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Jenő Szirmai, Triangle angle sums related to translation curves
in Sol geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Dilshod M. Akhmedov and Kholmat M. Shadimetov,
Optimal quadrature formulas for approximate solution of
the first kind singular integral equation with Cauchy kernel . . . . . . . . . . . . . . . 633

Aziza Bachmar and Souraya Boutechebak, A dynamic problem
with wear involving electro-elastic-viscoplastic materials with
damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .653

Marcel Bogdan, Erratum to the paper Bogdan, M.,
”Some comments on a linear programming problem” . . . . . . . . . . . . . . . . . . . . . . 667

Book reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
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Fekete-Szegő inequalities for certain subclass
of analytic functions associated with
quasi-subordination

Shashi Kant and Prem Pratap Vyas

Abstract. In this present investigation, we introduce a certain subclass Sq(λ, γ, h)
of analytic functions which is specify in terms of a quasi-subordination. Sharp
bounds of the Fekete-Szegő coefficient for functions belonging to the class
Sq(λ, γ, h) are obtained. The results presented give improved versions for the
classes involving the quasi-subordination and majorization.

Mathematics Subject Classification (2010): 30C45.

Keywords: Univalent functions, subordination, quasi-subordination, Fekete-Szegő
coefficients.

1. Introduction and definitions

Let A denote the family of normalized functions of the form:

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}.
A function f in A is said to be univalent in U if f is one to one in U. As usual, we
denote by S the subclass of A consisting of univalent functions in U. Let g and f be
two analytic functions in U then function g is said to be subordinate to f if there
exists an analytic function w in the unit disk U with w(0) = 0 and |w(z)| < 1 such
that

g(z) = f(w(z)) (z ∈ U).

Received 14 November 2019; Accepted 17 January 2020.
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We denote this subordination by g ≺ f .
In particular, if the f is univalent in U, the above subordination is equivalent to

g(0) = f(0) and f(U) ⊂ g(U).

Further, [14] function g is said to be quasi-subordinate to f in the unit disk U if there
exist the functions w (with constant coefficient zero) and φ which are analytic and
bounded by one in the unit disk U such that

g(z) = φ(z)f(w(z))

and this is equivalent to

g(z)

φ(z)
≺ f(z) (z ∈ U).

We denote this quasi-subordination by

g(z) ≺q f(z) (z ∈ U).

It is observed that if φ(z) = 1 (z ∈ U), then the quasi-subordination ≺q become
the usual subordination ≺, and for the function w(z) = z (z ∈ U), the quasi-
subordination ≺q become the majorization ’�’. In this case:

g(z) ≺q f(z) ⇒ g(z) = φ(z)f(w(z)) ⇒ g(z)� f(z), (z ∈ U).

The concept of majorization is due to MacGregor [8].
In geometric function theory, study a functional made up of combinations of the
coefficients of the original function is a typical problem. Initially, a sharp bound of
the functional |a3 − νa22| for univalent functions f ∈ A of the form with real ν was
obtained by Fekete and Szegő [3] in 1933. Since then, the problem of finding the sharp
bounds for this functional |a3 − νa22| of any compact family of functions f ∈ A with
any complex number ν is generally known as the classical Fekete-Szegő problem or
inequality. Fekete-Szegő problem for several subclasses of A have been studied by
many authors (see [1], [2], [4], [12], [13], [15], [17], [18]).

Throughout this paper it is assumed that functions φ and h are analytic in U.
Also let

φ(z) = A0 +A1z +A2z
2 + · · · (|φ(z)| ≤ 1, z ∈ U) (1.2)

and

h(z) = 1 +B1z +B2z
2 + · · · (B1 ∈ R+). (1.3)

Motivated by earlier works in ([5],[6],[11],[16]) on quasi-subordination, we introduce
here the following subclass of analytic functions:

Definition 1.1. For 0 ≤ λ ≤ 1 and γ ∈ C\{0}, a function f ∈ A given by (1.1) is said
to be in the class Sq(λ, γ, h), if the following condition are satisfied :

1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)
≺q (h(z)− 1), (1.4)

where h is given by (1.3) and z ∈ U.
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It follows that a function f is in the class Sq(λ, γ, h) if and only if there exists an
analytic function φ with |φ(z)| ≤ 1, in U such that

1
γ

(
zf ′(z)

(1−λ)z+λf(z) − 1
)

φ(z)
≺ (h(z)− 1)

where h is given by (1.3) and z ∈ U.
If we set φ(z) ≡ 1 (z ∈ U), then the class Sq(λ, γ, h) is denoted by S(λ, γ, h) satisfying
the condition that

1 +
1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)
≺ h(z) (z ∈ U).

In the present paper, we find sharp bounds on the Fekete-Szegő functional for func-
tions belonging in the class Sq(λ, γ, h). Several known and new consequences of these
results are also pointed out. In order to derive our main results, we have to recall here
the following well-known lemma:
Let Ω be class of analytic functions of the form

w(z) = w1z + w2z
2 + ... (1.5)

in the unit disk U satisfying the condition |w(z)| < 1.

Lemma 1.1. ([7], p. 10) If w(z) ∈ Ω, then for any complex number ν:

|w1| ≤ 1, |w2 − νw2
1| ≤ 1 + (|ν| − 1)|w2

1| ≤ max{1, |ν|}.

The result is sharp for the functions w(z) = z or w(z) = z2.

2. Main results

Theorem 2.1. Let 0 ≤ λ ≤ 1 and γ ∈ C\{0}. If f ∈ A of the form (1.1) belonging to
the class Sq(λ, γ, h), then

|a2| ≤
|γ|B1

2− λ
(2.1)

and for any ν ∈ C

|a3 − νa22| ≤
|γ|B1

3− λ
max{1, |B2

B1
−KB1|}, (2.2)

where

K = γ
(ν(3− λ)

(2− λ)2
− λ

2− λ

)
. (2.3)

The results are sharp.

Proof. Let f ∈ Sq(λ, γ, h). In view of Definition1.1, there exist then Schwarz functions
w and an analytic function φ such that

1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

= φ(z)(h(w(z))− 1) (z ∈ U). (2.4)
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Series expansions for f and its successive derivatives from (1.1) gives us

1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

=
1

γ

[
(2− λ)a2z + [(3− λ)a3 − λ(2− λ)a22]z2 + · · ·

]
. (2.5)

Similarly from (1.2), (1.3) and (1.5), we obtain

h(w(z))− 1 = B1w1z + (B1w2 +B2w
2
1)z2 + · · ·

and

φ(z)
(
h(w(z))− 1

)
= A0B1w1z + [A1B1w1 +A0(B1w2 +B2w

2
1)]z2 + · · · . (2.6)

Equating (2.5) and (2.6) in view of (2.4) and comparing the coefficients of z and z2,
we get

a2 =
γA0B1w1

2− λ
(2.7)

and

a3 =
γB1

3− λ

[
A1w1 +A0{w2 +

(γλA0B1

2− λ
+
B2

B1

)
w2

1}
]
. (2.8)

Thus, for any ν ∈ C, we have

a3 − νa22 =
γB1

3− λ

[
A1w1 +

(
w2 +

B2

B1
w2

1

)
A0 −

(νγ(3− λ)

(2− λ)2
− γλ

2− λ

)
B1A

2
0w

2
1

]
=

γB1

3− λ

[
A1w1 +

(
w2 +

B2

B1
w2

1

)
A0 −KB1A

2
0w

2
1

]
, (2.9)

where K is given by (2.3).
Since φ(z) = A0 + A1z + A2z

2 + · · · is analytic and bounded by one in U, therefore
we have (see[10], p. 172)

|A0| ≤ 1 and A1 = (1−A2
0)y (y ≤ 1). (2.10)

From (2.9) into (2.10), we obtain

a3 − νa22 =
γB1

3− λ

[
yw1 +

(
w2 +

B2

B1
w2

1

)
A0 −

(
B1Kw

2
1 + yw1

)
A2

0

]
. (2.11)

If A0=0 in (2.11), we at once get

|a3 − νa22| ≤
|γ|B1

3− λ
. (2.12)

But if A0 6= 0, let us then suppose that

G(A0) = yw1 +
(
w2 +

B2

B1
w2

1

)
A0 −

(
B1Kw

2
1 + yw1

)
A2

0

which is a quadratic polynomial in A0 and hence analytic in |A0| ≤ 1 and maximum
value of |G(A0)| is attained at A0 = eιθ (0 ≤ θ < 2π), we find that

max|G(A0)| = max
0≤θ<2π

|G(eιθ)| = |G(1)|

=
∣∣∣w2 −

(
KB1 −

B2

B1

)
w2

1

∣∣∣.
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Therefore, it follows from (2.11) that

|a3 − νa22| ≤
|γ|B1

3− λ

∣∣∣w2 −
(
KB1 −

B2

B1

)
w2

1

∣∣∣, (2.13)

which on using Lemma1.1, shows that

|a3 − νa22| ≤
|γ|B1

3− λ
max{1, |B2

B1
−KB1|},

and this last above inequality together with (2.12) establish the results.
The results are sharp for the function f given by

1 +
1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

= h(z),

1 +
1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

= h(z2)

and

1 +
1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

= z(h(z)− 1).

This completes the proof of Theorem 2.1. �

For λ = 1 the Theorem 2.1 reduces to following corollary:

Corollary 2.2. If f ∈ A of the form (1.1) satisfies

1

γ

(zf ′(z)
f(z)

− 1
)
≺q (h(z)− 1) (z ∈ U, γ ∈ C\{0}),

then
|a2| ≤ |γ|B1,

and for some ν ∈ C

|a3 − νa22| ≤
|γ|B1

2
max

{
1,
∣∣∣B2

B1
+ γ(1− 2ν)B1

∣∣∣},
The results are sharp.

Remark 2.3. For φ ≡ 1, γ = λ = 1, Theorem 2.1 reduces to an improved result of
given in [9].

The next theorems gives the result based on majorization.

Theorem 2.4. Let 0 ≤ λ ≤ 1 and γ ∈ C\{0}. If f ∈ A of the form (1.1) satisfies

1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)
� (h(z)− 1) (z ∈ U), (2.14)

then

|a2| ≤
|γ|B1

2− λ
and for any ν ∈ C

|a3 − νa22| ≤
|γ|B1

3− λ
max

{
1, |B2

B1
−KB1|

}
,

where K is given by (2.3). The results are sharp.
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Proof. Assume that (2.14) holds. From the definition of majorization, there exist an
analytic function φ such that

1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

= φ(z)(h(z)− 1) (z ∈ U).

Following similar steps as in the proof of Theorem 2.1, and by setting w(z) ≡ z, so
that w1 = 1, wn = 0, n ≥ 2, we obtain

a2 =
γA0B1

2− λ
and also we obtain that

a3 − νa22 =
γB1

3− λ

[
A1 +

B2

B1
A0 −KB1A

2
0

]
. (2.15)

On putting the value of A1 from (2.10) into (2.15), we obtain

a3 − νa22 =
γB1

3− λ

[
y +

B2

B1
A0 −

(
B1K + y

)
A2

0

]
. (2.16)

If A0 = 0 in (2.16), we at once get

|a3 − νa22| ≤
|γ|B1

3− λ
. (2.17)

But if A0 6= 0, let us then suppose that

T (A0) = y +
B2

B1
A0 −

(
B1K + y

)
A2

0

which is a quadratic polynomial in A0 and hence analytic in |A0| ≤ 1 and maximum
value of |T (A0)| is attained at A0 = eιθ (0 ≤ θ < 2π), we find that

max|T (A0)| = max
0≤θ<2π

|T (eιθ)| = |T (1)|.

Hence, from (2.16), we obtain

|a3 − νa22| ≤
|γ|B1

3− λ

∣∣∣KB1 −
B2

B1

∣∣∣.
Thus, the assertion of Theorem 2.4 follows from this last above inequality together
with (2.17). The results are sharp for the function given by

1 +
1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

= h(z),

which completes the proof of Theorem 2.4. �

Theorem 2.5. Let 0 ≤ λ ≤ 1 and γ ∈ C\{0}. If f ∈ A of the form (1.1) belonging to
the class S(λ, γ, h), then

|a2| ≤
|γ|B1

2− λ
and for any ν ∈ C

|a3 − νa22| ≤
|γ|B1

3− λ
max

{
1, |B2

B1
−KB1|

}
,
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where K is given by (2.3), the results are sharp.

Proof. The proof is similar to Theorem 2.1, Let f ∈ S(λ, γ, h).
If φ(z) = 1, then A0 = 1, An = 0 (n ∈ N). Therefore, in view of (2.7) and (2.10) and
by application of Lemma 1.1, we obtain the desired assertion. The results are sharp
for the function f(z) given by

1 +
1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

= h(z),

or

1 +
1

γ

( zf ′(z)

(1− λ)z + λf(z)
− 1
)

= h(z2).

Thus, the proof of Theorem 2.5 is completed. �

Now, we determine the bounds for the functional |a3 − νa22| for real ν.

Theorem 2.6. Let 0 ≤ λ ≤ 1. If f ∈ A of the form (1.1) belonging to the class
Sq(λ, γ, h), then for real ν and γ, we have

|a3 − νa22| ≤


|γ|B1

3−λ
[
B1

(
λ

2−λ −
3−λ

(2−λ)2 ν
)

+ B2

B1
] (ν ≤ σ1),

|γ|B1

3−λ (σ1 ≤ ν ≤ σ1 + 2ρ),

− |γ|B1

3−λ
[
B1

(
λ

2−λ −
3−λ

(2−λ)2 ν
)

+ B2

B1
] (ν ≥ σ1 + 2ρ),

(2.18)

where

σ1 =
λ(2− λ)

(3− λ)
− (2− λ)2

γ(3− λ)

( 1

B1
− B2

B2
1

)
(2.19)

and

ρ =
(2− λ)2

γ(3− λ)B1
. (2.20)

Each of the estimates in (2.18) are sharp.

Proof. For real values of ν and γ the above bounds can be obtained from (2.2),
respectively, under the following cases:

B1K −
B2

B1
≤ −1, −1 ≤ B1K −

B2

B1
≤ 1 and B1K −

B2

B1
≥ 1,

where K is given by (2.3). We also note the following:
(i) When ν < σ1 or ν > σ1 + 2ρ, then the equality holds if and only if φ(z) ≡ 1 and
w(z) = z or one of its rotations.
(ii) When σ1 < ν < σ1 + 2ρ, then the equality holds if and only if φ(z) ≡ 1 and
w(z) = z2 or one of its rotations.

(iii) Equality holds for ν = σ1 if and only if φ(z) ≡ 1 and w(z) = z(z+ε)
1+εz (0 ≤ ε ≤ 1),

or one of its rotations, while for ν = σ1 +2ρ, the equality holds if and only if φ(z) ≡ 1

and w(z) = − z(z+ε)1+εz (0 ≤ ε ≤ 1), or one of its rotations. �

The bounds of the functional a3− νa22 for real values of ν and γ for the middle range
of the parameter ν can be improved further as follows:
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Theorem 2.7. Let 0 ≤ λ ≤ 1. If f ∈ A of the form (1.1) belonging to the class
Sq(λ, γ, h), then for real ν and γ, we have

|a3 − νa22|+ (ν − σ1)|a2|2 ≤
|γ|B1

3− λ
(σ1 ≤ ν ≤ σ1 + ρ) (2.21)

and

|a3 − νa22|+ (σ1 + 2ρ− ν)|a2|2 ≤
|γ|B1

3− λ
(σ1 + ρ ≤ ν ≤ σ1 + 2ρ), (2.22)

where σ1 and ρ are given by (2.19) and (2.20), respectively.

Proof. Let f ∈ Sq(λ, γ, h). For real ν satisfying σ1 + ρ ≤ ν ≤ σ1 + 2ρ and using (2.7)
and (2.13) we get

|a3 − νa22|+ (ν − σ1)|a2|2 ≤
|γ|B1

3− λ

[
|w2| −

|γ|B1(3− λ)

(2− λ)2
(ν − σ1 − ρ)|w1|2

+
|γ|B1(3− λ)

(2− λ)2
(ν − σ1)|w1|2

]
.

Therefore, by virtue of Lemma 1.1, we get

|a3 − νa22|+ (ν − σ1)|a2|2 ≤
|γ|B1

3− λ
[1− |w1|2 + |w1|2],

which yields the assertion (2.21).
If σ1+ρ ≤ ν ≤ σ1+2ρ, then again from (2.7), (2.13) and the application of Lemma 1.1,
we have

|a3 − νa22|+ (σ1 + 2ρ− ν)|a2|2 ≤
|γ|B1

3− λ

[
|w2|+

|γ|B1(3− λ)

(2− λ)2
(ν − σ1 − ρ)|w1|2

+
|γ|B1(3− λ)

(2− λ)2
(σ1 + 2ρ− ν)|w1|2

]
≤ |γ|B1

3− λ
[1− |w1|2 + |w1|2],

which estimates (2.22). �
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class, Acta Univ. Sapientiae Math., 11(2019), no. 1, 87-98.

[7] Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic func-
tions, Proc. Amer. Math. Soc., 20(1969), 8-12.

[8] MacGregor, T.H., Majorization by univalent functions, Duke Math. J., 34(1967), 95-102.

[9] Mohd, M.H., Darus, M., Fekete-Szegő problems for quasi-subordination classes, Abstr.
Appl. Anal., 14(2012), Art. ID 192956.

[10] Nehari, Z., Conformal Mapping, Dover, New York, 1975 (reprinting of the 1952 edition).
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Abstract. In this paper, two new subclasses of bi-univalent functions related to
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The initial bounds for Fekete-Szegö inequality for the functions f in these classes
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1. Introduction

Let A denotes the set of all functions which are analytic in the unit disc

∆ = {z ∈ C : |z| < 1}

with Taylor’s series expansion of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are normalized by f(0) = 0, f ′(0) = 1. The subclass of A consisting of all
univalent functions is denoted by S . A function f ∈ A is said to be a starlike
function if

<
(
zf ′(z)

f(z)

)
> 0 (z ∈ ∆).

Received 20 October 2019; Accepted 13 February 2020.
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A function f ∈ A is said to be a convex function if

<
(

1 +
zf ′′(z)

f ′(z)

)
> 0 (z ∈ ∆).

Goodman [10, 11, 12] introduced the classes uniformly starlike and uniformly convex
functions as subclasses of starlike and convex functions. A starlike function (or convex
function) is said to be uniformly starlike (or uniformly convex) if the image of every
circular arc ζ contained in ∆, with center at ξ also in ∆ is starlike (or convex) with
respect to f(ξ). The class of uniformly starlike functions is represented by U S T
and the class of uniformly convex functions is represented by U C V . The class of
parabolic starlike functions is represented by Sp. Rønning [24] and Ma-Minda [18, 19]
independently gave the characterization for the classes Sp and U C V as follows.
A function f ∈ A is said to be in the class Sp if and only if

<
(
zf ′(z)

f(z)

)
>
∣∣∣zf ′(z)
f(z)

− 1
∣∣∣ (z ∈ ∆).

A function f ∈ A is said to be in the class U C V if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
>
∣∣∣zf ′′(z)
f ′(z)

∣∣∣ (z ∈ ∆).

Also, it is clear that

f ∈ U C V ⇔ zf ′(z) ∈ Sp.

Kanas and Wisniowska [16, 15], introduced k-uniformly starlike functions and k-
uniformly convex functions as follows.

k −S T =

{
f : f ∈ S and <

(
zf ′(z)

f(z)

)
> k

∣∣∣zf ′(z)
f(z)

− 1
∣∣∣, z ∈ ∆, k ≥ 0

}
k −U C V =

{
f : f ∈ S and <

(
1 +

zf ′(z)

f(z)

)
> k

∣∣∣zf ′′(z)
f ′(z)

∣∣∣, z ∈ ∆, k ≥ 0

}
.

Bharati, et al. [8], defined k−S T (β) and k−U C V (β) as follows. A function f ∈ A
is said to be in the class k −S T (β) if and only if

<
(
zf ′(z)

f(z)

)
− β > k

∣∣∣zf ′(z)
f(z)

− 1
∣∣∣ (z ∈ ∆). (1.2)

A function f ∈ A is said to be in the class k −U C V (β) if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
− β > k

∣∣∣zf ′′(z)
f ′(z)

∣∣∣ (z ∈ ∆). (1.3)

Sim et al.[26], generalized above classes and introduced k − S T (α, β) and
k −U C V (α, β) as below:
A function f ∈ A is said to be in the class k −S T (α, β) if and only if

<
(
zf ′(z)

f(z)

)
− β > k

∣∣∣zf ′(z)
f(z)

− α
∣∣∣ (z ∈ ∆), (1.4)

where 0 ≤ β < α ≤ 1 and k(1− α) < 1− β.
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A function f ∈ A is said to be in the class k −U C V (α, β) if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
− β > k

∣∣∣1 +
zf ′′(z)

f ′(z)
− α

∣∣∣ (z ∈ ∆), (1.5)

where 0 ≤ β < α ≤ 1 and k(1− α) < 1− β.

In particular, for α = 1, β = 0 the classes k −S T (α, β) and k −U C V (α, β)
reduces to k − S T and k − U C V respectively. Further, for α = 1 these classes
coincides with the classes studied by Nishiwaki and Owa [20] and Shams et al. [25]. In
2017, Annamalai et al. [7], obtained second Hankel determinant of analytic functions
involving conic domains.

Now we give the geometric interpretations of the classes f ∈ k−S T (α, β) and
k −U C V (α, β) as follows:

A function f ∈ k −S T (α, β) and k −U C V (α, β) if and only if
zf ′(z)

f(z)
and

1 +
zf ′′(z)

f ′(z)
, respectively takes all the values in the conic domain Ωk, α, β

Ωk, α, β = {ω : ω ∈ C and k|ω − α| < <(ω)− β}

or

Ωk, α, β =
{
ω : ω ∈ C and k

√
[<(ω)− α]2 + [=(ω)]2 < <(ω)− β

}
,

where 0 ≤ β < α ≤ 1 and k(1 − α) < 1 − β. Clearly 1 ∈ Ωk, α, β and Ωk, α, β is
bounded by the curve

∂Ωk, α, β =
{
ω : ω = u+ iv and k2(u− α)2 + k2v2 = (u− β)2

}
.

The Caratheodory functions p ∈ P is said to be in the class P(pk, α, β) if and
only if p takes all the values in the conic domain Ωk, α, β . Analytically it is defined as
follows:

P(pk, α, β) = {p : p ∈P and p(∆) ⊂ Ωk, α, β},
P(pk, α, β) = {p : p ∈P and p(z) ≺ pk, α, β , z ∈ ∆}.

It is interesting to note that ∂Ωk, α, β represents conic section about real axis.
In particular, Ωk, α, β represents an elliptic domain for k > 1, parabolic domain for
k = 1, hyperbolic domain for 0 < k < 1. Sim et al. [26] obtained the functions
pk,α β(z) which play the role of extremal functions of P(pk, α, β) as

pk,α β(z) =



1 + (1− 2β)z

1− z
, for k = 0

α+
2(α− β)

π2
log2

(
1 +

√
uk(z)

1−
√
uk(z)

)
, for k = 1

α− β
1− k2

cosh

{
u(k) log

(
1 +

√
uk(z)

1−
√
uk(z)

)}
+
β − αk2

1− k2
, for 0 < k < 1

α− β
k2 − 1

sin2

(
π

2K(k)

ω∫
0

dt√
1− t2

√
1− t2k2

)
+
αk2 − β
k2 − 1

, for k > 1,
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where u(k) =
2

π
cos−1 k, uk(z) =

z + ρk
1 + ρkz

and

ρk =



(
eA − 1

eA + 1

)2

, for k = 1exp

(
1

uk(z)
arc coshB

)
− 1

exp

(
1

uk(z)
arc coshB

)
+ 1


2

, for 0 < k < 1

√
ksin

[
2K(κ)

π
arc sinC

]
, for k > 1

with A =

√
1− α

2(α− β)
π, B =

1

α− β
(1−k2−β+αk2), C =

1

α− β
(k2− 1 +β−αk2).

Also

K(κ) =

∫ ω

0

dt√
1− t2

√
1− t2κ2

(0 < κ < 1),

K ′(κ) = K(
√

1− κ2) (0 < κ < 1),

κ = cosh

(
πK ′(κ)

4K(κ)

)
.

According to Koebe’s
1

4
theorem, every analytic and univalent function f in ∆ has

an inverse f−1 and is defined as

f−1(f(z)) = z (z ∈ ∆) and f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥ 1

4

)
.

Also the function f−1 can be written as

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (1.6)

A function f ∈ A is said to be bi-univalent if both f and analytic extension of
f−1 in ∆ are univalent in ∆. The class of all bi-univalent functions is denoted by Σ.
That is a function f is said to be bi-univalent if and only if

1. f is an analytic and univalent function in ∆.
2. There exists an analytic and univalent function g in ∆ such that f(g(z)) =
g(f(z)) = z in ∆.

The class of bi-univalent functions was introduced by Lewin [17] in 1967. Re-
cently many researchers [1, 2, 4, 3, 14, 21, 22, 23, 28, 29, 30, 31, 33, 32, 34, 35]
have introduced and investigated several interesting subclasses of the bi-univalent
functions and they have found non-sharp estimates of two Taylor-Maclaurin coeffi-
cients |a2|, |a3|, Fekete-Szegö inequalities and second Hankel determinants. In 2017,
Altinkaya and Yalçin [5, 6] estimated the coefficients and Fekete-Szegö inequalities for
some subclasses of bi-univalent functions involving symmetric q-derivative operator
subordinate to the generating function of Chebyshev polynomials.
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Jackson [13], defined q−derivative operator Dq of an analytic function f of the form
(1.1)as follows:

Dqf(z) =


f(qz)− f(z)

(q − 1)z
, for z 6= 0,

f ′(0), for z = 0

Dqf(0) = f ′(0) and D2
q = Dq(Dqf(z)).

If f(z) = zn for any positive integer n, the q-derivative of f(z) is defined by

Dqz
n =

(qz)n − zn

qz − z
= [n]qz

n−1,

where [n]q =
qn − 1

q − 1
. As q → 1− and k ∈ N, we have [n]q → n and

lim
q→1

(Dqf(z)) = f ′(z)

where f ′ is normal derivative of f . Therefore

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1.

Brahim and Sidomou [9], defined the symmetric q−derivative operator D̃q of an an-
alytic function f of the form (1.1) as follows:

(D̃qf)(z) =


f(qz)− f(q−1z)

(q − q−1)z
, for z 6= 0,

f ′(0), for z = 0
.

It is clear that D̃qz
n = [̃n]qz

n−1 and D̃qf(z) = 1 +
∞∑
n=2

[̃n]qanz
n−1, where

[̃n]q =
qn − q−n

q − q−1
.

The relation between q-derivative operator and symmetric q-derivative operator is
given by

(D̃qf)(z) = Dq2f(q−1z).

If g is the inverse of f then

(D̃qg)(w) =
g(qw)− g(q−1w)

(q − q−1)w

= 1− [̃2]qa2w + [̃3]q(2a
2
2 − a3)w2 − [̃4]q(5a

3
2 − 5a2a3 + a4)w3 + · · · .

One could refer [27], for more details of q− calculus and fractional q−calculus and
their applications in Geometric Function Theory.

Motivated by the above mentioned work, in this paper, bi-starlike functions of
order b and bi-convex functions of order b involving q-derivative operator subordinate
to the conic domains are defined and the Fekete-Szegö inequality for the function in
these classes are obtained.
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Definition 1.1. A function f ∈ Σ is said to be in the class k −S T Σ, b(α, β), where
0 ≤ β < α ≤ 1 and k(1−α) < 1−β and b is a non-zero complex number, if it satisfies
the following conditions:

1 +
1

b

(
zD̃qf(z)

f(z)
− 1

)
≺ pk, α, β(z) (z ∈ ∆) (1.7)

and for g = f−1

1 +
1

b

(
wD̃qg(w)

g(w)
− 1

)
≺ pk, α, β(w) (w ∈ ∆). (1.8)

Definition 1.2. A function f ∈ Σ is said to be in the class k −
U C V Σ, b(α, β); where 0 ≤ β < α ≤ 1 and k(1 − α) < 1 − β, and b is a non-zero
complex number, if it satisfies the following conditions:

1 +
1

b

(
D̃q(zD̃qf(z))

D̃q(f(z))
− 1

)
≺ pk, α, β(z) (z ∈ ∆) (1.9)

and for g = f−1

1 +
1

b

(
D̃q(wD̃qg(w))

D̃q(g(w))
− 1

)
≺ pk, α, β(w) (w ∈ ∆). (1.10)

2. Main results

In this section, initial estimates |a2|, |a3| and Fekete-Szegö inequalities for the
functions f in the classes k −S T Σ, b(α, β) and k −U C V Σ, b(α, β) are obtained.

Theorem 2.1. If f ∈ k −S T Σ, b(α, β) and is of the form (1.1) then

|a2| ≤
|P1|

√
|P1|b2√

|P 2
1 b
(

[̃3]q − [̃2]q

)
+ 2(P1 − P2)

(
[̃2]q − 1

)2

|
,

|a3| ≤
b2P 2

1(
[̃2]q − 1

)2 +

∣∣∣bP1

∣∣∣
[̃3]q − 1

and

|a3 − µa2
2| ≤


|P1b|

[̃3]q − 1
, if 0 ≤ |s(µ)| ≤ 1

|P1b| |s(µ)|
[̃3]q − 1

if |s(µ)| ≥ 1,

where

s(µ) =
P 2

1 b(1− µ)

[P 2
1 b
(

[̃3]q − [̃2]q

)
+ (P1 − P2)

(
[̃2]q − 1

)2

]
.
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Proof. Let f ∈ k −S T Σ, b(α, β) and g be an analytic extension of f−1 in ∆. Then
there exist two Schwarz functions u, v ∈ ∆ such that

1 +
1

b

(
zD̃qf(z)

f(z)
− 1

)
= pk, α, β(u(z)), (2.1)

and

1 +
1

b

(
wD̃qg(w)

g(w)
− 1

)
= pk, α, β(v(w)). (2.2)

Define two functions h, q ∈P such that

h(z) =
1 + u(z)

1− u(z)
= 1 + h1z + h2z

2 + h3z
3 + · · ·

and

q(w) =
1 + v(w)

1− v(w)
= 1 + q1w + q2w

2 + q3w
3 + · · · .

Then

pk, α, β

(
h(z)− 1

h(z) + 1

)
=1 +

P1h1z

2
+

(
P1

2
(h2 −

h2
1

2
) +

P2h
2
1

4

)
z2

+

(
P1

2

(
h3

1

4
− h1h2 + h3

)
+
P2

4
(2h1h2 − h3

1) +
P3

8
h3

1

)
z3 + · · ·

(2.3)

and

pk, α, β

(
q(w)− 1

q(w) + 1

)
=1 +

P1q1w

2
+

(
P1

2
(q2 −

q2
1

2
) +

P2q
2
1

4

)
w2

+

(
P1

2

(
q3
1

4
− q1q2 + q3

)
+
P2

4
(2q1q2 − q3

1) +
P3

8
q3
1

)
w3 + · · · .

(2.4)

In view of (2.3) and (2.4), the equations (2.1) and (2.2) become

1 +
1

b

(
zD̃qf(z)

f(z)
− 1

)
= pk, α, β

(
h(z)− 1

h(z) + 1

)
(2.5)

and

1 +
1

b

(
wD̃qg(w)

g(w)
− 1

)
= pk, α, β

(
v(w)− 1

v(w) + 1

)
. (2.6)

Comparing the coefficients of like powers of z in the equations (2.7) and (2.8), we get

1

b

(
[̃2]q − 1

)
a2 =

P1h1

2
, (2.7)

1

b

[(
[̃3]q − 1

)
a3 −

(
[̃2]q − 1

)
a2

2

]
=
P1

2

(
h2 −

h2
1

2

)
+
P2h

2
1

4
, (2.8)
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and

−1

b

(
[̃2]q − 1

)
a2 =

P1q1

2
, (2.9)

1

b

[(
[̃3]q − 1

)
(2a2

2 − a3)−
(

[̃2]q − 1
)
a2

2

]
=
P1

2

(
q2 −

q2
1

2

)
+
P2q

2
1

4
. (2.10)

From the equations (2.7) and (2.9)

h1 = −q1. (2.11)

Now, squaring and adding the equations (2.7) from (2.9), we get

h2
1 + q2

1 =
8
(

[̃2]q − 1
)2

a2
2

P 2
1 b

2
. (2.12)

Next, adding (2.8) and (2.10), use the equation (2.12), one can get

a2
2 =

P 3
1 (h2 + q2)b2

4

[
P 2

1 b
(

[̃3]q − [̃2]q

)
+ (P1 − P2)

(
[̃2]q − 1

)2
] . (2.13)

Subtract the equation (2.10) from (2.8),

a3 = a2
2 +

bP1(h2 − q2)

4
(

[̃3]q − 1
) . (2.14)

Then using the equation (2.12), we get

a3 =
P 2

1 b
2(h2

1 + q2
1)

8
(

[̃2]q − 1
)2 +

bP1(h2 − q2)

4
(

[̃3]q − 1
) . (2.15)

Using the equations (2.13) and (2.14), we get

a3 − µa2
2 =

bP1

4
(

[̃3]q − 1
) [h2(1 + s(µ)) + q2(−1 + s(µ))] , (2.16)

where

s(µ) =
P 2

1 b(1− µ)[
P 2

1 b
(

[̃3]q − [̃2]q

)
+ (P1 − P2)

(
[̃2]q − 1

)2
] .

By applying the modulus for the equations (2.13), (2.15) and (2.16), we get the
required results. �
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Theorem 2.2. If f ∈ k −U C V Σ, b(α, β) and is of the form (1.1), then

|a2| ≤
|P1| |b|

√
|P1|√∣∣∣∣([̃3]q

(
[̃3]q − 1

)
− [̃2]

2

q

(
[̃2]q − 1

))
bP 2

1 + [̃2]
2

q

(
[̃2]q − 1

)2

(P1 − P2)

∣∣∣∣
|a3| ≤

P 2
1 b

2

[̃2]
2

q

(
[̃2]q − 1

)2 +

∣∣∣bP1

∣∣∣
[̃3]q

(
[̃3]q − 1

)
and

|a3 − µa2
2| ≤


|P1b|

[̃3]q

(
[̃3]q − 1

) , if 0 ≤ |s(µ)| ≤ 1

|P1bs(µ)|

[̃3]q

(
[̃3]q − 1

) if |s(µ)| ≥ 1,

where

s(µ) =
P 2

1 b(1− µ)

4
[
([̃3]q

(
[̃3]q − 1

)
− [̃2]

2

q

(
[̃2]q − 1

)
)bP 2

1 + [̃2]
2

q

(
[̃2]q − 1

)2

(P1 − P2)
] .

Proof. If f ∈ k − U C V Σ, b(α, β) and g is an analytic extension of f−1 in ∆, then
there exist two Schwarz functions u, v ∈ ∆ such that

1 +
1

b

(
D̃q(zD̃qf(z))

D̃q(f(z))
− 1

)
= pk, α, β(u(z)), (2.17)

and

1 +
1

b

(
D̃q(wD̃qg(w))

D̃q(g(w))
− 1

)
= pk, α, β(v(w)). (2.18)

Then in view of (2.3) and (2.4) the equations (2.17) and (2.18) reduces to

1 +
1

b

(
D̃q(zD̃qf(z))

D̃q(f(z))
− 1

)
=pk, α, β

(
h(z)− 1

h(z) + 1

)
, (2.19)

and

1 +
1

b

(
D̃q(wD̃qg(w))

D̃q(g(w))
− 1

)
=pk, α, β

(
v(w)− 1

v(w) + 1

)
. (2.20)

Comparing the coefficients of similar powers of z in equations (2.19) and (2.20)

1

b
[̃2]q

(
[̃2]q − 1

)
a2 =

P1h1

2
, (2.21)

1

b

[
[̃3]q

(
[̃3]q − 1

)
a3 − [̃2]

2

q

(
[̃2]q − 1

)
a2

2

]
=
P1

2

(
h2 −

h2
1

2

)
+
P2h

2
1

4
, (2.22)
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and

−1

b
[̃2]q

(
[̃2]q − 1

)
a2 =

P1q1

2
, (2.23)

1

b
([̃3]q

(
[̃3]q − 1

)
(2a2

2 − a3)− [̃2]
2

q

(
[̃2]q − 1

)
a2

2) =
P1

2

(
q2 −

q2
1

2

)
+
P2q

2
1

4
. (2.24)

From the equations (2.21) and (2.23), we get

h1 = −q1. (2.25)

Squaring and adding the equations (2.21) from (2.23), we get

h2
1 + q2

1 =
8([̃2]q)

2
(

[̃2]q − 1
)2

a2
2

P 2
1 b

2
. (2.26)

Adding (2.22) and (2.24), and using the equation (2.26), one can get

a2
2 =

P 3
1 (h2 + q2)b2

4[([̃3]q

(
[̃3]q − 1

)
− [̃2]

2

q

(
[̃2]q − 1

)
)bP 2

1 + ([̃2]q)
2
(

[̃2]q − 1
)2

(P1 − P2)]
. (2.27)

Subtracting the equation (2.24) from (2.22), we get

a3 = a2
2 +

bP1(h2 − q2)

4([̃3]q

(
[̃3]q − 1

) . (2.28)

Using the equation (2.26), we obtain

a3 =
P 2

1 b
2(h2

1 + q2
1)

8[̃2]
2

q

(
[̃3]q − 1

)(
[̃2]q − 1

)2 +
bP1(h2 − q2)

4([̃3]q

(
[̃3]q − 1

) . (2.29)

Then using the equations (2.27) and (2.28), we get

a3 − µa2
2 =

bP1

4([̃3]q

(
[̃3]q − 1

)[h2(1 + s(µ)) + q2(−1 + s(µ))
]
, (2.30)

where

s(µ) =
bP 2

1 (1− µ)

4[([̃3]q

(
[̃3]q − 1

)
− [̃2]

2

q

(
[̃2]q − 1

)2

bP 2
1 + [̃2]

2

q

(
[̃2]q − 1

)2

(P1 − P2)]
.

By applying modulus for the equations (2.27), (2.29) and (2.30) on both sides we get
the required results. �

Acknowledgment. The authors are very much thankful to the referee for her/his in-
sightful suggestions and betterment of the current form of the Paper. The work pre-
sented in this paper is partially supported by DST-FIST-Grant No.SR/FST/MSI-
101/2014, dated 14/1/2016.
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Sălăgean-type harmonic multivalent functions
defined by q-difference operator

Om P. Ahuja, Asena Çetinkaya and Oya Mert

Abstract. We introduce a new subclass of Sălăgean-type harmonic multivalent
functions by using q−difference operator. We investigate sufficient coefficient es-
timates, distortion bounds, extreme points, convolution properties and neighbor-
hood for the functions belonging to this function class.
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tivalent function.

1. Introduction

The study of harmonic functions which are multivalent in the open unit disc

D = {z : |z| < 1}
was initiated by Duren, Hengartner and Laugesen [4]. Let H(m), (m ≥ 1) be the class
of harmonic multivalent and sense-preserving functions f = h+g, where h and g have
the following power series

h(z) = zm +

∞∑
n=2

an+m−1z
n+m−1, g(z) =

∞∑
n=1

bn+m−1z
n+m−1, |bm| < 1 (1.1)

that are analytic and m−valent in D. The class H(1) of harmonic univalent functions
was studied by Clunie and Sheil-Small [3]. For more details of harmonic multivalent
functions, one may refer to [2] and [6].

Jackson [7, 8] in 1909-1910 developed quantum calculus, popularly known as
q−calculus. Since then it has found applications in physics, quantum mechanics, an-
alytic number theory, Sobolev spaces, representation theory of groups, theta func-
tions, gamma functions, operator theory, and more recently in geometric function
theory. For definitions, properties and references of q−calculus one may refer to [1].

Received 6 November 2019; Accepted 8 February 2020.
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In fact, q−calculus methodology is centered on the idea of deriving q−analogues re-
sults without the use of limits. Let us first recall certain notations and definitions of
the q−calculus.

Definition 1.1. Let q ∈ (0, 1). The q−derivative (or q−difference operator) of a func-
tion f , defined on a subset Ω with 0 ∈ Ω of C, is given by

(Dqf)(z) =


f(z)−f(qz)

(1−q)z , z 6= 0

f ′(0), z = 0.

We note that limq→1−(Dqf)(z) = f ′(z) if f is differentiable at z.

For the function f(z) = zn, we observe that

Dqz
n = [n]qz

n−1,

where [n]q = 1−qn
1−q . Therefore, if f(z) = z +

∑∞
n=2 anz

n is analytic in D, then

(Dqf)(z) = 1 +

∞∑
n=2

[n]qanz
n−1.

Clearly, for q → 1−, [n]q → n. For the definitions and properties of q−derivative and
q−calculus, one may refer to [1, 5, 7, 8].

The q−Sălăgean differential operator of a m−valent function h given in (1.1) is
formed by

L0
qh(z) = h(z)

L1
qh(z) =

zDq(h(z))

[m]q
...

Lkqh(z) = Lq(L
k−1
q h(z)).

Then

Lkqh(z) = zm +

∞∑
n=2

(
[n+m− 1]q

[m]q

)k
an+m−1z

n+m−1, (1.2)

where [n+m− 1]kq = ( 1−qn+m−1

1−q )k, q ∈ (0, 1), k = 0, 1, ... . Clearly, when q → 1− and

m = 1, the equation (1.2) reduces to Sălăgean differential operator (see [12]).
Making use of (1.1) and (1.2), we define the q−Sălăgean differential operator for

harmonic multivalent function Lkqf(z) : H(m)→ H(m) by

Lkqf(z) = Lkqh(z) + (−1)kLkqg(z), (1.3)

where Lkqh(z) is given by (1.2) and

Lkqg(z) =

∞∑
n=1

(
[n+m− 1]q

[m]q

)k
bn+m−1z

n+m−1.
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When q → 1− the equation (1.3) reduces to Sălăgean differential operator for multi-
valent harmonic functions given in [11]. Motivated by definition of q−Sălăgean differ-
ential operator for harmonic multivalent functions, we create the following class.

Definition 1.2. For 0 ≤ λ ≤ 1, 0 ≤ α < 1, q ∈ (0, 1) and z ∈ D, a function
f ∈ H(m), (m ≥ 1) is said to belong to the class Hq(m, k, λ, α) if

Re

(
Lk+1
q f(z)

(1− λ)zm + λLkqf(z)

)
≥ α, (1.4)

where Lkqf(z), (k = 0, 1, ...) is defined by (1.3). A function f in this class is called
q−Sălăgean-type harmonic multivalent function of order α.

For special values of parameters q,m, k, λ and α, we obtain several new and
known subclasses as special cases; for example:

(i) If k = 0, we get a new subclass Hq(m,λ, α) as below

Re

(
zDqf(z)

(1− λ)zm + λf(z)

)
≥ α.

(ii) If k = 0, m = 1, we get a new subclass Hq(λ, α) as below

Re

(
zDqf(z)

(1− λ)z + λf(z)

)
≥ α.

(iii) If k = 0, m = 1, q → 1−, we get a known class S∗H(λ, α) defined in [13] in the
following

Re

(
zf ′(z)

(1− λ)z + λf(z)

)
≥ α.

(iv) If k = 0, m = 1, λ = 1, q → 1−, we get a known class S∗H(α) defined in [9] in
the following

Re

(
zf ′(z)

f(z)

)
≥ α.

(v) If m = 1, λ = 1, q → 1−, we get a known class SH(k, α) defined in [10] in the
following

Re

(
Lk+1f(z)

Lkf(z)

)
≥ α.

We also introduce a new subclass of q−Sălăgean-type harmonic multivalent func-
tions using negative coefficients. Let T Hq(m, k, λ, α) denote a subclass of H(m) that
consists of harmonic functions f = h+ g so that h and g are of the form

h(z) = zm −
∞∑
n=2

|an+m−1|zn+m−1, g(z) = (−1)k
∞∑
n=1

|bn+m−1|zn+m−1, |bm| < 1.

(1.5)
In Section 2, we first obtain coefficient characterization for our main class. Using

this characterization, we obtain distortion and covering theorems. Finally, we obtain
extreme points, convolution properties and neighborhood results for our class.
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2. Main results

We first obtain two lemmas that we need for proving other results.

Lemma 2.1. Let 0 ≤ λ ≤ 1, 0 ≤ α < 1, q ∈ (0, 1), z ∈ D, and f = h+ g with h and g
of the form (1.1). If

∞∑
n=2

Ωq(m, k, λ, α)|an+m−1|+
∞∑
n=1

Ψq(m, k, λ, α)|bn+m−1| ≤ 1− α, (2.1)

where

Ωq(m, k, λ, α) =

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
− αλ

]
(2.2)

and

Ψq(m, k, λ, α) =

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
+ αλ

]
, (2.3)

then f ∈ Hq(m, k, λ, α).

Proof. In view of (1.4), and using the fact that Re(w) ≥ α if and only if

|1− α+ w| > |1 + α− w|,
it suffices to show that∣∣∣∣1− α+

Lk+1
q f(z)

(1− λ)zm + λLkqf(z)

∣∣∣∣− ∣∣∣∣1 + α−
Lk+1
q f(z)

(1− λ)zm + λLkqf(z)

∣∣∣∣ ≥ 0.

We observe that left side of this inequality

=
∣∣Lk+1
q f(z) + (1− α)[(1− λ)zm + λLkqf(z)]

∣∣
−
∣∣Lk+1
q f(z)− (1 + α)[(1− λ)zm + λLkqf(z)]

∣∣
=

∣∣∣∣(2− α)zm +

∞∑
n=2

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
+ (1− α)λ

]
an+m−1z

n+m−1

−(−1)k
∞∑
n=1

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
− (1− α)λ

]
bn+m−1zn+m−1

∣∣∣∣
−
∣∣∣∣− αzm +

∞∑
n=2

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
− (1 + α)λ

]
an+m−1z

n+m−1

−(−1)k
∞∑
n=1

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
+ (1 + α)λ

]
bn+m−1zn+m−1

∣∣∣∣
≥ 2(1− α)|z|m −

∞∑
n=2

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
+ (1− α)λ

]
|an+m−1||z|n+m−1

−
∞∑
n=1

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
− (1− α)λ

]
|bn+m−1||z|n+m−1

−α|z|m −
∞∑
n=2

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
− (1 + α)λ

]
|an+m−1||z|n+m−1



Sălăgean-type harmonic multivalent functions 493

−
∞∑
n=1

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
+ (1 + α)λ

]
|bn+m−1||z|n+m−1

≥ 2(1− α)|z|m − 2

∞∑
n=2

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
− αλ

]
|an+m−1||z|n+m−1

−2
∞∑
n=1

(
[n+m− 1]q

[m]q

)k[
[n+m− 1]q

[m]q
+ αλ

]
|bn+m−1||z|n+m−1

≥ 2(1− α)

{
1−

∞∑
n=2

(
[n+m−1]q

[m]q

)k[
[n+m−1]q

[m]q
− αλ

]
1− α

|an+m−1|

−
∞∑
n=1

(
[n+m−1]q

[m]q

)k[
[n+m−1]q

[m]q
+ αλ

]
1− α

|bn+m−1|
}
≥ 0,

by (2.1). This completes the proof. �

The q−Sălăgean-type harmonic multivalent functions

f(z) = zm +

∞∑
n=2

1− α
Ωq(m, k, λ, α)

xn+m−1z
n+m−1 +

∞∑
n=1

1− α
Ψq(m, k, λ, α)

yn+m−1zn+m−1,

where
∞∑
n=2

|xn+m−1|+
∞∑
n=1

|yn+m−1| = 1

shows that the coefficient bound given by (2.1) is sharp.
We now show that the condition (2.1) is also necessary for functions f = h+ g,

where h and g are of the form (1.5)

Lemma 2.2. Let 0 ≤ λ ≤ 1, 0 ≤ α < 1, q ∈ (0, 1), z ∈ D, and f = h+ g with h and g
of the form (1.5). Then f ∈ T Hq(m, k, λ, α) if and only if

∞∑
n=2

Ωq(m, k, λ, α)|an+m−1|+
∞∑
n=1

Ψq(m, k, λ, α)|bn+m−1| ≤ 1− α, (2.4)

where Ωq(m, k, λ, α) and Ψq(m, k, λ, α) are, respectively, given by (2.2) and (2.3).

Proof. Since T Hq(m, k, λ, α) ⊂ Hq(m, k, λ, α), we only need to prove the ”only if”
part of this theorem. Let f ∈ T Hq(m, k, λ, α), then it satisfies (1.4) or equivalently

Re

{ (1− α)zm −
∞∑
n=2

Ωq(m, k, λ, α)|an+m−1|zn+m−1

Θq(m, k, λ, α)

+

(−1)2k−1
∞∑
n=2

Ψq(m, k, λ, α)|bn+m−1|zn+m−1

Θq(m, k, λ, α)

}
≥ 0,
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where

Θq(z) = zm − λ
∞∑
n=2

(
[n+m− 1]q

[m]q

)k
|an+m−1|zn+m−1

+ λ(−1)2k
∞∑
n=1

(
[n+m− 1]q

[m]q

)k
|bn+m−1|zn+m−1.

The above required condition must hold for all values of z ∈ D, |z| = r < 1. By
choosing the values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1− α)−
∞∑
n=2

Ωq(m, k, λ, α)|an+m−1|rn−1

1− λ
∞∑
n=2

(
[n+m−1]q

[m]q

)k
|an+m−1|rn−1 + λ

∞∑
n=1

(
[n+m−1]q

[m]q

)k
|bn+m−1|rn−1

−

∞∑
n=2

ψq(m, k, λ, α)|bn+m−1|rn−1

1− λ
∞∑
n=2

(
[n+m−1]q

[m]q

)k
|an+m−1|rn−1 + λ

∞∑
n=1

(
[n+m−1]q

[m]q

)k
|bn+m−1|rn−1

≥ 0.

(2.5)

If the condition (2.4) does not hold, then the numerator in (2.5) is negative for r
sufficiently close to 1. Thus there exists a point z0 = r0 in (0, 1) for which the quotient
in (2.5) is negative. This contradicts the required condition for f ∈ T Hq(m, k, λ, α)
and so the proof is complete. �

We now obtain distortion bounds of the class T Hq(m, k, λ, α).

Theorem 2.3. If a function f belongs to the class T Hq(m, k, λ, α), then we have

|f(z)| ≤ (1 + |bm|)rm +
1− αλ

θq(m, k, λ, α)

(
1− 1 + αλ

1− αλ
|bm|

)
rm+1 (2.6)

and

|f(z)| ≥ (1− |bm|)rm −
1− αλ

θq(m, k, λ, α)

(
1− 1 + αλ

1− αλ
|bm|

)
rm+1, (2.7)

where

θq(m, k, λ, α) =

(
[m+ 1]q

[m]q

)k[
[m+ 1]q

[m]q
− αλ

]
,

and for all z ∈ D.
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Proof. Let f ∈ T Hq(m, k, λ, α). Taking the absolute value of f and using Lemma 2.2,
we obtain

|f(z)| ≤ (1 + |bm|)rm +

∞∑
n=2

(|an+m−1|+ |bn+m−1|)rn+m−1

≤ (1 + |bm|)rm +

∞∑
n=2

(|an+m−1|+ |bn+m−1|)rm+1

≤ (1 + |bm|)rm +
1− α

θq(m, k, λ, α)

×
∞∑
n=2

θq(m, k, λ, α)

1− α
(|an+m−1|+ |bn+m−1|)rm+1

≤ (1 + |bm|)rm +
1− α

θq(m, k, λ, α)

×
∞∑
n=2

{
Ωq(m, k, λ, α)

1− α
|an+m−1|+

Ψq(m, k, λ, α)

1− α
|bn+m−1|

}
rm+1

≤ (1 + |bm|)rm +

{
1− αλ

θq(m, k, λ, α)
− 1 + αλ

θq(m, k, λ, α)
|bm|

}
rm+1.

The proof of the inequality (2.7) is similar to the proof of (2.6) and is omitted. �

The following covering result follows from the inequality (2.7) by letting r approaches
to 1.

Corollary 2.4. If f ∈ T Hq(m, k, λ, α), then{
w : |w| <

(
1− 1− αλ

θq(m, k, λ, α)

)
−
(

1− 1 + αλ

θq(m, k, λ, α)

)
bm

}
⊂ f(D).

Next, we give the extreme points of this class.

Theorem 2.5. Let f = h + g be given by (1.5). Then f ∈ clcoT Hq(m, k, λ, α) if and
only if

f(z) =

∞∑
n=1

(xn+m−1hn+m−1(z) + yn+m−1gn+m−1(z)),

where

hm(z) = zm, hn+m−1(z) = zm − 1− α
Ωq(m, k, λ, α)

zn+m−1, (n ≥ 2)

gn+m−1(z) = zm + (−1)k
1− α

Ψq(m, k, λ, α)
zn+m−1, (n ≥ 1)

and
∞∑
n=1

(xn+m−1 + yn+m−1) = 1,

where xn+m−1 ≥ 0 and yn+m−1 ≥ 0. In particular, the extreme points of
T Hq(m, k, λ, α) are {hn+m−1} and {gn+m−1}.
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Proof. For a function f of the form

f(z) =

∞∑
n=1

(xn+m−1hn+m−1(z) + yn+m−1gn+m−1(z)),

where
∞∑
n=1

(xn+m−1 + yn+m−1) = 1, we have

f(z) =

∞∑
n=1

(xn+m−1 + yn+m−1)zm −
∞∑
n=2

1− α
Ωq(m, k, λ, α)

xn+m−1z
n+m−1

+(−1)k
∞∑
n=1

1− α
Ψq(m, k, λ, α)

yn+m−1z
n+m−1.

Then, f ∈ clcoT Hq(m, k, λ, α) because

∞∑
n=2

Ωq(m, k, λ, α)

1− α
|an+m−1|+

∞∑
n=1

Ψq(m, k, λ, α)

1− α
|bn+m−1|

=

∞∑
n=2

xn+m−1 +

∞∑
n=1

yn+m−1 = 1− xm ≤ 1.

Conversely, suppose f ∈ clcoT Hq(m, k, λ, α). Then, by Lemma 2.2

|an+m−1| ≤
1− α

Ωq(m, k, λ, α)

and

|bn+m−1| ≤
1− α

Ψq(m, k, λ, α)
.

Putting

xn+m−1 =
Ωq(m, k, λ, α)

1− α
|an+m−1|,

yn+m−1 =
Ψq(m, k, λ, α)

1− α
|bn+m−1|,

and xm = 1−
∞∑
n=2

xn+m−1 −
∞∑
n=1

yn+m−1 ≥ 0, we obtain

f(z) = zm −
∞∑
n=2

an+m−1z
n+m−1 + (−1)k

∞∑
n=1

bn+m−1zn+m−1

= zm −
∞∑
n=2

1− α
Ωq(m, k, λ, α)

xn+m−1z
n+m−1

+ (−1)k
∞∑
n=1

1− α
Ψq(m, k, λ, α)

yn+m−1zn+m−1

= zm +

∞∑
n=1

(hn+m−1(z)− zm)xn+m−1 +

∞∑
n=1

(gn+m−1(z)− zm)yn+m−1.
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Consequently, we obtain f(z) =
∞∑
n=1

(xn+m−1hn+m−1(z) + yn+m−1gn+m−1(z)) as re-

quired. �

Using definition of convolution and Lemma 2.2, we show that the class
T Hq(m, k, λ, α) is closed under convolution. Recall that the convolution of two
complex-valued harmonic multivalent functions

f(z) = zm −
∞∑
n=2

|an+m−1|zn+m−1 + (−1)k
∞∑
n=1

|bn+m−1|zn+m−1

and

F (z) = zm −
∞∑
n=2

|An+m−1|zn+m−1 + (−1)k
∞∑
n=1

|Bn+m−1|zn+m−1

is defined by

(f ∗ F )(z) = zm +

∞∑
n=2

|an+m−1||An+m−1|zn+m−1

+(−1)k
∞∑
n=1

|bn+m−1||Bn+m−1|zn+m−1.

Theorem 2.6. For 0 ≤ β ≤ α < 1, suppose

f ∈ T Hq(m, k, λ, α) and F ∈ T Hq(m, k, λ, β).

Then

f ∗ F ∈ T Hq(m, k, λ, α) ⊂ T Hq(m, k, λ, β).

Proof. Let

f(z) = zm −
∞∑
n=2

|an+m−1|zn+m−1 + (−1)k
∞∑
n=1

|bn+m−1|zn+m−1

be in T Hq(m, k, λ, α) and

F (z) = zm −
∞∑
n=2

|An+m−1|zn+m−1 + (−1)k
∞∑
n=1

|Bn+m−1|zn+m−1,

be in T Hq(m, k, λ, β). Since F ∈ T Hq(m, k, λ, β), we note that |An+m−1| ≤ 1 and
|Bn+m−1| ≤ 1. We want to show that if f ∗ F satisfy the condition given in Lemma
2.2, then

∞∑
n=2

Ωq(m, k, λ, α)

1− α
|an+m−1||An+m−1|+

∞∑
n=1

Ψq(m, k, λ, α)

1− α
|bn+m−1||Bn+m−1|

≤
∞∑
n=2

Ωq(m, k, λ, α)

1− α
|an+m−1|+

∞∑
n=1

Ψq(m, k, λ, α)

1− α
|bn+m−1| ≤ 1.

In view of Lemma 2.2, it follows that f ∗F ∈ T Hq(m, k, λ, α) ⊂ T Hq(m, k, λ, β). �
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Finally, we define q−δ−neighborhood and then investigate a containment prop-
erty. The q − δ−neighborhood of a function f = h+ g in Hq(m, k, λ, α) is defined as
the set:

Nq,δ(f) =

{
F (z) = zm +Bmz

m +

∞∑
n=2

(An+m−1z
n+m−1 +Bn+m−1z

n+m−1) :

∞∑
n=2

(
[n+m− 1]q

[m]q

)k{[
[n+m− 1]q

[m]q
− αλ

]
|an+m−1 −An+m−1|+[

[n+m− 1]q
[m]q

+ αλ

]
|bn+m−1 −Bn+m−1|

}
+ (1 + αλ)|bm −Bm| ≤ (1− α)δ, δ > 0

}
.

Theorem 2.7. If f given by (1.1) satisfies the condition (2.1) and

δ ≤
[
1− 1

[m+1]q
[m]q

− αλ

](
1− 1 + αλ

1− α
|bm|

)
, (2.8)

then Nq,δ(f) ⊂ Hq(m, k, λ, α).

Proof. For any f ∈ Hq(m, k, λ, α), suppose

F (z) = zm +Bmz
m +

∞∑
n=2

(An+m−1z
n+m−1 +Bn+m−1z

n+m−1)

belongs to Nq,δ(f). Then we have

(1 + αλ)|Bm|+
∞∑
n=2

(
[n+m− 1]q

[m]q

)k{[
[n+m− 1]q

[m]q
− αλ

]
|An+m−1|+[

[n+m− 1]q
[m]q

+ αλ

]
|Bn+m−1|

}
≤ (1 + αλ)|Bm − bm|+ (1 + αλ)|bm|+

∞∑
n=2

(
[n+m− 1]q

[m]q

)k
{[

[n+m− 1]q
[m]q

− αλ
]
|An+m−1 − an+m−1|

+

[
[n+m− 1]q

[m]q
+ αλ

]
|Bn+m−1 − bn+m−1|

}
+

∞∑
n=2

(
[n+m− 1]q

[m]q

)k{[
[n+m− 1]q

[m]q
− αλ

]
|an+m−1|

+

[
[n+m− 1]q

[m]q
+ αλ

]
|bn+m−1|

}
≤ (1− α)δ + (1 + αλ)|bm|+

1
[m+1]q
[m]q

− αλ
[(1− α)− (1 + αλ)bm] ≤ 1− α, (2.9)

by given condition (2.8). Therefore, it follows that F ∈ Hq(m, k, λ, α). This completes
the proof this theorem. �
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[12] Sălăgean, G.S., Subclasses of univalent functions, In: Complex Analysis, Fifth Romanian
Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Math., 1013, Springer,
Berlin, (1983), 362-372.

[13] Vijaya, K., Studies on certain subclasses of harmonic functions, Ph.D. Thesis, VIT
University, Vellore, 2014.

Om P. Ahuja
Kent State University,
Department of Mathematical Sciences,
Ohio, 44021, U.S.A.
e-mail: oahuja@kent.edu
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On the existence of positive solutions of a class
of parabolic reaction diffusion systems

Mounir Redjouh and Salim Mesbahi

Abstract. In this paper, we show the existence of continuous positive solutions
of a class of nonlinear parabolic reaction diffusion systems with initial conditions
using techniques of functional analysis and potential analysis.

Mathematics Subject Classification (2010): 34B27, 35B09, 35K41, 35K57.

Keywords: Reaction diffusion systems, parabolic systems, positive solutions,
Green function.

1. Introduction

The modeling and the mathematical analysis of parabolic systems, in partic-
ular, reaction diffusion systems, has been the subject of in-depth studies of several
mathematicians in recent years, as they appear in the modeling of a large variety of
phenomena, not only in biology and chemistry, but also in engineering, economics and
ecology, such as gas dynamics, fusion processes, cellular processes, disease propaga-
tion, industrial processes , catalytic transport of contaminants in the environment,
population dynamics, flame spread and others.

For the mathematical analysis of this type of problem, various methods and
elaborate techniques have been proposed, see for example Mesbahi et al. [1], [2], [16],
[15], Gontara [9], Lions [10], Maâgli et al. [13], [12], Pierre [17] and Zhang [20], [19].
We refer the reader to Arakelian and Gauthier [3], Armitage and Gardiner [4] and
Port [18] for more details on the potential arguments of the theory that interest us
mainly in this work.

The subject of this paper is in this context, we will take care to study the
existence of positive solutions of the following nonlinear parabolic reaction diffusion

Received 18 October 2019; Accepted 17 January 2020.
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system 

−∂u
∂t

+ ∆u = λp(x, t)f(v)

−∂v
∂t

+ ∆v = µq(x, t)g(w)

−∂w
∂t

+ ∆w = ηr(x, t)h(z)

−∂z
∂t

+ ∆z = %e(x, t)k(u)

(1.1)

with (x, t) ∈ Rn × (0,∞) and the initial conditions{
u(x, 0) = ϕ(x) , v(x, 0) = ψ(x)
w(x, 0) = γ(x) , z(x, 0) = ζ(x)

, ∀x ∈ Rn (1.2)

where n ≥ 3, ϕ, ψ, γ and ζ : Rn → [0,∞) are continuous, the constants λ, µ, η and %
are nonnegative, f , g, h and k : (0,∞)→ [0,∞) are nondecreasing and continuous. p,
q, r and e : Rn× (0,∞)→ [0,∞) are measurable functions and satisfy an appropriate
hypotheses related to the parabolic Kato class P∞(Rn) introduced in Zhang [19].

Before stating the main result of this work, it is worth mentioning that several
mathematicians have dealt with this type of problem using various analytical and
numerical techniques and methods, under different hypotheses as appropriate, see for
example, Bachar et al. [5], Maâgli et al. [7], [6], [13]-[14], Ghergu and Radulescu [8],
Gontara [9], Ma [11], Zhang [20], [19] and Zhao [21].

Concerning the problem (1.1)− (1.2) in the case of a single equation of the form{
∆u− ∂u

∂t
= q(x, t)up+1 , Rn × (0,∞)

u(x, 0) = u0(x) , x ∈ Rn, n ≥ 3
(1.3)

Zhang in [20] discussed the existence and the asymptotic behavior of solutions to this
problem, he proved the following result:

Theorem 1.1. Suppose p > 0, q ∈ P∞(Rn). For any M > 1, there is a constant b0 > 0
such that for each nonnegative u0 ∈ C2(Rn) satisfying ‖u0‖L∞(Rn) ≤ b0, there exists

a positive and continuous solution u of (1.3) such that

M−1
∫
Rn

G(x, t, y, 0)u0(y)dy ≤ u(x, t) ≤M
∫
Rn

G(x, t, y, 0)u0(y)dy

for all (x, t) ∈ Rn × (0,∞).

G denotes the fundamental solution of the heat equation ∆u− ∂u
∂t

= 0 in Rn× (0,∞)

given for t > s and x, y ∈ Rn by

G(x, t, y, s) =
1

[4π(t− s)]
n
2

exp

(
−|x− y|

2

4(t− s)

)
In [12], the authors considered the problem (1.3) with boundary condition u0, not
necessarily bounded function. The nonlinearity uϕ(., u) is required to satisfy some
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conditions related to the parabolic Kato class P∞(Rn). They gave existence results
and similar estimates on the solutions as in [20].

In [13], a similar problem as (1.3) has been treated in the half space Rn+. The el-
liptical version of (1.3) was studied in [7]. Dans [9], the authors examined the problem
(1.1)− (1.2) in the case of a system with two equations.

2. Statement of the main result

2.1. Assumptions

To study problem (1.1)− (1.2), we consider the following definition and hypotheses:

Definition 2.1. We say that a nonnegative superharmonic function ω satisfies condition
(H0) if ω is locally bounded in Rn (n ≥ 3) and the map (x, t) 7→ Pω(x, t) is continuous
in Rn × (0,∞), where P is defined below.

(Pt)t>0 on Rn denotes the Gauss semigroup defined for each nonnegative mea-
surable function Φ on Rn by

PtΦ(x) = PΦ(x, t) =

∫
Rn

G(x, t, y, 0)Φ(y)dy , t > 0, x ∈ Rn

The family (Pt)t>0 is a markovian semigroup. Moreover, a nonnegative super-
harmonic function ω on Rn satisfies for every t > 0, Ptω ≤ ω, and consequently the
mapping t 7→ Ptω is nonincreasing. We remark that for each nonnegative measurable
function Φ on Rn, the map (x, t) → PtΦ(x) is lower semicontinuous on Rn × (0,∞)
and becomes continuous if Φ is further bounded.

Remark 2.2. We note that every bounded superharmonic function in Rn satisfies
(H0), see Gontara and Turki [9] and Mâagli et al. [12].

We fix four nonnegative superharmonic functions ω, θ, δ and φ satisfying con-
dition (H0). Let us introduce the required hypotheses on the initial values ϕ, ψ, γ
and ζ the nonlinear terms:

(H1) There exist four constants ci > 1, 1 ≤ i ≤ 4, such that

1

c1
ω(x) ≤ ψ(x) ≤ c1ω(x) ,

1

c2
θ(x) ≤ ϕ(x) ≤ c2θ(x)

1

c3
δ(x) ≤ γ(x) ≤ c3δ(x) ,

1

c4
φ(x) ≤ ζ(x) ≤ c4φ(x)

and
lim
t→0

Ptψ(x) = ψ(x) , lim
t→0

Ptϕ(x) = ϕ(x)

lim
t→0

Ptγ(x) = γ(x) , lim
t→0

Ptζ(x) = ζ(x)

(H2) f, g, h, k : (0,∞)→ [0,∞) are nondecreasing and continuous.
(H3) The functions p, q, r and e are measurable nonnegative and for each c > 0, the

functions

p̃c =
pf(cPω)

Pθ
, q̃c =

qg(cPδ)

Pω
, r̃c =

rh(cPφ)

Pδ
, ẽc =

ek(cPθ)

Pφ
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belong to the parabolic Kato class P∞(Rn).

To study (1.1)− (1.2), a basic assumptions on p, q, r and e requires to fix four
superharmonic functions ω, θ, δ and φ on Rn satisfying condition (H0).

2.2. The main result

Now, we can state the main result of this work:

Theorem 2.3. Assume (H1) − (H3). Then there exist four constants λ0, µ0, η0 and
%0 such that for each λ ∈ [0, λ0), µ ∈ [0, µ0), η ∈ [0, η0) and % ∈ [0, %0), the problem

(1.1)−(1.2) has a positive continuous solution (u, v, w, z) in (Rn × (0,∞))
4

satisfying
for each t > 0 and x ∈ Rn

(1− λ

λ0
)Pϕ(x, t) ≤ u(x, t) ≤ Pϕ(x, t)

(1− µ

µ0
)Pψ(x, t) ≤ v(x, t) ≤ Pψ(x, t)

(1− η

η0
)Pγ(x, t) ≤ w(x, t) ≤ Pγ(x, t)

(1− %

%0
)Pζ(x, t) ≤ z(x, t) ≤ Pζ(x, t)

(2.1)

This document is organized as follows: In the next section, we give some technical
results and to recall some theoretical tools that are essential to prove our main result.
The last section is devoted to the proof of the main result, Theorem 2.3. The difficulties
in this section are similar to those in [5]-[9], [13]-[14] and [20]-[21], and the techniques
are of the same spirit, but specific new difficulties due to the nature of the system
must be handled.

3. Preliminary results

We give here some essential results proved in [12], we can also see [19], [21],
which were retained for the proof of our result. Now, we recall the definition of the
Kato class P∞ (Rn).

Definition 3.1. A Borel measurable function q in Rn+1 belongs to the Kato class
P∞ (Rn) if for all c > 0,

lim
ε→0

sup
(x,t)∈Rn×R

∫ t+ε

t−ε

∫
B(x,

√
ε)

Gc(x, |t− s| , y, 0) |q(y, s)| dyds = 0

and

sup
(x,t)∈Rn×R

∫ +∞

−∞

∫
Rn

Gc(x, |t− s| , y, 0) |q(y, s)| dyds <∞

where

Gc(x, t, y, s) =
1

(t− s)n
2

exp(−c |x− y|
2

t− s
) for t > s and x, y ∈ Rn

In the following, we give a class of functions belonging to P∞(Rn).
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Proposition 3.2. (i) L∞(Rn)⊗ L1(R) ⊂ P∞(Rn).

(ii) Let 1 ≤ p < ∞ and q ≥ 1 such that
1

p
+

1

q
= 1. Then for σ >

np

2
and

τ <
2

p
− n

σ
< υ, we have

Lσ(Rn)

|·|τ (1 + |·|)υ−τ
⊗ Lq(R) ⊂ P∞(Rn)

(iii) P∞(Rn) ⊂ L1
loc(Rn+1).

We denote for any measurable function Φ on Rn × (0,∞), the potential

V Φ(x, t) =

∫ t

0

∫
Rn

G(x, t, y, s)Φ(y, s)dyds =

∫ t

0

Pt−s(Φ(., s))(x)ds

Proposition 3.3. Let q be a nonnegative function in P∞(Rn), then there exists a
positive constant αq such that for each superharmonic function v in Rn, we have

V (qPυ)(x, t) ≤ αqPυ(x, t) , for (x, t) ∈ Rn × (0,∞)

Proposition 3.4. Let υ be a superharmonic function in Rn satisfying (H0) and q be a
nonnegative function in P∞(Rn). Then the family of functions{

(x, t)→ V f(x, t) =

∫ t

0

∫
Rn

G(x, t, y, s)f(y, s)dyds, |f | ≤ qPυ
}

is equicontinuous in Rn × [0,∞).

Moreover, for each x ∈ Rn we have lim
t→0

V f(x, t) = 0, uniformly on f .

We therefore conclude the following result on the continuity needed to obtain
the proof of Theorem 2.3.

Proposition 3.5. Assuming the hypothesis (H1). Then the functions Pϕ, Pψ, Pγ and
Pζ are continuous in Rn × (0,∞).

Proof. We prove that Pϕ is continuous in Rn × (0,∞).

Let c2 be the constant given in (H1). We write for each t > 0 and x ∈ Rn

c2Ptθ(x) = Pt(c2θ − ϕ)(x) + Ptϕ(x)

So, from (H0) we have (x, t) 7→ Pθ(x, t) is continuous in Rn × (0,∞) and from the
fact that (x, t) 7→ Pt(c2θ − ϕ)(x) and (x, t) 7→ Ptϕ(x) are lower semicontinuous in
Rn × (0,∞), we deduce that (x, t) 7→ Ptϕ(x) is continuous in Rn × (0,∞).

Similarly, we can prove the continuity of Pψ, Pγ and Pζ in Rn × (0,∞). �
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4. Proof of the main result

Let

λ0 = inf
(x,t)∈Rn×(0,∞)

Pϕ(x, t)

V (pf(Pψ))(x, t)

µ0 = inf
(x,t)∈Rn×(0,∞)

Pψ(x, t)

V (qg(Pγ))(x, t)

η0 = inf
(x,t)∈Rn×(0,∞)

Pγ(x, t)

V (rh(Pζ))(x, t)

%0 = inf
(x,t)∈Rn×(0,∞)

Pζ(x, t)

V (ek(Pϕ))(x, t)

Proposition 4.1. Suppose that the hypotheses (H1)− (H3) are satisfied, then the con-
stants λ0, µ0, η0 and %0 are positive.

Proof. The hypothesis (H1) leads to ψ ≤ c1ω.
From the fact that f is nondecreasing and p is nonnegative, we have

V (pf(Pψ)) ≤ V (pf(c1Pω))

Hence, by hypothesis (H3) and Proposition 3.3, there exist p̃c1 ∈ P∞(Rn) and a
positive constant αp̃c1 such that for each (x, t) ∈ Rn × (0,∞), we have

V (pf(Pψ))(x, t) ≤ V (p̃c1Pθ)(x, t) ≤ αp̃c1Pθ(x, t)

So, using again (H1) we find for each (x, t) ∈ Rn × (0,∞)

Pϕ(x, t)

V (pf(Pψ))(x, t)
≥

1

c1
Pθ(x, t)

αp̃c1Pθ(x, t)
=

1

c1αp̃c1
> 0

In the same way, we prove that

Pψ(x, t)

V (qg(Pγ))(x, t)
> 0 ,

Pγ(x, t)

V (rh(Pζ))(x, t)
> 0 ,

P ζ(x, t)

V (ek(Pϕ))(x, t)
> 0

which implies that λ0 > 0, µ0 > 0, η0 > 0, %0 > 0. �

Proof. (of Theorem 2.3). Let λ ∈ [0, λ0), µ ∈ [0, µ0), η ∈ [0, η0) and % ∈ [0, %0). We
define the sequences (uj)j≥0, (vj)j≥0, (wj)j≥0, and (zj)j≥0 by

v0 = Pψ , z0 = Pζ

uj = Pϕ− λV (pf(vj))

wj = Pγ − ηV (rh(zj))

zj+1 = Pζ − %V (ek(uj))

vj+1 = Pψ − µV (qg(wj))

We are determined to prove for all j ∈ N,

0 < (1− λ

λ0
)Pϕ ≤ uj ≤ uj+1 ≤ Pϕ (4.1)
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0 < (1− η

η0
)Pγ ≤ wj ≤ wj+1 ≤ Pγ (4.2)

0 < (1− µ

µ0
)Pψ ≤ vj+1 ≤ vj ≤ Pψ (4.3)

0 < (1− %

%0
)Pζ ≤ zj+1 ≤ zj ≤ Pζ (4.4)

We note that according to the definition of λ0, µ0, η0 and %0 that, for each
(x, t) ∈ Rn × (0,∞)

λ0V (pf(Pψ))(x, t) ≤ Pϕ(x, t) (4.5)

µ0V (qg(Pγ))(x, t) ≤ Pψ(x, t) (4.6)

η0V (rh(Pζ))(x, t) ≤ Pγ(x, t) (4.7)

%0V (ek(Pϕ))(x, t) ≤ Pζ(x, t) (4.8)

From (4.5) and (4.7), we have

u0 = Pϕ− λV (pf(Pψ)) ≥ Pϕ− λ

λ0
Pϕ = (1− λ

λ0
)Pϕ > 0

w0 = Pγ − ηV (rh(Pζ)) ≥ Pγ − η

η0
Pγ = (1− η

η0
)Pγ > 0

Then

z1 − z0 = −%V (ek(u0)) ≤ 0

v1 − v0 = −µV (qg(w0)) ≤ 0

Since f and h are nondecreasing, we obtain

u1 − u0 = λV (p(f(v0)− f(v1))) ≥ 0

w1 − w0 = ηV (r(h(z0)− h(z1))) ≥ 0

Now, since v0, z0 are nonnegatives (v0 > 0 ⇒ u0 ≤ Pϕ, z0 > 0 ⇒ w0 ≤ Pγ) and g,
k are nondecreasing, we deduce from (4.6) and (4.8) that

z1 = Pζ − %V (ek(u0)) ≥ (1− %

%0
)Pζ > 0

v1 = Pψ − µV (qg(w0)) ≥ (1− µ

µ0
)Pψ > 0

which gives us

u1 ≤ Pϕ and w1 ≤ Pγ
Finally, we find 

0 < (1− λ

λ0
)Pϕ ≤ u0 ≤ u1 ≤ Pϕ

0 < (1− η

η0
)Pγ ≤ w0 ≤ w1 ≤ Pγ

0 < (1− µ

µ0
)Pψ ≤ v1 ≤ v0 ≤ Pψ

0 < (1− %

%0
)Pζ ≤ z1 ≤ z0 ≤ Pζ
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By induction, we suppose that (4.1), (4.2), (4.3)and (4, 4) hold for j. Since g, k are
nondecreasing and uj+1 ≤ Pϕ, wj+1 ≤ Pγ, we have

zj+2 − zj+1 = %V (e(k(uj)− k(uj+1))) ≤ 0

vj+2 − vj+1 = µV (q(g(wj)− g(wj+1))) ≤ 0

and

zk+2 = Pζ − %V (ek(uk+1)) ≥ Pζ − %V (ek(Pϕ)) ≥ (1− %

%0
)Pζ

vk+2 = Pψ − µV (qg(wk+1)) ≥ Pψ − µV (qg(Pγ)) ≥ (1− µ

µ0
)Pψ

Using the two relations (4.6) and (4.8), we have

0 < (1− %

%0
)Pζ ≤ zj+2 ≤ zj+1 ≤ Pζ

0 < (1− µ

µ0
)Pψ ≤ vj+2 ≤ vj+1 ≤ Pψ

Now, using that f , h are nondecreasing, we have

uj+2 − uj+1 = λV (p(f(vj+1)− f(vj+2))) ≥ 0

wj+2 − wj+1 = ηV (r(h(zj+1)− h(zj+2))) ≥ 0

Since zj+2 > 0, vj+2 > 0, we obtain

0 < (1− λ

λ0
)Pϕ ≤ uj+1 ≤ uj+2 ≤ Pϕ

0 < (1− η

η0
)Pγ ≤ wj+1 ≤ wj+2 ≤ Pγ

Therefore, the sequences (uj)j≥0, (vj)j≥0, (wj)j≥0 and (zj)j≥0 converge respectively
to u, v, w and z satisfying (2.1). We claim that

u = Pϕ− λV (pf(v)) (4.9)

w = Pγ − ηV (rh(z)) (4.10)

z = Pζ − %V (ek(u)) (4.11)

v = Pψ − µV (qg(w)) (4.12)

Since vj ≤ Pψ and zj ≤ Pζ for all j ∈ N, using hypotheses (H1), (H3) and the fact
that f , h are nondecreasing, there exist p̃c1 , r̃c4 ∈ P∞(Rn) such that

pf(v) ≤ pf(c1Pω) ≤ p̃c1Pθ (4.13)

rh(z) ≤ rh(c4Pφ) ≤ r̃c4Pδ (4.14)

and so

p |f(vj)− f(v)| ≤ 2p̃c1Pθ , for all j ∈ N
r |h(zj)− h(z)| ≤ 2r̃c4Pδ , for all j ∈ N

Now, from Proposition 3.4 and by Lebesgue’s theorem, we can deduce

lim
k→∞

V (pf(vk)) = V (pf(v))

lim
k→∞

V (rh(zk)) = V (rh(z))
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So, letting j →∞ in equations

uj = Pϕ− λV (pf(vj)), wj = Pγ − ηV (rh (zj))

we have (4.9) and (4.10). Similarly, we obtain (4.11) and (4.12).

Next, we affirm that (u, v, w, z) satisfies

∆u− ∂u

∂t
= λpf(v)

∆v − ∂v

∂t
= µqg(w)

∆w − ∂w

∂t
= ηrh(z)

∆z − ∂z

∂t
= %ek(u)

(4.15)

Since θ, δ satisfies (H0) and p̃c1 , r̃c4 ∈ P∞(Rn), using Proposition 3.2, we have

p̃c1Pθ, r̃c4Pδ ∈ L1
loc(Rn × (0,∞))

Moreover (4.13), (4.14) and Proposition 3.4 imply that

pf(v), rh(z) ∈ L1
loc(Rn × (0,∞))

and

V (pf(v)), V (rh(z)) ∈ C(Rn × (0,∞)) ⊂ L1
loc(Rn × (0,∞))

Similarly

qg(w), V (qg(w)), ek(u), V (ek(u)) ∈ L1
loc(Rn × (0,∞))

Now, applying the heat operator ∆− ∂

∂t
in (4.9), (4.10), (4.11) and (4.12), (u, v, w, z)

is clearly a positive solution (in the sense of distributions) of (4.15).

Furthermore since V (pf(v)), V (qg(w)), V (rh(z)) and V (ek(u)) are continuous in
Rn× (0,∞) and using Proposition 3.5, we deduce from (4.9), (4.10), (4.11) and (4.12)
that

(u, v, w, z) ∈ (C(Rn × (0,∞)))4

which implies according to hypothesis (H1) and proposition 3.4 that

lim
t→0

u(x, t) = lim
t→0

Pϕ(x, t) = ϕ(x) , x ∈ Rn

lim
t→0

v(x, t) = lim
t→0

Pψ(x, t) = ψ(x) , x ∈ Rn

lim
t→0

w(x, t) = lim
t→0

Pγ(x, t) = γ(x) , x ∈ Rn

lim
t→0

z(x, t) = lim
t→0

Pζ(x, t) = ζ(x) , x ∈ Rn

This completes the proof of our theorem. �
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Existence of solutions for an impulsive
boundary value problem with nonlinear
derivative dependence on unbounded intervals
via variational methods
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Abstract. In this paper, we employ the critical point theory and iterative methods
to establish the existence of solutions for an impulsive boundary value problem
with nonlinear derivative dependence on the half-line.
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1. Introduction

In this paper, we consider the solvability of an impulsive boundary value problem
with nonlinear derivative dependence on the half-line. More precisely, we consider the
problem  −(p(t)u′(t))′ = f(t, u(t), u′(t)), a.e. t ≥ 0, t 6= tj ,

u(0) = u(+∞) = 0,
4(p(tj)u

′(tj)) = g(tj)Ij(u(tj)), j ∈ {1, 2, . . .},
(1.1)

where f : [0,+∞)×R×R −→ R is measurable in t ∈ [0,+∞) for each (x, ξ) ∈ R×R,
and continuous in (x, ξ) ∈ R× R for a.e. t ∈ [0,+∞). We assume that the impulsive
functions Ij : R −→ R are continuous where t0 = 0 < t1 < t2 < . . . < tj < . . . <
tm → +∞, as m→∞, are the impulse points.
The coefficient p : [0,+∞) −→ (0,+∞) satisfies 1

p ∈ L
1(0,+∞), and

M =

∫ +∞

0

(∫ +∞

t

1

p(s)
ds

)
dt < +∞.

Received 26 October 2019; Accepted 17 January 2020.
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We define the jump

4(p(tj)u
′(tj)) = p(t+j )u′(t+j )− p(t−j )u′(t−j ),

where u′(t+j ) = lim
t→t+j

u′(t) and u′(t−j ) = lim
t→t−j

u′(t) stand for the right and the left limits

of u′ at tj , respectively. Finally g : [0,+∞) −→ [0,+∞) is a continuous function that
satisfies

+∞∑
j=1

g(tj) < +∞.

Recently, in [2, 3], the authors obtained the existence of solutions for BVPs asso-
ciated to impulsive equations on unbounded domains by using variational methods. In
[4], de Figueiredo, Girardi and Matzeu proved the existence of solution for semilinear
elliptic equations with dependence on the gradient through an iterative technique.
However, there are few papers that have studied the existence of solutions for im-
pulsive boundary value problems similar to the problem (1.1) by using variational
methods coupled with the iterative methods.

In order to use variational methods, we consider a family of boundary value
problems with no dependence on the derivative. Namely, for each w ∈ H1

0,p(0,+∞),
we consider the problem −(p(t)u′(t))′ = f(t, u(t), w′(t)), a.e. t ≥ 0, t 6= tj ,

u(0) = u(+∞) = 0,
4(p(tj)u

′(tj)) = g(tj)Ij(u(tj)), j ∈ {1, 2, . . .}.
(1.2)

The class of problems (1.2) is of variational type and we can resolve them by varia-
tional methods and the existence of a solution for the initial problem is obtained by
iterative methods.

Now we need to define the following Banach space and this before giving the
variational formulation of (1.2).

H1
0,p(0,+∞) = {u ∈ AC[0,+∞),R) | u(0) = u(+∞) = 0,

√
pu′ ∈ L2(0,+∞)},

equipped with the norm

‖u‖0,p =

√∫ +∞

0

p(t)u′2(t)dt+

∫ +∞

0

u2(t)dt,

or the equivalent norm
‖u‖p = ‖u‖L2 + ‖√pu′‖L2 .

Moreover the space H1
0,p(0,+∞) is reflexive (see [2]).

Lemma 1.1. On H1
0,p(0,+∞), the quantity ‖u‖ =

√∫ +∞
0

p(t)u′2(t)dt is a norm which

is equivalent to the H1
0,p(0,+∞)-norm.

Now let us recall the following essential embeddings (see [2]).

Lemma 1.2. (H1
0,p(0,+∞), ‖ · ‖) embeds in (C0[0,+∞), ‖u‖∞), where

C0[0,+∞) = {u ∈ C([0,+∞),R) | lim
t→+∞

u(t) = 0} and ‖u‖∞ = sup
t∈[0,+∞)

|u(t)|.
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Lemma 1.3. H1
0,p(0,+∞) embeds continuously in C0[0,+∞) and in L2(0,+∞).

Lemma 1.4. The embedding H1
0,p(0,+∞) ↪→ C0[0,+∞) is compact with

‖u‖∞ ≤M1‖u‖,

where

M1 =

√
‖1

p
‖L1 .

2. Preliminaries

First we recall some basic definitions and lemmas which are used in this paper.

Lemma 2.1. (Minimization Principle[1]) Let X be a reflexive Banach space and J a
functional defined on X such that

(1) lim
‖u‖→+∞

J(u) = +∞ (coercivity condition),

(2) J is sequentially weakly lower semi-continuous.

Then J is lower bounded on X and achieves its lower bound at some point u0.

Definition 2.2. Let X be a real Banach space, J ∈ C1(X,R). If any sequence (un) ⊂ X
for which (J(un)) is bounded in R and J ′(un) −→ 0 as n → +∞ in X ′ possesses a
convergent subsequence, then we say that J satisfies the Palais-Smale condition (PS
condition for brevity).

Lemma 2.3. ([5, Theorem 2.2], [6, Theorem 3.1]) [Mountain Pass Theorem] Let X be
a real Banach space and J ∈ C1(X,R) satisfying the (PS) condition. Suppose that
J(0) = 0 and

(1) there are constants ρ, α > 0 such that J(u) ≥ α for all u ∈ X with ‖u‖ = ρ,

(2) there exists u0 ∈ X such that ‖u0‖ > ρ and J(u0) < α.
Then J possesses a critical value such that c ≥ α. Moreover, c can be characterized
as

c = inf
γ∈Γ

max
u∈γ([0,1])

J(u),

where

Γ =
{
γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u0

}
.

3. Variational setting

Take v ∈ H1
0,p(0,+∞), multiply the equation in problem (1.1) by v and integrate

over (0,+∞), we obtain

−
∫ +∞

0

(p(t)u′(t))′v(t)dt =

∫ +∞

0

f(t, u(t), u′(t))v(t)dt.
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The first term is

−
∫ +∞

0

(p(t)u′(t))′v(t)dt = −
+∞∑
j=0

∫ tj+1

tj

(p(t)u′(t))′v(t)dt

=

+∞∑
j=1

g(tj)Ij(u(tj))v(tj) +

∫ +∞

0

p(t)u′(t)v′(t)dt.

Hence∫ +∞

0

p(t)u′(t)v′(t)dt = −
+∞∑
j=1

g(tj)Ij(u(tj))v(tj) +

∫ +∞

0

f(t, u(t), u′(t))v(t)dt.

Definition 3.1. We say that a function u ∈ H1
0,p(0,+∞) is a weak solution of Problem

(1.1) if∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

g(tj)Ij(u(tj))v(tj)−
∫ +∞

0

f(t, u(t), u′(t))v(t)dt = 0,

for every v ∈ H1
0,p(0,+∞).̧

Proposition 3.2. Suppose that the following conditions hold:
(H1) There exists constant σ > 2 and two positive functions ϕ,ψ such that
ϕ ∈ L1(0,+∞), ψ ∈ L∞(0,+∞) with

|f(t, x, ξ)| ≤ ϕ(t)|x|σψ(ξ), for a.e. t ∈ [0,+∞), x ∈ R, ξ ∈ R.

(I0) There exist positive constants c0 and ν such that

|Ij(x)| ≤ c0|x|ν , ∀x ∈ R, j ∈ {1, 2, . . .} .

Then, for each w ∈ H1
0,p(0,+∞) fixed, the functional Jw : H1

0,p(0,+∞) −→ R defined
by

Jw(u) =
1

2
‖u‖2 +

+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ −
∫ +∞

0

F (t, u(t), w′(t))dt,

where F (t, u, ξ) =
∫ u

0
f(t, s, ξ)ds, is continuous, differentiable and

(J ′w(u), v) =

∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

g(tj)Ij(u(tj))v(tj)

−
∫ +∞

0

f(t, u(t), w′(t))v(t)dt,

(3.1)

for all v ∈ H1
0,p(0,+∞).
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Proof. Claim 1. Let w ∈ H1
0,p(0,+∞) fixed. Then Jw is Gâteaux-differentiable.

Indeed, for all v ∈ H1
0,p(0,+∞), we have

Jw(u+ hv)− Jw(u) =
1

2

∫ +∞

0

p(t)(u′(t) + hv′(t))2dt

+
+∞∑
j=1

g(tj)

∫ u(tj)+hv(tj)

0

Ij(τ)dτ

−
∫ +∞

0

F (t, u(t) + hv(t), w′(t))dt

− 1

2

∫ +∞

0

p(t)u′ 2(t)dt−
+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ

+

∫ +∞

0

F (t, u(t), w′(t))dt

= h

∫ +∞

0

p(t)u′(t)v′(t)dt+
h2

2

∫ +∞

0

p(t)v′ 2(t)dt

+

+∞∑
j=1

g(tj)

[∫ u(tj)+hv(tj)

0

Ij(τ)dτ −
∫ u(tj)

0

Ij(τ)dτ

]

−
∫ +∞

0

[
F (t, u(t) + hv(t), w′(t))− F (t, u(t), w′(t))

]
dt

Jw(u+ hv)− Jw(u) = h

∫ +∞

0

p(t)u′(t)v′(t)dt+
h2

2

∫ +∞

0

p(t)v′ 2(t)dt

+ h

+∞∑
j=1

g(tj)Ij(u(tj) + chv(tj))v(tj)

− h

∫ +∞

0

f(t, u(t) + θhv(t), w′(t))v(t)dt,

where 0 < θh < 1 and 0 < ch < 1 from the Mean Value Theorem. Thus

Jw(u+ hv)− Jw(u)

h
=

∫ +∞

0

p(t)u′(t)v′(t)dt+
h

2

∫ +∞

0

p(t)v′ 2(t)dt

+

+∞∑
j=1

g(tj)Ij(u(tj) + chv(tj))v(tj)

−
∫ +∞

0

f(t, u(t) + θhv(t), w′(t))v(t)dt.
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By (H1), (I0) and the Lebesgue Dominated Convergence Theorem, we obtain

lim
h→0

Jw(u+ hv)− Jw(u)

h
=

∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

g(tj)Ij(u(tj))v(tj)

−
∫ +∞

0

f(t, u(t), w′(t))v(t)dt,

so that, Jw is Gâteaux-differentiable and

(J ′w(u), v) =

∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

g(tj)Ij(u(tj))v(tj)

−
∫ +∞

0

f(t, u(t), w′(t))v(t)dt,

for all v ∈ H1
0,p(0,+∞). Therefore a critical point of Jw is a weak solution of Problem

(1.2).

Claim 2. J ′w is continuous.
Indeed, let (un) be a sequence in H1

0,p(0,+∞) such that un −→ u as n −→ +∞. From
Lemma 1.4, we have (un) converges uniformly to u on [0,+∞) as n −→ +∞. Since f
and Ij are continuous, then

f(t, un(t), w′(t)) −→ f(t, u(t), w′(t)), Ij(un(tj)) −→ Ij(u(tj))

as n −→ +∞ and it follows from (H1) that

|f(t, un(t), w′(t))| ≤ ϕ(t)|un(t)|σ|ψ(w′(t))|
≤ ϕ(t)‖un‖σ∞|ψ(w′(t))|
≤ Mσ

1 ϕ(t)‖un‖σ|ψ(w′(t))|.

And by (I0), we have

|Ij(un(tj))| ≤ c0|un(tj)|ν

≤ c0‖un‖ν∞
≤ Mν

1 c0‖un‖ν .

Then from the Lebesgue Dominated Convergence Theorem, we obtain

lim
n→+∞

∫ +∞

0

f(t, un(t), w′(t))dt =

∫ +∞

0

f(t, u(t), w′(t))dt,

and

lim
n→+∞

+∞∑
j=1

g(tj)Ij(un(tj)) =

+∞∑
j=1

g(tj)Ij(u(tj)).
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So

(J ′w(un)− J ′w(u), v) =

∫ +∞

0

p(t)(u′n(t)− u′(t))v′(t)dt

+

+∞∑
j=1

g(tj)
[
Ij(un(tj))− Ij(u(tj))

]
v(tj)

−
∫ +∞

0

[
f(t, un(t), w′(t))− f(t, u(t), w′(t))

]
v(t)dt.

Passing to the limit in (J ′w(un) − J ′w(u), v) when n −→ +∞, using assumptions
(H1), (I0) and the Lebesgue Dominated Convergence Theorem, we obtain that
J ′w(un) −→ J ′w(u), as n −→ +∞.
Consequently, Jw ∈ C1(H1

0,p(0,+∞),R). �

4. Main results

4.1. Nontrivial weak solution

Theorem 4.1. Assume that f satisfies (H1), Ij satisfies (I0) and the following hy-
potheses:

(H2) lim
x→0

f(t,x,ξ)
x = 0, uniformly in t ∈ [0,+∞) and ξ ∈ R.

(H3) There exist positive functions c1, c2 ∈ L1(0,+∞), and µ > 2 such that
(a) F (t, x, ξ) ≥ c1(t)|x|µ − c2(t), for a.e. t ≥ 0, and all x ∈ R, ξ ∈ R,
(b) µF (t, x, ξ) ≤ xf(t, x, ξ), for a.e. t ≥ 0, and all x ∈ R, ξ ∈ R.

(I1) There exists 0 < γ ≤ 2 such that

γ

∫ x

0

Ij(s)ds ≥ xIj(x) > 0, ∀x ∈ R \ {0}, ∀ j ∈ {1, 2, . . .}.

Then there exist positive constants d1, d2 such that, for each w ∈ H1
0,p(0,+∞),

Problem (1.2) has at least one nontrivial weak solution uw satisfying

d1 ≤ ‖uw‖ ≤ d2.

Proof. Claim 1. Let w ∈ H1
0,p(0,+∞) fixed. Then Jw satisfies the (PS) condition.

Indeed, let (un) ⊂ H1
0,p(0,+∞) such that (Jw(un)) is bounded and J ′w(un) −→ 0 as

n −→ +∞. Using (H3)(b) and (I1), there exists some d > 0 such that

d ≥ µJw(un)− (J ′w(un), un)

≥
(µ

2
− 1
)
‖un‖2

−
∫ +∞

0

(
µF (t, un(t), w′(t))− f(t, un(t), w′(t))un(t)

)
dt

+

+∞∑
j=1

g(tj)

(
µ

∫ un(tj)

0

Ij(τ)dτ − Ij(un(tj))un(tj)

)

≥
(µ

2
− 1
)
‖un‖2.



520 Sihem Boumaraf and Toufik Moussaoui

Since µ > 2, it follows that (un) is bounded in H1
0,p(0,+∞).

Then there exists a subsequence of (un) still denoted (un) such that (un) converges
weakly to some u in H1

0,p(0,+∞) because (un) is bounded in the reflexive Banach

space H1
0,p(0,+∞). Lemma 1.4 implies that (un) converges uniformly to u on [0,+∞).

Thus

lim
n→+∞

+∞∑
j=1

g(tj)
(
Ij(un(tj))− Ij(u(tj))

)
(un(tj)− u(tj)) = 0

and

lim
n→+∞

∫ +∞

0

(
f(t, un(t), w′(t))− f(t, u(t), w′(t))

)
(un(t)− u(t)) dt = 0.

Since limn→+∞ J ′(un) = 0 and (un) converges weakly to some u, we get

lim
n→+∞

(J ′w(un)− J ′w(u), un − u) = 0.

From (3.1), we have

(J ′w(un)− J ′w(u), un − u) = ‖un − u‖2

+

+∞∑
j=1

g(tj)
(
Ij(un(tj))− Ij(u(tj))

)
(un(tj)− u(tj))

−
∫ +∞

0

(
f(t, un(t), w′(t))− f(t, u(t), w′(t))

)
(un(t)− u(t)) dt.

Hence lim
n→+∞

‖un − u‖ = 0. Thus (un) converges strongly to u in H1
0,p(0,+∞).

Consequently Jw satisfies the (PS) condition.
Claim 2. Let w ∈ H1

0,p(0,+∞) fixed. Then there exist ρ > 0 and α > 0, independent

of w, such that Jw(u) ≥ α, ∀u ∈ H1
0,p(0,+∞), ‖u‖ = ρ.

Indeed, let 0 < ε < 1
M . By (H2), there exists δ > 0 such that

|x| ≤ δ =⇒ |f(t, x, ξ)| ≤ ε|x|, ∀t ∈ [0,+∞), ξ ∈ R.

We have ‖u‖2L2 ≤M‖u‖2 (see [2]) , so we deduce that∫ +∞

0

|F (t, u(t), w′(t))dt| ≤ ε

2
‖u‖2L2 ≤

ε

2
M‖u‖2, for a.e. t ≥ 0,

whenever ‖u‖∞ ≤ δ.
By choosing 0 < ρ ≤ δ

M1
and α = 1

2 (1− εM)ρ2, hence for ‖u‖ = ρ (note ‖u‖∞ ≤ δ ),
we get

Jw(u) =
1

2
‖u‖2 +

+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ −
∫ +∞

0

F (t, u(t), w′(t))dt

≥ 1

2
‖u‖2 −

∫ +∞

0

F (t, u(t), w′(t))dt

≥ 1

2
(1− εM)‖u‖2 = α.
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So there are ρ > 0 and α > 0 such that Jw(u) ≥ α, ∀u ∈ H1
0,p(0,+∞) with ‖u‖ = ρ.

Claim 3. Let w ∈ H1
0,p(0,+∞) fixed. Then there exists T0 > 0, independent of w, such

that

Jw(ϑu∗) ≤ 0, ∀ϑ ≥ T0,

where u∗ ∈ H1
0,p(0,+∞) with ‖u∗‖ = 1.

Indeed, from (I1), there exists c3 > 0 such that∫ x

0

Ij(s)ds ≤ c3|x|γ , for every x ∈ R.

Take an arbitrary u∗ ∈ H1
0,p(0,+∞) with ‖u∗‖ = 1 and using Lemma 1.4, (H3)(a),

we obtain

Jw(ϑu∗) =
1

2
ϑ2‖u∗‖2 +

+∞∑
j=1

g(tj)

∫ ϑu∗(tj)

0

Ij(τ)dτ

−
∫ +∞

0

F (t, ϑu∗(t), w′(t))dt

≤ 1

2
ϑ2 + c3|ϑ| γ‖u∗‖ϑ∞

+∞∑
j=1

g(tj)

− |ϑ|µ
∫ +∞

0

c1(t)|u∗(t)|µdt+

∫ +∞

0

c2(t)dt

≤ 1

2
ϑ2 + c3|ϑ| γM γ

1

+∞∑
j=1

g(tj)

− |ϑ|µ
∫ +∞

0

c1(t)|u∗(t)|µdt+

∫ +∞

0

c2(t)dt ≤ 0,

when ϑ ≥ T0 for some T0 large, since µ > 2 ≥ γ.
By Proposition 3.2, the functional jw is in C1(H1

0,p(0,+∞),R). Lemma 2.3 guarantees
that Jw possesses a critical point which is a weak solution of Problem (1.2).

Claim 4. Let w ∈ H1
0,p(0,+∞) fixed. Then there is a constant d1 > 0, independent of

w, such that ‖uw‖ ≥ d1, for all solution uw obtained above.
Indeed, let uw be a solution of Problem (1.2). Then

‖uw‖2 +

+∞∑
j=1

g(tj)Ij(uw(tj))uw(tj) =

∫ +∞

0

f(t, uw(t), w′(t))uw(t)dt.

It follows from (H1) and (H2) that,

|f(t, x, ξ)| ≤ ε|x|+ ϕ(t)|x|σψ(ξ), for t ∈ [0,+∞), x ∈ R, ξ ∈ R.
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Then

‖uw‖2 ≤ ‖uw‖2 +

+∞∑
j=1

g(tj)Ij(uw(tj))uw(tj)

=

∫ +∞

0

f(t, uw(t), w′(t))uw(t)dt

≤ ε

∫ +∞

0

|uw(t)|2dt+

∫ +∞

0

ϕ(t)|uw(t)|σ+1ψ(w′(t))dt

≤ εM‖uw‖2 + ‖ϕ‖L1 ‖ψ‖L∞‖uw‖σ+1
∞

≤ εM‖uw‖2 +Mσ+1
1 ‖ϕ‖L1 ‖ψ‖L∞‖uw‖σ+1,

which implies that

(1− εM)‖uw‖2 ≤Mσ+1
1 ‖ϕ‖L1 ‖ψ‖L∞‖uw‖σ+1.

Hence

‖uw‖ ≥ d1, for some d1 > 0.

Claim 5. Let w ∈ H1
0,p(0,+∞) fixed. Then there is a constant d2 > 0, independent of

w, such that ‖uw‖ ≤ d2, for all solution uw obtained above.
Indeed, by the characterization of the critical point and (H3), it follows that

|Jw(uw)| ≤ max
ϑ∈[0,+∞)

Jw(ϑu∗),

where u∗ is given in Claim 3.
From (H3)(a), we get

|Jw(uw)| ≤ max
ϑ∈[0,+∞)

1

2
ϑ2 + c3|ϑ| γM γ

1

+∞∑
j=1

g(tj)− |ϑ|µ
∫ +∞

0

c1(t)|u∗(t)|µdt

+

∫ +∞

0

c2(t)dt

}
.

We define K on [0,+∞) such that

K(ϑ) =
1

2
ϑ2 + c3|ϑ| γM γ

1

+∞∑
j=1

g(tj)− |ϑ|µ
∫ +∞

0

c1(t)|u∗(t)|µdt+

∫ +∞

0

c2(t)dt,

and since µ > 2, K(ϑ) can achieve its maximum at some ϑ0.
Hence

|Jw(uw)| ≤ K(ϑ0).
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On the other hand, we have(
1− 2

µ

)
‖uw‖2 = 2Jw(uw)− 2

µ
(J ′w(uw), uw)

+ 2

∫ +∞

0

[
F (t, uw(t), w′(t))− uw(t)

µ
f(t, uw(t), w′(t))

]
dt

+ 2
+∞∑
j=1

g(tj)
[uw(tj)

µ
Ij(uw(tj))−

∫ uw(tj)

0

Ij(τ)dτ
]
.

Using (H3)(b), (I1) and (J ′w(uw), uw) = 0, we obtain(
1− 2

µ

)
‖uw‖2 ≤ K(ϑ0).

Hence

‖uw‖ ≤

(
K(ϑ0)

1− 2
µ

) 1
2

≤ d2, (4.1)

we can choose d2 =

(
K(ϑ0)

1− 2
µ

) 1
2

, which is independent of w. �

Theorem 4.2. Assume hypotheses (H1)− (H3), (I0), (I1) hold and
(H4) there exist positive constants L1 and L2 such that

|f(t, x, ξ)− f(t, y, ξ)| ≤ L1|x− y|, ∀t ∈ [0,+∞), x, y ∈ [0;M1d2], ξ ∈ R,
|f(t, x, ξ)− f(t, x, ξ′)| ≤ L2|ξ − ξ′|, ∀t ∈ [0,+∞), x ∈ [0;M1d2], ξ, ξ′ ∈ R,

(I2) there exist positive constants αj such that

|Ij(x)− Ij(y)| ≤ αj |x− y|, ∀x, y ∈ [0;M1d2], j ∈ {1, 2, . . .}.

Then Problem (1.1) has at least one nontrivial weak solution provided that

0 <
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

< 1.

Proof. We construct a sequence (un) ⊂ H1
0,p(0,+∞) as solutions of the problem

(Pn)

 −(p(t)u′n(t))′ = f(t, un(t), u′n−1(t)), a.e. t ≥ 0, t 6= tj ,
un(0) = un(+∞) = 0,
4(p(tj)u

′
n(tj)) = g(tj)Ij(un(tj)), j ∈ {1, 2, . . .},

given in Theorem 4.1, starting with an arbitrary u0 ∈ H1
0,p(0,+∞).

It follows from (4.1) and Lemma 1.4 that

‖un‖∞ ≤M1d2.
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Using (Pn+1) and (Pn), we obtain

∫ +∞

0

p(t)u′n+1(t)(u′n+1(t)− u′n(t))dt = −
+∞∑
j=1

g(tj)Ij(un+1(tj))(un+1(tj)− un(tj))

+

∫ +∞

0

f(t, un+1(t), u′n(t))(un+1(t)− un(t))dt,

and

∫ +∞

0

p(t)u′n(t)(u′n+1(t)− u′n(t))dt = −
+∞∑
j=1

g(tj)Ij(un(tj))(un+1(tj)− un(tj))

+

∫ +∞

0

f(t, un(t), u′n−1(t))(un+1(t)− un(t))dt.

By subtracting, we obtain

‖un+1 − un‖2 = −
+∞∑
j=1

g(tj)
[
Ij(un+1(tj))− Ij(un(tj))

]
(un+1(tj)− un(tj))

+

∫ +∞

0

[
f(t, un+1(t), u′n(t))− f(t, un(t), u′n−1(t))

]
(un+1(t)− un(t))dt,

then

‖un+1 − un‖2 = −
+∞∑
j=1

g(tj)
[
Ij(un+1(tj))− Ij(un(tj))

]
(un+1(tj)− un(tj))

+

∫ +∞

0

[
f(t, un+1(t), u′n(t))− f(t, un(t), u′n(t))

]
(un+1(t)− un(t))dt

+

∫ +∞

0

[
f(t, un(t), u′n(t))− f(t, un(t), u′n−1(t))

]
(un+1(t)− un(t))dt.

By (H4) and (I2), we get

‖un+1 − un‖2 ≤
+∞∑
j=1

g(tj)αj |un+1(tj)− un(tj)|2

+ L1

∫ +∞

0

|un+1(t)− un(t)|2dt

+ L2

∫ +∞

0

|u′n(t)− u′n−1(t)| |un+1(t)− un(t)|dt.
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Using the Cauchy-Schwarz inequality, we have

‖un+1 − un‖2 ≤ ‖un+1 − un‖2∞
+∞∑
j=1

g(tj)αj + L1‖un+1 − un‖2L2

+L2‖u′n − u′n−1‖L2 ‖un+1 − un‖L2

≤ M2
1 ‖un+1 − un‖2

+∞∑
j=1

g(tj)αj + L1M‖un+1 − un‖2

+L2M‖un − un−1‖ ‖un+1 − un‖,

which implies that

‖un+1 − un‖ ≤
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

‖un − un−1‖.

Since

0 <
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

< 1,

it follows that (un) is a Cauchy sequence in the reflexive Banach space H1
0,p(0,+∞).

Then the sequence (un) strongly converges in H1
0,p(0,+∞) to some u ∈ H1

0,p(0,+∞).
Since ‖un‖ ≥ d1, ∀n ∈ N, it follows that u 6= 0.
Consequently, we obtain a nontrivial solution for Problem (1.1). �

Now we prove the existence of a solution for the problem (1.1) by using the Mini-
mization principle.

4.2. The sublinear case

Theorem 4.3. Suppose that the following conditions hold:
(H5) There exist a constant α ∈ [0, 1) and positive functions a1, b1 ∈ L1(0,+∞) such
that

|f(t, x, ξ)| ≤ a1(t)|x|α + b1(t), for a.e. t ∈ [0,+∞) and all x ∈ R, ξ ∈ R.

(I3) There exist constants c4 > 0 and β ∈ [0, 1) such that

|Ij(s)| ≤ c4|s|β , ∀ s ∈ R, j ∈ {1, 2, . . .}.

Then there exists positive constant d3 such that, for each w ∈ H1
0,p(0,+∞), Problem

(1.2) has at least one weak solution uw satisfying

‖uw‖ ≤ d3.

Proof. Claim 1. Let w ∈ H1
0,p(0,+∞) fixed. The functional Jw is well defined.

Indeed, take u in H1
0,p(0,+∞). From (H5), we deduce that

|F (t, u(t), w′(t))| ≤ a1(t)

α+ 1
|u(t)|α+1 + b1(t)|u(t)|.
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Thus, by using Lemma 1.4∣∣∣∣∫ +∞

0

F (t, u(t), w′(t))dt

∣∣∣∣ ≤ ‖u‖α+1
∞

∫ +∞

0

a1(t)dt+ ‖u‖∞
∫ +∞

0

b1(t)dt

≤ Mα+1
1

α+ 1
‖u‖α+1

∫ +∞

0

a1(t)dt+M1‖u‖
∫ +∞

0

b1(t)dt

≤ Mα+1
1

α+ 1
‖u‖α+1‖a1‖L1 +M1‖u‖‖b1‖L1 .

It follows from (I3) that∣∣∣∣∣∣
+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ

∣∣∣∣∣∣ ≤ c4
β + 1

‖u‖ β+1
∞

+∞∑
j=1

g(tj)

≤ c4M
β+1

1

β + 1
‖u‖ β+1

+∞∑
j=1

g(tj).

Hence

|Jw(u)| ≤ 1

2
‖u‖2 +

c4M
β+1

1

β + 1
‖u‖ β+1

+∞∑
j=1

g(tj)

+
M α+1

1

α+ 1
‖u‖α+1‖a1‖L1 + M1‖u‖‖b1‖L1

<∞.

Claim 2. Let w ∈ H1
0,p(0,+∞) fixed. Jw is sequentially weakly lower semicontinuous.

Indeed, let (un) be a sequence in H1
0,p(0,+∞) such that un ⇀ u in H1

0,p(0,+∞), as
n → ∞. Lemma 1.4 implies that (un) converges uniformly to u on [0,+∞) and by
the fact that the norm is weakly lower semicontinuous, we have

lim inf
n→+∞

‖un‖ ≥ ‖u‖.

Using the Lebesgue Dominated Convergence Theorem and the continuity of the func-
tions f and Ij , j ∈ {1, 2, . . .}, we obtain

lim inf
n→+∞

Jw(un) = lim inf
n→+∞

1

2
‖un‖2 +

+∞∑
j=1

g(tj)

∫ un(tj)

0

Ij(τ)dτ

−
∫ +∞

0

F (t, un(t), w′(t))dt

)
≥ 1

2
‖u‖2 +

+∞∑
j=1

g(tj)

∫ u(tj)

0

Ij(τ)dτ −
∫ +∞

0

F (t, u(t), w′(t))dt

= J(u).

Consequently, Jw is sequentially weakly lower semicontinuous.
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Claim 3. Let w ∈ H1
0,p(0,+∞) fixed. Jw is coercive.

Indeed, From (H5), (I3) and Lemma 1.4, we have

Jw(u) ≥ 1

2
‖u‖2 − c4M

β+1
1

β + 1
‖u‖ β+1

+∞∑
j=1

g(tj)

− Mα+1
1

α+ 1
‖u‖α+1‖a1‖L1 − M1‖u‖‖b1‖L1 . (4.2)

Since α < 1 and β < 1, then (4.2) implies that

lim
‖u‖−→+∞

Jw(u) = +∞.

So, by Lemma 2.1, Jw has a minimum point uw. Under hypothesis (H5) and using
the same ideas as in Proposition 3.2, we get, Jw is Gâteaux differentiable. Thus uw
is a critical point of Jw.
Claim 4. Let w ∈ H1

0,p(0,+∞) fixed. Then ‖uw‖ ≤ d3, for some d3 > 0, for all
solutions uw obtained above.
Indeed, let uw be a solution of Problem (1.2). Then

‖uw‖2 =

∫ +∞

0

f(t, uw(t), w′(t))uw(t)dt−
+∞∑
j=1

g(tj)Ij(uw(tj))uw(tj).

By (H5) and (I3), we get

‖uw‖2 ≤
∫ +∞

0

a1(t)|uw(t)|α+1dt+

∫ +∞

0

b1(t)|uw(t)|dt

+c4

+∞∑
j=1

g(tj)|uw(tj)|β+1

≤ ‖uw‖α+1
∞

∫ +∞

0

a1(t)dt+ ‖uw‖∞
∫ +∞

0

b1(t)dt+ c4‖uw‖β+1
∞

+∞∑
j=1

g(tj)

≤ Mα+1
1 ‖uw‖α+1‖a1‖L1 +M1‖uw‖‖b1‖L1 + c4M

β+1
1 ‖uw‖β+1

+∞∑
j=1

g(tj).

Hence

‖uw‖ ≤ d3, for some d3 > 0.

Therefor uw is a weak solution of Problem (1.2). �

Remark 4.4. In addition, if uw ∈ H2
p (tj , tj+1), for all j ∈ {1, 2, . . .}, where

H2
p (tj , tj+1) = {u ∈ AC[0,+∞),R) :

√
pu′ ∈ L2(tj , tj+1), (pu′)′ ∈ L2(tj , tj+1)},

then uw will be called a strong solution of Problem (1.2).

Proposition 4.5. In (H5), assume that a1, b1 ∈ L2(0,+∞). Then every weak solution
is a strong solution of Problem (1.2).
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Proof. We know that uw ∈ H1
0,p(0,+∞) is a critical point of Jw. Then, for any

v ∈ H1
0,p(0,+∞), we have∫ +∞

0

p(t)u′w(t)v′(t)dt +

+∞∑
j=1

g(tj)Ij(uw(tj))v(tj)

−
∫ +∞

0

f(t, uw(t), w′(t))v(t)dt = 0. (4.3)

For j ∈ {1, 2, . . .}, if v ∈ H1
0,p(tj , tj+1) (v = vj), then∫ tj+1

tj

p(t)u′w(t)v′(t)dt =

∫ tj+1

tj

f(t, uw(t), w′(t))v(t)dt.

So uw,j ∈ H1
0,p(tj , tj+1) is a solution of the equation:

−(p(t)u′w)′ = f(t, uw(t), w′(t)), t ∈ (tj , tj+1), (4.4)

Since, uw ∈ C0[0,+∞), and by (H5), we get

|f(t, uw(t), w′(t))|2 ≤ 2
(
a1(t)2‖uw‖2α∞ + b1(t)2

)
,

thus uw,j ∈ H2
p (tj , tj+1). Then (4.4), implies that the limits

u′(t+j ), u′(t−j ), j ∈ {1, 2, . . .} exist.

Using the integration by parts in (4.3), we obtain

0 = −
j=+∞∑
j=0

∫ tj+1

tj

(p(t)u′w(t))′v(t)dt−
+∞∑
j=1

4(p(tj)u
′
w(tj))v(tj)

+

+∞∑
j=1

g(tj)Ij(uw(tj))v(tj)−
∫ +∞

0

f(t, uw(t), w′(t))v(t)dt.

Since uw satisfies the equation in problem (1.2) a.e. on [0,+∞), we deduce that

+∞∑
j=1

g(tj)Ij(uw(tj))v(tj) =

+∞∑
j=1

4(p(tj)u
′
w(tj))v(tj), for all v ∈ H1

0,p(0,+∞).

Thus

4(p(tj)u
′
w(tj)) = g(tj)Ij(uw(tj)), for every j ∈ {1, 2, . . .}.

Actually, uw is even a classical solution, i.e., u ∈ C2(tj , tj+1), for all
j ∈ {1, 2, . . .}, when f : [0,+∞)× R× R −→ R is continuous. �

Theorem 4.6. Assume that (H4), (H5), (I2) and (I3) hold.
Then Problem (1.1) has at least one classical solution provided that

0 <
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

< 1.

Proof. The proof is similar to the proof of Theorem 4.2. �
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Example 4.7. Consider the impulsive boundary value problem
−(etu′(t))′ =

√
|u|

(1+t)2 cosu′ + 1
(1+t)3 , a.e. t ≥ 0, t 6= tj ,

u(0) = u(+∞) = 0,

4(eju′(j)) =
3
√
u(j)

1+j2 , j ∈ {1, 2, . . .}.

(4.5)

We know that all hypotheses of Theorem 4.3 are satisfied with

f(t, x, ξ) =

√
|x|

(1 + t)2
cos ξ +

1

(1 + t)3
,

α = 1/2, a1(t) =
1

(1 + t)2
, b1(t) =

1

(1 + t)3
,

Ij(s) = s1/3, β =
1

3
, c4 = 1,

g(t) =
1

1 + t2
and

∞∑
j=1

g(j) =
π

4
.

Consequently, problem (4.5) has at least one solution.

4.3. The limit case α = 1

Theorem 4.8. Suppose that (I3) holds and
(H6) there exist positive functions a2, b2 ∈ L1(0,+∞) with ||a2||L1 < 1

M 2
1

and

|f(t, x, ξ)| ≤ a2(t)|x|+ b2(t), for a.e. t ∈ [0,+∞) and ∀x ∈ R, ξ ∈ R.

Then there exists positive constant d4 such that, for each w ∈ H1
0,p(0,+∞), Problem

(1.2) has at least one weak solution uw satisfying

‖uw‖ ≤ d4.

Proof. Claim 1. Let w ∈ H1
0,p(0,+∞) fixed. Jw is sequentially weakly lower semicon-

tinuous.
Indeed, we use the same technique as in the proof of Theorem 4.3.

Claim 2. Let w ∈ H1
0,p(0,+∞) fixed. Jw is coercive.

Indeed, by (H6), we obtain

|F (t, u(t), w′(t))| ≤ a2(t)

2
|u(t)|2 + b2(t)|u(t)|,

hence ∣∣∣∣∫ +∞

0

F (t, u(t), w′(t))dt

∣∣∣∣ ≤ ∫ +∞

0

(
a2(t)

2
|u(t)|2 + b 2(t)|u(t)|

)
dt

≤ M 2
1

2
‖u‖ 2‖a 2‖L1 +M1‖u‖‖b 2‖L1 .
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Thus

Jw(u) ≥ 1

2

(
1−M 2

1 ‖a 2‖L1

)
‖u‖2 −M1‖u‖‖b2‖L1

−c4M
β+1

1

β + 1
‖u‖ β+1

+∞∑
j=1

g(tj). (4.6)

Since ‖a2‖L1 < 1
M2

1
and β < 1, we pass to the limit in (4.6) when n→ +∞, we get

lim
‖u‖−→+∞

Jw(u) = +∞.

Therefore, Jw is coercive.
By applying Lemma 2.1, we find that Jw has a minimum point uw. Under hypothesis
(H6) and using the same ideas as in Proposition 3.2, we get, Jw is Gâteaux differen-
tiable. Then uw is a critical point of Jw which is a weak solution of Problem (1.2).
Claim 3. Let w ∈ H1

0,p(0,+∞) fixed. Then ‖uw‖ ≤ d4, for some d4 > 0, for all
solutions uw obtained above.
Indeed, let uw be a solution of Problem (1.2). Then

‖uw‖2 =

∫ +∞

0

f(t, uw(t), w′(t))uw(t)dt−
+∞∑
j=1

g(tj)Ij(uw(tj))uw(tj).

It follows from (H6) and (I3) that

‖uw‖2 ≤
∫ +∞

0

a2(t)|uw(t)|2dt+

∫ +∞

0

b2(t)|uw(t)|dt

+c4

+∞∑
j=1

g(tj)|uw(tj)|β+1

≤ ‖uw‖2∞
∫ +∞

0

a2(t)dt+ ‖uw‖∞
∫ +∞

0

b2(t)dt+ c4‖uw‖β+1
∞

+∞∑
j=1

g(tj)

≤ M2
1 ‖a2‖L1‖uw‖2 +M1‖uw‖‖b2‖L1 + c4M

β+1
1 ‖uw‖β+1

+∞∑
j=1

g(tj).

Thus

(1−M2
1 ‖a2‖L1)‖uw‖2 ≤ M1‖uw‖‖b2‖L1 + c4M

β+1
1 ‖uw‖β+1

+∞∑
j=1

g(tj).

Hence

‖uw‖ ≤ d4, for some d4 > 0. �

Theorem 4.9. Assume that (H4), (H6), (I2) and (I3) hold.
Then Problem (1.1) has at least one weak solution provided that

0 <
L2M

1− L1M −M2
1

∑+∞
j=1 g(tj)αj

< 1.
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Proof. Reasoning like in the proof of Theorem 4.2, we can prove that Problem (1.1)
has at least one weak solution. �
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General stabilization of a thermoelastic systems
with a boundary control of a memory type

Nesrine Semchedine, Hamid Benseridi and Salah Drabla

Abstract. In this paper we consider an n-dimensional thermoelastic system,
in a bounded domain, where the memory-type damping is acting on a part
of the boundary and where the resolvent kernel k of −g′(t)/g(0) satisfies
k′′(t) ≥ γ (t) (−k′(t))p, t ≥ 0, 1 < p < 3

2
. We establish a general decay result,

from which the usual exponential and polynomial decay rates are only special
cases. This work generalizes and improves earlier results in the literature.
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1. Introduction

In [4], Messaoudi and Al-Khulaifi studied the following problem |ut|
ρ
utt −∆u−∆utt +

∫ t
0
g (t− s) ∆u (s) ds = 0, in Ω× (0,+∞)

u (x, t) = 0, x ∈ ∂Ω, t ≥ 0
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω, ρ is a
positive real number such that 0 < ρ ≤ 2/ (n− 2) if n ≥ 3 and ρ > 0 if n = 1, 2, and
g is a positive nonincreasing function. They obtained a general decay rate where the
relaxation functions satisfies

g′ (t) ≤ −ξ (t) gp (t) , ∀t ≥ 0, 1 ≤ p < 3

2
.

Stabilization of thermoelastic systems has been studied by many researchers.
Different mechanisms have been utilized to stabilize such systems and several decay
and stability results have been obtained. In this regard we mention, among many

Received 22 October 2019; Accepted 21 January 2020.
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others, the work of Dafermos [2], Messaoudi and Al-Shehri [3], Muñoz Rivera [7],
Rivera and Barreto [8], Rivera and Racke [9], Racke and Shibata [11].

In the present work, we are concerned with



utt − µ4 u− (µ+ λ)∇ (divu) + β∇θ = 0, in Ω× (0,+∞)
cθt − κ4 θ + βdivut = 0, in Ω× (0,+∞)
u (., 0) = u0, ut (., 0) = u1, θ (., 0) = θ0, in Ω
u = 0, on Γ0 × [0,+∞)

u (x, t) = −
t∫

0

g(t− s)
(
µ
∂u

∂ν
+ (µ+ λ) (divu) ν

)
(s) ds, on Γ1 × [0,+∞)

θ = 0, on Γ× [0,+∞),
(1.2)

which is a thermoelastic system subjected to the effect of a viscoelastic damping acting
on a part of the boundary. Here Ω is a bounded domain of Rn (n ≥ 2) with a smooth
boundary Γ = Γ0 ∪ Γ1, ν is the unit outward normal vector to Γ, u = u (x, t) ∈ Rn is
the displacement vector, θ = θ (x, t) is the difference temperature. The relaxation
function g is positive and differentiable function and the boundary condition on Γ1 is
the nonlocal condition responsible for the memory effect. The coefficients c, κ, µ, λ
are positive constants, where µ, λ are Lame moduli and β 6= 0 is a real number. By
considering the resolvent kernel of −g′/g(0), the boundary condition takes the form

∂u

∂ν
= − 1

g (0)
(ut + k ∗ ut) , on Γ1 × [0,+∞),

where k is the resolvent kernel of −g′/g(0).
Messaoudi and Al-Shehri [3] considered (1.2) for a wider class of kernels k satisfying

k(0) > 0, k(t) ≥ 0, k′(t) ≤ 0, k′′(t) ≥ γ(t)(−k′(t)),
where γ : R+ −→ R+ is a function satisfying the following conditions

γ(t) ≥ 0, γ′(t) ≤ 0, and

∫ ∞
0

γ(t)dt = +∞, (1.3)

they proved a more general energy decay result.
Recently, Mustafa [10] treated system (1.2) , for k satisfying

k(0) > 0, lim
t→∞

k(t) = 0, k′(t) ≤ 0, (1.4)

k′′(t) ≥ H(−k′(t)), ∀t > 0, (1.5)

where H is a positive function, which is linear or strictly increasing, strictly convex
of class C2 on (0, r], r < 1, and H(0) = 0 and proved for u0 = 0 on Γ1, an explicit
energy decay formula, from which the usual exponential and polynomial decay rates
are only special cases.
The aim of this work is to study problem (1.2) for k satisfies

k(0) > 0, k(t) ≥ 0, k′(t) ≤ 0, k′′(t) ≥ γ (t) (−k′(t))p, t ≥ 0, 1 < p <
3

2
, (1.6)

where γ satisfies (1.3).
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2. Notation and transformation

In this section we introduce our problem, as well as some notation and lemmas.
The partition Γ0 and Γ1 of boundary are closed, disjoint, with meas (Γ0) > 0 and
satisfying

Γ1 = {x ∈ Γ : m (x) .ν ≥ δ > 0} , Γ0 = {x ∈ Γ : m (x) .ν ≤ 0} , (2.1)

where m (x) = x− x0, for some x0 ∈ Rn.
Similarly to [5, 3, 6], applying Volterra’s inverse operator, the boundary condition

u (x, t) = −
∫ t

0

g (t− s)
(
µ
∂u

∂ν
+ (µ+ λ) (divu) ν

)
(s) ds, on Γ1 × [0,+∞),

can be transformed into

µ
∂u

∂ν
+ (µ+ λ) (divu) ν = − 1

g (0)
(ut + k ∗ ut) , on Γ1 × [0,+∞),

where ∗ denotes the convolution product

(ϕ ∗ ψ)(t) =

∫ t

0

ϕ(t− s)ψ(s)ds,

and k is the resolvent kernel of −g′/g(0) which satisfies

k +
1

g (0)
(g′ ∗ k) = − 1

g (0)
g′.

Taking η = 1/g (0) and assuming throughout the paper that u0 = 0 on Γ1, we arrive
at

µ
∂u

∂ν
+ (µ+ λ) (divu) ν = −η (ut + k(0)u+ k′ ∗ u) , on Γ1 × [0,+∞). (2.2)

Therefore, we will use the boundary relation (2.2) instead of the third equation in
(1.2) .

Since we are interested in relaxation functions of more general decay, we would
like to know if the resolvent kernel k, involved in (2.2), inherits some properties of the
relaxation function involved in (1.2)3. The following Lemma answers this question.

Let h : R+ −→ R+ be continuous. Let k be its resolvent, i.e.

k(t) = h(t) + (k ∗ h)(t), (2.3)

It is well known that k is continuous and positive (see [1, 9]).

Lemma 2.1. Let p > 1, γ : R+ −→ R+ be a nonincreasing function satisfying γ(0) > 0,
and

Cp = sup
t≥0

∫ t

0

(
1 +

∫ t

0

γ2p−1 (ζ) dζ

) 1
2p−2

(
1 +

∫ t−s

0

γ2p−1 (ζ) dζ

)− 1
2p−2

×
(

1 +

∫ s

0

γ2p−1 (ζ) dζ

)− 1
2p−2

ds.
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Assume that there exists C and 1− CCp > 0 such that

h (t) ≤ C(
1 +

∫ t
0
γ2p−1 (ζ) dζ

) 1
2p−2

.

Then there exists C̃ such that

k (t) ≤ C̃(
1 +

∫ t
0
γ2p−1 (ζ) dζ

) 1
2p−2

.

Proof. We set

kp (t) = k (t)

(
1 +

∫ t

0

γ2p−1 (ζ) dζ

) 1
2p−2

,

and

hp (t) = h (t)

(
1 +

∫ t

0

γ2p−1 (ζ) dζ

) 1
2p−2

.

By multiplying (2.3) by
(

1 +
∫ t

0
γ2p−1 (ζ) dζ

) 1
2p−2

, we obtain

kp (t) = hp (t) +

∫ t

0

(
1 +

∫ t

0

γ2p−1 (ζ) dζ

) 1
2p−2

k (t− s)h (s) ds

= hp (t) +

∫ t

0

(
1 +

∫ t

0

γ2p−1 (ζ) dζ

) 1
2p−2

(
1 +

∫ t−s

0

γ2p−1 (ζ) dζ

)− 1
2p−2

× kp (t− s)h (s) ds

= hp (t) +

∫ t

0

(
1 +

∫ t

0

γ2p−1 (ζ) dζ

) 1
2p−2

(
1 +

∫ t−s

0

γ2p−1 (ζ) dζ

)− 1
2p−2

×
(

1 +

∫ s

0

γ2p−1 (ζ) dζ

)− 1
2p−2

kp (t− s)
(

1 +

∫ s

0

γ2p−1 (ζ) dζ

) 1
2p−2

h (s) ds

= hp (t) +

∫ t

0

(
1 +

∫ t

0

γ2p−1 (ζ) dζ

) 1
2p−2

(
1 +

∫ t−s

0

γ2p−1 (ζ) dζ

)− 1
2p−2

×
(

1 +

∫ s

0

γ2p−1 (ζ) dζ

)− 1
2p−2

kp (t− s)hp (s) ds,

Consequently,

sup
0≤s≤t

kp (s) ≤ sup
0≤s≤t

hp (s) + CCp sup
0≤s≤t

kp (s) ≤ C + CCp sup
0≤s≤t

kp (s) ,

which implies

sup
0≤s≤t

kp (s) ≤ C

1− CCp
, ∀t > 0.

Hence

kp (t) ≤ C

1− CCp
.
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Therefore

k (t) ≤ C

1− CCp

(
1 +

∫ t

0

γ2p−1 (ζ) dζ

)− 1
2p−2

.

Finally, we obtain the result of the lemma

k (t) ≤ C̃(
1 +

∫ t
0
γ2p−1 (ζ) dζ

) 1
2p−2

. �

Let us define

(ϕ ◦ ψ) (t) =

∫ t

0

ϕ(t− s) |ψ (t)− ψ (s)|2 ds,

(ϕ♦ψ) (t) =

∫ t

0

ϕ(t− s) (ψ (t)− ψ (s)) ds.

By using Hölder’s inequality, we have

|(ϕ♦ψ) (t)|2 ≤
(∫ t

0

|ϕ(s)| ds
)

(|ϕ| ◦ ψ) (t) . (2.4)

Lemma 2.2 ([9]). If ϕ, ψ ∈ C1 (R+) , then

(ϕ ∗ ψ)ψt = −1

2
ϕ(t) |ψ(t)|2 +

1

2
ϕ′ ◦ψ− 1

2

d

dt

(
ϕ ◦ ψ −

(∫ t

0

ϕ(s)ds

)
|ψ(t)|2

)
. (2.5)

Let us define

V =
{
u ∈ H1 (Ω) : u = 0 on Γ0

}
.

The well-posedness of system (1.2) is presented in the following theorem, which can
be proved, using the Galerkin method as in [9].

Theorem 2.3. Let k ∈W 2,1 (R+) ∩W 1,∞ (R+) , u0 ∈
(
H2 (Ω) ∩ V

)n
, θ0 ∈ H2 (Ω) ∩

H1
0 (Ω) , and u1 ∈ V n, with

∂u0

∂ν
+ ηu0 = 0 on Γ1.

Then there exists a unique strong solution u of system (1.2) , such that

u ∈ C
(
R+;

(
H2 (Ω) ∩ V

)n) ∩ C1
(
R+;V n

)
∩ C2

(
R+;L2 (Ω)

n)
,

θ ∈ C
(
R+;H2 (Ω) ∩H1

0 (Ω)
)
∩ C1

(
R+;H1

0 (Ω)
)
.

3. Decay of solutions

In this section we study the asymptotic behavior of the solutions of system (1.2)
when the resolvent kernel k satisfies the assumption

k(0) > 0, k(t) ≥ 0, k′(t) ≤ 0, k′′(t) ≥ γ (t) (−k′(t))p, (3.1)

where t ≥ 0, 1 < p < 3
2 and γ : R+ −→ R+ is a function satisfying

γ(t) > 0, γ′(t) ≤ 0. (3.2)
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By multiplying the first equation in (1.2) by ut and the second equation in (1.2) by
θ and integrating over Ω, using integration by parts and boundary conditions (2.2)
and (2.5), one can easily find that the first order energy of system (1.2) is given by
(see Lemma 3.1 below).

E (t) =
1

2

∫
Ω

[
|ut|2 + µ |∇u|2 + (µ+ λ) (divu)

2
+ cθ2

]
dx

−η
2

∫
Γ1

(k′ ◦ u)(t)dΓ1 +
η

2

∫
Γ1

k (t) |u|2 dΓ1. (3.3)

Lemma 3.1. The energy of the solution of (1.2) satisfies

E′ (t) = −κ
∫

Ω

|∇θ|2 dx− η
∫

Γ1

|ut|2 dΓ1 +
η

2
k′ (t)

∫
Γ1

|u|2 dΓ1

−η
2

∫
Γ1

(k′′ ◦ u) (t) dΓ1 ≤ 0. (3.4)

Proof. Direct differentiation, using Eqs. (1.2) and (2.2), gives

E′ (t) = −κ
∫

Ω

|∇θ|2 dx− η
∫

Γ1

|ut|2 dΓ1 +
η

2
k′ (t)

∫
Γ1

|u|2 dΓ1

−η
2

∫
Γ1

(k′′ ◦ u) (t) dΓ1.

and consequently, we obtain (3.4) for strong solutions. This result and all estimates
below remain valid for weak solutions by a simple density argument. �

The following crucial lemmas will be used in the proof of our result.

Lemma 3.2. The solution u of (1.2) satisfies

‖u (t)− u (s)‖2L2(Γ1) ≤ CE (0) , ∀s ∈ [0, t] .

Proof. Using the trace theorem and (3.3), we obtain, for all s ∈ [0, t],

‖u (t)− u (s)‖2L2(Γ1) ≤ c ‖∇u (t)−∇u (s)‖22

≤ c
(
‖∇u (t)‖22 + ‖∇u (s)‖22

)
≤ c′ (E (t) + E (s))

≤ C (E (0)) .

�

Lemma 3.3. Assume that k satisfies (3.1). Then

∫ +∞

0

γ (t)
[
−k
′
(t)
]1−σ

dt < +∞, ∀σ < 2− p.
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Proof. Recalling (3.1), we easily see that

γ (t)
[
−k
′
(t)
]1−σ

= γ (t) (−k′ (t))p
[
−k
′
(t)
]1−σ−p

≤ k′′ (t)
[
−k
′
(t)
]1−σ−p

.

Then, integration gives∫ +∞

0

γ (t)
[
−k
′
(t)
]1−σ

dt ≤
∫ +∞

0

k′′ (t)
[
−k
′
(t)
]1−σ−p

dt

= − [−k′ (t)]2−p−σ

2− p− σ

∣∣∣∣∣
+∞

0

< +∞, (3.5)

since σ < 2− p and −k′ is nonnegative and nonincreasing. �

Lemma 3.4. Assume that k satisfies (3.1). Then the solution u of (1.2) satisfies[∫
Γ1

(
γ (t) (−k′)p ◦ u

)
dΓ1

] 1
2p−1

≤
[∫

Γ1

(k′′ ◦ u) dΓ1

] 1
2p−1

.

Proof. Using the fact that γ is nonincreasing, we get

(−k′ (t− s))p γ (t− s) ≥ (−k′ (t− s))p γ (t) .

Multiplication by |u (t)− u (s)|2 and integration over (0, t)× Γ1, we obtain∫
Γ1

t∫
0

(−k′ (t− s))p γ (t− s) |u (t)− u (s)|2 dsdΓ1

≥
∫
Γ1

t∫
0

(−k′ (t− s))p γ (t) |u (t)− u (s)|2 dsdΓ1,

then, by using (3.1) , we find∫
Γ1

(
γ (t) (−k′)p ◦ u

)
dΓ1 ≤

∫
Γ1

k′′ ◦ udΓ1,

hence [∫
Γ1

(
γ (t) (−k′)p ◦ u

)
dΓ1

] 1
2p−1

≤
[∫

Γ1

(k′′ ◦ u) dΓ1

] 1
2p−1

. �

Lemma 3.5. Assume that k satisfies (3.1). Then there exists C > 0 such that the
solution u of (1.2) satisfies∫

Γ1

γ (t) (−k′ ◦ u) dΓ1 ≤ C [−E′ (t)]
1

2p−1 .
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Proof. It easy to see that

∫
Γ1

(−k′ ◦ u) dΓ1 =

∫
Γ1

∫ t

0

−k′ (t− s) |u (t)− u (s)|2 dsdΓ1

=

∫
Γ1

∫ t

0

[−k′ (t− s)](1−σ) p−1
p−1+σ

(
|u (t)− u (s)|2

) p−1
p−1+σ

× [−k′ (t− s)]1−(1−σ) p−1
p−1+σ

(
|u (t)− u (s)|2

) σ
p−1+σ

dsdΓ1

=

∫
Γ1

∫ t

0

[−k′ (t− s)](1−σ) p−1
p−1+σ

(
|u (t)− u (s)|2

) p−1
p−1+σ

× [−k′ (t− s)]
σp

p−1+σ

(
|u (t)− u (s)|2

) σ
p−1+σ

dsdΓ1.

Using Hölder’s inequality, for

s =
p− 1 + σ

p− 1
and s′ =

p− 1 + σ

σ
,

and Lemma 3.2, we arrive at

∫
Γ1

(−k′ ◦ u) dΓ1 ≤
[∫

Γ1

∫ t

0

[−k′ (t− s)]1−σ |u (t)− u (s)|2 dsdΓ1

] p−1
p−1+σ

×
[∫

Γ1

∫ t

0

[−k′ (t− s)]p |u (t)− u (s)|2 dsdΓ1

] σ
p−1+σ

≤
[∫

Γ1

∫ t

0

[−k′ (t− s)]1−σ |u (t)− u (s)|2 dsdΓ1

] p−1
p−1+σ

×
[∫

Γ1

(
(−k′)p ◦ u

)
dΓ1

] σ
p−1+σ

≤ C

[∫ t

0

[−k′ (t− s)]1−σ dsdΓ1

] p−1
p−1+σ

×
[∫

Γ1

(
(−k′)p ◦ u

)
dΓ1

] σ
p−1+σ

.

By taking σ =
1

2
, we have

∫
Γ1

(−k′ ◦ u) dΓ1 ≤ C
[∫ t

0

[−k′ (s)]
1
2 dsdΓ1

] 2p−2
2p−1 [∫

Γ1

(
(−k′)p ◦ u

)
dΓ1

] 1
2p−1

. (3.6)
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Multiply both sides of (3.6) by γ (t), recall Lemma 3.3 and Lemma 3.4 and use Lemma
3.1 to get

γ (t)

∫
Γ1

(−k′ ◦ u) dΓ1

≤ Cγ (t)

[∫ t

0

[−k′ (s)]
1
2 dsdΓ1

] 2p−2
2p−1 [∫

Γ1

(
(−k′)p ◦ u

)
dΓ1

] 1
2p−1

≤ Cγ (t)
2p−2
2p−1

[∫ t

0

[−k′ (s)]
1
2 dsdΓ1

] 2p−2
2p−1

γ (t)
1

2p−1

[∫
Γ1

(
(−k′)p ◦ u

)
dΓ1

] 1
2p−1

≤ C

[∫ t

0

γ (s) [−k′ (s)]
1
2 dsdΓ1

] 2p−2
2p−1 [∫

Γ1

(
γ (t) (−k′)p ◦ u

)
dΓ1

] 1
2p−1

≤ C

[∫ +∞

0

γ (s) [−k′ (s)]
1
2 dsdΓ1

] 2p−2
2p−1 [∫

Γ1

(k′′ ◦ u) dΓ1

] 1
2p−1

≤ C [−E′ (t)]
1

2p−1 .

�

For completeness, we adopt without proof the following result from [3].

Lemma 3.6 ([3]). There exist positive constants N, M, m, c, and t0 such that the
functional

L (t) = NE (t) +

∫
Ω

ut. [M + (n− 1)u] dx,

is equivalent to E (t) and satisfies

L′ (t) ≤ −mE (t)− c
∫

Γ1

(k′ ◦ u) (t) dΓ1, ∀t ≥ t0. (3.7)

Theorem 3.7. Given (u0, u1, θ0) ∈
(
V n,

(
L2 (Ω)

)n
, H1

0 (Ω)
)
. Assume that (2.1) and

(3.1) − (3.2) hold, with lim
t→∞

k (t) = 0. Then for each t0 > 0, there exists a strictly

positive constant C ′ such that the solution u of (1.2) satisfies, for all t ≥ t0,

E(t) ≤ C ′
[

1∫ t
0
γ2p−1 (s) ds+ 1

] 1
2p−2

(3.8)

Moreover,

If

∫ +∞

0

E (t) < +∞, (3.9)

then

E (t) ≤ C ′
[

1∫ t
0
γp (s) ds+ 1

] 1
p−1

(3.10)
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4. Proof of the main result

Multiplying (3.7) by γ (t), and recall lemma 3.5, we obtain

γ(t)L′(t) ≤ −mγ(t)E(t) + C [−E′(t)]
1

2p−1 .

Multiplication of the last inequality by γα(t)Eα(t), where α = 2p− 2, gives

γα+1(t)Eα(t)L′(t) ≤ −mγα+1(t)Eα+1(t) + Cγα(t)Eα(t) [−E′(t)]
1

α+1 .

Use of Young’s inequality, with q = α+ 1 and q∗ = α+1
α , yields, for any ε > 0,

γα+1(t)Eα(t)L′(t) ≤ −mγα+1(t)Eα+1(t) + C
[
εγα+1(t)Eα+1(t)− CεE′(t)

]
= − (m− εC) γα+1(t)Eα+1(t)− C ′E′(t)

We then choose ε <
m

C
and recall that γ′ ≤ 0 and E′ ≤ 0, to get(

γα+1EαL
)′

(t) ≤ γα+1(t)Eα(t)L′(t) ≤ −cγα+1(t)Eα+1(t)− C ′E′(t),

which implies that(
γα+1(t)Eα(t)L(t) + C ′E(t)

)′ ≤ −cγα+1(t)Eα+1(t) (4.1)

Let

F (t) = γα+1(t)Eα(t)L(t) + C ′E(t), (4.2)

where F (t) ∼ E(t). Then

F ′(t) ≤ −cγα+1(t)Fα+1(t) = −cγ2p−1(t)F 2p−1(t). (4.3)

Integrating over (0, t) and using the fact that F ∼ E, we obtain

E (t) ≤ C ′
[

1∫ t
0
γ2p−1 (s) ds+ 1

] 1
2p−2

.

To establish (3.10), we consider (3.9). Let

η(t) =

∫ t

0

‖u(t)− u(t− s)‖22ds.

Assume that η(t) > 0. Then multiplying (3.7) by γ (t) , we obtain

γ (t)L′ (t) ≤ −mγ (t)E (t)− cγ (t)

∫
Γ1

(k′ ◦ u) (t)dΓ1

= −mγ (t)E (t)

+ c
η (t)

η (t)

∫
Γ1

∫ t

0

[
γp (s) (−k′)p (s)

] 1
p ‖u (t)− u (t− s)‖22 dsdΓ1, (4.4)
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where

η (t) =

∫ t

0

‖u (t)− u (t− s)‖22 ds ≤ 2

∫ t

0

‖u (t)‖22 + ‖u (t− s)‖22 ds

≤ 2CΩ

∫ t

0

‖∇u (t)‖22 + ‖∇u (t− s)‖22 ds

≤ 2CΩ

∫ t

0

[E (t) + E (t− s)] ds

≤ 4CΩ

∫ t

0

E (t− s) ds = 4CΩ

∫ t

0

E (s) ds

< 4CΩ

∫ +∞

0

E (s) ds < +∞.

Applying Jensen’s inequality for the third term of (4.4) , with G (y) = y
1
p , y > 0,

f (s) = γp (s) (−k′)p (s) and h (s) = ‖u (t)− u (t− s)‖22, for y > 0 and s > 0, we get

γ (t)L′ (t) ≤ −mγ (t)E (t)

+ cη (t)

[
1

η (t)

∫
Γ1

∫ t

0

[
γp (s) (−k′)p (s)

]
‖u (t)− u (t− s)‖22 dsdΓ1

] 1
p

.

If η(t) = 0, then previous inequality still has a sense because p > 1. By using the fact
that γ is nonincreasing, to see that

γ (t)L′ (t) ≤ −mγ (t)E (t)

+ cη
p−1
p (t)

[
γp−1 (0)

∫
Γ1

∫ t

0

γ (s) (−k′)p (s) ‖u (t)− u (t− s)‖22 dsdΓ1

] 1
p

≤ −mγ (t)E (t) + C ′
(∫

Γ1

(k′′ ◦ u) dΓ1

) 1
p

≤ −mγ (t)E (t) + C ′ (−E′ (t))
1
p .

Multiplying by γα (t)Eα (t), for α = p− 1, and repeating the same computations as
in above, we arrive at

E (t) ≤ C ′
[

1∫ t
0
γp (s) ds+ 1

] 1
p−1

.

This completes the proof of our main result.
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Well-posedness and exponential decay for
a laminated beam with distributed delay term

Madani Douib, Salah Zitouni and Abdelhak Djebabla

Abstract. In this paper, we study the well-posedness and the asymptotic behavior
of a one-dimensional laminated beam system with a distributed delay term in the
first equation, where the heat conduction is given by Fourier’s law effective in the
rotation angle displacements. We first give the well-posedness of the system by
using the semigroup method. Then, we show that the system is exponentially
stable under the assumption of equal wave speeds.
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1. Introduction

Recent advances in smart laminated composite structures in the past two decades
resulted in the application of these new generation of structures in modern industries,
including automotive, robot arms, aerospace and civil engineering. Such structures are
mainly work in harsh dynamic conditions, particularly the design of their piezoelectric
materials can be used as both actuators and sensors. Hansen and Spies in [8, 9] derived
the mathematical model for two-layered beams with structural damping due to the
interfacial slip, the system is given by the following equations: ρ1ϕtt +G (ψ − ϕx)x = 0,

ρ2 (3w − ψ)tt −G (ψ − ϕx)−D (3w − ψ)xx = 0,
ρ2wtt +G (ψ − ϕx) + 4

3γw + 4
3βwt −Dwxx = 0,

(1.1)

where (x, t) ∈ (0, 1) × (0,+∞), and ϕ = ϕ (x, t) is the transversal displacement,
ψ = ψ (x, t) denotes the rotational displacement, and w = w (x, t) is proportional to
the amount of slip along the interface at time t and longitudinal spatial variable x. The
coefficients ρ1, G, ρ2, D, γ, β > 0 are the density of the beams, the shear stiffness, mass

Received 12 November 2019; Accepted 27 December 2019.
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moment of inertia, flexural rigidity, adhesive stiffness of the beams and the adhesive
damping parameter, respectively.

In recent years, an increasing interest has been developed to determine the as-
ymptotic behavior of the solution of several laminated beam problems, we refer the
reader to [3, 12, 13, 14, 15, 23, 24] and the references therein. In [23], Raposo consid-
ered system (1.1) with two frictional dampings of the form: ρ1ϕtt +G (ψ − ϕx)x + k1ϕt = 0,

ρ2 (3w − ψ)tt −G (ψ − ϕx)−D (3w − ψ)xx + k2 (3w − ψ)t = 0,
ρ2wtt +G (ψ − ϕx) + 4

3γw + 4
3βwt −Dwxx = 0,

where (x, t) ∈ (0, 1) × (0,+∞), and obtained the exponential decay result under
appropriate initial and boundary conditions. In [24], Wang, Xu and Yung considered
system (1.1) with the cantilever boundary conditions and two different wave speeds

(
√

G
ρ1

and
√

D
ρ2

). W. Liu and W. Zhao [14] considered a coupled system of a laminated

beam with Fourier’s type heat conduction, which has the form:
ρϕtt +G (ψ − ϕx)x = 0,
Iρ (3w − ψ)tt −G (ψ − ϕx)−D (3w − ψ)xx + σθx = 0,
Iρwtt +G (ψ − ϕx) + 4

3γw + 4
3βwt −Dwxx = 0,

kθt − τθxx + σ (3w − ψ)tx = 0,

where (x, t) ∈ (0, 1)× (0,+∞), they used the energy method to prove an exponential
decay result for the case of equal wave speeds. (See also [1, 5, 11, 16, 17]).

Time delays arise in many applications of most phenomena naturally modulate
by partial differential equations problems, depending not only on the present state but
also on some past occurrences. The presence of delay may be a source of instability.
It may turn a well-behaved system into a wild one. For example, it was shown in
[6, 7, 10, 20, 21, 25] that an arbitrarily small delay may destabilize a system that
is uniformly asymptotically stable in the absence of delay unless additional control
terms have been used. In [21], Nicaise and Pignotti considered wave equation with
linear frictional damping and internal distributed delay

utt −4u+ µ1ut + a (x)

∫ τ2

τ1

µ2 (s)ut (t− s) ds = 0, in Ω× (0,∞) ,

with initial and mixed Dirichlet-Neumann boundary conditions and a is a function
chosen in an appropriate space. They established exponential stability of the solution
under the assumption that

‖a‖∞
∫ τ2

τ1

µ2 (s) ds < µ1.

Regarding the similar result concerning boundary distributed delay see [2, 18, 19].
Moreover, Nicaise, Pignotti and Valein [22] replaced the constant delay term in the
boundary condition of [20] by a time-varying delay term and obtained an exponential
decay result under an appropriate assumption on the weights of the damping and
delay.
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In this work, we consider the laminated beam system where the heat flux is given
by Fourier’s law with distributed delay term. The system is written as

ρ1ϕtt +G (ψ − ϕx)x + µ0ϕt +
∫ τ2
τ1
µ (s)ϕt (x, t− s) ds = 0,

ρ2 (3w − ψ)tt −G (ψ − ϕx)−D (3w − ψ)xx + σθx = 0,
ρ2wtt +G (ψ − ϕx) + 4

3γw + 4
3βwt −Dwxx = 0,

kθt − τθxx + σ (3w − ψ)tx = 0,

(1.2)

where (x, t) ∈ (0, 1) × (0,+∞), and ρ1, G, ρ2, D, σ, γ, β, k, τ are positive constant
coefficients, with the Dirichlet-Neumann boundary conditions:{

ϕ(0, t) = ψx(0, t) = wx(0, t) = θ(0, t) = 0,
ϕx(1, t) = ψ (1, t) = w (1, t) = θx (1, t) = 0,

t ∈ [0,+∞),
t ∈ [0,+∞),

(1.3)

and the initial conditions:
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),
w(x, 0) = w0(x), wt(x, 0) = w1(x),
θ(x, 0) = θ0(x),
ϕt(x,−t) = f0(x, t),

x ∈ [0, 1] ,
x ∈ [0, 1] ,
x ∈ [0, 1] ,
x ∈ [0, 1] ,
(x; t) ∈ (0, 1)× (0, τ2) ,

(1.4)

where τ1 and τ2 are two real numbers with 0 ≤ τ1 < τ2, µ0 is a positive constant, and
µ : [τ1, τ2] −→ R is an L∞ function, µ ≥ 0 almost everywhere, and the initial data
(ϕ0, ϕ1, 3w0 − ψ0, 3w1 − ψ1, w0, w1, θ0, f0) belong to a suitable Sobolev space.

Here, we prove the well-posedness and stability results for problem on the fol-
lowing parameter, under the assumption

µ0 ≥
∫ τ2

τ1

µ (s) ds. (1.5)

The rest of our paper is organized as follows. In Section 2, by using Hille-Yosida
theorem, we state and prove the well posedness of problem (1.2)-(1.4). In Section 3,
by using the perturbed energy method, we then establish the exponential result if and
only if ρ1

G = ρ2
D .

2. Well-posedness of the problem

In this section, we will prove that system (1.2)-(1.4) are well posed using semi-
group theory by introducing the following new variable as in [21].

z(x, ρ, t, s) = ϕt (x, t− ρs) , x ∈ (0, 1) , ρ ∈ (0, 1) , t > 0, s ∈ (τ1, τ2) . (2.1)

Then, we have

szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0, x ∈ (0, 1) , ρ ∈ (0, 1) , t > 0, s ∈ (τ1, τ2) . (2.2)

Therefore, problem (1.2) takes the form:
ρ1ϕtt +G (ψ − ϕx)x + µ0ϕt +

∫ τ2
τ1
µ (s) z(x, 1, t, s)ds = 0,

ρ2 (3w − ψ)tt −G (ψ − ϕx)−D (3w − ψ)xx + σθx = 0,
ρ2wtt +G (ψ − ϕx) + 4

3γw + 4
3βwt −Dwxx = 0,

kθt − τθxx + σ (3w − ψ)tx = 0,

(2.3)
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with the Dirichlet-Neumann boundary conditions:{
ϕ(0, t) = ψx(0, t) = wx(0, t) = θ(0, t) = 0,
ϕx(1, t) = ψ (1, t) = w (1, t) = θx (1, t) = 0,

t ∈ [0,+∞),
t ∈ [0,+∞),

(2.4)

and the initial conditions:

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ [0, 1] ,
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ [0, 1] ,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ [0, 1] ,
θ(x, 0) = θ0(x), x ∈ [0, 1] ,
ϕt(x,−t) = f0(x, t), (x, t) ∈ (0, 1)× (0, τ2)
z (x, 0, t, s) = ϕt (x, t) on (0, 1)× (0,∞)× (τ1, τ2) ,
z (x, ρ, 0, s) = f0 (x, ρ, s) on (0, 1)× (0, 1)× (τ1, τ2) .

(2.5)

Introducing the vector function

U = (ϕ,ϕt, 3w − ψ, (3w − ψ)t , w, wt, θ, z)
T
,

problem (2.3)-(2.5) can be written as{
∂tU = AU,
U (x, 0) = U0 (x) = (ϕ0, ϕ1, 3w0 − ψ0, 3w1 − ψ1, w0, w1, θ0, f0)T .

(2.6)

Where the operator A is defined by

AU =



ϕt

−G
ρ1

(ψ − ϕx)x −
µ0

ρ1
ϕt −

1

ρ1

∫ τ2
τ1
µ (s) z (x, 1, t, s) ds

(3w − ψ)t
G

ρ2
(ψ − ϕx) +

D

ρ2
(3w − ψ)xx −

σ

ρ2
θx

wt

−G
ρ2

(ψ − ϕx)− 4γ

3ρ2
w − 4β

3ρ2
wt +

D

ρ2
wxx

τ

κ
θxx −

σ

κ
(3w − ψ)tx

−s−1zρ


We consider the following spaces

H1
∗ (0, 1) =

{
χ/χ ∈ H1 (0, 1) : χ (0) = 0

}
,

H̃1
∗ (0, 1) =

{
χ/χ ∈ H1 (0, 1) : χ (1) = 0

}
.

Let

H = H1
∗ (0, 1)× L2 (0, 1)× H̃1

∗ (0, 1)× L2 (0, 1)× H̃1
∗ (0, 1)

×L2 (0, 1)× L2 (0, 1)× L2
(
(0, 1)× (τ1, τ2) , H1 (0, 1)

)
,
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be the Hilbert space equipped with the inner product〈
U, Ũ

〉
H

=

∫ 1

0

[ρ1ϕtϕ̃t + ρ2 (3w − ψ)t

(
3w̃ − ψ̃

)
t

+ 3ρ2wtw̃tdx+ kθθ̃

+4γww̃ +G (ψ − ϕx)
(
ψ̃ − ϕ̃x

)
+D (3w − ψ)x

(
3w̃ − ψ̃

)
x

+3Dwxw̃x]dx+

∫ 1

0

∫ τ2

τ1

sµ (s)

∫ 1

0

z (x, ρ, s) z̃ (x, ρ, s) dρdsdx.

The domain of A is

D (A) =


U ∈ H | ϕ ∈ H2 (0, 1) ∩H1

∗ (0, 1) , θ ∈ H1
∗ (0, 1) ,

3w − ψ,w ∈ H2 (0, 1) ∩ H̃1
∗ (0, 1) ,

ϕt ∈ H1
∗ (0, 1) , (3w − ψ)t , wt ∈ H̃1

∗ (0, 1) ,
ϕx (1, t) = ψx (0, t) = wx (0, t) = 0, ϕt (x) = z (x, 0, s) in(0, 1)

 , (2.7)

and it is dense in H. The well-posedness of problem (2.6) is ensured by

Theorem 2.1. Assume that U0 ∈ H and (1.5) holds, then problem (2.6) exists a unique
weak solution U ∈ C (R+;H). Moreover, if U0 ∈ D (A), then

U ∈ C
(
R+;D (A) ∩ C1

(
R+;H

))
. (2.8)

Proof. To prove the well-posedness result, it suffices to show that A : D (A) → H is
a maximal monotone operator, which means A is dissipative and Id−A is surjective.
First, we prove that A is dissipative.

For any U = (ϕ,ϕt, 3w − ψ, (3w − ψ)t , w, wt, θ, z)
T ∈ D (A), by using the inner prod-

uct and integrating by parts, we have

〈AU,U〉H = −µ0

∫ 1

0

ϕ2
t (x) dx−

∫ 1

0

ϕt (x)

(∫ τ2

τ1

µ (s) z (x, 1, s) ds

)
dx

−4β

∫ 1

0

w2
t dx−

1

2

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s) dsdx

−τ
∫ 1

0

θ2xdx+
1

2

∫ τ2

τ1

µ (s) ds

∫ 1

0

ϕ2
t (x) dx.

Now, using Young’s and Cauchy–Schwarz’ inequalities, we can estimate,

−
∫ 1

0

ϕt (x)

(∫ τ2

τ1

µ (s) z (x, 1, s) ds

)
dx

≤ 1

2

(∫ τ2

τ1

µ (s) ds

)∫ 1

0

ϕ2
t (x) dx+

1

2

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s) dsdx.

Therefore, from the assumption (1.5) we have

〈AU,U〉H

≤ −τ
∫ 1

0

θ2xdx− 4β

∫ 1

0

w2
t dx+

(
−µ0 +

∫ τ2

τ1

µ (s) ds

)∫ 1

0

ϕ2
t (x) dx ≤ 0.

Consequently, A is a dissipative operator.
Next, we prove that the operator Id−A is surjective.
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Given F = (f1, f2, f3, f4, f5, f6, f7, f8)
T ∈ H, we prove that there exists a unique

U = (ϕ,ϕt, 3w − ψ, (3w − ψ)t , w, wt, θ, z)
T ∈ D (A) such that

(Id−A)U = F, (2.9)

that is,

ϕ− ϕt = f1,
(ρ1 + µ0)ϕt −Gϕxx −G (3w − ψ)x + 3Gwx +

∫ τ2
τ1
µ (s) z (x, 1, t, s) ds

= ρ1f2,
(3w − ψ)− (3w − ψ)t = f3,

ρ2 (3w − ψ)t +Gϕx +G (3w − ψ)−D (3w − ψ)xx − 3Gw + σθx
= ρ2f4,

w − wt = f5,(
ρ2 + 4β

3

)
wt −Gϕx −G (3w − ψ) +

(
3G+ 4γ

3

)
w −Dwxx = ρ2f6,

kθ − τθxx + σ (3w − ψ)tx = kf7,
z + s−1zρ = f8.

(2.10)

From (2.10)1,(2.10)3 and (2.10)5 we have ϕt = ϕ− f1,
(3w − ψ)t = (3w − ψ)− f3,

wt = w − f5.
(2.11)

Inserting (2.11) into (2.10)2, (2.10)4, (2.10)6 and (2.10)7, we get

(µ0 + ρ1)ϕ−Gϕxx −G (3w − ψ)x + 3Gwx +
∫ τ2
τ1
µ (s) z (x, 1, t, s) ds

= ρ1 (f1 + f2) + µ0f1,

ρ2 (3w − ψ) +Gϕx +G (3w − ψ)−D (3w − ψ)xx − 3Gw + σθx
= ρ2 (f3 + f4) ,(

ρ2 + 4β
3

)
w −Gϕx −G (3w − ψ) +

(
3G+ 4γ

3

)
w −Dwxx

= ρ2 (f5 + f6) + 4β
3 f5,

kθ − τθxx + σ (3w − ψ)x = σ (f3)x + kf7,
z + s−1zρ = f8.

(2.12)

Using (2.11) and the fact that z (x, 0, s) = ϕt (x), we get

z (x, ρ, s) = ϕ(x)e−ρs − f1e−ρs + se−ρs
∫ ρ

0

f8(x, δ, s)eδsdδ, (2.13)

In order to solve (2.10), we consider the following variational formulation

B

(
(ϕ, 3w − ψ,w, θ)T ,

(
ϕ̃, 3w̃ − ψ̃, w̃, θ̃

)T)
= L

(
ϕ̃, 3w̃ − ψ̃, w̃, θ̃

)T
, (2.14)
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where B :
[
H1
∗ (0, 1)× H̃1

∗ (0, 1)× H̃1
∗ (0, 1)× L2 (0, 1)

]2
−→ R is the bilinear form

defined by

B

(
(ϕ, 3w − ψ,w, θ)T ,

(
ϕ̃, 3w̃ − ψ̃, w̃, θ̃

)T)
=

∫ 1

0

G (−ϕx + ψ)
(
−ϕ̃x + ψ̃

)
dx+

∫ 1

0

(µ0 + ρ1)ϕϕ̃dx+

∫ 1

0

kθθ̃dx

+

∫ 1

0

ρ2 (3w − ψ)
(

3w̃ − ψ̃
)
dx+

∫ 1

0

(3ρ2 + 4β + 4γ)ww̃dx

+

∫ 1

0

D (3w − ψ)x

(
3w̃ − ψ̃

)
x
dx+

∫ 1

0

3Dwxw̃xdx+ τ

∫ 1

0

θxθ̃xdx

+σ

∫ 1

0

θx

(
3w̃ − ψ̃

)
dx+ σ

∫ 1

0

(3w − ψ)x θ̃dx

+

∫ 1

0

ϕϕ̃

∫ τ2

τ1

µ (s) e−sdsdx,

and L :
[
H1
∗ (0, 1)× H̃1

∗ (0, 1)× H̃1
∗ (0, 1)× L2 (0, 1)

]
−→ R is the linear form defined

by

L
(
ϕ̃, 3w̃ − ψ̃, w̃, θ̃

)T
=

∫ 1

0

ρ1 (f1 + f2) ϕ̃dx+

∫ 1

0

µ0f1ϕ̃dx+

∫ 1

0

ρ2 (f3 + f4)
(

3w̃ − ψ̃
)
dx

+

∫ 1

0

3ρ2 (f5 + f6) w̃dx+

∫ 1

0

4βf5w̃dx+

∫ 1

0

σ (f3)x θ̃dx+

∫ 1

0

kf7θ̃dx

−
∫ 1

0

ϕ̃

∫ τ2

τ1

µ (s) z0 (x, s) dsdx.

Now, for V = H1
∗ (0, 1)× H̃1

∗ (0, 1)× H̃1
∗ (0, 1)× L2 (0, 1) equipped with the norm

‖(ϕ, 3w − ψ,w, θ)‖2V = ‖−ϕx + ψ‖22 + ‖ϕ‖22 + ‖3wx − ψx‖22 + ‖wx‖22 + ‖θx‖22 .
It is easy to verify that B (., .) is continuous and coercive, and L (.) is continuous.
So applying the Lax-Milgram theorem, problem (2.14) admits a unique solution

ϕ ∈ H1
∗ (0, 1) , (3w − ψ) ∈ H̃1

∗ (0, 1) , w ∈ H̃1
∗ (0, 1) , θ ∈ L2 (0, 1) .

The substitution of ϕ, 3w − ψ and w into (2.11), we obtain

ϕt ∈ H1
∗ (0, 1) , (3w − ψ)t ∈ H̃

1
∗ (0, 1) , wt ∈ H̃1

∗ (0, 1) .

Applying the classical elliptic regularity, it follows from (2.12) that

ϕ ∈ H2 (0, 1) ∩H1
∗ (0, 1) , (3w − ψ) ∈ H2 (0, 1) ∩ H̃1

∗ (0, 1) , θ ∈ H1
∗ (0, 1) ,

w ∈ H2 (0, 1) ∩ H̃1
∗ (0, 1) , ϕx (1) = (3w − ψ)x (0) = wx (0) = 0.

Therefore, the operator Id− A is surjective. Consequently, the well-posedness result
stated in Theorem 2.1 follows from the Hille–Yosida theorem (see [4]). �
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3. Exponential stability of solution

In this section, we show that, under the assumption µ0 ≥
∫ τ2
τ1
µ (s) ds and for

ρ1
G = ρ2

D , the solution of problem (2.3)-(2.5) decays exponentially to the study state. To
achieve our goal we use the energy method to produce a suitable Lyapunov functional.
We define the energy functional E (t) as

E (t) :=
1

2

∫ 1

0

[
ρ1ϕ

2
t + ρ2 (3wt − ψt)2 + 3ρ2w

2
t +G (ψ − ϕx)

2
+ 4γw2 + kθ2

+D (3wx − ψx)
2

+ 3Dw2
x

]
dx+

1

2

∫ 1

0

∫ 1

0

∫ τ2
τ1
sµ (s) z2 (x, ρ, s, t) dsdρdx.

(3.1)

Theorem 3.1. Assume that ρ1
G = ρ2

D and (1.5) holds. Let U0 ∈ H , then there exists
positive constants c0, c1 such that the energy E (t) associated with problem (2.3)-(2.5)
satisfies,

E (t) ≤ c0e−c1t, t ≥ 0. (3.2)

In order to prove this result, we need the following lemmas.

Lemma 3.2. Let (ϕ,ψ,w, θ, z) be the solution of (2.3)-(2.5) and assume (1.5) holds.
Then the energy functional, defined by (3.1) satisfies

d

dt
E (t) ≤ −4β

∫ 1

0

w2
t dx− τ

∫ 1

0

θ2xdx−
(
µ0 −

∫ τ2

τ1

µ (s) ds

)∫ 1

0

ϕ2
tdx ≤ 0. (3.3)

Proof. Multiplying (2.3)1, (2.3)2, (2.3)3 and (2.3)4 by ϕt, 3 (w − ψ)t , 3wt and θ, re-
spectively, and integrating over (0, 1), using integration by parts and the boundary
conditions in (2.4), we get

d

dt

[
1

2

(
ρ1

∫ 1

0

ϕ2
tdx+G

∫ 1

0

(ψ − ϕx)
2
dx

)]
= G

∫ 1

0

(ψ − ϕx)ψtdx− µ0

∫ 1

0

ϕ2
tdx−

∫ 1

0

ϕt

∫ τ2

τ1

µ (s)ϕt (x, t− s) dsdx, (3.4)

d

dt

[
1

2

(
ρ2

∫ 1

0

(3wt − ψt)2 dx+D

∫ 1

0

(3wx − ψx)
2
dx

)]
= G

∫ 1

0

(ψ − ϕx) (3w − ψ)t dx− σ
∫ 1

0

θx (3w − ψ)t dx, (3.5)

d

dt

[
1

2

(
3ρ2

∫ 1

0

w2
t dx+ 4γ

∫ 1

0

w2dx+ 3D

∫ 1

0

w2
xdx

)]
= −3G

∫ 1

0

(ψ − ϕx)wtdx− 4β

∫ 1

0

w2
t dx, (3.6)

and
d

dt

[
1

2
k

∫ 1

0

θ2dx

]
= σ

∫ 1

0

(3w − ψ)t θxdx− τ
∫ 1

0

θ2xdx. (3.7)
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On the other hand, multiplying (2.2) by µ (s) z (x, ρ, s, t) and integrating over
(0, 1)× (0, 1)× (τ1, τ2), we obtain∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ (s) z (x, ρ, s, t) zt (x, ρ, s, t) dsdρdx

+

∫ 1

0

∫ 1

0

∫ τ2

τ1

µ (s) z (x, ρ, s, t) zρ (x, ρ, s, t) dsdρdx = 0,

thus, we have

1

2

d

dt

∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ (s) z2 (x, ρ, s, t) dsdρdx

= −1

2

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s, t) dsdx+
1

2

∫ τ2

τ1

µ (s) ds

∫ 1

0

ϕ2
tdx. (3.8)

Summing up (3.4)-(3.8), we arrive at

d

dt
E (t) = −4β

∫ 1

0

w2
t dx−

(
µ0 −

1

2

(∫ τ2

τ1

µ (s) ds

))∫ 1

0

ϕ2
tdx

−τ
∫ 1

0

θ2xdx−
∫ 1

0

ϕt

∫ τ2

τ1

µ (s) z (x, 1, s, t) dsdx

−1

2

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s, t) dsdx.

(3.9)

Young’s and Cauchy–Schwarz’ inequalities applied to the fourth term on the right-
hand side yield

−
∫ 1

0

ϕt

∫ τ2

τ1

µ (s) z (x, 1, s, t) dsdx ≤ 1

2

(∫ τ2

τ1

µ (s) ds

)∫ 1

0

ϕ2
tdx

+
1

2

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s, t) dsdx.

(3.10)

Simple substitution of (3.10) into (3.9) and using (1.5) give (3.3), which concludes
the proof. �

Now, we are going to construct a Lyapunov functional equivalent to the energy. For
this, we will prove several lemmas with the purpose of creating negative counterparts
of the terms that appear in the energy.

Lemma 3.3. Let (ϕ,ψ,w, θ, z) be the solution of (2.3)-(2.5). Then the functional

F1 (t) := −ρ1
∫ 1

0

ϕϕtdx (3.11)
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satisfies the estimate

F ′1 (t) ≤ −ρ1
2

∫ 1

0

ϕ2
tdx+ C1

∫ 1

0

(ψ − ϕx)
2
dx+ C2

∫ 1

0

(3wx − ψx)
2
dx

+C3

∫ 1

0

w2
xdx+

1

2

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s, t) dsdx. (3.12)

where

C1 =
3G

2
+
µ2
0

ρ1
+

∫ τ2

τ1

µ (s) ds, C2 = G+
2µ2

0

ρ1
+ 2

∫ τ2

τ1

µ (s) ds,

C3 = 9G+
18µ2

0

ρ1
+ 18

∫ τ2

τ1

µ (s) ds.

Proof. Taking the derivative of F1 (t) with respect to t, using the first equation in
(2.3), and integrating by parts, gives

F ′1 (t) = −ρ1
∫ 1

0

ϕ2
tdx−G

∫ 1

0

(ψ − ϕx)ϕxdx+ µ0

∫ 1

0

ϕtϕdx

+

∫ 1

0

ϕ

∫ τ2

τ1

µ (s) z (x, 1, t, s) dsdx.

Note that

−G
∫ 1

0

(ψ − ϕx)ϕxdx = G

∫ 1

0

(ψ − ϕx)
2
dx−G

∫ 1

0

ψ (ψ − ϕx) dx.

Then, we deduce that

F ′1 (t) = −ρ1
∫ 1

0

ϕ2
tdx+G

∫ 1

0

(ψ − ϕx)
2
dx−G

∫ 1

0

ψ (ψ − ϕx) dx

+µ0

∫ 1

0

ϕtϕdx+

∫ 1

0

ϕ

∫ τ2

τ1

µ (s) z (x, 1, t, s) dsdx.

We then use Young’s inequality, we obtain

F ′1 (t) ≤ −ρ1
2

∫ 1

0

ϕ2
tdx+

3G

2

∫ 1

0

(ψ − ϕx)
2
dx+

G

2

∫ 1

0

ψ2
xdx

+

(
µ2
0

2ρ1
+

1

2

∫ τ2

τ1

µ (s) ds

)∫ 1

0

ϕ2dx

+
1

2

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s, t) dsdx.

By using (1.5) and the trivial relation∫ 1

0

ϕ2dx ≤ 2

∫ 1

0

(ψ − ϕx)
2
dx+ 2

∫ 1

0

ψ2
xdx,
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we obtain

F ′1 (t) ≤ −ρ1
2

∫ 1

0

ϕ2
tdx+

(
3G

2
+
µ2
0

ρ1
+

∫ τ2

τ1

µ (s) ds

)∫ 1

0

(ψ − ϕx)
2
dx

+

(
G

2
+
µ2
0

ρ1
+

∫ τ2

τ1

µ (s) ds

)∫ 1

0

ψ2
xdx

+
1

2

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s, t) dsdx.

Note that∫ 1

0

ψ2
xdx =

∫ 1

0

(ψx − 3wx + 3wx)
2
dx ≤ 2

∫ 1

0

(3wx − ψx)
2
dx+ 18

∫ 1

0

w2
xdx.

Then the estimate (3.12) is established. �

Lemma 3.4. Let (ϕ,ψ,w, θ, z) be the solution of (2.3)-(2.5). Then the functional

F2 (t) := ρ2

∫ 1

0

(3w − ψ) (3w − ψ)t dx (3.13)

satisfies the estimate

F ′2 (t) ≤ −D
2

∫ 1

0

(3wx − ψx)
2
dx+ ρ2

∫ 1

0

(3wt − ψt)2 dx

+
G2

D

∫ 1

0

(ψ − ϕx)
2
dx+

σ2

D

∫ 1

0

θ2dx. (3.14)

Proof. By differentiating F2 (t) with respect to t, then exploiting the second equation
in (2.3), and integrating by parts, we obtain

F ′2 (t) = −D
∫ 1

0

(3wx − ψx)
2
dx+ ρ2

∫ 1

0

(3wt − ψt)2 dx

+G

∫ 1

0

(ψ − ϕx) (3w − ψ) dx+ σ

∫ 1

0

(3w − ψ)x θdx. (3.15)

Using Young’s inequality, we obtain estimate (3.14). �

Lemma 3.5. Let (ϕ,ψ,w, θ, z) be the solution of (2.3)-(2.5). Then the functional

F3 (t) := ρ2

∫ 1

0

wwtdx (3.16)

satisfies, for any ε1 > 0, the estimate

F ′3 (t) ≤ −
(

4γ

3
− ε1

)∫ 1

0

w2dx−D
∫ 1

0

w2
xdx+ C4 (ε1)

∫ 1

0

w2
t dx

+
G2

2ε1

∫ 1

0

(ψ − ϕx)
2
dx. (3.17)

where

C4 (ε1) = ρ2 +
8β2

9ε1
.
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Proof. By differentiating F3 (t) with respect to t, then exploiting the third equation
in (2.3), and integrating by parts, we obtain

F ′3 (t) = ρ2

∫ 1

0

w2
t dx−G

∫ 1

0

w (ψ − ϕx) dx− 4

3
γ

∫ 1

0

w2dx

−4

3
β

∫ 1

0

wwtdx−D
∫ 1

0

w2
xdx.

Using Young’s inequality with ε1 > 0, we obtain estimate (3.17). �

Lemma 3.6. Let (ϕ,ψ,w, θ, z) be the solution of (2.3)-(2.5). Then the functional

F4 (t) :=
kρ2
σ

∫ 1

0

(3w − ψ)t

∫ x

0

θdydx (3.18)

satisfies, for any ε2 > 0, the estimate

F ′4 (t) ≤ −ρ2
2

∫ 1

0

(3wt − ψt)2 dx+ C5 (ε2)

∫ 1

0

θ2dx+ ε2

∫ 1

0

(ψ − ϕx)
2
dx

+ε2

∫ 1

0

(3wx − ψx)
2
dx+

τρ2
2σ2

∫ 1

0

θ2xdx, (3.19)

where

C5 (ε2) = k +
k2D2

4ε2σ2
+
k2G2

4ε2σ2
.

Proof. By differentiating F4 (t) with respect to t, using the second and the fourth
equations in (2.3), and integrating by parts, we obtain

F ′4 (t) = −ρ2
∫ 1

0

(3wt − ψt)2 dx+
kG

σ

∫ 1

0

(ψ − ϕx)

∫ x

0

θdydx

−kD
σ

∫ 1

0

(3w − ψ)x θdx+ k

∫ 1

0

θ2dx+
τρ2
σ

∫ 1

0

(3w − ψ)t θxdx.

(3.20)

Then, using Young’s and Poincaré inequalities with ε2 > 0, we arrive at (3.19). �

Lemma 3.7. Let (ϕ,ψ,w, θ, z) be the solution of (2.3)-(2.5). Then the functional

F5 (t) := ρ2

∫ 1

0

wt (ψ − ϕx) dx+ ρ2

∫ 1

0

wtϕxdx−
Dρ1
G

∫ 1

0

(wxϕt − wxtϕ) dx (3.21)

satisfies, for any ε3 > 0, the estimate

F ′5 (t) ≤ −G
2

∫ 1

0

(ψ − ϕx)
2
dx+ ε3

∫ 1

0

(3wt − ψt)2 dx+
16γ2

9G

∫ 1

0

w2dx

+C6

∫ 1

0

w2
xdx+ C7 (ε3)

∫ 1

0

w2
t dx+

Dµ0

2G

∫ 1

0

ϕ2
tdx

+
D

2G

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s, t) dsdx, (3.22)

where C6 = Dµ0

2G + D
2G

∫ τ2
τ1
µ (s) ds, C7 (ε3) = 16β2

9G +
ρ22
2ε3

+ 9ε3.
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Proof. Using the first and the third equations in (2.3), and integrating by parts, we
obtain

d

dt

{
ρ2

∫ 1

0

wt (ψ − ϕx) dx

}
=

Dρ1
G

{
d

dt

∫ 1

0

(wxϕt − wxtϕ) dx−
∫ 1

0

wttϕxdx

}
+
µ0D

G

∫ 1

0

wxϕtdx

+
D

G

∫ 1

0

wx

∫ τ2

τ1

µ (s)ϕt (x, t− s) dsdx−G
∫ 1

0

(ψ − ϕx)
2
dx

−4γ

3

∫ 1

0

w (ψ − ϕx) dx− 4β

3

∫ 1

0

wt (ψ − ϕx) dx+ ρ2

∫ 1

0

wtψtdx

− d

dt

{
ρ2

∫ 1

0

wtϕxdx

}
+ ρ2

∫ 1

0

wttϕxdx

We conclude for

F ′5 (t) = D
(ρ2
D
− ρ1
G

)∫ 1

0

wttϕxdx+
µ0D

G

∫ 1

0

wxϕtdx

+
D

G

∫ 1

0

wx

∫ τ2

τ1

µ (s) z (x, 1, s, t) dsdx−G
∫ 1

0

(ψ − ϕx)
2
dx

−4γ

3

∫ 1

0

w (ψ − ϕx) dx− 4β

3

∫ 1

0

wt (ψ − ϕx) dx+ ρ2

∫ 1

0

wtψtdx.

Using Young’s inequality and ρ2
D = ρ1

G , we obtain (3.22). �

Lemma 3.8. Let (ϕ,ψ,w, θ, z) be the solution of (2.3)-(2.5) and (2.2). Then the func-
tional

F6(t) :=

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρµ (s) z2 (x, ρ, s, t) dsdρdx (3.23)

satisfies, for some positive constant n, the following estimate

F
′

6(t) ≤ −n
∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ (s) z2 (x, ρ, s, t) dsdρdx

−n
∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, 1, s, t) dsdx+ µ0

∫ 1

0

ϕ2
tdx. (3.24)

Proof. By differentiating F6 (t) with respect to t, and using the equation (2.2), we
obtain

F
′

6(t) = −2

∫ 1

0

∫ 1

0

∫ τ2

τ1

e−sρµ (s) z (x, ρ, s, t) zρ (x, ρ, s, t) dsdρdx

= −
∫ 1

0

∫ τ2

τ1

µ (s)
[
e−sz2 (x, 1, s, t)− z2 (x, 0, s, t)

]
dsdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρµ (s) z2 (x, ρ, s, t) dsdρdx. (3.25)
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Using the fact that z (x, 0, s, t) = ϕt and e−s ≤ e−sρ ≤ 1, for all 0 < ρ < 1, we obtain

F
′

6(t) ≤ −
∫ 1

0

∫ τ2

τ1

e−sµ (s) z2 (x, 1, s, t) dsdx+

∫ τ2

τ1

µ (s) ds

∫ 1

0

ϕ2
tdx

−n1
∫ 1

0

∫ 1

0

∫ τ2

τ1

µ (s) z2 (x, ρ, s, t) dsdρdx. (3.26)

Because −e−s is an increasing function, we have −e−s ≤ −e−τ2 , for all s ∈ [τ1, τ2].
Finally, setting n = e−τ2 and recalling (1.5), we obtain (3.24). �

Next, we define a Lyapunov functional L (t) and show that it is equivalent to
the energy functional E (t).

Lemma 3.9. Let N,N2, N3, N4, N5, N6 > 0 and ρ1
G = ρ2

D , we define

L (t) := NE (t) + F1 (t) +

i=6∑
i=2

NiFi (t) (3.27)

For two positive constants β1 and β2, we have

β1E (t) ≤ L (t) ≤ β2E (t) ,∀t ≥ 0. (3.28)

Proof. Now, let

L (t) = F1 (t) +

i=6∑
i=2

NiFi (t)

|L (t)| ≤ ρ1

∫ 1

0

|ϕϕt| dx+N2ρ2

∫ 1

0

|(3w − ψ) (3w − ψ)t| dx

+N3ρ2

∫ 1

0

|wwt| dx+N4
kρ2
σ

∫ 1

0

∣∣∣∣(3w − ψ)t

∫ x

0

θdy

∣∣∣∣ dx
+N5ρ2

∫ 1

0

|wt (ψ − ϕx)| dx+N5
Dρ1
G

∫ 1

0

|(wxϕt − wxtϕ)| dx

+N5ρ2

∫ 1

0

|wtϕx| dx

+N6

∫ 1

0

∫ 1

0

∫ τ2

τ1

∣∣se−sρµ (s) z2 (x, ρ, s, t)
∣∣ dsdρdx.

Exploiting Young’s, Poincaré, Cauchy-Schwarz inequalities, (3.1), and the fact that
e−sρ ≤ 1 for all ρ ∈ [0, 1], we obtain

|L (t)| ≤ c
∫ 1

0

[
ϕ2
t + (3wt − ψt)2 + w2

t + (ψ − ϕx)
2

+ (3wx − ψx)
2

+ w2
x + w2

+ θ2
]
dx+ c

∫ 1

0

∫ 1

0

∫ τ2
τ1
sµ (s) z2 (x, ρ, z, t) dsdρdx ≤ cE (t) .

Consequently, |L(t)−NE(t)| ≤ cE(t), which yields

(N − c)E (t) ≤ L (t) ≤ (N + c)E (t) .

Choosing such that (N − c) > 0, we obtain estimate (3.28). �
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Now, we are ready to state and prove the main result of this section.

Proof. (of Theorem 3.1). By differentiating (3.27) and recalling (3.12), (3.14), (3.17),
(3.19), (3.22) and (3.24), we obtain

L′ (t) ≤ −
[(
µ0 −

∫ τ2

τ1

µ (s) ds

)
N +

ρ1
2
− Dµ0

2G
N5 − µ0N6

] ∫ 1

0

ϕ2
tdx

−
[

4γ

3
N3 − ε1N3 −

16γ2

9G
N5

] ∫ 1

0

w2dx

−
[
τN − τρ2

2σ2
N4

] ∫ 1

0

θ2xdx

− [DN3 − C3 − C6N5]

∫ 1

0

w2
xdx+

[
σ2

D
N2 + C5 (ε2)N4

] ∫ 1

0

θ2dx

−
[
G

2
N5 − C1 −

G2

D
N2 −

G2

2ε1
N3 − ε2N4

] ∫ 1

0

(ψ − ϕx)
2
dx

−
[ρ2

2
N4 − ρ2N2 − ε3N5

] ∫ 1

0

(3wt − ψt)2 dx

− [4βN − C4 (ε1)N3 − C7 (ε3)N5]

∫ 1

0

w2
t dx

−
[
D

2
N2 − C2 − ε2N4

] ∫ 1

0

(3wx − ψx)
2
dx

− [nN6]

∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ (s) z2(x, ρ, s, t)dsdρdx

−
[
nN6 −

1

2
− D

2G
N5

] ∫ 1

0

∫ τ2

τ1

µ (s) z2(x, 1, s, t)dsdx. (3.29)

At this point, we need to choose our constants very carefully. First, we take N2 large
enough, such that

D

2
N2 − C2 ≥ 0.

Then, we choose N4 and N5 large enough, so that

ρ2
2
N4 − ρ2N2 ≥ 0,

G

2
N5 − C1 −

G2

D
N2 ≥ 0.

Next, we pick ε1 small and choose N3 large enough, such that

DN3 − C3 − C6N5 ≥ 0,
4γ

3
N3 − ε1N3 −

16γ2

9G
N5 ≥ 0.

Then, we select N3 even smaller (if needed) and ε2, ε3 small enough, so that

D

2
N2 − C2 − ε2N4 ≥ 0,

ρ2
2
N4 − ρ2N2 − ε3N5 ≥ 0,

G

2
N5 − C1 −

G2

D
N2 −

G2

2ε1
N3 − ε2N4 ≥ 0.
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Furthermore, we choose N6 large enough, so that

nN6 −
D

2G
N5 −

1

2
≥ 0.

Finally, we choose N so large such that(
µ0 −

∫ τ2

τ1

µ (s) ds

)
N +

ρ1
2
− Dµ0

2G
N5 − µ0N6 ≥ 0,

4βN − C4 (ε1)N3 − C7 (ε3)N5 ≥ 0.

Thus, we deduce that there exist positive constants α1 and α2 such that (3.29) be-
comes

L′ (t) ≤ −α1E(t)−
[
τN − τρ2

2σ2
N4

] ∫ 1

0

θ2xdx+ α2

∫ 1

0

θ2dx

−
[
nN6 −

1

2
− D

2G
N5

] ∫ 1

0

∫ τ2

τ1

µ (s) z2(x, 1, s, t)dsdx

≤ −α1E(t) + α2

∫ 1

0

θ2xdx.

By (3.3), we obtain

L′ (t) ≤ −α1E(t)− α3E
′ (t) , (3.30)

for some α3 > 0. It is obvious that

L (t) = L (t) + α3E (t) ∼ E (t) .

Next, exploiting (3.30), we get

L′ (t) = L′ (t) + α3E
′ (t) ≤ −α1E(t) ≤ −c1L (t) , (3.31)

for some c1 > 0. Integration (3.31) over (0, t) , leads to

L (t) ≤ L (0) e−c1t, ∀ t ≥ 0. (3.32)

It gives the desired result theorem 3.1 when combined with the equivalence of L (t)
and E (t). �
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1. Introduction

In this paper, we consider a system of viscoelastic wave equations with degener-
ate damping and strong nonlinear source terms
utt −∆u+m2

1 · u+

∫ t

0

g (t− s) ∆u (x, s) ds+
(
a |u|k + b |v|l

)
|ut|m−1ut = f1(u, v),

vtt −∆v +m2
2 · v +

∫ t

0

h (t− s) ∆v (x, s) ds+
(
c |v|θ + d |u|%

)
|vt|r−1vt = f2(u, v),

(1.1)
where m, r > 0, k, l, θ, % ≥ 1 and the functions f1 (u, v) , f2 (u, v) are defined by

f1(ξ1, ξ2) = a1|ξ1 + ξ2|2(ρ+1)(ξ1 + ξ2) + b1|ξ1|ρξ1|ξ2|(ρ+2)

f2(ξ1, ξ2) = a1|ξ1 + ξ2|2(ρ+1)(ξ1 + ξ2) + b1|ξ1|(ρ+2)|ξ2|ρξ2, a1, b1 > 0,
(1.2)

Received 5 November 2019; Accepted 18 March 2020.
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where ρ > −1. In (1.1), u = u (x, t) , v = v (x, t) , wherex ∈ Ω is a bounded domain
of RN (N ≥ 1) with a smooth boundary ∂Ω and t > 0, a, b, c, d,m1,m2 > 0.
To above system (1.1), we add the initial conditions given by

(u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω (1.3)

and boundary conditions given by

u(x) = v(x) = 0, x ∈ ∂Ω. (1.4)

This kind of problems arise in viscoelasticity. Dafermos was the first who study this
type in [9], where the general decay was treated. In the last decades, problems related
to system (1.1) had a lot of attention and many results appeared on the existence and
long time behavior of solutions. See in this directions ([6, 3, 2, 4, 5, 8, 7, 11, 14, 17,
20, 19, 21, 27, 26]) and references therein.
In the absence of viscoelastic term, some special cases of the single wave equations
with nonlinear damping and nonlinear source terms in the form

utt −∆u+ a|ut|m−1ut = b|u|p−1u. (1.5)

With nonlinear damping and source terms, it arises in the quantum-field and used
to describe the movement of charged electromagnetic fields. Equation (1.5) equipped
with initial and bounded conditions of Dirichlet type has been extensively studied
and many results regarding existence, blow up and asymptotic behavior of solutions
have been obtained. Many authors have studied the single wave equations in the
presence of various mechanisms of dissipation, damping and non-linear sources. See
([1, 15, 18, 10, 12, 13, 24, 25, 28]) and references therein.
In [16], authors considered the nonlinear viscoelastic system

utt −∆u+

∫ t

0

g(t− s)∆u(x, s)ds+ |ut|m−1
ut = f1 (u, v) ,

vtt −∆v +

∫ t

0

h(t− s)∆v(x, s)ds+ |vt|r−1
vt = f2 (u, v) ,

(1.6)

where

f1(u, v) = a|u+ v|2(ρ+1)(u+ v) + b|u|ρu|v|(ρ+2)

f2(u, v) = a|u+ v|2(ρ+1)(u+ v) + b|u|(ρ+2)|v|ρv,
(1.7)

The global nonexistence theorem for some solutions with positive energy was proved
using a method applied in [22].
In [23], the authors studied the nonlinear viscoelastic system in (1.6), where they ob-
tained the decay of solutions for system. Under some restrictions on the nonlinearities
of damping and source terms, they proved that, for some class of relaxation functions
and some restrictions on the initial data, the rate of decay of relaxation functions
affects the rate of decay of solution for system.
In this paper, we consider system (1.1)-(1.4) and proved a global nonexistence result
of solutions. We extended to result in [16] and [27] to more general cases.
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2. Preliminaries

In this section, we present some notations and Lemmas.
We assume that the relaxation functions g, h ∈ C1(R+,R+) satisfying

1−
∫ ∞

0

g(s)ds = l′ > 0, g(t) ≥ 0, g′(t) ≤ 0,

1−
∫ ∞

0

h(s)ds = k′ > 0, h(t) ≥ 0, h′(t) ≤ 0,

t ≥ 0. (2.1)

We introduce the ”modified” energy functional E associated to our system

2E (t) = ‖ut‖22 + ‖vt‖22 + 2
(
m2

1‖u‖22 +m2
2‖v‖22

)
+ J (u, v)− 2

∫
Ω

F (u, v) dx, (2.2)

where F (u, v) is defined for all (u, v) ∈ R2,

F (u, v) =
1

2 (ρ+ 2)
[uf1 (u, v) + vf2 (u, v)] ,

=
1

2 (ρ+ 2)

[
|u+ v|2(ρ+2)

+ 2 |uv|ρ+2
]
≥ 0,

where
∂F

∂u
= f1 (u, v) ,

∂F

∂v
= f2 (u, v) ,

and

J (u, v) =

(
1−

∫ t

0

g (s) ds

)
‖∇u‖22 +

(
1−

∫ t

0

h (s) ds

)
‖∇v‖22

+ (g ◦ ∇u) + (h ◦ ∇v) . (2.3)

Noting by 
(g ◦ u) (t) =

∫ t

0

g (t− τ) ‖u (t)− u (τ)‖22 dτ,

(h ◦ v) (t) =

∫ t

0

h (t− τ) ‖v (t)− v (τ)‖22 dτ.
(2.4)

We suppose that ρ satisfies{
−1 < ρ, if N = 1, 2,

−1 < ρ ≤ 4−N
N−2 if N ≥ 3.

(2.5)

Lemma 2.1. [22] There exist two positive constants c0 and c1 with the end goal that

c0
2 (ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
≤ F (u, v) ≤ c1

2 (ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
.

Lemma 2.2. Assume that (2.5) holds. There exists η > 0, such that for any (u, v) ∈
H1

0 (Ω)×H1
0 (Ω), the inequality

2(ρ+ 2)

∫
Ω

F (u, v) dx ≤ η
(
‖∇u‖22 + ‖∇v‖22

)ρ+2
(2.6)

holds.
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Lemma 2.3. Let ν > 0, be a real positive number and let L (t) be a solution of the
ordinary differential inequality

dL (t)

dt
≥ ξL1+ν (t) (2.7)

defined in [0,∞).

If L (0) > 0, then the solution does not exist for t ≥ L (0)
−ν
ξ−νν−1.

Proof. By simple integration of (2.7), we have

L−ν (0)− L−ν (t) ≥ ξνt.

Then, we obtain the following estimate

Lν (t) ≥ [L−ν (0)− ξνt]−1. (2.8)

Then, the RHS of (2.8) is unbounded for

ξνt = L−ν (0) .

The proof is completed. �

3. Blow up result

Lemma 3.1. Assume that (2.5) holds. Let (u, v) be the solution of the system
(1.1)−(1.4) then the energy functional is a non-increasing function, that is, for all
t ≥ 0,

E′ (t) = −
∫

Ω

(
|u (t)|k + |v (t)|l

)
|ut (t)|m+1

dx

−
∫

Ω

(
|v (t)|θ + |u (t)|%

)
|vt (t)|r+1

dx

+
1

2
(g′ ◦ ∇u) +

1

2
(h′ ◦ ∇v)− 1

2
g (s) ‖∇u‖22 −

1

2
h (s) ‖∇v‖22 .

(3.1)

Lemma 3.2. Suppose that (2.5) holds. Let (u, v) be the solution of the system (1.1)-
(1.4), then the energy functional is a non-increasing function, that is, for all t > 0,

dE (t)

dt
= −

∫
Ω

(
|u (t)|k + |v (t)|l

)
|ut (t)|m+1

dx

−
∫

Ω

(
|v (t)|θ + |u (t)|ϑ

)
|vt (t)|r+1

dx. (3.2)

The proof of Lemma 3.1 can be done by using a classical calculations.
Our main result reads as follows

Theorem 3.3. Suppose that (2.5) holds. Assume further that

ρ > max

(
k +m− 3

2
,
l +m− 3

2
,
θ + r − 3

2
,
%+ r − 3

2

)
, (3.3)
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and that there exists p such that 2 < p < 2 (ρ+ 2) , for which

max

(∫ ∞
0

g (s) ds,

∫ ∞
0

h (s) ds

)
<

(p/2)− 1

(p/2)− 1 + 1/ (2p)
, (3.4)

holds. Then any solution of problem (1.1)−(1.4), with initial data satisfying

‖∇u0‖22 + ‖∇v0‖22 +m2
1 ‖u0‖22 +m2

2 ‖v0‖22 > α2
1, and E (0) < E2 (3.5)

blows up in finite time, where the constants α1 and E2 are defined in (3.6).

We take a = b = c = d = 1, a1 = b1 = 1 for convenience. We introduce the following
constants

B = η
1

2(ρ+2) , α1 = B−
ρ+2
ρ+1 , E1 =

(
1

2
− 1

2 (ρ+ 2)

)
α2

1, (3.6)

E2 =

(
1

p
− 1

2 (ρ+ 2)

)
α2

1,

where η is the optimal constant in (2.6).

Lemma 3.4. [22] Suppose that (2.5), (3.3) and (3.4) hold. Let (u, v) be a solutions of
(1.1)−(1.4). Assume further that E (0) < E2 and

‖∇u0‖22 + ‖∇v0‖22 +m2
1 ‖u0‖22 +m2

2 ‖v0‖22 > α2
1. (3.7)

Then, there exists a constant α2 > α1 such that

J(t) > α2
2, (3.8)

and

2(ρ+ 2)

∫
Ω

F (u, v) dx ≥ (Bα2)
2(ρ+2)

, ∀ t ≥ 0. (3.9)

Proof of Theorem 3.3. The proof is similar to one given in [14] with the necessary
modification imposed by the nature of our problem. We assume that the solutions
exists for all t and we get a contradiction. We set

H (t) = E2 − E (t) . (3.10)

By using the definition of H(t), we obtain

H ′(t) = −E′(t)

=

∫
Ω

(
|u (t)|k + |v (t)|l

)
|ut (t)|m+1

dx

+

∫
Ω

(
|v (t)|θ + |u (t)|%

)
|vt (t)|r+1

dx

− 1

2
(g′ ◦ ∇u)− 1

2
(h′ ◦ ∇v) +

1

2
g (s) ‖∇u‖22 +

1

2
h (s) ‖∇v‖22

≥ 0, ∀ t ≥ 0. (3.11)

Therefore,

H(0) = E2 − E(0) > 0. (3.12)
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Then,

0 < H (0) ≤ H (t)

= E2 −
1

2

(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
− J (t)

2

+
1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
. (3.13)

Note that from (2.1) and (3.8), we get

E2 −
1

2

(
‖ut‖22 + ‖vt‖22

)
− J (t)

2
< E2 −

1

2
α2

2

< E2 −
1

2
α2

1

< E1 −
1

2
α2

1

= − 1

2 (ρ+ 2)
α2

1 < 0, ∀ t ≥ 0. (3.14)

Thus, by using (3.14) and Lemma 2.1, we get

0 < H (0) ≤ H (t) ≤ 1

2 (ρ+ 2)

[
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

]
≤ c1

2 (ρ+ 2)

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
, ∀ t ≥ 0. (3.15)

We define the function M as

M(t) =
1

2

∫
Ω

(
u2 + v2

)
(x, t) dx, (3.16)

and let

L (t) = H1−σ (t) + εM ′(t), (3.17)

for ε small to be chosen later and

0 < σ ≤ min

{
1

2
,

2ρ+ 3− (k +m)

2 (m+ 1) (ρ+ 2)
,

2ρ+ 3− (l +m)

2 (m+ 1) (ρ+ 2)
,

2ρ+ 3− (%+ r)

2 (r + 1) (ρ+ 2)
,

2ρ+ 3− (θ + r)

2 (r + 1) (ρ+ 2)
,

2ρ+ 2

4 (ρ+ 2)

}
. (3.18)
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By differentiation of (3.17) with respect to time and using (1.1), we get

L′ (t) = (1− σ)H−σ (t)H ′ (t) + ε
(
‖ut‖22 + ‖vt‖22

)
− ε

(
‖∇u‖22 + ‖∇v‖22

)
− ε

∫
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|m−1

utdx

− ε

∫
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|r−1

vtdx

+ ε

∫
Ω

(uf1 (u, v) + vf2 (u, v)) dx

+ ε

∫
Ω

∇u (t)

∫ t

0

g (t− s)∇u (τ) dxds

+ε

∫
Ω

∇v (t)

∫ t

0

h (t− s)∇v (τ) dxds. (3.19)

Then,

L′ (t) = (1− σ)H−σ (t)H ′ (t) + ε
(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
− ε

(
‖∇u‖22 + ‖∇v‖22

)
− ε

∫
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|m−1

utdx

− ε

∫
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|r−1

vtdx

+ ε
(
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
+ ε

(∫ t

0

g (s) ds

)
‖∇u‖22 +

(∫ t

0

h (s) ds

)
‖∇v‖22

+ ε

∫ t

0

g (t− s)
∫

Ω

∇u (t) . [∇u (τ)−∇u (t)] dxds

+ε

∫ t

0

h (t− s)
∫

Ω

∇v (t) . [∇v (τ)−∇v (t)] dxds. (3.20)

By using Cauchy-Schwartz and Young’s inequalities, we obtain the following estimate∫ t

0

g (t− s)
∫

Ω

∇u (t) . [∇u (τ)−∇u (t)] dxds

≤
∫ t

0

g (t− s) ‖∇u‖2 ‖∇u (τ)−∇u (t)‖2 dτ

≤ λ (g ◦ ∇u) +
1

4λ

(∫ t

0

g (s) ds

)
‖∇u‖22, λ > 0 (3.21)
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and ∫ t

0

h (t− s)
∫

Ω

∇v (t) . [∇v (τ)−∇v (t)] dxds

≤ λ (h ◦ ∇v) +
1

4λ

(∫ t

0

h (s) ds

)
‖∇v‖22, λ > 0. (3.22)

Adding pE(t) and using the definition of H(t), E2 leads to

L′ (t) ≥ (1− σ)H−σ (t)H ′ (t)

+ ε
(

1 +
p

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ ε

(p
2
− λ
)

[(g ◦ ∇u) + (h ◦ ∇v)] + pεH (t)− pεE2

− ε

∫
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|m−1

utdx

− ε

∫
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|r−1

vtdx

+ ε

(
1− p

2 (ρ+ 2)

)(
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
+ ε

[(p
2
− 1
)
−
(
p

2
− 1 +

1

4λ

)∫ ∞
0

g (s) ds

]
‖∇u‖22

+ ε

[(p
2
− 1
)
−
(
p

2
− 1 +

1

4λ

)∫ ∞
0

h (s) ds

]
‖∇v‖22, (3.23)

for some λ such that

a1 =
p

2
− λ > 0,

and

a2 =

[(p
2
− 1
)
−
(
p

2
− 1 +

1

4λ

)
max

(∫ ∞
0

g (s) ds,

∫ ∞
0

h (s) ds

)]
> 0.

Then, (3.23) can be estimated as follows

L′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + ε
(

1 +
p

2

) (
‖ut‖22 + ‖vt‖22

)
+ εa1 [(g ◦ ∇u) + (h ◦ ∇v)] + pεH (t)− pεE2

− ε

∫
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|m−1

utdx

− ε

∫
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|r−1

vtdx

+ ε

(
1− p

2 (ρ+ 2)

)(
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
+ εa2

(
‖∇u‖22 + ‖∇v‖22

)
. (3.24)
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By taking c3 = 1− p

ρ+ 2
−2E2 (Bα2)

−2(ρ+2)
> 0, since α2 > B

−
2(ρ+2)
ρ+1 . Consequently,

(3.24) takes the form

L′ (t) ≥ (1− σ)H−σ (t)H ′ (t)

+ ε
(

1 +
p

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ εa1 [(g ◦ ∇u) + (h ◦ ∇v)]

+ εa2

(
‖∇u‖22 + ‖∇v‖22

)
+ pεH (t)

+ εc3

(
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
− ε

∫
Ω

u
(
|u (t)|k + |v (t)|l

)
|ut|m−1

utdx

− ε

∫
Ω

v
(
|v (t)|θ + |u (t)|%

)
|vt|r−1

vtdx. (3.25)

By using Young’s inequality, we have

XY ≤ δαXα

α
+
δ−βY β

β
, (3.26)

where X,Y ≥ 0, δ > 0 and α, β > 0 such that 1/α+ 1/β = 1, we obtain∣∣∣u |ut|m−1
ut

∣∣∣ ≤ δm+1
1

m+ 1
|u|m+1

+
m

m+ 1
δ
−(m+1)/m
1 |ut|m+1

, ∀ δ1 ≥ 0 (3.27)

and ∫
Ω

(
|u (t)|k + |v (t)|l

) ∣∣∣u |ut|m−1
ut

∣∣∣ dx
≤ δm+1

1

m+ 1

∫
Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1

dx

+
m

m+ 1
δ
−(m+1)/m
1

∫
Ω

(
|u (t)|k + |v (t)|l

)
|ut|m+1

dx. (3.28)

Similarly, for any δ2 > 0,∣∣∣v |vt|r−1
vt

∣∣∣ ≤ δr+1
2

r + 1
|v|r+1

+
r

r + 1
δ
−(r+1)/r
2 |vt|r+1

, (3.29)

which gives ∫
Ω

(
|v (t)|θ + |u (t)|%

) ∣∣∣v |vt|r−1
vt

∣∣∣ dx
≤ δr+1

2

r + 1

∫
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1

dx

+
r

r + 1
δ
−(r+1)/r
2

∫
Ω

(
|v (t)|θ + |u (t)|%

)
|vt|r+1

dx. (3.30)
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Then, we obtain

L′ (t) ≥ (1− σ)H−σ (t)H ′ (t)

+ ε
(

1 +
p

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ εa1 [(g ◦ ∇u) + (h ◦ ∇v)]

+ εa2

(
‖∇u‖22 + ‖∇v‖22

)
+ pεH (t)

+ εc3

(
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
− ε

δm+1
1

m+ 1

∫
Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1

dx

− ε
m

m+ 1
δ
−

(m+1)
m

1

∫
Ω

(
|u (t)|k + |v (t)|l

)
|ut|m+1

dx

− ε
δr+1
2

r + 1

∫
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1

dx

− ε
r

r + 1
δ
−

(r+1)
r

2

∫
Ω

(
|v (t)|θ + |u (t)|%

)
|vt|r+1

dx. (3.31)

Choosing δ1 and δ2 such that

δ
− (m+1)

m
1 = M1H (t)

−σ
, δ
− (r+1)

r
2 = M2H (t)

−σ
, (3.32)

for M1 and M2 large constants to be fixed later. Thus, by using (3.32), we obtain

L′ (t) ≥ ((1− σ)−Mε)H−σ (t)H ′ (t)

+ ε
(

1 +
p

2

)(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ εa1 [(g ◦ ∇u) + (h ◦ ∇v)]

+ εa2

(
‖∇u‖22 + ‖∇v‖22

)
+ pεH (t)

+ εc3

(
‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2

)
− εM−m1 Hσm (t)

∫
Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1

dx

− ε
m

m+ 1
δ
−

(m+1)
m

1

∫
Ω

(
|u (t)|k + |v (t)|l

)
|ut|m+1

dx

− εM−r2 Hσr (t)

∫
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1

dx

− ε
r

r + 1
δ
−

(r+1)
r

2

∫
Ω

(
|v (t)|θ + |u (t)|%

)
|vt|r+1

dx, (3.33)

where M = m/ (m+ 1)M1 + r/ (r + 1)M2. Therefore, we have∫
Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1

dx = ‖u‖k+m+1
k+m+1 +

∫
Ω

|v|l |u|m+1
dx, (3.34)
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and ∫
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1

dx = ‖v‖θ+r+1
θ+r+1 +

∫
Ω

|u|% |v|r+1
dx. (3.35)

Also by using Young’s inequality, we obtain∫
Ω

|v|l |u|m+1 ≤ l

l +m+ 1
δ

(l+m+1)/l
1 ‖v‖l+m+1

l+m+1

+
m+ 1

l +m+ 1
δ
−(l+m+1)/(m+1)
1 ‖u‖l+m+1

l+m+1 ,∫
Ω

|u|% |v|r+1 ≤ %

%+ r + 1
δ

(%+r+1)/%
2 ‖u‖%+r+1

%+r+1

+ +
r + 1

%+ r + 1
δ
−(%+r+1)/(r+1)
2 ‖v‖%+r+1

%+r+1 .

Therefore,

Hσm (t)

∫
Ω

(
|u (t)|k + |v (t)|l

)
|u|m+1

dx

= Hσm (t) ‖u‖k+m+1
k+m+1 +

l

l +m+ 1
δ

(l+m+1)/l
1 Hσm (t) ‖v‖l+m+1

l+m+1

+
m+ 1

l +m+ 1
δ
−(l+m+1)/(m+1)
1 Hσm (t) ‖u‖l+m+1

l+m+1 , (3.36)

and

Hσr (t)

∫
Ω

(
|v (t)|θ + |u (t)|%

)
|v|r+1

dx

= Hσr (t) ‖v‖θ+r+1
θ+r+1 +

%

%+ r + 1
δ

%+r+1
%

2 Hσr (t) ‖u‖%+r+1
%+r+1

+
r + 1

%+ r + 1
δ
−

(%+r+1)
r+1

2 Hσr (t) ‖v‖%+r+1
%+r+1 . (3.37)

Since (3.3) holds, we get by using (3.18)
Hσm (t) ‖u‖k+m+1

k+m+1 ≤ c5
(
‖u‖2σm(ρ+2)+k+m+1

2(ρ+2) + ‖v‖2σm(ρ+2)
2(ρ+2) ‖u‖k+m+1

k+m+1

)
,

Hσr (t) ‖v‖θ+r+1
θ+r+1 ≤ c6

(
‖v‖2σr(ρ+2)+θ+r+1

2(ρ+2) + ‖u‖2σr(ρ+2)
2(ρ+2) ‖v‖θ+r+1

θ+r+1

)
.

(3.38)
This implies

l
l+m+1δ

l+m+1
l

1 Hσm (t) ‖v‖l+m+1
l+m+1

≤ c7 l
l+m+1δ

l+m+1
l

1

(
‖v‖2σm(ρ+2)+l+m+1

2(ρ+2) + ‖u‖2σm(ρ+2)
2(ρ+2) ‖v‖l+m+1

l+m+1

)
,

(3.39)
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and

%
%+r+1δ

%+r+1
%

2 Hσr (t) ‖u‖%+r+1
%+r+1

≤ c8 %
%+r+1δ

%+r+1
%

2

(
‖u‖2σr(ρ+2)+%+r+1

2(ρ+2) + ‖v‖2σr(ρ+2)
2(ρ+2) ‖u‖%+r+1

%+r+1

)
. (3.40)

Using (3.18) and the algebraic inequality

zν ≤ (z + 1) ≤
(

1 +
1

a

)
(z + a) , ∀ z ≥ 0, 0 < ν ≤ 1, a > 0, (3.41)

we get, for all t ≥ 0,
‖u‖2σm(ρ+2)+k+m+1

2(ρ+2) ≤ d
(
‖u‖2(ρ+2)

2(ρ+2) +H (0)
)
≤ d

(
‖u‖2(ρ+2)

2(ρ+2) +H (t)
)
,

‖v‖2σr(ρ+2)+θ+r+1
2(ρ+2) ≤ d

(
‖v‖2(ρ+2)

2(ρ+2) +H (t)
)
, ∀ t ≥ 0,

(3.42)

where d = 1 + 1/H (0) . Similarly
‖v‖2σm(ρ+2)+l(m+1)

2(ρ+2) ≤ d
(
‖v‖2(ρ+2)

2(ρ+2) +H (0)
)
≤ d

(
‖v‖2(ρ+2)

2(ρ+2) +H (t)
)
,

‖u‖2σr(ρ+2)+%(r+1)
2(ρ+2) ≤ d

(
‖u‖2(ρ+2)

2(ρ+2) +H (t)
)
, ∀ t ≥ 0.

(3.43)

Also, since

(X + Y )
s ≤ C (Xs + Y s) , X, Y ≥ 0, s > 0, (3.44)

by using (3.18) and (3.41) we have

‖v‖2σm(ρ+2)
2(ρ+2) ‖u‖k+m+1

k+m+1 ≤ c9

(
‖v‖2(ρ+2)

2(ρ+2) + ‖u‖2(ρ+2)
k+m+1

)
(3.45)

≤ c10

(
‖v‖2(ρ+2)

2(ρ+2) + ‖u‖2(ρ+2)
2(ρ+2)

)
,

similarly

‖u‖2σr(ρ+2)
2(ρ+2) ‖v‖θ+r+1

θ+r+1 ≤ c11

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
, (3.46)

‖u‖2σm(ρ+2)
2(ρ+2) ‖v‖l+m+1

l+m+1 ≤ c12

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
(3.47)

and

‖v‖2σr(ρ+2)
2(ρ+2) ‖u‖%+r+1

%+r+1 ≤ c13

(
‖v‖2(ρ+2)

2(ρ+2) + ‖u‖2(ρ+2)
2(ρ+2)

)
. (3.48)
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Taking into account (3.36)-(3.48), then ( 3.33) written as

L′ (t) ≥ ((1− σ)−Mε)H−σ (t)H ′ (t)

+ 2ε
(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ ε

[
2− CM−m1

(
1 +

l

l +m+ 1
δ
l+m+1

l
1 +

m+ 1

l +m+ 1
δ
− (l+m+1)

m+1

1

)
− CM−r2

(
1 +

%

%+ r + 1
δ
%+r+1
%

2 +
r + 1

%+ r + 1
δ
− (%+r+1)

r+1

2

)]
H (t)

+ ε

[
c4 − CM−m1

(
1 +

l

l +m+ 1
δ
l+m+1

l
1 +

m+ 1

l +m+ 1
δ
− (l+m+1)

m+1

1

)
− CM−r2

(
1 +

%

%+ r + 1
δ
%+r+1
%

2 +
r + 1

%+ r + 1
δ
− (%+r+1)

r+1

2

)]
×

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
. (3.49)

At this point and for large values of M1 and M2, we can find positive constants Λ1

and Λ2 such that (3.49) becomes

L′ (t) ≥ ((1− σ)−Mε)H−σ (t)H ′ (t)

+ 2ε
(
‖ut‖22 + ‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

)
+ εΛ1

(
‖u (t)‖2(ρ+2)

2(ρ+2) + ‖v (t)‖2(ρ+2)
2(ρ+2)

)
+ εΛ2H (t) . (3.50)

Once M1 and M2 are fixed (hence Λ1 and Λ2), we choose ε small enough so that
((1− σ)−Mε) ≥ 0 and

L (0) = H1−σ (0) + ε

∫
Ω

[u0.u1 + v0.v1] dx > 0. (3.51)

Therefore, there exists Γ > 0 such that (3.50) can be written as

L′ (t) ≥ εΓ
(
H (t) + ‖ut‖22 + ‖vt‖22 + ‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

)
. (3.52)

Then, we have L (t) ≥ L (0) > 0, for all t ≥ 0. Next, by using Holder’s and Young’s
inequalities, we have the estimate(∫

Ω

u.ut (x, t) dx+

∫
Ω

v.vt (x, t) dx

) 1
1−σ

≤ C
(
‖u‖

τ
1−σ
2(ρ+2) + ‖ut‖

s
1−σ
2 + ‖v‖

τ
1−σ
2(ρ+2) + ‖vt‖

s
1−σ
2

)
, (3.53)

for 1/τ + 1/s = 1. We takes s = 2 (1− σ) , to get
τ

1− σ
=

2

1− 2σ
. From (3.10) and

(3.41), we have

‖u‖
2

1−2σ

2(ρ+2) ≤ d
(
‖u‖2(ρ+2)

2(ρ+2) +H (t)
)
, (3.54)

and

‖v‖
2

1−2σ

2(ρ+2) ≤ d
(
‖v‖2(ρ+2)

2(ρ+2) +H (t)
)
, ∀ t ≥ 0. (3.55)



576 Fares Yazid, Djamel Ouchenane and Khaled Zennir

Consequently, (3.53) can be written as(∫
Ω

uut (x, t) dx+

∫
Ω

vvt (x, t) dx

) 1
1−σ

≤ c14

(
‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2) + ‖ut‖22 + ‖vt‖22

)
+ c14

(
m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2 +H (t)

)
, ∀ t ≥ 0.

Also, we have

L
1

1−σ (t) =

(
H1−σ (t) + ε

∫
Ω

(u.ut + v.vt) (x, t) dx

) 1
(1−σ)

≤ c15

(
H (t) +

∣∣∣∣∫
Ω

(u.ut (x, t) + v.vt (x, t)) dx

∣∣∣∣ 1
(1−σ)

)
≤ c16

[
H (t) + ‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2) + ‖ut‖22

]
+ c16

[
‖vt‖22 +m2

1 ‖u‖
2
2 +m2

2 ‖v‖
2
2

]
, ∀ t ≥ 0, (3.56)

from (3.56) and (3.52), we get

L′ (t) ≥ a0L
1

1−σ (t) , ∀ t ≥ 0. (3.57)

Finally, a simple integration of (3.57) gives the desired result. �
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The combined Shepard operator of inverse
quadratic and inverse multiquadric type

Teodora Cătinaş and Andra Malina

Abstract. Starting with the classical, the modified and the iterative Shepard
methods, we construct some new Shepard type operators, using the inverse qua-
dratic and the inverse multiquadric radial basis functions. Given some sets of
points, we compute some representative subsets of knot points following an algo-
rithm described by J.R. McMahon in 1986.
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1. Preliminaries

Over the time Shepard method, introduced in 1968 in [21], has been improved in
order to get better reproduction qualities, higher accuracy and lower computational
cost (see, e.g.,[2]-[9], [22], [23]).

Let f be a real-valued function defined on X ⊂ R2, and (xi, yi) ∈ X, i = 1, ..., N
some distinct points. The bivariate Shepard operator is defined by

(Sµf) (x, y) =

N∑
i=1

Ai,µ (x, y) f (xi, yi) , (1.1)

where

Ai,µ (x, y) =

N∏
j=1
j 6=i

rµj (x, y)

N∑
k=1

N∏
j=1
j 6=k

rµj (x, y)

, (1.2)

with the parameter µ > 0 and ri (x, y) denoting the distances between a given point
(x, y) ∈ X and the points (xi, yi) , i = 1, ..., N .

Received 27 January 2022; Accepted 4 April 2022.
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In [11], Franke and Nielson introduced a method for improving the accuracy in
reproducing a surface with the bivariate Shepard approximation. This method has
been further improved in [10], [20], [19], and it is given by:

(Sf) (x, y) =

N∑
i=1

Wi (x, y) f (xi, yi)

N∑
i=1

Wi (x, y)

, (1.3)

with

Wi (x, y) =
[
(Rw−ri(x,y))+
Rwri(x,y)

]2
, (1.4)

where Rw is a radius of influence about the node (xi, yi) and it is varying with i. Rw
is taken as the distance from node i to the jth closest node to (xi, yi) for j > Nw (Nw
is a fixed value) and j as small as possible within the constraint that the jth closest
node is significantly more distant than the (j − 1)st closest node (see, e.g. [19]). As
it is mentioned in [14], this modified Shepard method is one of the most powerful
software tools for the multivariate approximation of large scattered data sets.

A.V. Masjukov and V.V. Masjukov introduced in [15] an iterative modification
for the Shepard operator that requires no artificial parameter, such as a radius of
influence or number of nodes. So, they defined the iterative Shepard operator as

u(x, y) =

K∑
k=0

N∑
j=1

[
u
(k)
j w ((x− xj , y − yj)/τk) /

N∑
p=1

w ((xp − xj , yp − yj)/τk)

]
, (1.5)

where w is the weight function, continuously differentiable, with the properties that

w(x, y) ≥ 0, ∀(x, y) ∈ R2, w(0, 0) > 0 and w(x, y) = 0 if ‖(x, y)‖ > 1,

and u
(k)
j denotes the interpolation residuals at the kth step, with u

(0)
j ≡ uj .

2. The Shepard operators combined with the inverse quadratic and
inverse multiquadric radial basis functions

Let f be a real-valued function defined on X ⊂ R2. We denote by x the point
(x, y) ∈ X and we assume that xi = (xi, yi) ∈ X, i = 1, ..., N ′, are some given
interpolation nodes.

The radial basis functions (RBF) are some modern and very efficient tools for
interpolating scattered data, thus they are intensively used (see, e.g., [1], [12] – [14],
[18]). In the sequel we use two radial basis functions that are positive definite, the
inverse quadratic RBF and the inverse multiquadric RBF.
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Consider the two radial basis functions as

φβi (x, y) =
i∑

j=1

αj

[
1 + (εrj)

2
]β

+ ax+ by + c, i = 1, ..., N ′, (2.1)

with ε being a shape parameter and rj(x, y) =
√

(x− xj)2 + (y − yj)2.
For β = −1, φ−1i is the inverse quadratic RBF and for β = −1/2, φ

−1/2
i is the

inverse multiquadric RBF.
The coefficients αj , a, b, c are obtained as solutions of systems of the form



1
[
1 + (εr12)

2
]β · · ·

[
1 + (εr1N′ )

2
]β

x1 y1 1[
1 + (εr21)

2
]β

1 · · ·
[
1 + (εr2N′ )

2
]β

x2 y2 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.[
1 + (εrN′1)

2
]β [

1 + (εrN′2)
2
]β · · · 1 xN′ yN′ 1

x1 x2 · · · xN′ 0 0 0
y1 y2 · · · yN′ 0 0 0
1 1 · · · 1 0 0 0


·



α1

α2

.

.

.
αN′
a
b
c


=



f1
f2
.
.
.

fN′
0
0
0



with rij =
√

(xi − xj)2 + (yi − yj)2 and fi = f(xi).

Shortly, this system can be written as(
A XT

X O3

)
·
(
α
u

)
=

(
f
0

)
,

considering the following notations:

• A ∈MN′×N′(R), with the element on the entry (i, j) being

aij =
[
1 + (εrij)

2
]β

, where rij =
√

(xi − xj)2 + (yi − yj)2,

i, j = 1, ..., N ′ and β ∈ {−1, −1/2};

• X ∈M3×N′(R), X =

x1 ... xN′

y1 ... yN′

1 ... 1

 , O3 is the zero square matrix of order 3;

• u = (a, b, c)T , α = (α1, ..., αN′)
T , 0 = (0, 0, 0)T ;

• f = (f1, ..., fN′)
T , with fi = f(xi).

First, consider the classical Shepard operator given in (1.1).

Definition 2.1. The classical Shepard operator combined with the inverse quadratic
and inverse multiquadric RBF is defined as

(Sβµf)(x) =

N ′∑
i=1

Ai,µ(x)φβi (x), (2.2)

where Ai,µ, i = 1, ..., N ′, are defined by (1.2), for a given parameter µ > 0 and φβi are
given in (2.1), for β ∈ {−1,−1/2} and i = 1, ..., N ′.

Furthermore, we consider the improved form of the Shepard operator, given in (1.3).



582 Teodora Cătinaş and Andra Malina

Definition 2.2. We define the modified Shepard operator combined with the inverse
quadratic and inverse multiquadric RBF as:

(SβW f)(x) =

N ′∑
i=1

Wi (x)φβi (x)

N ′∑
i=1

Wi (x)

, (2.3)

with Wi, i = 1, ..., N ′, given by (1.4) and φβi defined in (2.1), for β ∈ {−1,−1/2} and
i = 1, ..., N ′.

Finally, we follow the idea proposed in [15], which consists of using an iterative
procedure that requires no artificial parameters.

Definition 2.3. The iterative Shepard operator combined with the inverse quadratic
and inverse multiquadric RBF is defined as

uφβ (x) =

K∑
k=0

N ′∑
j=1

u(k)
φβj
w ((x− xj)/τk) /

N ′∑
p=1

w ((xp − xj)/τk)

 , (2.4)

with β ∈ {−1,−1/2}, where u
(k)

φβj
are the interpolation residuals at the kth step given

by

u
(0)

φβj
= φj(xj), xj ∈ X, j = 1, ..., N ′

and

u
(k+1)

φβj
= u

(k)

φβj
−

N ′∑
q=1

u(k)
φβq
w ((xj − xq)/τk) /

N ′∑
p=1

w ((xp − xq)/τk)

 .
The functions φβi are given in (2.1). We follow ideas from [15] for the parameters’

choice. As an example, the sequence {τk} of scale factors is defined as

τk = τ0γ
k, 0 < γ < 1.

The setup parameter τk can be chosen such that it decreases from an initial
value τ0, which is given for instance as

τ0 > sup
(x,y)∈X

max
1≤j≤N ′

‖(x− xj)‖

to the final value τK such that

τK < min
i 6=j
‖(xi − xj)‖.

The behaviour of uβφ does not change very much for γ between 0.6 and 0.95, as

shown in [15]. One can also choose smaller values for γ if the nodes are sparse and a
decreased computational time is desired.

Finally, the weight function w is given by

w(x) = w(x)w(y),
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with

w(x) =

{
5(1− |x|)4 − 4(1− |x|)5, |x| < 1
0, |x| ≥ 1

.

We apply the three operators on two sets of points. For the first way, we consider
a set of N initial interpolation nodes xi, i = 1, ..., N, and for the second way, we
consider a smaller set of k ∈ N∗ knot points x̂j, j = 1, ..., k, that will be representative
for the original set. This set is obtained following the next steps (see, e.g., [16] and
[17]):

Algorithm 2.4. 1. Consider the first subset of k knot points, k < N , randomly
generated;

2. Using the Euclidean distance between two points, find the closest knot point for
every point;

3. For the knot points with no point assigned, replace the knot by the nearest point;
4. Compute the arithmetic mean of all the points that are closest to the same knot

and compute in this way the new subset of knot points;
5. Repeat steps 2-4 until the subset of knot points has not change for two consec-

utive iterations.

3. Numerical examples

We consider the following test functions (see, e.g., [10], [20], [19]):

Gentle: f1(x, y) = exp[− 81
16 ((x− 0.5)2 + (y − 0.5)2)]/3,

Saddle: f2(x, y) =
(1.25 + cos 5.4y)

6 + 6(3x− 1)2
,

Sphere: f3(x, y) =
√

64− 81((x− 0.5)2 + (y − 0.5)2)/9− 0.5.

(3.1)

Tables 1 - 3 contain the maximum errors for approximating the functions (3.1)
by the classical, the modified and the iterative Shepard operators given, respectively,
by (1.1), (1.3) and (1.5), and the errors of approximating by the operators introduced
in (2.2), (2.3) and (2.4). We construct the operators for both radial basis functions -
the inverse quadratic and the inverse multiquadric. For each function we consider a
set of N = 100 random points in [0, 1]× [0, 1], a subset of k = 25 representative knots,
µ = 3, Nw = 19, K = 20, τ0 = 3 and γ = 0.66, 0.84, 0.91.

In Figures 1 - 4 we plot the graphs of f1, f2, f3 and of the corresponding Shepard

operators Sβµf , SβW f and uφβ , combined with the inverse quadratic (β = −1) and the
inverse multiquadric (β = −1/2) radial basis functions. We consider the sets of the
k = 25 representative knot points.

We remark that SβW f and uφβ have better approximation properties than the

classical Shepard operator Sβµf , the results for uφβ depending on the values of γ. Also,
we notice better approximation errors for the lower number of knots obtained using
the Algorithm 2.4.
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Function f1.

S−1
µ f1, ε = 5.5. S

−1/2
µ f1, ε = 10.

S−1
W f1, ε = 5.5. S

−1/2
W f1, ε = 10.

uφ−1 , ε = 5.5, γ = 0.91. uφ−1/2 , ε = 10, γ = 0.91.

Figure 1. Graphs for f1.
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Function f2.

S−1
µ f2, ε = 10. S

−1/2
µ f2, ε = 10.

S−1
W f2, ε = 10. S

−1/2
W f2, ε = 10.

uφ−1 , ε = 10, γ = 0.91. uφ−1/2 , ε = 10, γ = 0.91.

Figure 2. Graphs for f2.
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Function f3.

S−1
µ f3, ε = 5.5. S

−1/2
µ f3, ε = 9.

S−1
W f3, ε = 5.5. S

−1/2
W f3, ε = 9.

uφ−1 , ε = 5.5, γ = 0.91. uφ−1/2 , ε = 9, γ = 0.91.

Figure 4. Graphs for f3.
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Table 1. Maximum approximation errors for the Gentle function.

ε
Classical Sµ Modified SW Iterative uφ

k=25 N=100 k=25 N=100 γ (input) k=25 N=100

f1 – 0.0864 0.0855 0.0725 0.0644
0.66 0.0967 0.1158
0.84 0.0757 0.1159
0.91 0.0528 0.1105

φ−1 5.5 0.1023 0.5564 0.0994 0.5543
0.66 0.1061 0.2866
0.84 0.0847 0.2644
0.91 0.0627 0.2396

10 0.1313 0.1876 0.1293 0.1681
0.66 0.1026 0.1488
0.84 0.0772 0.1251
0.91 0.0579 0.1123

φ−1/2 9 0.1098 0.2402 0.1063 0.2219
0.66 0.1002 0.2155
0.84 0.0866 0.1985
0.91 0.0686 0.1887

10 0.1129 0.2292 0.1096 0.2094
0.66 0.0994 0.1936
0.84 0.0854 0.1750
0.91 0.0673 0.1653

Table 2. Maximum approximation errors for the Saddle function.

ε
Classical Sµ Modified SW Iterative uφ

k=25 N=100 k=25 N=100 γ (input) k=25 N=100

f2 – 0.1096 0.1152 0.0970 0.1033
0.66 0.2083 0.2051
0.84 0.1902 0.1828
0.91 0.1633 0.1567

φ−1 7 0.1669 0.9372 0.1575 0.8615
0.66 0.2198 0.3754
0.84 0.2103 0.4007
0.91 0.1938 0.4456

10 0.1813 0.1693 0.1828 0.1697
0.66 0.2175 0.1909
0.84 0.2045 0.1797
0.91 0.1825 0.1626

φ−1/2 9 0.1677 0.5409 0.1639 0.4933
0.66 0.2301 0.3125
0.84 0.2222 0.3202
0.91 0.2077 0.3344

10 0.1582 0.2952 0.1630 0.2659
0.66 0.2292 0.2000
0.84 0.2195 0.2020
0.91 0.2029 0.2028
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Table 3. Maximum approximation errors for the Sphere function.

ε
Classical Sµ Modified SW Iterative uφ

k=25 N=100 k=25 N=100 γ (input) k=25 N=100

f3 – 0.2011 0.2156 0.1934 0.1744
0.66 0.1837 0.1850
0.84 0.1730 0.1743
0.91 0.1593 0.1645

φ−1 5 0.1849 1.3107 0.1806 1.1997
0.66 0.1576 0.2703
0.84 0.1488 0.4361
0.91 0.1390 0.5255

5.5 0.1926 0.9074 0.1898 0.8297
0.66 0.1637 0.1925
0.84 0.1533 0.2901
0.91 0.1456 0.3494

φ−1/2 7 0.1584 0.8948 0.1526 0.8150
0.66 0.1401 0.2258
0.84 0.1291 0.3072
0.91 0.1183 0.3464

9 0.1796 0.3682 0.1779 0.3341
0.66 0.1537 0.1772
0.84 0.1417 0.2091
0.91 0.1344 0.2216
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Abstract. We establish a two-term strong converse estimate of the rate of approx-
imation by the iterated Boolean sums of the Bernstein operator. The characteri-
zation is stated in terms of appropriate moduli of smoothness or K-functionals.
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1. Main results

The Bernstein operator is defined for f ∈ C[0, 1] and x ∈ [0, 1] by

Bnf(x) =

n∑
k=0

f

(
k

n

)
pn,k(x), pn,k(x) =

(
n

k

)
xk(1− x)n−k.

Its iterated Boolean sum Br,n : C[0, 1]→ C[0, 1] is then defined by

Br,n = I − (I −Bn)r,

where I stands for the identity and r ∈ N.
Gonska and Zhou [9] estimated the uniform norm of the approximation error for

Br,n. They proved a neat direct inequality and a Stechkin-type converse inequality.
The former states

‖Br,nf − f‖ ≤ c
(
ω2r
ϕ (f, n−1/2) +

1

nr
‖f‖

)
. (1.1)

Above ‖◦‖ denotes the uniform norm on the interval [0, 1], c is a constant independent
of the approximated function and the order of the operator (not necessarily the same

This work was supported by grant DN 02/14 of the Fund for Scientific Research of the Bulgarian

Ministry of Education and Science.
Received 13 November 2019; Accepted 18 February 2020.
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at each occurrence), and ωr
ϕ(f, t) denotes the Ditzian-Totik modulus of smoothness

with ϕ(x) =
√
x(1− x), which is given by (see [5, Chapter 1])

ωr
ϕ(f, t) = sup

0<h≤t
‖∆r

hϕf‖,

where

∆r
hϕ(x)f(x) =


r∑

k=0

(−1)k
(
r

k

)
f
(
x+

(r
2
− k
)
hϕ(x)

)
, x± rhϕ(x)/2 ∈ [0, 1],

0, otherwise.

Let us recall that the modulus ωr
ϕ(f, t) is equivalent to the K-functional

Kr,ϕ(f, tr) = inf
g∈ACr−1

loc (0,1)

{
‖f − g‖+ tr‖ϕrg(r)‖

}
.

More precisely, we say that Φ(f, t) and Ψ(f, t) are equivalent and write

Φ(f, t) ∼ Ψ(f, t)

if there exists a constant c such that c−1Φ(f, t) ≤ Ψ(f, t) ≤ cΦ(f, t) for all f and t
under consideration. Thus there holds (see [5, Theorem 2.1.1])

Kr,ϕ(f, tr) ∼ ωr
ϕ(f, t), 0 < t ≤ t0 (1.2)

with some fixed t0 > 0. It was shown in [11, Theorem 2.7] that we can take t0 = 2/r.
A smaller value of t0 was given in [2, Chapter 6, Theorem 6.2].
Since the operator Br,n preserves the algebraic polynomials of degree 1 and the modu-

lus ω2r
ϕ (f, n−1/2) is invariant to translation of f by such polynomials, we immediately

deduce from (1.1) the estimate

‖Br,nf − f‖ ≤ c
(
ω2r
ϕ (f, n−1/2) +

1

nr
E1(f)

)
, (1.3)

where E1(f) is the best approximation of f by algebraic polynomials of degree 1 in
the uniform norm on [0, 1].
Later on Ding and Cao [3] characterized the error of the multivariate generalization
of Br,n on the simplex. In the univariate case, the direct inequality they proved is of
the form

‖Br,nf − f‖ ≤ cKr(f, n−r), (1.4)

where
Kr(f, t) = inf

g∈C2r[0,1]
{‖f − g‖+ t‖Drg‖}, Dg = ϕ2g′′.

They also proved a strong converse inequality of type D (in the terminology introduced
in [4]), that is

Kr(f, n−r) ≤ c max
k≥n
‖Br,kf − f‖. (1.5)

As it was shown in [6, Theorem 5.1],

Kr(f, t) ∼ K2r,ϕ(f, t) + tE1(f), 0 < t ≤ 1. (1.6)

Therefore, taking also into account (1.2), we see that the function characteristics on
the right side of (1.3) and (1.4) are equivalent.
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Quite recently, Cheng and Zhou [1] derived another converse inequality from the
Stechkin-type converse inequality in [9]. It is similar to (1.5), though weaker than it.

Our main result improves (1.5). We will prove the following strong converse
inequality of type B according to [4].

Theorem 1.1. Let r ∈ N. There exists R ∈ N such that for all f ∈ C[0, 1] and k, n ∈ N
with k ≥ Rn there holds

Kr(f, n−r) ≤ c
(
k

n

)r

(‖Br,nf − f‖+ ‖Br,kf − f‖) .

In particular,

Kr(f, n−r) ≤ c (‖Br,nf − f‖+ ‖Br,Rnf − f‖) .

Let us recall that the assertion of the theorem for r = 1 was established in [4,
Theorem 8.1] and then improved to a one-term converse inequality (i.e. R = 1) in
[10, 12].

As we mentioned earlier in (1.6), the more complicated K-functional Kr(f, t) can
be replaced with the simpler function characteristics K2r,ϕ(f, t) + tE1(f). In addition
to this, we will establish also the following equivalence relation.

Theorem 1.2. Let r ∈ N. For all f ∈ C[0, 1] and 0 < t ≤ 1 we have

Kr(f, t) ∼ K2r,ϕ(f, t) +K2,ϕ(f, t).

Taking into account (1.2), we arrive at the following relation between Kr(f, t)
and the Ditzian-Totik modulus.

Corollary 1.3. Let r ∈ N. For all f ∈ C[0, 1] and n ∈ N such that n ≥ r2 we have

Kr(f, n−r) ∼ ω2r
ϕ (f, n−1/2) + ω2

ϕ(f, n−r/2).

We establish Theorem 1.1 by means of the method given in [4]. To this end, we
need a Voronovskaya-type inequality and several Bernstein-type inequalities, which
relate the approximation operator Br,n to the differential operator Dr. They are given
in Section 2. Then, in the next section we prove Theorem 1.1. We present the short
argument that verifies Theorem 1.2 in the last section.

2. Voronovskaya- and Bernstein-type inequalities for Br,n
We will use the following inequalities, which were obtained by Gonska and Zhou

[9, (2) and (4)] for algebraic polynomials, but, as it is easy to see, the same consider-
ations verify them for all functions in C2r[0, 1].

Proposition 2.1. For g ∈ C2r[0, 1] there hold:

(a) ‖ϕ2rg(2r)‖ ≤ c ‖Drg‖;
(b) ‖Djg‖ ≤ c ‖Drg‖, j = 1, . . . , r.

We proceed to two Voronovskaya-type estimates (cf. [9, Lemma 4]).
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Proposition 2.2. Let r ∈ N. For all g ∈ C2r+2[0, 1] and all n ∈ N there hold∥∥∥∥Br,ng − g − (−1)r−1

(2n)r
Drg

∥∥∥∥ ≤ c

nr+1

(
‖ϕ2g(3)‖+ ‖ϕ2r+2g(2r+2)‖

)
(2.1)

and ∥∥∥∥Br,ng − g − (−1)r−1

(2n)r
Drg

∥∥∥∥ ≤ c

nr+1
‖Dr+1g‖. (2.2)

Proof. Assertion (2.1) for r = 1 follows from [8, Proposition 2.3].
Next, we set Jr,ng = (I −Bn)rg and

Vr,ng = Br,ng − g −
(−1)r−1

(2n)r
Drg.

For r ≥ 2 we use the relation

Vr,ng = V1,nJr−1,ng −
1

2n
DVr−1,ng.

It implies

‖Vr,ng‖ ≤ ‖V1,nJr−1,ng‖+
1

n
‖ϕ2(Vr−1,ng)′′‖. (2.3)

By virtue of (2.1) with r = 1,

‖V1,nJr−1,ng‖ ≤
c

n2

(
‖ϕ2(Jr−1,ng)(3)‖+ ‖ϕ4(Jr−1,ng)(4)‖

)
. (2.4)

Further, we estimate the first term on the right above by means of [7, Corollary 4.7]
with p =∞, r − 1 in place of r, s = 3 and w = ϕ2 (i.e. γ0 = γ1 = 1). Thus we get

‖ϕ2(Jr−1,ng)(3)‖ ≤ c

nr−1

(
‖ϕ2g(3)‖+ ‖ϕ2rg(2r+1)‖

)
. (2.5)

Similarly, again by [7, Corollary 4.7] with p = ∞ and r − 1 in place of r, but s = 4
and w = ϕ4 (i.e. γ0 = γ1 = 2) we have for the other term

‖ϕ4(Jr−1,ng)(4)‖ ≤ c

nr−1

(
‖ϕ4g(4)‖+ ‖ϕ2r+2g(2r+2)‖

)
. (2.6)

Next, by virtue of [7, Proposition 2.1] with p = ∞, j = 1, m = 2r − 1, w1 = ϕ4 (i.e.
γ1,0 = γ1,1 = 2), w2 = ϕ2r+2 (i.e. γ2,0 = γ2,1 = r + 1) and g(3) in place of g, we get

‖ϕ4g(4)‖ ≤ c
(
‖ϕ2g(3)‖+ ‖ϕ2r+2g(2r+2)‖

)
. (2.7)

Likewise, by means of the same proposition with p =∞, m = 2r−1, w2 = ϕ2r+2 and
g(3) in place of g, but with j = 2r − 2 and w1 = ϕ2r (i.e. γ1,0 = γ1,1 = r), we get

‖ϕ2rg(2r+1)‖ ≤ c
(
‖ϕ2g(3)‖+ ‖ϕ2r+2g(2r+2)‖

)
. (2.8)

Combining, (2.4)-(2.8), we get

‖V1,nJr−1,ng‖ ≤
c

nr+1

(
‖ϕ2g(3)‖+ ‖ϕ2r+2g(2r+2)‖

)
. (2.9)
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It remains to estimate the second term on the right side of (2.3). To this end, we
apply [7, Corollary 4.11] with p = ∞, r − 1 in place of r, s = 2, and w = ϕ2 (i.e.
γ0 = γ1 = 1) and get

‖ϕ2(Vr−1,ng)′′‖ ≤ c

nr

(
‖ϕ2g(3)‖+ ‖ϕ2r+2g(2r+2)‖

)
. (2.10)

Now, (2.3), (2.9) and (2.10) imply (2.1) for r ≥ 2.
To prove the second assertion of the proposition, we observe that Proposition 2.1(a)
with r + 1 in place of r yields

‖ϕ2r+2g(2r+2)‖ ≤ c ‖Dr+1g‖. (2.11)

Also, by virtue of [7, Proposition 2.1] with p = ∞, j = 1, m = 2r, w1 = ϕ2 (i.e.
γ1,0 = γ1,1 = 1), w2 = ϕ2r+2 (i.e. γ2,0 = γ2,1 = r + 1) and g(2) in place of g, we get

‖ϕ2g(3)‖ ≤ c
(
‖ϕ2g(2)‖+ ‖ϕ2r+2g(2r+2)‖

)
.

Taking into account (2.11) and Proposition 2.1(b) with j = 1 and r+ 1 in place of r,
we arrive at

‖ϕ2g(3)‖ ≤ c ‖Dr+1g‖. (2.12)

Now, (2.2) follows from (2.1), (2.11) and (2.12). �

Next we shall establish several Bernstein-type inequalities.

Proposition 2.3. Let r ∈ N. Then for all f ∈ C[0, 1] and n ∈ N there holds

‖DrBr,nf‖ ≤ c nr‖f‖.

Proof. It is established by induction on r that (cf. [9, p. 24])

Drg = ϕ2
r+1∑
i=2

qr,i−2 g
(i) +

r∑
i=2

ϕ2i q̃r,r−i g
(i+r),

where qr,j and q̃r,j are algebraic polynomials of degree at most j.
Therefore

‖Drg‖ ≤ c

(
r+1∑
i=2

‖ϕ2g(i)‖+

r∑
i=2

‖ϕ2ig(i+r)‖

)
. (2.13)

Let r ≥ 2. We apply [7, Proposition 2.1] with p =∞, j = i−2, where i ∈ {2, . . . , r+1},
m = 2r − 2, w1 = ϕ2 (i.e. γ1,0 = γ1,1 = 1), w2 = ϕ2r (i.e. γ2,0 = γ2,1 = r) and g(2) in
place of g to get

‖ϕ2g(i)‖ ≤ c
(
‖ϕ2g(2)‖+ ‖ϕ2rg(2r)‖

)
, i = 2, . . . , r + 1. (2.14)

Also, this trivially holds for r = 1.
Let r ≥ 3. Similarly, [7, Proposition 2.1] with p = ∞, j = i + r − 2, where

i ∈ {2, . . . , r − 1}, m = 2r − 2, w1 = ϕ2i (i.e. γ1,0 = γ1,1 = i), where i ∈ {2, . . . , r},
w2 = ϕ2r (i.e. γ2,0 = γ2,1 = r) and g(2) in place of g to get

‖ϕ2ig(i+r)‖ ≤ c
(
‖ϕ2g(2)‖+ ‖ϕ2rg(2r)‖

)
, i = 2, . . . , r − 1. (2.15)

The above estimate trivially holds for i = r, r ≥ 2, as well.
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The inequalities (2.13)-(2.15) yield

‖Drg‖ ≤ c
(
‖ϕ2g(2)‖+ ‖ϕ2rg(2r)‖

)
, r ∈ N. (2.16)

Setting g = Br,nf we get

‖DrBr,nf‖ ≤ c
(
‖ϕ2(Br,nf)(2)‖+ ‖ϕ2r(Br,nf)(2r)‖

)
. (2.17)

Then we take into account that the operator Br,n is a linear combination of iterates
of Bn and also that (see [5, (9.3.7)])

‖ϕ2`(Bng)(2`)‖ ≤ c ‖ϕ2`g(2`)‖, g ∈ C2`[0, 1], (2.18)

to derive from (2.17) the estimate

‖DrBr,nf‖ ≤ c
(
‖ϕ2(Bnf)(2)‖+ ‖ϕ2r(Bnf)(2r)‖

)
.

Now, the assertion of the proposition follows from

‖ϕ2`(Bnf)(2`)‖ ≤ c n`‖f‖, ` ∈ N,
which was established in [5, Theorem 9.4.1]. �

Proposition 2.4. Let r ∈ N. Then for all g ∈ C2r[0, 1] and n ∈ N there holds

‖Dr+1Br,ng‖ ≤ c n‖Drg‖.

Proof. We make use of (2.16) with r + 1 in place of r and Br,ng in place of g, then
apply (2.18), [7, Proposition 4.13(a)] with p = ∞, w = ϕ2r (i.e. γ0 = γ1 = r), ` = 1,
s = 2r, and, finally, Proposition 2.1 with j = 1, to arrive at

‖Dr+1Br,ng‖ ≤ c
(
‖ϕ2(Br,ng)(2)‖+ ‖ϕ2r+2(Br,ng)(2r+2)‖

)
≤ c

(
‖ϕ2g(2)‖+ ‖ϕ2r+2(Bng)(2r+2)‖

)
≤ c

(
‖ϕ2g(2)‖+ n ‖ϕ2rg(2r)‖

)
≤ c n‖Drg‖.

Thus the proposition is verified. �

3. A proof of the converse inequalities

Equipped with the estimates established in the previous section, we are now
ready to verify Theorem 1.1.

Proof of Theorem 1.1. We apply [4, Theorem 3.2] with the operator Qn = Br,n
and the spaces X = C[0, 1] (with the uniform norm on [0, 1]), Y = C2r[0, 1] and
Z = C2r+2[0, 1].
As is known,

‖Bnf‖ ≤ ‖f‖.
Therefore, since Br,n is linear combination of iterates of Bn, we have

‖Br,nf‖ ≤ c ‖f‖, f ∈ C[0, 1], n ∈ N.
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Thus [4, (3.3)] is satisfied.

By virtue of the Voronovskaya-type inequality (2.2), we have [4, (3.4)] with
(−1)r−1Dr in place of D, Φ(f) = ‖Dr+1f‖, λ(n) = (2n)−r and λ1(α) = c n−r−1,
where the constant c is the one in (2.2).

Next, Proposition 2.4 with g = Br,nf implies [4, (3.5)] with ` = 1 and m = 2.

Finally, Proposition 2.3 yields [4, (3.6)]. �

Let us note that [4, Theorems 10.4 and 10.5] are not applicable because condition
(c) there is not satisfied.

4. Relations between K-functionals

Proof of Theorem 1.2. In view of (1.6), it is sufficient to show that

K2r,ϕ(f, t) + tE1(f) ∼ K2r,ϕ(f, t) +K2,ϕ(f, t), 0 < t ≤ 1. (4.1)

Trivially, for any g ∈ C[0, 1] such that g ∈ AC1
loc(0, 1) and ϕ2g′′ ∈ L∞[0, 1], and any

t ∈ (0, 1] we have the estimates

tE1(f) ≤ ‖f − g‖+ t ‖g −B1g‖ ≤ ‖f − g‖+ ct‖ϕ2g′′‖;

hence

tE1(f) ≤ cK2,ϕ(f, t), 0 < t ≤ 1.

Above we used the inequality

‖g −B1g‖ ≤ ‖ϕ2g′′‖,

which is directly established by Taylor’s formula (see e.g. [4, p. 87]).

To complete the proof of (4.1), it remains to show that

K2,ϕ(f, t) ≤ c (K2r,ϕ(f, t) + tE1(f)) , 0 < t ≤ 1. (4.2)

Let g ∈ C[0, 1] be such that g ∈ AC2r−1
loc (0, 1) and ϕ2rg(2r) ∈ L∞[0, 1]. Then, by e.g.

[7, (2.9)] with p =∞, w = 1, j = 1 and m = r, we deduce that ϕ2g(2) ∈ L∞[0, 1] too,
as, moreover,

‖ϕ2g(2)‖ ≤ c
(
‖g‖+ ‖ϕ2rg(2r)‖

)
.

Consequently, we have for t ∈ (0, 1]

K2,ϕ(f, t) ≤ ‖f − g‖+ t‖ϕ2g(2)‖

≤ c
(
‖f − g‖+ t‖ϕ2rg(2r)‖

)
+ ct‖f‖.

Taking the infimum on g, we arrive at

K2,ϕ(f, t) ≤ c (K2r,ϕ(f, t) + t‖f‖) .

Finally, we replace f with f − p1, where p1 is the algebraic polynomial of degree 1 of
best approximation in C[0, 1] to f , to get (4.2). �
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A modified Post Widder operators preserving eAx

Vijay Gupta and Gancho Tachev

Abstract. In the present paper, we discuss the approximation properties of mod-
ified Post-Widder operators, which preserve the test function eAx. We establish
weighted approximation and a direct quantitative estimate for the modified op-
erators.
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1. Post-Widder operators

In the recent years some sequences of linear positive operators and the operators
of integral type have been studied in [2], [3] and [4] etc. Also the moments of several
operators have been provided in [8]. In the present article, we discuss the vatiant of
an integral operators viz. Post-Widder operators. Post-Widder operators are defined
for f ∈ C[0,∞) as (see [13]):

Pn(f, x) :=
1

n!

(n
x

)n+1
∞∫
0

tn e−
nt
x f(t) dt.

Following [7], we have

Pn(eθt, x) =

(
1− xθ

n

)−(n+1)

. (1.1)

Very recently Gupta-Agrawal in [6] and Gupta-Tachev in [11] considered different
forms of modified Post-Widder operators preserving the test functions er, r ∈ N .
Gupta-Singh in [9] estimated some quantitative convergence results of Post-Widder
operators preserving eax, ebx.

Received 25 November 2019; Accepted 23 March 2020.



600 Vijay Gupta and Gancho Tachev

Let us consider that the Post-Widder operators preserve the test function eAx,
then we start with the following form

P̃n(f, x) :=
1

n!

(
n

an(x)

)n+1
∞∫
0

tn e−
nt

an(x) f(t) dt.

Then using (1.1), we have

P̃n(eAt, x) = eAx =

(
1− an(x)A

n

)−(n+1)

,

implying

an(x) =
n

A
(1− e−Ax/(n+1)).

Thus our modified operators P̃n take the following form

P̃n(f, x) :=
1

n!

[
A

(1− e−Ax/(n+1))

](n+1)

∫ ∞
0

tn e
− At

(1−e−Ax/(n+1)) f(t) dt, (1.2)

with x ∈ (0,∞) and P̃n(f, 0) = f(0), which preserve constant and the test function
eAx.

2. Lemmas

Lemma 2.1. We have for θ > 0 that

P̃n(eθt, x) =

(
1− (1− e−Ax/(n+1))θ

A

)−(n+1)

.

It may be observed that P̃n(eθt, x) may be treated as m.g.f. of the operators P̃n,

which may be utilized to obtain the moments of (1.2). Let µP̃n
r (x) = P̃n(er, x), where

er(t) = tr, r ∈ N ∪ {0}. The moments are given by

µP̃n
r (x) =

[
∂r

∂θr
P̃n(eθt, x)

]
θ=0

=

[
∂r

∂θr

{(
1− (1− e−Ax/(n+1))θ

A

)−(n+1)
}]

θ=0

.

Few moments are given below:

µP̃n
0 (x) = 1,

µP̃n
1 (x) =

(n+ 1)

A
(1− e−Ax/(n+1)),

µP̃n
2 (x) =

(n+ 1)(n+ 2)

A2
(1− e−Ax/(n+1))2.
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Lemma 2.2. The moments of arbitrary order, satisfy the following

µP̃n

k (x) =
(n+ 1)k
Ak

(1− e−Ax/(n+1))k, k = 0, 1, ....,

where the Pochhammer symbol is defined by

(c)0 = 1, (c)k = c(c+ 1) · · · (c+ k − 1).

Further by linearity property and using Lemma 2.2, we have the following lemma:

Lemma 2.3. The central moments U P̃n
r (x) = P̃n((t− x)r, x) are given below:

U P̃n

k (x) =

k∑
j=0

(−1)k−j
(
k

j

)
xk−j(1− e−Ax/(n+1))j

(n+ 1)j
Aj

, k = 0, 1, . . . .

Also, for each n ∈ N , we have

U P̃n
1 (x) =

(n+ 1)

A
(1− e−Ax/(n+1) − 1)− x,

U P̃n
2 (x) =

(n+ 1)(n+ 2)

A2
(1− e−Ax/(n+1))2 + x2 − 2x

(n+ 1)

A
(1− e−Ax/(n+1)).

Lemma 2.4. For the central moments U P̃n

2k (x) = P̃n((t− x)2k, x), we have

U P̃n

2k (x) = O(n−k), n→∞, k = 1, 2, 3, · · ·

Proof. We observe that

P̃n(f, x) = Pn(f, αn(x)),

where

an(x) =
n

A
(1− e−Ax/(n+1)).

It is easy to verify y > 1 − e−y > y − y2

2 for y ∈ [0,∞). We set y = Ax/(n + 1) and
get

x

(
n

n+ 1

)
> αn(x) > x

(
n

n+ 1

)
−
(

Ax

n+ 1

)2

.
n

2A
.

Hence
x

n+ 1
< x− αn(x) <

x

n+ 1
+

Ax2n

2(n+ 1)2
= O(n−1),

by fixed x ∈ [0,∞). Therefore

P̃n((t− x)2k, x) = Pn((t− x)2k, αn(x))

= Pn((t− αn(x) + αn(x)− x)2k, αn(x))

≤ C(k)Pn((t− αn(x))2k, αn(x)) + Pn((x− αn(x)2k, αn(x))

≤ C(k).
1

nk
+ (x− αn(x))2k = O(n−k).

This completes the proof of Lemma 2.4. �
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3. Weighted approximation

We also analyse the behaviour of the operators on some weighted spaces.

Set φ(x) = 1 + eAx, x ∈ R+ and consider the following weighted spaces:

Bφ(R+) = {f : R+ → R : |f(x) ≤ C1(1 + eAx)},
Cφ(R+) = Bφ(R+) ∩ C(R+),

Ckφ(R+) =

{
f ∈ Cφ(R+) : lim

x→∞

f(x)

1 + eAx
= C2 <∞

}
,

where C1, C2 are constants depending on f . The norm is defined as

||f ||φ = sup
x∈R+

|f(x)|
1 + eAx

.

Theorem 3.1. For each f ∈ Ckφ(R+), we have

lim
n→∞

||P̃nf − f ||φ = 0.

Proof. Following [1, Th. 1] in order to prove the result we have to prove

lim
n→∞

||P̃n(eiAt/2)− eiAx/2||φ = 0, i = 0, 1, 2.

The result is true for i = 0, i = 2. It remains to verify it for i = 1. By Lemma 2.1 we
have

||P̃n(eAt/2)− eAx/2||φ

= sup
x∈R+

∣∣∣∣(1− (1−e−Ax/(n+1))
2

)−(n+1)

− eAx/2
∣∣∣∣

1 + eAx

= sup
x∈R+

∣∣∣(1 + e−Ax/(n+1)
)−(n+1)

2n+1 − eAx/2
∣∣∣

1 + eAx

= sup
x∈R+

∣∣∣eAx (1 + eAx/(n+1)
)−(n+1)

2n+1 − eAx/2
∣∣∣

1 + eAx

= sup
x∈R+

[
eAx

1 + eAx

]
.

∣∣∣∣∣
(

2

1 + eAx/(n+1)

)n+1

− e−Ax/2
∣∣∣∣∣ . (3.1)

Obviously eAx

1+eAx ∈
[
1
2 , 1
)
, A > 0, x > 0. We set t = eAx/2, t ∈ [1,∞) for x ∈ (0,∞).

Then (3.1) implies∣∣∣∣∣
(

2

1 + t2/(n+1)

)n+1

− t−1
∣∣∣∣∣ = t−1

∣∣∣∣∣
(

2t1/(n+1)

1 + t2/(n+1)

)n+1

− 1

∣∣∣∣∣ = g(t). (3.2)
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In (3.2), we set t1/(n+1) = y ∈ [1,∞). Hence

g(t) = h(y) = y−(n+1)

∣∣∣∣∣
(

2y

1 + y2

)n+1

− 1

∣∣∣∣∣
=

∣∣∣∣∣
(

2

1 + y2

)n+1

− y−(n+1)

∣∣∣∣∣
= y−(n+1) −

(
2

1 + y2

)n+1

. (3.3)

We have h(1) = 0, h(+∞) = limy→∞ h(y) = 0. To find the global maxima of h(y)
we solve the equation h′(y) = 0. Simple calculations imply that h′(y0) = 0 for y0
satisfying the equation

2

1 + y20
= y
−(n+3)/(n+2)
0 , y0 ∈ (1,∞). (3.4)

The equations (3.3) and (3.4) imply

h(y) ≤ h(y0) = y
−(n+1)
0 − y−(n+3)(n+1)/(n+2)

0 . (3.5)

The proof will be completed if we show

h(y0) <
1

2(n+ 3)
, n→∞. (3.6)

We set in (3.5) yn+1
0 = z0 ∈ (1,+∞). Then h(y0) = z−10 − z−(n+3)/(n+2)

0 < max p(z)

with p(z) = z−1 − z−(n+3)/(n+2). We compute that p′(z1) for z1 =
(
n+3
n+2

)n+2

.

Therefore

p(z1) =

(
n+ 3

n+ 2

)−(n+2)

−
(
n+ 3

n+ 2

)−(n+3)

=

(
n+ 3

n+ 2

)−(n+2)
[

1−
(
n+ 3

n+ 2

)−1]

=

(
1 +

1

n+ 2

)−(n+2)
1

n+ 3
<

1

2(n+ 3)
,

due to lim
n→∞

(
1 + 1

n+2

)−(n+2)

= e−1 < 1/2. �

4. A direct quantitative estimate

Our goal in this section is to obtain a quantitative form of the statement in
Theorem 3.1. For the sake of simplicity we slightly modify the weight function and
instead of φ(x) = 1 + eAx, x ∈ R+ we consider φ(x) = eAx, x ∈ R+, For continuous
functions on [0,∞) with exponential growth i.e.

||f ||A := sup
x∈[0,∞)

|f(x) · e−Ax| <∞, A > 0, (4.1)
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it is easy to observe that

||P̃nf ||A ≤ ||f ||A. (4.2)

Consequently if the following function series is uniformly convergent on [0,∞)

S(x) =

∞∑
k=0

uk(x), x ∈ [0,∞),

then

P̃n(S(t), x) =

∞∑
k=0

P̃n(uk(t), x), x ∈ [0,∞), (4.3)

where the last series is also uniformly convergent. For our goals in this section we
need the first order exponential modulus of continuity, studied by Ditzian in [5] and
defined as

ω1(f, δ, A) := sup
h≤δ,0≤x<∞

|f(x)− f(x+ h)|e−Ax.

We consider the sequence of operators P̃n : E → C[0,∞), where the domain of the

operator P̃n contains the space of functions f with exponential growth, i.e. ||f ||A <∞.
Our main result states the following:

Theorem 4.1. Let P̃n : E → C[0,∞) be sequence of linear positive operators of Post-
Widder type defined in (1.2). Then

|P̃n(f, x)− f(x)| ≤ eAx[3 + C(n, x)]ω1(f,

√
U P̃n
2 (x), A),

where

C(n, x) = 2

∞∑
k=1

Ak

k!

√
U P̃n

2k (x), n→∞ for fixed x ∈ [0,∞).

Proof. We observe that

|f(t)− f(x)| ≤
{
eAxω1(f, δ, A), |t− x| ≤ δ
eAxω1(f, kδ,A), δ ≤ |t− x| ≤ kδ, (4.4)

where k is the smallest natural number in the above upper bound. Now [12, Lemma
2.2] (also see [10]) implies

ω1(f, kδ,A) ≤ keA(k−1)δω1(f, δ, A)

≤ ω1(f, δ, A)

[
|t− x|
δ

+ 1

]
eA.|t−x|. (4.5)

Now (4.4) and (4.5) imply

|f(t)− f(x)| ≤
[
1 +

(
|t− x|
δ

+ 1

)
eA.|t−x|

]
eAxω1(f, δ, A). (4.6)
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For fixed x ∈ [0,∞) the following series is uniformly convergent for t ∈ [0,∞)

S1(t, x) = eA.|t−x| =

∞∑
k=0

(A|t− x|)k

k!

|t− x|
δ

S1(t, x) =
|t− x|
δ

+
1

δ

∞∑
k=1

Ak|t− x|k+1

k!
. (4.7)

Obviously for linear positive operators P̃n using (4.4), (4.6) and (4.7), we obtain

|P̃n(f(t)− f(x)| ≤ P̃n(|f(t)− f(x)|, x)

≤ eAx
{

1 + P̃n(S1(t, x), x) +
1

δ
P̃n(|t− x|, x)

+
1

δ

∞∑
k=1

AkP̃n(|t− x|k+1, x)

k!

}
ω1(f, δ, A). (4.8)

From Cauchy Schwarz inequality, we have

P̃n(|t− x|k+1, x) ≤
√
P̃n((t− x)2, x)

√
P̃n((t− x)2k,x)

=

√
U P̃n
2 (x)

√
U P̃n

2k (x). (4.9)

Further

S1(t, x) = 1 +A|t− x|+
∞∑
k=2

(A|t− x|)k

k!
.

Hence

P̃n(S1(t, x), x) ≤ 1 +A

√
U P̃n
2 (x) +

∞∑
k=2

Ak
√
U P̃n

2k (x)

k!
. (4.10)

From Lemma 2.4, for fixed x ∈ [0,∞), we have

U P̃n

2k (x) = O(n−k), n→∞. (4.11)

We set in (4.8) that

δ =

√
U P̃n
2 (x) = O(n−1/2), n→∞. (4.12)

Therefore estimates (4.8)-(4.12) imply

|P̃n(f, x)− f(x)| ≤ eAx[3 + C(n, x)]ω1(f,

√
U P̃n
2 (x), A),

where

C(n, x) = A

√
U P̃n
2 (x) +

∞∑
k=2

Ak
√
U P̃n

2k (x)

k!
+

∞∑
k=1

Ak
√
U P̃n

2k (x)

k!
= O(n−1/2), n→∞,

by fixed x ∈ [0,∞). This completes the proof of theorem. �
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On a new family of generalized Bernstein
operators

Maria Talpău Dimitriu

Abstract. In this paper we remark that α-Bernstein operators, introduced by X.
Y. Chen et al., are combinations of two known operators (Stancu and Bernstein
operators) and we establish the preservation of global smoothness properties by
these linear operators, the global smoothness being expressed by a Lipschitz con-
dition with a certain second order modulus of continuity.

Mathematics Subject Classification (2010): 41A36, 41A17.

Keywords: Bernstein-type operators, global smoothness preservation, second or-
der modulus of continuity.

1. Introduction

X.Y. Chen et al. [5] introduced and studied a family of operators as follows. For
a function f : [0, 1] −→ R, the α-Bernstein operators Tn,α, n ∈ N, α ∈ R fixed, are
defined by

Tn,α(f, x) =

n∑
j=0

p
(α)
n,j (x)f

(
j

n

)
, x ∈ [0, 1], (1.1)

where p
(α)
1,0 (x) = 1− x, p

(α)
1,1 (x) = x and for n ≥ 2,

p
(α)
n,j (x) =

[(
n− 2

j

)
(1− α)x+

(
n− 2

j − 2

)
(1− α)(1− x) +

(
n

j

)
αx(1− x)

]
·

·xj−1(1− x)n−j−1

with the convention (
k

l

)
=


k!

l!(k − l)!
, if 0 ≤ l ≤ k,

0, else.

Received 27 June 2020; Accepted 29 August 2020.
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It is obvious that for α = 1 the class of Bernstein operators is obtained

Tn,1(f, x) =

n∑
j=0

pn,j(x)f

(
j

n

)
= Bn(f, x), pn,j(x) =

(
n

j

)
xj(1− x)n−j .

We note that for the α-Bernstein operator another representation can be obtained as
follows.

Tn,α(f, x) = (1− α)

n−2∑
j=0

pn−2,j(x)(1− x)f

(
j

n

)
+

n∑
j=2

pn−2,j−2(x)xf

(
j

n

)
+α

n∑
j=0

pn,j(x)f

(
j

n

)

= (1− α)

n−2∑
j=0

pn−2,j(x)(1− x)f

(
j

n

)
+

n−2∑
j=0

pn−2,j(x)xf

(
j + 2

n

)
+αBn(f, x)

= (1− α)

n−2∑
j=0

pn−2,j(x)

1∑
i=0

p1,i(x)f

(
j + 2i

n

)
+ αBn(f, x)

The following generalized Bernstein operators was introduced by D. D. Stancu (see
[11])

Sn,r,s(f, x) =

n−rs∑
j=0

pn−rs,j(x)

s∑
i=0

ps,i(x)f

(
j + ir

n

)
, (1.2)

f ∈ C[0, 1], x ∈ [0, 1], where n ∈ N, r, s ∈ N0 = N∪ {0} such that rs < n. Bernstein’s
operators are obtained for s = 0 or s = 1, r = 0 or s = 1, r = 1.

So the α-Bernstein operator can be expressed as

Tn,α(f, x) = (1− α)Sn,2,1(f, x) + αBn(f, x). (1.3)

In [13] we introduced a two dimensional generalization of the Stancu operators (1.2)
and established certain results related to the global smoothness preservation with
respect to a second order modulus of continuity for functions defined on the 2-
dimensional simplex. The corresponding results in the one-dimensional case are pre-
sented in the following section.

The preservation of global smoothness properties by the Bernstein operators was
studied in [7], [8], [4], [2], [6], [3]. In [14], D.-X. Zhou showed that the Lipschitz classes
with respect to the second order modulus

ω2(f, t) = sup {|f(x− h)− 2f(x) + f(x+ h)| : x± h ∈ [0, 1], 0 < h ≤ t}

are not preserved by the Bernstein operators. He introduced the following second
order modulus of smoothness

ω̃2(f, t) = sup{|f(x+ h1 + h2)− f(x+ h1)− f(x+ h2) + f(x)| :
x, x+ h1 + h2 ∈ [0, 1] , h1, h2 > 0, h1 + h2 ≤ 2t}
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and proved the following result:
Theorem A. Let f ∈ C[0, 1], n ∈ N, M > 0 and 0 < µ ≤ 1.

If ω̃2(f, t) ≤Mtµ, 0 < t ≤ 1
2 , then ω̃2(Bnf, t) ≤Mtµ, 0 < t ≤ 1

2 .
For the Bernstein-type operators

Ln(f, x) =

n∑
j=0

pn,j(x)Fn,j(f), f ∈ C[0, 1], x ∈ [0, 1], (1.4)

where Fn,j : C[0, 1] −→ R, j = 1, n, are linear positive functionals, in [12] we studied
simultaneous global smoothness preservation in terms of modulus of continuity ω∗2
introduced by R. Păltănea [9], [10] and independently by J. Adell and J. de la Cal
[1], defined for f ∈ C[0, 1] and t > 0 by

ω∗2(f, t) = sup{|(1− λ)f(x) + λf(y)− f ((1− λ)x+ λy, y))| :
x, y ∈ [0, 1] , x < y, y − x ≤ 2t, λ ∈ [0, 1]}.

The preservation of global smoothness properties by α-Bernstein operators is obtained
as a consequence of global smoothness preservation by Stancu operators.

2. Global smoothness preservation

Lemma 2.1. For f ∈ C[0, 1], 0 ≤ x < y ≤ 1, λ ∈ [0, 1] we have

Sn,r,s (f, (1− λ)x+ λy)

=

s∑
k1+l1=0

n−rs∑
k2+l2=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x) ·

·
l1∑

m1=0

l2∑
m2=0

pl1,m1
(λ)pl2,m2

(λ)f

(
k2 +m2 + r(k1 +m1)

n

)
, (2.1)

where

pn,k,l(x, y) =
n!

k!l! (n− k − l)!
xkyl(1− x− y)n−k−l.

Proof. Let f ∈ C[0, 1], 0 ≤ x < y ≤ 1, λ ∈ [0, 1].
For the Bernstein type operator (1.4) in [12], proceeding similarly as in [14] (see also
[4]), we obtained:

Ln (f, (1− λ)x+ λy)

=

n∑
k+l=0

pn,k,l(x, y − x)

l∑
m=0

pl,m(λ)Fn,k+m(f). (2.2)

Repeating the application of an adapted version of relation (2.2) yields

Sn,r,s (f, (1− λ)x+ λy) =

n−rs∑
j=0

pn−rs,j((1−λ)x+λy)

s∑
i=0

ps,i((1−λ)x+λy)f

(
j + ir

n

)
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=

n−rs∑
j=0

pn−rs,j((1−λ)x+λy)

s∑
k1+l1=0

ps,k1,l1(x, y−x)

l1∑
m1=0

pl1,m1(λ)f

(
j + r(k1 +m1)

n

)

=

s∑
k1+l1=0

ps,k1,l1(x, y−x)

l1∑
m1=0

pl1,m1(λ)

n−rs∑
j=0

pn−rs,j((1−λ)x+λy)f

(
j + r(k1 +m1)

n

)

=

s∑
k1+l1=0

ps,k1,l1(x, y − x)

l1∑
m1=0

pl1,m1(λ)·

·
n−rs∑

k2+l2=0

pn−rs,k2,l2(x, y − x)

l2∑
m2=0

pl2,m2
(λ)f

(
k2 +m2 + r(k1 +m1)

n

)
.

�

Theorem 2.2. Let f ∈ C[0, 1], M > 0 and µ ∈ (0, 1]. If

ω1 (f, t) ≤Mtµ, t ∈ (0, 1] ,

then

ω1 (Sn,r,sf, t) ≤Mtµ, t ∈ (0, 1] .

Proof. Let x, y ∈ [0, 1] be such that |x− y| ≤ t. We can assume that x < y.

|Sn,r,s (f, x)− Sn,r,s (f, y)|

≤
s∑

k1+l1=0

n−rs∑
k2+l2=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x) ·

·
∣∣∣∣f (k2 + rk1

n

)
− f

(
k2 + l2 + r(k1 + l1)

n

)∣∣∣∣
≤

s∑
k1+l1=0

n−rs∑
k2+l2=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x)ω1

(
f,
l2 + rl1
n

)

≤
s∑

k1+l1=0

n−rs∑
k2+l2=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x)M

(
l2 + rl1
n

)µ

≤M

(
s∑

k1+l1=0

n−rs∑
k2+l2=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x)
l2 + rl1
n

)µ

= M

(
n−rs∑

k2+l2=0

pn−rs,k2,l2(x, y − x)
l2
n

+

s∑
k1+l1=0

ps,k1,l1(x, y − x)
rl1
n

)µ

= M

(
n− rs
n

(y − x) +
rs

n
(y − x)

)µ
≤Mtµ.

�

The next result relates to the global smoothness preservation by Stancu operators in
terms of modulus of continuity ω∗2 .
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Theorem 2.3. Let f ∈ C[0, 1], M > 0 and µ ∈ (0, 1]. If

ω∗2 (f, t) ≤Mtµ, t ∈
(

0,
1

2

]
,

then

ω∗2 (Sn,r,sf, t) ≤Mtµ, t ∈
(

0,
1

2

]
.

Proof. Let t ∈
(
0, 12
]
, x, y ∈ [0, 1] , x < y, y − x ≤ 2t, λ ∈ [0, 1]. By using the

representation (2.1), we obtain:

|(1− λ)Sn,r,sf(x) + λSn,r,sf(y)− Sn,r,sf ((1− λ)x− λy)|

≤
s∑

k1+l1=0

n−rs∑
k2+l2=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x) ·

·
∣∣∣(1− λ)f

(
k2 + rk1

n

)
+ λf

(
k2 + l2 + r(k1 + l1)

n

)
−

l1∑
m1=0

l2∑
m2=0

pl1,m1
(λ)pl2,m2

(λ)f

(
k2 +m2 + r(k1 +m1)

n

) ∣∣∣
≤

s∑
k1+l1=0

n−rs∑
k2+l2=0

l2+rl1 6=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x) ·

·
l1∑

m1=0

l2∑
m2=0

pl1,m1
(λ)pl2,m2

(λ) ·
∣∣∣ (1− m2 + rm1

l2 + rl1

)
f

(
k2 + rk1

n

)
+
m2 + rm1

l2 + rl1
f

(
k2 + rk1

n
+
l2 + rl1
n

)
− f

(
k2 + rk1

n
+
m2 + rm1

n

) ∣∣∣
≤

s∑
k1+l1=0

n−rs∑
k2+l2=0

l2+rl1 6=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x) ·

·
l1∑

m1=0

l2∑
m2=0

pl1,m1(λ)pl2,m2(λ)ω∗2

(
f,
l2 + rl1

2n

)

≤M
s∑

k1+l1=0

n−rs∑
k2+l2=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x)

(
l2 + rl1

2n

)µ

≤M

(
s∑

k1+l1=0

n−rs∑
k2+l2=0

ps,k1,l1(x, y − x)pn−rs,k2,l2(x, y − x)
l2 + rl1

2n

)µ

= M

(
n− rs

2n
(y − x) +

rs

2n
(y − x)

)µ
= M

(
y − x

2

)µ
≤Mtµ.
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Hence ω∗2 (Sn,r,sf, t) ≤Mtµ. �

For n ∈ N, α ∈ [0, 1], r1, s1, r2, s2 ∈ N0 = N∪{0} such that r1s1, r2s2 < n, we consider
the operators

T r1,s1,r2,s2n,α (f, x) = (1− α)Sn,r1,s1(f, x) + αSn,r2,s2(f, x), (2.3)

f ∈ C[0, 1], x ∈ [0, 1].
From Theorem 2.2, Theorem 2.3 and the inequalities

ω1

(
T r1,s1,r2,s2n,α f, t

)
≤ (1− α)ω1 (Sn,r1,s1f, t) + αω1 (Sn,r2,s2f, t) ,

ω∗2
(
T r1,s1,r2,s2n,α f, t

)
≤ (1− α)ω∗2 (Sn,r1,s1f, t) + αω∗2 (Sn,r2,s2f, t) ,

we obtain the final result:

Theorem 2.4. Let f ∈ C[0, 1], M > 0 and µ ∈ (0, 1].

1. If ω1 (f, t) ≤Mtµ, t ∈ (0, 1], then ω1

(
T r1,s1,r2,s2n,α f, t

)
≤Mtµ, t ∈ (0, 1].

2. If ω∗2 (f, t) ≤Mtµ, t ∈
(

0,
1

2

]
, then ω∗2

(
T r1,s1,r2,s2n,α f, t

)
≤Mtµ, t ∈

(
0,

1

2

]
.
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On possible generalisations of quasi-contractions

Tünde Cseh, Sándor Kajántó and Andor Lukács

Abstract. This paper investigates whether some fixed point theorems for quasi-

contractions on metric spaces introduced by Ćirić in [1] and generalised by Ku-
mam et al. in [2] can be improved further. It turns out that the answer is negative.
We provide two examples of complete metric spaces and two operators without
fixed points. We prove that for any possible straightforward relaxation of gener-
alised quasi-contractive conditions, one of these operators satisfies the condition.

Mathematics Subject Classification (2010): 47H10, 54H25.

Keywords: Quasi-contractions, fixed point theorems, metric spaces.

1. Introduction and preliminary results

Banach’s contraction principle is a fundamental result in the study of fixed points
of operators defined on complete metric spaces. This principle can be stated as follows.

Let (X, d) be a complete metric space and T : X → X be a self-map. If there
exists q ∈ [0, 1) such that for all x, y ∈ X

d(Tx, Ty) ≤ q · d(x, y), (C1)

then T has a unique fixed point x∗ ∈ X. Furthermore, for any x0 ∈ X the sequence
xn+1 = Txn converges to x∗ in X.

Due to its wide range of applicability in different fields of mathematics, several
generalisations have appeared. This paper focuses on one possible “branch” of these
improvements, that of quasi-contractions, that we present below.

1.1. Quasi-contractions

The notion was first introduced by Ćirić in [1], hence it is sometimes referred

to as Ćirić-type contractions. It consists of two separate improvements of Banach’s
original principle.

Received 19 May 2021; Accepted 12 April 2022.
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On the one hand, the requirement of completeness of (X, d) is relaxed to T -
orbitally completeness. We recall that the orbit of T : X → X is defined as

OT (x) = {x, Tx, . . . , Tnx, . . . },
and a metric space is T -orbitally complete if every Cauchy sequence in OT (x) is
convergent in X.

On the other hand, the contractive condition (C1) is relaxed as well and it is
replaced with the following:

d(Tx, Ty) ≤ q ·max{d(x, y), d(Tx, x), d(Tx, y), d(Ty, x), d(Ty, y)}. (C2)

With these improvements, the operator T still has a unique fixed point x∗ ∈ X and
for any x0 ∈ X the sequence xn+1 = Txn converges to x∗.

1.2. Generalised quasi-contractions

Ćirić’s idea was developed further by Kumam et al. in [2]. The authors introduced
the notion of generalised quasi-contraction which uses the condition

d(Tx, Ty) ≤ q ·max{d(x, y), d(Tx, x), d(Tx, y), d(Ty, x), d(Ty, y),

d(T 2x, x), d(T 2x, y), d(T 2x, Tx), d(T 2x, Ty)}, (C3)

and proved a fixed point theorem similar to Ćirić’s.
Focusing on conditions (C1-C3), the following questions arise naturally:

- Why is (C3) not symmetric in x and y, i.e. why are the d(T 2y, ·) terms excluded?
More generally, can one include terms of the form d(T ky, ·), where k ≥ 2?

- Can one introduce additional terms of the form d(T kx, ·), where k ≥ 3, in the
set on the right-hand side?

- What is the “most general” version of these types of conditions that guarantees
the existence and uniqueness of the fixed point of the operator in concern?

In the next section we answer all the questions above: the conclusion is that condition
(C3) cannot be relaxed further.

2. Main result

Theorem 2.1. There exists a complete metric space (X, d) and an operator T : X → X
such that T has no fixed points, while for some q ∈ (0, 1) and for every x, y ∈ X we
have

d(Tx, Ty) ≤ q ·max{d(x, y), d(Tx, x), d(Tx, y), d(Ty, x), d(Ty, y),

d(T 2x, x), d(T 2x, y), d(T 2x, Tx), d(T 2x, Ty), D}, (C)

where D is one of the distances
d(T ax, T by), for some a ≥ 3, b ≥ 0,

d(T ax, T by), for some a ≥ 0, b ≥ 2,

d(T ax, T bx), for some a ≥ 3, b ≥ 0, a 6= b,

d(T ay, T by), for some a ≥ 2, b ≥ 0, a 6= b.

(D)
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The proof is obtained by constructing two different examples, depending on
the type of the distance D. First, we construct a space and an operator that deals
with distances of type D = d(T k+1x, T ky), for some k ≥ 2. Then we give another
construction that discusses the remaining cases for D. We claim that both examples
satisfy condition (C) with the respective D.

Claim 2.2. Let X = {2n : n ∈ N}, d(x, y) = |x − y| and T (x) = 2x. Obviously
(X, d) is a complete metric space and T does not have fixed points. Furthermore, let
D = d(T k+1x, T ky), with k ≥ 2 arbitrary. Then condition (C) holds for all x, y ∈ X.

Proof. For every x, y ∈ X, there exists m,n ∈ N, such that x = 2m and y = 2n.
We have three cases.

• If m > n, then

d(Tx, Ty) = 2m+1 − 2n+1 ≤ 2m+1 − 2n =
1

2
(2m+2 − 2n+1) =

1

2
d(T 2x, Ty).

• If m = n− 1, then

d(Tx, Ty) = 2n+1 − 2n =
2

3
(22 − 1)2n−1 =

2

3
(2n+1 − 2n−1) =

2

3
d(Ty, x).

• If m < n − 1, then 0 ≤ 2n−m−1 − 2. Adding 2 · 2n−m−1 − 1 to both sides, we
obtain

(2n−m − 1) ≤ 3(2n−m−1 − 1).

Now using that k ≥ 2, we can write

d(Tx, Ty) = 2n+1 − 2m+1 = 2m+1(2n−m − 1) ≤ 2m+1 · 3(2n−m−1 − 1)

=
3

2k
(2n+k − 2m+1+k) ≤ 3

4
(2n+k − 2m+1+k) =

3

4
d(T ky, T k+1x).

In conclusion, (C) holds with q = 3
4 . �

Claim 2.3. Let X = {zn | n ∈ N}, where z = −1 + i
√

3, d(x, y) = |x − y| and
T (x) = zx. Obviously (X, d) is a complete metric space and T does not have fixed
points. Furthermore, let D be one of the distances from (D), which is not included in
Claim 2.2. Then condition (C) holds for all x, y ∈ X.

We present two lemmas that we use in the proof of Claim 2.3. In the forthcoming
proofs, we use the following facts without mention: |z| = 2, |z−1| =

√
7, |z2−1| =

√
21,

|z3 − 1| = 7 and |z + 1| =
√

3.

Lemma 2.4. If z = −1 + i
√

3, then D = |zu+2 − zv| ≥
√

21, for all u, v ≥ 0, with
u + 2 6= v.

Proof. We have the following cases.

• If u = 0 and v = 0, then D = |z2 − 1| =
√

21.

• If u = 0 and v = 1, then D = |z2 − z| = 2|z − 1| = 2
√

7 >
√

21.

• If u = 0 and v = 3, then D = |z2 − z3| = 4|z − 1| = 4
√

7 >
√

21.

• If u = 1 and v = 0, then D = |z3 − 1| = 7 >
√

21.

• If u = 1 and v = 1, then D = |z3 − z| = 2
√

21 >
√

21.
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• If u = 1 and v = 2, then D = |z3 − z2| = 4
√

7 >
√

21.
• If u > 1 or v > 3, then

D = |zu+2 − zv| ≥ ||zu+2 − |zv|| = |2u+2 − 2v| ≥ 8 >
√

21.

�

Lemma 2.5. If z = −1+i
√

3, then D = |zu+3−zv| ≥ 7, for all u, v ≥ 0, with u+3 6= v.

Proof. We have the following cases.

• If u = 0 and v = 0, then D = |z3 − 1| = 7.

• If u = 0 and v = 1, then D = |z3 − z| = 2|z2 − 1| = 2
√

21 > 7.

• If u = 0 and v = 2, then D = |z3 − z2| = 4|z − 1| = 4
√

7 > 7.
• If u > 0 or v > 3, then D = |zu+3 − zv| ≥ ||zu+3 − |zv|| = |2u+3 − 2v| ≥ 8.

�

Proof of Claim 2.3. We have four cases.

• If m = n + s, with s ≥ 2 then d(Tx, Ty) ≤ q1d(Tx, x), where q1 = 5
2
√
7
< 1.

Indeed, we have

d(Tx, Ty) = |zn+s+1 − zn+1| = 2n+1|zs − 1| ≤ 2n+1(|zs|+ 1) = 2n+1(2s + 1)

≤ 2n+1(2s + 2s−2) = 5 · 2n−1+s =
5

2
√

7
·
√

7 · 2n+s

=
5

2
√

7
|z − 1||zn+s| = 5

2
√

7
d(Tx, x).

• If n = m + s, with s ≥ 2 one can similarly prove that d(Tx, Ty) ≤ 5
2
√
7
d(Ty, y).

• If m = n + 1, then d(Tx, Ty) ≤ q2d(T 2x, Ty), where q2 =
√
3
3 < 1. Indeed, we

have

d(Tx, Ty) = |zn+2 − zn+1| = 2n+1|z − 1| = 2n+1
√

7

=

√
3

3
·
√

21 · 2n+1 =

√
3

3
|z2 − 1||zn+1| =

√
3

3
d(T 2x, Ty).

• If m = n− 1, then there exists q3 ∈ (0, 1), such that d(Tx, Ty) ≤ q1D and D is
any distance from (D) that was not considered in Claim 2.2.

To prove this statement, we observe that D can have the following forms.
– If D = d(T ax, T by) for some a ≥ 3, b ≥ 0, a 6= b + 1, then

D = |zn−1+a − zn+b|.
– If D = d(T ax, T by) for some a ≥ 0, b ≥ 2, a 6= b + 1, then

D = |zn−1+a − zn+b|.
– If D = d(T ax, T bx) for some a ≥ 3, b ≥ 0, a 6= b, then

D = |zn−1+a − zn−1+b|.
– If D = d(T ay, T by) for some a ≥ 2, b ≥ 0, a 6= b, then

D = |zn+a − zn+b|.
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This implies that
– either D = |zn+a − zn+b| for some a ≥ 2, b ≥ 0, a 6= b,
– or D = |zn+a − zn−1+b| for some a ≥ 2, b ≥ 0, a + 1 6= b.

On the one hand, using Lemma 2.4 we have

d(Tx, Ty) = |zn − zn+1| = 2n
√

7 =

√
3

3
2n
√

21

≤
√

3

3
|zn||za − zb| =

√
3

3
|zn+a − zn+b|.

On the other hand, using Lemma 2.5 we have

d(Tx, Ty) = |zn − zn+1| = 2n|1− z| = 2n
√

7 =
2√
7

2n−1 · 7

≤ 2√
7
|zn−1||za+1 − zb| = 2√

7
|zn+a − zn−1+b|.

The above two cases conclude the proof. �

Remark 2.6. The proofs of Lemma 2.4, 2.5 and Claim 2.3 can be carried out with
fewer steps than presented (some cases can be merged). However, we think that these
shortenings detriment the readability of the paper.
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Stud. Univ. Babeş-Bolyai Math. 67(2022), No. 3, 621–631
DOI: 10.24193/subbmath.2022.3.14

Triangle angle sums related to translation curves
in Sol geometry

Jenő Szirmai

Abstract. After having investigated the geodesic and translation triangles and

their angle sums in Nil and S̃L2R geometries we consider the analogous problem
in Sol space that is one of the eight 3-dimensional Thurston geometries. We
analyse the interior angle sums of translation triangles in Sol geometry and prove
that it can be larger or equal than π. In our work we will use the projective model
of Sol described by E. Molnár in [9].

Mathematics Subject Classification (2010): 53A20, 53A35, 52C35, 53B20.

Keywords: Thurston geometries, Sol geometry, translation and geodesic triangles,
interior angle sum.

1. Introduction

In the Thurston spaces can be introduced in a natural way (see [9]) translations
mapping each point to any point. Consider a unit vector at the origin. Translations,
postulated at the beginning carry this vector to any point by its tangent mapping. If
a curve t → (x(t), y(t), z(t)) has just the translated vector as tangent vector in each
point, then the curve is called a translation curve. This assumption leads to a system
of first order differential equations, thus translation curves are simpler than geodesics

and differ from them in Nil, S̃L2R and Sol geometries. In E3, S3, H3, S2×R and
H2×R geometries the mentioned curves coincide with each other.

Therefore, the translation curves also play an important role in Nil, S̃L2R and
Sol geometries and often seem to be more natural in these geometries, than their
geodesic lines.

A translation triangle in Riemannian geometry and more generally in metric
geometry a figure consisting of three different points together with the pairwise-
connecting translation curves. The points are known as the vertices, while the trans-
lation curve segments are known as the sides of the triangle.

Received 13 August 2020; Accepted 16 August 2020.
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In the geometries of constant curvature E3, H3, S3 the well-known sums of
the interior angles of geodesic (or translation) triangles characterize the space. It is
related to the Gauss-Bonnet theorem which states that the integral of the Gauss
curvature on a compact 2-dimensional Riemannian manifold M is equal to 2πχ(M)
where χ(M) denotes the Euler characteristic of M . This theorem has a generalization
to any compact even-dimensional Riemannian manifold (see e.g. [4], [6], [8]).

In [5] we investigated the angle sum of translation and geodesic triangles in S̃L2R
geometry and proved that the possible sum of the interior angles in a translation
triangle must be greater or equal than π. However, in geodesic triangles this sum is
less, greater or equal to π.

In [19] we considered the analogous problem for geodesic triangles in Nil geom-
etry and proved that the sum of the interior angles of geodesic triangles in Nil space
is larger, less or equal than π.

In [2] K. Brodaczewska showed, that sum of the interior angles of translation
triangles of the Nil space is larger or equal than π.

However, in S2×R, H2×R and Sol Thurston geometries there are no result
concerning the angle sums of translation or geodesic triangles. Therefore, it is inter-
esting to study similar question in the above three geometries. Now, we are interested
in translation triangles in Sol space [15, 20].

In Section 2 we describe the projective model and the isometry group of Sol,
moreover, we give an overview about its translation curves.

Remark 1.1. We note here, that nowadays the Sol geometry is a widely investigated
space concerning its manifolds, tilings, geodesic and translation ball packings and
probability theory (see e.g. [1], [3], [7], [11], [12], [13], [17], [18] and the references
given there).

In Section 3 we study the Sol translation triangles and prove that their interior
angle sums can be larger or equal than π.

2. On Sol geometry

In this Section we summarize the significant notions and notations of real Sol
geometry (see [9], [15]).

Sol is defined as a 3-dimensional real Lie group with multiplication

(a, b, c)(x, y, z) = (x+ ae−z, y + bez, z + c). (2.1)

We note that the conjugacy by (x, y, z) leaves invariant the plane (a, b, c) with fixed c:

(x, y, z)−1(a, b, c)(x, y, z) = (x(1− e−c) + ae−z, y(1− ec) + bez, c). (2.2)

Moreover, for c = 0, the action of (x, y, z) is only by its z-component, where
(x, y, z)−1 = (−xez,−ye−z,−z). Thus the (a, b, 0) plane is distinguished as a base
plane in Sol, or by other words, (x, y, 0) is normal subgroup of Sol. Sol multiplica-
tion can also be affinely (projectively) interpreted by ”right translations” on its points
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as the following matrix formula shows, according to (2.1):

(1; a, b, c)→ (1; a, b, c)


1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1

 = (1;x+ ae−z, y + bez, z + c) (2.3)

by row-column multiplication.
This defines ”translations” L(R) = {(x, y, z) : x, y, z ∈ R} on the points

of space Sol = {(a, b, c) : a, b, c ∈ R}. These translations are not commutative,
in general. Here we can consider L as projective collineation group with right ac-
tions in homogeneous coordinates as usual in classical affine-projective geometry. We
will use the Cartesian homogeneous coordinate simplex E0(e0), E∞1 (e1), E∞2 (e2),
E∞3 (e3), ({ei} ⊂ V4 with the unit point E(e = e0 + e1 + e2 + e3)) which is distin-
guished by an origin E0 and by the ideal points of coordinate axes, respectively. Thus
Sol can be visualized in the affine 3-space A3 (so in Euclidean space E3) as well [9].

In this affine-projective context E. Molnár has derived in [9] the usual infinites-
imal arc-length square at any point of Sol, by pull back translation, as follows

(ds)2 := e2z(dx)2 + e−2z(dy)2 + (dz)2. (2.4)

Hence we get infinitesimal Riemann metric invariant under translations, by the sym-
metric metric tensor field g on Sol by components as usual.

It will be important for us that the full isometry group Isom(Sol) has eight
components, since the stabilizer of the origin is isomorphic to the dihedral group D4,
generated by two involutive (involutory) transformations, preserving (2.4):

(1) y ↔ −y; (2) x↔ y; z ↔ −z; i.e. first by 3× 3 matrices :

(1)

1 0 0
0 −1 0
0 0 1

 ; (2)

0 1 0
1 0 0
0 0 −1

 ;
(2.5)

with its product, generating a cyclic group C4 of order 4 0 1 0
−1 0 0
0 0 −1

 ;

−1 0 0
0 −1 0
0 0 1

 ;

0 −1 0
1 0 0
0 0 −1

 ; Id =

1 0 0
0 1 0
0 0 1

 .

Or we write by collineations fixing the origin O(1, 0, 0, 0):

(1)


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , (2)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 of form (2.3). (2.6)

A general isometry of Sol to the origin O is defined by a product γOτX , first γO of
form (2.6) then τX of (2.3). To a general point A(1, a, b, c), this will be a product
τ−1A γOτX , mapping A into X(1, x, y, z).

Conjugacy of translation τ by an above isometry γ, as τγ = γ−1τγ also denotes
it, will also be used by (2.3) and (2.6) or also by coordinates with above conventions.
We note here that the Sol-space is translation-complete, i.e. every two points of the
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Sol-space can be connected through one translation arc and every three points form
a triangle, when they are not on the same translation curve.

We remark only that the role of x and y can be exchanged throughout the
paper, but this leads to the mirror interpretation of Sol. As formula (2.4) fixes the
metric of Sol, the change above is not an isometry of a fixed Sol interpretation. Other
conventions are also accepted and used in the literature.

Sol is an affine metric space (affine-projective one in the sense of the unified
formulation of [9]). Therefore its linear, affine, unimodular, etc. transformations are
defined as those of the embedding affine space.

2.1. Translation curves

We consider a Sol curve (1, x(t), y(t), z(t)) with a given starting tangent vector
at the origin O(1, 0, 0, 0)

u = ẋ(0), v = ẏ(0), w = ż(0). (2.7)

For a translation curve let its tangent vector at the point (1, x(t), y(t), z(t)) be defined
by the matrix (2.3) with the following equation:

(0, u, v, w)


1 x(t) y(t) z(t)
0 e−z(t) 0 0
0 0 ez(t) 0
0 0 0 1

 = (0, ẋ(t), ẏ(t), ż(t)). (2.8)

Thus, translation curves in Sol geometry (see [10] and [11]) are defined by the first
order differential equation system ẋ(t) = ue−z(t), ẏ(t) = vez(t), ż(t) = w, whose
solution is the following:

x(t) = − u
w

(e−wt − 1), y(t) =
v

w
(ewt − 1), z(t) = wt, if w 6= 0 and

x(t) = ut, y(t) = vt, z(t) = z(0) = 0 if w = 0.
(2.9)

We assume that the starting point of a translation curve is the origin, because we can
transform a curve into an arbitrary starting point by translation (2.3), moreover, unit
velocity translation can be assumed :

x(0) = y(0) = z(0) = 0;

u = ẋ(0) = cos θ cosφ, v = ẏ(0) = cos θ sinφ, w = ż(0) = sin θ;

−π ≤ φ ≤ π, −π
2
≤ θ ≤ π

2
.

(2.10)

Definition 2.1. The translation distance dt(P1, P2) between the points P1 and P2 is
defined by the arc length of the above translation curve from P1 to P2.

Thus we obtain the parametric equation of the the translation curve segment
t(φ, θ, t) with starting point at the origin in direction

t(φ, θ) = (cos θ cosφ, cos θ sinφ, sin θ) (2.11)
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where t ∈ [0, r ∈ R+]. If θ 6= 0 then the system of equation is: x(φ, θ, t) = − cot θ cosφ(e−t sin θ − 1),
y(φ, θ, t) = cot θ sinφ(et sin θ − 1),
z(φ, θ, t) = t sin θ.

If θ = 0 then : x(t) = t cosφ, y(t) = t sinφ, z(t) = 0.

(2.12)

3. Translation triangles

We consider 3 points A1, A2, A3 in the projective model of Sol space (see
Section 2). The translation segments ak connecting the points Ai and Aj (i < j,
i, j, k ∈ {1, 2, 3}, k 6= i, j) are called sides of the translation triangle with vertices A1,
A2, A3.

A

A

3

=E0

A

1

2

A2

A3

A =E
01

Figure 1. Translation triangle with vertices A1 = (1, 0, 0, 0),
A2 = (1,−1, 2, 1), A3 = (1, 3/4, 3/4, 1/2).

In Riemannian geometries the metric tensor (or infinitesimal arc-length square
(see (2.4)) is used to define the angle θ between two geodesic curves. If their tangent
vectors in their common point are u and v and gij are the components of the metric
tensor then

cos(θ) =
uigijv

j√
uigijuj vigijvj

(3.1)

It is clear by the above definition of the angles and by the infinitesimal arc-length
square (2.4), that the angles are the same as the Euclidean ones at the origin of the
projective model of Sol geometry.

Considering a translation triangle A1A2A3 we can assume by the homogeneity of
the Sol geometry that one of its vertex coincide with the origin A1 = E0 = (1, 0, 0, 0)
and the other two vertices are A2(1, x2, y2, z2) and A3(1, x3, y3, z3).
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We will consider the interior angles of translation triangles that are denoted at
the vertex Ai by ωi (i ∈ {1, 2, 3}). We note here that the angle of two intersecting
translation curves depends on the orientation of their tangent vectors.

In order to determine the interior angles of a translation triangle A1A2A3 and
its interior angle sum

∑3
i=1(ωi), we define translations TAi

, (i ∈ {2, 3}) as elements
of the isometry group of Sol, that maps the origin E0 onto Ai (see Fig. 2).

E.g. the isometry TA2
and its inverse (up to a positive determinant factor) can

be given by:

TA2 =


1 x2 y2 z2

0 e−z
2

0 0

0 0 ez
2

0
0 0 0 1

 , T−1A2
=


1 −x2ez

2 −y2e−z
2 −z2

0 ez
2

0 0

0 0 e−z
2

0
0 0 0 1

 , (3.2)

and the images T−1A2
(Ai) of the vertices Ai (i ∈ {1, 2, 3}) are the following (see also

Fig. 2):

T−1A2
(A1) = A2

1 = (1,−x2ez
2

,−y2e−z
2

,−z2), T−1A2
(A2) = A2

2 = E0 = (1, 0, 0, 0),

T−1A2
(A3) = A2

3 = (1, (x3 − x2)ez
2

, (y3 − y2)e−z
2

, z3 − z2).

(3.3)
Similarly to the above computation we get that the images T−1A3

(Ai) of the vertices
Ai (i ∈ {1, 2, 3}) are the following (see also Fig. 2):

T−1A3
(A1) = A3

1 = (1,−x3ez
3

,−y3e−z
3

,−z3), T−1A3
(A3) = A2

2 = E0 = (1, 0, 0, 0),

T−1A3
(A2) = A3

2 = (1, (x2 − x3)ez
3

, (y2 − y3)e−z
3

, z2 − z3).

(3.4)

E0

=A1E0

A3

A2A

2

A2

A1

A1

A3
A

3

3
3

2

2

Figure 2. Translation triangle with vertices A1 = (1, 0, 0, 0),
A2 = (1,−1, 1, 1), A3 = (1, 1/2, 5, 1/2) and its translated copies
A2

1A
2
3E0 and A3

1A
3
2E0.
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Our aim is to determine angle sum
∑3
i=1(ωi) of the interior angles of translation

triangles A1A2A3 (see Fig. 1-2). We have seen that ω1 and the angle of translation
curves with common point at the origin E0 is the same as the Euclidean one therefore
can be determined by usual Euclidean sense.

The translations TAi (i = 2, 3) are isometries in Sol geometry thus ωi is equal
to the angle (t(Aii, A

i
1)t(Aii, A

i
j))∠ (i, j = 2, 3, i 6= j) (see Fig. 2) where t(Aii, A

i
1),

t(Aii, A
i
j) are oriented translation curves (E0 = A2

2 = A3
3) and ω1 is equal to the angle

(t(E0, A2)t(E0, A3))∠ where t(E0, A2), t(E0, A3) are also oriented translation curves.
We denote the oriented unit tangent vectors of the oriented geodesic curves

t(E0, A
j
i ) with tji where (i, j) ∈ {(1, 3), (1, 2), (2, 3), (3, 2), (3, 0), (2, 0)} and A0

3 = A3,
A0

2 = A2.

The Euclidean coordinates of tji (see Section 2.1) are :

tji = (cos(θji ) cos(αji ), cos(θji ) sin(αji ), sin(θji )). (3.5)

In order to obtain the angle of two translation curves tE0A
j
i

and tE0Al
k

((i, j) 6=
(k, l); (i, j), (k, l) ∈ {(1, 3), (1, 2), (2, 3), (3, 2), (3, 0), (2, 0)}) intersected at the ori-
gin E0 we need to determine their tangent vectors trs ((s, r) ∈ {(1, 3), (1, 2),
(2, 3), (3, 2), (3, 0), (2, 0)}) (see (3.5)) at their starting point E0. From (3.5) follows
that a tangent vector at the origin is given by the parameters φ and θ of the corre-
sponding translation curve (see (2.12)) that can be determined from the homogeneous
coordinates of the endpoint of the translation curve as the following Lemma shows:

Lemma 3.1. 1. Let (1, x, y, z) (y, z ∈ R \ {0}, x ∈ R) be the homogeneous coordi-
nates of the point P ∈ Sol. The paramerters of the corresponding translation
curve tE0P are the following

φ = arccot
(
− x

y

ez − 1

e−z − 1

)
, θ = arccot

( y

sinφ(ez − 1)

)
,

t =
z

sin θ
, where − π < φ ≤ π, −π/2 ≤ θ ≤ π/2, t ∈ R+.

(3.6)

2. Let (1, x, 0, z) (x, z ∈ R \ {0}) be the homogeneous coordinates of the point
P ∈ Sol. The paramerters of the corresponding translation curve tE0P are the
following

φ = 0 or π, θ = arccot
(
∓ x

(e−z − 1)

)
,

t =
z

sin θ
, where − π/2 ≤ θ ≤ π/2, t ∈ R+.

(3.7)

3. Let (1, x, y, 0) (x, y ∈ R) be the homogeneous coordinates of the point P ∈ Sol.
The paramerters of the corresponding translation curve tE0P are the following

φ = arccos
( x√

x2 + y2

)
, θ = 0,

t =
√
x2 + y2, where − π < φ ≤ π, t ∈ R+.

(3.8)

Theorem 3.2. The sum of the interior angles of a translation triangle is greather or
equal to π.
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Proof. The translations T−1A2
and T−1A3

are isometries in Sol geometry thus ω2 is equal

to the angle ((A2
2A

2
1), (A2

2A
2
3))∠ (see Fig. 2) of the oriented translation segments tA2

2A
2
1
,

tA2
2A

2
3

and ω3 is equal to the angle ((A3
3A

3
1), (A3

3A
3
2))∠ of the oriented translation

segments tA3
3A

3
1

and tA3
3A

3
2

(E0 = A2
2 = A3

3).

Substituting the coordinates of the points Aji (see (3.3) and (3.4)) ((i, j) ∈
{(1, 3), (1, 2), (2, 3), (3, 2), (3, 0), (2, 0)}) to the appropriate equations of Lemma 3.1,
it is easy to see that

θ02 = −θ21, φ02 − φ21 = ±π ⇒ t02 = −t21,
θ03 = −θ31, φ03 − φ31 = ±π ⇒ t03 = −t31,
θ23 = −θ32, φ23 − φ32 = ±π ⇒ t23 = −t32.

(3.9)

A3

A2

2

T2

A1

A1

A33

2

A2
3

T3

T1
3

T2
3

T1
2

T3
2w1

w3

w3

w2

w2 w1

Figure 3. Translation triangle with vertices A1 = (1, 0, 0, 0),
A2 = (1,−1, 1, 1), A3 = (1, 1/2, 5, 1/2) and its translated copies
A2

1A
2
3E0 and A3

1A
3
2E0.

The endpoints T ji of the position vectors tji =
−−−→
E0T

j
i lie on the unit sphere centred

at the origin. The measure of angle ωi (i ∈ {1, 2, 3}) of the vectors tji and tsr is equal

to the spherical distance of the corresponding points T ji and T sr on the unit sphere
(see Fig. 3). Moreover, a direct consequence of equations (3.9) that each point pair
(T2, T 2

1 ), (T3,T 3
1 ), (T 3

2 ,T 2
3 ) contains antipodal points related to the unit sphere with

centre E0.
Due to the antipodality ω1 = T2E0T3∠ = T 2

1E0T
3
1∠, therefore their correspond-

ing spherical distances are equal, as well (see Fig. 3). Now, the sum of the interior

angles
∑3
i=1(ωi) can be considered as three consecutive spherical arcs (T 2

3 T
2
1 ), (T 2

1 T
3
1 ),

T 3
1 T

3
2 ). Since the triangle inequality holds on the sphere, the sum of these arc lengths
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=A1E0

A

A3

2
z

y

Figure 4. Translation triangle with vertices A1 = (1, 0, 0, 0),
A2 = (1, 0, 1, 1), A3 = (1, 0, 2, 1/2). The translation curve segments
tA1A2 , tA2A3 , tA3A1 lie on the coordinate plane [y, z] and the interior

angle sum of this translation triangle is
∑3
i=1(ωi) = π.

is greater or equal to the half of the circumference of the main circle on the unit
sphere i.e. π. �

The following lemma is an immediate consequence of the above proof:

Lemma 3.3. The angle sum
∑3
i=1(ωi) of a Sol translation triangle A1A2A3 is π if

and only if the points T ji ((i, j) ∈ {(1, 3), (1, 2), (2, 3), (3, 2), (3, 0), (2, 0)}) lie in an
Euclidean plane (Fig. 4).

Lemma 3.4. If the vertices of a translation triangle A1A2A3 lie in a coordinate plane
of the model of Sol geometry (see Section 2) or in a plane parallel to a coordinate

plane then the interior angle sum
∑3
i=1(ωi) = π.

Proof. We get from equation (2.12) of the translation curves that a point P lies in a
coordinate plane then the corresponding translation curve tE0P also lies in the same
coordinate plane.

Moreover, a direct consequence of formulas (2.3) and (2.6) than if a translation
triangle A1A2A3 lies in a coordinate plane α then its translated image by an orthog-
onal translation to α is in a to α parallel plane and each to α parallel plane can be
derived as a tranlated copy of α. �

We can determine the interior angle sum of arbitrary translation triangle. In
the following table we summarize some numerical data of interior angles of given
transaltion triangles:
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Table 1: A2(1,−1, 1, 1), A3(1, 1/2, 5, z3)

z3 ω1 ω2 ω3

∑3
i=1(ωi)

−10 1.378505 1.52957 0.39949 3.30757
−2 1.37467 1.45044 0.41389 3.23900
−1 1.36841 1.31743 0.48434 3.17018

1/100 1.35376 1.04468 0.74818 3.14661
1/10 1.35196 1.01850 0.77962 3.15008
1/2 1.34369 0.91985 0.90711 3.17066
3/4 1.33931 0.87828 0.96332 3.18092
3/2 1.34516 0.83131 0.98842 3.16489
2 1.37178 0.83021 0.94235 3.14433
5 1.46886 0.84547 0.86833 3.18265
10 1.47522 0.84678 0.86665 3.18866

Table 2: A2(1,−1, 1, 1), A3(1, 1/2, y3, 1/2)

y3 ω1 ω2 ω3

∑3
i=1(ωi)

−10 1.90559 0.77539 0.48862 3.16960
−2 1.99438 0.39617 0.86884 3.25939
−1 2.02152 0.38864 0.84198 3.25214

1/100 1.89224 0.42533 0.83598 3.15355
1/10 1.86415 0.43075 0.85319 3.14808
1/2 1.73149 0.45855 0.95244 3.14248
3/4 1.65752 0.47867 1.01153 3.14772
3/2 1.51011 0.54873 1.10619 3.16502
2 1.45565 0.60090 1.11440 3.17095
5 1.34369 0.91985 0.90711 3.17066
10 1.30564 1.27407 0.58095 3.16067

By the above investigation we can say that the Sol geometry (and the Thurston
geometries) keep several interesting open questions (see e.g. [14], [16]). Detailed studies
are the objective of ongoing research. Applications of the above projective method
seem to be interesting in (non-Euclidean) crystallography as well.
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Abstract. In the present paper in L
(m)
2 (−1, 1) space the optimal quadrature for-

mulas with derivatives are constructed for approximate solution of a singular
integral equation of the first kind with Cauchy kernel. Approximate solution of
the singular integral equation is obtained applying the optimal quadrature for-
mulas. Explicit forms of coefficients for the of optimal quadrature formulas are
obtained. Some numerical results are presented.
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1. Introduction. Statement of the problem

The study of various problems of mathematical physics as well as specific prob-
lems from aerodynamics, electrodynamics, elasticity theory and other areas, natu-
rally reduces to singular integral equations [5, 16]. In this case, the plane problems
[5, 12, 16, 19] are reduced to solving the characteristic singular integral equation

1

π

1∫
−1

ϕ(x)

x− t
dx = f(t), t ∈ (−1, 1), (1.1)

where the singular integral is understood, here in after, in the sense of the Cauchy
principal value. Equation (1.1) has four complete analytical solutions corresponding

Received 16 August 2021; Accepted 27 April 2022.
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to the values of the parameter k (see [16],pp.49-50). In particular, for k = −1 the only
solution of (1.1) is given by the formula

ϕ(t) = −
√

1− t2
π

1∫
−1

f(x)√
1− x2(x− t)

dx. (1.2)

Thus, the solution of singular integral equation of the form (1.1) can be reduced to
the calculation of the weighted singular integral (1.2). Therefore, the development of
effective approximate methods for calculating singular integrals are of great applied
importance and one of the actual problems of computational mathematics.

Quadrature and cubature formulas are one of the methods for approximation of
integrals. Many methods have been developed to construct the quadrature formulas for
the singular integral (1.2). See for example, [1, 5, 6, 7, 8, 9, 12, 14, 15, 16, 19, 21, 25, 26]
and literature cited therein.

Particularly, in the work [11] by Eshkuvatov, Nik Long and Abdulkawi, new
quadrature formulas for evaluating the singular integral of Cauchy type with un-
bounded weight function on the edges is constructed. The construction of the quadra-
ture formulas is based on the modification of the discrete vortices method and linear
spline interpolation over the finite interval [−1, 1]. It is proved that the constructed
quadrature formulas converge for any singular point x not coinciding with the end
points of the interval [−1, 1]. Numerical results are given to validate the accuracy
of the quadrature formulas. The error bounds are found to be of order O(hα| lnh|)
and O(h| lnh|) in the classes of functions Hα([−1, 1]), 0 < α < 1 and C1([−1, 1]),
respectively.

In [11] the authors were used modification of the discrete vortices method and
linear spline methods for approximation of the singular integrals. Constructed quad-
rature formulas are exact only for linear functions and these formulas are not an
optimal approximation technique.

In the present paper, using the functional approach, we construct optimal
quadrature formulas for approximate calculation of the integral (1.2) in the space

L
(m)
2 (−1, 1). We recall that L

(m)
2 (−1, 1) is a Hilbert space of classes of all real func-

tions ϕ defined in the interval [−1, 1] that differ by a polynomial of degree (m − 1)
and square integrable with derivative of order m, and equipped with the norm

‖ϕ‖
L

(m)
2

=

 1∫
−1

(
ϕ(m) (x)

)2
dx


1
2

.

It should be noted that, in particular, when m = 1 from our numerical results
we get the results of the work [11] close to each other.

We consider the following quadrature formula with derivatives

1∫
−1

ϕ(x)√
1− x2(x− t)

dx ∼=
n∑
α=0

N∑
β=0

Cα[β]ϕ(α)(xβ), −1 < t < 1, (1.3)

in the Sobolev space L
(m)
2 (−1, 1).



Optimal quadrature formulas 635

Here Cα[β] are the coefficients, xβ (∈ [−1, 1]) are the nodes of the quadrature
formula, N is a natural number and n = 0, 1, 2, ..., (m− 1).

The following difference is called the error of the quadrature formula (1.3):

(`, ϕ) =

1∫
−1

ϕ(x)√
1− x2(x− t)

dx−
n∑
α=0

N∑
β=0

Cα[β]ϕ(α)(xβ) =

∞∫
−∞

`(x)ϕ(x)dx,

where ` is the error function of the formula (1.3) and has the form

`(x) =
ε[−1,1](x)

√
1− x2(x− t)

−
n∑
α=0

N∑
β=0

(−1)αCα[β]δ(α)(x− xβ), (1.4)

here ε[−1,1](x) is the characteristic function of the interval [−1, 1], δ is the Dirac
delta-function.

Since the functional ` of the form (1.4) is defined on the space L
(m)
2 (−1, 1), it

belongs to the conjugate space L
(m)∗
2 (−1, 1), and satisfies the following equations (see

[27])

(`, xα) = 0, α = 0, 1, 2, ..., (m− 1).

The construction problem of optimal quadrature formulas of the form (1.3) in the

sense of Sard [20] with the error functional (1.4) in the space L
(m)
2 (−1, 1) for fixed xβ

is to find the quantity

‖˚̀|L(m)∗
2 ‖2 = inf

Cα[β]
(`, ψ`),

where

ψ`(x) = (−1)m`(x) ∗Gm(x) + Pm−1(x),

here Gm(x) = x2m−1sgn(x)
2·(2m−1)! , Pm−1(x) is a polynomial of degree (m − 1), ψ` is the

extremal function of the quadrature formula (1.3) in the space L
(m)
2 (−1, 1) (see for

instance, [4, 23, 24, 26]), sgn(x) is the signum function.

In the Hilbert spaces one can construct optimal quadrature formulas, optimal
interpolation formulas, and splines using the Sobolev method which is based on using
a discrete analogue of differential operator [27, 28]. Applying this method in the
different Hilbert spaces optimal formulas and splines were constructed.
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In the works [4, 2] for the norm of the error functional the following form was obtained

‖`|L(m)∗
2 ‖2 = (−1)m

[ n∑
k=0

n∑
α=0

N∑
γ=0

N∑
β=0

(−1)k

×Ck[γ]Cα[β]
(hβ − hγ)2m−α−k−1sgn(hβ − hγ)

2(2m− α− k − 1)!

−2

n∑
α=0

N∑
β=0

(−1)αCα[β]

1∫
−1

(x− hβ)2m−α−1sgn(x− hβ)

2(2m− α− 1)!
√

1− x2(x− t)
dx

+

1∫
−1

1∫
−1

(x− y)2m−1sgn(x− y)

2(2m− 1)!
√

1− x2
√

1− y2(x− t)(y − t)
dxdy

]
. (1.5)

The rest of the paper is organized as follows. In Section 2 we give the algorithm for
construction of optimal quadrature formulas of the form (1.3). Explicit formulas for
coefficients of the optimal quadrature formulas of the form (1.3) are found for any
natural m. In section 3 some numerical examples are provided to illustrate the validity
of the algorithm.

2. The main results

Further, we suppose that xβ = hβ − 1, h = 2
N and N + 1 ≥ m.

The idea of construction of optimal quadrature formulas of the form (1.3) is as
follows: First, for m = 1, we minimize the norm (1.5) by coefficients C0[β] in the space

L
(1)
2 (0, 1) and get the following system for finding the optimal coefficients C̊0[β]:

N∑
γ=0

C̊0[γ]
(hβ − hγ)sgn(hβ − hγ)

2
+ λ0 =

1∫
−1

(x− hβ + 1) sgn(x− hβ + 1)

2
√

1− x2(x− t)
dx,

β = 0, 1, ..., N,

N∑
γ=0

C̊0[γ] =

1∫
−1

1√
1− x2(x− t)

dx.

We note that the obtained system was solved in the work [15], i.e. there the

optimal coefficients C̊0[β] were found in the space L
(1)
2 (−1, 1).

Further, in the case m = 2, putting the optimal coefficients C̊0[β] to the ex-

pression (1.5) we minimize this norm by coefficients C1[β] in the space L
(2)
2 (−1, 1)

and find the optimal coefficients C̊1[β]. Continuing by this manner for the cases m =

3, 4, ..., k− 1, i.e. putting the obtained optimal coefficients C̊0[β], C̊1[β], ..., C̊k−2[β] to
the expression of the norm (1.5) and minimizing this norm by coefficients Ck−1[β] in
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the space L
(k)
2 (−1, 1), we get the following system for finding the optimal coefficients

C̊k−1[β]:

N∑
γ=0

C̊k−1[γ]
(hβ − hγ)sgn(hβ − hγ)

2
+ (−1)k−1(k − 1)!λk−1 = Fk−1[β], (2.1)

β = 0, 1, ..., N,
N∑
γ=0

C̊k−1[γ] =
gk−1

(k − 1)!
−
k−2∑
i=0

N∑
γ=0

C̊i[γ]
(hγ − 1)k−i−1

(k − i− 1)!
. (2.2)

Here

Fk−1[β] = fk−1[β]−
k−2∑
l=0

N∑
γ=0

(−1)l+k−1C̊l[γ]
(hβ − hγ)k−lsgn(hβ − hγ)

2(k − l)!
, (2.3)

where

fk−1[β] =

1∫
−1

(x− hβ + 1)ksgn(x− hβ + 1)

2 · k!
√

1− x2(x− t)
dx

= − 1

k!

[
k∑
i=1

(
k
i

)
(t− hβ + 1)

k−i
(A1 +A2)− (t− hβ + 1)k√

1− t2
A3

]
,

A1 =

[ i−1
2 ]∑
j=1

(
i− 1
2j

)
(−t)i−2j−1

(
−
√

1− (hβ − 1)2

2j

[
(hβ − 1)2j−1

+

j−1∑
l=1

(2j − 1)(2j − 3)...(2j − 2l + 1)

2l(j − 1)(j − 2)...(j − l)
(hβ − 1)2j−2l−1

]
+

(2j − 1)!!

2jj!
arcsin(hβ − 1)

)
,

A2 =

[ i−2
2 ]∑
j=0

(
i− 1

2j + 1

) j∑
l=0

(−t)i−2j−2(−1)l+1

(2l + 1)

(
j
l

)(√
1− (hβ − 1)2

)2l+1

+(−t)i−1 arcsin(hβ − 1),

A3 = ln

∣∣∣∣∣1− t(hβ − 1) +
√

(1− t2)(1− (hβ − 1)2)

hβ − 1− t

∣∣∣∣∣ ,
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gk−1 =

1∫
−1

xk−1√
1− x2(x− t)

dx (2.4)

= π

k−1∑
i=1

(
k − 1
i

)
tk−1−i

[ i−1
2 ]∑
j=1

(
i− 1
2j

)
(−t)i−1−j (2j − 1)!!

2jj!
+ (−t)i−1

 .

Now we solve the system (2.1)-(2.2). The solution of the system (2.1)-(2.2) we find
by the following way.
We denote

u(hβ) =

N∑
γ=0

C̊k−1[β]
(hβ − hγ)sgn(hβ − hγ)

2
+ (−1)k−1(k − 1)!λk−1. (2.5)

Assume β ≤ 0, then from (2.5) we have

u(hβ) = −hβ
2

(
gk−1

(k − 1)!
− νk−2

)
− µk−1 + (−1)k−1(k − 1)!λk−1,

where

νk−2 =

k−2∑
i=0

N∑
γ=0

Ci[γ]
(hγ)k−i−1

(k − i− 1)!
, µk−1 = −1

2

N∑
γ=0

Ck−1[γ](hγ).

Suppose β ≥ N , then taking into account (2.5), we get

u(hβ) =
hβ

2

(
gk−1

(k − 1)!
− νk−2

)
+ µk−1 + (−1)k−1(k − 1)!λk−1.

We introduce the following denotations

a−k−1 = µk−1 − (k − 1)!(−1)k−1λk−1 and a+k−1 = µk−1 + (k − 1)!(−1)k−1λk−1.

Then we obtain that

u(hβ) =


−hβ2

(
gk−1

(k−1)! − νk−2
)
− a−k−1, β ≤ 0,

Fk−1[β], 0 ≤ β ≤ N,
hβ
2

(
gk−1

(k−1)! − νk−2
)

+ a+k−1, β ≥ N,
(2.6)

where a−k−1 and a+k−1 are unknowns.

Hence, taking into account the values of the function u(hβ) at the points β = 0 and
β = N , we get

a−k−1 = Fk−1[0], a+k−1 = Fk−1[N ]− 1

2

(
gk−1

(k − 1)!
− νk−2

)
.

Now, using the following known equality from [24]

h

∞∑
γ=−∞

D1[γ]
(hβ − hγ)sgn(hβ − hγ)

2
= δ[β], (2.7)
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where in [22]

D1[β] =

 0, |β| ≥ 2,
h−2, |β| = 1,
−2h−2, β = 0,

(2.8)

δ[β] =

{
1, β = 0,
0, β 6= 0,

taking account of (2.6) and (2.7), for the optimal coefficients

C̊k−1[β], when 0 ≤ β ≤ N , we get the following

C̊k−1[β] = h

∞∑
γ=−∞

D1[β − γ]u(hγ) = h

[
N∑
γ=0

D1[β − γ]Fk−1[γ]

+

∞∑
γ=1

D1[β + γ]

(
hγ

2

(
gk−1

(k − 1)!
− νk−2

)
− a−k−1

)

+

∞∑
γ=1

D1[N + γ − β]

(
1 + hγ

2

(
gk−1

(k − 1)!
− νk−2

)
+ a+k−1

)]
.

Hence, by virtue of (2.8), we have the following.

Theorem 2.1. The coefficients for the optimal quadrature formulas of the form (1.3)

in the Sobolev space L
(m)
2 (−1, 1) are defined as follows

C̊k−1[0] = h−1
[
Fk−1[1]− Fk−1[0] +

h

2

(
gk−1

(k − 1)!
− νk−2

)]
, (2.9)

C̊k−1[β] = h−1
[
Fk−1[β − 1]− 2Fk−1[β] + Fk−1[β + 1]

]
, (2.10)

for β = 1, ..., N − 1

C̊k−1[N ] = h−1
[
Fk−1[N − 1]− Fk−1[N ] +

h

2

(
gk−1

(k − 1)!
− νk−2

)]
, (2.11)

k = 0, 1, 2, ...,m− 1, where for t 6= hγ − 1, γ = 0, 1, 2, ..., N ,

Fk−1[β] = fk−1[β]−
k−2∑
l=0

N∑
γ=0

(−1)l+k−1C̊l[γ]
(hβ − hγ)k−lsgn(hβ − hγ)

2(k − l)!
,

fk−1[β] = − 1

k!

[
k∑
i=1

(
k
i

)
(t− hβ + 1)

k−i
(A1 +A2)− (t− hβ + 1)k√

1− t2
A3

]
,

and for t = hγ − 1, γ = 0, 1, 2, ..., N ,

Fk−1[β] = fk−1[β]−
k−2∑
l=0

N∑
γ=0

(−1)l+k−1C̊l[γ]
(hβ − hγ)k−lsgn(hβ − hγ)

2(k − l)!
,

fk−1[β] = − 1

k!

[
k∑
i=1

(
k
i

)
(t− hβ + 1)

k−i
(A1 +A2)

]
,
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here

A1 =

[ i−1
2 ]∑
j=1

(
i− 1
2j

)
(−t)i−2j−1

(
−
√

1− (hβ − 1)2

2j

[
(hβ − 1)2j−1

+

j−1∑
l=1

(2j − 1)(2j − 3)...(2j − 2l + 1)

2l(j − 1)(j − 2)...(j − l)
(hβ − 1)2j−2l−1

]
+

(2j − 1)!!

2jj!
arcsin(hβ − 1)

)
,

A2 =

[ i−2
2 ]∑
j=0

(
i− 1

2j + 1

) j∑
l=0

(−t)i−2j−2(−1)l+1

(2l + 1)

(
j
l

)(√
1− (hβ − 1)2

)2l+1

+(−t)i−1 arcsin(hβ − 1),

A3 = ln

∣∣∣∣∣1− t(hβ − 1) +
√

(1− t2)(1− (hβ − 1)2)

hβ − 1− t

∣∣∣∣∣ ,

gk−1 = π

k−1∑
i=1

(
k − 1
i

)
tk−1−i

[ i−1
2 ]∑
j=1

(
i− 1
2j

)
(−t)i−1−j (2j − 1)!!

2jj!
+ (−t)i−1

 .

From Theorem 2.1 in particular, when m = 1, m = 2 and m = 3. We have the
following.

For the case m = 1.

Corollary 2.2. For t 6= hγ − 1, coefficients of the optimal quadrature formula (1.3)

with equally spaced nodes in the space L
(1)
2 (−1, 1) have the following form

C̊0[0] = h−1
(
F0[1]− π

2

)
,

C̊0[β] = h−1 (F0[β − 1]− 2F0[β] + F0[β + 1]) , β = 1, 2, ..., N − 1,

C̊0[N ] = h−1
(
F0[N − 1] +

π

2

)
,

where

F0[β] = − arcsin(hβ − 1)

+
t− (hβ − 1)√

1− t2
ln

∣∣∣∣∣1− t(hβ − 1) +
√

(1− t2)(1− (hβ − 1)2)

hβ − 1− t

∣∣∣∣∣ .
Corollary 2.3. For t = hγ − 1, coefficients of the optimal quadrature formula (1.3)

with equally spaced nodes in the space L
(1)
2 (−1, 1) have the following form
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if γ = 1, i.e. for t = h− 1:

C̊0[0] = h−1
(
F 0[1]− π

2

)
,

C̊0[1] = h−1
(
F0[0]− 2F 0[1] + F0[2]

)
,

C̊0[2] = h−1
(
F 0[1]− 2F0[2] + F0[2]

)
,

C̊0[β] = h−1 (F0[β − 1]− 2F0[β] + F0[β + 1]) , β = 3, 4, ..., N − 1,

C̊[N ] = h−1
(
F0[N − 1] +

π

2

)
,

if γ = 2, 3, 4, ..., N − 2:

C̊0[0] = h−1
(
F0[1]− π

2

)
,

C̊0[β] = h−1 (F0[β − 1]− 2F0[β] + F0[β + 1]) ,

β = 1, 2, ..., γ − 2 and β = γ + 2, γ + 3, ..., N − 1,

C̊0[γ − 1] = h−1
(
F0[γ − 2]− 2F0[γ − 1] + F 0[γ]

)
,

C̊0[γ] = h−1
(
F0[γ − 1]− 2F 0[γ] + F0[γ + 1]

)
,

C̊0[γ + 1] = h−1
(
F 0[γ]− 2F0[γ + 1] + F0[γ + 2]

)
,

C̊0[N ] = h−1
(
F0[N − 1] +

π

2

)
,

if γ = N − 1, i.e. for t = 1− h:

C̊0[0] = h−1
(
F0[1]− π

2

)
,

C̊0[β] = h−1 (F0[β − 1]− 2F0[β] + F0[β + 1]) , β = 1, 2, ..., N − 3,

C̊0[N − 2] = h−1
(
F0[N − 3]− 2F0[N − 2] + F 0[N − 1]

)
,

C̊0[N − 1] = h−1
(
F0[N − 2]− 2F 0[N − 1] + F0[N ]

)
,

C̊0[N ] = h−1
(
F 0[N − 1] +

π

2

)
,

where F 0[β] = − arcsin(hβ − 1), F0[β] is given in Corollary 2.2

The case m = 2. In this case we have the following result of the work [2] as
immediate corollary of Theorem 2.1.

Corollary 2.4. For t 6= hγ − 1, coefficients of the optimal quadrature formula (1.3)

with equally spaced nodes in the space L
(2)
2 (−1, 1) take the form

C̊1[0] = h−1

(
F1[1]− F1[0] +

h

2

(
π −

N∑
γ=0

C̊0[γ](hγ)

))
,

C̊1[β] = h−1
(
F1[β − 1]− 2F1[β] + F1[β + 1]

)
, β = 1, N − 1

C̊1[N ] = h−1

(
F1[N − 1]− F1[N ] +

h

2

(
π −

N∑
γ=0

C̊0[γ](hγ)

))
,
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where

F1[β] = f1[β] +
h2

4

N∑
γ=0

C̊0[γ](hβ − hγ)2sgn(hβ − hγ),

f1[β] = −1

2

[
−
√

1− (hβ − 1)2 +

(
t− 2hβ + 2

)
arcsin(hβ − 1)

− (t− (hβ − 1))2√
1− t2

ln

∣∣∣∣∣1− t(hβ − 1) +
√

(1− t2)(1− (hβ − 1)2)

hβ − 1− t

∣∣∣∣∣
]

and C̊0[β], β = 0, 1, 2, ..., N are defined in Corollary 2.2.

Corollary 2.5. For t = hγ − 1, coefficients of the optimal quadrature formula (1.3)

with equally spaced nodes in the space L
(2)
2 (−1, 1) take the form

if γ = 1, i.e. for t = h− 1:

C̊1[0] = h−1

(
F 1[1]− F1[0] +

h

2

(
π −

N∑
γ=0

C̊0[γ](hγ)

))
,

C̊1[1] = h−1
(
F1[0]− 2F 1[1] + F1[2]

)
,

C̊1[2] = h−1
(
F 1[1]− 2F1[2] + F1[2]

)
,

C̊1[β] = h−1 (F1[β − 1]− 2F1[β] + F1[β + 1]) , β = 3, 4, ..., N − 1,

C̊1[N ] = h−1

(
F1[N − 1]− F1[N ] +

h

2

(
π −

N∑
γ=0

C̊0[γ](hγ)

))
,

if γ = 2, 3, 4, ..., N − 2:

C̊1[0] = h−1

(
F1[1]− F1[0] +

h

2

(
π −

N∑
γ=0

C̊0[γ](hγ)

))
,

C̊1[β] = h−1 (F1[β − 1]− 2F1[β] + F1[β + 1]) ,

β = 1, 2, ..., γ − 2 and β = γ + 2, γ + 3, ..., N − 1,

C̊1[γ − 1] = h−1
(
F1[γ − 2]− 2F1[γ − 1] + F 1[γ]

)
,

C̊1[γ] = h−1
(
F1[γ − 1]− 2F 1[γ] + F1[γ + 1]

)
,

C̊1[γ + 1] = h−1
(
F 1[γ]− 2F1[γ + 1] + F1[γ + 2]

)
,

C̊1[N ] = h−1

(
F1[N − 1]− F1[N ] +

h

2

(
π −

N∑
γ=0

C̊0[γ](hγ)

))
,
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if γ = N − 1, i.e. for t = 1− h:

C̊1[0] = h−1

(
F1[1]− F1[0] +

h

2

(
π −

N∑
γ=0

C̊0[γ](hγ)

))
,

C̊1[β] = h−1 (F1[β − 1]− 2F1[β] + F1[β + 1]) , β = 1, 2, ..., N − 3,

C̊1[N − 2] = h−1
(
F1[N − 3]− 2F1[N − 2] + F 1[N − 1]

)
,

C̊1[N − 1] = h−1
(
F1[N − 2]− 2F 1[N − 1] + F1[N ]

)
,

C̊1[N ] = h−1

(
F 1[N − 1]− F1[N ] +

h

2

(
π −

N∑
γ=0

C̊0[γ](hγ)

))
,

where

F 1[β] = −1

2

[
−
√

1− (hβ − 1)2 +

(
t− 2hβ + 2

)
arcsin(hβ − 1)

]
+
h2

4

N∑
γ=0

C̊0(hβ − hγ)2sgn(hβ − hγ).

C̊0[β], F1[β], β = 0, 1, 2, ..., N are given in Corollaries 2.3 and 2.4.

In the case m = 3 we have the following results of the work [3] as immediate
corollary of Theorem 2.1.

Corollary 2.6. For t 6= hγ − 1, coefficients of the optimal quadrature formula (1.3)

with equally spaced nodes in the space L
(3)
2 (−1, 1) have the following form

C̊2[0] = h−1 (F2[1]− F2[0]

+
h

4

(
πt−

N∑
γ=0

(
C̊0[γ](hγ − 1)2 + 2C̊1[γ](hγ − 1)

)))
,

C̊2[β] = h−1
(
F2[β − 1]− 2F2[β] + F2[β + 1]

)
, β = 1, N − 1,

C̊2[N ] = h−1 (F2[N − 1]− F2[N ]

+
h

4

(
πt−

N∑
γ=0

(
C̊0[γ](hγ − 1)2 + 2C̊1[γ](hγ − 1)

)))
,

where

F2[β] = f2[β]− h3

12

N∑
γ=0

C̊0[γ](hβ − hγ)3sgn(hβ − hγ)

+
h2

4

N∑
γ=0

C̊1[γ](hβ − hγ)2sgn(hβ − hγ),
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f2[β] =
1

12

((
2t− 5(hβ − 1)

)√
1− (hβ − 1)2

−
(

1 + 2t2 − 6t(hβ − 1) + 6(hβ − 1)2
)

arcsin(hβ − 1)

−2(t− (hβ − 1))3√
1− t2

ln

∣∣∣∣∣1− t(hβ − 1) +
√

(1− t2)(1− (hβ − 1)2)

hβ − 1− t

∣∣∣∣∣
)
.

and C̊0[β], C̊1[β], β = 0, N are given in Corollaries 2.2 and 2.4.

Corollary 2.7. For t = hγ − 1, coefficients of the optimal quadrature formula (1.3)

with equally spaced nodes in the space L
(3)
2 (−1, 1) have the following form

when γ = 1:

C̊2[0] = h−1
(
F 2[1]− F2[0]

+
h

4

(
πt−

N∑
γ=0

(
C̊0[γ](hγ − 1)2 + 2C̊1[γ](hγ − 1)

)))
,

C̊2[1] = h−1
(
F2[0]− 2F 2[1] + F2[2]

)
,

C̊2[2] = h−1
(
F 2[1]− 2F2[2] + F2[2]

)
,

C̊2[β] = h−1 (F2[β − 1]− 2F2[β] + F2[β + 1]) , β = 3, 4, ..., N − 1,

C̊2[N ] = h−1 (F2[N − 1]− F2[N ]

+
h

4

(
πt−

N∑
γ=0

(
C̊0[γ](hγ − 1)2 + 2C̊1[γ](hγ − 1)

)))
,

when γ = 2, 3, 4, ..., N − 2:

C̊2[0] = h−1 (F2[1]− F2[0]

+
h

4

(
πt−

N∑
γ=0

(
C̊0[γ](hγ − 1)2 + 2C̊1[γ](hγ − 1)

)))
,

C̊2[β] = h−1 (F2[β − 1]− 2F2[β] + F2[β + 1]) , β = 1, 2, ..., γ − 2,

C̊2[γ − 1] = h−1
(
F2[γ − 2]− 2F2[γ − 1] + F 2[γ]

)
,

C̊2[γ] = h−1
(
F2[γ − 1]− 2F 2[γ] + F2[γ + 1]

)
,

C̊2[γ + 1] = h−1
(
F 2[γ]− 2F2[γ + 1] + F2[γ + 2]

)
,

C̊2[β] = h−1 (F2[β − 1]− 2F2[β] + F2[β + 1]) , β = γ + 2, γ + 3, ..., N − 1,

C̊2[N ] = h−1 (F2[N − 1]− F2[N ]

+
h

4

(
πt−

N∑
γ=0

(
C̊0[γ](hγ − 1)2 + 2C̊1[γ](hγ − 1)

)))
,
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when γ = N − 1:

C̊2[0] = h−1 (F2[1]− F2[0]

+
h

4

(
πt−

N∑
γ=0

(
C̊0[γ](hγ − 1)2 + 2C̊1[γ](hγ − 1)

)))
,

C̊2[β] = h−1 (F2[β − 1]− 2F2[β] + F2[β + 1]) , β = 1, 2, ..., N − 3,

C̊2[N − 2] = h−1
(
F2[N − 3]− 2F2[N − 2] + F 2[N − 1]

)
,

C̊2[N − 1] = h−1
(
F2[N − 2]− 2F 2[N − 1] + F2[N ]

)
,

C̊2[N ] = h−1
(
F 2[N − 1]− F2[N ]

+
h

4

(
πt−

N∑
γ=0

(
C̊0[γ](hγ − 1)2 + 2C̊1[γ](hγ − 1)

)))
,

where

F 2[β] = f2[β]− h3

12

N∑
γ=0

C̊0[γ](hβ − hγ)3sgn(hβ − hγ)

+
h2

4

N∑
γ=0

C̊1[γ](hβ − hγ)2sgn(hβ − hγ),

f2[β] =
1

12

((
2t− 5(hβ − 1)

)√
1− (hβ − 1)2

−
(

1 + 2t2 − 6t(hβ − 1) + 6(hβ − 1)2
)

arcsin(hβ − 1)

)
.

C̊0[β], C̊1[β], F2[β], β = 0, 1, 2, ..., N are given in Corollaries 2.3, 2.5 and 2.6

3. Numerical results

In this section we give some numerical results in order to show numerically con-
vergence of the optimal quadrature formulas (1.3), with coefficients given in Theorem
2.1, in dependence on the values of N and m. Furthermore, here we compare numer-
ical results of the quadrature formulas (1.3) with numerical results of the quadrature

formula constructed in [11] in the space L
(1)
2 (−1, 1).

Let us consider (1.2) and f(t) = t5 + t3 + 20t. The corresponding exact solution
of (1.1) is

ϕ(x) =
√

1− x2
(
x4 + 1.5x2 +

167

8

)
.

Tables 1-8 compare the exact solutions of singular integral equation in the form
(1.1), the error rates of approximate solutions of quadrature formulas (16), (20), (21),
(22) of the work [11], with the proposed (1.3), in which the approximate solutions of
optimal quadrature formulas when m = 1.
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These tables show that the proposed method, when m = 1, outperforms the re-
sults of [11], four quadrature formulas proposed in two way approaches. Our proposed
theorem is applicable for arbitrary m and N . This means that the proposed optimal
quadrature formulas are exact for any polynomial of degree (m− 1). The error rates
shown in Table 9 show that the proposed method, when N = 20, m = 1, m = 2, and
m = 3 in singular integral equations, confirms the previous statement. The combina-
tion of the results illustrated in Table 9 and constructed optimal quadrature formulas
by increasing N and m, allows the approximate calculations of the Fredholm singular
integral equation of the first kind with high accuracy.

4. Conclusion

In the present paper, in the Sobolev space L
(m)
2 (−1, 1) we constructed the opti-

mal quadrature formula for approximate solution of singular integral equations with
Cauchy kernel. Here we found analytical forms for coefficients of the constructed op-
timal quadrature formulas. We applied these coefficients to approximate solution of
the Fredholm singular integral equation of the first kind. We showed that singular
integral equations can be solved with higher accuracy using the optimal quadrature
formulas which are constructed based on Sobolev method.

Acknowledgements. We are very thankful to professor Abdullo R. Hayotov for discus-
sion the results and to the reviewer for remarks and suggestions, which have improved
the quality of the paper.

Table 1. Error terms for OQF (1.3).

N=20

t 6= hγ − 1 Exact Error QF(16)in [11] OQF(1.3), m=1 Error

-0.887 10.4702332992 0.0417283096 10.4705320346 0.0002987354
-0.695 15.6980321754 0.0897051922 15.7084204293 0.0103882539
-0.495 18.5096575257 0.0818203672 18.5217620154 0.0121044897
-0.293 20.0890157504 0.0788584125 20.1010005193 0.0119847689
-0.095 20.7941454186 0.0915690660 20.8061508094 0.0120053908
0.095 20.7941454186 0.0915691610 20.8061508094 0.0120053908
0.293 20.0890157504 0.0788588154 20.1010005193 0.0119847689
0.495 18.5096575257 0.0818187549 18.5217620154 0.0121044897
0.695 15.6980321754 0.0897054275 15.7084204293 0.0103882539
0.887 10.4702332992 0.0417277253 10.4705320346 0.0002987354
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Table 2. Error terms for OQF (1.3).

N=200

t 6= hγ − 1 Exact Error QF(16)in [11] OQF(1.3), m=1 Error

-0.987 3.7424126959 0.0096756670 3.7423362651 0.0000764308
-0.935 8.1393802207 0.0045964403 8.1394671385 0.0000869179
-0.887 10.4702332992 0.0091676216 10.4702698056 0.0000365064
-0.695 15.6980321754 0.0026300570 15.6981798537 0.0001476783
-0.495 18.5096575257 0.0054628196 18.5098039531 0.0001464275
-0.293 20.0890157504 0.0061221725 20.0891616458 0.0001458954
-0.095 20.7941454186 0.0069000509 20.7942755288 0.0001301102
0.095 20.7941454186 0.0069001771 20.7942755288 0.0001301102
0.293 20.0890157504 0.0061240901 20.0891616457 0.0001458954
0.495 18.5096575257 0.0054671436 18.5098039531 0.0001464275
0.695 15.6980321754 0.0026330865 15.6981798537 0.0001476783
0.887 10.4702332992 0.0091552088 10.4702698056 0.0000365064
0.935 8.1393802206 0.0046156414 8.1394671385 0.0000869179
0.987 3.7424126959 0.0096747715 3.7423362651 0.0000764308

Table 3. Error terms for OQF (1.3).

N=20

t = hγ − 1 Exact Error QF(20)in [11] OQF(1.3), m=1 Error

-0.9 9.9147951260 0.0434208684 9.9246302672 0.0098351412
-0.7 15.6040925306 0.0454488972 15.6182823480 0.0141898173
-0.5 18.4571664181 0.0694506386 18.4712004187 0.0140340005
-0.3 20.0499895293 0.0788768819 20.0629747128 0.0129851834
-0.1 20.7853870599 0.0814265589 20.7976199210 0.0122328611
0.1 20.7853870599 0.0814266037 20.7976199210 0.0122328611
0.3 20.0499895293 0.0788768802 20.0629747128 0.0129851834
0.5 18.4571664182 0.0694507351 18.4712004187 0.0140340005
0.7 15.6040925307 0.0454491744 15.6182823480 0.0141898173
0.9 9.9147951260 0.0434206055 9.9246302673 0.0098351412
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Table 4. Error terms for OQF (1.3).

N=20

t = hγ − 1 Exact Error QF(20)in [11] OQF(1.3), m=1 Error

-0.98 4.6242972766 0.0058168646 4.6243374562 0.0000401796
-0.96 6.4698890368 0.0053701073 6.4699564868 0.0000674500
-0.94 7.8405806772 0.0047221016 7.8406659308 0.0000852536
-0.90 9.9147951260 0.0032612171 9.9149040083 0.0001088823
-0.70 15.6040925306 0.0025401403 15.6042411554 0.0001486248
-0.50 18.4571664182 0.0054238405 18.4573137570 0.0001473389
-0.30 20.0499895293 0.0065655622 20.0501270539 0.0001375246
-0.10 20.7853870599 0.0068972439 20.7855174868 0.0001304269
0.10 20.7853870599 0.0068972228 20.7855174868 0.0001304269
0.30 20.0499895293 0.0065654914 20.0501270540 0.0001375247
0.50 18.4571664182 0.0054241103 18.4573137571 0.0001473389
0.70 15.6040925307 0.0025399121 15.6042411554 0.0001486248
0.90 9.9147951260 0.0032614564 9.9149040083 0.0001088823
0.94 7.8405806772 0.0047223289 7.8406659308 0.0000852536
0.96 6.4698890368 0.0053701392 6.4699564868 0.0000674500
0.98 4.6242972766 0.0058168227 4.6243374562 0.0000401796

Table 5. Error terms for OQF (1.3).

N=20

t Exact Error QF(21)in [11] OQF(1.3), m=1 Error

-0.9999 0.3305542576 0.0016697528 0.3288666955 0.0016875620
-0.9980 1.4767423383 0.0070573417 1.4696058654 0.0071364729
-0.9450 7.5265525954 0.0073648393 7.5337473788 0.0071947834
-0.9150 9.2115705777 0.0189073179 9.2305812184 0.0190106407

Table 6. Error terms for OQF (1.3).

N=200

t Exact Error QF(21)in [11] OQF(1.3), m=1 Error

-0.9999 0.3305542576 0.0001051563 0.3304914855 0.0000627721
-0.999 1.0447877703 0.0002953748 1.0446330797 0.0001546905
-0.998 1.4767423383 0.0003658651 1.4765870900 0.0001552483
-0.997 1.8076410236 0.0003931256 1.8075212773 0.0001197463
-0.995 2.3310993510 0.0004063873 2.3310939480 0.0000054030
-0.993 2.7551786054 0.0004410670 2.7552845634 0.0001059580
-0.991 3.1206688242 0.0005965699 3.1208008580 0.0001320338
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Table 7. Error terms for OQF (1.3).

N=20

t Exact Error QF(22)in [11] OQF(1.3), m=1 Error

0.9999 0.3305542576 0.0016696240 0.3288666955 0.0016875620
0.9980 1.4767423383 0.0070573629 1.4696058654 0.0071364729
0.9450 7.5265525954 0.0073644315 7.5337473788 0.0071947834
0.9150 9.2115705777 0.0189067192 9.2305812184 0.0190106407

Table 8. Error terms for OQF (1.3).

N=200

t Exact Error QF(22)in [11] OQF(1.3), m=1 Error

0.9999 0.3305542576 0.0001051332 0.3304914855 0.0000627721
0.999 1.0447877703 0.0002953269 1.0446330797 0.0001546905
0.998 1.4767423383 0.0003656582 1.4765870900 0.0001552483
0.997 1.8076410236 0.0003931503 1.8075212773 0.0001197463
0.995 2.3310993510 0.0004062447 2.3310939480 0.0000054030
0.993 2.7551786054 0.0004408404 2.7552845634 0.0001059580
0.991 3.1206688242 0.0005964761 3.1208008580 0.0001320338

Table 9. Error terms for OQF (1.3).

N=20

t Exact Error of OQF m = 1 Error of OQF m = 2 Error of OQF m = 3

-0.887 10.4702332992 0.0002987354 0.0001764502 0.0000053844

-0.695 15.6980321754 0.0103882539 0.0002530201 0.0000066140

-0.495 18.5096575257 0.0121044897 0.0001493195 0.0000104882

-0.293 20.0890157504 0.0119847689 0.0000694601 0.0000126264

-0.095 20.7941454186 0.0120053908 0.0000449824 0.0000149919

0.095 20.7941454186 0.0120053908 0.0000449824 0.0000149919

0.293 20.0890157504 0.0119847689 0.0000694601 0.0000126264

0.495 18.5096575257 0.0121044897 0.0001493195 0.0000104882

0.695 15.6980321754 0.0103882539 0.0002530201 0.0000066140

0.887 10.4702332992 0.0002987354 0.0001764502 0.0000053844
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Math., 52(2007), no. 4, 21-44.
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A dynamic problem with wear involving
electro-elastic-viscoplastic materials with damage

Aziza Bachmar and Souraya Boutechebak

Abstract. A dynamic contact problem is considered in the paper. The material
behavior is described by electro-elastic-viscoplastic law with piezoelectric effects.
The body is in contact with damage and an obstacle. The contact is frictional
and bilateral with a moving rigid foundation which results in the wear of the
contacting surface. The damage of the material caused by elastic deformations.
The evolution of the damage is described by an inclusion of parabolic type. The
problem is formulated as a coupled system of an elliptic variational inequality for
the displacement, variational equation for the electric potential and a parabolic
variational inequality for the damage. We establish a variational formulation for
the model and we prove the existence of a unique weak solution to the problem.
The proof is based on a classical existence and uniqueness result on parabolic
inequalities, differential equations and fixed point arguments.

Mathematics Subject Classification (2010): 74M10, 74M15, 74F15, 49J40.

Keywords: Damage field, piezoelectric, electro-elastic-viscoplastic, variational in-
equality, wear.

1. Introduction

Scientific research and recent papers in mechanics are articulated around two
main components, one devoted to the laws of behavior and other devoted to boundary
conditions imposed on the body. The boundary conditions reflect the binding of the
body with the outside world. Recent researches use coupled laws of behavior between
mechanical and electric effects or between mechanical and thermal effects(see [2]). For
the case of coupled laws of behavior between mechanical and electric effects, general
models can be found in (see [5]). Situations of contact between deformable bodies
are very common in the industry and everyday life. Contact of braking pads with
wheels, tires with roads, pistons with skirts or the complex metal forming processes

Received 25 October 2019; Accepted 17 January 2020.
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are just a few examples. The constitutive laws with internal variables have been used
in various publications in order to model the effect of internal variables in the behavior
of real bodies like metals, rocks, polymers and so on, for which the rate of deformation
depends on the internal variables. Some of the internal state variables considered by
many authors are the spatial display of dislocation, the work-hardening of materials,

In this paper, we consider a general model for the dynamic process of frictional
contact bilateral between a deformable body and an obstacle which results in the wear
of the contacting surface. The material obeys an electro-elastic-viscoplastic constitu-
tive law with piezoelectric effects. We derive a variational formulation of the problem
which includes a variational second order evolution inequality. We establish the ex-
istence of a unique weak solution of the problem. The idea is to reduce the second
order evolution nonlinear inequality of the system to first order evolution inequality.
After this,we use classical results on first order evolution nonlinear inequalities and
aquation , a parabolic variational inequality and the fixed point arguments.

The paper is structured as follows. In Section 1 we present the electro-elastic-
viscoplastic contact model with friction and provide comments on the contact bound-
ary conditions. In Section 2 we list the assumptions on the data and derive the
variational formulation. In Section 3 we present our main results on existence and
uniqueness which state the unique weak solvability.

2. Problem statement

Problem P: Find a displacement field u : Ω×[0, T ]→ Rd, a stress field σ : Ω×[0, T ]→
Sd, the an electric potentiel field ϕ : Ω × [0, T ] → R, the an electric displacement
field D : Ω × [0, T ] → Rd, the damage field β : Ω × [0, T ] → Rd, and the wear
ω : Γ3 × [0, T ]→ R+ such that

σ(t) = A(ε(
.
u(t))) + B(ε(u(t)), β(t))

+

∫ t

0

G
(
σ(s)−A(ε(

.
u(s))), ε(u(s))

)
ds− ξ∗E (ϕ) , in Ω a.e. t ∈ [0, T ],

(2.1)

D = BE (ϕ) + ξε (u)
in Ω× [0, T ] ,

(2.2)

ρ
..
u = Div σ + f0, in Ω× [0, T ], (2.3)

div D = q0 in Ω× [0, T ] , (2.4)
.

β−K1∆β + ∂ϕK (β) 3 S(ε(u), β), in Ω× [0, T ], (2.5)

u = 0, on Γ1 × [0, T ] , (2.6)

σν = h, on Γ2 × [0, T ], (2.7){
σν = −α

∣∣ .uν∣∣ , |στ | = −µσν ,
στ = −λ

( .
uτ − v∗

)
, λ ≥ 0,

.
ω = −kυ∗σν , k > 0. on Γ3 × [0, T ],

(2.8)
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∂β
∂ν = 0, on Γ × [0, T ] , (2.9)

ϕ = 0 on Γa × [0, T ] , (2.10)

Dν = q2on Γb × [0, T ] , (2.11)

u (0) = u0, v (0) = v0, β (0) = β0, ω(0) = ω0, in Ω, (2.12)

where (2.1) and (2.2) represent the electro-elastic-viscoplastic constitutive law with
damage. we denote ε (u) (respectively; E (ϕ) = −∇ϕ, A,G, ξ, ξ∗, B ) the linearized
strain tensor (respectively; electric field, the viscosity nonlinear tensor, the viscoplas-
ticity tensor, the third order piezoelectric tensor and its transpose, the electric per-
mittivity tensor), (2.3) represents the equation of motion where ρ represents the mass
density, (2.4) represents the equilibrium equation, we mention thatDivσ, divD are the
divergence operators. Inclusion (2.5) describes the evolution of damage field, governed
by the source damage function ϕ, where ∂ϕK (ζ) is the subdifferential of indicator
function of the set K of admissible damage functions.

Equalities (2.6) and (2.7) are the displacement-traction boundary conditions,
respectively. (2.8) describes the frictional bilateral contact with wear described above
on the potential contact surface Γ3. (2.9) represents on Γ, a homogeneous Neumann
boundary condition for the damage field. (2.10) , (2.11) represent the electric boundary
conditions.The functions u0, v0, β0 and ω0 in (2.12) are the initial data.

3. Variational formulation and preliminaries

For a weak formulation of the problem, first we itroduce some notation. The
indices i, j, k, l range from 1 to d and summation over repeated indices is implied.
An index that follows a comma represents the partial derivative with respect to the
corresponding component of the spatial variable, e. g: ui.j = ∂ui

∂xj
. We also use the

following notations

H = L2(Ω)d = {u = (ui)/ui ∈ L2(Ω)},
H = σ = (σij)/σij = σji ∈ L2(Ω),

H1 = u = (ui)/ε(u) ∈ H = H1 (Ω)
d

H1 = σ ∈ H/Divσ ∈ H,
The operators of deformation ε and divergence Div are defined by

ε(u) = (εij(u)), εij(u) = 1
2 (ui,j + uj,i), Divσ = (σij,j).

The spaces H,H, H1 and H1 are real Hilbert spaces endowed with the canonical inner
products given by

(u, v)H =
∫

Ω
uividx,∀u, v ∈ H,

(σ, τ)H =
∫

Ω
σijτijdx, ∀σ, τ ∈ H,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H,∀u, v ∈ H1,

(σ, τ)H1
= (σ, τ)H + (Divσ,Divτ)H , σ, τ ∈ H1,

We denote by |·|H (respectively; | · |H, | · |H1
and | · |H1) the associated norm on the

space H ( respectively; H, H1 and H1).
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Let HΓ = (H1/2(Γ))d and γ : H1(Γ)d → HΓ be the trace map. For every element v
∈ (H1(Γ))d, we also use the notation v to denote the trace map γv of v on Γ, and we
denote by vν and vτ the normal and tangential components of v on Γ given by

vν = v.ν, vτ = v − vνν
Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal and
tangential components by

σν = (σν) .ν, στ = σν − σνν
We use standard notation for the Lp and the Sobolev spaces associated with Ω and
Γ and, for a function ψ ∈ H1 (Ω) we still write ψ to denote it trace on Γ. We recall
that the summation convention applies to a repeated index.
For the electric displacement field we use two Hilbert spaces

W = L2 (Ω)
d
,W1 =

{
D ∈ W,divD ∈ L2 (Ω)

}
endowed with the inner products

(D,E)W =
∫

Ω
DiEidx, (D,E)W1

= (D,E)W + (divD,divE)L2(Ω)

and the associated norm |.|W(respectively; |.|W1
). The electric potential field is to be

found in

W =
{
ψ ∈ H1 (Ω) , ψ = 0 on Γa

}
.

Since meas (Γa) > 0, the following Friedrichs-Poincaré’s inequality holds, thus

|∇ψ|W ≥ cF |ψ|H1(Ω) ∀ψ ∈W, (3.1)

where cF > 0 is a constant which depends only on Ω and Γa. On W , we use the inner
product given by

(ϕ,ψ)W = (∇ϕ,∇ψ)W ,

and let |.|W be the associated norm. It follows from (3.1) that |.|H1(Ω) and |.|W are

equivalent norms on W and therefore (W, |.|W ) is a real Hilbert space.
Moreover, by the Sobolev trace Theorem, there exists a constant c̃0, depending only
on Ω, Γa and Γ3 such that

|ψ|L2(Γ3) ≤ c̃0 |ψ|W ∀ψ ∈W. (3.2)

We recall that when D ∈ W1 is a sufficiently regular function,the Green’s type formula
holds

(D,∇ψ)W + (divD,ψ)L2(Ω) =

∫
Γ

Dν.ψda. (3.3)

When σ is a regular function, the following Green ’s type formula holds

(σ, ε (v))H + (Divσ, v)H =
∫

Γ
σν.vda ∀v ∈ H1.

Next, we define the space

V = {u ∈ H1/ u = 0 on Γ1}.
Since meas (Γ1) > 0, the following Korn’s inequality holds

|ε(u)|H ≥ cK |v|H1
∀v ∈ V, (3.4)

where cK > 0 is a constant which depends only on Ω and Γ1. On the space V we use
the inner product

(u, v)V = (ε(u), ε(v))H, (3.5)
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let |.|V be the associated norm. It follows by (3.4) that the norms |.|H1
and |.|V are

equivalent norms on V and therefore, (V, |.|V ) is a real Hilbert space. Moreover, by
the Sobolev trace Theorem, there exists a constant c0 depending only on the domain
Ω, Γ1 and Γ3 such that

|v|L2(Γ3)d ≤ c0 |v|V ∀v ∈ V. (3.6)

Finally, for a real Banach space (X, |.|X) we use the usual notation for the space
Lp (0, T ;X) and W k.p (0, T ;X), where 1 ≤ p ≤ ∞, k = 1, 2......; we also denote by
C (0, T ;X) and C1 (0, T ;X) the spaces of continuous and continuously differentiable
function on [0, T ]with values in X, with the respective norms:

|x|C(0,T ;X) = max
t∈[0,T ]

|x (t)|X ,

|x|C1(0,T ;X) = max
t∈[0,T ]

|x (t)|X + max
t∈[0,T ]

∣∣ .x (t)
∣∣
X
.

In what follows, we assume the following assumptions on the problem P .

The viscosity operator A : Ω× Sd → Sd

(a)∃ MA > 0 such that : |A (x, ε1)−A (x, ε2)| ≤MA |ε1 − ε2|
∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,

(b) ∃ mA > 0 such that : |A (x, ε1)−A (x, ε2) , ε1 − ε2| ≥ mA |ε1 − ε2|2

∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,

(c) The mapping x→ A (x, ε) is lebesgue measurable in Ω for all ε ∈ Sd,
(d) The mapping x→ A (x, 0) ∈ H.

(3.7)
The elasticity operator B : Ω× Sd ×R→ Sdsatisfies

(a) ∃ LB > 0 such that

|B (x, ε1, α1)− B (x, ε2, α2)| ≤ LB (|ε1 − ε2|+ |α1 − α2|)
∀ ε1 , ε2 ∈ Sd, ∀α1, α2 ∈ R, a. e. x ∈ Ω,

(b) The mapping x→ B (x, ε, α) is lebesgue measurable in Ω

for all ε ∈ Sd and α ∈ R
(c) The mapping x→ B (x, 0, 0) ∈ H,

(3.8)

The viscoplasticity operator G : Ω× Sd ×Sd → Sd satisfies

(a) ∃ LG > 0 such that

|G (x, σ1, ε1)− G (x, σ2, ε2)| ≤ LG (|σ1 − σ2|+ |ε1 − ε2|)
∀ σ1 , σ2 ∈ Sd ,∀ ε1 , ε2 ∈ Sd, a. e. x ∈ Ω,

(b) The mapping x→ G (x, σ, ε) is lebesgue measurable in Ω

for all σ, ε ∈ Sd

(c) The mapping x→ G (x, 0, 0) ∈ H,

(3.9)
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The damage source function S : Ω× Sd ×R→ R satisfies

(a) ∃ MS > 0 such that

|S (x, ε1, α1)− S (x, ε2, α2)| ≤MS (|ε1 − ε2|+ |α1 − α2|)
∀ ε1 , ε2 ∈ Sd, ∀α1, α2 ∈ R, a. e. x ∈ Ω,

(b) The mapping x→ S (x, ε, α) is lebesgue measurable in Ω

for all ε ∈ Sd and α ∈ R
(c) The mapping x→ S (x, 0, 0) ∈ L2 (Ω) ,

(3.10)

The piezoelectric tensor ξ = (eijk) : Ω× Sd → Rd satisfies
(a) : ξ = (eijk) : Ω× Sd → Rd,
(b) : ξ (x, τ) = (eijk (x) τjk) ∀τ = (τij) ∈ Sd, a. e. x ∈ Ω,

(c) : eijk = eikj ∈ L∞ (Ω) ,

(3.11)

The electric permittivity tensor B = (Bij) : Ω× Rd → Rd

(a) : B = (Bij) : Ω× Rd → Rd,
(b) : B (x,E) = (bij (x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω,

(c) : bij = bji ∈ L∞ (Ω) ,

(d) : ∃ mB > 0 such that : bij (x)EiEj ≥ mB |E|2

∀E = (Ei) ∈ Rd, x ∈ Ω.

(3.12)

The mass density ρ satisfy

ρ ∈ L∞(Ω) there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗, a.e. x ∈ Ω (3.13)

The body forces, surface tractions,the densities of electric charges, and the functions
α and µ, satisfy 

f0 ∈ L2(0, T ;H), h ∈ L2(0, T ;L2(Γ2)d),

q0 ∈ L2
(
0, T ;L2 (Ω)

)
, q2 ∈ L2

(
0, T ;L2 (Γb)

)
.

α ∈ L∞(Γ3)α(x) ≥ α∗ > 0, a.e. on Γ3,

µ ∈ L∞(Γ3), µ(x) > 0, a.e. on Γ3,

K1 > 0, i = 0, 1.

(3.14)

The set K of admissible damage functions defined by

K =
{
β ∈ H1(Ω)/ 0 ≤ β ≤ 1 p.p in Ω

}
(3.15)

The initial data satisfy

u0 ∈ V, β0 ∈ K,ω0 ∈ L∞(Γ3). (3.16)

We use a modified inner product on H = L2(Ω)d given by

((u, v)) = (ρu, v)L2(Ω)d ,∀u.v ∈ H.
That is, it is weighted with ρ. We let H be the associated norm

‖v‖H = (ρv, v)
1
2

L2(Ω)d
,∀v ∈ H.
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We use the notation (., .)V ′×V to represent the duality pairing between V ′ and V .
Then, we have

(u, v)V ′×V = ((u, v)) ,∀u ∈ H,∀v ∈ V.

It follows from assumption (3.13) that ‖.‖H and |.|H are equivalent norms on H,
and also the inclusion mapping of (V, |.|V ) into (H, ‖.‖H) is continuous and dense. We
denote by V ′ the dual space of V . Identifying H with its own dual, we can write the
Gelfand triple V ⊂ H = H ′ ⊂ V ′.
We define the function f(t) ∈ V and q : [0.T ]→W by

(f (t) , v)V =
∫

Ω
f0 (t) vdx+

∫
Γ2
h (t) vda∀v ∈ V, t ∈ [0, T ] ,

(q (t) , ψ)W = −
∫

Ω
q0 (t)ψdx+

∫
Γb
q2 (t)ψda ∀ψ ∈W, t ∈ [0.T ] ,

for all u, v ∈ V, ψ ∈ W and t ∈ [0.T ], and note that condition (3.14) imply that

f ∈ L2(0.T ;V ′), q ∈ L2(0.T ;W ). (3.17)

We introduce the following bilinear

a1 : H1 (Ω)×H1 (Ω)→ R, a1(ζ, ξ) = k1

∫
Ω

∇ζ.∇ξdx, ∀ζ, ξ ∈ H1 (Ω) . (3.18)

We consider the wear functional j : V × V → R,

j(u, v) =

∫
Γ3

α |uν | (µ |vτ − v∗|) da. (3.19)

Finally, we consider φ : V × V → R,

φ(u, v) =

∫
Γ3

α |uν | vνda,∀v ∈ V. (3.20)

We define for all ε > 0

jε(g, v) =
∫

Γ3
α |gν |

(
µ
√
|vτ − v∗|2 + ε2

)
da, ∀v ∈ V.

Using the above notation and Green’s formula, we derive the following variational
formulation of mechanical problem P .

Problem PV : Find a displacement field u : Ω×[0, T ]→ V, a stress field σ : Ω×[0, T ]→
Sd , an electric potential field ϕ : Ω × [0.T ] → R, an electric displacement field D :
Ω×[0.T ]→ Rd, the damage field β : Ω×[0, T ]→ Rd and the wear ω : Γ3×[0, T ]→ R+
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such that

σ(t) = A(ε(
.
u(t))) + B(ε(u(t)), β(t))

+
∫ t

0
G
(
σ(s)−A(ε(

.
u(s))), ε(u(s))

)
ds− ξ∗E (ϕ) , in Ω a.e. t ∈ [0, T ]

(3.21)

(ü(t), w − u̇(t))V ′×V + (σ(t), ε(w − .
u(t)))H + j(

.
u,w)− j( .u, .u(t))

+φ(
.
u,w)− φ(

.
u,

.
u(t)) ≥ (f(t), w − .

u(t)), ∀u,w ∈ V (3.22)

(D(t),Oψ)L2(Ω)d + (q (t) , ψ)W = 0∀ψ ∈W (3.23)( .
β (t) , ζ − β (t)

)
L2(Ω)

+ a1 (β (t) , ζ − β (t)) ≥

(S(ε(u (t)), β) , ζ − β (t))L2(Ω),∀ζ ∈ K, a.e. t ∈ [0, T ]
(3.24)

.
ω = −kυ∗σν , k > 0 (3.25)

u (0) = u0, v (0) = v0, β (0) = β0, ω (0) = ω0, in Ω (3.26)

4. Existence and uniqueness result

Our main result which states the unique solvability of Problem are the following.

Theorem 4.1. Let the assumptions (3.7)−(3.15) hold. Then, Problem PV has a unique
solution (u, σ, ϕ,D, β, ω) which satisfies

u ∈ C1 (0, T ;H) ∩W 1.2 (0, T ;V ) ∩W 2.2 (0, T ;V ′) (4.1)

σ ∈ L2(0, T ;H1), Divσ ∈ L2(0, T ;V ′) (4.2)

ϕ ∈W 1.2 (0, T ;W ) (4.3)

D ∈W 1.2(0, T ;W1) (4.4)

β ∈W 1.2
(
0, T ;L2 (Ω)

)
∩ L2(0, T ;H1 (Ω)) (4.5)

ω ∈ C1(0, T ;L2(Γ3)) (4.6)

We conclude that under the assumptions (3.7)− (3.15), the mechanical problem
(2.1)− (2.12) has a unique weak solution with the regularity (4.1)− (4.6).

The proof of this theorem will be carried out in several steps. It is based on argu-
ments of first order evolution nonlinear inequalities, evolution equations, a parabolic
variational inequality, and fixed point arguments.
First step: Let g ∈ L2(0, T ;V ) and η ∈ L2(0, T ;V ′) are given, we deduce a variational
formulation of Problem PV .
Problem PVgη : Find a displacement field ugη : [0, T ]→ V such that{

ugη (t) ∈ V (ügη(t), w − u̇gη(t))V ′×V + (Aε( .ugη(t)), ε(w − .
ugη(t))H+(

η, w − .
ugη(t)

)
V ′×V + j(g, w)− j(g, .ugη(t)) ≥ (f(t), w − .

ugη(t)), ∀w ∈ V.
(4.7)

.
ugη (0) = v (0) = v0. (4.8)

We define fη(t) ∈ V for a.e. t ∈ [0, T ] by

(fη(t), w)V ′×V = (f(t)− η(t), w)V ′×V ,∀w ∈ V. (4.9)

From (3.17), we deduce that
fη ∈ L2(0, T ;V ′) (4.10)
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Let now ugη : [0, T ]→ V be the function defined by

ugη (t) =

∫ t

0

vgη (s) ds+ u0, ∀t ∈ [0, T ] . (4.11)

We define the operator A : V ′ → V by

(Av,w)V ′×V = (Aε(v), ε(w))H,∀v, w ∈ V. (4.12)

Lemma 4.2. For all g ∈ L2(0, T ;V ) and η ∈ L2(0, T ;V ′), PVgη has a unique solution
with the regularity

vgη ∈ C(0, T ;H) ∩ L2(0, T ;V ) and
.
vgη ∈ L2(0, T ;V ′). (4.13)

Proof. The proof from nonlinear first order evolution inequalities(see [4, 6]). �

Second step: We use the displacement field ugη to consider the following variational
problem.
Let us consider now the operator Λη : L2(0, T ;V )→ L2(0, T ;V ), defined by

Ληg = vgη (4.14)

We have the following lemma.

Lemma 4.3. The operator Λη has a unique fixed point g ∈ L2(0, T ;V )

Proof. Let g1, g2 ∈ L2(0, T ;V ) and let η ∈ L2(0.T ;V ′). Using similar arguments as
those in (4.7), (4.11) we find

(
.
v1 (t)− .

v2 (t) , v1 (t)− v2 (t)) + (Aε (v1 (t))−Aε (v2 (t)) , ε (v1 (t))− ε (v2 (t)))

+ j(g1, v1 (t))− j(g1, v2 (t))− j(g2, v1 (t)) + j(g2, v2 (t)) ≤ 0. (4.15)

From the definition of the functional j given by (3.17), we have

j(g1, v2 (t))− j(g1, v1 (t))− j(g2, v2 (t)) + j(g2, v1 (t))

=

∫
Γ3

(α |g1ν | − α |g2ν |) (µ |v1τ − v∗| − µ |v2τ − v∗|) da. (4.16)

From (3.6) and (3.14), we find

j(g1, v2 (t))−j(g1, v1 (t))−j(g2, v2 (t))+j(g2, v1 (t)) ≤ C |g1 − g2|V |v1 − v2|V . (4.17)

Integrating the (4.15) inequality with respect to time, using the initial conditions
v2 (0) = v1 (0) = v0, using (3.7) , (4.17)and the inequality 2ab ≤ C

mA
a2 + mA

C b2 we find

|v2 (t)− v1 (t)|2V ≤ C
∫ t

0

|g2 (s)− g1 (s)|2V ds. (4.18)

Thus, for m sufficiently large, Λmη is a contraction on L2(0, T ;V ) and so Λη has a
unique fixed point in this Banach space. �

Third step: We use the displacement field ugη to consider the following variational
problem.
Problem PV ϕgη: Find an electric potential field ϕ

gη
: Ω× [0.T ]→W such that

(β∇ϕgη(t),Oψ)L2(Ω)d − (ξε(ugη(t)),Oψ)L2(Ω)d = (q (t) , ψ)W , ∀ψ ∈W, t ∈ [0, T ] .

(4.19)
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We have the following result for PV ϕgη :

Lemma 4.4. There exists a unique solution ϕgη ∈W 1.2 (0.T ;W ) satisfies (4.19), more-
over if ϕ1and ϕ2 are two solutions to (4.19). Then, there exists a constants c > 0 sach
that

|ϕ1 (t)− ϕ2 (t)|W ≤ c |u1 (t)− u2 (t)|V ∀t ∈ [0, T ] . (4.20)

Proof. The proof given in Ref (see [1]). �

Fourth step: For φ ∈ C(0, T ;L2(Ω)), we consider the following variational problem.
Problem PVφ: Find the damage field βφ : [0, T ]→ K such that( .

βφ (t) , ζ − βφ (t)
)
L2(Ω)

+ a1 (βφ (t) , ζ − βφ (t)) ≥

(φ, ζ − βφ (t))L2(Ω),∀ζ ∈ K, a.e. t ∈ [0, T ] ,
(4.21)

βφ (0) = β0 (4.22)

Lemma 4.5. There exists a unique solution βφ to the auxiliary problem PVφ such that

βφ ∈W 1.2
(
0, T ;L2 (Ω)

)
∩ L2(0, T ;H1 (Ω))

Proof. The proof given in Ref (see [3]). �

By taking into account the above results and the properties of the operators B and G
and of the functions ψ and S, we may consider the operator

Λ : C(0, T ;V ′ × L2(Ω))→ C(0, T ;V ′ × L2(Ω)),
Λ(η, φ)(t) = (Λ1(η)(t),Λ2(φ)(t)),

(4.23)

(Λ1(η), w)V ′×V = (B(ε(uη(t)), βφ(t)), w)

+

(∫ t

0

G
(
ση(s)−A(ε(

.
uη(s))), ε(uη(s))

)
ds+ ξ∗∇ (ϕ) , w

)
+φ(

.
uη, w) ∀w ∈ V,

(4.24)

Λ2(φ)(t) = S(ε(uη (t)), βφ). (4.25)

We have the following result.

Lemma 4.6. The mapping Λ(η, φ) : [0, T ] → V ′ × L2(Ω) has a unique element
(η∗, φ∗) ∈ C(0, T ;V ′ × L2(Ω)) such that Λ(η∗, φ∗) = (η∗, φ∗)

Proof. Let (η1, φ1), (η2, φ2) ∈ C(0, T ;V ′×L2(Ω)) and t ∈ [0, T ]. We use the notation
uηi = ui,

.
uηi = vηi = vi, βφi = βi, ϕηi = ϕi and σηi = σi, for i = 1, 2. Using (4.24)

and the relations (3.7)− (3.9), we obtain

|η1 (t)− η2 (t)|2V ′ ≤ C(|β1 (t)− β2 (t)|2L2(Ω)

+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V
+

∫ t

0

(|σ1 (s)− σ2 (s)|2H1
+ |v1 (s)− v2 (s)|2V

+ |u1 (s)− u2 (s)|2V )ds+ |ϕ1 (t)− ϕ2 (t)|2W
+φ(v1, v2 (t))− φ(v1, v1 (t))− φ(v2, v2 (t)) + φ(v2, v1 (t)).

(4.26)
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From the definition of the functional φ given by (3.20), and using (3.6), (3.14) we have

φ(v1, v2 (t))− φ(v1, v1 (t))− φ(v2, v2 (t)) + φ(v2, v1 (t)) ≤ C |v1 (t)− v2 (t)|2V . (4.27)

We have

|u2 (t)− u1 (t)|V ≤
∫ t

0
|v2 (s)− v1 (s)|V ds

Taking into account that

σi(t) = A(ε(
.
ui(t))) + ηi (t) , ∀t ∈ [0, T ]. (4.28)

By (2.1), and using (3.7), we find

|σ1 (s)− σ2 (s)|2H1
≤ C

(
|v1 (t)− v2 (t)|2V + |η1 − η2|2V ′

)
. (4.29)

It follows that ( .
v1 (t)− .

v2 (t) , v1 (t)− v2 (t)
)

+ (Aε (v1 (t))−Aε (v2 (t)) , ε (v1 (t))− ε (v2 (t))) +
+ (η1 (s)− η2 (s) , v1 (t)− v2 (t)) ≤ j(v1, v2 (t))− j(v1, v1 (t))
−j(v2, v2 (t)) + j(v2, v1 (t)).

(4.30)

From the definition of the functional j given by (3.19), and using (3.6), (3.14) we have

j(v1, v2 (t))− j(v1, v1 (t))− j(v2, v2 (t)) + j(v2, v1 (t)) ≤ C |v1 − v2|2V . (4.31)

Integrating the (4.30) inequality with respect to time, using the initial conditions
v2 (0) = v1 (0) = v0, using (3.7) , (4.31) , using Cauchy-Schwartz’s inequality and the
inequality

2ab ≤ mAa2 +
1

mA
b2,

by Gronwall’s inequality we find

|v1 (t)− v2 (t)|2V ≤ C
∫ t

0

|η1 (s)− η2 (s)|2V ′ ds. (4.32)

Also ∫ t

0

|u1 (s)− u2 (s)|2V ds ≤ C
∫ t

0

∫ s

0

|η1 (r)− η2 (r)|2V ′ drds

≤ C
∫ t

0

|η1 (s)− η2 (s)|2 ds. (4.33)

For the damage field, from (4.21) we deduce that( .
β1 −

.

β2, β1 − β2

)
L2(Ω)

+ a1 (β1 − β2, β1 − β2) ≤ (φ1 − φ2, β1 − β2)L2(Ω),

a.e. t ∈ [0, T ] .

Integrating the previous inequality with respect to time, using the initial conditions
β1(0) = β2(0) = β0 and the inequality a1 (β2 − β1, β2 − β1) ≥ 0, by Gronwall’s in-
equality we find

|β1 (t)− β2 (t)|2L2(Ω) ≤ C
∫ t

0

|φ1 (s)− φ2 (s)|2L2(Ω) ds, ∀t ∈ [0, T ]. (4.34)
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Applying the previous inequalities, the estimates (4.32)− (4.34), we obtain

|Λ(η2, φ2) (t)− Λ(η1, φ1) (t)|V ′×L2(Ω)) ≤ C
∫ t

0
|(η2, φ2) (s)− (η1, φ1) (s)| ds

Thus, for m sufficiently large, Λm is a contraction on C(0, T ;V ′ × L2(Ω))) and so Λ
has a unique fixed point in this Banach space. �

We consider the operator L : C(0, T ;L2(Γ3))→ C(0, T ;L2(Γ3))

Lω (t) = −kυ∗
∫ t

0

σν (s) ds,∀t ∈ [0, T ]. (4.35)

Lemma 4.7. The operator L : C(0, T ;L2(Γ3))→ C(0, T ;L2(Γ3)) has a unique element
ω∗ ∈ C(0, T ;L2(Γ3)), such that Lω∗ = ω∗.

Proof. Using (4.35) , we have

|Lω1 (t)− Lω2 (t) |2L2(Γ3) ≤ kυ
∗
∫ t

0

|σ1 (s)− σ2 (s)|2 ds, (4.36)

From (2.1) and using (3.7)− (3.9) , we find

|σ1 (t)− σ2 (t)|2H1
≤ C(|β1 (t)− β2 (t)|2L2(Ω) + |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V

+

∫ t

0

(|σ1 (s)− σ2 (s)|2H1
+ |v1 (s)− v2 (s)|2V + |u1 (s)− u2 (s)|2V )ds

+ |ϕ1 (t)− ϕ2 (t)|2W (4.37)

By (4.26) , (4.34) , and by Gronwall’s inequality we find

|β1 (t)− β2 (t)|2L2(Ω) ≤ C
∫ t

0

|u1 (s)− u2 (s)|2V ds, ∀t ∈ [0, T ]. (4.38)

And by Gronwall’s inequality we find

|σ1 (t)−σ2 (t)|2H1
≤ C

(∫ t

0

|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V

)
(4.39)

We have ∫ t

0

|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V

≤ C
∫ t

0

|v1 (s)− v2 (s)|2V ds.

So ∫ t
0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V

≤ C
(∫ t

0

|v1 (s)− v2 (s)|2V ds+ + |ω1 (t)− ω2 (t)|2L2(Γ3)

)
(4.40)

By Gronwall’s inequality we find∫ t
0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V ≤ C |ω1 (t)− ω2 (t)|2L2(Γ3)
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So, we have

|σ1 (t)− σ2 (t)|2H1
≤ C

∫ t

0

|ω1 (s)− ω2 (s)|2L2(Γ3) ds (4.41)

Using (4.41) , we find

|Lω1 (t)− Lω2 (t)|L2(Γ3) ≤ C
∫ t

0
|ω1 (s)− ω2 (s)|L2(Γ3) ds

Thus, for m sufficiently large, Lm is a contraction on C(0, T ;L2(Γ3)) and so L has a
unique fixed point in this Banach space. �

Now, we have all the ingredients to prove Theorem 4.1.
Existence. Let g∗ ∈ L2(0, T ;V ) be the fixed point of Λη∗ defined by (4.14), let
(η∗, φ∗) ∈ C(0, T ;V ′ × L2(Ω))) be the fixed point of Λ defined by (4.23) − (4.25),
let ω∗ ∈ C(0, T ;L2(Γ3)) be the fixed point of Lω∗ defined by (4.36), and let

(u, ϕ, β) = (ug∗η∗ , ϕg∗η∗ , βφ∗)

be the solutions of Problems PVg∗η∗ , and respectively PV ϕg∗η∗ , PVφ∗ . It results from
(4.7), (4.8), (4.19), (4.21), (4.22) that (ug∗η∗ , ϕg∗η∗ , βφ∗) is the solutions of Problems
PV. Properties (4.1)− (4.6) follow from Lemmas 1, 3 and 4.
Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of the operators Λη, Λ,L defined by (4.14), (4.23)− (4.25), (4.36) and the
unique solvability of the Problem PVgη and PVφ which completes the proof.
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Abstract. The present paper corrects an assertion of the author from [1].
The pivoting algorithms referred to, search for solving the linear programming
problem.
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1. Corrected assertion for the case of non-singleton solution

The standard form of a linear programming problem (LP ) is minx∈S c
Tx, where

S = {x ∈ Rn |A · x = b, x ≥Rn 0Rn}, with data c ∈ Rn, A ∈ Mm,n(R), and b ∈ Rm
given ([2]). Denote by S the set of its solutions. This paper corrects an assertion of
the author from [1]. The motivation of the mentioned paper started from the clear
difference between the two expressions finding a solution to the problem and solving
the problem, especially when the feasible set S is not bounded. The author was not
aware by the paper [5], having the same topic.

In order to correct the assertion from Proposition 3.2 in [1] into Proposition 1.3,
Proposition 1.4, and Proposition 1.5, we provide the following two examples.

Example 1.1. Let a > 0, b1, b2 > 0 and the linear programming problem

−x1 − x2 − ax3 −→ min

x1 + x2 ≤ b1
x2 + x3 ≤ b1 + b2

x3 ≤ b2
x1, x2, x3 ≥ 0.

Received 6 February 2020; Accepted 31 March 2020.
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The four iterations are given in Figure 2 and by the classic primal simplex algorithm
one may find as solutions x1 = (0, b1, b2) or x2 = (b1, 0, b2). By the extended algorithm

S =


{x1}, if a > 1

{x2}, if a < 1

co{x1, x2}, if a = 1.

Figure 1. Optimal 0−max dual basis; bounded S

Note that in the third tableau, for a = 1 we have maxi∈B αi0 = 0 = α10 and
minj∈B α0j = 0 = α05. More, it exists j = 2 ∈ B such that α12 = 1 > 0.

Example 1.2. Let a ∈ R and the linear programming problem
x2 −→ min

−x1 + x3 = 0

ax1 + x2 + x4 = 1

x1, x2, x3, x4 ≥ 0.

From tables in Figure 3 we have

S =


{(0, 0, 0, 1)}, if a < 0

{(α/a, 0, α/a, 1− α) |α ∈ [0, 1]}, if a > 0

{(α, 0, α, 1) |α ≥ 0}, if a = 0.
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Figure 2. Optimal 0−max dual basis; unbounded S

Note that in the first tableau, we have α10 = 0 and α03 = 0. For a < 0, one has
α1j < 0, j ∈ B = {3, 4}. For a > 0, it exists j = 4 ∈ B such that α14 = 1 > 0.

An important step in the implementation of an algorithm should be a criteria
that establishes the boundedness of the feasible set, weather or not it is a polytope
(bounded, thus compact) or not. In its absence, the property of the solutions set
regarding the boundedness is to be stated and the set itself to be obtained while
the algorithm works. Related to the set of solutions for (LP ), we give the following
results.

Proposition 1.3. Suppose that x0 = xB is an optimal solution for (LP ) and let B be
the optimal basis. If max

i∈B
αi0 < 0, then there is no other solution generated by B.

Proof. Suppose xB
′

is another solution generated by B, thus cTxB
′

= cTx0. Let h ∈ B
and suppose that the vector Ak is replaced by Ah in B. Let θ = α0k

αhk
≥ 0 be the rate

transfer. Therefore, we have

cTx0 = cTxB
′

= cTx0 + θ · (−αh0).

If θ > 0 we get the contradiction since αh0 < 0. If θ = 0 = α0k, then the pivoting
element αhk must be strictly negative. For j ∈ B′ = (B \ {k}) ∪ {h}, the coordinates

of xB
′

are α′0j = α0j and α0h = α0k

αhk
= 0, that is xB

′
= x0, a contradiction. �

Proposition 1.4. Let x0 = xB be a solution for (LP ) obtained in Step 1 of the algorithm
and B be the optimal basis. Suppose that

max
i∈B

αi0 = 0 = min
j∈B

α0j .

Denote by B0 = {i ∈ B |αi0 = 0} and B0 = {i ∈ B |α0j = 0}. The following
implications apply:

1. if αīj ≤ 0, ∀ī ∈ B0, ∀j ∈ B, then S is unbounded.

2. if αīj0 > 0, ∀ī ∈ B0, ∀j0 ∈ B0, then there is no other solution generated by B.

3. if exist ī ∈ B0, k ∈ B \ B0 such that αīk > 0, then the solution is not unique.

Proof. 1. Let ī ∈ B0. Since αīj ≤ 0, ∀j ∈ B, there is no pivoting element, con-
sequently another solution cannot be obtained by a classic pivoting operation.
There exists c̄ > 0Rn such that

{x0 + α · c |α ≥ 0} ⊆ S.
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The unboundedness direction c̄ = (c̄1, ..., c̄n) is given by

c̄j =


−αīj , j ∈ B \ Bī0
1, j = ī

0, otherwise,

where Bī0 = {k ∈ B |αīk = 0}.
2. Let ī ∈ B0 and j0 ∈ B0. Since α0j0 = 0, by replacing vector Aj0 with Aī in B,

the value of the objective function does not change

cTx0 − αī0 ·
α0j0

αīj0
= cTx0.

Let xB
′

be the new optimal solution. Its coordinates xB
′

j are xB
′

j = xBj , for

j ∈ B \ {j0}, α′0ī = α0j0 = 0, and 0 in rest, (i.e. j 6∈ B′ = (B \ {j0}) ∪ {̄i}),
therefore xB

′
= xB .

3. Let ī ∈ B0. Consider αīk as pivoting element. By replacing vector Ak with Aī,
the value of the objective function does not change

cTx0 − αī0 ·
α0k

αīk
= cTx0.

The coordinates of the new solution xB
′

are xB
′

j = xBj −αīj · α0k

αīk
, for j ∈ B\{k},

α′
0ī

= α0k

αīk
6= 0, and 0 in rest, including α′0k = 0, thus xB

′ 6= xB .

�

Corresponding to item 3 above, by Example 1.1, we have ī = 1 ∈ B0, k = 2 ∈ B \ B0

with α12 > 0. Similarly, by Example 1.2, case a > 0, we have B0 = {1} and it exists
k = 2 ∈ B \ B0 such that α14 > 0.

Proposition 1.5. ([1]) Suppose that x0 = xB is a solution for (LP ) obtained in Step 1
of the algorithm and that B is the optimal basis. If max

i∈B
αi0 = 0 and min

j∈B
α0j > 0,

then

{x0} ( argminx∈Sc
Tx;

if more

α) for some ī ∈ B0, it exists k ∈ B such that αīk > 0, then

co{x0, x1, ..., xu} ⊆ S,

with u ≤ cardB0+, where

B0+ = {i ∈ B0 | ∃k ∈ B such that αik > 0};

β) for some ī ∈ B0, αīk ≤ 0, ∀k ∈ B, then the set of solutions is (convex) unbounded.

Proof. α) The proof is the same to 3. from Proposition 1.4 since B0 = ∅.
β) see [1], Proposition 3.2, 3., a3β). �
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Most of the works contain background, terminology, usual notations, and basic
results. Let us remind some of them. A vector x ∈ Rn is seen as a column vector
and its transpose, denoted by xT = (x1, ..., xn) ∈ Rn, as a row vector. In particular,
denote by 0TRn = (0, ..., 0) ∈ Rn and by eTj = (0, ..., 0, 1, 0, ..., 0) with 1 for the jth

position. The scalar product of c ∈ Rn and x is given by

cTx =

n∑
i=1

ci · xi.

The relation x ≥Rn 0Rn means xi ≥ 0, for all i ∈ {1, ..., n}; one has x >Rn 0Rn

iff xi ≥ 0, ∀i and ∃i0 with xi0 > 0. Also, x ≤Rn y iff y − x ≥ 0Rn , and x >Rn y
iff x − y >Rn 0Rn . The j−th column of a matrix A ∈ Mm,n(R) is denoted by Aj ;
a matrix B consisting of m independent columns of A, m < n, is called basic. The
remaining columns of A that are not in B are said to be outside the basis or nonbasic.
For A = (Aj)1≤j≤n,

B = {j ∈ {1, 2, ..., n} | ∃k,Aj = Bk},

B = {1, 2, ..., n} \ B = {i ∈ {1, 2, ..., n} |@k,Ai = Bk},
so {Aj}1≤j≤n = {{Aj}j∈B, {Ai}i∈B}. The linear combination for Ai, i ∈ B, is given
by

Ai =
∑
j∈B

αijA
j .

The coordinates of b are α0j , i.e.

b =
∑
j∈B

α0jA
j .

A basic matrix B is said to be primal feasible if α0j ≥ 0, ∀j ∈ B and dual feasible if

αi0 ≤ 0, ∀i ∈ B, respectively. If B is primal feasible and dual feasible then B is called
optimal or optimal basis. Simplex algorithm 2.0, is based on the extended properties
of the optimal basis. About an optimal basis B, we say that it is 0−max dual feasible
if max

i∈B
αi0 = 0 and 0−min primal feasible if min

j∈B
α0j = 0, respectively.

As regards the three situations of the algorithm, when there is a unique solution, a
bounded set of solutions (but not a singleton) or the unbounded set of solutions, we
reformulate the following result in concordance to Proposition 1.3, Proposition 1.4,
and Proposition 1.5.

Theorem 1.6. Suppose that x0 = xB is a solution for (LP ) obtained in Step 1 of the
algorithm and that B is the optimal basis. The following implications apply:

1. If B is NOT 0−max dual feasible then the solution generated by B is unique.
2. If B is 0−max dual feasible, 0−min primal feasible, and αīj ≤ 0, ∀ī ∈ B0,
∀j ∈ B, then the set of solutions is unbounded.

3. If B is 0−max dual feasible, 0−min primal feasible, and αīj > 0, ∀ī ∈ B0,
∀j ∈ B0, then the solution generated by B is unique.

4. If B is 0−max dual feasible, 0−min primal feasible, and exist ī ∈ B0, k ∈ B \B0

such that αīk > 0, then the solution generated by B is not unique.
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5. If B is 0−max dual feasible and it is NOT 0−min primal feasible, then the
solution generated is not unique.

In general, the computer algebra systems such as Octave [3], WolframAlpha [4],
use the interior point algorithm implemented (the function glpk in Octave has the
the parameter param that allows to use two-phase primal/dual simplex). None of
these return more than one solution at one input. When the instruction/command
has the parameter for the initial starting point (ex. Matlab), by changing it may be
successful for returning another solution if it exists.

Acknowledgement. The author wishes to express his gratitude to the reviewer for
indicating [5].
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Book reviews

Vijay Gupta and Michael Th. Rassias, Computation and Approximation,
Springer Cham 2021, Ser.: Springer Briefs in Mathematics
DOI: https://doi.org/10.1007/978-3-030-85563-5

In the book under review, the authors have treated exponential, semi exponen-
tial, integral and hybrid operators, some of which have never been studied in the past
due to their complex behavior. The book consists of three chapters.

The first chapter presents a systematic list of exponential type operators. Some
of these exponential type operators associated with x(1 +x)2, x3, 2x3/2 and 2x2 have
not been studied in the past in such detail. Hence these operators may attract the
interest of researchers who may wish to investigate their properties in greater depth.
Furthermore, within this chapter a flavor for a possible extension of exponential-type
operators to semi-exponential operators has also been indicated.

The second chapter is devoted to the treatment of several recent as well as new
families of integral type operators. The authors provide here a link between original
operators and their Kantorovich variants. Certain possibilities for further generaliza-
tions of such operators are also given in this chapter. Integral extensions of operators
as such are not exponential type operators, but by studying such operators one may
investigate many operators simultaneously, rather than studying them individually.
Some original operators and their approximation properties in ordinary and simulta-
neous approximation are also discussed.

The third chapter deals with the investigation of the difference between two
operators. Here general estimates for the difference between operators having the same
but also different fundamental functions are provided. Moreover, general estimates for
the difference of operators having higher-order derivatives are also discussed. In order
to exemplify the theoretical results, the authors provide quantitative estimates for the
differences between certain operators in ordinary and in simultaneous approximation.

Overall, the book under review is very well written and treats an active and
interesting area of research. It constitutes an important contribution in the literature
devoted to approximation theory and I feel it will be a very valuable source for
researchers, undergraduate and postgraduate students interested to study positive
linear operators. This book would also be very useful for seminar use.

Dorin Andrica
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