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Telefon: 0264 405300

CONTENTS

Seyed Morteza Mirafzal and Ali Zeydi Abdian, Spectral
characterization of new classes of multicone graphs . . . . . . . . . . . . . . . . . . . . . . . .275
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Spectral characterization of new classes of
multicone graphs

Seyed Morteza Mirafzal and Ali Zeydi Abdian

Abstract. This paper deals with graphs that are known as multicone graphs.
A multicone graph is a graph obtained from the join of a clique and a regu-
lar graph. Let w, l, m be natural numbers and k is a natural number. It is
proved that any connected graph cospectral with multicone graph Kw5mECP kl
is determined by its adjacency spectra as well as its Laplacian spectra, where
ECP kl = K

3k, 3k, ..., 3k︸ ︷︷ ︸
l times

. Also, we show that complements of some of these mul-

ticone graphs are determined by their adjacency spectra. Moreover, we prove that
any connected graph cospectral with these multicone graphs must be perfect. Fi-
nally, we pose two problems for further researches.

Mathematics Subject Classification (2010): 05C50.

Keywords: Adjacency spectrum, Laplacian spectrum, DS graph.

1. Introduction

All graphs considered here are simple and undirected. All notions on graphs that
are not defined here can be found in [4, 5, 10, 12, 19]. Let Γ be a graph with n vertices,
V (Γ) and E(Γ) be the sets of vertices and edges of Γ, respectively. The complement
of a graph Γ, denoted by Γ, is the graph on the vertices set of Γ such that two vertices
of Γ, are adjacent if and only if they are not adjacent in Γ. The union of (disjoint)
graphs Γ1 and Γ2 is denoted by Γ∪Γ2, is the graph whose vertices (respectively, edges
) set is the union of vertices (respectively, edges) set of Γ1 and Γ2. A graph consisting
of k disjoint copies of an arbitrary graph Γ will be denoted by kΓ. The join of two
vertex disjoint graphs Γ1 and Γ2 is the graph obtained from Γ1 ∪ Γ2 by joining each
vertex in Γ1 with every vertex in Γ2. It is denoted by Γ15Γ2. Let Γ be a graph with
adjacency matrix A(Γ). The characteristic polynomial of Γ is det(λI − A(Γ)), and
denoted by PΓ(λ). The roots of PΓ(λ) are called the adjaceny eigenvalues of A(Γ).
The eigenvalues and the spectrum of A(Γ) are also called the eigenvalues and the
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spectrum of Γ, respectively. If we consider a matrix L = D−A instead of A, where D
is the diagonal matrix of degree of vertices (in Γ), we get the Laplacian eigenvalues
and the Laplacian spectrum, while in the case of matrix SL(G) = D(Γ)+A(Γ), we get
the signless Laplacian eigenvalues and the signless Laplacian spectrum, respectively.
Since both matrices A(Γ) and L(Γ) are real symmetric matrices, their eigenvalues
are all real numbers. Let λ1, λ2, . . . , λs be the distinct eigenvalues of Γ with
multiplicities m1, m2, . . . , ms, respectively. We denote the adjacency spectrum of Γ
by Spec(Γ) = {[λ1]m1 , [λ2]m2 , ..., [λs]

ms}. Two graphs Γ and Λ are called cospectral,
if Spec(Γ) = Spec(Λ). A graph Γ is said to be determined by its spectrum or DS
for short, if Spec(Γ) = Spec(Λ), follows that Γ ∼= Λ. About the background of the
guestion ”which graphs are determined by their spectrums?”, we refer to [15]. The
friendship graph Fn consists of n edge-disjoint triangles that all of them meeting in
one vertex, where n is a natural number (see Figure 1). The friendship (or Dutch
windmill or n-fan) graph Fn is the graph that can be constructed by coalesencing n
copies of the cycle graph C3 of length 3 with a common vertex. By construction, the
friendship graph Fn is isomorphic to the windmill graph Wd(3,n) [11]. The friendship
theorem of Paul Erdös, Alfred Réyni and Vera T. Sós [12], states that graphs with the
property that every two vertices have exactly one neighbour in common are exactly
the friendship graphs. In [17, 18], it has been proposed that the friendship graph
is DS with respect to its adjacency spectrum. This conjecture studied in [2, 8]. It
is claimed in [8] that conjecture is valid. In [7], it is proved that if Γ is any graph
cospectral with Fn (n 6= 16), then Γ ∼= Fn. Abdollahi and Janbaz [3] precented a
proof in special case of this topic. They proved that any connected graph cospectral
with Fn is isomorphic to Fn. Abdian and Mirafzal [1] characterized new classes of
multicone graphs. In this paper, we present new classes of multicone graphs that
friendship graphs are special classes of them and we show these graphs are DS with
respect to their spectra. The plan of the present paper is as follows. In Section 2,
we review some basic information and preliminaries. In Subsection 3.1, we show that
any connected graph cospectral with multicone graph Kw 5mECP kl (see Figures 1
and 2, for example) must be regular or bidegreed (Lemma 3.2). In Subsection 3.2,
we prove that any connected graphs cospectral with Kw5mECP kl is determined by
its adjacency spectra (Theorem 3.4). In Subsection 3.3, we prove that complement
of Kw 5 mECP kl is DS with respect to their adjacency spectra (Theorem 3.7). In
Subsection 3.4, we show that graphs Kw 5 mECP kl are DS with respect to their
Laplacian spectra (Theorem 3.8). In Subsection 3.5, we show that any connected
graph cospectral with multicone graph Kw 5mECP kl must be perfect. We conclude
with final remarks and open problems in Section 4.

2. Preliminaries

In this section, we give some facts that will be used in the proof of the main
results.

A walk of length m in a graph Γ(V,E) is an alternating sequence:

v1l1v2l2v3vnlmvm+1
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of vertices and edges that begins and ends with a vertex and has the added property
that lj is incident with both vi and vi+1, where 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ m . In
graph Γ(V,E) a walk of length m is closed, if v1 = vm+1.

Lemma 2.1. ([2, 14]) Let Γ be a graph. For the adjacency matrix and Laplacian matrix,
the following can be obtained from the spectrum:

(i) The number of vertices,
(ii) The number of edges.

For the adjacency matrix, the following follows from the spectrum:
(iii) The number of closed walks of any length.
(iv) Being regular or not and the degree of regularity.
(v) Being bipartite or not.

For the Laplacian matrix, the following follows from the spectrum:
(vi) The number of spanning trees.
(vii) The number of components.
(viii) The sum of squares of degrees of vertices.

Theorem 2.2. ([5]) If Γ1 is r1-regular with n1 vertices, and Γ2 is r2-regular with n2

vertices, then the characteristic polynomial of the join Γ1 5 Γ2 is given by:

PΓ15Γ2(λ) =
PΓ1

(λ)PΓ2
(λ)

(λ− r1)(λ− r2)
((λ− r1)(λ− r2)− n1n2).

Proposition 2.3. ([5]) Let Γ − j be the graph obtained from Γ by deleting the vertex

j and all edges containing j. Then PΓ−j(λ) = PΓ(λ)
m∑
i=1

α2
ij

λ− µi
, where m, α2

ij and

PΓ(λ) are the number of distinct eigenvalues of graph Γ, the main angle of Γ and the
characteristic polynomial of Γ.

A graph is bidegreed if the set of degrees of its vertices consists of exactly two
distinct elements. Also, the spectral radius %(Γ) of Γ is the largest eigenvalue of its
adjacency matrix A(Γ).

Theorem 2.4. ([3]) Let Γ be a simple graph with n vertices and m edges. Let δ = δ(Γ)
be the minimum degree of vertices of Γ and %(Γ) be the spectral radius of the adjacency
matrix of Γ. Then

%(Γ) ≤ δ − 1

2
+

√
2m− nδ +

(δ + 1)2

4
.

Equality holds if and only if Γ is either a regular graph or a bidegreed graph in which
each vertex is of degree either δ or n− 1.

A t-multipartite graph of order n is Kb1,...,bt , where b1+...+bt = n. D. Cvetković,
Doob and S. Simić [6] defined a generalized cocktail-party graph, denoted by GCP ,
as a complete graph with some independent edges removed. A special case of this
graph is the well-known cocktail-party graph CP (t) obtained from K2t by removing
t disjoint edges.

Theorem 2.5. ([1]) A graph has exactly one positive eigenvalue if and only if its non-
isolated vertices form a complete multipartite graph.
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Lemma 2.6. ([1]) Let Γ be a connected non-regular graph with three distinct eigenvalues
θ0 > θ1 > θ2. Then the following hold:

(i) Γ has diameter two.
(ii) If θ0 is not an integer, then Γ is complete bipartite.
(iii) θ1 ≥ 0 with equality if and only if Γ is complete bipartite.

(iv) θ2 ≤ −
√

2 with equality if and only if Γ is the path of length 2.

Proposition 2.7. ([12]) For a graph Γ, the following statements are equivalent:
(i) Γ is d-regular.
(ii) %(Γ) = dΓ, the average vertex degree.
(iii) G has v = (1, 1, ..., 1)t as an eigenvector for %(Γ).

Proposition 2.8. ([16]) Let Γ be a disconnected graph that is determined by the Lapla-
cian spectrum. Then the cone over Γ, the graph Λ; that is, obtained from Γ by adding
one vertex that is adjacent to all vertices of Γ, is also determined by its Laplacian
spectrum.

Lemma 2.9. ([13]) Let Γ be a graph on n vertices. Then n is Laplacian eigenvalue of
Γ if and only if Γ is the join of two graphs.

Theorem 2.10. ([13]) Let Γ and Λ be two graphs with Laplacian spectrum λ1 ≥ λ2 ≥
... ≥ λn and µ1 ≥ µ2 ≥ .. ≥ µm, respectively. Then the Laplacian spectra of Γ and
Γ5Λ are n−λ1, n−λ2, ..., n−λn−1, 0 and n+m,m+λ1, ...,m+λn−1, n+µ1, ..., n+
µm−1, 0, respectively.

Lemma 2.11. ([12]) Let G 6= K1 be connected with PΓ(λ) =
n∑
i=0

aiλ
n−i and λ = λ1 ≤

λ2 ≤ ... ≤ λn = %(Γ), where PΓ(λ) is the characteristic polynomial of graph Γ and λi
(1 ≤ i ≤ n) is eigenvalue of Γ. The following are equivalent:

(i) G is bipartite.
(ii) a2i−1 = 0 for all 1 ≤ i ≤

⌈
n
2

⌉
.

(iii) λi = −λn+1−i for 1 ≤ i ≤ n.
(iv) %(Γ) = −λ.
Moreover, m(λi) = m(−λi), where m(λi) denote the multiplicities of λi.

3. Main results

In the following, we show that any connected graph cospectral with multicone
graphs Kw 5mECP kl are regular or bidegreed.

3.1. Connected bidegreed graph cospectral with multicone graphs Kw 5mECP kl
Proposition 3.1. Let G be a graph cospectral with multicone graphs Kw 5mECP kl .
Then

Spec(G)=

{
[0](3

kl−l)m,[−1]w−1,
[
3kl − 3k

]m−1

,
[
−3k

]lm−m
,

[
χ+
√
χ2−4Θ

2

]1

,

[
χ−
√
χ2−4Θ

2

]1
}
,

where χ = w − 1 + 3kl − 3k and Θ = (w − 1)(3kl − 3k)− 3klwm.
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Proof. By Theorem 2.2 and Spec(mECP kl ) =
{[

3kl − 3k
]m
, [0]

3klm−lm
,
[
−3k

]lm−m}
the proof is completed. �

In the following, we show that any graph cospectral with a multicone graph
Kw 5mECP kl must be bidegreed.

Lemma 3.2. Let Γ be a connected graph cospectral with multicone graph Kw5mECP kl .
Then Γ is bidegreed in which any vertex of Γ is of degree w−1+3klm or 3kl−3k+w.

Proof. It is obvious that Γ cannot be regular; since regularity of a graph can be
determined by its spectrum. By contrary, we suppose that the sequence of degrees of
vertices of graph Γ consists of at least three number. Hence the equality in Theorem 2.4
cannot happen for any δ. But, if we put δ = 3kl−3k+w, then the equality in Theorem
2.4 holds. So, Γ must be bidegreed. Now, we show that ∆ = ∆(Γ) = w − 1 + 3klm.
By contrary, we suppose that ∆ < w− 1 + 3klm. Therefore, the equality in Theorem
2.4 cannot hold for any δ. But, if we put δ = 3kl − 3k + w, then this equality holds.
This is a contradiction and so ∆ = 3kl − 3k + w. Now, δ = 3kl − 3k + w, since Γ is
bidegreed and Γ has w + 3klm, ∆ = w − 1 + 3klm and

w(w − 1 + 3klm) + 3klm(3kl − 3k + w) = w∆ + 3klm(3kl − 3k + w) =

w+3klm∑
i=1

deg vi.

This completes the proof. �

3.2. Spectral characterization of connected graphs cospectral with multicone graphs
K1 5mECP kl .

In this subsection, we show that multicone graphs K1 5mECP kl are DS.

Lemma 3.3. Any connected graph cospectral with multicone graph K1 5 mECP kl is
isomorphic to K1 5mECP kl .

Proof. Let Γ be a graph cospectral with multicone graph K1 5 mECP kl . If m = 1
there is nothing to prove. Hence we suppose that m 6= 1 . It is obvious that in this
case Γ cannot be regular. First we show that Γ has one vertex of degree ∆ = 3klm
and 3klm vertices of degree δ = 3kl− 3k + 1. Let G has t vertex of degree ∆ = 3klm.
Hence

t3klm+ (3klm+ 1− t)(3kl − 3k + 1) = 3klm+ 3klm(3kl − 3k + 1) =

1+3klm∑
i=1

deg vi

and so t = 1. Therefore, Γ has one vertex of degree ∆ = 3klm, say j. It follows from
Proposition 2.3 that

PΓ−j(λ) = (λ− µ3)m−2(λ− µ4)lm−m−1(λ− µ5)3klm−lm−1

×[α2
1jF + α2

2jG+ α2
3jH + α2

4jI + α2
5jJ ],

where
F = (λ− µ2)(λ− µ3)(λ− µ4)(λ− µ5),

G = (λ− µ1)(λ− µ3)(λ− µ4)(λ− µ5),
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H = (λ− µ1)(λ− µ2)(λ− µ4)(λ− µ5),

I = (λ− µ1)(λ− µ2)(λ− µ3)(λ− µ5),

J = (λ− µ1)(λ− µ2)(λ− µ3)(λ− µ4),

where

µ1 =
3kl − 3k +

√
(3kl − 3k)

2
+ 4(2

k
lm)

2
,

µ2 =
3kl − 3k −

√
(3kl − 3k)

2
+ 4(2

k
lm)

2
,

µ3 = 3kl − 3k, µ4 = −3k and µ5 = 0.

It is clear that PΓ−j(λ) has 3klm roots. So, we have:

α+ β + γ + 3kl − 3k = −[(m− 2)µ3 + (lm−m− 1)µ4],

α2 + β2 + γ2 + (3kl − 3k)2 = 3klm(3kl − 3k)− [(m− 2)µ2
3 + (lm−m− 1)µ2

4],

α3 + β3 + γ3 + (3kl − 3k)3 = 6m(33k)
(
l
3

)
− [(m− 2)µ2

3 + (lm−m− 1)µ2
4],

where α, β and γ are the eigenvalues of graph Γ− j. If we solve the above equations,
then we will have: α = −3k, β = 0 and γ = 3kl − 3k. Therefore,

spec(Γ− j) =
{[

3kl − 3k
]m
, [0]

3klm−lm
,
[
−3k

]lm−m}
.

Graph Γ−j is regular and degree of its regularity is 3kl−3k. It follows from Theorem
2.4 that Γ − j = mK

3k, ... , 3k︸ ︷︷ ︸
l times

and so G − j = mECP kl . Hence Γ = K1 5mECP kl .

This follows the result. �

Up to now, we have shown that the multicone graphs K15mECP kl are DS. The
natural question is; what happen for multicone graphs Kw5mECP kl ? we answer to
this question in the following theorem.

Theorem 3.4. Any connected graph cospectral with multicone graph Kw5mECP kl is
isomorphic to Kw 5mECP kl .

Proof. We solve the problem by induction on w. If w = 1, there is nothing to prove. Let
the claim be true for w; that is, if Spec(Γ1) = Spec(Kw5mECP kl ), then Γ1

∼= Kw5
mECP kl , where Γ1 is a graph. We show that, if Spec(Γ) = Spec(Kw+1 5mECP kl ),
then Γ ∼= Kw+15mECP kl , where Γ is a graph. By Lemma 3.2, Theorem 2.4, Lemma
2.1 (iii) and in a similar manner of Lemma 3.3 for Γ− j, where j is a vertex of degree
w + 3klm belonging to Γ, we obtain Spec(Γ− j) = Spec(Kw 5mECP kl ). Therefore,
the assertion holds. �

In the following, we give another proof of the above theorem.
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Figure 1. Multicone graph K20 5 2ECP 0
1

Proof. Let Γ be a connected graph cospectral with multicone graph Kw 5mECP kl .
By Lemma 3.2, Γ has subgraph L in which degree of any vertex of L is w− 1 + 3klm.
In other words, Γ ∼= Kw 5 H, where H is a subgraph of Γ. Now, we remove the
vertices of Kw and we consider 3klm another vertices. Consider H consisting of these
3klm vertices. H is regular and degree of its regularity is 3kl− 3k and multiplicity of

3kl − 3k is m. By Theorem 2.2, Spec(H) =
{[

3kl − 3k
]m

, [0]
(3kl−l)m

,
[
−3k

](l−1)m
}

.

Now, it follows from Theorem 2.5 that Spec(H) = Spec(mECP kl ). This implies the
result. �

Corollary 3.5. Any connected graph cospectral with multicone graph

Kw 5mECP k1 = Kw 5mK3k

is DS with respect to their adjacency spectrums.
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Figure 2. Multicone graph K10 5 2ECP 1
2

3.3. Some complements of multicone graphs Kw 5mECP kl are DS with respect to
their spectra.

In this subsection, we show that the complement of multicone graphs Kw5mECP kl
are DS with respect to their adjacency spectrum.

Proposition 3.6. Let Γ be cospectral with complement of multicone graphs Kw 5
mECP kl . Then

Spec(Γ) =
{[

3klm− 3kl + 3k − 1
]m
, [−1]

(3k−1)lm
,
[
3k − 1

](l−1)m
, [0]

w
}
.

Proof. Straightforward. �

Theorem 3.7. The complement of multicone graph Kw 5 ECP kl are DS with respect
to their adjacency spectrum.

Proof. The proof of this theorem is the similar of Theorm 5.2 of [1]. Let

Spec(Γ) = Spec(Kw 5 ECP kl ) =
{

[−1]
(3k−1)l

,
[
3k − 1

]l
, [0]

w
}
.
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If l = 1, by Lemma 2.1 ((i), (ii) and (iii) ) the proof is clear (Also, by Theorem 2.5
the proof follows). Hence we suppose that l 6= 1. It is easy to see that Γ cannot be
regular, since regularity of a graph can be determined by its spectrum. By contrary,
we suppose that Γ is connected. So, we from Lemma 2.6 and Lemma 2.11 conclude
that k = l = 1. This is a contradiction. Hence Γ = Γ1 ∪ Γ2 ∪ ... ∪ Γh, where Γs is a
connected component of Γ and 1 ≤ s ≤ h. Now, we show that Γs cannot have three
distinct eigenvalues. By contrary, we suppose that Γi has three distinct eigenvalues.
In this case, if we also suppose Γs is non-regular, then it follows from Lemma 2.6 that
Γs is a complete bipartite graph. Hence l = k = 1. This is a contradiction. Therefore,
if Γs has three distinct eigenvalues, then it must be regular. Now, it follows from
Theorem 2.5 that Γs ∼= K1, 1, ..., 1︸ ︷︷ ︸

3k times

∼= K3k . This is a contradiction. So, Γs cannot

have three distinct eigenvalues. Therefore, it has one or two eigenvalue(s). Hence,
any connected component of Γ is either isolated vertex or a complete graph. Hence
Γ ∼= wK1 ∪ lK3k . This follows the result. �

3.4. The multicone graphs Kw5mECP kl are determined by their Laplacian spectra

In this subsection, we show that any graph cospectral with multicone graph
Kw 5mECP kl is DS with respect to its Laplacian spectrum.

Theorem 3.8. Multicone graphs Kw5mECP kl are DS with respect to their Laplacian
spectrum.

Proof. We solve the problem by induction on w. If w = 1, there is nothing to prove.
Let the claim be true for w; that is,

Spec(L(H)) = Spec(L(Kw 5mECP kl )

=

{[
3klm+ w

]w
, [w]

m−1
,
[
3kl − 3k + w

]3klm−lm
,
[
3kl + w

]lm−m
, [0]

1

}
follows that H ∼= Kw 5mECP kl . We show that the problem is true for w + 1; that
is, we show that

Spec(L(G)) = Spec(L(Kw+1 5mECP kl ))

=

{[
3klm+w+1

]w+1
, [w + 1]

m−1
,
[
3kl−3k + w + 1

]3klm−lm
,
[
3kl+w+1

]lm−m
, [0]

1

}
follows that G ∼= Kw+15mECP kl . It follows from Lemma 2.9 that H and G are the
join of two graphs. On the other hand,

Spec(L(K1 5H)) = Spec(L(G)) = spec(L(Kw+1 5mECP kl )).

Therefore, we must have G ∼= K15H. Because, G is the join of two graphs and also
according to spectrum of G, must K1 be joined to H and this is only available state.
This completes the proof. �

Corollary 3.9. Multicone graphs Kw 5mECP k1 = Kw 5mK3k are DS with respect
to their Laplacian spectrums.



284 Seyed Morteza Mirafzal and Ali Zeydi Abdian

3.5. Some results about multicone graphs Kw 5mECP kl
In this subsection, we show that any graph cospectral with multicone graphKw5

mECP kl must be perfect. Also, we prove that any graph cospectral with multicone
graph Kw 5mECP kl with respect to Laplacian spectrum is perfect. In addition, we
show that any graph cospectral with complement of multicone graph Kw 5mECP kl
is perfect.

Suppose χ(Γ) and ω(Γ) are chromatic number and clique number of graph G,
respectively. A graph is perfect if χ(H) = ω(H) for every induced subgraph H of Γ.
It is proved that a graph G is perfect if and only if Γ is Berge; that is, it contains
no odd hole or antihole as induced subgraph, where odd hole and antihole are odd
cycle, Cm for m ≥ 5, and its complement, respectively. Also, in 1972 Lovász proved
that, a graph is perfect if and only if its complement is perfect (see [22] of [2]). Now,
by Theorem 3.4, Theorem 3.7, Theorem 3.8 and by what was said in the previous
sections we can conclude the following results.

Theorem 3.10. Let graph Γ be cospectral with multicone graph Kw 5mECP kl . Then

Γ and Γ are perfect.

Proof. By what was said in the beginning of this section and Theorem 3.4 the proof
is completed. �

Theorem 3.11. Let Γ be a graph and Spec(L(Γ)) = Spec(L(Kw5mECP kl )). Then Γ

and Γ are perfect.

Proof. The proof is straightforwad. �

Theorem 3.12. Let Γ be a graph and Spec(Γ) = Spec(Kw 5mECP kl ). Then Γ and Γ
are perfect.

Proof. It is obvious. �

In the following, we pose two conjectures.

4. Final remarks and open problems

In this paper, we have shown any connected graph cospectral with multicone
graph Kw5mECP kl is DS with respect to its spectra. Also, we have shown in special
cases complement of these graphs are DS. In addition, we have proved any connected
graph cospectral with these graph is perfect. On the other hand, It is obvious that, Fn
are special classes of multicone graphs Kw 5mECP kl (one can also consider k = 0).
In addition, Fn are DS with respect to:

(i) Their adjaccency spectrum (if n 6= 16).
(ii) Their Laplacian spectrum.
(iii) Their signless Laplacian spectrum. Also, Fn are DS with respect to their

adjacency spectrum, where n 6= 2.
Hence we pose the following conjectures.

Conjecture 4.1. Multicone graphs Kw5mECP kl are DS with respect to their signless
Laplacian spectrum.
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Conjecture 4.2. The complement of multicone graphs Kw 5 mECP kl are DS with
respect to their adjacency spectrum.
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Uniquely clean 2× 2 invertible integral matrices

Dorin Andrica and Grigore Călugăreanu

Abstract. While units in any unital ring are strongly clean by definition, which
units are uniquely clean, is a far from being simple question, even in particular
rings. In this paper, the question is solved for 2 × 2 integral matrices. It turns
out that uniquely clean invertible matrices are scarce: only the matrices similar

to

[
1 0
0 −1

]
. The study is splitted into three cases: the elliptic, the parabolic

and the hyperbolic cases, according to the discriminant of their characteristic
polynomial. In the first two cases, units are not uniquely clean.

Mathematics Subject Classification (2010): 15B36, 16U99, 11D09, 11D45.

Keywords: Clean, uniquely clean, class number, Diophantine equation, reduced
matrix.

1. Introduction

Let R be a ring with identity. An element r ∈ R is called clean if r = e + u
with idempotent e and unit u. It is called uniquely clean if it has only one clean
decomposition, and strongly clean if the components of the decomposition commute.

Clean elements which use trivial idempotents (hereafter called trivial clean) are
obviously strongly clean. That is, units and sums 1+u with unit u are strongly clean.

However, when are such elements (also) uniquely clean turns out to be a difficult
question even for particular unital rings.

In this paper we give a complete answer to this question for R =M2(Z), that is,

we show that only matrices U (with determinant −1 and trace 0) similar to

[
1 0
0 −1

]
are uniquely clean invertible 2× 2 integral matrices.

Since units already have the (strongly) clean 02-decomposition, a unit U ∈
M2(Z) is uniquely clean iff U is not nontrivial clean and U − I2 is not a unit. Notice
that det(U − I2) = detU − Tr(U) + 1 and so

Lemma 1.1. Suppose U is a unit. Then
(a) for detU = 1, U − I2 is a unit iff Tr(U) ∈ {1, 3}, and
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(b) for detU = −1, U − I2 is a unit iff Tr(U) ∈ {±1}.

Any 2×2 integral matrix U has a characteristic polynomial X2−Tr(U)·X+detU ,
whose discriminant is ∆ = Tr2(U)− 4 detU .

If U is a unit, then detU ∈ {±1}. In what follows we separately deal with
the elliptic, parabolic and hyperbolic cases according to ∆ < 0, ∆ = 0 and ∆ > 0
respectively.

Definition 1.2. Two 2 × 2 matrices A, B over any unital ring R, are similar (or
conjugate) if there is an invertible matrix U such that B = U−1AU . Since similarity
is obviously an equivalence relation, a partition of M2(R) corresponds to it. The
subsets in this partition are called similarity classes.

Such classes may consist only in one matrix, for instance, 02 respectively I2. So
is every scalar matrix (since it belongs to the center), and generally, a matrix A forms
a singleton class iff AU = UA for every invertible matrix U .

If A is idempotent (or unit) and B is similar to A then B is also idempotent
(respectively unit). This similarity invariance clearly extends to clean matrices and
it also restricts to uniquely or strongly clean matrices, respectively. Rephrasing, the
notions of clean, uniquely clean and strongly clean are similarity invariants. So is the
clean index.

Further, recall that for R = Z, if f(t) = tn+a1t
n−1+...+an is irreducible in Q[t]

and ω is a root of f(t) = 0 then, according to Latimer and MacDuffee theorem (see e.
g. [7]), in the elliptic case, there is a one-to-one correspondence between ideal classes
in the ring of integers of the field Q[ω] and Z-similarity classes of n×n matrices A of
integers which satisfy f(A) = 0. The common number is (finite and called) the class
number of Z[ω].

The answer to our question above amounts to several results from Number The-
ory related to (positive) quadratic forms. However, it was not necessary to use such
results because of the transfer done directly to similarity classes of integral 2 × 2
matrices done in Behn, Van der Merwe paper (see [4]). From this paper we recall the
following definitions and results.

Definition 1.3. A 2×2 integral matrix A =

[
a b
c d

]
with ∆ = Tr(A)2−4 det(A) < 0

is reduced if |d− a| ≤ c ≤ −b and, d ≥ a if at least one is equality, i.e. |d − a| = c

or c = −b. Notice that if |d− a| < c < −b then

[
a b
c d

]
and

[
d b
c a

]
are different

reduced matrices.

An integral matrix A =

[
a b
c d

]
with ∆ = Tr2(A) − 4 det(A) > 0 but not a

square in Z is reduced if c > 0 and
∣∣∣√∆− 2c

∣∣∣ < d− a <
√

∆.

If ∆ is a square (e.g. det(A) = 0), that is, the characteristic polynomial of the
matrix factors over the integers, say, f(x) = (x − a)(x − d), where a ≥ d, then, for

a 6= d the matrix

[
a b
0 d

]
is reduced if 0 ≤ b < a− d, and, for a = d, if b ≥ 0. While

our results are up to a similarity, in this case it is sufficient to define upper triangular
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reduced matrices because, if f(x) = (x− a)(x− d) (and a ≥ d) then A is similar to a

matrix

[
a b
0 d

]
with 0 ≤ b ≤ |a− d|, and for a = d, with b ≥ 0.

For integers x, y and y 6= 0 , r(x, y) will denote the unique integer such that

r ≡ x mod 2y and −|y| < r ≤ |y| if |y| >
√

∆, and
√

∆− 2|y| < r <
√

∆ if |y| <
√

∆.

Theorem 1.4. ([4], Theorem 3.3) Consider matrices in M2(Z) with a fixed trace and
determinant and ∆ = Tr2 − 4 det < 0. Then there is precisely one reduced matrix in
each matrix class.

Theorem 1.5. ([4], Theorem 5.2) Let M ∈M2(Z), and assume that the characteristic
polynomial of M factors over Z. Then M is equivalent to a reduced matrix. More-
over, this class representative is unique thus no two different reduced matrices are
equivalent.

Theorem 1.6. ([4], Theorem 4.3) Consider all matrices A inM2(Z) with a fixed trace
and determinant. If ∆ = Tr2(A) − 4 det(A) > 0 is not a square in Z then there is
precisely one cycle of reduced matrices in each matrix class. Thus for each matrix class

there is a matrix

[
a b
c d

]
in the class and a positive integer n such that P i

[
a b
c d

]
for 0 ≤ i ≤ n are all the reduced matrices in the class and

Pn+1

[
a b
c d

]
=

[
a b
c d

]
,

where P denotes a reduction operator on the matrix, namely a conjugation with[
0 −1
1 −n

]
, if −b > 0 and with

[
0 1
1 n

]
, if b > 0, where n =

r(a− d, b) + d− a

2b
.

Finally recall the following characterization (partly hidden in [2]).

Theorem 1.7. A 2× 2 integral matrix A =

[
a b
c d

]
is nontrivial clean iff the system

x2 + x + yz = 0 (1.1)

(a− d)x + cy + bz + det(A)− d = ±1 (1.2)

with unknowns x, y, z, has at least one solution over Z. If b 6= 0 and (1.2) holds, then
(1.1) is equivalent to

bx2 − (a− d)xy − cy2 + bx + (d− det(A)± 1)y = 0. (1.3)

The equation (1.3) is a quadratic Diophantine equation in x an y, and its type
(elliptic, parabolic, or hyperbolic) is defined by its discriminant ([3, p.119-120]). In
our case we have ∆ = (a− d)2 + 4bc = Tr2(A)− 4 det(A).
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2. The elliptic case

Theorem 2.1. Units in the elliptic case are not uniquely clean.

Proof. First notice that in this case, Tr2(U) − 4 detU < 0. This happens only if
detU = 1 and Tr2(U) < 4.

Hence units U in the elliptic case have detU = 1 and Tr(U) ∈ {−1, 0, 1}. Com-
paring with Lemma 1.1, for detU = 1 only Tr(U) ∈ {−1, 0} are suitable. Therefore
we go into 2 cases.

(i) If Tr(U) = −1, the characteristic polynomial for such matrices is X2 +X +1.
Such matrices are of form

U =

[
a b
c −a− 1

]
(2.1)

with a(a + 1) + bc = −1. The discriminant ∆ = Tr2(U) − 4 det(U) = −3 which has
class number 1 (see e.g. [5], p. 229).

To find the reduced matrix it suffices to reduce any representative of this simi-

larity class, say

[
4 −7
3 −5

]
. All matrices of type (2.1) are (not) uniquely clean iff the

reduced representative is so. This is (see [4], p. 7)

[
−1 −1
1 0

]
and it is readily seen

that this matrix is not uniquely clean. It has 3 nontrivial clean decompositions:[
1 0
0 0

]
+

[
−2 −1
1 0

]
=

[
0 0
1 1

]
+

[
−1 −1
0 −1

]
=

[
0 −1
0 1

]
+

[
−1 0
1 −1

]
.

Hence the matrices of type (2.1) are not uniquely clean.

(ii) If Tr(U) = 0, by Cayley-Hamilton theorem, U2 + I2 = 02, i.e. U2 = −I2 and
so

U =

 a b

−a2 + 1

b
−a


for integers a, b with b a nonzero divisor of a2 + 1.

Again, the discriminant ∆ = Tr2(U) − 4 det(U) = −4 which has (also) class
number 1, and we argue as in the previous case. The reduced representative of this

similarity class is

[
0 −1
1 0

]
.

Alternatively, it suffices to notice that matrices with b ∈ {±1} in this class, are
not uniquely clean:[

a ±1
∓(a2 + 1) −a

]
=

[
1 0
∓a 0

]
+

[
a− 1 ±1

∓a2 ± a∓ 1 −a

]
=

[
0 0
±a 1

]
+

[
a ±1

∓(a2 + a + 1) −a− 1

]
.

This includes the reduced representative above. �
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3. The parabolic case

A unit u is called unipotent if u = 1 + t with nilpotent t. The units, in the
parabolic case, are precisely the unipotents (including I2) and negatives of unipotents.

Indeed, in this case we have detU = 1 and Tr(U) ∈ {−2, 2}. The characteristic
polynomial is now X2 ± 2X + 1 = (X ± 1)2 and so by Cayley-Hamilton theorem, we
have to consider two cases: either (U − I2)2 = 02, i.e., U = I2 + T is unipotent (with
nilpotent T ), or else (U + I2)2 = 02, i.e., −U = I2 − T is unipotent.

Since we intend to prove that units in the parabolic case are not uniquely clean,
in the proof of the next theorem, we deal with the first case, i.e. det = 1 and Tr(U) =

−2. Matrices in this case are of form

[
a b
c −a− 2

]
with a(a + 2) + bc = −1, i.e.

bc = −(a + 1)2. The discriminant is now ∆ = Tr2(U) − 4 det(U) = 0. The proof in
the second case is analogous.

Theorem 3.1. Units in the parabolic case are not uniquely clean.

Proof. The proof follows the same lines as the proof of Theorem 2.1. The characteristic
polynomial for such matrices is (X−1)2, so factors over Z and it suffices to deal with

the reduced representative, which is now V =

[
−1 1
0 −1

]
(we just use the algorithm

described by [4], in the proof of Theorem 1.5, for example for

[
0 1
−1 −2

]
). Thus

V =

[
n + 1 n2 + n
−1 −n

]
+

[
−n− 2 −n2 − n + 1

1 n− 1

]
for every integer n (infinite clean index) is not uniquely clean, and nor are all units
in the parabolic case. �

4. The hyperbolic case

Theorem 4.1. The only units in the hyperbolic case which are uniquely clean are the

matrices similar to

[
1 0
0 −1

]
.

Proof. We have to distinguish two cases.
1. For a unit U we have det(U) = −1.
Here also we go into 2 subcases.
(i) Tr(U) = 0. In this subcase ∆ = 22 is a square, the characteristic polynomial

factors over Z (i.e. X2 − 1 = (X − 1)(X + 1)) and the proof follows the same lines
as in the parabolic case. Again it suffices to deal with the reduced representatives

which are now S =

[
1 0
0 −1

]
and T =

[
1 1
0 −1

]
. Since for S, equations (1.2) (see

Theorem 1.7) are 2x = ±1, with no integer solutions, this unit has no nontrivial clean
decomposition. Since S−I2 is not a unit, we deduce that S is indeed a uniquely clean
matrix. So are all matrices similar to S.
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Hence all units (with det(U) = −1 and Tr(U) = 0) similar to

[
1 0
0 −1

]
are

uniquely clean.

Notice that not all units U with det(U) = −1 and Tr(U) = 0 are uniquely clean.
Indeed, the matrices similar to T have nontrivial clean decompositions and so, are
not uniquely clean. An example:[

2 3
−1 −2

]
=

[
1 0
0 0

]
+

[
1 3
−1 −2

]
,

is a nontrivial clean decomposition. 4).

(ii) Tr(U) 6= 0. In this subcase ∆ = Tr2(U)− 4 det(U) = Tr2(U) + 4 > 0 is never
a square over Z (otherwise 2 would be component of a Pythagorean triple) and we
use Theorem 1.6. In doing so, notice that it suffices to show that any reduced matrix
(from the cycle) in any given similarity class is not uniquely clean. Denote Tr(U) = t.
If t > 0 then a reduced representative is

Wt =

[
0 1
1 t

]
,

which is not uniquely clean since

Wt =

[
1 t
0 0

]
+

[
−1 1− t
1 t

]
.

If t < 0, a reduced representative is

Vt =

[
t 1
1 0

]
,

also not uniquely clean, having a symmetric nontrivial clean decomposition.

2. For a unit U we have det(U) = 1 and |Tr(U)| > 2.

Here ∆ = Tr2(U)−4 det(U) = Tr2(U)−4 > 0 is never a square over Z (otherwise
2 would be component of a Pythagorean triple) and we use Theorem 1.6. We argue

as in the previous subcase: now a reduced representative is

[
0 −1
1 t− 2

]
, if t > 2

and

[
t + 2 −1

1 0

]
, if t < −2. Both are not uniquely clean. Indeed, a nontrivial clean

decomposition for the first is[
1 t− 4
0 0

]
+

[
−1 −t + 3
1 t− 2

]
,

and is [
0 t + 2
0 1

]
+

[
t + 2 −t− 3

1 −1

]
for the second. �

Therefore, the final conclusion of our paper is
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Theorem 4.2. An invertible 2× 2 integral matrix U is uniquely clean iff it is similar

to

[
1 0
0 −1

]
, i.e., there exists a unit K such that

KU =

[
1 0
0 −1

]
K.
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Finite valuated groups as modules over their
endomorphism ring

Ulrich Albrecht

Abstract. This paper discusses the structure of a finite valuated p-group when
viewed as a module over its endomorphism ring. A category equivalence between
full subcategories of the category of valuated p-groups and the category of right
modules over the endomorphism ring of A is used to investigate the interac-
tion between this module structure and homological properties of the underlying
group. Examples are given throughout the paper.

Mathematics Subject Classification (2010): 20K30, 20K40, 20K10.

Keywords: Valuated p-group, endomorphism ring, Ulmer’s theorem, projective
module.

1. Introduction

Consider a prime p and a p-local Abelian group G. A valuation v on G assigns
a value v(g) to each g ∈ G which is either an ordinal or ∞ subject to the rules

i) v(px) > v(x) for all x ∈ G where ∞ >∞,
ii) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ G, and

iii) v(nx) = v(x) whenever n and p are relatively prime [11].

The third condition is redundant whenever G is a p-group. The valuated p-local
groups are the objects of the category Vp studied extensively by Hunter, Richman
and Walker (e.g. see [7], [8] and [11]). A group homomorphism α : (G, v)→ (H,w) is
a Vp-morphism if w(α(x)) ≥ v(x) for all x ∈ G, and we write α ∈ Mor(G,H) in this
case. The category Vp is pre-Abelian, i.e. all maps have kernels and cokernels. While
the kernel and cokernel of a Vp-map G→ H are its kernel and cokernel in the category
Ab of Abelian groups, their valuations are induced by those on G and H respectively.
Consequently, monomorphisms and epimorphisms need not be kernels and cokernels;
and Vp is not Abelian. Finally, the forgetful functor F : Vp → Ab strips a valuated
group (G, v) of its valuation.
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In this paper, all valuated groups are assumed to be finite valuated p-groups.
Although the group structure of a finite valuated p-group is well understood, the
addition of a valuation directly impacts its homological properties. In addition, Arnold
discovered a surprising connection between finite valuated p-groups and torsion-free
Abelian groups of finite rank in [3] by demonstrating that representation theory can
be used to investigate finite rank Butler groups as well as finite valuated p-groups.
Moreover, both classes of groups are equally difficult to describe.

This paper follows Arnold’s approach by investigating valuated p-groups using
tools which have traditionally been used in the discussion of torsion-free groups of
finite rank. For instance, homological properties of Abelian groups A of finite torsion-
free rank have been successfully studied by viewing A as a left module over its endo-
morphism ring. This paper extends this approach to finite valuated p-groups by con-
sidering such a group A as a module over its Vp-endomorphism ring R = Mor(A,A)
and by studying how this module structure affects the homological properties of A.
Section 2 focuses on the case that A is projective as an R-module, while Section 3
considers the case that R has specific ring-theoretic properties.

2. Valuated p-Groups Projective as R-modules

A finite valuated p-group A-free if it is isomorphic to An for some n < ω, and
A-projective if it is a Vp-direct summand of an A-free group. Since A is a left R-
module, HA = Mor(A,−) can be viewed as a functor from Vp to the category MR

of right R-modules, with the property that HA(P ) is free (projective) if P is A-free
(A-projective).

We begin our discussion with a few technical results. If α is a kernel in Vp, then
α = ker(coker(α)) [12]; and a similar result holds for cokernels. However, composition
of kernels (cokernels) in Vp need not be kernels (cokernels) [10]. Therefore, the usual
homological constructions may not carry over from Abelian categories. Nevertheless, it
is still possible to develop a homological algebra for pre-Abelian categories as Yakovlev
showed in [14].

Lemma 2.1. Let A, B and C be valuated p-groups. If α ∈ Mor(A,B) is an epimorphism
and β ∈ Mor(B,C) such that βα is a cokernel of a Vp-map δ, then β is a cokernel
for αδ.

Proof. Suppose that φ satisfies φαδ = 0. Since βα is a cokernel for δ, there is a
map ψ such that ψβα = φα. Because α is an epimorphism, φ = ψβ. Since β is an
epimorphism, ψ is unique with this property. �

A sequence A
α→ B

β→ C of valuated p-groups is is left-exact if α is a kernel for
β, and right-exact if β is a cokernel for α. It is exact in Vp if α is a kernel for β and
β is a cokernel for α [11]. The functor HA : Vp →MR is left-exact since

0→ HA(U)
HA(α)−→ HA(B)

HA(β)−→ HA(C) (∗)
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is an exact sequence of right R-modules whenever

0→ U
α−→ B

β−→ C

is a left-exact sequence of valuated p-groups.
Consider the functor tA :MR → Ab defined by tA = −⊗R A for all M ∈ MR.

If F is a free right R-module with basis {xi | i ∈ I}, then

v(Σi∈Ixi ⊗ ai) = min{v(ai) | i ∈ I}

defines a valuation on tA(F ), and the resulting valuated group is denoted by TA(F )
[1]. To define a valuation on tA(M) for an arbitrary right R-module M , we choose a
free resolution

F1
α−→ F0

β−→M → 0

of M . Applying tA induces an exact sequence

TA(F1)
tA(α)−→ TA(F0)

tA(β)−→ tA(M)→ 0

where tA(α) is a Vp-map, which we denote as TA(α), by [1]. Since Vp is pre-Abelian,
there is a unique valuation v on tA(M) such that tA(β) becomes the Vp-cokernel of
TA(α) [11]. We define TA(M) = (tA(M), v), and observe tA = FTA. The next result
summarizes the basic properties of TA which were established in [2, Section 2]:

Theorem 2.2. [2] Let A be a finite valuated p-group.

a) TA :MR → Vp is a right exact functor.
b) The evaluation map θG : TAHA(G) → G defined by θG(α ⊗ a) = α(a) is a

natural Vp-map for all valuated p-groups G such that θP is an isomorphism for
all A-projective groups P .

c) The natural map ΦM : M → Hom(A, TA(M)) defined by [ΦM (x)](a) = x ⊗ a
is a natural transformation such that θTA(M)TA(ΦM ) = 1TA(M) for all right R-
modules M . Moreover, ΦP is an isomorphism for all finitely generated projective
right R-modules P .

An epimorphism G→ H of valuated p-groups is A-balanced if the induced map
HA(α) : HA(G)→ HA(H) is onto. A valuated p-group G is weakly A-generated if we
can find an A-balanced epimorphism

⊕IA
β−→ G→ 0

for some index-set I. It is A-generated if β can be chosen to be a cokernel in Vp.
Although there is no need to distinguish between A-generated and weakly A-generated
objects in an Abelian category, it is necessary to do this in the pre-Abelian case as
was shown in [2].

A valuated p-group G is A-presented if there is an exact sequence

0→ U → F → G→ 0

of valuated p-groups such that F is A-free and U is weakly A-generated. If this
sequence can be chosen to be A-balanced, then G is called A-solvable. A valuated
p-group G is A-presented if and only if G ∼= TA(M) for some right R-module M .
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Moreover, it is A-solvable if and only if θG is an isomorphism [2]. In particular, every
A-projective group is A-solvable.

In a pre-Abelian category like Vp, neither the 5-Lemma nor the Snake-Lemma
need to hold [11]. The next result is frequently used in this paper as a substitute for
the 5-Lemma throughout this paper:

Lemma 2.3. Let A be a finite valuated p-groups. If 0 → U
α−→ H

β−→ G → 0 is a
Vp-exact sequence such that θH is an isomorphism, then there exists a commutative
Vp-diagram

TAHA(U)
TAHA(α)−−−−−−→ TAHA(H)

TAHA(β)−−−−−−→ TA(M) −−−−→ 0yθU o
yθH yθ

0 −−−−→ U
α−−−−→ H

β−−−−→ G −−−−→ 0

with Vp-exact rows in which M = imHA(β) ⊆ HA(G) and θ : TA(M) → G is the
evaluation map. Moreover, θ is a cokernel, and θ = θGTA(ι) where ι : M → HA(G)
is the inclusion map.

Proof. Since HA is left-exact, every exact sequence

0→ U
α−→ H

β−→ G→ 0

of valuated groups induces an exact sequence

0→ HA(U)
HA(α)−→ HA(H)

HA(β)−→ M → 0

of right R-modules where M = im(HA(β)) is a submodule of HA(G). By Part a) of
Theorem 2.2, the induced sequence

TAHA(U)
TAHA(α)−→ TAHA(H)

TAHA(β)−→ TA(M)→ 0

is right exact. Part b) of same result yields that θU and θG are Vp-maps, and the
commutativity of the diagram follows directly. Since TA(ι) is a Vp-map by another
application of Theorem 2.2, the same holds for θ = TA(ι)θG. Using the fact that θH
is a Vp-isomorphism, we obtain θ[TA(β)θ−1

H ] = β. Because TA(β) is a cokernel, θ is a
cokernel by Lemma 2.1. �

Ulmer described the objects of an Abelian Groethendick category which are flat
over their endomorphism ring [13]. When discussing the validity of Ulmer’s result in
Vp, one immediately realizes that his original arguments need to be modified exten-
sively because this category is only pre-Abelian. In particular, we want to remind
the reader that a finite valuated p-group is flat as an R-module if and only if it is
projective.

Theorem 2.4. The following conditions are equivalent for a finite valuated p-group A:

a) A is projective as a left R-module.
b) Whenever φ ∈ Mor(An, A) for some n < ω, then ker φ is weakly A-generated.
c) Whenever φ ∈ Mor(G,H) for A-solvable valuated p-groups G and H, then ker φ

is weakly A-generated.
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Proof. a)⇒ c): For K = ker φ, consider the exact sequence

0→ HA(K) −→ HA(G)
φ−→M → 0

of right R-modules in which M = im(HA(φ)) is a submodule of HA(H). Let ι denote
embedding M ⊆ HA(H). By Proposition 2.3, we obtain a commutative diagram

0 −−−−→ TAHA(K) −−−−→ TAHA(G)
TAHA(φ)−−−−−−→ TA(M) −−−−→ 0yθK o

yθ⊕IG

yθ
0 −−−−→ K −−−−→ G

φ−−−−→ H

of Vp-maps whose top-row is right exact in Vp. Moreover, it is exact in Ab since A
is projective as a left R-module. Using the projectivity of A once more yields that
TA(ι) is a monomorphism, and the same holds for θ = θHTA(ι) since H is A-solvable.
Thus, θ is an isomorphism of Abelian groups. Because the 3-Lemma is valid in Ab,
we obtain that θK is an epimorphism in Ab, and hence in Vp.

Since c)⇒ b) is obvious, it remains to show b)⇒ a):
It suffices to establish that the inclusion map ι : I → R induces a monomorphism

tA(ι) : tA(I) → tA(R) of Abelian groups for all right ideals I of R. Since R is finite,
I = {r1, . . . , rn}. We define a map φ1 : F = Rn → I by φ1(ei) = ri where {e1, . . . , en}
is an R-basis of F . Set φ = ιφ1 : F → R. By b), the kernel K of the Vp-map
TA(φ) : TA(F ) → TA(R) is weakly A-generated. Since A is finite, we can select a
finite A-projective group P and an A-balanced epimorphism λ : P → K. Because

0→ K → TA(F )
TA(φ)−→ TA(R)

is Vp-exact, the induced sequence

0→ HA(K)→ HATA(F )
HATA(φ)−→ HATA(R)

is exact. Combining this sequence with HA(λ) yields that the top-row of the commu-
tative diagram

HA(P )
HA(λ)−−−−→ HATA(F )

HATA(φ)−−−−−−→ HATA(R)

o
xΦF o

xΦR

F
φ−−−−→ R

of right R-modules is exact. In view of φ(F ) = I, the diagram gives us the exact
sequence

(E) HA(P )
HA(λ)−→ HATA(F )

φ1Φ−1
F−→ I → 0

of right R-modules. Since θTA(M)TA(ΦM ) = 1TA(M) for all right R-modules M , we

obtain θTA(X) = TA(Φ−1
X ) for all finitely generated projective right R-modules X.

Hence,

TA(φ)θTA(F ) = TA(φΦ−1
F ) = TA(Φ−1

R HATA(φ)) = θTA(R)TAHATA(φ).

Because of this and Theorem 2.2, an application of TA yields the commutative diagram
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TAHA(P )
TAHA(λ)−−−−−−→ TAHATA(F )

TAHATA(φ)−−−−−−−−→ TAHATA(R)

o
yθP o

yθTA(F ) o
yθTA(R)

P
λ−−−−→ TA(F )

TA(φ)−−−−→ TA(R)

of Abelian groups. Since it suffices to show that tA(ι) is a monomorphism of Abelian
groups, our computations are done from this point only in Ab instead of in Vp. In
particular, we use the fact that the Vp-kernel of a map is its kernel in Ab with a
valuation added. The symbols tA and TA can be used interchangeably when computing
in Ab.

Observe that the bottom row of the last diagram is exact at TA(F ) as a sequence
of Abelian groups by the choice of P and λ. Since the vertical maps are isomorphisms,
the top-row is exact at TAHATA(F ). Moreover, (E) induces the exact sequence

TAHA(P )
TAHA(λ)−→ TAHATA(F )

TA(φ1Φ−1
F )

−→ TA(I)→ 0

of Abelian groups. Therefore, the map TA(φ1Φ−1
F ) is a cokernel in Ab for the left

top-map TAHA(λ). On the other hand, the projection

π : TA(F )→ G = TA(F )/K

is a cokernel of λ in Ab. Hence, there is an isomorphism σ : TA(I) = tA(I) → G of
Abelian groups such that πθTA(F ) = σTA(φ1Φ−1

F ). Since the bottom row of the last
diagram is exact at TA(F ), there is a map τ : G → TA(R) with τπ = TA(φ) using
the exactness of the bottom row of the last diagram once more. For g ∈ ker τ , select
x ∈ TA(F ) with π(x) = g. Then 0 = τπ(x) = TA(φ)(x) yields x = λ(y) for some
y ∈ P . Hence, g = πλ(y) = 0, and τ is a monomorphism.

Because HATA(φ1)ΦF = ΦIφ1, we have

θTA(R)TAHATA(ι)TA(ΦI)TA(φ1) = θTA(R)TAHATA(ι)TAHATA(φ1)TA(ΦF )

= θTA(R)TAHATA(φ)TA(ΦF )

= TA(φ)θTA(F )TA(ΦF )

= τπθTA(F )TA(ΦF )

= τσTA(φ1Φ−1
F )TA(ΦF )

= τσTA(φ1).

Since TA(φ1) is an epimorphism, we obtain that

θTA(R)TAHATA(ι)TA(ΦI) = τσ

is a monomorphism since the maps on the right are monomorphisms, and the same
holds for

TA(ΦR)tA(ι) = TAHATA(ι)TA(ΦI)

using the fact that TA(R) ∼= A. Because TA(ΦR) is an isomorphism, tA(ι) is one-to-one
as desired. �

For a finite p-group G, let e(A) denote the smallest n < ω such that pnG = 0.
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Corollary 2.5. Every finite valuated p-group A is a direct summand of a finite valuated
p-group B such that e(A) = e(B) and B is flat as a module over its endomorphism
ring.

Proof. Choose n < ω minimal with the property that pnA = 0, and consider the
group B = Z/pnZ ⊕ A where Z/pn carries the height valuation h. Since h is the
smallest valuation on Z/pnZ, and every B-generated group is bounded by pn, the
kernel of every map between any two B-generated groups is a Vp-epimorphic image
of (Z/pnZ, h). By Theorem 2.4, B is projective over its endomorphism ring. �

We continue our discussion by looking at simply presented groups. A (p-)valuated
tree is a set X, on which a partial multiplication by p is defined, together with a
function v assigning a value v(x) to each x ∈ X which is either an ordinal or ∞
subject to the rules

i) If pnx = x for some 0 < n < ω, then px = x, and there is exactly one element
in X with this property, called the root of X.

ii) v(px) > v(x) whenever px is defined.

Moreover, if X1, . . . , Xn are rooted valuated trees, then the co-product ∪ni=1Xi in the
category of valuated p-tree is the tree that is obtained by joining X1, . . . , Xn at their
roots.

Associated with any rooted tree X is a simply presented valuated p-group S(X)
defined as FX/RX where FX is a free Zp-module with basis {〈x〉|x ∈ X} and RX is
generated by the elements p〈x〉 − 〈px〉. If we set x = 〈x〉+RX , then every g ∈ S(X)
has a unique presentation g = Σx∈Xnxx with 0 ≤ nx < p, and the valuation on S(X)
is defined by

v(g) = min{v(x) | nx 6= 0}.
Finally, a valuated cyclic p-group G of order pn is of the form G = S(X) for a valuated
p-tree X = {x0, . . . , xn−1} such that G = 〈x0〉 and xi = pxi−1 for i = 1, . . . , n.

A map ψ : X → Y between valuated trees is a tree map if ψ(px) = pψ(x) if px
exists and v(ψ(x)) ≥ v(x). A tree map r : X → X is a retraction if r2 = r. Hunter,
Richman and Walker showed that there is an order preserving retraction from S(X)
onto X for all valuated trees [7]. Moreover, every tree map ψ : X → Y induces a
Vp-map ψ : S(X)→ S(Y ).

Corollary 2.6. The following conditions are equivalent for a finite valuated p-group A:

a) A is a cyclic group.
b) A is an indecomposable simply presented group which is projective as an R-

module.

Proof. It remains to show that an indecomposable simply presented group A is cyclic
if it is projective as an R-module. Since A is indecomposable, R is a local ring.
Therefore, all projective R-modules are free. Consequently, we can find a ∈ A such
that A = Ra, and ra 6= 0 for all non-zero r ∈ R.

Write A = S(X) for some valuated tree X. Since A is indecomposable, X is
irretractable and has a unique element y of order p. Let x1, . . . , xn be the elements
of maximal order of X, and select r1, . . . , rn ∈ R such that xi = ria for i = 1, . . . , n.
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If r1, . . . , rn ∈ J(R), then A = J(R)A because x1, . . . , xn generate A as an Abelian
group, which is impossible by Nakayama’s Lemma. Therefore, we may, without loss
of generality, assume r1 /∈ J(R). Thus, r1 is a unit in R, and

A = Ra = Rr1a = Rx1.

Moreover, if sx1 = 0, then

0 = sx1 = sr1(r−1
1 x1) = sr1a

from which we obtain sr1 = 0. Then s = 0 since r1 is a unit of R. Therefore, φ(x1) 6= 0
for all non-zero φ ∈ R.

Suppose that n > 1, and define a map r : X → X by r(x) = 0 if x 6= x2 and
r(x2) = y. Observe that v(x2) ≤ v(y) by the choice of x2 and y. For x 6= x2, px 6= x2

because x2 is an element of maximal order. Thus, r(px) = 0. On the other hand
pr(x2) = py = 0 while r(px2) = 0 since px2 6= x2. Therefore, r is a map of valuated
trees, and induces an endomorphism α of the valuated group A with α(x1) = 0 and
α(x2) = y 6= 0, a contradiction. Consequently, X has only one element x1 of maximal
order, and A = 〈x1〉. �

However, Corollary 2.5 shows that a simply presented group which is flat as a
module over its endomorphism ring need not be a direct sum of cyclic groups. More-
over, there are infinitely many isomorphism classes of indecomposable finite valuated
p-groups G such that p4G = 0 and v(g) ≤ 9 for all 0 6= g ∈ G [3, Example 8.2.5].
Furthermore, the category of indecomposable finite valuated p-groups G such that
p5G = 0 and v(g) ≤ 11 for all 0 6= g ∈ G has wild representation type [3, Example
8.2.6].

Example 2.7. Let A1 = 〈a1〉, A2 = 〈a2〉 and A3 = 〈a3〉 be cyclic groups of order p3,
and define a valuation on A1 by v(a1) = 1, v(pa1) = 4 and v(p2a1) = 5 and on A2 by
v(a2) = 2, v(pa2) = 3 and v(p2a2) = 5. Finally, set v(a3) =∞.

To see that A = A1 ⊕ A2 ⊕ A3 is not flat as an R-module, consider the map
δ : A1 ⊕ A2 → A3 defined by δ((na1,ma2)) = (n − m)a3. It is easy to see that
K = ker δ =< (a1, a2) > and v(a1, a2) = 1, v(pa1, pa2) = 3, and v(p2a1, p

2a2) = 5.
If φ ∈ Mor(A1,K), then φ(a1) ∈ pK for otherwise

4 = v(pa1) ≤ v(φ(pa1)) = v(pa1, pa2) = 3.

Similarly, if ψ ∈ Mor(A2,K), then ψ(a2) ∈ pK since otherwise

2 = v(a2) ≤ v(ψ(a2)) = v(a1, a2) = 1.

Since Mor(A3, A1⊕A2) = 0, we have im θK ⊆ pK, and K is not weakly A-generated.
By Theorem 2.4, A is not projective as an R-module.

Example 2.8. If A = 〈x〉 is a cyclic group of order p2 with the height valuation, then
A is free as a module over its endomorphism ring E = Z/p2Z. Moreover, v(px) = 1.
On the other hand, M = Z/pZ is a left E-module which fits into the exact sequence

E
α−→ E

β−→M → 0

where α(1 + p2Z) = p + p2Z and β(1 + p2Z) = 1 + pZ. Then TA(M) ∼= Z/pZ and
setting v(1 + pZ) = 0 yields the cokernel valuation on TA(M). On the other hand,
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the map γ : M → E defined by γ(1 + pZ) = p + p2Z induces a monomorphism
TA(γ) : TA(M)→ A such that im(TA(γ)) = 〈px〉. Since

0 = v(1 + pZ) < v(px) = 1,

the map TA(γ) does not preserve valuations. If we consider the sequence

0→M
γ−→ E

β−→M → 0,

then TA(γ) : TA(M)→ TA(E) is not a kernel for TA(β).

Therefore, the class of A-solvable groups may behave quite different from the
case that A is either a torsion-free or mixed Abelian group even if A is a finite valuated
p-group which is projective over its endomorphism ring. For instance, the kernel of
a map between two A-solvable groups need not be A-solvable, nor is a weakly A-
generated subgroup U of an A-solvable group necessarily A-solvable.

Corollary 2.9. Let A be a finite valuated p-group which is projective as an R-module.
An A-generated subgroup U of an A-solvable group G is A-solvable.

Proof. By Proposition 2.3, it remains to show that θU is an isomorphism in Vp. Since
A is projective as an R-module, one can argue as in the case of torsion-free groups that
θU is an isomorphism of Abelian groups. Select an A-free group F and an A-balanced

exact sequence 0→ V
α−→ F

β−→ U → 0. It induces the commutative diagram

TAHA(F )
TAHA(β)−−−−−−→ TAHA(U) −−−−→ 0

o
yθF yθU

0 −−−−→ V
α−−−−→ F

β−−−−→ U −−−−→ 0.

Since θU is an isomorphism of Abelian groups, TAHA(β)θ−1
F α = 0. There is a Vp-map

λ : U → TAHA(U) such that TAHA(β)θ−1
F = λβ because β is a cokernel of α in Vp.

Then

θUλβ = θUTAHA(β)θ−1
F = β

yields θUλ = 1U . Thus, λθU = 1TAHA(U) since θU is an isomorphism of Abelian
groups. Hence

v(x) = v(λθU (x)) ≥ v(θU (x)) ≥ v(x)

for all x ∈ TAHA(U). Thus, θU is a Vp-isomorphism. �

Corollary 2.10. The following conditions are equivalent for a finite valuated p-group
A:

a) A is a progenerator for RM.
b) i) Whenever φ ∈ Mor(G,H) for A-solvable valuated p-groups G and H, then

ker φ is weakly A-generated.
ii) Whenever φ ∈ Mor(G,H) is an epimorphism of A-solvable valuated p-

groups G and H, then HA(φ) is an epimorphism.
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Proof. a) ⇒ b): It remains to show that ii) holds. For this, consider the submodule
M = im HA(φ) of HA(H), and denote the inclusion map M → HA(H) by ι. The
evaluation map θ : TA(M)→ H is a Vp-map since it satisfies θ = θHTA(ι). Moreover,
it is one-to-one since A is a projective as a right R-module guarantees that TA(ι) is a
monomorphism of Abelian groups and θH is an isomorphism. On the other hand, it
also fits into the commutative diagram

TAHA(G)
TA(φ)−−−−→ TA(M) −−−−→ 0

o
yθG yθ
G

φ−−−−→ H −−−−→ 0.

Hence, θ is an isomorphism of Abelian groups, and the same holds for TA(ι). However,
the latter fits into the exact sequence

TA(M)
TA(ι)−→ TAHA(H)→ HA(H)/M → 0.

Therefore, TA(HA(H)/M) = 0. Since A is a projective generator, M = HA(H).

b)⇒ a): By [9, Proposition 2.4], every faithful projective module is a generator.
Since A is a projective left R-module by Theorem 2.4, it remains to show that it is
faithful. Let M be a right R-module with tA(M) = 0, and consider an exact sequence
P → F → M → 0 in which P and F are projective module. By Theorem 2.2, we
obtain a right exact sequence TA(P ) → TA(F ) → 0 of valuated p-groups. By ii), the
top sequence in the diagram

HATA(P ) −−−−→ HATA(F ) −−−−→ 0

o
xΦP o

xΦF

P −−−−→ F −−−−→ M −−−−→ 0
is exact. Thus, M = 0. �

3. Hereditary and Quasi-Frobenius Endomorphism Rings

We conclude our discussion by considering finite valuated p-groups A whose
endomorphism ring has specific ring-theoretic properties. We focus particularly on
the cases that R is either hereditary or self-injective. We want to remind the reader
that there is no need to deal with right/left conditions since R is finite [4].

A finite valuated p-group G is A-torsion-less if there is a monomorphism G→ A`

for some ` < ω. We say that an exact sequence of valuated groups is A-cobalanced if
A is injective with respect to it.

Theorem 3.1. Let R be a finite valuated p-group A:

a) R is hereditary if and only if A is a direct sum of cyclic groups of order p.
b) R is (semi-)simple Artinian if and only if A ∼= Bm where B is a cyclic group of

order p.
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c) If R is a quasi-Frobenius ring, then every exact sequence 0 → U → G in which
U is weakly A-generated and G is A-solvable is A-cobalanced. If A is a projective
R-module, then the converse holds, and every A-presented group is A-torsion-
less.

Proof. a) If R is hereditary, then so is eRe for any idempotent e of R [4]. If B is an
indecomposable summand of A, then there is a primitive idempotent e of R such that
eRe is the Vp-endomorphism ring of B. Since eRe is a hereditary local ring, all right
ideals of eRe are free eRe-modules. However, this means that eRe is a field since it
is finite. Because, pE(B) is a proper ideal of E(B), we have pB = 0. By [8], B is a
cyclic group. Hence, A is a direct sum of cyclic groups of order p.

Conversely, if A has the described form, then A = A1⊕ . . .⊕An where Ai ∼= B`ii
and each Bi is a cyclic group of order p. If Bi = 〈bi〉, then no generality is lost if we
assume v(bi) < v(bj) for i < j and v(bi) 6= ∞ for i < n. Then Mor(Bi, Bj) ∼= Z/pZ
if i ≤ j, and Mor(Bi, Bj) = 0 otherwise. Therefore, R is Morita-equivalent to a lower
triangular matrix ring over Z/pZ. By [5], R is hereditary.

b) We continue using the notation from a). If A = A1⊕ . . .⊕An and n > 1, then
Mor(Ai, Aj) = 0 for i > j, but Mor(Ai, Aj) 6= 0 for i < j. In particular, N(R) 6= 0.
b) now follows immediately.

c) If R is quasi-Frobenius, then we consider an exact sequence 0→ U
α−→ G in

which U is an epimorphic image of an A-projective group and G is A-solvable. For
φ ∈ Mor(U,A), we can find a map ψ : HA(G) → R such that ψHA(α) = φ. Since
both, α and φ, fit into the commutative diagram

TAHA(U)
TAHA(.)−−−−−−→ TAHA(G)yθU o

yθG
U

.−−−−→ G,
we obtain

TA(ψ)θ−1
G αθU = θATA(ψ)TAHA(α) = θATAHA(φ) = φθU .

Because θU is a Vp-epimorphism, TA(ψ)θ−1
G α = φ.

Conversely, let

0→ I
α−→ R

be an exact sequence and φ ∈ HomR(I,R). Because A is a flat R-module,

0→ TA(I)
TA(α)−→ TA(R)

is a Vp-exact sequence. Since TA(I) is an image of an A-projective group, there is a
map ψ ∈ Mor(TA(R), TA(R)) such that ψTA(α) = TA(φ). We consider commutative
diagrams of the form

0 −−−−→ HATA(I)
HATA(.)−−−−−−→ HATA(R)xΦI o

xΦR

0 −−−−→ I
.−−−−→ R
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to obtain

Φ−1
R HA(ψ)ΦRα = Φ−1

R HA(ψ)HATA(α)ΦI

= Φ−1
R HATA(φ)ΦI

= Φ−1
R ΦRφ = φ.

Finally, if G is an A-presented group, then G ∼= TA(M) for some finitely gen-
erated right R-module M by [2] as mentioned before. Let E be an injective hull of
M . Since R is quasi-Frobenius, E is projective. Thus, M can be embedded into a
free R-module F , which can be chosen to be finite since M is finite. Then TA(M) is
isomorphic to a submodule of TA(F ) since A is projective. �

Corollary 3.2. Let A be a finite valuated p-group whose endomorphism ring is self-
injective. Every exact sequence

0→ P
α−→ G

such that P is A-projective and G is A-solvable splits.

�
We conclude with two examples that show that the endomorphism ring of a

direct sum of cyclic valuated p-groups may or may not be quasi-Frobenius:

Example 3.3. a) Let A1 be a cyclic group of order pn, and A2 a cyclic valuated
group of order pn whose generator x satisfies v(pn−1x) > n. Then, the endo-
morphism ring of A = A1 ⊕ A2 is the lower triangular matrix ring over Z/pnZ,
which is not self-injective.

b) By [6, Example 1], the ring

R =

[
Z/p3Z pZ/p3Z
pZ/p3Z Z/p3Z

]
is quasi-Frobenius. Consider two cyclic valuated groups A1 = (〈x1〉, v1) and A2 =
(〈x2〉, v2) of order p3 such that v1(x1) = 1, v1(px1) = 4, v2(x2) = 2, v2(px2) = 3
and v1(p2x1) = v2(p2x2) ≥ 5. In view of the fact that Mor(Ai, Aj) ∼= Z/p2Z for
i 6= j, we obtain that A = A1 ⊕A2 has R as its Vp-endomorphism ring.
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1. Introduction

One of the most famous inequality for convex functions is so called Hermite-
Hadamard inequality as follows: Let f : I ⊆ R→ R be a convex function and a, b ∈ I
with a < b, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1.1)

This famous inequality discovered by C. Hermite and J. Hadamard is important in
the literature. For more studies via Hermite Hadamard type inequalities see [13] in
the references.

Definition 1.1. Let f : I ⊆ R→ R be a function and a, b ∈ I with a < b, the function
f : I ⊆ R→ R is said to be convex if the inequality

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

holds for all x, y ∈ I and t ∈ [0, 1].
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Definition 1.2. [7, 15] A function f : R+ → R is said to be s-convex in the second
sense if

f(αx+ βy) ≤ αsf(x) + βsf(y)

for all x, y ∈ R+ and all α, β ≥ 0 with α+ β = 1.

We denote this by K2
s . It is obvious that the s-convexity means just the convexity

when s = 1.

In [12] Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequal-
ity which holds for s-convex functions in the second sense.

Theorem 1.3. Suppose that f : [0,∞)→ [0,∞) is an s-convex function in the second
sense, where s ∈ (0, 1] and let a, b ∈ [0,∞), a < b. If f ∈ L1[a, b], then the following
inequality hold:

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

s+ 1
(1.2)

The constant k = 1
s+1 is the best possible in the second inequality in (1.2). For

more study related to s-convexity in the second sense, see, e.g, (for example) ([3], [5],
[11]).

Theory of convex functions has great importance in various fields of pure and
applied sciences. It is known that theory of convex functions is closely related to
theory of inequalities. Many interesting convex functions inequalities established via
Riemann-Liouville fractional integrals. Now, lets us give some necessary definition
and mathematical preliminaries of fractional calculus theory as follows, which are
used lots of study. For more details, one can consult ([8]-[10], [14], [16]-[23], [28]).

Definition 1.4. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

respectively. Here Γ(t) is the Gamma function and its definition is

Γ(t) =

∫ ∞
0

e−xxt−1dx.

It is to be noted that J0
a+f(x) = J0

b−f(x) = f(x) and in the case of α = 1, the
fractional integral reduces to the classical integral.

The beta function defined as follows:

B (a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

ta−1 (1− t)b−1 dt, a, b > 0,
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where Γ (α) is Gamma function. The incomplete beta function is defined by

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1dt, 0 ≤ x ≤ 1.

For x = 1, the incomplete beta function coincides with the complete beta function.
For easy understanding the computation in our theorems, let us give some properties
of beta and incompleted beta function:

B(a, b) = Bt(a, b) +B1−t(b, a), i.e B(a, b) = B 1
2
(a, b) +B 1

2
(b, a)

Bx(a+ 1, b) =
aBx(a, b)− (x)a(1− x)b

a+ b

Bx(a, b+ 1) =
bBx(a, b) + (x)a(1− x)b

a+ b
B(a, b+ 1) +B(a+ 1, b) = B(a, b)

In [21] Sarıkaya et al. gave a remarkable integral inequality of Hermite-Hadamard
type involving Riemann-Liouville fractional integrals as follows:

Theorem 1.5. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is convex function on [a, b], then the following inequality for fractional integrals
hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[(Jαa+f)(b) + (Jαb−f)(a)] ≤ f (a) + f (b)

2
(1.3)

It is obviously seen that, if we take α = 1 in Theorem 1.5, then the inequality
(1.3) reduces to well known Hermite-Hadamard inequality as (1.1).

Hermite-Hadamard type inequalities for s-convex functions via Riemann-
Liouville fractional integral is given in [22] as follows:

Theorem 1.6. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is s-convex mapping in the second sense on [a, b], then the following inequality
for fractional integral with α > 0 and s ∈ (0, 1] hold:

2s−1f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[(Jαa+f)(b) + (Jαb−f)(a)] (1.4)

≤ α
[ 1

α+ s
+B(α, s+ 1)]

f (a) + f (b)

2

where B(a,b) is Euler beta function.

Sarikaya et al. established an identity which we will generalize for conformable
fractional integral in section 3 for differentiable convex mappings via Riemann-
Liouville fractional integral. Then they gave some results by using this identity.
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Lemma 1.7. [21] Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L[a, b], then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] (1.5)

=
b− a

2

∫ 1

0

[
(1− t)α − tα

]
f ′(ta+ (1− t)b)dt.

Theorem 1.8. [21] Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If f ′ ∈ L[a, b], then the following inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Iαb−f(a)]

∣∣∣∣ (1.6)

≤ b− a
2(α+ 1)

(
1− 1

2α
)|f ′(a)|+ |f ′(b)|

Recently, some authors started to study on conformable fractional integral. In
[18], Khalil et al. defined the fractional integral of order 0 < α ≤ 1 only. In [1],
Abdeljawad gave the definition of left and right conformable fractional integrals of
any order α > 0.

Definition 1.9. Let α ∈ (n, n+1] and set β = α−n then the left conformable fractional
integral starting at a if order α is defined by

(Iaαf)(t) =
1

n!

∫ t

a

(t− x)n(x− a)β−1f(x)dx

Analogously, the right conformable fractional integral is defined by

(bIαf)(t) =
1

n!

∫ b

t

(x− t)n(b− x)β−1f(x)dx.

Notice that if α = n + 1 then β = α − n = n + 1 − n = 1 where n = 0, 1, 2, 3...
and hence (Iaαf)(t) = (Jan+1f)(t).

In [24] Set et.al. gave Hermite-Hadamard inequality for conformable fractional
integral as follows:

Theorem 1.10. Let f : [a, b]→ R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If f is
a convex function on [a, b], then the following inequalities for conformable fractional
integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)] ≤ f (a) + f (b)

2
(1.7)

with α ∈ (n, n+ 1], where Γ is Euler Gamma function.

For some studies on conformable fractional integral, see ([1], [2], [4], [6]). In
papers ([25]-[27]), Set et.al obtained some Hermite-Hadamard, Ostrowski, Chebyshev,
Fejer type inequalities by using conformable fractional integrals for various classes of
functions. The aim of this study is to establish new Hermite-Hadamard inequalities
related to other fractional integral inequalities for conformable fractional integral.
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2. Hermite-Hadamard’s inequalities for conformable fractional
integrals

In this section, using the given properties of conformable fractional integrals,
we will establish a generalization of Hermite-Hadamard type inequalities for s-convex
functions. We will also noticed the relation with fractional and classical Hermite-
Hadamard type integral inequalities.

Theorem 2.1. Let f : [a, b] → R be a function with 0 ≤ a < b, s ∈ (0, 1] and
f ∈ L1[a, b]. If f is an s-convex function on [a, b], then the following inequalities for
conformable fractional integrals hold:

Γ(α− n)

Γ(α+ 1)
f

(
a+ b

2

)
(2.1)

≤ 1

(b− a)α2s
[(Iaαf)(b) + (bIαf)(a)]

≤
[
B(n+ s+ 1, α− n) +B(n+ 1, α− n+ s)

n!

]
f (a) + f (b)

2s

with α ∈ (n, n+ 1], n = 0, 1, 2, ... where Γ is Euler Gamma function and B(a, b) is a
beta function.

Proof. Let x, y ∈ [a, b]. If f is a s-convex function on [a,b],

f

(
x+ y

2

)
≤
(

1

2

)s
f(x) +

(
1

2

)s
f(y)

if we change the variables with x = ta+ (1− t)b, y = (1− t)a+ tb,

2sf

(
a+ b

2

)
≤ f(ta+ (1− t)b) + f((1− t)a+ tb). (2.2)

Multiplying both sides of above inequality with 1
n! t

n(1− t)α−n−1 and integrating the
resulting inequality with respect to t over [0, 1], we get

2s

n!
f

(
a+ b

2

)∫ 1

0

tn(1− t)α−n−1dt

≤ 1

n!

∫ 1

0

tn(1− t)α−n−1f(ta+ (1− t)b)dt

+
1

n!

∫ 1

0

tn(1− t)α−n−1f((1− t)a+ tb)dt

=
1

n!

∫ b

a

(
b− x
b− a

)n(
x− a
b− a

)α−n−1
f(x)

dx

b− a

+
1

n!

∫ b

a

(
y − a
b− a

)n(
b− y
b− a

)α−n−1
f(y)

dy

b− a

=
1

(b− a)α
[Iaαf(b) +b Iαf(a)].



314 Erhan Set and Abdurrahman Gözpınar

Note that

f

(
a+ b

2

)
≤ Γ(α+ 1)

2s(b− a)αΓ(α− n)
[Iaαf(b) +b Iαf(a)] (2.3)

where ∫ 1

0

tn(1− t)α−n−1dt = B(n+ 1, α− n) =
Γ(n+ 1)Γ(α− n)

Γ(α+ 1)

which means that the left side of (2.1) is proved. Since f is s-convex in the second
sense, to prove the right side of (2.1) we have the following inequalities:

f(ta+ (1− t)b) ≤ tsf(a) + (1− t)sf(b)

f((1− t)a+ tb) ≤ (1− t)sf(a) + tsf(b).

Adding these two inequalities, we get

f(ta+ (1− t)b) + f((1− t)a+ tb) ≤ [ts + (1− t)s][f(a) + f(b)].

Multiplying both sides of the resulting inequality with 1
n! t

n(1− t)α−n−1 and integrat-
ing with respect to t over [0, 1], we have

1

(b− a)α
[Iaαf(b) +b Iαf(a)] (2.4)

≤ 1

n!

∫ 1

0

tn(1− t)α−n−1[ts + (1− t)s][f(a) + f(b)]dt

=
1

n!

[
B(n+ s+ 1, α− n) +B(n+ 1, α− n+ s)

]
[f(a) + f(b)].

Combining (2.3) and (2.4) completes the proof. �

Remark 2.2. If we choose s = 1 in Theorem (2.1), by using relation between Γ and
B functions, the inequality (2.1) reduced to inequality (1.7).

Remark 2.3. If we choose α = n+ 1 in Theorem 2.1, the inequality (2.2) reduced to
inequality (1.4). And also if we choose α, s = 1 in the inequality (2.2), then we get
well-known Hermite-Hadamard inequality as (1.2).

3. Some new Hermite Hadamard type inequalities via conformable
integration

In order to achieve our aim, we will give an important identity for differentiable
functions involving conformable fractional integrals as follows:

Lemma 3.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L[a, b], then the following inequality for conformable fractional integrals holds:

B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)] (3.1)

=
(b− a)

2

{∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f ′(ta+ (1− t)b)dt

}
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where B(a, b), Bt(a, b) is Euler beta and incompleted beta functions respectively and
α ∈ (n, n+ 1], n = 0, 1, 2, . . ..

Proof. Let

I =

∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f ′(ta+ (1− t)b)dt.

Then, integrating by parts and changing variables with x = ta+(1− t)b, we can write

I1 =

∫ 1

0

B1−t(n+ 1, α− n)f ′(ta+ (1− t)b)dt (3.2)

=

∫ 1

0

(∫ 1−t

0

xn(1− x)α−n−1dx

)
f ′(ta+ (1− t)b)dt

=

(∫ 1−t

0

xn(1− x)α−n−1dx

)
f(ta+ (1− t)b)dt

a− b

∣∣∣∣1
0

+

∫ 1

0

(1− t)ntα−n−1f(ta+ (1− t)b) dt

a− b

=

(∫ 1

0

xn(1− x)α−n−1dx

)
f(b)

b− a

+
1

b− a

∫ b

a

(
x− a
b− a

)n(
b− x
b− a

)α−n−1
f(x)

dx

a− b

= B(n+ 1, α− n)
f(b)

b− a
− n!

(b− a)α+1
(bIαf)(a)

I2 =

∫ 1

0

Bt(n+ 1, α− n)f ′(ta+ (1− t)b)dt (3.3)

= Bt(n+ 1, α− n)
f(ta+ (1− t)b)

a− b

∣∣∣∣1
0

−
∫ 1

0

tn(1− t)α−n−1f(ta+ (1− t)b) dt

a− b

= −B(n+ 1, α− n)
f(a)

b− a
+

1

b− a

∫ b

a

(
b− x
b− a

)n(
x− a
b− a

)α−n−1
f(x)

dx

b− a

= −B(n+ 1, α− n)
f(a)

b− a
+

n!

(b− a)α+1
(Iaαf)(b).

It means that I = I1 − I2. Thus, by multiplying both sides by b−a
2 i.e

b− a
2

I =
b− a

2
I1 −

b− a
2

I2

we have desired result. �

Remark 3.2. If we choose α = n + 1 in Lemma 3.1, the equality (3.1) becomes the
equality (1.5).
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Now, using the obtained identity, we will establish some inequalities connected
with the left part of the inequality (2.1)

Theorem 3.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L[a, b] and |f ′| is s-convex in the second sence with s ∈ (0, 1], then the following
inequality for conformable fractional integrals holds:∣∣∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣∣∣ (3.4)

≤ b− a
2

[
|f ′(a)|+ |f ′(b)|

s+ 1

]
{
B 1

2
(α− n+ s+ 1, n+ 1)−B 1

2
(n+ 1, α− n+ s+ 1)

+B 1
2
(n+ s+ 2, α− n)−B 1

2
(α− n, n+ s+ 2) +B(n+ 1, α− n)

}
where B(a, b), Bt(a, b) is Euler beta and incompleted beta functions respectively and
α ∈ (n, n+ 1], n = 0, 1, 2, . . ..

Proof. Taking modulus on Lemma 3.1 and using s-convexity of |f ′| we get:

∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣ (3.5)

=
b− a

2

∣∣∣∣ ∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f ′(ta+ (1− t)b)dt

∣∣∣∣
≤ b− a

2

∫ 1

0

∣∣[B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)
]∣∣∣∣f ′(ta+ (1− t)b)

∣∣dt
=

b− a
2

∫ 1
2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]∣∣f ′(ta+ (1− t)b)
∣∣dt

+

∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

]∣∣f ′(ta+ (1− t)b)
∣∣dt

≤ b− a
2

{∫ 1
2

0

B1−t(n+ 1, α− n)
(
ts|f ′(a)|+ (1− t)s|f ′(b)|

)
dt

−
∫ 1

2

0

Bt(n+ 1, α− n)
(
ts|f ′(a)|+ (1− t)s|f ′(b)|

)
dt

+

∫ 1

1
2

Bt(n+ 1, α− n)
(
ts|f ′(a)|+ (1− t)s|f ′(b)|

)
dt

−
∫ 1

1
2

B1−t(n+ 1, α− n)
(
ts|f ′(a)|+ (1− t)s|f ′(b)|

)
dt

}
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=
b− a

2

{
|f ′(a)|

∫ 1
2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
tsdt

+|f ′(b)|
∫ 1

2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
(1− t)sdt

+|f ′(a)|
∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

]
ts
)
dt

+|f ′(b)|
∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

]
(1− t)sdt.

On the other hand, using the properties of incompleted beta function we have:

B1−t(n+ 1, α− n)−Bt(n+ 1, α− n) (3.6)

=

∫ 1−t

0

xn(1− x)α−n−1dx−
∫ t

0

xn(1− x)α−n−1dx

=

∫ 1−t

t

xn(1− x)α−n−1dx, where 0 ≤ t ≤ 1

2

and

Bt(n+ 1, α− n)−B1−t(n+ 1, α− n) (3.7)

=

∫ t

0

xn(1− x)α−n−1dx−
∫ 1−t

0

xn(1− x)α−n−1dx

=

∫ t

1−t
xn(1− x)α−n−1dx, where

1

2
≤ t ≤ 1

Using (3.6), (3.7) and Newton Leibnitz formula and integrating by parts we can write
the following computation:

Φ1 =

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)
tsdt (3.8)

=

[(∫ 1−t

t

xn(1− x)α−n−1dx

)
ts+1

s+ 1

]∣∣∣∣ 12
0

−
∫ 1

2

0

(
− (1− t)ntα−n−1 − tn(1− t)α−n−1

) ts+1

s+ 1
dt

=
1

s+ 1

[ ∫ 1
2

0

tα−n+s(1− t)ndt+

∫ 1
2

0

tn+s+1(1− t)α−n−1dt
]

=
1

s+ 1

[
B 1

2
(α− n+ s+ 1, n+ 1) +B 1

2
(n+ s+ 2, α− n)

]
,
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Φ2 =

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)
(1− t)sdt (3.9)

=

[(∫ 1−t

t

xn(1− x)α−n−1dx

)
−(1− t)s+1

s+ 1

]∣∣∣∣ 12
0

−
∫ 1

2

0

(
− (1− t)ntα−n−1 − tn(1− t)α−n−1

)−(1− t)s+1

s+ 1
dt

=
1

s+ 1

∫ 1

0

xn(1− x)α−n−1dx

− 1

s+ 1

[ ∫ 1
2

0

tα−n−1(1− t)n+s+1dt+

∫ 1
2

0

tn(1− t)α−n+sdt
]

=
1

s+ 1

[
B(n+ 1, α− n)−B 1

2
(α− n, n+ s+ 2)

−B 1
2
(n+ 1, α− n+ s+ 1)

]
,

Φ3 =

∫ 1

1
2

(∫ t

1−t
xn(1− x)α−n−1dx

)
tsdt (3.10)

=

[(∫ t

1−t
xn(1− x)α−n−1dx

)
ts+1

s+ 1

]∣∣∣∣1
1
2

− 1

s+ 1

∫ 1

1
2

(
tn(1− t)α−n−1 + tα−n−1(1− t)n

)
ts+1dt

=
1

s+ 1

∫ 1

0

xn(1− x)α−n−1dx

− 1

s+ 1

[ ∫ 1

1
2

tn+s+1(1− t)α−n−1dt+

∫ 1

1
2

tα−n+s(1− t)ndt
]

=
1

s+ 1

[
B(n+ 1, α− n)−B 1

2
(α− n, n+ s+ 2)

−B 1
2
(n+ 1, α− n+ s+ 1)

]
and

Φ4 =

∫ 1

1
2

(∫ t

1−t
xn(1− x)α−n−1dx

)
(1− t)sdt (3.11)

=

[(∫ t

1−t
xn(1− x)α−n−1dx

)
−(1− t)s+1

s+ 1

]∣∣∣∣1
1
2

+

∫ 1

1
2

(
tn(1− t)α−n−1 + tα−n−1(1− t)n

) (1− t)s+1

s+ 1
dt
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=
[ ∫ 1

1
2

tn(1− t)α−n+sdt+

∫ 1

1
2

tα−n−1(1− t)n+s+1dt
]

=
1

s+ 1

[
B 1

2
(α− n+ s+ 1, n+ 1) +B 1

2
(n+ s+ 2, α− n)

]
,

Using the fact that B(a, b) = B 1
2
(a, b) + B 1

2
(b, a) and combining (3.8), (3.9), (3.10),

(3.11) with (3.5) completes the proof. �

Corollary 3.4. Taking s = 1 in Theorem 3.3 i.e |f ′| is convex, we get the following
result:

∣∣∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣∣∣
≤ b− a

2

(
|f ′(a)|+ |f ′(b)|

2

)
(3.12)

×
{
B 1

2
(α− n+ 2, n+ 1)−B 1

2
(n+ 1, α− n+ 2)

+B 1
2
(n+ 3, α− n)−B 1

2
(α− n, n+ 3) +B(n+ 1, α− n)

}

Remark 3.5. Taking α = n+1 in Corollary 3.4, the inequality (3.12) reduces to (1.6).

Theorem 3.6. Let f : [a, b]→ R be a differentiable mapping on (a, b), a < b and p > 1
with 1

p + 1
q = 1. If f ′ ∈ L[a, b] and |f ′|q is s-convex in the second sense, then the

following inequality for conformable fractional integrals holds:

∣∣∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣∣∣
≤ b− a

2
Ψ

1
p

[
|f ′(a)|q + |f ′(b)|q

s+ 1

] 1
q

. (3.13)

where B(a, b) is Euler beta function, α ∈ (n, n+ 1], n = 0, 1, 2, . . . and

Ψ = 2

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)p
.
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Proof. Taking modulus and using Hölder inequality with a function of |f ′|q convexity
we get inequalities as follow:∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣ (3.14)

=
b− a

2

∣∣∣∣ ∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f ′(ta+ (1− t)b)dt

∣∣∣∣
≤ b− a

2

∫ 1

0

∣∣B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)
∣∣∣∣f ′(ta+ (1− t)b)

∣∣dt
≤ b− a

2

[ ∫ 1

0

∣∣B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)
∣∣pdt] 1

p

×
[ ∫ 1

0

∣∣f ′(ta+ (1− t)b)
∣∣qdt] 1

q

.

It follows that:

Ψ =

∫ 1

0

∣∣B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)
∣∣pdt (3.15)

=

∫ 1
2

0

(
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

)p
dt

+

∫ 1

1
2

(
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

)p
dt

=

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)p
dt

+

∫ 1

1
2

(∫ t

1−t
xn(1− x)α−n−1dx

)p
dt

= 2

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)p
dt

and ∫ 1

0

∣∣f ′(ta+ (1− t)b)
∣∣qdt ≤ |f ′(a)|q

∫ 1

0

tsdt+ |f ′(b)|q
∫ 1

0

(1− t)sdt

=
1

s+ 1

(
|f ′(a)|q + |f ′(b)|q

)
(3.16)

which completes the proof. �

Corollary 3.7. If we take s = 1 in Theorem 3.6, the inequality (3.13) reduces to
following inequality:∣∣∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣∣∣
≤ b− a

2
Ψ

1
p
[ |f ′(a)|q + |f ′(b)|q

2

] 1
q (3.17)
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where B(a, b) is Euler beta function and

Ψ = 2

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)p
.

Corollary 3.8. If we take α = n + 1 in corollary 3.7, the inequality (3.17) reduces to
following inequality:∣∣∣∣B(α, 1)

(
f(a) + f(b)

2

)
− Γ(α)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣ (3.18)

≤ b− a
2

Ψ
1
p

1

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

,

where Ψ1 = 2

∫ 1
2

0

(
(1− t)α − tα

α

)p
dt.

Remark 3.9. If we take α = 1 in Corollary 3.8, the inequality (3.18) reduces to
following inequality: ∣∣∣∣f(a) + f(b)

2
− 1

(b− a)

∫ b

a

f(x)dx

∣∣∣∣ (3.19)

≤ b− a
2

(
1

p+ 1

) 1
p
[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

,

which is the same as Theorem 2.3 in [12].

Remark 3.10. If we take α ∈ (0, 1] in Corollary 3.8, then the inequality (3.18) reduces
to special case of Corollary 1 for s = 1 in [19], which is the same as∣∣∣∣ (f(a) + f(b)

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣ (3.20)

≤ b− a
2

(
1

αp+ 1

) 1
p
[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.
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[6] Benkhettou, N., Hassani, S., Torres, D.E.M., A conformable fractional calculus on arbi-
trary time, J. King Saud Univ. Sci., 28(2016), 9398.

[7] Breckner, W.W., Stetigkeitsaussagen fr eine Klasse verallgemeinerter konvexer funktio-
nen in topologischen linearen Raumen, Publ. Inst. Math., 23(1978), 13-20.

[8] Chen, F., Extensions of the Hermite-Hadamard Inequality for convex functions via frac-
tional integrals, J. Math. Ineq., 10(1)(2016), 75-81.

[9] Dahmani, Z., New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9(4)(2010),
493-497.

[10] Dahmani, Z., Tabharit, L., Taf, S., New generalizations of Gruss inequality using Rie-
mannLiouville fractional integrals, Bull. Math. Anal. Appl., 2(3)(2010), 93-99.

[11] Dragomir, S.S., Agarval, R.R., The Hadamard’s inequality for s-convex functions in the
second sense, Demonstratio Math., 32(4)(1999), 687-696.

[12] Dragomir, S.S., Fitzpatrik, S., Two inequalities for differentiable mappings and applica-
tions to special means of real numbers and to trapezoidal formula, Appl. Math. Lett.,
11(5)(1998), 91-95.

[13] Dragomir, S.S., Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and
Applications, RGMIA Monographs, Victoria University, 2000.

[14] Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of
Fractional Order, 2008, arXiv preprint arXiv:0805.3823.

[15] Hudzik, H., Maligranda, L., Some remarks on s-convex functions, Aequationes Math.,
48(1994), 100-111.
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A new proof of Ackermann’s formula from control
theory

Marius Costandin, Petru Dobra and Bogdan Gavrea

Abstract. This paper presents a novel proof for the well known Ackermann’s
formula, related to pole placement in linear time invariant systems. The proof
uses a lemma [3], concerning rank one updates for matrices, often used to effi-
ciently compute the determinants. The proof is given in great detail, but it can
be summarised to few lines.
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1. Introduction

Given a matrix A ∈ Rn×n and a vector B ∈ Rn×1, it is known, see [1] that
if the marix Co(A,B) = [B|A · B| . . . |An−1 · B] is invertible then there exists a

unique K ∈ Rn×1 such that Â = A + B · KT has any desired set of eigenvalues
S = {λ∗1, . . . , λ∗n}, closed under complex conjugation, that is if λ ∈ S then λ̄ ∈ S.
Algorithms for finding K are well known in literature among which the algorithm of
Bass-Gura (see [2]) and Ackerman (see [1]) are mentioned.

In the following a new demonstration to Ackermann’s result is given, using a well
known lemma often used for computing the determinant of a certain invertible matrix,
see [3]. This lemma relates the determinant of a rank-one update to the determinant
of the initial matrix. For an elegant proof of this result we point the reader to [3].

Lemma 1.1 (Matrix determinant lemma, [3]). Suppose that A is an invertible square
matrix and u and v are column vectors. Then:

det(A+ uvT ) =
(
1 + vTA−1u

)
det(A) (1.1)



326 Marius Costandin, Petru Dobra and Bogdan Gavrea

2. The novel proof for Ackermann’s formula

Theorem 2.1 (Ackermann). Let Ẋ = A ·X+B ·u be a linear time invariant dynamical
system, with X,B ∈ Rn and A ∈ Rn×n. If Co(A,B) = [B|A · B| . . . |An−1 · B] is in-

vertible, then the matrix Â = A−B ·KT
x has the user-defined eigenvalues {λ∗1, . . . , λ∗p},

with algebraic multiplicities q1, . . . , qp, where

Kx =

(
p∏

i=1

(A− λ∗i I)qi

)T

· Co(A,B)−T ·


0
0
...
1



= P ∗(A)T · Co(A,B)−T ·


0
0
...
1



Proof. Let P ∗(λ) =

p∏
i=1

(λ−λ∗i )qi = det(λI − Â) denote the characteristic polynomial

of Â and P (λ) = det(λI − A) the characteristic polynomial of A. Suppose, for start,
that the desired eigenvalues are not already eigenvalues for the system matrix, A.
Therefore det(λ∗i I −A) 6= 0 for all i ∈ {1, . . . , p}. Then, from Lemma 1.1:

P ∗(λ) = det(λI − Â)

= det(λI − (A−BKT
x ))

= det((λI −A) +BKT
x )

=
(
1 +KT

x (λI −A)−1B
)

det(λI −A)

=
(
1 +KT

x (λI −A)−1B
)
· P (λ) (2.1)

We are interested in finding Kx such that Equation (2.1) holds. Equation (2.1)
is a monic polynomial equality, so it is enough to hold for the roots. Let λ = λ∗i in
Equation (2.1).

Because λ∗i has multiplicity qi, then the folowing relations are obtained:


KT

x · (λ∗i I −A)−1 ·B = −1

KT
x · (λ∗i I −A)−2 ·B = 0

...

KT
x · (λ∗i I −A)−qi ·B = 0

∀i ∈ {1, . . . , p} (2.2)
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Hence 

BT · (λ∗1I −AT )−1

BT · (λ∗1I −AT )−2

...
BT · (λ∗1I −AT )−q1

...
BT · (λ∗pI −AT )−1

BT · (λ∗pI −AT )−2

...
BT · (λ∗1I −AT )−qp


·Kx =



−1
0
...
0
...
−1
0
...
0


(2.3)

Denote
C =

[
(λ∗1I −A)−1 ·B| . . . |(λ∗1I −A)−q1 ·B| . . .

]
and

N =
[
−1 0 . . . 0 . . . −1 0 . . . 0

]T
then

CT ·Kx = N

Looking closely at C one can see:
p∏

i=1

(λ∗i I −A)qi · C =
[
P1{λ∗1}(A) ·B| . . . |Pq1{λ∗1}(A) ·B| . . .

]
= C̄ (2.4)

where Pj{λ∗k}(A) =
(∏p

i=1,i6=k(λ∗i I −A)qi
)
·(λ∗kI−A)qk−j with k ∈ 1, p and j ∈ 1, qk.

If seen as a polynomial over R, then it’s roots are {λ∗1, . . . , λ∗k, . . . , λ∗p}, with the
multiplicity q1, . . . , qk − j, . . . , qp. The order of the polynomial is n− j. Stacking the
polynomial’s coefficients in a vector, with the coefficient of the smallest power in the
first position, and leaving the same name for the vector, one has:

C̄ =
[
B| A ·B| . . . | An−1 ·B

]
·

·
[
P1{λ∗1}| . . . | Pq1{λ∗1}| . . . | P1{λ∗p}| . . . | Pqp{λ∗p}

]
= Co(A,B) · P (2.5)

Of course, P is invertible, since it has linearly independent columns. Indeed let

α1
1 · P1{λ∗1}+ . . .+ αp

1 · P1{λ∗p}+ . . . = 0

be a null linear combination of the columns of P. Suppose the polynomial’s variable
is X. Let k ∈ 1, p and let αk

j be the the coefficient of the polynomial having λ∗k as a
root with the smallest multiplicity mk. Differentiating the above linear combination,
mk times, with respect to X, then replacing X with λ∗k, will yield αk

qk
= 0. Repeating

the process will conclude that the polynomials are linear independent. Hence:

C−T =

(
p∏

i=1

(λ∗i I −A)qi

)T

· Co(A,B)−T · P−T (2.6)



328 Marius Costandin, Petru Dobra and Bogdan Gavrea

therefore

Kx =

(
p∏

i=1

(A− λ∗i I)qi

)T

· Co(A,B)−T · (−1)n · P−T ·N

= P ∗(A)T · Co(A,B)−T · (−1)n · P−T ·N (2.7)

Denote V = (−1)n · P−T ·N therefore (−1)n · PT · V = N . Because P is invertible,
V is unique.

(−1)n ·



P1{λ∗1}T
P2{λ∗1}T

...
Pq1{λ∗1}T

...
P1{λ∗p}T
P2{λ∗p}T

...
Pqp{λ∗p}T


·

v1...
vn

 =



−1
0
...
0
...
−1
0
...
0


(2.8)

Because Pj{λ∗k} has the order n − j, and the coefficient of the smallest power is on
the first position in vector, that is the coefficient of the greatest power is on the last
position, follows:

(−1)n ·



. . . (−1)n−1

. . . 0
...

...
. . . 0
...

...
. . . (−1)n−1

. . . 0
...

...
. . . 0


·

v1...
vn

 =



−1
0
...
0
...
−1
0
...
0


(2.9)

It is easy to see that V = [0, . . . , 0, 1]T is a solution. Therefore

Kx = P ∗(A)T · Co(A,B)−T · V (2.10)

If λ∗i = λi, for some i ∈ 1, p, then take λ∗i (ε) = ε+ λ∗i to obtain

det(λI − (A−B ·Kx(ε)T )) = P ∗{ε}(λ).

Letting ε −→ 0, one has det(λI − (A−B ·KT
x )) = P ∗(λ). �
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3. Conclusions

A new proof for the well known Akermann’s formula was presented. The proof
uses a matrix lemma, giving an in depth look at the mechanics of eigenvalues change
using rank one updates. The state feedback matrix Kx is shown to be the unique
solution to a system of equations, obtained using a well known matrix lemma. The
proof can be summarised as follows:

1. Use Equation (2.1) to obtaing Equation (2.3)
2. Use Equations (2.4) and (2.5) to obtain Equation (2.6) regardind the resolvent

matrix
3. Use Equation (2.8) and (2.9) in Equation (2.7) to obtain Kx
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1. Introduction

Let A denote the class of all functions f(z) of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions. For a univalent function in the class A, it is well known that the
nth coefficient is bounded by n. The bounds for the coefficients give information about
the geometric properties of these functions In particular, the growth and distortion
properties of a normalized univalent function are determined by the bound of its
second coefficient. The Hankel determinant of f for q ≥ 1 and n ≥ 1 was defined by
Pommerenke [12] as

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

.
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This determinant has been considered by many authors in the literature. For example,
Noor [10] determined the rate of growth of Hq(n) as n → ∞ for the functions in S
with bounded boundary. Ehrenborg [4] studied the Hankel determinant of exponential
polynomials. The Hankel transform of an integer sequence and some of its properties
were discussed by Layman in [7]. In the recent years several authors have investigated
bounds for the Hankel determinant of functions belonging to various subclasses of
univalent and multivalent analytic functions. In particular for, q = 2, n = 1, a1 = 1
and q = 2, n = 2, a1 = 1, the Hankel determinant simplifies respectively to

H2(1) =
a1 a2
a2 a3

= a3 − a22, and H2(2) =
a2 a3
a3 a4

= a2a4 − a23.

For our discussion in this paper, we consider the Hankel determinant in the case of
q = 3 and n = 1, denoted by H3(1), given by

H3(1) =
a1 a2 a3
a2 a3 a4
a3 a4 a5

. (1.2)

For f ∈ A, a1 = 1, so that, we have

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22)

and by applying triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (1.3)

The sharp upper bound to the second Hankel functional |H2(2)| for the subclass
RT of S, consisting of functions whose derivative has a positive real part, studied
by Mac Gregor [9] was obtained by Janteng [6]. It was known that if f ∈ RT then
|ak| ≤ 2

k , for k ∈ {2, 3, ....}. Further, the best possible sharp upper bound for the

functional |a2a3− a4| and |a3− a22| was obtained by Babalola [2] and hence the sharp
inequality for |H3(1)|, for the class RT. For f ∈ RT (α), the sharp upper bound to
second Hankel [14] and |H3(1)| were obtained by Vamshee Krishna et al.[15]. The

sharp upper bound to H3(1) for the subclass of R̃T of S consisting of a function
whose reciprocal derivative has a positive real part was obtained by Venkateswarlu
[16].

Motivated by the result obtained by Babalola [2], we obtain an upper bound
to the functional second Hankel determinant, |a2a3 − a4| and hence |H3(1)|, for the

function f given in (1.1), when it belongs to the class R̃T (α), defined as follows.

Definition 1.1. A function f(z) ∈ A is said to be function whose reciprocal derivative
has a positive real part of order α, (also called reciprocal of bounded turning function

of order α), denoted by f ∈ R̃T (α) (0 ≤ α < 1), if and only if

Re
( 1

f ′(z)

)
> α,∀z ∈ E. (1.4)

Observe that for α = 0, we obtain R̃T (0) = R̃T . Some preliminary lemmas required
for proving our results are as follows:
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2. Preliminary results

Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... =

[
1 +

∞∑
n=1

cnz
n

]
, (2.1)

which are regular in the open unit disc E and satisfy Re{p(z)} > 0 for any z ∈ E.
Here p(z) is called the Caratheòdory function [3].

Lemma 2.1. [11, 13] If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality is
sharp for the function 1+z

1−z .

Lemma 2.2. [5] The power series for p(z) = 1 +
∞∑
n=1

cnz
n given in (2.1) converges in

the open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2
...

...
...

...
...

c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3, · · ·

and c−k = ck, are all non-negative. They are strictly positive except for

p(z) =

m∑
k=1

ρkp0(eitkz),

ρk > 0, tk real and tk 6= tj , for k 6= j, where p0(z) = 1+z
1−z ; in this case Dn > 0 for

n < (m− 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in [5] is due to Caratheòdory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2.2, for
n = 2, we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2 | c2 |2 − 4|c1|2] ≥ 0,

which is equivalent to

2c2 = c21 + x(4− c21), for some x, |x| ≤ 1. (2.2)

For n = 3,

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

≥ 0

and is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (2.3)
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From the relations (2.2) and (2.3), after simplifying, we get

4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z, (2.4)

for some z, with |z| ≤ 1.

To obtain our result, we refer to the classical method initiated by Libera and
Zlotkiewicz [8] and used by several authors in the literature.

3. Main result

Theorem 3.1. If f(z) ∈ R̃T (α) (0 ≤ α ≤ 1√
2
) then

| a2a4 − a23| ≤
[ 2

3(α− 1)

]2
and the inequality is sharp.

Proof. For

f(z) = z +

∞∑
n=2

anz
n ∈ R̃T (α),

there exists an analytic function p ∈ P in the open unit disc E with p(0) = 1 and
Re{p(z)} > 0 such that

1− αf ′(z)
(1− α)f ′(z)

= p(z) ⇔ 1− αf ′(z) = (1− α)f ′(z)p(z). (3.1)

Replacing f ′(z) and p(z) with their equivalent series expressions in (3.1) , we have

1− α
(

1 +

∞∑
n=2

nanz
n−1
)

= (1− α)
(

1 +

∞∑
n=2

nanz
n
)(

1 +

∞∑
n=1

cnz
n
)
.

Upon simplification, we obtain

(1− α)− 2αa2z − 3αa3z
2 − 4αa4z

3 − 5a5z
4 − · · · = (1− α)

+ z(1− α)[2a2 + c1] + z2(1− α)[c2 + 2a2c1 + 3a3] + z3(1− α)

[c3 + 2a2c2 + 3a3c1 + 4a4] + z4(1− α)[c4 + 2a2c3 + 3a3c2 + 4a4c1 + 5a5] + · · · .
(3.2)

Equating the coefficients of like powers of z, z2, z3 and z4 respectively on both sides
of (3.2), after simplifying, we get

a2 = −1− α
2

c1; a3 = −1− α
3

[
c2 − (1− α)c21

]
;

a4 = −1− α
4

[
c3 − 2(1− α)c1c2 + (1− α)2c31

]
;

a5 = −1− α
5

[
c4 − 2(1− α)c1c3 + 3(1− α)2c21c2 − (1− α)c22 − (1− α)3c41

]
. (3.3)
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Substituting the values of a2, a3 and a4 from (3.3) in the functional

|a2a4 − a23| for the function f ∈ R̃T (α), upon simplification, we obtain

| a2a4 − a23| =
(1− α)2

72

∣∣9c1c3 − 2(1− α)c21c2 − 8c22 + (1− α)2c41
∣∣

which is equivalent to

| a2a4 − a23| =
(1− α)2

72

∣∣d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1

∣∣ , (3.4)

where d1 = 9; d2 = −2(1− α); d3 = −8; d4 = (1− α)2. (3.5)

Substituting the values of c2 and c3 given in (2.2) and (2.4) respectively from Lemma
2.2 on the right-hand side of (3.4), we have

|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| =

∣∣∣d1c1
4
{c31 + 2c1(4− c21)x− c1(4− c21)x2

+ 2(4− c21)(1− |x|2)z}+
d2c

2
1

2
{c21 + x(4− c21)}

+
d3
4
{c21 + x(4− c21)}2 + d4c

4
1

∣∣∣. (3.6)

Using triangle inequality and the fact that |z| < 1, we get

4 | d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1 | ≤

∣∣∣(d1 + 2d2 + d3 + 4d4)c41 + 2d1c1(4− c21)

+ 2(d1 + d2 + d3)c21(4− c21)|x|

−
{

(d1 + d3)c21 + 2d1c1 − 4d3
}

(4− c21)|x|2
∣∣∣. (3.7)

From (3.5), we can now write

d1 + 2d2 + d3 + 4d4 = 4α2 − 4α+ 1; 2(d1 + d2 + d3) = −2(1− 2α); (3.8)

(d1 + d3)c21 + 2d1c1 − 4d3 = c21 + 18c1 + 32 = (c1 + 16)(c1 + 2). (3.9)

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0 in
(3.9), we can have

−{(d1 + d3)c21 + 2d1c1 − 4d3} ≤ −(c21 − 18c1 + 32). (3.10)

Substituting the calculated values from (3.8) and (3.10) on the right-hand side of
(3.7), we have

4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

∣∣∣(4α2 − 4α+ 1)c41 + 18c1(4− c21)

− 2(1− 2α)c21(4− c21)|x| − (c21 − 18c1 + 32)(4− c21)|x|2
∣∣∣. (3.11)
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Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by µ on the
right-hand side of the above inequality, we get

4 |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

[
(4α2 − 4α+ 1)c4 + 18c(4− c2)

+ 2(1− 2α)c2(4− c2)µ+ (c2 − 18c+ 32)(4− c2)µ2
]

= F (c, µ) , 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2. (3.12)

We next maximize the function F (c, µ) on the closed region [0, 2]× [0, 1].
Differentiating F (c, µ) given in (3.12) partially with respect to µ, we obtain

∂F

∂µ
= 2[(1− 2α)c2 + (c2 − 18c+ 32)µ](4− c2). (3.13)

For 0 < µ < 1 and for fixed c with 0 < c < 2, from (3.13), we observe that ∂F
∂µ > 0.

Therefore, F (c, µ) becomes an increasing function of µ and hence it cannot have a
maximum value at any point in the interior of the closed region [0, 2]×[0, 1]. Moreover,
for a fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

Therefore, replacing µ by 1 in F (c, µ), upon simplification, we obtain

G(c) = 2
[
− c4(1− 2α2)− 2c2(4α+ 5) + 64)

]
. (3.14)

G′(c) = −8c
[
c2(1− 2α2) + (4α+ 5)

]
. (3.15)

From (3.15), we observe that G′(c) ≤ 0, for every c ∈ [0, 2]. Therefore, G(c) is a
decreasing function of c in the interval [0, 2], whose maximum value occurs at c = 0
only. From (3.14), the maximum value of G(c) at c = 0 is given by

Gmax = G(0) = 128. (3.16)

Simplifying the expressions (3.12) and (3.16), we get

|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤ 32. (3.17)

From the relations (3.4) and (3.17), upon simplification, we obtain

| a2a4 − a23| ≤
[2

3
(1− α)

]2
. (3.18)

By setting c1 = c = 0 and selecting x = 1 in the expressions (2.2) and (2.4), we find
that c2 = 2 and c3 = 0 respectively. Substituting these values in (3.17) together with
the values in (3.4), we observe that equality is attained, which shows that our result
is sharp. The extremal function in this case is given by

1− αf ′(z)
(1− α)f ′(z)

= 1 + 2z2 + 2z4 + · · · =
1 + z2

1− z2
.

This completes the proof of our Theorem. �
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Remark 3.2. It is observed that the sharp upper bound to the second Hankel deter-
minant of a function whose derivative has a positive real part of order α, obtained by
Vamshee Krishna et al. [14] and a function whose reciprocal derivative has a positive

real part of order α is the same. Further, for the choice of α = 0, we get R̃T (0) = R̃T ,
for which from (3.18), we obtain |a2a4 − a23| ≤ 4

9 . This inequality is sharp and this
result coincides with that of Janteng et al. [6] and Venkateswarlu et al. [16]. From
this we conclude that the sharp upper bound to the second Hankel determinant of
a function whose derivative has a positive real part of order α and a function whose
reciprocal derivative has a positive real part of order α is the same.

Theorem 3.3. If f(z) ∈ R̃T (α) (0 ≤ α ≤ 5
8 ) then | a2a3 − a4| ≤ 1

6

[
5−8α

3

] 3
2

.

Proof. Substituting the values of a2, a3 and a4 from (3.3) in the determinant

| a2a3 − a4 | for the function f ∈ R̃T (α), after simplifying, we get

| a2a3 − a4| =
(1− α)

12

∣∣∣3c3 − 4(1− α)c1c2 + (1− α)2c31

∣∣∣. (3.19)

Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from Lemma
2.2 on the right-hand side of (3.19), and using the fact that |z| < 1, we have

4
∣∣3c3 − 4(1− α)c1c2 + (1− α)2c31

∣∣ ≤ ∣∣∣− c31(1− 4α2) + 6(4− c21)

− 2c1(4− c21)|x|(1− 4α)− 3(4− c21)|x|2(c1 + 2)
∣∣∣.

Since c1 = c ∈ [0, 2], using the result (c1+a) ≥ (c1−a), where a ≥ 0, applying triangle
inequality and replacing |x| by µ on the right-hand side of the above inequality, we
have

4|3c3 − 4c1c2 + c31| ≤
∣∣∣c3(1− 4α2) + 6(4− c2)

+ 2(1− α)c(4− c2)µ+ 3(c− 2)(4− c2)µ2
∣∣∣

= F (c, µ) , 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2. (3.20)

Next, we maximize the function F (c, µ) on the closed square [0, 2]× [0, 1].
Differentiating F (c, µ) given in(3.20) partially with respect to µ, we get

∂F

∂µ
= 2(4− c2)[(1− 4α)c+ 3(c− 2)µ] > 0. (3.21)

As described in Theorem 3.1, further we obtain

G(c) = −4c3(1− α)2 + 4(5− 8α)c. (3.22)

G′(c) = −12c2(1− α)2 + 4(5− 8α)c. (3.23)

G′′(c) = −24c(1− α)2. (3.24)

For optimum value of G(c), consider G′(c) = 0, From (3.23), we get

c2 =
5− 8α

3(1− α)2
, for 0 ≤ α < 5

8
.
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Using the obtained value of c =
√

5−8α
3(1−α)2 ∈ [0, 2] in (3.24). In which simplifies to

give

G′′(c) = −24

√
5− 8α

3
(1− α) < 0, for 0 ≤ α < 5

8
.

Therefore, by the second derivative test, G(c) has maximum value at c =
√

5−8α
3(1−α)2 .

Substituting the value of c in the expression (3.22), upon simplification, we obtain
the maximum value of G(c) at c, as

Gmax =
8

1− α

[5− 8α

3

] 3
2

. (3.25)

From the expressions (3.20) and (3.25), after simplifying, we get

|3c3 − 4(1− α)c1c2 + (1− α)2c31| ≤
2

1− α

[5− 8α

3

] 3
2

. (3.26)

Simplifying the relations (3.19) and (3.26), upon simplification, we obtain

|a2a3 − a4| ≤
1

6

[5− 8α

3

] 3
2

. (3.27)

This completes the proof of our Theorem. �

Remark 3.4. For the choice of α = 0, from (3.27), we obtain |a2a3 − a4| ≤ 1
6

(
5
3

) 3
2 .

This inequality is sharp and this result coincides with that of obtained by Babalola
[2] and Venkateswarlu et al. [16]. From this we conclude that for α = 0, the sharp
upper bound to the |a2a3− a4| of a function whose derivative has a positive real part
of order alpha and a function whose reciprocal derivative has a positive real part or
order alpha is the same.

The following theorem is a straight forward verification on applying the same
procedure as described in Theorems 3.1 and 3.3 and the result is sharp for the values
c1 = 0, c2 = 2 and x = 1.

Theorem 3.5. If f ∈ R̃T (α) (0 ≤ α < 1) then |a3 − a22| ≤ 2
3 [1− α].

Using the fact that |cn| ≤ 2, n ∈ N = {1, 2, 3, · · · }, with the help of c2 and c3
values given in (2.2) and (2.4) respectively together with the values in (3.3), we obtain
|ak| ≤ 2

k (1− α)(1− 2α)k−2, for k ∈ {2, 3, 4, 5, · · · }.
Substituting the results of Theorems 3.1, 3.3, 3.5 and |ak| ≤

2
k (1 − α)(1 − 2α)k−2, for k ∈ {2, 3, 4, 5, · · · }, for the function f ∈ R̃T (α) in the
inequality (1.3), upon simplification, we obtain the following corollary.

Corollary 3.6. If f(z) ∈ R̃T (α) (0 ≤ α ≤ 1√
2
) then

|H3(1)| ≤ (1− α)(1− 2α)

3

[
4(1− α)(36α2 − 46α+ 19)

45
+

(1− 2α)

4

(5− 8α

3

) 3
2

]
.

(3.28)
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Remark 3.7. We choose α = 0, from the expressions (3.28), we obtain |H3(1)| ≤
0.742. These inequalities are sharp and coincide with the results of Babalola [2] and
Venkateswarlu et al. [16]. From this we conclude that for α = 0, the sharp upper
bound to the third Hankel determinant of a function whose derivative has a positive
real part or order alpha and a function whose reciprocal derivative has a positive real
part of order alpha is the same.
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A study of the inextensible flows of tube-like
surfaces associated with focal curves in Galilean
3-space G3
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Abstract. In this paper, we study inextensible flows of focal curves associated
with tube-like surfaces in Galilean 3-space G3. We give some characterizations
for curvature and torsion of focal curves associated with tube-like surfaces in
Galilean 3-space G3. Furthermore, we show that if flow of this tube-like surface is
inextensible then this surface is not developable as well as not minimal. Finally
an example of tube-like surface is used to demonstrate our theoretical results and
graphed.
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1. Introduction

Curve design using splines is one of the most fundamental topics in CAGD.
Inextensible flows of curves possess a beautiful shape preserving connection to their
control polygon. They allow us the formulation of algorithms for processing, especially
subdivision algorithms. Moreover, at least the curves of odd degree and maximal
smoothness also arise as solutions of variational problems.

In the past two decades, for the need to explain certain physical phenomena
and to solve practical problems, geometers and geometric analysis have begun to
deal with curves and surfaces which are subject to various forces and which flow or
evolve with time in response to those forces so that the metrics are changing. Now,
various geometric flows have become one of the central topics in geometric analysis.
Many authors have studied geometric flow problems. In [9, 10] Kwon et al. studied
inextensible flows of curves and developable surface in R3.

Korpinar et al. [8] studied inextensible flows of developable surfaces associated
focal curve of helices in Euclidean 3-space E3. Differential geometry of the Galilean
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space G3 has been largely developed in Kamenarovic [6], Ogrenmiş et al. [13, 14] and
Roschel [17].

In this work, we study inextensible flows of focal curves associated with tube-
like surfaces in Galilean 3-space G3. We give some characterizations for curvature
and torsion of focal curves associated with tube-like surfaces in Galilean 3-space G3.
Finally, we show that if the flow of a tube-like surface associated to a focal curve is
inextensible, then the surface is not developable as well as not minimal for an arbitrary
focal curve. We used some idea from Korpinar et al. [8] in this paper.

2. Preliminaries

The geometry of the Galilean space G3 has been treated in detail in O. Roschl’s
habilitation in 1984 [17]. More about Galilean space and Pseudo-Galilean space may
be found in [20, 1, 3, 7, 11, 12, 21]. The Galilean space G3 is a Cayley-Klein space
equipped with the projective metric of signature (0, 0,+,+), as in [21].

The Galilean space is a three dimensional complex projective space P3 in which
the absolute figure {ω, f, I1, I2} consists of a real plane ω (the absolute plane), a
real line f ⊂ ω (the absolute line) and two complex conjugate points I1, I2 ∈ f (the
absolute points) [6]. We shall take, as a real model of the space G3, a real projective
space P3 with the absolute {ω, f} consisting of a real plane ω ⊂ G3 and a real line
f ∈ ω on which an elliptic involution ε has been defined. In homogeneous coordinates

ω...x0 = 0, f...x0 = x1 = 0,
ε : (0 : 0 : x2 : x3)→ (0 : 0 : x3 : −x2),

(2.1)

while in the nonhomogeneous coordinates, the similarity group H8 has the form

x = a11 + a12x, (2.2)

y = a21 + a22x+ a23

(
y cos[φ] + z sin[φ]

)
,

z = a31 + a32x− a33
(
y sin[φ]− z cos[φ]

)
,

where aij and φ are real numbers. For a12 = a23 = 1, we have the subgroup B6 which
is the group of Galilean motions:

x = a+ x,
y = b+ cx+ y cos[φ] + z sin[φ],
z = d+ ex− y sin[φ] + z cos[φ].

It is worth noting that [16]: in G3 there are four classes of lines:
a): (proper) nonisotropic lines: they do not meet the absolute line f .
b): (proper) isotropic lines: lines that do not belong to the plane ω but meet the

absolute line f .
c): (unproper) nonisotropic lines: all lines of ω but f .
d): the absolute line f .
Planes x =constant are Euclidean and so is the plane ω. Other planes are

isotropic. In what follows, the coefficients a12 and a23 will play a special role.
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In particular, for a12 = a23 = 1, (2.2) defines the group B6 ⊂ H8 of isometries of the
Galilean space G3.

In affine coordinates, the Galilean scalar product between two vectors a =
(a1, a2, a3) and b = (b1, b2, b3) is defined by [15]

(〈a, b〉)G3
=

{
a1b1, if a1 6= 0 or b1 6= 0,
a2b2 + a3b3, if a1 = 0 and b1 = 0.

(2.3)

The Galilean cross product is defined by

(a ∧ b)G3
=



∣∣∣∣∣∣
0 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ , if a1 6= 0 or b1 6= 0,

∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ , if a1 = 0 and b1 = 0.

(2.4)

The unit Galilean sphere is defined by [5]

S2
± = {α ∈ G3 | 〈α, α〉G3

= ∓r2}.

Let M : Φ = Φ(u, v) be a surface in Galilean 3-space is given by the parametrization

Φ(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
, u, v ∈ R,

where x(u, v), y(u, v), z(u, v) ∈ C3. The isotropic unit normal vector U of the surface
M is defined by

U(u, v) =
Φu ∧ Φv
‖Φu ∧ Φv‖

, Φu =
∂Φ

∂u
, Φv =

∂Φ

∂v
, (2.5)

or equivalently

U(u, v) =

(
0, xvzu − xuzv, xuyv − xvyu

)
√

(xvzu − xuzv)2 + (xuyv − xvyu)2
,

where xu = ∂x(u,v)
∂u , xv = ∂x(u,v)

∂v . Using (2.1) and W = ‖Φu∧Φv‖, we get the isotropic
unit vector δ(u, v) in the tangent plane of the surface as [4]

δ(u, v) =

(
0, xvyu − xuyv, xvzu − xuzv

)
W

, (2.6)

where

〈δ, δ〉 = 1, 〈U, δ〉 = 0,

by means of Galilean geometry. Observe that a straightforward computation shows
that δ can be expressed by

δ(u, v) =
xvΦu − xuΦv

W
. (2.7)
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The first fundamental form ds2 of a surface M in G3 is given by

I = ds2

= (g1du+ g2dv)2 + ε(h11du
2 + 2h12dudv + h22dv

2)
(2.8)

where
g1 = xu, g2 = xv, gij = gigj ,

h11 = 〈Φu,Φu〉, h12 = 〈Φu,Φv〉, h22 = 〈Φv,Φv〉,
(2.9)

and

ε =

{
0, if direction du : dv is non-isotropic,
1, if direction du : dv is isotropic.

The coefficients of the second fundamental form can be determined from

Lij = 〈Φijxu − xijΦu
xu

, U〉 = 〈Φijxv − xijΦv
xv

, U〉,

where Φij denotes the second order partial differentials ofM and the indices i, j belong
to the parameters u, v respectively. Under this parametrization of the surface M ,
the Gaussian curvature K and the mean curvature H have the classical expressions,
respectively [11]

K =
det(Lij)

W 2
=
L11L22 − L2

12

h11h22 − h212
, (2.10)

H =
1

2
hijLij =

h11L22 + h22L11 − 2h12L12

2(h11h22 − h212)
. (2.11)

3. Inextensible flows of tube-like surfaces associated with focal curves
in G3

The aim of this section, we will obtain the tube-like surface from the tube surface.
Since the tube surfaces are special kinds of the canal surfaces in Galilean 3-space.

If we find the canal surface with taking variable radius r(u) as constant, then
the tube surface can be found, since the canal surface is a general case of the tube
surface. An envelope of a 1-parameter family of surfaces is constructed in the same
way that we constructed a 1-parameter family of curves. The family is described by
a differentiable function F (x, y, z, λ) = 0, where λ is a parameter. When λ can be
eliminated from the equations

F (x, y, z, λ) = 0,

and
∂F (x, y, z, λ)

∂λ
= 0,

we get the envelope, which is a surface described implicitly as G(x, y, z) = 0. For
example, for a 1-parameter family of planes we get a developable surface [18].
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Definition 3.1. The envelope of a 1-parameter family u → S2
± of the spheres in G3

is called a canal surface in Galilean 3-space. The curve formed by the centers of the
Galilean spheres is called center curve of the canal surface.The radius of the canal
surface is the function r such that r(u) is the radius of the Galilean sphere S2

±. Then,
the canal surface can be parametrized as follows

C(u, v) = α(u) + r(u)
(

cos[v]N(u) + sin[v]B(u)
)
. (3.1)

Definition 3.2. Let α : (a, b) → G3 be a unit speed curve whose curvature does not
vanish. Consider a tube of radius r around α. Since the normal N and binormal B are
perpendicular to α, the Galilean circle is perpendicular α and α(u). As this Galilean
circle moves along α, it traces out a surface about α which will be the tube about α,
provided r is not too large. If the radius function r(u) = r is a constant, then, the
canal surface is called a tube (pipe) surface and it parametrized as

Tube(u, v) = α(u) + r
(

cos[v]N(u) + sin[v]B(u)
)
. (3.2)

Theorem 3.3. Let α : I → G3 be a curve in Galilean 3-space. Assume the center
curve of a tube-like surface is a unit speed curve α with nonzero curvature. Then, the
tube-like surface can be expressed as follows

X(u, v) = α(v) + r
(

cos[u]N(v)− sin[u]B(v)
)
, (3.3)

where T,N and B are the tangent, principal normal and binormal of α.

Proof. Suppose X is a patch that parametrizes the envelope of the Galilean spheres
defining tube-like surface. Where the curvature of α(v) is nonzero, the Frenet frame
of it is well defined, and we can write

X(u, v)− α(v) = p(u, v)T (v) + q(u, v)N(v)− w(u, v)B(v), (3.4)

where p, q and w are differentiable on the interval on which α is defined. We have

〈X(u, v)− α(v), X(u, v)− α(v)〉G3 =

 p2 = r2 if p(u, v) 6= 0,

q2 + w2 = r2 if p(u, v) = 0.
(3.5)

The equation (3.5) expresses analytically the geometric fact that X(u, v) lies on a
Galilean sphere S2

±(v) of radius r centrered at α(v). Furthermore, X(u, v)−α(v) is a
normal vector to the tube-like surface; this fact implies that

〈X(u, v)− α(v), Xu〉G3 = 0, (3.6)

〈X(u, v)− α(v), Xv〉G3
= 0. (3.7)

Equations (3.5), (3.6) and (3.7) say that the vectors Xu and Xv are tangents to
S2
±(v). Calculating the partial derivative of (3.4) with respect to u and v respectively,

we obtain

Xu = puT + quN − wuB, (3.8)

Xv = (1 + pv)T + (pκ+ qv + wτ)N + (qτ − wv)B. (3.9)
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Case 1. If p(u, v) 6= 0, from (3.4) and (3.5), we have{
p2 = r2,
ppv = 0.

(3.10)

Equations (3.5), (3.7), (3.9) and (3.10) imply

(1 + pv)p = 0. (3.11)

From (3.10) and (3.11), we get

r = 0. (3.12)

Hence, the equation (3.4) is not surface

Case 2. If p(u, v) = 0. From (3.4) and (3.5), we have the following{
q2 + w2 = r2,
qqv + wwv = 0 (r=constant).

(3.13)

Then, Eqs. (3.6), (3.8) and (3.13) imply that

qqu + wwu = 0 (r=constant). (3.14)

From (3.13) and (3.14), we obtain{
q = r cos[u],
w = r sin[u].

(3.15)

Thus, (3.4) becomes

X(u, v) = α(v) + r
(

cos[u]N(v)− sin[u]B(v)
)
.

From the above theorem, one can formulate the following definition:

Definition 3.4. Given a space curve α(v) =
(
x(v), y(v), z(v)

)
, at each point, there

are three directions associated with it, the tangent, normal and binormal directions.

The unit tangent vector is denoted by T , i.e., T (v) = α′(v)
‖α′(v)‖ , the unit normal vector

is denoted by N , i.e., N(v) = T ′(v)
‖T ′(v)‖ , the unit binormal vector is denoted by B, i.e.,

B(v) = T (v) ∧ N(v) (cross product). With α(v), T (v), N(v) and B(v), a tube-like
surface can be expressed as follows [19]

M : X(u, v) = α(v) + r
(

cos[u]N(v)− sin[u]B(v)
)
, (3.16)

where r is a parameter corresponding to the radius of the rotation (In general r can
be a function of v). For fixed v, when u runs from 0 to 2π, we have a circle around the
point α(v) in the T,N plane. As we change v, this circle moves along the space curve
α, and we will generate a tube-like surface along α (a special kind of tube surfaces
defined by (3.16)).

Let α : I ⊂ R→ G3, be an unit speed curve in Galilean space G3 given by

α(v) =
(
v, y(v), z(v)

)
, (3.17)
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where v is a Galilean invariant parameter (the arc-length on α). The orthonormal
frame in the sense of Galilean space G3 is defined by

T (v) = α′(v) =
(

1, y′(v), z′(v)
)
,

N(v) = α′′(v)
κ(v) = 1

κ(v)

(
0, y′′(v), z′′(v)

)
,

B(v) =
(
T (v) ∧N(v)

)
G

= 1
κ(v)

(
0,−z′′(v), y′′(v)

)
,

(3.18)

where κ(v) = ‖α′′(v)‖ =
√

(y′′(v))2 + (z′′(v))2 is the curvature and

τ(v) =
1

κ2(v)
det
[
α′(v), α′′(v), α′′′(v)

]
is the torsion. The vectors T (v), N(v) and B(v) in (3.18) are called of the tangent
vector, the principal normal vector and the binormal vector of α(v), respectively. They
satisfy the following Frenet equations [13] T ′(v)

N ′(v)
B′(v)

 =

 0 κ(v) 0
0 0 τ(v)
0 −τ(v) 0

 T (v)
N(v)
B(v)

 , (3.19)

where the prime denotes the differentiation with respect to v and we denote by κ, τ
the curvature and the torsion of the curve α. We can know that T,N,B are mutually
orthogonal vector fields satisfying equations

〈T, T 〉G = 〈N,N〉G = 〈B,B〉G = 1,

〈T,N〉G = 〈T,B〉G = 〈N,B〉G = 0,

det(T,N,B)G = 1.

Using the equations (3.16), (3.17) and (3.18), we have

X(u, v) =
(
v, y(v), z(v)

)
+
r

κ

[(
0, y′′(v), z′′(v)

)
cos[u]−

(
0,−z′′(v), y′′(v)

)
sin[u]

]
.

(3.20)
From now on, For a unit speed curve α = α(v) : I → G3, the curve consisting of the
centers of the osculating spheres of α is called the parametrized focal curve of α. The
hyperplanes normal to α at a point consist of the set of centers of all spheres tangent
to α at that point. Hence the center of the osculating spheres at that point lies in
such a normal plane. Therefore, denoting the focal curve by Cα, we can write [2]

Cα(v) =
(
α+ c1N + c2B

)
(v), (3.21)

where the coefficients c1, c2 are smooth functions of the parameter of the curve α,
called the first and second focal curvatures of α, respectively. Further, the focal cur-
vatures c1, c2 are defined by

c1 =
1

κ
, c2 =

c′1
τ
, κ 6= 0, τ 6= 0. (3.22)
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Lemma 3.5. Let α : I → G3 be a unit speed helix and Cα its focal curve on G3. Then,

c1 =
1

κ
= constant and c2 = 0. (3.23)

On the other hand, the fundamental quantities hij , Lij and its evolution of tube-
like surface (3.16) are obtained, respectively. Thus the Gaussian, mean curvatures
and its evolution of such surface are given. For this purpose, let a tube-like surface
generated by sweeping a space curve along another central space curve, moving in
3-dimensional Galilean space G3, be given at time t by the parametrization

X(u, v, t) = Cα(v, t) + r
(

cos[u, t]N(v, t)− sin[u, t]B(v, t)
)
,

where X(u, v, 0) = X(u, v), Cα(v, 0) = Cα(v), cos[u, 0] = cos[u],

N(v, 0) = N(v), sin[u, 0] = sin[u] and B(v, 0) = B(v).

(3.24)

Definition 3.6. A smooth surface X(u, v) is called a developable surface if its Gaussian
curvature K vanishes everywhere on the surface.

Definition 3.7. [10] A surface evolution X(u, v, t) and its flow ∂X
∂t are said to be

inextensible if its coefficients first fundamental form {h11, h12, h22} satisfies

∂h11
∂t

=
∂h12
∂t

=
∂h22
∂t

= 0. (3.25)

This definition states that the surface X(u, v, t) is, for all time t, the isometric
image of the original surface X(u, v, t0) defined at some initial time t0. For a tube-like
surface, X(u, v, t) can be physically pictured as the parametrization of a waving flag.
For a given surface that is rigid, there exists no nontrivial inextensible evolution.

Theorem 3.8. Let X be the tube-like surface associated with focal curve in G3. ∂X
∂t is

inextensible, then

∂X

∂t
= 0. (3.26)

Proof. Suppose that X(u, v, t) be a tube-like surface. We show that X is inextensible.

Xu = −r
[

sin[u, t]N + cos[u, t]B
]
,

Xv = T + rτ sin[u, t]N +
[
c1τ + c′2 + rτ cos[u, t]

]
B.

(3.27)

Equations (2.9) and (3.27) lead to the coefficients of the first fundamental form ob-
tained by

h11 = r2, h12 = 0, h22 = 1. (3.28)

Under the previous calculations, we have

∂h11
∂t

= 0,
∂h12
∂t

= 0,
∂h22
∂t

= 0.

If ∂X
∂t is inextensible, then we have (3.26).
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Theorem 3.9. Let X(u, v, t) be the tube-like surface associated with focal curve in G3.
If flow of this tube-like surface is inextensible then this surface is not developable as
well as not minimal.

Proof. Assume that X be a tube-like surface parametrized by (3.24). The vector cross
product of Xu and Xv is given by

Xu ∧Xv = −r
[

cos[u, t]N − sin[u, t]B
]
. (3.29)

Hence, one can get
‖Xu ∧Xv‖ = r. (3.30)

Using equations (3.29) and (3.30), we obtain the isotropic normal vector of tube-like
surface as

U =
Xu ∧Xv

‖Xu ∧Xv‖
= − cos[u, t]N + sin[u, t]B. (3.31)

The second order partial differentials of X are found

Xuu = r
[
− cos[u, t]N + sin[u, t]B

]
,

Xuv = rτ
[

cos[u, t]N − sin[u, t]B
]
,

Xvv =
[
κ+ rτ ′ sin[u, t]− c1τ2 − c′2τ − rτ2 cos[u, t]

]
N+[

rτ2 sin[u, t] + c′1τ + c1τ
′ + c′′2 + rτ ′ cos[u, t]

]
B.

(3.32)

From the equations (3.31) and (3.32), one can compute the coefficients of the second
fundamental form for the surface (3.24) as the following

L11 = r,

L12 = −rτ,

L22 =
[
− κ+ c1τ

2 + c′2τ
]

cos[u, t]+[
c′1τ + c1τ

′ + c′′2

]
sin[u, t] + rτ2.

(3.33)

Based on the above calculations, the Gaussian curvature K and the mean curvature
H of (3.24) are given by, respectively

K =
1

r

([
− κ+ c1τ

2 + c′2τ
]

cos[u, t] +
[
c′1τ + c1τ

′ + c′′2

]
sin[u, t]

)
, (3.34)

H =
1

2

([
− κ+ c1τ

2 + c′2τ
]

cos[u, t] +
[
c′1τ + c1τ

′ + c′′2

]
sin[u, t] + rτ2

)
+

1

2r
. (3.35)

By the use of (3.22) and above equations the proof is complete.
Here, we compute in special case the curvatures of the surface (3.24) as well as

the curvatures associated to the focal curve of helix on this surface as follows:
At κ = 1, τ = 1, the surface (3.24) has the following

K = 0, H =
r2 + 1

2r
.

Making use of the data described above, one can formulate the following theorem:
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Theorem 3.10. Let X(u, v, t) be a tube-like surface associated with focal curve of helix
in G3. If flow of this surface is inextensible then this surface is developable as well as
not minimal.

4. Applications

In this section, we consider an example to illustrate the main results that we
have presented in our paper.
Example 4.1. Let us consider a surface

X(u, v, t) = Cα(v, t) + r
(

cos[u, t]N(v, t)− sin[u, t]B(v, t)
)
, (4.1)

where α(v) is a helix

α(v) = (v, cos[v], sin[v]),

it is easy to see that the Frenet’s frame is
T (v) = (1,− sin[v], cos[v]),

N(v) = (0,− cos[v],− sin[v]),

B(v) = (0, sin[v],− cos[v]).

Since κ = 1 is the curvature and τ = 1 is the torsion of the curve α. Then, the focal
curve of helix takes the form

Cα = (v, 0, 0).

Thus, the surface (4.1) takes the following form

X(u, v, t) =
(
v,−r cos[u, t] cos[v, t]− r sin[u, t] sin[v, t], r sin[u, t] cos[v, t]− r cos[u, t] sin[v, t]

)
.

(4.2)

Calculating the partial derivative of (4.2) with respect to u and v respectively, we get

Xu =
(

0, r sin[u, t] cos[v, t]− r cos[u, t] sin[v, t], r cos[u, t] cos[v, t] + r sin[u, t] sin[v, t]
)
,

Xv =
(

1, r cos[u, t] sin[v, t]−r sin[u, t] cos[v, t],−r sin[u, t] sin[v, t]−r cos[u, t] cos[v, t]
)
.

The components of the first and second fundamental forms of the surface (4.2) are
given by, respectively

h11 = r2, h12 = 0, h22 = 1, L11 = r, L12 = −r, L22 = r.

The unit normal vector of the surface (4.2) takes the form

U =
(

0, sin[u, t] sin[v, t]+cos[u, t] cos[v, t],− sin[u, t] cos[v, t]+cos[u, t] sin[v, t]
)
. (4.3)

For this surface, the Gaussian curvature K and the mean curvature H are defined by,
respectively

K = 0, (4.4)

H =
r2 + 1

2r
. (4.5)
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Then, the surface (4.2) is a developable and not minimal. One can see the graph of
X(u, v, t) in Figure 1.

0

1

2

3

4
-1.0

-0.5

0.0

0.5

1.0-1.0

-0.5

0.0

0.5

1.0

0

2

4

6 -1.0

-0.5

0.0

0.5

1.0-1.0

-0.5

0.0

0.5

1.0

0

2

4

6 -1.0

-0.5

0.0

0.5

1.0-1.0

-0.5

0.0

0.5

1.0

Figure 1. Some tube-like surfaces associated with focal curve
of helices with r = 1, t = 0, Left: u ∈ [0, π], v ∈ [0, 32π],

Middle: u ∈ [0, 1310π], v ∈ [0, 2π] and Right: u ∈ [0, 2π], v ∈ [0, 2π].
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Abstract. The main aim of this paper is to give integral characterizations for a
general concept of (h, k)-splitting for skew-evolution semiflows in Banach spaces.
As consequences, criteria for the properties of (h, k)-dichotomy, nonuniform ex-
ponential splitting and exponential splitting are obtained.
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1. Introduction

The study of the asymptotic behaviours for dynamical systems represents a
research area of large interest, with an impressive development in the last years.

An important starting point for the stability theory is due to E. A Barbashin
and R. Datko, who establish integral characterizations for the property of uniform
exponential stability in [2], respectively [8].
Recently, P.V. Hai ([10]) obtains discrete and continuous characterizations for the
concept of (uniform) exponential stability in terms of Banach sequence (function)
spaces. Also, in [20] and [25] are proved generalizations of the results obtained by E.
A. Barbashin and R. Datko.

Significant results in the field of exponential dichotomy of skew-product flows are
obtained in [7], [11], [13], [14], [22] and for the case of nonlinear differential equations,
we emphasize the contributions of S. Elaydi and O. Hajek ([9]).
In [18], respectively [24], the authors give necessary and sufficient conditions for ex-
ponential dichotomy with input-output techniques, using spaces of continuous and
bounded functions, respectively Lebesgue spaces. Also, the property of (uniform) ex-
ponential dichotomy is studied in [23] through the Banach function spaces.

Different concepts of dichotomy of exponential type or more general, with differ-
ent growth rates, are treated in [4], [5], [6], [12], [16], [19] and the references therein.
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As application, we mention the robustness property studied by L. Barreira, J. Chu,
C. Valls in [3] and by M. Lizana in [15].

The notion of exponential splitting is a extension of the exponential dichotomy
and it is studied for difference equations in [1] and [17]. Important characterizations
for various concepts of splitting with growth rates are given in [21].

In this paper we approach the concept of (h, k)-splitting as generalization of
(h, k)-dichotomy for skew-evolution semiflows in Banach spaces. Integral conditions
of Datko and Barbashin type are given, considering invariant and strongly invariant
families of projectors.
Also, we emphasize the results for (h, k)-dichotomy, nonuniform exponential splitting
and exponential splitting.

2. Preliminaries

We denote by X a metric space, V a Banach space and B(V ) the Banach algebra
of all bounded linear operators on V. The norms on V , respectively B(V ) will be
denoted || · ||.
Also, we consider the sets

∆ = {(t, t0) ∈ R2
+ : t ≥ t0},

T = {(t, s, t0) ∈ R3
+ : t ≥ s ≥ t0}

and Y = X × V.

Definition 2.1. A continuous map ϕ : ∆×X → X is said to be evolution semiflow on
X if it satisfies the following relations:

(es1) ϕ(s, s, x) = x, for all (s, x) ∈ R+ ×X;

(es2) ϕ(t, s, ϕ(s, t0, x)) = ϕ(t, t0, x), for all (t, s, t0, x) ∈ T ×X.

Definition 2.2. We say that Φ : ∆ × X → B(V ) is an evolution cocycle over the
evolution semiflow ϕ if

(ec1) Φ(s, s, x) = I (the identity operator on V ), for all (s, x) ∈ R+ ×X;

(ec2) Φ(t, s, ϕ(s, t0, x))Φ(s, t0, x) = Φ(t, t0, x), for all (t, s, t0, x) ∈ T ×X;

(ec3) (t, s, x) 7→ Φ(t, s, x)v is continuous for every v ∈ V.

Definition 2.3. If ϕ is an evolution semiflow on X and Φ is an evolution cocycle over
ϕ, then the pair C = (Φ, ϕ) is called skew-evolution semiflow.

Example 2.4. Let X be a compact metric space, V a Banach space, ϕ an evolution
semiflow on X and A : X → B(V ) a continuous map. If Φ(t, s, x)v is the solution of
the equation

v̇(t) = A(ϕ(t, s, x))v(t), t ≥ s ≥ 0,

then C = (Φ, ϕ) is a skew-evolution semiflow.
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Definition 2.5. We say that a continuous map P : R+ × X → B(V ) is a family of
projectors on V if

P (s, x)2 = P (s, x), for all (s, x) ∈ R+ ×X.

Remark 2.6. If P : R+ × X → B(V ) is a family of projectors for C = (Φ, ϕ), then
Q : R+ ×X → B(V ), Q(t, x) = I − P (t, x) is also a family of projectors for C, called
the complementary family of projectors of P .

Definition 2.7. A family of projectors P : R+ ×X → B(V ) is called

(i) invariant for the skew-evolution semiflow C = (Φ, ϕ) if

P (t, ϕ(t, s, x))Φ(t, s, x) = Φ(t, s, x)P (s, x), for all (t, s, x) ∈ ∆×X;

(ii) strongly invariant for the skew-evolution semiflow C = (Φ, ϕ) if it is invariant
for C and for all (t, s, x) ∈ ∆ × X, the map Φ(t, s, x) is an isomorphism from
Range Q(s, x) to Range Q(t, ϕ(t, s, x)).

Remark 2.8. An example of an invariant family of projectors for a skew-evolution
semiflow which is not strongly invariant is given in [21].

Proposition 2.9. If P : R+ × X → B(V ) is a strongly invariant family of projec-
tors for C = (Φ, ϕ), then there exists an isomorphism Ψ : ∆ × X → B(V ) from
Range Q(t, ϕ(t, s, x)) to Range Q(s, x), such that:

(Ψ1) Φ(t, s, x)Ψ(t, s, x)Q(t, ϕ(t, s, x)) = Q(t, ϕ(t, s, x));
(Ψ2) Ψ(t, s, x)Φ(t, s, x)Q(s, x) = Q(s, x);
(Ψ3) Ψ(t, s, x)Q(t, ϕ(t, s, x)) = Q(s, x)Ψ(t, s, x)Q(t, ϕ(t, s, x));
(Ψ4) Ψ(t, t0, x)Q(t, ϕ(t, t0, x)) = Ψ(s, t0, x)Ψ(t, s, ϕ(s, t0, x))Q(t, ϕ(t, t0, x)),

for all (t, s, t0, x) ∈ T ×X.

Proof. See [21], Proposition 2. �

Throughout this paper, we will consider two nondecreasing functions
h, k : R+ → [1,+∞) with lim

t→+∞
h(t) = lim

t→+∞
k(t) = +∞ (growth rates).

Let C = (Φ, ϕ) be a skew-evolution semiflow and P : R+ × X → B(V ) an
invariant family of projectors for C.

Definition 2.10. The pair (C,P ) admits a (h, k)-splitting if there exist two constants
α, β ∈ R, α < β and a nondecreasing map N : R+ → [1,+∞) such that

(hs1) h(s)α||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(t)α||Φ(s, t0, x0)P (t0, x0)v0||;
(ks1) k(t)β ||Φ(s, t0, x0)Q(t0, x0)v0|| ≤ N(t)k(s)β ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, s, t0, x0, v0) ∈ T × Y, where Q is the complementary family of projectors of
P .

The constants α and β are called splitting constants.
As particular cases, we have:

(i) if the map N is constant, then we have the property of uniform (h, k)-splitting ;
(ii) if α < 0 < β, then we obtain the notion of (h, k)-dichotomy ;

(iii) if h(t) = k(t) = et, t ≥ 0, then we recover the concept of nonuniform exponential
splitting ;
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(iv) if h(t) = k(t) = et and N(t) = Seεt, with t ≥ 0, S ≥ 1 and ε ≥ 0, then we obtain
the concept of exponential splitting.

Remark 2.11. The pair (C,P ) is (h, k)-dichotomic if and only if there are a, b > 0
and a nondecreasing mapping N : R+ → [1,+∞) with

(hd1) h(t)a||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(s)a||Φ(s, t0, x0)P (t0, x0)v0||;
(kd1) k(t)b||Φ(s, t0, x0)Q(t0, x0)v0|| ≤ N(t)k(s)b||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

Example 2.12. Let P : R+ ×X → B(V ) be a constant family of projectors on V and
Q = I − P.

Let h, k : R+ → [1,+∞) be two growth rates and let α < β be two real constants.
For every two nondecreasing functions u, v : R+ → [1,+∞) with

sup
t≥0

u(t) = α and sup
t≥0

v(t) = β

we define Φ : ∆×X → B(V ) by

Φ(t, s, x) =
u(s)

u(t)

(
h(t)

h(s)

)α
P (s, x) +

v(t)

v(s)

(
k(t)

k(s)

)β
Q(s, x),

which is an evolution cocycle over every evolution semiflow on X with

Φ(t, s, x1) = Φ(t, s, x2), for all (t, s, x1), (t, s, x2) ∈ ∆×X,

Φ(t, t0, x0)P (t0, x0) =
u(t0)

u(t)

(
h(t)

h(t0)

)α
P (t0, x0), for all (t, t0, x0) ∈ ∆×X,

Φ(t, t0, x0)Q(t0, x0) =
v(t)

v(t0)

(
k(t)

k(t0)

)β
Q(t0, x0), for all (t, t0, x0) ∈ ∆×X.

Moreover,

h(s)α||Φ(t, t0, x0)P (t0, x0)v0|| =
u(t0)

u(t)

(
h(s)

h(t0)

)α
h(t)α||P (t0, x0)v0|| ≤

≤ u(s)h(t)α||Φ(s, t0, x0)P (t0, x0)v0|| ≤ N(s)h(t)α||Φ(s, t0, x0)P (t0, x0)v0||
and

k(t)β ||Φ(s, t0, x0)Q(t0, x0)v0|| =
v(s)

v(t)
k(s)β ||Φ(t, t0, x0)Q(t0, x0)v0|| ≤

≤ v(t)k(s)β ||Φ(t, t0, x0)Q(t0, x0)v0|| ≤ N(t)k(s)β ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, s, t0, x0, v0) ∈ T × Y, where N(t) = u(t) + v(t), for every t ≥ 0.

Finally, we obtain that (C,P ) has a (h, k)-splitting, with the splitting constants
α and β.

If we suppose that (C,P ) is (h, k)-dichotomic, then it results that there exist
γ > 0 and a nondecreasing function N : R+ → [1,+∞) such that

h(t)γ ||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(s)γ ||Φ(s, t0, x0)P (t0, x0)v0||,

for all (t, s, t0) ∈ T and all (x0, v0) ∈ Y.
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From here, for s = t0 = 0 we deduce

u(0)h(t)α+γ ≤ N(0)h(0)α+γu(t) ≤ αN(0)h(0)α+γ

and for t→ +∞ we obtain a contradiction.

Remark 2.13. The previous example shows that for every two growth rates h, k and
all two real constants α < β there is a skew-evolution semiflow which admits a (h, k)-
splitting with the splitting constants α, β and which is not (h, k)-dichotomic.

Remark 2.14. The pair (C,P ) has a (h, k)-splitting if and only if there exist α, β ∈ R,
α < β and nondecreasing map N : R+ → [1,+∞) such that

(hs′1) h(t0)α||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(t0)h(t)α||P (t0, x0)v0||;
(ks′1) k(t)β ||Q(t0, x0)v0|| ≤ N(t)k(t0)β ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, t0, x0, v0) ∈ ∆× Y.

Definition 2.15. We say that (C,P ) has a (h, k)-growth if there exist two constants
ω1, ω2 > 0 and nondecreasing map M : R+ → [1,+∞) such that

(hg1) h(s)ω1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤M(t0)h(t)ω1 ||Φ(s, t0, x0)P (t0, x0)v0||;
(kg1) k(s)ω2 ||Φ(s, t0, x0)Q(t0, x0)v0|| ≤M(t)k(t)ω2 ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

In particular,

(neg) for h(t) = k(t) = et, t ≥ 0, we have the property of nonuniform exponential
growth;

(eg) for h(t) = k(t) = et and M(t) = Geγt, t ≥ 0, G ≥ 1 and γ ≥ 0, we obtain the
notion of exponential growth.

Proposition 2.16. Let P : R+×X → B(V ) be a strongly invariant family of projectors
for C = (Φ, ϕ). Then (C,P ) admits a (h, k)-splitting if and only if there exist two real
constants α < β and a nondecreasing mapping N : R+ → [1,+∞) such that

(hs1) h(s)α||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(t)α||Φ(s, t0, x0)P (t0, x0)v0||;
(ks′′1) k(s)β ||Ψ(t, t0, x0)Q(t, ϕ(t, t0, x0))v0|| ≤

≤ N(s)k(t0)β ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

Proof. See [21], Proposition 3. �

Similarly, we obtain

Remark 2.17. Let P : R+ ×X → B(V ) be a strongly invariant family of projectors
for C = (Φ, ϕ). Then (C,P ) has a (h, k)-growth if and only if there exist ω1, ω2 > 0
and nondecreasing function M : R+ → [1,+∞) with

(hg1) h(s)ω1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤M(t0)h(t)ω1 ||Φ(s, t0, x0)P (t0, x0)v0||;
(kg′1) k(t0)ω2 ||Ψ(t, t0, x0)Q(t, ϕ(t, t0, x0))v0|| ≤

≤M(s)k(s)ω2 ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.
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3. The main results

In this section we will denote with H1 the set of the growth rates h : R+ → [1,+∞)
with

+∞∫
0

h(s)cds < +∞, for all c < 0.

Also, K1 represents the set of the growth rates k : R+ → [1,+∞), with the property
that there exists a constant K ≥ 1 such that

t∫
0

k(s)cds ≤ Kk(t)c, for all c > 0, t ≥ 0.

By H we denote the set of the growth rates h : R+ → [1,+∞) with the property that
there exists H ≥ 1 such that

h(t)c ≤ Hh(s)c, for all (t, s) ∈ ∆, t ≤ s+ 1, c ∈ R.

Remark 3.1. If we denote by e(t) = et, t ≥ 0, then e ∈ H1 ∩ K1 ∩H.
We consider C = (Φ, ϕ) a skew-evolution semiflow, P : R+ × X → B(V ) an

invariant family of projectors for C.
A first characterization for the (h, k)-splitting property is given by

Theorem 3.2. Let (C,P ) be a pair with (h, k)-growth, where h ∈ H1∩H and k ∈ K1∩H.
Then (C,P ) admits a (h, k)-splitting if and only if there exist d1, d2 ∈ R, d1 < d2 and
a nondecreasing mapping D : R+ → [1,+∞) such that the following assertions hold:

(Dhs1)

+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, x0)P (t0, x0)v0||,

for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dks1)

t∫
t0

||Φ(τ, t0, x0)Q(t0, x0)v0||
k(τ)d2

dτ ≤ D(t)

k(t)d2
||Φ(t, t0, x0)Q(t0, x0)v0||,

for all (t, t0, x0, v0) ∈ ∆× Y.
Proof. Necessity. It is a simple verification for α < d1 < d2 < β and

D(s) = N(s)[K +Hh(s)d1−α],

where H =
+∞∫
0

h(τ)α−d1dτ.

Sufficiency. We show that the relations from Definition 2.10 are verified.
(hs1) Case 1 : Let t ≥ s+ 1, (s, t0) ∈ ∆ and (x0, v0) ∈ Y. Then

h(s)d1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤

≤ h(s)d1M(t0)

t∫
t−1

(
h(t)

h(τ)

)ω1

||Φ(τ, t0, x0)P (t0, x0)v0||dτ =
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= M(t0)h(s)d1h(t)d1
t∫

t−1

(
h(t)

h(τ)

)ω1−d1 ||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤

≤ HM(s)h(s)d1h(t)d1
+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤

≤ N(s)h(t)d1 ||Φ(s, t0, x0)P (t0, x0)v0||, for all t ≥ s+ 1, s ≥ t0, (x0, v0) ∈ Y,
where N(s) = HM(s)D(s), s ≥ 0.
Case 2 : Let t ∈ [s, s+ 1], s ≥ t0 and (x0, v0) ∈ Y. We obtain

h(s)d1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤

≤M(t0)

(
h(t)

h(s)

)ω1−d1
h(t)d1 ||Φ(s, t0, x0)P (t0, x0)v0|| ≤

≤ N(s)h(t)d1 ||Φ(s, t0, x0)P (t0, x0)v0||,
for all t ∈ [s, s+ 1], s ≥ t0, (x0, v0) ∈ Y.
Then, we obtain that (hs1) is verified for all (t, s, t0, x0, v0) ∈ T × Y.
(ks1) Case 1 : We consider (t, s, t0) ∈ T, t ≥ s+ 1, (x0, v0) ∈ Y. Then,

s+1∫
s

k(t)d2 ||Φ(s, t0, x0)Q(t0, x0)v0||dτ ≤

≤ k(t)d2
s+1∫
s

M(τ)

(
k(τ)

k(s)

)ω2

||Φ(τ, t0, x0)Q(t0, x0)v0||dτ ≤

≤M(t)k(t)d2k(s)d2
s+1∫
s

(
k(τ)

k(s)

)ω2+d2 ||Φ(τ, t0, x0)Q(t0, x0)v0||
k(τ)d2

dτ ≤

≤ HM(t)k(s)d2k(t)d2
t∫

t0

||Φ(τ, t0, x0)Q(t0, x0)v0||
k(τ)d2

dτ ≤

≤ N(t)k(s)d2 ||Φ(t, t0, x0)Q(t0, x0)v0||.
We obtain

k(t)d2 ||Φ(s, t0, x0)Q(t0, x0)v0|| ≤ N(t)k(s)d2 ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all t ≥ s+ 1, s ≥ t0, (x0, v0) ∈ Y.
Case 2 : Let t ∈ [s, s+ 1], s ≥ t0 and (x0, v0) ∈ Y. We deduce the following:

k(t)d2 ||Φ(s, t0, x0)Q(t0, x0)v0|| ≤

≤M(t)

(
k(t)

k(s)

)ω2

k(t)d2 ||Φ(t, t0, x0)Q(t0, x0)v0|| =

= M(t)

(
k(t)

k(s)

)ω2+d2

k(s)d2 ||Φ(t, t0, x0)Q(t0, x0)v0|| ≤
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≤ N(t)k(s)d2 ||Φ(t, t0, x0)Q(t0, x0)v0||.

Thus, the condition (ks1) holds for all (t, s, t0, x0, v0) ∈ T × Y.
In conclusion, the pair (C,P ) has a (h, k)-splitting. �

As consequences, we obtain

Corollary 3.3. Let (C,P ) be a pair with (h, k)-growth, where h ∈ H1 ∩ H and k ∈
K1 ∩ H. Then (C,P ) is (h, k)-dichotomic if and only if then there exist d1 < 0 < d2
and a nondecreasing function D : R+ → [1,+∞) such that:

(Dhd1)

+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, x0)P (t0, x0)v0||,

for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dkd1)

t∫
t0

||Φ(τ, t0, x0)Q(t0, x0)v0||
k(τ)d2

dτ ≤ D(t)

k(t)d2
||Φ(t, t0, x0)Q(t0, x0)v0||,

for all (t, t0, x0, v0) ∈ ∆× Y.

Corollary 3.4. We consider (C,P ) a pair with nonuniform exponential growth. Then
(C,P ) has a nonuniform exponential splitting if and only if there are two constants
d1, d2 ∈ R, d1 < d2 and a nondecreasing map D : R+ → [1,+∞) with:

(Dnes1)

+∞∫
s

e−τd1 ||Φ(τ, t0, x0)P (t0, x0)v0||dτ ≤

≤ D(s)e−sd1 ||Φ(s, t0, x0)P (t0, x0)v0||,
for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dnes2)

t∫
t0

e−τd2 ||Φ(τ, t0, x0)Q(t0, x0)v0||dτ ≤

≤ D(t)e−td2 ||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, t0, x0, v0) ∈ ∆× Y.

Corollary 3.5. If (C,P ) is a pair with exponential growth, then it admits an exponential
splitting if and only if there exists some real constants d1 < d2, D ≥ 1 and δ ≥ 0 such
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that:

(Des1)

+∞∫
s

e−τd1 ||Φ(τ, t0, x0)P (t0, x0)v0||dτ ≤

≤ De(δ−d1)s||Φ(s, t0, x0)P (t0, x0)v0||,
for all (s, t0, x0, v0) ∈ ∆× Y ;

(Des2)

t∫
t0

e−τd2 ||Φ(τ, t0, x0)Q(t0, x0)v0||dτ ≤

≤ De(δ−d2)t||Φ(t, t0, x0)Q(t0, x0)v0||,
for all (t, t0, x0, v0) ∈ ∆× Y.

Remark 3.6. The results given by Theorem 3.2, Corollary 3.3, Corollary 3.4 and
Corollary 3.5 are characterizations of Datko-type for the splitting concepts studied in
this paper.

Further, C = (Φ, ϕ) represents a skew-evolution semiflow and P : R+ × X →
B(V ) a strongly invariant family of projectors for C.
In this context, we obtain the following characterization for (h, k)-splitting:

Theorem 3.7. Let (C,P ) be a pair with (h, k)-growth,where h ∈ H1∩H and k ∈ K1∩H.
Then (C,P ) admits a (h, k)-splitting if and only if there exist d1, d2 ∈ R, d1 < d2 and a
nondecreasing map D : R+ → [1,+∞) such that the following inequalities are verified:

(Dhs1)

+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, x0)P (t0, x0)v0||,

for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dks′1)

s∫
t0

||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||
k(τ)d2

dτ ≤

≤ D(s)

k(s)d2
||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,

for all (t, s, t0, x0, v0) ∈ T × Y.

Proof. Necessity. It results from Proposition 2.16, for α < d1 < d2 < β and

D(s) = N(s)[K +Hh(s)d1−α],

where H =
+∞∫
0

h(τ)α−d1dτ.

Sufficiency. We prove that the inequalities (hs1) and (ks′′1) from Proposition
2.16 hold.

In a similar manner with the proof of Theorem 3.2 we obtain

h(s)d1 ||Φ(t, t0, x0)P (t0, x0)v0|| ≤ N(s)h(t)d1 ||Φ(s, t0, x0)P (t0, x0)v0||,
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for all (t, s, t0, x0, v0) ∈ T × Y, where N(s) = HM(s)D(s), s ≥ 0.

Thus, we consider (t, s, t0) ∈ T, s ≥ t0 + 1, (x0, v0) ∈ Y and it results that

k(s)d2 ||Ψ(t, t0, x0)Q(t, ϕ(t, t0, x0)v0|| =

= k(s)d2

t0+1∫
t0

||Ψ(τ, t0, x0)Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||dτ ≤

≤ k(s)d2

t0+1∫
t0

M(τ)

(
k(τ)

k(t0)

)ω2

||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||dτ ≤

≤M(s)k(s)d2k(t0)d2

t0+1∫
t0

(
k(τ)

k(t0)

)ω2+d2 ||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||
k(τ)d2

dτ ≤

≤ HM(s)k(s)d2k(t0)d2
s∫

t0

||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||
k(τ)d2

dτ ≤

≤ N(s)k(t0)d2 ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||.

For t ≥ s, s ∈ [t0, t0 + 1), (x0, v0) ∈ Y we have

k(s)d2 ||Ψ(t, t0, x0)Q(t, ϕ(t, t0, x0))v0|| ≤

≤ k(s)d2M(s)

(
k(s)

k(t0)

)ω2

||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0|| ≤

≤M(s)k(t0)d2
(
k(s)

k(t0)

)ω2+d2

||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0|| ≤

≤ N(s)k(t0)d2 ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||.

We deduce that (ks′′1) is verified, for all (t, s, t0) ∈ T, (x0, v0) ∈ Y.
Using Proposition 2.16, it follows that (C,P ) admits a (h, k)-splitting. �

In particular, we emphasize the following consequences:

Corollary 3.8. Let (C,P ) be a pair with (h, k)-growth,where h ∈ H1∩H and k ∈ K1∩H.
Then (C,P ) is (h, k)-dichotomic if and only if there exist two constants d1 < 0 < d2
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and a nondecreasing map D : R+ → [1,+∞) with:

(Dhd1)

+∞∫
s

||Φ(τ, t0, x0)P (t0, x0)v0||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, x0)P (t0, x0)v0||,

for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dkd′1)

s∫
t0

||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||
k(τ)d2

dτ ≤

≤ D(s)

k(s)d2
||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,

for all (t, s, t0, x0, v0) ∈ T × Y.
Corollary 3.9. Let (C,P ) be with nonuniform exponential growth. Then (C,P ) has a
nonuniform exponential splitting if and only if exist two real constants d1 < d2 and a
nondecreasing function D : R+ → [1,+∞) such that:

(Dnes1)

+∞∫
s

e−τd1 ||Φ(τ, t0, x0)P (t0, x0)v0||dτ ≤

≤ D(s)e−sd1 ||Φ(s, t0, x0)P (t0, x0)v0||,
for all (s, t0, x0, v0) ∈ ∆× Y ;

(Dnes′2)

s∫
t0

e−τd2 ||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||dτ ≤

≤ D(s)e−sd2 ||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

Corollary 3.10. If (C,P ) has an exponential growth, then it admits an exponential
splitting if and only if there exist d1, d2 ∈ R, d1 < d2, D ≥ 1 and δ ≥ 0 such that:

(Des1)

+∞∫
s

e−τd1 ||Φ(τ, t0, x0)P (t0, x0)v0||dτ ≤

≤ De(δ−d1)s||Φ(s, t0, x0)P (t0, x0)v0||,
for all (s, t0, x0, v0) ∈ ∆× Y ;

(Des′2)

s∫
t0

e−τd2 ||Ψ(t, τ, ϕ(τ, t0, x0))Q(t, ϕ(t, t0, x0))v0||dτ ≤

≤ De(δ−d2)s||Ψ(t, s, ϕ(s, t0, x0))Q(t, ϕ(t, t0, x0))v0||,
for all (t, s, t0, x0, v0) ∈ T × Y.

Remark 3.11. Theorem 3.7, Corollary 3.8, Corollary 3.9 and Corollary 3.10 are char-
acterizations of Barbashin-type for the splitting concepts considered in this paper.
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References

[1] Aulbach, B., Kalkbrenner, J., Exponential forward splitting for noninvertible difference
equations, Comput. Math. Appl., 42(2001), 743-754.

[2] Barbashin, E.A., Introduction to Stability Theory, Nauka, Moscow, 1967.

[3] Barreira, L., Chu, J., Valls, C., Robustness of nonuniform dichotomies with different
growth rates, Sao Paolo J. Math. Sci., 2(2011), 203-231.

[4] Barreira, L., Valls, C., Nonuniform exponential dichotomies and admissibility, Discrete
and Contin. Dyn. Syst. Series B., 30(2011), no. 1, 39-53.

[5] Bento, A.J.G., Lupa, N., Megan, M., Silva, C., Integral conditions for nonuniform µ-
dichotomy on the half-line, accepted for publication in Discrete and Contin. Dyn. Syst.-
Series B.

[6] Bento, A.J.G., Silva, C., Nonuniform dichotomic behavior: Lipschitz invariant manifolds
for ODEs, Bull. Sci. Math., 138(2014), no. 1, 89-109.

[7] Chow, S.N., Leiva, H., Existence and roughness of the exponential dichotomy for skew-
product semiflow in Banach spaces, J. Differential Equation, 120(1995), 429-477.

[8] Datko, R., Uniform Asymptotic Stability of Evolutionary Processes in Banach Space,
SIAM J. Math. Anal., 3(1972), 428-445.

[9] Elaydi, S., Hajek, O., Exponential dichotomy and trichotomy of nonlinear differential
equations, Differential Integral Equations, 3(1990), 1201-1204.

[10] Hai, P.V., Continuous and discrete characterizations for the uniform exponential stability
of linear skew-evolution semiflows, Nonlinear Anal., 72(2010), 4390-4396.

[11] Huy, N.T., Existence and robustness of exponential dichotomy of linear skew-product
semiflows over semiflows, J. Math. Anal. Appl., 333(2007), 731-752.
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[21] Mihiţ, C.L., Borlea, D., Megan, M., On some concepts of (h, k)-splitting for skew-
evolution semiflows in Banach spaces, to appear in Ann. Acad. Rom. Sci. Ser. Math.
Appl.



(h, k)-splitting of skew-evolution semiflows 365

[22] Sacker, R.J., Sell, G.R., Dichotomies for linear evolutionary equations in Banach spaces,
J. Differential Equations, 113(1994), 17-67.

[23] Sasu, A.L., Sasu, B., Translation invariant spaces and asymptotic properties of varia-
tional equations, Abstr. Appl. Anal., (2011), Art. ID 539026, 1-36.

[24] Sasu, A.L., Sasu, B., Integral equations in the study of the asymptotic behavior of skew-
product flows, Asymptot. Anal., 68(2010), 135-153.

[25] Stoica, C., Megan, M., On uniform exponential stability for skew-evolution semiflows on
Banach spaces, Nonlinear Anal., 72(2010), no. 3-4, 1305-1313.

Claudia Luminiţa Mihiţ
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Characterization of q-Cesàro convergence for
double sequences

Emre Taş and Cihan Orhan

Abstract. In the present paper we examine the Buck-Pollard property of 4-
dimensional q-Cesàro matrices. Indeed we discuss some questions related to the
q-Cesàro summability of subsequences of a given double sequence. The main re-
sult states that “ a bounded double sequence is q-Cesàro summable to L if and
only if almost all of its subsequences are q-Cesàro summable to 21−qL”.
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1. Introduction

Buck and Pollard [2] proved that a bounded sequence (sn) is (C, 1) summable
if and only if almost all of its subsequences is (C, 1) summable. Since this idea has
been introduced by Buck and Pollard, the property is to be called “Buck-Pollard
property”. The Buck-Pollard property is related to the convergence or summability of
subsequences of a given sequence. Taking into consideration q-Cesàro matrix instead of
(C, 1) matrix, similar results have been investigated in [7]. Recently the Buck-Pollard
property for (C, 1, 1) summability method has been examined and also provided a
new characterization of (C, 1, 1) summability for double sequences with respect to its
subsequences [10].

In the present paper we consider similar problems for four dimensional q-Cesàro
matrix on double sequences. We first introduce the notions of our interest related to
double sequences.

A double sequence s = (sjk) is said to be Pringsheim convergent (i.e., it is
convergent in Pringsheim’s sense) to L if for every ε > 0 there exists an N ∈ N such
that |sjk − L| < ε whenever j, k ≥ N ([9]). In this case L is called the Pringsheim

limit of s and the space of such sequences is denoted by c(2). A double sequence s is
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bounded if there exists a positive number H such that |sjk| < H for all j and k, i.e.,

‖s‖(∞,2) = sup
j,k
|sjk| <∞.

We will denote the set of all bounded double sequences by l
(2)
∞ . Note that in contrast

to the case for single sequences, a convergent double sequence need not to be bounded.
Throughout the paper when there is no confusion, ”convergence” means the

Pringsheim convergence.

Four dimensional q-Cesàro matrix (Cq, 1, 1) =
(
cnmjk

)
is defined by

cnmjk =


1

nqmq , 1 ≤ j ≤ n and 1 ≤ k ≤ m

0 , otherwise

where 0 < q < ∞. Observe that the case q = 1 reduces to (C, 1, 1), 4-dimensional
Cesàro matrix. Also if q 6= 1, q-Cesàro matrices (Cq, 1, 1) cannot be RH regular, i.e.,
it cannot sum every bounded convergent sequence to the same limit.

There exist several versions of the concept of subsequences for double sequences
([3], [8], [12]). We adopt Definition 2 of [3] on subsequences of double sequences
throughout the paper.

Let X denote the set of all double sequences of 0’s and 1’s, that is

X = {x = (xjk) : xjk ∈ {0, 1} for each j, k ∈ N} .

Let < be the smallest σ-algebra of subsets of the set X which contains all sets of the
form

{x = (xjk) ∈ X : xj1k1
= a1, ..., xjnkn

= an}
where each ai ∈ {0, 1} and the pairs {(jiki)}ni=1 are pairwise distinct.

There exists a unique probability measure P on the set <, such that

P ({x = (xjk) ∈ X : xj1k1
= a1, ..., xjnkn

= an}) =
1

2n

for all choices of n and all pairwise disjoint pairs {(jiki)}ni=1, and all choices of a1, ..., an
(see, [3]).

Let s = (sjk) be a double sequence and x = (xjk) ∈ X. Following [3] we define
a subsequence of the sequence s by

sjk (x) =

{
sjk , if xjk = 1
∗ , if xjk = 0

.

Mapping x→ s (x) is a bijection from the set X to the set of all the subsequences of
the sequence s = (sjk) [3].

An element x of X is said to be normal ([3]) if for each ε > 0 there is a natural

number Nε such that for n,m ≥ Nε we have

∣∣∣∣∣∣ 1
nm

∑
j≤n
k≤m

xjk − 1
2

∣∣∣∣∣∣ < ε. Let η denote the

set of all elements x in X that are normal. This implies that normal elements are
(C, 1, 1)-summable to 1

2 . It is also known ([3]) that P (η) = 1.
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2. Subsequence Characterization of q-Cesàro Summability

In this section we characterize (Cq, 1, 1) summability of a double sequence. In
particular we study conditions under which (Cq, 1, 1) summability of a double se-
quence carry over to that of its subsequences, and conversely, whether these proper-
ties for suitable subsequences imply them for the sequence itself. We begin with the
following theorem which is analog to that of Buck and Pollard [2] for single sequences.

Theorem 2.1. If almost all subsequences of s = (sjk) are (Cq, 1, 1)-summable to a
value L then the sequence s = (sjk) is (Cq, 1, 1)-summable to 21−q L.

Proof. If almost all subsequences of (sjk) are (Cq, 1, 1)-summable to a value L then
the set G = {x ∈ X : s (x) is (Cq, 1, 1) -summable to L} has probability measure 1.
We use the technique given in [3]. Now given a sequence x = (xjk) ∈ X we define a
sequence x̄ = (x̄jk) by

x̄jk =

{
0 , if xjk = 1
1 , if xjk = 0

.

Let Y = G ∩ η and Y = {(x̄jk) : xjk ∈ Y }. Therefore we have Y = G ∩ η where G is
defined in the obvious way. Since the mapping (xjk) → (x̄jk) preserves the measure

P , we get P
(
Y
)

= 1 and hence P
(
Y ∩ Y

)
= 1. So Y ∩ Y is a non-empty set. If

x = (xjk) ∈ Y ∩ Y , then we have x ∈ G , x ∈ η and x̄ ∈ G , x̄ ∈ η. Hence we obtain

s (x)→ L (Cq, 1, 1)

and

s (x̄)→ L (Cq, 1, 1)

with x, x̄ ∈ η. That is

lim
n,m→∞

n,m∑
j,k=1,1

sjkxjk(
n,m∑

j,k=1,1

xjk

)q = L and lim
n,m→∞

n,m∑
j,k=1,1

sjkx̄jk(
n,m∑

j,k=1,1

x̄jk

)q = L.

Also since x, x̄ ∈ η, we have

lim
n,m→∞

1

nm

n,m∑
j,k=1,1

xjk =
1

2
and lim

n,m→∞

1

nm

n,m∑
j,k=1,1

x̄jk =
1

2
.

On the other hand, the (Cq, 1, 1)-summability of the sequence (sjk) is equivalent
to the existence of the limit of the following expression

n,m∑
j,k=1,1

sjk

nqmq
=

(
n,m∑

j,k=1,1

xjk

)q

nqmq

n,m∑
j,k=1,1

sjkxjk(
n,m∑

j,k=1,1

xjk

)q +

(
n,m∑

j,k=1,1

x̄jk

)q

nqmq

n,m∑
j,k=1,1

sjkx̄jk(
n,m∑

j,k=1,1

x̄jk

)q .
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So we get that

lim
n,m→∞

n,m∑
j,k=1,1

sjk

nqmq
=

L

2q
+
L

2q
= 21−qL

which implies that the sequence (sjk) is (Cq, 1, 1)-summable to 21−qL. �

In order to get the converse of Theorem 2.1, we need the following two lemmas
presented in [10]. The first lemma is an analog of the Khintchine inequality for double
sequences.

Lemma 2.2. Let

tnm (x) =
n,m∑

j,k=1,1

sjkrjk (x) , Bnm =
n,m∑

j,k=1,1

s2jk.

Then the following inequality

E
(

(tnm)
2r
)
≤ (2r)!

2rr!
(Bnm)

r

is fulfilled, where r is a positive integer.

The next result is an analog of the Marcinkiewicz-Zygmund inequality for double
sequences.

Lemma 2.3. Let

tnm (x) =
n,m∑

j,k=1,1

sjkrjk (x) , Bnm =
n,m∑

j,k=1,1

s2jk

and t∗nm (x) = max
(j,k)∈Knm

|tjk|, where Knm := {(j, k) : 1 ≤ j ≤ n, 1 ≤ k ≤ m}.

Then for a > 0 the following inequality

E
(
eat

∗
nm(x)

)
≤ 32ea

2 Bnm
2

holds.

Now we are ready to provide the converse of Theorem 2.1.

Theorem 2.4. If the sequence (sjk) is (Cq, 1, 1)-summable to a value L and

n,m∑
j,k=1,1

s2jk = o

(
n2qm2q

log log nqmq

)
then almost all subsequences of (sjk) are (Cq, 1, 1)-summable to 2q−1L.

Proof. The (Cq, 1, 1)-summability of almost all subsequences of (sjk) is equivalent to
the convergence of the following expression

n,m∑
j,k=1,1

sjkxjk(
n,m∑

j,k=1,1

xjk

)q for almost all x.
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We can rewrite the above expression as follows for almost all x

n,m∑
j,k=1,1

sjk

(
1 + rjk (x)

2

)
{

n,m∑
j,k=1,1

(
1 + rjk (x)

2

)}q =

1
2nqmq

n,m∑
j,k=1,1

sjk + 1
2nqmq

n,m∑
j,k=1,1

sjkrjk (x)

1
nqmq

{
n,m∑

j,k=1,1

(
1 + rjk (x)

2

)}q (2.1)

where rjk (x) = 2xjk−1 . Recall that the functions rjk are the Rademacher functions
(see [3]). Since P (η) = 1, observe that the denumerator of (2.1) converges to 1

2q for
almost all x. To complete the proof, it suffices to establish that

1

nqmq

n,m∑
j,k=1,1

sjkrjk (x)→ 0, (as n,m→∞) for almost all x.

Let ε > 0 and define

Mjk :=
{
x : there is (n,m) with 2j−1 < n ≤ 2j , 2k−1 < m ≤ 2k such that |tnm (x)| > nqmqε

}
and let

Gjk =
{
x : t∗2j ,2k (x) > 2q(j−1)2q(k−1)ε

}
.

Notice that Mjk ⊂ Gjk. The proof will be completed if we prove that for every ε > 0,

∞,∞∑
j,k=1,1

P (Gjk) <∞.

Now using Lemma 2.3 we have

P (Gjk) ea2
q(j−1)2q(k−1)ε ≤

∫
X

e
at∗

2j ,2k
(x)
dP (x) = E

(
e
at∗

2j ,2k
(x)
)
≤ 32ea

2 B
2j2k
2 .

Hence

P (Gjk) ≤ 32e
a2B

2j2k
2 −a2q(j−1)2q(k−1)ε.

Taking a = 2q(j−1)2q(k−1)ε
B

2j2k
, we have

P (Gjk) ≤ 32e
−
ε222q(j−1)22q(k−1)

2B2j2k (2.2)

= 32e
−
ε2
(
2j
)2q (

2k
)2q

2.16qB2j2k .

On the other hand it follows from the hypothesis that

B2j2k

(2j)
2q

(2k)
2q = o

(
1

log log 2jq2kq

)
which yields

B2j2k

(2j)
2q

(2k)
2q ≤

ε2

2.16q log log 2jq2kq
.
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Then (2.2) yields that

P (Gjk) ≤ 32e
−

ε2

2.16q
6.16q log log 2jq2kq

ε2

= 32e−3 log log 2jq2kq

=
32

[(j + k) log 2q]
3 .

Since
∞,∞∑

j,k=1,1

1
[(j+k) log 2q ]3

<∞ (see [1]),

∞,∞∑
j,k=1,1

P (Gjk) ≤ 32

∞,∞∑
j,k=1,1

1

[(j + k) log 2q]
3 <∞.

Hence we obtain lim
j,k→∞

P (Gjk) = 0 and also lim
j,k→∞

P (Mjk) = 0. This completes the

proof. �

A criterion for (Cq, 1, 1) summability of bounded double sequences is provided
in the next corollary.

Corollary 2.5. A bounded double sequence (sjk) is (Cq, 1, 1)-summable if and only if
the almost all subsequences are (Cq, 1, 1)-summable.

Theorem 2.6. If

lim
n,m→∞

1

nqmq

n,m∑
j,k=1,1

sjkrjk (x) = 0, for almost all x (2.3)

then we have

lim
n,m→∞

1

n2qm2q

n,m∑
j,k=1,1

s2jk = 0.

Proof. Let N [u, z] = {(j, k) : u ≤ j ≤ n or z ≤ k ≤ m} and

Tu,z,n,m (x) =
∑

(j,k)∈N [u,z]

sjkrjk (x) .

Hence

T 2
u,z,n,m (x) =

∑
(j,k)∈N [u,z]

s2jk + 2
∑

(j1,k1),(j2,k2)∈N [u,z]
j1 6=j2 or k1 6=k2

sj1k1sj2k2rj1k1 (x) rj2k2 (x) .

Because of the Egoroff theorem there exists a set D ⊂ X with positive measure such
that the limit in (2.3) exists uniformly on D. Therefore,∫

D

T 2
u,z,n,m (x) dP (x) = P (D)

∑
(j,k)∈N [u,z]

s2jk +K, (2.4)
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where

K = 2
∑

(j1, k1) , (j2, k2) ∈ N [u, z]
j1 6= j2 or k1 6= k2

sj1k1sj2k2

∫
D

rj1k1 (x) rj2k2 (x) dP (x) .

By the Hölder inequality we have

|K|≤ 2


∑

(j1, k1) , (j2, k2) ∈ N [u, z]

j1 6= j2 or k1 6= k2

s2j1k1
s2j2k2



1
2


∑
(j1, k1) , (j2, k2) ∈ N [u, z]

j1 6= j2 or k1 6= k2

v2j1k1j2k2



1
2

(2.5)
where vj1k1j2k2

=
∫
D

rj1k1
(x) rj2k2

(x) dP (x). We know that the functions rj1k1
(x)

and rj2k2
(x) are orthogonal on X (see [3]). So by the Bessel inequality [13] for double

sequences we get ∑
1 ≤ j1 < j2 ≤ ∞
1 ≤ k1 < k2 ≤ ∞

v2j1k1j2k2
≤
∫
X

(χD (x))
2
dP (x) = P (D) .

For sufficiently large u and z, we have
∑

(j1, k1) , (j2, k2) ∈ N [u, z]
j1 6= j2 or k1 6= k2

v2j1k1j2k2



1
2

≤ P (D)

4
.

It follows from (2.5) that

|K| ≤


∑

(j1, k1) , (j2, k2) ∈ N [u, z]
j1 6= j2 or k1 6= k2

s2j1k1
s2j2k2



1
2

P (D)

2
≤ P (D)

2

∑
(j1,k1)∈N [u,z]

s2j1k1
.

Combining this with (2.4) we get

∫
D

T 2
u,z,n,m (x) dP (x) = P (D)

∑
(j,k)∈N [u,z]

s2jk +K

≥ P (D)

2

∑
(j,k)∈N [u,z]

s2jk.
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By (2.3) we have that

lim
n,m→∞

1

n2qm2q

∑
(j,k)∈N [u,z]

s2jk = 0 and lim
n,m→∞

1

n2qm2q

n,m∑
j,k=1,1

s2jk = 0.

Hence the result follows. �

In the next examples we present a sequence so that it is (Cq, 1, 1) summable but
almost none of its subsequences are (Cq, 1, 1) summable.

Example 2.7. Consider the double sequence sjk = (−1)
j

(−1)
k√

j
√
k. Then

∞∑
j=1

(−1)
j √

j

jq
=

∞∑
j=1

(−1)
j

jq−
1
2

is convergent in the ordinary sense for q >
1

2
,

and

∞∑
k=1

(−1)
k√

k

kq
=

∞∑
k=1

(−1)
k

kq−
1
2

is convergent in the ordinary sense for q >
1

2
.

On the other hand the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k

jq−
1
2 kq−

1
2

is convergent (see [1], page

90). Also since

∞∑
j=1

(−1)
j

(−1)
k

jq−
1
2 kq−

1
2

is convergent in the ordinary sense for k = 1, 2, ...

and
∞∑
k=1

(−1)
j

(−1)
k

jq−
1
2 kq−

1
2

is convergent in the ordinary sense for j = 1, 2, ...

then the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k

jq−
1
2 kq−

1
2

is convergent in the restricted sense by

Theorem 1 of [5]. Since the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k√

j
√
k

jqkq
is convergent in

the restricted sense, we get that the sequence

 1
nqmq

n,m∑
j,k=1,1

(−1)
j

(−1)
k
√
j
√
k

 con-

verges to zero in the Pringsheim sense [6]. Hence the sequence
(

(−1)
j

(−1)
k√

j
√
k
)

is (Cq, 1, 1)-summable to zero. On the other hand, for the case of q = 3
4 , 1

n2qm2q

n,m∑
j,k=1,1

jk

 =

(
1

n2qm2q

n (n+ 1)

2

m (m+ 1)

2

)
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the double sequence does not converge to zero. Hence we have, by Theorem 2.6, that

lim
n,m

1

nqmq

n,m∑
j,k=1,1

(−1)
j

(−1)
k
√
j
√
krjk (x) 6= 0.

So almost none of its subsequences are (Cq, 1, 1)-summable to zero.

Example 2.8. Consider the double sequence sjk = (−1)
j

(−1)
k
jk. Then

∞∑
j=1

(−1)
j
j

jq
=

∞∑
j=1

(−1)
j

jq−1
is convergent in the ordinary sense for q > 1,

and

∞∑
k=1

(−1)
k
k

kq
=

∞∑
k=1

(−1)
k

kq−1
is convergent in the ordinary sense for q > 1.

On the other hand, the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k

jq−1kq−1
is convergent (see [1], page

90). Also since

∞∑
j=1

(−1)
j

(−1)
k

jq−1kq−1
is convergent in the ordinary sense for k = 1, 2, ...

and
∞∑
k=1

(−1)
j

(−1)
k

jq−1kq−1
is convergent in the ordinary sense for j = 1, 2, ...

then the double series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k

jq−1kq−1
is convergent in the restricted sense by

Theorem 1 of [5]. Since the series

∞,∞∑
j,k=1,1

(−1)
j

(−1)
k
jk

jqkq
is convergent in the restricted

sense, we get that the sequence

 1
nqmq

n,m∑
j,k=1,1

(−1)
j

(−1)
k
jk

 converges to 0 in the

Pringsheim sense [6]. Hence the sequence
(

(−1)
j

(−1)
k
jk
)

is (Cq, 1, 1)-summable to

0. On the other hand, for the case of q = 3
2 , 1

n2qm2q

n,m∑
j,k=1,1

j2k2

 =

(
1

n2qm2q

n (n+ 1) (2n+ 1)

6

m (m+ 1) (2m+ 1)

6

)
the double sequence does not converge to zero. Therefore, Theorem 2.6 implies almost
none of its subsequences are (Cq, 1, 1)-summable to zero.
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Abstract. In this paper, a subclass of analytic function is defined using Komatu
integral. Coefficient inequalities, Fekete-Szegö inequality, extreme points, radii
of starlikeness and convexity and integral means inequality for this class are
obtained. Distortion theorem for the generalized fractional integration introduced
by Saigo are also obtained. The inclusion relations associated with the (n,µ)-
neighborhood also have been found for this class.
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1. Introduction

Let H denote the class of analytic function in the unit disk

∆ = {z : z ∈ C, |z| < 1}
on the complex plane C. Let A denote the subclass of H consisting of functions f(z)
of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk ∆ = {z : z ∈ C, |z| < 1}.
Also let S be the subclass of A consisting of all univalent functions in ∆ nor-

malized by f(0) = f ′(0)− 1 = 0.
Denote by T the subclass of S consisting of functions of the form

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ ∆. (1.2)
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studied extensively by Silverman [15].
Let f and g are analytic functions defined in ∆. The function f is said to be

subordinate to g if there exists a Schwarz function w, analytic in ∆ with w(0) = 0,
|w(z)| < 1, z ∈ ∆ such that

f(z) = g(w(z)), (z ∈ ∆). (1.3)

We denote this subordination by f ≺ g or f(z) ≺ g(z), (z ∈ ∆).
In particular, if the function g is univalent in ∆, the above subordination is

equivalent to f(0) = g(0) and f(∆) ⊂ g(∆), (z ∈ ∆).
The convolution or Hadamard product of two functions f(z) given by (1.1) and

g(z) = z +

∞∑
n=2

bnz
n (1.4)

is defined as

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n. (1.5)

A function f(z) in A is said to be in class S∗(α) of starlike functions of order

α (0 ≤ α < 1) in ∆, if Re

{
zf ′(z)

f(z)

}
> α for z ∈ ∆. Let K(α) denote the class

of all functions f ∈ A that are convex functions of order α (0 ≤ α < 1) in ∆, if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> α for z ∈ ∆. If α = 0, the class S∗(α) reduces to the class S∗ of

starlike functions and class K(α) reduces to the class of convex functions K. Further,
f is convex if and only if zf ′(z) is starlike.

Let φ(z) be an analytic function in ∆ with

φ(0) = 1, φ′(0) > 0 and Re(φ(z)) > 0, (z ∈ ∆) (1.6)

which maps the open unit disk ∆ onto a region starlike with respect to 1 and is
symmetric with respect to real axis. Then S∗(φ) and K(φ), respectively, be the sub-
classes of the normalized analytic functions f in class A, which satisfy the following
subordination relations:

zf ′(z)

f(z)
≺ φ(z), (z ∈ ∆) and 1 +

zf ′′(z)

f ′(z)
≺ φ(z), (z ∈ ∆)

These classes are introduced by Ma and Minda [8]. In their particular case when

φ(z) =
1 + (1− 2α)z

1− z
(z ∈ ∆; 0 ≤ α < 1), (1.7)

these function classes would reduce, respectively, to the well known classes S∗(α)
(0 ≤ α < 1) of starlike function of order α in ∆ and K(α)(0 ≤ α < 1) of convex
functions of order α in ∆.
Definition 1.1. [4] The generalized Komatu integral operator Kδ

c : A→ A is defined
for δ > 0 and c > −1 as(

Kδ
c f
)

(z) =
(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
f(t)dt (1.8)
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and

K0
c f(z) = f(z).

For f ∈ A, it can be easily verified that

(
Kδ
c f
)

(z) = z +

∞∑
k=2

(
c+ 1

c+ k

)δ
akz

k. (1.9)

Based on the earlier works by the authors [1], we introduce the following class.

Definition 1.2. Let 0 ≤ γ < 1, 0 ≤ ρ < 1, τ ∈ C \ {0}, δ > 0 and c > −1. A function
f ∈ S is in the class Rτδ,γ,ρ,c(φ) if

1 +
1

τ

(
ρ{Kδ

c f(z)}′ + γz{Kδ
c f(z)}′′ − ρ

)
≺ φ(z), z ∈ ∆, (1.10)

where φ(z) is analytic function in ∆ with

φ(0) = 1, φ′(0) > 0 and Re(φ(z)) > 0. (1.11)

If we set φ(z) = 1+Az
1+Bz , (−1 ≤ B < A ≤ 1, z ∈ ∆), in (1.10), we get

Rτδ,γ,ρ,c

(
1 +Az

1 +Bz

)
= Rτδ,γ,ρ,c(A,B)

=

{
f ∈ A :

∣∣∣∣ ρ{Kδ
c f(z)}′ + γz{Kδ

c f(z)}′′ − ρ
τ(A−B)−B (ρ{Kδ

c f(z)}′ + γz{Kδ
c f(z)}′′ − ρ)

∣∣∣∣ < 1

}
,

(1.12)

which is again a new class.

Some particular cases of this class discussed in the literature as:

(1) For δ = 0, ρ = 1, the above class reduce to the class Rτγ(A,B) introduced by
Bansal [3].

(2) For δ = 0, ρ = 1, the class Rτγ(1−2β,−1) = Rτγ(β) for 0 ≤ β < 1, τ = C \{0}
was discussed recently by Swaminathan [20].

(3) Rτ0,γ,1,c(1 − 2β,−1) with τ = eiη cos η where −π/2 < η < π/2 is considered
in [11] (see also [10]).

(4) The class Rτ0,1,1,c(0,−1) with τ = eiη cos η was considered in [5] with refer-
ence to the univalency of partial sums.

We denote by P (φ) the class of normalized functions defined as

P (φ) = {f ∈ H : f(0) = 1, f ≺ φ ∈ ∆}.

The problem on subordination and convolution were studied by Ruscheweyh in [12]
and have found many applications in various fields. One of them is the following
theorem due to Ruscheweyh and Stankiewicz [13] which will be useful in this paper.

Theorem 1.3. Let F,G ∈ A be any convex univalent functions in ∆. If f ≺ F and
g ≺ G, then f ∗ g ≺ F ∗G in ∆.

Observe that, in Theorem 1.3, nothing is said about the normalization of F and G.
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2. Main results

Theorem 2.1. If f ∈ P (φ) ∩ S, n ∈ N then (Kδ
c )nf(z) ≺ (Kδ

c )nφ(z), where Kδ
c is

Komatu integral operator.

Proof. If f ∈ P (φ) ∩ S, then f(z) ≺ φ(z) where φ(z) is convex univalent function.

It is well known that the function

h1(z) = z +

∞∑
n=2

(
c+ 1

c+ n

)δ
zn, (δ > 0), (2.1)

belongs to the class K of convex univalent and normalized function and for f ∈ A

(f ∗ h1)(z) = z + a2

(
c+ 1

c+ 2

)δ
z2 + a3

(
c+ 1

c+ 3

)δ
z3 + ...

=
(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
f(t)dt

= Kδ
c f(z).

Therefore the function h2(z) = 1 + h1(z) (z ∈ ∆) is convex univalent in ∆ and for

p(z) = 1 + p1z + p2z
2 + p3z

3 + ...

(p ∗ h2)(z) = 1 + p1z + p2

(
c+ 1

c+ 2

)δ
z2 + p3

(
c+ 1

c+ 3

)δ
z3 + ...

= 1−
(
c+ 1

c

)δ
+

(c+ 1)δ

Γ(δ)zc

[
Γ(δ)zc

cδ
+
p1z

c+1Γ(δ)

(c+ 1)δ
+
p2z

c+2Γ(δ)

(c+ 2)δ
+ ...

]
= 1−

(
c+ 1

c

)δ
+

(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
p(t)dt

Thus, f ≺ φ. Applying Theorem 1.3, we obtain

f ∗ h2 ≺ φ ∗ h2

⇒1−
(
c+ 1

c

)δ
+

(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
f(t)dt

≺ 1−
(
c+ 1

c

)δ
+

(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
φ(t)dt

⇒Kδ
c f ≺ Kδ

cφ, δ > 0.

Hence, the theorem is true for n = 1.

Again by Theorem 1.3,

Kδ
c f ∗ h2 ≺ Kδ

cφ ∗ h2
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⇒1−
(
c+ 1

c

)δ
+

(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
Kδ
c f(t)dt

≺ 1−
(
c+ 1

c

)δ
+

(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
Kδ
cφ(t)dt

⇒Kδ
c (Kδ

c f) ≺ Kδ
c (Kδ

c )φ

⇒(Kδ
c )2f ≺ (Kδ

c )2φ.

Thus, the theorem is true for n = 2.
Further, let the theorem is true for n = m i.e.

(Kδ
c )mf ≺ (Kδ

c )mφ

which on application of Theorem 1.3 gives

(Kδ
c )mf ∗ h2(z) ≺ (Kδ

c )mφ ∗ h2(z)

⇒1−
(
c+ 1

c

)δ
+

(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
(Kδ

c )mf(t)dt

≺ 1−
(
c+ 1

c

)δ
+

(c+ 1)δ

Γ(δ)zc

∫ z

0

tc−1
(

log
z

t

)δ−1
(Kδ

c )mφ(t)dt

⇒Kδ
c [(Kδ

c )mf ](z) ≺ Kδ
c [(Kδ

c )mφ](z)

⇒(Kδ
c )m+1f(z) ≺ (Kδ

c )m+1φ(z).

The theorem follows by the principle of Mathematical induction. �

Corollary 2.2. Let g′ ∈ P (φ), α < 1. If we take φ(z) = 1−z(2α−1)
1−z , n = 1 and

h1(z) =

∞∑
n=1

2

n+ 1
zn, (z ∈ ∆).

Then
1

z

∫ z

0

g(t)

t
dt ≺ Q(z), (z ∈ ∆),

where

Q(z) = 1 + 2(1− 2α)

[
z

22
+
z2

32
+
z3

42
+ ...

]
is convex univalent function.

This particular result is given by Janusz Sokol [18].

3. Coefficient inequality

Theorem 3.1. Let f ∈ Rτγ(A,B) [3]. Then f is in the class Rτδ,γ,ρ,c if and only if

∞∑
k=2

(1 +B)k{ρ+ γ(k − 1)}
(
c+ 1

c+ k

)δ
ak ≤ |τ(A−B)|. (3.1)
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The result is sharp for the function f(z) given by the following form

f(z) = z +
|τ(A−B)|

2(1 +B)(ρ+ γ)
(
c+1
c+2

)δ z2. (3.2)

Proof. For |z| = 1, we have∣∣ρ{Kδ
c f(z)}′ + γz{Kδ

c f(z)}′′ − ρ
∣∣

−
∣∣τ(A−B)−B[ρ{Kδ

c f(z)}′ + γz{Kδ
c f(z)}′′ − ρ]

∣∣
=

∣∣∣∣∣ρ
[

1 +

∞∑
k=2

k

(
c+ 1

c+ k

)δ
akz

k−1

]
+ γz

[ ∞∑
k=2

(
c+ 1

c+ k

)δ
k(k − 1)akz

k−2

]
− ρ

∣∣∣∣∣
−

∣∣∣∣∣τ(A−B)−B

[
ρ

{
1 +

∞∑
k=2

k

(
c+ 1

c+ k

)δ
akz

k−1

}

+γz

∞∑
k=2

k(k − 1)

(
c+ 1

c+ k

)δ
akz

k−2 − ρ

]∣∣∣∣∣
≤ρ

∞∑
k=2

(
c+ 1

c+ k

)δ
kak + γ

∞∑
k=2

(
c+ 1

c+ k

)δ
k(k − 1)ak − |τ(A−B)|

+B

∣∣∣∣∣ρ
∞∑
k=2

k

(
c+ 1

c+ k

)δ
akz

k−1 + γz

∞∑
k=2

k(k − 1)

(
c+ 1

c+ k

)δ
akz

k−2

∣∣∣∣∣
≤ρ

∞∑
k=2

k

(
c+ 1

c+ k

)δ
ak + γ

∞∑
k=2

k(k − 1)

(
c+ 1

c+ k

)δ
ak − |τ(A−B)|

+Bρ

∞∑
k=2

k

(
c+ 1

c+ k

)δ
ak +Bγ

∞∑
k=2

k(k − 1)

(
c+ 1

c+ k

)δ
ak

≤(1 +B)ρ

∞∑
k=2

k

(
c+ 1

c+ k

)δ
ak + (1 +B)γ

∞∑
k=2

k(k − 1)

(
c+ 1

c+ k

)δ
ak − |τ(A−B)|

≤ 0. (By hypothesis)

Thus, by maximum modulus theorem, f ∈ Rτδ,γ,ρ,c(A,B).

Conversely, assume that∣∣∣∣ ρ{Kδ
c f(z)}′ + γz{Kδ

c f(z)}′′ − ρ
τ(A−B)−B{ρ{Kδ

c f(z)}′ + γz{Kδ
c f(z)}′′ − ρ}

∣∣∣∣ < 1

⇒

∣∣∣∣∣∣∣∣
ρ
∑∞
k=2 k

(
c+1
c+k

)δ
akz

k−1 + γ
∑∞
k=2 k(k − 1)

(
c+1
c+k

)δ
akz

k−1

τ(A−B)−B
{
ρ
∑∞
k=2 k

(
c+1
c+k

)δ
akzk−1 + γ

∑∞
k=2 k(k − 1)

(
c+1
c+k

)δ
akzk−1

}
∣∣∣∣∣∣∣∣<1.
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Since |Re(z)| < |z|,

Re


∑∞
k=2 k{ρ+ γ(k − 1)}

(
c+1
c+k

)δ
akz

k−1

|τ(A−B)| −B
∑∞
k=2 k{ρ+ γ(k − 1)}

(
c+1
c+k

)δ
akzk−1

 < 1.

By choosing the value of z on the real axis so that Kδ
c f(z) is real. Let z → 1− through

real values. So we can write as
∞∑
k=2

k{ρ+ γ(k − 1)}
(
c+ 1

c+ k

)δ
ak ≤ |τ(A−B)| −B

∞∑
k=2

k{ρ+ γ(k − 1)}
(
c+ 1

c+ k

)δ
ak

≤ |τ(A−B)|

�

Corollary 3.2. Let f(z) ∈ Rτδ,γ,ρ,c(A,B), then

ak ≤
|τ(A−B)|

(1 +B)k{ρ+ γ(k − 1)}
(
c+1
c+k

)δ ; k ≥ 2.

4. Fekete-Szegö inequality

We recall the following lemma to prove our results:

Lemma 4.1. [6] If p1(z) = 1+c1z+c2z
2 +c3z

3 + ...(z ∈ ∆) is a function with positive
real part, then for any complex number ε,

|c3 − εc22| ≤ 2 max{1, |2ε− 1|}

and the result is sharp for the functions given by

p1(z) =
1 + z2

1− z2
or p1(z) =

1 + z

1− z
.

Theorem 4.2. Let

φ(z) = 1 +B1z +B2z
2 +B3z

3 + ... (4.1)

where φ(z) ∈ A with φ′(0) > 0.
If f(z) given by (1.1) belongs to Rτδ,γ,ρ,c(φ) (γ, ρ ∈ [0, 1); τ ∈ C \ {0}; δ > 0; c > −1),
z ∈ ∆, then for any complex number ν

|a3 − νa22| ≤
|τ |B1

3(ρ+ 2γ)

(
c+ 3

c+ 1

)δ
max

{
1,

∣∣∣∣B2

B1
− 3νB1τ(ρ+ 2γ)(c+ 2)2δ

(ρ+ γ)2(c+ 3)δ(c+ 1)δ

∣∣∣∣} . (4.2)

The result is sharp for the functions 1+z2

1−z2 or 1+z
1−z .

Proof. If f(z) ∈ Rτδ,γ,ρ,c(φ), then there exists a Schwarz function w analytic in ∆ with

w(0) = 0 and |w(z)| < 1, (z ∈ ∆) such that

1 +
1

τ
(ρ{Kδ

c f(z)}′ + γz{Kδ
c f(z)}′′ − ρ) = φ(w(z)). (4.3)
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Define the function p1(z) by

p1(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + c3z
3 + ... (4.4)

Since w(z) is a Schwarz function, we see that Re(p1(z)) > 0 and p1(0) = 1.
Define the function p(z) by

p(z) = 1 +
1

τ
[ρ{Kδ

c f(z)}′ + γz{Kδ
c f(z)}′′ − ρ] = 1 + b1z + b2z

2 + b3z
3 + ... (4.5)

In view of (4.3), (4.4), (4.5)

p(z) = φ

[
p1(z)− 1

p1(z) + 1

]
= φ

[
c1z + c2z

2 + c3z
3 + ...

2 + c1z + c2z2 + c3z3 + ...

]
= φ

[
c1z

2
+

1

2

(
c2 −

c21
2

)
z2 + ...

]
.

From equation (4.1)

p(z) = 1 +
B1c1z

2
+
B1

2

(
c2 −

c21
2

)
z2 +

B2c
2
1

4
z2 + . . . . (4.6)

Now, from (1.9)

Kδ
c f(z) = z +

(
c+ 1

c+ 2

)δ
a2z

2 +

(
c+ 1

c+ 3

)δ
a3z

3 + ...,

{Kδ
c f(z)}′ = 1 + 2

(
c+ 1

c+ 2

)δ
a2z + 3

(
c+ 1

c+ 3

)δ
a3z

2 + ...,

and

{Kδ
c f(z)}′′ = 2

(
c+ 1

c+ 2

)δ
a2 + 6

(
c+ 1

c+ 3

)δ
a3z + . . . .

From equation (4.5)

p(z) = 1 +
1

τ

[{
2ρ

(
c+ 1

c+ 2

)δ
a2 + 2γ

(
c+ 1

c+ 2

)δ
a2

}
z

+

{
3ρ

(
c+ 1

c+ 3

)δ
a3 + 6γ

(
c+ 1

c+ 3

)δ
a3

}
z2 + ...

] (4.7)

Thus from (4.6) and (4.7)

B1c1
2

=
2(ρ+ γ)

τ

(
c+ 1

c+ 2

)δ
a2 ⇒ a2 =

B1c1τ

4(ρ+ γ)

(
c+ 2

c+ 1

)δ
B1

2

(
c2 −

c21
2

)
+
B2c

2
1

4
=

3a3(ρ+ 2γ)

τ

(
c+ 1

c+ 3

)δ
⇒ a3 =

τ

3(ρ+ 2γ)

(
c+ 3

c+ 1

)δ [
B1

2

(
c2 −

c21
2

)
+
B2c

2
1

4

]
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Therefore, we have

a3 − νa22 =
τ

3(ρ+ 2γ)

(
c+ 3

c+ 1

)δ [
B1

2

(
c2 −

c21
2

)
+
B2c

2
1

4

]
− ν B2

1c
2
1τ

2

4(ρ+ γ)2

(
c+ 2

c+ 1

)2δ

Simplifying, we get

a3 − νa22 =
τB1

6(ρ+ 2γ)

(
c+ 3

c+ 1

)δ
(c2 − εc21),

where

ε =
1

2

{
1− B2

B1
+

3νB1τ(ρ+ 2γ)(c+ 2)2δ

(ρ+ γ)2(c+ 3)δ(c+ 1)δ

}
.

Thus

|a3 − νa22| =
|τ |B1

6(ρ+ 2γ)

(
c+ 3

c+ 1

)δ
|c2 − εc21|

By application of the Lemma (4.1), we obtain

|a3 − νa22| ≤
2|τ |B1

6(ρ+ 2γ)

(
c+ 3

c+ 1

)δ
max{1, |2ε− 1|}

|a3 − νa22| ≤
|τ |B1

3(ρ+ 2γ)

(
c+ 3

c+ 1

)δ
max

{
1,

∣∣∣∣B2

B1
+

3νB1τ(ρ+ 2γ)(c+ 2)2δ

(ρ+ γ)2(c+ 3)δ(c+ 1)δ

∣∣∣∣}
Equality in (4.2) is obtained when

p1(z) =
1 + z2

1− z2
or p1(z) =

1 + z

1− z
. �

For class Rτδ,γ,ρ,c(A,B)

φ(z) =
1 +Az

1 +Bz
= 1 + (A−B)z − (AB −B2)z2 + ...

Thus writing B1 = A − B and B2 = −B(A − B) in the Theorem 3.1, we get the
following corollary:

Corollary 4.3. If f(z) given by (1.1) belongs to Rτδ,γ,ρ,c(A,B), then

|a3 − νa22| ≤
|τ |(A−B)

3(ρ+ 2γ)

(
c+ 3

c+ 1

)δ
max

{
1,

∣∣∣∣B − 3ν(A−B)τ(ρ+ 2γ)(c+ 2)2δ

(ρ+ γ)2(c+ 3)δ(c+ 1)δ

∣∣∣∣} .
5. Distortion theorem

Saigo’s fractional calculus operator Iα,β,η0,z f(z) of f(z) ∈ A is defined by Srivas-

tava et al. [19] (see also, Saigo [14]) as follows:

Definition 5.1. For real numbers α > 0, β and η , the fractional integral operator

Iαβ,η0,z f(z) of f(z) is defined by

Iαβ,η0,z f(z) =
z−α−β

Γ(α)

∫ z

0

(z − ζ)α−1 2F1

[
α+ β,−η;α; 1− ζ

z

]
f(ζ)dζ,
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where f(z) is an analytic function in a simply-connected region of the z-plane con-
taining the origin with the order f(z) = O(|z|ε) (z → 0), ε > max{0, β − η} − 1,
and the multiplicity of (z − ζ)α−1 is removed by requiring log(z − ζ) to be real when
z − ζ > 0.

In order to derive the inequalities involving Saigo’s fractional operators, we need
the following lemma due to Srivastava, Saigo and Owa [19].

Lemma 5.2. Let α > 0, β and η be real. Then, for k > max{0, β − η} − 1,

Iα,β,η0,z zk =
Γ(k + 1)Γ(k − β + η + 1)

Γ(k − β + 1)Γ(k + α+ η + 1)
zk−β . (5.1)

Theorem 5.3. Let f ∈ Rτδ,γ,ρ,c(A,B), then

|Iα,β,η0,z f(z)| ≤ Γ(2− β + η)|z|1−β

Γ(2− β)Γ(2 + α+ η)

1 +
(2− β + η)|τ(A−B)||z|

(2− β)(2 + α+ η)(1 +B)(ρ+ γ)
(
c+1
c+2

)δ


(5.2)
and

|Iα,β,η0,z f(z)| ≥ Γ(2− β + η)|z|1−β

Γ(2− β)Γ(2 + α+ η)

1− (2− β + η)|τ(A−B)||z|

(2− β)(2 + α+ η)(1 +B)(ρ+ γ)
(
c+1
c+2

)δ


(5.3)
The equalities in (5.2) and (5.3) are attained for the function f(z) given by (3.2)

Proof. The generalized Saigo [19] fractional integration of f ∈ A for real numbers
α > 0, β and η, is given by

Iα,β,η0,z f(z) =

∞∑
k=1

Γ(k + 1)Γ(k − β + η + 1)

Γ(k − β + 1)Γ(k + α+ η + 1)
akz

k−β , (a1 = 1)

⇒ Γ(2− β)Γ(2 + α+ η)

Γ(2− β + η)
zβIα,β,η0,z f(z) = z +

∞∑
k=2

Bα,β,η(k)akz
k,

where

Bα,β,η(k) =
Γ(k + 1)Γ(k − β + η + 1)Γ(2− β)Γ(2 + α+ η)

Γ(k − β + 1)Γ(k + α+ η + 1)Γ(2− β + η)
.

Therefore,

Bα,β,η(k)

Bα,β,η(k + 1)
=

(k − β + 1)(k + α+ η + 1)

(k + 1)(k − β + η + 1)
=

1 +
(
α+η
k+1

)
1 +

(
η

k−β+1

) .
Now, (α+ η) > η and 1

k+1 >
1

k−β+1 for β < 0. Therefore,

α+ η

k + 1
>

η

k − β + 1
,

and hence
Bα,β,η(k) > Bα,β,η(k + 1)
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Therefore, Bα,β,η(k), β < 0 is decreasing for k, Then

Bα,β,η(k) ≤ Bα,β,η(2) =
2(2− β + η)

(2− β)(2 + α+ η)
.

By using Theorem 3.1, we have
∞∑
k=2

ak ≤
|τ(A−B)|

2(1 +B)(ρ+ γ)
(
c+1
c+2

)δ ; k ≥ 2.

Thus ∣∣∣∣Γ(2− β)Γ(2 + α+ η)

Γ(2− β + η)
zβIα,β,η0,z f(z)

∣∣∣∣ ≤ |z|+Bα,β,η(2)|z|2
∞∑
k=2

ak

⇒
∣∣∣Iα,β,η0,z f(z)

∣∣∣≤ Γ(2−β + η)|z|1−β

Γ(2−β)Γ(2 + α+ η)

[
1+

(2− β + η)|τ(A−B)||z|
(2− β)(2 + α+ η)(1 +B)(ρ+ γ)( c+1

c+2 )δ

]
.

Following the similar steps as above, we obtain∣∣∣Iα,β,η0,z f(z)
∣∣∣ ≥ Γ(2− β + η)|z|1−β

Γ(2− β)Γ(2 + α+ η)

[
1− (2− β + η)|τ(A−B)||z|

(2− β)(2 + α+ η)(1 +B)(ρ+ γ)( c+1
c+2 )δ

]
.

�

6. Extreme points

Theorem 6.1. Let f1(z) = z and

fk(z) = z +
|τ(A−B)|

k(1 +B){ρ+ γ(k − 1)}
(
c+1
c+k

)δ zk.
Then f ∈ Rτδ,γ,ρ,c(A,B) if and only if f(z) can be expressed in the form

f(z) = λ1f1(z) +

∞∑
k=2

λkfk(z) (6.1)

where

λ1 +

∞∑
k=2

λk = 1, (λ1 ≥ 0, λk ≥ 0).

Proof. Let f(z) is given by (6.1). Then

f(z) = λ1z +

∞∑
k=2

λkz +
|τ(A−B)|

k(1 +B){ρ+ γ(k − 1)}
(
c+1
c+k

)δ λkzk = z +

∞∑
k=2

tkz
k,

where

tk =
|τ(A−B)|λk

k(1 +B){ρ+ γ(k − 1)}
(
c+1
c+k

)δ .
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Now,

∞∑
k=2

k(1 +B){ρ+ γ(k − 1)}
(
c+1
c+k

)δ
|τ(A−B)|

tk =

∞∑
k=2

λk = 1− λ1 < 1.

Therefore, f ∈ Rτδ,γ,ρ,c(A,B).

Conversely, suppose that, f ∈ Rτδ,γ,ρ,c(A,B), then by (3.1)

ak <
|τ(A−B)|

k(1 +B){ρ+ γ(k − 1)}
(
c+1
c+k

)δ , k ≥ 2.

So, if we set

λk =
k(1 +B){ρ+ γ(k − 1)}

(
c+1
c+k

)δ
ak

|τ(A−B)|
< 1, k ≥ 2

and λ1 = 1−
∑∞
k=2 λk, then,

f(z) = z +

∞∑
k=2

akz
k = z +

∞∑
k=2

|τ(A−B)|

k(1 +B){ρ+ γ(k − 1)}
(
c+1
c+k

)δ zk,

⇒ f(z) = λ1f1(z) +

∞∑
k=2

λkfk(z)

which leads to (6.1). �

From the Theorem 6.1, it follows that:

Corollary 6.2. The extreme points of the class Rτδ,γ,ρ,c(A,B) are the functions f1(z)

and fk(z), (k ≥ 2).

7. Radii of starlikeness and convexity

Theorem 7.1. Let f ∈ Rτδ,γ,ρ,c(A,B). Then f(z) is starlike of order α (0 ≤ α < 1) in

|z| < r1 where

r1 = inf
k

[
(1− α)k(1 +B){ρ+ γ(k − 1)}( c+1

c+k )δ

(k − α)|τ(A−B)|

] 1
k−1

.

Proof. For 0 ≤ α < 1, we require to show that∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− α,
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that is, for f(z) = z +

∞∑
k=2

akz
k,

∞∑
k=2

ak(k − 1)|z|k−1

1−
∞∑
k=2

ak|z|k−1
< 1− α

or, alternatively

∞∑
k=2

ak

(
k − α
1− α

)
|z|k−1 < 1, which holds if

|z|k−1 <

[
(1− α)k(1 +B){ρ+ γ(k − 1)}( c+1

c+k )δ

(k − α)|τ(A−B)|

]
.

⇒ r1 = inf
k

[
(1− α)k(1 +B){ρ+ γ(k − 1)}( c+1

c+k )δ

(k − α)|τ(A−B)|

] 1
k−1

�

Noting the fact that f(z) is convex iff zf ′(z) is starlike, we have

Theorem 7.2. Let f ∈ Rτδ,γ,ρ,c(A,B). Then f is convex of order α (0 ≤ α < 1) in

|z| < r2 where

r2 = inf
k

[
(1− α)(1 +B){ρ+ γ(k − 1)}( c+1

c+k )δ

(k − α)|τ(A−B)|

] 1
k−1

.

8. Neighborhood results

Definition 8.1. For f ∈ A of the form (1.1) and µ ≥ 0. We define a (n, µ)−neigh-
borhood of a function f by

Nn,µ(f) =

{
g : g ∈ A, g(z) = z +

∞∑
k=n+1

bkz
k and

∞∑
k=n+1

k|ak − bk| ≤ µ

}
. (8.1)

In particular, for the identity function e(z) = z, we immediately have

Nn,µ(e) =

{
g : g ∈ A, g(z) = z +

∞∑
k=n+1

bkz
kand

∞∑
k=n+1

k|bk| ≤ µ

}
(8.2)

where n ∈ N \ {1}.

Theorem 8.2. If

µ =
|τ(A−B)|

(1 +B)(ρ+ nγ)
(

c+1
c+n+1

)δ
then,

Rτδ,γ,ρ,c(A,B) ⊂ Nn,µ(e)
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Proof. For a function f ∈ Rτδ,γ,ρ,c(A,B) of the form (1.1), Theorem 3.1 immediately
yields,

∞∑
k=n+1

(1 +B)k{ρ+ γ(k − 1)}
(
c+ 1

c+ k

)δ
ak ≤ |τ(A−B)|,

where, n ∈ N \ {1}.

⇒ (1 +B)(ρ+ nγ)

(
c+ 1

c+ n+ 1

)δ ∞∑
k=n+1

kak ≤ |τ(A−B)|

⇒
∞∑

k=n+1

kak ≤
|τ(A−B)|

(1 +B)(ρ+ nγ)
(

c+1
c+n+1

)δ = µ. �

A function, f ∈ A is said to be in the class Rτ,αδ,γ,ρ,c(A,B), if there exists a function

g ∈ Rτδ,γ,ρ,c(A,B), such that∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1− α, (z ∈ U, 0 < α < 1). (8.3)

Now, we determine the neighborhood for the class Rτ,αδ,γ,ρ,c(A,B).

Theorem 8.3. If g ∈ Rτδ,γ,ρ,c(A,B) and

α = 1−
µ(1 +B)(ρ+ nγ)

(
c+1

c+n+1

)δ
n(1 +B)(ρ+ nγ)

(
c+1

c+n+1

)δ
− |τ(A−B)|

. (8.4)

Then,

Nn,µ(g) ⊂ Rτ,αδ,γ,ρ,c(A,B).

Proof. Suppose that, f ∈ Nµ(g) we then find from the definition (8.1) that,

∞∑
k=n+1

k|ak − bk| ≤ µ,

which implies that the coefficient inequality:

∞∑
k=n+1

|ak − bk| ≤
µ

n+ 1
(n ∈ N).

Next since, g ∈ Rτδ,γ,ρ,c(A,B), we have

∞∑
k=n+1

bk ≤
|τ(A−B)|

(n+ 1)(1 +B)(ρ+ nγ)
(

c+1
c+n+1

)δ ,
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so that, ∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ ≤
∑∞
k=n+1 |ak − bk|

1−
∑∞
k=n+1 bk

≤ µ

(n+ 1)

[
1− |τ(A−B)|

(n+1)(1+B)(ρ+nγ)( c+1
c+n+1 )

δ

]

≤
µ(1 +B)(ρ+ nγ)

(
c+1

c+n+1

)δ
(n+ 1)(1 +B)(ρ+ nγ)

(
c+1

c+n+1

)δ
− |τ(A−B)|

≤ 1− α (8.5)

provided that α is given precisely by (8.4). Thus by definition f ∈ Rτ,αδ,γ,ρ,c(A,B) for

α given by (8.4). This completes the proof. �

9. Integral means inequality

In 1975, Silverman[15] (see, e.g., [17]) found that the function f2(z) = z − z2

2
is often extremal over the family T and applied this function to resolve his integral
means inequality, conjectured in [16] that∫ 2π

0

|f(reiθ)|ηdθ ≤
∫ 2π

0

|f2(reiθ)|ηdθ, (9.1)

for all f ∈ T, η > 0 and 0 < r < 1 and settled in 1997. He also proved his conjecture
for the subclasses S∗(α) and K(α) of T .

Lemma 9.1. [7] If f(z) and g(z) are analytic in ∆ with f(z) ≺ g(z), then∫ 2π

0

|f(reiθ)|ηdθ ≤
∫ 2π

0

|g(reiθ)|ηdθ, (9.2)

η ≥ 0, z = reiθ and 0 < r < 1.

Application of Lemma (9.1) to function of f in the class Rτδ,γ,ρ,c(A,B), gives the
following result.

Theorem 9.2. Let η > 0. If f ∈ Rτδ,γ,ρ,c(A,B) is given by (1.1) and f2(z) is defined
by

f2(z) = z +
|τ(A−B)|

2(1 +B)(ρ+ γ)
(
c+1
c+2

)δ z2 (9.3)

= z +
1

φAB(2, δ, γ, ρ, c, τ)
z2,

where,

φAB(2, δ, γ, ρ, c, τ) =
2(1 +B)(ρ+ γ)

(
c+1
c+2

)δ
|τ(A−B)|

.
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then, for z = reiθ, 0 < r < 1, we have∫ 2π

0

|f(z)|ηdθ ≤
∫ 2π

0

|f2(z)|ηdθ. (9.4)

Proof. For function f of the form (1.1) is equivalent to proving that∫ 2π

0

∣∣∣∣∣1 +
∞∑
k=2

akz
k−1

∣∣∣∣∣
η

dθ ≤
∫ 2π

0

∣∣∣∣1 +
1

φAB(2, δ, γ, ρ, c, τ)
z

∣∣∣∣η dθ
By Lemma (9.1), it suffices to show that

1 +

∞∑
k=2

akz
k−1 ≺ 1 +

1

φAB(2, δ, γ, ρ, c, τ)
z.

Setting

1 +

∞∑
k=2

akz
k−1 = 1 +

1

φAB(2, δ, γ, ρ, c, τ)
w(z)

and using Theorem 3.1, we obtain

|w(z)| ≤

∣∣∣∣∣
∞∑
k=2

φAB(2, δ, γ, ρ, c, τ)akz
k−1

∣∣∣∣∣ ≤ |z|
∞∑
k=2

φAB(2, δ, γ, ρ, c, τ)ak ≤ |z|

which completes the proof. �

10. Conclusion

We conclude this paper in view of the function class Rτδ,γ,ρ,c(φ) defined by the
subordination relation involving arbitrary coefficients and Komatu integral operator
Kδ
c : A → A defined for δ > 0 and c > −1. The classes defined earlier by Bansal [3],

Swaminathan [20], Ponnusamy [11] (see also [10]) and Li [5] follow as special cases
of this class defined by the authors. The main result gives sufficient condition for
coefficient inequalities. Some particular results in this paper leads to the results given
earlier by Sokol [18]. A few geometric properties are obtained for this class.
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Stud. Univ. Babeş-Bolyai Math. 62(2017), No. 3, 395–405
DOI: 10.24193/subbmath.2017.3.11

Best proximity problems for Ćirić type
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Abstract. The aim of this paper is to present some best proximity results for

multivalued cyclic operators satisfying a Ćirić type condition. Our results extend
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stability.

1. Introduction and preliminaries

The standard notations and terminologies in nonlinear analysis will be used
throughout this paper.

Let (X, d) be a metric space. We denote:
P (X) := {Y ⊂ X | Y is nonempty}; Pb(X) := {Y ∈ P (X) | Y is bounded};
Pcl(X) := {Y ∈P (X) | Y is closed}; Pcv(X) := {Y ∈P (X) | Y is convex};
Pcp(X) := {Y ∈P (X) | Y is compact}; Pcl,cv(X) := Pcl(X) ∩ Pcv(X).

If T : Y ⊂ X → P (X) is a multivalued operator, then

Graph(T ) := {(x, y) ∈ Y ×X | y ∈ T (x)}

denotes the graph of T .
Let us define the following (generalized) functionals used in this paper:
• the diameter functional

δ : P (X)× P (X)→ R+, δ(A,B) = sup{d(a, b) | a ∈ A, b ∈ B};

• the gap functional

D : P (X)× P (X)→ R+, D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B};
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• the generalized excess functional

ρ : P (X)× P (X)→ R+ ∪ {+∞}, ρ(A,B) = sup{D(a,B) | a ∈ A};

• the generalized Pompeiu-Hausdorff functional

H : P (X)× P (X)→ R+ ∪ {+∞}, H(A,B) = max{ρ(A,B), ρ(B,A)}.

In 2003, Kirk, Srinivasan and Veeramani generalized Banach’s contraction prin-
ciple introducing the concept of cyclic contraction.

Theorem 1.1. [3] Let A and B be non-empty closed subsets of a complete metric space
(X, d). Suppose that T : A ∪B → A ∪B is an operator satisfying:

(i) T (A) ⊂ B, T (B) ⊂ A;
(ii) there exists k ∈ (0, 1) such that for any x ∈ A and y ∈ B,

d(T (x), T (y)) ≤ kd(x, y).

Then, T has a unique fixed point in A ∩B.

The best proximity problem for a cyclic multivalued operator is as follows:
If (X, d) is a metric space, A,B ∈ P (X), T : A ∪ B → P (X) is a multivalued

operator satisfying the cyclic condition T (A) ⊂ B, T (B) ⊂ A, then we are interested
to find

x∗ ∈ A ∪B such that D(x∗, Tx∗) = D(A,B). (1.1)

x∗ is said to be a best proximity point of T .
Eldred and Veeramani proved in 2006 a theorem (see [1]) which ensures the

existence of a best proximity point of cyclic contractions in the framework of uniformly
convex Banach spaces.

In 2009, Suzuki, Kikkawa and Vetro introduced the property UC and extended
Eldred and Veeramani theorem to metric spaces with the property UC.

Theorem 1.2. [12] Let (X, d) be a metric space and let A and B be nonempty subsets
of X such that (A,B) satisfies the property UC. Assume that A is complete. Let
T : A ∪ B → X be a cyclic mapping, that is T (A) ⊂ B and T (B) ⊂ A. Assume that
there exists k ∈ (0, 1) such that

d(T (x), T (y)) ≤ kmax {d(x, y), d(x, T (x)), d(y, T (y))}+ (1− k)D(A,B)

for all x ∈ A and y ∈ B. Then the following hold:
(i) T has a unique best proximity point z ∈ A.
(ii) z is a unique fixed point of T 2in A.
(iii)

(
T 2n(x)

)
converges to z for every x ∈ A.

(iv) T has at least one best proximity point in B.
(v) If (B,A) satisfies the property UC, then T (z) is a unique best proximity point

in B and
(
T 2n(y)

)
converges to T (z) for every y ∈ B.

The purpose of this paper is to extend Suzuki, Kikkawa and Vetro theorem to
multivalued Ćirić type cyclic operator in the framework of metric spaces with the
property UC.

We recall now the following notions and results.
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Lemma 1.3. Let (X, d) be a metric space, A,B ∈ P (X). Then for any ε > 0 and for
any a ∈ A there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε.

Definition 1.4. Let (X, d) be a metric space, Y ∈ P (X). We denote

PY (x) = {y ∈ Y | d(x, y) = D(x, Y )} for x ∈ X.
The set Y is called proximinal if for any x ∈ X, PY (x) is nonempty. If for any x ∈ X,
PY (x) is singleton, then Y is called Chebyshev set.

Obviously, any Chebysev set is proximinal.
We denote Pprox(X) = {Y ∈ P (X) | Y is proximinal}.

Remark 1.5. Let (X, d) be a metric space. Then

Pcp(X) ⊂ Pprox(X) ⊂ Pcl(X).

Remark 1.6. [2] Every closed convex subset of a uniformly convex Banach space is a
Chebyshev set.

For details concerning the above notions see [7], [9] and [11].
Several types of comparison functions have been considered in literature. In this

paper we shall refer only to the following one:

Definition 1.7. [10] A function ϕ : R+ → R+ is called a comparison function if it
satisfies:

(i) ϕ is increasing;
(ii) (ϕn(t))n∈N converges to 0 as n→∞, for all t ∈ R+.
If the condition (ii) is replaced by:

(iii)

∞∑
k=0

ϕk(t) <∞, for any t > 0,

then ϕ is called a strong comparison function.

It is evident that a strong comparison function is comparison function.

Lemma 1.8. [9] If ϕ : R+ → R+ is a comparison function, then ϕ(t) < t, for any
t > 0, ϕ(0) = 0 and ϕ is continuous at 0.

Example 1.9. The following functions ϕ : R+ → R+ are comparison functions:
(1) ϕ(t) = at, where a ∈ [0, 1[.

(2) ϕ(t) =


1

2
t, for t ∈ [0, 1]

t− 1

2
, for t > 1

.

(3) ϕ(t) = at+
1

2
[t], where a ∈]0, 12 [.

(4) ϕ(t) =
t

1 + t
.

The first three examples are strong comparison functions, and the forth example
is a comparison function which is not a strong comparison function. For more examples
and considerations on comparison functions see [8], [9].
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Definition 1.10. [12]. Let A and B be nonempty subsets of a metric space (X, d). Then
(A,B) is said to satisfy the property UC if for (xn)n∈N and (zn)n∈N sequences in A
and (yn)n∈N a sequence in B such that d(xn, yn)→ D(A,B) and d(zn, yn)→ D(A,B)
as n→∞, then d(xn, zn)→ 0 as n→∞.

The following are examples of pairs of nonempty subsets of a metric space sat-
isfying the property UC.

Proposition 1.11. Any pair of nonempty subsets (A,B) of a metric space (X, d) with
D(A,B) = 0 enjoy the property UC.

Proposition 1.12. [1]. Any pair of nonempty subsets (A,B) of a uniformly convex
Banach space with A convex enjoy the property UC.

2. Main results

We start this section by presenting the concept of multivalued Ćirić type cyclic
operator.

Definition 2.1. Let (X, d) be a metric space, A,B ∈ P (X), and T : A ∪B → P (X) a
multivalued operator. If:

(i) T (A) ⊂ B, T (B) ⊂ A;
(ii) there exists a comparison function ϕ : R+ → R+ such that for any x ∈ A,

y ∈ B,
H(T (x), T (y)) ≤ ϕ(M(x, y)−D(A,B)) +D(A,B),

where

M(x, y) = max

{
d(x, y), D(x, T (x)), D(y, T (y)),

1

2
[D(x, T (y)) +D(y, T (x))]

}
,

then T is called a multivalued Ćirić type cyclic operator.

Example 2.2. The following operators are multivalued Ćirić type cyclic operators:
(1) A multivalued cyclic contraction (see [5]) i.e. a multivalued cyclic operator

T : A ∪B → P (X) satisfying the condition:
there exists k ∈]0, 1[ such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ kd(x, y) + (1− k)D(A,B).

(2) A multivalued cyclic operator T : A ∪ B → P (X) satisfying a Chatterjea
type condition:

there exists k ∈]0, 12 [ such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ k(D(x, T (y)) +D(y, T (x))) + (1− 2k)D(A,B).

(3) A multivalued cyclic operator T : A ∪ B → P (X) satisfying a Reich type
condition:

there exists a, b, c ∈ R+, s = a+ b+ c < 1, such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ ad(x, y) + bD(x, T (x)) + cD(y, T (y)) + (1− s)D(A,B).
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Our first main result extends the following theorem to the case of multivalued
Ćirić type cyclic operator in the setting of proximinal values.

Theorem 2.3. [5] Let A and B be nonempty subsets of a metric space (X, d) such
that (A,B) satisfies the property UC and A is complete. Let T : A ∪B → P (X) be a
multivalued cyclic contraction with closed bounded valued. Then T has a best proximity
point in A.

The following lemma will be used in the proof of our results.

Lemma 2.4. [5]. Let be (A,B) a pair of nonempty subsets of a metric space (X, d),
satisfying the property UC, and let be a sequence (xn)n∈N in A. If there exists a
sequence (yn)n∈N in B such that d(xn, yn) → D(A,B) and d(xn+1, yn) → D(A,B),
then (xn)n∈N is a Cauchy sequence.

The first main result of this paper is the following

Theorem 2.5. (X, d) be a complete metric space, A ∈ Pcl(X), B ∈ P (X), such that

(A,B) satisfies the property UC. If T : A∪B → Pprox(X) is a multivalued Ćirić type
cyclic operator, then the following statements hold:

(i) T has a best proximity point x∗A ∈ A;
(ii) there exists a sequence (xn)n∈N with x0 ∈ A and xn+1 ∈ T (xn), such that

(x2n)n∈N converges to x∗A.

Proof. (i)+(ii) We construct a sequence of successive approximations of T starting
from an arbitrary x ∈ A in the following way:

x0 = x ∈ A;

xn+1 ∈ T (xn) such that d(xn, xn+1) = D(xn, T (xn)), for n ≥ 0,

the existence of xn+1 being assured by the proximinality of T (xn).
Then, for n ≥ 1,

d(xn, xn+1) = D(xn, T (xn)) ≤ H(T (xn−1), T (xn))

≤ ϕ(M(xn−1, xn)−D(A,B)) +D(A,B), (2.1)

where

M(xn−1, xn) = max
{
d(xn−1, xn), D(xn−1, T (xn−1)), D(xn, T (xn)),

1

2
[D(xn−1, T (xn)) +D(xn, T (xn−1))]

})
.

Notice that

D(xn−1, T (xn−1)) = d(xn−1, xn) and D(xn, T (xn−1)) = 0.

Using the triangle inequality,

D(xn−1, T (xn)) ≤ d(xn−1, xn) +D(xn, T (xn))

= d(xn−1, xn) + d(xn, xn+1), n ≥ 1.

So
1

2
[D(xn−1, T (xn)) +D(xn, T (xn−1))] ≤ 1

2
[d(xn−1, xn) + d(xn, xn+1)],
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and

M(xn−1, xn) ≤ max{d(xn−1, xn), d(xn, xn+1)}, n ≥ 1.

Denoting zn = d(xn, xn+1)−D(A,B) and using the monotonicity of ϕ, (2.1) becomes

zn ≤ ϕ(max{zn−1, zn}), for n ≥ 1.

Because ϕ(t) < t, for any t > 0, we get

zn ≤ ϕ(zn−1), for any n ≥ 1.

Thus

zn ≤ ϕn−1(z1)→ 0, so d(xn, xn+1)→ D(A,B) when n→∞.
Since

(x2n)n∈N ⊂ A, (x2n+2)n∈N ⊂ A, and (x2n+1)n∈N ⊂ B,
by Lemma 2.4, (x2n)n∈N is a Cauchy sequence in the complete metric space X.
Hence, the Cauchy sequence (x2n)n∈N converges to a point x∗A which lies in A because
(x2n)n≥0 ⊂ A and A is closed.
For n ≥ 1, we have

D(A,B) ≤ d(x∗A, x2n−1) ≤ d(x∗A, x2n) + d(x2n, x2n−1),

so d(x∗A, x2n−1)→ D(A,B) when n→∞.
D(A,B) ≤ D(x2n, T (x∗A))

≤ H(T (x2n−1), T (x∗A))

≤ ϕ(M(x2n−1, x
∗
A)−D(A,B)) +D(A,B)

< M(x2n−1, x
∗
A)

= max
{
d(x2n−1, x

∗
A), D(x2n−1, T (x2n−1)), D(x2n, T (x2n)),

1

2
[D(x2n−1, T (x2n)) +D(x2n, T (x2n−1))]

}
Each term from maximum’s expression tends to D(A,B):

d(x2n−1, x
∗
A)→ D(A,B);

D(x2n−1, T (x2n−1)) = d(x2n−1, x2n)→ D(A,B);

D(x2n, T (x2n)) = d(x2n, x2n+1)→ D(A,B);

D(x2n, T (x2n−1)) = 0;

1

2
[D(x2n−1, T (x2n))] ≤ 1

2
[d(x2n−1, x2n) +D(x2n, T (x2n))]→ D(A,B)

Thus

D(x2n, T (x∗A))→ D(A,B).

Then we have

D(A,B) ≤ D(x∗A, T (x∗A)) ≤ d(x∗A, x2n) +D(x2n, T (x∗A))→ D(A,B).

Therefore

D(x∗A, T (x∗A)) = D(A,B).
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Remark 2.6. If in Theorem 2.5 D(A,B) = 0, then we obtain a fixed point result, see
Theorem 2.7 in [4].

Theorem 2.7. Let (X, d) be a complete metric space, A,B ∈ Pcl(X), such that the
pairs (A,B) and (B,A) satisfy the property UC. Let T : A ∪ B → Pprox(X) be a
multivalued operator. Then the following statements hold:

(i) If T is a multivalued Ćirić type cyclic operator, then T has at least one best
proximity point in A and at least one best proximity point in B;

(ii) If T satisfies the following stronger condition:
for any x ∈ A, y ∈ B,

δ(T (x), T (y)) ≤ ϕ(M(x, y)−D(A,B)) +D(A,B),

then there exist a best proximity x∗A ∈ A and a best proximity point x∗B ∈ B such that:

d(x∗A, x
∗
B) ≤ sup {t ≥ 0 | t− ϕ(t) ≤ 3D(A,B)} .

Proof. (i) It is a consequence of Theorem 2.5.
(ii) d(x∗A, x

∗
B) ≤ D(x∗A, T (x∗A)) + δ(T (x∗A), T (x∗B)) +D(x∗B , T (x∗B))

= 2D(A,B) + δ(T (x∗A), T (x∗B) ≤
≤ 2D(A,B) + ϕ(max{d(x∗A, x

∗
B), D(x∗A, T (x∗A)), D(x∗B , T (x∗B)),

1

2
[D(x∗A, T (x∗B)) +D(x∗B , T (x∗A))]} −D(A,B)) +D(A,B)

≤ 3D(A,B) + ϕ(max{d(x∗A, x
∗
B), D(A,B), D(A,B),

1

2
[d(x∗A, x

∗
B) +D(A,B) + d(x∗B , x

∗
A) +D(A,B)]} −D(A,B))

= 3D(A,B) + ϕ(d(x∗A, x
∗
B))

Thus, d(x∗A, x
∗
B)− ϕ(d(x∗A, x

∗
B)) ≤ 3D(A,B).

Corollary 2.8. Let X be a uniformly convex Banach space,

A,B ∈ Pcl,cv(X), T : A ∪B → Pcl,cv(X)

be a multivalued operator. Then the following statements hold:
(i) If T is a multivalued Ćirić type cyclic operator, then T has at least one best

proximity point in A and at least one best proximity point in B;
(ii) If T satisfies the following stronger condition:
for any x ∈ A, y ∈ B,

δ(T (x), T (y)) ≤ ϕ(M(x, y)−D(A,B)) +D(A,B),

then there exist a best proximity x∗A ∈ A and a best proximity point x∗B ∈ B such that:

‖x∗A − x∗B‖ ≤ sup{t ≥ 0 | t− ϕ(t) ≤ 3D(A,B)} .

Proof. (i) By Remark 1.6, any closed and convex set is proximinal.
Since A and B are convex, by Proposition 1.12, the pairs (A,B) and (B,A)

satisfy the property UC.
Applying Theorem 2.7 we get the existence of a best proximity point x∗A ∈ A

and a best proximity point x∗B ∈ B.
(ii) It is an immediate consequence of Theorem 2.7.
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If, in Theorem 2.7, ϕ is a subadditive strong comparison function, then the
condition that the multivalued operator takes proximinal values can be removed.
More precisely, we obtain the second main result, as follows.

Theorem 2.9. Let (X, d) be a complete metric space, A,B ∈ Pcl(X), such that (A,B)

satisfies the property UC. If T : A∪B → P (X) is a multivalued Ćirić type cyclic oper-
ator, with a subadditive strong comparison function ϕ, then the following statements
hold:

(i) T has a best proximity point x∗A ∈ A;

(ii) there exists a sequence (xn)n∈N with xn+1 ∈ T (xn) starting from an arbitrary
(x0, x1) ∈ Graph(T ), such that (x2n)n∈N converges to x∗A.

Proof. (i)+(ii) Let (x, y) ∈ Graph(T ) be arbitrary. We construct a sequence of suc-
cessive approximations of T starting from (x, y) in the following way:

x0 = x ∈ A and x1 = y ∈ T (x) ⊆ T (A) ⊆ B.

If d(x0, x1) > D(A,B) then ϕ (z0) < z0, where z0 := d(x0, x1)−D(A,B).

For ε1 ∈]0, z0 − ϕ (z0) [ there exists x2 ∈ T (x1) ⊆ T (B) ⊆ A such that

d(x1, x2) ≤ H(T (x0), T (x1)) + ε1.

If d(x1, x2) > D(A,B) then ϕ (z1) < z1, where z1 := d(x1, x2)−D(A,B).

For ε2 ∈]0,min {ε1, z1 − ϕ (z1)} [ there exists x3 ∈ T (x2) ⊆ T (A) ⊆ B such that

d(x2, x3) ≤ H(T (x1), T (x2)) + ε2.

Following this procedure in the case zn−1 := d(xn−1, xn) − D(A,B) > 0, n ≥ 2, we
choose

εn ∈]0,min {εn−1, zn−1 − ϕ (zn−1)} [, for n ≥ 2. (2.2)

There exists xn+1 ∈ T (xn) such that

d(xn, xn+1) ≤ H(T (xn−1), T (xn)) + εn, n ≥ 1,

the existence of xn+1 being assured by Lemma 1.3.

Since T is a multivalued Ćirić type cyclic operator, using the same reasoning as in
Theorem 2.5, we have

zn ≤ ϕ(max{zn−1, zn}) + εn, for n ≥ 1. (2.3)

Using (2.2), we obtain

zn < ϕ(max{zn−1, zn}) + zn−1 − ϕ(zn−1), for n ≥ 1. (2.4)

We suppose that zn−1 ≤ zn. Using the subadditivity of ϕ and Lemma 1.8,

ϕ(zn) = ϕ(zn − zn−1 + zn−1) ≤ ϕ(zn − zn−1) + ϕ(zn−1) ≤ zn − zn−1 + ϕ(zn−1),

so zn ≥ ϕ(zn) + zn−1 − ϕ(zn−1) which contradicts (2.4).
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We have zn ≤ zn−1 and (2.3) becomes

zn ≤ ϕ(zn−1) + εn

≤ ϕ (ϕ (zn−2) + εn−1)) + εn

≤ ϕ2(zn−2) + ϕ (εn−1) + εn

. . .

≤ ϕn(z0) +

n−1∑
k=0

ϕk(εn−k)

≤ ϕn(z0) +

n−1∑
k=0

ϕk(ε1)→ 0, when n→∞.

Then

d(xn, xn+1)→ D (A,B) when n→∞.
Applying Lemma 2.4 for the sequences

(x2n)n∈N ⊂ A, (x2n+2)n∈N ⊂ A, and (x2n+1)n∈N ⊂ B,

results that (x2n)n∈N is a Cauchy sequence. Because the metric space X is complete
and A is closed, the sequence (x2n)n≥0 ⊂ A converges to a point x∗A ∈ A. Using the
same reasoning as in Theorem 2.5,

D(x2n, T (x∗A))→ D(A,B), when n→∞.

Then we have

D(A,B) ≤ D(x∗A, T (x∗A)) ≤ d(x∗A, x2n) +D(x2n, T (x∗A))→ D(A,B).

Therefore

D(x∗A, T (x∗A)) = D(A,B).

If in the above construction, there exists k ≥ 1 such that d(xk−1, xk) = D(A,B), then

D(A,B) ≤ D(xk−1, T (xk−1)) ≤ d(xk−1, xk) = D(A,B)

so xk−1 is a best proximity point of T.
We will show that, in this situation, xk is also a best proximity point of T.

D(xk, T (xk)) ≤ H(T (xk−1), T (xk)) ≤ ϕ(M(xk−1, xk)−D(A,B)) +D(A,B).

where

M(xk−1, xk) = max
{
d(xk−1, xk), D(xk−1, T (xk−1)), D(xk, T (xk)),

1

2
[D(xk−1, T (xk)) +D(xk, T (xk−1))]

})
≤ max

{
D(A,B), D(xk, T (xk)),

1

2
[d(xk−1, xk) +D(xk, T (xk))]

})
≤ D(xk, T (xk)).
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Thus D(xk, T (xk))−D(A,B) ≤ ϕ(D(xk, T (xk))−D(A,B)), which means

D(xk, T (xk)) = D(A,B).

There exists xk+1 ∈ T (xk) such that

d(xk, xk+1) = D(xk, T (xk)) = D(A,B),

From now on, following this procedure we construct the terms of our sequence (xn)n∈N
with xn+1 ∈ T (xn) such that

d(xn, xn+1) = D(xn, T (xn)) = D(A,B), for any n ≥ k.
From this point, the proof runs in the same manner as in the case

d(xn, xn+1) > D(A,B), for any n ≥ 1.

Hereinafter we define and study the generalized Ulam-Hyers stability of the best
proximity problem (1.1) for a cyclic multivalued operator.

Definition 2.10. Let (X, d) be a complete metric space, A,B ∈ P (X). Let T : A∪B →
P (X) be a multivalued operator satisfying the cyclic condition T (A) ⊂ B, T (B) ⊂ A.
The best proximity problem (1.1) is called generalized Ulam-Hyers stable if there
exists ψ : R+ → R+ increasing, continuous at 0, with ψ(0) = 0 and there exists c > 0
such that for any ε > 0 and x ∈ B with

D(x, T (x)) ≤ ε+D(A,B),

there exists a solution x∗A ∈ A of (1.1) such that

d(x, x∗A) ≤ ψ(ε) + c ·D(A,B).

Our stability result is the following.

Theorem 2.11. Let (X, d) be a complete metric space, A ∈ Pcl(X), B ∈ P (X), such
that (A,B) satisfies the property UC and ϕ be a comparison function. Let T : A∪B →
Pprox(X) be a multivalued operator. Assume that:

(i) T (A) ⊂ B, T (B) ⊂ A;
(ii) for any x ∈ A, y ∈ B,

δ(T (x), T (y)) ≤ ϕ(max{D(x, T (x)), D(y, T (y))} −D(A,B)) +D(A,B).

Then the best proximity problem (1.1) is generalized Ulam-Hyers stable.

Proof. T is a multivalued Ćirić type cyclic operator, so the best proximity problem
has at least one solution x∗A ∈ A.

d(x, x∗A) ≤ D(x, T (x)) + δ(T (x), T (x∗A)) +D(x∗A, T (x∗A))

≤ ε+D(A,B) + ϕ(max{D(x, T (x)), D(x∗A, T (x∗A))}
−D(A,B)) + 2D(A,B)

≤ ε+ ϕ(max{ε+D(A,B), D(A,B)} −D(A,B)) + 3D(A,B).

In conclusion,

d(x, x∗A) ≤ ε+ ϕ(ε) + 3D(A,B),

proving that the best proximity problem (1.1) is generalized Ulam-Hyers stable.
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Boris Zakharovich Vulikh (1913-1978) was a distinguished Russian mathemati-
cian with outstanding contributions to various domains of functional analysis, mainly
to the theory of ordered vector spaces. For almost thirty years he was the head of
Chairs of Mathematical Analysis at Leningrad Higher Educational Institutions, from
1957 to 1963 at the Leningrad A.I. Herzen Pedagogical Institute (now A.I. Herzen
State Pedagogical University of Russia, Sankt Peterburg) and from 1963 to 1978 at the
Mathematics and Mechanics Faculty of the Leningrad State University (now Sankt
Peterburg State University).

Besides the research papers, he wrote several well known books on analysis and
functional analysis, including two on ordered vector spaces - one in 1950, jointly with
L. V. Kantorovich and A. G. Pinsker, and one alone, Introduction to the theory of
partially ordered spaces (in Russian), Leningrad 1961, an English translation being
published with Wolters-Noordhoff in 1967. Less known are two booklets, The geome-
try of cones in normed spaces (72 p.), and Special questions of the geometry of cones
in normed spaces (73 p.), published at the Kalinin (now Tver) State University in
1976 and 1977, respectively. These two booklets contain, in a condensed but complete
and clear form, the basic results on cones in normed spaces, in particular, duality
properties of a cone and its dual cone, and properties of the cone of positive operators
between ordered normed spaces as well. Prof. Martin Weber from the Technical Uni-
versity of Dresden took the charge to translate into German and update them, being
published as Chapters I and II in this book named The geometry of cones in normed
spaces. This was not a simple translation, a lot of edifying footnotes are included in
the text of translation. Also some interesting examples and counterexamples going
back to I.I. Chuchaev (N.P. Ogarev Mordovia State University, Russia) and being
only announced in the original text are included in detail into the German issue.
Besides these, a consistent chapter, Some afterthoughts by the editor of the German
edition, accompanied by a list of updated references, presents some developments in
the theory of ordered vector spaces and their applications done since the publications
of the Russian edition of the booklets.

It is worth to mention that Prof. Weber studied at the Leningrad State Uni-
versity (1963-1968) and earned a Ph.D. (Kandidat physiko-matematicheskih nauk -
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Candidate in physical-mathematical sciences) in 1974 at the same University (with
Prof. B. M. Makarov as supervisor). He was and remained in contact with the strong
group of researchers in ordered vector spaces from Leningrad-St Petersburg Univer-
sity, so we have the privilege of a first hand information on the topics, people and
events.

In spite of the years passed since their publication, these books by B. Z. Vulikh
are still a valuable source of information for mathematicians, professionals and stu-
dents as well, interested in the theory of ordered normed spaces and its applications.
By translating and updating this masterpiece of mathematical exposition Prof. Mar-
tin Weber has done a wonderful (and hard) job and, at the same time, rendered a
great service to the mathematical community.

S. Cobzaş

René L. Schilling; Wahrscheinlichkeit – Eine Einführung für Bachelor-Studenten.
De Gruyter Studium, Walter de Gruyter GmbH, Berlin/Boston 2017, x+232 p.,
ISBN: 978-3-11-035065-4. Language: German; translated title: Probability – An
Introduction for Bachelor Students.

Professor René L. Schilling from the Technical University in Dresden (Germany)
is a well–known expert in the field of stochastic processes. This book continues the
course of the author about measure and integration theory (Maß und Integral, pub-
lished in 2015 with De Gruyter, Berlin). It is addressed to students of mathematics,
natural sciences (especially physics), economics, and engineering, but also to any re-
searcher interested in the field of probability theory and its applications.

This textbook provides a modern access to the most important results of mathe-
matical probability theory. Prerequisites for understanding the present book are basic
notions of measure and integration theory. The main topics of this book are: mod-
els of probability theory, elementary combinatorics, conditional probabilities, random
variables and their independence, characteristic functions, classic limit theorems, con-
vergence of random variables. These topics are then supplemented by the study of
sums of independent random variables, laws of large numbers, zero-one laws, random
walks, the central limit theorem. Conditional expectations, applications of character-
istic functions, and an introduction to the theory of infinitely divisible distributions
and large deviations round off the book. Lastly, the author has included an appen-
dix at the end of the book containing a summary of the main results that are used
throughout the present book, as well as, a list of discrete and continuous distributions.

The material in this book consists of definitions, properties (with proofs or with
references to the literature, where the proof can be found), many examples and coun-
terexamples, exercises, explanatory comments and helpful hints, tables and suggestive
figures.

The book is clearly written and well structured. It brings together theory, prac-
tice and research topics, and can be recommended as a German textbook for proba-
bility theory courses and seminars.

Hannelore Lisei
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Palle Jorgensen and Feng Tian, Non-commutative Analysis. World Scientific 2017,
xxviii+533 p., ISBN: 978-981-3202-11-5 (hardcover); 978-981-3202-12-2 (softcover);
978-981-3202-14-6 (ebook)

As the authors mention in the Preface, the central themes of the book are: (i) Op-
erators in Hilbert space; (ii) Multivariable spectral theory ; (iii) Non-commutative anal-
ysis; (iv) Probability theory ; (v) Unitary representations. The term ”non-commutative
analysis” is interpreted as including representations of non-Abelian groups, and non-
Abelian algebras, with emphasis on Lie groups and operator algebras (C∗ algebras
and von Neumann algebras).

The book is oriented to applications, mainly in physics (quantum mechanics),
from where the main motivation for the development of non-commutative analysis
comes. According to a quotation from S. Doplicher and R. Longo (page viii), the
novelty of physics of the XX century can be characterized with “a single magic word
- non-commutativity”. These applications are treated in two steps - in outline first
and then, after developing the theoretic tools, with full details. The book is devoted
to students with different backgrounds in mathematics, some of them coming from
neighboring fields, so the authors tries to keep the prerequisites at a minimum. The
general framework is that on Hilbert spaces, operators acting on them (with emphasis
on unbounded operators) and spectral theory.

The book is divided into five parts: I. Introduction and motivation; II. Topics
form functional analysis and operators in Hilbert space; III. Applications; IV. Exten-
sion of operators; V. Appendix.

The applications concern C∗ algebras and their representations, completely pos-
itive maps, Brownian motion, Lie groups and their unitary representations. One dis-
cusses also the famous Kadison-Singer problem - Does every pure state on the von
Neumann algebra of bounded diagonal operators on `2 have a unique extension to a
(pure) state on the algebra B(`2) of all bounded linear operators on `2? The authors
present only in outline this problem (dating from 1959), its recent difficult solution, by
N. Srivastava, A. Marcus, and D. Spielman (2013, published in Annals of Mathemat-
ics, 2015) requiring a separate book (good presentations of Kadison-Singer problem
are given in the papers by P. G. Casazza et al., arXiv:math/0510024, D. Timotin,
arXiv:1501.00464, M. Bownik, arXiv:1702.04578).

The book is very well written and organized. All the notions and results are mo-
tivated by examples, the Appendix contains a list of significant books in functional
analysis (with telegraphic reviews) and short biographies of some relevant mathemati-
cians and physicists who essentially contributed to the field. A lot of suggestive (and
amazing) quotations are spread throughout the book.

Based on two-semester courses on functional analysis taught over the years by the
first-named author, the book is highly recommended to teachers in applied functional
analysis, for students in mathematics and related areas, as well as for self-study by
students needing a quick access to some top research tools in mathematics and physics,
paving the way to more advanced and specialized texts on non-commutative analysis,
non-commutative geometry and applications.

S. Cobzaş
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