, fy) + gd(y, fx) ≤ kd(x, y).

Develop fixed point theorems for the self-mapping above, in the context of b-
rectangular metric spaces, with suitable conditions on the coefficients a, b, c, e, g, k.

Acknowledgments. The author is grateful to the referees for their suggestions that
contributed to the improvement of the paper.
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nonexpansive mappings on ordered orbitally
complete metric spaces and application
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Abstract. We propose a common fixed point theorem for new notion of gen-
eralized nonexpansive mappings for two pairs of maps in an ordered orbitally
complete metric space. To illustrate our result, we give throughout the paper two
examples. Existence of solutions for certain system of functional equations arising
in dynamic programming is also presented as application.
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1. Introduction

The significance of nonexpansive mappings was sketched, e.g., in 1980 by
Bruck [8]. A nonexpansive mapping of a complete metric space need not have a fixed
point (consider a translation operator T (x) = x+ c in a Banach space). A fixed point
of a nonexpansive mapping need not be unique (consider T = I). To make certain the
existence and/or uniqueness of fixed points we must assume supplementary conditions
on T and/or the underlying space. Contraction mappings, isometries and orthogonal
projection are all nonexpansive mappings. The study of nonexpansive mappings has
been one of the main features in modern developments of fixed point theory–see for
instance [7, 10]. Browder et al. [7] proved that every nonexpansive mapping T from a
convex bounded closed subset C of a Hilbert space X into C has a fixed point. There
are also several interesting unsolved problems. The existence fixed point results for
nonexpansive mapping is discussed in the paper [10, 11, 14, 27, 30] and others.

In 1986, some near the beginning results in this direction were recognized in
the papers of Turinici [31, 32]; note that their starting points were the “amorphous”
contributions in the area due to Matkowski [15, 16]. These results have been revive
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by Ran and Reurings [26, Theorem 2.1], where they extended the Banach contraction
principle in partially ordered sets with some applications to linear and nonlinear
matrix equations. Subsequently, several authors obtained many fixed point theorems
in the underlying space, see for more facts [1, 2, 13, 17, 20, 22, 25, 29] and the references
cited therein. Recently, Nashine and Kadelburg [18] proved some results for two pairs
of mapping for implicit type relations in ordered orbitally complete metric spaces.

We propose a new generalized nonexpansive mappings for two pairs of maps in
ordered metric spaces and relevance to fixed point theorem on an ordered orbitally
complete metric space. We furnish suitable examples to demonstrate the validity of
the hypotheses of our result. Our result is extensions of the results of Ciric [10] and
Nashine and Kadelburg [17] in the sense of considering two pairs of maps in an
orbitally complete ordered metric space. In the final section, we apply the obtained
result for proving the existence of solutions for certain system of functional equations
arising in dynamic programming.

2. Preliminaries

We will bring into play the following notation and definitions. Consistent with
Abbas et al. [1] the following definitions will be used all the way through the paper.

If (X ,�) is a partially ordered set then x, y ∈ X are called comparable if x � y
or y � x holds. A subset K of X is said to be totally ordered if every two elements of
K are comparable. If T : X → X is such that, for x, y ∈ X , x � y implies T x � T y,
then the mapping T is said to be nondecreasing.

Definition 2.1. Let X be a nonempty set. Then (X , d,�) is called an ordered metric
space if

(i) (X , d) is a metric space,
(ii) (X ,�) is a partially ordered set.

The space (X , d,�) is called regular if the following hypothesis holds: if {zn} is a
non-decreasing sequence in X with respect to � such that zn → z ∈ X as n → ∞,
then zn � z.

Definition 2.2. Let (X ,�) be a partially ordered set. A pair (f, g) of selfmaps of X is
said to be weakly increasing if fx � gfx and gx � fgx for all x ∈ X .

Now we give a definition of partially weakly increasing pair of mappings.

Definition 2.3. Let (X ,�) be a partially ordered set and f and g be two selfmaps on
X . An ordered pair (f, g) is said to be partially weakly increasing if fx � gfx for all
x ∈ X .

Note that a pair (f, g) is weakly increasing if and only if ordered pair (f, g) and
(g, f) are partially weakly increasing.

Following is an example of an ordered pair (f, g) of selfmaps f and g which is
partially weakly increasing but not weakly increasing.
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Example 2.4. Let X = [0, 1] be endowed with usual ordering and f, g : X → X be
defined by fx = x2 and gx =

√
x. Clearly, (f, g) is partially weakly increasing. But

gx =
√
x 6= x = fgx for x ∈ (0, 1) implies that (g, f) is not partially weakly increasing.

Definition 2.5. Let (X ,�) be a partially ordered set. A mapping f is a called weak
annihilator of g if fgx � x for all x ∈ X .

Example 2.6. Let X = [0, 1] be endowed with usual ordering and f, g : X → X be
defined by fx = x2, gx = x3. Obviously, fgx = x6 ≤ x for all x ∈ X . Thus f is a
weak annihilator of g.

Definition 2.7. Let (X ,�) be a partially ordered set. A mapping f is called dominating
if x � fx for each x ∈ X .

Example 2.8. Let X = [0, 1] be endowed with usual ordering and f : X → X be

defined by fx = x
1
3 . Since x ≤ x

1
3 = fx for all x ∈ X . Therefore f is a dominating

map.

Example 2.9. Let X = [0, 4], endowed with usual ordering. Let f, g : X → X be
defined by

fx =


0, if x ∈ [0, 1)
1, if x ∈ [1, 3)
3, if x ∈ (3, 4)
4, if x = 4.

gx =


0, if x = 0
1, if x ∈ (0, 1]
3, if x ∈ (1, 3]
4, otherwise.

The pair (f, g) is partially weakly increasing and the dominating map g is a weak
annihilator of f .

Recall that the notion of orbitally complete metric space and orbitally continuous
mapping were introduced by Ćirić in [9]. These definitions were extended to the case
of two or three mappings by Sastry et al. in [28]. Some common fixed point results
in this situation were obtained in [12, 19]. We give now respective definitions for two
pairs of mappings.

Definition 2.10. Let A,B,S, T be four self-mappings defined on a metric space (X , d).

1. If for a point x0 ∈ X , there exist sequences {xn} and {yn} in X such that

y2n−1 = Ax2n−2 = T x2n−1, y2n = Bx2n−1 = Sx2n, ∀n ∈ N, (2.1)

then the set O(x0;A,B,S, T ) = {yn : n = 1, 2, . . . } is called the orbit of
(A,B,S, T ) at x0.

2. The space (X , d) is said to be (A,B,S, T )-orbitally complete at x0 if every
Cauchy sequence in O(x0;A,B,S, T ) converges in X .

3. The map A is said to be (A,B,S, T )-orbitally continuous at x0 if it is continuous
on O(x0;A,B,S, T ).

4. If S = T , we write (A,B,S) in the previous definitions instead of (A,B,S,S),
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3. Main results

First, we introduce the notion of generalized nonexpansive mapping for four
mappings in ordered metric spaces.

Definition 3.1. Let (X , d,�) be an ordered metric space. We call two pairs of mappings

A,B, T ,S : X → X as generalized nonexpansive (of Ćirić type) if

d(Ax,By) ≤ amax

{
d(Sx, T y), d(Sx,Ax), d(T y,By),

1

2
[d(Sx,By) + d(T y,Ax)]

}
+ bmax{d(Sx,Ax), d(T y,By)}+ c[d(Sx,By) + d(T y,Ax)], (3.1)

holds for all comparable x, y ∈ X , where a ≥ 0, b, c > 0 satisfy

a+ b+ 2c = 1.

Now, we state and prove our result.

Theorem 3.2. Let (X , d,�) be a ordered metric space. Suppose that T ,S,A,B :
X → X be given generalized nonexpansive mappings satisfying for every pair x, y ∈
O(x0;A,B,S, T ) (for some x0 ∈ X ) such that x and y are comparable. We assume
the following hypotheses:

(i) The space (X , d) is (A,B,S, T )-orbitally complete at x0;

(ii) (T ,A) and (S,B) are partially weakly increasing on O(x0;A,B,S, T );
(iii) BX ⊆ SX and AX ⊆ T X ;

(iv) A and B are dominating maps on O(x0;A,B,S, T );
(v) B is a weak annihilator of S and A is a weak annihilator of T on

O(x0;A,B,S, T );
(vi) For each nondecreasing sequence {xn} in X , with xn � yn for all n, yn → u

implies that xn � u.

Assume either

(a) (A,S) is compatible, A or S is (A,B,S, T )-orbitally continuous and (B, T ) is
weakly compatible, or

(b) (B, T ) is compatible, B or T is (A,B,S, T )-orbitally continuous and (A,S) is
weakly compatible.

Then A,B,S and T have a common fixed point. Moreover, the set of common fixed
points of A,B,S and T in O(x0;A,B,S, T ) is a singleton if and only if it is totally
ordered.

Proof. Let x0 ∈ X be a point given in (i). Since BX ⊆ SX and AX ⊆ T X , we can
consider sequences {xn} and {yn} in X given as in (2.1). By the given assumptions,
x2n−2 � Ax2n−2 = T x2n−1 � AT x2n−1 � x2n−1, and x2n−1 � Bx2n−1 = Sx2n �
BSx2n � x2n. Thus, for all n ≥ 0, we have

xn � xn+1. (3.2)

Now we claim that d(yn+1, yn) ≤ d(yn, yn−1) for all n ≥ 1. Suppose this is not
true, that is, there exists n0 ≥ 1 such that d(yn0+1, yn0

) > d(yn0
, yn0−1). Now since

xn0−1 � xn0
, we can use the inequality (3.1) for these elements.
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Putting x = x2n0+1 and y = x2n0
, from (3.2) and the considered contraction

(3.1), we have

d(y2n0+2, y2n0+1) = d(Ax2n0+1,Bx2n0)

≤ amax

{
d(Sx2n0+1, T x2n0

), d(Sx2n0+1,Ax2n0+1), d(T x2n0
,Bx2n0

),
1

2
[d(Sx2n0+1,Bx2n0

) + d(T x2n0
,Ax2n0+1)]

}
+ bmax{d(Sx2n0+1,Ax2n0+1), d(T x2n0

,Bx2n0
)}

+ c[d(Sx2n0+1,Bx2n0) + d(T x2n0 ,Ax2n0+1)]

= amax

{
d(y2n0+1, y2n0),

1

2
d(y2n0 , y2n0+2)

}
+ bmax{d(y2n0+1, y2n0+2), d(y2n0

, y2n0+1)}+ cd(y2n0
, y2n0+2).

Using a triangular inequality, we have

1

2
d(y2n0 , y2n0+2) ≤ 1

2
(d(y2n0 , y2n0+1) + d(y2n0+1, y2n0+2)) < d(y2n0+1, y2n0+2).

Since c > 0, this implies that

d(y2n0+2, y2n0+1) < (a+ b)d(y2n0+1, y2n0+2) + 2cd(y2n0+1, y2n0+2)

= (a+ b+ 2c)d(y2n0+1, y2n0+2) = d(y2n0+2, y2n0+1),

a contradiction. Thus d(Ax2n+1,Bx2n+1) ≤ d(Ax2n,Bx2n). Hence

d(Axn+1,Bxn+1) ≤ d(Ax0,Bx0), for all positive integersn. (3.3)

Using (3.1) and (3.3) and triangle inequality, we have

d(y2n−1,Bx2n) = d(Ax2n−2,Bx2n) (3.4)

≤ amax

{
d(Sx2n−2, T x2n), d(Sx2n−2,Ax2n−2), d(T x2n,Bx2n),

1
2 [d(Sx2n−2,Bx2n) + d(T x2n,Ax2n−2)]

}
+ bmax{d(Sx2n−2,Ax2n−2), d(T x2n,Bx2n)}
+ c[d(Sx2n−2,Bx2n) + d(T x2n,Ax2n−2)], (3.5)

= amax

{
d(y2n−2, y2n), d(y2n−2, y2n−1), d(y2n, y2n+1),

1
2 [d(y2n−2, y2n+1) + d(y2n, y2n−1)]

}
+ bmax{d(y2n−2, y2n−1), d(y2n, y2n+1)}+ c[d(y2n−2, y2n+1) + d(y2n, y2n−1)].

From (3.3) and the triangle inequality we get

1
2 [d(y2n−2, y2n+1) + d(y2n, y2n−1)]

≤ 1
2 [d(y2n−2, y2n−1) + d(y2n, y2n−1) + d(y2n, y2n+1) + d(y2n, y2n−1))]

≤ 2d(y2n−2, y2n−1). (3.6)

Substituting (3.6) in (3.4), we have

d(y2n−1,Bx2n) ≤ 2ad(y2n−2, y2n−1) + bd(y2n−1, y2n−1) + 4cd(y2n−2, y2n−1)

= (2a+ b+ 4c)d(y2n−2, y2n−1).

Hence d(y2n−1,Bx2n) = (2− b)d(y2n−2, y2n−1).
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From (3.1), (3.3) and (3.6), we have

d(y2n,Bx2n) = d(Ax2n−1,Bx2n)

≤ amax

{
d(Sx2n−1, T x2n), d(Sx2n−1,Ax2n−1), d(T x2n,Bx2n),

1
2 [d(Sx2n−1,Bx2n) + d(T x2n,Ax2n−1)]

cc

}
+ bmax{d(Sx2n−1,Ax2n−1), d(T x2n,Bx2n)}
+ c[d(Sx2n−1,Bx2n) + d(T x2n,Ax2n−1)]

= amax
{
d(y2n−1, y2n), d(y2n−1, y2n), d(y2n, y2n+1), 12 [d(y2n−1, y2n+1) + d(y2n, y2n)]

}
+ bmax{d(y2n−1, y2n), d(y2n, y2n+1)}+ c[d(y2n−1, y2n+1) + d(y2n, y2n)]

≤ ad(y2n−2, y2n−1) + bd(y2n−2, y2n−1) + c(2− b)d(y2n−2, y2n−1)

and hence

d(y2n,Bx2n) = (1− bc)d(y2n−2, y2n−1).

Proceeding in this manner we obtain

d(y2n,Bx2n) ≤ (1− bc)[n2 ]d(y0, y1) (3.7)

for all n = 1, 2, . . ., where n
2 denotes the greatest integer not exceeding n

2 . Since
1− bc < 1, from (3.7), we conclude that {yn} is a Cauchy sequence.

Finally, we prove the existence of a common fixed point of the four mappings
A,B,S and T .

Since {yn} is a Cauchy sequence, defined by (2.1) in an (A,B,S, T )-orbitally
complete metric space (X , d), there exists a point z in X , such that yn converges to
z. Therefore,

y2n+1 = T x2n+1 = Ax2n → z as n→∞ (3.8)

and

y2n+2 = Sx2n+2 = Bx2n+1 → z as n→∞. (3.9)

Suppose that (a) holds. Since (A,S) is compatible, we have

lim
n→∞

ASx2n+2 = lim
n→∞

SAx2n+2 = Sz.

Also, x2n+1 � Bx2n+1 = Sx2n+2. Now

d(ASx2n+2,Bx2n+1)

≤ amax

{
d(SSx2n+2, T x2n+1), d(SSx2n+2,ASx2n+2), d(T x2n+1,Bx2n+1),

1

2
[d(SSx2n+2,Bx2n+1) + d(T x2n+1,ASx2n+2)]

}
+ bmax{d(SSx2n+2,ASx2n+2), d(T x2n+1,Bx2n+1)}
+ c[d(SSx2n+2,Bx2n+1) + d(T x2n+1,ASx2n+2)].

Assume that S is (A,B,S, T )-orbitally continuous. Passing to the limit as n → ∞,
we obtain

d(Sz, z) ≤ amax
{
d(Sz, z), 0, 0, 12 [d(Sz, z) + d(z,Sz)]

}
+ bmax{0, 0}+ c[d(Sz, z) + d(z,Sz)],
≤ (a+ 2c)d(Sz, z) = (1− b)d(Sz, z).
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Since b > 0 and (1− b) < 1, this implies that

Sz = z. (3.10)

Now, x2n+1 � Bx2n+1 and Bx2n+1 → z as n → +∞, so by assumption we have
x2n+1 � z and (3.1) becomes

d(Az,Bx2n+1) ≤ amax

{
d(Sz, T x2n+1), d(Sz,Az), d(T x2n+1,Bx2n+1),

1

2
[d(Sz,Bx2n+1) + d(T x2n+1,Az)]

}
+ bmax{d(Sz,Az), d(T x2n+1,Bx2n+1)}
+ c[d(Sz,Bx2n+1) + d(T x2n+1,Az)].

Passing to the limit n→ +∞ in the above inequality and using (3.10),

d(Az, z) ≤ amax

{
d(Sz, z), d(Sz,Az), d(z, z), 12 [d(Sz, z) + d(z,Az)]

}
+ bmax{d(Sz,Az), d(z, z)}+ c[d(Sz, z) + d(z,Az)].

= (a+ b+ c)d(z,Az).

Since a, b, c > 0 and (a+ b+ c) < 1, this implies that

Az = z. (3.11)

Since A(X ) ⊆ T (X ), there exists a point ω ∈ X such that Az = T ω. Suppose
that T ω 6= Bω. Since z � Az = T ω � AT ω � ω implies z � ω. From (3.1), we obtain

d(T ω,Bω) = d(Az,Bω)

≤ amax

{
d(Sz, T ω), d(Sz,Az), d(T ω,Bω),

1

2
[d(Sz,Bω) + d(T ω,Az)]

}
+ bmax{d(Sz,Az), d(T ω,Bω)}+ c[d(Sz,Bω) + d(T ω,Az)]

≤ amax

{
d(z, T ω), 0, d(T ω,Bω), 12d(z,Bω)

}
+ bmax{0, d(T ω,Bω)}+ cd(z,Bω)],

= (a+ b+ c)d(T ω,Bω)

contradiction to the state a+ b+ 2c = 1. Hence, we get

T ω = Bω. (3.12)

Since B and T are weakly compatible, Bz = BAz = BT w = T Bw = T Az = T z.
Thus z is a coincidence point of B and T .

Now, since x2n � Ax2n and Ax2n → z as n→∞, implies that x2n � z, from (3.1)

d(Ax2n,Bz)

≤ amax

{
d(Sx2n, T z), d(Sx2n,Ax2n), d(T z,Bz),

1

2
[d(Sx2n,Bz) + d(T z,Ax2n)]

}
+ bmax{d(Sx2n,Ax2n), d(T z,Bz)}+ c[d(Sx2n,Bz) + d(T z,Ax2n)].
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Passing to the limit as n→ +∞, we have

d(z,Bz) ≤ amax

{
d(z,Bz), 0, 0, 1

2
[d(z,Bz) + d(Bz, z)]

}
+ bmax{0, 0)}+ c[d(z,Bz) + d(Bz, z)]

= (a+ 2c)d(z,Bz) = (1− b)d(z,Bz).

Since b > 0 and (1− b) < 1, which gives that

z = Bz. (3.13)

Therefore, Az = Bz = Sz = T z = z, so z is a common fixed point of A,B,S and T .
The proof is similar when A is orbitally continuous.
Similarly, the result follows when (b) holds.
Now, suppose that the set of common fixed points of S, T ,A and B is totally

ordered. We claim that there is a unique common fixed point of A,B,S and T . Assume
on contrary that Su = T u = Au = Bu = u and Sϑ = T ϑ = Aϑ = Bϑ = ϑ but u 6= ϑ.
By supposition, we can replace x by u and y by ϑ in (3.1) to obtain

d(u, ϑ) = d(Au,Bϑ)

≤ amax

{
d(Su, T ϑ), d(Su,Au), d(T ϑ,Bϑ),

1

2
[d(Su,Bϑ) + d(T ϑ,Au)]

}
+ bmax{d(Su,Au), d(T ϑ,Bϑ)}+ c[d(Su,Bϑ) + d(T ϑ,Au)]

= (a+ 2c)d(u, ϑ) = (1− b)d(u, ϑ).

Since b > 0, this implies that u = ϑ.
Conversely, ifA,B,S and T have only one common fixed point, then the set of common
fixed point of S, T ,A and B being singleton is totally ordered. This completes the
proof. �

As consequence of Theorem 3.2, we may state the following corollary.

Corollary 3.3. Let (X , d,�) be an ordered metric space. Let A,B,S : X → X be given

mappings satisfying for every pair x, y ∈ O(x0;A,B,S) (for some x0 ∈ X ) such that
x and y are comparable,

d(Ax,By) ≤ amax

{
d(Sx,Sy), d(Sx,Ax), d(Sy,By),

1

2
[d(Sx,By) + d(Sy,Ax)]

}
+ bmax{d(Sx,Ax), d(Sy,By)}+ c[d(Sx,By) + d(Sy,Ax)],

holds for all comparable x, y ∈ X , where a ≥ 0, b, c > 0 satisfy

a+ b+ 2c = 1.

The mappings A,B,S satisfy (i)-(vi) and (a) (or (b)) of Theorem 3.2. Then A,B and
S have a common fixed point. Moreover, the set of common fixed points of A,B and
S in O(x0;A,B,S) is a singleton if and only if it is totally ordered.

Proof. It follows by taking T = S in (3.1) and Theorem 3.2. �
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By choosing A,B,S and T suitably in Theorem 3.2, we can deduce some corol-
laries for a pair as well as for a triple of self mappings.

In what follows, we support the result of Theorem 3.2 by examples.

Following example is inspired by [18].

Example 3.4. Let X = [0,+∞) be equipped with the standard metric and order.
Consider the mappings A,B,S, T : X → X given by

Ax =

{
1+x
2 , 0 ≤ x ≤ 1

4x− 3, x > 1,
Bx =

{
2+x
3 , 0 ≤ x ≤ 1

3x− 2, x > 1,

Sx =

{
0, 0 ≤ x ≤ 5

6

6x− 5, x > 5
6 ,

T x =

{
0, 0 ≤ x ≤ 4

5

5x− 4, x > 4
5 .

Conditions (i)-(vi) and (a) (or (b)) of Theorem 3.2 are easy to check for x0 = 5
6 . Then

O(x0;A,B,S, T ) ⊂ [ 56 , 1].

Note, though, that conditions (iii) and (v) are not satisfied on the entire space X .

At present we will prove that condition (3.1) is fulfilled with x0 = 5
6 , a =

2
5 , b = 1

5 , c = 1
5 . Then a, b, c undoubtedly accomplish all conditions, in particular

a+ b+ 2c = 1.

Take x, y ∈ O(x0;A,B,S, T ) ⊂ [0, 56 ]. Then (3.1) converts to∣∣∣∣1 + x

2
− 2 + y

3

∣∣∣∣ ≤ 2

5
max

{
|6x− 5y − 1|, 11(1−x)2 , 17(y−1)3 ,

1
2

[∣∣6x− 5− 2+y
3

∣∣+
∣∣5y − 4− 1+x

2

∣∣] }
+

1

5
max

{
11(1− x)

2
,

14(1− y)

3

}
+

1

5

[∣∣∣∣6x− 5− 2 + y

3

∣∣∣∣+

∣∣∣∣5y − 4− 1 + x

2

∣∣∣∣] .
By means of the replacement x = 1 − ξ, y = 1 − ξt, 0 ≤ ξ ≤ 1, t ≥ 0, the preceding
inequality turn into∣∣∣∣ t3 − 1

2

∣∣∣∣ ≤ 2

5
max

{
|5t− 6|, 11

2
,

17t

3
,

1

2

[∣∣∣∣ t3 − 6

∣∣∣∣+

∣∣∣∣5t− 1

2

∣∣∣∣]}
+

1

5
max

{
11

2
,

14t

3

}
+

1

5

[∣∣∣∣ t3 − 6

∣∣∣∣+

∣∣∣∣5t− 1

2

∣∣∣∣]
and can be tested out by argument on feasible values of t ≥ 0. It is remark that
condition (3.1) does not hold exterior of O(x0;A,B,S, T ). For instance, it is adequate
to take x = 2 and y = 3.

Thus, A,B,S, T have a (unique) common fixed point (which is z = 1).

Following is the another example, inspired by [23, 18].

Example 3.5. Let X = [0,∞) with the usual distance and define an ordering � on X
as follows:

x � y ⇐⇒ x = y or (x, y ∈ [0, 1] and y ≤ x).
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Define A,B,S, T : X → X by

Ax =

{
ln(x

2 + 1), 0 ≤ x ≤ 1

3x, x > 1,
Bx =

{
ln(x

3 + 1), 0 ≤ x ≤ 1

2x, x > 1,

Sx =
e6x − 1

6
, T x =

e4x − 1

6
.

Take x0 = 1.
Then O(x0;A,B,S, T ) ⊂ (0, 1) and O(x0;A,B,S, T ) = O(x0;A,B,S, T ) ∪ {0}.
It is easy to prove all conditions of Theorem 3.2 from (i)-(vi) and (a)-(b) along with
condition (3.1) satisfy and 0 is the unique common fixed point of A,B,S and T in

O(x0;A,B,S, T ).
It is observed that the conditions of Theorem 3.2 do not hold on the complete

space X .

4. Application to functional equations arising in dynamic
programming

The fundamental shape of the functional equation of dynamic programming is
given by Bellman and Lee [5] as follows:

q(x) = opty∈D{G(x, y, q(τ(x, y)))}, x ∈W,
where τ : W × D → W , G : W × D × R → R are mappings, while W ⊆ U is a
state space, D ⊆ V is a decision space, and U , V are Banach spaces. Here x and y
represent the state and decision vectors respectively, τ represents the transformation
of the process and q(x) represents the optimal return with initial state x (where opt
denotes max or min).

Subsequently a lot of work have been done in this trend and existence and
uniqueness outcome have been attained for solutions and common solutions of some
functional equations, as well as systems of functional equations in dynamic program-
ming with the use of fixed point results. For details see [6, 24] and the references
therein.

Let X = B(W ) be the set of all bounded real-valued functions on W . According
to the ordinary addition of functions and scalar multiplication, and with the norm
‖.‖∞ given by

‖h‖∞ = sup
x∈W

|h(x)| for all h ∈ X ,

we have that (X , ‖·‖∞) is a Banach space and the respective convergence is uniform.
In fact, the distance in X is given by

d∞(u, v) = sup
x∈W

|u(x)− v(x)| for all u, v ∈ X .

Therefore, if we consider a Cauchy sequence {hn} in X , then it converges uniformly
to a function, say h∗, that is bounded. Therefore h∗ ∈ X .

Let v be the partial order relation on X defined by

x v y if and only if x(t) ≤ y(t) for any t ∈W.
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Then (X ,v) is a partially ordered set. Moreover for any increasing sequence {xn} in
X converging to x∗ ∈ X , we have xn(t) v x∗(t) for any t ∈ W . Hence, the condition
(vi) of Theorem 3.2 in (X , ‖·‖∞ ,v) is fulfilled.

In this section, we study the existence and uniqueness of a common solution of
the following functional equations arising in dynamic programming:

q(x) = sup
y∈D
{Hi(x, y, q(τ(x, y)))}, x ∈W, i ∈ {1, 2, 3, 4}. (4.1)

Consider the operators =i : X → X given by

=ih(x) = sup
y∈D
{Hi(x, y, h(τ(x, y)))}, (4.2)

for h ∈ X , x ∈ W , where i ∈ {1, 2, 3, 4}; these mappings are well-defined if the
functions Hi are bounded.

Theorem 4.1. Let =i : X → X be given by (4.2), where i ∈ {1, 2, 3, 4}. Suppose that
the following hypotheses hold:

(D1) Hi : W ×D × R→ R are bounded functions, where i ∈ {1, 2, 3, 4};
(D2) There exists λ ≥ 0 such that, for all x ∈W , y ∈ D and `i, ~i ∈ R,

|Hi(x, y, `i)−Hi(x, y, ~i)| ≤ λ|`i − ~i| for all i = 1, 2, 3, 4.

(D3) for all t ∈W , s ∈ D, h ∈ X , we have:

h(t) ≤ H1(t, s, h(s)) and h(t) ≤ H2(t, s, h(s));

(D4) for all (t, s) ∈W ×D, ς ∈W h ∈ X , we have:

H3(t, s, h(ς)) ≤ H1 (t, s,H3(s, τ, h(ς))) , H4(t, s, h(ς)) ≤ H2 (t, s,H4(s, τ, h(ς))) ;

(D5) for all t ∈W , s ∈ D, h ∈ X , we have:

H1 (t, s,H3(s, τ, h(τ))) ≤ h(t), H2 (t, s,H4(s, τ, h(τ))) ≤ h(t);

(D6)
for all t ∈W,h ∈ X ,=1=4h(t) = =4=1h(t), whenever =1h(t) = =4h(t), and{
there exists {kn} ⊂ X such that limn→∞=2kn = limn→∞=3kn = k∗ ∈ X
and limn→∞ supx∈W |=2=3kn −=3=2kn| = 0;

or
for all t ∈W,h ∈ X ,=2=3h(t) = =3=2h(t), whenever =2h(t) = =3h(t), and{
there exists {hn} ⊂ X such that limn→∞ =1hn = limn→∞=4hn = h∗ ∈ X
and limn→∞ supx∈W |=1=4hn −=4=1hn| = 0;
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(D7) the functions Hi : W ×D × R→ R, i ∈ {1, 2, 3, 4}, satisfy

|H1(x, y, h(x))−H2(x, y, k(x))|

≤ amax

{
|=4h(s)−=3k(s)|), |=3h(s)−=1h(s)|, |=4k(s)−=2k(s)|,
1
2 [|=4h(s)−=2k(s)|+ |=3k(s)−=1h(s)|]

}
+ bmax{|=4h(s)−=1h(s)|, |=3k(s)−=2h(s)|, }
+ c[|=4h(s)−=2k(s)|+ |=3k(s)−=1h(s)|]
:= R(h(s), k(s))

for all h, k ∈ X , s ∈W , and some 0 ≤ a, b, c > 0 and a+ b+ 2c = 1.

Then the system of functional equations (4.1) has a bounded solution.

Proof. First of all we prove that =iu is a bounded function on W , that is, =iu ∈ X
and the operators =i are well-defined.

We only need to prove that, for all u ∈ X , the function =1u : W → R is
bounded. Indeed, let u ∈ X be arbitrary. As u is bounded, by hypothesis (D1), there
exists λ1 > 0 such that

|u(x)| ≤ λ1 for all x ∈W.
By hypothesis (D1), there exists λ2 > 0 such that, for all x ∈W and all y ∈ D,

|H1(x, y, 0)| ≤ λ2.

Now by hypothesis (D2), for all x ∈W and all y ∈ D,

|H1(x, y, u(τ(x, y))| = |H1(x, y, u(τ(x, y))−H1(x, y, 0)|+ |H1(x, y, 0)|
≤ λ|u(τ(x, y)|+ λ2 ≤ λλ1 + λ2.

As a result, for all x ∈W , we have that

|=1h(x)| ≤ sup
y∈D
|H1(x, y, h1(τ(x, y)))| ≤ λλ1 + λ2.

That implies that =1u is a bounded function on W , that is, =1u ∈ X and the operator
=1 is well-defined. Similarly we can show that other =i (i = 2, 3, 4) are well-defined.

Now, let λ be an arbitrary positive number, x ∈W and h1, h2 ∈ X . Then there
exist y1, y2 ∈ D such that

=1h1(x) < H1(x, y1, h1(τ(x, y1))) + λ, (4.3)

=2h2(x) < H2(x, y2, h2(τ(x, y2))) + λ, (4.4)

=1h1(x) ≥ H1(x, y2, h1(τ(x, y2))), (4.5)

=2h2(x) ≥ H2(x, y1, h2(τ(x, y1))). (4.6)

Let h1, h2 ∈ X . Using hypothesis (D3), (4.5) and (4.6), for all t ∈W , we have

h1(t) ≤ =1h1(t) and h2(t) ≤ =2h2(t).

Then we have h v =1h and h v =2h for all h ∈ X . This implies that =1 and =2 are
dominating maps.
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Let h ∈ X . Using hypothesis (D4), for all t ∈W , we have

=3h(t) = sup
s∈D
H3(t, s, h(ς)) ≤ sup

s∈D
H1 (t, s,H3(s, τ, h(ς)) )

≤ sup
s∈D
H1(t, s,=3h(s)) = =1=3h(t).

Similarly, using hypothesis (D4), for all t ∈W , we have

=4h(t) = sup
s∈D
H4(t, s, h(ς)) ≤ sup

s∈D
H2 (t, s,H4(s, τ, h(ς)))

≤ sup
s∈D
H2(t, s,=4h(s)) = =2=4h(t).

Then, we have =3h v =1=3h and =4h v =2=4h for all h ∈W . This implies that the
pairs (=3,=1) and (=4,=2) are partially weakly increasing.

Let h ∈ X . Using hypothesis (D5), for all t ∈W , we have

=1=3h(t) ≤ h(t) and =2=4h(t) ≤ h(t).

Then, we have =1=3h v h and =2=4h v h for all h ∈ X . This implies that =1 and
=2 are weak annihilators of =3 and =4 respectively.

From hypothesis (D6), the pair (=1,=4) is weakly compatible and (=2,=3) is
compatible, or the pair (=2,=3) is weakly compatible and (=1,=4) is compatible.

Now, by using (4.3), (4.6) and hypothesis (D7), we obtain

=1h1(x)−=1h2(x) < H1(x, y1, h1(τ(x, y1)))−H2(x, y1, h2(τ(x, y1))) + λ

≤ |H1(x, y1, h1(τ(x, y1)))−H2(x, y1, h2(τ(x, y1)))|+ λ

≤ R(h1(x), h2(x)) + λ

and so we have

=1h1(x)−=2h2(x) < R(h1(x), h2(x)) + λ. (4.7)

Analogously, by using (4.4) and (4.5), we get

=1h2(x)−=1h1(x) < R(h1(x), h2(x)) + λ (4.8)

Finally, from (4.7) and (4.8), we deduce

|=1h1(x)−=2h2(x)| < R(h1(x), h2(x)) + λ,

implying that

d∞(=1h1,=2h2) ≤ R(h1, h2) + λ.

Notice that the last inequality does not depend on x ∈ W and λ > 0 is taken
arbitrarily, therefore we obtain that

d∞(=1h1,=2h2)

≤ amax

{
d∞(=4h(s),=3k(s)), d∞(=3h(s),=1h(s)), d∞(=4k(s),=2k(s)),
1
2 [d∞(=4h(s),=2k(s)) + d∞(=3k(s),=1h(s))]

}
+ bmax{d∞(=4h(s),=1h(s)), d∞(=3k(s),=2h(s))}

+ c[d∞(=4h(s),=2k(s)) + d∞(=3k(s),=1h(s))].

Hence Theorem 3.2 is applicable since all its hypotheses are satisfied for operators
A = =1,B = =2, = = =3 and S = =4. Thus, there exists a common fixed point of
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A,B,S and =, i.e., a bounded solution ν∗ ∈ X such that =iν
∗ = ν∗. In other words,

for all x ∈W ,
ν∗(x) = =iν

∗(x) = sup
y∈D
{Hi(x, y, ν

∗(τ(x, y)))}.

This completes the proof. �
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[21] Nieto, J.J., López, R.R., Contractive mapping theorems in partially ordered sets and
applications to ordinary differential equations, Order, 22(2005), 223-239.
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On Fryszkowski’s problem

Andrei Comăneci

Abstract. In this paper we give two partial answers to Fryszkowski’s problem
which can be stated as follows: given α ∈ (0, 1), an arbitrary non-empty set
Ω and a set-valued mapping F : Ω → 2Ω, find necessary and (or) sufficient
conditions for the existence of a (complete) metric d on Ω having the property
that F is a Nadler set-valued α-contraction with respect to d. More precisely, on
the one hand, we provide necessary and sufficient conditions for the existence of
a complete and bounded metric d on Ω having the property that F is a Nadler
set-valued α-contraction with respect to d, in the case that α ∈ (0, 1

2
) and there

exists z ∈ Ω such that F (z) = {z} and, on the other hand, we give a sufficient
condition for the existence of a complete metric d on Ω having the property that
F is a Nadler set-valued α-contraction with respect to d, in the case that Ω is
finite.

Mathematics Subject Classification (2010): 54C60, 54H25.

Keywords: Fixed point of a multi-valued map, Hausdorff-Pompeiu distance, α-
contractions.

1. Introduction

The first version of a converse of the Banach-Caccioppoli-Picard principle is due
to C. Bessaga (see [2]). For an application of Bessaga’s converse see [20] and for some
other converses of the contraction principle see [3], [7], [9], [12] and [17]. For more
results along this line of research one can consult [1], [8], [13], [14], [15] and [23].

An extension of the contraction principle to set-valued mappings is due to J. T.
Markin and S. B. Nadler Jr. (see [11] and [16]). For more information on this topic
see [4], [5], [10], [18], [19], [21], and [22].

The last section of [6] consists of the following problem formulated by Professor
Andrzej Fryszkowski at the 2nd Symposium on Nonlinear Analysis in Toruń, Septem-
ber 13-17, 1999, which asks for a converse of the contraction principle for set-valued
mappings: Given α ∈ (0, 1), an arbitrary non-empty set Ω and a set-valued mapping
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F : Ω→ 2Ω, find necessary and (or) sufficient conditions for the existence of a (com-
plete) metric d on Ω having the property that F is a Nadler set-valued α-contraction
with respect to d.

In this paper we give two partial answers to the above mentioned problem.
Our first result provides necessary and sufficient conditions for the existence of

a complete and bounded metric d on Ω having the property that F is a Nadler set-
valued α-contraction with respect to d, in the case that α ∈ (0, 1

2 ) and there exists
z ∈ Ω such that F (z) = {z}.

Our second result gives a sufficient condition for the existence of a complete
metric d on Ω having the property that F is a Nadler set-valued α-contraction with
respect to d, in the case that Ω is finite.

2. Preliminaries

Definition 2.1. For a metric space (X, d), we consider the generalized Hausdorff-
Pompeiu metric H : 2X × 2X → [0,+∞] described by

H(A,B) = max{sup
x∈A

( inf
y∈B

d(x, y)), sup
x∈B

( inf
y∈A

d(x, y))},

for every A,B ∈ 2X .

Definition 2.2. Given α ∈ (0, 1), an arbitrary non-empty set Ω and a metric d on Ω, a
set-valued function F : Ω→ 2Ω is called Nadler set-valued α-contraction with respect
to d if H(F (x), F (y)) ≤ αd(x, y) for all x, y ∈ Ω.

Definition 2.3. Given an arbitrary non-empty set Ω and a set-valued function F :
Ω→ 2Ω, z ∈ Ω is called a fixed point of F if z ∈ F (z).

Definition 2.4. Given an arbitrary non-empty set Ω and a set-valued function F :

Ω→ 2Ω, one can consider the function F̂ : 2Ω → 2Ω given by

F̂ (P ) =
⋃
x∈P

F (x)

for every P ∈ 2Ω.

Definition 2.5. Given an arbitrary non-empty set Ω, a function f : Ω→ Ω and n ∈ N,
by fn we mean the composition of f by itself n times, with the convention that
f0 = IdΩ.

3. Main results

Lemma 3.1. Given α ∈ (0, 1), an arbitrary non-empty set Ω and a set-valued function
F : Ω→ 2Ω having a fixed point z such that F (z) = {z}, the following statements are
equivalent:

a) there exists a complete metric d on Ω such that F is a Nadler set-valued
α-contraction with respect to d;

b) there exists a function ϕ : Ω → [0,∞) such that ϕ−1({0}) = {z} and
sup

t∈F (x)

ϕ(t) ≤ αϕ(x) for all x ∈ Ω.
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Proof. a)⇒b) We consider the function ϕ : Ω→ [0,∞) given by ϕ(x) = d(x, z) for all
x ∈ Ω. It is clear that ϕ−1({0}) = {z}. Moreover, we have

sup
t∈F (x)

ϕ(t) = sup
t∈F (x)

d(t, z) ≤ H(F (x), {z}) = H(F (x), F (z)) ≤ αd(x, z) = αϕ(x)

for all x ∈ Ω.

b)⇒a) Considering the metric d : Ω× Ω→ [0,∞), given by

d(x, y) =

{
ϕ(x) + ϕ(y), if x 6= y

0, if x = y
,

we have

sup
t∈F (x)

d(t, F (y)) = sup
t∈F (x)

inf
u∈F (y)

d(t, u) ≤ sup
t∈F (x)

inf
u∈F (y)

(ϕ(t) + ϕ(u))

= sup
t∈F (x)

(ϕ(t) + inf
u∈F (y)

ϕ(u)) = sup
t∈F (x)

ϕ(t) + inf
u∈F (y)

ϕ(u)

≤ α(ϕ(x) + ϕ(y)) = αd(x, y)

for all x, y ∈ Ω, x 6= y. In a similar way we get sup
t∈F (y)

d(t, F (x)) ≤ αd(x, y) for all

x, y ∈ Ω, x 6= y. Consequently we infer that

H(F (x), F (y)) = max{ sup
t∈F (x)

d(t, F (y)), sup
t∈F (y)

d(t, F (x))} ≤ αd(x, y)

for all x, y ∈ Ω, x 6= y. Note that the last inequality is true for x = y. The proof of
the fact that d is complete is identical to the one presented in Lemma 1 from [6]. �

Corollary 3.2. If α ∈ (0, 1), (Ω, d) is a complete metric space and F : Ω → 2Ω is
a Nadler set-valued α-contraction with respect to d having a fixed point z such that
F (z) = {z}, then z is the unique fixed point of F .

Proof. Let us suppose that y is another fixed point of F . Then, from Lemma 3.1,
we obtain ϕ(y) ≤ sup

x∈F (y)

ϕ(x) ≤ αϕ(y), so ϕ(y) = 0, i.e. y ∈ ϕ−1({0}) = {z}. Hence

y = z. �

Theorem 3.3. Given α ∈ (0, 1
2 ), an arbitrary non-empty set Ω and a set-valued func-

tion F : Ω→ 2Ω having a fixed point z such that F (z) = {z}, the following statements
are equivalent:

a)
⋂
n∈N

F̂n(Ω) = {z};

b) there exists a bounded function ϕ : Ω→ [0,∞) such that ϕ−1({0}) = {z} and
sup

t∈F (x)

ϕ(t) ≤ αϕ(x) for all x ∈ Ω;

c) there exists a complete and bounded metric d on Ω such that F is a Nadler
set-valued α-contraction with respect to d.
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Proof. a)⇒b) Let us consider the bounded function ϕ : Ω→ [0,∞) given by ϕ(x) =

αnx for every x ∈ Ω, where nx = sup{n ∈ N | x ∈ F̂n(Ω)} and we use the convention
α∞ = 0. In the view of the hypothesis, nx ∈ N for x 6= z and nz =∞, so ϕ−1({0}) =

{z}. Moreover, since, for t ∈ F (x), we have t ∈ F̂ (F̂nx(Ω)) = F̂nx+1(Ω), so nt ≥ nx+1,
we infer that

sup
t∈F (x)

ϕ(t) = sup
t∈F (x)

αnt ≤ sup
t∈F (x)

αnx+1 = α · αnx = αϕ(x)

for all x ∈ Ω.
b)⇒c) The proof is the same with the one of b)⇒a) from Lemma 3.1, with the

remark that

diam(Ω) = sup
x,y∈Ω

d(x, y) ≤ sup
x,y∈Ω

(ϕ(x) + ϕ(y)) ≤ 2 sup
x∈Ω

ϕ(x).

c)⇒a) According to our hypothesis, we have {z} ⊆
⋂
n∈N

F̂n(Ω).

Claim. d(x, y) ≤ (2α)n diam(Ω) for all n ∈ N∗, x, y ∈ F̂n(Ω).
Justification of the claim. We are going to prove the claim by using the method of

mathematical induction. If x, y ∈ F̂ (Ω), then there exist u, v ∈ Ω such that x ∈ F (u)
and y ∈ F (v), so

d(x, y) ≤ d(x, z) + d(z, y) = d(x, F (z)) + d(y, F (z))

≤ H(F (u), F (z)) +H(F (v), F (z))

≤ αd(u, z) + αd(z, y) ≤ 2α diam(Ω).

Thus the statement is valid for n = 1. Now, given n ∈ N∗, we suppose that the

statement is valid for n−1 and prove that it is true also for n. Indeed, if x, y ∈ F̂n(Ω),

then there exist u, v ∈ F̂n−1(Ω) such that x ∈ F (u) and y ∈ F (v), so

d(x, y) ≤ d(x, z) + d(z, y) = d(x, F (z)) + d(y, F (z))

≤ H(F (u), F (z)) +H(F (v), F (z))

≤ αd(u, z) + αd(v, z).

Because u, v, z ∈ F̂n−1(Ω), we get

d(u, z) ≤ (2α)n−1 diam(Ω) and d(v, z) ≤ (2α)n−1 diam(Ω).

So d(x, y) ≤ αd(u, z)+αd(v, z) ≤ (2α)n diam(Ω). Consequently, the statement is valid
for n. The proof of the claim is done.

Based on the claim, we conclude that lim
n→∞

diam(F̂n(Ω)) = 0, so
⋂
n∈N

F̂n(Ω) is a

singleton, namely
⋂
n∈N

F̂n(Ω) = {z}. �

Theorem 3.4. Let α ∈ (0, 1), an arbitrary non-empty finite set Ω, F : Ω → 2Ω a set-

valued function and z ∈ Ω such that {z} is the unique fixed point for F̂ . Then there
exists a complete metric d on Ω such that F is a Nadler set-valued α-contraction with
respect to d.
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Proof. We have the following chain of inclusions:

Ω = F̂ 0(Ω) ⊇ F̂ 1(Ω) = F̂ (Ω) ⊇ F̂ 2(Ω) ⊇ ... ⊇ F̂n(Ω) ⊇ ...,

where n ∈ N and z ∈
⋂
n∈N

F̂n(Ω). Note that F̂n(Ω) = F̂n+1(Ω) if and only if F̂n(Ω) =

{z}. There exists n ∈ N such that F̂n(Ω) = {z} otherwise we would get the following
strictly decreasing sequence of non-negative integers:

|Ω| >
∣∣∣F̂ (Ω)

∣∣∣ > ∣∣∣F̂ 2(Ω)
∣∣∣ > ... >

∣∣∣F̂n(Ω)
∣∣∣ > ...

where n ∈ N. This yields a contradiction with the fact that N is well-ordered. Thus

we can consider the smallest p ∈ N having the property that F̂ p(Ω) = {z}. To every

x ∈ Ω r {z} we associate nx = max{n ∈ N | x ∈ F̂n(Ω)} < p. Moreover, we define

nz =∞. Note that for t ∈ F (x), we have t ∈ F̂ (F̂nx(Ω)) = F̂nx+1(Ω), so nt ≥ nx + 1.
Considering the function ϕ : Ω → [0,∞) given by ϕ(x) = αnx for every x ∈ Ω, with
the convention α∞ = 0, we have

sup
t∈F (x)

ϕ(t) = sup
t∈F (x)

αnt ≤ sup
t∈F (x)

αnx+1 = α · αnx = αϕ(x)

for all x ∈ Ω and ϕ−1({0}) = {z}. Hence, the conclusion follows using Lemma 3.1. �
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Abstract. A new local convergence analysis of the Gauss-Newton method for
solving some optimization problems is presented using restricted convergence
domains. The results extend the applicability of the Gauss-Newton method under
the same computational cost given in earlier studies. In particular, the advantages
are: the error estimates on the distances involved are tighter and the convergence
ball is at least as large. Moreover, the majorant function in contrast to earlier
studies is not necessarily differentiable. Numerical examples are also provided in
this study.
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1. Introduction

In this study, we are concerned with the problem of approximating a solution of
the equation

F (x) = 0, (1.1)

where D is open and convex and F : D ⊂ Rj → Rm is a nonlinear operator with
its Fréchet derivative denoted by F ′. In the case m = j, the inexact Newton method
(INM) was defined in [19] by:

xn+1 = xn + sn, F ′(xn)sn = −F (xn) + rn for each n = 0, 1, 2, . . . , (1.2)

where x0 is an initial point, the residual control rn satisfy

‖rn‖ ≤ λn‖F (xn)‖ for each n = 0, 1, 2, . . . , (1.3)

and {λn} is a sequence of forcing terms such that 0 ≤ λn < 1. Let x∗ be a solution
of (1.1) such that F ′(x∗) is invertible. As shown in [19], if λn ≤ λ < 1, then, there
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exists r > 0 such that for any initial guess x0 ∈ U(x∗, r) := {x ∈ Rj : ‖x− x∗‖ < r},
the sequence {xn} is well defined and converges to a solution x∗ in the norm ‖y‖∗ :=
‖F ′(x∗)y‖, where ‖ · ‖ is any norm in Rj . Moreover, the rate of convergence of {xn}
to x∗ is characterized by the rate of convergence of {λn} to 0. It is worth noting that,
in [19], no Lipschitz condition is assumed on the derivative F ′ to prove that {xn} is
well defined and linearly converging. However, no estimate of the convergence radius
r is provided. As pointed out by [16] the result of [19] is difficult to apply due to
dependence of the norm ‖ · ‖∗, which is not computable.

In [41] Ypma used the affine invariant condition of residual control in the form:

‖F ′(xn)−1rn‖ ≤ λn‖F ′(xn)−1F (xn)‖ for each n = 0, 1, 2, . . . , (1.4)

instead of (1.3) to study the local convergence of inexact Newton method (1.2). And
the radius of convergent result are also obtained. Morini in [32] presented the following
variation for the residual controls:

‖Pnrn‖ ≤ λn‖PnF (xn)‖ for each n = 0, 1, 2, . . . , (1.5)

where {Pn} is a sequence of invertible operator from Rj to Rj and {λn} is the forc-
ing term. If Pn = I and Pn = F ′(xn) for each n, (1.5) reduces to (1.3) and (1.4),
respectively.

Recently, several authors have studied the convergence behaviour of singular
nonlinear systems by Gauss-Newton’s method (GNM), which is defined by

xn+1 = xn − F ′(xn)†F (xn) for each n = 0, 1, 2, . . . , (1.6)

where x0 ∈ D is an initial point and F ′(xn)† denotes the Moore-Penrose inverse of
the linear operator (of matrix) F ′(xn) [1, 12, 14, 15, 17, 18, 20, 21, 36].

In the present study, using the idea of restricted convergence domains, we pro-
vide a new local convergence analysis for GNM under the same computational cost
and the following advantages: larger radius of convergence; tighter error estimates
on the distances ‖xn − x∗‖ for each n = 0, 1, . . . and a clearer relationship between
the majorant function (see (2.8) and the associated least squares problems (1.1)).
These advantages are obtained because we use a center-type majorant condition (see
(2.11)) for the computation of inverses involved which is more precise that the ma-
jorant condition used in [21, 22, 23, 24, 25, 26, 30, 31, 39, 40, 41, 42, 43]. Moreover,
these advantages are obtained under the same computational cost, since as we will
see in section 3 and section 4, the computation of the majorant function requires
the computation of the center-majorant function. Furthermore, these advantages are
very important in computational mathematics, since we have a wider choice of initial
guesses x0 and fewer computations to obtain a desired error tolerance on the distances
‖xn−x∗‖ for each n = 0, 1, 2, . . . . Finally, the majorant functions (see ω and v) is not
necessarily differentiable as in [21, 26, 30, 31, 39, 40, 41, 42, 43] but just differentiable.
This is an improvement modification and extends the applicability of the method.

The rest of this study is structured as follows. In section 2, we introduce some
preliminary notions and properties of the majorizing function. The main result about
the local convergence are stated in section 3. In section 4, we prove the local con-
vergence results given in section 3. Section 5 contains the numerical examples and
section 6 the conclusion of this study.
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2. Preliminaries

We present some standard results to make the study as self-contained as possible.
More results can be found in [13, 28, 35].

Let A : Rj → Rm be a linear operator (or an m × j matrix). Recall that an
operator (or j × m matrix) A† : Rm → Rj is the Moore-Penrose inverse of A if it
satisfies the following four equations:

A†AA† = A†; AA†A = A; (AA†)∗ = AA†; (A†A) = A†A,

where A∗ denotes the adjoint of A. Let kerA and imA denote the kernel and image
of A, respectively. For a subspace E of Rj , we use ΠE to denote the projection onto
E. Clearly, we have that

A†A = ΠkerA⊥ and AA† = ΠimA.

In particular, in the case when A is full row rank (or equivalently, when A is
surjective), AA† = IRm ; when A is full column rank (or equivalently, when A is
injective), A†A = IRj .

The following lemma gives a Banach-type perturbation bound for Moore-Penrose
inverse, which is stated in [25].

Lemma 2.1. ([25, Corollary 7.1.1 & Corollary 7.1.2]). Let A and B be m× j matrices
and let r ≤ min{m, j}. Suppose that rankA = r, 1 ≤ rankB ≤ A and ‖A†‖‖B−A‖ <
1. Then, rankB = r and

‖B†‖ ≤ ‖A†‖
1− ‖A†‖‖B −A‖

·

Also, we need the following useful lemma about elementary convex analysis.

Lemma 2.2. ([25, Proposition 1.3]). Let R > 0. If ϕ : [0, R] → R is continuously
differentiable and convex, then, the following assertions hold:

(a)
ϕ(t)− ϕ(τt)

t
≤ (1− τ)ϕ′(t) for each t ∈ (0, R) and τ ∈ [0, 1].

(b)
ϕ(u)− ϕ(τu)

u
≤ ϕ(v)− ϕ(τv)

v
for each u, v ∈ [0, R), u < v and 0 ≤ τ ≤ 1.

From now on we suppose that the (I) conditions listed below hold.
For a positive real R ∈ R+, let

ψ : [0, R]× [0, 1)× [0, 1)→ R
be a continuous differentiable function of three of its arguments and satisfy the fol-
lowing properties:

(i) ψ(0, λ, θ) = 0 and
∂

∂t
ψ(t, λ, θ)

∣∣∣∣
t=0

= −(1 + λ+ θ).

(ii)
∂

∂t
ψ(t, λ, θ) is convex and strictly increasing with respect to the argument t.

For fixed λ, θ ∈ [0, 1), we write hλ,θ(t) , ψ(t, λ, θ) for short below. Then the above
two properties can be restated as follows.

(iii) hλ,θ(0) = 0 and h′λ,θ(0) = −(1 + λ+ θ).
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(iv) h′λ,θ(t) is convex and strictly increasing.

(v) ω : [0, R] −→ R is integrable, convex and strictly increasing with ω(0) = −1.

(vi) g : [0, R]→ R is strictly increasing with g(0) = 0 and given by g(t) =

∫ t

0

ω(s)ds.

(vii) g(t) ≤ hλ,θ(t), ω(t) ≤ h′λ,θ(t) for each t ∈ [0, R), λ, θ ∈ [0, 1].

Define

ζ0 := sup{t ∈ [0, R) : h′0,0(t) < 0}, ζ := sup{t ∈ [0, R) : ω(t) < 0}, (2.1)

ρ0 := sup

{
t ∈ [0, ζ0) :

∣∣∣∣∣hλ,θ(t)h′0,0(t)
− t

∣∣∣∣∣ < t

}
,

ρ = sup

{
t ∈ [0, ζ) :

∣∣∣∣hλ,θ(t)− th′0,0(t)

ω(t)

∣∣∣∣ < t

} (2.2)

σ := sup{t ∈ [0, R) : U(x∗, t) ⊂ D}. (2.3)

The next two lemmas show that the constants ζ and ρ defined in (2.1) and (2.2),
respectively, are positive.

Lemma 2.3. The constant ζ defined in (2.1) is positive and

th′0,0(t)− hλ,θ(t)
ω(t)

< 0

for each t ∈ (0, ζ).

Proof. Since ω(0) = −1, there exists δ > 0 such that ω(t) < 0 for each t ∈ (0, δ). Then,

we get ζ ≥ δ (> 0). We must show that
th′0,0(t)− hλ,θ(t)

ω(t)
< 0 for each t ∈ (0, ζ). By

hypothesis, functions h′λ,θ, ω(t) are strictly increasing, then functions hλ,θ, v(t) are

strictly convex. It follows from Lemma 2.2 (i) and hypothesis (vii) that

hλ,θ(t)− hλ,θ(0)

t
< h′λ,θ(t), t ∈ (0, R).

In view of hλ,θ(0) = 0 and ω(t) < 0 for all t ∈ (0, ζ). This together with the last
inequality yields the desired inequality. �

Lemma 2.4. The constant ρ defined in (2.2) is positive. Consequently,∣∣∣∣ th′0,0(t)− hλ,θ(t)
ω(t)

∣∣∣∣ < t

for each t ∈ (0, ρ).

Proof. Firstly, by Lemma 2.3, it is clear that

(
hλ,θ(t)

th′0,0(t)
− 1

)
h′0,0(t)

ω(t)
> 0 for t ∈ (0, ζ).

Secondly, we get from Lemma 2.2 (i) that

lim
t→0

(
hλ,θ(t)

th′0,0(t)
− 1

)
h′0,0(t)

ω(t)
= 0.
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Hence, there exists a δ > 0 such that

0 <

(
hλ,θ(t)

th′0,0(t)
− 1

)
h′0,0(t)

ω(t)
< 1, t ∈ (0, ζ).

That is ρ is positive. �
Define

r := min{ρ, δ}, (2.4)

where ρ and δ are given in (2.2) and (2.3), respectively.
For any starting point x0 ∈ U(x∗, r)\{x∗}, let {tn} be a sequence defined by:

t0 = ‖x0 − x∗‖, tn+1 =

∣∣∣∣∣
(
tn −

hλ,θ(tn)

h′0,0(tn)

)
h′0,0(tn)

ω(tn)

∣∣∣∣∣ for each n = 0, 1, 2, . . .

(2.5)

Lemma 2.5. The sequence {tn} given by (2.5) is well defined, strictly decreasing,
remains in (0, ρ) for each n = 0, 1, 2, . . . and converges to 0.

Proof. Since 0 < t0 = ‖x0 − x∗‖ < r ≤ ρ, using Lemma 2.4, we have that {tn} is well
defined, strictly decreasing and remains in [0, ρ) for each n = 0, 1, 2, . . . Hence, there
exists t∗ ∈ [0, ρ) such that lim

n→+∞
tn = t∗. That is, we have

0 ≤ t∗ =

(
hλ,θ(t

∗)

h′0,0(t∗)
− t∗

)
h′0,0(t∗)

ω(t∗)
< ρ.

If t∗ 6= 0, it follows from Lemma 2.4 that(
hλ,θ(t

∗)

h′0,0(t∗)
− t∗

)
h′0,0(t∗)

ω(t∗)
< t∗,

which is a contradiction. Hence, we conclude that tn → 0 as n→ +∞. �
If g(t) = hλ,θ(t), then Lemmas 2.3-2.5 reduce to the corresponding ones in

[42, 43]. Otherwise, i. e., if g(t) < hλ,θ(t), then our results are better, since

ζ0 < ζ and ρ0 < ρ.

Moreover, the scalar sequence used in [42, 43] is defined by

u0 = ‖x0 − x∗‖, un+1 =

∣∣∣∣∣un − hλ,θ(un)

h′0,0(un)

∣∣∣∣∣ for each n = 0, 1, 2, . . . (2.6)

Using the properties of the functions hλ,θ, g, (2.5), (2.6) and a simple inductive
argument we get that

t0 = u0, t1 = u1, tn < un, tn+1 − tn < un+1 − un for each n = 1, 2, . . .

and
t∗ ≤ u∗ = lim

n→+∞
un,

which justify the advantages of our approach as claimed in the introduction of this
study.

In Section 3 we shall show that {tn} is a majorizing sequence for {xn}.
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We state the following modified majorant condition for the convergence of vari-
ous Newton-type methods in [10, 11, 12, 13].

Definition 2.6. Let r > 0 be such that U(x∗, r) ⊂ D. Then, F ′ is said to satisfy the
majorant condition on U(x∗, r) if

‖F ′(x∗)†[F ′(x)− F ′(x∗ + τ(x− x∗))]‖ ≤ h′λ,θ(‖x− x∗‖)− h′λ,θ(τ‖x− x∗‖) (2.7)

for any x ∈ U(x∗, r) and τ ∈ [0, 1].

In the case when F ′(x∗) is not surjective, the information on imF ′(x∗)⊥ may
be lost. This is why the above notion was modified in [42, 43] to suit the case when
F ′(x∗) is not surjective as follows:

Definition 2.7. Let r > 0 be such that U(x∗, r) ⊂ D. Then, F ′ is said to satisfy the
modified majorant condition on U(x∗, r), if

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗ + τ(x− x∗))‖ ≤ h′λ,θ(‖x− x∗‖)− h′λ,θ(τ‖x− x∗‖) (2.8)

for any x ∈ U(x∗, r) and τ ∈ [0, 1].

If τ = 0, condition (2.8) reduces to

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗)‖ ≤ h′λ,θ(‖x− x∗‖)− h′λ,θ(0). (2.9)

In particular, for λ = θ = 0, condition (2.9) reduces to

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗)‖ ≤ h′0,0(‖x− x∗‖)− h′0,0(0). (2.10)

Condition (2.10) is used to produce the Banach-type perturbation Lemmas in [42, 43]
for the computation of the upper bounds on the norms ‖F ′(x)†‖. In this study we
use a more flexible function g than hλ,θ function for the same purpose. This way the
advantages as stated in the Introduction of this study can be obtained.

In order to achieve these advantages we introduce the following notion [2, 3, 7,
8, 4, 9, 5, 10, 11, 12].

Definition 2.8. Let r > 0 be such that U(x∗, r) ⊂ D. Then ω is said to satisfy the
center-majorant condition on U(x∗, r), if

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗)‖ ≤ ω(‖x− x∗‖)− ω(0). (2.11)

Clearly,

ω(t) ≤ h′λ,θ(t) for each t ∈ [0, R], λ, θ ∈ [0, 1] (2.12)

holds in general and
h′λ,θ(t)

ω(t)
can be arbitrarily large [2, 3, 7, 8, 4, 9, 5, 10, 11, 12].

It is worth noticing that (2.11) is not an additional condition to (2.8) since in
practice the computation of function hλ,θ requires the computation of g as a special
case (see also the numerical examples).
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3. Local convergence

In this section, we present local convergence for INM (1.2). Equation (1.1) is
a surjective-undetermined (resp. injective-overdetermined) system if the number of
equations is less (resp. greater) than the number of knowns and F ′(x) is of full rank
for each x ∈ D. It is well known that, for surjective-underdetermined systems, the
fixed points of the Newton operator NF (x) := x − F ′(x)†F (x) are the zeros of F ,
while for injective-overdetermined systems, the fixed points of NF are the least square
solutions of (1.1), which, in general, are not necessarily the zeros of F .

We shall use the notation D0 = U(x∗, ξ) and D = U(x∗, R) and set

D1 = D0 ∩ U(x∗, r).

Next, we present the local convergence properties of INM for general singular
systems with constant rank derivatives.

Theorem 3.1. Let F : D ⊂ Rj → Rm be continuously Fréchet differentiable non-
linear operator and D is open and convex. Suppose that F (x∗) = 0, F ′(x∗) 6= 0
and that F ′ satisfies the modified majorant condition (2.8) on D1 and the center-
majorant condition (2.11) on D, where r is given in (2.4). In addition, we assume
that rankF ′(x) ≤ rankF ′(x∗) for any x ∈ U(x∗, r) and that

‖[IRj − F ′(x)†F ′(x)](x− x∗)‖ ≤ θ‖x− x∗‖, x ∈ U(x∗, r), (3.1)

where the constant θ satisfies 0 ≤ θ < 1. Let sequence {xn} be generated by INM with
any initial point x0 ∈ U(x∗, r)\{x∗} and the conditions for the residual rn and the
forcing term λn:

‖rn‖ ≤ λn‖F (xn)‖, 0 ≤ λnF ′(xk) ≤ λ for each n = 0, 1, 2, . . . . (3.2)

Then, sequence {xn} converges to x∗ so that F ′(x∗)†F (x∗) = 0. Moreover, we have
the following estimate:

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . , (3.3)

where the sequence {tn} is defined by (2.5).

Remark 3.2. (a) If g(t) = hλ,θ(t), then the results obtained in Theorem 3.1 reduce
to the ones given in [42, 43].

(b) If g(t) and hλ,θ(t) are

g(t) = hλ,θ(t) = −(1 + λ+ θ)t+

∫ t

0

L(u)(t− u) du, t ∈ [0, R], (3.4)

then the results obtained in Theorem 3.1 reduce to the one given in [25]. More-
over, if taking λ = 0 (in this case λn = 0 and rn = 0) in Theorem 3.1, we obtain
the local convergence of Newton’s method for solving the singular systems, which
has been studied by Dedieu and Kim in [17] for analytic singular systems with
constant rank derivatives and Li, Xu in [39] and Wang in [38] for some special
singular systems with constant rank derivatives.

(c) If g(t) < hλ,θ(t) then the improvements as mentioned in the Introduction of this
study we obtained (see also the discussion above and below Definition 2.6)



550 Ioannis K. Argyros and Santhosh George

If F ′(x) is full column rank for every x ∈ U(x∗, r), then we have F ′(x)†F ′(x) = IRj .
Thus,

‖[IRm − F ′(x)†F ′(x)](x− x∗)‖ = 0,

i. e., θ = 0. We immediately have the following corollary:

Corollary 3.3. Suppose that rankF ′(x) ≤ rankF ′(x∗) and that

‖[IRm − F ′†(x)F ′(x)](x− x∗)‖ = 0,

for any x ∈ U(x∗, r). Suppose that F (x∗) = 0, F ′(x∗) 6= 0 and that F ′ satisfies the
modifed majorant condition (2.8) on D1 and the center-majorant condition (2.11) on
D. Let sequence {xn} be generated by IGNM with any initial point x0 ∈ U(x∗, r)\{x∗}
and the condition (3.2) for the residual rn and the forcing term λn. Then, sequence
{xn} converges to x∗ so that F ′(x∗)†F (x∗) = 0. Moreover, we have the following
estimate:

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . , (3.5)

where the sequence {tn} is defined by (2.5) for θ = 0.

In the case when F ′(x∗) is full row rank, the modified majorant condition (2.8)
can be replaced by the majorant condition (2.7).

Theorem 3.4. Suppose that F (x∗) = 0, F ′(x∗) is full row rank, and that F ′ satisfies
the majorant condition (2.7) on D1 and the center-majorant condition (2.11) on D,
where r is given in (2.4). In addition, we assume that rankF ′(x) ≤ rankF ′(x∗) for
any x ∈ U(x∗, r) and that condition (3.1) holds. Let sequence {xn} be generated by
IGNM with any initial point x0 ∈ U(x∗, r)\{x∗} and the conditions for the residual
rn and the forcing term λn:

‖F ′(x∗)†rn‖ ≤ λn‖F ′(x∗)†F (xn)‖, 0 ≤ λnF ′(x∗)†F ′(xn) ≤ λ for each n = 0, 1, 2, . . . .
(3.6)

Then, sequence {xn} converges to x∗ so that F ′(x∗)†F (x∗) = 0. Moreover, we have
the following estimate:

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . ,

where the sequence {tn} is defined by (2.5).

Remark 3.5. Comments as in Remark 3.2 can follow for this case.

Theorem 3.6. Suppose that F (x∗) = 0, F ′(x∗) is full row rank, and that F ′ satisfies
the majorant condition (2.7) on D1 and the center-majorant condition on D, where
r is given in (2.4). In addition, we assume that rankF ′(x) ≤ rankF ′(x∗) for any
x ∈ U(x∗, r) and that condition (3.1) holds. Let sequence {xn} generated by IGNM
with any initial point x0 ∈ U(x∗, r)\{x∗} and the conditions for the control residual
rn and the forcing term λn:

‖F ′(xn)†rn‖ ≤ λn‖F ′(xn)†F (xn)‖, 0 ≤ λnF ′(xn) ≤ λ for each n = 0, 1, 2, . . .
(3.7)
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Then, sequence {xn} converges to x∗ so that F ′(x∗)†F (x∗) = 0. Moreover, we have
the following estimate:

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xk − x∗‖ for each n = 0, 1, 2, . . . ,

where sequence {tn} is defined by (2.5).

Remark 3.7. In the case when F ′(x∗) is invertible in Theorem 3.6, hλ,θ is given

by (3.4) and g(t) = −1 +

∫ t

0

L0(t)(t− u) du for each t ∈ [0, R], we obtain the local

convergence results of IGNM for nonsingular systems, and the convergence ball r is
this case satisfies ∫ r

0

L(u)u du

r

(
(1− λ)−

∫ r

0

L0(u) du

) ≤ 1, λ ∈ [0, 1). (3.8)

In particular, if taking λ = 0, the convergence ball r determined in (3.8) reduces to
the one given in [38] by Wang and the value r is the optimal radius of the convergence
ball when the equality holds. That is our radius is r larger than the one obtained in
[38], if L0 < L (see also the numerical examples). Notice that L is used in [38] for the
estimate (3.8). Then, we can conclude that vanishing residuals, Theorem 3.6 merges
into the theory of Newton’s method.

4. Proofs

In this section, we prove our main results of local convergence for inexact Gauss-
Newton method (1.2) given in Section 3.

4.1. Proof of Theorem 3.1

Lemma 4.1. Suppose that F ′ satisfies the modified majorant condition on U(x∗, r) and
that ‖x∗ − x‖ < min{ρ, x∗}, where r, ρ and x∗ are defined in (2.4), (2.2) and (2.1),
respectively. Then, rankF ′(x) = rankF ′(x∗) and

‖F ′(x)†‖ ≤ − ‖F
′(x∗)†‖

ω(‖x− x∗‖)
·

Proof. Since ω(0) = −1, we have

‖F ′(x∗)†‖‖F ′(x)− F ′(x∗)‖ ≤ ω(‖x− x∗‖)− ω(0) < −ω(0) = 1.

It follows from Lemma (2.1) that rankF ′(x) = rankF ′(x∗) and

‖F ′(x)†‖ ≤ ‖F ′(x∗)†‖
1− (ω(‖x− x∗‖)− ω(0))

= − ‖F
′(x∗)†‖

ω(‖x− x∗‖)
. �

Proof of Theorem 3.1. We shall prove by mathematical induction on n that {tn} is
the majorizing sequence for {xn}, i. e.,

‖x∗ − xj‖ ≤ tj for each j = 0, 1, 2, . . . (4.1)
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Because t0 = ‖x0 − x∗‖, thus (4.1) holds for j = 0. Suppose that ‖x∗ − xj‖ ≤ tj for
some j = n ∈ N. For the case j = n+ 1, we first have that,

xn+1 − x∗ = xn − x∗ − F ′(xn)†[F (xn)− F (x∗)] + F ′(xn)†rn

= F ′(xn)†[F (x∗)− F (xn)− F ′(xn)(x∗ − xn)] + F ′(xn)†rn

+[IRj − F ′(xn)†F ′(xn)](xn − x∗)

= F ′(xn)†
∫ 1

0

[F ′(xn)− F ′(x∗ + τ(xn − x∗))](xn − x∗) dτ

+F ′(xn)†rn + [IRj − F ′(xn)†F ′(xn)](xn − ζ). (4.2)

By using the modified majorant condition (2.8), Lemma 2.4, the inductive hypothesis
(4.1) and Lemma 2.2, we obtain in turn that∥∥∥∥F ′(xn)†

∫ 1

0

[F ′(xn)− F ′(x∗ + τ(xn − x∗))](xn − x∗) dτ
∥∥∥∥

≤ − 1

ω(‖xn − x∗)‖

∫ 1

0

‖F ′(x∗)†‖‖F ′(xn)− F ′(x∗ + τ(xn − x∗))‖‖xn − x∗‖ dτ

= − 1

ω(‖xn − x∗‖)

∫ 1

0

h′λ,0(‖xn − x∗‖)− h′λ,0(τ‖xn − x∗‖)
‖xn − x∗‖

dτ · ‖xn − x∗‖2

≤ − 1

ω(tn)

∫ 1

0

h′λ,0(tn)− hλ,0(τtn)

tn
dτ · ‖xn − x∗‖2

= − 1

ω(tn)
(tnh

′
λ,0(tn)− hλ,0(tn))

‖xn − x∗‖2

t2n
·

In view of (3.2),

‖F ′(xn)†rn‖ ≤ ‖F ′(xn)†‖‖rn‖ ≤ λn‖F ′(xn)†‖‖F (xn)‖. (4.3)

We have that

−F (xn) = F (x∗)− F (xn)− F ′(xn)(x∗ − xn) + F ′(xn)(x∗ − xn)

=

∫ 1

0

[F ′(xn)− F ′(x∗ + τ(xn − x∗))](xn − x∗) dτ

+F ′(xn)(x∗ − xn). (4.4)

Then, combining Lemma 2.2, Lemma 4.1, the modified majorant condition (2.8), the
inductive hypothesis (4.1) and the condition (3.2), we obtain in turn that

λn‖F ′(xn)†‖‖F (xn)‖

≤ λn‖F ′(xn)†‖
∫ 1

0

‖F ′(xn)− F ′(x∗ + τ(xn − x∗))‖‖xn − x∗‖ dτ

+λn‖F ′(xn)†‖‖F ′(xn)‖‖xn − x∗‖

≤ − λ

ω(tn)
(tnh

′
λ,0(tn)− hλ,0(tn))

‖xn − x∗‖2

t2n
+ λtn

‖xn − x∗‖
tn

≤ λ
λtn + hλ,0(tn)

ω(tn)

‖xn − x∗‖
tn

· (4.5)
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Combining (3.1), (4.3), (4.3) and (4.5), we get that

‖xn+1 − x∗‖ ≤
[
−
tnh
′
λ,0(tn)− hλ,0(tn)

ω(tn)
+ λ

λtn + hλ,0(tn)

ω(tn)
+ θtn

]
‖xn − x∗‖

tn

=

[
−tn + (1 + λ)

(
λtn
ω(tn)

+
hλ,0(tn)

ω(tn)

)
+ θtn

]
‖xn − x∗‖

tn
·

But, we have that −1 < ω(t) < 0 for any t ∈ (0, ρ), so

(1 + λ)

(
λtn
ω(tn)

+
hλ,0(tn)

ω(tn)

)
+ θtn ≤

hλ,0(tn)

ω(tn)
+ θn ≤

hλ,0(tn)− θtn
ω(tn)

=
hλ,θ(tn)

ω(tn)
·

Using the definition of {tn} given in (2.5), we get that

‖xn+1 − x∗‖ ≤
tn+1

tn
‖xn − x∗‖,

so we deduce that ‖xn+1 − x∗‖ ≤ tn+1, which completes the induction. In view of
the fact that {tn} converges to 0 (by Lemma 2.5), it follows from (4.1) that {xn}
converges to x∗ and the estimate (3.3) holds for all n ≥ 0. �

4.2. Proof of Theorem 3.4

Lemma 4.2. Suppose that F (x∗) = 0, F ′(x∗) is full row rank and that F ′ satisfies the
majorant condition (2.7) on D1. Then, for each x ∈ U(x∗, r), we have rankF ′(x) =
rankF ′(x∗) and

‖[IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1‖ ≤ − 1

ω(‖x− x∗‖)
·

Proof. Since ω(0) = −1, we have

‖F ′(x∗)†[F ′(x)− F ′(x∗)]‖ ≤ ω(‖x− x∗‖)− ω(0) < −ω(0) = 1.

It follows from Banach lemma that [IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1 exists and

‖[IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1‖ ≤ − 1

ω(‖x− x∗‖)
·

Since F ′(x∗) is full row rank, we have F ′(x∗)F ′(x∗)† = IRm and

F ′(x) = F ′(x∗)[IRj − F ′(z∗)†(F ′(x∗)− F ′(x))],

which implies that F ′(x) is full row, i. e., rankF ′(x) = rankF ′(x∗). �
Proof of Theorem 3.4. Let F̂ : U(x∗, r)→ Rm be defined by

F̂ (x) = F ′(x∗)†F̂ (x), x ∈ U(x∗, r),

with residual r̂k = F ′(x∗)†rn. In view of

F̂ ′(x)† = [F ′(x∗)†F ′(x)]† = F ′(x)†F ′(x∗), x ∈ U(x∗, r),

we have that {xn} coincides with the sequence generated by inexact Gauss-Newton

method (1.2) for F̂ . Moreover, we get that

F̂ ′(x∗)† = (F ′(x∗)†F ′(x∗))† = F ′(x∗)†F ′(x∗).
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Consequently,

‖F̂ ′(x∗)†F̂ ′(x∗)‖ = ‖F ′(x∗)†F ′(x∗)F ′(x∗)†F (x∗)‖ = ‖F ′(x∗)†F (x∗)‖.

Because ‖F ′(x∗)†F (x∗)‖ = ‖ΠkerF ′(x∗)⊥‖ = 1, thus, we have

‖F̂ ′(x∗)†‖ = ‖F̂ ′(x∗)†F̂ ′(x∗)‖ = 1.

Therefore, by (2.7), we can obtain that

‖F̂ ′(x∗)†‖‖F̂ ′(x)− F̂ ′(x∗ + τ(x− x∗))‖ = ‖F ′(x∗)†(F ′(x)− F ′(x∗ + τ(x− x∗)))‖
≤ h′λ,θ(‖x− x∗‖)− hλ,θ(τ‖x− x∗‖).

Hence, F̂ satisfies the modified majorant condition (2.8) on D1. Then, Theorem 3.1 is

applicable and {xk} converges to x∗ follows. Note that, F̂ ′(·)†F̂ (·) = F ′(·)†F (·) and
F (·) = F ′(·)F ′(·)†F (·). Hence, we conclude that x∗ is a zero of F . �

4.3. Proof of Theorem 3.6

Lemma 4.3. Suppose that F (x∗) = 0, F ′(x∗) is full row rank and that F ′ satisfies the
majorant condition (2.7) on D1. Then, we have

‖F ′(x)†F ′(x∗)‖ ≤ − 1

ω(‖x− x∗‖)
for each x ∈ D1.

Proof. Since F ′(x∗) is full row rank, we have F ′(x∗)F ′(x∗)† = IRm . Then, we get that

F ′(x)†F ′(x∗)(IRj − F ′(x∗)†(F ′(x∗)− F ′(x∗))) = F ′(x)†F ′(x), x ∈ D1.

By Lemma 4.2, IRj − F ′(x∗)†(F ′(x∗) − F ′(x)) is invertible for any x ∈ D1. Thus, in
view of the equality A†A = ΠkerA⊥ for any m× j matrix A, we obtain that

F ′(x)†F ′(x∗) = ΠkerF ′(x)⊥ [IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1.

Therefore, by Lemma 4.2 we deduce that

‖F ′(x)†F ′(x∗)‖ ≤ ‖ΠkerF ′(x)⊥‖‖[IRj − F ′(x∗)†(F ′(x∗)− F ′(x))]−1‖

≤ − 1

ω(‖x− x∗‖)
. �

Proof of Theorem 3.6 Using Lemma 4.3, majorant condition (2.7) and the residual
condition (3.7), respectively, instead of Lemma 4.1, modified majorant condition (2.8)
and condition (3.2), one can complete the proof of Theorem 3.6 in an analogous way
to the proof of Theorem 3.1. �

Remark 4.4. The results in [6] improved the corresponding ones in [21, 22, 23, 24,
25, 42, 43]. In the present study, we improved the results in [6], since D1 ⊂ U(x∗, r)
leading to an at least as tight function h′λ,θ than the one used in [6] (see also the

Examples).
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5. Numerical examples

We present some numerical examples, where

g(t) < hλ,θ(t) (5.1)

and

ω(t) < h′λ,θ(t). (5.2)

For simplicity we take F ′(x)† = F ′(x)−1 for each x ∈ D.
Example 5.1. Let X = Y = (−∞,+∞) and define function F : X → Y by

F (x) = d0x− d1 sin(1) + d2 sin(ed2x)

where d0, d1, d2 are given real numbers. Then x∗ = 0. Define functions g and hλ,θ by

g(t) =
L0

2
t2 − t and hλ,θ(t) =

L

2
t2 − t.

Then, it can easily be seen that for d2 sufficiently large and d1 sufficiently small L
L0

can be arbitrarily large. Hence, (5.1) and (5.2) hold.
Example 5.2. Let F (x, y, z) = 0 be a nonlinear system, where F : D = U(0, 1) ⊆ R3 →

R3 and F (x, y, z) =

(
x,
e− 1

2
y2 + y, ez − 1

)T
. It is obvious that (0, 0, 0)T = x∗ is a

solution of the system.
From F , we deduce

F ′(x) =

 1 0 0
0 (e− 1)y 0
0 0 ez

 and F ′(x∗) = diag{1, 1, 1},

where x = (x, y, z)T . Hence, [F ′(x∗)]−1 = diag{1, 1, 1}. Moreover, we can define for

L0 = e − 1 < L = 1.78957239, g(t) =
e− 1

2
t2 − t and hλ,θ(t) =

1.78957239

2
t2 − t.

Then, again (5.1) and (5.2) hold.

Notice also that in [6] we used L = e and h̄λ,θ(t) =
e

2
t2 − t > hλ,θ(t). Hence, the

present results improve the ones in [6].
Example 5.3. Let us consider the nonlinear least-squares problem

min
x∈R

Q(x), (5.3)

where Q(x) = 1
2F (x)TF (x), and

F (x) =

(
µ
2x

2 − x+ µ1

µ
2x

2 − x+ µ2

)
with µ 6= 0, µ1, µ2 being real parameters not all zero at the same time. If x̃ is a solution
of (5.3), then x̃ is a solution of

5Q(x) = F ′(x)TF (x) = (1− µx, 1− µx)TF (x)

= (1− µx)(µx2 − 2x+ µ1 + µ2).
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To obtain a global minimizer x̃ we must find the solutions of5Q(x) = 0. Suppose that
µ(µ1 + µ2) < 1. Then, 5Q(x) = 0 has three distinct and positive solutions defined
by 1

µ ,

s− =
1−

√
1− µ(µ1 + µ2)

µ
and s+ =

1 +
√

1− µ(µ1 + µ2)

µ
.

We have that F ′(x) = (1− µx, 1− µx)T . If x = x∗, then F ′(x∗)† = (0, 0)T and

F ′(x∗)† =

(
1

2(1− µx)
,

1

2(1− µx)

)
for x 6= 1

µ is the Moore-Penrose inverse of F ′(x). Having defined the Moore-Penrose

inverse of F ′(x), we can now find the majorant functions along the lines of Example
5.3. We leave the details of the motivated reader.

Other examples can be found in [2, 8, 5, 10, 12].

6. Conclusion

We expanded the applicability of INM under a majorant and a center-majorant
condition. The advantages of our analysis over earlier works such as [8, 9, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43] are also shown under the same computational cost for the functions and
constants involved. These advantages include: a large radius of convergence and more
precise error estimates on the distances ‖xn+1 − x∗‖ for each n = 0, 1, 2, . . ., leading
to a wider choice of initial guesses and computation of less iterates xn in order to
obtain a desired error tolerance. Moreover, the differentiability of majorant function
ω is not assumed as in earlier studies where ω = g′ for some differentiable function g.
Numerical examples show that the center-function can be smaller than the majorant
function.
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[27] Häussler, W.M., A Kantorovich-type convergence analysis for the Gauss-Newton method,
Numer. Math., 48(1986), 119-125.



558 Ioannis K. Argyros and Santhosh George
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