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Coplexes in abelian categories

Flaviu Pop

Abstract. Starting with a pair F : A � B : G of additive contravariant functors
which are adjoint on the right, between abelian categories, and with a class U ,
we define the notion of (F,U)-coplex. Considering a reflexive object U of A with
F(U) = V projective object in B, we construct a natural duality between the
category of all (F, add(U))-coplexes in A and the subcategory of B consisting in
all objects in B which admit a projective resolution with all terms in the class
add(V ).

Mathematics Subject Classification (2010): 16E30, 16D90.

Keywords: Adjoint functors, duality, projective resolution, coplex.

1. Introduction

The study of dualities between subcategories of the module categories, induced
by Hom contravariant functors associated to a given bimodule, is very important in
the Module Theory in order to compare some special classes of modules. Also, is very
useful to generalize such dualities, between module categories, to dualities induced
by a pair of adjoint functors between abelian (or, Grothendieck) categories, because
they could be applied to different pairs of adjoint functors. In [7], Castaño-Iglesias
generalized the notion of costar module, introduced by Colby and Fuller in [8], to
the notion of costar object in Grothedieck categories. In [5], the authors extends the
notion of f -cotilting module (see, for example, [16]) to the notion of f -cotilting pair
of contravariant functors. In [14], it is constructed a natural duality, induced by a
pair of adjoint contravariant functors between abelian categories and, applying this
result to some special classes of objects, the author generalizes some of the results
related to the notion of finitistic n-self cotilting module, introduced by Breaz in [4].
A particular case of finitistic n-self cotilting module is also generalized in [6]. Starting
with a pair of adjoint covariant functors F : A� B : G, between abelian categories, in
[15] it is studied, inspired by some of the results obtained by Fuller in [12] on module
categories, some closure properties of some full subcategories C and D such that the
restrictions F : C � D : G induce an equivalence. In [1] and [2], it is generalized
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the concepts of r-costar module and Co-?n-module to the concepts of r-costar pair
and Co-?n-tuple of contravariant functors between abelian categories. Moreover, in
[3], the author generalizes ?s-modules and ?n-modules to ?s-tuples and ?n-tuples of
covariant functors between abelian categories.

In this paper, we extend the notion of G-coplex, introduced by Faticoni in [10]
(see also [11, Chapter 9]) in module categories, to the notion of (F,U)-coplex in
arbitrary abelian categories. More exactly, starting with a pair F : A � B : G of
additive contravariant functors, between two arbitrary abelian categories, which are
adjoint on the right and with a class U of objects in A, we define the notion of (F,U)-
coplex, associated to this pair of functors and to the considered class. Then, setting
the class U to be the class add(U), i.e. the class of all direct summands of finite direct
sums of copies of U , for some reflexive object U of A with F(U) = V being projective
object in B, we construct a natural duality between the category of all (F, add(U))-
coplexes in A and the subcategory of B consisting in all objects in B which admit a
projective resolution with all terms in the class add(V ).

2. Preliminaries

Throughout this paper, we consider a pair F : A� B : G of additive contravari-
ant functors, between two abelian categories, which are adjoint on the right with the
natural transformations of right adjunction δ : 1A → GF and ζ : 1B → FG. We note
that the natural transformations of right adjunction, δ and ζ, satisfy the identities
F(δX) ◦ ζF(X) = 1F(X) and G(ζY ) ◦ δG(Y ) = 1G(Y ) for all X ∈ A and for all Y ∈ B.
Moreover, we mention that the functors F and G are left exact.

The classical example of such a pair of functors is the following (see, for example,
[9, Chapter 4]).

Example 2.1. Let R and S be two unital associative rings and let U be an (S,R)-
bimodule. If we denote by Mod-R (respectively, by S-Mod) the category of all right R-
(respectively, left S-) modules, then the pair of Hom contravariant functors induced
by U ,

∆ = HomR(−, U) : Mod-R� S-Mod : HomS(−, U) = ∆′,

is a pair of right adjoint contravariant functors via the adjunction

µXY : HomR(X,HomS(Y,U))→ HomS(Y,HomR(X,U))

with

µXY (f)(y) : x 7→ f(x)(y)

whereX ∈ Mod-R, Y ∈ S-Mod, x ∈ X, y ∈ Y, f ∈ HomR(X,HomS(Y, U)). Associated
to this adjunction, the natural transformations δ and ζ are in fact the evaluation maps

δX : X → HomS(HomR(X,U), U); δX(x) : f 7→ f(x)

and

ζY : Y → HomR(HomS(Y, U), U); ζY (y) : g 7→ g(y),

where X ∈ Mod-R, Y ∈ S-Mod, x ∈ X, y ∈ Y, f ∈ HomR(X,U), g ∈ HomS(Y,U). �
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Castaño-Iglesias, in [7], gives an example of a pair of right adjoint contravariant
functors between the categories of all G-graded unital right R-modules and of all
G-graded unital left S-modules, where G is a group and R and S are two G-graded
unital rings (see also [13]). Other examples of such pairs of functors could be found
in [14].

An object X in A (respectively, in B) is called δ-faithful (respectively, ζ-faithful)
if δX (respectively, ζX) is a monomorphism and we will denote by Faithδ (respectively,
by Faithζ) the class of all δ-faithful (respectively, ζ-faithful) objects. An object X in
A (respectively, in B) is called δ-reflexive (respectively, ζ-reflexive) if δX (respectively,
ζX) is an isomorphism and we will denote by Reflδ (respectively, by Reflζ) the class
of all δ-reflexive (respectively, ζ-reflexive) objects.

We have the following basic results related to the closure properties of the classes
of all faithful objects (see [5] for the proof).

Lemma 2.2. The following statements hold:

(a) F(A) ⊆ Faithζ and G(B) ⊆ Faithδ;
(b) The classes Faithδ and Faithζ are closed with respect to subobjects.

Recall that, for a given object X, add(X) denotes the class of all direct sum-
mands of finite direct sums of copies of X. The following basic results are often used
in this paper.

Lemma 2.3. Let U be a δ-reflexive object with F(U) = V . Then:

(a) V is ζ-reflexive;
(b) add(U) ⊆ Reflδ and add(V ) ⊆ Reflζ ;
(c) F(add(U)) = add(V ) and G(add(V )) = add(U).

We recall that, a complex (C, d) in A is a sequence of objects and morphisms in A

C : . . .
dn−1−→ Cn−1

dn−→ Cn
dn+1−→ Cn+1

dn+2−→ . . .

such that dn+1dn = 0, for all n ∈ Z. The morphisms dn are called differenti-
ations. We will shorten the notation (C, d) to C. We mention that the equation
dn+1dn = 0 is equivalent to Im(dn) ⊆ Ker(dn+1). Moreover, the complex C is said to
be bounded below (respectively, bounded above), if Cn = 0, for all n < 0 (respec-
tively, for all n > 0). If C and C′ are two complexes in A, a sequence of morphisms
f = (. . . , fn−1, fn, fn+1, . . . ), where fn ∈ HomA(Cn, C

′
n), is called chain map between

complexes C and C′ if the following diagram is commutative

C : . . .
dn−1 // Cn−1

dn //

fn−1

��

Cn
dn+1 //

fn

��

Cn+1

dn+2 //

fn+1

��

. . .

C′ : . . .
d′n−1 // C ′n−1

d′n // C ′n
d′n+1 // C ′n+1

d′n+2 // . . .

i.e. fndn = d′nfn−1
, for all integers n ∈ Z. By CompA will be denoted the category of

all complexes in A, defined as follows: the class of objects consist in the class of all
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complexes in A and the set of morphisms between two complexes C and C′ consist in
the set of all chain maps between C and C′.

If f = (. . . , fn−1, fn, fn+1, . . . ) : C → C′ is a chain map between complexes C and
C′, then we say that f is null homotopic (or, f is homotopic to zero) if there are, for all
integers n ∈ Z, the morphisms sn : Cn → C ′n−1 in A such that fn = sn+1dn+1 +d′nsn,
for all integers n ∈ Z. The sequence s = (. . . , sn−1, sn, sn+1, . . . ) is called a homotopy
of f (or, a homotopy between f and 0). The morphisms are illustrated in the following
diagram

C : . . .
dn−1 // Cn−1

dn //

fn−1

��

sn−1

{

Cn
dn+1 //

fn

��

sn

}

Cn+1

dn+2 //

fn+1

��

sn+1

}

. . .

sn+2

}
C′ : . . .

d′n−1 // C ′n−1
d′n // C ′n

d′n+1 // C ′n+1

d′n+2 // . . .

The condition for s to be a homotopy of f says that each vertical morphism is the sum
of the sides of the parallelogram containing it. If f = (. . . , fn−1, fn, fn+1, . . . ) : C → C′
and g = (. . . , gn−1, gn, gn+1, . . . ) : C → C′ are two chain maps, then we say that f
and g are homotopic (or, f is homotopic to g), written f ' g, if

f − g = (. . . , fn−1 − gn−1, fn − gn, fn+1 − gn+1, . . . ) : C → C′

is a null homotopic chain map. A homotopy between f − g and 0 is also called a
homotopy between f and g. The homotopic relation ” ' ” is an equivalence relation
on the set of chain maps f : C → C′. We denote by [f ] the homotopy (equivalence)
class of f .

For a complex C ∈ CompA and for some integer n ∈ Z, we denote by Hn(C) the
n-th homology of C, i.e. Hn(C) = Ker(dn+1)/Im(dn).

Definition 2.4. Let U be a class of objects in A. A bounded below complex C in
CompA

C : C0
σ1−→ C1

σ2−→ C2
σ3−→ . . .

is called (F,U)-coplex if the following conditions are satisfied:

(1) Ck ∈ U , for all k ≥ 0;
(2) The induced complex

F(C) : . . .
F(σ3)−→ F(C2)

F(σ2)−→ F(C1)
F(σ1)−→ F(C0)

is an exact sequence in B.

Now, for a class U of objects in A, we define the category of all (F,U)-coplexes,
denoted by (F,U)-coplex, as follows:

(A) the class of objects consists in the class of all (F,U)-coplexes C;
(B) the set of morphisms between two (F,U)-coplexes C and C′, consists in the set

of all homotopy classes of chain maps f : C → C′.
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For the rest of the paper, we set a δ-reflexive object U in A such that V = F(U)
is a projective object in B. Moreover, we suppose that all considered subcategories of
A and B are isomorphically closed.

Let Y and B be two objects in B and let n be a positive integer. A projective
resolution · · · → P1 → P0 → Y → 0 of Y is called finitely-B-generated if Pi ∈ add(B)
for all i ≥ 0. We will denote by gen•(B) the class of all objects X ∈ B such that
there exists a finitely-B-generated projective resolution of X. A projective resolution
· · · → Pn+1 → Pn → Pn−1 → · · · → P1 → P0 → Y → 0 of Y is called n-finitely-B-
generated if Pi ∈ add(B) for all i = 0, n. We will denote by n-gen•(B) the class of all
objects X ∈ B for which there exists an n-finitely-B-generated projective resolution
of X.

Lemma 2.5. Let C : C0
σ1−→ C1

σ2−→ C2
σ3−→ . . . be a complex in CompA, with Ck ∈

add(U), for all k ≥ 0. Then C is an (F, add(U))-coplex if and only if F(C) is a
finitely-V -generated projective resolution of H0(F(C)).
Proof. Suppose that C is an (F, add(U))-coplex. Then, by definition, the induced
sequence

F(C) : . . .
F(σ3)−→ F(C2)

F(σ2)−→ F(C1)
F(σ1)−→ F(C0)

ε0−→ Coker(F(σ1))→ 0

is an exact sequence in B. Since all Ck ∈ add(U), we have, by Lemma 2.3, that
all F(Ck) ∈ add(V ). We also have that all F(Ck) are projective in B, because V
is projective in B. Therefore F(C) is a finitely-V -generated projective resolution of
Coker(F(σ1)).

Conversely, if the induced sequence F(C) is a finitely-V -generated projective
resolution of Coker(F(σ1)), then F(C) is an exact sequence in B. From hypothesis,
Ck ∈ add(U), for all k ≥ 0. It follows that C is an (F, add(U))-coplex. �

It is well known that, if f, g : C → C′ are two homotopic chain maps between
complexes C and C′, then H0(F(f)) = H0(F(g)). Therefore, the functor FU from the
following definition is well-defined.

Definition 2.6. The contravariant functor FU : (F, add(U))-coplex → gen•(V ) is de-
fined as follows:

(A) On objects, we set FU (C) = H0(F(C)), for each C ∈ (F, add(U))-coplex.
(B) On morphisms, we take FU ([f ]) = H0(F(f)), for each morphism [f ] : C → C′ of

(F, add(U))-coplexes.

Definition 2.7. The contravariant functor GU : gen•(V ) → (F, add(U))-coplex is de-
fined as follows:

(A) On objects. Let Y ∈ gen•(V ). Then Y has a finitely-V -generated projective
resolution

P(Y ) : . . .
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ Y → 0.

We mention that the chosen projective resolution P(Y ) is unique up to a homotopy.
Applying the functor G to the projective resolution P(Y ), we obtain the following
complex in A

G(P(Y )) : G(P0)
G(∂1)−→ G(P1)

G(∂2)−→ G(P2)
G(∂3)−→ . . .
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Since P(Y ) is finitely-V -generated, we have Pk ∈ add(V ), for all k ≥ 0, and, since
ζ : 1add(V ) → FG is a natural isomorphism, the following diagram is commutative
with the vertical maps isomorphisms

. . .
∂3 // P2

∂2 //

ζP2

��

P1
∂1 //

ζP1

��

P0

ζP0

��
. . .

FG(∂3) // FG(P2)
FG(∂2) // FG(P1)

FG(∂1) // FG(P0)

Since the top row is an exact sequence, it follows that the bottom row is an exact
sequence. By Lemma 2.3, G(Pk) ∈ add(U), for all k ≥ 0. Thus G(P(Y )) is a complex
in A with all G(Pk) ∈ add(U) and the induced sequence FG(P(Y )) is an exact
sequence. Therefore G(P(Y )) is an (F, add(U))-coplex. We set

GU (Y ) = G(P(Y )).

(B) On morphisms. Let φ ∈ Homgen•(V )(Y, Y
′). Then φ lifts to a chain map

f = (. . . , f2, f1, f0) : P(Y )→ P(Y ′)

where P(Y ) and P(Y ′) are finitely-V -generated projective resolutions associated to
Y and Y ′, respectively.

. . .
∂3 // P2

∂2 //

f2

�

P1
∂1 //

f1

�

P0
∂0 //

f0

�

Y //

φ

��

0

. . .
∂′3 // P ′2

∂′2 // P ′1
∂′1 // P ′0

∂′0 // Y ′ // 0

Applying the functor G, we get a chain map in A,

G(f) = (G(f0),G(f1),G(f2), . . . ) : G(P(Y ′))→ G(P(Y ))

illustrated in the following diagram

G(P ′0)
G(∂′1) //

G(f0)

��

G(P ′1)
G(∂′2) //

G(f1)

��

G(P ′2)
G(∂′3) //

G(f2)

��

. . .

G(P0)
G(∂1) // G(P1)

G(∂2) // G(P2)
G(∂3) // . . .

Since G(P(Y )) and G(P(Y ′)) are (F, add(U))-coplexes, it follows that the homotopy
class [G(f)] is a morphism in the category (F, add(U))-coplex. We set

GU (φ) = [G(f)].
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3. Main result

The main result of the paper is the following theorem.

Theorem 3.1. The functors FU and GU induce the following duality

FU : (F, add(U))-coplex � gen•(V ) : GU

Proof. First, we show that the composition FU ◦ GU is natural isomorphic to the
identity functor 1gen•(V ).

Let Y ∈ gen•(V ). Then Y has a finitely-V -generated projective resolution

P(Y ) : . . .
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ Y → 0.

Applying the functor G, we obtain the following (F, add(U))-coplex

G(P(Y )) : G(P0)
G(∂1)−→ G(P1)

G(∂2)−→ G(P2)
G(∂3)−→ . . .

and then GU (Y ) = G(P(Y )). Applying the functor F, we have the exact sequence

FG(P(Y )) : . . .
FG(∂3)−→ FG(P2)

FG(∂2)−→ FG(P1)
FG(∂1)−→ FG(P0)

ε0−→ Coker(FG(∂1))→ 0

and then FU (G(P(Y ))) = Coker(FG(∂1)). Thus (FU ◦GU )(Y ) = Coker(FG(∂1)).

Since all Pk ∈ add(V ) and since ζ : 1add(V ) → FG is a natural isomorphism, the
following diagram is commutative with the vertical maps isomorphisms.

. . .
∂3 // P2

∂2 //

ζP2

��

P1
∂1 //

ζP1

��

P0

ζP0

��

∂0 // Y //

βY

��

0

. . .
FG(∂3)// FG(P2)

FG(∂2) // FG(P1)
FG(∂1) // FG(P0)

ε0 // Coker(FG(∂1)) //

γY

UU

0

Since (ε0 ◦ ζP0
) ◦ ∂1 = 0 and Y is the cokernel of ∂1, there is a unique morphism

βY : Y → Coker(FG(∂1)) such that ε0◦ζP0
= βY ◦∂0. Also, since (∂0◦ζ−1P0

)◦FG(∂1) =

0, there is a unique morphism γY : Coker(FG(∂1))→ Y such that ∂0 ◦ ζ−1P0
= γY ◦ ε0.

It it easy to see that βY ◦ γY = 1Coker(FG(∂1)) and γY ◦ βY = 1Y . Thus βY : Y →
(FU ◦GU )(Y ) is an isomorphism.

Let φ ∈ Homgen•(V )(Y, Y
′). Then φ lifts to a chain map f : P(Y ) → P(Y ′),

where P(Y ) and P(Y ′) are the finitely-V -generated projective resolutions of Y and
Y ′, respectively, as we see in the following diagram:

P(Y ) : . . .
∂3 // P2

∂2 //

f2

�

P1
∂1 //

f1

�

P0
∂0 //

f0

�

Y //

φ

��

0

P(Y ′) : . . .
∂′3 // P ′2

∂′2 // P ′1
∂′1 // P ′0

∂′0 // Y ′ // 0

By definition, we have GU (φ) = [G(f)] : GU (Y ′)→ GU (Y ).
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G(P ′0)
G(∂′1) //

G(f0)

��

G(P ′1)
G(∂′2) //

G(f1)

��

G(P ′2)
G(∂′3) //

G(f2)

��

. . .

G(P0)
G(∂1) // G(P1)

G(∂2) // G(P2)
G(∂3) // . . .

Since ε′0◦FG(f0)◦FG(∂1) = 0, there is a unique morphism α : Coker(FG(∂1))→
Coker(FG(∂′1)) such that ε′0 ◦ FG(f0) = α ◦ ε0. Then FU ([G(f)]) = α, and thus
(FU ◦GU )(φ) = α.

. . .
∂3 // P2

∂2 //

ζP2

��

P1
∂1 //

ζP1

��

P0
∂0 //

ζP0

��

f0

��

Y //

βY

��

φ

��

0

. . .
FG(∂3) // FG(P2)

FG(∂2) //

FG(f2)

��

ζ−1
P2

OO

FG(P1)
FG(∂1) //

FG(f1)

��

ζ−1
P1

OO

FG(P0)
ε0 //

FG(f0)

��

ζ−1
P0

OO

Coker(FG(∂1)) //

α

��

γY

OO

0

. . .
FG(∂′3) // FG(P ′

2)
FG(∂′2) //

ζ−1

P ′2

��

FG(P ′
1)

FG(∂′1) //

ζ−1

P ′1

��

FG(P ′
0)

ε′0 //

ζ−1

P ′0

��

Coker(FG(∂′
1))

//

γY ′

��

0

. . .
∂′3 // P ′

2

∂′2 //

ζP ′2

OO

P ′
1

∂′1 //

ζP ′1

OO

P ′
0

∂′0 //

ζP ′0

OO

Y ′ //

βY ′

OO

0

From the fact that ζ : 1B → FG is a natural transformation, we have FG(f0) ◦
ζP0

= ζP ′0 ◦ f0. It follows that we have the following equalities

α ◦ βY ◦ ∂0 = α ◦ ε0 ◦ ζP0
=

ε′0 ◦ FG(f0) ◦ ζP0 = ε′0 ◦ ζP ′0 ◦ f0 =

βY ′ ◦ ∂′0 ◦ f0 = βY ′ ◦ φ ◦ ∂0.
Hence α ◦ βY = βY ′ ◦ φ, because ∂0 is an epimorphism. Therefore we have the

equality (FU ◦GU )(φ) ◦ βY = βY ′ ◦ φ, i.e. the following diagram is commutative

Y
φ //

βY

��

Y ′

βY ′

��
(FU ◦GU )(Y )

(FU◦GU )(φ)// (FU ◦GU )(Y ′)

Second, we show that the composition GU ◦ FU is natural isomorphic with the
identity functor 1(F,add(U))-coplex.
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Let C ∈ (F, add(U))-coplex. Then

C : C0
σ1−→ C1

σ2−→ C2
σ3−→ . . .

is a complex in A, with Ck ∈ add(U), for all k ≥ 0, and the induced sequence

F(C) : . . .
F(σ3)−→ F(C2)

F(σ2)−→ F(C1)
F(σ1)−→ F(C0)

ε0−→ Coker(F(σ1))→ 0

is a finitely-V -generated projective resolution of Coker(F(σ1)). By definition FU (C) =
Coker(F(σ1)). Moreover, GU (Coker(F(σ1))) = GF(C), hence (GU ◦ FU )(C) = GF(C).

Since δ : 1A → GF is a natural transformation, we have that

δC = (δC0
, δC1

, δC2
, . . . )

is a chain map between (F, add(U))-coplexes C and GF(C), hence we have [δC ] ∈
Hom(F,add(U))-coplex(C,GF(C)). On the other hand, since Ck ∈ add(U), the morphisms
δCk

: Ck → GF(Ck) are isomorphisms, hence

δ−1C = (δ−1C0
, δ−1C1

, δ−1C2
, . . . )

is a chain map between (F, add(U))-coplexes GF(C) and C and thus we have [δ−1C ] ∈
Hom(F,add(U))-coplex(GF(C), C).

C0
σ1 //

δC0

��

C1
σ2 //

δC1

��

C2
σ3 //

δC2

��

. . .

GF(C0)
GF(σ1) //

δ−1
C0

��

GF(C1)
GF(σ2) //

δ−1
C1

��

GF(C2)
GF(σ3) //

δ−1
C2

��

. . .

C0
σ1 // C1

σ2 // C2
σ3 // . . .

Since δ−1Ck
◦δCk

= 1Ck
and δCk

◦δ−1Ck
= 1GF(Ck) in A, for all k ≥ 0, we have [δ−1C ]◦[δC ] =

[1C ] and [δC ] ◦ [δ−1C ] = [1GF(C)] in (F, add(U))-coplex, hence [δC ] : C → (GU ◦ FU )(C)
is an isomorphism in (F, add(U))-coplex.

Let [f ] ∈ Hom(F,add(U))-coplex(C, C′). Then

f = (f0, f1, f2, . . . ) : C → C′

is a chain map between (F, add(U))-coplexes C and C′, as illustrated below:

C0
σ1 //

f0

��

C1
σ2 //

f1

��

C2
σ3 //

f2

��

...

C ′0
σ′1 // C ′1

σ′2 // C ′2
σ′3 // ...

It follows that

F(f) = (. . . ,F(f2),F(f1),F(f0)) : F(C′)→ F(C)
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is a chain map between exact sequences F(C′) and F(C)

. . .
F(σ′3) // F(C ′2)

F(σ′2) //

F(f2)

��

F(C ′1)
F(σ′1) //

F(f1)

��

F(C ′0)
ε′0 //

F(f0)

��

Coker(F(σ′1))

φ

�

// 0

. . .
F(σ3) // F(C2)

F(σ2) // F(C1)
F(σ1) // F(C0)

ε0 // Coker(F(σ1)) // 0

Since (ε0 ◦ F(f0)) ◦ F(σ′1) = 0, there is a unique morphism φ : Coker(F(σ′1)) →
Coker(F(σ1)) in B such that ε0 ◦ F(f0) = φ ◦ ε′0 and then, by definition, FU ([f ]) = φ.
Moreover, by definition of GU , we have GU (φ) = [GF(f)]. Thus (GU ◦ FU )([f ]) =
[GF(f)].

Since δ : 1A → GF is a natural transformation, we have GF(fk)◦ δCk
= δC′k ◦fk,

for all k ≥ 0, hence [GF(f) ◦ δC ] = [δC′ ◦ f ]. Thus [GF(f)] ◦ [δC ] = [δC′ ] ◦ [f ] and
therefore (GU ◦ FU )([f ]) ◦ [δC ] = [δC′ ] ◦ [f ]. So, the following diagram is commutative

C
[f ] //

[δC ]

��

C′

[δC′ ]

��
(GU ◦ FU )(C)

(GU◦FU )([f ])// (GU ◦ FU )(C′)
�
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1. Preliminaries on complex Lie groups

Let G be a complex Lie group of dimension n. Its Lie algebra, g, has as underlying
vector space the holomorphic tangent space T 1,0

e G at the identity e ∈ G. As known,
an element A ∈ T 1,0

e G determines a unique left invariant vector field which takes the
value A at e; moreover, these vector fields are the elements of g.

Following the ideas from [1], let {Eα}, α = 1, . . . , n, be a base of the Lie alge-
bra g and χα, α = 1, . . . , n the dual base for the 1-forms of Maurer-Cartan, that is,
χα(Eβ) = δαβ , (α, β = 1, . . . , n). It is known ([11], Lemma 1.6) that Eα are holomor-

phic vector fields (as they are left-invariant) and also χα are holomorphic left-invariant
1-forms.

A differential form η is said to be left-invariant if it is invariant by every left
translation La, (a ∈ G), that is, if L∗aη = η for every a ∈ G, where L∗a is the
holomorphic cotangent map of La. It follows that any left invariant form must be
holomorphic. For an element U ∈ g and an element η in the dual space g∗, η(U) is
constant on G. Since

∂η(U, V ) = Uη(V )− V η(U)− η([U, V ]),

where d = ∂ + ∂̄ is the usual decomposition of the exterior derivative, one obtains

∂η(U, V ) = −η([U, V ]), (1.1)
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where U, V are elements of g and η is any element of the dual space. By setting

[Eβ , Eγ ] = C α
β γEα, (1.2)

the relation (1.1) yields

∂χα = −1

2
C α
β γχ

β ∧ χγ . (1.3)

The complex constants C α
β γ are called the constants of structure of g with respect

to the holomorphic base {E1, . . . , En}. These constants are not arbitrary since they
must satisfy the relations

[Eα, Eβ ] + [Eβ , Eα] = 0 (1.4)

and

[Eα, [Eβ , Eγ ]] + [Eβ , [Eγ , Eα]] + [Eγ , [Eα, Eβ ]] = 0 (1.5)

for all α, β, γ = 1, . . . , n, that is

C α
β γ + C α

γ β = 0 (1.6)

and

C ρ
α βC

δ
γ ρ + C ρ

β γC
δ
α ρ + C ρ

γ αC
δ
β ρ = 0. (1.7)

Equations (1.3) are called the holomorphic Maurer-Cartan equations.
Equation (1.2) indicates that the structure constants are the components of a

holomorphic tensor on T 1,0
e G of type (1, 2). A new holomorphic tensor on T 1,0

e G can
be defined by setting

Cαβ = C ρ
α σC

σ
ρ β (1.8)

with respect to the holomorphic left invariant base {Eα} (α = 1, . . . , n) of g. It is
easily verified that this holomorphic tensor is symmetric. Also, it can be shown that
a necessary and sufficient condition for the complex Lie group G to be semi-simple is
that the complex matrix (Cαβ)n×n is invertible.

The holomorphic tensor defined by the equations (1.8) can now be used to raise
and lower indices and, for this purpose, the inverse matrix (Cαβ)n×n will be consid-
ered.

In terms of a system of local complex coordinates (u1, . . . , un) on G, the holo-

morphic vector fields Eα, α = 1, . . . , n, can be expressed as Eα = χiα
∂

∂ui
. Since G is

complex parallelizable (see [14]), the n×n matrix (χiα) has rank n and so, by setting

gij = χiαχ
j
βC

αβ , (1.9)

a positive definite and symmetric matrix (gij)n×n is obtained. Hence, a holomorphic
Riemannian metric g on G can be defined by means of the complex quadratic form

ds2 = gjkdu
j ⊗ duk, (1.10)

where (gjk)n×n denotes the matrix inverse to (gjk)n×n, that is, gjk = Cβγχ
β
j χ

γ
k .

Moreover, the holomorphic metric tensor g can be also used to raise and lower
indices in the usual manner, and this holomorphic metric is completely determined
by the complex Lie group G.



Laplace operator for holomorphic functions on complex Lie groups 17

In the following, we define n holomorphic covariant vector fields χα (α =
1, . . . , n) on G, with local components χαi (i = 1, . . . , n) given by

χαi = Cαβχjβgij . (1.11)

It easily follows that

χiαχ
α
j = δij and χiαχ

β
i = δαβ . (1.12)

Also, we consider the set of n2 linear holomorphic 1-forms ωij = Γ i
jkdu

k defined locally
by setting

Γ i
jk = χiα

∂χαj
∂uk

. (1.13)

By virtue of the equations (1.12), the holomorphic coefficients Γ i
jk can also be ex-

pressed as

Γ i
jk = −χαj

∂χiα
∂uk

(1.14)

and they represent the local coefficients of a left invariant holomorphic connection ∇
on G, that is, ∇ is absolutely parallel with respect to every left-invariant holomorphic
vector field U = UαEα ∈ g.

It is easily verified that in the overlap U∩U ′ of two local charts, the holomorphic
1-forms ωij change by the rule

∂u′k

∂uj
ω′ik =

∂u′i

∂uk
ωkj −

∂2u′i

∂ul∂uj
dul.

The next natural step is to consider the torsion of this connection. As in the
case of real Lie groups (see [1, 13]), the holomorphic torsion tensor will be written as

T i
jk =

1

2
χiα

(
∂χαj
∂uk

− ∂χαk
∂uj

)
. (1.15)

Since the equations (1.2) can be expressed in terms of the local coordinates (ui) in
the form

χrβ
∂χiγ
∂ur

− χrγ
∂χiβ
∂ur

= C α
β γχ

i
α, (1.16)

by using the holomorphic Maurer-Cartan equations (1.3) it easily follows that

T i
jk =

1

2
C α
β γχ

i
αχ

β
j χ

γ
k . (1.17)

Also, if we consider the local coefficients of the holomorphic Levi-Civita connection
◦
∇ with respect to the holomorphic metric g = ds2 from (1.10) on G, they can be
expressed as

◦
Γ

i
jk =

1

2
χiα

(
∂χαj
∂uk

+
∂χαk
∂uj

)
, (1.18)

from which follows that

Γ i
jk =

◦
Γ

i
jk + T i

jk. (1.19)

We have

Lemma 1.1. The elements of the Lie algebra g of G define holomorphic translations
in G.
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Proof. It follows in a similar manner to the case of real Lie groups, see [1]. �

2. Laplace operators for holomorphic functions on G

In this section, we introduce the Laplace operator acting on holomorphic func-
tions on the complex Lie group G, depending on the given holomorphic metric tensor
on G.

Denote by ω = χ1∧· · ·∧χn, where χi, i = 1, . . . , n are the elements of the base of
holomorphic 1-forms defined in Section 1. Then ω is a nowhere vanishing holomorphic
left-invariant n-form, called the holomorphic volume element, and it can be used to
define the divergence of a holomorphic vector field U = UαEα by setting

div(U)ω = ∂(iUω). (2.1)

Note that the divergence can also be defined by means of the Lie derivative LU
with respect with a left invariant holomorphic vector field U :

div(U)ω = LUω, (2.2)

where

LUη =
d

dt

∣∣∣∣
t=0

(ϕtU )∗η

for an arbitrary holomorphic tensor η. The equivalence between definitions (2.1) and
(2.2) is due to Cartan’s formula LUη = ∂(iUη) + iU∂η for η = ω. The first definition
is more convenient for computations, though. Another property of the divergence is

div(fU) = Uf + f divU

for a holomorphic vector field U and a holomorphic function f defined on G.

Also, for a given holomorphic vector field U = UαEα on G, we have

divU = Eα(Uα). (2.3)

Let G be a semi-simple complex Lie group with the holomorphic Riemannian
metric

g = gijdu
i ⊗ duj , gij = Cαβχ

α
i χ

β
j . (2.4)

A simple computation gives g(Eα, Eβ) = Cαβ and the holomorphic metric tensor
g will now be used to define the gradient of a holomorphic function f on G. If grad f =
V βEβ is a holomorphic vector field defined in a local chart, then the classical definition

g(U, grad f) = Uf

for U = UαEα yields V β = Cβα(Eαf), hence

grad f = Cβα(Eαf)Eβ . (2.5)

A Laplace operator for holomorphic functions on G can now be introduced by

∆f = (div ◦ grad)f = CβαEβ(Eαf). (2.6)
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In local coordinates, this reads

∆f = Cβαχiβ
∂

∂ui

(
χjα

∂f

∂uj

)
= Cβαχiβ

∂χjα
∂ui

∂f

∂uj
+ Cβαχiβχ

j
α

∂2f

∂ui∂uj
.

But

χiβ
∂χjα
∂ui

= −χiβχkαΓ j
ki,

where Γ i
jk = −χβj

∂χiβ
∂uk

are the coefficients of the holomorphic connection written in

the form (1.14), such that

∆f = gij
(

∂2f

∂ui∂uj
− Γ k

ji

∂f

∂uk

)
. (2.7)

Since
∂2f

∂ui∂uj
− Γ k

ji

∂f

∂uk
= ∇i∇jf,

where ∇k is the covariant derivative with respect to the left invariant holomorphic
connection ∇ defined in the previous section, this leads to the following formula for
the Laplace operator of holomorphic functions on G:

∆f = gij∇i∇jf. (2.8)

Remark 2.1. If G is not semi-simple then a holomorphic Riemannian metric on G can
be defined by setting

h = hijdu
i ⊗ duj , hij = δαβχ

α
i χ

β
j , (2.9)

and similar computations as above lead to the following local expression of the Lapla-
cian:

∆f = E2
αf = hij∇i∇jf. (2.10)

Let us compute the local expression of the Laplacian in two particular cases.

Example 2.2. Consider the standard 4-dimensional complex manifold C4 with the
holomorphic coordinates (z1, z2, z3, z4) and the following multiplication rule:

(z1, z2, z3, z4)·(w1, w2, w3, w4) = (2.11)

=(z1eλw
3

+ w1, z2e−λw
3

+ w2, z3 + w3, z4 + w4 − λz1w2eλw
3

),

where λ is a nonzero complex parameter. The above multiplication rule endows C4

with a non-abelian complex Lie structure. For λ = 0, we obtain the usual abelian Lie
group C4, therefore we will consider here λ 6= 0. We denote by G the non-abelian
complex Lie group C4 endowed with the multiplication rule (2.11).

It is easy to see that the following left-invariant holomorphic vector fields given
by

Z1 =
∂

∂z1
, Z2 =

∂

∂z2
− λz1 ∂

∂z4
, Z3 = λz1

∂

∂z1
− λz2 ∂

∂z2
+

∂

∂z3
, Z4 =

∂

∂z4
(2.12)
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form a basis of the holomorphic Lie algebra g of G. If we compute the Lie brackets of
these holomorphic vector fields, we obtain

[Z1, Z2] = −λZ4, [Z1, Z3] = λZ1, [Z2, Z3] = −λZ2,

[Z1, Z4] = [Z2, Z4] = [Z3, Z4] = 0,

therefore, the components of the Lie brackets are constant. Hence, they are the struc-
ture constants of g with respect to the basis {Z1, Z2, Z3, Z4}. We have C γ

αβ = 0,

α, β, γ = 1, 4 with the following exceptions:

C 4
12 = −λ, C 1

13 = λ, C 2
23 = −λ.

The tensor field introduced by (1.8) will consequently vanish, i.e., Cαβ = 0 for all
α, β = 1, 4, which means that G is not semi-simple. Then, according to (2.10), the
Laplace operator ∆ acting on holomorphic functions f ∈ Hol(C4) is

∆f =
∑
α

Z2
αf = Z2

1f + Z2
2f + Z2

3f + Z2
4f.

Now, a basic computation using (2.12) gives

∆f =
(
1 + λ2(z1)2

) ∂2f

∂(z1)2
+
(
1 + λ2(z2)2

) ∂2f

∂(z2)2
+

∂2f

∂(z3)2

+
(
1 + λ2(z1)2

) ∂2f

∂(z4)2
− 2λ2z1z2

∂2f

∂z1∂z2
+ 2λz1

∂2f

∂z1∂z3

− 2λz2
∂2f

∂z2∂z3
− 2λz1

∂2f

∂z2∂z4
+ λ2z1

∂f

∂z1
+ λ2z2

∂f

∂z2
.

Example 2.3. Let G = C∗ × C with the multiplication

(z1, z2) ◦ (w1, w2) =
(
z1w1,

1

2
wz1w2 + z2(w1)2

)
and consider the vector fields Z1 = z1

∂

∂z1
+ 2z2

∂

∂z2
, Z2 = z1

∂

∂z2
. Then, (G, ◦) is a

complex Lie group with the holomorphic Lie algebra g = span{Z1, Z2}. Moreover, G
is not semi-simple, as it can be easily shown by computating the tensor Cαβ , as in the
previous example. We therefore have ∆f = Z2

1f +Z2
2f , which yields the Laplacian in

the form

∆f = (z1)2
∂2f

∂(z1)2
+
(
(z1)2 + 4(z2)2

) ∂2f

∂(z2)2

+ 4z1z2
∂2f

∂z1∂z2
+ z1

∂f

∂z1
+ 4z2

∂f

∂z2
.

We will use this example later for illustrating another property of the Laplace oper-
ator.

A straightforward computation gives an interesting property of the Laplacian
introduced above in the general case.
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Proposition 2.4. The following identity holds:

[∆, Eα] = 2(hijχkα − hikχjα)Γ l
jk

∂2

∂ui∂ul
, (2.13)

where hij = δαβχiαχ
j
β and Γ l

jk are the local coefficients of the holomorphic connection
∇.

Let us check the result in the case of the Lie group G = C∗ × C from Example 2.3.

Example 2.5. First, we compute

[∆, Z1]f = 2(z1)2
∂2f

∂(z2)2
; (2.14)

[∆, Z2]f = −2(z1)2
∂2f

∂z1∂z2
− 4z1z2

∂2f

∂(z2)2
.

Then, from Zα = χiα
∂

∂zi
we get

χ1
1 = z1, χ2

1 = 2z2, χ1
2 = 0, χ2

2 = z1,

such that, using (1.13), we can compute the coefficients Γ l
jk:

Γ 1
11 = − 1

z1
, Γ 1

12 = Γ 1
21 = Γ 1

22 = 0,

Γ 2
11 =

2z2

(z1)2
, Γ 2

12 = − 2

z1
, Γ 2

21 = − 1

z1
, Γ 2

22 = 0.

We also need hij = δαβχiαχ
j
β , that is,

h11 = (z1)2, h12 = h21 = 2z1z2, h22 = (z1)2 + 4(z2)2.

Hence, replacing the nonzero terms in the left-hand side of the first identity (2.14)
and doing a straightforward computation yields

[∆, Z1]f = 2(hijχk1 − hikχ
j
1)Γ l

jk

∂2

∂zi∂zl

= 2
[
(h11χ2

1 − h12χ1
1)Γ 2

12 + (h12χ1
1 − h11χ2

1)Γ 2
21

] ∂2f

∂z1∂z2

+ 2
[
(h21χ2

1 − h22χ1
1)Γ 2

12 + (h22χ1
1 − h21χ2

1)Γ 2
21

] ∂2f

∂(z2)2

= 2(z1)2
∂2f

∂(z2)2
,

since the first term vanishes. The second identity from (2.14) follows analogously.

We shall also illustrate the property from Proposition 2.4 in the case of the
complex Lie group GL(n,C).

Example 2.6. As dim(GL(n,C)) = n2, all the indices from the general case will be

replaced by pairs of indices, for instance α becomes
(
α
β

)
, i becomes

(
i
m

)
, etc. As a
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convention, these pairs will be rewritten in a manner that should be clear from the
text below.

First, let u ∈ GL(n,C) be a complex matrix with elements {Aαi }, such that a
left-invariant holomorphic vector field will be denoted by

Eβα := E(αβ) = χ
( im)
(αβ)

∂

∂u(
i
m)

=: χiβαm
∂

∂uim
,

where χiβαm
∂

∂uim
= δiαA

β
m (see [7] for more details). The holomorphic Riemannian

metric is

h( im)(jn) =: hijmn = δαβδνµχ
iν
αmχ

jµ
βn

(the group GL(n,C) is not semi-simple). The local coefficients of the holomorphic
connection defined in Section 1 are

Γ
(lq)

(jn) (kp)
=: Γlnpjkq = χεnjτ

∂χlτεq
∂ukp

.

These yield

[∆, Eγ ]f = 2
(
hijmnχ

kσ
γp − hikmpχjσγn

)
Γlnpjkq

∂2f

∂uim∂u
l
q

= −2
(
δαβδνµχ

iν
αmχ

jµ
βnχ

kσ
γp − δαβδνµχiναmχ

kµ
βpχ

jσ
γn

)
χεnjτ

∂χlτεq
∂ukp

∂2f

∂uim∂u
l
q

= −2

(
δαβδνµδ

i
αA

ν
mδ

j
βA

µ
nδ
k
γA

σ
pδ
ε
jA

n
τ δ
l
ε

∂Aτq
∂ukp

− δαβδνµδiαAνmδkβAµpδjγAσnδεjAnτ δlε
∂Aτq
∂ukp

)
∂2f

∂uim∂u
l
q

= 2

(
δνµA

ν
mA

σ
p

∂Aµq
∂ukp

− δνµAνmAµp
∂Aσq
∂ukp

)
∂2f

∂uim∂u
l
q

.

Remark 2.7. Denoting by
◦
∇ the covariant derivative with respect to the Levi-Civita

connection, the substitution of (1.19) in (2.7) yields

∆f = gij
(

∂2f

∂ui∂uj
−
◦
Γ

k
ji

∂f

∂uk

)
− T kji

∂f

∂uk

= gij
◦
∇i
◦
∇j f − T kji

∂f

∂uk
,

such that a harmonic holomorphic function f on G must satisfy the identity

T kji
∂f

∂uk
= gij

◦
∇i
◦
∇j f. (2.15)

Note that T ijk is the holomorphic torsion tensor of the holomorphic connection from

(1.13).
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3. Holomorphic last multipliers for holomorphic vector fields on G

The holomorphic volume element ω on G defined in Section 2 will now be used
to introduce the notion of holomorphic last multipliers. The computations are similar
to the case of smooth manifolds, [2, 3, 4, 5], or complex manifolds [6]. More precisely,

consider a holomorphic vector field of the form U = U i
∂

∂ui
, θ = iUω and let

dui

dt
= U i(u1(t), . . . , un(t)), 1 ≤ i ≤ n, t ∈ R

be a complex ODE system on G defined by the holomorphic vector field U . The
classical definition of a last multiplier function for a vector field on smooth manifolds,
[2, 3], can now be applied to the case of the complex Lie group G.

Definition 3.1. A holomorphic function µ on G is called a holomorphic last multiplier
of the complex ODE system generated by U (or holomorphic last multiplier for U) if

∂(µθ) := ∂µ ∧ θ + µ · ∂θ = 0. (3.1)

Note that for every holomorphic function µ on G, ∂µ∧ω = 0, such that for every
holomorphic vector field U on G we have

0 = iU (∂µ ∧ ω) = (iU∂µ) · ω − ∂µ ∧ (iUω)

or, equivalently,
U(µ) · ω = ∂µ ∧ (iUω) = ∂µ ∧ θ.

Now, definitions (2.1) and (3.1) yield the following result.

Proposition 3.2. A holomorphic function µ on G is a holomorphic last multiplier for
the holomorphic vector field U if and only if

U(µ) + µ · divU = 0. (3.2)

Remark 3.3. Relation (3.2) indicates that if ν is a holomorphic non-zero function on
G which satisfies the equation

LU (ν) := U(ν) = (divU) · ν, (3.3)

then 1/ν is a holomorphic last multiplier for U and the holomorphic function ν which
satisfies (3.3) will be called an inverse holomorphic multiplier for U .

Proposition 3.4. Let µ be a holomorphic function on G. The set of holomorphic vector
fields for which µ is a holomorphic last multiplier is a Lie subalgebra in the algebra
of holomorphic vector fields on G.

Proof. The proof follows as in [6]. �

It is now interesting to search for a holomorphic last multiplier for a holomorphic
vector field U of divergence type, that is, µ = div V for some holomorphic vector field
V on G. From (3.2),

U(div V ) + div V · divU = 0. (3.4)

Multiplying (3.4) by ω gives

LU (div V ) · ω + div V · LUω = 0



24 Alexandru Ionescu

or, equivalently,
LU (div V · ω) = LULV ω = 0.

Hence, we have

Proposition 3.5. If V is a holomorphic vector field which satisfies LULV ω = 0, then
µ = div V is a holomorphic last multiplier for the holomorphic vector field U .

The next step is to study holomorphic last multipliers for holomorphic gradient
vector fields on the complex Lie group G endowed with a holomorphic Riemannian
metric (for instance g or h from Section 2). Such a metric g defines a holomorphic
metric volume form ωg (see [10]), as a holomorphic n-form on G such that

ωg(U1, . . . , Un) = ±1,

where {Ui}, i = 1, . . . , n, is an orthonormal holomorphic frame on (G, g), that is,
g(Uj , Uk) = δjk, j, k = 1, . . . , n. As a complex manifold, if (G, g) admits such a
volume element, it admits precisely two of them.

If f is a holomorphic function on G, U = grad f is the gradient vector field of f
defined in Section 2 and α is a holomorphic last multiplier for U , then relation (3.2)
becomes

g(grad f, gradµ) + µ∆f = 0. (3.5)

A straightforward computation in local complex coordinates on G yields a similar
identity to the case of holomorphic Riemannian manifolds, [6]:

g(grad f, gradµ) =
1

2

(
∆(fµ)− f∆µ− µ∆f

)
. (3.6)

Hence,
∆(fα) + µ∆f = f∆α, (3.7)

which leads to the following result.

Proposition 3.6. Let G be a complex Lie group endowed with a holomorphic metric g.
If f, µ are holomorphic functions on G such that f is a holomorphic last multiplier
for gradµ and µ is a holomorphic last multiplier for grad f , then fα is a holomorphic
harmonic function on G.

Corollary 3.7. If G is a complex Lie group endowed with a holomorphic metric g
and f is a holomorphic function on G, then µ is a holomorphic last multiplier for
U = gradµ if and only if µ2 is a holomorphic harmonic function on G.

Corollary 3.8. If G is a complex Lie group endowed with a holomorphic metric g and
f is a holomorphic function on G, then µ2 is a holomorphic harmonic function on G
if and only if

µ∆µ+ g(gradµ, gradµ) = 0.
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Abstract. The purpose of this paper is to establish some types of Ulam stabil-
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1. Introduction

The concept of fractional calculus is a generalization of the ordinary differen-
tiation and integration to arbitrary non-integer order. See, for example, the books
[1, 2, 3, 5, 17, 34] and references therein. Fractional differential equations arise natu-
rally in various fields such as viscoelastic materials, polymer science, fractals, chaotic
dynamics, nonlinear control, signal processing, bioengineering and chemical engineer-
ing, etc. Fractional derivatives provide an excellent instrument for the description of
memory and hereditary properties of various materials and processes. We refer the
reader, for example, to the books such as [6, 18, 20, 22, 30], and references therein.

On the other hand, the stability problem of functional equations (of group homo-
morphisms) was formulated in 1940 by Ulam, in a talk given at Wisconsin University
[31, 32]. In 1941, Hyers [13] gave the partial answer to the question of Ulam (for
the approximately additive mappings) in the case Banach spaces. Hyers’s theorem
was generalized by Aoki [4] (for additive mappings). Between 1978 and 1998, Th.
M. Rassias established the Hyers-Ulam stability of linear and nonlinear mappings
[21, 23, 24]. In 1997, Obloza is the first author who has investigated the Hyers-Ulam
stability of linear differential equations [19]. During the last two decades, many papers
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[7, 12, 14, 15, 16, 33] and books [11, 25, 26, 27] on this subject have been published in
order to generalize the results of Hyers in many directions. Recently in [8, 9, 10] Ben-
chohra and Lazreg considered some existence and Ulam stability results for various
classes of implicit differential equations involving the Caputo fractional derivative.

The purpose of this paper is to establish existence, uniqueness and stability
results of solutions for the following initial value problem for implicit fractional-order
differential equation

HDαy(t) = f(t, y(t),H Dαy(t)), for each t ∈ J, 0 < α ≤ 1, (1.1)

y(1) = y1, (1.2)

where HDα is the Hadamard fractional derivative, f : J × R × R → R is a given
function space, y1 ∈ R and J = [1, T ], T > 1.

The paper is organized as follows. In Section 2 we introduce some definitions,
notations, and lemmas which are used throughout the paper. In Section 3, we will
prove an existence and uniqueness results concerning the problem (1.1)-(1.2). Section
4 is devoted to Ulam-Hyers stabilities for the problem (1.1)-(1.2). Finally, in the last
section, we give two examples to illustrate our main results.

This paper initiates the existence and Ulam stability of implicit differential equa-
tions involving the Hadamard fractional derivative.

2. Preliminaries

Definition 2.1. ([17]) The Hadamard fractional integral of order α for a continuous
function g : [1,∞) → R is defined as

HI
αg(t) =

1

Γ(α)

∫ t

1

(
log

t

s

)α−1
g(s)

s
ds, α > 0,

where Γ is the Euler gamma function defined by Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0.

Definition 2.2. ([17]) The Hadamard derivative of fractional order α for a continuous
function g : [1,∞) → R is defined as

HDαg(t) =
1

Γ(n− α)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−α−1 g(s)

s
ds, n− 1 < α < n, n = [α] + 1,

where [α] denotes the integer part of the real number α and log(·) = loge(·).

Definition 2.3. ([17]) The Mittag-Leffler function is defined by

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, <(α) > 0.

The general Mittag-Leffler function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α, β ∈ C, <(α) > 0, <(β) > 0.
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Thus,

Eα(z) = Eα,1(z),

E1(z) = E1,1(z) = ez,

E2(z) = cosh
√
z,

E1,2(z) =
ez − 1

z
and

E2,2(z) =
sinh
√
z√

z
.

We state the following generalization of Gronwall’s inequality.

Lemma 2.4. ([29]) For any t ∈ [1, T ],

u(t) ≤ a(t) + b(t)

∫ t

1

(
log

t

s

)α−1
u(s)

s
ds,

where all the functions are not negative and continuous. The constant α > 0, b is a
bounded and monotonic increasing function on [1, T ], then,

u(t) ≤ a(t) +

∫ t

1

[ ∞∑
n=1

(b(t)Γ(α))n

Γ(nα)

(
log

t

s

)nα−1

a(s)

]
ds

s
, t ∈ [1, T ].

We adopt the definitions in Rus [28]: Ulam-Hyers stability, generalized Ulam-
Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias sta-
bility for the equation, for the implicit fractional-order differential equation (1.1).

Definition 2.5. The equation (1.1) is Ulam-Hyers stable if there exists a real number
cf > 0 such that for each ε > 0 and for each solution z ∈ C1(J,R) of the inequality

|HDαz(t)− f(t, z(t),H Dαz(t))| ≤ ε, t ∈ J, (2.1)

there exists a solution y ∈ C1(J,R) of equation (1.1) with

|z(t)− y(t)| ≤ cf ε, t ∈ J.

Definition 2.6. The equation (1.1) is generalized Ulam-Hyers stable if there exists
ψf ∈ C(R+,R+), ψf (0) = 0, such that for each solution z ∈ C1(J,R) of the inequality
(2.1) there exists a solution y ∈ C1(J,R) of the equation (1.1) with

|z(t)− y(t)| ≤ ψf (ε), t ∈ J.

Definition 2.7. The equation (1.1) is Ulam-Hyers-Rassias stable with respect to ϕ ∈
C(J,R+) if there exists a real number cf > 0 such that for each ε > 0 and for each
solution z ∈ C1(J,R) of the inequality

|HDαz(t)− f(t, z(t),H Dαz(t))| ≤ εϕ(t), t ∈ J, (2.2)

there exists a solution y ∈ C1(J,R) of equation (1.1) with

|z(t)− y(t)| ≤ cf εϕ(t), t ∈ J.
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Definition 2.8. The equation (1.1) is generalized Ulam-Hyers-Rassias stable with re-
spect to ϕ ∈ C(J,R+) if there exists a real number cf,ϕ > 0 such that for each solution
z ∈ C1(J,R) of the inequality

|HDαz(t)− f(t, z(t),H Dαz(t))| ≤ ϕ(t), t ∈ J, (2.3)

there exists a solution y ∈ C1(J,R) of equation (1.1) with

|z(t)− y(t)| ≤ cf,ϕϕ(t), t ∈ J.

Remark 2.9. A function z ∈ C1(J,R) is a solution of of the inequality (2.1) if and
only if there exists a function g ∈ C(J,R) (which depend on y) such that

(i) |g(t)| ≤ ε, ∀t ∈ J .
(ii) HDαz(t) = f(t, z(t),H Dαz(t)) + g(t), t ∈ J .

Remark 2.10. Clearly,

(i) Definition 2.5 =⇒ Definition 2.6.
(ii) Definition 2.7 =⇒ Definition 2.8.

Remark 2.11. A solution of the implicit differential inequality (2.1) is called an frac-
tional ε-solution of the implicit fractional differential equation (1.1).

So, the Ulam stabilities of the implicit differential equations with fractional or-
der are some special types of data dependence of the solutions of fractional implicit
differential equations.

3. Existence and uniqueness of solutions

By a solution of the problem (1.1) − (1.2) we mean a function u ∈ C1(J,R)
satisfying equation (1.1) on J and condition (1.2).

Lemma 3.1. Let a function f(t, u, v) : J×R×R→ R be continuous. Then the problem
(1.1)− (1.2) is equivalent to the problem

y(t) = y1 +H Iαg(t), (3.1)

where g ∈ C(J,R) satisfies the functional equation

g(t) = f(t, y1 +H Iαg(t), g(t)).

Proof. If HDαy(t) = g(t) then HI
α HDαy(t) =H Iαg(t). So we obtain

y(t) = y1 +H Iαg(t).

�

Theorem 3.2. Assume

(H1) The function f : J × R× R→ R is continuous.
(H2) There exist constants k > 0 and l > 0 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ k|u− ū|+ l|v − v̄| for any u, v, ū, v̄ ∈ R and t ∈ J.
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If
k(log T )α

Γ(α+ 1)
+ l < 1, (3.2)

then there exists a unique solution for the IVP (1.1)− (1.2) on J .

Proof. Define the operator N : C(J,R)→ C(J,R) by:

N(z)(t) = f

(
t, y1 +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

z(s)
ds

s
, z(t)

)
, for each t ∈ J (3.3)

Let u,w ∈ C(J,R). Then for t ∈ J , we have

|(Nu)(t)− (Nw)(t)| ≤ k

Γ(α)

∫ t

1

(
log

t

s

)α−1

|u(s)− w(s)|ds
s

+l|u(t)− w(t)|

≤
(

k

Γ(α)

∫ t

1

(log t)
α−1 ds

s
+ l

)
||u− w||∞

≤
(
k(log T )α

Γ(α+ 1)
+ l

)
||u− w||∞.

Then

||Nu−Nw||∞ ≤
(
k(log T )α

Γ(α+ 1)
+ l

)
||u− w||∞. (3.4)

By (3.2), the operator N is a contraction. Hence, by Banach’s contraction principle,
N has a unique fixed point z ∈ C(J,R), i.e z = N(z).
Therefore

z(t) = f

(
t, y1 +

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

z(s)
ds

s
, z(t)

)
, for each t ∈ J

Set

y(t) = y1 +
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

z(s)
ds

s
.

This implies that HDαy(t) = z(t) and hence

HDαy(t) = f(t, y(t),H Dαy(t)), for each t ∈ J.
�

4. Ulam-Hyers stability

Theorem 4.1. Assume that the assumptions (H1), (H2) and (3.2) hold. Then the
equation (1.1) is Ulam-Hyers stable.

Proof. Let z ∈ C(J,R) be a solution of the inequality (2.1), i.e.

|HDαz(t)− f(t, z(t),H Dαz(t))| ≤ ε, t ∈ J. (4.1)

Let us denote by y ∈ C(J,R) the unique solution of the Cauchy problem

HDαy(t) = f(t, y(t),H Dαy(t)), for each t ∈ J, 0 < α ≤ 1,
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y(1) = z(1).

By using Lemma 3.1, we have

y(t) = z(1) +
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gy(s)
ds

s
,

where gy ∈ C(J,R) satisfies the functional equation

gy(t) = f(t, y(1) +H Iαgy(t), gy(t)).

By integration of (4.1) we obtain∣∣∣∣∣z(t)− z(1)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gz(s)
ds

s

∣∣∣∣∣ ≤ ε(log t)α

Γ(α+ 1)

≤ ε(log T )α

Γ(α+ 1)
, (4.2)

where gz ∈ C(J,R) satisfies the functional equation

gz(t) = f(t, z(1) +H Iαgz(t), gz(t)).

On the other hand, we have, for each t ∈ J

|z(t)− y(t)| =

∣∣∣∣∣z(t)− z(1)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gy(s)
ds

s

∣∣∣∣∣
=

∣∣∣∣∣z(t)− z(1)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gz(s)
ds

s

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

(gz(s)− gy(s))
ds

s

∣∣∣∣∣
≤

∣∣∣∣∣z(t)− z(1)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gz(s)
ds

s

∣∣∣∣∣
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

|gz(s)− gy(s)|ds
s
, (4.3)

where

gy(t) = f(t, y(t), gy(t)),

and

gz(t) = f(t, z(t), gz(t)).

By (H2), we have, for each t ∈ J

|gz(t)− gy(t)| = |f(t, z(t), gz(t))− f(t, y(t), gy(t))|
≤ k|z(t)− y(t)|+ l|gz(t)− gy(t)|.

Then

|gz(t)− gy(t)| ≤ k

1− l
|z(t)− y(t)|. (4.4)
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Thus, by (4.2), (4.3), (4.4), and Lemma 2.4 we get

|z(t)− y(t)| ≤ ε(log T )α

Γ(α+ 1)
+

k

(1− l)Γ(α)

∫ t

1

(
log

t

s

)α−1

|z(s)− y(s)|ds
s

≤ ε(log T )α

Γ(α+ 1)

+

∫ t

1

[ ∞∑
n=1

(
k

(1− l)

)n
1

Γ(nα)

(
log

t

s

)nα−1
ε(log T )α

Γ(α+ 1)

]
ds

s

≤ ε(log T )α

Γ(α+ 1)

[
1 +

∞∑
n=1

(
k

1− l

)n
1

Γ(nα)

(log T )nα

nα

]

=
ε(log T )α

Γ(α+ 1)

[
1 +

∞∑
n=1

(
k

1− l

)n
(log T )nα

Γ(nα+ 1)

]

=
ε(log T )α

Γ(α+ 1)

1 +

∞∑
n=1

(
k

1−l (log T )α
)n

Γ(nα+ 1)


=

ε(log T )α

Γ(α+ 1)
Eα

(
k

1− l
(log T )α

)
.

Then, for each t ∈ J

|z(t)− y(t)| ≤ ε(log T )α

Γ(α+ 1)
Eα

(
k

1− l
(log T )α

)
:= cf ε. (4.5)

So, the equation (1.1) is Ulam-Hyers stable. This completes the proof. By putting
ψ(ε) = cε, ψ(0) = 0 yields that the equation (1.1) is generalized Ulam-Hyers stable.

�

5. Ulam-Hyers-Rassias stability

Theorem 5.1. Assume (H1), (H2), (3.2) and

(H3) The function ϕ ∈ C(J,R+) is increasing and there exists λϕ > 0 such that, for
each t ∈ J , we have

HI
αϕ(t) ≤ λϕϕ(t).

Then the equation (1.1) is Ulam-Hyers-Rassias stable with respect to ϕ.

Proof. Let z ∈ C(J,R) be a solution of the inequality (2.2), i.e.

|HDαz(t)− f(t, z(t),H Dαz(t))| ≤ εϕ(t), t ∈ J, ε > 0. (5.1)

Let us denote by y ∈ C(J,R) the unique solution of the Cauchy problem

HDαy(t) = f(t, y(t),H Dαy(t)), for each, t ∈ J, 0 < α ≤ 1,

y(1) = z(1).
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By using Lemma 3.1, we have

y(t) = z(1) +
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gy(s)
ds

s
,

where gy ∈ C(J,R) satisfies the functional equation

gy(t) = f(t, y(1) +H Iαgy(t), gy(t)).

By integration of (5.1) and from (H3), we obtain∣∣∣∣∣z(t)− z(1)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gz(s)
ds

s

∣∣∣∣∣ ≤ ε

Γ(α)

∫ t

1

(
log

t

s

)α−1

ϕ(s)
ds

s

≤ ελϕϕ(t), (5.2)

where gz ∈ C(J,R) satisfies the functional equation

gz(t) = f(t, z(1) + Iαgz(t), gz(t)).

On the other hand, we have, for each t ∈ J

|z(t)− y(t)| =

∣∣∣∣∣z(t)− z(1)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gy(s)
ds

s

∣∣∣∣∣
=

∣∣∣∣∣z(t)− z(1)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gz(s)
ds

s

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

(gz(s)− gy(s))
ds

s

∣∣∣∣∣
≤

∣∣∣∣∣z(t)− z(1)− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

gz(s)
ds

s

∣∣∣∣∣
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

|gz(s)− gy(s)|ds
s
, (5.3)

where

gy(t) = f(t, y(t), gy(t)),

and

gz(t) = f(t, z(t), gz(t)).

Then, by (4.4), (5.2), and (5.3)

|z(t)− y(t)| ≤ ελϕϕ(t) +
k

(1− l)Γ(α)

∫ t

1

(
log

t

s

)α−1

|z(s)− y(s)|ds
s

≤ ελϕϕ(t) +
k||z − y||∞
(1− l)Γ(α)

∫ t

1

(
log

t

s

)α−1
ds

s

≤ ελϕϕ(t) +
k||z − y||∞
(1− l)Γ(α)

(log T )α

α
.
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Thus,

||z − y||∞
[
1− k(log T )α

(1− l)Γ(α+ 1)

]
≤ ελϕϕ(t).

We obtain, by (3.2)

||z − y||∞ ≤ ελϕϕ(t)[
1− k(log T )α

(1−l)Γ(α+1)

] .
Then, for each t ∈ J

|z(t)− y(t)| ≤
[
1− k(log T )α

(1− l)Γ(α+ 1)

]−1

λϕεϕ(t) := cf εϕ(t). (5.4)

So, the equation (1.1) is Ulam-Hyers-Rassias stable. �

6. Examples

Example 6.1. Consider the following Cauchy problem

HD
1
2 y(t) =

1

200
(t sin y(t)− y(t) cos(t)) +

1

100
sinHD

1
2 y(t), for each t ∈ [1, e], (6.1)

y(1) = 1. (6.2)

Set

f(t, u, v) =
1

200
(t sinu− u cos(t)) +

1

100
sin v, t ∈ [1, e], u, v ∈ R.

Clearly, the function f is jointly continuous.

For any u, v, ū, v̄ ∈ R and t ∈ [1, e] :

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

200
|t|| sinu− sin ū|+ 1

200
| cos t||u− ū|

+
1

100
| sin v − sin v̄|

≤ e

200
|u− ū|+ 1

200
|u− ū|+ 1

100
|v − v̄|

=
e+ 1

200
|u− ū|+ 1

100
|v − v̄|.

Hence condition (H2) is satisfied with k = e+1
200 and l = 1

100 .

Thus condition

k(log T )α

(1− l)Γ(α+ 1)
=

e+1
200

(1− 1
100 )Γ( 3

2 )
=
e+ 1

99
√
π
< 1,

is satisfied. It follows from Theorem 3.2 that the problem (6.1)-(6.2) as a unique
solution, and from Theorem 4.1 the equation (6.1) is Ulam-Hyers stable.
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Example 6.2. Consider the following Cauchy problem

HD
1
2 y(t) =

2 + |y(t)|+ |HD 1
2 y(t)|

120et+10(1 + |y(t)|+ |HD 1
2 y(t)|)

, for each t ∈ [1, e], (6.3)

y(1) = 1. (6.4)

Set

f(t, u, v) =
2 + |u|+ |v|

120et+10(1 + |u|+ |v|)
, t ∈ [1, e], u, v ∈ R.

Clearly, the function f is jointly continuous.
For any u, v, ū, v̄ ∈ R and t ∈ [1, e]

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

120e10
(|u− ū|+ |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
120e10 .

Let ϕ(t) = (log t)
1
2 . We have

HI
αϕ(t) =

1

Γ
(

1
2

) ∫ t

1

(
log

t

s

) 1
2−1

(log t)
1
2
ds

s

≤ 1

Γ
(

1
2

) ∫ t

1

(
log

t

s

) 1
2−1

ds

s

=
2ω(t)√
π
.

Thus

HI
αϕ(t) ≤ 2√

π
(log t)

1
2 := λϕϕ(t).

Thus condition (H3) is satisfied with ϕ(t) = (log t)
1
2 and λϕ = 2√

π
It follows from

Theorem 3.2 that the problem (6.3)-(6.4) as a unique solution on J , and from Theorem
5.1 the equation (6.3) is Ulam-Hyers-Rassias stable.

References
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Self adjoint operator harmonic polynomials
induced Chebyshev-Grüss inequalities
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Abstract. We present here very general self adjoint operator harmonic
Chebyshev-Grüss inequalities with applications.
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1. Motivation

Here we mention the following inspiring and motivating result.

Theorem 1.1. (Čebyšev, 1882, [3]) Let f, g : [a, b]→ R absolutely continuous functions.
If f ′, g′ ∈ L∞ ([a, b]), then∣∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx−

(
1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣∣ (1.1)

≤ 1

12
(b− a)

2 ‖f ′‖∞ ‖g
′‖∞ .

Also we mention

Theorem 1.2. (Grüss, 1935, [9]) Let f, g integrable functions from [a, b] into R, such
that m ≤ f (x) ≤M , ρ ≤ g (x) ≤ σ, for all x ∈ [a, b], where m,M, ρ, σ ∈ R. Then∣∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx−

(
1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣∣ (1.2)

≤ 1

4
(M −m) (σ − ρ) .

Next we follow [1], pp. 132-152.
We make
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Brief Assumption 1.3. Let f :
m∏
i=1

[ai, bi]→ R with ∂lf
∂xli

for l = 0, 1, ..., n; i = 1, ...,m,

are continuous on
m∏
i=1

[ai, bi] .

Definition 1.4. We put

q (xi, si) =

{
si − ai, if si ∈ [ai, xi] ,
si − bi, if si ∈ (xi, bi],

(1.3)

xi ∈ [ai, bi], i = 1, ...,m.
Let (Pn)n∈N be a harmonic sequence of polynomials, that is P ′n = Pn−1, n ∈ N,

P0 = 1.
Let functions fλ, λ = 1, ..., r ∈ N− {1}, as in Brief Assumption 1.3, and nλ ∈ N

associated with fλ.
We set

Aiλ (xi, ..., xm) :=
ni−1λ

i−1∏
j=1

(bj − aj)

×

[
nλ−1∑
k=1

(−1)
k+1

Pk (xi)

∫ b1

a1

...

∫ bi−1

ai−1

∂kfλ (s1, ..., si−1, xi, ..., xm)

∂xki
ds1...dsi−1 (1.4)

+

nλ−1∑
k=1

(−1)
k

(nλ − k)

bi − ai

×

[
Pk (bi)

∫ b1

a1

...

∫ bi−1

ai−1

∂k−1fλ (s1, ..., si−1, bi, xi+1, ..., xm)

∂xk−1i

ds1...dsi−1

− Pk (ai)

∫ b1

a1

...

∫ bi−1

ai−1

∂k−1fλ (s1, ..., si−1, ai, xi+1, ..., xm)

∂xk−1i

ds1...dsi−1

]]
,

and

Biλ (xi, ..., xm) :=
ni−1λ (−1)

nλ+1

i∏
j=1

(bj − aj)
(1.5)

×

[∫ b1

a1

...

∫ bi

ai

Pnλ−1 (si) q (xi, si)
∂nλfλ (s1, ..., si, xi+1, ..., xm)

∂xnλi
ds1...dsi

]
,

for all i = 1, ...,m; λ = 1, ..., r.
We also set

A1 :=


(

m∏
j=1

(bj − aj)

)
3

 ·
 r∑
λ=1


 r∏
ρ=1
ρ6=λ

‖fρ‖
∞,

m∏
j=1

[aj ,bj ]

 (1.6)
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×

 m∑
i=1

(bi − ai)ni−1λ ‖Pnλ−1‖∞,[ai,bi]

∥∥∥∥∂nλfλ∂xnλi

∥∥∥∥
∞,

m∏
j=1

[aj ,bj ]




 ,

(let p, q > 1 : 1
p + 1

q = 1)

A2 :=

r∑
λ=1

m∑
i=1

∥∥∥∥∥∥∥∥
r∏
ρ=1
ρ6=λ

fρ

∥∥∥∥∥∥∥∥
Lp

(
m∏
j=1

[aj ,bj ]

) ‖Biλ‖Lq
(
m∏
j=i

[aj ,bj ]

)
i−1∏
j=1

(bj − aj)

 1
q

, (1.7)

and

A3 :=
1

2


r∑

λ=1



∥∥∥∥∥∥∥∥
r∏
ρ=1
ρ6=λ

fρ

∥∥∥∥∥∥∥∥
L1

(
m∏
j=1

[aj ,bj ]

)
[
m∑
i=1

[
(bi − ai)ni−1λ (1.8)

× ‖Pnλ−1‖∞,[ai,bi]

∥∥∥∥∂nλfλ∂xnλi

∥∥∥∥
∞,

m∏
j=1

[aj ,bj ]




 .

We finally set

W := r

∫
m∏
j=1

[aj ,bj ]

(
r∏
ρ=1

fρ (x)

)
dx (1.9)

− 1
n∏
j=1

(bj − aj)

r∑
λ=1

nmλ

∫ m∏
j=1

[aj ,bj ]

 r∏
ρ=1
ρ 6=λ

fρ (x)

 dx


∫

m∏
j=1

[aj ,bj ]

fλ (s) ds



−
r∑

λ=1

∫
m∏
j=1

[aj ,bj ]


 r∏
ρ=1
ρ6=λ

fρ (x)


(

m∑
i=1

Aiλ (xi, ..., xm)

) dx.

We mention

Theorem 1.5. ([1], p. 151-152) It holds

|W | ≤ min {A1, A2, A3} . (1.10)

2. Background

Let A be a selfadjoint linear operator on a complex Hilbert space (H; 〈·, ·〉). The
Gelfand map establishes a ∗−isometrically isomorphism Φ between the set C (Sp (A))
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of all continuous functions defined on the spectrum of A, denoted Sp (A), and the C∗-
algebra C∗ (A) generated by A and the identity operator 1H on H as follows (see e.g.
[8, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f) Φ (g) (the operation composition is on the right) and

Φ
(
f
)

= (Φ (f))
∗

;
(iii) ‖Φ (f)‖ = ‖f‖ := sup

t∈Sp(A)

|f (t)| ;

(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for t ∈ Sp (A) .
With this notation we define

f (A) := Φ (f) , for all f ∈ C (Sp (A)) ,

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on

Sp (A) then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e. f (A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A) then
the following important property holds:

(P) f (t) ≥ g (t) for any t ∈ Sp (A), implies that f (A) ≥ g (A) in the operator
order of B (H) .

Equivalently, we use (see [6], pp. 7-8):
Let U be a selfadjoint operator on the complex Hilbert space (H, 〈·, ·〉) with the

spectrum Sp (U) included in the interval [m,M ] for some real numbers m < M and
{Eλ}λ be its spectral family.

Then for any continuous function f : [m,M ]→ C, it is well known that we have
the following spectral representation in terms of the Riemann-Stieljes integral:

〈f (U)x, y〉 =

∫ M

m−0
f (λ) d (〈Eλx, y〉) , (2.1)

for any x, y ∈ H. The function gx,y (λ) := 〈Eλx, y〉 is of bounded variation on the
interval [m,M ], and

gx,y (m− 0) = 0 and gx,y (M) = 〈x, y〉 ,
for any x, y ∈ H. Furthermore, it is known that gx (λ) := 〈Eλx, x〉 is increasing and
right continuous on [m,M ] .

An important formula used a lot here is

〈f (U)x, x〉 =

∫ M

m−0
f (λ) d (〈Eλx, x〉) , ∀ x ∈ H. (2.2)

As a symbol we can write

f (U) =

∫ M

m−0
f (λ) dEλ. (2.3)

Above,

m = min {λ|λ ∈ Sp (U)} := minSp (U) , M = max {λ|λ ∈ Sp (U)} := maxSp (U) .

The projections {Eλ}λ∈R , are called the spectral family of A, with the properties:
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(a) Eλ ≤ Eλ′ for λ ≤ λ′;
(b) Em−0 = 0H (zero operator), EM = 1H (identity operator) and Eλ+0 = Eλ

for all λ ∈ R.
Furthermore

Eλ := ϕλ (U) , ∀ λ ∈ R, (2.4)

is a projection which reduces U , with

ϕλ (s) :=

{
1, for −∞ < s ≤ λ,
0, for λ < s < +∞.

The spectral family {Eλ}λ∈R determines uniquely the self-adjoint operator U and vice
versa.

For more on the topic see [10], pp. 256-266, and for more detalis see there pp.
157-266. See also [5].

Some more basics are given (we follow [6], pp. 1-5):
Let (H; 〈·, ·〉) be a Hilbert space over C. A bounded linear operator A defined

on H is selfjoint, i.e., A = A∗, iff 〈Ax, x〉 ∈ R, ∀ x ∈ H, and if A is selfadjoint, then

‖A‖ = sup
x∈H:‖x‖=1

|〈Ax, x〉| . (2.5)

Let A,B be selfadjoint operators on H. Then A ≤ B iff 〈Ax, x〉 ≤ 〈Bx, x〉, ∀ x ∈ H.
In particular, A is called positive if A ≥ 0.
Denote by

P :=

{
ϕ (s) :=

n∑
k=0

αks
k|n ≥ 0, αk ∈ C, 0 ≤ k ≤ n

}
. (2.6)

If A ∈ B (H) (the Banach algebra of all bounded linear operators defined on H, i.e.
from H into itself) is selfadjoint, and ϕ (s) ∈ P has real coefficients, then ϕ (A) is
selfadjoint, and

‖ϕ (A)‖ = max {|ϕ (λ)| , λ ∈ Sp (A)} . (2.7)

If ϕ is any function defined on R we define

‖ϕ‖A := sup {|ϕ (λ)| , λ ∈ Sp (A)} . (2.8)

If A is selfadjoint operator on Hilbert space H and ϕ is continuous and given that
ϕ (A) is selfadjoint, then ‖ϕ (A)‖ = ‖ϕ‖A. And if ϕ is a continuous real valued function
so it is |ϕ|, then ϕ (A) and |ϕ| (A) = |ϕ (A)| are selfadjoint operators (by [6], p. 4,
Theorem 7).

Hence it holds

‖|ϕ (A)|‖ = ‖|ϕ|‖A = sup {||ϕ (λ)|| , λ ∈ Sp (A)}
= sup {|ϕ (λ)| , λ ∈ Sp (A)} = ‖ϕ‖A = ‖ϕ (A)‖ ,

that is
‖|ϕ (A)|‖ = ‖ϕ (A)‖ . (2.9)

For a selfadjoint operator A ∈ B (H) which is positive, there exists a unique

positive selfadjoint operator B :=
√
A ∈ B (H) such that B2 = A, that is

(√
A
)2

= A.

We call B the square root of A.
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Let A ∈ B (H), then A∗A is selfadjoint and positive. Define the ”operator abso-

lute value” |A| :=
√
A∗A. If A = A∗, then |A| =

√
A2.

For a continuous real valued function ϕ we observe the following:

|ϕ (A)| (the functional absolute value) =

∫ M

m−0
|ϕ (λ)| dEλ

=

∫ M

m−0

√
(ϕ (λ))

2
dEλ =

√
(ϕ (A))

2
= |ϕ (A)| (operator absolute value),

where A is a selfadjoint operator.

That is we have

|ϕ (A)| (functional absolute value) = |ϕ (A)| (operator absolute value). (2.10)

Let A,B ∈ B (H), then

‖AB‖ ≤ ‖A‖ ‖B‖ , (2.11)

by Banach algebra property.

3. Main results

Let (Pn)n∈N be a harmonic sequence of polynomials, that is P ′n = Pn−1, n ∈ N,

P0 = 1. Furthermore, let [a, b] ⊂ R, a 6= b, and h : [a, b] → R be such that h(n−1) is
absolutely continuous function for some n ∈ N.

We set

q (x, t) =

{
t− a, if t ∈ [a, x] ,
t− b, if t ∈ (x, b],

x ∈ [a, b] . (3.1)

By [4], and [1], p. 133, we get the generalized Fink type representation formula

h (x) =

n−1∑
k=1

(−1)
k+1

Pk (x)h(k) (x)

+

n−1∑
k=1

(−1)
k

(n− k)

b− a

[
Pk (b)h(k−1) (b)− Pk (a)h(k−1) (a)

]
(3.2)

+
n

b− a

∫ b

a

h (t) dt+
(−1)

n+1

b− a

∫ b

a

Pn−1 (t) q (x, t)h(n) (t) dt,

∀ x ∈ [a, b], n ∈ N, when n = 1 the above sums are zero.

For the harmonic sequence of polynomials Pk (t) = (t−x)k
k! , k ∈ Z+, (3.2) reduces

to Fink formula, see [7].

Next we present very general harmonic Chebyshev-Grüss operator inequalities
based on (3.2). Then we specialize them for n = 1.

We give
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Theorem 3.1. Let n ∈ N and f, g ∈ Cn ([a, b]) with [m,M ] ⊂ (a, b), m < M . Here A is
a selfadjoint linear bounded operator on the Hilbert space H with spectrum Sp (A) ⊆
[m,M ]. We consider any x ∈ H : ‖x‖ = 1.

Then

〈(∆ (f, g)) (A)x, x〉 := |〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉

−1

2

[
n−1∑
k=1

(−1)
k+1

{[〈
Pk (A)

(
g (A) f (k) (A) + f (A) g(k) (A)

)
x, x

〉]
(3.3)

−
[〈
Pk (A) f (k) (A)x, x

〉
〈g (A)x, x〉+

〈
Pk (A) g(k) (A)x, x

〉
〈f (A)x, x〉

]}]∣∣∣
≤

[
‖g (A)‖

∥∥f (n)∥∥∞,[m,M ]
+ ‖f (A)‖

∥∥g(n)∥∥∞,[m,M ]

]
2 (M −m)

‖Pn−1‖∞,[m,M ]

[∥∥∥(M1H −A)
2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥] .

Proof. Here {Eλ}λ∈R is the spectral family of A. Set

k (λ, t) :=

{
t−m, m ≤ t ≤ λ,
t−M, λ < t ≤M.

(3.4)

where λ ∈ [m,M ] .
Hence by (3.2) we obtain

f (λ) =

n−1∑
k=1

(−1)
k+1

Pk (λ) f (k) (λ) (3.5)

+

n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) f (k−1) (M)− Pk (m) f (k−1) (m)

]
+

n

M −m

∫ M

m

f (t) dt+
(−1)

n+1

M −m

∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt,

and

g (λ) =

n−1∑
k=1

(−1)
k+1

Pk (λ) g(k) (λ) (3.6)

+

n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) g(k−1) (M)− Pk (m) g(k−1) (m)

]
+

n

M −m

∫ M

m

g (t) dt+
(−1)

n+1

M −m

∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt,

∀ λ ∈ [m,M ] .
By applying the spectral representation theorem on (3.5), (3.6), i.e. integrating

against Eλ over [m,M ], see (2.3), (ii), we obtain:

f (A) =

n−1∑
k=1

(−1)
k+1

Pk (A) f (k) (A) (3.7)
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+

(
n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) f (k−1) (M)− Pk (m) f (k−1) (m)

])
1H

+

(
n

M −m

∫ M

m

f (t) dt

)
1H +

(−1)
n+1

M −m

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ,

and

g (A) =

n−1∑
k=1

(−1)
k+1

Pk (A) g(k) (A) (3.8)

+

(
n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) g(k−1) (M)− Pk (m) g(k−1) (m)

])
1H

+

(
n

M −m

∫ M

m

g (t) dt

)
1H +

(−1)
n+1

M −m

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ.

We notice that

g (A) f (A) = f (A) g (A) (3.9)

to be used next.
Then it holds

g (A) f (A) =

n−1∑
k=1

(−1)
k+1

g (A)Pk (A) f (k) (A) (3.10)

+

(
n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) f (k−1) (M)− Pk (m) f (k−1) (m)

])
g (A)

+

(
n

M −m

∫ M

m

f (t) dt

)
g (A)

+
(−1)

n+1

M −m
g (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ,

and

f (A) g (A) =

n−1∑
k=1

(−1)
k+1

f (A)Pk (A) g(k) (A) (3.11)

+

(
n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) g(k−1) (M)− Pk (m) g(k−1) (m)

])
f (A)

+

(
n

M −m

∫ M

m

g (t) dt

)
f (A)

+
(−1)

n+1

M −m
f (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ.
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Here from now on we consider x ∈ H : ‖x‖ = 1; immediately we get∫ M

m−0
d 〈Eλx, x〉 = 1.

Then it holds (see (2.2))

〈f (A)x, x〉 =

n−1∑
k=1

(−1)
k+1

〈
Pk (A) f (k) (A)x, x

〉
(3.12)

+

n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) f (k−1) (M)− Pk (m) f (k−1) (m)

]
+

n

M −m

∫ M

m

f (t) dt+
(−1)

n+1

M −m

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
d 〈Eλx, x〉 ,

and

〈g (A)x, x〉 =

n−1∑
k=1

(−1)
k+1

〈
Pk (A) g(k) (A)x, x

〉
(3.13)

+

n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) g(k−1) (M)− Pk (m) g(k−1) (m)

]
+

n

M −m

∫ M

m

g (t) dt+
(−1)

n+1

M −m

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
d 〈Eλx, x〉 .

Then we get

〈f (A)x, x〉 〈g (A)x, x〉 =

n−1∑
k=1

(−1)
k+1

〈
Pk (A) f (k) (A)x, x

〉
〈g (A)x, x〉 (3.14)

+

(
n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) f (k−1) (M)− Pk (m) f (k−1) (m)

])
〈g (A)x, x〉

+

(
n

M −m

∫ M

m

f (t) dt

)
〈g (A)x, x〉

+
(−1)

n+1 〈g (A)x, x〉
M −m

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
d 〈Eλx, x〉 ,

and

〈g (A)x, x〉 〈f (A)x, x〉 =

n−1∑
k=1

(−1)
k+1

〈
Pk (A) g(k) (A)x, x

〉
〈f (A)x, x〉 (3.15)

+

(
n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) g(k−1) (M)− Pk (m) g(k−1) (m)

])
〈f (A)x, x〉

+

(
n

M −m

∫ M

m

g (t) dt

)
〈f (A)x, x〉
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+
(−1)

n+1 〈f (A)x, x〉
M −m

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
d 〈Eλx, x〉 .

Furthermore we obtain

〈f (A) g (A)x, x〉 (3.10)=

n−1∑
k=1

(−1)
k+1

〈
g (A)Pk (A) f (k) (A)x, x

〉
(3.16)

+

(
n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) f (k−1) (M)− Pk (m) f (k−1) (m)

])
〈g (A)x, x〉

+

(
n

M −m

∫ M

m

f (t) dt

)
〈g (A)x, x〉

+
(−1)

n+1

M −m

〈(
g (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

)
x, x

〉
,

and

〈f (A) g (A)x, x〉 (3.11)=

n−1∑
k=1

(−1)
k+1

〈
f (A)Pk (A) g(k) (A)x, x

〉
(3.17)

+

(
n−1∑
k=1

(−1)
k

(n− k)

M −m

[
Pk (M) g(k−1) (M)− Pk (m) g(k−1) (m)

])
〈f (A)x, x〉

+

(
n

M −m

∫ M

m

g (t) dt

)
〈f (A)x, x〉

+
(−1)

n+1

M −m

〈(
f (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

)
x, x

〉
.

By (3.14) and (3.16) we obtain

E := 〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉 (3.18)

=

n−1∑
k=1

(−1)
k+1

[〈
g (A)Pk (A) f (k) (A)x, x

〉
−
〈
Pk (A) f (k) (A)x, x

〉
〈g (A)x, x〉

]
+

(−1)
n+1

M −m

[〈(
g (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

)
x, x

〉

− 〈g (A)x, x〉
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
d 〈Eλx, x〉

]
,

and by (3.15) and (3.17) we derive

E := 〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉 (3.19)

=

n−1∑
k=1

(−1)
k+1

[〈
f (A)Pk (A) g(k) (A)x, x

〉
−
〈
Pk (A) g(k) (A)x, x

〉
〈f (A)x, x〉

]
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+
(−1)

n+1

M −m

[〈(
f (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

)
x, x

〉

= 〈f (A)x, x〉
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
d 〈Eλx, x〉

]
.

Consequently, we get that

2E =

n−1∑
k=1

(−1)
k+1

{[〈
g (A)Pk (A) f (k) (A)x, x

〉
+
〈
f (A)Pk (A) g(k) (A)x, x

〉]
−
[〈
Pk (A) f (k) (A)x, x

〉
〈g (A)x, x〉+

〈
Pk (A) g(k) (A)x, x

〉
〈f (A)x, x〉

]}
+

(−1)
n+1

M −m

{[〈(
g (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

)
x, x

〉

+

〈(
f (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

)
x, x

〉]

−

[
〈g (A)x, x〉

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
d 〈Eλx, x〉

+ 〈f (A)x, x〉
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
d 〈Eλx, x〉

]}
. (3.20)

We find that

〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉

−1

2

[
n−1∑
k=1

(−1)
k+1

{[〈
Pk (A)

(
g (A) f (k) (A) + f (A) g(k) (A)

)
x, x

〉]
−
[〈
Pk (A) f (k) (A)x, x

〉
〈g (A)x, x〉+

〈
Pk (A) g(k) (A)x, x

〉
〈f (A)x, x〉

]}]
=

(−1)
n+1

2 (M −m)

{[〈(
g (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

)
x, x

〉

+

〈(
f (A)

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

)
x, x

〉]

−

[
〈g (A)x, x〉

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
d 〈Eλx, x〉

+ 〈f (A)x, x〉
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
d 〈Eλx, x〉

]}
=: R. (3.21)

Therefore it holds

|R| ≤ 1

2 (M −m)

{[
‖g (A)‖

∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

∥∥∥∥∥
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+ ‖f (A)‖

∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

∥∥∥∥∥
]

(3.22)

+

[
‖g (A)‖

∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

∥∥∥∥∥
+ ‖f (A)‖

∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

∥∥∥∥∥
]}

=
1

(M −m)

{
‖g (A)‖

∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

∥∥∥∥∥
+ ‖f (A)‖

∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

∥∥∥∥∥
}

=: (ξ1) . (3.23)

We notice the following:∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

∥∥∥∥∥
= sup
x∈H:‖x‖=1

∣∣∣∣∣
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
d 〈Eλx, x〉

∣∣∣∣∣
≤ sup
x∈H:‖x‖=1

(∫ M

m−0

(∫ M

m

|Pn−1 (t)| |k (λ, t)|
∣∣∣f (n) (t)

∣∣∣ dt) d 〈Eλx, x〉) (3.24)

≤
(
‖Pn−1‖∞,[m,M ]

∥∥∥f (n)∥∥∥
∞,[m,M ]

)
sup

x∈H:‖x‖=1

(∫ M

m−0

(∫ M

m

|k (λ, t)| dt

)
d 〈Eλx, x〉

)
=: (ξ2) .

(Notice that∫ M

m

|k (λ, t)| dt =

∫ λ

m

(t−m) dt+

∫ M

λ

(M − t) dt =
(λ−m)

2
+ (M − λ)

2

2
.) (3.25)

Hence it holds

(ξ2)
(3.25)

=

(
‖Pn−1‖∞,[m,M ]

∥∥f (n)∥∥∞,[m,M ]

2

)
× sup
x∈H:‖x‖=1

[〈
(M1H −A)

2
x, x

〉
+
〈

(A−m1H)
2
x, x

〉]
≤

(
‖Pn−1‖∞,[m,M ]

∥∥f (n)∥∥∞,[m,M ]

2

)[∥∥∥(M1H −A)
2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥] . (3.26)

We have proved that∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

∥∥∥∥∥ (3.27)
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≤

(
‖Pn−1‖∞,[m,M ]

∥∥f (n)∥∥∞,[m,M ]

2

)[∥∥∥(M1H −A)
2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥] .

Similarly, it holds ∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

∥∥∥∥∥
≤

(
‖Pn−1‖∞,[m,M ]

∥∥g(n)∥∥∞,[m,M ]

2

)[∥∥∥(M1H −A)
2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥] . (3.28)

Next we apply (3.27), (3.28) into (3.23), we get

(ξ1) ≤ 1

(M −m)

{
‖g (A)‖

(
‖Pn−1‖∞,[m,M ]

∥∥f (n)∥∥∞,[m,M ]

2
(3.29)

×
[∥∥∥(M1H −A)

2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥])+ ‖f (A)‖

×

(
‖Pn−1‖∞,[m,M ]

∥∥g(n)∥∥∞,[m,M ]

2

)[∥∥∥(M1H −A)
2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥]}

=
1

2 (M −m)

{[
‖g (A)‖

∥∥∥f (n)∥∥∥
∞,[m,M ]

+ ‖f (A)‖
∥∥∥g(n)∥∥∥

∞,[m,M ]

]
‖Pn−1‖∞,[m,M ]

[∥∥∥(M1H −A)
2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥]} . (3.30)

We have proved that

|R| ≤

(
‖g (A)‖

∥∥f (n)∥∥∞,[m,M ]
+ ‖f (A)‖

∥∥g(n)∥∥∞,[m,M ]

)
2 (M −m)

‖Pn−1‖∞,[m,M ]

[∥∥∥(M1H −A)
2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥] . (3.31)

The theorem is proved. �

It follows the case n = 1.

Corollary 3.2. (to Theorem 3.1) Let f, g ∈ C1 ([a, b]) with [m,M ] ⊂ (a, b), m < M .
Here A is a selfadjoint bounded linear operator on the Hilbert space H with spectrum
Sp (A) ⊆ [m,M ]. We consider any x ∈ H : ‖x‖ = 1.

Then

|〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉| (3.32)

≤

[
‖g (A)‖ ‖f ′‖∞,[m,M ] + ‖f (A)‖ ‖g′‖∞,[m,M ]

]
2 (M −m)[∥∥∥(M1H −A)
2
∥∥∥+

∥∥∥(A−m1H)
2
∥∥∥] .

We continue with
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Theorem 3.3. All as in Theorem 3.1. Let α, β, γ > 1 : 1
α + 1

β + 1
γ = 1. Then

〈(∆ (f, g)) (A)x, x〉 ≤
‖Pn−1‖α,[m,M ]

(M −m) (β + 1)
1
β[

‖g (A)‖
∥∥∥f (n)∥∥∥

γ,[m,M ]
+ ‖f (A)‖

∥∥∥g(n)∥∥∥
γ,[m,M ]

]
(3.33)[∥∥∥(A−m1H)

1+ 1
β

∥∥∥+
∥∥∥(M1H −A)

1+ 1
β

∥∥∥] .
Proof. As in (3.24) we have∥∥∥∥∥

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

∥∥∥∥∥
= sup
x∈H:‖x‖=1

∣∣∣∣∣
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
d (〈Eλx, x〉)

∣∣∣∣∣ =: ψ1. (3.34)

Here α, β, γ > 1 : 1
α + 1

β + 1
γ = 1. By Hölder’s inequality for three functions we get∣∣∣∣∣

∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

∣∣∣∣∣ ≤
∫ M

m

|Pn−1 (t)| |k (λ, t)|
∣∣∣f (n) (t)

∣∣∣ dt
≤ ‖Pn−1‖α

∥∥∥f (n)∥∥∥
γ

(∫ M

m

|k (λ, t)|β dt

) 1
β

= ‖Pn−1‖α
∥∥∥f (n)∥∥∥

γ

(∫ λ

m

(t−m)
β
dt+

∫ M

λ

(M − t)β dt

) 1
β

(3.35)

= ‖Pn−1‖α
∥∥∥f (n)∥∥∥

γ

[
(λ−m)

β+1
+ (M − λ)

β+1

β + 1

] 1
β

≤
‖Pn−1‖α

∥∥f (n)∥∥
γ

(β + 1)
1
β

[
(λ−m)

β+1
β + (M − λ)

β+1
β

]
.

I.e. it holds ∣∣∣∣∣
∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

∣∣∣∣∣
≤
‖Pn−1‖α

∥∥f (n)∥∥
γ

(β + 1)
1
β

[
(λ−m)

1+ 1
β + (M − λ)

1+ 1
β

]
, ∀ λ ∈ [m,M ] . (3.36)

Therefore we get

ψ1 ≤ sup
x∈H:‖x‖=1

∫ M

m−0

∣∣∣∣∣
∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

∣∣∣∣∣ d 〈Eλx, x〉
≤

(
sup

x∈H:‖x‖=1

∫ M

m−0

[
(λ−m)

1+ 1
β + (M − λ)

1+ 1
β

]
d 〈Eλx, x〉

)
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‖Pn−1‖α,[m,M ]

∥∥f (n)∥∥
γ,[m,M ]

(β + 1)
1
β

≤

(
‖Pn−1‖α,[m,M ]

∥∥f (n)∥∥
γ,[m,M ]

(β + 1)
1
β

)
(3.37)

[∥∥∥(A−m1H)
1+ 1

β

∥∥∥+
∥∥∥(M1H −A)

1+ 1
β

∥∥∥] .
We have proved that∥∥∥∥∥

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

∥∥∥∥∥ (3.38)

≤
‖Pn−1‖α,[m,M ]

∥∥f (n)∥∥
γ,[m,M ]

(β + 1)
1
β

[∥∥∥(A−m1H)
1+ 1

β

∥∥∥+
∥∥∥(M1H −A)

1+ 1
β

∥∥∥] .
Similarly, it holds ∥∥∥∥∥

∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

∥∥∥∥∥
≤
‖Pn−1‖α,[m,M ]

∥∥g(n)∥∥
γ,[m,M ]

(β + 1)
1
β

[∥∥∥(A−m1H)
1+ 1

β

∥∥∥+
∥∥∥(M1H −A)

1+ 1
β

∥∥∥] . (3.39)

Using (3.23) we derive

|R| ≤ 1

(M −m)

{
‖g (A)‖

‖Pn−1‖α,[m,M ]

∥∥f (n)∥∥
γ,[m,M ]

(β + 1)
1
β

(3.40)

[∥∥∥(A−m1H)
1+ 1

β

∥∥∥+
∥∥∥(M1H −A)

1+ 1
β

∥∥∥]
+ ‖f (A)‖

‖Pn−1‖α,[m,M ]

∥∥g(n)∥∥
γ,[m,M ]

(β + 1)
1
β[∥∥∥(A−m1H)

1+ 1
β

∥∥∥+
∥∥∥(M1H −A)

1+ 1
β

∥∥∥]}
=

1

(M −m)

[
‖g (A)‖

∥∥∥f (n)∥∥∥
γ,[m,M ]

+ ‖f (A)‖
∥∥∥g(n)∥∥∥

γ,[m,M ]

] ‖Pn−1‖α,[m,M ]

(β + 1)
1
β

(3.41)

[∥∥∥(A−m1H)
1+ 1

β

∥∥∥+
∥∥∥(M1H −A)

1+ 1
β

∥∥∥] ,
proving the claim. �

The case n = 1 follows.
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Corollary 3.4. (to Theorem 3.3) All as in Theorem 3.3. It holds

|〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉|

≤ 1

(M −m) (β + 1)
1
β

[
‖g (A)‖ ‖f ′‖γ,[m,M ] + ‖f (A)‖ ‖g′‖γ,[m,M ]

]
(3.42)[∥∥∥(A−m1H)

1+ 1
β

∥∥∥+
∥∥∥(M1H −A)

1+ 1
β

∥∥∥] .
We also give

Theorem 3.5. All as in Theorem 3.1. It holds

〈(∆ (f, g)) (A)x, x〉 ≤ ‖Pn−1‖∞,[m,M ][
‖g (A)‖

∥∥∥f (n)∥∥∥
1,[m,M ]

+ ‖f (A)‖
∥∥∥g(n)∥∥∥

1,[m,M ]

]
. (3.43)

Proof. We have that∣∣∣∣∣
∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

∣∣∣∣∣ ≤
∫ M

m

|Pn−1 (t)| |k (λ, t)|
∣∣∣f (n) (t)

∣∣∣ dt
≤ ‖Pn−1‖∞,[m,M ] (M −m)

∫ M

m

∣∣∣f (n) (t)
∣∣∣ dt

= ‖Pn−1‖∞,[m,M ] (M −m)
∥∥∥f (n)∥∥∥

1,[m,M ]
. (3.44)

So that ∣∣∣∣∣
∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

∣∣∣∣∣
≤ (M −m) ‖Pn−1‖∞,[m,M ]

∥∥∥f (n)∥∥∥
1,[m,M ]

.

Hence ∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
dEλ

∥∥∥∥∥
= sup
x∈H:‖x‖=1

∣∣∣∣∣
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) f (n) (t) dt

)
d 〈Eλx, x〉

∣∣∣∣∣ (3.45)

≤ (M −m) ‖Pn−1‖∞,[m,M ]

∥∥∥f (n)∥∥∥
1,[m,M ]

,

and similarly, ∥∥∥∥∥
∫ M

m−0

(∫ M

m

Pn−1 (t) k (λ, t) g(n) (t) dt

)
dEλ

∥∥∥∥∥ (3.46)

≤ (M −m) ‖Pn−1‖∞,[m,M ]

∥∥∥g(n)∥∥∥
1,[m,M ]

.

Using (3.23) we obtain

|R| ≤ 1

(M −m)

{
‖g (A)‖ (M −m) ‖Pn−1‖∞,[m,M ]

∥∥∥f (n)∥∥∥
1,[m,M ]
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+ ‖f (A)‖ (M −m) ‖Pn−1‖∞,[m,M ]

∥∥∥g(n)∥∥∥
1,[m,M ]

}
= ‖Pn−1‖∞,[m,M ]

[
‖g (A)‖

∥∥∥f (n)∥∥∥
1,[m,M ]

+ ‖f (A)‖
∥∥∥g(n)∥∥∥

1,[m,M ]

]
, (3.47)

proving the claim. �

The case n = 1 follows.

Corollary 3.6. (to Theorem 3.5) It holds

|〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉|

≤
[
‖g (A)‖ ‖f ′‖1,[m,M ] + ‖f (A)‖ ‖g′‖1,[m,M ]

]
. (3.48)

Comment 3.7. The case of harmonic sequence of polynomials Pk (t) = (t−x)k
k! , k ∈ Z+,

was completely studied in [2], and this work generalizes it.

Another harmonic sequence of polynomials related to this work is

Pk (t) =
1

k!

(
t− m+M

2

)k
, k ∈ Z+, (3.49)

see also [4].
The Bernoulli polynomials Bn (t) can be defined by the formula (see [4])

xetx

ex − 1
=

∞∑
n=0

Bn (t)

n!
xn, |x| < 2π, t ∈ R. (3.50)

They satisfy the relation

B′n (t) = nBn−1 (t) , n ∈ N.

The sequence

Pn (t) =
1

n!
Bn (t) , n ∈ Z+, (3.51)

is a harmonic sequence of polynomials, t ∈ R.
The Euler polynomials are defined by the formula (see [4])

2etx

ex + 1
=

∞∑
n=0

En (t)

n!
xn, |x| < π, t ∈ R. (3.52)

They satisfy

E′n (t) = nEn−1 (t) , n ∈ N.
The sequence

Pn (t) =
1

n!
En (t) , n ∈ Z+, t ∈ R, (3.53)

is a harmonic sequence of polynomials.
Finally:

Comment 3.8. One can apply (3.3), (3.33) and (3.43), for the harmonic sequences of
polynomials defined by (3.49), (3.51) and (3.53).
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In particular, when (see (3.49))

Pn (t) =
1

n!

(
t− m+M

2

)n
, n ∈ Z+, (3.54)

we get

‖Pn−1‖∞,[m,M ] =
1

(n− 1)!

(
M −m

2

)n−1
, (3.55)

and

‖Pn−1‖α,[m,M ] =
1

(n− 1)! (α (n− 1) + 1)
1
α

(
(M −m)

α(n−1)+1

2α(n−1)

)
, (3.56)

where α, β, γ > 1 : 1
α + 1

β + 1
γ = 1.
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1. Introduction

A function f : I ⊆ R→ R, I is an interval, is said to be a convex function on I if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (1.1)

holds for all x, y ∈ I and t ∈ [0, 1]. If the reversed inequality in (1.1) holds, then f is
said to be concave. Let f : I ⊆ R→ R be a convex function defined on the interval I
and a, b ∈ I with a < b. Then the following double inequality holds:

f

(
a+ b

2

)∫ b

a

p(x)dx ≤
∫ b

a

f(x)p(x)dx ≤ f(a) + f(b)

2

∫ b

a

p(x)dx, (1.2)

where p : [a, b] → R is non-negative, integrable, and symmetric about x = a+b
2 . This

inequality is known as the Fejér inequality for convex functions (see [2, 3, 16, 17]).
Theory of convexity plays an important role in different fields of pure and applied

sciences. Due to its importance in recent years several new generalizations of classical
convexity have been proposed in the literature. Breckner [1] introduced the notion of
s-convex function, as

Definition 1.1 ([1]). Let s ∈ (0, 1]. A function f : [0,∞)→ [0,∞) is said to be s-convex
in the second sense if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y) (1.3)
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for all x, y ∈ [0,∞) and t ∈ [0, 1]. This class of s-convex functions is usually denoted
by K2

s .

For more information on s-convex functions, see [4].
In 2007, Varošanec [15] introduced the notion of h-convex functions, which not

only generalizes the class of convex functions but also some other classes of convex
functions, see [15]. Thus it was noticed that the class of h-convex functions is quite
unifying one. This class is defined as:

Definition 1.2 ([15]). Let h : J ⊆ R→ R be a positive function and [0, 1] ⊂ J . We say
that f : I ⊆ R→ R is h-convex function, or that f belong to the class SX(h, I), if f
is nonnegative and for all x, y ∈ I and t ∈ (0, 1) we have

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y). (1.4)

If inequality (1.4) is reversed, then f is said to be h-concave, i.e. f ∈ SV (h, I).
Obviously, if h(t) = t, then all nonnegative convex functions belong to SX(h, I) and
all nonnegative concave functions belong to SV (h, I);and if h(t) = ts, where s ∈ (0, 1),
then SX(h, I) ⊇ K2

s .
In [13], G. H. Toader defined the concept of m-convexity as the following:

Definition 1.3. The function f : [0, b]→ R is said to be m-convex, where m ∈ [0, 1], if
for every x, y ∈ [0, b] and t ∈ [0, 1] we have:

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y). (1.5)

Denote by Km(b) the set of the m-convex functions on [0, b].
In [6], V. G. Miheşan introduced the class of (s,m)-convex functions as the following:

Definition 1.4. The function f : [0, b]→ R is said to be (s,m)-convex, where (s,m) ∈
(0, 1]2, if for every x, y ∈ [0, b] and t ∈ [0, 1] we have

f(tx+m(1− t)y) ≤ tsf(x) +m(1− ts)f(y). (1.6)

Denote by Ks
m(b) the set of the (s,m)-convex functions on [0, b].

In [17], Yang and Tseng established the following theorem

Theorem 1.5 (see [17], Remark 6). Let f : [a, b] → R be a convex function and
p : [a, b]→ R be a nonnegative, integrable and symmetric about x = a+b

2 . If H and F
are defined on [0, 1] by

H(t) =

∫ b

a

f

(
tx+ (1− t)a+ b

2

)
p(x)dx,

and

F (t)=

∫ b

a

1

2

[
f

(
1 + t

2
a+

1− t
2

x

)
p

(
x+ a

2

)
+ f

(
1 + t

2
b+

1− t
2

x

)
p

(
x+ b

2

)]
dx,

then H, F are convex and increasing on [0, 1] and for all t ∈ [0, 1]

f

(
a+ b

2

)∫ b

a

p(x)dx = H(0) ≤ H(t) ≤ H(1) =

∫ b

a

f(x)p(x)dx
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and ∫ b

a

f(x)p(x)dx = F (0) ≤ F (t) ≤ F (1) =
f(a) + f(b)

2

∫ b

a

p(x)dx.

In [12] , M. Z. Sarikaya, E. Set and M. E. Özdemir established the following inequality:

Theorem 1.6. Let f ∈ SX(h, I), a, b ∈ I with a < b, f ∈ L1([a, b]) and p : [a, b]→ R
is nonnegative, integrable and symmetric about a+b

2 . Then, for h( 1
2 ) 6= 0, we have

1

2h( 1
2 )
f

(
a+ b

2

)∫ b

a

p(x)dx ≤
∫ b

a

f(x)p(x)dx

≤ f(a) + f(b)

2
(h(t) + h(1− t))

∫ b

a

p(x)dx. (1.7)

In [14], the following inequalities of Fejér type via s-convex function was derived:

Theorem 1.7. Let f ∈ K2
s , a, b ∈ [0,∞[ with a < b and p : [a, b]→ R is nonnegative,

integrable and symmetric about a+b
2 . Then

2s−1f

(
a+ b

2

)∫ b

a

p(x)dx ≤
∫ b

a

f(x)p(x)dx

≤ f(a) + f(b)

2

∫ b

a

((
b− x
b− a

)s

+

(
x− a
b− a

)s)
p(x)dx.

(1.8)

Again, in [14], the authors proved the following theorems:

Theorem 1.8 ([14]). Let f : [0,∞[→ R be an m-convex function with m ∈]0, 1].
If 0 ≤ a < b <∞ and f ∈ L1[0, b], then∫ b

a

f(x)p(x)dx ≤ min

{
f(a) +mf

(
b
m

)
2

,
f(b) +mf

(
a
m

)
2

}∫ b

a

p(x)dx.

Theorem 1.9 ([14]). Let f : [0,∞[→ R be an m-convex function with m ∈]0, 1].
If 0 ≤ a < b <∞ and f ∈ L1[0, b], then

f

(
a+ b

2

)∫ b

a

p(x)dx ≤
∫ b

a

f(x) +mf( x
m )

2
p(x)dx

≤ 1

8

(
f(a) + f(b) + 2m

(
f
( a
m

)
+ f

(
b

m

))
+m2

(
f
( a

m2

)
+ f

(
b

m2

)))∫ b

a

p(x)dx.

The aim of this work is to establish the q-analogue of Fejér inequalities for some
convex type functions. For this we recall some basic concepts of quantum calculus.
Let 0 < q < 1, the q-Jackson integral from 0 to b is defined by [5] as:∫ b

0

f(x)dqx = (1− q)b
∞∑

n=0

f(bqn)qn (1.9)

provided the sum converge absolutely.
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The q-Jackson integral in a generic interval [a, b] is given by [5]∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx. (1.10)

In [10], the authors presented a Riemann-type q-integral by:

Rq(f ; a, b) = (b− a)(1− q)
∞∑
k=0

f(a+ (b− a)qk)qk. (1.11)

We can get another definition from the Riemman-type q-integral:

2

b− a

∫ b

a

f(x)dRq x

= (1− q)
∞∑
k=0

(
f

(
a+ b

2
+ qk

(
b− a

2

))
+ f

(
a+ b

2
− qk

(
b− a

2

)))
qk

From the q-Jackson integral we can write:

2

b− a

∫ b

a

f(x)dRq x =

∫ 1

−1
f

(
1− t

2
a+

1 + t

2
b

)
dqt

=

∫ 1

−1
f

(
1 + t

2
a+

1− t
2

b

)
dqt. (1.12)

Contrary to the q-Jackson integral, if

f(x) ≤ g(x), x ∈ [a, b]

then ∫ b

a

f(x)dRq x ≤
∫ b

a

g(x)dRq x. (1.13)

In [11], the authors established the q-analogue of Hermite-Hadamard inequalities
for convex function

Theorem 1.10. Let f : [a, b]→ R be a convex function. Then one has the inequalities:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dRq t ≤
f(a) + f(b)

2
.

For some recent studies on quantum integral inequalities, see [7, 8, 9].

2. Main results

In this section, we discuss main results of the paper. For this we need the fol-
lowing Lemma:

Lemma 2.1. If f : [a, b]→ R is a convex function. Then the following inequality holds
for all s, t, u, v ∈ [0, 1] with s ≤ t ≤ u ≤ v and t+ u = s+ v

f(t) + f(u) ≤ f(s) + f(v) (2.1)
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Proof. Since f is convex function, for all s, t, u, v ∈ [0, 1] with s ≤ t ≤ u ≤ v and
t+ u = s+ v, we obtain

f(v)− f(u)

v − u
≥ f(u)− f(t)

u− t
≥ f(t)− f(s)

t− s
=
f(t)− f(s)

v − u
then, we have

f(v)− f(u) ≥ f(t)− f(s).

The proof is completed. �

Theorem 2.2. Let f : [a, b] → R be a convex function and p : [a, b] → R be a non-
negative, integrable and symmetric about x = a+b

2 . If H and F are defined on [0, 1]
by

H(t) =

∫ b

a

f

(
tx+ (1− t)a+ b

2

)
p(x)dRq x,

and

F (t)=

∫ b

a

1

2

[
f

(
1 + t

2
a+

1− t
2

x

)
p

(
x+ a

2

)
+ f

(
1 + t

2
b+

1− t
2

x

)
p

(
x+ b

2

)]
dRq x,

then H, F are convex and increasing on [0, 1] and for all t ∈ [0, 1]

f

(
a+ b

2

)∫ b

a

p(x)dRq x = H(0) ≤ H(t) ≤ H(1) =

∫ b

a

f(x)p(x)dRq x (2.2)

and ∫ b

a

f(x)p(x)dRq x = F (0) ≤ F (t) ≤ F (1) =
f(a) + f(b)

2

∫ b

a

p(x)dRq x. (2.3)

Proof. For all t1, t2, λ ∈ [0, 1] and x ∈ [a, b], by convexity of f , we have

f

(
(λt1 + (1− λ)t2)x+ (1− (λt1 + (1− λ)t2))

a+ b

2

)
= f

(
λ

(
t1x+ (1− t1)

a+ b

2

)
+ (1− λ)

(
t2x+ (1− t2)

a+ b

2

))
≤ λf

(
t1x+ (1− t1)

a+ b

2

)
+ (1− λ)f

(
t2x+ (1− t2)

a+ b

2

)
. (2.4)

Utilizing the inequality (1.13) and by p(·) a nonnegative function, we get

H (λt1 + (1− λ)t2)

=

∫ b

a

f

(
(λt1 + (1− λ)t2)x+ (1− (λt1 + (1− λ)t2))

a+ b

2

)
p(x)dRq x

≤ λ
∫ b

a

f

(
t1x+ (1− t1)

a+ b

2

)
p(x)dRq x

+ (1− λ)

∫ b

a

f

(
t2x+ (1− t2)

a+ b

2

)
p(x)dRq x

= λH(t1) + (1− λ)H(t2),
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which shows that H is convex on [0, 1].

Now, let 0 ≤ s ≤ t ≤ 1 and w ∈ [0, 1], we have

t

(
a+ b−

(1− w
2

a+
1 + w

2
b
))

+ (1− t)a+ b

2

≤ s
(
a+ b−

(1− w
2

a+
1 + w

2
b
))

+ (1− s)a+ b

2

≤ s
(

1− w
2

a+
1 + w

2
b

)
+ (1− s)a+ b

2

≤ t
(

1− w
2

a+
1 + w

2
b

)
+ (1− t)a+ b

2
,

and for all w ∈ [−1, 0], we have

t

(
1− w

2
a+

1 + w

2
b

)
+ (1− t)a+ b

2

≤ s
(

1− w
2

a+
1 + w

2
b

)
+ (1− s)a+ b

2

≤ s
(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− s)a+ b

2

≤ t
(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− t)a+ b

2
,

for all w ∈ [−1, 1], we get(
s

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− s)a+ b

2

)
+

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
=

(
t

(
1− w

2
a+

1 + w

2
b

)
+ (1− t)a+ b

2

)
+

(
t

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− t)a+ b

2

)
.

By Lemma 2.1, we have

f

(
s

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− s)a+ b

2

)
+ f

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
≤ f

(
t

(
1− w

2
a+

1 + w

2
b

)
+ (1− t)a+ b

2

)
+ f

(
t

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− t)a+ b

2

)
.
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Then,

H(s) =

∫ b

a

f

(
sx+ (1− s)a+ b

2

)
p(x)dRq x

=
b− a

2

∫ 1

−1
f

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw

=
b− a

4

∫ 1

−1
f

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw

+
b− a

4

∫ 1

−1
f

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw.

Since p(·) is nonnegative, integrable and symmetric about x = a+b
2 , we get

b− a
4

∫ 1

−1
f

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw

=
b− a

4

∫ 1

−1
f

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
× p

(
a+ b− (

1− w
2

a+
1 + w

2
b)

)
dqw

=
b− a

4

∫ 1

−1
f

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
× p

(
1 + w

2
a+

1− w
2

b

)
dqw

=
b− a

4

∫ 1

−1
f

(
s

(
1 + w

2
a+

1− w
2

b

)
+ (1− s)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw

=
b− a

4

∫ 1

−1
f

(
s

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− s)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw,
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then, we obtain

H(s) =
b− a

4

∫ 1

−1
f

(
s

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− s)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw

+
b− a

4

∫ 1

−1
f

(
s

(
1− w

2
a+

1 + w

2
b

)
+ (1− s)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw

≤ b− a
4

∫ 1

−1
f

(
t

(
1− w

2
a+

1 + w

2
b

)
+ (1− t)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw

+
b− a

4

∫ 1

−1
f

(
t

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
+ (1− t)a+ b

2

)
× p

(
1− w

2
a+

1 + w

2
b

)
dqw

= H(t).

Thus, H is increasing on [0, 1] and the inequality (2.2) holds for all t ∈ [0, 1].

For all t1, t2, λ ∈ [0, 1] and x ∈ [a, b], by convexity of f , we get

f

(
1 + λt1 + (1− λ)t2

2
a+

1− λt1 − (1− λ)t2
2

x

)
= f

(
λ(1 + t1) + (1− λ)(1 + t2)

2
a+

λ(1− t1) + (1− λ)(1− t2)

2
x

)
≤ λf

(
(1 + t1)

2
a+

(1− t1)

2
x

)
+ (1− λ)f

(
(1 + t2)

2
a+

(1− t2)

2
x

)
. (2.5)

Similarly, we have

f

(
1 + λt1 + (1− λ)t2

2
b+

1− λt1 − (1− λ)t2
2

x

)
≤ λf

(
(1 + t1)

2
b+

(1− t1)

2
x

)
+ (1− λ)f

(
(1 + t2)

2
b+

(1− t2)

2
x

)
, (2.6)
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then, using (2.5), (2.6), (1.13) and the fact that p(·) is nonnegative function, we obtain

F (λt1 + (1− λ)t2)

≤ λ
∫ b

a

f

(
1 + t1

2
a+

1− t1
2

x

)
p

(
x+ a

2

)
dRq x

+ (1− λ)

∫ b

a

f

(
1 + t2

2
a+

1− t2
2

x

)
p

(
x+ a

2

)
dRq x

+ λ

∫ b

a

f

(
1 + t1

2
b+

1− t1
2

x

)
p

(
x+ b

2

)
dRq x

+ (1− λ)

∫ b

a

f

(
1 + t2

2
b+

1− t2
2

x

)
p

(
x+ b

2

)
dRq x

= λF (t1) + (1− λ)F (t2).

Thus, F is convex on [0, 1].

For all w ∈ [−1, 1], and 0 ≤ s ≤ t ≤ 0, we have

1 + t

2
a+

1− t
2

(
1− w

2
a+

1 + w

2
b

)
≤ 1 + s

2
a+

1− s
2

(
1− w

2
a+

1 + w

2
b

)
≤ 1 + s

2
b+

1− s
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
≤ 1 + t

2
b+

1− t
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
,

where

1 + s

2
a+

1− s
2

(
1− w

2
a+

1 + w

2
b

)
+

1 + s

2
b+

1− s
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
=

1 + t

2
a+

1− t
2

(
1− w

2
a+

1 + w

2
b

)
+

1 + t

2
b+

1− t
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

))
.
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Using Lemma 2.1, and the fact that p(·) is nonnegative function, we have

f

(
1 + s

2
a+

1− s
2

(
1− w

2
a+

1 + w

2
b

))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
+ f

(
1 + s

2
b+

1− s
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

)))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
≤ f

(
1 + t

2
a+

1− t
2

(
1− w

2
a+

1 + w

2
b

))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
+ f

(
1 + t

2
b+

1− t
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

)))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
.

Integrating with respect to w on [−1, 1], we have

∫ 1

−1
f

(
1 + s

2
a+

1− s
2

(
1− w

2
a+

1 + w

2
b

))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
dqw

+

∫ 1

−1
f

(
1 + s

2
b+

1− s
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

)))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
dqw

≤
∫ 1

−1
f

(
1 + t

2
a+

1− t
2

(
1− w

2
a+

1 + w

2
b

))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
dqw

+

∫ 1

−1
f

(
1 + t

2
b+

1− t
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

)))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
dqw,
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where, using the fact that p(·) is nonnegative, integrable and symmetric about
x = a+b

2 , we get∫ 1

−1
f

(
1 + s

2
b+

1− s
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

)))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
dqw

=

∫ 1

−1
f

(
1 + s

2
b+

1− s
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

)))
× p

(
a+ b− 1

2

(
a+

1− w
2

a+
1 + w

2
b

))
dqw

=

∫ 1

−1
f

(
1 + s

2
b+

1− s
2

(
1 + w

2
a+

1− w
2

b

))
× p

(
1

2

(
b+

1 + w

2
a+

1− w
2

b

))
dqw

=

∫ b

a

f

(
1 + s

2
b+

1− s
2

x

)
p

(
b+ x

2

)
dRq x.

Similarly, we have∫ 1

−1
f

(
1 + t

2
b+

1− t
2

(
a+ b−

(
1− w

2
a+

1 + w

2
b

)))
× p

(
1

2

(
a+

1− w
2

a+
1 + w

2
b

))
dqw

=

∫ b

a

f

(
1 + t

2
a+

1− t
2

x

)
p

(
b+ x

2

)
dRq x,

then,

F (s) =
1

2

∫ b

a

1

2
f

(
1 + s

2
a+

1− s
2

x

)
× p

(
a+ x

2

)
dRq x+

∫ b

a

1

2
f

(
1 + s

2
b+

1− s
2

x

)
p

(
b+ x

2

)
dRq x

≤
∫ b

a

1

2
f

(
1 + t

2
a+

1− t
2

x

)
× p

(
a+ x

2

)
dRq x+

∫ b

a

1

2
f

(
1 + t

2
b+

1− t
2

x

)
p

(
b+ x

2

)
dRq x

= F (t).

Thus, F is increasing on [0, 1] and the inequality (2.3) holds for all t ∈ [0, 1]. �
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Theorem 2.3. Let f : [a, b]→ R be a h-convex function and p : [a, b]→ R be positive,
integrable, and symmetric about x = a+b

2 . Then the following inequalities hold:

1

2h
(
1
2

)f (a+ b

2

)∫ b

a

p(x)dRq x

≤
∫ b

a

f(x)p(x)dRq x

≤ f(a)

∫ b

a

h

(
b− x
b− a

)
p(x)dRq x+ f(b)

∫ b

a

h

(
x− a
b− a

)
p(x)dRq x

Proof. Since f is h-convex function, we have

f

(
x+ y

2

)
≤ h

(
1

2

)
(f(x) + f(y)) , (2.7)

for all x, y ∈ [a, b].
In (2.7), if we choose x = 1−w

2 a+ 1+w
2 b and y = 1+w

2 a+ 1−w
2 b, w ∈ [−1, 1] and by p

is positive, we get

f

(
a+ b

2

)
p

(
1− w

2
a+

1 + w

2
b

)
= f

(
1

2

(
1− w

2
a+

1 + w

2
b

)
+

1

2

(
1 + w

2
a+

1− w
2

b

))
p

(
1− w

2
a+

1 + w

2
b

)
≤ h

(
1

2

)
f

(
1− w

2
a+

1 + w

2
b

)
p

(
1− w

2
a+

1 + w

2
b

)
+ h

(
1

2

)
f

(
1 + w

2
a+

1− w
2

b

)
p

(
1− w

2
a+

1 + w

2
b

)
Integrating with respect w over [−1, 1], we obtain

f

(
a+ b

2

)∫ 1

−1
p

(
1− w

2
a+

1 + w

2
b

)
dqw

≤ h
(

1

2

)∫ 1

−1
f

(
1− w

2
a+

1 + w

2
b

)
p

(
1− w

2
a+

1 + w

2
b

)
dqw

+ h

(
1

2

)∫ 1

−1
f

(
1 + w

2
a+

1− w
2

b

)
p

(
1− w

2
a+

1 + w

2
b

)
dqw,

Then, by p is symmetric function about a+b
2 , we have

f

(
a+ b

2

)
2

b− a

∫ b

a

p(x)dRq x

≤ h
(

1

2

)
2

b− a

∫ b

a

f(x)p(x)dRq x+ h

(
1

2

)
2

b− a

∫ b

a

f(x)p

(
a+ b

2
+
a+ b

2
− x
)
dRq x

= h

(
1

2

)
2

b− a

∫ b

a

f(x)p(x)dRq x+ h

(
1

2

)
2

b− a

∫ b

a

f(x)p(x)dRq x,

the first inequality is proved.
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The proof of second inequality is given as

f

(
1− w

2
a+

1 + w

2
b

)
p

(
1− w

2
a+

1 + w

2
b

)
≤ f(a)h

(
1− w

2

)
p

(
1− w

2
a+

1 + w

2
b

)
+ f(b)h

(
1 + w

2

)
p

(
1− w

2
a+

1 + w

2
b

)
we integrate w on [−1, 1], we obtain∫ 1

−1
f

(
1− w

2
a+

1 + w

2
b

)
p

(
1− w

2
a+

1 + w

2
b

)
dqw

≤
∫ 1

−1
f(a)h

(
1− w

2

)
p

(
1− w

2
a+

1 + w

2
b

)
dqw

+

∫ 1

−1
f(b)h

(
1 + w

2

)
p

(
1− w

2
a+

1 + w

2
b

)
dqw.

Then

2

b− a

∫ b

a

f(x)p(x)dRq x ≤ f(a)
2

b− a

∫ b

a

h

(
b− x
b− a

)
p(x)dRq x

+
2

b− a
f(b)

∫ b

a

h

(
x− a
b− a

)
p(x)dRq x.

The proof is complete. �

Remark 2.4. If we choose p(x) = 1 and h(t) = t, then Theorem(2.3) reduces to
Theorem(1.10).

Corollary 2.5. Let f ∈ K2
s , a, b ∈ [0,∞[ with a < b and p : [a, b]→ R is nonnegative,

integrable and symmetric about a+b
2 . Then

2s−1f

(
a+ b

2

)∫ b

a

p(x)dRq x ≤
∫ b

a

f(x)p(x)dRq x

≤ f(a)

∫ b

a

(
b− x
b− a

)s

p(x)dRq x+ f(b)

∫ b

a

(
x− a
b− a

)s

p(x)dRq x

Remark 2.6. If we choose s = 1, h(t) = t and p(x) = 1, then Corollary (2.5) reduces
to Theorem(1.10).

Theorem 2.7. Let f : [0,∞[→ R be an m-convex function with m ∈]0, 1]. If 0 ≤ a <
b <∞ and f ∈ L1[0, b], then∫ b

a

f(x)p(x)dRq x ≤ min

{∫ b

a

Lx(a, b)p(x)dRq x,

∫ b

a

Lx(b, a)p(x)dRq x

}
.

with Lx(a, b) =
(
f(a)

(
b−x
b−a

)
+mf

(
b
m

) (
x−a
b−a

))
.
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Proof. Since f is m-convex and for all w ∈ [−1, 1], we have

f

(
1− w

2
a+m

1 + w

2m
b

)
p

(
1− w

2
a+

1 + w

2
b

)
≤
(

1− w
2

)
f(a)p

(
1− w

2
a+

1 + w

2
b

)
+m

(
1 + w

2

)
f

(
b

m

)
p

(
1− w

2
a+

1 + w

2
b

)
,

and

f

(
1− w

2
b+m

1 + w

2m
a

)
p

(
1− w

2
b+

1 + w

2
a

)
≤
(

1− w
2

)
f(b)p

(
1− w

2
b+

1 + w

2
a

)
+m

(
1 + w

2

)
f
( a
m

)
p

(
1− w

2
b+

1 + w

2
a

)
.

Then, by integrating both sides with respect w on [−1, 1], we have

2

b− a

∫ b

a

f(x)p(x)dRq x ≤ f(a)
2

b− a

∫ b

a

(
b− x
b− a

)
p(x)dRq x

+mf

(
b

m

)
2

b− a

∫ b

a

(
x− a
b− a

)
p(x)dRq x

and

2

b− a

∫ b

a

f(x)p(x)dRq x ≤ f(b)
2

b− a

∫ b

a

(
a− x
a− b

)
p(x)dRq x

+mf
( a
m

) 2

b− a

∫ b

a

(
x− b
a− b

)
p(x)dRq x.

This completes the proof. �

Theorem 2.8. Let f : [0,∞[→ R be a m-convex function with m ∈]0, 1] and p : [a, b]→
R is nonnegative, integrable and symmetric about a+b

2 . Then

2f

(
a+ b

2

)∫ b

a

p(x)dRq x ≤
∫ b

a

(
f(x) +mf

( x
m

))
p(x)dRq x

≤
(
f(a) +mf

( a
m

))∫ b

a

(
b− x
b− a

)
p(x)dRq x

+

(
mf

(
b

m

)
+m2f

(
b

m2

))∫ b

a

(
x− a
b− a

)
p(x)dRq x.
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Proof. According to the definition of m-convex function, for all t ∈ [−1, 1], we have

f

(
a+ b

2

)
p

(
1− t

2
a+

1 + t

2
b

)
= f

(
1

2

(
1− t

2
a+

1 + t

2
b

)
+

m

2m

(
1 + t

2
a+

1− t
2

b

))
p

(
1− t

2
a+

1 + t

2
b

)
≤ 1

2
f

(
1− t

2
a+

1 + t

2
b

)
p

(
1− t

2
a+

1 + t

2
b

)
+
m

2
f

( 1+t
2 a+ 1−t

2 b

m

)
p

(
1− t

2
a+

1 + t

2
b

)
.

Integrating with respect to t on [−1, 1], we have∫ 1

−1
f

(
a+ b

2

)
p

(
1− t

2
a+

1 + t

2
b

)
dqt

≤ 1

2

∫ 1

−1
f

(
1− t

2
a+

1 + t

2
b

)
p

(
1− t

2
a+

1 + t

2
b

)
dqt

+

∫ 1

−1

m

2
f

( 1+t
2 a+ 1−t

2 b

m

)
p

(
1− t

2
a+

1 + t

2
b

)
dqt.

Since p(·) is symmetric function, so, we have

f

(
a+ b

2

)
2

b− a

∫ b

a

p(x)dRq x

≤ 2

2(b− a)

∫ b

a

f(x)p(x)dRq x+
2m

2(b− a)

∫ b

a

f
( x
m

)
p(a+ b− x)dRq x

=
1

(b− a)

∫ b

a

f(x)p(x)dRq x+
m

(b− a)

∫ b

a

f
( x
m

)
p(x)dRq x.

Then

f

(
a+ b

2

)
2

∫ b

a

p(x)dRq x ≤
∫ b

a

f(x)p(x)dRq x+m

∫ b

a

f
( x
m

)
p(x)dRq x.

the first inequality is proved.

Now the proof of second inequality is given by

f

(
1− t

2
a+m

1 + t

2m
b

)
p

(
1− t

2
a+

1 + t

2
b

)
≤ f(a)

1− t
2

p

(
1− t

2
a+

1 + t

2
b

)
+m

1 + t

2
f

(
b

m

)
p

(
1− t

2
a+

1 + t

2
b

)
,
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and

mf

(
1− t
2m

a+
1 + t

2m2
mb

)
p

(
1− t

2
a+

1 + t

2
b

)
≤ mf

( a
m

) 1− t
2

p

(
1− t

2
a+

1 + t

2
b

)
+m2 1 + t

2
f

(
b

m2

)
p

(
1− t

2
a+

1 + t

2
b

)
.

Integrating both sides with respect to t on [−1, 1], we obtain

2

b− a

∫ b

a

f(x)p(x)dRq x ≤ f(a)
2

b− a

∫ b

a

(
b− x
b− a

)
p(x)dRq x

+ f

(
b

m

)
2m

b− a

∫ b

a

(
x− a
b− a

)
p(x)dRq x,

and

m
2

b− a

∫ b

a

f
( x
m

)
p(x)dRq x ≤ mf

( a
m

) 2

b− a

∫ b

a

b− x
b− a

p(x)dRq x

+m2f

(
b

m2

)
2

b− a

∫ b

a

x− a
b− a

p(x)dRq x.

Then, the proof of Theorem (2.8) is completed. �

Theorem 2.9. Let f : [0,∞[→ R be an (s,m)-convex function with (s,m) ∈]0, 1]2 and
p : [a, b]→ R is nonnegative, integrable and symmetric about a+b

2 . Then

2sf

(
a+ b

2

)∫ b

a

p(x)dRq x ≤
∫ b

a

f(x)p(x)dRq x+m(2s − 1)

∫ b

a

f
( x
m

)
p(x)dRq x

≤
(
f(a) +m(2s − 1)f

( a
m

))∫ b

a

(
b− x
b− a

)s

p(x)dRq x

+m

(
f

(
b

m

)
+m(2s − 1)f

(
b

m2

))∫ b

a

(
x− a
b− a

)s

p(x)dRq x

Proof. Since f is (s,m)-convex function on [a, b], we can write

f

(
1

2

(
1− t

2
a+

1 + t

2
b

)
+

m

2m

(
1 + t

2
a+

1− t
2

b

))
p

(
1− t

2
a+

1 + t

2
b

)
≤
(

1

2

)s

f

(
1− t

2
a+

1 + t

2
b

)
p

(
1− t

2
a+

1 + t

2
b

)
+m

(
1−

(
1

2

)s)
f

(
1

m

(
1 + t

2
a+

1− t
2

b

))
p

(
1− t

2
a+

1 + t

2
b

)
.
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Integrating with respect to t on [−1, 1], we get

f

(
a+ b

2

)
2

b− a

∫ b

a

p(x)dRq x ≤
(

1

2

)s
2

b− a

∫ b

a

f(x)p(x)dRq x

≤ m
(

1−
(

1

2

)s)
2

b− a

∫ b

a

f
( x
m

)
p(a+ b− x)dRq x.

Since p(·) is symmetric function, so, we have

2sf

(
a+ b

2

)∫ b

a

p(x)dRq x ≤
∫ b

a

f(x)p(x)dRq x+m(2s − 1)

∫ b

a

f
( x
m

)
p(x)dRq x.

Also, we have

f

(
1− t

2
a+

1 + t

2
b

)
p

(
1− t

2
a+

1 + t

2
b

)
= f

(
1− t

2
a+

m

m

(
1−

(
1− t

2

))
b

)
p

(
1− t

2
a+

1 + t

2
b

)
≤
(

1− t
2

)s

f(a)p

(
1− t

2
a+

1 + t

2
b

)
+m

(
1−

(
1− t

2

)s)
f

(
b

m

)
p

(
1− t

2
a+

1 + t

2
b

)
,

and

f

((
1−t
2 a+ 1+t

2 b
)

m

)
p

(
1− t

2
a+

1 + t

2
b

)
= f

(
1− t

2

a

m
+

m

m2

(
1−

(
1− t

2

))
b

)
p

(
1− t

2
a+

1 + t

2
b

)
≤
(

1− t
2

)s

f
( a
m

)
p

(
1− t

2
a+

1 + t

2
b

)
+m

(
1−

(
1− t

2

)s)
f

(
b

m2

)
p

(
1− t

2
a+

1 + t

2
b

)
.

Integrating both sides with respect to t on [−1, 1], we get

2

b− a

∫ b

a

f(x)p(x)dRq x

≤ 2

b− a
f(a)

∫ b

a

(
b− x
b− a

)s

p(x) +mf

(
b

m

)
2

b− a

∫ b

a

(
1−

(
b− x
b− a

)s)
p(x)dRq x,

and

2

b− a

∫ b

a

f
( x
m

)
p(x)dRq x

≤ 2

b− a
f
( a
m

)∫ b

a

(
b− x
b− a

)s

p(x)dRq x+mf

(
b

m2

)
2

b− a

∫ b

a

(
1−
(
b− x
b− a

)s)
p(x)dRq x.

The proof of Theorem (2.9) is completed. �
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Abstract. In this paper, the authors introduce a new general integral opera-
tor for multivalent functions. The new sufficient conditions for the operator
J αi, βip,γ,g (f1, f2, ..., fn) when γ = 1 is determined for the class of p-valently star-
like, p-valently close-to-convex, uniformly p-valent close-to-convex and strongly
starlike of order δ (0 < δ ≤ 1) in U. Our results generalize the results of Frasin
[7].
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1. Introduction and definitions

Let A(p, n) denote the class of functions of the form:

f(z) = zp +

∞∑
k=n

ak+pz
k+p (p, n ∈ N := {1, 2, 3 · · · }) (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. We write
A(p, 1) = Ap and A1 = A.

A function f ∈ Ap is said to be p-valently starlike of order δ (0 ≤ δ < p), denoted
by the class S∗p (δ) if and only if

<
(
zf ′(z)

f(z)

)
> δ (z ∈ U). (1.2)

Also, we say that a function f ∈ Ap is said to be p-valently convex of order δ
(0 ≤ δ < p) and belong to the class Kp(δ) if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
> δ (z ∈ U). (1.3)
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Further, a function f ∈ Ap is said to be p-valently close-to-convex of order δ
(0 ≤ δ < p), denoted by Cp(δ) if and only if

<
(
f ′(z)

zp−1

)
> δ (z ∈ U). (1.4)

We note that

f(z) ∈ Kp(δ)⇐⇒
zf ′(z)

p
∈ S∗p (δ).

Furthermore, S∗p (0) = S∗p , Kp(0) = Kp and Cp(0) = Cp are respectively denote the
class of p-valently starlike, p-valently convex and p-valently close-to-convex functions
in U. Also, S∗1 = S∗, K1 = K and C1 = C are respectively the usual classes of starlike,
convex and close-to-convex functions in U.

A function f ∈ Ap is said to be in the class UCp(β) of uniformly p-valent close-
to-convex functions of order β (0 ≤ β < p) in U if and only if

<
(
zf ′(z)

g(z)
− β

)
≥
∣∣∣∣zf ′(z)g(z)

− p
∣∣∣∣ (z ∈ U) (1.5)

for some g(z) ∈ USp(β) where USp(β) is the class of uniformly p-valent starlike
functions of order β (−1 ≤ β < p) in U that satisfies

<
(
zf ′(z)

f(z)
− β

)
≥
∣∣∣∣zf ′(z)f(z)

− p
∣∣∣∣ (z ∈ U).

The uniformly p-valent starlike functions were first introduced in [9].
For functions f given by (1.1) and g belong to the class Ap given by

g(z) = zp +

∞∑
k=n

bk+pz
k+p (z ∈ U),

the Hadamard product (or convolution) of f and g denoted by f ∗ g is given by

(f ∗ g)(z) = zp +

∞∑
k=n

ak+pbk+pz
k+p (z ∈ U). (1.6)

Note that for g(z) = zp

1−z , f ∗ g = f .

Analogous to the integral operator defined by Goswami and Bulut [10] on p-
valent meromorphic functions, we now define the following general integral operator
on the space of p-valent analytic functions in the class Ap.

Definition 1.1. Let n ∈ N, αi, βi ∈ R+ ∪ {0} for all i = 1, 2, 3, ..., n, γ ∈ C with
<(γ) > 0 and α = (α1, α2, ..., αn), β = (β1, β2, ..., βn). For fi, g ∈ Ap (1 ≤ i ≤ n),
we introduce a new general integral operator J αi, βip, γ, g : Anp −→ Ap by

J αi, βip, γ, g(f1, f2, .., fn)(z) =

[∫ z

0

γptγp−1
n∏
i=1

(
(fi ∗ g)(t)

tp

)βi ( (fi ∗ g)′(t)

ptp−1

)αi
dt

] 1
γ

.

(1.7)
Here and throughout in the sequel every many-valued function is taken with the
principal branch.
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Note that, the integral operator J αi, βip, γ, g(f1, f2, , ..., fn)(z) generalizes several pre-
viously studied operators as follows:

• For p = 1, g(z) = z
1−z , we obtain the integral operator

Iαi,βiγ (f1, f2, ..., fn)(z) =

{∫ z

0

γtγ−1
n∏
i=1

(f ′i(t))
αi

(
fi(t)

t

)βi
dt

} 1
γ

(1.8)

introduced and studied by Frasin [8].
• For p = 1, g(z) = z

1−z and α = (0, 0, ..., 0), we obtain the integral operator

Iγ(f1, f2, ..., fn)(z) =

{∫ z

0

γtγ−1
n∏
i=1

(
fi(t)

t

)βi
dt

} 1
γ

(1.9)

introduced and studied by Breaz and Breaz [3].
• For p = 1, g(z) = z

1−z , β = (0, 0, ..., 0) and γ = 1, we obtain the integral

operator Fα1,α2,...,αn(z) where

Fα1,α2,...,αn(z) =

∫ z

0

n∏
i=1

(f ′i(t))
αi dt (1.10)

introduced and studied by Breaz et al. [4].
• For p = 1, n = 1, g(z) = z

1−z , α1 = α, β1 = β, f1 = f and γ = 1, we obtain
the integral operator

Fα, β(z) =

∫ z

0

(f ′(t))
α
(
f(t)

t

)β
dt (1.11)

studied in [5].
• For p = 1, n = 1, g(z) = z

1−z , α1 = 0, β1 = β, f1 = f and γ = 1, we obtain
the integral operator

Fβ(z) =

∫ z

0

(
f(t)

t

)β
dt (1.12)

studied in [11]. In particular, for β = 1, the above operator reduces to

I(z) =

∫ z

0

f(t)

t
dt (1.13)

known as Alexander integral operator (see [1]).
• For p = 1, n = 1, g(z) = z

1−z , β1 = 0, α1 = α, f1 = f and γ = 1, we obtain the
integral operator

Gα(z) =

∫ z

0

(f ′(t))
α
dt (1.14)

studied in [15] (also see [16]).

• For g(z) = zp

1−z , α = (0, 0, ..., 0) and γ = 1, we obtain the integral operator

Fp(z) =

∫ z

0

ptp−1
n∏
i=1

(
fi(t)

tp

)βi
dt (1.15)
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introduced and studied by Frasin [7].

• For g(z) = zp

1−z , β = (0, 0, ..., 0) for i = 1, 2, 3, .., n and γ = 1, we obtain the
integral operator

Gp(z) =

∫ z

0

ptp−1
n∏
i=1

(
f ′i(t)

ptp−1

)αi
dt (1.16)

introduced and studied by Frasin [7].

Various sufficient conditions for convexity and starlikeness of multivalent functions
corresponding to different integral operators have been obtained by various authors.
Motivated by the aforementioned work, in this paper the authors derive various suffi-
cient conditions for the operator defined in (1.7) when γ = 1 to be p-valently starlike,
p-valently close-to-convex, uniformly close-to-convex and strongly starlike of order
δ (0 < δ ≤ 1) in U.

2. Preliminaries

In order to derive our main results, we need the following lemmas.

Lemma 2.1. (see [12]) If f ∈ Ap satisfies

<
{

1 +
zf ′′(z)

f ′(z)

}
< p+

1

4
(z ∈ U), (2.1)

then f is p-valently starlike in U.

Lemma 2.2. (see [2]) If f ∈ Ap satisfies

<
(

1 +
zf ′′(z)

f ′(z)

)
< p+

1

3
(z ∈ U), (2.2)

then f is uniformly p-valent close-to-convex in U.

Lemma 2.3. (see [17]) If f ∈ Ap satisfies

<
{

1 +
zf ′′(z)

f ′(z)

}
< p+

a+ b

(1 + a)(1− b)
(z ∈ U), (2.3)

where a > 0, b ≥ 0 and a+ 2b ≤ 1, then f is p-valently close-to-convex in U.

Lemma 2.4. (see [14]) If f ∈ Ap satisfies

<
{

1 +
zf ′′(z)

f ′(z)

}
>
p

4
− 1 (z ∈ U), (2.4)

then

<

√
zf ′(z)

f(z)
>

√
p

2
(z ∈ U). (2.5)
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Lemma 2.5. (see [13]) If f ∈ Ap satisfies

<
{

1 +
zf ′′(z)

f ′(z)

}
> p− δ

2
(z ∈ U), (2.6)

then ∣∣∣∣arg zf ′(z)f(z)

∣∣∣∣ < π

2
δ (0 < δ ≤ 1; z ∈ U), (2.7)

or f is strongly starlike of order δ in U.

Lemma 2.6. (see [6]) If f ∈ Ap satisfies∣∣∣∣zf ′′(z)f ′(z)
+ 1− p

∣∣∣∣ < p+ 1 (z ∈ U), (2.8)

then f is p-valently starlike in U.

3. Main results

In this section, we investigate sufficient conditions for the integral operator

J αi, βip,1,g (f1, f2, ..., fn)(z) to be in the class S∗p . For the sake of simplicity, we shall

write Jp,g(z) instead of J αi, βip,1,g (f1, f2, ..., fn)(z).

Theorem 3.1. Let αi, βi ∈ R+ ∪ {0} for all i = 1, 2, 3, ..., n, α = (α1, α2, ..., αn) and
β = (β1, β2, ..., βn). If fi, g ∈ Ap (1 ≤ i ≤ n) satisfies

<
{
αi
z (fi ∗ g)

′′
(z)

(fi ∗ g)′(z)
+ βi

z (fi ∗ g)
′
(z)

(fi ∗ g)(z)

}
< (p− 1)αi + pβi +

1

4n
(z ∈ U), (3.1)

then the general integral operator Jp,g(z) ∈ S∗p .

Proof. From (1.7), it is easy to see that

J ′p,g(z) = pzp−1
(

(f1 ∗ g)′(z)

pzp−1

)α1
(

(f1 ∗ g)(z)

zp

)β1

....(
(fn ∗ g)′(z)

pzp−1

)αn ( (fn ∗ g)(z)

zp

)βn
. (3.2)

Differentiating (3.2) logarithmically with respect to z and multiply by z, we obtain

zJ ′′p,g(z)
J ′p,g(z)

= (p− 1) +

n∑
i=1

αi

(
z (fi ∗ g)

′′
(z)

(fi ∗ g)′(z)
− p+ 1

)
+

n∑
i=1

βi

(
z (fi ∗ g)

′
(z)

(fi ∗ g)(z)
− p
)
,

which implies

1 +
zJ ′′p,g(z)
J ′p,g(z)

=

n∑
i=1

(
αi
z (fi ∗ g)

′′
(z)

(fi ∗ g)′(z)
+ βi

z (fi ∗ g)
′
(z)

(fi ∗ g)(z)

)
+ p−

n∑
i=1

[(p− 1)αi + pβi] .

(3.3)
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Taking real part on both sides of (3.3), we get

<
(

1 +
zJ ′′p,g(z)
J ′p,g(z)

)
= p−

n∑
i=1

[(p− 1)αi + pβi] +

n∑
i=1

<
(
αi
z(fi ∗ g)′′(z)

(fi ∗ g)′(z)
+ βi

z(fi ∗ g)′(z)

(fi ∗ g)(z)

)
. (3.4)

Using (3.1) in (3.4) yields

<
(

1 +
zJ ′′p,g(z)
J ′p,g(z)

)
< p+

1

4
(z ∈ U). (3.5)

Hence by Lemma 2.1, Jp,g(z) is p-valently starlike in U which implies Jp,g(z) ∈ S∗p .
This complete the proof of Theorem 3.1. �

Taking α = (0, 0, ..., 0) and g(z) = zp

1−z (z ∈ U) in Theorem 3.1, we get the
following result.

Corollary 3.2. ([7], Theorem 2.1) Let βi > 0 be real numbers for all i = 1, 2, 3, ..., n.
If fi ∈ Ap for all i = 1, 2, 3, .., n satisfies

<
(
zf ′i(z)

fi(z)

)
< p+

1

4
∑n
i=1 βi

(z ∈ U)

then Fp is p-valently starlike in U.

Remark 3.3. If we set n = p = 1, β1 = β, f1 = f in Corollary 3.2, then we have ([7],
Corollary 2.2).

Further, taking β = (0, 0, ..., 0) g(z) = zp

1−z in Theorem 3.1 we get the following result.

Corollary 3.4. ([7], Theorem 3.1) Let αi > 0 be real numbers for all i = 1, 2, 3, ..., n.
If fi ∈ Ap for all i = 1, 2, 3, ..., n satisfies

<
(

1 +
zf ′′i (z)

f ′i(z)

)
< p+

1

4
∑n
i=1 αi

(z ∈ U),

then Gp is p-valently starlike in U.

Remark 3.5. Letting n = p = 1, α1 = α and f1 = f in Corollary 3.4 we get the
following result due to Frasin ([7], Corollary 3.2).

Furthermore, taking p = 1, n = 1, α1 = α, β1 = β, f1 = f and g(z) = z
1−z in

Theorem 3.1, we have the following:

Corollary 3.6. Let f ∈ A and α, β > 0. If

<
{
α
zf ′′(z)

f ′(z)
+ β

zf ′(z)

f(z)

}
< β +

1

4
(z ∈ U)

then the integral operator Fα,β(z) defined in (1.11) belong to starlike function class
S∗p .

The next theorem gives another sufficient condition for the integral operator
Jp,g to be p-valently starlike functions in U .
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Theorem 3.7. Let αi, βi ∈ R+ ∪ {0} for all i = 1, 2, ..., n, α = (α1, α2, ..., αn) and
β = (β1, β2, ..., βn). If fi, g ∈ Ap for all i = 1, 2, ..., n satisfies the relation∣∣∣∣αi z(fi ∗ g)′′(z)

(fi ∗ g)′(z)
+ βi

(
z(fi ∗ g)′(z)

(fi ∗ g)(z)
− p
)∣∣∣∣ < p+ 1

n
− (p− 1)αi (z ∈ U) (3.6)

where
∑n
i=1 αi > 1, then Jp,g is p-valently starlike in U .

Proof. From (3.3) and applications of triangle’s inequalities give

|1 +
zJ ′′p,g(z)
J ′p,g(z)

− p| =

∣∣∣∣∣
n∑
i=1

(
αi
z(fi ∗ g)′′(z)

(fi ∗ g)′(z)
+ βi

z(fi ∗ g)′(z)

(fi ∗ g)(z)

)
−

n∑
i=1

((p− 1)αi + pβi)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(
αi
z(fi ∗ g)′′(z)

(fi ∗ g)′(z)
+ βi

(
z(fi ∗ g)′(z)

(fi ∗ g)(z)
− p
))
−

(p− 1)

n∑
i=1

αi

∣∣∣∣∣ <
n∑
i=1

∣∣∣∣αi z(fi ∗ g)′′(z)

(fi ∗ g)′(z)
+ βi

(
z(fi ∗ g)′(z)

(fi ∗ g)(z)
− p
)∣∣∣∣+ (p− 1)

n∑
i=1

αi

(3.7)

Making use of (3.6) in (3.7)we get∣∣∣∣1 +
zJ ′′p,g(z)
J ′p,g(z)

− p
∣∣∣∣ < p+ 1. (3.8)

Therefore, the result follows by application of Lemma 2.6. The proof of Theorem 3.7
is completed. �

Remark 3.8. Putting g(z) = zp

1−z , α = (0, 0, ..., 0) in Theorem 3.7 we get the result of

Frasin ([7], Theorem 2.3).

Remark 3.9. Putting g(z) = zp

1−z , β = (0, 0, ..., 0) in Theorem 3.7 we get the result of

Frasin ([7], Theorem 3.3).

Remark 3.10. Putting n = 1, p = 1, α1 = 0, f1 = f, β1 = β > 0, g(z) = z
1−z in

Theorem 3.7 we get the result of Frasin ([7],Corollary 2.4).

Remark 3.11. Letting n = 1, p = 1, α1 = α > 0, f1 = f, β = (0, 0, ..., 0), g(z) = z
1−z

in Theorem 3.7 we get the result of Frasin ([7],Corollary 3.4).

4. Close-to-convex function

The following theorem gives sufficient conditions for the integral operator Jp,g
to be p-valently close-to-convex in U.

Theorem 4.1. Let fi, g ∈ Ap, αi, βi ∈ R+ ∪ {0} for all i = 1, 2, 3, ..., n, α =
(α1, α2, ..., αn) and β = (β1, β2, ..., βn). For z ∈ U, if

<
{
αi
z (fi ∗ g)

′′
(z)

(fi ∗ g)′(z)
+ βi

z (fi ∗ g)
′
(z)

(fi ∗ g)(z)

}
< (p− 1)αi + pβi +

a+ b

n(1 + a)(1− b)
, (4.1)

where a > 0, b ≥ 0 and a+ 2b ≤ 1, then Jp,g(z) is p-valently close-to-convex function
in U.
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Proof. Making use of (4.1) in (3.3), we get

<
(

1 +
zJ ′′p,g(z)
J ′p,g(z)

)
< p+

a+ b

(1 + a)(1− b)
.

Hence by Lemma 2.3 we conclude that Jp,g ∈ Cp(δ). �

Remark 4.2. Putting g(z) = zp

1−z , α = (0, 0, 0, ..., 0) and βi > 0 in Theorem 4.1, we

get the result due to Frasin ([7], Theorem 2.5).

Remark 4.3. Putting g(z) = zp

1−z , β = (0, 0, 0, ..., 0) and αi > 0 in Theorem 4.1, we

get the result due to Frasin ([7], Theorem 3.5).

Remark 4.4. Letting n = p = 1, α1 = 0, β1 = β > 0, f1 = f and g(z) = z
1−z in

Theorem 4.1 we get the result due to Frasin ([7], Corollary 2.6).

Remark 4.5. Letting n = p = 1, β1 = 0, α1 = α, f1 = f and g(z) = z
1−z in Theorem

4.1 we get the result due to Frasin ([7], Corollary 3.6).

5. Uniformly close-to-convex function

In this section we give sufficient conditions for the generalize integral operator
Jp,g(z) to be uniformly close-to-convex in U.

Theorem 5.1. Let fi, g ∈ Ap, αi, βi ∈ R+ ∪ {0} for all i = 1, 2, 3, ..., n and α =
(α1, α2, ..., αn) and β = (β1, β2, ..., βn). If

<
(
αi
z (fi ∗ g)

′′
(z)

(fi ∗ g)′(z)
+ βi

z (fi ∗ g)
′
(z)

(fi ∗ g)(z)

)
< (p− 1)αi + pβi +

1

3n
(z ∈ U), (5.1)

then Jp,g(z) is uniformly p-valent close-to-convex in U.

Proof. Making using (5.1) in (3.3) and an application of Lemma 2.2 give the result.
The proof of Theorem 5.1 is thus completed. �

Remark 5.2. Putting g(z) = zp

1−z , βi > 0 and α = (0, 0, ..., 0) in Theorem 5.1 we get

the frasin ([7], Theorem 2.7).

Remark 5.3. Letting g(z) = zp

1−z , β = (0, 0, .., 0) and αi > 0 for i = 1, 2, 3, .., n in

Theorem 5.1 we get the result of Frasin ([7], Theorem 3.7).

Remark 5.4. Taking n = p = 1, β1 = β and f1 = f in Remark 5.2 we have ([7],
Corollary 2.8).

Remark 5.5. Taking n = p = 1, α1 = α and f1 = f in Remark 5.3 we have ([7],
Corollary 3.8).
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6. Strong starlikeness of the operators Jp,g

The following theorem gives sufficient conditions for the operator Jp,g to be
strongly starlike of order δ in U.

Theorem 6.1. Let αi, βi ∈ R+ ∪ {0} for all i = 1, 2, 3, ..., n, α = (α1, α2, ..., αn) and
β = (β1, β2, ..., βn). If fi, g ∈ Ap for all i = 1, 2, 3, ..., n satisfies

<
{
αi
z(fi ∗ g)′′(z)

(fi ∗ g)′(z)
+ βi

z(fi ∗ g)′(z)

(fi ∗ g)(z)

}
> (p− 1)αi + pβi −

δ

2n
(z ∈ U), (6.1)

then Jp,g is strongly starlike of order δ (0 < δ ≤ 1) in U.

Proof. In view of (3.3) and (6.1) and by using Lemma 2.5, we deduce that Jp,g is
strongly starlike of order δ. �

Putting g(z) = zp

1−z , α = (0, 0, ..., 0) in Theorem 6.1, we get the following result:

Corollary 6.2. ([7],Theorem 4.1) Let βi > 0 be real numbers for all i = 1, 2, 3, .., n. If
fi ∈ Ap for all i = 1, 2, 3, .., n satisfies

<
(
zf ′i(z)

fi(z)

)
> p− δ

2
∑n
i=1 βi

(z ∈ U), (6.2)

then Fp is strongly starlike of order δ (0 < δ ≤ 1) in U.

Remark 6.3. Putting n = p = 1, β1 = β and f1 = f in the Corollary 6.2 , we get the
result of Frasin ([7],Corollary 4.2).

Further, letting g(z) = zp

1−z , β = (0, 0, 0, ..., 0) in Theorem 6.1 we get the follow-
ing result.

Corollary 6.4. ([7], Theorem 4.3) Let αi > 0 be the real numbers for all i = 1, 2, 3, ..., n.
If fi ∈ Ap for i = 1, 2, 3, .., n satisfies

<
(

1 +
zf ′′i (z)

f ′i(z)

)
> p− δ

2
∑n
i=1 αi

(z ∈ U), (6.3)

then Gp is strongly starlike of order δ 0 < δ ≤ 1 in U.

Remark 6.5. Letting n = p = 1, α1 = α > 0 and f1 = f in the above Corollary, we
get the result (see [7], Corollary 4.4).

Theorem 6.6. Let αi, βi ∈ R+ ∪ {0} for all i = 1, 2, 3, ..., n, α = (α1, α2, ..., αn) and
β = (β1, β2, ..., βn). If fi, g ∈ Ap for all i = 1, 2, 3, ..., n satisfies

<
{
αi
z(fi ∗ g)′′(z)

(fi ∗ g)′(z)
+ βi

z(fi ∗ g)′(z)

(fi ∗ g)(z)

}
> (p− 1)αi + pβi −

3p+ 4

4n
(z ∈ U), (6.4)

then

<

√
zJ ′p,g(z)
Jp,g(z)

>

√
p

2
. (6.5)
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Proof. Using (6.4) in (3.4), we have

<
(

1 +
zJ ′′p,g(z)
Jp,g(z)

)
>
p

4
− 1. (6.6)

The result follows in view of Lemma 2.4. �

Remark 6.7. Putting g(z) = zp

1−z , α = (0, 0, ..., 0) in the Theorem 6.6 , we get the

result of Frasin ([7],Theorem 2.9)

Remark 6.8. Putting n = p = 1, β1 = 1 and f1 = f, α = (0, 0, ..., 0) and g(z) = z
1−z

in the Theorem 6.6 , we get the result of Frasin ([7],Corollary 2.10).

Remark 6.9. Taking β = (0, 0, ..., 0) and g(z) = zp

1−z in the Theorem 6.6 , we get the

result of Frasin ([7],Theorem 3.9).

Remark 6.10. Letting n = p = 1, α1 = 1 and f1 = f, β = (0, 0, ..., 0) and g(z) = z
1−z

in the Theorem 6.6 , we get the result of Frasin ([7],Corollary 3.10).
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Abstract. In this paper we derive some subordination and superordination results
for certain normalized analytic functions in the open unit disc, which are acted
upon by a class of generalized hypergeometric function Hq,s(α1).
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1. Introduction

Let H be the class of analytic functions in the open unit disc U = {z ∈ C : |z| < 1}
and let H[a, n] denotes the subclass of the functions f ∈ H of the form

f(z) = a+ anz
n + an+1z

n+1 + . . . (a ∈ C), (1.1)

and we let

Am =
{
f ∈ H, f(z) = z + am+1z

m+1 + am+2z
m+2 + . . .

}
.

Also, let A1 = A be the subclass of the functions f ∈ H of the form

f(z) = z + a2z
2 + . . . (1.2)

For f, g ∈ H, we say that the function f is subordinate to g, written symbolically as
follows:

f ≺ g or f(z) ≺ g(z),

if there exists a Schwarz function w, which (by definition) is analytic in U with
w(0) = 0 and |w(z)| < 1, (z ∈ U), such that f(z) = g(w(z)) for all z ∈ U . In
particular, if the function g(z) is univalent in U , then we have the following equivalence
(cf., e.g., [15]; see also [16, p.4]):

f(z) ≺ g (z)⇔ f(0) ≺ g(0) and f(U) ⊂ g(U).
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Supposing that p and h are two analytic functions in U , let

ϕ(r, s, t; z) : C3 × U → C.

If p and ϕ(p(z), zp′(z), z2p′′(z); z) are univalent functions in U and if p satisfies the
second-order superordination

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z), (1.3)

then p is called to be a solution of the differential superordination (1.3). (If f is
subordinate to F , then F is superordination to f). An analytic function q is called a
subordinant of (1.3), if q(z) ≺ p(z) for all the functions p satisfying (1.3). A univalent
subordinant q̃ that satisfies q ≺ q̃ for all of the subordinants q of (1.3), is called the
best subordinant (cf., e.g.,[15], see also [16]).

Recently, Miller and Mocanu [17] obtained sufficient conditions on the functions
h, q and ϕ for which the following implication holds:

k(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z)⇒ q(z) ≺ p(z). (1.4)

Using the results Miller and Mocanu [17], Bulboaca [5] considered certain classes of
first-order differential superordinations as well as superordination preserving integral
operators [4]. Ali et al. [1], have used the results of Bulboaca [5] and obtained sufficient
conditions for certain normalized analytic functions f to satisfy

q1(z) ≺ zf ′(z)

f(z)
≺ q2(z), (1.5)

where q1 and q2 are given univalent functions in U with q1(0) = 1. Shanmugam et al.
[23] obtained sufficient conditions for normalized analytic functions f to satisfy

q1(z) ≺ f(z)

zf ′(z)
≺ q2(z),

and

q1(z) ≺ z2f ′(z)

{f(z)}2
≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = 1 and q2(0) = 1, while

Obradovic and Owa [20] obtained subordination results with the quantity
(
f(z)
z

)µ
.

A detailed investigation of starlike functions of complex order and convex functions
of complex order using Briot–Bouquet differential subordination technique has been
studied very recently by Srivastava and Lashin [26] (see also [27], [2] and [19]).

For complex parameters

α1, . . . , αq and β1, . . . , βs (βj /∈ Z−0 = {0,−1,−2, . . .}; j = 1, 2, . . . , s),

we now define the generalized hypergeometric function qFs(α1, . . . , αq;β1, . . . , βs; z)
by (see, for example, [25, p.19])

qFs(α1, . . . , αq;β1, . . . , βs; z) =

∞∑
k=0

(α1)k . . . (αq)k
(β1)k . . . (βs)k

.
zk

k!

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0},N = {1, 2, . . .}; z ∈ U),
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where (θ)ν is the Pochhammer symbol defined, in terms of the Gamma function Γ,
by

(θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1 (ν = 0; θ ∈ C∗ = C\{0}),
θ(θ − 1) . . . (θ + ν − 1) (ν ∈ N; θ ∈ C).

Corresponding to the function h(α1, . . . , αq;β1, . . . , βs; z), defined by

h(α1, . . . , αq;β1, . . . , βs; z) = z qFs(α1, . . . , αq;β1, . . . , βs; z),

Dziok and Srivastava [9] ( see also [10]) considered a linear operator

H(α1, . . . , αq;β1, . . . , βs; z) : A→ A,

which is defined by the following Hadamard product (or convolution):

H(α1, . . . , αq;β1, . . . , βs; z)f(z) = h(α1, . . . , αq;β1, . . . , βs; z) ∗ f(z). (1.6)

We observe that, for a function f(z) ∈ Am, we have

H(α1, . . . , αq;β1, . . . , βs)f(z) = z +

∞∑
k=m+1

(α1)k−1 . . . (αq)k−1
(β1)k−1 . . . (βs)k−1(1)k−1

akz
k.

For m = 1, we have (see [9])

H(α1, . . . , αq;β1, . . . , βs)f(z) = z +

∞∑
k=2

(α1)k−1 . . . (αq)k−1
(β1)k−1 . . . (βs)k−1(1)k−1

akz
k. (1.7)

For convenience, we write

Hq,s(α1) = H(α1, . . . , αq;β1, . . . , βs).

It is easily follows from (1.7) that (see [9])

z (Hq,s(α1)f(z))
′

= α1Hq,s(α1 + 1)f(z)− (α1 − 1)Hq,s(α1)f(z). (1.8)

It should be remarked that the linear operator Hq,s(α1) is a generalization of many
other linear operators considered earlier. In particular for f ∈ A we have the following
observation:

(i) H2,1(a, b; c)f(z) = Ia,bc f(z)
(
a, b ∈ C; c /∈ Z−0

)
, where the linear operator Ia,bc

was investigated by Hohlov [12];
(ii) H2,1(δ + 1, 1; 1)f(z) = Dδf(z)(δ > −1), where Dδ is the Ruscheweyh deriv-

ative of f(z) (see [22]);

(iii) H2,1(µ + 1, 1;µ + 2)f(z) = Fµ(f)(z) = µ+1
zµ

∫ z
0
tµ−1f(t)dt (µ > −1), where

Fµ is the Libera integral operator (see [13], [14] and [3]);

(iv) H2,1(a, 1; c)f(z) = L(a, c)f(z)(a ∈ R; c ∈ R\Z−0 ), where L(a, c) is the
Carlson-Shaffer operator (see [6]);

(v) H2,1(λ+1, c; a)f(z) = Iλ(a, c)f(z)(a, c ∈ R\Z−0 ;λ > −1), where Iλ(a, c)f (z)
is the Cho–Kwon–Srivastava operator (see [7]);

(vi) H2,1(µ, 1;λ + 1)f(z) = Iλ,µf(z)(λ > −1;µ > 0), where Iλ,µf(z) is the
Choi–Saigo–Srivastava operator [8] which is closely related to the Carlson–Shaffer [6]
operator L(µ, λ+ 1)f(z);

(vii) H2,1(1, 1;n+ 1)f(z) = Inf(z)(n ∈ N0), where Inf(z) is the Noor operator
of n− th order (see [18]) ;
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(viii) H2,1(2, 1; 2− µ)f(z) = Ωµz f(z) (µ 6= 2, 3, 4, . . .), where Ωµz is the fractional
derivative operator (see Owa and Srivastava [21]).

2. Preliminaries

In order to prove our subordination and superordination results, we make use of
the following known definition and lemmas.
Definition 2.1. [17] Denote by Q the set of all functions f(z) that are analytic and
injective on U \ E(f), where

E(f) = {ζ : ζ ∈ ∂U and lim
z→ζ

f(z) =∞}, (2.1)

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U \ E(f).
Lemma 2.2. [16] Let the function q(z) be univalent in the unit disc U , and let θ and
ϕ be analytic in a domain D containing q(U), with ϕ(w) 6= 0 when w ∈ q(U). Set
Q(z) = zq′(z)ϕ(q(z)), h(z) = θ(q(z)) +Q(z) and suppose that

(i) Q is a starlike function in U ,

(ii) Re

(
zh′(z)

Q(z)

)
> 0 for z ∈ U .

If p is analytic in U with p(0) = q(0), p(U) ⊆ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.2)

then p(z) ≺ q(z), and q is the best dominant.
Lemma 2.3. [16] Let g be a convex function in U and let

h(z) = g(z) +mαzg′(z),

where α > 0 and m is a positive integer. If

p(z) = g(0) + pmz
m + . . . .

is analytic in U and
p(z) + αzp′(z) ≺ h(z),

then
p(z) ≺ g(z),

and this result is sharp.
Lemma 2.4. [11] Let h be a convex function with h(0) = a and let γ ∈ C with Re(γ) ≥
0. If p ∈ H with p(0) = a and

p(z) +
1

γ
zp′(z) ≺ h(z),

then
p(z) ≺ q(z) ≺ h(z),

where

q(z) =
γ

nz(γ/n)

z∫
0

h(t)t(γ/n)−1dt (z ∈ U).

The function q is convex and is the best dominant.
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Lemma 2.5. [4] Let q(z) be a convex univalent function in the unit disc U and let ϑ
and ϕ be analytic in a domain D containing q(U). Suppose that

(i) Re

{
ϑ′(q(z))

ϕ(q(z))

}
> 0 for z ∈ U ;

(ii) zq′(z)ϕ(q(z)) is starlike in U .
If p ∈ H[q(0), 1] ∩ Q with p(U) ⊆ D, and ϑ(p(z)) + zp′(z)ϕ(p(z)) is univalent in U ,
and

ϑ(q(z)) + zq′(z)ϕ(q(z)) ≺ ϑ(p(z)) + zp′(z)ϕ(p(z)),

then q(z) ≺ p(z), and q is the best subordinant.

3. Subordination results for analytic functions

Unless otherwise mentioned we shall assume throughout the paper that q ≤
s+ 1; q, s ∈ N0, µ, β ∈ C∗, η, α, δ, ξ ∈ C, z ∈ U and the powers understood as principle
values.
Theorem 3.1. Let the function q be analytic and univalent in U , with q(z) 6= 0 (z ∈
U∗ = U\{0}). Suppose that zq′(z)

q(z) is starlike univalent in U . Let

Re

{
1 +

ξ

β
q(z) +

2δ

β
(q(z))2 − zq′(z)

q(z)
+
zq′′(z)

q′(z)

}
> 0 (z ∈ U). (3.1)

If f ∈ Am and q satisfies the following subordination:

Ψ(f, α1, α, δ, ξ, β, µ, η) ≺ α+ ξq(z) + δ(q(z))2 + β
zq′(z)

q(z)
, (3.2)

where

Ψ(f, α1, α, δ, ξ, β, µ) = α+ ξ

(
Hq,s(α1)f(z)

z

)µ(
z

Hq,s(α1 + 1)f(z)

)η
+δ

(
Hq,s(α1)f(z)

z

)2µ(
z

Hq,s(α1 + 1)f(z)

)2η

+ βµα1

[
Hq,s(α1 + 1)f(z)

Hq,s(α1)f(z)
− 1

]
+βη(α1 + 1)

[
1− Hq,s(α1 + 2)f(z)

Hq,s(α1 + 1)f(z)

]
, (3.3)

then (
Hq,s(α1)f(z)

z

)µ(
z

Hq,s(α1 + 1)f(z)

)η
≺ q(z)

and q is the best dominant of (3.2).

Proof. Define the function p by

p(z) =

(
Hq,s(α1)f(z)

z

)µ(
z

Hq,s(α1 + 1)f(z)

)η
(z ∈ U). (3.4)

Then the function p(z) is analytic in U and p(0) = 1. Differentiating (3.4) logarith-
mically with respect to z, we have

zp′(z)

p(z)
= µ

[
z (Hq,s(α1)f(z))

′

Hq,s(α1)f(z)
− 1

]
+ η

[
1− z (Hq,s(α1 + 1)f(z))

′

Hq,s(α1 + 1)f(z)

]
.
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By using the identity (1.8) in the resulting equation, we have

zp′(z)

p(z)
= µ

[
α1Hq,s(α1 + 1)f(z)

Hq,s(α1)f(z)
− α1

]
+ η

[
(α1 + 1)− (α1 + 1)Hq,s(α1 + 2)f(z)

Hq,s(α1 + 1)f(z)

]
.

By setting

θ(w) = α+ ξw(z) + δw2(z) and φ(w) =
β

w
,

it can be easily observed that θ is analytic in C, φ is analytic in C∗ and that φ(w) 6=
0(w ∈ C∗). Also, by letting

Q(z) = zq′(z)φ(q(z)) = β
zq′(z)

q(z)
(3.5)

and

h(z) = θ{q(z)}+Q(z) = α+ ξq(z) + δ(q(z))2 + β
zq′(z)

q(z)
, (3.6)

we find that Q is starlike univalent in U and that

Re

(
zh′(z)

Q(z)

)
= Re

{
1 +

ξ

β
q(z) +

2δ

β
(q(z))2 − zq′(z)

q(z)
+
zq′′(z)

q′(z)

}
> 0.

The assertion (3.5) of Theorem 3.1 now follows by an application of Lemma 2.2.
Putting q(z) = 1+Az

1+Bz , (−1 ≤ B < A ≤ 1) in Theorem 3.1, we obtain the following
corollary.
Corollary 3.2. Suppose that

Re

{
1 +

ξ

β

(
1 +Az

1 +Bz

)
+

2δ

β

(
1 +Az

1 +Bz

)2

− (A−B)z

(1 +Az)(1 +Bz)
− 2Bz

1 +Bz

}
> 0 (z ∈ U).

If f ∈ Am satisfies the subordination

Ψ(f, α1, α, δ, ξ, β, µ, η) ≺ α+ ξ

(
1 +Az

1 +Bz

)
+ δ

(
1 +Az

1 +Bz

)2

+
β(A−B)z

(1 +Az)(1 +Bz)
,

where Ψ(f, α1, α, δ, ξ, β, µ, η) is given by (3.3), then(
Hq,s(α1)f(z)

z

)µ(
z

Hq,s(α1 + 1)f(z)

)η
≺ 1 +Az

1 +Bz

and 1+Az
1+Bz is the best dominant.

Putting q(z) =
(

1+z
1−z

)γ
(0 < γ ≤ 1) in Theorem 3.1, we obtain the following

corollary.
Corollary 3.3. Suppose that

Re

{
1 +

ξ

β

(
1 + z

1− z

)γ
+

2δ

β

(
1 + z

1− z

)2γ

− 2γz

1− z2
+

2z(γ + z)

(1− z)(1 + z)

}
> 0 (z ∈ U).

If f ∈ Am satisfies the subordination

Ψ(f, α1, α, δ, ξ, β, µ, η) ≺ α+ ξ

(
1 + z

1− z

)γ
+ δ

(
1 + z

1− z

)2γ

+
2γβz

1− z2
,
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where Ψ(f, α1, α, δ, ξ, β, µ, η) is given by (3.3), then(
Hq,s(α1)f(z)

z

)µ(
z

Hq,s(α1 + 1)f(z)

)η
≺
(

1 + z

1− z

)γ
and

(
1+z
1−z

)γ
is the best dominant.

Putting q(z) = eµAz, with |µA| < π in Theorem 3.1, we obtain the following
corollary.
Corollary 3.4. Suppose that

Re{1 +
ξ

β
eµAz +

2δ

β
e2µAz} > 0 (z ∈ U).

If f(z) ∈ Am satisfies the subordination

Ψ(f, α1, α, δ, ξ, β, µ) ≺ α+ ξeµAz + δe2µAz + βµAz,

where Ψ(f, α1, α, δ, ξ, β, µ, η) is given by (3.3), then(
Hq,s(α1)f(z)

z

)µ(
z

Hq,s(α1 + 1)f(z)

)η
≺ eµAz

and eµAz is the best dominant.
Remark 3.5. (i) Putting q = 2, s = 1, α1 = α2 = β1 = 1, m = 1, δ = ξ = η = 0,
β = 1

µ and q(z) = eµAz, with |µA| < π in Theorem 3.1, we obtain the result obtained

by Obradovic and Owa [20];
(ii) Putting q(z) = 1

(1−z)2b (b ∈ C∗), q = 2, s = 1, α1 = α2 = β1 = 1, m = 1,

δ = ξ = η = 0, µ = α = 1 and β = 1
b in Theorem 3.1, we obtain the result obtained

by Srivastava and Lashin [26];
(iii) Putting q(z) = 1

(1−z)2ab (a, b ∈ C∗), q = 2, s = 1, α1 = α2 = β1 = 1, m = 1,

δ = ξ = η = 0, µ = α = 1 and β = 1
ab in Theorem 3.1, we obtain the result obtained

by Obradovic et al.[19];

(iv) Putting q(z) = (1 +Bz)µ(A−B)/B , (µ ∈ C∗, −1 ≤ B < A ≤ 1), q = 2, s = 1,
α1 = α2 = β1 = 1, m = 1, β = 1

µ , α = 1 and δ = ξ = η = 0 in Theorem 3.1, we

obtain the result obtained by Obradovic and Owa [20];

(v) Putting q(z) = (1 − z)−2ab cosλe−iλ (a, b ∈ C∗, |λ| < π
2 ), β = eiλ

ab cosλ , q = 2,
s = 1, α1 = α2 = β1 = 1, m = 1, δ = ξ = η = 0 and µ = α = 1 in Theorem 3.1, we
obtain the result obtained by Aouf et al. [2, Theorem 1].
Theorem 3.6. Let h ∈ H,h(0) = 1, h′(0) 6= 0 which satisfy

Re{1 +
zh′′

(z)
h′(z)} > −1

2
(z ∈ U). (3.7)

If f(z) ∈ Am satisfies the differential subordination:

Hq,s(α1 + k)f(z)

z
≺ h(z) (k ∈ Z+; z ∈ U∗),

then
Hq,s(α1 + k − 1)f(z)

z
≺ g(z) (k ∈ Z+),
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where

g(z) =
(α1 + k − 1)

mz(α1+k−1)/m

z∫
0

h(t)t
((α1+k−1)/m)−1

dt (k ∈ Z+).

The function g is convex and is the best dominant.

Proof. Let the function p(z) be defined by

p(z) =
Hq,s(α1 + k − 1)f(z)

z
(k ∈ Z+). (3.8)

Then the function p is analytic in U and p(0) = 1. Differentiating (3.8) logarithmically
with respect to z, we have

zp′(z)

p(z)
=

[
z (Hq,s(α1 + k − 1)f(z))

′

Hq,s(α1 + k − 1)f(z)
− 1

]
(k ∈ Z+).

By using the identity (1.8), we have

zp′(z)

p(z)
=

[
(α1 + k − 1)Hq,s(α1 + k)f(z)

Hq,s(α1 + k − 1)f(z)
− (α1 + k − 1)

]
and hence

p(z) +
zp′(z)

α1 + k − 1
=
Hq,s(α1 + k)f(z)

z
(k ∈ Z+).

The assertion of Theorem 3.6 now follows by applying Lemma 2.4.
Putting k = 1 in Theorem 3.6, we get.
Corollary 3.7. If f ∈ Am satisfies the differential subordination:

Hq,s(α1 + 1)f(z)

z
≺ h(z),

then
Hq,s(α1)f(z)

z
≺ g(z),

where

g(z) =
α1

mzα1/m

z∫
0

h(t)t
(α1/m)−1

dt (z ∈ U).

The function g(z) is convex and is the best dominant.
By using Lemma 2.3 we can prove the following theorem.
Theorem 3.8. Let g be convex function with g(0) = 1. Let h be a function, such that

h(z) ≺ g(z) +
m

λ+ 1
zg′(z).

If f ∈ Am satisfies the subordination:

Hq,s(α1 + k)f(z)

z
≺ h(z) (k ∈ Z+), (3.9)

then
Hq,s(α1 + k − 1)f(z)

z
≺ g(z) (k ∈ Z+),

and is the best dominant.
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Proof. The proof of Theorem 3.8 is much akin to the proof of Theorem 3.6 and hence
we omit the details involved.

Next, by appealing to Lemma 2.5, we prove Theorem 3.9.
Theorem 3.9. Let q be analytic and convex univalent in U , such that q(z) 6= 0 and
zq′(z)
q(z) be starlike univalent in U . Further, let us assume that

Re{2δ

β
(q(z))2 +

ξ

β
q(z)} > 0 (z ∈ U). (3.10)

If f ∈ Am, 0 6=
(
Hq,s(α1)f(z)

z

)µ (
z

Hq,s(α1+1)f(z)

)η
∈ H[q(0), 1], Ψ(f, α1, α, δ, ξ, β, µ, η)

is univalent in U, where Ψ(f, α1, α, δ, ξ, β, µ) is given by (3.3), and

α+ ξq(z) + δ(q(z))2 + β
zq′(z)

q(z)
≺ Ψ(f, α1, α, δ, ξ, β, µ, η), (3.11)

then

q(z) ≺
(
Hq,s(α1)f(z)

z

)µ(
z

Hq,s(α1 + 1)f(z)

)η
(3.12)

and q is the best subordinant of (3.11).

Proof. By setting

ϑ(z) = α+ ξw + δw2 and ϕ(w) = β
w′

w
,

it is easily observed that ϑ is analytic in C. Also, ϕ is analytic in C∗ and that ϕ(w) 6=
0 (w ∈ C∗).
Since q is convex (univalent) function it follows that,

Re

{
ϑ′(q(z))

ϕ(q(z))

}
= Re

{
2δ

β
(q(z))2 +

ξ

β
q(z)

}
> 0 (z ∈ U).

The assertion (3.12) of Theorem 3.9 follows by an application of Lemma 2.5.

4. Sandwich result

Combining Theorem 3.1 and Theorem 3.9, we get the following sandwich theorem.
Theorem 4.1. Let q1 be convex univalent and q2 be univalent in U such that q1(z) 6= 0
and q2(z) 6= 0. Suppose q1 satisfies (3.10) and q2 satisfies (3.1). If f ∈ Am,

0 6=
(
Hq,s(α1)f(z)

z

)µ (
z

Hq,s(α1+1)f(z)

)η
∈ H[q(0), 1], and Ψ(f, α1, α, δ, ξ, β, µ, η) is uni-

valent in U and satisfies

α+ ξq1(z) + δ(q1(z))2 + β
zq′1(z)

q1(z)
≺ Ψ(f, α1, α, δ, ξ, β, µ, η)

≺ α+ ξq2(z) + δ(q2(z))2 + β
zq′2(z)

q2(z)
, (4.1)

where Ψ(f, α1, α, δ, ξ, β, µ, η) is given by (3.3), then

q1(z) ≺
(
Hq,s(α1)f(z)

z

)µ(
z

Hq,s(α1 + 1)f(z)

)η
≺ q2(z)
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and q1 and q2 are, respectively, the best subordinant and best dominant.

Remark 4.2. (i) Putting q = 2, s = 1, α1 = a (a > 0), α2 = 1 and β1 = c (c > 0) in
our results we will improve all results obtained by Shanmugam et al. [24];

(ii) By specializing the parameters q, s, αi(α1, . . . , αq) and βj(β1, . . . , βs) in our
results, we obtain the corresponding results due to various operators mentioned in
the introduction.

Acknowledgments. The authors thanks the referee for their valuable suggestions which
led to improvement of this study.
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An existence theorem for a non-autonomous
second order nonlocal multivalued problem

Tiziana Cardinali and Serena Gentili

Abstract. In this paper we prove the existence of mild solutions for a nonlocal
problem governed by an abstract semilinear non-autonomous second order differ-
ential inclusion, where the non-linear part is an upper-Caratheodory semicontin-
uous multimap. Our existence theorem is obtained thanks to the introduction of
a fundamental Cauchy operator. Finally we apply our main result to provide the
controllability of a problem involving a non-autonomous wave equation.
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ential inclusion, fundamental Cauchy operator, fundamental system.

1. Introduction

Recently in [8] H.R. Henŕıquez, V. Poblete, J.C. Pozo have studied the existence
of mild solutions for a nonlocal problem governed by the following non-autonomous
wave equation

∂2w(t, ξ)

∂t2
=
∂2w(t, ξ)

∂ξ2
+ b(t)

∂w(t, ξ)

∂ξ
+ f̃(t, w(t, ξ)), t ∈ J = [0, a], (1.1)

Starting from this paper, we are interested to study the following control problem

∂2w(t,ξ)
∂t2 = ∂2w(t,ξ)

∂ξ2 + b(t)∂w(t,ξ)
∂ξ + f(t, w(t, ξ), u(t, ξ)), t ∈ J

w(t, 0) = w(t, 2π), t ∈ J,
∂w(t,0)
∂ξ = ∂w(t, 2π)

∂ξ , t ∈ J,
w(0, ξ) =

∑m
i=1

2πti
ξi
, ξ ∈ R,

∂w(0,ξ)
∂t =

∑m
i=1

2π
ξi
, ξ ∈ R,

u(t, ξ) ∈ U(t, w(t, ξ))

(1.2)

where 0 < t1 < ... < ti < ... < tm < a and 0 < ξ1 < ... < ξi < ... < ξm < 2π,
b : J → R, f : J ×R×R→ R and U : J ×R→ P(R).
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By using the classical arguments (see, for example [15]) the controllability of (5.1) is
brought back to the existence of mild solutions for a problem described by the non-
autonomous semilinear second order differential inclusion with nonlocal conditions

x′′(t) ∈ A(t)x(t) + F (t, x(t)), t ∈ J
x(0) = g(x)

x′(0) = h(x)

(1.3)

where J = [0, a] is an interval of the real line, {A(t)}t∈J is a family of bounded,
linear operators defined in a subspace D(A(t)) = D(A) dense in a real Banach space
X generating a ”fundamental system”, and g, h are two operators defined on the
trajectories and assuming values in X.
Recently the existence of nonlocal mild solutions in Banach space has been investi-
gated for semilinear non-autonomous second order differential equations in [9], in [7]
and in [8], while there exists an extensive literature for the autonomous case (see, for
example, [6], [11], [12] , [13] and [14]).
The note is organized in the following way. We start by introducing the fundamental
Cauchy operator and by characterizing some of its properties, which play a key role
to prove the existence of mild nonlocal solutions for problem (1.3) in the case that the
nonlinear part of the semilinear second order differential inclusion is given by an upper-
Caratheodory semicontinuous multimap. In order to obtain our main existence result
we use the powerful tools introduced in [9], [7] and a fixed point theorem for condensing
multimaps. Our existence theorem extends in a broad sense all the existence results
above mentioned. In the last section we apply our existence proposition for (1.3) in
order to establish the controllability of (1.2).

2. Preliminaries

Let X,Y be topological spaces and P(Y ) be the family of all nonempty subsets
of Y . We recall that a map F : X → P(Y ) is said to be upper semicontinuous
(lower semicontinuous) if F+(V ) = {x ∈ X : F (x) ⊂ V } (F−(V ) = {x ∈ X :
F (x) ∩ V 6= ∅}) is an open subset of X, for every open V ⊂ Y ; the multimap F is
said to have closed graph if the set graphF = {(x, y) ∈ X × Y : y ∈ F (x)} is closed
in X × Y (see [5]).
In this paper X is a real Banach space endowed with a norm ‖.‖, and we will use the
following notations:

Pb(X) = {H ∈ P(X) : H bounded} (2.1)

Pc(X) = {H ∈ P(X) : H convex}; (2.2)

Pf (X) = {H ∈ P(X) : H closed}; (2.3)

Pk(X) = {H ∈ P(X) : H compact}; (2.4)

Pfc(X) = Pf (X) ∩ Pc(X)... (2.5)

Further, let J = [0, a] be an interval of the real line endowed with the usual Lebesgue
measure λ.
A function f : J → X is said to be strongly measurable if there is a sequence of
simple functions (sn)n which converges to f almost everywhere.
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Moreover, we denote by C(J ;X) the space consisting of all continuous functions from
J into X provided with the norm ‖.‖∞ of uniform convergence, by L1(J,X) the space
of all X-valued Bochner integrable functions on J with norm ‖u‖1 =

∫ a
0
‖u(t)‖dt and

L1
+(J) = {f ∈ L1(J,R) : f(t) ≥ 0, for a.e. t ∈ J}.

A countable set {fn}n ⊂ L1(J,X) is said to be semicompact if: (i) {fn}n is
integrably bounded, i.e. there exists ω ∈ L1

+(J) such that ‖fn(t)‖ ≤ ω(t), for a.e.
t ∈ J and for every n ∈ N; (ii) the set {fn(t)}n is relatively compact in X, for a.e.
t ∈ J .
Now let us consider the following nonlocal problem governed by a non-autonomous
abstract semilinear second order differential inclusion

x′′(t) ∈ A(t)x(t) + F (t, x(t)), t ∈ J
x(0) = g(x)

x′(0) = h(x).

(2.6)

In this problem F is an X-valued multimap defined on J×X, g, h : C(J ;X)→ X are
functions; {A(t)}t∈J is a family, generating a ”fundamental system” {S(t, s)}t,s∈J
of bounded linear operators A(t) : D(A) → X (where D(A) is a dense subspace of
X) such that, for each x ∈ D(A), the function t 7→ A(t)x is continuous in J .
First we recall the concept of the ”fundamental system”, introduced by Kozak in [9]
and recently used by H.R. Henŕıquez, V. Poblete, J.C. Pozo in [8].

Definition 2.1. A family {S(t, s)}t,s∈J of bounded linear operators
S(t, s) : X → X is called fundamental system generated by the family {A(t)}t∈J if
(S1) for each x ∈ X, the function S(., .)x : J × J → X is of class C1 and
(a) for each t ∈ J , S(t, t)x = 0, ∀x ∈ X ;
(b) for each t, s ∈ J and for each x ∈ X, ∂

∂tS(t, s) |t=s x = x and
∂
∂sS(t, s) |t=s x = −x;

(S2) for all t, s ∈ J , if x ∈ D(A), then S(t, s)x ∈ D(A), the map S(., .)x : J × J → X
is of class C2 and

(a) ∂2

∂t2S(t, s)x = A(t)S(t, s)x, ∀(t, s) ∈ J × J , ∀x ∈ D(A);

(b) ∂2

∂s2S(t, s)x = S(t, s)A(s)x, ∀(t, s) ∈ J × J , ∀x ∈ D(A);

(c) ∂2

∂s∂tS(t, s) |t=s x = 0, ∀s ∈ J , ∀x ∈ D(A);

(S3) for all s, t ∈ J , if x ∈ D(A), then ∂
∂sS(t, s)x ∈ D(A). Moreover, there exist

∂3

∂t2∂sS(t, s)x and ∂3

∂s2∂tS(t, s)x and

(a) ∂3

∂t2∂sS(t, s)x = A(t) ∂∂sS(t, s)x, ∀(t, s) ∈ J × J , ∀x ∈ D(A);

(b) ∂3

∂s2∂tS(t, s)x = ∂
∂tS(t, s)A(s)x, ∀(t, s) ∈ J × J , ∀x ∈ D(A);

and for all x ∈ D(A) the function (t, s) 7→ A(t) ∂∂sS(t, s)x is continuous in J × J .

Moreover, as in [8], a map S : J×J → L(X), where L(X) denote the space of all
bounded linear operators in X with the norm ‖.‖L(X), is said to be a ”fundamental
operator” if {S(t, s)}t,s∈J is a fundamental system. Moreover, as in [8], we introduce,
for each (t, s) ∈ J × J the operator

C(t, s) = − ∂

∂s
S(t, s) : X → X. (2.7)
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By using the Banach-Steinhaus Theorem it is possible to prove that the fundamental
system {S(t, s)}t,s∈J satisfies the following properties:

there exists two constants K,K∗,K1 > 0 such that

(p1) ‖C(t, s)‖L(X) ≤ K, ∀(t, s) ∈ J × J ;

(p2) ‖S(t, s)‖L(X) ≤ K | t− s |, ∀t, s ∈ J
(p3) ‖S(t, s)‖L(X) ≤ Ka, ∀t, s ∈ J
(p4) ‖S(t2, s)− S(t1, s)‖L(X) ≤ K∗ | t2 − t1 |,∀t1, t2, s ∈ J
(p5) ∃K1 > 0 : ‖ ∂∂sS(t2, s)− ∂

∂sS(t1, s)‖L(X) ≤ K1 | t2 − t1 |,∀t1, t2, s ∈ J.
Now we recall the definition of a mild solutions for the nonlocal problem (2.6)

Definition 2.2. A continuous function u : J → X is a mild solution for (2.6) if

u(t) = − ∂

∂s
S(t, s) |s=0 g(u) + S(t, 0)h(u) +

∫ t

0

S(t, ξ)f(ξ)dξ, ∀t ∈ J

where f ∈ S1
F (.,u(.)) = {f ∈ L1(J ;X) : f(t) ∈ F (t, u(t)) a.e. t ∈ J}.

In the sequel let us denote by 0n the zero-element of Rn and by 4 the partial
ordering given by the standard positive cone Rn0,+ := (R+

0 )n, i.e. x 4 y if and only if
y − x ∈ Rn0,+; clearly, x ≺ y means that x 4 y and x 6= y.

Definition 2.3. A function β : Pb(X) → Rn0,+ is said to be a ”measure of
noncompactness” (MNC, for short) in the Banach space X if, for every Ω ∈ Pb(X),
the following properties are satisfied:

(β1) β(Ω) = 0n if and only if Ω̄ is compact;

(β2) β(c̄o(Ω)) = β(Ω).

Further, a MNC β : Pb(X)→ Rn0,+ is said to be:

monotone if Ω1,Ω2 ∈ Pb(X) : Ω1 ⊂ Ω2 implies β(Ω1) 4 β(Ω2);

nonsingular if β({x} ∪ Ω) = β(Ω), for every x ∈ X, Ω ∈ Pb(X);

invariant under closure if β(Ω̄) = β(Ω), Ω ∈ Pb(X);

invariant with respect to the union with compact set if β(Ω ∪ C) = β(Ω), for every
relatively compact set C ⊂ X and Ω ∈ Pb(X).

In this setting we provide the following definitions (see [2]).

Definition 2.4. If D is a nonempty subset of X, a map φ : D → P(X) is said to be
”condensing” with respect to a MNC β : Pb(X)→ Rn0,+ (shortly, ” β-condensing ”) if

(I) φ(D) is bounded

and

(II) β(Ω) 4 β(φ(Ω)) implies β(Ω) = 0n, Ω ∈ Pb(D)
or equivalently

(II)’ 0n ≺ β(Ω) implies β(Ω) � β(φ(Ω)), Ω ∈ Pb(D) (i.e. β(φ(Ω)) ≺ β(Ω) is true or
β(φ(Ω)) and β(Ω) are not comparable).

We can now recall the following Sadowskii type fixed point theorem for multimaps
condensing with respect to a vectorial measure of noncompactness (see [2], Theorem
2.2).
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Theorem 2.5. Let β : Pb(X) → Rn0,+ be a nonsingular MNC, D be a closed convex
subset of a Banach space X and φ : D → Pfc(D) be a map such that
(φ1) φ has weakly closed graph in D×X, i.e. for every sequence (xn)n in D, xn → x,
x ∈ D, and for every sequence (yn)n, yn ∈ φ(xn), yn → y, then S(x, y) ∩ φ(x) 6= 0,
where S(x, y) = {x+ λ(y − x) : λ ∈ [0, 1]};
(φ2) φ is β-condensing.
Then there exists x ∈ D with x ∈ φ(x).

Next, we consider the set R2
0,+ = R+

0 ×R
+
0 endowed with the partial ordering 4 before

introduced. Fixed a constant L ≥ 0 we can introduce the function νL : Pb(C(J ;X))→
R2

0,+ defined by

νL(Ω) = max
{wn}n⊂Ω

(τ({wn}n), λ({wn}n)), ∀Ω ∈ Pb(C(J ;X)), (2.8)

being

τ({wn}n) = sup
t∈J

e−Ltη({wn(t)}n); (2.9)

and

λ({wn}n) = modC({wn}n) (2.10)

where η is the Hausdorff MNC in the Banach space X and modC is the modulus of
continuity in C(J ;X) (see [3]).

3. The fundamental Cauchy operator

To study the problem (2.6) we introduce the following operator, which will play
a key role in our next existence result.

Definition 3.1. Let {S(t, s)}t,s∈J be the fundamental system generated by the family
{A(t)}t∈J of bounded linear operators in the Banach space X, presented in (2.6). We
will call the operator GS : L1(J ;X)→ C(J ;X) defined by

GSf(t) =

∫ t

0

S(t, s)f(s)ds, t ∈ J = [0, a], f ∈ L1(J ;X) (3.1)

the fundamental Cauchy operator.

First we present the following result, which is analogous to the one proved in
[10] or in [4], respectively for the Cauchy operator and for the generalized Cauchy
operator.

Theorem 3.2. The fundamental Cauchy operator GS satisfies the following properties:

(GS1) ‖GSf(t)−GSg(t)‖ ≤ Ka
∫ t

0
‖f(s)− g(s)‖ds, t ∈ J , f, g ∈ L1(J ;X);

where Ka is the constant presented in (p3);

(GS2) for any compact H ⊂ X and sequence (fn)n, fn ∈ L1(J ;X), such that
{fn(t)}n ⊂ H for a.e. t ∈ J , the weak convergence fn ⇀ f0 implies the convergence
GSfn → GSf0.
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Proof. Let t ∈ J and f, g ∈ L1(J ;X) be fixed. Thanks to the definition of the funda-
mental Cauchy operator and to the property (p3) we have:

‖GSf(t)−GSg(t)‖ = ‖
∫ t

0

S(t, s)(f(s)− g(s))ds‖ ≤ Ka
∫ t

0

‖f(s)− g(s)‖ds (3.2)

Therefore we can deduce that GS satisfies (GS1).

Let us prove the property (GS2).

Fix a compact set H ⊂ X and t ∈ J , let us consider the set Qt ⊆ X defined as
folllows:

Qt =
⋃

s∈[0,t]

S(t, s)H. (3.3)

Now we show that Qt is compact. Let us fix the map qH : J × J ×H → X defined by
qH(t, s, x) = S(t, s)x, (t, s, x) ∈ J × J ×H. Then, for each ε > 0, there exist finitely
many x1, . . . , xp ∈ X such that:

H ⊂ ∪pi=1(xi +
ε

4Ka
B1(0)),

where B1(0) is the open unit ball in X.

Now, by the strongly continuity of S, there exists ηH(ε) > 0 such that for every
(t1, s1), (t2, s2) ∈ ∆ with max{|t1 − t2|, |s1 − s2|} < ηH(ε) we have

‖S(t1, s1)xi − S(t2, s2)xi‖ <
ε

4
, for every i = 1, . . . , p. (3.4)

Put η̃H(ε) = min{ηH(ε), ε
4Ka}, for arbitrary (t1, s1, z1), (t2, s2, z2) ∈ J × J ×H such

that max{|t1− t2|, |s1− s2|, ‖z1− z2‖} < η̃H(ε), since there exists j ∈ {1, . . . , p} such
that ‖z1 − xj‖ < ε

4Ka , by (p3) and (3.4) we get

‖qH(t1, s1, z1)− qH(t2, s2, z2)‖ = ‖S(t1, s1)z1 − S(t2, s2)z2‖
≤ ‖S(t1, s1)z1 − S(t1, s1)xj‖+ ‖S(t1, s1)xj − S(t2, s2)xj‖
+ ‖S(t2, s2)xj − S(t2, s2)z1‖+ ‖S(t2, s2)z1 − S(t2, s2)z2‖
≤ ‖S(t1, s1)(z1 − xj)‖+ ‖[S(t1, s1)− S(t2, s2)]xj‖
+ ‖S(t2, s2)(xj − z1)‖+ ‖S(t2, s2)(z1 − z2)‖

≤ Ka‖z1 − xj‖+
ε

4
+Ka‖xj − z1‖+Ka‖z1 − z2‖ < ε.

Therefore the map qH is uniformly continuous. Hence, being true that

Qt = qH({t} × [0, t]×H) ,

we can say that Qt is compact.

Now, we show that, for every sequence (fn)n, fn ∈ L1(J ;X), such that
{fn(t)}n ⊂ H a.e. t ∈ J we have that the set {GSfn(t)}n is relatively compact
in X, for every t ∈ J . To this end, fixed t ∈ J , it is enough to prove that

{GSfn(t)}n ⊂ tc̄o(Qt). (3.5)
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Let us associate to (fn)+∞
n=1 a sequence (f̃n)+∞

n=1 such that f̃n(t) ∈ H for every t ∈ J
and f̃n = fn a.e. in J . By applying [5, Corollary 3.10.19], we obtain

GSfn(t) =

∫ t

0

S(t, s)f̃n(s) ds ∈ t co {S(t, s)f̃n(s) : s ∈ [0, t]} ⊂ t coQt, ∀n ∈ N .

Next, let us show now that {GSfn}+∞n=1 ⊂ C(J ;X) is (uniformly) equicontinuous in
J . To see this, fixed ε > 0, we can choose δ(ε) = ε

aK2(K+K∗) , where the constants K

and K∗ are respectively that from properties (p1) and (p4) in Section 2, while K2 is
a constant such that

‖fn(t)‖ ≤ K2, a.e. t ∈ J, ∀n ∈ N.
Then, for every t1, t2 ∈ J , |t2 − t1| ≤ δ(ε), and w.l.o.g. t2 > t1, we have (see (p3) and
(p4) in Section 2):

‖GSfn(t2)−GSfn(t1)‖ ≤
∫ t1

0

‖[S(t2, s)− S(t1, s)]fn(s)‖ds

+

∫ t2

t1

‖S(t2, s)‖L(X)‖fn(s)‖ds

≤
∫ t1

0

‖S(t2, s)− S(t1, s)‖L(X)‖fn(s)‖ds+K2Ka(t2 − t1)

≤
∫ a

0

K∗(t2 − t1)K2ds+K2Ka(t2 − t1) ≤ δ(ε)aK2(K +K∗) = ε.

Hence we have the equicontinuity in J of the set {GSfn}n.
Furthermore, the condition (GS1) implies that the linear operator GS is bounded,
hence GS is weakly continuous, i.e. if fn ⇀ f0 then GSfn ⇀ GSf0. Now, by applying
a generalized version of the Ascoli-Arzelà criterion obtained by Ambrosetti in [1], we
get the relative compactness of the set {GSfn}n.
The relative compactness of {GSfn}+∞n=1 provides that the last convergence is in the
norm of the space C(J ;X). So also (GS2) is stated.

Remark 3.3. Condition (GS1) obviously implies the Lipschitz condition
(GS1)′ ‖GSf −GSg‖∞ ≤ Ka‖f − g‖1, for all f, g ∈ L1(J ;X).

4. Existence results

Thanks to the properties of the fundamental Cauchy operator we are able to
prove our main existence result.

Theorem 4.1. Let J = [0, a], X a Banach space and {A(t)}t∈J a family which satisfies
the property:

(A) {A(t)}t∈J is a family of bounded linear operators, defined in a subspace D(A)
dense in X and taking values in X, generating a fundamental system {S(t, s)}(t,s)∈J×J
such that, for each x ∈ D(A), the function t 7→ A(t)x is continuous in J .

Let F : J ×X → Pkc(X) a multimap which satisfies the following hypothesis:
(F1) for every x ∈ X, F (., x) admits a B-measurable selector;
(F2) for a.e. t ∈ J , F (t, .) is upper semicontinuous;
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(F3) there exists a function α ∈ L1
+(J) such that

‖F (t, x)‖ = sup
z∈F (t,x)

‖z‖ ≤ α(t)(1 + ‖x‖)

for a.e. t ∈ J and for all x ∈ X.
(F4) there exists a function m ∈ L1

+(J) such that

η(F (t, B)) ≤ m(t)η(B)

for a.e. t ∈ J and for every B ∈ Pb(X) (where η is the Hausdorff MNC in X).
Let g, h : C(J ;X)→ X be two functions which satisfy the following properties:

(gh1) g, h are compact, i.e. they are continuous and map bounded sets into relatively
compact sets;
(gh2) there exists Q > 0: ‖g(u)‖ ≤ Q , ‖h(u)‖ ≤ Q for every u ∈ C(J ;X).

Then there exists at least one mild solution for the nonlocal problem (2.6).

Proof. We consider the integral multioperator Γ : C(J ;X)→ Pc(C(J ;X)) defined as

Γ(u) = {y ∈ C(J ;X) : y(t) = C(t, 0)g(u) + S(t, 0)h(u)

+

∫ t

0

S(t, ξ)f(ξ)dξ, t ∈ J, f ∈ S1
F (.,u(.))} (4.1)

for all u ∈ C(J ;X).
Note that, for all u ∈ C(J ;X), since SF (.,u(.)) 6= ∅ (see [10], Lemma 5.1.1) we have
Γ(u) 6= ∅ . Moreover Γ takes convex values thanks the convexity of the values of F .
From now on we proceed by steps.
Step 1: There exists a set which is invariant under the action of the operator Γ.
Step 1a: We put

qn = max
t∈J
{
∫ t

0

Kae−n(t−s)α(s)ds} (4.2)

for all n ∈ N, where K, α are respectively from (p1) and (F3) and a is the size of J .
Let us show that

inf
n∈N

qn = 0. (4.3)

From definition of maximum, for all n ∈ N, there exists tn ∈ J such that

qn −
1

n
<

∫ tn

0

Kae−n(tn−s)α(s)ds =

∫ a

0

ψn(s)ds (4.4)

being ψn : J → R the function defined as follows

ψn(s) = Kae−n(tn−s)χ[0,tn](s)α(s), for all s ∈ J,
where χ[0,tn] is the characteristic function of the interval [0, tn]. Eventually passing to
a subsequence, the sequence (ψn)n is such that

lim
n→∞

ψn(s) = 0, for all s ∈ J

| ψn(s) |≤ Kaα(s) =: α∗(s), ∀s ∈ J, ∀n ∈ N,
where α∗ ∈ L1

+(J). So the Dominated Convergence Theorem implies that

lim
n→∞

∫ a

0

ψn(s)ds = 0.
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Since qn ≥ 0, by (4.4) we obtain limn→∞ qn = 0. Hence (4.3) is proved.
Therefore, there exists N ∈ N such that

qN < 1. (4.5)

Now, let us consider the norm ‖.‖N : C(J ;X)→ R+
0 defined by:

‖u‖N = max
t∈J

e−Nt‖u(t)‖, ∀u ∈ C(J ;X), (4.6)

which is equivalent to the usual norm ‖.‖∞ in C(J ;X) (cfr. [10], (5.2.7)).
Let us fix

R ≥ K(Q+ aQ+ a‖α‖1)

1− qN
(4.7)

whereK is the constant in (p1), a is the size of the interval J ,Q and qN are respectively
from (gh2) and (4.5).
Step 1b: Now, we consider (see (4.7))

HR = {u ∈ C(J ;X) : ‖u‖N ≤ R}, (4.8)

the closed ball in (C(J ;X), ‖.‖N ).
We show that

Γ(HR) ⊂ HR. (4.9)

Fixed u ∈ HR and y ∈ Γ(u), for every t ∈ J , we have

e−Nt‖y(t)‖ ≤ e−Nt‖C(t, 0)g(u)‖+ e−Nt‖S(t, 0)h(u)‖+

+e−Nt
∫ t

0

‖S(t, ξ)f(ξ)‖dξ

Then by using (p1), (p2), (F3), (gh2) and (4.6) we have

e−Nt‖y(t)‖ ≤ ‖C(t, 0)‖L(X)‖g(u)‖+ ‖S(t, 0)‖L(X)‖h(u)‖+

+e−Nt
∫ t

0

‖S(t, ξ)‖L(X)‖f(ξ)‖dξ ≤

≤ K(Q+ aQ+ a‖α‖1) + e−NtKa

∫ t

0

α(ξ)‖u(ξ)‖dξ =

= K(Q+ aQ+ a‖α‖1) + e−NtKa

∫ t

0

eNξα(ξ)e−Nξ‖u(ξ)‖dξ ≤

≤ K(Q+ aQ+ a‖α‖1) + ‖u‖NKa
∫ t

0

e−N(t−ξ)α(ξ)dξ.

So, recalling that u ∈ HR, by (4.8), (4.7) and ((4.2) for n=N) we obtain

e−Nt‖y(t)‖ ≤ K(Q+ aQ+ a‖α‖1) +R

∫ t

0

Ka e−N(t−ξ)α(ξ)dξ ≤

≤ K(Q+ aQ+ a‖α‖1) +RqN ≤ R.
Now, by (4.6), we have

‖y‖N ≤ R,
hence y ∈ HR. Therefore (4.9) is true.
Step 2: In order to prove the existence of a mild solution for (2.6) it is enough to have
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the existence of a fixed point for the restriction Γ|HR
(shortly ΓR), i.e. (see (4.9)) for

the map

ΓR : HR → Pc(HR). (4.10)

To this aim, we will show that ΓR satisfies all the hypotheses of Theorem 2.5, where
the Banach space considered is (C(J ;X), ‖.‖∞) (shortly C(J ;X)). Obviously HR,
which is a closed ball in the space (C(J ;X), ‖.‖N ), is a closed and convex subset of
C(J ;X).
Step 2a: The integral multioperator ΓR has closed graph.
Let (un)n be a sequence in HR such that un → ū and let (zn)n be a sequence such
that zn ∈ Γ(un), ∀n ∈ N, and zn → z̄ in C(J ;X).
Moreover, let (fn)n be a sequence such that, for every n ∈ N, fn ∈ S1

F (.,un(.)), and

zn(t) = C(t, 0)g(un) + S(t, 0)h(un) +

∫ t

0

S(t, ξ)fn(ξ)dξ, for all t ∈ J (4.11)

Now, let us note that the set {fn}n is integrably bounded. This follows from the
boundness of the set {un}n in C(J,X) and from (F3).
Furthermore, let us show that the set {fn(t)}n is relatively compact in X for a.e.
t ∈ J . Indeed, by using (F4) and the monotonicity of the Hausdorff MNC, for a.e.
t ∈ J , being {un(t)}n ∈ Pb(X), we can write the extimate

η({fn(t)}n) ≤ η(F (t, {un(t)}n)) ≤ m(t)η({un(t)}n). (4.12)

Next, since the set {un(t)}n is relatively compact in X, from (4.12), we have
η({fn(t)}n) = 0, i.e. the set {fn(t)}n is relatively compact.
Now, we can use [[10], Proposition 4.2.1] to conclude that the set {fn}n is weakly
compact in L1(J ;X), so w.l.o.g. we can assume fn ⇀ f̄ in L1(J ;X).
Then, in virtue of Theorem 3.2 and Remark 3.3 we can say that the fundamental
Cauchy operator satisfies (GS1)′ and (GS2). Therefore, since the set {fn}n is semi-
compact we can apply [[10], Theorem 5.1.1] and deduce

GSfn → GS f̄ in C(J ;X). (4.13)

Moreover, fixed t ∈ J , since C(t, 0), S(t, 0) ∈ L(X) and g, h are continuous in C(J ;X)
(see hypothesis (gh1)), we have:

C(t, 0)g(un)→ C(t, 0)g(ū), per n→∞ (4.14)

S(t, 0)h(un)→ S(t, 0)h(ū), per n→∞ (4.15)

Hence, by passing to the limit in (4.11), from (4.13), (4.14)), (4.15) we have

lim
n→∞

zn(t) = lim
n→∞

[C(t, 0)g(un) + S(t, 0)h(un) +GSfn(t)] =

= C(t, 0)g(ū) + S(t, 0)h(ū) +GS f̄(t)

Now, the uniqueness of the limit algorithm guarantees that (see (3.1)):

z̄(t) = C(t, 0)g(ū) + S(t, 0)h(ū) +

∫ t

0

S(t, ξ)f̄(ξ)dξ, for every t ∈ J.
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By [[10], Lemma 5.1.1], we have that f̄ ∈ S1
F (.,ū(.)), hence we can conclude that

z̄ ∈ ΓR(ū). Therefore, ΓR has closed graph.
Step 2b: For every l ∈ N we can consider the real number

pl := max
t∈J

∫ t

0

2Kae−l(t−s)m(s)ds (4.16)

where K, a, m are respectively from (p1), (2.6) and (F4). By means of similar argu-
ments as the ones used to prove (4.5), we can choose l = L large enough so that

pL < 1. (4.17)

In correspondence to such an L we consider the vectorial MNC νL on C(J ;X) defined
in (2.8).
Next, we prove that the integral multioperator ΓR is νL-condensing.
First, by (4.9) the equivalence of the norms ‖.‖∞ and ‖.‖N implies the boundness of
the set ΓR(HR) in (C(J ;X), ‖.‖∞) Therefore, condition (I) of νL-consensivity holds.
Now we show that condition (II) is satisfied too. So let Ω ⊂ HR be a bounded set
such that

νL(Ω) 4 νL(ΓR(Ω)), (4.18)

we will prove that νL(Ω) = 02.
Recalling that νL(ΓR(Ω)) is a maximum (see (2.8)), we consider the countable set
{yn}n ⊂ ΓR(Ω) which achieves that maximum. Let now {un}n ⊂ Ω be a set such that
yn ∈ ΓR(un), n ∈ N. Moreover, for every n ∈ N, by (4.1), (4.10), (3.1) there exists
fn ∈ S1

F (.,un(.)) such that

yn(t) = C(t, 0)g(un) + S(t, 0)h(un) +GSfn(t), t ∈ J. (4.19)

Of course, since (4.18) holds, we have (see (2.8))

(τ({un}n), λ({un}n)) 4 νL(Ω) 4 νL(ΓR(Ω)) = (τ({yn}n), λ({yn}n)). (4.20)

First of all, from the above relation we have the inequality

τ({un}n) ≤ τ({yn}n). (4.21)

Let us estimate (cf. (2.9))

τ({yn}n) = sup
t∈J

e−Ltη({yn(t)}n). (4.22)

Fixed t ∈ J , by using (4.19), (p1) and (p2) of the fundamental system and the
properties of η, we have

η({yn(t)}n) ≤ η({C(t, 0)g(un)}n) + η({S(t, 0)h(un)}n) + η({GSfn(t)}n) ≤

≤ Kη(g({un}n)) +Kaη(h({un}n)) + η({GSfn(t)}n). (4.23)

Being {un}n a bounded set, from hypothesis (gh1) we can deduce that η(g({un})n) =
0 and η(h({un})n) = 0. Therefore, by (4.23) we have

η({yn(t)}n) ≤ η({GSfn(t)}n). (4.24)
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In order to apply Theorem 4.2.2 of [10], we first note that the boundness of {un}n in
C(J ;X) and (F3) imply that the set {fn}n is integrably bounded. Moreover by (F4),
for a.e. s ∈ J , we have

η({fn(s)}n) ≤ η(F (s, {un(s)}n)) ≤ m(s)η({un(s)}n) ≤

≤ eLsm(s) sup
ξ∈J

e−Lξη({un(ξ)}n) = eLsm(s)τ({un}n) =: v(s) (4.25)

where obviously v ∈ L1
+(J).

On the other hand, by using Theorem 3.2 we know that the fundamental Cauchy
operator GS satisfies (GS1) and (GS2). Now we are in the position to apply Theorem
4.2.2 of [10], so we get (cf. (4.25)):

η({GSfn(t)}n) ≤ 2Ka

∫ t

0

v(s)ds = 2Kaτ({un}n)

∫ t

0

eLsm(s)ds, ∀t ∈ J, (4.26)

hence, by (4.24) and (4.26) we have

η({yn(t)}n) ≤ 2Kaτ({un}n)

∫ t

0

eLsm(s)ds, ∀t ∈ J.

From this last inequality, remembering (2.9) and (4.16) with l = L, we obtain

τ({yn}n) ≤ sup
t∈J

[2Kaτ({un}n)

∫ t

0

e−L(t−s)m(s)ds] ≤ pLτ({un}n) (4.27)

Therefore (4.21) and (4.27) imply

τ({un}n) ≤ τ({yn}n) ≤ pLτ({un}n), (4.28)

and so, since pL < 1 (4.17), we achieve

τ({un}n) = 0. (4.29)

By (4.28) we also deduce

τ({yn}n) = 0. (4.30)

Now we show that (cf. (2.10))

λ({yn}n) = modC({yn}n) = 0 (4.31)

To this aim, we prove that modC({yn}n) = 0. Indeed, from (4.28) and (2.9), we have
that

η({un(t)}n) = 0, ∀t ∈ J.
Moreover, the set {fn}n is semicompact since it is integrably bounded and
η({fn(t)}n) = 0, for a.e. t ∈ J (see (4.25) and (4.29)). Therefore, recalling again
that GS satisfies properties (GS1) and (GS2), we can apply Theorem 5.1.1 of [10]
so that the set {GSfn}n is relatively compact in C(J ;X). Clearly, if a subset of
C(J ;X) is relatively compact, then its elements constitute an equicontinuous fam-
ily on J . Hence, fixed ε > 0, there exists δ1(ε) = δ1( ε3 ) > 0 such that for every
t1, t2 ∈ J, | t1 − t2 |< δ1(ε) we have

‖GSfn(t2)−GSfn(t1)‖ < ε

3
, ∀n ∈ N. (4.32)
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In addition, put δ2(ε) =: ε
3Qmax{K∗,K1} we have (see (p4), (p5), (2.7) and (gh2))

‖C(t2, 0)g(un)− C(t1, 0)g(un)‖ ≤ Q max{K∗,K1}|t2 − t1| <
ε

3
, (4.33)

‖S(t2, 0)h(un)− S(t1, 0)h(un)‖ ≤ Q max{K∗,K1}|t2 − t1| <
ε

3
, (4.34)

for all t1, t2 ∈ J , | t2 − t1 |< δ2(ε), ∀n ∈ N.
Now, fixed δ(ε) = min{δ1(ε), δ2(ε)} > 0, by (4.32), (4.33) and (4.34) we can deduce
that, for every t1, t2 ∈ J such that | t1 − t2 |< δ(ε) we can say

‖yn(t2)− yn(t1)‖ ≤ ‖C(t2, 0)g(un)− C(t1, 0)g(un)‖+

+‖S(t2, 0)h(un)− S(t1, 0)h(un)‖+ ‖GSfn(t2)−GSfn(t1)‖ < ε,

for all n ∈ N, i.e., the set {yn}n is equicontinuous on J . So we conclude (see (2.10)):

λ({yn}n) = modC({yn}n) = 0 (4.35)

From (4.20), by using (4.30) and (4.35) we deduce νL(Ω) = 02.
Hence, condition (II) of νL-condensity is verified too, therefore ΓR is νL-condensing.
Step 3: Finally we are in the position to apply Theorem 2.5. Hence the multioperator
ΓR has a fixed point in HR, i.e. there exists x ∈ HR such that

x(t) = C(t, 0)g(x) + S(t, 0)h(x) +

∫ t

0

S(t, s)f(s)ds, t ∈ J

where f ∈ S1
F (.,x(.)). Of course, x is a mild solution for (2.6).

5. An application

Now we apply the result established in the preceding section to study the con-
trollability of the following non-autonomous wave equation with initial conditions

∂2w(t,ξ)
∂t2 = ∂2w(t,ξ)

∂ξ2 + b(t)∂w(t,ξ)
∂ξ + f(t, w(t, ξ), u(t, ξ)), t ∈ J

w(t, 0) = w(t, 2π), t ∈ J,
∂w(t,0)
∂ξ = ∂w(t, 2π)

∂ξ , t ∈ J,
w(0, ξ) =

∑m
i=1

2πti
ξi
, ξ ∈ R,

∂w(0,ξ)
∂t =

∑m
i=1

2π
ξi
, ξ ∈ R,

u(t, ξ) ∈ U(t, w(t, ξ)), t ∈ J, ξ ∈ R

(5.1)

where 0 < t1 < ... < ti < ... < tm < a and 0 < ξ1 < ... < ξi < ... < ξm < 2π,
f : J × C× C→ R, b : J → R and U : J × R→ P(R).

First, we fix the Banach space X = L2(T,C), where T is the quotient group
T = R/2πZ of all 2π−periodic 2−integrable functions. As in [8], we will use the
identification between the functions defined on T and the 2π−periodic functions from
R to C. Next, put the Sobolev space

H2(T,C) = {Xx : T→ C : Xx([ξ]) = x(ξ), x : R→ C is 2π − periodic :

∃ x′[0,2π], x
′′
[0,2π] ∈ L

2([0, 2π],C)},
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provided by the norm

‖Xx‖H2(T,C) = ‖x‖L2([0,2π],C) + ‖x′‖L2([0,2π],C) + ‖x′′‖L2([0,2π],C), (5.2)

we consider the operator A0 : D(A0) = H2(T,C)→ L2(T,C) so defined

A0Xx =
d2

dξ
x, Xx ∈ H2(T,C)

which is the infinitesimal generator of a strongly continuous cosine family {C0(t)}t∈R,
where C0(t) : L2(T,C) → L2(T,C), for every t ∈ R (see [8]). Moreover, we fix the
function P : J → L(H1(T,C), L2(T,C)) defined in this way

P (t)Xx = b(t)
dXx

dξ
, t ∈ J, Xx ∈ H1(T,C).

where we assume that the function b : J → R of (5.1) is C1 on J . Now we are in the
position to define the family {A(t) : t ∈ J}, where, for every t ∈ J , A(t) : H2(T,C)→
L2(T,C), is an operator so defined

A(t) = A0 + P (t), t ∈ J. (5.3)

In [7] Henriquez has proved that this family generates a fundamental system
{S(t, s)}t,s∈J , which is compact (see [8], Lemma 4.1).

On the function f we assume that f̃ : J×H2(T,C)×L2(T,C)→ H2(T,C) so defined

f̃(t, x, u)([ξ]) = f(t, x(ξ), u(ξ)), t ∈ J, x ∈ H2(T,C), u ∈ L2(T,C) , [ξ] ∈ T,
(5.4)

satisfies the following properties:
(f1) for every x ∈ H2(T,C), u ∈ L2(T,C), f̃(., x, u) is B-measurable;

(f2) for a.e. t ∈ J , f̃(t, ., .) is continuous;
(f3) there exists k ∈ L1

+(J):

‖f̃(t, x1, u)− f̃(t, x2, u)‖H2([0,2π],C) ≤ k(t)‖x1 − x2‖H2([0,2π],C),

for a.e. t ∈ J, x1, x2 ∈ H2(T,C), u ∈ L2(T,C) ;

Moreover we require that the multimap Ũ : J ×H2(T,C)→ P(L2(T,C)) so defined

Ũ(t, x)([ξ]) = U(t, x(ξ)), t ∈ J, x ∈ H2(T,C), [ξ] ∈ T, (5.5)

satisfies the conditions
(U0) for every t ∈ J , x ∈ H2(T,C), Ũ(t, x) is compact;

(U1) for every x ∈ H2(T,C), Ũ(., x) is measurable;

(U2) for a.e. t ∈ J , Ũ(t, .) is upper semicontinuous;

(U3) Ũ is superpositionally measurable, i.e. for every measurable multimap V :

H2(T,C)→ Pk(L2(T,C)) the multimap Ũ(., V (.)) is measurable;

(U4) f̃(t, x, Ũ(t, x)) is convex, t ∈ J, x ∈ H2(T,C);
(U5) there exists α ∈ L1

+(J) such that

‖f̃(t, x, Ũ(t, x))‖L2([0,2π],C) ≤ α(t)(1 + ‖x‖H2([0,2π],C)),

for a.e. t ∈ J , for all x ∈ H2(T,C);
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(U6) for every t ∈ J , x ∈ H2(T,C) and for any bounded Ω ⊂ H2(T,C), the set

f̃(t, x, Ũ(t,Ω)) is compact in H2(T,C);
Now we introduce the map F : J ×H2(T,C)→ P(H2(T,C)) so defined

F (t, x) = f̃(t, x, Ũ(t, x)), t ∈ J, x ∈ H2(T,C), (5.6)

and the maps g : C(J ;H2(T,C)) → H2(T,C) and h : C(J ;H2(T,C)) → H2(T,C)
respectively defined in the following way

g(x)([ξ]) =

m∑
i=0

2πti
ξi

, [ξ] ∈ T, x ∈ C(J ;H2(T,C)); (5.7)

h(x)([ξ]) =

m∑
i=0

2π

ξi
, [ξ] ∈ T, x ∈ C(J ;H2(T,C)). (5.8)

The previous arguments lead to revise a function w : J × R→ C such that

w(t, .) 2π − periodic, t ∈ J
w(t, .) |[0,2π]∈ L2([0, 2π],C), t ∈ J

as x : J → L2(T,C) so defined

x(t)([ξ]) = w(t, ξ), t ∈ J, [ξ] ∈ T. (5.9)

Hence we can rewrite problem (5.1) in the form
x′′(t) ∈ [x(t)]′′ + b(t)[x(t)]′ + F (t, x(t)), t ∈ J
x(t)([0]) = x(t)([2π]), [x(t)]′([0]) = [x(t)]′([2π]), t ∈ J
x(0) = g(x)

x′(0) = h(x)

(5.10)

First, we note that the conditions (U4) and (U6) imply respectively that the
multimap F (see (5.6)) takes convex and compact values. Moreover, by (U1) we can
say that, for every x ∈ H2(T,C), the multimap Qx : J → P(H2(T,C) × L2(T,C))

defined as Qx(t) = {x} × Ũ(t, x), t ∈ J is measurable. Hence from conditions (f1),

(f2) we have that F (., x) = f̃(., Qx(.)) is measurable. Now by using the classical
Kuratowski Ryll-Nardzewski measurable selection theorem we can conclude that the
hypothesis (F1) is fulfilled. On the other hand, from (U2) we have that, for a.e. t ∈ J ,

the multimap Vt : H2(T,C) → P(H2(T,C) × L2(T,C)), Vt(x) = {x} × Ũ(t, x), x ∈
H2(T,C), is upper semicontinuous and so, taking into account of (f2), Theorem 1.2.8
of [10] implies that (F2) holds. Moreover, by using (U5) we deduce that F has the
property (F3).
Next we prove that the multimap F satisfies the condition (F4). Fixed t ∈ J such
that the property expressed in (f3) holds, we consider the multimap Bt : H2(T,C)×
H2(T,C) → P(H2(T,C)) defined as Bt(x, y) = f̃(t, y, Ũ(t, x)), x, y ∈ H2(T,C).

Then, we fix x, y1, y2 ∈ H2(T,C) and let b1 = f̃(t, y1, u) and b2 = f̃(t, y2, u) ∈
Bt(x, y2), where u ∈ Ũ(t, x). From (f3) there exists k ∈ L1

+(J):

‖b2 − b1‖H2([0,2π],C) = ‖f̃(t, y2, u)− f̃(t, y1, u)‖H2([0,2π],C)

≤ k(t)‖y2 − y1‖H2([0,2π],C),
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by which we can deduce that the multimap Bt(x, .) is k(t)-Lipsichitz with respect to
the Haudorff metric. Moreover we also can note that (U6) allows to say that, for every

bounded subset Ω of H2(T,C), the set Bt(Ω × {y}) = f̃(t, y, Ũ(t, Ω)) is compact
in H2(T,C). Therefore all hypotheses of Proposition 2.2.2 of [10] are satisfied, hence
we have

η(F (t, Ω)) = η(f̃(t, Ω× Ũ(t,Ω)) = η(Bt(Ω× Ω)) ≤ k(t)η(Ω)

where η is the Hausdorff MNC in H2(T,C).
Then we can conclude that (F4) holds.
Finally, obviously the maps g and h have the properties (gh1) and (gh2) required
in our existence theorem. Then from Theorem 4.1 we can deduce that there exists a
continuous function x̂ : J → H2(T,C) that is a mild solution for (5.10), i.e.

x̂(t) = − ∂

∂s
S(t, s) |s=0 g(u) + S(t, 0)h(u) +

∫ t

0

S(t, ξ)q(ξ)dξ, t ∈ J, (5.11)

where q ∈ S1
F (.,x̂(.)) = {p ∈ L1(J ;X) : p(t) ∈ F (t, x̂(t)) a.e. t ∈ J}.

Now, since Ũ is superpositionally B-measurable (see (U3)), the multimap Q : J →
P(H2(T,C) × L2(T,C)) so defined Q(t) = {(x̂(t), Ũ(t, x̂(t))}, t ∈ J, having com-
pact values (see (U0)), is strongly measurable. Moreover, we recall that the mul-
timap F takes compact values in H2(T,C) and that it has the properties (F1)
and (F2). Hence, we are in the position to apply the Filippov implicit function
lemma in the version furnished in ([15], Corollary 1.15). Then we can say that
there exists a Bochner-measurable selection û : J → L2(T,C) of the multimap

F (., Q(.)) = f̃(., x̂(.), U(t, x̂(.))). At this point, by considering the following func-
tions w : J × R→ C and u : J × R→ C so defined

w(t, ξ) = x̂(t)([ξ]), t ∈ J, ξ ∈ R
u(t, ξ) = û(t)([ξ]), t ∈ J, ξ ∈ R,

we can conclude that {w, u} is an admissible mild-pair for the problem (5.1).
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1. Results

Consider the complex n-dimensional space Cn endowed with the indefinite inner
product

[x, y]J = y∗Jx, x, y ∈ Cn,

where J = Ir ⊕−In−r, and corresponding J-norm

[x, x]J = |x1|2 + . . .+ |xr|2 − |xr+1|2 − . . .− |xn|2.
In the sequel we shall assume that 0 < r < n, except where otherwise stated.

The J-adjoint of A ∈ Cn×n is defined and denoted as

[A#x, x] = [x,Ax]

or, equivalently, A# := JA∗J , [4]. The matrix A is said to be J-Hermitian if A# = A,
and is J-positive definite (semi-definite) if JA is positive definite (semi-definite). This
kind of matrices appears on Quantum Physics and in Symplectic Geometry [10]. An
arbitrary matrix A ∈ Cn×n may be uniquely written in the form

A = ReJA+ iImJA,

where
ReJA = (A+A#)/2, ImJA = (A−A#)/(2i)

are J-Hermitian. This is the so-called J-Cartesian decomposition of A. J-Hermitian
matrices share properties with Hermitian matrices, but they also have important
differences. For instance, they have real and complex eigenvalues, these occurring in
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conjugate pairs. Nevertheless, the eigenvalues of a J-positive matrix are all real, being
r positive and n− r negative, according to the J-norm of the associated eigenvectors
being positive or negative. A matrix A is said to be J-accretive (resp. J-dissipative)

if JReJA (resp. JImJA) is positive definite. If both matrices JReJA and JImJA are
positive definite the matrix is said to be J-accretive dissipative. We are interested in
obtaining determinantal inequalities for J-accretive dissipative matrices. Determinan-
tal inequalities have deserved the attention of researchers, [2], [3], [5]-[9], [11].

Throughout, we shall be concerned with the set

DJ(A,C) = {det(A+ V CV #) : V ∈ U(r, n− r)},

where A,C ∈ Cn×n are J-unitarily diagonalizable with prescribed eigenvalues and
U(r, n− r) is the group of J-unitary transformations in Cn (V is J-unitary if V V # =
I), [12]. The so-called J-unitary group is connected, nevertheless it is not compact. As
a consequence, DJ(A,C) is connected. This set is invariant under the transformation
C → UCU# for every J-unitary matrix U , and, for short, DJ(A,C) is said to be
J-unitarily invariant.

In the sequel we use the following notation. By Sn we denote the symmetric
group of degree n, and we shall also consider

Srn = {σ ∈ Sn : σ(j) = j, j = r + 1, . . . , n}, (1.1)

Ŝrn = {σ ∈ Sn : σ(j) = j, j = 1, . . . , r}. (1.2)

Let αj , γj ∈ C, j = 1, . . . , n denote the eigenvalues of A and C, respectively. The
r!(n− r)! points

zσ = zξτ =

r∏
j=1

(αj + γξ(j))

n∏
j=r+1

(αj + γτ(j)), ξ ∈ Srn, τ ∈ Ŝrn. (1.3)

belong to DJ(A,C).

The purpose of this note, which is in the continuation of [1], is to establish the
following results.

Theorem 1.1. Let J = Ir⊕−In−r, and A and C be J- positive matrices with prescribed
real eigenvalues

α1 ≥ . . . ≥ αr > 0 > αr+1 ≥ . . . ≥ αn (1.4)

and

γ1 ≥ . . . ≥ γr > 0 > γr+1 ≥ . . . ≥ γn, (1.5)

respectively. Then

|det(A+ iC)| ≥
(
(α2

1 + γ21) . . . (α2
n + γ2n)

)1/2
.

Corollary 1.2. Let J = Ir⊕−In−r, and B be a J-accretive dissipative matrix. Assume
that the eigenvalues of ReJB and ImJB satisfy (1.4) and (1.5), respectively. Then,

|det(B)| ≥
(
(α2

1 + γ21) . . . (α2
n + γ2n)

)1/2
.
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Example 1.3. In order to illustrate the necessity of A and C to be J-positive matrices
in Theorem 1.1, let A = diag(α1, α2), C = diag(γ1, γ2), with α1 = γ1 = 1, α2 = 3/2,
γ2 = −2, and J = diag(1,−1). We find (α2

1 + γ21)(α2
2 + γ22) = 27/2. However, the

minimum of |det(A+ iV BV #|2, for V ranging over the J-unitary group , is 49/4.

Theorem 1.4. Let J = Ir⊕−In−r, and A and C be J-unitary matrices with prescribed
eigenvalues

α1, . . . , αr, αr+1, . . . , αn

and

γ1 . . . , γr, γr+1, . . . .γn,

respectively. Assume moreover that

=α1

2(1 + <α1)
≤ . . . ≤ =αr

2(1 + <αr)
< 0 <

=αr+1

2(1 + <αr+1)
≤ . . . ≤ =αn

2(1 + <αn)
(1.6)

and

=γ1
2(1−<γ1)

≤ . . . ≤ =γr
2(1−<γr)

< 0 <
=γr+1

2(1−<γr+1)
≤ . . . ≤ =γn

2(1−<γn)
. (1.7)

Then

DJ(A,C) = (α1 + γ1) . . . (αn + γn)[1,+∞[ .

We shall present the proofs of the above results in the next section.

2. Proofs

Lemma 2.1. Let g : U(r, n− r)→ R be the real valued function defined by

g(U) = det(I +A−1
0 UC0JU

∗JA−1
0 UC0JU

∗J),

where A0 = diag(α1, . . . , αn), C0 = diag(γ1, . . . , γn) and αi, γj satisfy (1.4) and (1.5).
Then the set

{U ∈ U(r, n− r) : g(U) ≤ a},
where

a >

n∏
j=1

(
1 +

γ2j
α2
j

)
,

is compact.

Proof. Notice that JA0 > 0, JC0 > 0, so we may write

g(U) = det(I +WW ∗WW ∗),

where

W = (JA0)−1/2U(JC0)1/2.

The condition g(U) ≤ a implies that W is bounded, and is satisfied if we require that
WW ∗ ≤ κI, for κ > 0 such that (1 + κ2)n ≤ a. Thus, also U is bounded. The result
follows by Heine-Borel Theorem. �
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Proof of Theorem 1.1

Under the hypothesis, A is nonsingular. Since the determinant is J-unitarily
invariant and C is J-unitarily diagonalizable, we may consider C = diag(γ1, . . . , γn).
We observe that

|det(A+iC)|2 = det ((A+ iC)(A− iC)) =

(
n∏
i=1

αi

)2

det
(
(I + iA−1C)(I − iA−1C)

)
Clearly,

det
(
(I + iA−1C)(I − iA−1C)

)
= det(I +A−1CA−1C).

The set of values attained by |det(A+ iC)|2 is an unbounded connected subset of the
positive real line. In order to prove the unboundedness, let us consider the J-unitary
matrix V obtained from the identity matrix I through the replacement of the entries
(r, r), (r+ 1, r+ 1) by cosh u, and the replacement of the entries (r, r+ 1), (r+ 1, r)
by sinh u, u ∈ R. We may assume that A0 = diag(α1, . . . , αn). A simple computation
shows that

|det(A0 + iV CV #)|2 =

n∏
j=1

(α2
j + γ2j )

− 2(αr − αr+1)(γr − γr+1)(αr+1γr + αrγr+1)(sinh u)2

+ (αr − αr+1)2(γr − γr+1)2(sinh u)4.

Thus, the set of values attained by |det(A0 + iV CV #)| is given by

[(α2
1 + γ21)1/2 . . . (α2

n + γ2n)1/2,+∞[ .

As a consequence of Lemma 2.1, the set of values attained by |det(A+ iC)|2 is closed
and a half-ray in the positive real line. So, there exist matrices A,C such that the
endpoint of the half-ray is given by |det(A+iC)|2. Let us assume that the endpoint of
this half-ray is attained at |det(A+iC)|2. We prove that A commutes with C. Indeed,
for ε ∈ R and an arbitrary J-Hermitian X, let us consider the J-unitary matrix given
as

eiX = i+ iεX − ε2

2
X2 + . . . .

We obtain by some computations

f(ε) := det(I +A−1e−iεXCeiεXA−1e−iεXCeiεX)

= det(I +A−1CA−1C − iε(A−1[X,C]A−1C +A−1CA−1[X,C]) +O(ε2)

= det(I +A−1CA−1C)

×det
(
I − iε(I +A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C])

)
+O(ε2)

= det(I +A−1CA−1C)

× exp
(
−iεtr((I+A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C]))

)
+O(ε2),
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where [X,Y ] = XY − Y X denotes the commutator of the matrices X and Y . The
function f(ε) attains its minimum at det(I +A−1CA−1C), if

df

dε

∣∣∣∣
ε=0

= 0.

Then we must have

tr
(
(I +A−1CA−1C)−1(A−1[X,C]A−1C +A−1CA−1[X,C])

)
= 0,

for every J-Hermitian X. That is

[C, (A−1C(I +A−1CA−1C)−1A−1 + (I +A−1CA−1C)−1A−1CA−1)] = 0,

and so, performing some computations, we find

[C, (A−1C(I +A−1CA−1C)−1A−1C + (I +A−1CA−1C)−1A−1CA−1C)]

= 2

[
C,

A−1CA−1C

I +A−1CA−1C

]
= 2

[
C, I − I

I +A−1CA−1C

]
= −2

[
C,

I

I +A−1CA−1C

]
=

2I

I + (A−1C)2
[
C, (A−1C)2

] I

I + (A−1C)2
= 0.

Thus
[C, (A−1C)2] = 0.

Assume that C, which is in diagonal form, has distinct eigenvalues. Then (A−1C)2 is
a diagonal matrix as well as ((JA)−1JC)2. Furthermore, ((JC)1/2(JA)−1(JC)1/2)2

is diagonal. Since (JC)1/2(JA)−1(JC)1/2 is positive definite, it is also diagonal, and
so are (JA)−1JC and A−1C . Henceforth, A is also a diagonal matrix and commutes
with C. (If C has multiple eigenvalues we can apply a perturbative technique and use
a continuity argument).

For σ ∈ Sn, such that σ(1), . . . , σ(r) ≤ r, we have

(α2
1 + γ2σ(1)) . . . (α

2
n + γ2σ(n)) ≥ (α2

1 + γ21) . . . (α2
n + γ2n).

Thus, the result follows. �
In the proof of Theorem 1.4, the following lemma is used (cf. [1, Theorem 1.1]).

Lemma 2.2. Let B,D be J-positive matrices with eigenvalues satisfying

β1 ≥ . . . ≥ βr > 0 > βr+1 ≥ . . . > βn,

and
δ1 ≥ . . . ≥ δr > 0 > δr+1 ≥ . . . > δn.

Then
DJ(B,D) = {(β1 + δ1) . . . (βn + δn) t : t ≥ 1} .

Proof of Theorem 1.4
Since, by hypothesis, A,C, are J-unitary matrices, considering convenient

Möbius transformations, it follows that

B =
i

2

A− I
A+ I

, D = − i
2

C + I

C − I
(2.1)
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are J-Hermitian matrices. Since

B +D = −i(A+ I)−1(C +A)(C − I)−1,

we obtain

det(B +D) = in
det(A+ C)∏n

j=1(1 + αj)(1− γj)
.

Assume that the eigenvalues of B and D are

σ(B) = {β1, . . . , βn}, σ(D) = {δ1, . . . , δn},

respectively. From (2.1) we get,

βj = − =αj
2(1 + <αj)

, δj = − =γj
2(1−<γj)

.

From (1.6) and (1.7) we conclude that

β1 ≥ . . . ≥ βr > 0 > βr+1 ≥ . . . > βn,

and

δ1 ≥ . . . ≥ δr > 0 > δr+1 ≥ . . . > δn,

so that the matrices B and D are J-positive. From Lemma 2.2 it follows that

DJ(B,D) = (β1 + δ1) . . . (βn + δn)[1,+∞[ .

Thus, DJ(A,C) is a half-line with endpoint at

(α1 + γ1) . . . (αn + γn),

or, more precisely,

DJ(A,C) = {(α1 + γ1) . . . (αn + γn) t : t ≥ 1}. �
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Ball convergence of a stable fourth-order
family for solving nonlinear systems under
weak conditions

Ioannis K. Argyros, Munish Kansal and Vinay Kanwar

Abstract. We present a local convergence analysis of fourth-order methods in
order to approximate a locally unique solution of a nonlinear equation in Banach
space setting. Earlier studies have shown convergence using Taylor expansions and
hypotheses reaching up to the fifth derivative although only the first derivative
appears in these methods. We only show convergence using hypotheses on the
first derivative. We also provide computable: error bounds, radii of convergence
as well as uniqueness of the solution with results based on Lipschitz constants not
given in earlier studies. The computational order of convergence is also used to
determine the order of convergence. Finally, numerical examples are also provided
to show that our results apply to solve equations in cases where earlier studies
cannot apply.

Mathematics Subject Classification (2010): 65D10, 65D99.

Keywords: Local convergence, nonlinear equation, Lipschitz condition, Fréchet
derivative.

1. Introduction

Let B1, B2 be Banach spaces and D be a convex subset of B1. Let also L(B1, B2)
denote the space of bounded linear operators from B1 into B2.

In the present paper, we deal with the problem of approximating a locally unique
solution x∗ of the equation

F (x) = 0, (1.1)

where F : D ⊆ B1 → B2 is a Fréchet-differentiable operator.
Numerous problems can be written in the form of (1.1) using Mathematical

Modelling [3, 5, 8, 9, 12, 13, 18, 19, 22, 26, 28, 29, 30]. Analytical methods for solving
such problems are almost non-existent and therefore, it is only possible to obtain
approximate solutions by relying on numerical methods based on iterative procedure
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[1-24]. In particular, we present the local convergence of the methods studied in [14]
and defined for each n = 0, 1, 2, 3, . . . by

yn = xn − F ′(xn)−1F (xn),

zn = yn −
1

β
F ′(xn)−1F (yn),

xn+1 = zn − F ′(xn)−1 (αF (yn) + βF (zn)) ,

(1.2)

where α = 2− 1
β − β, β ∈ R\{0} and α ∈ R.

Method (1.2) has fourth-order of convergence, except for β = 1/5. For this partic-
ular value, method attains fifth-order of convergence. The fourth order of convergence
was based on Taylor expansions and hypotheses reaching up to the fifth derivative of
function F although only the first derivative appears in these methods. Moreover, no
computable error bounds on the distances ‖xn − x∗‖ or uniqueness results or com-
puatble radius of convergence were given. These problems reduce the applicability of
these methods.

As a motivational example, define function F on D = [−12 ,
5
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0,

0, x = 0.

Choose x∗ = 1. We have that

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, the results in [14] cannot be used to solve the equation F (x) = 0, since function
F ′′′ is unbounded on D.

In the present study, we only use hypotheses on the first derivative and find
error bounds, radii of convergence and uniqueness results based on Lipschitz con-
stants. Moreover, since we avoid derivatives of order higher than one, we compute the
computational order of convergence which does not require the knowledge of x∗ or
the existence of high order derivatives. This way we expand the applicability of these
methods.

The rest of the paper is organized as follows: The local convergence of both meth-
ods is given in Section 2, whereas numerical examples are provided in the concluding
Section 3.

2. Local convergence

We present the local convergence analysis of method (1.2) in this section.

The local convergence analysis is based on some scalar functions and parameters.
Let L0 > 0, L > 0, M ≥ 1, β ∈ R\{0} and α ∈ R be given parameters. Define function



Ball convergence of a stable fourth-order family 129

g1, g2, h2, g3 and h3 on the interval [0, 1
L0

) by

g1(t) =
Lt

2(1− L0t)
,

g2(t) =
(

1 +
M

|β|(1− L0t)

)
g1(t),

h2(t) =g2(t)− 1,

g3(t) =g2(t) +
M

1− L0t
(|α|g1(t) + |β|g2(t)) ,

h3(t) =g3(t)− 1

and parameter rA by

rA =
2

2L0 + L
.

We have that g1(rA) = 1 and 0 ≤ g1(t) < 1 for each t ∈ [0, rA).
We also get that h2(0) = h3(t) = −1 < 0 and h2(t) → +∞, h3(t) → +∞ as

t → 1−

L0
. It follows from intermediate value theorem that functions h2 and h3 have

zeros in the interval (0, 1
L0

). Denote by r2 and r3 the smallest such zeros.
Define the convergence radius r by

r = min{rA, r2, r3}. (2.1)

Then, we have that

0 < r ≤ rA (2.2)

and
0 ≤ gi(t) < 1, i = 1, 2, 3. (2.3)

Let U(v, ρ) and Ū(v, ρ) stand, respectively for the open and closed balls in B1 with
center v ∈ B1 and of radius ρ > 0. Next, we present the local convergence analysis of
method (1.2) using the preceding notation.

Theorem 2.1. Let F : D ⊆ B1 → B2 be a Fréchet-differentiable operator. Suppose
that there exist x∗ ∈ D and L0 > 0 such that for each x ∈ D

F (x∗) = 0, F ′(x∗)−1 ∈ L(B2, B1), (2.4)

and

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖. (2.5)

Moreover, suppose that there exist constants L > 0 and M ≥ 1 such that for each

x, y ∈ D0 := D ∩ U
(
x∗, 1

L0

)
‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖, (2.6)

‖F ′(x∗)−1F ′(x)‖ ≤M (2.7)

and

Ū(x∗, r) ⊆ D, (2.8)

where the radius of convergence r is defined by (2.1). Then, the sequence {xn} gener-
ated for x0 ∈ U(x∗, r)-{x∗} by method (1.2) is well defined, remains in U(x∗, r) and
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converges to the solution x∗ of equation F (x) = 0. Moreover, the following estimates
hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (2.9)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (2.10)

and

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.11)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

), the limit

point x∗ is the only solution of F (x) = 0 in D1 := U(x∗, T ) ∩D.

Proof. We shall show estimates (2.9)–(2.11) using mathematical induction. By hy-
pothesis x0 ∈ U(x∗, r)-{x∗}, (2.1), (2.4) and (2.5), we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (2.12)

It follows from (2.12) and the Banach lemma on invertible functions [7, 26, 28, 30]
that F ′(x0)−1 ∈ L(B2, B1) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖
. (2.13)

Hence, y0, z0, x1 are well defined by method (1.2) for n = 0. We can have that

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0). (2.14)

Using (2.1), (2.2), (2.3) (for i = 1), (2.6), (2.13) and (2.14), we obtain in turn that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F (x0)‖ ≤ ‖F ′(x0)−1F ′(x∗)‖

‖
∫ 1

0

F ′(x∗)−1
(
F ′(x∗ + θ(x0 − x∗))− F ′(x0)

)
(x0 − x∗)dθ‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.15)

which shows (2.9) for n = 0 and y0 ∈ U(x∗, r). We also have that

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (2.16)

Notice that ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ < r, so x∗ + θ(x0 − x∗) ∈ U(x∗, r).
Then, by (2.7) and (2.16), we get that

‖F ′(x∗)−1F (x0)‖ ≤M‖x0 − x∗‖. (2.17)

In view of (2.1), (2.2), (2.3) (for i = 2), (2.13), (2.15) and (2.17) (for x0 = y0), we get
that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+
M‖y0 − x∗‖

|β|(1− L0‖x0 − x∗‖)

≤
(

1 +
M

|β|(1− L0‖x0 − x∗‖)

)
g1(‖x0 − x∗‖))‖x0 − x∗‖

= g2(‖x0 − x∗‖))‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.18)
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which shows (2.10) for n = 0 and z0 ∈ U(x∗, r). By (2.1), (2.2), (2.3) (for i = 3),
(2.13), (2.15) and (2.17) (for x0 = y0), we get that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+
M

1− L0(‖x0 − x∗‖)
(
|α|‖y0 − x∗‖+ |β|‖z0 − x∗‖

)
≤
[
g2(‖x0 − x∗‖) +

M

1− L0(‖x0 − x∗‖)
(
|α|g1(‖x0 − x∗‖)

+ |β|g2(‖x0 − x∗‖)
)]
‖x0 − x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(2.19)

which shows (2.11) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, x1 by
xn, yn, xn+1 in the preceding estimates, we complete the induction for estimates (2.9)–
(2.11). Then, in view of the estimate

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖ < r, c = g3(‖x0 − x∗‖) ∈ [0, 1),

we deduce that lim
n→∞

xn = x∗ and xn+1 ∈ U(x∗, r). Finally, to show the uniqueness

part, let y∗ ∈ D1 with F (y∗) = 0. Define

Q =

∫ 1

0

F ′(x∗ + θ(y∗ − x∗)dθ.

Using (2.5), we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ L0

2
‖x∗ − y∗‖ ≤ L0

2
T < 1. (2.20)

Hence, Q−1 ∈ L(B2, B1). Then, by the identity 0 = F (y∗)− F (x∗) = Q(y∗ − x∗), we
conclude that x∗ = y∗. �

Remark 2.2. 1. The condition (2.7) can be dropped, since this condition follows
from (2.5), if we set

M(t) = 1 + L0t

or

M(t) = M = 2,

since t ∈ [0, 1
L0

).
2. The results obtained here can also be used for operators F satisfying autonomous

differential equations [5, 7] of the form:

F ′(x) = P (F (x)),

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0),
we can apply the results without actually knowing x∗. For example, let
F (x) = ex − 1. Then, we can choose P (x) = x+ 1.

3. The radius r̄A = 2
2L0+L1

was shown by us to be the convergence radius of

Newton’s method [5]

xn+1 = xn − F ′(xn)−1F (xn), for each n = 0, 1, 2, . . . (2.21)
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provided the conditions (2.4)–(2.6) hold on D. Let L1 be the corresponding to
L constant. It follows from the definition of r that the convergence radius r of
the method (1.2) cannot be larger than the convergence radius r̄A of the second
order Newton’s method (3.3). As already noted in [5], r̄A is at least as large as
the convergence ball given by Rheinboldt [28]

rR =
2

3L1
.

In particular, for L0 < L1, we have that

rR < r1

and
rR
r̄A
→ 1

3
as

L0

L1
→ 0.

That is our convergence ball r̄A is atmost three times larger than Rheinboldt’s.
The same value of rR was given by Traub [30]. Notice that L ≤ L1, since D0 ⊆ D.
Therefore, r̄A ≤ rA.

4. It is worth noticing that method (1.2) is not changing when we use the conditions
of Theorem 2.1 instead of stronger conditions used in [14]. Moreover, we can
compute the computational order of convergence (COC) defined by

ξ∗ = sup
ln
(
‖xn+1−x∗‖
‖xn−x∗‖

)
ln
(
‖xn−x∗‖
‖xn−1−x∗‖

) ,
or the approximate computational order of convergence (ACOC) defined by

ξ = sup
ln
(
‖xn+1−xn‖
‖xn−xn−1‖

)
ln
(
‖xn−xn−1‖
‖xn−1−xn−2‖

) .
This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates using estimates higher than the first Fréchet
derivative of operator F. Notice also that the computation of ξ does not require
knowledge of x∗.

3. Numerical examples

We present numerical examples in this section.

Example 3.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on
D for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet derivative is given by

F ′(w) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1


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We have that L0 = e − 1, L = e
1

L0 = 1.789572397, M = e
1

L0 = 1.7896 and L1 = e.
The parameters using method (1.2) are:

rA = 0.382692, r2 = 0.145318, r3 = 0.0826175, r = 0.0826175, r̄A = 0.324947.

Example 3.2. Let B1 = B2 = C[0, 1], the space of continuous functions defined on
[0, 1] and be equipped with the max norm. Let D = Ū(0, 1) and B(x) = F ′′(x) for
each x ∈ D. Define function F on D by

F (φ)(x) = φ(x)− 5

∫ 1

0

xθφ(θ)3dθ. (3.1)

We have that

F ′(φ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθφ(θ)2ξ(θ)dθ, for each ξ ∈ D. (3.2)

Then, we get that x∗ = 0, L0 = 7.5, L1 = 15, L = 15,M = 2. The parameters using
method (1.2) are:

rA = 0.0666667, r2 = 0.0198959, r3 = 0.0101189, r = 0.0101189, r̄A = 0.0666667.

Example 3.3. Let B1 = B2 = R, D = Ū(0, 1). Define F on D by

F (x) = ex − 1.

Then, F ′(x) = ex and ξ = 0. We get that L0 = e−1 < L = e
1

L0 < L1 = e and M = 2.
Then, for method (1.2) the parameters are:

rA = 0.382692, r2 = 0.13708, r3 = 0.0742433,

r = 0.0742433, r̄A = 0.324947, ξ = 3.8732.

Example 3.4. Let B1 = B2 = R and define function F on D = R by

F (x) = βx− γ sin (x)− δ, (3.3)

where β, γ, δ are given real numbers. Suppose that there exists a solution ξ of
F (x) = 0 with F ′(ξ) 6= 0. Then, we have

L1 = L0 = L =
|γ|

|β − γ cos ξ|
, M =

|γ|+ |β|
|β − γ cos ξ|

.

Then one can find the convergence radii for different values of β, γ and δ. As a specific
example, let us consider Kepler’s equation (3.3) with β = 1, 0 ≤ γ < 1 and 0 ≤ δ ≤ π.
A numerical study was presented in [15] for different values of γ and δ. Let us take
γ = 0.9 and δ = 0.1. Then the solution is given by x∗ = 0.6308435.
Hence, for method (1.2) the parameters are:

rA = 0.202387, r2 = 0.032669, r3 = 0.00804637,

r = 0.00804637, r̄A = 0.202387, ξ = 4.0398.
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Example 3.5. Returning back to the motivational example at the introduction of this
paper, we have that L = L0 = 146.6629073, M = 2, L1 = L. The parameters using
method (1.2) are:

rA = 0.00689682, r2 = 0.0033639187, r3 = 0.00230533728667086,

r = 0.00230533728667086, r̄A = 0.00689682 and ξ = 3.4324.
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Book reviews

Aram V. Arutyunov and Valeri Obukhovskii; Convex and set-valued analysis. Selected
topics, De Gruyter Graduate, De Gruyter, Berlin 2017, viii+201 p., ISBN: 978-3-11-
046028-5/pbk; 978-3-11-046030-8/ebook.

The book, consisting of two relatively independent parts, is based on courses
taught by the first author at the Moscow State University and by the second one at
the Voronezh University. A preliminary Russian version, written by the first author,
was published in 2014 with Fizmatlit Editors, Moscow, but the present book contains
many additions and extensions.

The first part of the book is devoted to convex analysis - convex sets, separation
of convex sets, convex functions, continuity and differentiability properties of convex
functions, the Young-Fenchel conjugate, convex cones. Although, for more clarity and
accessibility, the presentation is done, in general, in the finite dimensional Euclidean
case, some topics are treated in a more general context - the separation of convex
sets in a normed space, the existence of some positive functionals on normed spaces
ordered by closed convex cones, and the Young-Fenchel conjugate in a Hilbert space.

The second part is devoted to set-valued analysis. After a detailed introduction
to Hausdorff metric and its essential properties, one passes to the study of continu-
ity (upper and lower) of set-valued maps. Measurable set-valued maps and measur-
able selections, with applications to set-valued superposition operators (satisfying a
Carathéodori-type condition), are included as well. An important part of the book is
devoted to fixed point and coincidence point theorems for set-valued maps (mainly),
with applications to differential inclusions. Several nice results of the authors, involv-
ing metric regularity and covering maps theory, are presented. A proof of the Brouwer
fixed point theorem based on the degree theory for single-valued maps is given, while
the degree theory for set-valued maps is applied to fixed point results for this kind of
maps.

Numerous examples and exercises complete the main text. The prerequisites are
minimal: basic topology, some linear algebra and rudiments of functional analysis.

Written by two experts in these areas and based on their teaching experience, the
book contains a clear and accessible introduction to convex and set-valued analysis.
It can be used for courses on these topics or for self-study.

Adrian Petruşel
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Vidyadhar S. Mandrekar; Weak convergence of stochastic processes. With applica-
tions to statistical limit theorems, De Gruyter Graduate, De Gruyter, Berlin 2016,
vi+141 p., ISBN: 978-3-11-047542-5/pbk; 978-3-11-047631-6/ebook).

The book is devoted to a detailed study of weak convergence in probability
theory with applications to Brownian motion, inference in statistics and convergence
in martingale theory.

As the first chapter contains only the Introduction, the effective presentation
starts in Ch. 2, Weak convergence in metric spaces, with the introduction of cylin-
drical measures as a tool for the study of Brownian motion. Sections 2.10 and 2.11
of this chapter are concerned with the weak convergence of probability measures on
complete separable metric spaces (Polish spaces) - Portmanteau Theorem, tightness
and Prokhorov’s compactness criterium. It is worth to mention that extensions of
these results to non-separable metric spaces are given in Ch. 6, Empirical processes,
where, with a suitable definition of the weak convergence of nets of random variables,
one obtains analogs of the results from the separable case - Portmanteau Theorem,
tightness, asymptotic tightness and compactness.

Ch. 3, Weak convergence on C[0, 1] and D[0, 1], is dealing with the distribu-
tional counterpart of weak convergence. The techniques developed in Sections 2.10
and 2.11 are applied to the space C[0, 1], one introduces the Skorokhod topology and
the Skorokhod metric on the spaces D[0, T ] and D[0,∞) of functions having only
discontinuities of the first kind. Compact sets in C[0, 1] and D[0, 1] are characterized
- Arzela-Ascoli in the first case and in terms of tightness in the second one. The
chapter ends with Aldous’ tightness criterium, characterizing compactness in terms
of stopping times.

Chapters 4. Central limit theorem for semi-martingales and applications, and 5.
Central limit theorems for dependent variables, are devoted to applications, as, e.g.,
statistical limit theorems for censored data that arise in clinical trials.

Written by an expert in probability theory and stochastic processes, the book
succeeds to present, in a relatively small number of pages, some fundamental results
on weak convergence in probability theory and stochastic process and applications.

Hannelore Lisei
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