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Mădălina Moga, On some qualitative properties of Ćirić’s fixed point
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GÁBOR KASSAY – IN MEMORIAM

Petra Renáta Rigó and Ferenc Szenkovits

Abstract. The scientific activity of Professor Gábor Kassay (1956-2021), one of
the most prolific mathematician in Cluj-Napoca (Romania) is presented, through
the memories of some co-authors, with whom he collaborated throughout the four
decades of his scientific activity.

Mathematics Subject Classification (2010): 01A85, 90C33, 90C47, 46N10.

Keywords: Gábor Kassay, equilibrium problems, minimax theorems, convex
analysis, monotone operators.

1. Life and scientific activity of GÁBOR KASSAY (1956–2021)

Gábor Kassay was born on December 24, 1956 in Odor-
heiu Secuiesc (Székelyudvarhely). He studied elementary and
high school in his hometown and mathematics at Babeş-Bolyai
University in Cluj-Napoca (1976–1980). In 1994 he obtained
his scientific degree in mathematics at the same university,
with a thesis summarizing his researches on minimax prob-
lems, under the supervision of Professor József Kolumbán.

He started his teaching career in secondary schools in
Cluj-Napoca (1980–1987) and continued at Babeş-Bolyai Uni-
versity as teaching assistant (1987–1990), assistant professor
(1990–1995), associate professor (1995–2002, 2004–2005), pro-
fessor (2005–2021). In the period 2002–2004 he was a visiting
professor at Eastern Mediterranean University in Famagusta,
Northern Cyprus.

His university lectures covered the following topics:
mathematical analysis, optimization theory, functional analysis, operations research,
convex analysis, game theory.

The list of publications of Gábor Kassay totals 87 scientific articles published
in prestigious international journals such as: Mathematical Methods of Operations
Research, SIAM Journal on Optimization, Journal of Optimization Theory and Ap-
plications, Nonlinear Analysis, Journal of Global Optimization; four books, five book



4 Petra Renáta Rigó and Ferenc Szenkovits

chapters and a conference proccedings volume edited by him. His recognition is also
indicated by the fact that he worked together with more than thirty-five coauthors
from different countries. His works total over 2000 citations, including several arti-
cles with over 100 independent citations. The complete list of his publications can be
found at [36].

He was leader of successful group research programs, co-organizer of scientific
conferences, leader of scientific seminars on analysis and optimization. He presented
his results at several international conferences around the world.

In this article we try to present this special scientific personality through the
testimonies of some of his collaborators.

2. Memories from coauthors

Gábor Kassay was a great master of scientific collaboration. He successfully
established and maintained contacts with specialists involved in his fields of interest,
publishing joint results with over thirty-five co-authors. The confessions presented
below give us a real picture about his ability to establish scientific relationships,
about his work style, as well as about the special man and friend who Gabi Kassay
was for many. For more details see [36].

József Kolumbán, Babeş-Bolyai University, Cluj-Napoca, Romania:
”I noticed Gábor Kassay from the first year of his studies as one of the most

diligent and passionate about mathematics. In particular, his work capacity, intuitive
mindset and task-solving skills were extraordinary. Already at that time excelled in
finding examples and counterexamples. Although Gábor Kassay graduated from the
university with excellent results and could be very useful and necessary in our faculty,
he could not be appointed to the university in the circumstances of that time.

His interest in mathematical research kept him in Cluj even after graduating. He
chose a high school in this university center, in order to be able to continue actively
participating in the activities within the Tiberiu Popoviciu Scientific Seminar. This
seminar was very helpful in Gabi’s scientific activity throughout his career, he even
published some of his first papers in the volumes of this seminar [1, 2]. It was at this
time that we wrote our first collaborations [3].

Gábor Kassay’s 1994 doctoral (PhD) dissertation was titled ”New results in min-
imax theory applied to variational inequalities and optimization tasks”. Throughout
his career, the theory of equilibrium, which includes these types of tasks, has been the
focus of his attention. It includes, among other topics, optimization, minimax prob-
lems, Nash-equilibrium, complementarity, fixed point tasks, variational inequalities,
and many other problems in applied mathematics. Gábor Kassay has been publish-
ing articles on this topic since the early 1990s [4, 5, 6], when the synthesizing name
”equilibrium theory” had not yet been born. Since then, this theory has evolved enor-
mously. His practitioners have appeared all over the world, who publish hundreds of
papers on this topic every year. Gabi has exploited this professional environment very
cleverly. He had a working relationship with the best of the profession, from whom
he learned a lot, and returned home and shared his experiences with his colleagues.
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His curiosity, polite action, reliability and dear manners helped him greatly in this
regard.

By leaving, Gabi left a great void in my soul. He gave me one of the most
beautiful gifts of my life by being a close colleague and friend for over 40 years. Two
years before his death, he presented me with a copy of the monograph on the latest
results of the theory of equilibrium, including some of his own, written with Vicent, iu
Rădulescu [31], with the following dedication: ”To my mentor, József Kolumbán,
without whom this book (among many others) would not have been written. With
friendly love, Gabi, Cluj, 2019 March 7.” In the Acknowledgements section of the book,
the following sentence is included: ”Gábor Kassay is indebted to Joseph Kolumbán,
his former teacher and supervisor: their joint pepers and interesting discussions on
equilibrium problems opened the author’s interest toward this topic.” These words
are also evidence of Gabi’s spiritual richness.”

Zsolt Páles, University of Debrecen, Hungary:
”After the political changes in Hungary, in 1989, my first visit to Cluj-Napoca

became possible in 1992 with a small group of mathematicians from Debrecen. In
Cluj, we received a very warm welcome and immediately made friendship with many
Hungarian and Romanian mathematicians. Being one of our hosts, Gábor Kassay
spent a lot of time with us and we both realized that we had many fields of common
interest. In particular, the theory of convexity, nonsmooth analysis and variational in-
equalities were in the focus of research for both of us. After this visit to Cluj, starting
from the year 1995, I became a regular participant of the conferences organized by
the Babeş-Bolyai University, I visited Cluj almost every year and Gábor also visited
Debrecen several times to deliver seminar and conference lectures. I still have a vivid
memory of our participation at the first Joint Conference of Mathematics and Com-
puter Science in Illyefalva in 1995, where also József Kolumbán joined our discussions
and the snooker games in the local pub of the village. Due to this active cooperation,
we published our first paper with Gábor in 1999 [9], and then two further papers
jointly also with József Kolumbán [8, 11]. These works still receive many citations,
they are the most important papers for all of us.

The events that we shared keeps Gábor’s memory in us. We still cannot under-
stand and accept how and why all this happened to him. Nothing can compensate his
loss.”

Monica Bianchi, Catholic University of the Sacred Heart and
Rita Pini, University of Milano-Bicocca, Milan:

”Gábor has been not only a great coworker, but especially a very dear friend
during the last eighteen years. We met him the first time in 2003, at the 18th Inter-
national Symposium on Mathematical Programming in Copenhagen. After attending
our lecture, he came to us and gave us a card with his e-mail address, since he was in-
terested in the topic and, why not?, to begin a collaboration. We wrote the first paper
[12] about the existence of equilibria via Ekeland’s principle working at distance, via
e-mail essentially. But since then almost every year we succeeded in getting together
for one week or more, in Milan, in general, and also by attending the same conferences.
We also visited a few times Cluj, where he was always a thoughtful host, pleased to
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show us what he liked most in the nearby. Our studies about well-posedness [18, 20],
stability of equilibria and generalized equations [15, 23, 24, 25, 26, 27, 28], regulariza-
tion of variational inequalities and equilibrium problems [33], that have been finalized
in twelve publications, usually took the start when we could discuss face-to-face, and
went on by exchanging several e-mails. Only during the pandemia we got used to
meet via web, and our last work was done completely in this way [35]. Many years
passed by, but we keep vivid memories of several moments with him. We will never
forget his rigor, his eye for details, his intellectual honesty, but also his consideration
for others, his good manners and his extreme courtesy. We will miss him a lot.”

Hans Frenk, Sabanci University, Istanbul, Turkey:

”My scientific collaboration with Gábor Kassay lasted from 1998 until 2008.
During that period I visited Gábor almost every year in Kolozsvár and later for one
time in Cyprus while Gábor visited me several times in Rotterdam at the Erasmus
University. Our collaboration started due to our mutual acquaintance Tibor Illés from
Eötvös University in Budapest. We shared a common interest in generalisations of
convexity and related minmax theorems [7]. Gábor had a lot of experience in this
field due to his work on generalisations of so-called K-convex functions and I was
interested in extending the classical theory of minmax theorems and convexity. Also
around that time I completed my work with my former Ph.D students J.Gromicho
and A.I de Barros on the ellipsiod method and fractional programming involving qua-
siconvex functions. Since immediately we liked each other personally and felt together
that our knowledge was complementary we started our collaboration. This collabora-
tion would last for almost 10 years starting with our first paper appearing in Journal
of Optimization Theory and Applications in 1999 [7] and ending with the last paper
in the same journal in 2007 [16]. In total we wrote 7 joint published papers (also some-
times with other coauthors) and two book chapters of which the last one appeared in
2008 [14, 17]. During that time we also visited several conferences on generalisations
of convexity presenting our work. After the publication of the last chapter in 2008
our scientific cooperation ended since we both felt that our work was finished and we
continued separately with other research topics. Gábor with his work on variational
inequalities and me on applications of stochastic processes and optimization in Oper-
ations Research. This was also partly caused by my transition to Sabanci University
in Istanbul. Although we irregularly stayed in contact and even planned a kind of
reunion to visit each other in either Istanbul or Kolozsvár, this never happened due
to our busy schedules. I regret now we never did this. I will remember Gábor not only
as a dedicated and talented researcher but also on a personal basis as somebody who
was very enthusiastic and curious about everything in life and his love for mountain
climbing. A nice, friendly and curious person and a scientific friend.”

Qamrul Hasan Ansari, Aligarh Muslim University, India:

”Gábor Kassay visited Aligarh Muslim University, India in November 2017 and
was a guest of honour in an open ceremony of an international conference on anlaysis
and its applications. He also visited several times the Department of Mathematics
& Statistics, King Fahd University of Petroleum and Minerals, Saudi Arabia. Prof.
Kassay worked as a consultant in KFUPM funded research project at King Fahd
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University of Petroleum and Minerals, Saudi Arabia with Prof. S. Al-Homidan. It
is our honour to work with Prof. Kassay and we published jointly several research
papers, namely [29, 30, 32, 34].”

Radu Ioan Bot, University of Vienna, Austria:
”Gábor Kassay was a good friend and a great companion from the very early

days of my academic career [13]. I have great memories with him from his visits in
Chemnitz, and also from the various optimization conferences we jointly attended.”

Cornel Pintea, Babeş-Bolyai University, Cluj-Napoca, Romania:
”I first met Gabi Kassay in 1985 as a freshman student at Faculty of Mathema-

tics, Babeş-Bolyai University, as he taught me and my group of colleagues a tutorial
of Mathematical Analysis. Gabi Kassay was a teacher and researcher of high order.
I certainly appreciated, during my first academic year, the rigorous and meticulous
way in which he prepared and delivered his topics such as the Cantor sets, the Cantor
intersection theorem, the structure of the open subsets of the real line, a Whitney type
decomposition theorem, integrals and so on. At that time I also noticed his ability
to enter the world of the students he taught as he considered himself and used to be
considered by most of his students as part of their own world. His teaching activity
has obviously reached higher and higher levels, due to its own dynamic along the
last decades, and its outcome consists in several realized and well established former
students. Such an accommodation with the students he taught was only possible
through extraordinary communication skills. Therefore, I am also sure that he was
widely appreciated by his students along the almost four decades of his teaching
activity and most of them still remember his lectures.

The research component of his professional activity is also very reach and highly
appreciated within the Mathematical Analysis community, with emphasis on Opti-
mization, Variational Analysis and Equilibrium Problems, as his published scientific
papers have great impact in this community. Indeed, Gabi has extensively published
in national and especially in international journals with good standards and was the
author of several books and book chapters among which we just mention here the
monographs The Equilibrium Problem and Related Topics [10] and Equilibrium Prob-
lems and Applications [31]. The outcome of his research activity was significantly
influenced, in my opinion, by his communication skills as he used to have direct con-
tacts with his collaborators on a regular basis. In this respect he traveled a lot and
used these opportunities, not only for mathematical production, but also to under-
stand the local culture and the history of the communities he visited. I had several
opportunities to observe this face of his cultural interests when we both traveled for
common scientific events such as those in Isfahan (Iran) for a conference on Nonlin-
ear Analysis and Optimization in 2009, in Pisa (Italy) for a workshop on Variational
Analysis, Equilibria and Optimization organized, in May 2017, in the honor of his
60th birthday or in Granada (Spain) for a conference on Minimax Inequalities and
Equilibrium Problems in May 2019. In fact Gabi was one of the greatest fruitful
travelers, in professional purposes, in our department. Indeed the outcome of his re-
search activity does not only reduces to his publications but is also visible through the
PhD students he supervised who are currently occupying important positions both
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in Romania and abroad. Gabi has had an extensive coordination activity. Indeed, he
coordinated 3 exploratory and research projects (IDEAS) obtained by competition at
the national level, all with significant scientific output e.g. [21, 22, 19]. Gabi was also
the coordinator of the Analysis and Optimization Research Group within our Faculty
of Mathematics and Computer Science, a group with important scientific production.
Last, but not least, Gabi had an extensive editorial activity, being a member of the
editorial board of 6 international journals.”

Szilárd Csaba László, Technical University of Cluj-Napoca, Romania:
”Professor Gábor Kassay was my PhD supervisor, mentor and, last but not

least, my good friend. He was full of zest and enthusiasm for living, he was driven by
curiosity about new things. In his mathematical proofs he was characterized by strict
logic and consistency, but at the same time he was able to pass on even the newly
acquired knowledge to his students or colleagues.

During my doctoral studies, I had the opportunity to observe his attitude to-
wards science and mathematics. I always listened to his scientific lectures and refined
explanations with great interest. He taught that not all mathematical results are
worth publishing and that we should distinguish between really valuable and neg-
ligible mathematical results. He also showed me the importance of examples and
counterexamples in a mathematical study. He shared the open questions and obsta-
cles that arose during his research with his colleagues and friends. He was happy when
someone could give a counterexample or an explanation. In such cases, he gladly in-
volved the given person in his current research, he made no difference whether he was
a student or a professor.

Personally, I can thank Gábor a lot. He introduced me into the world of re-
search and taught me how to write a scientific article [22]. Later, he was also my
mentor in a postdoctoral project. He kept track of my scientific work, and I often
held presentations at the research seminar he led. The loss of Gábor left a huge space
behind, but his memory continues to live for us, those who knew him and respected
his consciousness, helpfulness and optimism.”

3. Concluding remarks

Gábor Kassay was driven by a desire to learn and discover new things. He also
reached several places on each continent of the world and he shared many stories and
experiences with his friends and colleagues. The presented memories show that Gábor
Kassay was an excellent researcher, instructor, a good colleague and a great friend,
whose loss leaves a hole in our hearts.

We would like to express our thanks to all who contributed to the realization of
this article through memories and useful recommendations.
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GÁBOR KASSAY – IN MEMORIAM 9

[2] Kassay, G., On solvability of nonlinear Hammerstein equations, Babeş-Bolyai University
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inequalities, Set-Valued Var. Anal., 29(2021), 175–190.

[34] Al-Homidan, S., Ansari, Q.H., Kassay, G., Bregman type regularization of variational
inequalities with Mosco approximation of the constraint set, Positivity, 26(2022), no. 3.

[35] Bianchi, M., Kassay, G., Pini, R., Brezis pseudomonotone bifunctions and quasi equilib-
rium problems via penalization, to appear in J. of Global Optim.
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feasibility problems
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Abstract. The notion of porosity is well known in Optimization and Nonlinear
Analysis. Its importance is brought out by the fact that the complement of a
σ-porous subset of a complete pseudo-metric space is a residual set, while the
existence of the latter is essential in many problems which apply the generic
approach. Thus, under certain circumstances, some refinements of known results
can be achieved by looking for porous sets. In 2001 Gabour, Reich and Zaslavski
developed certain generic methods for solving stochastic feasibility problems. This
topic was further investigated in 2021 by Barshad, Reich and Zaslavski, who
provided more general results in the case of unbounded sets. In the present paper
we introduce and examine new generic methods that deal with the aforesaid
problems, in which, in contrast with previous studies, we consider sigma-porous
sets instead of meager ones.

Mathematics Subject Classification (2010): 37B25, 46N10, 47J25, 54E50, 54E52,
90C30, 90C48.

Keywords: Baire category, Banach space, common fixed point problem, generic
convergence, porous set, residual set, stochastic feasibility problem.

1. Introduction and background

We consider (generalized) stochastic feasibility problems from the point of view
of the generic approach (for more applications of this approach, see, for example, [7]).
These are the problems of finding almost common fixed points of measurable (with
respect to a probability measure) families of mappings. Namely, we provide generic
methods for finding almost common fixed points by using the notion of porosity. Our
results are applicable to both the consistent case (that is, the case where the aforesaid
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almost common fixed points exist) and the inconsistent case (that is, the case where
there are no common fixed points at all).

We begin by recalling the definitions of porosity and local convexity.
Given a pseudo-metric space (Y, ρ), we denote by Bρ (y, r), for each y ∈ Y and

r > 0, the open ball in (Y, ρ) of center y and radius r. Recall that a subset E of
a complete pseudo-metric space (Y, ρ) is called a porous subset of Y if there exist
α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0] and each y ∈ Y , there exists a
point z ∈ Y for which

Bρ (z, αr) ⊂ Bρ (y, r) \E.
A subset of Y is called a σ-porous subset of Y if it is a countable union of porous
subsets of Y . Note that since a porous set is nowhere dense, any σ-porous set is of
the first category and hence its complement is residual in (Y, ρ), that is, it contains
a countable intersection of open and dense subsets of (Y, ρ). For this reason, there
is a considerable interest in σ-porous sets while searching for generic solutions to
optimization problems. More information concerning the notion of porosity and its
applications can be found, for example, in [3], [6], [7] and [8].

Recall that a topological vector space V with the topology T is said to be a locally
convex space if there exists a family P of pseudo-norms on V such that the family of
open balls {Bρ (x0, ε) : x0 ∈ V, ε > 0, ρ ∈P} is a subbasis for T and ∩ρ∈PZρ = {0},
where Zρ = {x ∈ V : ρ (x) = 0} for each ρ ∈ P. Clearly, every normed space (as a
topological vector space with respect to its norm) is a locally convex space. In the
sequel we use the following result (see Theorem 3.9 in [2]).

Theorem 1.1. Let V be a real locally convex topological vector space, and let A and B
be two disjoint closed and convex subsets of V . If either A or B is compact, then A
and B are strictly separated, that is, there is α ∈ R and a continuous linear functional
φ : V → R such that φ (a) > α for each a ∈ A and φ (b) < α for each b ∈ B.

Now we introduce the spaces for which we investigate the stochastic feasibility
problem. Other spaces which can be considered regarding this problem, can be found,
for example, in [1] and [5].

Suppose that (X, ‖·‖) is a normed vector space with norm ‖·‖, F is a nonempty,
closed, convex and bounded subset of X, (Ω,A, µ) is a probability measure space
(more information on measure spaces and measurable mappings can be found, for
example, in [3]) and K is a subset of X which contains F . Denote by N the set of
all nonexpansive mappings A : K → F , that is, all mappings A : K → F such that
‖Ax−Ay‖ ≤ ‖x− y‖ for each x, y ∈ K. For the set N , define a metric ρN : N×N →
R by

ρN (A,B) := sup {‖Ax−Bx‖ : x ∈ K} , A,B ∈ N .
Clearly, the metric space (N , ρN ) is complete if (X, ‖·‖) is a Banach space.

Denote by NΩ the set of all mappings T : Ω→ N such that for each x ∈ K, the
mapping T ′x : Ω→ F , defined, for each ω ∈ Ω, by T ′x (ω) := T (ω) (x), is measurable.
It is not difficult to see that if T ∈ NΩ, then T ′x is integrable on Ω. For each T ∈ NΩ,

define an operator T̃ : K → F by T̃ x =
∫

Ω
T ′x (ω) dµ (ω) for each x ∈ K. By Theorem

1.1, this is indeed a mapping the image of which is contained in F . Note that the



Porosity-based methods for solving stochastic feasibility problems 13

mapping defined on NΩ by T 7→ T̃ is onto N . Clearly, for each T ∈ NΩ, we have

T̃ ∈ N . Thus we consider the topology defined by the following pseudo-metric on NΩ:

ρNΩ
(T, S) := ρN

(
T̃ , S̃

)
, T, S ∈ NΩ.

It is not difficult to see that the pseudo-metric space (NΩ, ρNΩ
) is complete if (X, ‖·‖)

is a Banach space.
Denote byMΩ the set of all sequences {Tn}∞n=1 ⊂ NΩ. We define a pseudo-metric

ρMΩ
:MΩ ×MΩ → R on NΩ in the following way:

ρMΩ
({Tn}∞n=1 , {Sn}

∞
n=1) := sup {ρNΩ

(Tn, Sn) : n = 1, 2 . . . } ,

{Tn}∞n=1 , {Sn}
∞
n=1 ∈MΩ.

Obviously, this space is complete if (X, ‖·‖) is a Banach space.
The rest of the paper is organized as follows. In Section 2 we state our main

results. Two auxiliary assertions are presented in Section 3. In Section 4 we provide
the proofs of our main results.

In all our results we also assume that (X, ‖·‖) is a Banach space.

2. Statements of the main results

In this section we state our main results. We establish them in Section 4 below.
Recall that for each T ∈ NΩ, a point x ∈ K is an almost common fixed point

of the family {T (ω)}ω∈Ω if T (ω)x = x for almost all ω ∈ Ω. Similarly, for each

sequence {Tn}∞n=1 ∈ MΩ, a point x ∈ K is an almost common fixed point of the
family {Tn (ω)}ω∈Ω, n=1,2... if Tn (ω)x = x for all n = 1, 2, . . . and almost all ω ∈ Ω.

Theorem 2.1. There exists a set F ⊂MΩ such that MΩ\F is a σ-porous subset of
MΩ and for each {Tn}∞n=1 ∈ F , the following assertion holds true:

For each ε > 0, there is a positive integer N such that for each integer n ≥ N
and each mapping s : {1, 2, . . . } → {1, 2, . . . }, we have∥∥∥T̃s(n) . . . T̃s(1)x− T̃s(n) . . . T̃s(1)y

∥∥∥ < ε

for each x, y ∈ K. Consequently, if there is an almost common fixed point of the
family {Tn (ω)}ω∈Ω, n=1,2..., then it is unique and for each x ∈ K, the sequence{
T̃s(n) . . . T̃s(1)x

}∞
n=1

converges to it as n → ∞, uniformly on K, for each mapping

s : {1, 2, . . . } → {1, 2, . . . }.

Theorem 2.2. There exists a set F ⊂NΩ such that the set G := NΩ\F a σ-porous
subset of NΩ, and for each T ∈ F , the following assertion holds true:

There exists xT ∈ K which is the unique fixed point of the operator T̃ such that

for each x ∈ K, the sequence
{
T̃nx

}∞
n=1

converges to xT as n → ∞, uniformly on

K. Moreover, the set F of all almost common fixed points of the family {T (ω)}ω∈Ω is
contained in {xT }. As a result, if F 6= ∅, then xT is the unique almost common fixed
point of the family {T (ω)}ω∈Ω.
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3. Auxiliary results

In this section we present two lemmata which will be used in the proofs of our
main results. We start by defining three sequences which we use in the proofs of these
lemmata.

Choose z0 ∈ F and set r0 = 1. We first define the sequence {αk}∞k=1 of positive
numbers by

αk = 2−1

(
1 + 2k

(
2 sup
z∈F
‖z‖+ 1

))−1

∈ (0, 1) . (3.1)

Clearly, for each positive integer k,

(1− αk)

(
2 sup
z∈F
‖z‖+ 1

)−1

∈ (0, 1) (3.2)

and

(1− αk)

(
2 sup
z∈F
‖z‖+ 1

)−1

− 2αkk = 2−1

(
2 sup
z∈F
‖z‖+ 1

)−1

> 0. (3.3)

Using (3.3), for each r ∈ (0, r0], we choose sequences {γrk}
∞
k=1 and {Nr

k}
∞
k=1 of positive

numbers such that

γrk ∈

(
2αkkr, (1− αk) r

(
2 sup
z∈F
‖z‖+ 1

)−1
)

(3.4)

and
Nr
k > 2

(
γrkk
−1 − 2αkr

)−1
sup
z∈F
‖z‖+ 1 (3.5)

for each positive integer k. Evidently, by(3.1), (3.2) and (3.4), γrk ∈ (0, 1).

Lemma 3.1. Assume that k is a positive integer and let Fk be the set of all sequences
{Tn}∞n=1 ∈MΩ for which there exists a positive integer N such that for each mapping
s : {1, 2, . . . } → {1, 2, . . . }, we have∥∥∥T̃s(N) . . . T̃s(1)x− T̃s(N) . . . T̃s(1)y

∥∥∥ < k−1

for each x, y ∈ K. Then the set Gk :=MΩ\Fk is a porous subset of MΩ.

Proof. Assume that {Tn}∞n=1 ∈ MΩ and r ∈ (0, r0]. Define a sequence of mappings{
T
γr
k

n

}∞
n=1

, T
γr
k

n : Ω→ N , by

T
γr
k

n (ω)x := (1− γrk)Tn (ω)x+ γrkz0, n = 1, 2, . . .

for each ω ∈ Ω and each x ∈ K. Clearly,
{
T
γr
k

n

}∞
n=1
∈MΩ and for each n = 1, 2, . . . ,

T̃
γr
k

n x =

∫
Ω

((1− γrk)Tn (ω)x+ γrkz0) dµ (ω) = γrkz0 + (1− γrk)

∫
Ω

Tn (ω)xdµ (ω)

= (1− γrk) T̃nx+ γrkz0

for each x ∈ K. We have

ρMΩ

({
T
γr
k

n

}∞
n=1

, {Tn}∞n=1

)
≤ 2γrk sup

z∈F
‖z‖ , (3.6)
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as well as, for each positive integer n,∥∥∥∥T̃ γr
k

n x− T̃ γ
r
k

n y

∥∥∥∥ ≤ (1− γrk) ‖x− y‖ (3.7)

for each x, y ∈ K.
Let {Sn}∞n=1 ∈MΩ satisfy

ρMΩ

({
T
γr
k

n

}∞
n=1

, {Sn}∞n=1

)
< αkr. (3.8)

Assume that s : {1, 2, . . . } → {1, 2, . . . } is an arbitrary mapping. We claim that∥∥∥S̃s(Nr
k) . . . S̃s(1)x− S̃s(Nr

k) . . . S̃s(1)y
∥∥∥ < k−1 (3.9)

for each x, y ∈ K. Suppose to the contrary that this does not hold. Then there exist
points x0, y0 ∈ K such that for each i = 0 . . . Nr

k , we have∥∥∥S̃s(i) . . . S̃s(1)x0 − S̃s(i) . . . S̃s(1)y0

∥∥∥ ≥ k−1. (3.10)

Using the triangle inequality, (3.8), (3.7) and (3.10), we obtain that for each
i = 1 . . . Nr

k , ∥∥∥S̃s(i) . . . S̃s(1)x0 − S̃s(i) . . . S̃s(1)y0

∥∥∥
≤
∥∥∥∥S̃s(i)S̃s(i−1) . . . S̃s(1)x0 − T̃

γr
k

s(i)S̃s(i−1) . . . S̃s(1x0

∥∥∥∥
+

∥∥∥∥T̃ γr
k

s(i)S̃s(i−1) . . . S̃s(1)x0 − T̃
γr
k

s(i)S̃s(i−1) . . . S̃s(1)y0

∥∥∥∥
+

∥∥∥∥T̃ γr
k

s(i)S̃s(i−1) . . . S̃s(1)y0 − S̃s(i) . . . S̃s(1)y0

∥∥∥∥
< 2αkr + (1− γrk)

∥∥∥S̃s(i−1) . . . S̃s(1)x0 − S̃s(i−1) . . . S̃s(1)y0

∥∥∥
≤
∥∥∥S̃s(i−1) . . . S̃s(1)x0 − S̃s(i−1) . . . S̃s(1)y0

∥∥∥+ 2αkr − γrkk−1.

Hence by (3.4), we have∥∥∥S̃s(i−1) . . . S̃s(1)x0 − S̃s(i−1) . . . S̃s(1)y0

∥∥∥− ∥∥∥S̃s(i) . . . S̃s(1)x0 − S̃s(i) . . . S̃s(1)y0

∥∥∥
> γrkk

−1 − 2αkr > 0

for each i = 1 . . . Nr
k . Therefore

2 sup
z∈F
‖z‖ ≥

∥∥∥S̃s(1)x0 − S̃s(1)y0

∥∥∥− ∥∥∥S̃s(Nr
k) . . . S̃s(1)x0 − S̃s(Nr

k) . . . S̃s(1)y0

∥∥∥
= Σ

Nr
k

i=2

(∥∥∥S̃s(i−1) . . . S̃s(1)x0 − S̃s(i−1) . . . S̃s(1)y0

∥∥∥
−
∥∥∥S̃s(i) . . . S̃s(1)x0 − S̃s(i) . . . S̃s(1)y0

∥∥∥) > (Nr
k − 1)

(
γrkk
−1 − 2αkr

)
.

As a result,

Nr
k < 2

(
γrkk
−1 − 2αkr

)−1
sup
z∈F
‖z‖+ 1.
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This, however, contradicts (3.5). Thus (3.9) does hold. Next, using the triangle in-
equality, we see by (3.6), (3.8) and (3.4) that

ρMΩ
({Tn}∞n=1 , {Sn}

∞
n=1) ≤ ρMΩ

(
{Tn}∞n=1 ,

{
T
γr
k

n

}∞
n=1

)
+ρMΩ

({
T
γr
k

n

}∞
n=1

, {Sn}∞n=1

)
< 2γrk sup

z∈F
‖z‖+ αkr < (1− αk) r + αkr = r. (3.11)

From (3.9) and (3.11) it now follows that

BρMΩ

({
T
γr
k

n

}∞
n=1

, αkr
)
⊂ BρMΩ

({Tn}∞n=1 , r) ∩ Fk = BρMΩ
({Tn}∞n=1 , r) \Gk.

Hence Gk is indeed a porous subset of MΩ, as asserted. �

Lemma 3.2. Assume that k is a positive integer and let Fk be the set of all mappings
T ∈ NΩ for which there exists a positive integer N such that∥∥∥T̃Nx− T̃Ny∥∥∥ < k−1

for each x, y ∈ K. Then the set Gk := NΩ\Fk is a porous subset of NΩ.

Proof. Assume that T ∈ NΩ and r ∈ (0, r0]. Define a mapping Tγr
k
, Tγr

k
: Ω→ N , by

Tγr
k

(ω)x := (1− γrk)T (ω)x+ γrkz0

for each ω ∈ Ω and each x ∈ K. Clearly, Tγr
k
∈ NΩ and

T̃γr
k
x =

∫
Ω

((1− γrk)T (ω)x+ γrkz0) dµ (ω) = γrkz0 + (1− γrk)

∫
Ω

T (ω)xdµ (ω)

= (1− γrk) T̃ x+ γrkz0

for each x ∈ K. We have

ρNΩ

(
Tγr

k
, T
)
≤ 2γrk sup

z∈F
‖z‖ , (3.12)

as well as ∥∥∥T̃γr
k
x− T̃γr

k
y
∥∥∥ ≤ (1− γrk) ‖x− y‖ (3.13)

for each x, y ∈ K.
Let S ∈ NΩ satisfy

ρNΩ

(
Tγr

k
, S
)
< αkr. (3.14)

We claim that ∥∥∥S̃Nr
kx− S̃N

r
k y
∥∥∥ < k−1 (3.15)

for each x, y ∈ K. Suppose to the contrary that this does not hold. Then there exist
points x0, y0 ∈ K such that for each i = 0 . . . Nr

k , we have∥∥∥S̃ix0 − S̃iy0

∥∥∥ ≥ k−1. (3.16)
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Using the triangle inequality, (3.14), (3.13) and (3.16), we see that for each
i = 1 . . . Nr

k , ∥∥∥S̃ix0 − S̃iy0

∥∥∥ ≤ ∥∥∥S̃S̃i−1x0 − T̃γr
k
S̃i−1x0

∥∥∥
+
∥∥∥T̃γr

k
S̃i−1x0 − T̃γr

k
S̃i−1y0

∥∥∥+
∥∥∥T̃γr

k
S̃i−1y0 − S̃S̃i−1y0

∥∥∥
< 2αkr + (1− γrk)

∥∥∥S̃i−1x0 − S̃i−1y0

∥∥∥
≤
∥∥∥S̃i−1x0 − S̃i−1y0

∥∥∥+ 2αkr − γrkk−1.

Hence by (3.4),∥∥∥S̃i−1x0 − S̃i−1y0

∥∥∥− ∥∥∥S̃ix0 − S̃iy0

∥∥∥ > γrkk
−1 − 2αkr > 0,

for each i = 1 . . . Nr
k . Therefore

2 sup
z∈F
‖z‖ ≥

∥∥∥S̃x0 − S̃y0

∥∥∥− ∥∥∥S̃Nr
kx0 − S̃N

r
k y0

∥∥∥
= Σ

Nr
k

i=2

(∥∥∥S̃i−1x0 − S̃i−1y0

∥∥∥− ∥∥∥S̃ix0 − S̃iy0

∥∥∥)
> (Nr

k − 1)
(
γrkk
−1 − 2αkr

)
.

As a result,

Nr
k < 2

(
γrkk
−1 − 2αkr

)−1
sup
z∈F
‖z‖+ 1.

This, however, contradicts (3.5). Thus (3.15) does hold. Next, using the triangle in-
equality, we see by (3.12), (3.14) and (3.4) that

ρNΩ (T, S) ≤ ρNΩ

(
T, Tγr

k

)
+ ρNΩ

(
Tγr

k
, S
)

< 2γrk sup
z∈F
‖z‖+ αkr < (1− αk) r + αkr = r. (3.17)

From (3.15) and (3.17) it now follows that

BρNΩ

(
Tγr

k
, αkr

)
⊂ BρNΩ

(T, r) ∩ Fk = BρNΩ
(T, r) \Gk.

Hence Gk is indeed a porous subset of NΩ, as asserted. �

4. Proofs of the main results

Proof of Theorem 2.1. By Lemma 3.1, there is a sequence of subsets {Fn}∞n=1 ofMΩ

such that for each positive integer n, the set Gn :=MΩ\Fn is a porous subset ofMΩ

and Fn is the set of all sequences {Tn}∞n=1 ∈ MΩ for which there exists a positive
integer N such that for each mapping s : {1, 2, . . . } → {1, 2, . . . }, we have∥∥∥T̃s(N) . . . T̃s(1)x− T̃s(N) . . . T̃s(1)y

∥∥∥ < n−1 (4.1)

for each x, y ∈ K. Set F := ∩∞n=1Fn. Then MΩ\F = ∪∞n=1Gn is a σ-porous subset of
MΩ.
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Let {Tn}∞n=1 ∈ F and let ε > 0. Choose a positive integer n0 such that n−1
0 < ε.

Since {Tn}∞n=1 ∈ Fn0 , we infer from (4.1) that there exists a positive integer N such
that for each integer n ≥ N and each mapping s : {1, 2, . . . } → {1, 2, . . . },∥∥∥T̃s(n) . . . T̃s(1)x− T̃s(n) . . . T̃s(1)y

∥∥∥ ≤ ∥∥∥T̃s(N) . . . T̃s(1)x− T̃s(N) . . . T̃s(1)y
∥∥∥ < n−1

0 < ε

(4.2)
for each x, y ∈ K. This completes the proof. �

Proof of Theorem 2.2. By Lemma 3.2, there is a sequence of subsets {Fn}∞n=1 of NΩ

such that for each positive integer n, the set Gn := NΩ\Fn is a porous subset of NΩ

and Fn is the set of all mappings T ∈ NΩ for which there exists a positive integer N
satisfying ∥∥∥T̃Nx− T̃Ny∥∥∥ < n−1 (4.3)

for each x, y ∈ K. Set F := ∩∞n=1Fn. Then NΩ\F = ∪∞n=1Gn is a σ-porous subset of
NΩ.

Let T ∈ F and let ε > 0 be arbitrary. Choose a positive integer n0 such that
n−1

0 < ε. Since T ∈ Fn0
, we infer from (4.3) that there exists a positive integer N

such that for each integer n ≥ N ,∥∥∥T̃nx− T̃ny∥∥∥ < ∥∥∥T̃Nx− T̃Ny∥∥∥ < n−1
0 < ε (4.4)

for each x, y ∈ K. Clearly, for all integers n,m ≥ N , we have∥∥∥T̃nx− T̃mx∥∥∥ < ε (4.5)

for each x ∈ K. Since ε is an arbitrary positive number, inequality (4.5) and the com-

pleteness of the subspace F of (X, ‖·‖) imply that the sequence
{
T̃n
}∞
n=1

converges

to an operator P : K → F , uniformly on K. By taking the limit in (4.4), we see
that P is constant on K, that is, there exists a point xT ∈ K such that the sequence{
T̃nx

}∞
n=1
→ xT as n→∞, uniformly on K. Pick an arbitrary point x0 ∈ K. Since

the operator T̃ is continuous, it follows that

T̃ xT = T̃ lim
n→∞

T̃ kx0 = lim
k→∞

T̃ k+1x0 = xT .

Hence xT ∈ K is the unique fixed point of the operator T̃ , as asserted. �

Remark 4.1. We take this opportunity to correct two misprints in [1].

• Page 332, second paragraph: The sentence “Note that this mapping is onto K.”
should be replaced by the sentence “Note that the mapping defined on NΩ by

T 7→ T̃ is onto N .”
• Page 347: The formula

R̃nxR = R̃n lim
k→∞

R̃n
k
x = lim

k→∞
R̃n

k+1
xR = xR

should be replaced by the formula

R̃nxR = R̃n lim
k→∞

R̃n
k
x = lim

k→∞
R̃n

k+1
x = xR.
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A maximum theorem for generalized convex
functions

Zsolt Páles

Dedicated to the memory of Professors Gábor Kassay and Csaba Varga.

Abstract. Motivated by the Maximum Theorem for convex functions (in the set-
ting of linear spaces) and for subadditive functions (in the setting of Abelian
semigroups), we establish a Maximum Theorem for the class of generalized
convex functions, i.e., for functions f : X → R that satisfy the inequality
f(x◦y) ≤ pf(x)+ qf(y), where ◦ is a binary operation on X and p, q are positive
constants. As an application, we also obtain an extension of the Karush–Kuhn–
Tucker theorem for this class of functions.

Mathematics Subject Classification (2010): 39B22, 39B52.

Keywords: Maximum theorem, generalized convex function.

1. Introduction

In what follows, a linear space X always means a vector space over the field
of real numbers. If X is a topological linear space, then its (topological) dual space
is denoted by X∗. The Maximum Theorem for convex functions, which is due to
Dubovitskii and Milyutin (cf. [9]), can be stated as follows.

Theorem 1.1. Let X be a linear space, let D ⊆ X be a convex set and let f1, . . . , fn :
D → R be convex functions such that

0 ≤ max(f1(x), . . . , fn(x)) (x ∈ D).

Then there exist λ1, . . . , λn ≥ 0 with λ1 + · · ·+ λn = 1 such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ D).

The research of the author was supported by the K-134191 NKFIH Grant and the 2019-2.1.11-TÉT-
2019-00049 project.

Received 19 December 2021; Accepted 29 December 2021.
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A standard application of the Maximum Theorem is to prove the subdifferential
formula for the pointwise maximum of convex functions, which was established by
Dubovitskii and Milyutin (see [9]). For the standard terminologies and notations, we
refer to the list of monographs in the list of references, where the reader can find
many more details and applications.

Theorem 1.2. Let X be a topological vector space, D ⊆ X be an open convex set, p ∈ D
and f1, . . . , fn : D → R be continuous convex functions with f1(p) = · · · = fn(p) and
define f := max(f1, . . . , fn). Then

∂f(p) = conv
(
∂f1(p) ∪ · · · ∪ ∂fn(p)

)
.

Proof. Using that f(p) = f1(p) = · · · = fn(p), for all h ∈ X, we obtain

f ′(p, h) : = lim
t→0+

f(p+ th)− f(p)

t

= lim
t→0+

max(f1(p+ th), . . . , fn(p+ th))− f(p)

t

= lim
t→0+

max

(
f1(p+ th)− f(p)

t
, . . . ,

fn(p+ th)− f(p)

t

)
= lim

t→0+
max

(
f1(p+ th)− f1(p)

t
, . . . ,

fn(p+ th)− fn(p)

t

)
= max

(
lim
t→0+

f1(p+ th)− f1(p)

t
, . . . , lim

t→0+

fn(p+ th)− fn(p)

t

)
= max(f ′1(p, h), . . . , f ′n(p, h)).

First assume that a continuous linear functional ϕ ∈ X∗ belongs to ∂f(p). Then, in
view of the above formula for directional derivatives, we get

ϕ(h) ≤ f ′(p, h) = max(f ′1(p, h), . . . , f ′n(p, h)) (h ∈ X).

This relation implies that

0 ≤ max(f ′1(p, h)− ϕ(h), . . . , f ′n(p, h)− ϕ(h)) (h ∈ X).

This inequality states that the maximum of the convex functions h 7→ f ′i(p, h)−ϕ(h)
is nonnegative. Thus, by the Maximum Theorem, there exist λ1, . . . , λn ≥ 0 with
λ1 + · · ·+ λn = 1 such that

0 ≤ λ1(f ′1(p, h)− ϕ(h)) + · · ·+ λn(f ′n(p, h)− ϕ(h)) (h ∈ X),

equivalently,

ϕ(h) ≤ λ1f ′1(p, h) + · · ·λnf ′n(p, h) = (λ1f1 + · · ·λnfn)′(p, h) (h ∈ X).

Using the so-called Sum Rule, we get

ϕ ∈ ∂(λ1f1 + · · ·λnfn)(p) = λ1∂f1(p) + · · ·+ λn∂fn(p)

⊆ conv
(
∂f1(p) ∪ · · · ∪ ∂fn(p)

)
.

The proof of the reversed inclusion is simpler, thus it is left to the reader. �
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Another motivation for this paper comes from the theory of subadditive functions
defined on Abelian semigroups. The following result was stated in the monograph [7]
of Fuchssteiner and Lusky.

Theorem 1.3. Let (X,+) be an Abelian semigroup and let f1, . . . , fn : X → R be
subadditive functions such that

0 ≤ max(f1(x), . . . , fn(x)) (x ∈ X).

Then there exist λ1, . . . , λn ≥ 0 with λ1 + · · ·+ λn = 1 such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ X).

This result has beautiful applications in the book [7], for instance, the
Phragmen–Lindelöf Principle and the Hadamard Three Circle Theorem (both results
belong to the theory of complex functions) can elegantly be verified in terms of them.

2. The general maximum problem

The two Maximum Theorems described in the Introduction motivate the follow-
ing definition.

Definition 2.1. Let X be a nonempty set. A family F ⊆ {f : X → R} is said to have
the discrete maximum property if

f1, . . . , fn ∈ F , 0 ≤ max(f1(x), . . . , fn(x)) (x ∈ X)

implies that there exist (λ1, . . . , λn) ∈ Sn such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ X).

Here, for convenience, Sn denotes the (n− 1)-dimensional simplex

{(λ1, . . . , λn) ∈ Rn | λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn = 1}.

If X has at least two elements, then the set of all functions F := {f : X → R}
does not have the discrete maximum property. Indeed, Let {A1, A2} be a partition
of X and fi(x) := 0 if x ∈ Ai, fi(x) := −1 if x 6∈ Ai. Then max(f1, f2) = 0, but
λf1 + (1 − λ)f2 < 0 for all λ ∈ [0, 1]. This example shows that, in order to possess
the discrete maximum property, the family F ⊆ {f : X → R} must satisfy some
additional nontrivial conditions.

In the next result we characterize the situation when a finite family of given
functions possess a nonnegative convex combination.

Theorem 2.2. Let X be nonempty and f1, . . . , fn : X → R. Then there exists
(λ1, . . . , λn) ∈ Sn such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ X) (2.1)

if and only if

0 ≤ max
i∈{1,...,n}

(
t1fi(x1) + · · ·+ tnfi(xn)

)
(x1, . . . , xn ∈ X, (t1, . . . , tn) ∈ Sn). (2.2)
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Proof. Assume first that (2.1) holds for some λ ∈ Sn. To verify the necessity of
(2.2), let x1, . . . , xn ∈ X and (t1, . . . , tn) ∈ Sn be arbitrary. Then, using (2.1) for
x ∈ {x1, . . . , xn}, we get

0 ≤
n∑

j=1

tj
(
λ1f1(xj) + · · ·+ λnfn(xj)

)
=

n∑
i=1

λi
(
t1fi(x1) + · · ·+ tnfi(xn)

)
≤ max

i∈{1,...,n}

(
t1fi(x1) + · · ·+ tnfi(xn)

)
.

This shows the necessity of condition (2.2).
Now assume that (2.2) holds and, for x ∈ X, define the set Λx ⊆ Sn by

Λx :=
{

(λ1, . . . , λn) ∈ Sn | 0 ≤ λ1f1(x) + · · ·+ λnfn(x)
}
. (2.3)

The inequality (2.1) is now equivalent to the condition⋂
x∈X

Λx 6= ∅, (2.4)

because every element λ of the above intersection will satisfy (2.1). It easily follows
from the definition that Λx is a compact convex subset of the (n − 1)-dimensional
affine space

{(λ1, . . . , λn) ∈ Rn | λ1 + · · ·+ λn = 1}.
Therefore, according to Helly’s Theorem, the condition (2.4) is satisfied if and only
every n-member subfamily of {Λx | x ∈ X} has a nonempty intersection. To verify
this, let x1, . . . .xn ∈ X be fixed arbitrarily. According to inequality (2.2), the pointwise
maximum of the convex functions

Sn 3 (t1, . . . , tn) 7→ t1fi(x1) + · · ·+ tnfi(xn)

is nonnegative over Sn.
Therefore, in view of Theorem 1.1, there exists (λ1, . . . , λn) ∈ Sn such that

0 ≤
n∑

i=1

λi
(
t1fi(x1) + · · ·+ tnfi(xn)

)
=

n∑
j=1

tj
(
λ1f1(xj) + · · ·+ λnfn(xj)

)
((t1, . . . , tn) ∈ Sn).

If i ∈ {1, . . . , n}, then substituting (t1, . . . , tn) := (δi,j)
n
j=1 into the above inequality,

we get that

λ1f1(xi) + · · ·+ λnfn(xi) (i ∈ {1, . . . , n}).
This shows that λ ∈ Λx1

∩ · · · ∩Λxn
, proving that this intersection is nonempty, as it

was desired. �

In the case n = 2, the above theorem immediately implies the following statement.
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Corollary 2.3. Let X be a nonempty set and f, g : X → R. Then there exists λ ∈ [0, 1]
such that

0 ≤ λf(x) + (1− λ)g(x) (x ∈ X) (2.5)

if and only if

0 ≤ max
(
tf(x) + (1− t)f(y), tg(x) + (1− t)g(y)

)
(x, y ∈ X, t ∈ [0, 1]). (2.6)

3. Generalized convexity

The general convexity property that we introduce below is going to play an
important role in the sequel.

Definition 3.1. Let X be a nonempty set, ◦ : X × X → X be a binary operation,
p, q > 0 be constants. A function f : X → R is called (◦, p, q)-convex if

f(x ◦ y) ≤ pf(x) + qf(y) (x, y ∈ X).

Trivially, if X is a convex subset of a linear space, p = q = 1
2 , and x ◦ y = x+y

2 ,
then f is (◦, p, q)-convex if and only if f is Jensen convex. On the other hand, if X is
an Abelian semigroup, p = q = 1, and x ◦ y = x+ y, then f is (◦, p, q)-convex if and
only if f is subadditive.

The proof of the following assertion is elementary, therefore it is omitted.

Theorem 3.2. The family of (◦, p, q)-convex functions is closed with respect to addition,
multiplication by positive scalars and pointwise maximum.

The main result of this paper is stated in the following theorem.

Theorem 3.3. Let X be a nonempty set, ◦ : X ×X → X be a binary operation, and
p, q > 0 be constants. Let f1, . . . , fn : X → R be (◦, p, q)-convex functions such that

0 ≤ max(f1(x), . . . , fn(x)) (x ∈ X).

Then there exist λ1, . . . , λn ≥ 0 with λ1 + · · ·+ λn = 1 such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ X).

The following auxiliary result establishes the key tool for the proof of Theorem 3.3.

Lemma 3.4. Let X be a nonempty set, ◦ : X × X → X be a binary operation, and
p, q > 0 be constants. Let

S :=
{ a

a+ b

∣∣∣There is an operation ∗ : X ×X → X such that

every (◦, p, q)-convex function is (∗, a, b)-convex.
}

Then 1− S ⊆ S and S is dense multiplicative subsemigroup of [0, 1].

Proof. If s ∈ S, then there exists an operation ∗ : X ×X → X and a, b > 0 such that
s = a

a+b and f is (∗, a, b)-convex, i.e.,

f(x ∗ y) ≤ af(x) + bf(y) (x, y ∈ X).

Thus, interchanging the roles of x and y, we get

f(y ∗ x) ≤ bf(x) + af(y) (x, y ∈ X),
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which means that f is (∗′, b, a)-convex, where x∗′y := y∗x. Therefore 1−s = b
a+b ∈ S,

which shows that 1− S ⊆ S.
Additionally, let t ∈ S be arbitrary.
Then there exists a binary operation · : X ×X → X and c, d > 0 such that t = c

c+d

and f is also (·, c, d)-convex, i.e.,

f(x · y) ≤ cf(x) + df(y) (x, y ∈ X).

Using the (·, c, d)- and the (∗, a, b)-convexity of f (twice), for all x, y ∈ X, we obtain

f((x ∗ y) · (y ∗ y)) ≤ cf(x ∗ y) + df(y ∗ y)

≤ c(af(x) + bf(y)) + d(af(y) + bf(y))

= acf(x) + (bc+ ad+ bd)f(y).

This implies that f is (�, ac, bc + ad + bd)-convex, where x � y := (x ∗ y) · (y ∗ y).
Therefore,

st =
ac

ac+ bc+ ad+ bd
∈ S,

which proves that S is closed with respect to multiplication.
By induction, it follows that

sn ∈ S (s ∈ S, n ∈ N). (3.7)

The assumption that f is (◦, p, q)-convex implies that S∩ ]0, 1[ 6= ∅. Therefore, (3.7)
yields that inf S = 0. Using the inclusion 1− S ⊆ S, we can see that supS = 1.
Finally, to prove the density of S in [0, 1], let 0 < a < b < 1 be arbitrary. By supS = 1,

we can choose s ∈ S so that
a

b
< s < 1. Then, for some n ∈ N, (in particular, with

n :=
⌊ log(a)
log(s)

⌋
), we have sn ∈ [a, b], which implies that S ∩ [a, b] is nonempty. �

In the next result, we verify the Maximum Theorem for two functions.

Theorem 3.5. Let X be a nonempty set, ◦ : X ×X → X be a binary operation, and
p, q > 0 be constants. If f, g : X → R are (◦, p, q)-convex functions satisfying

0 ≤ max(f(x), g(x)) (x ∈ X), (3.8)

then there exists λ ∈ [0, 1] such that (2.5) holds true.

Proof. First we show that f and g satisfy the inequality (2.6). To verify this, let
x, y ∈ X and let s ∈ S (where the set S was defined in Lemma 3.4.) Then there exist
a binary operation ∗ : X × X → X and constans a, b > 0 such that the (◦, p, q)-
convexity of f and g implies the (∗, a, b)-convexity of them. Thus, by the maximum
inequality (3.8) at x ∗ y, we get

0 ≤ max(f(x ∗ y), g(x ∗ y)) ≤ max(af(x) + bf(y), ag(x) + bg(y)).

Therefore

0 ≤ max
( a

a+ b
f(x) +

b

a+ b
f(y),

a

a+ b
g(x) +

b

a+ b
g(y)

)
,

and hence
0 ≤ max

(
sf(x) + (1− s)f(y), sg(x) + (1− s)g(y)

)
.
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Because s ∈ S was arbitrary and S is dense in [0, 1] (according to Lemma 3.4), we
can conclude that (2.6) is satisfied for all t ∈ [0, 1].
Having proved that (2.6) is valid, in view of Corollary 2.3, it follows that there exists
λ ∈ [0, 1] such that (2.5) holds. �

Proof of the discrete Maximum Theorem. The statement is trivial for n = 1 and it
has been proved for n = 2. Assume its validity for some n ≥ 2. Let f0, f1, . . . , fn be
(◦, p, q)-convex functions such that

0 ≤ max(f0(x), f1(x), . . . , fn(x)) (x ∈ X).

Let g(x) := max(f1(x), . . . , fn(x)). Then, by Theorem 3.2, we have that g is (◦, p, q)-
convex and

0 ≤ max(f0(x), g(x)) (x ∈ X).

Using now Theorem 3.5, we obtain the existence of λ ∈ [0, 1] such that

0 ≤ λf0(x) + (1− λ)g(x)

= max
(
λf0(x) + (1− λ)f1(x), . . . , λf0(x) + (1− λ)fn(x)

)
(x ∈ X).

By the inductive assumption, there exists (λ1, . . . , λn) ∈ Sn such that

0 ≤ λ1
(
λf0(x) + (1− λ)f1(x)

)
+ · · ·+ λn

(
λf0(x) + (1− λ)fn(x)

)
= λf0(x) + λ1(1− λ)f1(x) + · · ·+ λn(1− λ)fn(x) (x ∈ X),

which proves the statement for (n+ 1) functions. �

4. An application

In the subsequent result we establish an extension of the Karush–Kuhn–Tucker
Theorem.

Theorem 4.1. Let X be a nonempty set, ◦ : X ×X → X be a binary operation, and
p, q > 0 be constants. Let f0, f1, . . . , fn : X → R be (◦, p, q)-convex functions and
assume that f0(x0) = 0 and x0 ∈ X is a solution of the constrained optimization
problem

Minimize f0(x) subject to f1(x), . . . , fn(x) ≤ 0. (4.9)

Then there exist (λ0, λ1, . . . , λn) ∈ Sn+1 such that

λ1f1(x0) = · · · = λ1f1(x0) = 0 (4.10)

and
0 ≤ λ0f0(x) + λ1f1(x) + · · ·+ λnfn(x) (x ∈ X). (4.11)

Conversely, if conditions (4.10) and (4.11) hold for some (λ0, λ1, . . . , λn) ∈ Sn+1 with
λ0 > 0, then x0 is a solution of the optimization problem (4.9).

Proof. If x0 is a solution of the optimization problem then, for all x ∈ X, the inequal-
ities

f0(x) < f0(x0) = 0 and f1(x), . . . , fn(x) ≤ 0

cannot hold simultaneously. Hence

0 ≤ max(f0(x), f1(x), . . . , fn(x)) (x ∈ X).
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Therefore, in view of Theorem 3.3, there exist (λ0, λ1, . . . , λn) ∈ Sn+1 such that (4.11)
holds.
Being a solution to (4.9), x0 is admissible for the optimization problem, that is, we
have that f1(x0), . . . , fn(x0) ≤ 0. Hence

0 ≤ λ0f0(x0) + λ1f1(x0) + · · ·+ λnfn(x0) = λ1f1(x0) + · · ·+ λnfn(x0) ≤ 0.

The terms in the last sum are nonpositive, therefore, the only way this sum can be
zero is that it is zero termwise. Hence the transversality condition (4.10) is also true.
To prove the reversed statement, assume that (4.10) and (4.11) hold for some
(λ0, λ1, . . . , λn) ∈ Sn+1 with λ0 > 0. Let x ∈ X be an admissible point with re-
spect to problem (4.9), i.e., assume that f1(x0), . . . , fn(x0) ≤ 0. Then, by (4.10) and
(4.11), we get

λ0f0(x0) = λ0f0(x0) + λ1f1(x0) + · · ·+ λnfn(x0)

= 0 ≤ λ0f0(x) + λ1f1(x) + · · ·+ λnfn(x) ≤ λ0f0(x),

which, using that λ0 > 0, implies f0(x0) ≤ f0(x), and proves the minimality of x0. �
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Abstract. In this paper we study some properties of the adjusted normal cone
operator of quasiconvex functions. In particular, we introduce a new notion of
maximal quasimotonicity for set-valued maps different from similar ones recently
appeared in the literature, and we show that it is enjoyed by this operator. More-
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1. Introduction

The notion of maximal monotone operator dates back to the sixties and, since
then, it has been extensively studied in literature (see, for instance, [9] and the ref-
erences therein). One of the main interests for maximal monotone operators is the
strong relationship between convexity of a function and maximal monotonicity of its
associated subdifferential operator.

In recent years different generalizations of monotonicity have been proposed,
both in the scalar (see [16]) and in the set-valued case, in finite and infinite dimen-
sional spaces. Among them the most studied are, without a doubt, pseudomonotonic-
ity and quasimonotonicity. Many nice properties of these classes of operators have
been proved, but little effort has been devoted to the study of a suitable notion
of maximality. To fill this gap, Hadjisavvas in [14] introduced and studied maximal
pseudomonotone operators T : X ⇒ X∗, where X is a Banach space and X∗ denotes
its dual, while the notion of maximality for quasimonotone operators has been ad-
dressed in the recent works by Aussel and Eberhard [6], and by Bueno and Cotrina
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[11]. In particular, in [11] the authors extend the notion of polarity introduced by
Mart́ınez-Legaz and Svaiter in 2005 ([17]), by defining the quasimonotone polar of
a set-valued operator in order to characterize maximal quasimonotone operators via
graph inclusion.

In this work we define a new notion of maximality for a quasimonotone operator
defined on a Banach space, that is based both on the notion of quasimonotone polar
of an operator T and on its behaviour at the points in the interior of the effective
domain of T . This property is enjoyed, in particular, by the Clarke subdifferential ∂of,
where f is quasiconvex and locally Lipschitz, under suitable restrictions on ∂o, as well
as by the adjusted normal cone operator to the sublevel sets of a quasiconvex, lower
semicontinuous and solid function, provided suitable assumptions on the minima are
satisfied. The interest in studying the properties of the adjusted normal cone operator
is due to the crucial role it plays in characterizing quasiconvexity (see [7]).

The paper is organized as follows: In Section 2 we present some preliminary
notions and results. In Section 3 the new definition of maximal quasimonotonicity
for operators is introduced; some properties of maximal quasimonotone operators
are established, together with a sufficient condition that can be compared with a
similar one for maximal monotone operators. Section 4 is devoted to the investigation
of the properties of the adjusted normal cone operator of a lower semicontinuous
and quasiconvex function in terms of maximal quasimonotonicity and cone upper
semicontinuity. In particular, the cone upper semicontinuity is proved in the domain
of f in case the set of global minima has non empty interior, thereby extending a
result in [7].

2. Preliminaries

Let X be a real Banach space, X∗ its topological dual, and 〈·, ·〉 the duality
mapping. In the following, {xα} and {x∗α}, with α ∈ Γ will denote nets in X and X∗,
respectively.

For x ∈ X and r > 0, B(x, r), B(x, r) and S(x, r) will denote the open ball,
the closed ball and the sphere centered at x with radius r, respectively. Also, given a
nonempty set A ⊆ X, let B(A, ε) = {x ∈ X : dist(x,A) < ε} and B(A, ε) = {x ∈ X :
dist(x,A) ≤ ε}, where dist(x,A) = infy∈A‖x− y‖ is the distance of x from A. A set
L in a topological vector space is said to be a cone if it is closed under multiplication
by nonnegative scalars; a set L is said to be an open cone if it is an open set, closed
under multiplication by positive scalars. A convex set B is called a base of a cone L
if and only if 0 /∈ B and L = ∪t≥0tB.

The domain and the graph of a set valued map T : X ⇒ X∗ will be denoted by
dom(T ) and Gr(T ), while the effective domain of T is given by

edom(T ) = {x ∈ dom(T ) : T (x) 6= {0}}.

For any x∗ ∈ X∗, let R+x
∗ = {tx∗ ∈ X∗ : t ≥ 0} and for any B ⊆ X∗ let

R+B = ∪x∗∈BR+x
∗. The operator (R+T ) : X ⇒ X∗ is given by

(R+T )(x) = R+(T (x)) = ∪x∗∈T (x)R+x
∗.
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Given (x, x∗), (y, y∗) ∈ X ×X∗, (x, x∗) is said to be quasimonotonically related
to (y, y∗), denoted by (x, x∗) ↑ (y, y∗), if

min{〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 0

(see for instance [11] and the references therein). Note that (x, 0) is quasimonotonically
related to any (y, y∗) ∈ X ×X∗. Relation ↑ is a tolerance relation, i.e., it is reflexive
and symmetric but in general not transitive.

The quasimonotone polar T ν : X ⇒ X∗ of T is given by

T ν(x) = {x∗ ∈ X∗ : (x, x∗) ↑ (y, y∗) ∀y∗ ∈ T (y), y ∈ dom(T )}
= {x∗ ∈ X∗ : (x, x∗) ↑ (y, y∗) ∀y∗ ∈ T (y), y ∈ edom(T )}

Note that 0 ∈ T ν(x) and that T ν(x) is a cone for all x ∈ X. Moreover, T ν(x) is a
convex and w∗-closed set (see Corollary 3.8 in [11]), that can be not pointed (see, for
instance, the next Example 3.2).

Moreover, the following proposition, related to Lemma 1 in [6] and to Proposition
3.5 in [14] holds :

Proposition 2.1. Let T : X ⇒ X∗ be an operator. If (xα, x
∗
α) ∈ Gr(T ν), (xα, x

∗
α) →

(x, x∗) in the w × w∗ topology, and lim supα 〈x∗α, xα〉 ≤ 〈x∗, x〉, then x∗ ∈ T ν(x).
In particular, Gr(T ν) is sequentially closed in the s × w∗ topology and in the w × s
topology.

Proof. Take any (y, y∗) ∈ Gr(T ). Since (xα, x
∗
α) ↑ (y, y∗), we have

min {〈x∗α, y − xα〉 , 〈y∗, xα − y〉} ≤ 0.

By our assumptions,

lim inf
α
〈x∗α, y − xα〉 = 〈x∗, y〉 − lim sup

α
〈x∗α, xα〉 ≥ 〈x∗, y − x〉 .

Thus

min {〈x∗, y − x〉 , 〈y∗, x− y〉} ≤ 0

which says that (x, x∗) ∈ Gr(T ν).
In particular, Gr(T ν) is sequentially closed in the s × w∗ and in the w × s

topologies, because, in these cases, we have lim 〈x∗n, xn〉 = 〈x∗, x〉. �

In the sequel we will introduce the notions of quasimonotonicity, cone upper
semicontinuity, upper sign continuity for an operator T . The reader can easily convince
himself that all the definitions hold for T if and only if they hold for R+T.

A map T : X ⇒ X∗ is said to be

(i) quasimonotone if T (x) ⊆ T ν(x), for all x ∈ X; equivalently, for every x, y ∈ X,
x∗ ∈ T (x), y∗ ∈ T (y),

min{〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 0;

(ii) s × w∗ cone upper semicontinuous (cone usc) at x ∈ edom(T ) if for every w∗-
open cone K such that T (x) ⊆ K ∪{0}, there exists a neighborhood U of x such
that T (y) ⊆ K ∪ {0} for all y ∈ U (see Definition 5 in [6]);
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(iii) upper sign continuous at x if for every v ∈ X,

∃δ > 0 : ∀t ∈ ]0, δ[ ,∃x∗ ∈ T (x+ tv)\{0} : 〈x∗, v〉 ≥ 0

⇒ ∃x∗ ∈ T (x)\{0} : 〈x∗, v〉 ≥ 0
(2.1)

In particular, the second definition fits well with operators T : X ⇒ X∗ whose
values are unbounded convex cones. In this case, if T (x) has a base for every x ∈
edom(T ), the notion is equivalent to Definition 2.1 in [7]. Moreover, our definition of
upper sign continuity is slightly different from Definition 9 in [6].

It is easy to verify that the definition (ii) is stronger than (iii). Indeed, the
following result holds:

Proposition 2.2. If T : X ⇒ X∗ is cone upper semicontinuous at x ∈ edom(T ), then
T is upper sign continuous at x.

Proof. Suppose first that for every v ∈ X, the l.h.s. in (2.1) is never satisfied; in this
case, there is nothing to prove. Otherwise, suppose that there exists v ∈ X such that
the l.h.s. holds, but 〈x∗, v〉 < 0 for every x∗ ∈ T (x) \ {0}. The set

Kv = {x∗ ∈ X∗ : 〈x∗, v〉 < 0}
is a w∗-open cone with T (x) ⊆ Kv ∪ {0}. From the cone upper semicontinuity at x,
for t small enough, T (x+ tv) ⊆ Kv ∪ {0}, a contradiction. �

The cone upper semicontinuity of a conic valued operator, under mild conditions,
implies also the closedness of the graph of the operator in the s×w∗ topology as shown
in the following result:

Proposition 2.3. Let T : X ⇒ X∗ be such that for all x ∈ X, T (x) is a convex,
w∗-closed cone with a w∗-compact base. If dom(T ) is closed and T is cone usc, then
Gr(T ) is closed in the s× w∗ topology.

Proof. Let (xα, x
∗
α), α ∈ A be a net in Gr(T ), converging to (x, x∗) in the s × w∗

topology. Since dom(T ) is closed, x ∈ dom(T ). We have to show that x∗ ∈ T (x).
If x∗ = 0 this is trivial, so we suppose that x∗ 6= 0 and x∗ /∈ T (x). Let B(x) be a
w∗-compact base of T (x). Then B(x) ∩ R+x

∗ = ∅.
By Lemma 3.3 of [14], there exists b ∈ X such that 〈x∗, b〉 > 0 > 〈y∗, b〉

for all y∗ ∈ B(x), so 〈x∗, b〉 > 0 > 〈y∗, b〉 for all y∗ ∈ T (x)\{0}. The set
V := {y∗ ∈ X∗ : 〈y∗, b〉 < 0} is an open cone and T (x) ⊆ V ∪ {0}. By cone upper
semicontinuity, there exists α0 ∈ A such that T (xα) ⊆ V ∪ {0} for α < α0. Thus,

〈x∗α, b〉 ≤ 0 for α < α0. This contradicts 〈x∗, b〉 > 0 and x∗α
w∗

→ x∗. �

Remark 2.4. In the Euclidean setting, a conic-valued map with closed graph is always
cone usc. Indeed, one can consider the operator T ′(x) = T (x)∩S(0, 1); T ′ has compact
range and closed graph, and therefore it is upper semicontinuous. This is equivalent
to say that T is cone usc (see for instance [1], [8]). This is no longer true in infinite
dimensional settings, as the following example shows. Let X = X∗ = `2, {xn}n ⊂ `2

be a sequence of points different from 0 and strongly convergent to 0, and consider
the set-valued map T : `2 ⇒ `2 with domain {xn}n ∪ {0} and defined as follows:

T (0) = {0}, T (xn) = R+en,
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where en denotes the sequence {ein}i such that ein = 1 if i = n, and ein = 0, otherwise.
This operator is not cone usc at x = 0; indeed, taking V = ∅, T (0) ⊂ V ∪ {0}, but
T (xn) /∈ V ∪ {0}, for any n. Let us show that Gr(T ) is in fact s×w∗ closed. Suppose

that (xn, x
∗
n) ∈ Gr(T ), and x∗n

w∗

−−→ x∗. From the definition of T, x∗n = tnen, for some
tn ≥ 0. In addition, the sequence {tnen} is bounded. This implies that, for every
x ∈ `2, 〈tnen, x〉 → 〈x∗, x〉 if and only if x∗ = 0, thereby showing the closedness of
Gr(T ).

In order to define the notion of the operator we are interested in, i.e., the adjusted
normal cone operator, we need first to recall some necessary preliminary definitions.

Let f : X → R ∪ {+∞} be a function and dom f = {x ∈ X : f(x) < +∞} its
domain, which is always assumed nonempty.

For every λ ∈ R define the sublevel set Sf,λ = {x ∈ X : f(x) ≤ λ} and the
strict sublevel set S<f,λ = {x ∈ X : f(x) < λ}. In particular, in order to simplify the
notation, for every x ∈ dom f , we set

Sf (x) = Sf,f(x), S<f (x) = S<f,f(x).

The function f is said to be lower semicontinuous (lsc) if Sf,λ is a closed set for
every λ ∈ R, and solid if intSf,λ 6= ∅ for every λ > infXf .

Moreover, let ρfx = dist(x, S<f (x)) and for any x ∈ dom f define the adjusted

sublevel set Saf (x) by

Saf (x) =

{
Sf (x) ∩B(S<f (x), ρfx) x ∈ dom f \ argminf

Sf (x) x ∈ argminf.

In particular, Saf (x) = Sf (x) for every x ∈ dom f whenever every minimum of f is
global.

In general, S<f (x) ⊂ Saf (x) ⊆ Sf (x) for any x ∈ dom f .

The function f is said to be quasiconvex if for every x, y ∈ dom f and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ max{f(x), f(y)}

It is well known that the convexity of the sublevel sets Sf (x), of the strict sublevel
sets S<f (x) as well as of the adjusted sublevel sets Saf (x) for every x ∈ X, characterizes

the quasiconvexity of the function f (see [7]).

Let us recall that a map T : X ⇒ X is said to be lower semicontinuous at x if

for every xn
s−→ x with x ∈ dom(T ), and for every y ∈ T (x), there exists yn ∈ T (xn)

such that yn
s−→ y (see for instance [3], p. 39-40).

The following result, whose proof is very similar to the proof in the finite dimen-
sional case in [1, Th. 3.1], holds:

Theorem 2.5. Let f : X −→ R ∪ {+∞} be quasiconvex. If Sf (x) is closed for all
x ∈ domf , then the map x⇒ Saf (x) is lower semicontinuous on domf .
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For any function f let us define the normal cone operator Nf : X ⇒ X∗ and the
adjusted normal cone operator Na

f : X ⇒ X∗ as follows: if x ∈ dom f,

Nf (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ Sf (x)}
Na
f (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ Saf (x)};

if x /∈ dom f, we set Nf (x) = Na
f (x) = ∅. Obviously, Nf (x) ⊆ Na

f (x).
These operators are always quasimonotone, indeed they satisfy a stronger prop-

erty known as cyclic quasimonotonicity (see [7] and the references therein).

3. A new notion of maximal quasimonotone map

The study of a suitable definition of maximal quasimonotone set-valued map
was recently addressed by Aussel and Eberhard [6] and also by Bueno and Cotrina
[11]. The new notion of maximal quasimonotonicity we introduce in this section is
enjoyed, in particular, by the Clarke subdifferential operator of a locally Lipschitz
and quasiconvex function, and by the adjusted normal cone operator of a quasiconvex
function.

Definition 3.1. Let T : X ⇒ X∗ be a quasimonotone operator with int edom(T ) 6= ∅.
T is maximal quasimonotone if for every x∗ ∈ T ν(x) with x ∈ int edom(T ), we have
x∗ ∈ R+T (x), i.e. T ν(x) = R+T (x) for every x ∈ int edom(T ).

As a consequence of [11, Th. 4.7(4)], our notion of maximal quasimonotone
operator is weaker than the notion introduced in [6].

The following trivial example exhibits a maximal quasimonotone map according
to Definition 3.1 which is not maximal quasimonotone neither according to [6] or [11].

Example 3.2. Define T : R⇒ R by

T (x) =

 0, if x < 0
[0,+∞) if x = 0

x if x > 0

Then edom(T ) = [0,+∞). It is straightforward to verify that T is maximal quasi-
monotone according to Definition 3.1. Indeed, for x ∈ (0,+∞), (x, x∗) ↑ (y, y∗) for
every y∗ ∈ T (y) if and only if x∗ ∈ R+T (x).

On the other hand, a quasimonotone extension of T on [0,+∞) can be provided
by setting T (0) = (−∞,+∞). Thus T is not maximal quasimonotone either according
to Definition 1 in [6] or according to the definition in [11] given in terms of inclusion.
In addition, note that T is not even pre-maximal quasimonotone as defined in [11]
since

T ν(x) =

{
(−∞,+∞) if x ≤ 0

[0,+∞) if x > 0

is not quasimonotone.

The following example shows a quasimonotone operator which is not maximal
quasimonotone according to Definition 3.1.
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Example 3.3. Define T : R2 ⇒ R2 by

T (x, y) =


R+ (1, 1) if x ≥ 0, y ≥ 0, (x, y) 6= (0, 0)
R+ (1,−1) if x > 0, y < 0
R+ (−1, 1) if x < 0, y > 0
R+ (−1,−1) if x ≤ 0, y ≤ 0

It is straighforward to verify that this operator is quasimonotone with edomT =
R2 but it is not maximal quasimonotone; indeed, T ν(0, 0) = R2, but T (0, 0) =
R+ (−1,−1) .

In the next proposition some properties of maximal quasimonotone operators
are summarized. Some of them extend to maximal quasimonotone operators results
similar to those involving maximal monotone ones (see, for instance, [15], Ch. 3).

Proposition 3.4. Let T : X ⇒ X∗ be a maximal quasimonotone operator. Then,

i) R+T : X ⇒ X∗ is maximal quasimonotone.
ii) R+T (x) is convex for all x ∈ int edom(T ).

iii) If x ∈ int edom(T ), xn
s−→ x, x∗n

w∗

−−→ x∗ with x∗n ∈ T (xn), then x∗ ∈ R+T (x).
In particular, R+T (x) is sequentially w∗-closed, for every x ∈ int edom(T ).

iv) If x ∈ int edom(T ), xn
w−→ x, x∗n

s−→ x∗ with x∗n ∈ T (xn), then x∗ ∈ R+T (x).

Proof. Recall that by definition of maximal quasimonotone operators,

T ν(x) = R+T (x) for all x ∈ int dom(T ).

i) Trivial, noting that (R+T )ν(x) = T ν(x) = R+T (x) for all

x ∈ int edom(R+T ) = int edom(T ).

ii) follows from Corollary 3.8 in [11].
iii) and iv) follows from Proposition 2.1 observing that for quasimonotone oper-

ators x∗n ∈ T (xn) ⊆ T ν(xn).
�

Remark 3.5. Note that R+T (x) is not necessarily convex or w∗-closed at the boundary
of edom(T ). For example, take X = R2 and define T by

T (x) =


R+ × {0} if x > 0, y ≥ 0
R− × {0} if x < 0, y ≥ 0
R× R+ if x = 0, y > 0

{(x, y) : −2 |x| < y < − |x|} if x = y = 0
∅ if y < 0

Then T is maximal quasimonotone according to Definition 3.1, but R+T (0, 0) is
neither closed, nor convex.

The next two results try to adapt known properties of maximal monotone oper-
ators to the case of maximal quasimonotone ones.

It is well known that any maximal monotone operator is upper semicontinuous
in the interior of its domain (see Theorem 1.28, Section 3 in [15]). In case of maximal
quasimonotone operators a similar result holds in a finite dimensional setting.
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Proposition 3.6. If T : Rn ⇒ Rn is maximal quasimonotone, then T is cone usc at
every x ∈ int edom(T ).

Proof. Without loss of generality we will suppose that T = R+T. Let x ∈ int edom(T )
be a point where T is not cone usc. Then, there exist an open cone K, and sequences
{xn} and {x∗n} such that: T (x) ⊂ K ∪ {0}, xn → x and x∗n ∈ T (xn) \ (K ∪ {0}).
Without loss of generality, suppose that ‖x∗n‖ = 1 and x∗n → x∗, with ‖x∗‖ = 1. From
Proposition 3.4-iii), x∗ ∈ T (x). On the other hand, x∗n ∈ (K ∪ {0})c ⊂ Kc, which is a
closed set, so x∗ ∈ Kc, x∗ 6= 0, a contradiction. �

The next result provides a sufficient condition for maximal quasimonotonicity,
that can be compared with a similar one for maximal monotone operators (see The-
orem 1.33, Section 3 in [15]; see also Lemma 9.i-ii. in [6]):

Proposition 3.7. Let T : X ⇒ X∗ be upper sign-continuous, with convex, w∗-compact
values. If int edom(T ) 6= ∅ and 0 /∈ T (x) for every x ∈ int edom(T ), then T ν(x) ⊆
R+T (x), for every x ∈ int edom(T ). In particular, if T is quasimonotone, then it is
maximal quasimonotone.

Proof. Let us assume that there exists x ∈ int edom(T ) and x∗0 6= 0, such that x∗0 ∈
T ν(x)\R+T (x). From the assumption 0 /∈ T (x), and thus R+x

∗
0∩T (x) = ∅. Therefore,

we can apply Lemma 3.3. in [14] and find b ∈ X such that

〈x∗0, b〉 > 0 > 〈x∗, b〉, ∀x∗ ∈ T (x). (3.1)

Set xt = x+ tb ∈ int edom(T ) for t > 0 sufficiently small. Since 〈x∗0, xt− x〉 > 0, from
the definition of quasimonotone polar it follows that 〈x∗, b〉 ≥ 0 for all x∗ ∈ T (xt). By
upper sign-continuity, there exists x∗ ∈ T (x)\{0} such that 〈x∗, b〉 ≥ 0, contradicting
(3.1).

In case T is quasimonotone, from the inclusion T ν(x) ⊇ R+T (x) the maximal
quasimonotonicity easily follows. �

The example below shows that the assumption 0 /∈ T (x) cannot be dropped, even
in case we strengthen the continuity of T by imposing its cone upper semicontinuity:

Example 3.8. Define T : R2 ⇒ R2 by

T (x, y) =


R× (−∞, 0] if x = 0, y = 0

[0,+∞)× {0} if x > 0, y ≥ 0
(−∞, 0]× {0} if x < 0, y ≥ 0

R× {0} if x = 0, y > 0
R+(x, y) if x ∈ R, y < 0

It is straighforward to verify that edom(T ) = R2, T is quasimonotone, cone usc with
closed, conic and convex values, but it is not maximal quasimonotone. As a matter
of fact, T ν(0, 0) = R2, while T (0, 0) = R× (−∞, 0].

In the last result of this section we apply Proposition 3.7 to show the maximal
quasimonotonicity of the Clarke subdifferential.

Let f : X → R ∪ {+∞} be a locally Lipschitz function and denote by ∂of :
X ⇒ X∗ its Clarke subdifferential. It is well known that dom(∂of) = dom f , ∂of(x)
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is w∗-compact and convex for all x ∈ dom(∂of), and ∂of is upper semicontinuous
in the s × w∗ topology (see [12], and [18] Prop. 7.3.8). Thus, Proposition 3.7 and
Theorem 4.1 in [5] imply

Corollary 3.9. Let f : X → R ∪ {+∞} be a locally Lipschitz quasiconvex function.
Assume that 0 /∈ ∂of(x) for all x ∈ int edom(∂of). Then, ∂of is maximal quasimono-
tone.

Note that a function satisfying the assumptions of the corollary above is nec-
essarily pseudoconvex (see [4], Theorem 4.1). This means that ∂of is D-maximal
pseudomonotone (see [14], Corollary 3.2). However, this does not automatically imply
maximal quasimonotonicity, as shown by the next example. The example also shows
that the assumption 0 /∈ ∂of(x), ∀x ∈ dom f , cannot be omitted from Corollary 3.9.

Example 3.10. Let f : R2 → R be given by f(x1, x2) = 1
2x

2
1 + |x2|. Then f is convex,

thus quasiconvex. Its subdifferential ∂f = ∂of is given by

∂f (x1, x2) =

 {(x1, 1)} if x2 > 0
{(x1,−1)} if x2 < 0
{x1} × [−1, 1] if x2 = 0

Note that ∂of is usc with compact convex values and edom(∂of) = R2. The oper-
ator ∂of is maximal monotone and D-maximal pseudomonotone. It is not maximal
quasimonotone, because (1, 0) ∈ (∂of)

ν
(0, 0), but (1, 0) /∈ R+∂

of(0, 0).

Finally, note that the function f(x) = |x| does not satisfy the assumptions of
Corollary 3.9, but ∂of is maximal quasimonotone.

4. Maximal quasimonotonicity and continuity properties of the
adjusted normal cone operator

We start by proving the maximal quasimonotonicity of the normal operator Na
f .

To this purpose, it is necessary to describe the interior of the effective domain of this
operator.

Let us first introduce some preliminary useful notions. Given a convex set
K ⊆ X, a point x0 ∈ K is called a support point of K if there exists x∗ ∈ X∗\{0}
such that

〈x∗, x0〉 = sup
x∈K
〈x∗, x〉 ,

or equivalently, if x0 ∈ edom(NK), where NK : K ⇒ X∗ is defined as follows

NK(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ K}.

The set of support points of K is denoted by supp (K); this definition is consistent
with the one in [2], Ch. 7, but is different from the one in [10], that corresponds in
fact to the notion of proper support points given in [2]. The set of nonsupport points
(or quasi-interior points, see [13] Prop. 2.2) is the set

nsupp (K) := K\supp (K).
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Note that, if K is a nonempty, convex and closed set with nonempty interior, then ev-
ery boundary point x of K is a support point for K (see Lemma 7.7 in [2]). Therefore,
nsupp (K) = intK. In infinite dimensional spaces we may have nonsupport points
even if intK is empty (see Example 7.8 in [2]).

If nsupp (K) 6= ∅, then nsupp (K) is dense in K. In fact, we have the easy
property:

Proposition 4.1. Let K ⊆ X be convex. If x1 ∈ K and x2 ∈ nsupp (K), then

]x1, x2] ⊆ nsupp (K).

In particular, nsupp (K) is dense in K.

Proof. Assume that there exists x3 = tx1 + (1− t)x2, t ∈ ]0, 1[, such that

x3 /∈ nsupp (K).

Then there exists x∗ ∈ X∗\{0} such that

〈x∗, tx1 + (1− t)x2〉 = sup
x∈K
〈x∗, x〉 ≥ 〈x∗, x1〉 (4.1)

〈x∗, tx1 + (1− t)x2〉 = sup
x∈K
〈x∗, x〉 > 〈x∗, x2〉 (4.2)

The strict inequality in (4.2) is due to the fact that

〈x∗, tx1 + (1− t)x2〉 = 〈x∗, x2〉
would imply that x2 ∈ supp (K), contrary to our assumption.

Combining (4.1) and (4.2) we get a contradiction. Hence, x3 ∈ nsupp(K). �

Let now f : X → R ∪ {+∞} be a lsc, solid and quasiconvex function and set

C = argmin f.

Under the assumptions on f , C is closed and convex, and int dom f 6= ∅.

Proposition 4.2. Let f : X → R ∪ {+∞} be a quasiconvex, lsc and solid function.
Then

int edom(Na
f ) =

{
int dom f if nsupp (C) = ∅

(int dom f) \ C if nsupp (C) 6= ∅

Proof. By Proposition 3.4 in [7] we have dom f \ C ⊆ edom(Na
f ), so

(int dom f) \ C ⊆ edom(Na
f ).

Since (int dom f) \ C is open, we obtain

(int dom f) \ C ⊆ int edom(Na
f ). (4.3)

We consider two cases:
(i) Let nsupp (C) = ∅. Then C = supp (C) = edom(NC) ⊆ edom(Na

f ). Com-

bining with (int dom f) \ C ⊆ edom(Na
f ) we obtain int dom f ⊆ edom(Na

f ). Hence

int dom f ⊆ int edom(Na
f ). The reverse implication is obvious, since edom(Na

f ) ⊆
dom f, so int edom(Na

f ) = int dom f .

(ii) Let nsupp (C) 6= ∅. Take x0 ∈ int edom(Na
f ). There exists ε > 0 such that

B(x0, ε) ⊆ int edom(Na
f ). Then B(x0, ε) ⊆ int dom f . If we had B(x0, ε)∩C 6= ∅, then
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we would also have B(x0, ε) ∩ nsuppC 6= ∅, due to Proposition 4.1. But then there
would exist a point y ∈ B(x0, ε) ⊆ edom(Na

f ) such that y ∈ nsuppC. This is clearly

impossible. Hence, B(x0, ε) ⊆ (int dom f) \ C, which shows that

int edom(Na
f ) ⊆ (int dom f) \ C.

The reverse implication was already shown in (4.3). �

An immediate consequence of Proposition 4.2 is the following:

Corollary 4.3. Let f : X → R ∪ {+∞} be a quasiconvex, lsc function. Assume that
intC 6= ∅. Then

int edom(Na
f ) = (int dom f) \ C.

Proof. If intC 6= ∅, then f is solid, and nsupp (C) = intC 6= ∅. Proposition 4.2 yields
the result. �

We are now in position to prove maximality of the quasimonotone operator Na
f .

To this aim, it is necessary to provide a description for (Na
f )ν .

Theorem 4.4. Let f : X → R ∪ {+∞} be a quasiconvex, lsc and solid function. Then

(Na
f )ν(x) =

{
Na
f (x), if x ∈ dom f\C
X∗, if x ∈ C

Proof. Let x ∈ C. Take any (y, y∗) ∈ Gr(Na
f ). If y ∈ C, then x ∈ Sf (y) = Saf (y). If

y /∈ C, then x ∈ S<f (y) ⊆ Saf (y). In both cases, x ∈ Saf (y) so 〈y∗, x− y〉 ≤ 0. It follows
that for every x∗ ∈ X∗,

min {〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 0.

Thus, (x, x∗) ↑ (y, y∗) so (Na
f )ν(x) = X∗.

Now let x ∈ dom f\C. Since Na
f is quasimonotone, we always have Na

f (x) ⊆ (Na
f )ν(x),

so we have to show that
(Na

f )ν(x) ⊆ Na
f (x). (4.4)

Suppose by contradiction that there exists x∗0 ∈ (Na
f )ν(x) \ Na

f (x). It follows that

〈x∗0, y′ − x〉 > 0 for some y′ ∈ Saf (x).

Since f is solid, intSaf (x) 6= ∅ and Saf (x) = intSaf (x). Thus, there exists some y such
that

〈x∗0, y − x〉 > 0, y ∈ intSaf (x). (4.5)

Set yt = x+ t(y − x), t ∈ (0, 1]. Then (4.5) implies that for all t ∈ (0, 1],

〈x∗0, yt − x〉 > 0, yt ∈ intSaf (x).

Combining with x∗0 ∈ (Na
f )ν(x) and 〈y∗, yt − x〉 = t〈y∗, y − x〉, we deduce

〈y∗, y − x〉 ≥ 0, ∀y∗ ∈ Na
f (yt), t ∈ (0, 1]. (4.6)

By Proposition 3.4 (ii) in [7], for every quasiconvex, lsc and solid function f and x ∈
dom f\C, we have Na

f (x)\{0} 6= ∅. Thus, x ∈ edom(Na
f ). Take any x∗ ∈ Na

f (x)\{0}.
Then

y ∈ intSaf (x) ⊆ int {y ∈ X : 〈x∗, y − x〉 ≤ 0} = {y ∈ X : 〈x∗, y − x〉 < 0} .
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This means that 〈x∗, y − x〉 < 0. Hence,

Na
f (x) ⊂ {z∗ ∈ X∗ : 〈z∗, y − x〉 < 0} ∪ {0}. (4.7)

Set K = {z∗ ∈ X∗ : 〈z∗, y − x〉 < 0}. This is a w∗-open cone, and Na
f (x) ⊆ K ∪ {0}.

Taking into account the cone upper semicontinuity of the map Na
f at x ∈ dom f\C

implied by Proposition 3.5 in [7], we obtain Na
f (yt) ⊆ K ∪ {0} for all t > 0 small

enough. From (4.6), we get Na
f (yt) = {0}. But for t > 0 small enough, we have that

yt /∈ C so yt ∈ edom(Na
f ), a contradiction. �

Theorem 4.5. Let f : X → R ∪ {+∞} be a quasiconvex, lsc and solid function. In
addition, if ]C ≥ 2, we assume that intC 6= ∅. If int edom(Na

f ) 6= ∅, then Na
f is

maximal quasimonotone.

Proof. Let x ∈ int edom(Na
f ). In the special case ]C = 1 and C = {x}, we have

Na
f (x) = X∗ = (Na

f )ν(x) by Theorem 4.4. According to Corollary 4.3, in all other the

cases we have x /∈ C. Applying again Theorem 4.4 we obtain Na
f (x) = (Na

f )ν(x), so
Na
f is maximal quasimonotone. �

Remark 4.6. The assumption about the set C in the theorem above cannot be relaxed.
Take, for instance, the function f : R2 → R, f(x1, x2) = |x1|.
The set C = {0} × R has empty interior, (Na

f )ν(0, 0) = R2 from Theorem 4.4, but

(0, 1) /∈ R+N
a
f (0, 0) = Na

f (0, 0).

Note that Na
f can be maximal quasimonotone also in case the function f is not

quasiconvex. Take for instance, f(x) = xe−x. Indeed, it is easy to verify that

Na
f (x) =

{
[0,+∞) if x ≤ 0

0 if x > 0

is maximal quasimonotone, despite f being trivially not quasiconvex.

In this last part we will investigate some continuity properties of the map Na
f .

Let us first state the following result:

Proposition 4.7. Let A : X ⇒ X be a map which is lsc on its domain. Define M :
dom(A)⇒ X∗ by M(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ A(x)}. Then the graph of
M is s× w∗ sequentially closed on dom(A)×X∗.

Proof. Assume that xn
s−→ x ∈ dom(A), x∗n ∈ M(xn) and x∗n

w∗

−−→ x∗. Since A is a lsc

map, for every y ∈ A(x) there exists a subnet xni of xn and yni ∈ A(xni) s.t. yni

s−→ y.
Let β be a bound of the sequence {x∗n}. Then∣∣〈x∗, y − x〉 − 〈x∗ni

, yni
− xni

〉∣∣ ≤ ∣∣〈x∗ − x∗ni
, y − x

〉∣∣
+
∣∣〈x∗ni

, (y − x)− (yni
− xni

)
〉∣∣

≤
∣∣〈x∗ − x∗ni

, y − x
〉∣∣+ β ‖(y − x)− (yni

− xni
)‖ → 0.

We find
〈x∗, y − x〉 = lim

〈
x∗ni

, yni
− xni

〉
≤ 0.

Hence, x∗ ∈M(x). �
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As an immediate consequence of Theorem 2.5 and Proposition 4.7 we find the
following:

Corollary 4.8. Let f : X −→ R ∪ {+∞} be quasiconvex. If Sf (x) is closed for all
x ∈ domf , then the graph of the map x⇒ Na

f (x) is sequentially closed on domf ×X∗
in the s× w∗ topology.

In finite dimensions, the above corollary entails that Na
f is cone usc (see Corol-

laries 3.1 and 3.2 in [1]).
In infinite dimensions, by assuming that f is solid, we can show, via the s×w∗

closedness of the graph, the cone upper semicontinuity of the normal cone operator
Na
f in dom f under a suitable assumption on C. In particular, we recover Proposition

3.5 in [7].

Theorem 4.9. Let f be quasiconvex, lsc and solid. Then Na
f is s × w∗ cone upper

semicontinuous in dom f \C. If in addition #C ≤ 1, or #C ≥ 2 and int C 6= ∅, then
Na
f is s× w∗ cone upper semicontinuous in dom f .

Proof. First of all note that if C is a singleton, then Na
f is s × w∗ cone upper semi-

continuous at that point. In the following we will assume that C is not a singleton.
Let x ∈ dom f .

Suppose by contradiction that there exist a w∗-open cone M and a sequence

xn ∈ dom f , xn
s−→ x, such that Na

f (x) ⊆M ∪ {0}, but

Na
f (xn) "M ∪ {0}. (4.8)

Thus, there exists z∗n 6= 0, with z∗n ∈ Na
f (xn) \ M . We will show that there

exist n0 ∈ N, ε > 0 and y0 ∈ X such that for all n ≥ n0 and v ∈ B(0, 1), we have
y0 + εv ∈ Saf (xn). To see this, we consider two cases:

(i) If x /∈ C, then take λ such that inf f < λ < f(x). Since f is solid, intSf,λ 6= ∅.
By lower semicontinuity of f , there exists n0 ∈ N such that for all n ≥ n0,
f(xn) > λ. Now take y0 ∈ X and ε > 0 such that B(y0, ε) ⊆ Sf,λ. Then for

every v ∈ B(0, 1) and n ≥ n0, we have y0 + εv ∈ Sf,λ ⊆ S<f (xn) ⊆ Saf (xn).

(ii) If x ∈ C, then by assumption intC 6= 0; take y0 ∈ intC and ε > 0 such that
B(y0, ε) ⊆ C. Then we obtain y0+εv ∈ C ⊆ Saf (xn) for all n ∈ N and v ∈ B(0, 1).

In both cases, z∗n ∈ Na
f (xn) implies that for n ≥ n0,

ε〈z∗n, v〉 ≤ 〈z∗n, xn − y0〉 ∀v ∈ B(0, 1),

so

ε‖z∗n‖ ≤ 〈z∗n, xn − y0〉.
Consequently, taking n1 ≥ n0 such that ‖xn − x‖ ≤ ε

2 for n ≥ n1, we find

ε‖z∗n‖ ≤ 〈z∗n, xn − x〉+ 〈z∗n, x− y0〉 ≤
ε

2
‖z∗n‖+ 〈z∗n, x− y0〉, n ≥ n1.

Thus,

0 <
ε

2
‖z∗n‖ ≤ 〈z∗n, x− y0〉, n ≥ n1. (4.9)
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Since 〈z∗n, x − y0〉 > 0, we can choose tn > 0 such that 〈tnz∗n, x − y0〉 = 1. From
(4.9) we deduce ‖tnz∗n‖ ≤ 2

ε , n ≥ n1. Thus there exists z∗ ∈ X∗ and a subsequence

tnk
z∗nk

w∗

−−→ z∗. From the s × w∗ sequential closedness of Gr(Na
f ), it follows that

z∗ ∈ Na
f (x) ⊆M ∪ {0}. But from (4.8) we obtain that tnz

∗
n belongs to the w∗-closed

set X∗\M for all n, so z∗ /∈ M . It follows that z∗ = 0. Therefore 〈tnz∗n, x− y0〉 → 0,
a contradiction. �
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Università Cattolica del Sacro Cuore di Milano,
Dipartimento di Matematica per le Scienze Economiche, Finanziarie ed Attuariali,
Via Necchi 9, Milano, Italy
e-mail: monica.bianchi@unicatt.it

Nicolas Hadjisavvas
University of the Aegean,
Department of Product and Systems Design Engineering,
Konstantinoupoleos 1, Ermoupoli, Syros, Greece
e-mail: nhad@aegean.gr

Rita Pini
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On some qualitative properties of Ćirić’s fixed
point theorem
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Abstract. It is well known that of all the extensions of the Banach-Caccioppoli

Contraction Principle, the most general result was established by Ćirić in 1974.

In this paper, we will present some results related to Ćirić type operator in com-
plete metric spaces. Existence and uniqueness are re-called and several stability
properties (data dependence and Ostrowski stability property) are proved. Using
the retraction-displacement condition, we will establish the well-posedness and
the Ulam-Hyers stability property of the fixed point equation x = f(x).
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1. Introduction and preliminaries

Let (X, d) be a metric space and f : X → X be an operator. For A ⊂ X, let
δ(A) := sup {d(a, b) : a, b ∈ A} the diameter of the set A. For each x ∈ X, we denote:

O(x, n) = {x, f(x), ..., fn(x)} , n = 1, 2, ...,

O(x,∞) = {x, f(x), ..., fn(x), ...} .

Definition 1.1. (Ćirić [2]) Let (X, d) be a metric space and f : X → X be an operator.
Then X is said to be f -orbitally complete if every Cauchy sequence which is contained
in O(x,∞), for some x ∈ X converges in X.

The following classes of operators in a metric space (X, d) are important for our
approach.
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Definition 1.2. Let (X, d) be a metric space and f : X → X be an operator. Then f
is said to be an α-contraction if there exists α ∈ [0, 1) such that

d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ X. (1.1)

Definition 1.3. (Rus [6]) Let (X, d) be a metric space and f : X → X be an operator.
Then f is said to be a graphic α-contraction if there exists α ∈ [0, 1) such that

d(f2(x), f(x)) ≤ αd(x, f(x)), for all x ∈ X. (1.2)

Through this paper we denote N := {0, 1, 2, · · · } the set of all natural numbers
and by N∗ = N \ {0}.

We recall that, Fix(f) = {x ∈ X|x = f(x)} is the fixed point set of f and we
denote by (fn(x))n∈N the sequence of Picard iterates for f starting from x0 ∈ X, where
fn = f ◦f ◦· · ·◦f for n-times. Notice that the sequence of Picard iterates for f starting
from x0 ∈ X can be recursively defined by the formula xn+1 = f(xn), for n ∈ N,
where xn := fn(x0), n ∈ N.

Definition 1.4. (Ćirić [2]) An operator f : X → X is said to be a generalized con-
traction if and only if for every x, y ∈ X there exists nonnegative numbers q, r, s and
t, which may depend on both x and y, such that sup {q + r + s+ 2t : x, y ∈ X} < 1
and

d(f(x), f(y)) ≤ q · d(x, y) + r · d(x, f(x))+

+ s · d(y, f(y)) + t · [d(x, f(y)) + d(y, f(x))] .

Definition 1.5. (Ćirić [2]) Let (X, d) be a metric space and f : X → X be an operator.

Then X is said to be a Ćirić type operator (named a quasi-contraction in the original
paper [2]) if there exists a number q ∈ (0, 1), such that

d(f(x), f(y)) ≤ q ·max {d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))} , (1.3)

for all x, y ∈ X.

It is well known (see [4]) that of all the extensions of Banach-Caccioppoli Con-

traction Principle, the most general result was established by Ćirić in 1974 for the
above class of operators.

In the following example we present a Ćirić type operator which is not a gener-
alized contraction.

Example 1.6. Let

X1 =
{m
n

: m = 0, 1, 2, 4, 6, ...;n = 1, 3, 7, ..., 2k + 1, ...
}
,

X2 =
{n
n

: m = 1, 2, 4, 6, 8, ...;n = 2, 5, 8, ..., 3k + 2, ...
}
,

where k ∈ N and let X = X1 ∪X2. Let us define f : X → X by

f(x) =


2

3
x , x ∈ X1,

1

5
x , x ∈ X2.
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The mapping f is a Ćirić type operator with q =
2

3
. If both x and y are in X1 or in

X2, then

d(f(x), f(y)) ≤ 2

3
d(x, y)

If we take x ∈ X1 and y ∈ X2, then we have that

x ≥ 3

10
y implies d(f(x), f(y)) =

2

3

(
x− 3

10
y

)
≤ 2

3

(
x− 1

5
y

)
=

2

3
d(x, f(y))

x <
3

10
y implies d(f(x), f(y)) =

2

3

(
3

10
y − x

)
≤ 2

3
(y − x) =

2

3
d(x, y)

Thus, we have that f satisfies the following condition:

d(f(x), f(y)) ≤ 2

3
max {d(x, y), d(x, f(y)), d(y, f(x))}

and, hence, it is Ćirić type operator.
In the following step we show that f is not a generalized contraction on X. Let

x = 1 and y = 1
2 . Then we have that

q · d(x, y) + r · d(x, f(x)) + s · d(y, f(y)) + t · [d(x, f(y)) + d(y, f(x))]

=
1

2
q +

1

3
r +

4

10
s+

32

30
t < (q + r + s+ 2t)

32

60

<
32

60
<

17

30
= d(f(x), f(y)),

as q + r + s+ 2t < 1, we can see that f is not a generalized contraction.

In this paper, we will present some results related to Ćirić type operator in
complete metric spaces. Existence and uniqueness are re-called and several stability
properties (data dependence and Ostrowski stability property) are proved. Using the
retraction-displacement condition, we will establish the well-posedness and the Ulam-
Hyers stability property of the fixed point equation x = f(x).

Our results generalize and complement some theorems given in [1], [2], [3], [5],
[6], [7], [8].

2. Main results

In this section we will consider a metric space (X, d) and f : X → X a Ćirić type

operator. Besides the usual properties which are proved by Ćirić in [2], we will prove
some other stability properties. More precisely, we will establish the continuous data
dependence property of the fixed point and the Ostrowski stability property for the
operator f . Moreover, using the retraction-displacement condition and we also prove
that the fixed point equation x = f(x) is well-posed and Ulam-Hyers stable.

Theorem 2.1. (Ćirić [2]) Let (X, d) be a metric space and f : X → X be a Ćirić type
operator. Suppose that X is f -orbitally complete. Then:

1. f has a unique fixed point x∗ in X and lim
n→∞

fn(x) = x∗, i.e., f is a Picard

operator;
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2. d(fn(x), x∗) ≤ qn

1−qd(x, f(x)), for every x ∈ X and every n ∈ N∗;

The idea of the proof is based on the following two relations:
(i) if n ∈ N∗, then for each x ∈ X we have that d(f i(x), f j(x)) ≤ qδ(O(x, n)),

for every i, j ∈ N∗;
(ii) for each x ∈ X we have that δ(O(x,∞)) ≤ 1

1−qd(x, f(x)).

A second result in [2] shows that if there exists p ∈ N with p ≥ 2 such that fp

is a Ćirić type operator, then f is a Picard operator.

Remark 2.2. If f : X → X satisfies all the assumptions in Theorem 2.1, then we have
the following additional conclusion:

3. f satisfies the retraction-displacement condition

d(x, x∗) ≤ 1

1− q
d(x, f(x)), for all x ∈ X. (2.1)

Remark 2.3. The conclusion 3. follows by 2. in the following way. Take n = 1 in 2.
Then, we have

d(f(x), x∗) ≤ q

1− q
d(x, f(x)), for all x ∈ X.

Hence

d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ 1

1− q
d(x, f(x)), for all x ∈ X.

Lemma 2.4 (Cauchy-Toeplitz Lemma). Let (an)n∈N, (bn)n∈N be two sequences of pos-

itive numbers such that
∑
n≥0

an <∞ and lim
n→∞

bn = 0. Then

lim
n→∞

(
n∑

k=0

an−kbk

)
= 0

The following notion is essential in our approach.

Definition 2.5. (Rus [8]) Let (X, d) be a metric space and f : X → X be an operator
such that Fix(f) 6= ∅. We say that f satisfies the retraction-displacement condition
if there exists c > 0 and a set retraction ρ : X → Fix(f) such that

d(x, ρ(x)) ≤ cd(x, f(x)), for all x ∈ X. (2.2)

If Fix(f) = {x∗} then we have

d(x, x∗) ≤ cd(x, f(x)), for all x ∈ X.

For example, if f : X → X is an α-contraction and (X, d) is a complete metric
space then f satisfies the following retraction-displacement condition

d(x, x∗) ≤ 1

1− α
d(x, f(x)), for all x ∈ X.

On the same lines, if f : X → X is a graphic α-contraction then it satisfies the
retraction-displacement condition

d(x, ρ(x)) ≤ 1

1− α
d(x, f(x)), for all x ∈ X,
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where ρ : X → Fix(f) is defined by

ρ(x) = lim
n→∞

fn(x).

The following theorem is the main result of the paper.

Theorem 2.6. Let (X, d) be a metric space, f : X → X be a Ćirić type operator and
suppose that X is f -orbitally complete. Denote by x∗ ∈ X the unique fixed point of f .
Then the following conclusions hold:

1. the fixed point x = f(x) equation has the data dependence property, i.e., for any
operator g : X → X such that Fix(g) 6= ∅ and d(f(x), g(x)) ≤ η, for all x ∈ X
and some η > 0, we have

d(x∗, u∗) ≤ 1 + q

1− q
η,

for all u∗ ∈ Fix(g).
2. the fixed point equation is well-posed, i.e., for every sequence (un)n∈N ⊂ X such

that

d(un, f(un))→ 0,

as n→∞, we have that un → x∗, as n→∞;
3. the fixed point equation is Ulam-Hyers stable, i.e., there exists c > 0 such that

for any ε > 0 and any u∗ ∈ X an ε-solution of the fixed point equation (in the
sense that d(u∗, f(u∗)) ≤ ε), we have

d(u∗, x∗) ≤ c · ε.
4. if q < 1

2 , then the fixed point equation has the Ostrowski stability property, i.e.,
for any sequence (un)n∈N ⊂ X with d(un+1, f(un))→ 0 as n→∞, we have that
un → x∗;

5. if q < 1
2 , then f is a graphic q

1−q -contraction;

6. if q < 1
3 , then the operator f is a quasi-contraction, in the sense that there exists

β := q
1−2q < 1 such that

d(f(x), x∗) ≤ βd(x, x∗), for every x ∈ X.

Proof.

1. To prove data dependence we will take u∗ ∈ Fix(g) such that d(f(x), g(x)) ≤ η.

Then, we will prove that d(x∗, u∗) ≤ 1 + q

1− q
η.

d(x∗, u∗) = d(f(x∗), g(u∗)) ≤ d(f(x∗), f(u∗)) + d(f(u∗), g(u∗))

≤ q ·max {d(x∗, u∗), d(x∗, f(x∗)), d(u∗, f(u∗)), d(x∗, f(u∗)),

d(u∗, f(x∗))}+ d(f(u∗), g(u∗))

≤ q ·max {d(x∗, u∗), d(u∗, g(u∗)) + d(g(u∗), f(u∗)),

d(x∗, g(u∗)) + d(g(u∗), f(u∗)), d(x∗, u∗)}+ η

≤ q ·max {d(x∗, u∗), η, d(x∗, u∗) + η, d(x∗, u∗)}+ η

≤ q(d(x∗, u∗) + η) + η
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Hence, we get that

d(x∗, u∗) ≤ 1 + q

1− q
η

2. We will prove that the fixed point equation is well-posed. Let us estimate the
distance between un and x∗, where (un)n ∈ N is a sequence in X such that
d(un, f(un))→ 0 as n→∞.
In order to prove this, we will use the retraction-displacement condition (2.1).
We have:

d(un, x
∗) ≤ 1

1− q
d(un, f(un))→ 0 as n→∞

3. Let ε > 0 and u∗ ∈ X be an ε-solution of the fixed point equation x = f(x),
i.e., d(u∗, f(u∗)) ≤ ε. Using the retraction-displacement condition (2.1) we will
estimate the distance between x∗ and u∗:

d(x∗, u∗) = d(u∗, x∗) ≤ 1

1− q
d(u∗, f(u∗)) ≤ 1

1− q
ε

There exists c > 0 such that c := 1
1−q . Then it follows that

d(x∗, u∗) ≤ c · ε

which proves that the fixed point equation x = f(x) is Ulam-Hyers stable.
4. We will show that the operator f : X → X has the Ostrowski property. We

observe that:

d(un+1, x
∗) ≤ d(un+1, f(un)) + d(f(un), x∗) (2.3)

We take separately d(f(un), x∗) from the above inequality and we have:

d(f(un), x∗) = d(f(un), f(x∗))

≤ q ·max {d(un, x
∗), d(un, f(un)), d(x∗, f(x∗), d(un, f(x∗)),

d(x∗, f(un))}
≤ q ·max {d(un, x

∗), d(un, x
∗) + d(x∗, f(un)), d(un, x

∗),

d(x∗, f(un))}
≤ q(d(un, x

∗) + d(x∗, f(un))).

Thus

d(f(un), x∗) ≤ q

1− q
d(un, x

∗) (2.4)

We replace in (2.3) the relation obtained in inequality (2.4):

d(un+1, x
∗) ≤ d(un+1, f(un)) +

q

1− q
d(un, x

∗) (2.5)
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We denote: α :=
q

1− q
< 1.

We will use Cauchy-Toeplitz Lemma and we obtain:

d(un+1, x
∗) ≤ d(un+1, f(yn)) + αd(un, x

∗)

≤ d(un+1, f(un)) + α[d(un, f(un−1)) + αd(un−1, x
∗)]

≤ d(un+1, f(un)) + αd(un, f(un−1)) + α2d(un−1, x
∗) ≤ ... ≤

≤ d(un+1, f(un)) + αd(un, f(un−1)) + α2d(un−1, f(un−2))

+ ...+ αnd(u1, f(u0)) + αn+1d(u0, x
∗)→ 0 as n→∞.

5. If we put y := f(x) in the Ćirić type operator condition, we get

d(f(x), f2(x)) ≤ qmax{d(x, f(x)), d(f(x), f2(x)), d(x, f2(x))}
≤ q

(
d(x, f(x)) + d(f(x), f2(x))

)
.

Thus, we get that d(f(x), f2(x)) ≤ q
1−qd(x, f(x)), for every x ∈ X.

6. We will show now that f is a quasi-contraction, in the sense that

d(f(x), x∗) ≤ βd(x, x∗), for every x ∈ X,
where β := q

1−2q < 1. Indeed, by the second conclusion of Theorem 2.1 for

n = 1, we have d(f(x), x∗) ≤ q
1−qd(x, f(x)), for every x ∈ X. Then, we can

write successively:

d(f(x), x∗) ≤ q

1− q
d(x, f(x)) ≤ q

1− q
(d(x, x∗) + d(f(x), x∗)) .

As a consequence,

d(f(x), x∗) ≤ q

1− 2q
d(x, x∗), for each x ∈ X. �
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Abstract. In this work we first consider a certain monotonicity relative to some
given one-to-one operator and prove the counterparts, adjusted to this new con-
text, of most results obtained before in the joint work with G. Kassay [10]. For
two operators with the same status relative to injectivity, such as two local in-
jective operators, we define what we call mutual h-monotonicity and prove that
every two mutual h-monotone local diffeomorphisms can be obtained from each
other via a composition with a h-monotone diffeomorphism.
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1. Introduction

The importance of the Minty-Browder monotonicity stands in its applications
to the theory of partial differential equations (see for example [2, 3, 4],[13, 14]) and
in its connection with convex analysis, due to the characterization ofconvexity, within
the class of semicontinuous functions, through the Minty-Browder monotonicity of
the subdifferential operator (see for instance [6]). In the previous joint work with G.
Kassay ([10]) we extended the class of Minty-Browder monotone operators to the
class of h-monotone operators. While the inverse images of maximal Minty-Browder
monotone operators are well-known to be convex sets [16, p. 105], we only proved in
[10] that the inverse images of such operators, with finite dimensional source space,
are indivisible by closed connected hypersurfaces. In a joint work with G. Kassay
and F. Szenkowitz [11] we provided an elementary proof for the convexity of inverse
images of Minty-Browder monotone operators. The lack of divisibility of the inverse
images of the h-monotone operators through closed connected hypersurfaces allowed
us to establish some global injectivity results.
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In this work we first consider a certain monotonicity concept relative to some
given one-to-one operator. Note that the Minty-Browder monotonicity as well as the
h-monotonicity are particular notions of this relative monotonicity. Indeed, the role of
the given operator in the definitions of Minty-Browder monotonicity and in that of h-
monotone operators is played by the identity operator. We also prove the counterparts,
adjusted to this new context, of most results obtained before in [10]. For two operators
with the same status relative to injectivity, such as two local injective operators,
we define what we call mutual h-monotonicity and prove that every two mutual h-
monotone local diffeomorphisms can be obtained from each other via a composition
with a h-monotone diffeomorphism. As a consequence we observe that two mutual
h-monotone local diffeomorphisms have the same valence and provide some examples
of h-monotone operators relative to the gradient operator of some strictly convex
functions.

2. h-monotonicity relative to an injective operator

In this section we first emphasize some geometrical properties of the Minty-
Browder monotone operators which suggest an interesting enlargement of this class.

Let Sn ⊆ Rn+1 be the unit sphere and d
Sn : Sn × Sn −→ R+ be the metric

associated to the Riemann structure of Sn, i.e., d
Sn (x, y) = arccos〈x, y〉, x, y ∈ Sn is

the measure of the angle between the vectors x and y. Note that 0 ≤ d
Sn ≤ π. Denote

by pr
Sn the radial projection

Rn+1 \ {0} −→ Sn, z 7−→ z

||z||
.

The next important geometric characterizations of Minty-Browder monotonicity allow
us to enlarge this class.

Let D be a subset of Rn+1. The following statements hold:

1. T : D −→ Rn+1 is a Minty-Browder increasing operator if and only if

d
Sn (pr

Sn (x− y), pr
Sn (Tx− Ty)) ≤ π

2

for all x, y ∈ D, Tx 6= Ty.
2. T : D −→ Rn+1is a Minty-Browder decreasing operator if and only if

d
Sn (pr

Sn (x− y), pr
Sn (Tx− Ty)) ≥ π

2

for all (x, y) ∈ (D ×D) \ kerT .

Indeed, the stated facts follow from the following obvious relation

〈x− y, Tx− Ty〉
||x− y|| · ||Tx− Ty||

= cos[d
Sn (pr

Sn (x− y), pr
Sn (Tx− Ty))].

Taking into account the characterizations above, a natural extension of monotonicity
occurs. Recall that 0 ≤ d

Sn ≤ π for any x, y ∈ Sn.

Definition 2.1. Let T : D −→ Rn+1 be a given operator, where D is a subset of Rn+1.
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1. T is said to be h-increasing if d
Sn (pr

Sn (x − y), pr
Sn (Tx − Ty)) < π for all

(x, y) ∈ (D ×D) \ kerT .
2. T is said to be h-decreasing if d

Sn (pr
Sn (x − y), pr

Sn (Tx − Ty)) > 0 for all
(x, y) ∈ (D ×D) \ kerT .

3. T is said to be h-monotone if T is either h-increasing or T is h-decreasing.

Remark 2.2. Let T : Rn+1 −→ Rn+1 be a linear isometry.

1. T is h-increasing if and only if −1 6∈ Spec(A).
2. T is h-decreasing if and only if 1 6∈ Spec(A).

Indeed, if T is not h-increasing, then d
Sn (pr

Sn (x− y), pr
Sn (Tx− Ty)) = π for some

(x, y) ∈ (D ×D) \ kerT , i.e.

Tx− Ty
‖Tx− Ty‖

= −
x− y
‖x− y‖

⇔ T (x− y) = −(x− y)⇒ −1 ∈ Spec(T ).

Conversely, if −1 ∈ Spec(T ), then Tx = −x for some x 6= 0, i.e.

Tx

‖x‖
= −

x

‖x‖
⇔

Tx− To
‖Tx− T0‖

= −
x− 0

‖x− 0‖
⇔ d

Sn (pr
Sn (x− 0), pr

Sn (Tx− T0)) = π

which shows that T is not h-increasing. The statement (1) can be similarly proved.

Remark 2.3. The vector-valued function T : D −→ Rn+1 is h-monotone but not
Minty-Browder monotone whenever −1 < iT < 0, where iT stands for

inf

{
〈Tx− Ty, x− y〉
‖Tx− Ty‖ · ‖x− y‖

| (x, y) ∈ D ×D \ kerT

}
.

Several estimates of some parameters of monotonicity of type iT are provided in [12].

Definition 2.4. Let T,A : D −→ Rn+1 be given operators with A injective, where D
is a subset of Rn+1.

1. T is said to be h-increasing relative to A or simply A-increasing if

d
Sn (pr

Sn (Ax−Ay), pr
Sn (Tx− Ty)) < π,∀(x, y) ∈ (D ×D) \ kerT.

2. T is said to be h-decreasing relative to A or simply A-decreasing if

d
Sn (pr

Sn (Ax−Ay), pr
Sn (Tx− Ty)) > 0,∀(x, y) ∈ (D ×D) \ kerT.

3. T is said to be h-monotone relative to A or simply A-monotone if T is either
A-increasing or T is A-decreasing.

Remark 2.5. Analyzing Definition 2.1, the next (geometric) interpretations become
obvious.

1. T is A-increasing if and only if

Tx− Ty
||Tx− Ty||

6= Ay −Ax
||Ay −Ax||

,

for all (x, y) ∈ (D ×D) \ kerT .
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2. T is A-decreasing if and only if

Tx− Ty
||Tx− Ty||

6= Ax−Ay
||Ay −Ax||

,

for all (x, y) ∈ (D × D) \ kerT . In other words, for A-increasing operators,
the action represented by Figure 1(a) is not allowed, while for A-decreasing
operators, the action represented by Figure 1(b) is not allowed.

6 6

Rn+1 Rn+1

>

7

�

1

7

>

Ax

Ax

Ay

AyAy −Ax

(a) (b)

O

Tx Tx

Ty

Tx− Ty
Ax−Ay

Ty
Tx− Ty

6�

M

1
�

- -

Figure 1. Actions not allowed for A-increasing/decreasing operators

3. T is A-increasing if and only if

〈Tx− Ty,Ax−Ay〉 > −‖Tx− Ty‖ · ‖Ax−Ay‖,∀(x, y) ∈ (D ×D) \ kerT.

4. T is A-decreasing if and only if

〈Tx− Ty,Ax−Ay〉 < ‖Tx− Ty‖ · ‖Ax−Ay‖,∀(x, y) ∈ (D ×D) \ kerT.

5. T is A-increasing and A-decreasing if and only if

|〈Tx− Ty,Ax−Ay〉| < ‖Tx− Ty‖ · ‖Ax−Ay‖,∀x, y ∈ (D ×D) \ ker(T ).

6. If T is h-increasing/decreasing, then T ◦A is A-increasing/decreasing.
7. Let A : D −→ Rn+1 be an injective local homeomorphism/diffeomorphism, i.e.

the range of A is open as well as the restriction and the corestriction

D −→ Im(A), x 7→ Ax

is a homeomorphism/diffeomorphism still denoted by A. Then T is A-
increasing/decreasing if and only if the composition T ◦ A−1 : A(D) −→ Rn+1

is h-increasing/decreasing.
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8. The h-increasing/decreasing monotonicity coincides with the iD-increasing/de-
creasing monotonicity, where iD : D ↪→ Rn+1 stands for the inclusion operator.

9. If D ⊆ Rn+1 is a convex open set and f : D −→ R is a strictly convex function
whose convexity is ensured by the everywhere positive definiteness of its Hessian
matrix, then its gradient is an injective local diffeomorphism.

Remark 2.6. In the Definition 2.4 and in Remark 2.5, the role of the injective operator
A can be taken over by a (possibly non-injective) local diffeomorphism which we could
still denote by A. Thus, we obtain the definition and equivalent forms of monotonicity
with respect to (possibly non-injective) local diffeomorphisms.

The increasingA-monotonicity allows the angles between the vectors Tx−Ty and
Ax−Ay to exceed π/2 and approach π arbitrarily close for (x, y) ∈ (D×D) \ker(T ),
although the upper bound π is never reached by these angles in the case of increasing
A-monotone operators. The classes of (A, η)-increasing and (A, η)-decreasing opera-
tors η ∈ (−1, 1) can still be defined by means of these angles which are not allowed
to exceed the upper bound arccos η, i.e.

〈Tx− Ty,Ax−Ay〉 ≥ η‖Tx− Ty‖ · ‖Ax−Ay‖, ∀x, y ∈ D

for the increasing option and they are not allowed to decrease under the lower bound
arccos η for the decreasing option, i.e.

〈Tx− Ty,Ax−Ay〉 ≤ η‖Tx− Ty‖ · ‖Ax−Ay‖, ∀x, y ∈ D.

For η = 0 we call the first type of operators A-Minty-Browder increasing (or shortly
A−M−B-increasing operators) and the second type A-Minty-Browder decreasing op-
erators (or shortly A−M−B-decreasing operators). These angles are therefore allowed
to exceed π/2 when η ∈ (−1, 0), for the increasing option, but not to approach π arbi-
trarily close. This ensure, for the class of (A, η)-increasing operators when η ∈ (−1, 0),
the status of intermediate class between the class of A-Minty-Browder increasing op-
erators and the class of h-increasing operators. If, on the contrary η ∈ [0, 1), then the
class of η-monotone operators is contained in the class of A-Minty-Browder operators.
A similar discussion can be done for decreasing operators. The η-increasing/decreasing
monotonicity corresponds to the (iD, η)-increasing/decreasing monotonicity, where
iD : D ↪→ Rn+1 stands for the inclusion. (see [12]).

Remark 2.7. Another direction in which the A-monotonicity can be extended, due to
the Remarks 2.5[(1)-(4)], is for operators T : D −→ H, where (H, 〈·, ·〉) is a Hilbert
space, D ⊆ H is an open set and A : D −→ H is injective. This is also the case for
(A, η)-monotonicity.

Remark 2.8. Let T : D −→ H be a given operator. If A : H −→ H is a linear
isomorphism, then the A-Minty-Browder increasing/decreasing monotonicity of T is
equivalent with the Minty-Browder increasing/decreasing monotonicity of A∗ ◦ T .

Remark 2.9. 1. Let A : H −→ H be a linear unitary automorphism, i.e. A is an
isometric linear automorphism. Then T is

(
A
∣∣
D
, η
)
-increasing/decreasing if and

only if A∗ ◦ T is η-increasing/decreasing.
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2. If A : H −→ H is a linear unitary automorphism, then T is A
∣∣
D

-increasing/de-

creasing if and only if A∗ ◦ T is h-increasing/decreasing.
3. If A : D −→ H be an injective operator, then T is

(
A
∣∣
D
, η
)
-increasing/decreasing

if and only if T ◦A−1 is η-increasing/decreasing.

Proposition 2.10. Let (H, 〈·, ·〉) be a Hilbert space and D ⊆ H be an open set. Let
also T : D −→ H be a given operator and let A : H −→ H be a bounded linear
isomorphism such that bA∗ := inf{‖A∗z‖ : ‖z‖ = 1} > 0. If −bA∗ < ηaA ≤ 0 and T
is (A, η)-increasing, then A∗ ◦ T is (ηaA)/bA∗-increasing, where aA stands for ‖A‖.
If 0 ≤ ηaA < bA∗ and T is (A, η)-decreasing, then A∗ ◦ T is (ηaA)/bA∗-decreasing.

Proof. Assume that T is (A, η)-increasing for η ∈ (−1, 0), i.e. we have

〈Tx− Ty,Ax−Ay〉 ≥ η‖Tx− Ty‖ · ‖Ax−Ay‖ ⇐⇒
〈(A∗ ◦ T )x− (A∗ ◦ T )y, x− y〉 ≥ η‖Tx− Ty‖ · ‖Ax−Ay‖, ∀x, y ∈ D.

Therefore, for x, y ∈ D, x 6= y, we have

(A∗ ◦ T )x− (A∗ ◦ T )y, x− y〉 ≥ η‖Tx− Ty‖ · ‖x− y‖
‖Ax−Ay‖
‖x− y‖

= η‖A∗(Tx)−A∗(Ty)‖
1∥∥∥∥∥A∗

(
Tx− Ty
‖Tx− Ty‖

)∥∥∥∥∥
· ‖x− y‖ ·

∥∥∥∥∥A
(

x− y
‖x− y‖

)∥∥∥∥∥

≥ η

 sup
‖z‖=1

‖Az‖

inf
‖z‖=1

‖A∗z‖

 ‖(A∗ ◦ T )x− (A∗ ◦ T )y‖ · ‖x− y‖

=
ηaA

bA∗
· ‖(A∗ ◦ T )x− (A∗ ◦ T )y‖ · ‖x− y‖

and the proof of the first statement is now complete. The second statement can be
similarly proved. �

Corollary 2.11. Let D ⊆ Rn+1 be an open set, let T : Rn+1 → Rn+1 and A : Rn+1 →
Rn+1 be a linear isomorphism. If −bA∗ < ηaA ≤ 0 and T is (A, η)-increasing, then
A∗ ◦ T is (ηaA)/bA∗-increasing. If 0 ≤ ηaA < bA∗ and T is (A, η)-decreasing, then
A∗ ◦ T is (ηaA)/bA∗-decreasing.

Remark 2.12. The gradients of strictly convex functions whose strict convexity is
ensured by the everywhere positive definiteness of the Hessian matrix are good can-
didates to play the role of the injective operator A. Indeed, the gradient of such a
function defined on a convex open subset D of Rn is injective, as the everywhere
positive definiteness of the Hessian matrix is equivalent with the everywhere positive
definiteness the Fréchet differentials of the gradient. In fact the Jacobian matrix of the
gradient of such a C2-smooth function is precisely the Hessian matrix of that function.
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In fact the h-monotonicity of a certain operator coincides with its ∇f -monotonicity,
where f : D ⊆ Rn −→ R is the strictly convex function given by

f(x) =
1

2
‖x‖2.

Proposition 2.13. Let T,A : D −→ Rn+1 be given operators with A injective, where
D is a subset of Rn+1. The operator T + A is A-increasing and A-decreasing if and
only if T is A-increasing and A-decreasing.

Proof. Indeed,

〈Tx+Ax− Ty −Ay,Ax−Ay〉2 =
(
‖Ax−Ay‖2 + 〈Tx− Ty,Ax−Ay〉

)2
= ‖Ax−Ay‖4 + 2‖Ax−Ay‖2〈Tx− Ty,Ax−Ay〉+ 〈Tx− Ty,Ax−Ay〉2.

and

‖Tx+Ax− Ty −Ay‖2 · ‖Ax−Ay‖2 = ‖Tx− Ty +Ax−Ay‖2 · ‖Ax−Ay‖2

=
(
‖Ax−Ay‖2 + 2〈Tx− Ty,Ax−Ay〉+ ‖Tx− Ty‖2

)
· ‖Ax−Ay‖2

= ‖Ax−Ay‖4 + 2‖Ax−Ay‖2〈Tx− Ty,Ax−Ay〉+ ‖Tx− Ty‖2‖Ax−Ay‖2.

The statement follows easily by using Remark 2.5(5). �

Corollary 2.14. Let D ⊆ Rn+1 be a convex open set and f : D −→ R be a C2-
smooth strictly convex function whose convexity is ensured by the everywhere positive
definiteness of its Hessian matrix. The operator T + ∇f is ∇f -increasing and ∇f -
decreasing if and only if T : D −→ Rn+1 is ∇f -increasing and ∇f -decreasing.

3. On the degree of some spherical projections

Since in our study on h-monotone operators the degree of differentiable maps
plays an important role, in this section we discuss some of its properties. In this
respect we first recall the notions of critical/regular points and critical/regular values.

Let M,N be differential manifolds and f : M → N be a differentiable mapping.
We first define the rank of f at a point p ∈M as rankpf := rank(df)p = dim[Im(df)p,
where (df)p : Tp(M) −→ Tf(p)(N) is the differential (or tangent map) of f at p, and
observe that rank

p
f ≤ min{m,n}, where m = dim(M) and n = dim(N). The point

p ∈ M is called a regular point of f if rank
p
f = min {m,n} and it is called critical

point of f if rankpf < min{m,n}. One can immediately observe that the set R(f)
of all regular points of f is open while the set C(f) := M\R(f) of all critical points
of f is closed. A value y ∈ f(C(f)) =: B(f) is called critical value of f , and a point
q ∈ N\B(f) is called regular value of f .

If m = n, then a point x ∈M is a regular point of f : M −→ N if and only if f
is a local diffeomorphism at x. Consequently the preimage f−1(y) of a regular value
y of f is discrete. If f is additionally proper (i.e. the inverse images of compact sets
are compact), then the preimage f−1(y) of such a regular value is finite.

If H ⊂ Rn+1 is a hypersurface, i.e. an n-dimensional submanifold, and
p ∈ H, then denote by Tp(H) the collection of all tangent vectors γ′(0), where
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γ : (−ε, ε) −→ H is a parameterized differentiable curve such that γ(0) = p and recall
that Tp(H) is an n-dimensional vector subspace of Rn+1. Denote by iH : H ↪→ Rn+1

the inclusion mapping and recall that two hyperplanes of Rn+1 are orthogonal if their
normal vectors are orthogonal. A compact hypersurface of Rn+1 without boundary
(in the sense of manifold theory) will be called closed hypersurface.

If M,N are compact connected oriented n-dimensional manifolds, f : M −→ N is a
differentiable map and y ∈ N is a regular value of f , then

degy(f) :=


∑

x∈f−1(y)

εx if f−1(y) 6= ∅

0 if f−1(y) = ∅,

where

εx :=

{
1 if (df)x preserves the orientation
−1 if (df)x reverses the orientation.

In fact degy(f) does not depend on y and is called the degree of f , being simply
denoted by deg(f) (see [1], pp. 253]). If f is not onto, observe that deg(f) = 0, since
every y ∈ N \ Im(f) is a regular value of f . On the other hand, one can show that
deg is invariant on differential homotopy classes of maps from M to N . Since every
continuous homotopy class of maps from M to N contains a differentiable map, the
notion of degree can be extended to the class of all continuous maps and its invariance
on continuous homotopy classes is part of the extension procedure. For more details
the reader could consult [8], pp. 165, 166, 21-221]. A different approach of degree
theory for continuous maps appears in [7], pp. 62-65, 266-271].

Proposition 3.1. If X is a topological space and f, g : X −→ Sn, n ≥ 1 are continuous
maps such that d

Sn (f(x), g(x)) < π for all x ∈ X, then f ' g, i.e. f and g are
homotopic.

Proof. Indeed, the following homotopy

H : X × [0, 1] −→ Sn, H(x, t) :=
(1− t)f(x) + tg(x)

‖(1− t)f(x) + tg(x)‖

is well defined and H(·, 0) = f,H(·, 1) = g. �

Remark 3.2. If X is a topological space and f, g : X −→ Sn, n ≥ 1 are continuous
maps such that d

Sn (f(x), g(x)) > 0 for all x ∈ X, then f ' −g, i.e. f and −g are
homotopic.

For a given function f : X −→ Y we define its kernel as the equivalence re-
lation on X whose graph is ker(f) := {(x1, x2) ∈ X ×X : f(x1) = f(x2)}. The next
statements reveal some important homotopy properties of the A-monotone operators.

Corollary 3.3. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be an injective
local diffeomorphism. If T : D → Rn+1 is an A-monotone operator, then the map

D ×D \ ker(T )→ Sn, (x, y) 7−→ pr
Sn (Tx− Ty)
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is homotopic to one of the maps

D ×D \ ker(T )→ Sn, (x, y) 7−→ pr
Sn (Ax−Ay)

or

D ×D \ ker(T )→ Sn, (x, y) 7−→ pr
Sn (Ay −Ax).

Corollary 3.4. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be an injective
local diffeomorphism. If T : D → Rn+1 is a differentiable A-monotone operator and
H ⊂ D is a closed connected hypersurface, then the degree of pr

Sn ◦ (A
∣∣
H
− Az) is

invariant over every connected component of D \ T−1(T (H)).

Proof. We assume that T is A-increasing, as the decreasing option can be similarly
treated. Let us consider a continuous path γ : [0, 1] −→ D \ T−1(T (H)). Therefore
γ(0) = z0 and γ(1) = z1 belong to the same connected component of T−1(T (H)). By
using Corollary 3.3 one can deduce that

pr
Sn ◦(A

∣∣
H
−Az0) ' pr

Sn ◦(T
∣∣
H
−Tz0)

and

pr
Sn ◦(A

∣∣
H
−Az1) ' pr

Sn ◦(T
∣∣
H
−Tz1)

along with

deg pr
Sn ◦ (A

∣∣
H
−Az0) = deg pr

Sn ◦ (T
∣∣
H
− Tz0) (3.1)

and

deg pr
Sn ◦ (A

∣∣
H
−Az1) = deg pr

Sn ◦ (T
∣∣
H
− Tz1). (3.2)

On the other hand

H : H× [0, 1] −→ T−1(T (H)), H(x, t) =
Tx− T (γ(t))

‖Tx− T (γ(t))‖

realizes a homotopy between pr
Sn ◦(T

∣∣
H
−Tz0) and pr

Sn ◦(T
∣∣
H
−Tz1). Therefore

deg pr
Sn ◦(T

∣∣
H
−Tz0) = deg pr

Sn ◦(T
∣∣
H
−Tz1)

which combined with (3.1) and (3.2) leads us to the equality

deg pr
Sn ◦ (A

∣∣
H
−Az0) = deg pr

Sn ◦ (A
∣∣
H
−Az1). �

Remark 3.5. Let X be a compact differential n-dimensional manifold and

f, g : X −→ Sn, n ≥ 1

be continuous maps such that

1. If d
Sn (f(x), g(x)) < π for all x ∈ X , then deg(g) = deg(f). Indeed, f and g are,

according to Proposition 3.1, homotopic to each other.
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2. If d
Sn (f(x), g(x)) > 0 for all x ∈ X, then deg(g) = (−1)n+1 deg(f). Indeed,

d
Sn (f(x), g(x)) > 0, ∀ x ∈ X ⇔ d

Sn (−f(x), g(x)) < π, ∀ x ∈ X,

which shows, according to Proposition 3.1, that

deg(g) = deg(−f) = deg(A ◦ f) = deg(A) deg(f) = (−1)n+1 deg(f),

where A : Sn −→ Sn, Ax = −x is the antipodal map.
Consequently, if deg(g) 6= (−1)n+1 deg(f), then the coincidence set

C(f, g) := {x ∈ X : f(x) = g(x)}

is not empty.

If H ⊂ Rn+1 is a closed connected hypersurface, then, according to [9], Theorem 4.6]
and the related results therein, H separates Rn+1 and Rn+1 \ H has precisely two
connected components, one of which is bounded and denoted by int(H) and another
one which is unbounded and denoted by ext(H).
On the other hand ∂

[
int(H)

]
= H = ∂

[
ext(H)

]
, where ∂S stands for the topological

frontier of S.

Proposition 3.6. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism. If H ⊂ D ⊆ Rn+1 is a closed connected hypersurface,
then

deg[pr
Sn ◦ (A

∣∣
H
−Az)] = 0, ∀z ∈ A−1(ext(A(H))),

and either

deg[pr
Sn◦ (A

∣∣
H
−Az)] = 1,∀z ∈ A−1(int(A(H)))

or

deg[pr
Sn◦ (A

∣∣
H
−Az)] = −1,∀z ∈ A−1(int(A(H)).

Proof. Since A : D −→ Rn+1 is an injective local diffeomorphism, the image A(H)
of H through A is a closed connected hypersurface and according to [10, Proposition
3.7] we conclude that

deg[pr
Sn ◦ (i

A(H)
−Az)] = 0 for all z ∈ A−1(ext(A(H))),

as well as either

deg[pr
Sn ◦ (iH −Az)] = 1 for all z ∈ A−1(int(A(H)))

or

deg[pr
Sn ◦ (i

A(H)
−Az)] = −1 for all z ∈ A−1(int(A(H))).

Note that

pr
Sn ◦ (A

∣∣
H
−Az)] = [pr

Sn ◦ (i
A(H)
−Az)] ◦ r,

where r stands for the restriction and corestriction H −→ A(H), x 7→ Ax, which is a
diffeomorphism. The multiplicative property of the degree combined with the obvious
fact that either deg r ≡ 1 or deg r ≡ −1, concludes the proof. �
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4. Properties of the inverse images of A-monotone operators

In this section we provide some examples of closed subsets of the Euclidean
space Rn+1 which can be separated by closed connected hypersurfaces. We close this
section by proving that the inverse images of continuous A-monotone operators cannot
be separated by closed smooth hypersurfaces.

Definition 4.1. A subset X of Rn+1 is separated by a closed connected hypersurface
H of Rn+1 if H ⊆ Rn+1\X and each int(H), ext(H) contains a connected component
of X at least. We say that X is divisible by closed connected hypersurfaces if X is
separated by one closed connected hypersurface, at least. Otherwise we say that X is
indivisible by closed connected hypersurfaces.

Theorem 4.2. ([10]) If the closed set C ⊂ Rn+1 has a compact connected component
K such that C \ K is nonempty and closed, then C is divisible by closed connected
hypersurfaces.

Theorem 4.3. Let D ⊆ Rn+1 be an open set, let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism and T : D −→ Rn+1 be a continuous A-monotone
operator. If y ∈ Im(T ), then T−1(y) is indivisible by closed connected hypersurfaces.

Proof. Assume that T−1(y) is divisible by closed connected hypersurfaces, for some
y ∈ Im(T ) and consider a closed connected hypersurface H ⊂ Rn+1 with the property
that one component of T−1(y), say C, is contained in int(H) and another component
of T−1(y), say K, is contained in ext(H).
If z0 ∈ C ⊆ A−1(int(A(H)) and z1 ∈ K ⊆ A−1(ext(A(H)), then, according to
Proposition 3.6 and Corollary 3.4, one gets

±1 = deg[pr
Sn ◦ (A

∣∣
H
−Az0)] = ±deg[pr

Sn ◦ (A
∣∣
H
−Az1)] = 0,

which is absurd. �

Corollary 4.4. Let D ⊆ Rn+1 be an open set, let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism and T : D −→ Rn+1 be a continuous A-monotone
operator. If y ∈ Im(T ), then either T−1(y) is connected or the set T−1(y) \K is not
closed for every compact connected component K of T−1(y).

Proof. Assume that T−1(y) is not connected and T−1(y) \K is closed for some com-
pact connected component K of T−1(y). Then T−1(y) \ K is nonempty and the
statement follows by using Theorems 4.2, 4.3. �

Theorem 4.5. Let D ⊆ Rn+1 be an open set, let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism and T : D −→ Rn+1 be a continuous A-monotone
operator. If q ∈ Im(T ), then either T−1(q) is a singleton or dim

(
T−1(q)

)
≥ 1.

Proof. Recall that, according to Remark 2.5(7), the operator T : D −→ Rn+1 is
A-monotone if and only if T ◦ A−1 : A(D) −→ Rn+1 is h-monotone. By using [10,
Theorem 4.8] one gets that either (T ◦A−1)−1(q) = A(T−1(q)) is a singleton or

dim(T ◦A−1)−1(q) = dim(A(T−1(q)) ≥ 1,

i.e., T−1(q) is a singleton or dim
(
T−1(q)

)
≥ 1. �



66 Cornel Pintea

The next properties of the inverse images of A-monotone operators are immedi-
ate consequences of Theorem 4.5.

Corollary 4.6. Let D ⊆ Rn+1 be an open set, let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism and T : D −→ Rn+1 be a continuous A-monotone
operator. Then either T is injective or dim

(
T−1(y)

)
≥ 1 for some y ∈ Im(T ).

Proof. If T is not injective, then card
(
T−1(y)

)
≥ 2 for some y ∈ Im(T ). According

to Theorem 4.5, dim
(
T−1(y)

)
≥ 1. �

Definition 4.7. ([5]) A continuous map f : X → Y is said to be light if

dim
(
f−1(y)

)
≤ 0 for every y ∈ Y.

Observe that locally injective operators are light, as their inverse images are discrete
sets.

Corollary 4.8. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism. If T : D −→ Rn+1 a continuous A-monotone light
operator, then T is injective.

Proof. We need to prove that card
[
A−1(q)

]
= 1 for each q ∈ Im(A). Indeed, if

card
[
A−1(q)

]
were at least 2 for some q ∈ Im(A), then, according to Theorem 4.5,

we would get dim
(
A−1(q)

)
≥ 1. �

Corollary 4.9. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism. If T : D −→ Rn+1 a continuous A-monotone local
homeomorphism, then T is injective.

Corollary 4.10. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
local diffeomorphism. If T : D −→ Rn+1 is a C1-smooth A-monotone operator, then
T is locally injective. Indeed, according to Corollary 4.9, the restriction T

∣∣
U

, where

U ⊆ D is an open set, is injective whenever the restriction A
∣∣
U

is injective. The later
type of restrictions are one-to-one for suitable choices of the open set U ⊆ D, as A is
a local diffeomorphism. If T is additionally open, then one can conclude that T is a
local homeomorphism.

Remark 4.11. Observe that Corollary 4.9 can be also obtained from Theorem 4.3.
Indeed the inverse images of local diffeomorphisms, as discrete sets, are divisible by
closed connected hypersurfaces provided their cardinality is at least two.

5. Pairs of mutual monotone local homeomorphisms

In this section we deal with pairs operators having a priori the same status
relative to injectivity, i.e. they are local homeomorphisms.

Definition 5.1. Let D ⊆ Rn be an open set and let T,Q : D −→ Rn be two local
homeomorphisms. The two local homeomorphisms are said to be

1. mutual h-increasing if

d
Sn (pr

Sn (Tx− Ty), pr
Sn (Qx−Qy)) < π, ∀(x, y) ∈ (D ×D) \ (kerT ∪ kerQ).
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2. mutual h-decreasing if

d
Sn (pr

Sn (Tx− Ty), pr
Sn (Qx−Qy)) > 0,∀(x, y) ∈ (D ×D) \ (kerS ∪ kerQ).

3. mutual h-monotone if they are either mutual h-increasing or mutual h-decreasing.

Remark 5.2. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
local diffeomorphism. If T : D −→ Rn+1 is an open C1-smooth A-monotone operator,
then, according to Corollary 4.10, the operators T and A have a posteriori some
rather close status with respect to injectivity, i.e. A is a local diffeomorphism and T
is a local homeomorphism and the two operartors T and A are mutual h-monotone
local homeomorphisms.

Remark 5.3. Let D ⊆ Rn be an open set and let T,Q : D −→ Rn be two local
homeomorphisms.

1. The two local homeomorphisms are mutual h-increasing if and only if

〈Tx− Ty,Qx−Qy〉 > −‖Tx− Ty‖ · ‖Qx−Qy‖,∀(x, y) ∈ (D×D) \ (kerT ∪ kerQ);

2. The two local homeomorphisms are mutual h-decreasing if and only if

〈Tx− Ty,Qx−Qy〉 < ‖Tx− Ty‖ · ‖Qx−Qy‖,∀(x, y) ∈ (D ×D) \ (kerS ∪ kerQ).

3. The relation of being mutual h-increasing/decreasing is symmetric.

Theorem 5.4. If D ⊆ Rn is an open set and T,Q : D −→ Rn are two mutual h-
monotone local diffeomorphisms, then kerS = kerT .

Proof. By using Corollary 4.9 it follows that the two local diffeomorphisms are simul-
taneously injective or non-injective. Their injectivity is equivalent with

kerT = kerQ = ∆D := {(x, x) : x ∈ D}.
We now assume that none of them is injective as well as kerT \ kerQ 6= ∅ and
consider (u, v) ∈ kerT \ kerQ, i.e. Tu = Tv and Qu 6= Qv. Let r, ε > 0 be such that
T (B(u, r + ε)), Q(B(u, r + ε)) are open and the restrictions

B̄(u, r) −→ T (B̄(u, r)), x 7→ Tx

B̄(u, r) −→ Q(B̄(u, r)), x 7→ Qx

are diffeomorphisms and Qv 6∈ Q(B̄(u, r)). In particular the sphere S(p, r) is mapped
by T onto a closed hypersurface T (S(p, r)). Since the local diffeomorphisms T,Q are
mutual h-monotone, it follows that either

d
Sn (pr

Sn ◦ (T
∣∣
S(u,r)

− Tv), pr
Sn ◦ (T

∣∣
S(u,r)

− Tv)) < π

or
d

Sn (pr
Sn ◦ (T

∣∣
S(u,r)

− Tv), pr
Sn ◦ (Q

∣∣
S(u,r)

−Qv)) > 0.

In both cases we get, via Remark 3.5, that

deg pr
Sn ◦(Q

∣∣
S(u,r)

−Qv) = ±deg pr
Sn ◦(T

∣∣
S(u,r)

−Tv) = ±deg pr
Sn ◦(T

∣∣
S(u,r)

−Tu).

On the other hand, by using Proposition 3.6

deg pr
Sn ◦ (Q

∣∣
S(u,r)

−Qv) = 0,
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as Qv ∈ ext (S(u, r)) and

deg pr
Sn ◦ (T

∣∣
S(u,r)

− Tu) = ±1,

as Tu ∈ int T (S(u, r)), which is absurd.
Therefore kerT \kerQ = ∅ ⇐⇒ kerT ⊆ kerQ. The opposite inclusion can be similarly
done by interchanging the roles of T and Q. �

Theorem 5.5. Let D ⊆ Rn be an open set and let T,Q : D −→ Rn be two local
diffeomorphisms. Then T,Q are mutual h-monotone if and only if there exists a h-
monotone diffeomorphism

Φ : Im(Q) −→ Im(T )

such that T = Φ ◦Q.

Proof. If Φ is h-increasing and T = Φ ◦Q, then

〈Tx− Ty,Qx−Qy〉 = 〈Φ(Qx)− Φ(Qy), Qx−Qy〉
> −‖Φ(Qx)− Φ(Qy)‖ · ‖Qx−Qy‖
= −‖Tx− Ty‖ · ‖Qx−Qy‖,

i.e. T = Φ ◦Q is h-increasing. If Φ is h-decreasing and T = Φ ◦Q, then

〈Tx− Ty,Qx−Qy〉 = 〈Φ(Qx)− Φ(Qy), Qx−Qy〉 < ‖Φ(Qx)− Φ(Qy)‖ · ‖Qx−Qy‖
= ‖Tx− Ty‖ · ‖Qx−Qy‖

i.e. T = Φ ◦ Q is h-decreasing. Conversely, if T,Q are mutual h-monotone, then
kerT = kerQ, due to Theorem 5.4. The functions

α : D/ kerT −→ Im T, α(d+ kerT ) = T (d)

β : D/ kerQ −→ Im Q, β(d+ kerQ) = Q(d)

are well-defined, bijective and T = α ◦ πkerT and Q = β ◦ πkerQ, where

πkerT : D −→ D/ kerT and πkerQ : D −→ D/ kerQ

are the canonical projections. The bijections α and β are also unique with their
corresponding properties. Since kerT = kerQ, it follows that D/ kerT = D/ kerQ
and

Im Q
β←− D/ kerQ = D/ kerT

α−→ Im T

are bijections. Therefore Φ := α ◦ β−1 : Im(Q) −→ Im(T ) is a bijection and

Φ ◦Q = α ◦ β−1 ◦Q = α ◦ πkerQ = α ◦ πkerT = T.

Since T and Q are local diffeomorphisms it follows that Φ is differentiable and a
diffeomorphism therefore. Finally

〈Φ(Qx)− Φ(Qy), Qx−Qy〉 = 〈Tx− Ty,Qx−Qy〉 > −‖Tx− Ty‖ · ‖Qx−Qy‖
= −‖Φ(Qx)− Φ(Qy)‖ · ‖Qx−Qy‖

if T,Q are mutual h-increasing and

〈Φ(Qx)− Φ(Qy), Qx−Qy〉 = 〈Tx− Ty,Qx−Qy〉 < ‖Tx− Ty‖ · ‖Qx−Qy‖
= ‖Φ(Qx)− Φ(Qy)‖ · ‖Qx−Qy‖
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if T,Q are mutual h-decreasing. In other words, Φ is h-increasing/decreasing if T,Q
are mutual h-increasing/decreasing. �

Corollary 5.6. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
local diffeomorphism. If T : D −→ Rn+1 is an open C1-smooth A-monotone operator,
then there exists a h-monotone homeomorphism

Φ : Im(Q) −→ Im(T )

such that T = Φ ◦Q.

Proof. According to Remark 5.2, T is a local homeomorphism and T,A are obviously
mutual h-monotone local homeomorphisms. From now on the proof works along the
same lines with the proof of Theorem 5.5. �

Corollary 5.7. Let D ⊆ Rn be an open set and let T,Q : D −→ Rn be two local
diffeomorphisms. If T,Q are mutual h-monotone, then

Val(T ) = Val(Q),

where

Val(F ) := sup{cardF−1(y) : y ∈ Rn}
stands for the valence of F : D −→ Rn, as defined in [15].

Proof. Indeed, according to Theorem 5.5 there exists an h-monotone diffeomorphism

Φ : Im(Q) −→ Im(T )

such that T = Φ◦Q. Thus T−1(y) = (Φ◦Q)−1(y) = Q−1(Φ−1(y)) for every y ∈ Im(T ),
which implies that

card T−1(y) = card Q−1(Φ−1(y)),∀y ∈ Im(T )

and shows that

Val(T ) = sup{card T−1(y) : y ∈ Im(T )}
= sup{card Q−1(Φ−1(y)) : y ∈ Im(T )}
= sup{card Q−1(z) : z ∈ Im(Q)} = Val(Q).

�

Remark 5.8. In the proof of Corollary 5.7, we only used the quality of Φ to be globally
injective, not its quality to be differentiable with differentiable inverse.

6. Final comments and remarks

Throughout the section we make use of the notation described below (see [18]).
Let D be a nonempty open convex subset of Rn, and let f : D → R be a C2-smooth
convex function. The Hessian matrix of f at an arbitrary point x ∈ D will be denoted
by Hx(f). Recall that Hx(f) is a symmetric matrix and it defines a symmetric bilinear
functional

Hx(f) : Rn × Rn −→ R, Hx(f)(u, v) := u ·Hx(f) · vT .
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The following region

Hess+(f) := {x ∈ D|Hx(f) is positive definite}

associated to some C2-smooth regular function f : D −→ R was described in [17] for
the particular polynomial function

fa : R2 −→ R, fa(x, y) = (x2 + y2)2 − 2a2(x2 − y2).

Denote by hx(f) : Rn −→ Rn the linear transformation defined by the following
equality Hx(f)(u, v) := 〈hx(f)u, v〉 , ∀u, v ∈ Rn. and set

σ
f

:= sup
z∈D
‖hf (z)‖.

Let further A : Rn → Rn be a linear operator, and let T : D → Rn be the vector-
valued function defined by Tx := ∇f(x) + Ax. We shall denote by [A] the matrix
representation of A with respect to the standard basis of Rn. Let Sn−1 denote the
unit sphere (i.e., centered at the origin) in Rn, and let

W (A) := {〈Ax, x〉 | x ∈ Sn−1}

be the numerical range of A. It is well known that W (A) = [λA, µA], where λA and
µA denote the smallest and the greatest eigenvalue, respectively, of the symmetric
operator (A+A∗)/2. Let also λ∗A and µ∗A denote the smallest and the greatest eigen-
value, respectively, of the symmetric positive semidefinite operator A∗A. It is well
known that

‖A‖ := max
x∈Sn−1

‖Ax‖ =
√
µ∗A and min

x∈Sn−1
‖Ax‖ = bA. (6.1)

Sometimes we set, for brevity, aA := ‖A‖ =
√
µ∗A and bA := 1/‖A−1‖ if A is invertible.

Since ‖A−1‖ equals the square root of the greatest eigenvalue of

(A−1)∗A−1 = (AA∗)
−1
,

it follows that bA =
√
λ∗A.

Theorem 6.1. ([18]) Let D ⊆ Rn be a convex open set, let f : D −→ R be a C2-
smooth convex function and let A : Rn −→ Rn be a linear automorphism. If the
following inequalities are satisfied

σ
f
< bA + λA and inf

z∈D
‖hf (z)‖ < −µA,

then −1 < i∇f+A < 0, namely ∇f +A is h-monotone but not monotone.

Theorem 6.2. ([18]) Let D ⊆ Rn be a convex open set, let f : D −→ R be a C2-
smooth convex function and let A : Rn −→ Rn be a linear automorphism. If the
following inequality is satisfied

σ
f
< min {bA + λA, −µA} , (6.2)

then T := ∇f +A is injective.
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Remark 6.3. Let f, g : Rn −→ R be C2-smooth functions such that Hess+(f) 6= ∅
and Hess+(g) = Rn. Then ∇f

∣∣
Hess+(f)

◦ ∇g
∣∣
D

and (∇f
∣∣
Hess+(f)

+ A) ◦ ∇g
∣∣
D

are

∇g
∣∣
D

-increasing for every convex open subset D of Rn such that the range of ∇g
∣∣
D

is

contained in Hess+(f), where A : Rn −→ Rn is a linear automorphism related with f
through the inequality (6.2). Thus ∇f

∣∣
Hess+(f)

◦ ∇g
∣∣
D

and (∇f
∣∣
Hess+(f)

+A) ◦ ∇g
∣∣
D

are one-to-one as ∇g is a Minty-Browder monotone global diffeomorphism.

Example 6.4. Let f : Rn −→ R be a C2-smooth function such that Hess+(f) 6= ∅ and
the smooth function

g : Rn −→ R, g(x) =
1

2
e‖x‖

2

.

Then its gradient (∇g)x = e‖x‖
2 · x is a Minty-Browder monotone global diffeomor-

phism, as the Hessian matrix Hx(g) = e‖x‖
2

(In + 2x · xT ) of g, which is actually
the Jacobian matrix of ∇g, is positive definite. Indeed, the diagonal determinants
∆k = 1+2(x21 + · · ·+x2k) of In+2x ·xT are all positive and the positive definiteness of
In+2x·xT follows via the Sylvester criterion. Therefore ∇f

∣∣
Hess+(f)

◦∇g
∣∣
D

along with

(∇f
∣∣
Hess+(f)

+A) ◦ ∇g
∣∣
D

are ∇g
∣∣
D

-increasing for every convex open subset D of Rn

such that the range of ∇g
∣∣
D

is contained in Hess+(f), where A : Rn −→ Rn is a linear

automorphism related with f through the inequality (6.2). Thus ∇f
∣∣
Hess+(f)

◦ ∇g
∣∣
D

and (∇f
∣∣
Hess+(f)

+ A) ◦ ∇g
∣∣
D

are one-to-one as ∇g is a Minty-Browder monotone

global diffeomorphism.

Remark 6.5. For the global injectivity of ∇g alone, in Example 6.4, we need neither
the Minty-Browder monotonicity of ∇g nor the positive definiteness of H(g), as the
injectivities of its restrictions to the spheres centered at the origin and to the half
lines starting from the origin are rather obvious. For example the injectivity of the
restriction of ∇g to the half line {λx| λ > 0} generated by x 6= 0 reduces to the
injectivity of the function

ϕ : (0,∞) −→ R, ϕ(λ) =
‖(∇g)λx‖
‖x‖2

= λeλ
2‖x‖2 .

Note however that the outcome of the Minty-Browder monotonicity of ∇g along
with the positive definiteness of H(g), in Example 6.4, does not reduce to the global
injectivity of ∇g alone, but also ensure the differentiability of its inverse.

Remark 6.6. Let D ⊆ Rn be a convex open set and f, g : D −→ R be C2-smooth func-
tions such that Hess+(f) 6= ∅. Then (∇f +A) ◦∇f

∣∣
Hess+(f)

is ∇f
∣∣
Hess+(f)

-increasing,

where A : Rn −→ Rn is a linear automorphism related with f through the inequality
(6.2). Indeed, ∇f+A is, according to Theorems 6.1 and 6.2, an h-monotone global in-
jective operator. Therefore, according to Corollary 5.7 and the Remark 5.8 afterwards,
we obtain:

Val (∇f +A) ◦ ∇f
∣∣
Hess+(f)

= Val
(
∇f
∣∣
Hess+(f)

)
.
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Abstract. In this paper, we propose a relaxed version of the gradient projection
method for strongly monotone variational inequalities defined on a level set of a
(possibly non-differentiable) convex function. Our algorithm can be implemented
easily since it computes on every iteration one projection onto some half-space
containing the feasible set and only one value of the underlying mapping. Under
mild and standard conditions we establish the strong convergence of the proposed
algorithm. Numerical results and comparisons for the image deblurring problem
show that our method can outperform related algorithms in the literature.
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1. Introduction

The variational inequality problem (VIP) is to find a point x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0 ∀y ∈ C, (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H with the inner
product 〈., .〉 and its induced norm ‖.‖, and A : H → H is a single-valued mapping.
Let us denote by Sol(C,A) the solution set of the problem (1.1), i.e.,

Sol(C,A) = {x ∈ C : 〈Ax, y − x〉 ≥ 0 ∀y ∈ C}.
The variational inequality problem (VIP) has received much attention in the

past several decades due to its applications in a large variety of problems arising
in economics, optimization, transportation research, game theory, signal and image
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processing, data science, etc., see [1, 4, 8, 14, 15, 18, 19, 22, 20] and the references
therein. There are many iterative methods for solving variational inequalities, most of
which are based on projection methods. The simplest form is the gradient projection
method [5] as follows: {

x0 ∈ C,
xk+1 = PC(xk − λAxk), k ≥ 0,

where PC denotes the metric projection of H onto the set C, λ is a positive real
number. The convergence of this method can be proved under a strong condition that
the mapping A is strongly monotone and Lipschitz continuous. In order to relax the
strong monotonicity assumption, Korpelevich [15] proposed the extragradient method
which requires an additional projection at each iteration. Under the conditions that
A is monotone and Lipschitz continuous, this method is shown to be weakly conver-
gent in the setting of Hilbert spaces. Many researchers proposed improvements of the
extragradient method, see, e.g., Censor et al. [4], He [6], Iusem-Svaiter [11], Khobotov
[13], Malitsky and Semenov [22], Popov [23], Solodov and Svaiter [24], Tinti [25],
Tseng [26], Malitsky [20], Maingé [18], Maingé and Gobinddass [19], Malitsky [21]
and the references therein. In many real world applications, the feasible set is given in
the form of C = {x ∈ H : c(x) ≤ 0}, where c is a convex function but not necessarily
differentiable. For example, in LASSO problem, the function c(x) = ‖x‖1 − τ, τ > 0
satisfies the above requirement. Very recently, the authors in [2, 7, 9] used the subgra-
dient extragradient method [4] and projection and contraction method [6] to propose
relaxed projection algorithms for the variational inequality (1.1). However, the con-
vergence of algorithms in [2, 9, 7] requires that c is a continuously differentiable convex
function such that c′(x) is Lipschitz continuous. This makes the real applications of
their method very restrictive.

Our concern now is the following: Can we design a new relaxed projection method
to solve the variational inequality (1.1) efficiently without demanding differentiability
of the convex function c?

In this paper, we give a positive answer to this question. Motivated by the
algorithms in [2, 7, 8, 9], we will introduce an efficient new algorithm for solving
the VIP (1.1). The main feature of our method is that it requires only one value of
the underlying mapping per iteration with no need for projections onto the feasible
set. Theoretical analysis and experimental results show that our algorithm is more
efficient than the previous ones for variational inequality problems.

The rest of the paper is organized as follows. After collecting some definitions and
basic results in Section 2, we prove in Section 3 the strong convergence of the proposed
algorithm. Finally, in Section 4 we provide some numerical results to illustrate the
convergence of our algorithm and compare it with the previous algorithms.
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2. Preliminaries

Let H be a real Hilbert space endowed with the inner product 〈., .〉 and the
associated norm ‖.‖. When {xk} is a sequence in H, we denote strong convergence of
{xk} to x ∈ H by xk → x and weak convergence by xk ⇀ x. For a given sequence
{xk} ⊂ H, ωw(xk) denotes the weak ω-limit set of {xk}, i.e.,

ωw(xk) := {x ∈ H : xkj ⇀ x for some subsequence {kj} of {k}}.
A useful and simple norm equality is the following

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2

− γβ‖y − z‖2 − αγ‖x− z‖2, (2.1)

for all x, y, z ∈ H and α, β, γ ∈ [0, 1] satisfying α + β + γ = 1. Let C be a nonempty
closed convex subset of H. For every element x ∈ H, there exists a unique nearest
point in C, denoted by PCx such that

PCx := argmin
y∈C

||x− y||.

PC is called the metric projection of H onto C.

Lemma 2.1. The metric projection PC has the following basic properties:

(1) 〈x− PCx, y − PCx〉 ≤ 0 for all x ∈ H and y ∈ C;

(2) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2 for all x ∈ H, y ∈ C;

(3) ‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉 for every x, y ∈ H;

(4) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖ for all x, y ∈ H.

We will focus on solving the problem (1.1) governed by Lipschitz continuous and
strongly monotone A, i.e., there exist two positive constants L and η such that

‖Ax−Ay‖ ≤ L‖x− y‖ ∀x, y ∈ H,
and

〈Ax−Ay, x− y〉 ≥ η‖x− y‖2 ∀x, y ∈ H,
respectively. In this case, we also say that A is L-Lipschitz continuous and η-strongly
monotone.

Let g : H → (−∞,∞], domg := {x ∈ H : g(x) < +∞}. We recall that the
subdifferential of g at x ∈ H is defined as the set of all subgradients of g at x:

∂g(x) := {w ∈ H : g(y)− g(x) ≥ 〈w, y − x〉 ∀y ∈ H}. (2.2)

g is strongly convex with constant m > 0 if and only if g(x) − m
2 ‖x‖

2 is convex. We
already know that if g is lower semicontinuous convex at x ∈ int(domg), then ∂g(x) is
nonempty and bounded. The next lemmas are essential for our analysis in the sequel.

Lemma 2.2. (Cegielski and Zalas [3], Theorem 5) Assume that A is a L-Lipschtz
continuous and η-strongly monotone operator and µ is a constant such that µ ∈(

0,
2η

L2

)
. Let Tµ = PC(I − µA) (or I − µA), where I is the identity operator on

H. Then Tµ is a strict contraction with coefficient 1− τ , where τ = 1
2µ(2η − µL2).
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Lemma 2.3. (Maingé [16], Lemma 3.1; Xu [27], Lemma 2.5) Let {ak}, {bk} and {ck}
be sequences of nonnegative real numbers such that

ak+1 ≤ (1− δk)ak + bk + ck, k ≥ 1,

where {δk} is a sequence in (0, 1) and {bk} is a real sequence. Assume that

∞∑
k=1

ck <∞.

Then the following results hold:

(1) If bk ≤ δkM for some M ≥ 0 and for all k ≥ 1 then {ak} is a bounded sequence.

(2) If

∞∑
k=1

δk =∞ and lim sup
k→∞

bk/δk ≤ 0, then lim
k→∞

ak = 0.

Lemma 2.4. ( Maingé [17], Lemma 3.1) Let {Γn} be a sequence of real numbers that
does not decrease at infinity, in the sense that there exists a subsequence {Γnj} of
{Γn} such that Γnj < Γnj+1 for all j ≥ 0. Also consider the sequence of integers
{τ(n)}n≥n0

defined by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then {τ(n)}n≥n0
is a nondecreasing sequence verifying lim

n→∞
τ(n) = ∞ and, for all

n ≥ n0,

max{Γτ(n),Γn} ≤ Γτ(n)+1.

3. A relaxed gradient projection algorithm

In this section, we consider VIP (1.1) in which C is given by

C = {x ∈ H : c(x) ≤ 0}.

where c : H → R is a convex and lower semicontinuous function.

We need the following basic assumptions for VIP (1.1):

(C1) Sol(C,A) 6= ∅;

(C2) The mapping A is strongly monotone and L-Lipschitz continuous;

(C3) ∂c is a bounded operator (i.e., bounded on bounded sets).

3.1. The algorithm

The algorithm is designed as follows.
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Algorithm 3.1 (Relaxed gradient projection algorithm)

Step 0 (Initialization): Select initial x0, x1 ∈ C, θ ∈ [0, 1) and two positive real number
sequences {βk}, {εk} satisfying

lim
k→∞

βk = 0,

∞∑
k=0

βk = +∞, εk = o(βk), (3.1)

where εk = o(βk) means that the sequence {εk} is an infinitesimal of higher order
than {βk}. Set k := 1.

Step 1: Given xk−1 and xk (k ≥ 1), choose αk such that

αk =

min

{
θ,

εk
‖xk − xk−1‖

}
if xk 6= xk−1,

θ otherwise.
(3.2)

Compute wk = xk + αk(xk − xk−1) and take ξk ∈ ∂c(wk). Construct the half-space

Ck = {x ∈ H : c(wk) + 〈ξk, x− wk〉 ≤ 0},
and calculate

xk+1 = PCk(wk − βkAwk). (3.3)

Step 2: If xk+1 = wk then stop. Otherwise set k := k + 1 and return to Step 1.

Remark 3.1. We have C ⊆ Ck for every k ≥ 0. Indeed, we obtain by (2.2) and
ξk ∈ ∂c(wk) that

c(x)− c(wk) ≥ 〈ξk, x− wk〉 ∀x ∈ H.
If x ∈ C then we get c(wk) + 〈ξk, x − wk〉 ≤ 0, i.e., x ∈ Ck. Hence, the statement is
true.

3.2. Convergence analysis

We first show that the stopping criterion Algorithm 3.1 is valid.

Lemma 3.2. If wk = xk+1 then wk ∈ Sol(C,A).

Proof. If wk = xk+1 then by (3.3) and Lemma 2.1 (1), we have

〈wk − λkAwk − wk, y − wk〉 ≤ 0 ∀y ∈ Ck,
or equivalently,

〈Awk, y − wk〉 ≥ 0 ∀y ∈ Ck.
Therefore, we get

〈Awk, y − wk〉 ≥ 0 ∀y ∈ C.

Hence wk ∈ Sol(C,A). �

A key lemma for our convergence theorem is presented next.

Lemma 3.3. Assume that the conditions (C1)-(C3) hold. Then the sequence {xk}
generated by Algorithm 3.1 is bounded.
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Proof. We have

‖xk+1 − z‖ = ‖PCk(wk − βkAwk)− z‖

≤ ‖(I − βkA)wk − (I − βkA)z − βkAz‖

= (1− γk)‖wk − z‖+ βk‖Az‖. (3.4)

Moreover, we have

‖wk − z‖ = ‖xk − z + αk(xk − xk−1)‖
≤ ‖xk − z‖+ αk‖xk − xk−1‖. (3.5)

Combining (3.5) and (3.4), we immediately get

‖xk+1 − z‖ ≤ (1− γk)‖xk − z‖+ (1− γk)αk‖xk − xk−1‖+ βk‖Az‖.

By (3.1) and (3.2), we see that

lim
k→∞

bk
γk

= lim
k→∞

(1− γk)αk‖xk − xk−1‖+ βk‖Az‖
γk

,

= lim
k→∞

[
2(1− γk)

2η − βkL2

αk
βk
‖xk − xk−1‖+

2

2η − βkL2
‖Az‖

]
=
‖Az‖
η

,

where bk = (1− γk)αk‖xk − xk−1‖+ βk‖Az‖.
This implies that the sequence

{
bk
γk

}
is bounded. Using Lemma 2.3 (1), we conclude

that the sequence {‖xk − z‖} is bounded. This shows that the sequence {xk} is
bounded and so is {wk}. �

Lemma 3.4. Assume that the conditions (C1)-(C3) hold and let {xk} be the sequence
generated by Algorithm 3.1. Then, for each z ∈ C, we have

‖xk+1 − z‖2 ≤ (1− γk)(‖xk − z‖2 + 2αk‖xk − xk−1‖‖xk − z‖+ α2
k‖xk − xk−1‖2)

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]
.

Proof. Let γk = 1
2βk(2η − βkL2). Since βk → 0 as k →∞, there exists some positive

integer k0 such that

0 < βk <
η

L2
(3.6)

for all k ≥ k0. In view of Lemma 2.6, we obtain from (3.6) that PCk(I − βkA) (so is
I − βkA) is a strict contraction with coefficient 1− γk for all k ≥ k0. For each z ∈ C,
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we have

‖xk+1 − z‖2 = ‖PCk(wk − βkAwk)− z‖2

≤ ‖(I − βkA)wk − (I − βkA)z − βkAz‖2

= (1− γk)‖wk − z‖2 − 2βk〈Az,wk − z − βkAwk〉

≤ (1− γk)‖wk − z‖2 − 2βk〈Az,wk − z〉+ 2β2
k‖Az‖‖Awk‖

= (1− γk)‖wk − z‖2 + γk

[
−4

2η − βkL2
〈Az,wk − z〉

+
4βk

2η − βkL2
‖Az‖‖Awk‖

]
.

Using (3.5) we arrive at

‖xk+1 − z‖2 ≤ (1− γk)(‖xk − z‖+ αk‖xk − xk−1‖)2

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]

= (1− γk)(‖xk − z‖2 + 2αk‖xk − xk−1‖‖xk − z‖+ α2
k‖xk − xk−1‖2)

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]
.

Therefore, the proof is complete. �

We are now in a position to establish the strong convergence theorem of Algo-
rithm 3.1.

Theorem 3.5. Assume that the conditions (C1)-(C3) hold. Then any sequence {xk}
generated by Algorithm 3.1 converges strongly to the unique solution of the variational
inequality problem (1.1).

Proof. For each z ∈ C, using the nonexpansive property of projection operators, we
have

‖xk+1 − z‖2 = ‖PCk(wk − βkAwk)− PCkwk + PCkw
k − PCkz‖2

= ‖PCkwk − PCkz‖2 + 2βk‖wk − z‖‖Awk‖+ β2
k‖Awk‖2

≤ ‖wk − z‖2 − ‖wk − PCkwk‖2 + 2βk‖wk − z‖‖Awk‖+ β2
k‖Awk‖2

= ‖wk − z‖2 − ‖wk − PCkwk‖2 + βkM, (3.7)

where M ≥ supk{2‖wk − z‖‖Awk‖+ βk‖Awk‖2}.
On the other hand, by applying (2.1) we get

‖wk − z‖2 = ‖(1 + αk)(xk − z)− αk(xk−1 − z)‖2

= (1 + αk)‖xk − z‖2 − αk‖xk−1 − z‖2 + αk(1 + αk)‖xk − xk−1‖2

≤ (1 + αk)‖xk − z‖2 − αk‖xk−1 − z‖2 + 2αk‖xk − xk−1‖2. (3.8)
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Combining (3.7) and (3.8) we have

‖xk+1 − z‖2 ≤ (1 + αk)‖xk − z‖2 − αk‖xk−1 − z‖2 + 2αk‖xk − xk−1‖2

− ‖wk − PCkwk‖2 + βkM.

Putting Γk := ‖xk − z‖2 for all k ∈ N we have

‖wk − PCkwk‖2 ≤ Γk − Γk+1 + αk(Γk − Γk−1) + 2αk‖xk − xk−1‖2 + βkM. (3.9)

Now, we consider two possible cases:

Case 1. Assume that there exists k0 ≥ 0 such that for each k ≥ k0, Γk+1 ≤ Γk.
In this case, lim

k→∞
Γk exists and lim

k→∞
(Γk − Γk+1) = 0.

Since lim
k→∞

βk = 0 and lim
k→∞

αk‖xk − xk−1‖2 = 0, it follows from (3.9) that

lim
k→∞

‖wk − PCkwk‖2 = 0. (3.10)

We now show that ωw(xk) ⊂ C. Let x̄ ∈ ωw(xk) be an arbitrary element. Since {xk}
is bounded, there exists a subsequence {xkl} that converges weakly to x̄ ∈ Ck. Note
that

lim
k→∞

‖wk − xk‖ = lim
k→∞

αk‖xk − xk−1‖ = 0. (3.11)

It follows from (3.11) that {wkl} also converges weakly to x̄. Next we verify that
x̄ ∈ C.

Due to PCklw
kl ∈ Ckl , it follows from the definition of Ckl that

c(wkl) + 〈ξkl , PCklw
kl − wkl〉 ≤ 0,

where ξkl ∈ ∂c(wkl). The use of the Cauchy-Schwart inquality implies that

c(wkl) ≤ ‖ξkl‖
∥∥PCklwkl − wkl∥∥. (3.12)

From the boundedness assumption of ξkl and (3.10), (3.12), we have

c(wkl) ≤ ‖ξkl‖
∥∥PCklwkl − wkl∥∥→ 0. (3.13)

From the weak lower-semicontinuity of the convex function c(x) and since wkl ⇀ x̄,
it follows from (3.13) that

c(x̄) ≤ lim inf
l→∞

c(wkl) ≤ 0,

which means that x̄ ∈ C.

Using Lemma 3.4 we have

‖xk+1 − z‖2 ≤ (1− γk)(‖xk − z‖2 + 2αk‖xk − xk−1‖‖xk − z‖+ α2
k‖xk − xk−1‖2)

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]
. (3.14)
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Besides, we obtain

‖xk − z‖2 + 2αk‖xk − z‖
∥∥xk − xk−1∥∥+ α2

k‖xk − xk−1‖2

≤ ‖xk − z‖2 + 2αk‖xk − z‖
∥∥xk − xk−1∥∥+ αk‖xk − xk−1‖2

≤ ‖xk − z‖2 + 3M1αk‖xk − xk−1‖, (3.15)

where M1 = sup
k∈N
{‖xk − z‖, ‖xk − xk−1‖}.

Combining (3.14) and (3.15) we get

‖xk+1 − z‖2 ≤ (1− γk)‖xk − z‖2 + 3M1(1− γk)αk‖xk − xk−1‖

+ γk

[
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]

≤ (1− γk)‖xk − z‖2 + γk

[
3M1(1− γk)

αk
γk
‖xk − xk−1‖

+
−4

2η − βkL2
〈Az,wk − z〉+

4βk
2η − βkL2

‖Az‖‖Awk‖
]
. (3.16)

It is easy to see that

lim
k→∞

[
(1− γk)

αk
γk
‖xk − xk−1‖+

4βk
2η − βkL2

‖Az‖‖Awk‖
]

= 0. (3.17)

To apply Lemma 2.3, it remains to show that lim sup
k→∞

〈Az,wk − z〉 ≥ 0. Indeed, since

z ∈ Sol(C,A), we get that

lim sup
k→∞

〈Az,wk − z〉 = max
ẑ∈ωw({wk})

〈Az, ẑ − z〉 ≥ 0.

By applying Lemma 2.3 to (3.16) with the data

ak := ‖xk − z‖2, δk := γk, ck := 0,

bk := 3M1(1− γk)
αk
γk
‖xk − xk−1‖+

−4

2η − βkL2
〈Az,wk − z〉

+
4βk

2η − βkL2
‖Az‖‖Awk‖

we immediately deduce that the sequence {xk} converges strongly to z ∈ Sol(C,A).

Case 2. Assume that there exists a subsequence {Γkm} ⊂ {Γk} such that Γkm ≤ Γkm+1

for all m ∈ N. In this case, we can define τ : N→ N by

τ(k) = max{n ≤ k : Γn < Γn+1}.
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Then we have from Lemma 2.4 that τ(k)→∞ as k →∞ and Γτ(k) < Γτ(k)+1.
So, we have from (3.9) that

‖wτ(k) − PCτ(k)w
τ(k)‖2 ≤ Γτ(k) − Γτ(k)+1 + ατ(k)(Γτ(k) − Γτ(k)−1)

+ 2ατ(k)‖xτ(k) − xτ(k)−1‖2 + βτ(k)M

≤ ατ(k)‖xτ(k) − xτ(k)−1‖
(√

Γτ(k) +
√

Γτ(k)−1

)
+ 2ατ(k)‖xτ(k) − xτ(k)−1‖2 + βτ(k)M

→ 0. (3.18)

Following the same lines as in the proof of Case 1, we get from (3.18) that

lim
k→∞

‖wτ(k) − PCτ(k)w
τ(k)‖2 = 0,

lim sup
k→∞

〈Az,wτ(k) − z〉 = max
ẑ∈ωw({wτ(k)})

〈Az, ẑ − z〉 ≥ 0 (3.19)

and

‖xτ(k)+1 − z‖2 ≤ (1− γτ(k))‖xτ(k) − z‖2

+ γτ(k)

[
3M1(1− γτ(k))

ατ(k)

γτ(k)
‖xτ(k) − xτ(k)−1‖

+
−4

2η − βτ(k)L2
〈Az,wτ(k) − z〉+

4βτ(k)

2η − βτ(k)L2
‖Az‖‖Awτ(k)‖

]
.

(3.20)

Since Γτ(k) < Γτ(k)+1, we have from (3.20) that

‖xτ(k) − z‖2 ≤ 3M1(1− γτ(k))
ατ(k)

γτ(k)
‖xτ(k) − xτ(k)−1‖

+
−4

2η − βτ(k)L2
〈Az,wτ(k) − z〉+

4βτ(k)

2η − βτ(k)L2
‖Az‖‖Awτ(k)‖. (3.21)

Combining (3.17), (3.19) and (3.21) yields

lim sup
k→∞

‖xτ(k) − z‖2 ≤ 0,

and hence
lim
k→∞

‖xτ(k) − z‖2 = 0.

From (3.20), we have

lim sup
k→∞

‖xτ(k)+1 − z‖2 ≤ lim sup
k→∞

‖xτ(k) − z‖2.

Thus
lim
k→∞

‖xτ(k)+1 − z‖2 = 0.

Therefore, by Lemma 2.4, we obtain

0 ≤ ‖xk − z‖ ≤ max{‖xτ(k) − z‖, ‖xk − z‖} ≤ ‖xτ(k)+1 − z‖ → 0.

Consequently, {xk} converges strongly to z ∈ Sol(C,A). �
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4. Numerical results

Example 4.1. Image restoration problems can be formulated as an inverse problem as
follows:

y = Ax+ v, (4.1)

where A ∈ Rm×n represents a known blurring operator (which is called the point
spread function: PSF), y ∈ Rm×1 represents the blurred image, and v ∈ Rm×1 stands
for the additive noises or perturbation signals, x ∈ Rn×1 is the unknown original
image whose size is assumed to be the same as that of y (that is, m = n). In most
cases, this problem is ill-posed, hence directly inverting A would lead to bad and
possibly multiple solutions. To overcome this difficulty, a popular strategy is to use a
regularization based method, which provides the prior knowledge of images that one
wants to reconstruct. In this paper, the problem (4.1) is approximately solved by the
following optimization model:

min
x∈Rn2

f(x) :=
1

2
‖Ax− y‖2 +

1

2
α‖x‖2, (4.2)

s.t. ‖x‖1 ≤ t,

where α is a positive parameter, and ‖.‖1 is the `1-norm, which is to make small
component of x to become zero. The objective function of the problem (4.2) is strongly
convex. Note that, the objective f is strongly convex and differentiable with the
gradient given by

∇f(x) = A∗(Ax− y) + αx,

where A∗ is the adjoint of A.

We observe that the gradient ∇f is (‖A‖2 + α)-Lipschitz continuous and α-strongly
monotone. We already know that x∗ solves (4.2) if and only if x∗ solves the variational
inequality problem of finding x ∈ C such that

〈∇f(x), y − x〉 ≥ 0 ∀y ∈ C,

where C := {x ∈ Rn2

: ‖x‖1 ≤ t}.

The quality of the restoration is measured by the peak signal-to-noise ratio (PSNR)
in decibel (dB):

PSNR(x) = 20 log10

xmax√
Var(x, x̄)

,

where

Var(x, x̄) =

∑n2

j=1[x̄(j)− x(j)]2

n2
,

and x̄ is the true image and xmax is the maximum possible pixel value of the image.
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Original image Blurred and noisy image

Original image Blurred and noisy image

Figure 1. Cameraman original and blurred and noisy images on
top; Lena original and blurred and noisy images below.

All the codes were written in Matlab (R2016a) and run on PC with Intel(R)
Core(TM) i3-370M Processor 2.40 GHz. In the numerical results reported in the
following tables, ‘Iter.’ and ‘Sec.’ stand for the number of iterations and the CPU
time in seconds, respectively. We now apply our proposed algorithm - Algorithm 3.1
(IGPM) and the strongly convergent algorithms in the literature including Algorithm
1 of Hieu and Thong [10] (VPRGM), Algorithm 3.1 of Khanh and Vuong [12] (GPM),
and the golden ratio algorithm of Malitsky [21] (GRA) with diminishing step sizes
to recover the blurred Lena and Cameraman images. The size of the image is m =
n = 256. The original and the blurred images are shown in Figure 1. For all tested

algorithms, we use the same starting points x0 = x1 = 0 (0 is a vector in Rn2

in
which all components are zero) and limit the number of iterations by 2500 for all
algorithms as well. Moreover, we set A = RW , where R is the blur matrix and W
denotes the inverse wavelet transform. The blur kernel is taken to be hij = 1

1+i2+j2 , for

i, j = −4, ..., 4. An additive zero-mean white Gaussian noise with standard deviation
10−3 was added to the images.
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Moreover, for Algorithm 3.1 (IGPM), we take εk = 1
k1.1 , θ = 0.6; αk is computed

by (3.2).

We take the same stepsizes λk = 1
k0.3 , the regularization parameter α = 2e−5 for

all algorithms. Besides, we choose θk = 1 for VPRGM of [10]. The comparison of four
algorithms with Cameraman and Lena images are reported in Table 1 and Table 2,
respectively. The reconstructed images are presented in Figures 2, 4. The convergence
behaviour of algorithms is given in Figures 3, 5. In these figures, the value of PSNR
for all algorithms is represented by the y-axis, the running time is represented by the
x-axis.

Sec. Iter PSNR

GRA 112.9531 2500 28.4390
VPRGM 113.5313 2500 31.8681
GPM 113.6406 2500 31.8692
Our algorithm (IGPM) 83.6 2500 37.0024

Table 1. Comparison of four algorithms for reconstructing the blurred
Cameraman image.

Sec. Iter PSNR

GRA 112.9531 2500 31.9244
VPRGM 117.6094 2500 35.2395
GPM 117.0469 2500 35.7691
Our algorithm (IGPM) 94.2031 2500 44.5633

Table 2. Comparison of four algorithms for reconstructing the blurred
Lena image.
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Reconstructed image using GRA Reconstructed image using VPRGM

Reconstructed image using GPM Reconstructed image using IGPM

Figure 2. The reconstructed images with the Cameraman image
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Figure 3. Evolution of PSNR with the Cameraman image
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Reconstructed image using GRA Reconstructed image using VPRGM

Reconstructed image using GPM Reconstructed image using IGPM

Figure 4. The reconstructed images with the Lena image
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Figure 5. Evolution of PSNR with the Lena image
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Figures 3, 5 clearly demonstrate that IGPM gives lower running time compared
to others. Clearly, our method provides clearer images and improved PSNR values.
We emphasize here that these numerical results are very preliminary.
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Well-posedness for set-valued equilibrium
problems
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Abstract. In this paper we extend a concept of well-posedness for vector equilib-
rium problems to the more general framework of set-valued equilibrium problems
in topological vector spaces using an appropriate reformulation of the concept
of minimality for sets. Sufficient conditions for well-posedness are given in the
generalized convex settings and we are able to single out classes of well-posed
set-valued equilibrium problems.
On the other hand, in order to relax some conditions, we introduce a concept of
minimizing sequences for a set-valued problem, in the set criterion sense, and fur-
ther we will have a concept of well-posedness for the set-valued equilibrium prob-
lem we are interested in. Sufficient results are also given for this well-posedness
concept.

Mathematics Subject Classification (2010): 49J53, 49K40.

Keywords: Set-valued equilibrium problems, well-posedness, maximizing se-
quences, minimizing sequences.

1. Introduction

In the last few years, set-valued optimization problems have received much at-
tention by many authors due to their extensive applications in many fields such as
optimal control, economics, game theory, multiobjective optimization and so on(see,
e.g., [1], [2], [8] and the references therein). For some motivating examples one may
refer also to the book by Khan et al.[11].
Approaches in set-valued optimization can be made using two types of criteria of
solutions: the vector criterion and the set optimization criterion. The first criterion
is equivalent to finding efficient solutions of the image set but this criterion is not
always suitable for all types of set-valued optimization problems.
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Kuroiwa [14] introduced an alternative criterion of solutions for set-valued optimiza-
tion problems, called the set optimization criterion, which is based on a comparison
among the values of the objective set-valued map.
On the other hand, well-posedness plays a crucial role in the stability theory for
optimization problems. The classical notion of well-posednesss for a scalar optimiza-
tion problem was first introduced by Tykhonov [19] and is known as Tykhonov well-
posedness. In the literature, various notions of well-posedness for vector optimization
problems have been introduced and studied(see, e.g., [4], [5], [9], [12], [16] and the
references therein).
Apart from its theoretical interest, important problems arising from economics, me-
chanics, electricity, chemistry and other practical sciences motivate the study of equi-
librium problems. Recently, equilibrium problems for vector mappings have been con-
sidered by many authors. For a nice survey, we refer to the research monograph
devoted to the analysis of equilibrium problems in pure and applied nonlinear analy-
sis and mathematical economics by Kassay et al.[10].
Some concepts of well-posedness for the strong vector equilibrium problem in topo-
logical vector spaces were introduced and studied by Bianchi et al.[3]. Also, they gave
sufficient conditions, in concave settings, in order to guarantee the well-posedness.
Inspired by the work of Bianchi et al.[3], in this paper we study the well-posedness of
a set-valued equilibrium problem in topological vector spaces. We consider and study
two notions of well-posedness; the first one generalizes the concept of well-posedness
of strong vector equilibrium problem introduced by Bianchi et al.[3] and the second
one is linked to the behaviour of a suitable set-valued problem.
The first concept of well-posedness for our set-valued equilibrium problem is also
named M -well-posedness like in vectorial case and we are able to give sufficient con-
ditions for M -well-posedness in generalized convex settings assuming alternative con-
ditions only on a suitable set-valued map.
In order to drop some assumptions, we consider a concept of well-posedness for a
suitable set-valued map with respect to a quasi-order relation, strongly related to a
concept of well-posedness of our set-valued equilibrium problem. Some sufficient con-
ditions concerning this kind of well-posedness are also established.
The paper in four sections is organized as follows. Section 2 presents the preliminaries
required throughout the paper. Section 3 generalizes the concept of well-posedness of
the strong vector equilibrium problem to a set-valued equilibrium problem and estab-
lishes some sufficient conditions for well-posedness in finite and infinite dimensional
settings pointing out classes of well-posed set-valued equilibrium problems. Section
4 introduces a new concept of well-posedness for our set-valued equilibrium problem
under weaker assumptions than those in Section 3. Some sufficient results for well-
posedness are also obtained in infinite dimensional settings. For a clear understanding
of the concepts and to illustrate our results, we give also some examples.

2. Preliminaries

LetX and Y be topological vector spaces with countable local bases. Let P(Y ) be
the collection of all nonempty subsets of Y and K be a proper nonempty closed convex
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pointed cone in the real topological vector space Y . For A ∈ P(Y ) we denote the
topological interior, the topological closure, the topological boundary and complement
of A by intA, clA, ∂A and Ac, respectively.
We consider also a preference relation on P(Y ) introduced by Kuroiwa [14]: the lower
set less quasi-order relation induced by the cone K. Also, we denote by K0 = K \{0}.
For A,B ∈ P(Y )

A �K B ⇔ B ⊆ A+K.

We now consider S a nonempty proper subset of Y . A preference relation based on
the solution concept equipped with the set S was proposed by Flores-Bazán et al.[6].
For a, b ∈ S,

a �S b⇐⇒ a− b ∈ S.
Khushboo et al.[13] reformulate a notion of minimality for a set A ∈ P(Y ) considered
for vector optimization problems by Flores-Bazan et al.[6]. An element a ∈ A is said
to be an S-minimal point of A if

a �S a, for all a ∈ A \ {a},
or, equivalently,

A \ {a} ⊆ a+ Sc.

We denote the set of S-minimal points of A by ES(A).
It is obvious that if 0 ∈ Sc then

a ∈ ES(A)⇐⇒ a ∈ A and A ⊆ a+ Sc. (2.1)

It is well-known that vector equilibrium problems are natural extensions of several
problems of practical interest like vector optimization and vector variational inequality
problems. In the literature, there are some kinds of extensions of scalar equilibrium
problems to the vector equilibrium problems. Further, vector equilibrium problems
are extended to set-valued equilibrium problems in several manners.
In this paper we consider the set-valued equilibrium problem (SEP ) which consists
in finding x ∈ D such that

f(x, y) ⊆ (−K0)c for all y ∈ D,
where D ⊆ X, f : D×D ⇒ Y . This problem generalizes, in a certain sense, the strong
vector equilibrium problem considered by Bianchi et al.[3]
We denote by S0 the solution set of the problem (SEP ) and we will suppose in the
sequel that S0 is nonempty.
Our purpose is to try to assign reasonable definitions of well-posedness for (SEP )
that recover some previous existing concepts in vector criterion, see Bianchi et al.[3].
In order to start our approach, we introduce the set-valued map ϕ : D ⇒ Y given by

ϕ(x) = E−K0
(f(x,D)).

The map ϕ generalizes the definition of the function φ in Bianchi et al.[3]; indeed,
taking into account (2.1) we have that

z ∈ ϕ(x)⇔ z ∈ f(x,D) and f(x,D) ⊆ z + (−K0)c

⇔ z ∈ f(x,D) and (f(x,D)− z) ∩ (−K) = {0}.
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Throughout the paper is assumed that ϕ(x) 6= ∅ for every x ∈ D. The domain of
ϕ, denoted by domϕ, is defined as domϕ := {x ∈ D : ϕ(x) 6= ∅} and therefore
domϕ = D.
In the sequel, we shall denote by VX(x0) a neighbourhood base of x0 in the topological
space X. The same notation will be used for other spaces.
We now recall some notions of continuity for set-valued maps. Let ϕ : D ⇒ Y be a
set-valued map.

Definition 2.1. [11] The map ϕ is said to be

(i) upper semicontinuous at x0 ∈ D if for every W ⊆ Y,W open, ϕ(x0) ⊆W , there
exists a neighbourhood U ∈ VX(x0) such that ϕ(x) ⊆W for every x ∈ U ∩D.

(ii) lower semicontinuous at x0 ∈ D if for every W ⊆ Y,W open, ϕ(x0) ∩W 6= ∅,
there exists a neighbourhood U ∈ VX(x0) such that ϕ(x) ∩ W 6= ∅ for every
x ∈ U ∩D.

Definition 2.2. [7] The map ϕ is said to be upper Hausdorff continuous at x0 ∈ D
if for every W ∈ VY (0), there exists a neighbourhood U ∈ VX(x0) such that ϕ(x) ⊆
ϕ(x0) +W for every x ∈ U ∩D.

The graph of ϕ, denoted by graph ϕ, is defined as graphϕ := {(x, y) ∈ D × Y :
y ∈ ϕ(x)}.
Definition 2.3. [7] The map ϕ is said to be compact at x0 ∈ D if for every sequence
((xn, yn))n∈N ⊆ graphϕ with xn → x0 there exists a subsequence (ynk

)k∈N of (yn)n∈N
such that ynk

→ y0 ∈ ϕ(x0). Also ϕ is said to be compact on D if ϕ is compact at
every x0 ∈ D.

In metric spaces, Crespi et al.[4] pointed out, the following results obtained by
Göpfert et al.[7] regarding the compactness of a set-valued map. These results also
hold when we deal with topological vector spaces with countable local bases.

Theorem 2.4. [7],[4] The following statements are equivalent

(i) ϕ is compact at x0 ∈ D;
(ii) ϕ is upper semicontinuous at x0 and ϕ(x0) is compact;
(iii) ϕ is upper Hausdorff continuous at x0 and ϕ(x0) is compact.

In order to obtain our main results we need the following characterization of
upper and lower semicontinuity for set-valued maps.

Theorem 2.5. Let ϕ : D ⇒ Y be a set-valued map.

(i) If x0 ∈ D and ϕ(x0) is compact, then ϕ is upper semicontinuous at x0 if and
only if for every sequence (xn)n∈N ⊆ D with xn → x0 and for any yn ∈ ϕ(xn),
n ∈ N, there exist y0 ∈ ϕ(x0) and a subsequence (ynk

)k∈N of (yn)n∈N such that
ynk
→ y0(see [7]).

(ii) ϕ is lower semicontinuous at x0 ∈ D if and only if for every sequence (xn)n∈N ⊆
D with xn → x0 and for any y0 ∈ ϕ(x0), there exists yn ∈ ϕ(xn), n ∈ N, such
that yn → y0(see [1]).

In particular, we focus on l-type K-convex set-valued maps, a concept of gener-
alized convexity introduced by Kuroiwa [14], see also Seto et al.[18].
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Definition 2.6. Let D ⊆ X be a nonempty convex subset of X. A set-valued map
ϕ : D ⇒ Y is said to be l-type K-convex if for any x0, x1 ∈domϕ and λ ∈ (0, 1),

ϕ((1− λ)x0 + λx1) �K (1− λ)ϕ(x0) + λϕ(x1).

3. M-well-posed set-valued equilibrium problems

In this section we keep the assumption that 0 ∈ f(x,D) for all x ∈ D (see Bianchi
et al.[3]) and investigate the properties of the set-valued map ϕ. Also, the concept of
maximizing sequence for the set-valued map ϕ and a concept of well-posedness for the
problem (SEP ) are provided, similarly with those considered in Bianchi et al.[3](see
also [15]). Further, sufficient conditions for the problem (SEP ) to be well-posed are
given and we discuss the role of l-type K-convexity of the set-valued map ϕ in order to
single out classes of well-posed set-valued equilibrium problems in finite and infinite
dimensional spaces.

Proposition 3.1. For the map ϕ the following assertions hold:

(i) ϕ(x) ∩K0 = ∅ for all x ∈ D;
(ii) x ∈ S0 ⇐⇒ 0 ∈ ϕ(x);
(iii) x ∈ S0 ⇐⇒ ϕ(x) ∩K 6= ∅.

Proof. (i) Assume that for some x0 ∈ D,ϕ(x0) ∩ K0 6= ∅. Therefore, there exists
z ∈ K0, z 6= 0, such that z ∈ E−K0

(f(x0, D)). Hence z ∈ f(x0, D) and f(x0, D) ⊆
z + (−K0)c. Since 0 ∈ f(x,D) for all x ∈ D, we obtain that 0 ∈ z + (−K0)c, i.e.,
−z ∈ (−K0)c which contradicts the fact that z ∈ K0.
(ii) Since 0 ∈ f(x,D) for each x ∈ D,

x ∈ S0 ⇐⇒ f(x, y) ⊆ (−K0)c for every y ∈ D ⇐⇒
⇐⇒ f(x,D) ⊆ (−K0)c ⇐⇒ 0 ∈ f(x,D), f(x,D) ⊆ 0 + (−K0)c,

i.e., 0 ∈ E−K0
(f(x,D)) = ϕ(x).

(iii) Trivial, by (i) and (ii). �

Let us recall the following notion of upper Hausdorff convergence of a sequence
of points to a set (see, e.g., Miglierina et al.[17]).

Definition 3.2. The sequence (xn)n∈N ⊆ X is said to be upper Hausdorff convergent
to the set A ⊆ X ( xn ⇀ A) if for every neighbourhood W ∈ VX(0) there exists
n0 ∈ N such that xn ∈ A+W, for every n ≥ n0.

It is well-known that the well-posedness concepts are formulate in terms of con-
vergence of suitable minimizing sequences. Bianchi et al.[3] introduced the following
concept for a sequence and proved that is related to some concept for sequences
introduced by Miglierina et al.[17].

Definition 3.3. [3] A sequence (xn)n∈N ⊆ D is said to be a maximizing sequence for
ϕ if for every V ∈ VY (0) there exists n0 ∈ N such that

ϕ(xn) ∩ V 6= ∅, ∀n ≥ n0.
Clearly, every sequence (xn)n∈N ⊆ S0 is a maximizing sequence.
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The following definition reproduces, in set-valued settings, the classical notion
of Tykhonov well-posedness given in metric spaces, see also [3].

Definition 3.4. [3] We say that the set-valued equilibrium problem (SEP ) is M -well-
posed if every maximizing sequence is upper Hausdorff convergent to S0.

Next theorem gives sufficient conditions for the set-valued equilibrium problem
(SEP ) to be M -well-posed. It is given in finite dimensional spaces and is a variant
of Theorem 1 in Bianchi et al.[3] where the hypotheses are given with respect to the
maps ϕ and f . In our version, the hypotheses are imposed only on the map ϕ which
makes our result to be much easier to verify.
Similarly with Bianchi et al.[3], we suppose that the topological vector space Y is
regular, i.e., every nonempty closed set and every singleton disjoint from it can be
separated by open sets.

Theorem 3.5. Let X be a finite dimensional vector space and D ⊆ X be a closed
convex set such that:

(i) S0 ⊆ D is bounded;
(ii) ϕ compact on D \ S0;
(iii) ϕ is l-type (−K)-convex on D.

Then the problem (SEP ) is M-well-posed.

Proof. Suppose by contradiction that there exists a maximizing sequence (xn)n∈N ⊆
D which is not upper Hausdorff convergent to the set S0. Therefore, there exists a
neighbourhood V ∈ VX(0) such that

xn /∈ S0 + V, for infinitely many n. (3.1)

Since S0 is bounded, the set S0 + V is bounded, V ∈ VX(0), and therefore the set
cl(S0+V ) is compact. Consider the compact set bd(S0+V ) = cl(S0+V )\int(S0+V ).
Fix an arbitrary x ∈ S0. We can always find λn ∈ (0, 1) such that

xn = λnx+ (1− λn)xn ∈ bd(S0 + V ).

The set bd(S0 + V ) being compact, we can extract from the sequence

(λnx+ (1− λn)xn)n∈N

a subsequence (λnk
x+(1−λnk

)xnk
)k∈N converging to x∗ ∈ bd(S0 +V ). By the l-type

(−K)-convexity of ϕ, we have for every k ∈ N,

λnk
ϕ(x) + (1− λnk

)ϕ(xnk
) ⊆ ϕ(λnk

x+ (1− λnk
)xnk

)−K.

Therefore, since 0 ∈ ϕ(x) and (xnk
)k∈N ⊆ D is a maximizing sequence, there exists

unk
∈ ϕ(xnk

) such that unk
→ 0; hence we have

λnk
0 + (1− λnk

)unk
∈ ϕ(λnk

x+ (1− λnk
)xnk

)−K.

Thus, there exists vnk
∈ ϕ(λnk

x+ (1− λnk
)xnk

) such that

λnk
0 + (1− λnk

)unk
− vnk

∈ −K.
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Since ϕ is compact at x∗ ∈ bd(S0 + V ), from Theorem 2.4(ii) and Theorem 2.5(i), it
follows that there exist a subsequence (vnkl

)l∈N of (vnk
)k∈N and v∗ ∈ ϕ(x∗) such that

vnkl
→ v∗. Hence, we have

λnkl
0 + (1− λnkl

)unkl
− vnkl

∈ −K. (3.2)

Since λnkl
∈ (0, 1), there exist a subsequence of λnkl

(denoted also λnkl
) and λ0 ∈ [0, 1]

such that λnkl
→ λ0. Now taking in (3.2) the limit as l →∞, from the closedness of

K, we obtain that 0 ∈ v∗ −K and then 0 ∈ ϕ(x∗)−K, a contradiction.
Indeed, if not, 0 ∈ ϕ(x∗) − K. Hence there exist z ∈ ϕ(x∗), z 6= 0 and k ∈ K such
that z − k = 0. Therefore z = k and it follows that ϕ(x∗) ∩K 6= ∅, a contradiction
since x∗ /∈ S0.
The proof is complete. �

We now provide sufficient conditions forM -well-posedness in infinite dimensional
settings assuming that the set D \ S0 is compact.

Theorem 3.6. If the following conditions hold:

(i) the set D is convex and D \ S0 is compact;
(ii) ϕ compact on D \ S0;
(iii) ϕ is l-type (−K)-convex on D,

then the problem (SEP ) is M -well-posed.

Proof. Suppose by contradiction that there exist a maximizing sequence (xn)n∈N ⊆ D
and a neighbourhood V ∈ VX(0) such that

xn /∈ S0 + V, for infinitely many n.

Since (xn)n∈N is a maximizing sequence, one can choose a sequence (un)n∈N,
un ∈ ϕ(xn) such that un → 0. Let now x ∈ S0. Therefore, there exists a se-
quence (λn)n∈N ⊆ (0, 1) such that λnx + (1 − λn)xn ∈ D \ S0. Since D \ S0 is
compact there exists a subsequence (λnk

x + (1 − λnk
)xnk

)k∈N ⊆ D \ S0 such that
λnk

x+ (1− λnk
)xnk

→ x∗ ∈ D \ S0 when k →∞.
From the l-type (−K)-convexity of ϕ on D we obtain that

λnk
ϕ(x) + (1− λnk

)ϕ(xnk
) ⊆ ϕ(λnk

x+ (1− λnk
)xnk

)−K. (3.3)

Since 0 ∈ ϕ(x) and unk
∈ ϕ(xnk

), unk
→ 0, from (3.3) we have

λnk
0 + (1− λnk

)unk
∈ λnk

ϕ(x) + (1− λnk
)ϕ(xnk

) ⊆ ϕ(λnk
x+ (1− λnk

)xnk
)−K.

Therefore, there exists vnk
∈ ϕ(λnk

x+ (1− λnk
)xnk

), k ∈ N, such that

λnk
0 + (1− λnk

)unk
− vnk

∈ −K. (3.4)

The map ϕ is compact at x∗ ∈ D \ S0; taking into account Theorem 2.4(ii) and
Theorem2.5(i), it follows that there exist a subsequence (vnkl

)l∈N of (vnk
)k∈N and

v∗ ∈ ϕ(x∗) such that vnkl
→ v∗. By (3.4) we have that

λnkl
0 + (1− λnkl

)unkl
− vnkl

∈ −K.
Similarly with Theorem 3.5 we obtain that 0 ∈ ϕ(x∗) −K, which is a contradiction
because x∗ /∈ S0.
The proof is complete. �
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4. Well-posedness with respect to set criterion

In the previous section, the assumption that 0 ∈ f(x,D) for every x ∈ D, gave us
the possibility to characterize the solutions of the problem (SEP ) via the set-valued
map ϕ.
Since there exist set-valued equilibrium problems which are well-posed without ful-
filling the condition above, in this section we want to drop the assumption that
0 ∈ f(x,D) for every x ∈ D. To this point, we consider the following set-valued
problem (SP ) which consists in finding x ∈ D such that

ϕ(x) ⊆ (−K0)c,

where D ⊆ X and ϕ : D ⇒ Y , ϕ(x) = E−K0
(f(x,D)). We will denote by S0 the

solution set of this problem. From the definition of the map ϕ it follows that S0 ⊆ S0.
Since we supposed that S0 6= ∅ we have also that S0 6= ∅.
Further we will introduce a well-posedness concept for the set-valued problem (SP )
which will lead to some concept of well-posedness for (SEP ). While dealing with set-
valued problems it is more relevant to consider solution concepts based on comparison
among the sets corresponding to each value of the objective map.
For 0 6= e ∈ Y and A ∈ P(Y ), Khushboo et al.[13] considered the scalarization func-
tion φe,A : Y → R ∪ {±∞} defined as φe,A(y) =inf{t ∈ R : y ∈ te + A − S},
where S is a nonempty proper subset of Y . When S = −K we obtain that
φe,A(y) =inf{t ∈ R : y ∈ te+A+K}.
We now consider the following generalized Gerstewitz function introduced by Khush-
boo et al.[13].

Definition 4.1. Let He : P(Y )× P(Y )→ R ∪ {±∞} be defined as

He(A,B) = supb∈Bφe,A(b). (4.1)

Further, under the assumptions that S = −K and e ∈ −K, since the set −K is closed
and cl(−K) + R++e ⊆ −K holds, the following two lemmas are particular cases of
Theorem 4.1(ii) and Lemma 4.2 in Khushboo et al.[13], respectively.

Lemma 4.2. If r ∈ R and A ∈ P(Y ) then

{y ∈ Y : φe,A(y) ≤ r} = re+A+K.

Lemma 4.3. If r ∈ R and A,B ∈ P(Y ) then

He(A,B) ≤ r ⇐⇒ B ⊆ A+ re+K. (4.2)

In the sequel, we suppose that S = −K and e ∈ −K. Inspired by the two lem-
mas above, we introduce the following notion for a sequence (xn)n∈N ⊆ D to be a
minimizing sequence for the set-valued problem ϕ.

Definition 4.4. A sequence (xn)n∈N ⊆ D is said to be a minimizing sequence for ϕ
if there exist a sequence (yn)n∈N ⊆ S0 and a sequence (εn)n∈N ⊆ R, εn > 0, εn → 0
such that

He(ϕ(yn), ϕ(xn)) ≤ εn.
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Remark 4.5. In our settings, it is obvious that a sequence (xn)n∈N ⊆ D is a minimizing
sequence for ϕ if and only if there exist a sequence (yn)n∈N ⊆ S0 and a sequence
(εn)n∈N ⊆ R, εn > 0, εn → 0 such that

ϕ(xn) ⊆ ϕ(yn) + eεn +K.

We observe that every sequence from S0 is a minimizing sequence.

The following example shows that the maximizing sequence and the minimizing se-
quence concepts introduced before for ϕ, are different.

Example 4.6. Let e = (−1, 0) and f : D × D ⇒ Y where D = [−1, 1], Y = R2,
K = R2

+, be defined as
f(x, y) = {(x,− | y |)}.

Is is easy to check that ϕ : D ⇒ Y, ϕ(x) = E−K0
(f(x,D)), is defined by

ϕ(x) = {(x,−1)},
and S0 = S0 = (0, 1]. Let xn = (− 1

n )n∈N∗ . Since there exist the sequence (yn)n∈N ⊆
S0, yn = 1

n , n ∈ N
∗, and the sequence (εn)n∈N, εn = 2

n , n ∈ N
∗, such that

ϕ(xn) ⊆ ϕ(yn) + eεn +K,

it follows that (xn)n∈N∗ is a minimizing sequence for the map ϕ. We can notice that
for each V ∈ VY (0), ϕ(xn) ∩ V = ∅; therefore (xn)n∈N is not a maximizing sequence.
Also, 0 ∈ f(x,D) does not hold for every x ∈ D.

Definition 4.7. We say that the set-valued problem (SP ) is M1-well-posed if every
minimizing sequence is upper Hausdorff convergent to the set S0.

Now we provide sufficient conditions for the problem (SP ) to be M1-well-posed in
infinite dimensional spaces.

Theorem 4.8. If D is compact, S0 is closed, ϕ is lower semicontinuous on D \S0 and
compact on S0, then the problem (SP ) is M1-well-posed.

Proof. Suppose by contradiction that there exist a minimizing sequence (xn)n∈N ⊆ D
and V ∈ VX(0) such that

xn /∈ S0 + V, (4.3)

for infinitely many n. Since the set D is compact it follows that there exists a sub-
sequence (xnk

)k∈N of (xn)n∈N such that xnk
→ x0, x0 ∈ D. From (4.3), obviously

x0 /∈ S0.
On the other hand, (xn)n∈N ⊆ D is a minimizing sequence, therefore there exist a
sequence (yn)n∈N ⊆ S0 and a sequence (εn)n∈N ⊆ R, εn > 0, εn → 0, such that

He(ϕ(yn), ϕ(xn)) ≤ εn. (4.4)

By Lemma 4.3, we have that

ϕ(xn) ⊆ ϕ(yn) + εne+K, εn → 0.

The set S0 ⊆ D is closed, D is compact and therefore S0 is compact. Thus, there
exists a subsequence (ynk

)k∈N of (yn)n∈N such that ynk
→ y0 for some y0 ∈ S0.

Let v0 ∈ ϕ(x0). The map ϕ is lower semicontinuous on D \ S0 and therefore at
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x0 ∈ D \ S0. From Theorem 2.5(ii), it follows that there exists vnk
∈ ϕ(xnk

) such
that vnk

→ v0.
The inclusion

ϕ(xnk
) ⊆ ϕ(ynk

) + εnk
e+K, εnk

→ 0,

implies that there exists unk
∈ ϕ(ynk

) such that

vnk
∈ unk

+ εnk
e+K, for every k ∈ N.

By Theorem 2.4, the map ϕ is upper semicontinuous at y0 ∈ S0 and ϕ(y0) is compact;
thus, taking into account Theorem 2.5(ii), there exist a subsequence (unkl

)l∈N of

(unk
)k∈N and u0 ∈ ϕ(y0) such that unkl

→ u0. We have that

vnkl
∈ unkl

+ εnkl
e+K, for every l ∈ N.

When l → ∞, it follows from the closedness of K that v0 ∈ u0 + K ⊆ ϕ(y0) + K
and therefore ϕ(x0) ⊆ ϕ(y0) +K, which is a contradiction since ϕ(y0) ⊆ (−K0)c and
x0 /∈ S0. �

In the next example all the assumptions of the theorem above are fulfilled and the
problem (SP ) is well-posed. Also, 0 ∈ f(x,D) does not hold for every x ∈ D.

Example 4.9. Let f : D×D ⇒ Y where D = [−1, 1], Y = R2, K = R2
+, be defined as

f(x, y) = {(x, | y |)}, x ∈ [−1, 1], y ∈ [−1, 1].

The map ϕ : D ⇒ Y is defined by

ϕ(x) = {(x, 0)}, x ∈ [−1, 1].

The solution set for (SP ) is S0 = S0 = [0, 1].

Remark 4.10. Obviously, if (xn)n∈N is a minimizing sequence of ϕ we have that there
exist (yn)n∈N ⊆ S0 and (εn)n∈N ⊆ R, εn > 0, εn → 0, such that

ϕ(xn) ⊆ ϕ(yn) + εne+K ⊆ f(yn, D) + εne+K.

Now we introduce the concept of M1-well-posedness for the problem (SEP ), strongly
related to the concept of M1-well-posedness of (SP ).

Definition 4.11. The set-valued equilibrium problem (SEP ) is said to be M1-well-
posed if every minimizing sequence (xn)n∈N is upper Hausdorff convergent to the set
S0.

The following theorem makes the connection between the special set-valued prob-
lem (SP ) and the set-valued equilibrium problem (SEP ) we are interested in. Also,
it provides sufficient conditions for M1-well-posedness of the set-valued equilibrium
problem (SEP ).

Theorem 4.12. If the problem (SP ) is M1-well-posed and for every V ∈ VX(0),
S0 ⊆ S0 + V , then the set-valued equilibrium problem (SEP ) is M1-well-posed.
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Proof. Let V ∈ VX(0) be a neighbourhood of 0. Hence there exists W ∈ VX(0) such
that W +W ⊆ V .
Let (xn)n∈N ⊆ D be a minimizing sequence for ϕ. Since the problem (SP ) is M1-
well-posed it follows that for W there exists n0 ∈ N such that xn ∈ S0 +W for every
n ≥ n0. Also, from the hypothesis S0 ⊆ S0 +W . Therefore,

xn ∈ S0 +W ⊆ S0 +W +W ⊆ S0 + V,

for every n ≥ n0.
Hence for every V ∈ VX(0) there exists n0 ∈ N such that xn ∈ S0 + V for every
n ≥ n0.
The proof is complete. �

The following example illustrates Theorem 4.12.

Example 4.13. Let e = (0,−1) and f : D ×D ⇒ Y, where

D = [−1, 1], Y = R2, K = R2
+,

be defined as

f(x, y) =


{((1− | y |)x, | y | x)}, x ∈ [0, 1], x 6= 1

n , n ≥ 2; y ∈ [−1, 1];

{((1− | y |)(−x), (1− | y |)(±x))}, x = 1
n , n ≥ 2, y 6= 0;

{(−x, x)}, x = 1
n , n ≥ 2, y = 0;

{(x, | y |)}, x ∈ [−1, 0), y ∈ [−1, 1].

The map ϕ : D ⇒ Y is defined by

ϕ(x) =


[(0, x); (x, 0)], x ∈ [0, 1], x 6= 1

n , n ≥ 2;

{(−x, x)}, x = 1
n , n ≥ 2;

{(x, 0)}, x ∈ [−1, 0).

The solution set for (SP ) is S0 = [0, 1] and the solution set of the set-valued equilib-
rium problem (SEP ) is S0 = [0, 1]\{ 1n , n ≥ 2}. It is easy to observe that S0 ⊆ S0 +V
for every V ∈ VX(0). Also, every minimizing sequence of the set-valued problem
(SP ) is upper Hausdorff convergent to the set S0 and therefore the problem (SP ) is
M1-well-posed. Finally, we observe that the problem (SEP ) is also M1-well-posed.

5. Conclusions

In this paper, we introduce some concepts of well-posedness for a set-valued
equilibrium problem; the first of them generalizes a concept of well-posedness of the
strong vector equilibrium problem studied by Bianchi et al.[3] in topological vector
spaces. First, we focus on several properties of a suitable set-valued map ϕ and we
obtain some sufficient results for well-posedness for our set-valued equilibrium problem
in the presence of l-type K-convexity of the set-valued map ϕ in finite and infinite
settings. The quasi-order relation induced by the nonempty closed convex pointed cone
K in the topological vector space Y and the nice properties of the Gerstewitz map
considered by Khushboo et al.[13], conducted us to another well-posedness concept for
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the set-valued equilibrium problem we are interested in. Some sufficient conditions for
this well-posedness concept have been obtained via an appropriate set-valued problem.

Acknowledgements. The author would like to express his gratitude to the anonymous
referee for the helpful comments which improved the presentation of the paper.

References

[1] Aubin, J.P., Frankowska, H., Set-Valued Analysis, Modern Birkhäuser Classics,
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[7] Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C., Variational methods in partially
ordered spaces, Springer, CMS Books in Mathematics, 2003.
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Abstract. Since quasiconvex functions have convex lower level sets it is possible
to minimize them by means of separating hyperplanes. An example of such a
procedure, well-known for convex functions, is the subgradient method. However,
to find the normal vector of a separating hyperplane is in general not easy for the
quasiconvex case. This paper attempts to gain some insight into the computational
aspects of determining such a normal vector and the geometry of lower level sets
of quasiconvex functions. In order to do so, the directional differentiability of
quasiconvex functions is thoroughly studied. As a consequence of that study, it
is shown that an important subset of quasiconvex functions belongs to the class
of quasidifferentiable functions. The main emphasis is, however, on computing
actual separators. Some important examples are worked out for illustration.

Mathematics Subject Classification (2010): 54AXX.
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1. Introduction

The backbone of every successful procedure to minimize a general nonsmooth
convex function is separation. For example, so-called subgradient methods as discussed
in [18], refinements of such methods with space dilation yielding the ellipsoid algo-
rithm, [9, 22], use the important property of a finite-valued convex function that every
nonoptimal point in its domain can be properly separated by an affine functional, or
hyperplane, from the nonempty set of points with lower functional value, the so-
called lower level set. Also, the important class of bundle methods, [13], is based on
the construction of hyperplanes supporting the epigraph and so these methods can
be seen as refinements of the cutting plane idea of Kelley, [14]. Since the epigraph of

Received 13 December 2021; Accepted 07 February 2022.
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a convex function and its lower level sets are convex it is possible to separate both
the epigraph and a lower level set from points outside their relative interiors and
use the corresponding separating hyperplanes to minimize the function. Moreover,
for finite-valued convex functions the normal vectors of both types of hyperplane are
determined by elements of the nonempty subgradient set at the corresponding point.
To extend the above results to a larger class of functions it is natural to consider qua-
siconvex functions. These functions, by definition, have convex lower level sets. We
first observe that for an important subset of the quasiconvex functions, the so-called
lower subdifferentiable functions, one can define the concept of a lower subgradient,
[17]. This lower subgradient at some point satisfies the subgradient inequality on the
corresponding lower level set (therefore its name!) and this enables us to apply the
cutting plane approach of Kelley, [17]. Since this lower subgradient can be identified
by means of a hyperplane separating the point from its convex lower level set it is
important to be able to compute such a separating hyperplane. A similar observation
holds for all quasiconvex functions and this paper addresses the question how to com-
pute the normal vector of a hyperplane separating the lower level set of a quasiconvex
function from any given nonminimal point on its domain. We try to keep the class
of quasiconvex functions as general as possible by not assuming lower subdifferentia-
bility. Unfortunately some results are only valid under some additional assumptions.
These assumptions cease to hold for quasiconvex functions which are constant in some
neighborhood of a nonminimal point. If this happens it seems impossible to compute a
normal vector of a separating hyperplane using only local information. However, this
does not imply that every algorithm based on the construction of separating hyper-
planes will get trapped in such a “bad” point. In a pair of subsequent papers, [6, 8],
an adaptation of the ellipsoid method is considered which keeps track of a hyper-
rectangle containing a minimal point. This hyperrectangle is in general much smaller
than the current ellipsoid and can be constructed without increasing the complexity
order of the algorithm. This gives the opportunity, in case the center of the current
ellipsoid is such a “bad” point, to search this “easy” hyperrectangle in order to either
prove optimality of the present point or find another point from where it is possible to
proceed. In this paper we also show that every quasiconvex function with a Lipschitz
continuous directional derivative is quasidifferentiable, [5]. This result relates these
two function classes.

2. Quasiconvex functions

We recall that a function f : Rn−→ [−∞,+∞] is called proper if the domain
of f , given by dom(f) := {x ∈ Rn : f(x) < ∞}, is nonempty and if f(x) > −∞
for every x ∈ Rn. Among the set of proper functions we will now concentrate on the
so-called evenly quasiconvex functions defined below.

Definition 2.1. A function f : Rn−→ [−∞,+∞] is called quasiconvex if the lower level

sets L≤f (α) := {x ∈ Rn : f(x) ≤ α} are convex for every α ∈ R. The function is called
evenly quasiconvex if its lower level sets are all evenly convex. Observe a set is called
evenly convex if it can be represented by the intersection of open halfspaces.
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Observe that every lower semicontinuous quasiconvex function is evenly qua-
siconvex, since it has closed convex (hence evenly convex) lower level sets. More-
over, it can also be shown (see [15]) that every upper semicontinuous quasiconvex
function is evenly quasiconvex Clearly, for f quasiconvex, it is well known that
dom(f) =

⋃
α∈IR L

≤
f (α) is convex due to L≤f (α) ⊆ L≤f (β) for every α ≤ β. The

following result lists some well-known equivalent characterizations of quasiconvexity,
see [19].

Lemma 2.2. The following conditions are equivalent.

1. The function f : Rn−→ [−∞,+∞] is quasiconvex.
2. The sets L<f (α) := {x ∈ Rn : f(x) < α} are convex for each α ∈ R.

3. f(λx+ (1− λ)y) ≤ max{f(x), f(y)} for every x,y ∈ Rn and 0 < λ < 1.

In the next section we will consider the special class of proper positively homo-
geneous evenly quasiconvex functions.

3. On properties of proper positively homogeneous evenly
quasiconvex functions

This section mainly derives similar results as those obtained by Crouzeix in
[2, 3, 4]. However, while Crouzeix considers proper, positively homogeneous, lower
semicontinuous quasiconvex functions we replace lower semicontinuity and quasicon-
vexity by evenly quasiconvexity. Despite this weaker assumption it is possible to derive
similar results by means of easier proofs. Since the main results in this section are
a consequence of duality results for quasiconvex functions these simple proofs are
possible using a more natural generalization, [16, 7], of the well-known biconjugate
or Fenchel-Moreau theorem for convex functions, [12, 21]. It turns out that proper
evenly quasiconvex functions originate a more symmetrical representation in the dual
space than proper lower semicontinuous quasiconvex functions, [16, 7], and using this
more suitable representation one can give simpler proofs. Moreover, since the defi-
nition of an evenly quasiconvex function already “includes” a separation result for
convex sets it is also possible to give a very simple and easy proof for this dual rep-
resentation of proper evenly quasiconvex functions. For a proof of the next result the
reader should consult Theorem 1.16 and 1.18 of [6]. Observe that 〈., .〉 denotes the
well known innerproduct.

Lemma 3.1. Let ϕ : Rn−→ [−∞,+∞] be a proper positively homogeneous evenly
quasiconvex function satisfying ϕ(0) = 0. For every x ∈ Rn it follows

ϕ(x) = sup
{
ψ
(
x?, 〈x?,x〉

)
: x? ∈ Rn

}
(3.1)

with

ψ(x?, r) := inf{ϕ(y) : 〈x?,y〉 ≥ r, y ∈ Rn}. (3.2)

Moreover, for every x? ∈ Rn the function r 7−→ ψ(x?, r) is a nondecreasing positively
homogeneous function.
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The above lemma is the alluded dual representation. Using it, the next results
provide slight improvements over related results in [4, 2]. Recall that a convex posi-
tively homogeneous function is also called sublinear, see [12].

Lemma 3.2. If ϕ : Rn−→ [−∞,+∞] is a proper positively homogeneous evenly qua-
siconvex nonnegative function satisfying ϕ(0) = 0 then ϕ is a lower semicontinuous
sublinear function with its subgradient set ∂ϕ(0) at 0 nonempty.

Proof. Since the function ϕ is assumed to be positively homogeneous it remains to
prove that it is lower semicontinuous and convex. By (3.1) it is sufficient to prove that

the function r 7−→ ψ(x?, r), and hence the function x 7−→ ψ
(
x?, 〈x?,x〉

)
, is lower

semicontinuous and convex for every x? ∈ Rn with ψ defined by (3.2) in Lemma 3.1.
Clearly it follows by the nonnegativity of the function ϕ that 0 ≤ ψ(x?, r) for every
(x?, r) ∈ Rn+1. Also, ψ(x?, 0) = inf{ϕ(y) : 〈x?,y〉 ≥ 0, y ∈ Rn} ≤ ϕ(0) = 0 and
so ψ(x?, 0) = 0. Hence by the nonnegativity of ψ and the function r 7−→ ψ(x?, r)
is nondecreasing we conclude that ψ(x?, r) = 0 for every r ≤ 0. Again using ϕ is
a positively homogeneous function and hence the function r 7−→ ψ(x?, r) is also
positively homogeneous it follows for r > 0 that ψ(x?, r) = rψ(x?, 1) with ψ(x?, 1) ≥
0. This shows that the convexity and lower semicontinuity of the function r 7−→
ψ(x?, r) is established whether ψ(x?, 1) is finite or not. To prove the last part we
observe, since the function ϕ is proper lower semicontinuous and sublinear, that by
Theorem V.3.1.1 of [12] the function ϕ is the support function of the closed nonempty
convex set C := {x? ∈ Rn : 〈x?,x〉 ≤ ϕ(x) for every x ∈ Rn}. Since ϕ(0) = 0 we have
C = ∂ϕ(0) and the proof is finished. �

Another consequence of Lemma 3.1 is given by the following result. Remember
K◦ denotes the well known polar of the cone K given by K◦ = {x∗ ∈ Rn : 〈x∗,x〉 ≤
0 for every x ∈ K}.

Lemma 3.3. If ϕ : Rn−→ [−∞,+∞] is a proper positively homogeneous evenly qua-

siconvex function satisfying ϕ(0) = 0 and dom(ϕ) ⊆ cl
(
L<ϕ (0)

)
then ϕ is a lower

semicontinuous sublinear function with its subgradient set ∂ϕ(0) at 0 nonempty.

Proof. To ensure the first part of the result only the convexity and lower semicontinu-
ity of the function ϕ require a proof. This will once again be based on analyzing the
function r 7−→ ψ(x?, r) for each x? ∈ Rn. We discuss the following mutually exclusive
cases for x?.

1. Let x? not belong to
(

cl
(
L<ϕ (0)

))◦
. If this holds we can find some x0 satisfying

ϕ(x0) < 0 and 〈x?,x0〉 > 0. Since the function ϕ is proper the value ϕ(x0) must
be finite. Hence, for every r > 0 we obtain by Lemma 3.1 that

ψ(x?, r) = 〈x?,x0〉−1ψ
(
x?, r〈x?,x0〉

)
≤ 〈x?,x0〉−1ϕ(rx0) = r〈x?,x0〉−1ϕ(x0) < 0

and so limr↑∞ ψ(x?, r) = −∞. This yields using r 7−→ ψ(x?, r) is nondecreasing
that ψ(x?, r) = −∞ for each r ∈ R and we obtain by relation (3.1) and the
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function ϕ is proper that

ϕ(x) = sup{ψ(x, 〈x∗,x〉) : x∗ ∈ cl
(
L<ϕ (0)

))◦
}.

2. Let x? belong
(

cl
(
L<ϕ (0)

))◦
and consider ψ(x?, r) for r > 0. If the vector

y ∈ Rn satisfies 〈x?,y〉 ≥ r > 0 then y does not belong to cl
(
L<ϕ (0)

)
and

so y is not an element of dom(ϕ). This implies ϕ(y) = +∞ for each y ∈ Rn
satisfying 〈x?,y〉 ≥ r > 0 and by relation (3.2) we obtain ψ(x?, r) = +∞ for
r > 0. To analyze ψ(x?, r) for r ≤ 0 we consider the following two mutually
exclusive cases.
(a) There exists an x0 belonging to L<ϕ (0) such that 〈x?,x0〉 = 0. If this holds

we obtain by relation (3.2) for every α > 0 that

ψ(x?, 0) = ψ
(
x?, 〈x?,x0〉

)
≤ ϕ(αx0) = αϕ(x0) < 0

and as in part 1 we obtain ψ(x?, 0) = −∞.This shows ψ(x?, r) = −∞ for
every r ≤ 0.

(b) For every x belonging to L<ϕ (0) it follows that 〈x?,x〉 < 0. To compute
ψ(x?, 0) we first observe for each y satisfying 〈x?,y〉 ≥ 0 that by our
assumption the vector y does not belong to L<ϕ (0) and so ϕ(y) ≥ 0. Since 0
is one of those elements y and ϕ(0) = 0 it follows from (3.2) that ψ(x?, 0) =
0. Clearly, Lemma 3.1 yields for r < 0 that

ψ(x?, r) = −rψ(x?,−1)

with −∞ ≤ ψ(x?,−1) < 0.

To finish the proof it follows by the above analysis that we must only concentrate on

part 2b and verify that there exists some x? belonging to
(

cl
(
L<ϕ (0)

))◦
satisfying

ψ(x?,−1) > −∞. If such an x? does not exists then ϕ(x) = −∞ for every x ∈ L<ϕ (0)
and this contradicts that the function ϕ is proper. Hence, to represent the function ϕ
as in relation (3.1) it is enough to consider elements of the set

S :=
{
x? ∈

(
cl
(
L<ϕ (0)

))◦
: −∞ < ψ(x?,−1) < +∞

}
and we have verified that

ϕ(x) = sup
{
ψ
(
x?, 〈x?,x〉

)
: x? ∈ S

}
. (3.3)

Since for every x? ∈ S the function x 7−→ ψ
(
x?, 〈x?,x〉

)
is convex and lower semi-

continuous this shows by relation (3.3) that the function ϕ is lower semicontinuous
and convex. The last part follows from similar arguments as used in the proof of
Lemma 3.2. �

Observe for ϕ convex with ϕ(0) = 0 that ϕ(x) ≥ 0 for every x ∈ Rn is equivalent
to 0 ∈ ∂ϕ(0). So, for ϕ satisfying the conditions of Lemma 3.2 we have 0 ∈ ∂ϕ(0)
while for ϕ satisfying the conditions of Lemma 3.3 we have 0 6∈ ∂ϕ(0).
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An immediate consequence of the previous two lemmas is the following theorem,
which improves a related result in [4, 2]. Before discussing this theorem we introduce
for any function ϕ the related functions ϕ− and ϕ+ given by

ϕ−(x) :=

{
ϕ(x) if x ∈ cl

(
L<ϕ (0)

)
+∞ otherwise

(3.4)

and

ϕ+(x) :=

{
0 if x ∈ cl

(
L<ϕ (0)

)
ϕ(x) otherwise.

(3.5)

Theorem 3.4. Every proper, positively homogeneous evenly quasiconvex function ϕ
satisfying ϕ(0) = 0 is lower semicontinuous and is the minimum of two lower semi-
continuous sublinear functions ϕ− and ϕ+.

Proof. If ϕ(x) ≥ 0 for every x or equivalently L<ϕ (0) is empty we obtain by relation
(3.4) and (3.5) that ϕ−(x) = +∞ and ϕ+(x) = ϕ(x) for every x and the desired result
follows by Lemma 3.2. If L<ϕ (0) is nonempty it follows using ϕ is a proper positively

homogeneous evenly quasiconvex function and cl
(
L<ϕ (0)

)
a nonempty closed convex

cone (hence evenly convex) that ϕ+ satisfies the conditions of Lemma 3.2 and ϕ− the
conditions of Lemma 3.3. Hence the functions ϕ− and ϕ+ are lower semicontinuous
and sublinear. This also implies by relation (3.4) that ϕ−(x) ≤ 0 for every x ∈
cl
(
L<ϕ (0)

)
and by relations (3.4) and (3.5) we obtain ϕ(x) = min{ϕ−(x), ϕ+(x)}

showing the desired result. �

By Theorem 3.4 every proper evenly quasiconvex positively homogeneous func-
tion which is finite at 0 must be lower semicontinuous. This is a rather remarkable
result which does not hold in general for evenly quasiconvex functions. As an example
we mention the evenly quasiconvex function

sign(x) :=

 −1 if x < 0
0 if x = 0
1 if x > 0

which is neither lower nor upper semicontinuous at 0.
If ϕ is a finite positively homogeneous evenly quasiconvex function one can show,

under some additional condition, that ϕ is continuous on Rn. To establish this result
we need the following lemma.

Lemma 3.5. If the function ϕ is proper positively homogeneous and evenly quasiconvex
and its lower level set L<ϕ (0) is nonempty then the following conditions are equivalent.

1. rbd(L<ϕ (0)) ⊆ L=
ϕ (0).

2. L<ϕ (0) is relatively open.

Proof. To verify 1 ⇒ 2 it is sufficient to prove that L<ϕ (0) ⊆ ri(L<ϕ (0)). Let d0 ∈
L<ϕ (0) ⊆ cl(L<ϕ (0)) and suppose that d0 does not belong to ri(L<ϕ (0)). Then d0 ∈
rbd(L<ϕ (0)) and hence by 1 we obtain that ϕ(d0) = 0. This contradicts d0 ∈ L<ϕ (0) and
we have shown that L<ϕ (0) ⊆ ri(L<ϕ (0)). To prove 2⇒ 1 we observe for d ∈ rbd(L<ϕ (0))
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that d does not belong to ri(L<ϕ (0)) = L<ϕ (0). Hence, ϕ(d) ≥ 0 and since ϕ+(d) = 0
for every d ∈ cl(L<ϕ (0)) with ϕ+ defined as in relation (3.5), it follows by Theorem
3.4 that 0 ≤ ϕ(d) = min{ϕ−(d), ϕ+(d)} ≤ 0 or equivalently ϕ(d) = 0. �

In the next result we show that under some additional condition a finite positively
homogeneous evenly quasiconvex functions is actually continuous.

Lemma 3.6. If the function ϕ is a finite positively homogeneous evenly quasiconvex
function and the set L<ϕ (0) is relatively open then the function ϕ is continuous on Rn.

Proof. If L<ϕ (0) is empty then by Lemma 3.2 we obtain that ϕ(d) = ϕ+(d) for every
d ∈ Rn. Since dom(ϕ+) = Rn and by Lemma 3.2 the function ϕ+ is convex it
follows by Corollary 10.1.1 of [21] that ϕ is continuous. If L<ϕ (0) is nonempty then
by Theorem 10.1 of [21], Lemma 3.3, Lemma 3.2 and Theorem 3.4 it is sufficient
to prove that ϕ is upper semicontinuous on rbd(L<ϕ (0)). Since by assumption the
set L<ϕ (0) is relatively open we obtain by Lemma 3.5 that ϕ(d) = 0 for every d ∈
rbd(L<ϕ (0)). Suppose now by contradiction that lim supd→d0

ϕ(d) > ϕ(d0) = 0 for
some d0 ∈ rbd(L<ϕ (0)). Hence, there exists a sequence {dk : k ≥ 1} with limk↑∞ dk =
d0 such that limk↑∞ ϕ(dk) > 0. Since by Lemma 3.4 the function ϕ+ is sublinear
and finite it follows as in the first part of this proof that ϕ+ is continuous and we
obtain by Theorem 3.4 that ϕ+(d0) = limk↑∞ ϕ+(dk) ≥ limk↑∞ ϕ(dk) > 0. This
implies using the definition of ϕ+ in relation (3.5) that d0 6∈ cl(L<ϕ (0)) contradicting
d0 ∈ rbd(L<ϕ (0)). Therefore the function ϕ must be upper semicontinuous for every
d ∈ rbd(L<ϕ (0)) and this proves the desired result. �

It is now immediately clear for ϕ continuous on Rn that the set L<ϕ (0), if not
empty, has full dimension n and so ri(L<ϕ (0)) = int(L<ϕ (0)) = L<ϕ (0).

The properties of the above special class of positively homogeneous evenly qua-
siconvex functions will be useful to study the local properties of more general quasi-
convex functions. A way to do this is to look at directional derivatives of quasiconvex
functions as functions of the direction. This will be discussed in the next section.

4. Directional derivatives of quasiconvex functions

Unlike convex functions, quasiconvex functions do not always have directional
derivatives. An important generalization of directional derivatives is given by the
Dini upper derivative of f at x0 in the direction d. This generalization coincides with
the definition of Dini upper derivative used within the theory of quasidifferentiable
functions if f is locally Lipschitz around x0, see [5].

Definition 4.1. If f : Rn−→ [−∞,+∞] is some function with f(x0) finite the Dini
upper derivative of f at x0 in the direction d is given by

f ′+(x0;d) := lim sup
t↓0

f(x0 + td)− f(x0)

t
.
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We observe by the definition of lim sup that f ′+(x0;d) always exists, i.e. −∞ ≤
f ′+(x0;d) ≤ +∞, for any function f : Rn−→ [−∞,+∞] with f(x0) finite. Moreover, it
is easy to verify that d 7−→ f ′+(x0;d) is positively homogeneous and that f ′+(x0; 0) = 0.
If we know additionally that f is quasiconvex then the next result is easy to prove
using Lemma 2.2, see [2].

Lemma 4.2. Let f : Rn−→ [−∞,+∞] be a quasiconvex function with f(x0) fi-
nite. Then the function d 7−→ f ′+(x0;d) is positively homogeneous, quasiconvex and
f ′+(x0; 0) = 0.

In the remainder of this paper we will always assume that f : Rn−→ [−∞,+∞] is
a quasiconvex function with f(x0) finite and d 7−→ f ′+(x0;d) is a proper evenly quasi-
convex function. Introducing the function ϕ(d) := f ′+(x0;d) we observe by Lemma 4.1
that this function satisfies the properties of the functions studied in Section 3. Al-
though this function depends on x0, whenever no risk of confusion exists we do not
refer to it for the sake of notation convenience.

Lemma 4.3. If the function f is quasiconvex and finite at x0 and the function ϕ given
by ϕ(d) := f ′+(x0;d) is a finite evenly quasiconvex function then the function ϕ is
continuous on Rn.

Proof. The function ϕ is positively homogeneous and satisfies ϕ(0) = 0. Applying
now Lemma 3.6 it is sufficient to verify that L<ϕ (0) is relatively open. By definition
this holds for L<ϕ (0) empty. Hence assume that L<ϕ (0) nonempty and let d ∈ L<ϕ (0).

This implies that there exists some t0 > 0 satisfying x0 + td ∈ ri(L<f (f(x0)).

Hence by Theorem 6.8.2 of [21] we obtain that d ∈ t−10 (ri(L<f (f(x0))) − x0) ⊆
ri(cone(L<f (f(x0)) − x0)) and we obtain by Lemma 4.4 that d ∈ ri(L<ϕ (0)). This
shows the result. �

Notice that Crouzeix in [2, 3, 4] observed that ϕ might not be lower semicontin-
uous even if ϕ is a finite, positively homogeneous and quasiconvex function. Finally,
if f is quasiconvex and additionally locally Lipschitz around x0, (see [1] fot the def-
inition of locally Lipschitz), it is easy to show by a direct proof that ϕ is Lipschitz
continuous (and hence continuous) on Rn.
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Figure 1. Interpretation of the partial description

As already pointed out in the introduction, it is crucial for many optimization
methods to be able to compute an element of the normal cone of L<f (f(x0)) at x0.
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It is essential to consider the strict lower level set L<f (f(x0)) since, unlike for convex
functions, a nonminimal point may be in the interior of its lower level set. In order
to see that take any point in the segment connecting a and b in Figure 1. The first
picture is drawn in the domain and shows two lower level sets. The one with a dashed
boundary is L<f (f(b)) and the one with a full boundary is L≤f (f(a)) = L≤f (f(b)). The
second picture is drawn in the epigraph space and corresponds to slicing the graph of
the function along the line going through a and b.

Clearly, in order to seek a vector normal to L<f (f(x0)) we must know that the

set L<f (f(x0)) is nonempty. A sufficient condition to ensure that this strict lower
level set is nonempty is the nonemptiness of the set of strict descent directions at
x0 defined as L<ϕ (0) := {d ∈ Rn : f ′+(x0;d) < 0}. Unfortunately, in the case of
quasiconvex functions, contrary to convex functions (see [12]), the nonemptiness of
the set of strict descent directions is not necessary as shown by f(x) = x3 at 0.

This function is differentiable at 0 and its derivative at this point equals 0.
Therefore f ′(0; d) = 0 for every d ∈ R, while L<f (0) = (−∞, 0) is clearly nonempty.

x

y

Figure 2. A simple but “nasty” quasiconvex function: x3

For quasiconvex functions a necessary condition is given by the nonemptiness of
the set L≤ϕ (0) \ {0} with L≤ϕ (0) := {d ∈ Rn : f ′+(x0;d) ≤ 0} the set of descent direc-
tions. It turns out, see Section 4.2 ahead, that the function ϕ completely characterizes
the normal cone of L<f (f(x0)) at x0 if L<ϕ (0) is nonempty. For L<ϕ (0) empty we also

need global information to find out whether L<f (f(x0)) is nonempty or not and so
the local information given by ϕ is insufficient even to decide whether x0 minimizes
f or not.

To discuss the case with L<ϕ (0) nonempty we first observe that L<ϕ (0) is a convex

subset of the nonempty convex cone cone(L<f (f(x0))−x0). For L<ϕ (0) nonempty it is

shown in the next result that ri(cone(L<f (f(x0)) − x0)) equals ri(L<ϕ (0)). The same

result is proven by Crouzeix in [3] but for completeness we list a more detailed proof.

Lemma 4.4. If f : Rn−→ [−∞,+∞] is a quasiconvex function with f(x0) finite and
L<ϕ (0) nonempty then ri(cone(L<f (f(x0))− x0)) equals ri(L<ϕ (0)).

Proof. Since L<ϕ (0) ⊆ cone(L<f (f(x0)) − x0) and L<ϕ (0) is nonempty it is sufficient

by Theorem 6.3.1 of [21] to verify that ri(cone(L<f (f(x0)) − x0)) ⊆ L<ϕ (0). Consider

now some d0 ∈ ri(cone(L<f (f(x0))− x0)) and let

d ∈ L<ϕ (0) ⊆ cone(L<f (f(x0))− x0).
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By Theorem 6.4 of [21] there exists some µ < 0 such that

dµ := d0 + µ(d− d0) ∈ ri(cone(L<f (f(x0))− x0))

and so d0 = 1
1−µdµ −

µ
1−µd. Moreover, since dµ ∈ ri(cone(L<f (f(x0)) − x0)) and by

Theorem 6.8.1 of [21] it follows that 0 does not belong to ri(cone(L<f (f(x0)) − x0))

we can find some t0 > 0 satisfying f(x0 + t0dµ) < f(x0). Construct now for each
t > 0 the line Lt going through x0 + t0dµ and mt := x0 + td0 and crossing x0 + αd
in nt := x0 + ξtd, see Figure 3. By the quasiconvexity of f it follows that

f(mt) = f(x0 + td0) ≤ max{f(x0 + t0dµ), f(x0 + ξtd)}. (4.1)

To compute ξt we intersect the line Lt with the line x0+αd. After some computations
we obtain

ξt =
−µtt0

(1− µ)t0 − t
.

Substituting this into (4.1) yields

f(x0 + td0)− f(x0)

t
≤ max

f(x0 + t0dµ)− f(x0)

t
,
f
(
x0 + −µtt0

(1−µ)t0−td
)
− f(x0)

t


and due to x0 + t0dµ ∈ L<f (f(x0)) and limt↓0

ξt
t = −µ

1−µ > 0 we obtain

f ′+(x0;d0) ≤ −µ
1− µ

f ′+(x0;d) < 0.

.
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t
Lt

x0

x0 + t0dµ mt

nt = x0 + ξtd

x0 + αd

x0 + αd0

Figure 3. Construction of Lt

Hence, d0 ∈ L<ϕ (0) and the desired result is proven. �

The previous result will play an important role in the sequel. Its main importance
is to show that if the set L<ϕ (0) is nonempty then this set is indistinguishable by

polarity from the set cone(L<f (f(x0))− x0).
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4.1. Quasidifferentiability of quasiconvex functions

This section shows the important result that a quasiconvex function with a
Lipschitz continuous directional derivative at x0 is quasidifferentiable at x0.

Definition 4.5 ([5]). If f : Rn−→ [−∞,+∞] is some function with f(x0) finite the
directional derivative of f at x0 in the direction d is given by

f ′(x0;d) := lim
t↓0

f(x0 + td)− f(x0)

t
.

Moreover, f is said to be quasidifferentiable at x0 if d 7−→ f ′(x0;d) exists for every
d ∈ Rn and

f ′(x0;d) = max
y∈∂f(x0)

〈d,y〉+ min
y∈∂f(x0)

〈d,y〉

with ∂f(x0), resp. ∂f(x0), compact convex subsets of Rn. The sets ∂f(x0) and ∂f(x0)
are called respectively the subdifferential and the superdifferential of f at x0 being
IDf(x) := [∂f(x0), ∂f(x0)] ⊆ R2n the quasidifferential of f at x0.

Observe that whenever f ′(x0;d) exists it equals f ′+(x0;d). It is well-know that
every finite convex function f : Rn−→ R is quasidifferentiable at every x ∈ Rn with
IDf(x) := [∂f(x), {0}] and ∂f(x) the nonempty subgradient set of f at x. Moreover,
it can be easily shown, [5], that the function x 7−→ min{f1(x), f2(x)} is quasidif-
ferentiable at x0 if fi, i = 1, 2, is quasidifferentiable at x0. In general, the set of
quasidifferentiable functions at x0 is a linear space closed with respect to all alge-
braic operations and, more importantly, to the operations of taking maxima and
minima. Also for f quasidifferentiable at x0 it is easy to verify that d 7−→ f ′(x0;d)
is Lipschitz continuous. To relate the previous results for quasiconvex functions to
the above class of functions we observe for f : Rn−→ [−∞,+∞] quasiconvex, L<ϕ (0)
empty with ϕ(d) := f ′(x0;d) a finite continuous function that by Theorem (3.4) and
Lemma 3.2 the function f is quasidifferentiable at x0 with IDf(x0) = [∂ϕ+(0), {0}].
If this holds the Lipschitz continuity of ϕ follows by the finiteness of ϕ+. However,
if L<ϕ (0) is nonempty we have to assume that ϕ is Lipschitz continuous (with Lips-
chitz constant L > 0) and by Theorem 3.4 this implies ϕ(d) = min{ϕ−(d), ϕ+(d)}.
Applying Lemma 3.3 and Lemma 3.2 we know that ϕ+ is a finite positively homoge-
neous convex function and ϕ− a proper lower semicontinuous positively homogeneous
convex function. Hence to prove that f is quasidifferentiable at x0 it is sufficient to
replace ϕ− by a finite positively homogeneous convex function without destroying
Theorem 3.4. Clearly for ϕ Lipschitz continuous it follows that L<ϕ (0) is open and
hence int(dom(ϕ−)) = L<ϕ (0). This implies by Theorem 23.4 of [21] that ∂ϕ−(d) is

a nonempty compact convex set for every d ∈ D<f (x0) and since ϕ is Lipschitz con-
tinuous with Lipschitz constant L it is easy to show by the subgradient inequality
applied to ϕ− that ∂ϕ−(d) ⊆ LB for every d ∈ L<ϕ (0) with B := {x ∈ Rn : ‖x‖ ≤ 1}
the closed unit Euclidean ball. On the other hand, since ϕ− is positively homoge-
neous it follows that ∂ϕ−(λd) = ∂ϕ−(d) for every λ > 0 and d ∈ L<ϕ (0) and so
by the previous observations one can pick for every d0 ∈ L<ϕ (0) and corresponding
ray {λd0 : λ > 0} ⊆ L<ϕ (0) a subgradient ξ(d0) ∈ ∂ϕ−(λd0), λ > 0, satisfying
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‖ξ(d0)‖ ≤ L. Consider now the function ϕ̂− : Rn−→ [−∞,+∞] given by

ϕ̂−(d) := sup
d0∈L<

ϕ (0)

ϕ−(d0) + 〈ξ(d0),d− d0〉. (4.2)

For this function the following result holds.

Lemma 4.6. If f : Rn−→ [−∞,+∞] is a quasiconvex function with f(x0) finite, ϕ is
Lipschitz continuous with ϕ(d) := f ′(x0;d) and L<ϕ (0) is nonempty then the function
ϕ̂− given by (4.2) is a finite, positively homogeneous and convex function. Moreover,
ϕ̂−(d) equals ϕ(d) for every d ∈ cl(L<ϕ (0)) and ϕ̂−(d) > 0 for every d 6∈ cl(L<ϕ (0)).

Proof. Clearly ϕ̂− is a convex function. Since ‖ξ(d)‖ ≤ L and ξ(d) ∈ ∂ϕ−(d) for
every d ∈ L<ϕ (0) we obtain for d0 ∈ L<ϕ (0) fixed and any d ∈ Rn that

ϕ−(d0) + 〈ξ(d0),d− d0〉 ≤ ϕ−(0) + 〈ξ(d0),d〉 ≤ L‖d‖
and so by (4.2) the function ϕ̂− is finite. To prove that ϕ̂− is positively homogeneous
we first observe using ξ(d0) ∈ ∂ϕ−(λd0), λ > 0, for every d0 ∈ L<ϕ (0) that

ϕ−(d0) + 〈ξ(d0), λd− d0〉 = λϕ−
(
λ−1d0

)
+ λ

〈
ξ(d0),d− λ−1d0

〉
= λϕ−

(
λ−1d0

)
+ λ

〈
ξ
(
λ−1d0

)
,d− λ−1d0

〉
≤ λϕ̂−(d)

for every d ∈ Rn. This yields by the definition of ϕ̂− that ϕ̂−(λd) ≤ λϕ̂−(d) for

every λ > 0 and hence ϕ̂−(λd) ≤ λϕ̂−(d) = λϕ̂−

(
λ−1λd

)
≤ ϕ̂−(λd) implying ϕ̂− is

positively homogeneous. Also for every d0 ∈ L<ϕ (0) it follows that ϕ−(d) ≥ ϕ−(d0) +
〈ξ(d0),d−d0〉 and so ϕ−(d) ≥ ϕ̂−(d). If d ∈ L<ϕ (0) we obtain by (4.2) that ϕ̂−(d) ≥
ϕ−(d) and this yields that ϕ̂− equals ϕ− on L<ϕ (0). By the lower semicontinuity of ϕ−
and the continuity of ϕ̂− the functions are equal on cl(L<ϕ (0)). Finally, assume that
ϕ̂−(d1) ≤ 0 for some d1 6∈ cl(L<ϕ (0)) and consider a fixed d0 ∈ L<ϕ (0). Since L<ϕ (0)
is open there exists some 0 < µ < 1 such that dµ := µd0 + (1 − µ)d1 ∈ rbd(L<ϕ (0)).
This implies by the convexity of ϕ̂− that ϕ̂−(dµ) ≤ µϕ̂−(d0) + (1 − µ)ϕ̂−(d1) < 0,
and so ϕ−(dµ) = ϕ̂−(dµ) < 0 contradicting Lemma 3.5. This yields ϕ̂−(d) > 0 for
every d 6∈ cl(L<ϕ (0)) and the proof of the result is finished. �

Introduce now the function ϕ̃− : Rn−→ R given by

ϕ̃−(d) := ϕ+(d) + ϕ̂−(d). (4.3)

Using this function one can show the following result.

Theorem 4.7. If f : Rn−→ [−∞,+∞] is a quasiconvex function with f(x0) finite and
ϕ Lipschitz continuous then f is quasidifferentiable at x0.

Proof. The result is already verified for L<ϕ (0) empty. Assume therefore that L<ϕ (0)
is nonempty. If this holds, it follows by Lemma 4.6 and Lemma 3.2 that ϕ̃− given by
relation (4.3) and ϕ+ are quasidifferentiable. Moreover, it is easy to verify by Theorem
3.4 and again relation (4.3) using ϕ̂−(d) > 0 for every d 6∈ cl(L<ϕ (0)) that

f ′(x0;d) = min
{
ϕ̃−(d), ϕ+(d)

}
for every d ∈ Rn and hence the desired result is proved. �
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4.2. Where are the separators?

This subsection, based on Lemma 4.4 and on the properties of the Dini upper
derivative, characterizes the elements of the normal cone of the set L<f (f(x0)) at x0.
Introduce now the set

Γf := {x ∈ Rn : f ′+(x;d) ≥ 0 for every d ∈ Rn} (4.4)

which is sometimes called the set of stationary points. For reasons to be soon clarified
we call this the set of “bad” points. Before deriving the announced characterization,
we observe by Theorem 11.3 of [21] that the normal cone

NL<
f

(x0) :=
{
x? ∈ Rn : 〈x?,x− x0〉 ≤ 0 for every x ∈ L<f (f(x0))

}
(4.5)

of L<f (f(x0)) at x0 is a proper nonempty convex cone of Rn if L<f (f(x0)) is nonempty.

In the next lemma a partial description of NL<
f

(x0) is given by means of the function

ϕ if the set L<ϕ (0) is empty. Introducing the nonempty sets

L=
ϕ (0) := {d ∈ Rn : f ′+(x0;d) = 0}

and

L≤ϕ (0) := {d ∈ Rn : f ′+(x0;d) ≤ 0}
it follows that L<ϕ (0) is empty if and only if L≤ϕ (0) = L=

ϕ (0). A sufficient condition for

L<ϕ (0) to be empty is given by x0 ∈ int(L≤f (f(x0))). The example f(x) = x3 at x = 0,
shows that this condition is not necessary. Although trivial the next result seems to
be new.

Lemma 4.8. If the function f : Rn−→ [−∞,+∞] is a quasiconvex function satisfy-
ing f(x0) finite and the set L<f (f(x0)) is nonempty and the set L<ϕ (0) is empty or
equivalently x0 ∈ Γf , then

(L=
ϕ (0))◦ ⊆ NL<

f
(x0)

with NL<
f

(x0) the normal cone of L<f (f(x0)) at x0 defined in relation (4.5).

Proof. Since L<ϕ (0) is empty and f is quasiconvex it must follow by Lemma 4.2 that

L=
ϕ (0) is a nonempty convex cone. Moreover, the nonemptyness of L<f (f(x0)) and

the emptyness of L<ϕ (0) enable us to verify that L<f (f(x0)) − x0 ⊆ L=
ϕ (0) and so

cone(L<f (f(x0))− x0) ⊆ L=
ϕ (0). This implies that

(L=
ϕ (0))◦ ⊆ (cone(L<f (f(x0))− x0))◦ = NL<

f
(x0)

and hence the desired result is proven. �

Clearly, the above result reduces to a useless observation if L=
ϕ (0) equals Rn. In

this case we obtain (L=
ϕ (0))◦ = {0} and this happens for f(x) = x3 at x0 = 0.

Figure 1 provides an interpretation of Lemma 4.8. The first picture is drawn
in the domain and shows two lower level sets. The one with a dashed boundary is
L<f (f(b)) and the one with a full boundary is L≤f (f(a)) = L≤f (f(b)). The second
picture is drawn in the epigraph space and corresponds to slicing the graph of the
function along the line going through a and b. Observe first that if x0 ∈ (a, b) then
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L=
ϕ (0) = Rn and so no useful information is provided. On the other hand, if x0 = a

then L=
ϕ (0) 6= Rn and so

(
L=
ϕ (0)

)◦
also contains nonzero elements.

Applying Lemma 4.4 and Theorem 6.3 of [21] it follows for L<ϕ (0) nonempty that

cl(L<ϕ (0)) = cl(cone(L<f (f(x0))− x0)).

Similar as for convex functions (see [12, 21]), this yields

NL<
f

(x0) = {x∗ ∈ Rn : 〈x∗,x− x0〉 ≤ 0 for every x ∈ L<f (f(x0)}

=
(

cone(L<f (f(x0))− x0)
)◦

=
(
cl(cone(L<f (f(x0))− x0))

)◦
= (cl(Lϕ(0)))

◦

(4.6)

with K◦ denoting the polar cone of K. Hence, to give an alternative description of
the set NL<

f
(x0), it is sufficient by relation (4.6) or Lemma 4.8 to show that the set

cl(L<ϕ (0)) or cl(L=
ϕ (0)) is the polar cone of some other closed cone K and then apply

the bipolar theorem.

Lemma 4.9. If the function f : Rn−→ [−∞,+∞] is a quasiconvex function satisfy-
ing f(x0) finite and the function ϕ given by ϕ(d) := f ′+(x0;d) is a proper evenly
quasiconvex function satisfying L<ϕ (0) is nonempty then

NL<
f

(x0) = cl(cone(∂ϕ−(0)))

with NL<
f

(x0) the normal cone of L<f (f(x0)) at x0 defined in relation (4.5).

Proof. By Theorem 3.4 and Proposition VI.1.3.3 of [12] we obtain that

cl(L<ϕ (0)) = {d ∈ Rn : ϕ−(d) ≤ 0}
= {d ∈ Rn : 〈x?,d〉 ≤ 0 for every x? ∈ ∂ϕ−(0)}
= (cone(∂ϕ−(0)))◦.

Hence by (4.6) and Proposition III.4.2.7 of [12] it follows that

NL<
f

(x0) = (cl(L<ϕ (0))◦ = (cone(∂ϕ−(0)))◦◦ = cl(cone(∂ϕ−(0)))

and this shows the desired result. �

An interpretation of Lemma 4.9 is provided by Figure 4.
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Figure 4. The normal cone to the strict lower level set in the favo-
rable case

Compare now this figure with Figure 1, The situation described in Figure 4
corresponds to taking x0 = b in Figure 1.

Since ϕ− is sublinear it follows that ∂ϕ−(d) ⊆ ∂ϕ−(0) ⊆ NL<
f

(x0) for every

d ∈ dom(ϕ−) = cl(L<ϕ (0)). If additionally, L<ϕ (0) is a convex cone of dimension n
this implies by Theorem IV.4.2.3 of [12] that ϕ− is differentiable on a dense subset
of int(L<ϕ (0)), and so we can conclude for a point belonging to this dense subset that
∇ϕ−(d) ∈ NL<

f
(x0).

An immediate consequence of Lemma 4.8 and Lemma 3.2 is given by the fol-
lowing result. Although this result is not difficult to prove it appears to be new and
improves Lemma 4.8 for ϕ evenly quasiconvex.

Lemma 4.10. If the function f : Rn−→ [−∞,+∞] is a quasiconvex function satisfying
f(x0) finite and the set L<f (f(x0)) nonempty and the function ϕ given by ϕ(d) =

f ′+(x0;d) is proper and evenly quasiconvex and the set L<ϕ (0) empty then

cl(cone(∂ϕ+(0))) ⊆ NL<
f

(x0)

with NL<
f

(x0) the normal cone of L<f (f(x0)) at x0 defined in relation (4.5).

Proof. By our assumptions it follows that L=
ϕ (0) is nonempty and L≤ϕ (0) = L=

ϕ (0).
This implies by Lemma 3.2 and ϕ+ being the support function of ∂ϕ+(0) that

L=
ϕ (0) = {d ∈ Rn : ϕ+(d) = 0}

= {d ∈ Rn : 〈x?,d〉 ≤ 0 for every d ∈ ∂ϕ+(0)}
= (cone(∂ϕ+(0)))◦.

Applying now Lemma 4.8 and Proposition III.4.2.7 of [12] yields

cl(cone(∂ϕ+(0))) = (cone(∂ϕ+(0)))◦◦ = (L=
ϕ (0))◦ ⊆ NL<

f
(x0)

and the desired result is proven. �

As already observed, if d 7−→ f ′+(x0;d) is the zero functional or equivalently
∂ϕ+(0) = {0}, the above result does not provide any useful information.
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5. How to separate, if you must!

In this section we analyze the problem of computing an element of the normal
cone NL<

f
(x0) if L<f (f(x0)) is nonempty. As already observed, a sufficient condition

for L<f (f(x0)) to be nonempty is given by the nonemptiness of the set L<ϕ (0) with

ϕ(d) := f ′+(x0;d) and so it is natural to consider the optimization problem

ϑ(S) = inf{ϕ(d) : d ∈ C} (S)

with C a compact convex set satisfying 0 ∈ int(C). Notice, since dim(C) = n that the
boundary bd(C) of C is given by C\ int(C). In order to guarantee that the optimization
problem (S) is solvable, i.e. there exists some d0 ∈ C satisfying ϕ(d0) = ϑ(S), it is
sufficient by Theorem 3.4 to assume that ϕ is a proper evenly quasiconvex function.
In the remainder of this section we always assume that d 7−→ f ′+(x0;d) satisfies this
property and so the set S of optimal solutions of optimization problem (S) is always
nonempty. Clearly, one should choose the compact convex set C with 0 ∈ int(C) in
such a way that optimization problem (S) is “easy” solvable. Since ϕ is a proper,
positively homogeneous and evenly quasiconvex function the following result is easy
to verify and so its proof is omitted.

Lemma 5.1. It follows ϑ(S) < 0 if and only if L<ϕ (0) is nonempty. If this holds then
S ⊆ bd(C). Moreover, if ϑ(S) = 0, i.e. x0 ∈ Γf , then either 0 is the unique solution
of (S) or S ∩ bd(C) is nonempty.

Clearly, if 0 is the unique solution of optimization problem (S) then due to
0 ∈ int(C), f : Rn−→ [−∞,+∞] quasiconvex and ϕ : Rn−→ R ∪ {+∞} proper and
positively homogeneous, it follows that L<f (f(x0)) is empty. Also, if ϑ(S) < 0 we

obtain by Lemma 4.9 that an optimal solution d0 of optimization problem (S) is also
an optimal solution of the optimization problem

ϑ(S′) = inf{ϕ−(d) : γC(d) ≤ 1,d ∈ cl(L<ϕ (0)} (S′)

with γC(d) := inf{t > 0 : d ∈ tC} the gauge of C. Since by Lemma 3.3 the function
ϕ− is proper and convex with dom(ϕ−) = cl(L<ϕ (0)) and the function γC is finite
and convex due to C compact, convex and 0 ∈ int(C), the optimization problem (S)
satisfies the properties of a convex program given in Section 28 of [21].

Using now so-called primal-dual information given by the Karush-Kuhn-Tucker
conditions it is possible to prove the next result.

Lemma 5.2. If d0 is an optimal solution of (S) with ϑ(S) < 0 then the set ∂ϕ−(d0)−
ϑ(S)∂γC(d0) contains 0.

Proof. If d0 is an optimal solution of (S) with ϕ(d0) = ϑ(S) < 0 then λd0 ∈ L<ϕ (0) for
every λ > 0. Also, by Lemma 5.1 we obtain that d0 ∈ bd(C) implying that γC(d0) = 1
and so γC(λd0) = λγC(d0) < 1 for every 0 < λ < 1. Hence, by Corollary 28.2.1 of [21]
a Karush-Kuhn-Tucker vector λ1 of (S) exists and this yields by Theorem 28.3 of [21]
that 0 ∈ ∂ϕ−(d0)+λ1∂γC(d0), λ1(γC(d0)−1) = 0 and λ1 ≥ 0. If λ1 = 0 it follows that
0 ∈ ∂ϕ−(d0) and this yields ϕ−(d) ≥ ϕ−(d0) for every d ∈ Rn. However, since ϕ− is
positively homogeneous and ϕ−(d0) < 0 it follows that ϕ−(λd0) = λϕ−(d0) < ϕ−(d0)
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for every λ > 1 contradicting 0 ∈ ∂ϕ−(d0). Hence, λ1 > 0 and to compute λ1 we
observe the following. It is well-known, [12, 21], that

∂γC(d0) = {d?0 ∈ C◦ : 〈d?0,d0〉 = γC(d0)}

with C◦ the polar of C and so by the Karush-Kuhn-Tucker conditions and Lemma 5.1
there exists some d?0 ∈ Rn with −d?0 ∈ ∂ϕ−(d0), 〈d?0,d0〉 = λ1 and 〈d?0,d〉 ≤ λ1 for
every d ∈ C. Since −d?0 ∈ ∂ϕ−(d0) it follows by Theorem 23.5 of [21] that

ϕ−(d0) + ϕ∗−(−d?0) = −〈d?0,d0〉

with ϕ∗− the conjugate function of ϕ−. Since ϕ− is positively homogeneous and thus
ϕ∗− is either 0 or +∞ we obtain by the above equality that

ϕ−(d0) = −〈d?0,d0〉 = −λ1

and so the result is proven. �

The following result is an immediate consequence of the previous lemma.

Corollary 5.3. If γC is differentiable in d0 then −∇γC(d0) ∈ NL<
f

(x0).

Proof. The previous result shows for ϑ(S) < 0 and d0 an optimal solution of (S) that
the sets ∂ϕ−(d0) and ϑ(S)∂γC(d0) intersect. Hence, if γC is differentiable in d0 with
gradient ∇γC(d0) then

ϑ(S)∂γC(d0) = {ϑ(S)∇γC(d0)}

and so ϑ(S)∇γC(d0) ∈ ∂ϕ−(d0) ⊆ ∂ϕ−(0). Now, by Lemma 3.3 it follows that
∂ϕ−(0) ⊆ NL<

f
(x0) and since ϑ(S) < 0 and NL<

f
(x0) is a cone this leads to the

stated result. �

In the next example we discuss the well know Lp norm.

Example 5.4. Take C := {x ∈ Rn : ‖x‖p ≤ 1} with ‖ · ‖p, 1 < p < ∞, the `p-norm.
Clearly, γC(x) = ‖x‖p and γC is differentiable everywhere except at 0. Moreover, for
every x 6= 0 it is easy to verify that

∇γC(x) = ‖x‖1−pp

 sign(x1)|x1|p−1
...

sign(xs)|xs|p−1


with xi the ith component of x and sign(x) the sign function.

If ϑ(S) < 0, d0 solves optimization problem (S) and γC is not differentiable in
d0 while ϕ(d) is differentiable in d0 then it is easy to show, due to d0 ∈ int(L<ϕ (0))
and the definition of ϕ−, that ∇ϕ(d0) = ∇ϕ−(d0) ∈ ∂ϕ−(0) with ϕ(d) := f ′+(x0;d).
In this case, the optimization problem (S) is only used to identify an interior element
of L<ϕ (0). This also shows that selecting some d1 ∈ int(L<ϕ (0)) with ϕ differentiable
in d1 already yields an element of the normal cone NL<

f
(x0).
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Figure 5. Geometric interpretation of the separation oracle

Finally, we provide in Figure 5 a geometrical interpretation of Lemma 5.2.
The first picture shows a set C with a kink at d0 and for which cone(∂γC(d0)) is
a cone (shifted in the picture to the vertex of C for clarity) whose symmetric cone
intersects ∂ϕ−(d0) (by Lemma 5.2) but includes elements which do not belong to
cone(∂ϕ−(d0)) = NL<

f
(x0). On the other hand, the second picture corresponds to a

smooth C. Hence ∂γC(d0) is a singleton and so the symmetric of its conical hull (a
half line) intersects (by Lemma 5.2 again) cone(∂ϕ−(d0)) and it must be included in
NL<

f
(x0).

We triplicate each picture for clarity. The top picture shows the conical hull of
the strict lower level set, the corresponding normal cone and the compact convex set C
corresponding to the feasible region of optimization problem (S). The middle picture
shows the solution of problem (S), direction d0, and the conical hull of ∂γC(d0).
Finally, the bottom picture shows the intersection of the symmetric of this conical
hull and the normal cone.



Quasiconvex functions: how to separate, if you must! 123

We consider in the next section several quasiconvex functions for which we do
not have to solve the optimization problem (S).

6. Examples

This section illustrates classes of functions for which optimization problem (S)
can be replaced by easier membership problems.

6.1. Regular functions

In this subsection we discuss a separation oracle for the following subclass of
quasiconvex functions.

Definition 6.1. Let f : Rn−→ [−∞,+∞] be a quasiconvex function with f(x0) finite.
Then f is called regular at x0 if ϕ is a lower semicontinuous sublinear function with
ϕ(d) := f ′+(x0;d).

Following Pshenichnyi in [20] these functions are sometimes called quasidifferen-
tiable. However, we prefer to follow Clarke, [1], and call them regular since the term
quasidifferentiable has nowadays a broader meaning, see [5].

As the next lemma shows the above class of functions is closed under the finite
max operator.

Lemma 6.2. Let fi : Rn−→ [−∞,+∞], i = 1, . . . , n, be quasiconvex functions with
fi(x0) finite for every 1 ≤ i ≤ n. If each function fi is regular at x0 then the function
f : Rn−→ [−∞,+∞] given by f(x) := max1≤i≤n fi(x) is also regular at x0.

Proof. It is easy to verify that f is quasiconvex and f(x0) is finite. Moreover, by
Lemma 2.5.3 of [11] we obtain that

f ′+(x0;d) = max
i∈I(x0)

f ′i+(x0;d) (6.1)

with I(x0) := {1 ≤ i ≤ n : f(x0) = fi(x0)} the set of active indices of f at x0. Since
by assumption it follows that d 7−→ f ′i+(x0;d) is a lower semicontinuous sublinear

function for every 1 ≤ i ≤ n the desired result follows by (6.1). �

An important class of regular functions is given by the next lemma. These func-
tions are extremely important in location analysis, see [11].

Lemma 6.3. Let g : Rm−→ R be a finite nondecreasing quasiconvex function and
v : Rn−→ Rm a finite-valued convex vector function, i.e. v(x) := (v1(x), . . . , vm(x))
with vi : Rn−→ R, i = 1, . . . ,m, finite-valued convex functions. If the func-
tion f : Rn−→ [−∞,+∞] is given by f(x) = g(v(x)) and g is regular and lo-
cally Lipschitz at v(x0) then f is a quasiconvex function regular at x0. Moreover,
f ′+(x0;d) = g′+(v(x0);v′(x0;d)) with v′(x0;d) = (v′1(x0;d), . . . , v′m(x0;d)) and the
function d 7−→ f ′+(x0;d) is Lipschitz continuous.

Proof. Since g is a nondecreasing quasiconvex function and v a convex vector function
it is easy to verify that f is quasiconvex. Also, by Lemma 2.5.2 of [11] it follows that
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f ′+(x0;d) = g′+(v(x0);v′(x0;d)). Moreover, since g is regular at v(x0) and nonde-
creasing we obtain for every 0 < λ < 1 and d1,d2 ∈ Rn that

f ′+(x0;λd1 + (1− λ)d2)

= g′+(v(x0);v′(x0;λd1 + (1− λ)d2))

≤ g′+(v(x0);λv′(x0;d1) + (1− λ)v′(x0;d2))

≤ λg′+(v(x0);v′(x0;d1)) + (1− λ)g′+(v(x0);v′(x0;d2))

= λf ′+(x0;d1) + (1− λ)f ′+(x0;d2)

and by the Lipschitz continuity of d 7−→ v′(x0;d) and d 7−→ g′+(v(x0);d), the Lip-
schitz continuity of d 7−→ f ′+(x0;d) follows. �

For the class of functions given in Definition 6.1 it is now easy, using only classical
results of convex analysis, to prove the next result.

Lemma 6.4. If f : Rn−→ [−∞,+∞] is a quasiconvex function regular at x0 and L<ϕ (0)
is nonempty then

cl(cone(∂ϕ(0))) = NL<
f

(x0)

with ∂ϕ(0) the subgradient set of the convex function ϕ(d) := f ′+(x0;d) at 0. Moreover,
if L<f (f(x0)) is nonempty and L<ϕ (0) is empty then

cl(cone(∂ϕ(0))) ⊆ NL<
f

(x0).

Proof. To prove the first result we observe by relation (4.6) that

NL<
f

(x0) = (cl(L<ϕ (0)))◦.

Since f is a quasiconvex function regular at x0 it follows by Proposition VI.1.3.3
of [12] that cl(L<ϕ (0)) = L≤ϕ (0). Moreover, by Theorem V.3.1.1 of [12] we obtain that

L≤ϕ (0) equals {d : 〈x?,d〉 ≤ 0 for every x? ∈ ∂ϕ(0)}. Clearly this set also equals
(cone(∂ϕ(0)))◦ and hence by (4.6) and Proposition III.4.2.7 of [12] we obtain that

NL<
f

(x0) = (cone(∂ϕ(0)))◦◦ = cl(cone(∂ϕ(0))).

The second result can be proved in a similar way and this completes the proof. �

Finally we can show the main result of this subsection. Recall that the set of “bad”
points Γf is defined in (4.4).

Lemma 6.5. Let gi : Rm−→ R, i = 1, . . . , n, be quasiconvex and continuously differ-
entiable functions and suppose vi : Rn−→ R, 1 ≤ i ≤ m, are finite-valued convex
functions. Then it follows for f(x) := max1≤i≤n fi(x) with fi(x) := gi(v(x)) that x0

belongs to Γf if and only if

0 ∈ conv

 ⋃
i∈I(x0)

m∑
j=1

∂gi
∂zj

(v(x0))∂vj(x0)


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where I(x0) := {1 ≤ i ≤ n : f(x0) = fi(x0)}. Moreover, if L<ϕ (0) is nonempty, i.e.
x0 6∈ Γf , then

cone

conv

 ⋃
i∈I(x0)

m∑
j=1

∂gi
∂zj

(v(x0))∂vj(x0)

 = NL<
f

(x0)

Proof. Clearly every function gi : Rm−→ R is regular and locally Lipschitz at x0.
Applying now Lemma 6.3 yields

f ′i(x0;d) =

m∑
j=1

∂gi
∂zj

(v(x0))v′j(x0;d)

and so by Theorem V.3.1.1 of [12] we obtain for 1 ≤ i ≤ n that

f ′i(x0;d) = max{〈d,x?〉 : x? ∈ ∂ϕi(0)}
with

∂ϕi(0) :=

m∑
j=1

∂gi
∂zj

(v(x0))∂vj(x0).

By Lemma 2.5.3 of [11] this implies

f ′(x0;d) = max
i∈I(x0)

f ′i(x0;d)

= max
i∈I(x0)

max{〈d,x?〉 : x? ∈ ∂ϕi(0)}

= max

〈d,x?〉 : x? ∈ conv

 ⋃
i∈I(x0)

∂ϕi(0)

 .

Using the above relation it follows that f ′(x0;d) ≥ 0 for every d ∈ Rn if and only

if 0 belongs to conv
(⋃

i∈I(x0)
∂ϕi(0)

)
. This proves the first part. To prove the sec-

ond part we observe that conv
(⋃

i∈I(x0)
∂ϕi(0)

)
is the subgradient set of the finite

valued convex function ϕ at 0 and since ∂ϕi(0) is compact for each i and 0 does not

belong to conv
(⋃

i∈I(x0)
∂ϕi(0)

)
the second result follows by Lemma 6.4 together

with Lemma III.1.4.7 and Theorem III.1.4.3 of [12]. �

In the next subsection we consider another class of quasiconvex functions for
which the separation problem is easy.

6.2. Another class of easy functions

Let gi : Rn−→ R be a continuously differentiable and convex function and γi ∈ R,
1 ≤ i ≤ m, and introduce the functions fi : Rn−→ R given by

fi(x) := min{gi(x), γi}.
Clearly, the functions fi are quasiconvex and so is the function

f(x) := max
1≤i≤m

fi(x).

A representation of such a function for the case of affine gi is given in Figure 6.
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Figure 6. A bivariate quasiconvex function with horizontal regions

Moreover, if I(x0) := {1 ≤ i ≤ m : f(x0) = fi(x0)} it follows that

f ′(x0;d) = max
i∈I(x0)

f ′i(x0;d) (6.2)

and

f ′i(x0;d) =

 min{〈∇gi(x0),d〉, 0} if gi(x0) = γi
〈∇gi(x0),d〉 if gi(x0) < γi
0 if gi(x0) > γi

. (6.3)

By (6.2) and (6.3) it is clear that f ′(x0;d) ≥ 0 for every d ∈ Rn if there exists some
i ∈ I(x0) satisfying gi(x0) > γi and this implies that ϑ(S) = mind∈C f

′(x0;d) ≥ 0.
Therefore assume for every i ∈ I(x0) that gi(x0) ≤ γi. If this holds the following
result is easy to prove.

Lemma 6.6. If for every i ∈ I(x0) it follows that gi(x0) ≤ γi then ϑ(S) < 0 if and
only if 0 6∈ conv({∇gi(x0), i ∈ I(x0)}). Moreover, if this holds then

conv({∇gi(x0), i ∈ I(x0)}) ⊆ NL<
f

(x0).

Proof. Clearly, by the assumption gi(x0) ≤ γi for every i ∈ I(x0), (6.2) and (6.3) we
obtain that mind∈C f

′(x;d) is equivalent to the optimization problem

min t
st : t ≥ min{〈∇gi(x0),d〉, 0} for every i ∈ J(x0)

t ≥ 〈∇gi(x0),d〉 for every i ∈ I(x0) \ J(x0)
d ∈ C

with J(x0) := {i ∈ I(x0) : gi(x0) = γi}. This implies that ϑ(S) < 0 if and only if the
optimization problem

min t
st : t ≥ 〈∇gi(x0),d〉 for every i ∈ I(x0)

d ∈ C
has a negative objective value. This problem in turn is equivalent to

min
d∈C

max
i∈I(x0)

〈∇gi(x0),d〉 = min
d∈C

ϕ(d)
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with
ϕ(d) := max{〈d,y〉 : y ∈ conv({∇gi(x0), i ∈ I(x0)})}.

We finally obtain that ϑ(S) < 0 if and only if there exists some d ∈ C with ϕ(d) < 0
or equivalently 0 6∈ conv({∇gi(x0), i ∈ I(x0)}). Observe that for s = 2 this decision
can be carried out by means of the linear time algorithm presented in [10]. By the
definition of ϕ− and the representation of f ′(x0;d) it follows that

ϕ−(d) =

{
ϕ(d) if d ∈ cl(L<ϕ (0))
+∞ otherwise

and so any ∇gi(x0), i ∈ I(x0), belongs to ∂ϕ−(0). This implies

conv({∇gi(x0), i ∈ I(x0)}) ⊆ ∂ϕ−(0)

and by Lemma 3.3 the desired result follows. �
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Abstract. In this paper, we discuss a new splitting algorithm for solving equi-
librium problems arising from Nash-Cournot oligopolistic equilibrium problems
in electricity markets with non-convex cost functions. Under the strong pseu-
domonotonicity of the original bifunction and suitable conditions of the compo-
nent bifunctions, we prove the strong convergence of the proposed algorithm. Our
results improve and develop previously discussed extragradient-like splitting al-
gorithms and general extragradient algorithms. We also present some numerical
experiments and compare our algorithm with the existing ones.
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Keywords: Equilibrium problem, splitting algorithm, strong pseudomonotonicity,
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1. Introduction

In recent years, equilibrium problems (EP) have been investigated by many
researchers. It is well known that various classes of optimization, variational inequality,
Kakutani fixed point, Nash equilibrium in noncooperative game theory and minimax
problems can be formulated as an equilibrium problem [5].

An equilibrium problem can be formulated by means of Ky Fan’s inequality [5]:

find x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C, EP (f, C)

where C is a nonempty closed convex subset in a Hilbert space H and f : C×C → R
is a bifunction such that f(x, x) = 0 for all x ∈ C. The set of solutions of EP (f, C)
is denoted by Sol(f, C).
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Projection-type methods are very popular for solving equilibrium problems be-
cause the iterations can be performed cheaply. At each iteration of these algorithms,
we have to solve the strongly convex problem

min{λkf(xk, y) +
1

2
‖y − xk‖2 : y ∈ C}, (1.1)

where λk > 0 is the step size and xk is the current approximation of the solution.
Note that, in the variational inequalities case, when f(x, y) := 〈F (x), y − x〉, where
F : C → C is a mapping, problem (1.1) becomes

find PC
(
xk − λkF (xk)

)
, (1.2)

where PC is the projection onto C.
The computational cost of solving problems (1.1) is the main factor influencing

performance of projection-type methods. One effective way to reduce the computa-
tional cost is to decompose f into two or more component bifunctions. Then, instead
of solving (1.1), we have to solve only the simpler subproblems for these component
bifunctions [4, 6, 11, 12]. Since 1950s, operator splitting techniques have been success-
fully used in PDE, large-scale optimization problems and signal processing to reduce
complex problems into a series of simpler subproblems [7]. In the past decade, this
technique has been received much attention due to its vast applications [2, 6, 4, 12].
Recently, in [1], the authors have introduced splitting algorithms for equilibrium prob-
lems when f = f1 +f2. Under the strong pseudomonotonicity of the bifunction f and
suitable conditions of f1 and f2, the algorithm proposed in [1] is strongly convergent.
However, it may happen that the bifunction f is decomposed into three components,
i.e., f = f1 + f2 + f3 (see Example 4.1 in Sect. 4). Then, the two-component splitting
algorithm in [1] is not suitable. In this paper, inspired by work in [1, 9], we propose
a new splitting algorithm for solving this class of equilibrium problems.

The rest of this article is divided into three sections. Section 2 recalls some
mathematical preliminaries needed in the sequel. Section 3 presents a three-component
splitting algorithm for equilibrium problems and provides the convergence analysis of
the proposed algorithm. Some preliminary computational results are presented in the
last section. Also in this section, we introduce a new Nash-Cournot equilibrium model
for electricity markets. In contrast to the existing ones, the new model contains non-
convex cost functions, and hence, the bifunction f of the corresponding equilibrium
problem is decomposed into three components. We then apply the proposed algorithm
to solve this problem.

2. Preliminaries

In this section, we present some basic concepts, properties, and notations
which will be useful in the sequel. Let H be a real Hilbert space, equipped with the
Euclidean inner product 〈., .〉 and the associated norm ‖.‖, C be a nonempty closed
convex subset in H. Let f : C × C → R be a bifunction on C, satisfying f(x, x) = 0
for all x ∈ C.
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Definition 2.1. [15] A bifunction f : C × C → R is said to be

1. γ-strongly monotone on C if there exists a constant γ > 0 such that for all
x, y ∈ C,

f(x, y) + f(y, x) ≤ −γ‖x− y‖2;

2. monotone on C if for all x, y ∈ C,

f(x, y) + f(y, x) ≤ 0;

3. γ-strongly pseudomonotone on C if there exists a constant γ > 0 such that for
all x, y ∈ C,

f(x, y) ≥ 0⇒ f(y, x) ≤ −γ‖x− y‖2;

4. pseudomonotone on C if for all x, y ∈ C,

f(x, y) ≥ 0⇒ f(y, x) ≤ 0.

Definition 2.2. [1] A bifunction f : C×C → R is said to be Lipschitz-type continuous
if there exists a constant Q > 0 such that for all x, y, z ∈ C,

|f(x, y) + f(y, z)− f(x, z)| ≤ Q‖x− y‖‖y − z‖. (2.1)

Note that, if we choose f(x, y) := 〈Fx, y − x〉, where F : C → C is a Lipschitz
continuous mapping, then the corresponding bifunction f is Lipschitz-type continu-
ous.

Definition 2.3. [1] A bifunction f : C × C → R is said to be partially τ -Hölder
continuous on C if there exist a constant L > 0 and τ ∈ (0, 1] such that for all
x, y, z ∈ C, at least one of the following conditions is satisfied:

(i) |f(x, y)− f(z, y)| ≤ L‖x− z‖τ ;
(ii) |f(x, y)− f(x, z)| ≤ L‖y − z‖τ .

It is easy seen that, if an equilibrium bifunction f is τ -Hölder continuous on C
then

|f(x, y)| ≤ L‖x− y‖τ ∀x, y ∈ C. (2.2)

Definition 2.4. The subdifferential of a function u : H → R at x is the set:

∂u(x) := {w ∈ H : u(y)− u(x) ≥ 〈w, y − x〉 ∀y ∈ H}.

The normal cone of C at x ∈ C is defined by

NC(x) := {q ∈ H : 〈q, y − x〉 ≤ 0 ∀y ∈ C}.

In order to prove our main results, we need the following lemmas.

Lemma 2.5. [16] Let f : C → R be convex and subdifferentiable on C. Then, x∗ is a
solution of the problem

min{f(x) : x ∈ C}
if and only if 0 ∈ ∂f(x∗) +NC(x∗).
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Lemma 2.6. (Lemma 2.5 [18]) Let {αk}, {βk}, {λk} be sequences of nonnegative
numbers satisfying

αk+1 ≤ (1− λk)αk + λkγk + βk ∀k ≥ 1.

If λk ∈ (0, 1) ∀k ≥ 1,

∞∑
k=1

λk =∞, lim sup
k→∞

γk ≤ 0 and

∞∑
k=1

βk <∞ then lim
k→∞

αk = 0.

3. Three-component splitting algorithm

Let C be a nonempty, closed, convex subset in a Hilbert spaceH and f : C×C :→
R be a bifunction on C. We are interested in the equilibrium problem

find x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C, (3.1)

where f can be decomposed into three components: f = f1 + f2 + f3, fi (i = 1, 2, 3)
are equilibrium bifunctions on C, i.e., fi(x, x) = 0 for all x ∈ C.

Assumption 1. In this paper, we assume that

A.1 For each x ∈ C, the function fi(x, .) (i = 1, 2, 3) is lower semicontinuous, convex
and for each y ∈ C, the function f(., y) is hemicontinuous on C, i.e.

lim
t→0

f(tz + (1− t)x, y) = f(x, y), ∀x, y, z ∈ C.

A.2 The bifunction f is γ-strongly pseudomonotone.

Note that under assumptions A.1 and A.2, problem EP (f, C) has a unique
solution [13]. To find this solution, we propose the following three-component splitting
algorithm.

Algorithm 3.1. (Three-component splitting algorithm - 3-CSA))
Step 0. Choose x0 ∈ C, λk ⊂ (0,+∞). Set k = 0.

Step 1. Given xk, compute xk+1 as

x̄k = argmin
{
λkf1(xk, y) +

1

2
‖y − xk‖2 : y ∈ C

}
,

x̃k = argmin
{
λkf2(x̄k, y) +

1

2
‖y − x̄k‖2 : y ∈ C

}
,

xk+1 = argmin
{
λkf3(x̃k, y) +

1

2
‖y − x̃k‖2 : y ∈ C

}
.

Step 2. Update k := k + 1 and go to Step 1.

Theorem 3.2. Assume that conditions A.1, A.2 hold, f1 is Q-Lipschitz-type continu-
ous, fi is partially τi-Holder continuous, i = 2, 3. Moreover, suppose that

(B.1)
+∞∑
k=1

λk = +∞,

(B.3)
+∞∑
k=1

(λk)
2

2−τ < +∞,

where τ = min{τ2, τ3}. Then, the sequence {xk} generated by Algorithm 3.1 strongly
converges to the unique solution x∗ of EP (f, C).
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Proof. Since x̄k is the unique solution of the problem

min
{
λkf1(xk, y) +

1

2
‖y − xk‖2 : y ∈ C

}
,

there exist ωk ∈ ∂f1(xk, .)(x̄k) and qk ∈ NC(x̄k) such that

0 = λkω
k + x̄k − xk + qk.

From the definition of NC(.), we have〈
xk − x̄k − λkωk, y − x̄k

〉
≤ 0 ∀y ∈ C. (3.2)

Hence,

λk
〈
ωk, y − x̄k

〉
≤ λk(f1(xk, y)− f1(xk, x̄k)) ∀y ∈ C. (3.3)

Combining (3.2) and (3.3), we get〈
xk − x̄k, y − xk

〉
≤ λk(f1(xk, y)− f1(xk, x̄k))− ‖xk − x̄k‖2 ∀y ∈ C. (3.4)

Analogously, since x̃k and xk+1 are the solutions of the problems

min
{
λkf2(x̄k, y) +

1

2
‖y − x̄k‖2 : y ∈ C

}
,

min
{
λkf3(x̃k, y) +

1

2
‖y − x̃k‖2 : y ∈ C

}
,

it follows that〈
x̄k − x̃k, y − x̄k

〉
≤ λk(f2(x̄k, y)− f2(x̄k, x̃k))− ‖x̄k − x̃k‖2 ∀y ∈ C. (3.5)

and〈
x̃k − xk+1, y − x̃k

〉
≤ λk(f3(x̃k, y)− f3(x̃k, xk+1))− ‖x̃k − xk+1‖2 ∀y ∈ C. (3.6)

In (3.6), taking y = x̃k, we get

‖xk+1 − x̃k‖2 ≤ −λkf3(x̃k, xk+1) ≤ λk|f3(x̃k, xk+1)|. (3.7)

Since f3 is partially τ3-Holder continuous and f3(x, x) = 0 for all x ∈ C, there exists
a constant L3 > 0 such that for all k ≥ 1, it holds that

|f3(x̃k, xk+1)| ≤ L3‖xk+1 − x̃k‖τ3 . (3.8)

Combining (3.7) and (3.8), we obtain

‖xk+1 − x̃k‖ ≤ (L3λk)
1

2−τ3 (3.9)

and

λk|f3(x̃k, xk+1)| ≤ (L3λk)
2

2−τ3 . (3.10)

In (3.5), taking y = x̄k and using the partial Holder continuity of f2, we get

‖x̃k − x̄k‖ ≤ (L2λk)
1

2−τ2 (3.11)

and

λk|f2(x̄k, x̃k)| ≤ (L2λk)
2

2−τ2 . (3.12)
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From (3.4) and the Q-Lipschitz continuity of f1, we arrive at

‖x̄k − y‖2 = ‖x̄k − xk‖2 + ‖xk − y‖2 +
〈
x̄k − xk, xk − y

〉
≤ ‖xk − y‖2 − ‖x̄k − xk‖2 + 2λk(f1(xk, y)− f1(xk, x̄k))

≤ ‖xk − y‖2 − ‖x̄k − xk‖2 + 2λk(f1(x̄k, y) +Q‖x̄k − xk‖.‖x̄k − y‖)

≤ ‖xk − y‖2 − ‖x̄k − xk‖2 + 2λkf1(x̄k, y)

+ (Qλk)2‖x̄k − y‖2 + ‖x̄k − xk‖2

= ‖xk − y‖2 + 2λkf1(x̄k, y) + (Qλk)2‖x̄k − y‖2. (3.13)

Analogously to (3.5), (3.6) we get

‖x̃k − y‖2 ≤ ‖x̄k − y‖2 − ‖x̃k − x̄k‖2 + 2λk(f2(x̄k, y)− f2(x̄k, x̃k))

≤ ‖x̄k − y‖2 + 2λk(f2(x̄k, y)− f2(x̄k, x̃k))

≤ ‖x̄k − y‖2 + 2λkf2(x̄k, y) + 2λk|f2(x̄k, x̃k)|. (3.14)

and

‖xk+1 − y‖2 ≤ ‖x̃k − y‖2 − ‖xk+1 − x̃k‖2 + 2λk(f3(x̃k, y)− f3(x̃k, xk+1))

≤ ‖x̃k − y‖2 + 2λk(f3(x̃k, y)− f3(x̃k, xk+1))

= ‖x̃k − y‖2 + 2λkf3(x̄k, y)− 2λkf3(x̃k, xk+1)

+ 2λk(f3(x̃k, y)− f3(x̄k, y))

≤ ‖x̃k − y‖2 + 2λkf3(x̄k, y) + 2λk|f3(x̃k, xk+1)|

+ 2λk|f3(x̃k, y)− f3(x̄k, y)|. (3.15)

From (3.9)-(3.15) and the partial τ3-Holder continuity of f3, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 + 2λkf(x̄k, y) + (Qλk)2‖x̄k − y‖2

+ 2λk|f2(x̄k, x̃k)|+ 2λk|f3(x̃k, xk+1)|

+ 2λk|f3(x̃k, y)− f3(x̄k, y)|

≤ ‖xk − y‖2 + 2λkf(x̄k, y) + (Qλk)2‖x̄k − y‖2

+ 2(L2λk)
2

2−τ2 + 2(L3λk)
2

2−τ3 + 2λk(L3λk)
τ3

2−τ2 . (3.16)

In (3.16), taking y = x∗ and using the γ-strong pseudomonotonicity of f , we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − λk(2γ −Q2λk)‖x̄k − x∗‖2+

+ 2(L2λk)
2

2−τ2 + 2(L3λk)
2

2−τ3 + 2λk(L3λk)
τ3

2−τ2 . (3.17)

Using the inequality ‖a+ b‖ ≥ |‖a‖ − ‖b‖| for all a, b ∈ H, we infer that

λk‖x̄k − x∗‖2 ≥ λk(‖x̄k − xk+1‖ − ‖xk+1 − x∗‖)2

≥ (λk − 1)‖x̄k − xk+1‖2 + λk(1− λk)‖xk+1 − x∗‖2. (3.18)
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Since lim
k→+∞

λk = 0, without loss of generality we can assume that 1 − λk > 0 and

2γ −Q2λk > 0 for all k ≥ 1. Combining (3.17) and (3.18), we arrive at

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + (2γ −Q2λk)(1− λk)‖x̄k − xk+1‖2

+ λk(1− λk)(2γ −Q2λk)‖xk+1 − x∗‖2

+ 2(L2λk)
2

2−τ2 + 2(L3λk)
2

2−τ3 + 2λk(L3λk)
τ3

2−τ2 . (3.19)

On the other hand, it holds that

‖x̄k − xk+1‖2 = ‖x̄k − x̃k‖2 + ‖x̃k − xk+1‖2 + 2
〈
x̃k − xk+1, x̄k − x̃k

〉
≤ (L2λk)

2
2−τ2 + (L3λk)

2
2−τ3 + 2

〈
x̃k − xk+1, x̄k − x̃k

〉
. (3.20)

In (3.6), taking y = x̄k, we get

2
〈
x̃k − xk+1, x̄k − x̃k

〉
≤ 2λk(f3(x̃k, x̄k)− f3(x̃k, xk+1))

≤ 2λk|f3(x̃k, x̄k)|+ 2λk|f3(x̃k, xk+1)|

≤ 2λkL3‖x̃k − x̄k‖τ3 + 2(L3λk)
2

2−τ3

≤ 2λkL3(L2λk)
τ3

2−τ2 + 2(L3λk)
2

2−τ3 . (3.21)

Combining (3.19)-(3.21), we have

[1 + λk(1− λk)(2γ −Q2λk)]‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(γ + 1)(L2λk)
2

2−τ2

+ 2(2γ + 1)(L3λk)
2

2−τ3

+ 2
(
L3L

τ3
2−τ2
2 + L

τ3
2−τ2
3

)
λ

2+τ3−τ2
2−τ2

k ,

or

‖xk+1 − x∗‖2 ≤ (1−Ak)‖xk − x∗‖2 +Bk + Ck +Dk,

where

Ak =
λk(1− λk)(2γ −Q2λk)

1 + λk(1− λk)(2γ −Q2λk)
,

Bk =
2(γ + 1)(L2λk)

2
2−τ2

1 + λk(1− λk)(2γ −Q2λk)
,

Ck =
2(2γ + 1)(L3λk)

2
2−τ3

1 + λk(1− λk)(2γ −Q2λk)
,

Dk =
2
(
L3L

τ3
2−τ2
2 + L

τ3
2−τ2
3

)
λ

2+τ3−τ2
2−τ2

k

1 + λk(1− λk)(2γ −Q2λk)
.

We have

lim
k→+∞

( λk(1− λk)(2γ −Q2λk)

1 + λk(1− λk)(2γ −Q2λk)
.

1

λk

)
= lim
k→+∞

( (1− λk)(2γ −Q2λk)

1 + λk(1− λk)(2γ −Q2λk)

)
= 2γ,
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moreover, since
+∞∑
k=1

λk = +∞, it follows that

+∞∑
k=1

Ak =

+∞∑
k=1

( λk(1− λk)(2γ −Q2λk)

1 + λk(1− λk)(2γ −Q2λk)

)
= +∞.

On the other hand,

lim
k→+∞

(
Bk.

1

λ
2

2−τ
k

)
= 0, lim

k→+∞

(
Ck.

1

λ
2

2−τ
k

)
= 0, lim

k→+∞

(
Dk.

1

λ
2

2−τ
k

)
= 0

it implies that
+∞∑
k=1

(Bk + Ck +Dk) < +∞.

Applying Lemma 2.6, we get lim
k→+∞

‖xk − x∗‖2 = 0 or lim
k→+∞

xk = x∗. �

Remark 3.3. (a) Since τ ∈ (0, 1], 2
2−τ ∈ (1, 2], we can choose a sequence {λk} satis-

fying conditions (B.1)-(B.3), for example, λk = 1
kα , where α ∈ ( 2−τ

2 , 1).
(b) In Algorithm 3.1, we need not to know the Lipschitz constant Q of f1.
(c) Algorithm 3.1 reminds the so-called General Extragradient Algorithm in [9],

in the sense that the both algorithms require three subproblems at each itera-
tion. However, our algorithm has a clear advantage: at each iteration, we have
to solve only subproblems for the component bifunctions fi, instead of solving
subproblems for the whole bifunction f . Hence, our algorithm may have a low
computational cost when the function f has a complicated structure, while the
component bifunctions fi are simpler.

(d) If f3 = 0, i.e. f = f1 + f2, then the new algorithm collapses to the existing one
in [1].

4. Numerical examples

In this section, we provide an application of the proposed algorithm to electricity
markets. We also compare our algorithm with some existing ones. All the program-
mings are implemented in MATLAB R2010b running on a PC with Intel R©Core2TM

Quad Processor Q9400 2.66Ghz 4GB Ram.

Example 4.1. (Nash-Cournot oligopolistic equilibrium model for electricity markets
with non-convex cost functions)
We introduce a Nash-Cournot oligopolistic equilibrium model for electricity markets.
In contrast to the existing ones considered in [14, 1], the new model contains non-
convex cost functions. In this situation, the three-component splitting algorithm seem
to be the most suitable one for solving the corresponding equilibrium problem.

Consider an electricity market with N companies. Suppose that xj is the power
generation level of company j, (j = 1, . . . , N). Then, the total power generation of
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the market is

σ :=

N∑
k=1

xk.

Obviously, the more electricity companies produce, the lower electricity price is.
Hence, we assume that the electricity price p is inversely proportional to σ and is
defined by

p(x) = 200− 2

N∑
k=1

xk.

To produce electricity, companies have to pay two costs: production cost and environ-
mental cost. The cost of production per unit of electricity decreases as the production

level increases. Hence, we assume that the production cost hprodj of company j is a
concave function of xj :

hprodj (xj) = aj
√
xj + bj .

Meanwhile, the environmental charge per unit of electricity increases as the product
level increases. Hence, the environmental cost henvj of company j is a convex function
of xj :

henvj (xj) = cjxj
2 + dj .

And so, the total cost hj of company j is:

hj(xj) = hprodj (xj) + henvj (xj) = aj
√
xj + bj + cjxj

2 + dj .

Let N = 6. The parameters aj , bj , cj , dj are given in Table 1.

j aj bj cj dj

1 1.0 2.0 0.05 2.2
2 0.7 2.1 0.06 2.1
3 0.8 1.9 0.03 1.9
4 0.9 1.8 0.02 1.8
5 0.8 2.2 0.01 2.3
6 0.6 2.3 0.04 1.8

Table 1. The parameters of the cost function

The profit ξj of a company j is

ξj(x) := p(x)xj − hj(xj) =

(
200− 2

N∑
k=1

xk

)
xj − hj(xj),

where x = (x1, . . . , xN )T ∈ C :=
{
x ∈ RN : αj ≤ xj ≤ βj

}
, αj , βj are given in

Table 2.
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j 1 2 3 4 5 6

αj 10 10 10 10 10 10
βj 90 70 100 60 110 50

Table 2. The lower and upper bounds for power generation levels xj

We are interested in a such point x∗ = (x∗1, . . . , x
∗
N ) ∈ C satisfying

ξj(x
∗
1, . . . , x

∗
j−1, yj , x

∗
j+1, . . . , x

∗
N ) ≤ ξj(x∗1, . . . , x∗N ).

for all y = (y1, . . . , yN ) ∈ C, j = 1, . . . , N. The point x∗ is called the Nash equilibrium.
Let

ζ(x, y) := ϕ(x, x)− ϕ(x, y),

where

ϕ(x, y) =

N∑
j=1

ξj(x1, . . . , xj−1, yj , xj+1, . . . , xN )

=

N∑
j=1

200− 2

∑
k 6=j

xk + yj

 yj − N∑
j=1

hj(yj).

Then x∗ a Nash equilibrium point of this model if and only if it is a solution of the
equilibrium problem (see [10]):

find x∗ ∈ C such that ζ(x∗, y) ≥ 0 ∀y ∈ C. (4.1)

We have

ζ(x, y) = 〈(A+B)x+By + q, y − x〉+ h(y)− h(x), (4.2)

where

A :=


0 2 2 2 2 2
2 0 2 2 2 2
2 2 0 2 2 2
2 2 2 0 2 2
2 2 2 2 0 2
2 2 2 2 2 0

 , B :=


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 ,

and q = −(100, 100, 100, 100, 100, 100)T . However, the bifunction ζ given by (4.2) is
not strongly pseudomonotone (even not pseudomonotone). This bifunction can be
rewritten as

ζ(x, y) = f(x, y) + 0.6〈B(y − x), y − x〉,
where f(x, y) = 〈(A+ 1.6B)x+ 0.4By + q, y − x〉+ h(y)− h(x). It is easy seen that
the matrix B is positive definite, hence x∗ is a solution of the equilibrium problem
(4.1) if and only if it is a solution of the problem (see [14]):

find x∗ ∈ C such that f(x∗, y) ≥ 0 ∀y ∈ C. (4.3)
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Let us prove the bifunction f is strongly pseudomonotone. Indeed, for all x, y ∈ C,
we have

f(x, y) + f(y, x) = −〈(A+ 1.2B) (x− y), (x− y)〉 .
Since A+1.2B is a positive definite matrix, it implies that the bifunction f is strongly
monotone, and hence, is strongly pseudomonotone. Let

f1(x, y) = 〈(A+ 1.6B)x+ 0.4By + q, y − x〉,

f2(x, y) =

N∑
j=0

(
henvj (yj)− henvj (xj)

)
.

and

f3(x, y) =

N∑
j=0

(
hprodj (yj)− hprodj (xj)

)
,

It is easy seen that f1, f2 and f3 satisfy all conditions of the proposed algorithm.
Now we will apply this algorithms to solve problem (4.3). Note that in this example,
subproblems of f1 and f2 have quadratic forms and are much easier to solve than

general convex problems. Moreover, although the cost functions hprodj are concave,

the subproblems of f3 is convex if λk ≤ 1
6 .

We implement the algorithm with the starting point x0 = (0, 0, 0, 0, 0, 0)T , λk = 1
k+6

and the stopping criteria ‖xk+1−xk‖ ≤ 10−4. The test results are reported in Table 3.
The algorithm finds the approximation of the solution after 105 iterations.

Iter(k) x1k x2k x3k x4k x5k x6k ‖xk−1 − xk‖
0 0 0 0 0 0 0
1 22.9133 22.8534 23.0463 23.1103 23.1777 22.9841 31.4327
2 10.0597 10.0000 10.2182 10.2922 10.3731 10.1480 12.9558
3 15.3184 15.2412 15.5167 15.6095 15.7111 15.4289 3.7680
4 13.7630 13.6767 13.9837 14.0868 14.2002 13.8865 0.7174
5 14.0422 13.9487 14.2802 14.3913 14.5139 14.1756 0.0755
6 14.0034 13.9046 14.2542 14.3713 14.5007 14.1441 0.0200
7 13.9975 13.8947 14.2579 14.3796 14.5143 14.1437 0.0152
· · · · · · · · · · · · · · · · · · · · · · · ·
105 13.9815 13.8658 14.2731 14.4099 14.5630 14.1455 9.903810−5

Table 3. Iterations of the proposed algorithm with starting point
x0 = (0, 0, 0, 0, 0, 0)T

Example 4.2. We compare our algorithm with the Armijo Line Search Algorithm
(ALS ) (Algorithm 1 in [8]), the General Extragradient Algorithm (GEA) in [9], the
Splitting Sequential Algorithm (SAL) (Algorithm 1 in [1]) and the Subgradient Algo-
rithm (SGA) given by Santos in [17]. Consider the equilibrium problem

find x ∈ C such that 〈Ax+ P (x), y − x〉+ ϕ(y)− ϕ(x) ≥ 0 ∀y ∈ C,
where the feasible set C ⊂ R5 is given by

C := {x ∈ R5 : −5 ≤ xi ≤ 5 ∀i = 1, . . . , 5},
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ϕ : R5 → R, ϕ(x) = ‖x‖2,

F : R5 → R5, F (x) = Ax+ P (x),

with

A :=


3 1 0 1 2
1 5 −1 0 1
0 −1 4 2 −2
1 0 2 6 −1
2 1 −2 −1 5

 ,

and P : R5 → R5 is the proximal mapping of the function

h(x) :=
‖x‖4

4
,

i.e.,

P (x) := argmin

{
‖y‖4

4
+

1

2
‖y − x‖2 : y ∈ R5

}
.

Note that, since we do not have a closed form of P (x), to compute the value of this
mapping, we have to solve a strongly convex problem. In our algorithm, let

f1(x, y) := 〈Ax, y − x〉,
f2(x, y) := 〈P (x), y − x〉,
f3(x, y) := ϕ(y)− ϕ(x)

and f := f1 + f2 + f3.
In Algorithm SAL, let

f1(x, y) := 〈Ax+ P (x), y − x〉,
f2(x, y) := ϕ(y)− ϕ(x)

and f := f1 + f2. It is easy seen that all the conditions of the four algorithms are
satisfied. Moreover, the mapping P is nonexpansive and the Lipschitz constants of f
(defined in [8]) are

c1 = c2 =
1

2
(‖A‖+ 1).

We apply the four algorithms for solving EP (f, C) with the parameters:

• In Algorithm GEA: αk = βk = 1
7c1

.

• In Algorithm ALS : G(x) := ‖x‖2, η = 0.5; ρ = 1.
• In Algorithm SAL λk = 1

k .

• In Algorithm SGA βk = 1
k , ρk = 1, εk = 0, ξk = 0.

• In our algorithm: λk = 1
k .

All the algorithms use the same starting points and the same stopping rule:

‖xk − x∗‖ ≤ 3.10−4,

where x∗ = (0, 0, 0, 0, 0)T is the unique solution of the EP (f, C). The results are
presented in Table 4.
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x0 = (5, 5, 5, 5, 5)T x0 = (1, 1, 1, 1, 1)T x0 = (1, 2, 3, 4, 5)T x0 = (−3,−5, 2,−4, 4)T

CPU times Iter. CPU times Iter. CPU times Iter. CPU times Iter.

Alg. GEA - - - - - - - -
Alg. SGA - - 0.6004 14 - - - -
Alg. ALS 11.1323 27 8.6821 21 11.3570 29 11.3248 26
Alg. SAL 0.4357 11 0.4470 10 0.5019 12 0.3509 10
Alg. 3-CSA 0.4604 12 0.3839 9 0.4860 11 0.5082 13

Table 4. Comparision of the algorithms. (-) means the algorithm
does not obtain the required accuracy after 100s.

From this table we can see that, if the initial approximation x0 is close enough
to the exact solution x∗, say, ||x0 − x∗|| ≤ 7.4, then the performance of 3-CSA is the
best among four above mentioned algorithms.

Example 4.3. Consider problem EP (f, C) with

C :=
{
x = (x1, x2, . . . , xm) ∈ Rm : 2x21 + x22 + . . .+ x2m ≤ 1

}
and f : C × C → R, defined by

f(x, y) := 〈Ax, y − x〉+ y2 − x2 + 〈y, y − x〉 ∀x, y ∈ C,
where A = (aij) is a m×m matrix and

aij =

{
0 if i 6= j,

1.1 if i = j.

It is easy seen that f(x, y) + f(y, x) = −0.1‖x − y‖2 for all x, y ∈ C, and hence f is
strongly monotone on C. All conditions of the three-component splitting algorithm
(3-CSA) and the splitting sequential algorithm (SAL) (Algorithm 1 in[1]) are satisfied.
We will use this problem to compare them. For 3-CSA, let

f1(x, y) := 〈Ax, y − x〉 , f2(x, y) := y2 − x2, f3(x, y) := 〈y, y − x〉 ∀x, y ∈ C.
For SAL, define

f̃1(x, y) := 〈Ax, y − x〉 , f̃2(x, y) := y2 − x2 + 〈y, y − x〉 ∀x, y ∈ C.
Note that the problem has a unique solution x∗ = (0, 0, . . . , 0)T . In the both algo-
rithms, we use the same step-size λk = 1

k for all k ≥ 1, the same stopping criteria

‖xk − x∗‖ ≤ ε and the same starting point x0, which is randomly generated. 3-CSA
now becomes

x0 ∈ C,
x̄k = argmin

{
λk
〈
Axk, y − x

〉
+ 1

2‖y − x
k‖2 : y ∈ C

}
,

x̃k = argmin
{
λk(‖y‖2 − ‖x̄k‖2) + 1

2‖y − x̄
k‖2 : y ∈ C

}
,

xk+1 = argmin
{
λk
〈
y, y − x̃k

〉
+ 1

2‖y − x̃
k‖2 : y ∈ C

}
.

From the definition of x̄k, it implies that

λkAx
k + x̄k − xk + q = 0,
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where q is a normal vector of C at x̄k. Hence,〈
xk − λkAxk − x̄k, z − x̄k

〉
≤ 0 ∀z ∈ C.

It follows that x̄k = PC(xk − λkAxk). Similarly, we have

x̃k = PC

(
1

1 + 2λk
x̄k
)
.

Since 0 and x̄k belong to C, it implies that 1
1+2λk

x̄k ∈ C, and hence, x̃k = 1
1+2λk

x̄k.

Analogously, we have xk+1 = 1+λk
1+2λk

x̃k, and hence, 3-CSA has the following closed
form: {

x0 ∈ C,
xk+1 = 1+λk

(1+2λk)2
PC(xk − λkAxk).

Similarly, in this problem, SAL can be rewritten as{
y0 ∈ C,
yk+1 = 1+λk

1+4λk
PC(yk − λkAyk).

We have 1+λk
(1+2λk)2

< 1+λk
1+4λk

. Hence, by induction, it is easy seen that ‖xk − x∗‖ <
‖yk−y∗‖ for all k ≥ 1. This means that in this problem, 3-CSA requires less iterations
than SAL does. For more specific comparisons, we test these two algorithms in the
problem with different m and ε. The results are presented in Table 5. From this table,
we can see that the results of 3-CSA are better than those of SAL in terms of iterations
and computational time.

3-CSA SAL

m ε CPU times Iter. CPU times Iter.

50 10−3 0.0012 5 0.0024 8
10−4 0.0018 10 0.0032 15
10−5 0.0021 18 0.0041 27

100 10−3 0.0018 6 0.0027 9
10−4 0.0022 11 0.0039 16
10−5 0.0036 20 0.0057 30

500 10−3 0.3019 7 0.4019 10
10−4 0.5169 12 0.7019 19
10−5 0.9674 22 1.3214 34

2000 10−3 0.5436 7 0.7503 11
10−4 0.9746 13 1.3976 20
10−5 1.8324 24 2.5864 36

Table 5. Comparision of 3-CSA and SAL

Next, we compare 3-CSA with the Subgradient Algorithm (SGA), the Armijo
Line Search Algorithm (ALS), the Ergodic Algorithm (EDA) [3]. In EDA, we choose
λk = 1

k for all k ≥ 1. The parameters for the remaining algorithms are selected as
in Example 4.2. The comparisons results are presented in Figure 1. As we can see,
3-CSA shows a better behavior in terms of the computational time.
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Figure 1. Comparisions of 3-SCA with some existing algorithms in
Example 4.3

5. Conclusion

In this paper, we have proposed a three-component splitting algorithm for solv-
ing equilibrium problems in Hilbert spaces. Under the assumptions that the involving
bifunction is strongly pseudomonotone and the component bifunctions satisfy suit-
able conditions, we have proved that the proposed algorithm strongly converges to
the unique solution of the problem. Our algorithm is particularly effective when ap-
plied to equilibrium problems with complicated bifunctions, given as the sum of three
components. The effectiveness of the proposed algorithm has been tested by some
numerical experiments and comparisons. Also, the new algorithm has been applied
to the Nash-Cournot oligopolistic equilibrium model for electricity markets with a
non-convex cost function.

Acknowledgements. The authors would like to thank the anonymous referees for their
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Abstract. In the previous paper, we have defined together with I. Ionică the
heights of a nontrivial triangle with respect to Birkhoff orthogonality in a real
smooth space X, dimX ≥ 2. In the present paper, we remark that, generally, the
area of a nontrivial triangle in X has not the same value for different heights of
the triangle. The purpose of this paper is to characterize the norm of X if this
space has the property that the area of any triangle is well defined (independent
of considered height). In this line we give five equivalent properties using the
directional derivative of the norm. If X is strictly convex and dimX ≥ 3, then
each of these five properties characterizes the hilbertian norms (generated by
inner products).
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1. Introduction

Let X be a real normed space and let X∗ be its dual space. We recall that two
elements x, y ∈ X are Birkhoff orthogonal, x ⊥ y, if

‖x‖ ≤ ‖x + ty‖, for all t ∈ R,

where we denote by R the set of real numbers.
If the norm of X is generated by an inner product then this norm is called

hilbertian. Also, we recall that the space X is smooth if there exists

lim
t→0

‖x + ty‖2 − ‖x‖2

2t
= n′(x; y), for all x, y ∈ X.
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Since the function t 7→ ‖x + ty‖, t ∈ R, is convex, it follows that

x ⊥ y if and only if n′(x; y) = 0.

In a real smooth space X the basic properties of the norm derivative are the
following:

(P1) n′(x;x) = ‖x‖2, for all x ∈ X.
(P2) n′(x; a1y1 + a2y2) = a1n

′(x; y1) + a2n
′(x; y2), for all a1, a2 ∈ R and

x, y1, y2 ∈ X.
(P3) For every x ∈ X, the map y 7→ n′(x; y), y ∈ X, is a linear continuous

functional, that is n′(x; ·) ∈ X∗.
(P4) n′(x; y) ≤ ‖x‖‖y‖, for all x, y ∈ X.
(P5) n′(ax;x + by) = a‖x‖2 + abn′(x; y), for all a, b ∈ R, x, y ∈ X.
(P6) The mapping x 7→ n′(x; ·), x ∈ X, is continuous from X, endowed with

norm topology, into X∗ with the w∗-topology.
Particularly, we have the following homogeneous property:

n′(ax; by) = abn′(x; y), for all a, b ∈ R, x, y ∈ X.

Also, if Y is a finite dimensional subspace of X, then x 7→ n′(x; y) is continuous on Y
for any fixed y ∈ X. (For details concerning these properties see for instance [5-8].)

A simple and useful characterization of the hilbertian norm in a smooth space
using norm derivative was established by Joichi [11], Leduc [12], Tapia [17], namely

n′(x; y) = n′(y;x), for all x, y ∈ X.

Moreover, Leduc [12] proved that if dimX ≥ 3, then it is sufficient to have the
following weaker property:

n′(x; y) = 0 whenever n′(y;x) = 0. (1.1)

This property was extended using right norm derivatives by Papini [13]. There exists
many different characterizations of hilbertian norms using norm derivatives or norm
directional derivatives if smoothness is not request (see, for example [1-4,9-11,15-16]
and the monography of Amir [5]). Generally, these characterizations are obtained
using some known properties of remarkable lines of a triangle.

We recall a characterization of strictly convex spaces established by Tapia
[17], namely, a linear normed space X is strictly convex if and only if the equality
|n′(x; y)| = ‖x‖‖y‖ holds only if x, y are linear dependent elements.

In this paper we consider the heights of a triangle defined in [14], using Birkhoff
orthogonality. We establish five properties such that the areas of a triangle corre-
sponding to each height of the triangle have the same value, that is the area is well
defined. If X is also strictly convex and dimX ≥ 3, then every of these five properties
characterizes the hilbertian norms.

2. Main result

Let x, y, z be three distinct elements in a real smooth space X. In [14] there are
defined the heights of the triangle, having the vertices x, y, z, with respect to Birkhoff
orthogonality. This concept is different to other concepts considered in [1,2,4]. In our
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paper, we use the concept of height defined in [14]. Thus, the height corresponding to
vertex z is as follows:

hz;x,y =

{
z + t

(
x− z +

n′(x− y;x− z)

‖x− y‖2
(y − x)

)
| t ∈ R

}
.

Indeed, this straight line has the following property: x−y ⊥ hz;x,y. Consequently, the
area of triangle corresponding to this height is

Az;x,y =
1

2
‖x− y‖

∥∥∥∥x− z +
n′(x− y;x− z)

‖x− y‖2
(y − x)

∥∥∥∥ . (2.1)

Similarly, we get the areas Ax;z,y and Ay;z,x. We remark that

Az;x,y = Az;y,x = Az+u,x+u,y+u, for any x, y, z, u ∈ X.

Since the area of a triangle is conserved by translation we can consider only triangles
having a vertex in origin. We say that the area of nontrivial triangle is well defined if

Ax;y,z = Ay;z,x = Az;x,y. (2.2)

Obviously, we can suppose in the paper that dimX ≥ 2.

Theorem 2.1. Let X be a real smooth space with dimX ≥ 2. The areas of nontrivial
triangles in X are well defined if and only if one of the following equivalent properties
is true:

(i) The area of any triangle having a vertex in the origin is well defined;

(ii) ‖x− y‖ · ‖x− z+n′(x−y;x−z)
‖x−y‖2 (y − x)‖=‖y − z‖ · ‖y − x+n′(y−z;y−x)

‖y−z‖2 (z − y)‖
= ‖z − x‖ · ‖z − y + n′(z−x;z−y)

‖z−x‖2 (x− z)‖, for all distinct elements x, y, z ∈ X;

(iii) ‖x−y‖ ·‖x−z+ n′(x−y;x−z)
‖x−y‖2 (y−x)‖ = ‖y−z‖ ·‖y−x+ n′(y−z;y−x)

‖y−z‖2 (z−y)‖,
for all distinct elements x, y, z ∈ X;

(iv) ‖x‖ · ‖‖y‖2x− n′(y;x)y‖ = ‖y‖ · ‖‖x‖2y − n′(x; y)x‖, for all x, y ∈ X;
(v) for any two-dimensional subspace Y ⊂ X there exists a constant K > 0 such

that, for all x = (x1, x2) and y = (y1, y2) in Y , the following equality holds:

‖‖x‖2y − n′(x; y)x‖ = K‖x‖|x1y2 − x2y1|.
If X is strictly convex and dimX ≥ 3, then every of these properties is true if

and only if the norm of X is hilbertian.

Proof. According to the equalities (2.1) and (2.2) the area of every triangle with
vertices x, y, z is well defined if and only if the equalities (ii) hold. Since we can
consider only triangles with a vertex in origin, we have the equivalence (i)⇔(ii).
Also, (ii) is equivalent with the equalities obtained if z = 0, that is

‖x− y‖
∥∥∥∥x +

n′(x− y;x)

‖x− y‖2
(y − x)

∥∥∥∥ = ‖y‖
∥∥∥∥y − x− n′(y; y − x)

‖y‖2
y

∥∥∥∥
= ‖x‖

∥∥∥∥y − n′(x; y)

‖x‖2
x

∥∥∥∥ ,
which proves that equality (iv) holds for all non zero distinct elements x, y ∈ X.
Therefore, (ii)⇔(iv). Conversely, if we change x, y with x− y and z − y respectively,
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we get (iv)⇒(iii). The implications (ii)⇒(iii) and (v)⇒(iv) are obvious. Next we
observe that the equality (iii) applied to the elements y, z, x proves that (iii)⇒(ii).

Now, we prove the equivalence (iv)⇔(v). If Y is the linear subspace generated
by the linear independent elements x, y, then there exist two functions A,B : R2 → R
such that

n′(u; v) = A(u1, u2)v1 + B(u1, u2)v2, for all u = (u1, u2), v = (v1, v2),

where A,B are homogeneous. Thus, we have

‖x‖2y − n′(x; y)x = ((A(x1, x2)x1 + B(x1, x2)x2)y1

− (A(x1, x2)y1 + B(x1, x2)y2)x1,

(A(x1, x2)x1 + B(x1, x2)x2)y2 − (A(x1, x2)y1 + B(x1, x2)y2)x2)

= (B(x1, x2)(x2y1 − x1y2),−A(x1, x2)(x2y1 − x1x2))

= (x2y1 − x1y2)(B(x1, x2),−A(x1, x2)).

Therefore, the equality (iv) becomes

‖y‖ · |x1y2 − x2y2| · ‖(B(x1, x2),−A(x1, x2))‖
= ‖x‖ · |x1y2 − x2y1| · ‖(B(y1, y2),−A(y1, y2)‖,

for all x, y ∈ Y , that is the function

x 7→ ‖x‖−1‖(B(x1, x2),−A(x1, x2)‖, x = (x1, x2) ∈ Y \{0},

is a constant function. Since

|x1y2 − x2y1| · ‖(B(x1, x2),−A(x1, x2))‖ = ‖‖x‖2y − n′(x; y‖x‖)‖,

it follows that (iv) is equivalent with (v).
Assume that X is strictly convex. If n′(x; y) = 0, it follows by (iv) that

‖‖y‖2x− n′(y;x)y‖ = ‖x‖‖y‖2.

Since n′(x; ‖y‖2x− n′(y;x)y) = ‖x‖2‖y‖2, we obtain that

n′(x; ‖y‖2x− n′(y;x)y) = ‖x‖‖‖y‖2x− n′(y;x)y‖.

By Tapia’s characterization of strictly convex spaces [17], we get that the elements x
and ‖y‖2x− n′(y;x)y are linear dependent, that is n′(y;x) = 0. But dimX ≥ 3, and
so, by Leduc’s result [12], it follows that the norm is necessary hilbertian.

Remark 2.2. The characterization of hilbertian norms by property (iv) was given in
[10].

Remark 2.3. By the homogeneity property of the norm it follows that we can consider
only elements having equal norms. Consequently, we have the following equivalent
properties:

(i′) the area of any isosceles triangle is well defined;
(iv′) ‖y − n′(x; y)x‖ = ‖x− n′(y;x)y‖, for all x, y ∈ X, with ‖x‖ = ‖y‖ = 1.
Also, in equality (v) we can consider only x, y having the same norm.
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Stuttgart, 1986.

[6] Barbu, V., Precupanu, T., Convexity and Optimization in Banach Spaces, Fourth Edi-
tion, Springer, Dordrecht Heidelberg London New York, 2012.

[7] Diestel, I., Geometry of Banach Spaces Selected topics, Lecture Notes in Mathematics,
Springer, Berlin, 1978.

[8] Giles, J.R., On a characterization of differentiability of the norm of a normed linear
spaces, J. Austral. Math. Soc., 12(1971), 106-114.

[9] Guijarro, P., Tomas, M.S., Characterizations of inner product spaces by geometrical
properties of the heights in a triangle, Arch. Math., 73(1999), 64-72.
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Stud. Univ. Babeş-Bolyai Math. 67(2022), No. 1, 151–166
DOI: 10.24193/subbmath.2022.1.11

Hermite–Hadamard type inequalities for
F–convex functions involving generalized
fractional integrals

Hüseyin Budak, Muhammad Aamir Ali and Artion Kashuri

Abstract. In this paper, we firstly summarize some properties of the family F
and F–convex functions which are defined by B. Samet. Utilizing generalized
fractional integrals new Hermite–Hadamard type inequalities for F–convex func-
tions have been provided. Some results given earlier works are also as special
cases of our results.
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1. Introduction

Let f : I ⊆ R→ R be a convex function on the interval I of real numbers and a, b ∈ I
with a < b. If f is a convex function then the following double inequality, which is
well known in the literature as the Hermite–Hadamard inequality holds [17]:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
. (1.1)

Note that some of the classical inequalities for means can be derived from (1.1) for
appropriate particular selections of the mapping f . Both inequalities in (1.1) hold in
the reversed direction if f is concave.
It is well known that the Hermite–Hadamard inequality plays an important role in
nonlinear analysis. Over the last decade, this classical inequality has been improved
and generalized in a number of ways; there have been a large number of research
papers written on this subject, see [7, 6, 12, 16], [24]-[23] and the references therein.
Also, many type of convexity have been defined, such as quasi-convex in [5], pseudo-
convex in [13], strongly convex in [19], ε-convex in [10], s-convex in [9], h-convex
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in [28], etc. Recently, Samet in [20], have defined a new concept of convexity that
depends on a certain function satisfying some axioms, that generalizes different types
of convexity, including ε-convex functions, α-convex functions, h-convex functions,
and many others.
Recall the family F of mappings F : R× R× R× [0, 1] → R satisfying the following
axioms:
(A1) If ui ∈ L1(0, 1), i = 1, 2, 3, then for every λ ∈ [0, 1] , we have

1∫
0

F (e1(t), e2(t), e3(t), λ)dt = F

 1∫
0

e1(t)dt,

1∫
0

e2(t)dt,

1∫
0

e3(t)dt, λ

 .

(A2) For every u ∈ L1 (0, 1) , w ∈ L∞(0, 1) and (z1, z2) ∈ R2, we have

1∫
0

F (w(t)u(t), w(t)z1, w(t)z2, t)dt = TF,w

 1∫
0

w(t)u(t)dt, z1, z2

 ,

where TF,w : R× R× R → R is a function that depends on (F,w), and it is nonde-
creasing with respect to the first variable.
(A3) For any (w, e1, e2, e3) ∈ R4, e4 ∈ [0, 1] , we have

wF (e1, e2, e3, e4) = F (we1, we2, we3, e4) + Lw,

where Lw ∈ R is a constant that depends only on w.

Definition 1.1. Let f : [a, b]→ R, (a, b) ∈ R2, a < b, be a given function. We say that
f is a convex function with respect to some F ∈ F (or F -convex function), iff

F (f(tx+ (1− t)y), f(x), f(y), t) ≤ 0, (x, y, t) ∈ [a, b]× [a, b]× [0, 1] .

Remark 1.2. 1) Let ε ≥ 0, and let f : [a, b] → R, (a, b) ∈ R2, a < b, be an ε-convex
function, see [10], that is

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε, (x, y, t) ∈ [a, b]× [a, b]× [0, 1] .

Define the functions F : R× R× R× [0, 1]→ R by

F (e1, e2, e3, e4) = e1 − e4e2 − (1− e4)e3 − ε (1.2)

and TF,w : R× R× R→ R by

TF,w(e1, e2, e3) = e1 −

 1∫
0

tw(t)dt

 e2 −

 1∫
0

(1− t)w(t)dt

 e3 − ε. (1.3)

For

Lw = (1− w)ε, (1.4)

it is clear that F ∈ F and

F (f(tx+ (1− t)y), f(x), f(y), t) = f(tx+ (1− t)y)− tf(x)− (1− t)f(y)− ε ≤ 0,

that is f is an F−convex function. Particularly, taking ε = 0, we show that if f is a
convex function then f is an F−convex function with respect to F defined above.
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2) Let f : [a, b]→ R, (a, b) ∈ R2, a < b, be an α-convex function, α ∈ (0, 1], that is

f(tx+ (1− t)y) ≤ tαf(x) + (1− tα)f(y), (x, y, t) ∈ [a, b]× [a, b]× [0, 1] .

Define the functions F : R× R× R× [0, 1]→ R by

F (e1, e2, e3, e4) = e1 − eα4 e2 − (1− eα4 )e3 (1.5)

and TF,w : R× R× R→ R by

TF,w(e1, e2, e3) = e1 −

 1∫
0

tαw(t)dt

 e2 −

 1∫
0

(1− tα)w(t)dt

 e3. (1.6)

For Lw = 0, it is clear that F ∈ F and

F (f(tx+ (1− t)y), f(x), f(y), t) = f(tx+ (1− t)y)− tαf(x)− (1− tα)f(y) ≤ 0,

that is, f is an F -convex function.

3) Let h : J → [0,+∞) be a given function which is not identical to 0, where J is an
interval in R such that (0, 1) ⊆ J. Let f : [a, b] → [0,+∞), (a, b) ∈ R2, a < b, be an
h-convex function, see [28], that is

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y), (x, y, t) ∈ [a, b]× [a, b]× [0, 1] .

Define the functions F : R× R× R× [0, 1]→ R by

F (e1, e2, e3, e4) = e1 − h(e4)e2 − h(1− e4)e3 (1.7)

and TF,w : R× R× R→ R by

TF,w(e1, e2, e3) = e1 −

 1∫
0

h(t)w(t)dt

 e2 −

 1∫
0

h(1− t)w(t)dt

 e3. (1.8)

For Lw = 0, it is clear that F ∈ F and

F (f(tx+ (1− t)y), f(x), f(y), t) = f(tx+ (1− t)y)− h(t)f(x)− h(1− t)f(y) ≤ 0,

that is, f is an F -convex function.

In [20], author established the following Hermite-Hadamard type inequalities using
the new convexity concept:

Theorem 1.3. Let f : [a, b] → R, (a, b) ∈ R2, a < b, be an F -convex function, for
some F ∈ F . Suppose that f ∈ L1[a, b]. Then

F

(
f

(
a+ b

2

)
,

1

b− a

∫ b

a

f(x)dx,
1

b− a

∫ b

a

f(x)dx,
1

2

)
≤ 0,

TF,1

(
1

b− a

∫ b

a

f(x)dx, f(a), f(b)

)
≤ 0.
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Theorem 1.4. Let f : I◦ ⊆ R→ R be a differentiable mapping on I◦, (a, b) ∈ I◦ × I◦,
a < b. Suppose that:
(i) |f ′| is F -convex on [a, b] for some F ∈ F ;
(ii) the function t ∈ (0, 1)→ Lw(t) belongs to L1 (0, 1) , where w(t) = |1− 2t|. Then

TF,w

(
2

b− a

∣∣∣∣∣f (a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ , |f ′(a)| , |f ′(b)|

)
+

1∫
0

Lw(t)dt ≤ 0.

Theorem 1.5. Let f : I◦ ⊆ R→ R be a differentiable mapping on I◦, (a, b) ∈ I◦ × I◦,
a < b and let p > 1. Suppose that |f ′|p/(p−1)

is F -convex on [a, b] , for some F ∈ F
and |f ′| ∈ Lp/(p−1)(a, b). Then

TF,1

(
A(p, f), |f ′(a)|p/(p−1)

, |f ′(b)|p/(p−1)
)
≤ 0,

where

A(p, f) = p−1
√
p+ 1

(
2

b− a

) p
p−1

∣∣∣∣∣f (a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
p
p−1

.

In the following we will give some necessary definitions and mathematical preliminar-
ies of fractional calculus theory which are used further in this paper. For more details,
see [8, 11, 14, 18].

Definition 1.6. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1
f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)
α−1

f(t)dt, x < b

respectively. Here, Γ(α) is the Gamma function and J0
a+f(x) = J0

b−f(x) = f(x).

It is remarkable that Sarikaya et al. in [25], first give the following interesting in-
tegral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional
integrals.

Theorem 1.7. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1 [a, b] .
If f is a convex function on [a, b], then the following inequalities for fractional integrals
hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)
α

[
Jαa+f(b) + Jαb−f(a)

]
≤ f (a) + f (b)

2
, (1.9)

with α > 0.

Meanwhile, Sarikaya et al. in [25], presented the following important integral iden-
tity including the first-order derivative of f to establish many interesting Hermite-
Hadamard type inequalities for convexity functions via Riemann-Liouville fractional
integrals of the order α > 0.



Hermite–Hadamard type inequalities for F–convex functions 155

Lemma 1.8. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L [a, b] , then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α

[
Jαa+f(b) + Jαb−f(a)

]
=
b− a

2

∫ 1

0

[(1− t)α − tα] f ′ (ta+ (1− t)b) dt. (1.10)

Budak et al. in [3], prove the following Hermite-Hadamard type inequalities for F -
convex functions via fractional integrals:

Theorem 1.9. Let I ⊆ R be an interval, f : I◦ ⊆ R→ R be a mapping on I◦, a, b ∈ I◦,
a < b. If f is F -convex on [a, b] for some F ∈ F , then we have

F

(
f

(
a+ b

2

)
,

Γ(α+ 1)

(b− a)α
Jαa+f(b),

Γ(α+ 1)

(b− a)α
Jαb−f(a),

1

2

)
+

∫ 1

0

Lw(t)dt ≤ 0 (1.11)

and

TF,w

(
Γ(α+ 1)

(b− a)α
[Jαa+f(b) + Jαb−f(a)] , f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt ≤ 0, (1.12)

where w(t) = αtα−1.

Theorem 1.10. Let I ⊆ R be an interval, f : I◦ ⊆ R→ R be a differentiable mapping
on I◦, a, b ∈ I◦, a < b. Suppose that |f ′| is F -convex on [a, b] for some F ∈ F and
the function t ∈ [0, 1]→ Lw(t) belongs to L1 [0, 1] , where w(t) = |(1− t)α − tα|. Then

TF,w

 2

b− a

∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣ , |f ′(a)| , |f ′(b)| , t


+

∫ 1

0

Lw(t)dt ≤ 0. (1.13)

For the other papers on inequalities for F -convex functions, see [2, 4, 15, 26, 27].
Now we summarize the generalized fractional integrals defined by Sarikaya and
Ertuğral in [22].
Let’s define a function ϕ : [0,+∞)→ [0,+∞) satisfying the following conditions:∫ 1

0

ϕ(t)

t
dt < +∞, (1.14)

1

A
≤ ϕ(s)

φ(r)
≤ A for

1

2
≤ s

r
≤ 2, (1.15)

ϕ(r)

r2
≤ Bϕ(s)

s2
for s ≤ r, (1.16)



156 Hüseyin Budak, Muhammad Aamir Ali and Artion Kashuri∣∣∣∣∣ϕ(r)

r2
− ϕ(s)

s2

∣∣∣∣∣ ≤ C|r − s|ϕ(r)

r2
for

1

2
≤ s

r
≤ 2, (1.17)

where A,B,C > 0 are independent of r, s > 0. If ϕ(r)rα is increasing for some α ≥ 0

and ϕ(r)
rβ

is decreasing for some β ≥ 0, then φ satisfies the conditions (1.14)–(1.17).

The following left-sided and right-sided generalized fractional integral operators are
defined respectively, as follows:

a+Iϕf(x) =

∫ x

a

ϕ (x− t)
x− t

f(t)dt, x > a, (1.18)

b−Iϕf(x) =

∫ b

x

ϕ (t− x)

t− x
f(t)dt, x < b. (1.19)

The most important feature of generalized fractional integrals is that they generalize
some types of fractional integrals such as Riemann-Liouville fractional integral, k-
Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable
fractional integral, Hadamard fractional integrals, etc.

Sarikaya and Ertuğral in [22], establish the following Hermite-Hadamard inequality
and lemmas for the generalized fractional integral operators:

Theorem 1.11. Let f : [a, b] → R be a convex function on [a, b] with a < b, then the
following inequalities for fractional integral operators hold:

f

(
a+ b

2

)
≤ 1

2Λ(1)
[a+Iϕf(b) +b− Iϕf(a)] ≤ f(a) + f(b)

2
, (1.20)

where the mapping Λ : [0, 1]→ R is defined by

Λ(x) =

x∫
0

ϕ ((b− a) t)

t
dt. (1.21)

Lemma 1.12. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L [a, b] , then the following equality for generalized fractional integrals hold:

f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

=
(b− a)

2Λ(1)

1∫
0

[Λ(1− t)− Λ(t)] f ′ (ta+ (1− t)b) dt. (1.22)

Motivated by the above literatures, the main objective of this article is to establish
some new Hermite–Hadamard type inequalities for F–convex functions via generalized
fractional integrals. Some special cases will be obtain from main results. At the end,
a briefly conclusion will be given as well.
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2. Hermite–Hadamard type inequality via generalized fractional
integrals

In this section, we establish some inequalities of Hermite–Hadamard type including
generalized fractional integrals via F–convex functions.

Theorem 2.1. Let I ⊆ R be an interval, f : I◦ ⊆ R→ R be a mapping on I◦, a, b ∈ I◦,
a < b. If f is F -convex on [a, b] for some F ∈ F , then we have

F

(
f

(
a+ b

2

)
,

1

Λ(1)
a+Iϕf(b),

1

Λ(1)
b−Iϕf(a),

1

2

)
+

∫ 1

0

Lw(t)dt ≤ 0 (2.1)

and

TF,w

(
1

Λ(1)
[a+Iϕf(b) + b−Iϕf(a)] , f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt ≤ 0, (2.2)

where w(t) = ϕ((b−a)t)
tΛ(1) .

Proof. Since f is F–convex, we have

F

(
f

(
x+ y

2

)
, f(x), f(y),

1

2

)
≤ 0, ∀x, y ∈ [a, b] .

For

x = ta+ (1− t)b and y = tb+ (1− t)a,
we have

F

(
f

(
a+ b

2

)
, f(ta+ (1− t)b), f(tb+ (1− t)a),

1

2

)
≤ 0, ∀ t ∈ [0, 1] .

Multiplying this inequality by w(t) = ϕ((b−a)t)
tΛ(1) and using axiom (A3), we get

F

(
ϕ ((b− a) t)

tΛ(1)
f

(
a+ b

2

)
,
ϕ ((b− a) t)

tΛ(1)
f(ta+ (1− t)b),

ϕ ((b− a) t)

tΛ(1)
f(tb+ (1− t)a),

1

2

)
+ Lw(t) ≤ 0,

for all t ∈ [0, 1] . Integrating over [0, 1] with respect to the variable t and using axiom
(A1), we obtain

F

(
f
(
a+b

2

)
Λ(1)

∫ 1

0

ϕ ((b− a) t)

t
dt,

1

Λ(1)

∫ 1

0

ϕ ((b− a) t)

t
f(ta+ (1− t)b)dt,

1

Λ(1)

∫ 1

0

ϕ ((b− a) t)

t
f(tb+ (1− t)a)dt,

1

2

)
+

∫ 1

0

Lw(t)dt ≤ 0.
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Using the facts that∫ 1

0

ϕ ((b− a) t)

t
f(ta+ (1− t)b)dt =

∫ b

a

ϕ (b− x)

b− x
f(x)dx = a+Iϕf(b)

and ∫ 1

0

ϕ ((b− a) t)

t
f(tb+ (1− t)a)dt =

∫ b

a

ϕ (x− a)

x− a
f(x)dx = b−Iϕf(a),

we obtain

F

(
f

(
a+ b

2

)
,

1

Λ(1)
a+Iϕf(b),

1

Λ(1)
b−Iϕf(a),

1

2

)
+

∫ 1

0

Lw(t)dt ≤ 0,

which gives (2.1).
On the other hand, since f is F -convex, we have

F (f (ta+ (1− t)b) , f(a), f(b), t) ≤ 0, ∀ t ∈ [0, 1]

and

F (f (tb+ (1− t)a) , f(b), f(a), t) ≤ 0, ∀ t ∈ [0, 1] .

Using the linearity of F, we get

F (f (ta+ (1− t)b) + f (tb+ (1− t)a) , f(a) + f(b), f(a) + f(b), t) ≤ 0,

∀ t ∈ [0, 1] . Applying the axiom (A3) for w(t) = ϕ((b−a)t)
tΛ(1) , we obtain

F

(
ϕ ((b− a) t)

tΛ(1)
[f (ta+ (1− t)b) + f (tb+ (1− t)a)] ,

ϕ ((b− a) t)

tΛ(1)
[f(a) + f(b)] ,

ϕ ((b− a) t)

tΛ(1)
[f(a) + f(b)] , t

)
+ Lw(t) ≤ 0,

for all t ∈ [0, 1] . Integrating over [0, 1] and using axiom (A2), we have

TF,w

(∫ 1

0

ϕ ((b− a) t)

tΛ(1)
[f (ta+ (1− t)b) + f (tb+ (1− t)a)] dt,

f(a) + f(b), f(a) + f(b)

)
+

∫ 1

0

Lw(t)dt ≤ 0,

that is

TF,w

(
1

Λ(1)
[a+Iϕf(b) + b−Iϕf(a)] , f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt ≤ 0.

The proof of Theorem 2.1 is completed. �

Remark 2.2. If we take ϕ(t) = tα

Γ(α) in Theorem 2.1, then the inequalities (2.1) and

(2.2) reduce to the inequalities (1.11) and (1.12).
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Corollary 2.3. If we take ϕ(t) = t
α
k

kΓk(α) in Theorem 2.1, then we have the following

inequalities for k-Riemann-Liouville fractional integrals

F

(
f

(
a+ b

2

)
,

Γk(α+ k)

(b− a)
α
k
Iαa+, kf(b),

Γk(α+ k)

(b− a)
α
k
Iαb−, kf(a),

1

2

)
+

∫ 1

0

Lw(t)dt ≤ 0

and

TF,w

(
Γk(α+ 1)

(b− a)
α
k

[
Iαa+, kf(b) + Iαb−, kf(a)

]
, f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt ≤ 0.

where w(t) = α
k t

α
k−1.

Corollary 2.4. If we choose F (e1, e2, e3, e4) = e1 − e4e2 − (1 − e4)e3 − ε in Theorem
2.1, then the function f is ε-convex on [a, b] , where ε ≥ 0 and we have the following
new double inequality:

f

(
a+ b

2

)
+ ε ≤ 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)] ≤ f(a) + f(b)

2
+
ε

2
. (2.3)

Proof. Using (1.4) with w(t) = ϕ((b−a)t)
tΛ(1) , we have

1∫
0

Lw(t)dt = ε

1∫
0

(
1− ϕ ((b− a) t)

tΛ(1)

)
dt = 0. (2.4)

Using (1.2), (2.1) and (2.4), we get

F

(
f

(
a+ b

2

)
,

1

Λ(1)
a+Iϕf(b),

1

Λ(1)
b−Iϕf(a),

1

2

)
+

∫ 1

0

Lw(t)dt ≤ 0.

So

f

(
a+ b

2

)
− 1

2Λ(1)
[ a+Iϕf(b) +b− Iϕf(a)]− ε ≤ 0,

that is

f

(
a+ b

2

)
+ ε ≤ 1

2Λ(1)
[ a+Iϕf(b) +b− Iϕf(a)] .

On the other hand, using (1.3) with w(t) = ϕ((b−a)t)
tΛ(1) , we have

TF,w(e1, e2, e3) = e1 −

 1∫
0

t
ϕ ((b− a) t)

tΛ(1)
dt

 e2 (2.5)

−

 1∫
0

(1− t)ϕ ((b− a) t)

tΛ(1)
dt

 e3 − ε
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for e1, e2, e3 ∈ R. Hence, from (2.2) and (2.5), we obtain

0 ≥ TF,w

(
1

Λ(1)
[a+Iϕf(b) + b−Iϕf(a)] , f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt

=
1

Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]−

 1∫
0

t
ϕ ((b− a) t)

tΛ(1)
dt

 [f(a) + f(b)]

−

 1∫
0

(1− t)ϕ ((b− a) t)

tΛ(1)
dt

 [f(a) + f(b)]− ε

=
1

Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]− [f(a) + f(b)]− ε.

This implies that

1

Λ(1)
[a+Iϕf(b) + b−Iϕf(a)] ≤ f(a) + f(b) + ε

and thus the proof is completed. �

Remark 2.5. If we take ε = 0 in Corollary 2.4, then f is convex and we have the
inequality (1.20).

Corollary 2.6. If we choose F (e1, e2, e3, e4) = e1 − h(e4)e2 − h(1− e4)e3 in Theorem
2.1, then the function f is h-convex on [a, b] and we have the following new double
inequality:

1

2h
(

1
2

)f (a+ b

2

)
≤ 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

≤ [f(a) + f(b)]

2Λ(1)

×
∫ 1

0

ϕ((b− a)t)

t
[h(t) + h(1− t)]dt. (2.6)

Proof. Using (1.7) and (2.1) with Lw(t) = 0, we have

0 ≥ F

(
f

(
a+ b

2

)
,

1

Λ(1)
a+Iϕf(b),

1

Λ(1)
b−Iϕf(a),

1

2

)
+

∫ 1

0

Lw(t)dt

= f

(
a+ b

2

)
− h

(
1

2

)
1

Λ(1)
[a+Iϕf(b) +b− Iϕf(a)] ,

that is
1

2h
(

1
2

)f (a+ b

2

)
≤ 1

2Λ(1)
[a+Iϕf(b) +b− Iϕf(a)] .
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On the other hand, using (1.8) and (2.2) with w(t) = ϕ((b−a)t)
tΛ(1) , we obtain

0 ≥ TF,w

(
1

Λ(1)
[a+Iϕf(b) + b−Iϕf(a)] , f(a) + f(b), f(a) + f(b)

)

+

1∫
0

Lw(t)dt

=
1

Λ(1)
[a+Iϕf(b) +b− Iϕf(a)]

−
[∫ 1

0

h(t)
ϕ ((b− a) t)

tΛ(1)
dt+

∫ 1

0

h(1− t)ϕ ((b− a) t)

tΛ(1)
dt

]
[f(a) + f(b)]

=
1

Λ(1)
[a+Iϕf(b) +b− Iϕf(a)]

− 1

Λ(1)

(∫ 1

0

[h(t) + h(1− t)] ϕ ((b− a) t)

t
dt

)
[f(a) + f(b)] ,

that is
1

Λ(1)
[a+Iϕf(b) +b− Iϕf(a)]

≤ [f(a) + f(b)]

Λ(1)

(∫ 1

0

[h(t) + h(1− t)] ϕ ((b− a) t)

t
dt

)
and thus the proof is completed. �

Theorem 2.7. Let I ⊆ R be an interval, f : I◦ ⊆ R → R be a differentiable mapping
on I◦, a, b ∈ I◦, a < b. Suppose that |f ′| is F -convex on [a, b] , for some F ∈ F and

the function t ∈ [0, 1] → Lw(t) belongs to L1 [0, 1] , where w(t) = |Λ(1−t)−Λ(t)|
Λ(1) . Then,

we have the following inequality:

TF,w

(
2

b− a

∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣ ,
|f ′(a)| , |f ′(b)| , t

)
+

∫ 1

0

Lw(t)dt ≤ 0. (2.7)

Proof. Since |f ′| is F -convex, we have

F (|f ′(ta+ (1− t)b)| , |f ′(a)| , |f ′(b)| , t) ≤ 0, ∀ t ∈ [0, 1] .

Using axiom (A3) with w(t) = |Λ(1−t)−Λ(t)|
Λ(1) , we get

F (w(t) |f ′(ta+ (1− t)b)| , w(t) |f ′(a)| , w(t) |f ′(b)| , t) + Lw(t) ≤ 0, ∀ t ∈ [0, 1] .

Integrating over [0, 1] and using axiom (A2), we obtain

TF,w

(∫ 1

0

w(t) |f ′(ta+ (1− t)b)| dt, |f ′(a)| , |f ′(b)| , t
)

+

∫ 1

0

Lw(t)dt ≤ 0,
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∀ t ∈ [0, 1] . From Lemma 1.8, we have

2

b− a

∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣
≤

∫ 1

0

w(t) |f ′(ta+ (1− t)b)| dt.

Since TF,w is nondecreasing with respect to the first variable, we establish

TF,w

(
2

b− a

∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣ ,
|f ′(a)| , |f ′(b)| , t

)
+

∫ 1

0

Lw(t)dt ≤ 0.

The proof of Theorem 2.7 is completed. �

Corollary 2.8. Under assumptions of Theorem 2.7, if we choose

F (e1, e2, e3, e4) = e1 − e4e2 − (1− e4)e3 − ε,

then the function |f ′| is ε-convex on [a, b] , ε ≥ 0 and we have the following new
inequality: ∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣
≤ (b− a)

2Λ(1)

 1∫
0

t |Λ(1− t)− Λ(t)| dt

 [|f ′(a)|+ |f ′(b)|] (2.8)

+ε
(b− a)

2Λ(1)

1∫
0

|Λ(1− t)− Λ(t)| dt.

Proof. From (1.4) with w(t) = |Λ(1−t)−Λ(t)|
Λ(1) , we have

1∫
0

Lw(t)dt = ε

1∫
0

(1− |Λ(1− t)− Λ(t)|
Λ(1)

)dt

= ε

1−
1∫

0

|Λ(1− t)− Λ(t)|
Λ(1)

dt

 .
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Using (1.3) with w(t) = |Λ(1− t)− Λ(t)|, we get

TF,w(e1, e2, e3) = e1 −

 1∫
0

t
|Λ(1− t)− Λ(t)|

Λ(1)
dt

 e2

−

 1∫
0

(1− t) |Λ(1− t)− Λ(t)|
Λ(1)

dt

 e3 − ε

= e1 −

 1∫
0

t
|Λ(1− t)− Λ(t)|

Λ(1)
dt

 (e2 + e3)− ε

for e1, e2, e3 ∈ R. Then, by Theorem 2.7, we have

0 ≥ TF,w

(
2

b− a

∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣,
|f ′(a)| , |f ′(b)| , t

)
+

∫ 1

0

Lw(t)dt

=
2

b− a

∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣
−

 1∫
0

t
|Λ(1− t)− Λ(t)|

Λ(1)
dt

 [|f ′(a)|+ |f ′(b)|]

+ε

1−
1∫

0

(|Λ(1− t)− Λ(t)|
Λ(1)

dt

− ε.
This completes the proof. �

Remark 2.9. If we choose ε = 0 in Corollary 2.8, then |f ′| is convex and we have the
inequality: ∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣
≤ (b− a)

2Λ(1)

 1∫
0

t |Λ(1− t)− Λ(t)| dt

 [|f ′(a)|+ |f ′(b)|] , (2.9)

which is given by Sarikaya and Ertuğral in [22].

Corollary 2.10. Under assumption of Theorem 2.7, if we choose

F (e1, e2, e3, e4) = e1 − h(e4)e2 − h(1− e4)e3,
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then the function |f ′| is h-convex on [a, b] and we have the inequality:∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣
≤ (b− a)

Λ(1)

[
|f ′(a)|+ |f ′(b)|

2

] 1∫
0

h(t) |Λ(1− t)− Λ(t)| dt

 , (2.10)

which is given by Ali et al. in [1].

Proof. From (1.8) with w(t) = |Λ(1− t)− Λ(t)|, we have

TF,w(e1, e2, e3) = e1 −

 1∫
0

h(t)
|Λ(1− t)− Λ(t)|

Λ(1)
dt

 e2

−

 1∫
0

h(1− t) |Λ(1− t)− Λ(t)|
Λ(1)

dt

 e3

= e1 −

 1∫
0

h(t)
|Λ(1− t)− Λ(t)|

Λ(1)
dt

 e2 −

 1∫
0

h(t)
|Λ(1− t)− Λ(t)|

Λ(1)
dt

 e3

= e1 −

 1∫
0

h(t)
|Λ(1− t)− Λ(t)|

Λ(1)
dt

 (e2 + e3)

for e1, e2, e3 ∈ R. Then, by Theorem 2.7, we have

TF,w

(
2

b− a

∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣ , |f ′(a)| , |f ′(b)| , t

)

=
2

b− a

∣∣∣∣f (a) + f (b)

2
− 1

2Λ(1)
[a+Iϕf(b) + b−Iϕf(a)]

∣∣∣∣
−

 1∫
0

h(t)
|Λ(1− t)− Λ(t)|

Λ(1)
dt

 [|f ′(a)|+ |f ′(b)|] ≤ 0.

This completes the proof. �

Remark 2.11. If we take ϕ(t) = tα

Γ(α) in Theorem 2.7, then the inequality (2.7) reduces

to the inequality (1.13).

Corollary 2.12. If we take ϕ(t) = t
α
k

kΓk(α) in Theorem 2.7, then we have the following

inequalities for k-Riemann-Liouville fractional integrals

TF,w

(
2

b− a

∣∣∣∣f (a) + f (b)

2
− Γk(α+ 1)

2(b− a)
α
k

[
Iαa+, kf(b) + Iαb−, kf(a)

]∣∣∣∣ , |f ′(a)| , |f ′(b)| , t

)

+

∫ 1

0

Lw(t)dt ≤ 0, where w(t) =
∣∣(1− t)αk − tαk ∣∣ .
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3. Conclusion

In the development of this work, using the definition of F–convex functions some
new Hermite–Hadamard type inequalities via generalized fractional integrals have
been deduced. Also, this class of functions can be applied to obtain several results in
convex analysis, related optimization theory, etc. The authors hope that these results
will serve as a motivation for future work in this fascinating area.
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exponents
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Abstract. The paper deals with a nonlinear elasticity system with nonconstant
coefficients. The existence and uniqueness of the solution of Neumann’s problem
is proved using Galerkin techniques and monotone operator theory, in Sobolev
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1. Introduction

The study of PDE problems with variable exponents is a novel and quite inter-
esting topic. It comes from the theory of nonlinear elasticity, elastic mechanics, fluid
dynamics, electrorheological fluids, and image processing, etc. (see [1], [15], [16]).
First, we introduce the notations needed in this article. Let Ω an connected open
bounded domain of RN (N = 3) with Lipschitz boundary Γ. To a given field of dis-
placement u, we associate a nonlinear deformation tensor E defined by

E (∇u(x)) =
1

2

(
∇uT +∇u+∇uT∇u

)
,

whose components are:

Eij (∇u(x)) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+

3∑
m=1

∂um
∂xi

∂um
∂xj

)
, 1 ≤ i, j ≤ 3. (1.1)

Received 09 June 2019; Accepted 21 August 2019.
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The corresponding nonlinear constraints tensor σ(u) = (σij(u(x)))1≤i,j≤3 is then
given by:

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)), 1 ≤ i, j ≤ 3, (1.2)

which describes a nonlinear relation between the stress tensor (σij)i,j=1,2,3 and the de-

formation tensor (Eij)i,j=1,2,3. The coefficients of elasticity aijkh satisfy the following
symmetry properties:

aijkh = ajikh = aijhk, for all 1 ≤ i, j, k, h ≤ 3. (1.3)

The aim of this paper is to prove the existence and uniqueness of weak solutions
for the following nonlinear elliptic problem, encountered in the theory of nonlinear
elasticity:

−
3∑
j=1

∂

∂xj
σij(u(x)) = fi(x, u(x)) in Ω, 1 ≤ i ≤ 3,

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)) in Ω, 1 ≤ i, j ≤ 3,

Eij (∇u(x)) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi
+

3∑
m=1

∂um

∂xi

∂um

∂xj

)
in Ω, 1 ≤ i, j ≤ 3,

3∑
j=1

σij (u (x)) ηj = 0 on Γ, 1 ≤ i ≤ 3.

(P )

Problem (P ) models the behavior of a heterogeneous material with Neumann’s condi-
tion on the boundary. The consideration of this general material is in no way restric-
tive. Indeed, we can applied this study to the most particular elastic materials, but
this particular case makes it easy, to describe the different stages of this work. The
tensor of the constraints considered here is nonlinear and grouped, as special cases,
some models used in Ciarlet [2], Dautry-Lions [4] and Lions [10]. Let us cite by way
of example (see [2] , [8]):

1. The problem of displacement for a homogeneous or heterogeneous material of St
Vennan-Kirchhoff where:

- the applied volumetric forces f are dead (does not depend on u),
- the tensor of stress is in the form (material of StVennan-Kirchhoff):{

σij(u(x)) = λ(trEij(∇u(x))) + 2µEij(∇u(x)),
1 ≤ i, j ≤ 3, λ > 0, µ > 0,

2. The coefficients of elasticity have the form:

aijpq = λδijδpq + µ(δipδjq + δiqδjp), 1 ≤ i, j, p, q ≤ 3

with, λ and µ depend on x or not,

3. The applied volumetric forces f have the form f(ξ) = |ξ|p(x)−1
ξ ,

4. Some models called ”LES” (Large Eddy Simulations) used in fluid mechanics.
These problems are:

−div(ψ(x)a(∇u(x))) = f(x).
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For ψ ≡ 1 and a(ξ) = |ξ|p(x)−2
ξ, the above equation may be described by:

−div(|∇u|p(x)−2∇u) = f.

The operator ∆p(x) : u −→ ∆p(x)(u) = div(|∇u|p(x)−2∇u) is called the p (x)-
Laplacian.

Several authors studied the system of elasticity with laws of particular behavior and
using various techniques in constant exposants Sobolev spaces for example in [2]
Ciarlet used the implicit function theorem to show the existence and uniqueness of
a solution, in [4] Dautry-Lions studied the linear problem in a regular boundary
domain, in [11], [12], [13] Merouani studied the Lamé (elasticity) system in a polygonal
boundary domain.
The bibliography quoted here does not claim to be exhaustive and the deficiencies it
certainly entails must be attributed to the author’s ignorance and not to the author’s
ill will.

To solve our problem, we will consider an operator: u→ A(u) = −
3∑
j=1

∂

∂xj
σij(u(x)) as

operator of Leray-Lions [9], with Neumann’s condition on Γ, and we prove a theorem of
existence and uniqueness of solution using Galerkin techniques and monotone operator
theory.
This paper is organized as follows:

- Notations and properties of variable exponent Lebesgue-Sobolev spaces,
- Hypotheses and main result,
- Proof of theorem,
- Conclusion and bibliography.

2. Properties of variable exponent Lebesgue-Sobolev spaces

In this section, we recall some definitions and basic properties of the generalized

Lebesgue–Sobolev spaces Lp(x) (Ω), W 1,p(x) (Ω) and W
1,p(x)
0 (Ω), when Ω is a bounded

open set of RN(N ≥ 1) with a smooth boundary.
Let p : Ω→ [1,+∞) be a continuous, real-valued function.
Denote by p− = min

x∈Ω
p(x) and p+ = max

x∈Ω
p(x).

We introduce the variable exponent Lebesgue space

Lp(x) (Ω) =

{
u : Ω→ R;u is measurable with

∫
Ω

|u (x)|p(x)
dx <∞

}
,

endowed with the Luxemburg norm

‖u‖Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u (x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

The following inequality will be used later

min
{
‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}
≤
∫

Ω

|u (x)|p(x)
dx ≤ max

{
‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}
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for any u ∈ Lp(x) (Ω) .

Lemma 2.1. [3], [5], [6], [7]

• The space
(
Lp(x) (Ω) , ‖.‖Lp(x)(Ω)

)
is a Banach space.

• If p− > 1, then Lp(x) (Ω) is reflexive and its conjugate space can be identified

with Lp
′(x) (Ω) where, 1

p(x) + 1
p′(x) = 1. Moreover, for any u ∈ Lp(x) (Ω) and

v ∈ Lp′(x) (Ω), we have the Hölder inequality∫
Ω

|uv| dx ≤
(

1

p−
+

1

p′−

)
‖u‖Lp(x)(Ω) ‖v‖Lp′(x)(Ω) ≤ 2 ‖u‖Lp(x)(Ω) ‖v‖Lp′(x)(Ω) .

• If p+ < +∞, then Lp(x) (Ω) is separable.
• Some embedding stay true, for example, if 0 < |Ω| < ∞ and p1, p2 are vari-

able exponent so that p1 (x) ≤ p2 (x) almost everywhere in Ω, then we have
Lp2(x) (Ω) ↪→ Lp1(x) (Ω).

Now, we define also the variable Sobolev space by

W 1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)

}
,

endowed with the following norm

‖u‖W 1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) .

Definition 2.2. The variable exponent p : Ω→ [1,+∞) is said to satisfy the log-Hölder
continuous condition if

∀x, y ∈ Ω, |x− y| < 1, |p (x)− p (y)| < w (|x− y|) ,

where w : (0,∞)→ R is a nondecreasing function with lim
α→0

supw (α) ln
(

1
α

)
<∞.

Lemma 2.3. [3], [5], [6], [7]

• If 1 < p− ≤ p+ < ∞, then the space
(
W 1,p(x) (Ω) , ‖.‖W 1,p(x)(Ω)

)
is a separable

and reflexive Banach space.
• If p(x) satisfies the log-Hölder continuous condition, then C∞ (Ω) is dense

in W 1,p(x) (Ω). Moreover, we can define the Sobolev space with zero bound-

ary values, W
1,p(x)
0 (Ω) as the completion of C∞0 (Ω) with respect to the norm

‖.‖W 1,p(x)(Ω) .

• For all u ∈W 1,p(x)
0 (Ω), the Poincaré inequality

‖u‖Lp(x)(Ω) ≤ C ‖∇u‖Lp(x)(Ω) ,

holds. Moreover, ‖u‖
W

1,p(x)
0 (Ω)

= ‖∇u‖Lp(x)(Ω) is a norm in W
1,p(x)
0 (Ω).

Throughout this paper, we shall assume that the variable exponent p(x) sat-
isfy the log-Hölder condition, and N < p− ≤ p+ < ∞ because if p (x) > N then
W 1,p(x) (Ω) ⊂ C (Ω) for every x ∈ Ω.
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3. Hypotheses and main result

We consider the following problem:

−
3∑
j=1

∂

∂xj
σij(u(x)) = fi(x, u(x)) in Ω, 1 ≤ i ≤ 3,

σij(u(x)) =
3∑

k,h=1

aijkh(x) Ekh(∇u(x)) in Ω, 1 ≤ i, j ≤ 3,

Eij (∇u(x)) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi
+

3∑
m=1

∂um

∂xi

∂um

∂xj

)
in Ω, 1 ≤ i, j ≤ 3,

3∑
j=1

σij (u (x)) ηj = 0 on Γ, 1 ≤ i ≤ 3.

(3.1)

This problem being that of Neumann, we must impose the necessary conditions of
existence namely the condition of compatibility:∫

Ω

fdx = 0.

This is the hypotheses which concern Ekh and f :

∀i, j, k, h = 1 to 3 :
1) Ekh is a continuous function,

2) (Coercivity) ∃α > 0; such that Ekh (ξ) ξij ≥ α |ξ|p(x)
,

∀ξ ∈ R3×3 and, ξij ∈ R,
3) (Increase) ∃C ∈ R; |Ekh (ξ)| ≤ C

(
1 + |ξ|p(x)−1

)
,

4) (Ekh (ξ)− Ekh (η)) (ξij − ηij) ≥ 0,∀ξ, η ∈ R3×3, and
ξij , ηij ∈ R,

5) aijkh ∈ L∞ (Ω) ; ∃α0 > 0; aijkh ≥ α0 a.e. in Ω,
6) f = (f1, f2, f3) is a Caratheodory function and,

f ∈
(
L

p(x)
p(x)−1 (Ω)

)3

.

(3.2)

Let us look for an adequate weak form of (3.1). Note that if w ∈
(
Lp(x)(Ω)

)9
, then

the growth condition on Ekh gives

|Ekh (w)| ≤ C
(

1 + |w|p(x)−1
)

≤
(
C + C |w|p(x)−1

)
∈ L

p(x)
p(x)−1 (Ω) , 1 ≤ k, h ≤ 3.

So, if u ∈ H, we have Ekh (∇u) ∈ Lp′(x) (Ω) . Or

H =

{
u ∈

(
W 1,p(x) (Ω)

)3

,
1

mes (Ω)

∫
Ω

u (x) dx = 0

}
,

is a closed vector subspace of
(
W 1,p(x) (Ω)

)3
, provided with the norm

‖u‖H = ‖∇u‖Lp(x)(Ω) ,
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which is equivalent to the norm of
(
W 1,p(x) (Ω)

)3
. We note that:(

W 1,p(x) (Ω)
)3

= H ⊕ F,

where F is the space of constants. Let’s take then v ∈ H, we have ∇v ∈
(
Lp(x) (Ω)

)9
.

So we obtain from the inequality of Hölder:

Ekh (∇u)
∂vi
∂xj
∈ L1 (Ω) ,∀ i, j, k, h = 1 to 3.

It is therefore natural to look u ∈ H and take the test functions in H. We also

recall that if f(., s) ∈
(
Lp
′(x) (Ω)

)3

, the mapping v →
∫

Ω

f(x, u(x))v (x) dx acting

from H to R, is an element of H ′. We denote by f this element, that is to say for

f ∈
(
Lp
′(x) (Ω)

)3

, we have

〈f, v〉H′,H =

∫
Ω

f (x, u(x)) v (x) dx, ∀v ∈ H.

The weak form of (3.1) is thus:
u ∈ H,∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx = 〈f, v〉H′,H , ∀v ∈ H. (3.3)

Theorem 3.1. Under the hypotheses (3.2), there exist u ∈ H solution of (3.3). If,
moreover, (Ekh (ξ)− Ekh (η)) (ξij − ηij) > 0, for all ξ, η ∈ R3×3, ξij , ηij ∈ R, ξij 6= ηij
then there exist a unique solution u of (3.3).

For the proof of this theorem, we will need the following (classical) integration lemmas:

Lemma 3.2. Let p : Ω → ]1,+∞[ . If fn → f in Lp(x) (Ω) and gn → g weakly in

Lp
′(x) (Ω) . So ∫

Ω

fngndx→
∫

Ω

fgdx when n→∞.

Demonstration of lemma (3.2). We have:∣∣∣∣∫
Ω

(fn gn − f g) dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(fn gn − f g − f gn + f gn) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

[(fn − f) gn + f (gn − g)] dx

∣∣∣∣
≤
∫

Ω

|fn − f | |gn| dx+

∣∣∣∣∫
Ω

f (gn − g)dx

∣∣∣∣
≤ 2. ‖fn − f‖Lp(x)(Ω) ‖gn‖Lp′(x)(Ω) + |〈gn − g, f〉| → 0.

Lemma 3.3. If Ekh ∈ C
(
R3×3,R

)
, |Ekh (ξ)| ≤ C

(
1 + |ξ|p(x)−1

)
, k, h = 1 to 3, for

all ξ ∈ R3×3 and if un → u in
(
W 1,p(x) (Ω)

)3
then Ekh (∇un)→ Ekh (∇u) , k, h = 1

to 3, in Lp
′(x) (Ω) .
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The lemma (3.3) is proved by Lebesgue’s dominated convergence theorem.

Remark 3.4. [14] Let p ∈ L∞+ (Ω) = {p ∈ L∞ (Ω) , p− ≥ 1}, (un) ⊂ Lp(x) (Ω) and u ∈
Lp(x) (Ω). If lim

n→∞
‖un − u‖Lp(x)(Ω) = 0. Then there exist a subsequence (unj) ⊂ (un)

and a function g ∈ Lp(x) (Ω) such that:
(i) unj → u a.e. in Ω,
(ii) |unj | ≤ g(x) a.e. in Ω.

Demonstration of lemma (3.3). un → u in
(
W 1,p(x) (Ω)

)3
involves: un → u in(

Lp(x) (Ω)
)3

and ∇un → ∇u in
(
Lp(x) (Ω)

)9
.

∇un → ∇u in
(
Lp(x) (Ω)

)9
involves ∇un → ∇u a.e. in Ω, and as Ekh is continuous

then:

Ekh (∇un)→ Ekh (∇u) a.e., k, h = 1 to 3

we have also

|Ekh (∇un)| ≤ (C + C |∇un|p(x)−1
) ∈ L

p(x)
p(x)−1 (Ω) , k, h = 1 to 3.

So we deduce that

Ekh (∇un)→ Ekh (∇u) in L
p(x)

p(x)−1 (Ω) .

We will also need for the proof the following lemma:

Lemma 3.5. (Finite-dimensional coercive operator) Let V be a finite-dimensional
space, and T : V → V ′ continuous. We suppose that T is coercive, namely:

〈T (v) .v〉V ′,V
‖v‖V

→ +∞ when ‖v‖V → +∞.

Then, for every b ∈ V ′ there exist v ∈ V such that T (v) = b.

4. Proof of theorem

Study of finite dimension problem

Since H is separable, (because H is a closed vector subspace of
(
W 1,p(x) (Ω)

)3
,

and
(
W 1,p(x) (Ω)

)3
is a Banach space separable) then there exist a countable family

(fn)n∈N∗ dense in H. Let Vn = V ect {fi, i = 1, ..., n} be the vector space generated
by the first n functions of this family. So we have dimVn ≤ n, Vn ⊂ Vn+1 for all
n ∈ N∗ and we have ∪

n∈N
Vn = H. We deduce that for all v ∈ H there exist a sequence

vn ∈ Vn, such that vn → v in H when n→ +∞.
In the first step, we fix n ∈ N∗ and look for un solution of the following problem,
posed in finite dimension:

un ∈ Vn,∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂vi
∂xj

dx = 〈f, v〉H′,H , ∀v ∈ Vn. (3.4)
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The application v → 〈f, v〉H′,H is a linear mapping of Vn to R (it is also continuous

because dimVn < +∞). We denote by bn this application. So bn ∈ V ′n and

〈bn, v〉V ′n,Vn
= 〈f, v〉H′,H .

Let u ∈ Vn. We denote by Tn (u) the mapping of Vn into V ′n which has v ∈ Vn
associated ∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx.

This application is linear, so it is also an element of V
′

n and we have

〈Tn (u) , v〉
V ′n,Vn

=

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx.

We have thus defined an application T of Vn to V ′n. We shall show that T is continuous
and coercive. We can thus deduce by the lemma (3.5), that T is surjective, and
therefore that there exist un ∈ Vn satisfying T (un) = bn, that is to say un is the
solution of the problem (3.4).
Continuity of Tn. To ease the writing, we note V = Vn equipped with ‖u‖V = ‖u‖H
and note T = Tn. Let u, u ∈ V, we have:

‖T (u)− T (u)‖V ′ = max
v∈V, ‖v‖V =1

〈T (u)− T (u) , v〉V ′,V

= max
v∈V, ‖v‖H=1

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇u)− Ekh (∇u))
∂vi
∂xj

dx,

≤ max
v∈H, ‖v‖H=1

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇u)− Ekh (∇u))
∂vi
∂xj

dx.

Putting

a = ‖aijkh‖L∞(Ω) ,

we obtain by Hölder inequality

‖T (u)− T (u)‖V ′

≤ max
v∈H,‖v‖H=1

2a
3∑

i,j=1

3∑
k,h=1

‖Ekh (∇u)− Ekh (∇u)‖Lp′(x)

∥∥∥∥ ∂vi∂xj

∥∥∥∥
Lp(x)(Ω)

≤ 2a
3∑

i,j=1

3∑
k,h=1

‖Ekh (∇u)− Ekh (∇u)‖Lp′(x)(Ω) .

Thus if (un)n∈N is a sequence of V such that un → u in V , we have

‖T (un)− T (u)‖V ′ ≤ 2a
3∑

i,j=1

3∑
k,h=1

‖Ekh (∇un)− Ekh (∇u)‖Lp′(x)(Ω) .

As the norm in H equivalent to the norm in
(
W 1,p(x) (Ω)

)3
, then un → u in V involves

un → u in
(
W 1,p(x) (Ω)

)3
.

In view of lemma (3.3), we obtain Ekh (∇un) → Ekh (∇u) in Lp
′(x) (Ω) , ∀k, h = 1
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to 3. We have thus shown that T (un)→ T (u) in V ′, so T is continuous.
Coercivity of Tn. Taking into account, definition and assumptions (3.2), we obtain:

〈T (u) .u〉V ′,V =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂ui
∂xj

dx,

≥ α0

∫
Ω

3∑
i,j=1

3∑
k,h=1

Ekh(∇u(x))
∂ui
∂xj

dx,

≥ α0αC1

∫
Ω

|∇u|p(x)
dx,

≥ α0αC1 min
{
‖∇u‖p−

Lp(x)(Ω)
, ‖∇u‖p+

Lp(x)(Ω)

}
≥ α0αC1 min

{
‖u‖p−V , ‖u‖p+V

}
.

Consequently, the operator T is coercive. This yields the existence of solution for
problem (3.4) .

Study of infinite dimension problem

The solution of the problem (3.4) is obtained.
So to show the existence of u a solution of (3.3), we will estimate un the solution of
(3.4) and then by crossing to the limit when n→ +∞ we will have the solution u of
our problem (3.3).
Therefore that technique used to show that the limit of the nonlinear term is the
desired term.
a. Estimation on un
In view of coercivity, if we substitute v by un in (3.4), we obtain:

α0αC1

∫
Ω

|∇un|p(x)
dx ≤ ‖f‖H′ ‖un‖H ,

on the other hand

α0αC1 min
{
‖un‖p−H , ‖un‖p+H

}
≤ ‖f‖H′ ‖un‖H .

b. Passage to the limit
Since (un)n∈N is bounded in H, which is reflexive (because H is a closed vector

subspace of
(
W 1,p(x) (Ω)

)3
, and

(
W 1,p(x) (Ω)

)3
is a reflexive Banach space), we deduce

that there exist a subsequence denoted again (un)n∈N such that un → u weakly in H.

By hypothesis (3), the sequence (Ekh (∇un))n∈N is bounded in Lp
′(x) (Ω), hence there

exist ρ ∈ Lp′(x) (Ω) such that, with a close subsequence,

Ekh (∇un)→ ρ weakly in Lp
′(x) (Ω) .

Let v ∈ H, then there exist vn ∈ Vn, n ∈ N∗ such that

vn → v in H,

∇vn → ∇v in
(
Lp(x) (Ω)

)9

.
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We substitute v by vn in (3.4), we obtain:∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂vni
∂xj

dx

= 〈f, vn〉H′,H , ∀v ∈ Vn.

Since 〈f, vn〉 → 〈f, v〉 , Ekh (∇un)→ ρ weakly in Lp
′(x) (Ω) and ∂vni

∂xj
→ ∂vi

∂xj
for i = 1

to 3 strongly in Lp(x) (Ω) (because ∇vn → ∇v in
(
Lp(x) (Ω)

)9
strongly), using the

lemma (3.2), we obtain∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂vi
∂xj

dx = 〈f, v〉H′,H , ∀v ∈ H. (3.5)

We tend to conclude that ρ is equal to Ekh (∇u). Unfortunately, this is not obvious
because the Ekh are nonlinear.
c. Limit of nonlinear term
Finally, it remains to prove that

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂vi
∂xj

dx =∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇u(x))
∂vi
∂xj

dx, ∀v ∈ H.
(3.6)

(I) First, we have

lim
n→∞

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂uni
∂xj

dx

=

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂ui
∂xj

dx.

Indeed ∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂uni
∂xj

dx = 〈f, un〉 → 〈f, u〉

(II) Proof of (3.6)
Let v ∈ H, there exist (vn)n∈N such that vn ∈ Vn for all n ∈ N and vn → v in H
when n→ +∞. We will pass to the limit in the term∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇un(x))
∂vni
∂xj

dx,
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thanks to the hypothesis (4) of (3.2).
Indeed,

0 ≤
∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇un)− Ekh (∇vn))

(
∂uni
∂xj

− ∂vni
∂xj

)
dx

=

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇un)
∂uni
∂xj

dx−
∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇un)
∂vni
∂xj

dx

−
∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇vn)
∂uni
∂xj

dx+

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇vn)
∂vni
∂xj

dx

= T1,n − T2,n − T3,n + T4,n.

It has been seen that in (I):

lim
n→+∞

T1,n =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂ui
∂xj

dx,

we have

lim
n→+∞

T2,n =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂vi
∂xj

dx,

by a product of a strong convergence in Lp(x) (Ω) and a weak convergence in Lp
′(x) (Ω)

(lemma (3.2)).
The same

lim
n→+∞

T3,n =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇v)
∂ui
∂xj

dx,

by a product of a strong convergence in Lp
′(x) (Ω) and a weak convergence in Lp(x) (Ω).

Finally, we have

lim
n→+∞

T4,n =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇v)
∂vi
∂xj

dx,

by the product of a strong convergence in Lp
′(x) (Ω) and a strong convergence in

Lp(x) (Ω).
The passage to the limit in inequality thus gives:∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x) (ρ− Ekh (∇v))

(
∂ui
∂xj
− ∂vi
∂xj

)
dx ≥ 0 for all v ∈ H.

The function test v is now astutely chosen. We take v = u +
1

n
w with w ∈ H and

n ∈ N∗. We obtain

− 1

n

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)

(
ρ− Ekh

(
∇u+

1

n
∇w
))

∂wi
∂xj

dx ≥ 0,
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so ∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)

(
ρ− Ekh

(
∇u+

1

n
∇w
))

∂wi
∂xj

dx ≤ 0,

but u+
1

n
w → u in H, thus by the lemma (3.3),

Ekh

(
∇u+

1

n
∇w
)
→ Ekh (∇u) in Lp

′(x) (Ω) .

By passing to the limit when n→ +∞, we obtain then∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x) (ρ− Ekh (∇u))
∂wi
∂xj

dx ≤ 0, ∀w ∈ H.

By the linearity (we can change w in −w), we get:∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x) (ρ− Ekh (∇u))
∂wi
∂xj

dx = 0, ∀w ∈ H,

we deduce that∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)ρ
∂wi
∂xj

dx =

∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh (∇u)
∂wi
∂xj

dx, ∀w ∈ H.

We have thus proved that u is a solution of (3.3).

Uniqueness

We suppose that (Ekh (ξ)− Ekh (η)) (ξij − ηij) > 0, if ξij 6= ηij , and f does not
depend to u. Let u1 and u2 be two solutions:∫

Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)Ekh(∇ul(x))
∂vi
∂xj

dx = 〈f, v〉H′,H , l = 1, 2; ∀v ∈ H.

Subtracting term to term and substituting v by u1 − u2, we obtain:∫
Ω

3∑
i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇u1)− Ekh(∇u2))(
∂u1i

∂xj
− ∂u2i

∂xj
)dx = 0.

Since

M =
3∑

i,j=1

3∑
k,h=1

aijkh(x)(Ekh (∇u1)− Ekh(∇u2))(
∂u1i

∂xj
− ∂u2i

∂xj
) ≥ 0,

and M > 0 if
∂u1i

∂xj
6= ∂u2i

∂xj
; we get

∂u1i

∂xj
=
∂u2i

∂xj
a.e. ∀i, j = 1 to 3, and thus u1 = u2

a.e.
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5. Conclusion

In this work, we consider the nonlinear elasticity system as Leray–Lions’s oper-
ators with variable exponents, to study the existence and uniqueness of Neumann’s
problem solution by Galerkin techniques and monotone operator theory. It has been
found that these techniques adapt well to this type of problems with different bound-
ary conditions.
From a perspective of this work, first, we will consider the same problem with the
boundary conditions Robin, Tresca, and secondly, the boundary conditions no homo-
geneous of Dirichlet, Neumann, mixed and Robin.
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Stud. Univ. Babeş-Bolyai Math. 67(2022), No. 1, 181–188
DOI: 10.24193/subbmath.2022.1.13

Bounds for blow-up time in a semilinear parabolic
problem with variable exponents

Abita Rahmoune and Benyattou Benabderrahmane

Abstract. This report deals with a blow-up of the solutions to a class of semi-
linear parabolic equations with variable exponents nonlinearities. Under some
appropriate assumptions on the given data, a more general lower bound for a
blow-up time is obtained if the solutions blow up. This result extends the recent
results given by Baghaei Khadijeh et al. [8], which ensures the lower bounds for
the blow-up time of solutions with initial data ϕ (0) =

∫
Ω
u0

kdx, k = constant.
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1. Introduction

In this paper, we are concerned with the following semilinear parabolic equation ut −∆u = up(x), x ∈ Ω, t > 0
u = 0 on Γ, t ≥ 0

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,
(1.1)

where Ω be a bounded domain in Rn, with a smooth boundary Γ = ∂Ω, T ∈ (0,+∞],
and the initial value u0 ∈ H1

0 (Ω) , the exponent p (.) is given measurable function on
Ω such that:

1 < p1 = ess inf
x∈Ω

p (x) ≤ p (x) ≤ p2 = ess sup
x∈Ω

p (x) <∞, (1.2)

and satisfy the following Zhikov-Fan uniform local continuity condition:

|p (x)− p (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0. (1.3)

The problem (1.1) arises from many important mathematical models in engineering
and physical sciences. For example, nuclear science, chemical reactions, heat transfer,

Received 28 August 2019; Accepted 21 April 2020.
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population dynamics, biological sciences, etc., and have interested a great deal of
attention in the research, see [4, 7, 9] and the references therein. For problem (1.1),
Hua Wang et al. [10] established a blow-up result with positive initial energy under
some suitable assumptions on the parameters p(.) and u0. In [9], the authors proved
that there are non-negative solutions with a blow-up in finite time if and only if
p2 > 1. The authors in [11] obtained the solution of problem (1.1) blows up in finite
time when the initial energy is positive. The following problem was considered by R.
Abita in [3]

ut −∆ut −∆u = up(x), x ∈ Ω, t > 0.

The author proved that the nonnegative classical solutions blow-up in finite time with
arbitrary positive initial energy and suitable large initial values. Also, he employed
a differential inequality technique to obtain an upper bound for blow-up time if p(.)
and the initial value satisfies some conditions. In [8], the authors based exactly on
the idea on the one in [6], derived the lower bounds for the time of blow-up, if the
solutions blow-up. In order to declare the main results of this paper, we need to add
the following energy functional corresponding to the problem (1.1) (see [2])

E (t) =
1

2

∫
Ω

|∇u (t)|2 dx−
∫

Ω

1

p (x) + 1
u (x, t)

p(x)+1
dx. (1.4)

2. Lower bounds of the blow-up time

In this section, we investigate the lower bound for the blow-up time T in some
suitable measure. The idea of the proof of the following theorem is inspired by on the
one in [6]. For this goal, we start by the following lemma concerning the energy of the
solution.

Lemma 2.1. Let u(x, t) be a weak solution of (1.1), then E(t) is a nonincreasing
function on [0, T ], that is

dE (t)

dt
= −

∫
Ω

u2
t (x, t) dx ≤ 0 (2.1)

and the inequality E(t) ≤ E(0) is satisfied.

We consider the following partition of Ω,

Ω− = {x ∈ Ω | 1 > (k (x)− 1) ln |u|} , Ω+ = {x ∈ Ω | 1 ≤ (k (x)− 1) ln |u|} , ∀t > 0

where each Ω± depends on t, and setting

Ẽ (0) =
1

2

∫
Ω−
|∇u0|2 dx−

∫
Ω−

1

p (x) + 1
u
p(x)+1
0 dx.

Now, we are in a position to affirm our principal theorem results.

Theorem 2.2. Assume u0 ∈ Lk(.) (Ω), and the nonnegative weak solution u(x, t) of
problem (1.1) blows up in finite time T , then T has a lower bound by:∫ +∞

ϕ(0)

dγ

C1 + C2γ
3n−6
3n−8

, (2.2)
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where

ϕ (0) =

∫
Ω

1

k (x) (k (x)− 1)
u0
k(x)dx, (2.3)

where k (.) is a measurable function on Ω such that

max (1, 2 (n− 2) (p2 − 1)) < k1 = ess inf
x∈Ω

k (x) ≤ k (x) ≤ k2

= ess sup
x∈Ω

k (x) <∞, (2.4)

and √
Ck = sup

x∈Ω

|∇k (x)| ∈ L2 (Ω) , Ck > 0 (2.5)

and Ci (i = 1, 2) are positive constants will be described later.

Notation 2.3. We note that the presence of the variable-exponent nonlinearities in
(2.6) below, makes analysis in the paper somewhat harder than that in the related
ones, we will establish and give a precise estimate for the lifespan T of the solution
in this case. The method used here is the differential inequality technique. However,
our argument is considerably different and it is more abbreviated.

Proof of Theorem (2.2). Set

ϕ (t) =

∫
Ω

1

k (x) (k (x)− 1)
u (x, t)

k(x)
dx. (2.6)

Multiplying the equation Eq. (1.1) by u and integrating by parts, we see

ϕ′ (t) =

∫
Ω

1

k (x)− 1
uk(x)−1utdx =

∫
Ω

1

k (x)− 1
uk(x)−1

(
∆u+ up(x)

)
dx

=

∫
Ω

1

k (x)− 1
uk(x)−1∆udx+

∫
Ω

1

k (x)− 1
uk(x)+p(x)−1dx

= −
∫

Ω

∇
(

1

k (x)− 1
uk(x)−1

)
∇udx+

∫
Ω

1

k (x)− 1
|u|k(x)+p(x)−1

dx

where we have used the divergence theorem, the boundary condition on u.

It is straightforward to check that

∇
(

1

k (x)− 1
uk(x)−1

)
= uk(x) |u|−2∇u+

∇k (x)

k (x)− 1
uk(x)−1

(
ln |u| − 1

k (x)− 1

)
then, we get

ϕ′ (t) = −
∫

Ω

uk(x) |u|−2 |∇u|2 dx+

∫
Ω

1

k (x)− 1
uk(x)+p(x)−1dx+Q (2.7)

where

Q =

∫
Ω

uk(x)−1

(
1

(k (x)− 1)
2 −

1

(k (x)− 1)
ln |u|

)
∇k (x) .∇udx
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Considering the following properties of the function G,

G (λ) =
λγ

γ2
(1− γ lnλ) , 0 ≤ λ ≤ e

1
γ ;

G (0) = G
(
e

1
γ

)
= 0, G′ (λ) = −λγ−1 lnλ, max

0≤λ≤e
1
γ

G (λ) = G (1) =
1

γ2
,

and using the fact that∫
Ω−
|∇u|2 dx ≤ 2Ẽ (0) + 2

∫
Ω−

1

p (x) + 1
u (x, t)

p(x)+1
dx, (by (1.4) and (2.1))

applying the Hölder, Young inequalities and (2.5), Q is evaluated as follows:

Q =

∫
Ω

uk(x)−1

(
1

(k (x)− 1)
2 −

1

k (x)− 1
ln |u|

)
∇k (x) .∇udx

=

∫
Ω∩(1>(k(x)−1) ln|u(x,t)|)

uk(x)−1

(
1

(k (x)− 1)
2 −

1

k (x)− 1
ln |u|

)
∇k (x) .∇udx

∫
Ω∩(1≤(k(x)−1) ln|u(x,t)|)

uk(x)−1

(
1

(k (x)− 1)
2 −

1

k (x)− 1
ln |u|

)
∇k (x) .∇udx

≤
∫

Ω−

1

(k (x)− 1)
2 |u|

k(x)−1
(1− (k (x)− 1) ln |u|) |∇u| |∇k (x)| dx

≤
∫

Ω−

1

(k (x)− 1)
2 |∇k (x)| |∇u| dx ≤ 1

2 (k1 − 1)
2

(
Ck +

∫
Ω−
|∇u|2 dx

)
≤ 1

2 (k1 − 1)
2

(
Ck + 2E (0) + 2

∫
Ω−

1

p (x) + 1
u (x, t)

p(x)+1
dx

)
≤ 1

2 (k1 − 1)
2

(
Ck + 2E (0) +

2

p1 + 1
max

(∫
Ω−
|u|p2+1

dx,

∫
Ω−
|u|p1+1

dx

))
≤ 1

(k1 − 1)
2

(
1

2
Ck + E (0) +

1

p1 + 1
e
p2+1
k1−1 |Ω|

)
. (2.8)

Because in Ω+, we have∫
Ω+

|u|k(x)−1

(
1

(k (x)− 1)
2 −

1

k (x)− 1
ln |u|

)
|∇k (x)| dx ≤ 0,

while that of the first term in the right-hand side of (2.7) was estimated as follows

−
∫

Ω

|u|k(x)−2 |∇u|2 dx ≤ −min

(∫
Ω

|u|k2−2 |∇u|2 dx,
∫

Ω

|u|k1−2 |∇u|2 dx
)
.

Using the fact

|∇uγ | = γuγ−1 |∇u|
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to get

−
∫

Ω

|u|k(x)−2 |∇u|2 dx ≤ −min

(
4

(k2)
2

∫
Ω

∣∣∣∇u k22 ∣∣∣2 dx, 4

(k1)
2

∫
Ω

∣∣∣∇u k12 ∣∣∣2 dx) (2.9)

Plugging this estimate (2.8) and (2.9) into (2.7), we obtain

ϕ′ (t) ≤ min

(
−4

(k2)
2

∫
Ω

∣∣∣∇u k22 ∣∣∣2 dx, −4

(k1)
2

∫
Ω

∣∣∣∇u k12 ∣∣∣2 dx)

+
1

k1 − 1

∫
Ω

uk(x)+p2−1dx+
1

k1 − 1

∫
Ω

uk(x)+p1−1dx

+
1

(k1 − 1)
2

(
1

2
Ck + E (0) +

1

p1 + 1
e
p2+1
k1−1 |Ω|

)
(2.10)

By using (2.4), we can apply the Hölder and Young inequalities to get∫
Ω

uk(x)+p2−1dx ≤
∫

Ω

1.α1dx+

∫
Ω

α2.u
k(x)(2n−3)

2(n−2) dx (2.11)

≤ (supα1) |Ω|+ (supα2)

(∫
Ω

u
k(x)(2n−3)

2(n−2) dx

)
,

and ∫
Ω

uk(x)+p1−1dx ≤
∫

Ω

1.α3dx+

∫
Ω

α4.u
k(x)(2n−3)

2(n−2) dx (2.12)

≤
(

sup
Ω
α3

)
|Ω|+

(
sup

Ω
α4

)(∫
Ω

u
k(x)(2n−3)

2(n−2) dx

)
,

where

α1 = 1− 2 (n− 2) (k (x) + p2 − 1)

(2n− 3) k (x)
, α2 =

2 (n− 2) (k (x) + p2 − 1)

(2n− 3) k (x)
,

α3 = 1− 2 (n− 2) (k (x) + p1 − 1)

(2n− 3) k (x)
, α4 =

2 (n− 2) (k (x) + p1 − 1)

(2n− 3) k (x)
;

observe that α2 ≥ α4 and α1 ≤ α3.

Combining (2.11) and (2.12) with (2.10) give

ϕ′ (t) ≤ −1

2

4

(k2)
2

(∫
Ω

∣∣∣∇u k22 ∣∣∣2 dx+

∫
Ω

∣∣∣∇u k12 ∣∣∣2 dx)
+

2

k1 − 1

(
sup

Ω
α2

)∫
Ω

u
k(x)(2n−3)

2(n−2) dx

+
1

(k1 − 1)
2

(
1

2
Ck + E (0) +

1

p1 + 1
e
p2+1
k1−1 |Ω|

)
+
|Ω|

k1 − 1
sup

Ω
(α3 + α1) (2.13)
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We now make use of Schwarz’s inequality to the second term on the right-hand side
of (2.13) as follows∫

Ω

u
k(x)(2n−3)

2(n−2) dx ≤
(∫

Ω

uk(x)dx

) 1
2
(∫

Ω

u
k(x)(n−1)

n−2 dx

) 1
2

(2.14)

≤
(∫

Ω

uk(x)dx

) 3
4

(∫
Ω

(
u
k(x)
2

) 2n
n−2

dx

) 1
4

,

Next, by using the Sobolev inequality (see [5]), for n ≥ 3, we get∥∥∥∥u k(x)2

∥∥∥∥ n
2(n−2)

2n
n−2

≤ B
n

2(n−2) max

(∥∥∥∥∇u k22 ∥∥∥∥ n
2(n−2)

2

,

∥∥∥∥∇u k12 ∥∥∥∥ n
2(n−2)

2

)
(2.15)

≤ B
n

2(n−2)

(∥∥∥∥∇u k22 ∥∥∥∥ n
2(n−2)

2

+

∥∥∥∥∇u k12 ∥∥∥∥ n
2(n−2)

2

)
,

where B is the best constant in the Sobolev inequality.

By inserting the last inequality in (2.14) and (2.15), we have∫
Ω

u
k(x)(2n−3)

2(n−2) dx ≤

≤ B
n

2(n−2)

(∫
Ω

uk(x)dx

) 3
4

(∫
Ω

∣∣∣∣∇u k22 ∣∣∣∣2 dx
) n

4(n−2)

+

(∫
Ω

∣∣∣∣∇u k12 ∣∣∣∣2 dx
) n

4(n−2)

 ,

Now, we can use the Young inequality to get∫
Ω

u
k(x)(2n−3)

2(n−2) dx ≤ 2B
2n

3n−8
3n− 8

4 (n− 2) ε
n

3n−8

(∫
Ω

uk(x)dx

) 3(n−2)
3n−8

(2.16)

+
εn

4 (n− 2)

(∫
Ω

∣∣∣∣∇u k12 ∣∣∣∣2 dx+

∫
Ω

∣∣∣∣∇u k22 ∣∣∣∣2 dx
)

where ε is a positive constant to be determined later. Combining (2.16) with (2.13),
we obtain

ϕ′ (t) ≤ C1 + C2ϕ (t)
3(n−2)
3n−8 + C3

(∫
Ω

∣∣∣∇u k22 ∣∣∣2 dx+

∫
Ω

∣∣∣∇u k12 ∣∣∣2 dx) ,
where

C1 =
1

(k1 − 1)
2

(
1

2
Ck + E (0) +

1

p1 + 1
e
p2+1
k1−1 |Ω|

)
+
|Ω|

k1 − 1
sup

Ω
(α3 + α1)

C2 =
4

k1 − 1

(
sup

Ω
α2

)
B

2n
3n−8

3n− 8

4 (n− 2) ε
n

3n−8
,

C3 =
2

k1 − 1

εn

4 (n− 2)

(
sup

Ω
α2

)
− 2

(k2)
2
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If we choose ε > 0 such that

0 < ε ≤ 4 (n− 2) (k1 − 1)(
sup

Ω
α2

)
n (k2)

2

then, we obtain the differential inequality

ϕ′ (t) ≤ C1 + C2ϕ (t)
3(n−2)
3n−8 (2.17)

Integration of the differential inequality (2.17) from 0 to t leads to∫ ϕ(t)

ϕ(0)

dγ

C1 + C2γ
3(n−2)
3n−8

≤ t (2.18)

In fact, let t→ T−, (2.18) leads to∫ +∞

ϕ(0)

dγ

C1 + C2γ
3(n−2)
3n−8

≤ T.

where

ϕ (0) =

∫
Ω

1

k (x) (k (x)− 1)
u0
k(x)dx.

Thus, the proof is achieved. �
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Abstract. The aim of this paper is to study the existence and uniqueness of
solutions for some Fredholm integral equation systems by applying the vectorial
form of Maia’s fixed point theorem. Some abstract Gronwall lemmas and an
abstract comparison lemma are also obtained.
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1. Introduction

Let a, b ∈ R+, with a < b. Let C[a, b] be the set of all real valued functions
which are continuous on the interval [a, b]. Using a vectorial form of Maia’s fixed point
theorem, we study the existence and uniqueness of solutions (x1, x2) ∈ (C[a, b])2 for
the following Fredholm integral equation systems:x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

(1.1)

and x1(t) = g1(t) +
∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

(1.2)

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.

Received 20 October 2019; Revised 28 February 2020; Accepted 08 May 2020.
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2. Preliminaries

We recall here some notions, notations and results which will be used in the
sequel of this paper.

2.1. L-space

The notion of L-space was introduced in 1906 by M. Fréchet ([4]). It is an abstract
space in which works one of the basic tools in the theory of operatorial equations,
especially in the fixed point theory: the sequence of successive approximations method.

Let X be a nonempty set. Let s(X) :=
{
{xn}n∈N | xn ∈ X, n ∈ N

}
. Let c(X)

be a subset of s(X) and Lim : c(X) → X be an operator. By definition, the triple
(X, c(X), Lim) is called L-space (denoted by (X,→)) if the following conditions are
satisfied:

(i) if xn = x, for all n ∈ N, then {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x.
(ii) if {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x, then for all subsequences {xni

}i∈N of
{xn}n∈N, we have that {xni}i∈N ∈ c(X) and Lim{xni}i∈N = x.

A simple example of an L-space is the pair (X,
d→), where X is a nonempty set

and
d→ is the convergence structure induced by a metric d on X.
In general, an L-space is any nonempty set endowed with a structure implying a

notion of convergence for sequences. Other examples of L-spaces are: Hausdorff topo-
logical spaces, generalized metric spaces in Perov’ sense (i.e. d(x, y) ∈ Rm+ ), generalized
metric spaces in Luxemburg’ sense (i.e. d(x, y) ∈ R+ ∪ {+∞}), K-metric spaces (i.e.
d(x, y) ∈ K, where K is a cone in an ordered Banach space), gauge spaces, 2-metric
spaces, D-R-spaces, probabilistic metric spaces, syntopogenous spaces.

2.2. Picard operators and weakly Picard operators on L-spaces

Let (X,→) be an L-space. An operator f : X → X is called weakly Picard
operator (WPO) if the sequence of successive approximations, {fn(x)}n∈N, converges
for all x ∈ X and its limit (which generally depend on x) is a fixed point of f .

If an operator f is WPO and the fixed point set of f is a singleton, Ff = {x∗},
then by definition, f is called Picard operator (PO).

For a WPO, f : X → X, we define the operator f∞ : X → X, by

f∞(x) := lim
n→∞

fn(x).

Notice that, f∞(X) = Ff , i.e., f∞ is a set retraction of X on Ff .
If X is a nonempty set, then the triple (X,→,≤) is an ordered L-space if (X,→)

is an L-space and ≤ is a partial order relation on X which is closed with respect to
the convergence structure of the L-space.

In the setting of ordered L-spaces, we have some properties concerning WPOs
and POs.

Theorem 2.2.1 (Abstract Gronwall Lemma). Let (X,→,≤) be an ordered L-space and
f : X → X be an increasing WPO. Then:

(i) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞(x);
(ii) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞(x).
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In particular, if f is a PO and we denote Ff = {x∗}, then:

(i′) ∀ x ∈ X, x ≤ f(x) ⇒ x ≤ x∗;
(ii′) ∀ x ∈ X, x ≥ f(x) ⇒ x ≥ x∗.

Theorem 2.2.2 (Abstract Comparison Lemma). Let (X,→,≤) be an ordered L-space
and the operators f, g, h : X → X be such that:

(1) f ≤ g ≤ h;
(2) f, g, h are WPOs;
(3) g is increasing.

Then:

x, y, z ∈ X, x ≤ y ≤ z ⇒ f∞(x) ≤ g∞(y) ≤ h∞(z).

In particular, if f, g, h are POs and we denote Ff = {x∗}, Fg = {y∗}, Fh = {z∗},
then

∀ x, y, z ∈ X, x ≤ y ≤ z ⇒ x∗ ≤ y∗ ≤ z∗.

Regarding the theory of WPOs and POs see [12], [13], [15], [16], [18], [11], [17], [3].

2.3. Maia’s fixed point theorem

The following result was proved by M.G. Maia in [5].

Theorem 2.3.1. Let X be a nonempty set, d and ρ be two metrics on X and V : X → X
be an operator. We suppose that:

(1) there exists c > 0 such that, d(x, y) ≤ cρ(x, y), ∀ x, y ∈ X;
(2) (X, d) is a complete metric space;
(3) V : (X, d)→ (X, d) is continuous;
(4) V : (X, ρ)→ (X, ρ) is an l-contraction, i.e.,

∃ l ∈ [0, 1) such that ρ(V (x), V (y)) ≤ lρ(x, y), ∀ x, y ∈ X.

Then:

(i) FV = {x∗};
(ii) V : (X, d)→ (X, d) is PO.

Maia’s Theorem 2.3.1 remains true if we replace the condition (1) with the following
one:

(1′) there exists c > 0 such that, d(V (x), V (y)) ≤ cρ(x, y), ∀ x, y ∈ X.

Hence, we obtain the so called Rus’ variant of Maia’s fixed point theorem. More
considerations can be found in [11], [9], [10], [14].
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2.4. Matrices which converge to zero

We denote by Mm(R+) the set of all m ×m square matrices with positive real
elements, by Im the identity m×m matrix and by Om the zero m×m matrix.

A ∈Mm(R+) is said to be convergent to zero if An → Om as n→∞.
Some examples of matrices that converge to zero are the following:

a) A =

(
a a
b b

)
∈M2(R+), where a, b ∈ R+ and a+ b < 1;

b) A =

(
a b
a b

)
∈M2(R+), where a, b ∈ R+ and a+ b < 1;

c) A =

(
a b
0 c

)
∈M2(R+), where a, b, c ∈ R+ and max{a, c} < 1.

A classical result in matrix analysis is the following theorem (see [19], [1]), which
characterizes the matrices that converge to zero.

Theorem 2.4.1. Let A ∈Mm(R+). The following assertions are equivalent:

(1) A is convergent to zero;
(2) its spectral radius ρ(A) is strictly less than 1; that is, |λ| < 1, for any λ ∈ C

with det(A− λIm) = 0;
(3) the matrix (Im −A) is nonsingular and

(Im −A)−1 = Im +A+A2 + . . .+An + . . . ;

(4) the matrix (Im −A) is nonsingular and (Im −A)−1 has nonnegative elements.

Throughout this paper, we will make an identification between row and column vectors
in Rm.

2.5. Vector-valued metric spaces

Let X be a nonempty set. A mapping d : X ×X → Rm+ is called a vector-valued
metric on X if the following conditions are satisfied:

(1) d(x, y) = 0 ∈ Rm ⇔ x = y, for all x, y ∈ X;
(2) d(x, y) = d(y, x), for all x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

On Rm+ , the relation ≤ is defined in the component-wise sense.
Some examples of vector-valued metrics are the following:

Example 2.5.1. Let X := (C[a, b])2 and d : (C[a, b])2 × (C[a, b])2 → R2
+, defined by

d(x, y) :=

(
max
t∈[a,b]

|x1(t)− y1(t)|, max
t∈[a,b]

|x2(t)− y2(t)|
)
,

for all x = (x1, x2), y = (y1, y2) ∈ (C[a, b])2.

Example 2.5.2. Let X := (C[a, b])2 and ρ : (C[a, b])2 × (C[a, b])2 → R2
+, defined by

ρ(x, y) :=

(∫ b

a

|x1(t)− y1(t)|2dt

) 1
2

,

(∫ b

a

|x2(t)− y2(t)|2dt

) 1
2

 ,
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for all x = (x1, x2), y = (y1, y2) ∈ (C[a, b])2.

A nonempty set X endowed with a vector-valued metric d is called a generalized
metric space in Perov’ sense (or a Rm+ -metric space) and it is denoted by the pair
(X, d). The notions of convergent sequence, Cauchy sequence, completeness, open
and closed subset and so forth are similar to those defined for usual metric spaces.
The basic fixed point result which holds in generalized metric spaces in Perov’ sense
is the following (see [6], [7]).

Theorem 2.5.3 (Perov’s fixed point theorem). Let (X, d) be a complete generalized
metric space, where d : X ×X → Rm+ . Let f : X → X be an A-contraction, i.e. there
exists a matrix A ∈Mm(R+) convergent to zero, such that

d(f(x), f(y)) ≤ Ad(x, y),∀ x, y ∈ X.

Then f is PO in the L-space (X,
d→).

Remark 2.5.4. It would be of interest to extend the study from [8] and [2] to the case
of vector-valued metric spaces.

3. Vectorial Maia’s fixed point theorems

In this section we present the Rus’ variant of Maia’s fixed point theorem in the
setting of generalized metric spaces in Perov’s sense.

Theorem 3.1. Let X be a nonempty set, endowed with two vector-valued metrics,
d, ρ : X ×X → Rm+ . Let T : X → X be an operator. We assume that:

(1) there exists a matrix C ∈Mm(R+) such that

d(T (x), T (y)) ≤ Cρ(x, y), ∀ x, y ∈ X;

(2) (X, d) is a complete generalized metric space;
(3) T : (X, d)→ (X, d) is continuous;
(4) T : (X, ρ)→ (X, ρ) is an A-contraction, i.e. there exists a matrix A ∈Mm(R+)

convergent to zero, such that

ρ(T (x), T (y)) ≤ Aρ(x, y), ∀ x, y ∈ X.

Then T is PO in the L-spaces (X,
d→) and (X,

ρ→).

Proof. Let x0 ∈ X. By (4), the sequence of successive approximations {Tn(x0)}n∈N
is a Cauchy sequence in (X, ρ). Indeed, for n, p ∈ N we have

ρ(Tn(x0), Tn+p(x0)) ≤
n+p−1∑
k=n

ρ(T k(x0), T k+1(x0)) ≤
n+p−1∑
k=n

Akρ(x0, T (x0))

≤ An(Im −A)−1ρ(x0, T (x0))→ 0 as n, p→∞.
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By (1), we get that {Tn(x0)}n∈N is a Cauchy sequence in (X, d). By (2), there exists

x∗ ∈ X, such that Tn(x0)
d→ x∗ as n→∞. By (3), it follows that x∗ ∈ FT , since

d(x∗, T (x∗)) ≤ d(x∗, Tn(x0)) + d(Tn(x0), T (x∗))

= d(x∗, Tn(x0)) + d(T (Tn−1(x0)), T (x∗))

→ d(x∗, x∗) + d(T (x∗), T (x∗)) = 0, as n→∞.

By (4), we obtain the uniqueness of the fixed point x∗. Hence T is PO in (X,
d→).

We show next that T is PO in (X,
ρ→).

For any x0 ∈ X, since x∗ ∈ FT , by (4) we have

ρ(x∗, Tn(x0)) = ρ(Tn(x∗), Tn(x0)) ≤ Anρ(x∗, x0)→ 0 as n→∞

which implies that Tn(x0)
ρ→ x∗ as n→∞. Since x∗ is the unique fixed point, we get

that T is PO in (X,
ρ→). �

Remark 3.2. Notice that, in the proof of the above result, Perov’s Theorem cannot be
applied for T : (X, ρ) → (X, ρ), because the lack of completeness of the generalized
metric space (X, ρ).

Remark 3.3. From the proof of the above result, we can deduce the following weak
Perov’s contraction principle:

Theorem 3.4. Let (X, ρ) be a generalized metric space, where ρ : X ×X → Rm+ . Let
T : X → X be an operator. We assume that:

(i) FT 6= ∅;
(ii) there exists a matrix A ∈ Mm(R+) which converges to zero, such that

ρ(T (x), T (y)) ≤ Aρ(x, y), for all x, y ∈ X.

Then T is PO in the L-space (X,
ρ→).

Another fixed point result of Maia type in vectorial form is the following.

Theorem 3.5. Let X be a nonempty set, endowed with two vector-valued metrics,
d, ρ : X ×X → Rm+ . Let T : X → X be an operator. We assume that:

(1) FT 6= ∅;
(2) there exists a matrix C ∈Mm(R+) such that

d(T (x), T (y)) ≤ Cρ(x, y), ∀ x, y ∈ X;

(3) T : (X, ρ)→ (X, ρ) is an A-contraction, i.e. there exists a matrix A ∈Mm(R+)
convergent to zero, such that

ρ(T (x), T (y)) ≤ Aρ(x, y), ∀ x, y ∈ X.

Then T is PO in the L-spaces (X,
d→) and (X,

ρ→).

Proof. By applying Theorem 3.4, T is PO in (X,
ρ→). So FT = {x∗}. For any x0 ∈ X,

d(x∗, Tn+1(x0)) = d(Tn+1(x∗), Tn+1(x0))

≤ Cρ(Tn(x∗), Tn(x0))

≤ CAnρ(x∗, x0)→ 0
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as n→∞. So T is PO in (X,
d→). �

4. Applications of vectorial Maia’s fixed point theorem

In this section we study the existence and uniqueness of solutions for Fredholm
integral equations systems (1.1) and (1.2), by applying the vectorial Maia’s fixed point
theorem.
First, let us consider the system (1.1)x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R), are given functions.
We are searching the conditions in which the system (1.1) has a unique solution
(x1, x2) ∈ (C[a, b])2.
We assume that there exist LKj , LHj > 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2}.

On X := (C[a, b])2 we consider the metrics d, ρ : X ×X → R2
+, where

d(x, y) :=

max
t∈[a,b]

|x1(t)− y1(t)|

max
t∈[a,b]

|x2(t)− y2(t)|

 (4.1)

and

ρ(x, y) :=

(∫ ba |x1(t)− y1(t)|2dt
) 1

2( ∫ b
a
|x2(t)− y2(t)|2dt

) 1
2

 , (4.2)

for all x = (x1, x2), y = (y1, y2) ∈ (C[a, b])2.
We consider the operator T : (C[a, b])2 → (C[a, b])2, defined by

T (x)(t) =

(
T1(x)(t)

T2(x)(t)

)

:=

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

) (4.3)

for all x = (x1, x2) ∈ (C[a, b])2.
We have,

ρ(T (x), T (y)) =

(∫ ba |T1(x)(t)− T1(y)(t)|2dt
) 1

2( ∫ b
a
|T2(x)(t)− T2(y)(t)|2dt

) 1
2


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and(
|T1(x)(t)− T1(y)(t)|
|T2(x)(t)− T2(y)(t)|

)
≤

(∫ b
a

∣∣K1(t, s, x1(s))−K1(t, s, y1(s))
∣∣ds∫ b

a

∣∣K2(t, s, x2(s))−K2(t, s, y2(s))
∣∣ds
)

+

(∫ b
a

∣∣H1(t, s, x1(s))−H1(t, s, y1(s))
∣∣ds∫ b

a

∣∣H2(t, s, x2(s))−H2(t, s, y2(s))
∣∣ds
)

≤

(∫ b
a
LK1 |x1(s)− y1(s)|ds∫ b

a
LK2
|x2(s)− y2(s)|ds

)
+

(∫ b
a
LH1 |x1(s)− y1(s)|ds∫ b

a
LH2
|x2(s)− y2(s)|ds

)
Hölder’s
inequality

≤

([( ∫ b
a
|LK1

|2ds
) 1

2 +
( ∫ b

a
|LH1

|2ds
) 1

2
]( ∫ b

a
|x1(s)− y1(s)|2ds

) 1
2[( ∫ b

a
|LK2 |2ds

) 1
2 +

( ∫ b
a
|LH2 |2ds

) 1
2
]( ∫ b

a
|x2(s)− y2(s)|2ds

) 1
2

)

=

((
LK1

+ LH1

)√
b− aρ̃(x1, y1)(

LK2
+ LH2

)√
b− aρ̃(x2, y2)

)
,

where

ρ̃(x1, y1) :=

(∫ b

a

|x1(s)− y1(s)|2ds

) 1
2

, ρ̃(x2, y2) :=

(∫ b

a

|x2(s)− y2(s)|2ds

) 1
2

.

Hence,

ρ(T (x), T (y)) ≤

(∫ ba [(LK1
+ LH1

)
√
b− aρ̃(x1, y1)]2dt

) 1
2( ∫ b

a
[(LK2 + LH2)

√
b− aρ̃(x2, y2)]2dt

) 1
2


=

(
(LK1

+ LH1
)(b− a)ρ̃(x1, y1)

(LK2 + LH2)(b− a)ρ̃(x2, y2)

)
= Aρ(x, y),

where

A :=

(
(LK1

+ LH1
)(b− a) 0

0 (LK2
+ LH2

)(b− a)

)
∈M2(R+)

is a matrix that converges to zero if (LK1 +LH1)(b−a) < 1 and (LK2 +LH2)(b−a) < 1.
So, if we add these two conditions, T becomes an A-contraction with respect to ρ.
In addition, for all x, y ∈ C[a, b], we have d(T (x), T (y)) ≤ Cρ(x, y), where

C :=

(
(LK1

+ LH1
)
√
b− a 0

0 (LK2
+ LH2

)
√
b− a

)
∈M2(R+).

By applying Theorem 3.1, the system (1.1) has a unique solution in (C[a, b])2. Hence,
we have obtained the following result:

Theorem 4.1. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds
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where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LKj , LHj > 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj |u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};
(ii) (LK1

+ LH1
)(b− a) < 1 and (LK2

+ LH2
)(b− a) < 1.

Then the system has a unique solution x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2.

Remark 4.2. By Theorem 3.1, the operator T defined in (4.3) is PO. Hence, for all
t ∈ [a, b] we have x∗(t) = lim

n→∞
xn(t), for each x0 = (x10, x

2
0) ∈ (C[a, b])2, where

{xn}n∈N ⊂ (C[a, b])2 is defined by

xn+1(t) =

(
x1n+1(t)
x2n+1(t)

)
=

(
g1(t) +

∫ b
a
K1(t, s, x1n(s))ds+

∫ b
a
H1(t, s, x1n(s))ds

g2(t) +
∫ b
a
K2(t, s, x2n(s))ds+

∫ b
a
H2(t, s, x2n(s))ds

)
.

Corollary 4.3. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds

where g1, g2 ∈ C[a, b], K1,K2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LKj
> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};
(ii) LK1(b− a) < 1 and LK2(b− a) < 1.

Then the system has a unique solution x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2.

Proof. We apply Theorem 4.1, by considering H1 and H2 as zero functions and by
taking LH1

= 0 and LH2
= 0. �

Now, let us consider the system (1.2)x1(t) = g1(t) +
∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that there exist LKj

, LHj
> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2}.
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On X := (C[a, b])2 we consider the metrics d, ρ : X × X → R2
+ defined as in

(4.1) and (4.2). Also, we consider the operator T : (C[a, b])2 → (C[a, b])2, defined by

T (x)(t) =

(
T1(x)(t)

T2(x)(t)

)

:=

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

) (4.4)

for all x = (x1, x2) ∈ (C[a, b])2.

In a similar manner as shown for the system (1.1), we get ρ(T (x), T (y)) ≤ Aρ(x, y),
for all x, y ∈ (C[a, b])2, where

A :=

(
LK1

(b− a) LH1
(b− a)

LH2
(b− a) LK2

(b− a)

)
∈M2(R+).

The matrix A converges to zero if∣∣(LK1
+ LK2

)±
√

(LK1
+ LK2

)2 − 4(LK1
LK2

− LH1
LH2

)
∣∣

2
(b− a) < 1.

So, if we add this condition, T becomes an A-contraction with respect to ρ.

In addition, for all x, y ∈ (C[a, b])2, we obtain d(T (x), T (y)) ≤ Cρ(x, y), where

C :=

(
LK1

√
b− a LH1

√
b− a

LH2

√
b− a LK2

√
b− a

)
∈M2(R+).

By applying Theorem 3.1, the system (1.2) has a unique solution in (C[a, b])2. Hence,
we have obtained the following result:

Theorem 4.4. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.

We assume that:

(i) there exist LKj
, LHj

> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};

(ii) b−a
2

∣∣(LK1
+ LK2

)±
√

(LK1
+ LK2

)2 − 4(LK1
LK2

− LH1
LH2

)
∣∣ < 1.

Then the system has a unique solution x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2.
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Remark 4.5. By Theorem 3.1, the operator T defined in (4.4) is PO. Hence, for all
t ∈ [a, b] we have x∗(t) = lim

n→∞
xn(t), for each x0 = (x10, x

2
0) ∈ (C[a, b])2, where

{xn}n∈N ⊂ (C[a, b])2 is defined by

xn+1(t) =

(
x1n+1(t)
x2n+1(t)

)
=

(
g1(t) +

∫ b
a
K1(t, s, x1n(s))ds+

∫ b
a
H1(t, s, x2n(s))ds

g2(t) +
∫ b
a
K2(t, s, x2n(s))ds+

∫ b
a
H2(t, s, x1n(s))ds

)
.

Corollary 4.6. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
H2(t, s, x1(s))ds

where g1, g2 ∈ C[a, b], H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LHj
> 0, j ∈ {1, 2} such that:

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj |u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};

(ii) (b− a)
√
LH1

LH2
< 1.

Then the system has a unique solution x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2.

Proof. We apply Theorem 4.4, by considering K1 and K2 as zero functions and by
taking LK1

= 0 and LK2
= 0. �

5. Abstract Gronwall lemmas

Since the operators T , defined in (4.3) and (4.4), are POs, by using Theorem
2.2.1 we can establish the following abstract Gronwall lemmas for our systems (1.1)
and (1.2).

Theorem 5.1. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LKj
, LHj

> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj |u− v|,
|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj |u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};
(ii) (LK1

+ LH1
)(b− a) < 1 and (LK2

+ LH2
)(b− a) < 1;
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(iii) Kj(t, s, ·), Hj(t, s, ·) : R → R are increasing functions, for all t, s ∈ [a, b] and
j ∈ {1, 2}.

Let x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2 be the unique solution of the system.

Then the following implications hold:

(1) for all x = (x1, x2) ∈ (C[a, b])2 with(
x1(t)
x2(t)

)
≤

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

)
,

for all t ∈ [a, b], we have x ≤ x∗;
(2) for all x = (x1, x2) ∈ (C[a, b])2 with(

x1(t)
x2(t)

)
≥

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

)
,

for all t ∈ [a, b], we have x ≥ x∗.
Theorem 5.2. Let a, b ∈ R+ with a < b. We consider the system of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

where g1, g2 ∈ C[a, b], K1,K2, H1, H2 ∈ C([a, b]× [a, b]× R,R) are given functions.
We assume that:

(i) there exist LKj
, LHj

> 0, j ∈ {1, 2} such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj |u− v|,
|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj

|u− v|,
for all t, s ∈ [a, b], u, v ∈ R, j ∈ {1, 2};

(ii) b−a
2

∣∣(LK1
+ LK2

)±
√

(LK1
+ LK2

)2 − 4(LK1
LK2

− LH1
LH2

)
∣∣ < 1;

(iii) Kj(t, s, ·), Hj(t, s, ·) : R → R are increasing functions, for all t, s ∈ [a, b] and
j ∈ {1, 2}.

Let x∗ = (x∗1, x
∗
2) ∈ (C[a, b])2 be the unique solution of the system.

Then the following implications hold:

(1) for all x = (x1, x2) ∈ (C[a, b])2 with(
x1(t)
x2(t)

)
≤

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

)
,

for all t ∈ [a, b], we have x ≤ x∗;
(2) for all x = (x1, x2) ∈ (C[a, b])2 with(

x1(t)
x2(t)

)
≥

(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x2(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x1(s))ds

)
,

for all t ∈ [a, b], we have x ≥ x∗.
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6. Abstract comparison lemmas

We can establish also some abstract comparison results, taking into account
Theorem 2.2.2. One of them is the following.

Theorem 6.1. Let a, b ∈ R+ with a < b. We consider the systems of Fredholm integral
equations x1(t) = g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

x2(t) = g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

(6.1)

y1(t) = g3(t) +
∫ b
a
K3(t, s, y1(s))ds+

∫ b
a
H3(t, s, y1(s))ds

y2(t) = g4(t) +
∫ b
a
K4(t, s, y2(s))ds+

∫ b
a
H4(t, s, y2(s))ds

(6.2)

z1(t) = g5(t) +
∫ b
a
K5(t, s, z1(s))ds+

∫ b
a
H5(t, s, z1(s))ds

z2(t) = g6(t) +
∫ b
a
K6(t, s, z2(s))ds+

∫ b
a
H6(t, s, z2(s))ds

(6.3)

where gi ∈ C[a, b], for all i = 1, 6 and Kj , Hj ∈ C([a, b]× [a, b]×R,R), for all j = 1, 6,
are given functions.

We assume that:

(i) there exist LKj
, LHj

> 0, j = 1, 6 such that:

|Kj(t, s, u)−Kj(t, s, v)| ≤ LKj
|u− v|,

|Hj(t, s, u)−Hj(t, s, v)| ≤ LHj
|u− v|,

for all t, s ∈ [a, b], u, v ∈ R, j = 1, 6;
(ii) (LKj

+ LHj
)(b− a) < 1, for all j = 1, 6;

(iii) Kj(t, s, ·), Hj(t, s, ·) : R → R are increasing functions, for all t, s ∈ [a, b] and
j = 3, 4;

(iv) for all t ∈ [a, b],(
g1(t) +

∫ b
a
K1(t, s, x1(s))ds+

∫ b
a
H1(t, s, x1(s))ds

g2(t) +
∫ b
a
K2(t, s, x2(s))ds+

∫ b
a
H2(t, s, x2(s))ds

)

≤

(
g3(t) +

∫ b
a
K3(t, s, x1(s))ds+

∫ b
a
H3(t, s, x1(s))ds

g4(t) +
∫ b
a
K4(t, s, x2(s))ds+

∫ b
a
H4(t, s, x2(s))ds

)

≤

(
g5(t) +

∫ b
a
K5(t, s, x1(s))ds+

∫ b
a
H5(t, s, x1(s))ds

g6(t) +
∫ b
a
K6(t, s, x2(s))ds+

∫ b
a
H6(t, s, x2(s))ds

)
.

Let x∗ = (x∗1, x
∗
2), y∗ = (y∗1 , y

∗
2), z∗ = (z∗1 , z

∗
2) ∈ (C[a, b])2 be the unique solutions of

the systems (6.1), (6.2) and respectively (6.3) .

Then for any x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ (C[a, b])2 we have

x ≤ y ≤ z ⇒ x∗ ≤ y∗ ≤ z∗.
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