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Graph-directed random fractal interpolation
function

Ildikó Somogyi and Anna Soós

Dedicated to Professor Gheorghe Coman on the occasion of his 85th anniversary.

Abstract. Barnsley introduced in [1] the notion of fractal interpolation function
(FIF). He said that a fractal function is a (FIF) if it possess some interpolation
properties. It has the advantage that it can be also combined with the classical
methods or real data interpolation. Hutchinson and Rüschendorf [7] gave the
stochastic version of fractal interpolation function. In order to obtain fractal
interpolation functions with more flexibility, Wang and Yu [9] used instead of a
constant scaling parameter a variable vertical scaling factor. Also the notion of
fractal interpolation can be generalized to the graph-directed case introduced by
Deniz and Özdemir in [5]. In this paper we study the case of a stochastic fractal
interpolation function with graph-directed fractal function.

Mathematics Subject Classification (2010): 28A80, 60G18.

Keywords: Fractal interpolation function, iterated function system, random frac-
tal interpolation function.

1. Introduction

In the construction of a fractal interpolation function Barnsley used the theory
of iterated function system [1], [3],[2]. For this we will consider two separable metric
spaces (X, dX) and (Y, dY ) and a given collection of N bijections Li : X → Xi such
that

{Xi = Li(X)|i ∈ {1, 2, ..N}}
∪Ni=1Xi = X and int(Xi) ∩ int(Xj) = ∅, for i 6= j.

For gi : Xi → Y , i ∈ {1, 2, ..N}, define tigi : X → Y by

(tigi) (x) = gj(x) for x ∈ Xj .

Assume that mappings Fi : X × Y → Y , Fi(x, ·) ∈ Lip<1(Y ), x ∈ X are given,
i ∈ {1, 2, ...N}, where Lip<1(Y ) is the set of all Lipschitz functions with Lipschitz
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constant less that 1.
Let F = {F1, F2, ..., FN}, then {X,F} is a so-called Iterated Function System (IFS).
Denote αi = LipFi.
For f : X → Y, define the operator F : L∞(X,Y )→ Y X by

Ff = tiFi(L−1i , f ◦ L−1i ).

Then f is a selfsimilar fractal function if Ff = f.
Let Γ := {(x0, y0), ..., (xN , yN ) ∈ (X × Y )} be the set of interpolation points.
A fractal function f has the interpolation properties with respect to Γ if

f(xj) = yj for all j = 0, 1, ..., N.

Denote
C∗(X,Y ) := {f ∈ C(X,Y )| f(xj) = yj , j ∈ {1, 2, ..., N}}.

Theorem 1.1 (Barnsley, [2]). Let Γ be a set of interpolation points and let {X,F} be
the IFS. Suppose

Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi

for all i ∈ {1, 2, ..., N} and α∞ := maxαi < 1. Then there exists a selfsimilar fractal
function f∗ ∈ C∗(X,Y ) such that Ff∗ = f∗.

In order to obtain more various (FIF) in many papers the classical interpolation
methods are combined with these fractal interpolation functions, [4],[8].

2. Stochastic fractal interpolation function

Let (Ω,K, P ) be a probability space and Γ := {(xi, yi), i = 0, 1, ..., N} be a set
of interpolation points in X × Y .

Let Li : X → X be contractiv Lipschitz maps such that Li(x0) = xi−1 and
Li−1(xN ) = xi for all i ∈ {1, ..., N}.

The IFS {X,F} is defined by Fi : X × Y → Y such that Fi(x, ·) ∈ Lip<1(Y ) for
all x ∈ X and

Fi(x0, y0) = yi−1 with probability 1 (a.s.)

and
Fi(xN , yN ) = yi with probability 1 (a.s.)

for all i ∈ {1, ..., N}.
Fi(x, y) = αiy + qi(x), i = 1, 2, .., N,

where αi are random variables defined on Ω satisfying

‖αi‖∞ = sup{|αi(ω)| : ω ∈ Ω} < 1, i = 1, 2, ..., N.

The random function F is defined up to probability distribution by

Ff = tiFi(L−1i , f (i) ◦ L−1i ),

where F, f (1), ..., f (N) are independent and f (i)
d
= f , for i = 1, 2, ..., N .

We say f is a random fractal function, if

Ff d
= f,
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and it has the interpolation properties with respect to Γ if f(xi) = yi a. s. for all
i ∈ {0, 1, ..., N}.
We will consider

Cω(X,Y ) := {f : Ω×X → Y, f continuous a.s.}
and

C∗ω(X,Y ) := {g ∈ Cω(X,Y )|g(xi) = yi a.s., i ∈ {1, ..., N}}.
L∞ := {g : Ω×X → Y |ess sup

ω
ess sup

x
dY (gω(x), a) <∞}

for some a ∈ X.
For f, g ∈ L∞ we define

d∗∞(f, g) := ess sup
ω
d∞(fω, gω),

where

d∞(f, g) = ess sup
x
dY (f(x), g(x)).

Theorem 2.1. Let Γ be a set of interpolation points in X × Y and let {X,F} be the
IFS defined above. If λ∞ := ess supω maxi α

ω
i < 1 and

ess sup
ω

max
i
dY (Fi(a, f(a)), a) <∞ (2.1)

for some a ∈ X, then there exists f∗ ∈ C∗ω(X,Y ) such that Ff∗ = f∗. Moreover, f∗

is unique up to probability distribution.

Example 2.2. X = [0, 1], Y = R, N > 0.

Γ := {(xi, yi) ∈ [0, 1]× R|0 = x0 < x1 < ... < xN = 1}.

Li : X → Xi, Li(x) := aix+ di, ai, di ∈ R, i ∈ {1, 2, ..., N}.
Fi : X × Y → Y, i = {1, 2, .., N},

Fi(x, y) := αiy + qi(x), qi(x) = cix+ ei,

αi is a random variable, λ∞ := ess supω maxi αi < 1.

We can compute ai, ci, di, ei by the conditions Li(x0) = xi−1, Li(xN ) = xi

Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi a.s.

for all i ∈ {1, ..., N}.
Wi : X × Y → X × Y Wi(x, y) = (Li(x), Fi(x, y)), i ∈ {1, 2, , ..., N}.
Using W := (W1, ...,WN ), IFS {X,W}

Wi : X × Y → L× Y, Wi(x, y) = (Li(x), Fi(x, y)) i = 1, , ..., N,

for any K0 ⊂ X × U
Kn = WKn−1 = ∪Ni=0W

ω
i Kn−1 = Wn(K0).

Then

ess sup
ω
dH(Wn(K0), graphf∗)→ 1

as n→∞, dH denotes the Hausdorff distance.
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Figure 1. Fractal interpolation function with variable parameter,
{(0,0.2),(0.2,0.7),(0.3,0.1),(0.5,0.3),(0.7,0.5),(0.8,0.2),(1,0.5)}

3. Graph directed fractal interpolation function

Let G = (V,E) be a graph, V is the set of vertices and E is the set of edges.
For α, β ∈ V , let Eα,β be the set of edges from α to β, and Kα,β is the number
of elements of Eα,β . Also let {Xα | α ∈ V } be a set of complete metric spaces and

φαβi : Xβ → Xβ are contraction mappings, for i = 1, 2, ...,Kαβ . Then from [6] it
follows that there exists a unique family of nonempty compact sets Aα ⊂ Xα such

that Aα = ∪β∈V ∪ki=1 φ
αβ
i (Aβ). Then {Xα, φαβi } is a graph-directed iterated function

system. Let

Γp = {(xp0, y
p
0), (xp1, y

p
1), ..., (xpNp

, ypNp
)} (3.1)

be the data sets in R2, where Np ≥ 2, for all p = 1, 2, ..., n. These data points satisfy
the following condition in order that the maps from the iterated function system to
be contractions:

xli − xli−1
xpNp
− xp0

< 1, (3.2)

for all p 6= l, p, l = 1, 2, ..., n, i = 1, 2, ..., Nl. In [5] we can find the proof regarding
the existence of a graph-directed fractal function:

Theorem 3.1. If we condsider the data set Γp in R2 for p = 1, 2, ..., n satisfying (3.2),
then there exists a graph-directed iterated function system, with attractors Ap, p =
1, 2, ..., n, such that Ap is the graph of a function which interpolates the data set Γp

for each p.

In the case n = 2 the construction of these iterated function systems can be
done using the method given in [5].

4. Graph directed random fractal interpolation function

Let (Ω,K, P ) be a probability space and {Xα | α ∈ V } a set of complete separable

metric spaces and Φαβi : Ω × Xβ → Xα are random variables. Then there exists
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Aα ⊆ Ω×Xα defined up to probability distribution by

Aα
d
= ∪β∈V ∪ki=1 Φαβi (Aβ).

The system {Ω × Xα,Φαβi } is the graph directed random iterated function system
and Aα is the attractor of the system.

Theorem 4.1. Let Γp = {(xp0, y
p
0), (xp1, y

p
1), ..., (xpNp

, ypNp
)} be the data sets in R2 which

satisfies (3.2), then there exists a graph directed random iterated function system with
attractor Aα such that Aα is the graph of a random function which interpolates Γα

for each α.

Proof. We will construct a graph directed random iterated function system for which
Theorem 2 holds. Let n = 2 and

Γ1 = {(x10, y10), ..., (x1N , y
1
N )},

Γ2 = {(x20, y20), ..., (x2M , y
2
M )},

where N,M ≥ 2. Suppose

x1i − x1i−1
x2M − x20

< 1 and
x2j − x2j−1
x1N − x10

< 1

∀i = 1, ..., N, j = 1, ...,M .
Let G = (V,E) such that V = {1, 2} and K11 + K12 = N , K21 + K22 = M and

Φαβi : Ω× R2 → R2, i = 1, ...,Kαβ , α, β ∈ {1, 2}

Φαβi (x, y) =

(
aαβi 0

cαβi dαβi

)(
x
y

)
+

(
eαβi
fαβi

)
.

Suppose {
Φ11
i (x10y

1
0) = (x1i−1, y

1
i−1) a.s.

Φ11
i (x1Ny

1
N ) = (x1i , y

1
i ) for i = 1, 2, ...,K11{

Φ12
i−k11(x20y

2
0) = (x1i−1, y

1
i−1) a.s.

Φ12
i−K11(x2My

2
M ) = (x1i , y

1
i ) for i = K11 + 1, ..., N{

Φ21
i (x10y

1
0) = (x2i−1, y

2
i−1) a.s.

Φ21
i (x1Ny

1
N ) = (x2i , y

2
i ) for i = 1, 2, ...,K21{

Φ22
i−K21(x20y

2
0) = (x2i−1, y

2
i−1) a.s.

Φ22
i−K21(x2My

2
M ) = (x2i , y

2
i ) for i = K21, ...,M.

∀i = 1, ...,K11.
From these conditions we have the following equations:

x1i−1 = a11i x
1
0 + e11i

y1i−1 = c11i x
1
0 + d11i y

1
0 + f11i

x1i = a11i x
1
N + e11i

y1i = c11i x
1
N + d11i y

1
N + f11i
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∀i = K11 + 1, ..., N 
x1i−1 = a12i−K11x20 + e12i−K11

y1i−1 = c12i−K11x20 + d12i−K11y20 + f12i−K11

x1i = a12i−K11x2M + e12i−K11

y1i = c12i−K11x2M + d12i−K11y2M + f12i−K11

∀i = 1, ...,K21. 
x2i−1 = a21i x

1
0 + e21i

y2i−1 = c21i x
1
0 + d21i y

1
0 + f21i

x2i = a21i x
1
N + e21i

y2i = c21i x
1
N + d21i y

1
N + f21i

∀i = K21 + 1, ...,M
x2i−1 = a22i−K21x20 + e22i−K21

y2i−1 = c22i−K21x20 + d22i−K21y20 + f22i−K21

x2i = a22i−K21x2M + e22i−K21

y2i = c22i−K21x2M + d22i−K21y2M + f22i−K21

where dαβi is a random variable.

In this way we obtain aα,βi , cα,βi , eα,βi , fα,βi , α, β ∈ {1, 2}, i = 1, ...,Kαβ

a11i =
x1
i−x

1
i−1

x1
N−x1

0

e11i =
x1
Nx

1
i−1−x

1
0x

1
i

x1
N−x1

0

c11i =
y1i−y

1
i−1

x1
N−x1

0
− d11i

y1N−y
1
0

x1
N−x1

0

f11i =
x1
Ny

1
i−1−x

1
0y

1
i

x1
N−x1

0
− d11i

x1
Ny

1
0−x

1
0y

1
N

x1
N−x1

0

a12i =
x1
i−x

1
i−1

x2
M−x2

0

e12i =
x2
Mx1

i−1−x
2
0x

1
i

x2
M−x2

0

c12i =
y1i−y

1
i−1

x2
M−x2

0
− d12i

y2M−y
2
0

x2
M−x2

0

f12i =
x2
My1i−1−x

2
0y

1
i

x2
M−x2

0
− d12i

x2
My20−x

2
0y

2
M

x2
M−x2

0

a21i =
x2
i−x

2
i−1

x1
N−x1

0

e21i =
x1
Nx

2
i−1−x

1
0x

2
i

x1
N−x1

0

c11i =
y2i−y

2
i−1

x1
N−x1

0
− d21i

y1N−y
1
0

x1
N−x1

0

f21i =
x1
Ny

2
i−1−x

1
0y

2
i

x1
N−x1

0
− d21i

x1
Ny

1
0−x

1
0y

1
N

x1
N−x1

0
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

a22i =
x2
i−x

2
i−1

x2
M−x2

0

e22i =
x2
Mx2

i−1−x
2
0x

2
i

x2
M−x2

0

c22i =
y2i−y

2
i−1

x2
M−x2

0
− d22i

y2M−y
2
0

x2
M−x2

0

f12i =
x2
My2i−1−x

2
0y

2
i

x2
M−x2

0
− d22i

x2
My20−x

2
0y

2
M

x2
M−x2

0

Suppose ess sup
ω

max
i
dαβi < 1, for all α, β ∈ {1, 2} and i = 1, ...,Kα,β .

Then Φαβi is a contraction and {Ω × R2,Φαβi } is a graph directed random iterated
function system. We will prove that this graph directed random iterated function
system satisfies the theorem.
Let

Cω1 = {f | f : Ω× [x10, x
1
N ]→ R, fω(x10) = y10 , f

ω(x1N ) = y1N , cont. a.s.}

Cω2 = {g | g : ω × [x20, x
2
M ]→ R, gω(x20) = y20 , g

ω(x2M ) = y2M , cont. a.s.}
For f1, f2 ∈ Cω1 we define

d∗∞(f1, f2) = ess sup
ω
d∞(fω1 , f

ω
2 )

where

d∞(f1, f2) = max
x
{|fω1 (x)− fω2 (x)|, x ∈ [x10, x

1
N ]}.

(Cω1 , d
∗
ω) and (Cω2 , d

∗
ω) are complete metric spaces, hence Cω1 ×Cω2 is also a complete

metric space with

f̃(ω, x) =


C11
i I
−1
i (x) + d11i f(ω, I−1i (x) + f11i ) if x ∈ [x1i−1, x

1
i ],

i = 1, ...,K11

C12
i−K11I

−1
i (x) + d12i−K11g(ω, I−1i (x)) + f12i−K11) if x ∈ [x1i−1, x

1
i ],

i = K11 + 1, ..., N,

g̃(ω, y) =


C21
j J
−1
j (y) + d21j f(ω, J−1j (y) + f21j ) if y ∈ [x2j−1, x

2
j ],

j = 1, ...,K21

C22
j−K21J

−1
j (y) + d22j−K21g(ω, J−1j (y)) + f22j−K21) if y ∈ [x2ij−1, x

2
j ],

j = K21 + 1, ...,M,

where

Ii : [x10, x
1
N ]→ [x1i−1, x

1
i ], Ii(x) = a11i x+ e11i , for i = 1, ...,K11

Ii : [x20, x
2
M ]→ [x1i−1, x

1
i ], Ii(x) = a12i−K11x+ e12i−K11 , for i = K11 + 1, ..., N

Ji : [x10, x
1
N ]→ [x1i−1, x

1
i ], Ji(x) = a21i x+ e21i , for i = 1, ...,K21

Ji : [x20, x
2
M ]→ [x2i−1, x

2
i ], Ji(x) = a22i−K21x+ e22i−K21 , for i = K21 + 1, ...,M.

We have

f̃(ω, x10) = y10 a. s., f̃(ω, x1N ) = y1N a. s.

g̃(ω, x20) = y20 a. s., g̃(ω, x2M ) = y2M a. s.
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One can show that f̃ and g̃ are continuous functions a.s.. We have to show that T is
a contraction.

d∗∞(f1, f2) = ess sup
ω

max
x
{|f1(ω, x)− f2(ω, x)|}

max
x∈[x1

0,x
1
K11 ]
{|f1(ω, x)− f2(ω, x)|} = max

i=1,...,K11

{
|d11i ||f1(ω, I−1i (x))−

− f2(ω, I−1i (x))| , x ∈ [x1i−1, x
1
i ]}
}
≤ ess sup

ω
{d11i , i = 1, ...,K11} · d∞(f1, f2)

max
x∈[x1

K11 ,x
1
M ]
{|f1(ω, x)− f2(ω, x)|} = max

i=K11+1,...,N

{
|d12i−K11 ||g1(ω, I−1i (x))−

− g2(ω, I−1i (x))| , x ∈ [x1i−1, x
1
i ]}
}
≤ ess sup

ω
{d12i , i = 1, ...,K12} · d∞(f1, f2)

d∗∞(f1, f2) ≤ max{ess sup
ω
{d12i , i = 1, ...,K12}, ess sup

ω
{d11i , i = 1, ...,K11}} ·

· max{d∗∞(f1, f2), d∗∞(g1, g2)}
similarly

d∗∞(g1, g2) ≤ max{ess sup
ω
{d21i , i = 1, ...,K21}, ess sup

ω
{d22i , i = 1, ...,K22}} ·

· max{d∗∞(f1, f2), d∗∞(g1, g2)}.
So

d(T (f1, g1), T (f2, g2)) = max{d∗∞(f̃1, f̃2), d∗∞(g̃1, g̃2)} ≤
≤ r ·max{d∗∞(f1.f2), d∗∞(g1, g2)},

where

r = max

{
ess sup

ω
{d21i , i = 1, ...,K21}, ess sup

ω
{d22i , i = 1, ...,K22} ,

ess sup
ω
{d12i , i = 1, ...,K12}, ess sup

ω
{d11i , i = 1, ...,K11}

}
< 1.

Using Banach fixed point theorem, T has a unique fixed point (f0, g0):

T (f0, g0) = (f0, g0).

Let F and G be the graph of f0 and g0:

f0(ω, a11i x+ e11i ) = c11i x+ d11i f0(ω, x) + f11i for i = 1, ...,K11

f0(ω, a12i y + e12i ) = c12i y + d12i g0(ω, y) + f12i for i = 1, ...,K12,

which imply:

F =

K11⋃
i=1

Φ11
i (F ) ∪

K12⋃
i=1

Φ12
i (G)

similarly

G =

K21⋃
i=1

Φ21
i (F ) ∪

K22⋃
i=1

Φ22
i (G).
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According to the uniqueness of the solution, the graph of f0 and g0 are the attractor
of the fractal interpolation function. �

In the last few years the method of fractal interpolation was widely used in signal
processing, computer geometry, image compression and of course in approximation
theory. The stochastic type fractal interpolation method and the graph-directed ran-
dom fractal interpolation function present more flexibility and therefore it can be
applied much better in the case of real data interpolation.
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1. Preliminaries

One of the best suited methods for approximating large sets of data is the Shep-
ard method, introduced in 1968 in [16]. It has the advantages of a small storage
requirement and an easy generalization to additional independent variables, but it
suffers from no good reproduction quality, low accuracy and a high computational
cost relative to some alternative methods [14], these being the reasons for finding new
methods that improve it (see, e.g.,[1]-[8], [17], [18]). In this paper we obtain some new
operators based on the classical, the modified Shepard methods and the least squares
thin-plate spline.

Let f be a real-valued function defined on X ⊂ R2, and (xi, yi) ∈ X, i = 1, ..., N
some distinct points. Denote by ri (x, y) the distances between a given point (x, y) ∈ X
and the points (xi, yi) , i = 1, ..., N . The bivariate Shepard operator is defined by

(Sµf) (x, y) =

N∑
i=1

Ai,µ (x, y) f (xi, yi) , (1.1)
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where

Ai,µ (x, y) =

N∏
j=1
j 6=i

rµj (x, y)

N∑
k=1

N∏
j=1
j 6=k

rµj (x, y)

, (1.2)

with the parameter µ > 0.
It is known that the bivariate Shepard operator Sµ reproduces only the constants

and that the function Sµf has flat spots in the neighborhood of all data points.
Franke and Nielson introduced in [10] a method for improving the accuracy in

reproducing a surface with the bivariate Shepard approximation. This method has
been further improved in [9], [15], [14], and it is given by:

(Sf) (x, y) =

N∑
i=1

Wi (x, y) f (xi, yi)

N∑
i=1

Wi (x, y)

, (1.3)

with

Wi (x, y) =
[
(Rw−ri)+
Rwri

]2
, (1.4)

where Rw is a radius of influence about the node (xi, yi) and it is varying with i. Rw
is taken as the distance from node i to the jth closest node to (xi, yi) for j > Nw (Nw
is a fixed value) and j as small as possible within the constraint that the jth closest
node is significantly more distant than the (j − 1)st closest node (see, e.g. [14]). As
it is mentioned in [11], this modified Shepard method is one of the most powerful
software tools for the multivariate approximation of large scattered data sets.

2. The Shepard operators of least squares thin-plate spline type

Consider f a real-valued function defined on X ⊂ R2, and (xi, yi) ∈ X,
i = 1, ..., N some distinct points. We introduce the Shepard operator based on the
least squares thin-plate spline in four ways.

Method 1. We consider

(S1f)(x, y) =

N∑
i=1

Ai,µ(x, y)Fi(x, y), (2.1)

where Ai,µ, i = 1, ..., N, are defined by (1.2), for a given parameter µ > 0 and the
least squares thin-plate splines are given by

Fi(x, y) =

i∑
j=1

Cjd
2
j log(dj) + ax+ by + c, i = 1, ..., N, (2.2)

with dj =
√

(x− xj)2 + (y − yj)2.
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For the second way, we consider a smaller set of k ∈ N∗ knot points (x̂j , ŷj),
j = 1, ..., k that will be representative for the original set. This set is obtained following
the next steps (see, e.g., [12] and [13]):

Algorithm 2.1. 1. Generate k random knot points, with k < N ;
2. Assign to each point the closest knot point;
3. If there exist knot points for which there is no point assigned, move the knot to

the closest point;
4. Compute the next set of knot points as the arithmetic mean of all corresponding

points;
5. Repeat steps 2-4 until the knot points do not change for two successive iterations.

Method 2. For a given k ∈ N∗, we consider the representative set of knot points
(x̂j , ŷj), j = 1, ..., k. The Shepard operator of least squares thin-plate spline is given
by

(S2f)(x, y) =

k∑
i=1

Ai,µ(x, y)Fi(x, y), (2.3)

where Ai,µ, i = 1, ..., k, are defined by

Ai,µ (x, y) =

k∏
j=1
j 6=i

rµj (x, y)

k∑
p=1

k∏
j=1
j 6=p

rµj (x, y)

,

for a given parameter µ > 0.
The least squares thin-plate spline are given by

Fi(x, y) =
i∑

j=1

Cjd
2
j log(dj) + ax+ by + c, i = 1, ..., k, (2.4)

with dj =
√

(x− x̂j)2 + (y − ŷj)2.

For Methods 1 and 2, the coefficients Cj , a, b, c of Fi are found such that to
minimize the expressions

E =
N ′∑
i=1

[Fi(xi, yi)− f(xi, yi)]
2,

considering N ′ = N for the first case and N ′ = k for the second one. There are
obtained systems of the following form (see, e.g., [12]):



0 d212 log d12 · · · d2
1N′ log d1N′ x1 y1 1

d221 log d21 0 · · · d2
2N′ log d2N′ x2 y2 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
d2
N′1 log dN′1 d2

N′2 log dN′2 · · · 0 xN′ yN′ 1
x1 x2 · · · xN′ 0 0 0
y1 y2 · · · yN′ 0 0 0
1 1 · · · 1 0 0 0


·



C1

C2

.

.

.
CN′
a
b
c


=



f1
f2
.
.
.

fN′
0
0
0


with d2ij = (xi − xj)2 + (yi − yj)2 , fi = f(xi, yi), i, j = 1, ..., N ′.
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Next we consider the improved form of the Shepard operator given in (1.3).

Method 3. We consider Shepard operator of least squares thin-plate spline type of the
following form:

(S3f)(x, y) =

N∑
i=1

Wi (x, y)Fi(x, y)

N∑
i=1

Wi (x, y)

, (2.5)

with Wi given by (1.4), Fi given by (2.2), for i = 1, ..., N .

The coefficients Cj , a, b, c of Fi, i = 1, ..., N are determined in order to minimize
the expression

E =
N∑
i=1

[Fi(xi, yi)− f(xi, yi)]
2.

Method 4. For a given k ∈ N∗, we consider the representative set of knot points
(x̂j , ŷj), j = 1, ..., k, obtained applying the Algorithm 2.1. In this case, we introduce
the Shepard operator of least squares thin-plate spline type by the following formula:

(S4f)(x, y) =

k∑
i=1

Wi (x, y)Fi(x, y)

k∑
i=1

Wi (x, y)

, (2.6)

with Wi given by (1.4) and Fi given by (2.4), for i = 1, ..., k.

The coefficients Cj , a, b, c of Fi, i = 1, ..., k are determined in order to minimize
the expression

E =
k∑
i=1

[Fi(xi, yi)− f(xi, yi)]
2.

3. Numerical examples

We consider the following test functions (see, e.g., [9], [15], [14]):

Gentle: f1(x, y) = exp[− 81
16 ((x− 0.5)2 + (y − 0.5)2)]/3,

Saddle: f2(x, y) =
(1.25 + cos 5.4y)

6 + 6(3x− 1)2
,

Sphere: f3(x, y) =
√

64− 81((x− 0.5)2 + (y − 0.5)2)/9− 0.5.

(3.1)

Table 1 contains the maximum errors for approximating the functions (3.1) by
the classical and the modified Shepard operators given, respectively, by (1.1) and
(1.3), and the errors of approximating by the operators introduced in (2.1), (2.3),
(2.5) and (2.6). We consider three sets of N = 100 random points for each function
in [0, 1]× [0, 1], k = 25 knots, µ = 3 and Nw = 19.
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Remark 3.1. The approximants S2fi, S4fi, i = 1, 2, 3 have better approximation
properties although the number of knot points is smaller than the number of knot
points considered for the approximants S1fi, S3fi i = 1, 2, 3, so this illustrates the
benefits of the algorithm of choosing the representative set of points.

In Figures 2, 4, 6 we plot the graphs of f1, f2, f3 and of the corresponding
Shepard operators S1fi, S2fi, S3fi and S4fi, i = 1, 2, 3, respectively.

In Figures 1, 3, 5 we plot the sets of the given points and the corresponding sets
of the representative knot points.

Table 1. Maximum approximation errors.

f1 f2 f3
Sµf 0.0864 0.1095 0.1936
Sf 0.0724 0.0970 0.1770
S1f 0.1644 0.4001 0.6595
S2f 0.1246 0.2858 0.3410
S3f 0.1578 0.3783 0.6217
S4f 0.1212 0.2834 0.3399

First set of given points. First set of representative knot points.

Figure 1. First sets of points.



262 Teodora Cătinaş and Andra Malina

Function f1.

S1f1 S2f1

S3f1 S4f1

Figure 2. Graphs for f1.

Second set of given points. Second set of representative knot points.

Figure 3. Second sets of points.
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Function f2.

S1f2 S2f2

S3f2 S4f2

Figure 4. Graphs for f2.

Third set of given points. Third set of representative knot points.

Figure 5. Third sets of points.
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Function f3.

S1f3 S2f3

S3f3 S4f3

Figure 6. Graphs for f3.

References
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Abstract. In this paper we investigate a collocation method for the approximate
solution of Hammerstein integral equations in two dimensions. As in [8], col-
location is applied to a reformulation of the equation in a new unknown, thus
reducing the computational cost and simplifying the implementation. We start
with a special type of piecewise linear interpolation over triangles for a refor-
mulation of the equation. This leads to a numerical integration scheme that can
then be extended to any bounded domain in R2, which is used in collocation. We
analyze and prove the convergence of the method and give error estimates. As
the quadrature formula has a higher degree of precision than expected with linear
interpolation, the resulting collocation method is superconvergent, thus requiring
fewer iterations for a desired accuracy. We show the applicability of the proposed
scheme on numerical examples and discuss future research ideas in this area.
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1. Introduction

Integral equations are a special topic in Applied Mathematics, as they are an
important tool for modeling many applications in fields ranging from engineering,
computer graphics to astrophysics, chemistry, quantum mechanics and more (see [13]).
They also arise in reformulations of initial and boundary value problems for ordinary
and partial differential equations.

Having such a wide variety of applications, they have been studied extensively,
especially form the approximation perspective. Numerical solutions have been ob-
tained using moving least squares [5], Adomian decomposition, [4], kernel methods
[6], collocation [8, 3, 10, 7], Galerkin and Nyström methods [9]. Also, good results were



268 Sanda Micula

obtained using wavelets [11, 12] and other iterative methods [1]. For more details on
approximating methods for integral equations, see [2].

In this paper, we consider the following integral equation of Hammerstein type

u(x) =

∫
D

k(x, y)g (y, u(y)) dy + f(x), x ∈ D ⊂ R2, (1.1)

with a smooth kernel k and g : D × R → R a continuous nonlinear function. Later,
other assumptions will be made on k, g and f .

As in [8], collocation is applied to a reformulation of the equation in a new un-
known, thus reducing the computational cost and simplifying the implementation. For
the new integral equation, we define a collocation scheme based on linear interpola-
tion and show that at the collocation nodes, it converges faster than over the entire
domain, thus requiring fewer iterations for a given accuracy. These two aspects make
this method much more efficient from the computational point of view.

In operator form, we write (1.1) as

u = Ku+ f, (1.2)

where

(Ku)(x) =

∫
D

k(x, y)g (y, u(y)) dy. (1.3)

Following the ideas in [8], we reformulate (1.1) for the new unknown

v(y) := g(y, u(y)).

By (1.1), v must satisfy the equation

v(x) = g

x,∫
D

k(x, y)v(y)dy + f(x)

 , x ∈ D (1.4)

and u is given by

u(x) =

∫
D

k(x, y)v(y)dy + f(x), x ∈ D. (1.5)

We define a collocation scheme for v in equation (1.4), which will be then used to find
an approximate solution of (1.5).
We are interested in finding a numerical solution of equation (1.1), which approxi-
mates the exact solution, assumed to exist. To this end, we work under the following
assumptions:

(A1) The equation (1.3) has an isolated solution u∗ with non-zero index, which is
assumed to be smooth enough;

(A2) The integral operator K : C(D) → C(D) defined by (1.3) is completely contin-
uous;

(A3) The derivative gu(y, u) exists and is continuous on D × R;
(A4) The function f ∈ C(D).
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The ideas and results described in this paper work for any closed bounded domain
D ⊂ R2 that can be triangulated in a smooth way. For simplicity, we restrict the
discussion to the case of a rectangular region D = [a, b]× [c, d].

The rest of the paper is organized as follows: in Section 2, we define a collocation
scheme for equation (1.4), based on a special type of linear interpolation on a trian-
gular region. We prove the convergence and give error estimates (for both u nd v)
in Section 3. Section 4 shows the applicability of the proposed method to numerical
examples, where the theoretical error bounds are confirmed by the numerical results.
We draw some important conclusions and discuss future research ideas in Section 5.

2. Numerical method

2.1. Preliminaries for collocation

Let us recall the collocation method in the general framework of projection
methods. Consider a set of nodes {x1, . . . , xn} ⊂ D and let {l1, . . . , ln} be a set of
functions defined on D such that

lj(xi) = δij , 1 ≤ i, j ≤ n.
Denote by Dn = span{l1, . . . , ln} and define the interpolatory projection operator
Pn : D → Dn by

(Pnu)(x) =

n∑
j=1

u(xj)lj(x), x ∈ D. (2.1)

Then Pn : C(D)→ C(D) is a linear operator (see e.g. [2]) and its norm is given by

||Pn|| = sup
x∈D

n∑
j=1

|lj(x)|.

We will assume that ||Pn|| <∞ and that

lim
n→∞

||u− Pnu|| = 0, for all u ∈ C(D). (2.2)

Let v∗ be the solution of (1.4) corresponding to u∗. Using Pn, we define an approxi-
mation of v∗ by

vn(x) = Pnv(x) =

n∑
j=1

vn(xj)lj(x). (2.3)

The values {vn(xj)}nj=1 are determined by forcing equation (1.4) to be true at the
collocation points. This leads to the system

vn(xi) = g

xi, n∑
j=1

vn(xj)

∫
D

k(xi, y)lj(y)dy + f(xi)

 , i = 1, . . . ,m, (2.4)

or
n∑
j=1

vn(xj)lj(xi) = g

xi, n∑
j=1

vn(xj)

∫
D

k(xi, y)lj(y)dy + f(xi)

 . (2.5)
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It is worth mentioning that the integrals on the right hand side only have to be
evaluated once, not at every iteration, since they are dependent only on the basis
functions, not on vn. This reduces the computational cost of the method and simplifies
the implementation.

From (2.5), the approximate solution of (1.5) is found by

un(x) =

∫
D

k(x, y)vn(y)dy + f(x)

=

n∑
j=1

vn(xj)

∫
D

k(x, y)lj(y)dy + f(x). (2.6)

For the two approximate solutions, the following result holds:

Theorem 2.1. ([8, Theorem 2]) Assume conditions (A1)− (A4) hold and that the
operator Pn defined in (2.1) satisfies (2.2). Then

||vn − v∗|| → 0, ||un − u∗|| → 0, as n→ 0.

Moreover, there exists an n0 ∈ N and a constant c, independent of n, such that for
all n ≥ n0,

||un − u∗|| ≤ c inf
φ∈Dn

||φ− v∗||.

This means that un converges to u∗ at least as fast as vn converges to v∗.

2.2. Interpolation-based collocation

To define the projection operator Pn, we start with piecewise linear interpolation
of an unknown function on a triangle. First, we consider the unit simplex σ = {(s, t) |
0 ≤ s, t, s+ t ≤ 1}. Let h be a continuous function on σ and denote by w = 1− s− t.
To approximate h, we use linear interpolation

h(s, t) ≈
3∑
i=1

h(τi)li(s, t), (2.7)

where the nodes

τ1 =

(
1

2
,

1

2

)
, τ2 =

(
1

2
, 0

)
, τ3 =

(
0,

1

2

)
(2.8)

are the midpoints of the three sides of σ and

l1(s, t) = 1− 2w, l2(s, t) = 1− 2t, l3(s, t) = 1− 2s (2.9)

are the corresponding Lagrange interpolation basis functions. Obviously, the approx-
imation formula (2.7) is exact for all polynomials of degree less than or equal to 1.

This formula can be extended to any triangle ∆, using an affine mapping T :

σ
1−1−→
onto

∆ given by

x = (ξ, η) = T (s, t) = wz1 + tz2 + sz3, (2.10)

where z1, z2, z3 are the vertices of ∆. This mapping transforms a polynomial of degree
r in (s, t) into a polynomial of the same degree in (ξ, η) (and its inverse acts the same
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way on polynomials in (ξ, η)).
Denote by

qi = T (τi), i = 1, 2, 3. (2.11)

For a given h ∈ C(∆), define Pnh by

Pnh(x) = Pnh(T (s, t))

=

3∑
i=1

h(qi)li(s, t), (s, t) ∈ σ. (2.12)

Then the approximation formula

h(x) ≈ Pnh(x) =

3∑
i=1

h(qi)li(s, t), (2.13)

is still exact for polynomials of degree r ≤ 1.
From general interpolation theory, we have the following error bound for this approxi-
mation (see e.g. [2]).

Lemma 2.2. Let ∆ be a planar triangle and assume h ∈ C2(∆). Then, the following
holds

||h− Pnh||∞ ≤ cδ2||D2h||∞, (2.14)

where δ = diameter(∆) and D2h = max
0≤i≤2

∣∣∣∣∂2h(ξ, η)

∂ξi∂η2−i

∣∣∣∣. The constant c is independent

of both h and ∆.

Now, to define our collocation method, let Tn = {∆1, ...,∆n} be a triangulation of D
with grid size δn and Tk : σ → ∆k be defined as in (2.10), for every k = 1, . . . , n. At
each iteration, the triangulation is refined by splitting each triangle into four triangles,
obtained by connecting the midpoints of the three sides. The new triangulation, T4n,

has four times as many triangles and grid size δ4n =
1

2
δn.

For a function h ∈ C(D), restrict it to some ∆ ∈ Tn and use (2.13) to approximate it
on ∆.
Integrating (2.7), we obtain the quadrature formula∫

σ

h(s, t)dσ ≈ 1

6

[
h

(
1

2
,

1

2

)
+ h

(
1

2
, 0

)
+ h

(
0,

1

2

)]
. (2.15)

Using the same affine mapping (2.10), this leads to a quadrature formula for integrals
on ∆ ∫

∆

h(y)dy ≈
∫
∆

Pnh(y)dy

=

3∑
i=1

h(qi)

∫
σ

li(s, t)JT (s, t) dσ, (2.16)
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where JT is the Jacobian of the transformation given in (2.10).
Thus, we have the approximation∫

D

h(y)dy =

n∑
k=1

∫
∆k

h(y)dy (2.17)

≈
n∑
k=1

3∑
i=1

h(qk,i)

∫
σ

li(s, t)JTk
(s, t) dσ, (2.18)

where qk,i = Tk(τi), i = 1, 2, 3.
Then the collocation method is given by

vn(qi) = g

qi, 3∑
j=1

vn(qj)

∫
D

k(qi, y)lj(y)dy + f(qi)

 , (2.19)

which leads to the system

vn(qi) = g

qi, n∑
k=1

3∑
j=1

vn(qk,j)

∫
σ

k(qi, Tk(s, t))lj(s, t)JTk
(s, t)dσ + f(qi)

 , (2.20)

for all i = 1, . . . , 3n. Once all the unknowns vn(qi) are found from this system, we
have, for each x = Tk(s, t) ∈ ∆k,

vn(x) =

3∑
i=1

vn(qi)li(s, t),

un(x) =

3∑
i=1

vn(qi)

∫
σ

k(x, Tk(s, t))li(s, t)JTk
(s, t)dσ + f(x).

(2.21)

3. Convergence and error analysis

We write the system (2.20) in operator form as

(I − PnK)vn = 0, (3.1)

with

K(v)(x) = g

x, ∫
D

k(x, y)v(y)dy + f(x)

 (3.2)

and Pn defined as in (2.12).
Since we are using piecewise linear interpolation in our collocation method, we

have the following well known general result (see, e.g. [2, p. 177]).

Theorem 3.1. Assuming A1−A4 hold, the operators I−PnK are invertible on C(D)
and have uniformly bounded inverses, for all sufficiently large n, say n ≥ n0. In
addition, the following error bounds hold:

||v∗ − vn||∞ ≤
∣∣∣∣(I − PnK)−1

∣∣∣∣ · ||v∗ − Pnv∗||, n ≥ n0
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and

||v∗ − vn||∞ ≤ O(δ2), n ≥ n0, (3.3)

where δ = δn denotes the mesh size of the triangulation Tn.

Now, this result holds in general, when using linear spline approximation. How-
ever, because of our particular choice of collocation (and interpolation) nodes, the ap-
proximation has higher order than O(δ2). Notice that the quadrature formula (2.15)
has degree of precision d = 2, higher than expected with interpolation of degree 1.
Then formula (2.16) also has degree of precision d = 2. This will lead to a higher rate
of convergence at the collocation nodes than O(δ2), i. e., we get superconvergence.

Theorem 3.2. Assume the conditions A1−A4 hold, that k ∈ C2(D × D) and that
v∗ ∈ C3(D). Then

max
1≤i≤n

|v∗(qi)− vn(qi)|, max
1≤i≤n

|u∗(qi)− un(qi)| ≤ O(δ3). (3.4)

Proof. The proof is computational and follows the same ideas as the ones given for
similar results e.g. in [3, 10].
Since v∗ is the exact solution of (1.4), v∗ = Kv∗. By the interpolation formula (2.13),
vn = PnKvn. Then

(I − PnK)(v∗ − vn) = v∗ − vn − PnKv∗ + PnKvn
= Kv∗ − PnKv∗ = (I − Pn)Kv∗

and, thus, under our assumptions, for each i = 1, . . . , n,

|(I − PnK)(v∗ − vn)(qi)| =

∣∣∣∣∣∣g
qi,∫

D

k(qi, y)v∗(y)dy + f(qi)


− g

qi,∫
D

k(qi, y)Pnv
∗(y)dy + f(qi)

∣∣∣∣∣∣
≤ c

∣∣∣∣∣∣
n∑
k=1

∫
∆k

k(qi, y)(I − Pn)v∗(y)dy

∣∣∣∣∣∣ .
Now, on each triangle ∆k, let pj denote Taylor polynomial expansions of v∗ around
a suitable point in ∆k, for j = 1, 2. Then

||v∗ − pj ||∞ ≤ cδj+1,

||p2 − p1||∞ ≤ cδ2. (3.5)

Also, since k ∈ C2(D ×D), there exists a constant k0 such that, for all y ∈ ∆k,

|k(qi, y)− k0| ≤ cδ. (3.6)

Since the interpolation formula (2.13) has degree of precision 1, we have

k(qi, y)(I − Pn)p1(y) = 0
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and because the quadrature formula (2.15) has degree of precision 2, it follows that

k0

∫
∆k

(I − Pn)p2(y)dy = 0.

Then, we can write∣∣∣∣∣∣
∫
∆k

k(qi, y)(I − Pn)v∗(y)dy

∣∣∣∣∣∣ ≤ c

∣∣∣∣∣∣
∫
∆k

k(qi, y)(I − Pn)(v∗ − p2)(y)dy

+

∫
∆k

(k(qi, y)− k0)(I − Pn)(p2 − p1)(y)dy

−
∫
∆k

k0(I − Pn)p1(y)dy

∣∣∣∣∣∣ .
Now, using the bounds (3.5), (3.6), we get

max
1≤i≤n

|v∗(qi)− vn(qi)| ≤ max
1≤i≤n

|(I − Pn)(Kv∗)(qi)|

≤ cδ3
n∑
k=1

∫
∆k

dy

= O(δ3) · n ·Area(∆k)

= O(δ3) ·O(δ−2) ·O(δ2) = O(δ3).

Then by Theorem 2.1, we also have

max
1≤i≤n

|u∗(qi)− un(qi)| ≤ O(δ3). �

4. Numerical experiments

We will use the notation x = (x1, x2), y = (y1, y2) ∈ D = [a, b]× [c, d].

Example 4.1. Let us consider the integral equation

u(x1, x2) =
1

2

1∫
0

1∫
0

x2
1 + 1

y2
1 + 2y2

2

u2(y1, y2) dy1 dy2 + 2x2
2, (4.1)

for (x1, x2) ∈ [0, 1]× [0, 1], with exact solution u∗(x1, x2) = x2
1 + 2x2

2 + 1.

Here, we have

k(x, y) = k(x1, x2, y1, y2) =
x2

1 + 1

y2
1 + 2y2

2

,

g(y, u(y)) =
1

2
u2(y),

f(x) = f(x1, x2) = 2x2
2
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and D = [0, 1]× [0, 1].
We start with n = 2 triangles that cover D and then refine the triangulation as
described earlier. We compute the errors

en(v) = max
1≤i≤n

|v∗(qi)− vn(qi)| and

en(u) = max
1≤i≤n

|u∗(qi)− un(qi)|

Also, we look at the ratios

r1 =
en(v)

e4n(v)
, r2 =

en(u)

e4n(u)

from one iteration to the next. If indeed the numerical method has order of conver-
gence O(δd), then these ratios should equal approximately 2d.
We approximate the integrals needed for the coefficients of the nonlinear system (2.20)
using tiled adaptive quadratures (function integral2 in Matlab).

In Table 1, we give the errors en(v) and en(u), as well as the values log2 r1 and
log2 r2, for each iteration.

n en(v) log2 r1 en(u) log2 r2

2 1.121e− 1 2.382e− 2
8 1.874e− 2 2.58 3.397e− 3 2.81
32 2.582e− 3 2.86 4.519e− 4 2.91
128 3.296e− 4 2.97 5.653e− 5 2.99

Table 1. Errors in Example 4.1

The table shows that both r1 and r2 approach the value 23, which is consistent with
the superconvergence O(δ3) proved in Theorem 3.2.

Example 4.2. Next, we consider the equation

u(x1, x2) =
1

8

2∫
0

2∫
0

e2x1+x2
(
y2

1 − y2

)
ln (u(y1, y2)) dy1 dy2, (4.2)

for (x1, x2) ∈ [0, 2]× [0, 2], whose exact solution is u∗(x1, x2) = e2x1+x2 .

In this case, D = [0, 2]× [0, 2] and we can take

k(x, y) =
1

8
e2x1+x2 ,

g(y, u(y)) = ln (u(y)),

f(x) = 0.

Again, we start with n = 2 triangles and proceed as before.
The errors are shown in Table 2. The results show, again, an O(δ3) rate of convergence.
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n en(v) log2 r1 en(u) log2 r2

2 2.143e− 1 3.628e− 2
8 3.344e− 2 2.68 5.356e− 3 2.76
32 4.735e− 3 2.82 7.428e− 4 2.85
128 6.086e− 4 2.96 9.415e− 5 2.98

Table 2. Errors in Example 4.2

5. Conclusions

We have developed a collocation method for the approximate solution of non-
linear Hammerstein integral equations over bounded domains of R2. The numerical
scheme is based on a special choice of linear spline interpolation over triangles. Having
a higher degree of precision of the quadrature formula than expected, the resulting
collocation method is superconvergent at the collocation nodes, converging faster than
over the entire domain. This is one major advantage of the proposed numerical scheme
over other projection-type collocation methods. Another important aspect is the fact
that by applying collocation to a newly reformulated integral equation, the integrals
needed for the coefficients of the linear system only have to be evaluated once, not at
every iteration, which reduces the computational cost of the method and simplifies
the implementation. Thus, this is a very efficient numerical method.

These ideas can be taken further, considering more complicated domains, higher
dimensions or other types of interpolation.
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Abstract. This note focuses on a sequence of linear positive operators of integral
type in the sense of Kantorovich. The construction is based on a class of discrete
operators representing a new variant of Jain operators. By our statements, we
prove that the integral family turns out to be useful in approximating continuous
signals defined on unbounded intervals. The main tools in obtaining these results
are moduli of smoothness of first and second order, K-functional and Bohman-
Korovkin criterion.
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1. Introduction

The starting point of the paper is a class of operators introduced by G.C. Jain
[8]. The construction is based on a Poisson-type distribution with two parameters
given by

wβ(k;α) =
α

k!
(α+ kβ)k−1e−(α+kβ), k ∈ N0,

for α > 0 and |β| < 1. With the help of Lagrange inversion, in [1, Lemma 1 ] was
proved

∞∑
k=0

wβ(k;α) = 1. (1.1)

Considering wβ(k; 0) = δk,0, Kronecker’s delta symbol, Jain defined the operators

(P [β]
n f)(x) =

∞∑
k=0

wβ(k;nx)f

(
k

n

)
, x ≥ 0, (1.2)
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where β ∈ [0, 1) and f ∈ C(R+) whenever the above series is convergent. Here C(R+)
stands for the space of real-valued continuous functions defined on R+ = [0,∞).

Clearly, P
[β]
n , n ∈ N, are linear and positive operators.

In recent years, the investigation of these operators have been invigorated ob-
taining new properties as well as various generalizations. For a brief synthesis, [2] can
be consulted.

Set N0 = {0} ∪ N. We consider the functions e0(x) = 1, em(x) = xm, x ≥ 0.
The first three monomials represent the so-called Korovkin test functions, having an
essential role in the study of the convergence of any sequence of linear positive oper-
ators towards the identity operator. For the operators defined by (1.2), the following
identities

P [β]
n e0 = e0, P

[β]
n e1 =

1

1− β
e1, P

[β]
n e2 =

1

(1− β)2
e2 +

1

n(1− β)3
e1, (1.3)

take place, see [8, Eqs. (2.13)-(2.14)]. We mention that using the Stirling numbers of

the second kind, all P
[β]
n ej moments were explicitly calculated in [1, Proposition 1 ].

Many classical linear positive operators preserve e0 and e1, which implies that
they have affine functions as fixed points. Such operators are also called Markov type.
This property becomes useful in the study of the approximation properties which the
operators enjoy. Pursuing this goal, in [7] the authors introduced and investigated the
following variant of Jain operators

(D[β]
n f)(x) =

∞∑
k=0

wβ(k;un(x))f

(
k

n

)
, f ∈ C(R+), x ≥ 0, (1.4)

where un(x) = n(1− β)x, x ≥ 0. The following identities

D[β]
n e0 = e0, D

[β]
n e1 = e1, D

[β]
n e2 = e2 +

1

n(1− β)2
e1, (1.5)

hold, see [7, Lemma 2.1 ].

We remind that for β = 0, P
[0]
n = D

[0]
n , n ≥ 1, turn into well-known Szász-

Mirakjan operators, see [14], [11].
The aim of this paper is to define an integral Kantorovich-type generalization of

D
[β]
n , n ≥ 1, operators and to establish some approximation properties. These will be

achieved in the next two sections.
We specify that we wished the presentation to be self-contained to be accessible

to a wide audience.

2. Integral type construction

Kantorovich-type constructions are based on replacing the values of the function
f on the nodes k/n, k ≥ 0, with average values of the function obtained by integrals
on intervals of the form In,k =

[
k
n ,

k+1
n

]
, k ≥ 0. The utility of this type of operators

is given by the fact that such classes can approximate functions belonging to larger
spaces.
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The first approach in Kantorovich sense of P
[β]
n , n ≥ 1, operators was achieved

by Umar and Razi [15]. They defined and analyzed the operators given by the formula

(P̃ [β]
n f)(x) = n

∞∑
k=0

wβ(k;nx)

∫ (k+1)/n

k/n

f(t)dt, (2.1)

where f is locally integrable function and the right hand side of relation (2.1) is finite.

Our proposal for an integral extension of the operators defined by (1.4) has the
following form

(D̃[β]
n f)(x) =

1

λn

∞∑
k=0

wβ(k;un(x))

∫ (k+1)λn

kλn

f(t)dt, x ≥ 0, (2.2)

where

(i) (λn)n≥1 is a sequence of strictly decreasing positive numbers such that
lim
n→∞

λn = 0,

(ii) f belongs to the space of integrable functions defined on R+ such that the
series in (2.2) is absolutely convergent.

In the above construction we used a flexible net on R+ namely (kλn)k≥0. The
operators also admit the integral representation

(D̃[β]
n f)(x) =

∫ ∞
0

K∗n(x, t)f(t)dt, x ≥ 0,

with the kernel

K∗n(x, t) =
1

λn

∞∑
k=0

wβ(k;un(x))χn,k(t),

where χn,k is the characteristic function of the interval [kλn, (k + 1)λn] with respect
to R+, k ≥ 0.

For particular case λn =
1

n
and un(x) := nx, we reobtain the operators defined

at (2.1). Further, if we choose β = 0 in (2.1), the operators turn into Szász-Mirakjan-

Kantorovich operators introduced by Butzer [4, Eq. (5)]. Clearly, for each n ∈ N, D̃
[β]
n

is a linear positive operator. In what follows we establish some computational results.

Lemma 2.1. Let D̃
[β]
n , n ∈ N, be the operators defined by (2.2). For each n ∈ N the

following identities

D̃[β]
n e0 = e0, (2.3)

D̃[β]
n e1 = nλne1 +

1

2
λn, (2.4)

D̃[β]
n e2 = (nλn)2e2 + nλ2n

(
1 +

1

(1− β)2

)
e1 +

1

3
λ2n (2.5)

take place.
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Proof. Taking in view the definition of D
[β]
n operators and identity (1.1), we immedia-

tely deduce D̃
[β]
n e0 = D

[β]
n e0, as well as the following identities

(D̃[β]
n e1)(x) = nλn(D[β]

n e1)(x) +
1

2
λn(D[β]

n e0)(x),

(D̃[β]
n e2)(x) = (nλn)2(D[β]

n e2)(x) + nλ2n(D[β]
n e1)(x) +

1

3
λ2n(D[β]

n e0)(x).

Using (1.5), the proof is ended. �

We indicate the first two central moments of the operators. Set ϕx(t) = t − x,
(t, x) ∈ R+ × R+.

(D̃
[β]
n ϕx)(x) = (nλn − 1)x+

1

2
λn,

(D̃
[β]
n ϕ2

x)(x) = (nλn − 1)2x2 + nλ2n

(
1 +

1

(1− β)2
− 1

nλn

)
x+

1

3
λ2n.

(2.6)

We recall the Bohman-Korovkin criterion. Briefly speaking, this theorem says: if
a sequence of linear and positive operators approximates uniformly the test functions
ek, k = 0, 2, then it approximates all continuous functions defined on a compact
interval.

Remark 2.2. Based on Bohman-Korovkin theorem, studying relations (1.3) it can be

observed that the sequence (P
[β]
n )n≥1 does not tend to the identity operator. To turn

it into an approximation process we will proceed as follows. For each n ∈ N, the
constant β will be replaced by a number βn ∈ [0, 1). If lim

n→∞
βn = 0, then

lim
n→∞

(P [βn]
n ej)(x) = ej(x), j ∈ {0, 1, 2},

uniformly on any compact interval K ⊂ R+. Consequently,

lim
n→∞

(P [βn]
n f)(x) = f(x), uniformly in x ∈ K.

What is important to point out is that for the Kantorovich variant defined at (2.2)
we no longer have to make this change on the β parameter, as will be seen in the next
paragraph.

3. Approximation properties of D̃
[β]
n operators

We establish sufficient conditions for the sequence (D̃
[β]
n )n≥1 to become an

approximation process in a certain specified space.
Throughout the paragraph we use standard notations. Set B(X) the Banach

space of all real-valued bounded functions defined on X, endowed with the norm of
the uniform convergence (briefly, sup-norm) defined by ‖f‖ = sup

x∈X
|f(x)| for every

f ∈ B(X). Also, set CB(X) = C(X) ∩B(X), endowed with the sup-norm.

We mention that the operators D̃
[β]
n , n ≥ 1, are non expansive in the space

B(R+), this means

‖D̃[β]
n f‖ ≤ ‖f‖, (3.1)
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for any local integrable function f belonging to B(R+). As a consequence, for each

n ∈ N, D̃
[β]
n maps continuously CB(R+) into itself.

Theorem 3.1. Let the operators D̃
[β]
n , n ∈ N, be defined by (2.2) such that the following

condition
lim
n→∞

nλn = 1 (3.2)

is fulfilled. For any compact interval K ⊂ R+, the following relation

lim
n→∞

D̃[β]
n f = f uniformly on K

occurs, provided f is continuous and bounded on R+.

Proof. A direct way to prove this result is to use a general result established by
Altomare [3, Theorem 4.1 ] which says

Let X be a locally compact subset of Rd, d ≥ 1. Consider a lattice subspace E of

F (X) containing the set T =

{
1, pr1, . . . , prd,

d∑
i=1

pr2j

}
and let (Ln)n≥1 be a sequence

of positive linear operators from E into F (X) such that for every g ∈ T ,

lim
n→∞

Ln(g) = g uniformly on compact subsets of X.

Then, for every f ∈ E ∩ CB(X),

lim
n→∞

Ln(f) = f uniformly on compact subsets of X.

In the above F (X) stands for the linear space of all real-valued functions defined
on X and the function prj : Rd → R indicates the j-th coordinate function,

prj(x) = xj , x = (xj)1≤j≤d ∈ Rd.
Applying the above result for d = 1, X = R+, E = C(R+), the set T will

consist of the test functions ej , j ∈ {0, 1, 2}. The formulas (2.3)-(2.5) correlated with
hypothesis (3.2) complete the proof. �

In order to obtain the error of approximation we use the modulus of continuity
defined as follows

ωf (δ) ≡ ω(f ; δ) = sup{|f(x′)− f(x′′)| : x′, x′′ ∈ R+, |x′ − x′′| ≤ δ}
= sup

0≤h≤δ
sup
x∈R+

|f(x+ h)− f(x)|,

where δ ≥ 0 and f ∈ B(R+).

Theorem 3.2. Let the operators D̃
[β]
n , n ∈ N, be defined by (2.2). For any local inte-

grable function defined on R+ belonging to B(R+), we get

|(D̃[β]
n f)(x)− f(x)| ≤

(
1 +

√
τ(x) + λ2nα

−1
n

)
ω (f ;

√
αn) , x ≥ 0, (3.3)

where

τ(x) = max
x≥0
{x, x2} and αn = (nλn − 1)2 +

(
1 +

1

(1− β)2

)
nλ2n, n ≥ 1. (3.4)
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Proof. To achieve the statement, we appeal to an old result established by Shisha and
Mond [13]: if T is a linear and positive operator, then one has

|(Tf)(x)− f(x)| ≤ |f(x)| |(Te0)(x)− 1|

+

(
(Te0)(x) +

1

δ

√
(Te0)(x)(Tϕ2

x)(x)

)
ω(f ; δ), δ > 0,

for every bounded function f . Using this inequality for D̃
[β]
n operators, we take into

account relation (2.3). Based on (2.6), we can write

(D̃[β]
n ϕ2

x)(x) ≤ αnτ(x) + λ2n, n ≥ 1. (3.5)

Choosing δ :=
√
αn we arrive at (3.3) and the proof is over. �

Remark 3.3. Let us suppose that f is uniformly continuous on R+. In this case it
is known that lim

δ→0+
ω(f ; δ) = 0, see, e.g., the monograph [5, page 40 ]. If we request

that the condition (3.2) to be fulfilled, then relation (3.3) leads to the fact that

((D̃
[β]
n f)(x))n≥0 is pointwise convergent to f(x) for any x ∈ R+. Also, (3.2) guarantees

that the upper-bound for the error of approximation has the magnitude O (1/
√
n).

As a special case we indicate the rate of convergence of our operators by means
of the elements of γ-Hölder continuous class

LipM (γ) = {f : R+ → R | |f(t)− f(x)| ≤M |t− x|γ , (t, x) ∈ R+ × R+}, (3.6)

where 0 < γ ≤ 1 and M is a nonnegative constant independent of f .

Theorem 3.4. Let the operators D̃
[β]
n , n ∈ N, be defined by (2.2). For any function

f ∈ LipM (γ) the following inequality

|(D̃[β]
n f)(x)− f(x)| ≤M(αnτ(x) + λ2n)γ/2, x ≥ 0, (3.7)

holds, where τ and αn are defined at (3.4).

Proof. Considering relations (2.3) and (3.6) we can write

|(D̃[β]
n f)(x)− f(x)| ≤ D̃[β]

n (|f − f(x)|;x) ≤MD̃[β]
n (|ϕx|γ ;x). (3.8)

At this point we apply Hölder inequalities with conjugate numbers

p := 2/γ, q := 2/(2− γ)

inferring ∫ (k+1)λn

kλn

|ϕx(t)|γdt ≤ λ
2−γ
2

n

(∫ (k+1)λn

kλn

ϕ2
x(t)dt

)γ/2
.

Returning at (3.8) we get

|(D̃[β]
n f)(x)− f(x)| ≤M

∞∑
k=0

wβ(k;un(x))

(
1

λn

∫ (k+1)λn

kλn

ϕ2
x(t)dt

)γ/2
≤M(D̃[β]

n ϕ2
x)γ/2(x).

Using the inequality (3.5) we reach (3.7) and the proof is complete. �
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We can also consider functions satisfying another Lipschitz type condition de-
fined by Szász [14, Eq. (8)]. Set

Lip∗M (γ) =

{
f : R+ → R | |f(t)− f(x)| ≤M |t− x|γ

(t+ x)γ/2
, t > 0, x > 0

}
,

where 0 < γ ≤ 1 and M is a nonnegative constant independent of f .
Since (t+ x)−γ/2 < x−γ/2, for t > 0 and x > 0, following a demonstration path

similar to that indicated in Theorem 3.4, we can state

Remark 3.5. For any function f ∈ Lip∗M (γ) it takes place

|(D̃[β]
n f)(x)− f(x)| ≤ M

xγ/2
(αnτ(x) + λ2n)γ/2, x > 0,

where τ and αn are defined at (3.4).

We focus on establishing the degree of approximation in terms of the second
modulus of smoothness ω2(f ; ·) of a function f ∈ CB(R+). It is given as follows

ω2(f ; δ) = sup
0≤h≤δ

sup
x≥0
|f(x+ 2h)− 2f(x+ h) + f(x)|, δ ≥ 0.

Also, a subtle measurement of the error of approximation is provided by K-functional
introduced by Peetre [12]. If X0, X1 are two Banach spaces with X1 continuously
embedded in X0, X1 ↪→ X0, the K-functional is defined for each f ∈ X0 by the
formula

K(f, δ;X0, X1) ≡ K(f ; δ) = inf
g∈X1

(‖f − g‖X0 + δ‖g‖X1), δ > 0.

This quantity describes properties of approximation of f ∈ X0. More detailed, the
inequality K(f ; δ) < ε for δ > 0 implies that f can be approximated with the error
‖f − g‖X0

< ε in X0 by an element g ∈ X1 whose norm is not too large, namely
‖g‖X1 < εδ−1. For our purpose, we choose

X0 = CB(R+), X1 = C2
B(R+) = {g ∈ CB(R+) : g′, g′′ ∈ CB(R+)},

both spaces being endowed with the sup-norm ‖ · ‖. Thus, we will use

K(f ; δ) = inf
g∈C2

B(R+)
(‖f − g‖+ δ‖g′′‖).

Based for example on [10, Proposition 6.1 ], between ω2 and K-functional the following
relations hold: the positive constants c1 and c2 exist such that

c1ω2(f ; δ) ≤ K(f ; δ2) ≤ c2ω2(f ; δ), δ > 0. (3.9)

Theorem 3.6. Let the operators D̃
[β]
n , n ∈ N, be defined by (2.2).

For every f ∈ CB(R+) the following inequality

|(D̃[β]
n f)(x)− f(x)| ≤Mω2(f ; δn(x)) + ω

(
f ; (nλn − 1)x+

1

2
λn

)
, x ≥ 0, (3.10)

holds, where M is a constant independent of f and

δn(x) =
1

2

(
αnτ(x) + λ2n +

(
(nλn − 1)x+

1

2
λn

)2
)1/2

.
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The quantities αn and τ are defined by (3.4).

Proof. Our approach follows a route similar to the proof that appears in [6, Theorem
3.2 ] aiming at a Kantorovich modification for Szász-Mirakjan operators based on Jain
and Pethe operators [9].

At first we define the operators E
[β]
n : CB(R+)→ C(R+),

(E[β]
n f)(x) = (D̃[β]

n f)(x)− f
(
nλnx+

1

2
λn

)
+ f(x). (3.11)

Using relations (2.3) and (2.4), obviously E
[β]
n ek = ek for k ∈ {0, 1}. Therefore, the

first central moment E
[β]
n ϕx is null. Since D̃

[β]
n verifies (3.1), we have

|(E[β]
n h)(x)| ≤ 3‖f‖, x ≥ 0, (3.12)

for any h ∈ CB(R+). Let g ∈ C2
B(R+) be arbitrarily chosen. By Taylor’s expansion

with integral form of the remainder, we get

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du,

for t ≥ 0 and x ≥ 0. Applying E
[β]
n on both sides, we can write successively

(E[β]
n g)(x)− g(x) = g′(x)(E[β]

n ϕx)(x) + E[β]
n

(∫ e1

xe0

(e1 − ue0)g′′(u)du;x

)
= D̃[β]

n

(∫ e1

xe0

(e1 − ue0)g′′(u)du;x

)
−
∫ nλnx+

1
2λn

x

(
nλnx+

1

2
λn − u

)
g′′(u)du.

In the above we used (3.11). Considering the increase∣∣∣∣∫ t

x

ϕx(u)g′′(u)du

∣∣∣∣ ≤ ‖g′′‖ ∣∣∣∣∫ t

x

|u− x|du
∣∣∣∣ ≤ ‖g′′‖ϕ2

x(t),

it allows us to write

|(E[β]
n g)(x)− g(x)| ≤ ‖g′′‖

(
(D̃[β]

n ϕ2
x)(x) +

(
(nλn − 1)x+

1

2
λn

)2
)
.

Returning at (3.11), with the help of (3.12), definition of modulus of continuity ω(f ; ·)
and (3.5), we get

|(D̃[β]
n f)(x)− f(x)|

≤ |E[β]
n (f − g;x)|+ |(E[β]

n g)(x)− g(x)|+ |g(x)− f(x)|+
∣∣∣∣f (nλnx+

1

2
λn

)
− f(x)

∣∣∣∣
≤ 4‖f−g‖+

(
(D̃[β]

n ϕ2
x)(x)+

(
(nλn − 1)x+

1

2
λn

)2
)
‖g′′‖+ ω

(
f ; (nλn − 1)x+

1

2
λn

)

≤ 4‖f−g‖+

(
αnτ(x)+λ2n+

(
(nλn−1)x+

1

2
λn

)2
)
‖g′′‖+ ω

(
f ; (nλn−1)x+

1

2
λn

)
.
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Taking infimum with respect to all g ∈ C2
B(R+) and using (3.9) we arrive at (3.10)

which concludes the proof. �

Remark 3.7. Based on the fact that lim
n→∞

λn = 0 and relation (3.2) takes place, we

deduce lim
n→∞

δn(x) = 0 for any x ≥ 0.

Conclusion. In this article we propose an integral version in Kantorovich sense of
a family of discrete operators recently obtained from genuine Jain operators. The
proposed construction involves sub-intervals of the form [kλn, (k+ 1)λn], k ≥ 0, these
being used in several previous studies. A notable aspect in the fact that the proposed
integral variant is an approximation process for any fixed parameter β belonging to
the interval [0, 1). In order to have the same quality, in the discrete operators β has
to be replaced with a sequence of parameters (βn)n≥1 such that lim

n→∞
βn = 0. For the

newly created sequence of linear positive operators, the highlighted approximation
properties involve locally integrable functions in different functions spaces. Upper
bounds of approximation error have been established using the first and second order
modulus of smoothness.
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Abstract. In this paper we give estimates for the rates of convergence for the
iterates of some positive linear operators which preserve only the constants. We
obtain sharp inequalities when we use both continuous functions and differen-
tiable functions. We present some optimal results for the Cesaro, Stancu and
Schurer operators.
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1. Introduction

Starting with the articles [9] and [8] of R.P. Kelisky, T.J. Rivlin and respectively
S. Karlin, Z. Ziegler, the iterates of the positive linear operators were intensively
studied.

The convergence of the sequence of the iterates of some positive linear operators
which preserve only the constants was proved in [3], [14], [7], [13], [15], [4], [5], [6], [2].

On the other hand, estimations of the rates of convergence for the iterates of
some positive operators preserving the constants were given in [10] using moduli of
smoothness. In [1] the authors got sharp inequalities for the iterates of the Bernstein
operators. In [12] the author obtained an estimate of the convergence rate for the
iterations of linear and positive operators that reproduce linear functions in the case
of differentiable functions.

In this note we obtain inequalities for the rates of convergence of the iterates of
some positive linear operators L : C[a, b]→ C[a, b] which preserve only the constants
and have the interpolation point x = a or x = b. In Section 2 we get these estimations
both for continuous functions (using moduli of smoothness and divided difference) and
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for differentiable functions. The inequalities (2.1), (2.5), (2.6), (2.8), (2.9) and (2.12)
are sharp in sense that we get equality if we take f = e1. In Section 3 we determine
the best constants in some inequalities involving the iterates of Cesaro, Stancu and
Schurer operators.

Throughout the paper we use the following notations and definitions:
• the the monomial functions: ei : [a, b]→ R, ei(x) = xi, i = 0, 1, . . . ;
• the first and and the second moduli of smootness of the functiom f ∈ C[a, b]:

ω1(f, δ) = sup {f(x+ h)− f(x) : x, x+ h ∈ [a, b], 0 ≤ h ≤ δ} ,

and respectively

ω2(f, δ) = sup {f(x+ h)− 2f(x) + f(x− h) : x, x± h ∈ [a, b], 0 ≤ h ≤ δ} ,

where δ ≥ 0,
• the divided difference of the function f ∈ C[a, b] on the distinct points x1, x2 ∈

[a, b]:

[x1, x2; f ] =
f(x2)− f(x1)

x2 − x1
.

2. Main results

Theorem 2.1. Let L : C[a, b] → C[a, b] be a positive linear operator which preserves
only the constants and has interpolation point x = a. If

Lke1(x) > a, x ∈ (a, b],

then we have, for every f ∈ C[a, b] and x ∈ [a, b],∣∣Lkf(x)− f(a)
∣∣ ≤ 4

b− a
λk(x)ω1 (f, λk(x)) + 3ω2 (f, λk(x)) , (2.1)

where

λk(x) =
1

2

√
(b− a)(Lke1(x)− a). (2.2)

Proof. Let f ∈ C[a, b] and 0 < δ ≤ (b − a)/2. If F is a positive linear functional on
C[a, b], then from the optimal result of Păltănea [11] we have:

|f(x)− F (f)| ≤ f(x) |F (e0)− 1|+ 1

δ
|F (e1 − xe0)|ω1 (f, δ) (2.3)

+

(
F (e0) +

1

2δ2
F (e1 − xe0)2

)
ω2 (f, δ) , x ∈ [a, b].

Taking F (f) = f(a) we get

|f − f(a)| ≤ e1 − ae0
δ

ω1 (f, δ) +

(
e0 +

(e1 − ae0)
2

2δ2

)
ω2 (f, δ)

≤ e1 − ae0
δ

ω1 (f, δ) +

(
e0 +

(b− a)(e1 − ae0)

2δ2

)
ω2 (f, δ) .
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Since L preserves the constant functions, it follows that∣∣Lkf − f(a)
∣∣ ≤ 1

δ

(
Lke1 − ae0

)
ω1 (f, δ) +

(
e0 +

(b− a)(Lke1 − ae0)

2δ2

)
ω2 (f, δ) .

(2.4)
If we take in (2.4)

δ = λk(x), x ∈ (a, b],

where λk is given by (2.2) we get that (2.1) holds for x ∈ (a, b].

For x = a, due the interpolation property of L, we have Lkf(a) = f(a). Therefore (2.1)
is also true for x = a. This completes the proof. �

Theorem 2.2. Let L : C[a, b] → C[a, b] be a positive linear operator which preserves
only the constants and has interpolation point x = b. If

Lke1(x) < b, x ∈ [a, b),

then we have, for every f ∈ C[a, b] and x ∈ [a, b],∣∣Lkf(x)− f(b)
∣∣ ≤ 4

b− a
µk(x)ω1 (f, µk(x)) + 3ω2 (f, µk(x)) , (2.5)

where

µk(x) =
1

2

√
(b− a)(b− Lke1(x)).

Proof. Taking F (f) = f(b) in (2.3) we get

|f − f(b)| ≤ be0 − e1
δ

ω1 (f, δ) +

(
e0 +

(be0 − e1)2

2δ2

)
ω2 (f, δ)

≤ be0 − e1
δ

ω1 (f, δ) +

(
e0 +

(b− a)(be0 − e1)

2δ2

)
ω2 (f, δ) .

The conclusion follows analogous as in Theorem 2.1. �

Theorem 2.3. Let L : C[a, b] → C[a, b] be a positive linear operator which preserves
constants and has the interpolation point x = a. Then, for every f ∈ C[a, b] and
x ∈ [a, b] we have

ma(Lk(e1)(x)− a) ≤ Lk(f)(x)− f(a) ≤Ma(Lk(e1)(x)− a), (2.6)

where ma,Ma ∈ R such that ma ≤ [a, t; f ] ≤Ma when t ∈ (a, b] .

Proof. We have

f(x)− f(a) =

{
[a, x; f ](x− a), x ∈ (a, b]

0, x = a

It follows

ma(e1 − a) ≤ f − f(a) ≤Ma(e1 − a). (2.7)

Applying k times the operator L on (2.7) we get the conclusion. �
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Remark 2.4. From Theorem 2.3 we get the following criterion for the convergence of
the iterates (see also [5, Corolar 2]): if L : C[a, b]→ C[a, b] is a positive linear operator
which preserves the constants, has the interpolation point x = a and satisfies the
condition

lim
k→∞

Lke1 = a, uniformly on [a, b],

then for every f ∈ C[a, b] we have

lim
k→∞

Lkf = f(a), uniformly on [a, b].

Theorem 2.5. Let L : C[a, b] → C[a, b] be a positive linear operator which preserves
constants and has the interpolation point x = b. Then, for every f ∈ C[a, b] and
x ∈ [a, b] we have

mb(b− Lk(e1)(x)) ≤ f(b)− Lk(f)(x) ≤Mb(b− Lk(e1)(x)), (2.8)

where mb,Mb ∈ R such that mb ≤ [t, b; f ] ≤Mb for every t ∈ [a, b).

The proof follows analogous with that of Theorem 2.3 using the formula

f(b)− f(x) =

{
[x, b; f ](b− x), x ∈ [a, b)

0, x = b

Remark 2.6. From Theorem 2.5 we get the following criterion for the convergence of
the iterates: if L : C[a, b] → C[a, b] is a positive linear operator which preserves the
constants, has the interpolation point x = b and satisfies the condition

lim
k→∞

Lke1 = b, uniformly on [a, b],

then for every f ∈ C[a, b] we have

lim
k→∞

Lkf = f(b), uniformly on [a, b].

Theorem 2.7. Let L : C[a, b] → C[a, b] be a positive linear operator which preserves
constants and has the interpolation point x = a. Then, for every f ∈ C1[a, b] and
x ∈ [a, b] we have

m′(Lk(e1)(x)− a) ≤ Lk(f)(x)− f(a) ≤M ′(Lk(e1)(x)− a), (2.9)

where m′,M ′ ∈ R such that m′ ≤ f ′(t) ≤M ′, t ∈ [a, b] and∣∣Lk(f)(x)− f(a)
∣∣ ≤M ′(Lk(e1)(x)− a),

where M ′ = maxt∈[a,b] |f ′(t)| .

Proof. If x ∈ (a, b], then using the mean value theorem it follows that there exists
ξ ∈ (a, x) such that

f(x)− f(a) = (x− a)f ′(ξ). (2.10)

If x = a the formula (2.10) also holds for every ξ ∈ [a, b].
Therefore

m′(e1 − a) ≤ f − f(a) ≤M ′(e1 − a). (2.11)

Applying k times the operator L on (2.11) we get (2.9). The proof is ended. �
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Theorem 2.8. Let L : C[a, b] → C[a, b] be a positive linear operator which preserves
constants and has the interpolation point x = b. Then, for every f ∈ C1[a, b] and
x ∈ [a, b] we have

m′(b− Lk(e1)(x)) ≤ f(b)− Lk(f)(x) ≤M ′(b− Lk(e1)(x)), (2.12)

where m′,M ′ ∈ R such that m′ ≤ f ′(t) ≤M ′, t ∈ [a, b] and∣∣Lk(f)(x)− f(b)
∣∣ ≤M ′(b− Lk(e1)(x)),

where M ′ = maxt∈[a,b] |f ′(t)| .

The proof follows analogous with that of Theorem 2.7 using the mean value
theorem:

f(b)− f(x) = (b− x)f ′(ξ), ξ ∈ (a, b).

3. Applications

We consider the following positive linear operators which preserve only the con-
stants:

• Cesaro operator

C : C[0, 1]→ C[0, 1], C(f)(x) =

 f(0), x = 0
1

x

∫ x

0

f(t)dt, x > 0
, x ∈ [0, 1]

• Bernstein-Stancu operators (see [16])

Sn,α : C[0, 1]→ C[0, 1], Sn,α(f)(x) =

n∑
i=0

(
n

i

)
xi(1− x)n−if

(
i+ α

n+ α

)
,

x ∈ [0, 1], n = 0, 1, . . . , α > 0,

and

Sn,β : C[0, 1]→ C[0, 1], Sn,β(f)(x) =

n∑
i=0

(
n

i

)
xi(1− x)n−if

(
i

n+ β

)
,

x ∈ [0, 1], n = 0, 1, . . . , β > 0,

• Schurer operator

Sn,p : C[0, 1]→ C[0, 1], Sn,p(f)(x) =

n−p∑
i=0

(
n− p
i

)
xi(1− x)n−p−if

(
i

n

)
,

x ∈ [0, 1], n, p ∈ N, n ≥ p.
The operators C, Sn,β , Sn,p have the interpolation point x = 0 while the operator

Sn,α interpolates the continuous functions at x = 1. For every k ≥ 0 we have by
induction (see also [5] for the operators C, Sn,β , Sn,p):

Cke1 =
1

2k
e1, S

k
n,αe1 =

(
n

n+ β

)k
e1, S

k
n,pe1 =

(
n− p
n

)k
e1,
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Skn,αe1 = e0 +

(
n

n+ α

)k
(e1 − e0).

From Theorem 2.1 and Theorem 2.2 we have:

Theorem 3.1. For every f ∈ C[0, 1] and x ∈ [0, 1] we have:

1. ∣∣Ckf(x)− f(0)
∣∣ ≤ 2

√
x

2k
· ω1

(
f,

1

2

√
x

2k

)
+ 3ω2

(
f,

1

2

√
x

2k

)
,

2. ∣∣Skn,αf(x)− f(0)
∣∣ ≤

2

√(
n

n+ β

)k
x · ω1

f, 1

2

√(
n

n+ β

)k
x

+ 3ω2

f, 1

2

√(
n

n+ β

)k
x

 ,

3. ∣∣Skn,pf(x)− f(0)
∣∣ ≤

2

√(
n− p
n

)k
x · ω1

f, 1

2

√(
n− p
n

)k
x

+ 3ω2

f, 1

2

√(
n− p
n

)k
x

 ,

4. ∣∣Skn,βf(x)− f(1)
∣∣ ≤

2

√(
n

n+ α

)k
x · ω1

f, 1

2

√(
n

n+ α

)k
x

+ 3ω2

f, 1

2

√(
n

n+ α

)k
x

 .

Using Theorem 2.3, Theorem 2.5 and respectively Theorem 2.7, Theorem 2.8 we get
the following sharp estimates:

Theorem 3.2. Let f ∈ C[0, 1]. If m0,M0,m1,M1 ∈ R such that m0 ≤ [0, t; f ] ≤ M0,
t ∈ (0, 1] and m1 ≤ [t, 1; f ] ≤M1, t ∈ [0, 1) then for every k ≥ 0 we have:

1. m0c1(k)e1 ≤ Ck(f)− f(0)e0 ≤M0c1(k)e1, where c1(k) = 1
2k
,

2. m0c2(k, n, β)e1 ≤ Skn,β(f)− f(0)e0 ≤M0c2(k, n, β)e1, where

c2(k, n, β) =
(

n
n+β

)k
,

3. m0c3(k, n, p)e1 ≤ Skn,p(f)−f(0)e0 ≤M0c3(k, n, p)e1, where c3(k, n, p) =
(
n−p
n

)k
,

4. m1c4(k, n, α)(e0 − e1) ≤ f(1)e0 − Skn,α(f) ≤ M1c4(k, n, α)(e0 − e1), where

c4(k, n, α) =
(

n
n+α

)k
.

Theorem 3.3. Let f ∈ C1[0, 1]. If m′,M ′ ∈ R such that m′ ≤ f ′(t) ≤ M ′, t ∈ [0, 1],
then for every k ≥ 0 we have:

1. m′c1(k)e1 ≤ Ck(f)− f(0)e0 ≤M ′c1(k)e1,
2. m′c2(k, n, β)e1 ≤ Skn,β(f)− f(0)e0 ≤M ′c2(k, n, β)e1,

3. m′c3(k, n, p)e1 ≤ Skn,p(f)− f(0)e0 ≤M ′c3(k, n, p)e1,

4. m′c4(k, n, α)(e0 − e1) ≤ f(1)e0 − Skn,α(f) ≤M ′c4(k, n, α)(e0 − e1),

where the constants c1(k), c2(k, n, β), c3(k, n, p), c4(k, n, α) are given in Theorem 3.2.
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The constants c1(k), c2(k, n, β), c3(k, n, p), c4(k, n, α) in Theorem 3.2 and Theorem
3.3 are the best possible: for f = e1 we get equality.
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Abstract. The aim of the present paper is to give some characterization theorems
of Barbashin type for the uniform exponential instability and uniform polynomial
instability behavior of evolution operators. Also, some examples which illustrate
the connections between the concepts presented are given.
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1. Introduction

In the last period significant progress has been made in the study of exponential
stability, dichotomy and trichotomy in Banach spaces. A great number of papers that
describe the asymptotic behavior of evolution operators in the exponential case was
published, see for example [7], [8], [9], [11] and the references therein. In particular,
the uniform exponential instability was studied in [5], [4], [12], [13], [15].

Later, the need for a new approach arose from the fact that in some situations,
in particular for nonautonomous systems, the exponential stability is too stringent.
In this sense a polynomial asymptotic behavior was introduced by L. Barreira and C.
Valls ([2]) for the continuous case, respectively by A.J.G. Bento and C.M.Silva ([3])
for discrete-time systems.

Also, another interesting idea in this area can be found in [10] where A.L. Sasu,
M. Megan and B. Sasu give some theorems of characterization for the concept of
uniform exponential instability in terms of Banach function spaces. Recently, the
same authors proposed in [14] an overview in the framework of Banach sequence
spaces and their applications in the asymptotic theory of variational equations.

In this paper we focus on the concepts of uniform exponential instability, ∗-
uniform exponential instability, uniform polynomial instability and ∗-uniform poly-
nomial instability for evolution operators in Banach spaces.
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We obtain some characterization theorems of Barbashin type ([1]) for the con-
cepts mentioned above, assuming that the evolution operator has exponential de-
cay, ∗-exponential decay, respectively polynomial decay, ∗-polynomial decay. Also, we
establish the connections between the notions defined in the paper and the decay
properties, by giving some illustrative examples in this sense.

2. Preliminaries

Let X be a real or complex Banach space and X∗ its dual space. We denote by
B(X) the Banach algebra of all bounded linear operators acting on X. We denote by
I the identity operator and the norms on X,X∗ and on B(X) will be denoted by ‖.‖.
By ∆ and T we will denote the following sets

∆ = {(t, s) ∈ R2
+ : t ≥ s}, T = {(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0}.

Definition 2.1. An application U : ∆ → B(X) is said to be an evolution operator on
X if the following relations are satisfied:

(e1) U(t, t) = I for all t ≥ 0

(e2) U(t, s)U(s, t0) = U(t, t0) for all (t, s, t0) ∈ T. In addition,

(e3) if for all (t, s) ∈ ∆ the linear operator U(t, s) is bijective then we say

that the evolution operator U is reversible.

In this case, we denote by V : ∆→ B(X) the inverse of the evolution operator U,

which means that V (t, s) = U(t, s)−1.

Remark 2.2. If U : ∆ → B(X) is a reversible evolution operator, then the following
properties hold:

(i) V (t, t) = I for all t ≥ 0

(ii) V (t, t0) = V (s, t0)V (t, s) for all (t, s, t0) ∈ T.

Definition 2.3. An evolution operator U : ∆→ B(X) is said to be strongly measurable
if for all (s, x) ∈ R+ ×X, the mapping t 7→ ‖U(t, s)x‖ is measurable on [s,∞).

Definition 2.4. An evolution operator U : ∆ → B(X) is said to be ∗-strongly mea-
surable if for all (s, x∗) ∈ R+ ×X∗, the mapping t 7→ ‖U(t, s)∗x∗‖ is measurable on
[0, t).

Definition 2.5. The evolution operator U : ∆→ B(X) has uniform exponential decay
(u.e.d.) if there exist two constants M ≥ 1 and ω > 0 such that:

‖x‖ ≤Meω(t−s)‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X.

Definition 2.6. The evolution operator U : ∆ → B(X) is said to be uniformly expo-
nentially instable (u.e.is.) if there exist N ≥ 1 and ν > 0 such that:

‖x‖ ≤ Ne−ν(t−s)‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X.
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Definition 2.7. The evolution operator U : ∆→ B(X) has uniform exponential growth
(u.e.g.) if there exist two constants M ≥ 1 and ω > 0 such that:

‖U(t, s)x‖ ≤Meω(t−s)‖x‖, for all (t, s, x) ∈ ∆×X.

Definition 2.8. The evolution operator U : ∆ → B(X) is said to be uniformly expo-
nentially stable (u.e.s.) if there exist N ≥ 1 and ν > 0 such that:

‖U(t, s)x‖ ≤ Ne−ν(t−s)‖x‖, for all (t, s, x) ∈ ∆×X.

Definition 2.9. The evolution operator U : ∆→ B(X) has uniform polynomial decay
(u.p.d.) if there exist two constants M ≥ 1 and ω > 0 such that:

(s+ 1)ω‖x‖ ≤M(t+ 1)ω‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X.

Definition 2.10. The evolution operator U : ∆ → B(X) is uniformly polynomially
instable (u.p.is.) if there exist N ≥ 1 and ν > 0 such that:

(t+ 1)ν‖x‖ ≤ N(s+ 1)ν‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X.

Definition 2.11. The evolution operator U : ∆ → B(X) has ∗-uniform exponential
decay (∗-u.e.d.) if there exist two constants M ≥ 1 and ω > 0 such that:

‖x∗‖ ≤Meω(t−s)‖U(t, s)∗x∗‖, for all (t, s, x∗) ∈ ∆×X∗.

Definition 2.12. The evolution operator U : ∆ → B(X) is said to be ∗-uniformly
exponentially instable (∗-u.e.is.) if there exist N ≥ 1 and ν > 0 such that:

‖x∗‖ ≤ Ne−ν(t−s)‖U(t, s)∗x∗‖, for all (t, s, x∗) ∈ ∆×X∗.

Definition 2.13. The evolution operator U : ∆ → B(X) has ∗-uniform polynomial
decay (∗-u.p.d.) if there exist M ≥ 1 and ω > 0 such that:

(s+ 1)ω‖x∗‖ ≤M(t+ 1)ω‖U(t, s)∗x∗‖, for all (t, s, x∗) ∈ ∆×X∗.

Definition 2.14. The evolution operator U : ∆ → B(X) is ∗-uniformly polynomially
instable (∗-u.p.is.) if there exist N ≥ 1 and ν > 0 such that:

(t+ 1)ν‖x∗‖ ≤ N(s+ 1)ν‖U(t, s)∗x∗‖, for all (t, s, x∗) ∈ ∆×X∗.

Remark 2.15. Let U : ∆ → B(X) be a reversible evolution operator. Then, U has
uniform exponential decay if and only if V has uniform exponential growth.

Remark 2.16. Let U : ∆ → B(X) be a reversible evolution operator. Then, U is
uniformly exponentially instable if and only if V is uniformly exponentially stable.

Remark 2.17. The following diagram illustrates the connections between the instabil-
ity concepts and the decay properties mentioned in the paper.

u.e.is. ⇒ u.p.is.
⇓ ⇓

u.e.d. ⇐ u.p.d.

In general, the converse implications are not true. Next, we will present some examples
which clarify the relations given above.
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Example 2.18. (Evolution operator which has u.e.d, but it is not u.e.is.)
Let X = R and U : ∆→ B(R), U(t, s)x = es−tx.
Then, U has uniform exponential decay, but it is not uniformly exponentially instable.
Indeed, we have that

‖U(t, s)‖ = es−t = e−(t−s) ≥ e−2(t−s),
which implies that U u.e.d. for ω = 2,M = 1.
If we suppose that U is u.e.is., then there existN ≥ 1, ν > 0 such that eν(t−s) ≤ Nes−t,
for all (t, s) ∈ ∆.
For s = 0 and t→∞ it results that ∞ ≤ N , contradiction.

Example 2.19. (Evolution operator which is u.p.is., but it is not u.e.is.)
We consider X = R and the application u : [1,∞)→ R∗+, u(t) = t2 + 1. Then

U : ∆→ B(R), U(t, s)x =
u(t)

u(s)
x,

is an evolution operator which is uniformly polynomially instable, but it is not uni-
formly exponentially instable.

Proof. See [13]. �

Example 2.20. (Evolution operator which has u.p.d., but it is not u.p.is.)
We consider X = R and the evolution operator

U : ∆→ B(R), U(t, s)x =
ϕ(s)

ϕ(t)
x, where

ϕ : R+ → [1,∞) ϕ(t) = t+ 1.

Then, U has uniform polynomial decay, but it is not uniformly polynomially instable.
Indeed, if we compute the norm of the operator U we obtain immediately that U has
u.p.d. for M = ω = 1.
If we suppose that U is u.p.is., then there exist N ≥ 1 and ν > 0 such that(

t+ 1

s+ 1

)ν
≤ N

(
s+ 1

t+ 1

)
, for all t ≥ s ≥ 0.

For s = 0 we obtain (t+ 1)ν+1 ≤ N , which for t→∞ yields to a contradiction.

Example 2.21. (Evolution operator that has u.e.d., but not u.p.d.)
We consider the evolution operator given in Example 2.18. We have that

‖U(t, s)‖ = es−t ≥ e−2(t−s),
which implies that U has uniform exponential decay for M = 1 and ω = 2.
If we suppose that U has u.p.d., it results that there exist M ≥ 1 and ω > 0 such
that (

s+ 1

t+ 1

)ω
≤Mes−t, for all (t, s) ∈ ∆.

For s = 0 we obtain M ≥ et

(t+ 1)ω
which for t → ∞ yields to a contradiction, so U

has not uniform polynomial decay.
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We define U1 : ∆ → B(X), U1(t, s) = U(et − 1, es − 1) the evolution operator
associated to U .

Proposition 2.22. The evolution operator U : ∆ → B(X) has ∗-uniform polynomial
decay if and only if the evolution operator U1 : ∆→ B(X) has ∗-uniform exponential
decay.

Proof. It results in a similar manner as Proposition 2.12 from [6]. �

Proposition 2.23. The evolution operator U : ∆→ B(X) is ∗-uniformly polynomially
instable if and only if U1 : ∆→ B(X) is ∗-uniformly exponentially instable.

Proof. It follows using analogous arguments with those used to prove Proposition 2.13
in [6]. �

3. The main results

The results of this section are some characterization theorems of Barbashin type
for the uniform exponential instability, ∗-uniform exponential instability, respectively
for the uniform polynomial instability and ∗-uniform polynomial instability for evo-
lution operators in Banach spaces.

Theorem 3.1. Let U be a ∗-strongly measurable evolution operator with ∗-uniform
exponential decay. Then U is ∗-uniformly exponentially instable if and only if there
exist the constants B > 1 and b > 0 such that

t∫
0

e−bs

‖U(t, s)∗x∗‖
ds ≤ Be−bt

‖x∗‖
,

for all (t, x∗) ∈ R+ × (X∗ \ {0}).

Proof. Necessity. Let b ∈ (0, ν). We suppose that U is ∗-uniformly exponentially
instable. Then, there exist N ≥ 1, ν > 0 such that

eν(t−s)‖x∗‖ ≤ N‖U(t, s)∗x∗‖, for all (t, s, x∗) ∈ ∆×X∗,

which is equivalent to

1

‖U(t, s)∗x∗‖
≤ Ne−ν(t−s)

‖x∗‖
, for all (t, s, x∗) ∈ ∆×X∗, that implies

t∫
0

e−bs

‖U(t, s)∗x∗‖
ds ≤ N

‖x∗‖

t∫
0

e−bs · e−ν(t−s)ds =
Ne−νt

‖x∗‖

t∫
0

e(ν−b)sds ≤ Be−bt

‖x∗‖
,
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where B = 1 +
N

ν − b
.

Sufficiency. For t ≥ s+ 1 we have

e−bs

‖U(t, s)∗x∗‖
=

s+1∫
s

e−bs

‖U(t, s)∗x∗‖
dτ =

s+1∫
s

e−bs

‖U(τ, s)∗U(t, τ)∗x∗‖
dτ

≤ 1

M

s+1∫
s

e−bs · eω(τ−s)

‖U(t, τ)∗x∗‖
dτ =

eω

M

s+1∫
s

eb(τ−s) · e−bτ

‖U(t, τ)∗x∗‖
dτ

≤ eω+b

M

t∫
0

e−bτ

‖U(t, τ)∗x∗‖
dτ ≤ Beω+b

M
· e
−bt

‖x∗‖
≤ N1

e−bt

‖x∗‖
,

where N1 = 1 +
Beω+b

M
. So, we obtained that

eb(t−s)‖x∗‖ ≤ N1‖U(t, s)∗x∗‖, for all t ≥ s+ 1, s ≥ 0. (3.1)

For t ∈ [s, s+ 1] we apply the ∗-decay property and we obtain that

‖U(t, s)∗x∗‖ ≥Me−ω(t−s)‖x∗‖, which implies

eb(t−s)‖x∗‖ ≤ e(ω+b)(t−s)

M
‖U(t, s)∗x∗‖ ≤ eω+b

M
‖U(t, s)∗x∗‖ ≤ N2‖U(t, s)∗x∗‖,

where N2 = 1 +
eω+b

M
. So, we have that

eb(t−s)‖x∗‖ ≤ N2‖U(t, s)∗x∗‖, for all t ∈ [s, s+ 1], s ≥ 0 (3.2)

From (3.1) and (3.2) we obtain that

eb(t−s)‖x∗‖ ≤ N‖U(t, s)∗x∗‖, for all (t, s, x) ∈ ∆×X,
where N = max{N1, N2}, so the theorem is proved. �

Corollary 3.2. Let U be a ∗-strongly measurable evolution operator with ∗-uniform
polynomial decay. Then U is ∗-uniformly polynomially instable if and only if there
exist the constants B > 1 and b > 0 such that

t∫
0

(s+ 1)−b−1

‖U(t, s)∗x∗‖
ds ≤ B(t+ 1)−b

‖x∗‖
,

for all (t, x∗) ∈ R+ × (X∗ \ {0}).

Proof. If U is ∗-uniformly polynomially instable with ∗-uniform polynomial decay,
then, from Proposition 2.22 and Proposition 2.23, this is equivalent to U1 is ∗-
uniformly exponentially instable with ∗-uniform exponential decay, which is equiv-
alent from Theorem 3.1 that there exist B > 1 and b > 0 such that

t∫
0

e−bs

‖U(et − 1, es − 1)∗x∗‖
ds ≤ Be−bt

‖x∗‖
, (3.3)
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for all (t, x∗) ∈ R+ × (X∗ \ {0}). Using the change of variables es − 1 = u relation
(3.3) is equivalent to

et−1∫
0

e−b ln(1+u)

‖U(et − 1, u)∗x∗‖
du

1 + u
≤ Be−bt

‖x∗‖
. (3.4)

Denoting by v = et − 1 relation (3.4) becomes

v∫
0

(1 + u)−b−1

‖U(v, u)∗x∗‖
du ≤ B(v + 1)−b

‖x∗‖
,

so we conclude that the proof is complete. �

Theorem 3.3. Let U : ∆ → B(X) be a strongly measurable and reversible evolution
operator with uniform exponential decay. Then U is uniformly exponentially instable
if and only if there exist B > 1 and b ∈ (0, 1) such that

t∫
0

‖V (t, s)x‖
ebs

ds ≤ B‖x‖
ebt

, for all (t, x) ∈ R+ ×X. (3.5)

Proof. If U : ∆ → B(X) is a reversible evolution operator with uniform exponential
decay, then from Remark 2.15 we have that V : ∆ → B(X) has uniform exponential
growth.
Necessity. Let b ∈ (0, ν). We suppose that U is uniformly exponentially instable which
implies from Remark 2.16 that V is uniformly exponentially stable. Then, we have

t∫
0

‖V (t, s)x‖
ebs

ds ≤ N
t∫

0

e−ν(t−s)

ebs
‖x‖ds = Ne−νt‖x‖

t∫
0

e(ν−b)sds

=
N

ν − b
‖x‖

(
e−bt − e−νt

)
≤ B

ebt
‖x‖,

where B = 1 +
N

ν − b
.

Sufficiency. If t ≥ s+ 1 we obtain

ebt‖V (t, s)x‖ =

s+1∫
s

ebt‖V (τ, s)V (t, τ)x‖dτ ≤M
s+1∫
s

ebteω(τ−s)‖V (t, τ)x‖dτ

= M

s+1∫
s

e(τ−s)(b+ω)eb(t+s)
‖V (t, τ)x‖

ebτ
dτ

≤Meb+ωeb(t+s)
t∫

0

‖V (t, τ)x‖
ebτ

dτ ≤ Nebs‖x‖,
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where N = BMeb+ω.
So, we obtained

‖V (t, s)x‖ ≤ Ne−b(t−s)‖x‖, for all t ≥ s+ 1, s ≥ 0. (3.6)

If t ∈ [s, s+ 1) we apply the growth property and we have

ebt‖V (t, s)x‖ ≤Mebteω(t−s)‖x‖ = Me(b+ω)(t−s)ebs‖x‖ ≤ Nebs‖x‖,
which implies

‖V (t, s)x‖ ≤ Ne−b(t−s)‖x‖, forall t ∈ [s, s+ 1), s ≥ 0. (3.7)

Finally, from (3.6) and (3.7) we obtain that V is uniformly exponentially stable which
means from Remark 2.16 that U is uniformly exponentially instable. �

Corollary 3.4. Let U : ∆ → B(X) be a strongly measurable and reversible evolution
operator with uniform polynomial decay. Then U is uniformly polynomially instable
if and only if there exist B > 1 and b ∈ (0, 1) such that

t∫
0

‖V (t, s)x‖
(s+ 1)b+1

ds ≤ B‖x‖
(t+ 1)b

, for all (t, x) ∈ R+ ×X.

Proof. It results immediately using the same idea as in the proof of Corollary 3.2. �
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Abstract. This paper presents a method to approximate the solution of a stochas-
tic Ginzburg-Landau equation with multiplicative noise term. Error estimates for
the approximation of the solution are given.

Mathematics Subject Classification (2010): 60H15, 34K28, 35Q56.

Keywords: Stochastic Ginzburg-Landau equation, power-type nonlinearity, mul-
tiplicative noise.

1. Introduction

The complex Ginzburg-Landau equation on a bounded domain G in R or R2

with sufficiently regular boundary ∂G is

dX(t) = (a1 + ia2)∆X(t)dt+ (λ1 + iλ2)|X(t)|2X(t)dt+ γX(t)dt, (1.1)

X(0) = X0,

where X : G× [0,∞)→ C and a1, a2, λ1, λ2, γ are certain real parameters.

Throughout this paper i is the imaginary unit, Rez, Imz are, respectively, the
real part and imaginary part of a complex number z, z̄ denotes its complex conjugate
and |z| =

√
(Rez)2 + (Imz)2 its modulus. Further we use the notations: R∗ := R\{0}

and N∗ := {1, 2, . . .}.
Equation (1.1) is a nonlinear Schrödinger type equation with complex coeffi-

cients and power-type nonlinearity. Different forms of this evolution equation have
applications in physics, see for example [5, 6, 8, 10, 11, 12, 13].

In this paper we consider a method to approximate the solution of the following
stochastic complex Ginzburg-Landau evolution equation in dimension one perturbed
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by a multiplicative noise term

dX(t) = ia∆X(t) dt− λ|X(t)|2X(t) dt+ γX(t)dt+ i

∞∑
k=1

bk(t)X(t) dWk(t) (1.2)

with initial condition X(0) = X0 and homogeneous Neumann boundary condition.
Here, X is a complex-valued stochastic process depending on t ∈ [0, T ] and x ∈ G ⊂ R,
a ∈ R∗, λ, γ, T > 0 are fixed, (Wk)k∈N is a sequence of independent real-valued
Wiener processes and (bk)k∈N is a sequence of real-valued functions, whose properties
will be detailed later. The stochastic equation (1.2) corresponds to the case when
in the deterministic equation (1.1) the parameters are a1 = 0, a2 = a ∈ R∗ and
λ1 = −λ < 0, λ2 = 0, γ > 0.

The existence of the solution of the stochastic Ginzburg-Landau equations is
studied for example in [9, 1, 2, 5] with different noise terms than in our paper. In [9]
the Galerkin method for the stochastic equation is used, while in [1] there are studied
mild solutions and Strichartz’ estimates are applied. In [5] the equation is studied
on a three dimensional torus and has an additive noise term. A similar noise term is
considered in [2], where the martingale solution is investigated.

In this paper we prove the existence of the solution by using a deterministic
Ginzburg-Landau type equation. Moreover, we present a method to approximate the
solution of (1.2) and give error estimates for this approximation. In the context of
computer simulations error estimates are very important.

The paper has the following structure: Section 2 contains some notations, pre-
liminary results, and the variational formulation of the stochastic, as well as the
deterministic Ginzburg-Landau equation. In Section 3 we prove the existence and
uniqueness of the considered evolution equation. In the last section we give some ap-
proximation results and error estimates for both the solution of the deterministic and
stochastic Ginzburg-Landau equation.

2. Preliminaries

For simplicity we take the domain G = (0, 1). Consider the complex Hilbert
spaces H := L2(0, 1) and V := H1(0, 1), the inner product in H is given by

(u, v) :=

∫ 1

0

u(x) v̄(x) dx, for all u, v ∈ H,

while the inner product in V is

(u, v)V :=

∫ 1

0

[
u(x) v̄(x) +

du

dx
(x)

dv̄

dx
(x)

]
dx, for all u, v ∈ V.

The corresponding norms in H and V are ‖·‖ and ‖·‖V , respectively. Furthermore,
let V ∗ be the dual space of V and 〈·, ·〉 the duality pairing of V ∗ and V .

Let A : V → V ∗ be the operator defined by

〈Au, v〉 :=

∫ 1

0

du

dx
(x)

dv̄

dx
(x) dx, for all u, v ∈ V. (2.1)
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Let (µk)k∈N be the increasing sequence of real eigenvalues and let (hk)k∈N be the
corresponding eigenfunctions of A with respect to homogeneous Neumann boundary
conditions. The eigenfunctions (hk)k∈N form an orthonormal system in H and they
are orthogonal in V . Obviously, for all u ∈ H and all v ∈ V , it holds that

u =

∞∑
k=1

(u, hk)hk, Av =

∞∑
k=1

µk(v, hk)hk ,

and
Im〈Av, v〉 = 0, (2.2)

Re〈Av, v〉 = 〈Av, v〉 =

∞∑
k=1

µk |(v, hk)|2 ≥ 0.

Moreover,
‖Av‖V ∗ ≤ ‖v‖V , for all v ∈ V. (2.3)

Recall that V ↪→ H is a compact embedding, (V,H, V ∗) is a triplet of rigged
Hilbert spaces (Gelfand triple), and 〈Au, v〉 = (Au, v), for each u, v ∈ V , such that
Au ∈ H.

In [4, Lemma 1.1] it is stated that

sup
x∈[0,1]

|v(x)|2 ≤ ‖v‖
(
‖v‖+ 2

∥∥∥∥dvdx
∥∥∥∥) ≤ 2‖v‖2V , for all v ∈ V. (2.4)

Recall that H1(0, 1) ↪→ C[0, 1].
For each n ∈ N∗ set Hn := sp{h1, h2, . . . , hn} with the norm being induced from

H. The norms ‖ · ‖ and ‖ · ‖V are equivalent on Hn.

The map Πn : H → Hn defined by Πnh :=

n∑
k=1

(h, hk)hk is the orthogonal

projection of H onto Hn. Then, Πnh = h, for each h ∈ Hn, and ‖Πnh‖ ≤ ‖h‖, for
each h ∈ H. Moreover, for each h ∈ Hn it holds

Ah =

n∑
k=1

µk(h, hk)hk ∈ Hn,

and then

〈Ah, h〉 = (Ah, h) =

n∑
k=1

µk |(h, hk)|2 = ‖h‖2V − ‖h‖2, (2.5)

(Ah,Ah) =

n∑
k=1

µ2
k |(h, hk)|2 , for each h ∈ Hn. (2.6)

Further, we mention some results used throughout the paper.

Lemma 2.1. Let u, v ∈ V such that Av ∈ H and |u|2v ∈ V , then

Re(|u|2v,Av) ≥ 0. (2.7)

Especially, if |v|2v ∈ V , it holds

Re(|v|2v,Av) ≥ 0. (2.8)
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Proof. We have

Re(Av, |u|2v) = Re

∫ 1

0

dv

dx
(x)

d|u|2v̄
dx

(x) dx

= Re

∫ 1

0

(
v̄(x)

dv

dx
(x)

d|u|2

dx
(x) + |u(x)|2

∣∣∣∣dvdx (x)

∣∣∣∣2
)
dx

=

∫ 1

0

((
1

2

d|v|2

dx
(x)

)
d|u|2

dx
(x) + |u(x)|2

∣∣∣∣dvdx (x)

∣∣∣∣2
)
dx ≥ 0.

Therefore,

Re(|u|2v,Av) = Re(|u|2v,Av) = Re(Av, |u|2v) ≥ 0.

�

Lemma 2.2. Let z1, z2 ∈ C. Then the following inequalities hold∣∣|z1|2z1 − |z2|2z2∣∣ ≤ 3
(
|z1|2 + |z2|2

)
|z1 − z2|; (2.9)

Re
(
(|z1|2z1 − |z2|2z2) (z̄1 − z̄2)

)
≥ 0. (2.10)

Proof. See, e.g., [9, Lemma 7.2, Lemma 7.3]. �

Lemma 2.3. Let S be a bounded set in L2([0, T ];V ), which is equicontinuous in
C([0, T ];V ∗). Then, S is relatively compact in L2([0, T ];H).

Proof. We use [14, Theorem 4.1] applied for V ↪→ H ↪→ V ∗, where V ↪→ H is
compact. �

In what follows we assume that (Ω,F , P ) is a complete probability space
and (Wk)k∈N a sequence of independent real-valued standard Brownian motions on
[0, T ] generating an increasing family of σ-algebras

(
Ft
)
t∈[0,T ]

. For each k ≥ 1, let

bk : [0, T ]→ R be square integrable functions such that
∞∑
k=1

∫ T

0

b2k(s) ds <∞. (2.11)

Throughout the paper let λ, γ, T > 0, a ∈ R∗, X0 ∈ V be fixed.

Definition 2.4. An
(
Ft
)
t∈[0,T ]

adapted process

X ∈ L2(Ω;C([0, T ];H)) ∩ L4(Ω× [0, T ];V )

is called a variational solution of the stochastic Ginzburg-Landau equation (1.2) with
initial condition X0 ∈ V if

(X(t), v) =(X0, v)− ia

∫ t

0

〈AX(s), v〉ds− λ
∫ t

0

(|X(s)|2X(s), v)ds (2.12)

+ γ

∫ t

0

(X(s), v)ds+ i

∞∑
k=1

∫ t

0

bk(s)(X(s), v)dWk(s)

holds for all t ∈ [0, T ], v ∈ V , and a.e. ω ∈ Ω.
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Remark 2.5. Let (2.11) be satisfied. Recall that the real-valued stochastic integral
with respect to countably many Brownian motions

R(t) :=

∞∑
k=1

∫ t

0

bk(s)dWk(s), t ∈ [0, T ],

is a continuous square integrable martingale with respect to the filtration
(
Ft
)
t∈[0,T ]

,

see [3, Lemma 2.1], having the quadratic variation equal to

[R]t =

∞∑
k=1

∫ t

0

b2k(s)ds, t ∈ [0, T ].

Moreover, for each U ∈ L2(Ω;C([0, T ];H)) the H-valued stochastic integral

I(t) :=

∞∑
k=1

∫ t

0

bk(s)U(s) dWk(s), t ∈ [0, T ],

is a continuous square integrable H-valued martingale with respect to the filtration(
Ft
)
t∈[0,T ]

and

E
(
‖I(t)‖2

)
= E

∞∑
k=1

∫ t

0

b2k(s)‖U(s)‖2ds, t ∈ [0, T ].

Similar to the method from the paper [7], we associate to (2.12) a deterministic
equation, which has the same initial condition X0 ∈ V . For this we denote

Y (t) := exp

(
−γt− 1

2

∞∑
k=1

∫ t

0

b2k(s) ds− i

∞∑
k=1

∫ t

0

bk(s) dWk(s)

)
for all t ∈ [0, T ] and a.e. ω ∈ Ω. The

(
Ft
)
t∈[0,T ]

adapted real-valued process

(Y (t))t∈[0,T ] is the solution of the following stochastic linear differential equation

Y (t) = 1− γ
∫ t

0

Y (s) ds−
∞∑
k=1

∫ t

0

b2k(s)Y (s) ds− i

∞∑
k=1

∫ t

0

bk(s)Y (s) dWk(s)

for all t ∈ [0, T ] and a.e. ω ∈ Ω, where the stochastic integral in this equation is a
real-valued continuous martingale (see Remark 2.5). For all t ∈ [0, T ] let

B(t) :=
1

|Y (t)|2
= exp

(
2γt+

∞∑
k=1

∫ t

0

b2k(s) ds

)
, (2.13)

and then 0 < B(t) ≤ B(T ) <∞ for all t ∈ [0, T ].

Definition 2.6. If Z ∈ C([0, T ];H)) ∩ L4([0, T ];V ) satisfies the evolution equation

(Z(t), v) = (X0, v)− ia

∫ t

0

〈AZ(s), v〉 ds− λ
∫ t

0

B(s)(|Z(s)|2Z(s), v) ds (2.14)

for all t ∈ [0, T ] and all v ∈ V , then Z is called a variational solution of the determi-
nistic Ginzburg-Landau type equation.
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3. Existence results

Theorem 3.1. There exists a unique solution

Z ∈ C([0, T ];H) ∩ L4([0, T ];V )

of (2.14). Moreover, the following inqualities hold

sup
t∈[0,T ]

‖Z(t)‖2 ≤ ‖X0‖2,

∫ T

0

‖Z(t)‖2V dt ≤ T‖X0‖2V ,
∫ T

0

‖Z(t)‖4V dt ≤ T‖X0‖4V .

Proof. Fix n ∈ N∗. We consider the finite dimensional deterministic equation corre-
sponding to (2.14)

(Zn(t), hj) = (X0, hj)− ia

∫ t

0

〈AZn(s), hj〉 ds− λ
∫ t

0

B(s)(|Zn(s)|2Zn(s), hj) ds, (3.1)

for all t ∈ [0, T ], j ∈ {1, ..., n}. In what follows we study the existence and uniqueness
of the solution Zn ∈ C([0, T ];Hn) of (3.1).

From (2.2) and (2.10) it follows by standard arguments that the solution of (3.1)
is unique in C([0, T ];Hn), and that the solution of (2.14) is unique in C([0, T ];H) ∩
L4([0, T ];V ).

The existence of Zn ∈ C([0, T ];Hn) follows from the finite dimensional theory
for differential equations with locally Lipschitz nonlinearities. Note that (2.9) assures
that the nonlinearity in (3.1) is locally Lipschitz. The solution is global on [0, T ] by
the estimate (3.4) below: By taking the complex conjugate in (3.1) we have

(Zn(t), hj) = (X0, hj) + ia

∫ t

0

〈AZn(s), hj〉ds− λ
∫ t

0

B(s)(|Zn(s)|2Zn(s), hj)ds (3.2)

for all t ∈ [0, T ], j ∈ {1, ..., n}.
For z ∈ C we recall the following identities

z − z̄ = 2i Imz and z + z̄ = 2 Rez. (3.3)

By using (3.1), (3.2), the chain rule for the product

(Zn(·), hj) · (Zn(·), hj), j ∈ {1, ..., n},

as well as (3.3) and the property

‖Zn(t)‖2 =

n∑
j=1

|(Zn(t), hj)|2 ∈ R, t ∈ [0, T ],

we obtain for all t ∈ [0, T ]

‖Zn(t)‖2 = ‖ΠnX0‖2 + 2aIm

∫ t

0

〈AZn(s), Zn(s)〉 ds

− 2λRe

∫ t

0

B(s)(|Zn(s)|2Zn(s), Zn(s)) ds.
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By (2.2) and (2.8) we conclude

sup
t∈[0,T ]

‖Zn(t)‖2 ≤ ‖X0‖2. (3.4)

Further we obtain estimates for sup
t∈[0,T ]

‖Zn(t)‖2V . Using (3.1) and (3.2) as above, we

have for all t ∈ [0, T ] and j ∈ {1, ..., n}

µj |(Zn(t), hj)|2 =µj |(X0, hj)|2 + 2aIm

∫ t

0

µ2
j |(Zn(s), hj)|2ds

− 2λRe

∫ t

0

B(s)(|Zn(s)|2Zn(s), µj(Zn(s), hj)hj) ds.

Summing up from j = 1 to n, then, by (2.5) and (2.6), we obtain for all t ∈ [0, T ]

(AZn(t), Zn(t)) = (AΠnX0,ΠnX0)− 2λRe

∫ t

0

B(s)(|Zn(s)|2Zn(s), AZn(s))ds.

By (2.8) and (2.5) it follows for all t ∈ [0, T ]

‖Zn(t)‖2V − ‖Zn(t)‖2 ≤ (AΠnX0,ΠnX0) ≤ 〈AX0, X0〉 = ‖X0‖2V − ‖X0‖2.

Therefore by (3.4) it follows

sup
t∈[0,T ]

‖Zn(t)‖2V ≤ ‖X0‖2V . (3.5)

Then, we conclude Zn ∈ L4([0, T ];V ).
By (3.1) and (2.3) we have for all r, t ∈ [0, T ] with r < t

‖Zn(t)− Zn(r)‖2V ∗ ≤ 2

∫ t

r

‖AZn(s)‖2V ∗ds+ 2λ2
∫ t

r

B2(s)‖|Zn(s)|2Zn(s)‖2V ∗ds

≤ 2

∫ t

r

‖Zn(s)‖2V ds+ 2λ2CB2(T )

∫ t

r

‖|Zn(s)|2Zn(s)‖2ds,

where C is the embedding constant of H ↪→ V ∗. Moreover, by (2.4) we write for all
r, t ∈ [0, T ] with r < t∫ t

r

‖|Zn(s)|2Zn(s)‖2ds =

∫ t

r

(∫ 1

0

|Zn(s)|6dx
)
ds ≤ 4

∫ t

r

‖Zn(s)‖4V ‖Zn(s)‖2ds.

Using these estimates, as well as (3.4) and (3.5), it follows for all r, t ∈ [0, T ] with
r < t

‖Zn(t)− Zn(r)‖2V ∗ ≤ 2(t− r)‖X0‖2V
(
1 + 4λ2CB2(T )‖X0‖2V ‖X0‖2

)
.

We observe that S := (Zn)n≥1 is equicontinuous in C([0, T ];V ∗) and it is bounded in
L2([0, T ];V ) and also in L4([0, T ];V ) (see (3.5)).

It follows that there exist U ∈ L2([0, T ];H) ∩ L4([0, T ];V ) and a subsequence
(Znk

)k≥1 which is:
• strongly convergent in L2([0, T ];H) to U (by Lemma 2.3)
and
• weakly convergent in L4([0, T ];V ) and, also in L2([0, T ];V ), to U .
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Recall that L4([0, T ];V ) ↪→ L2([0, T ];V ) ↪→ L2([0, T ];H); these are reflexive Banach
spaces and we can use [15, Proposition 21.23(i), Proposition 21.35(c)].

Since (Znk
)k≥1 is strongly convergent to U in L2([0, T ];H), one can prove by

using (2.9) that
(
|Znk
|2Znk

)
k≥1 is weakly convergent to |U |2U in L2([0, T ];H). In

(3.1) we take nk instead of n, then let k → ∞, and using the above convergence
results, we get for all j ∈ N∗ that

(U(t), hj) = (X0, hj)− ia

∫ t

0

〈AU(s), hj〉 ds− λ
∫ t

0

B(s)(|U(s)|2U(s), hj) ds (3.6)

holds for a.e. t ∈ [0, T ].

There exists an H-valued function that is equal to U for a.e. t ∈ [0, T ] and is
equal to the right side of (3.6) for all t ∈ [0, T ]. This function we denote by Z. By the
properties of U we have

Z ∈ C([0, T ];H) ∩ L4([0, T ];V )

and Z is the solution of (2.14).

The estimate

sup
t∈[0,T ]

‖Z(t)‖2 ≤ ‖X0‖2

is obtained similarly to (3.4) by using (2.12). By the weak convergence of (Znk
)k≥1

to Z in L2([0, T ];V ) and also in L4([0, T ];V ), we get from (3.5)∫ T

0

‖Z(t)‖2V dt ≤ lim inf
k→∞

∫ T

0

‖Znk
(t)‖2V dt ≤ T‖X0‖2V ,

∫ T

0

‖Z(t)‖4V dt ≤ lim inf
k→∞

∫ T

0

‖Znk
(t)‖4V dt ≤ T‖X0‖4V .

�

Remark 3.2. In [13, Chapter IV, Theorem 5.1] and [8, Chap. 10, Théorème 10.1] the
reader may find alternative ideas for the proof of the existence of the solution of (2.14).
The purpose of our detailed proof, using classical methods from partial differential
equations, was to obtain the estimates stated in Theorem 3.1, which will be used in
the computation of error bounds in Section 4.

Theorem 3.3. There exists a unique variational solution of (2.12)

X ∈ L2(Ω;C([0, T ];H)) ∩ L4(Ω× [0, T ];V ).

Moreover, X ∈ C([0, T ];H)∩L4([0, T ];V ) for a.e. ω ∈ Ω and the following inqualities
hold for a.e. ω ∈ Ω

sup
t∈[0,T ]

‖X(t)‖2 ≤ B(T )‖X0‖2,

∫ T

0

‖X(t)‖2V dt ≤ TB(T )‖X0‖2V ,
∫ T

0

‖X(t)‖4V dt ≤ TB2(T )‖X0‖4V .
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Proof. By the Itô formula and the uniqueness of the solution of (2.14) one has that

X(t) := Z(t)Y −1(t), for all t ∈ [0, T ] and a.e. ω ∈ Ω,

is the unique solution of (2.12). The estimates for X follow from Theorem 3.1 and we
also have

E sup
t∈[0,T ]

‖X(t)‖2 ≤ B(T )‖X0‖2,

E

∫ T

0

‖X(t)‖2V dt ≤ TB(T )‖X0‖2V , E

∫ T

0

‖X(t)‖4V dt ≤ TB2(T )‖X0‖4V . �

4. Approximation of the solution

We will approximate the solution of (2.12) by a sequence of stochastic processes
(XN )N≥1, where, for each N ∈ N∗, we consider XN := ZNY

−1, ZN being the solution
of the following linearized deterministic problem in variational formulation

(ZN (t), v) = (X0, v)− ia

∫ t

0

〈AZN (s), v〉 ds− λ
∫ t

0

B(s)(|ZN−1(s)|2ZN (s), v) ds, (4.1)

for all t ∈ [0, T ] and all v ∈ V . We take Z0 := X0.

Theorem 4.1. For each N ∈ N∗ there exists a unique solution

ZN ∈ C([0, T ];H) ∩ L4([0, T ];V )

of (4.1).

Proof. The result is obtained successively: Let N ≥ 1. If

ZN−1 ∈ C([0, T ];H) ∩ L4([0, T ];V ), then ZN ∈ C([0, T ];H) ∩ L4([0, T ];V )

is a solution of (4.1).
The existence and uniqueness of the solution of (4.1) is proved analogously to

Theorem 3.1. We use (2.7), Lemma 2.3, and the Galerkin method associated to (4.1)
in order to obtain the following estimates for each N ∈ N∗

sup
t∈[0,T ]

‖ZN (t)‖2 ≤ ‖X0‖2,∫ T

0

‖ZN (t)‖2V dt ≤ T‖X0‖2V ,
∫ T

0

‖ZN (t)‖4V dt ≤ T‖X0‖4V . �

Theorem 4.2. For each N ∈ N∗ it holds

sup
t∈[0,T ]

‖ZN (t)− Z(t)‖2 ≤ 3λTB(T )

2N−4
‖X0‖2‖X0‖2V exp

(
20λTB(T )‖X0‖2V

)
.

Proof. By using (4.1) and (2.14), we have

‖ZN (t)− Z(t)‖2 = 2aIm

∫ t

0

〈AZN (s)−AZ(s), ZN (s)− Z(s)〉 ds (4.2)

− 2λRe

∫ t

0

B(s)(|ZN−1(s)|2ZN (s)− |Z(s)|2Z(s), ZN (s)− Z(s)) ds,
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for all t ∈ [0, T ]. We define

e(t) = exp

(
−20λ

∫ t

0

B(s)‖Z(s)‖2V ds
)
, for all t ∈ [0, T ].

Then, by (4.2) and (2.2), we have for all t ∈ [0, T ]

e(t)‖ZN (t)− Z(t)‖2 = (4.3)

− 2λRe

∫ t

0

e(s)B(s)(|ZN−1(s)|2ZN (s)− |Z(s)|2Z(s), ZN (s)− Z(s)) ds

− 20λ

∫ t

0

e(s)B(s)‖Z(s)‖2V ‖ZN (s)− Z(s)‖2ds.

We compute

− Re(|ZN−1|2ZN − |Z|2Z,ZN − Z)

= −Re(|ZN−1|2(ZN − Z), ZN − Z) + Re((|Z|2 − |ZN−1|2)Z,ZN − Z).

Denote Q = ZN−1, R = ZN (we omit writing the dependence on s and x). Due to the
definition of the scalar product (·, ·) in H, we write

− Re(|ZN−1|2(ZN − Z), ZN − Z) = −
∫ 1

0

|Q|2|R− Z|2dx

= −
∫ 1

0

(
|Q− Z|2 + |Z|2 + 2Re[(Q− Z)Z̄]

)
|R− Z|2dx

≤
∫ 1

0

(
− |Q− Z|2|R− Z|2 − |Z|2|R− Z|2 + 2|Q− Z||Z||R− Z|2

)
dx

≤
∫ 1

0

(
− 1

2
|Q− Z|2|R− Z|2 + |Z|2|R− Z|2

)
dx,

as well as

Re((|Z|2 − |ZN−1|2)Z,ZN − Z) = Re

∫ 1

0

(|Z|2 − |Q|2)Z(R̄− Z̄)dx

= Re

∫ 1

0

(
− |Q− Z|2 − 2Re[(Q− Z)Z̄]

)
Z(R̄− Z̄)dx

≤
∫ 1

0

(1

2
|Q− Z|2|R− Z|2 + |Z|2|R− Z|2 +

3

2
|Z|2|Q− Z|2

)
dx .

Then,

− 2λRe(|ZN−1|2ZN − |Z|2Z,ZN − Z)

≤ λ
∫ 1

0

(
4|Z|2|ZN − Z|2 + 3|Z|2|ZN−1 − Z|2

)
dx

≤ 8λ‖Z‖2V ‖ZN − Z‖2 + 6λ‖Z‖2V ‖ZN−1 − Z‖2,
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where in the last inequality we apply (2.4). Using the result obtained above, we get,
by (4.3), for all t ∈ [0, T ]

e(t)‖ZN (t)− Z(t)‖2 + 12λ

∫ t

0

e(s)B(s)‖Z(s)‖2V ‖ZN (s)− Z(s)‖2ds (4.4)

≤ 6λ

∫ t

0

e(s)B(s)‖Z(s)‖2V ‖ZN−1(s)− Z(s)‖2ds.

This implies, for each N ∈ N∗∫ T

0

e(s)B(s)‖Z(s)‖2V ‖ZN (s)− Z(s)‖2ds

≤ 1

2

∫ T

0

e(s)B(s)‖Z(s)‖2V ‖ZN−1(s)− Z(s)‖2ds

. . . ≤ 1

2N

∫ T

0

e(s)B(s)‖Z(s)‖2V ‖X0 − Z(s)‖2ds

≤ 1

2N−1
B(T )

(
‖X0‖2 + sup

s∈[0,T ]

‖Z(s)‖2
) ∫ T

0

‖Z(s)‖2V ds

≤ TB(T )

2N−2
‖X0‖2‖X0‖2V .

Note that in the last inequality we take into consideration the estimates from Theorem
3.1. Using the above result in (4.4), we obtain for each N ∈ N∗

sup
t∈[0,T ]

‖ZN (t)− Z(t)‖2 ≤ 6λ
TB(T )

2N−3e(T )
‖X0‖2‖X0‖2V

≤ 3λTB(T )

2N−4
‖X0‖2‖X0‖2V exp

(
20λTB(T )‖X0‖2V

)
.

�

Applying Theorem 3.3 and Theorem 4.2, we obtain the main result of our paper.

Theorem 4.3. For a.e. ω ∈ Ω and for each N ∈ N∗ let

XN (t) := ZN (t)Y −1(t), for all t ∈ [0, T ].

The following approximation result holds for a.e. ω ∈ Ω and all N ∈ N∗

sup
t∈[0,T ]

‖XN (t)−X(t)‖2 ≤ 3TλB2(T )

2N−4
‖X0‖2‖X0‖2V exp

(
20λTB(T )‖X0‖2V

)
,

where

B(T ) = exp

(
2γT +

∞∑
k=1

∫ T

0

b2k(s) ds

)
.

In particular, this implies

P
(

lim
N→∞

sup
t∈[0,T ]

‖XN (t)−X(t)‖2 = 0
)

= 1
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and

lim
N→∞

E sup
t∈[0,T ]

‖XN (t)−X(t)‖2 = 0.

Remark 4.4. We can obtain similar results as in this paper, if:
1) we consider homogeneous Dirichlet or periodic boundary conditions;
2) instead of the nonlinear term |X|2X we take |X|2σX, where σ ≥ 1, or combined
power-type nonlinearities such as |X|2σ1X + |X|2σ2X, where σ1, σ2 ≥ 1;
3) γ ≤ 0;
4) in (2.12) the operator −iaA is replaced by −(a1+ia2)A, where a2 ∈ R∗ and a1 > 0;
5) for each k ≥ 1, we assume bk : Ω× [0, T ]→ R to be

(
Ft
)
t∈[0,T ]

adapted processes

satisfying

E

(
exp

(
3

∞∑
k=1

∫ T

0

b2k(s) ds

))
<∞.
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Abstract. We generate automatically several high order numerical methods for
the solution of nonlinear equations using Padé approximation and Maple CAS.
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1. Introduction

Consider the nonlinear scalar equation

f(x) = 0, (1.1)

where f : D ⊆ R→ R is a continuous and differentiable as many times as necessary.
Let α be a solution of (1.1). Let Rm,p be the set of rational functions with degree of
numerator m and degree of denominator p. Suppose f has a formal Taylor series

f(z) = c0 + c1z + c2z
2 + · · · .

For any pair (m, p) ∈ N× N, rm,p ∈ Rm,p is the type (m, p) Padé approximant
to f if their Taylor series at z = 0 agree as far as possible:

(f − rm,p)(z) = O(zmax) (1.2)

We will use three different strategies based on Padé approximation in order to
obtain automatically high order method:

• a direct strategy;
• inverse interpolation;
• modified methods.
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The features of Maple CAS allow us to generate methods of arbitrary orders.
See [4] or [6] for details. The pade procedure from the numapprox package computes a
Padé approximation of degree (m, p) about a given point. The paper [3] and the book
[2] contain several interesting examples of using Computer Algebra for the derivation
of numerical methods. In the sequel we will consider one-step methods, i.e. methods
of the form

xn+1 = F (xn), x0 given.

For the sake of brevity we will use the notations fn = f(xn) and f
(k)
n = f (k)(xn).

2. The direct approach

The first strategy is to approximate f by its (m, p) Padé approximant rm,p ∈
Rm,p and to solve the equation rm,p(x) = 0. The iteration will have the form

xn+1 = F (xn),

where F (x) is the root of rm,p(x) = 0 as a function of x. In order to avoid the solution
of higher order equations, we will choose m = 1.

For example, for m = 1 and p = 0, we obtain the Newton’s method.

> restart;

> with(numapprox):

> F:=pade(f(t),t=x[n],[1,0]):

> G:=collect(solve(%,t),x[n]);

G := xn −
f (xn)

D (f) (xn)
or,

xn+1 = xn −
fn
f ′n
.

For m = 1 and p = 1, we obtain Halley’s method.

> F:=pade(f(t),t=x[n],[1,1]):

> G:=collect(solve(%,t),x[n]);

G := xn − 2
D (f) (xn) f (xn)

2 (D (f) (xn))
2 −

(
D(2)

)
(f) (xn) f (xn)

or,

xn+1 = xn −
2f ′nfn

2 (f ′n)
2 − f ′′nfn.

This formula was obtained using direct Padé approximation in [2].

These are in fact particular cases of Householder-type methods. They could be
obtained by considering (1, p) Padé approximation and solving the equation r1,p = 0.
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Their order is p + 2. If f ∈ Cp+1(V ), where V is a neighborhood of α, Househelder
showed in [9] that the general form of iteration is

xn+1 = xn + (p+ 1)

(
1
f

)(p)
(

1
f

)(p+1)

∣∣∣∣∣∣∣
xn

.

The generation of such a method is straightforward with the following one-line
Maple code

> Phi:=(x,p)->x+(p+1)*(D@@(p))(1/f)(x)/(D@@(p+1))(1/f)(x):

We give two examples, for p = 2 and p = 3. The results were converted to
mathematical notation.

> F_2:=x+normal(Phi(x,2)-x);

> F_3:=x+normal(Phi(x,3)-x);

F2 := x− 3

[
2f ′2(x)− f ′′(x)f(x)

]
f(x)

f ′′′(x)f2(x) + 6f ′3(x)− 6f ′′(x)f ′(x)f(x)
(2.1)

F3 := x+
4
[
f ′′′(x)f2(x) + 6f ′3(x)− 6f ′′(x)f ′(x)f(x)

]
f(x)

Q(x)
, (2.2)

where

Q(x) = f (4)(x)f3(x)− 8f ′′′(x)f ′(x)f2(x)− 24f ′4(x)+

36f ′′(x)f ′2(x)f(x)− 6f ′′2(x)f2(x) (2.3)

3. Inverse interpolation

Suppose there exists g = f−1 on a neighborhood V of α. The inverse interpola-
tion consists of approximating

α = g(0),

by the value of an interpolant ĝ for g at 0

α = ĝ(0).

In this section we will use inverse Padé interpolation. The formula we look for
will have the form

xk+1 = rm,p(xk), k = 0, 1, ,

where rm,p is the (m, p) Padé approximant for g(0). For details on inverse interpo-
lation see [1], [5], [7]. The paper [7] uses rational interpolation to derive methods
for the solution of scalar nonlinear equations. The Maple procedure invpade gen-
erates the iteration function based on (m, p)-inverse Padé interpolation.

> invPade:=proc(m::nonnegint,p::nonnegint)
> local f,x;
> x+collect(eval(pade((f@@(-1))(y),y=f(x),[m,p]),y=0)-x,
> x,simplify);
> end proc;
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We give examples for (m, p) ∈ {(1, 1), (2, 1), (2, 2)}. The results were edited, in
order to fit on page.

Formula for (1, 1) is the Halley’s formula.

> F11:=invPade(1,1);

F11 := x+ 2
f ′(x)f(x)

f ′′(x)f(x)− 2f ′2(x)

Formula for (2, 1) was given and studied in [10].

> F21:=invPade(2,1);

> convert(%,diff);

F21 := x−
f(x)

[
f(x)f ′(x)f ′′′(x)− 3

2f(x)f ′′2(x) + 3f ′2(x)f ′′(x)
]

f ′(x) [f(x)f ′(x)f ′′′(x)− 3f(x)f ′′2(x) + 3f ′2(x)f ′′(x)]
(3.1)

Note that the formula for (1, 2) is different from (2.1) (that is, the direct approach
and inverse interpolation generates different formulas for (1,2) pair of degrees). The
(2, 2)-type formula is

F22 = x+
U

V
, (3.2)

where

U = 6ff ′
[
f (f ′)

2
f (4) − 6ff ′f ′′f ′′′ + 6f (f ′′)

3
+ 4f ′′′ (f ′)

3 − 6 (f ′′)
2

(f ′)
2
]

(x)

and

V = f2
(

3 (f ′)
2
f (4)f ′′ − 4 (f ′)

2
(f ′′′)

2 − 6 f ′ (f ′′)
2
f ′′′ + 9 (f ′′)

4
)

(x)

− 6 f (f ′)
2
(

(f ′)
2
f (4) − 8 f ′f ′′f ′′′ + 9 (f ′′)

3
)

(x)

− 12 (f ′)
4
(

2 f ′f ′′′ − 3 (f ′′)
2
)

(x).

4. Modified methods

Following the ideas of Sebah and Gourdon [8], we look for an iteration of the
form

xn+1 = xn + hn + a2
h2n
2!

+ a3
h3n
3!

+ · · · , (4.1)

where hn = − f(xn)
f ′(xn)

. Under the assumptions that f is sufficiently differentiable and

hn + a2
h2
n

2! + a3
h3
n

3! + · · · is small, we start from Taylor expansion of f(xn+1) about
xn, and using the side-relation f(xn) + hnf

′(xn) = 0, we try to choose an’s so that
to cancel as many terms as possible in the expansion.

The Maple procedure modPade below returns the coefficients (ak) and the modi-
fied method (4.1) truncated to a given number of terms.
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> modPade:=proc(nmax::nonnegint)
> local k, inc,dT, dT2, sol, a, ec, so, it, n ;
> inc:=h+add(a[k]*h^k/k!,k=2..max(nmax+1,3));
> dT:=convert(taylor(f(x[n]+t),t=0,nmax+1),polynom);
> dT:=simplify(subs(t=inc,dT),[f(x[n])+h*D(f)(x[n])=0]):
> dT2:=collect(dT,h,simplify):
> for k from 2 to nmax+1 do
> ec[k]:=coeff(dT2,h,k);
> end;
> so:=solve([seq(ec[k],k=2..nmax+1)],[seq(a[k],k=2..nmax+1)]);
> assign(so);
> it:=x[n]+eval(subs(h=-f(x[n])/D(f)(x[n]),factor(inc)));
> return a,it;
> end proc:

modPade computes for ak, k = 2, . . . , 6, the following values

a2 = −f
′′
n

f ′n

a3 =
3 (f ′′n )

2 − f ′′′n f ′n
(f ′n)

2

a4 = −f
(4)
n (f ′n)

2 − 10f ′′′n f
′′
nf
′
n + 15 (f ′′n )

3

(f ′n)
3

a5 =
105 (f ′′n )

4 − 105f ′′′n (f ′′n )
2
f ′n + 15f

(4)
n f ′′n (f ′n)

2
+ 10 (f ′n)

2
(f ′′′n )

2 − f (5)n (f ′n)
3(

f (4)
)4

a6 = − 7

(f ′n)
5

(
135 (f ′′n )

5 − 180f ′′′n (f ′′n )
3
f ′n + 30f (4)n (f ′′n )

2
(f ′n)

2
+ 40f ′′n (f ′′′n )

2
(f ′n)

2

−3f (5)n f ′′n (f ′n)
3 − 5f ′′′n f

(4)
n (f ′n)

3
)

For nmax = 4, modPade gives the fourth-order formula

xn+1 = xn −
f (xn)

f ′ (xn)
− f ′′ (xn) f2 (xn)

2 (f ′ (xn))
3 +

(
f ′′′ (xn) f ′ (xn)− 3 (f ′′ (xn))

2
)
f3 (xn)

6 (f ′ (xn))
5

(4.2)
For nmax = 5, modPade gives the fifth-order formula

xn+1 = xn −
f (xn)

f ′ (xn)
− f ′′ (xn) f2 (xn)

2 (f ′ (xn))
3 +

(
f ′′′ (xn) f ′ (xn)− 3 (f ′′ (xn))

2
)
f3 (xn)

6 (f ′ (xn))
5

−

(
f (4) (xn) (f ′ (xn))

2 − 10f ′′′ (xn) f ′′ (xn) f ′ (xn) + 15 (f ′′ (xn))
3
)
f4 (xn)

24 (f ′ (xn))
7

(4.3)

Remark 4.1. These methods are the same as Chebyshev methods and could be gene-
rated using inverse Taylor interpolation (see [1, 7]).
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5. Numerical examples

We wish to compare the different iterations on the solution of the equation

xex + x2 − 6 = 0. (5.1)

First, we compute the solution using fsolve function with Digits set to 400.

> Digits:=400:

> eq:=x*exp(x)+x^2-6:

> root1:=fsolve(eq,x);

root1 :=1.25716946808154244322416171370599680292013126504290076\
142355162009975113083056615579120160569103718598288101\
140558803113433921630435939810988753086636 . . .

Then, for each method we execute a small number of iteration steps and count
the number of correct digits and compute the absolute error as the modulus of the
difference between root1 and the computed approximation.

• Padé (1, 2), order 4 (formula (2.1))

x1 = 1.26(257 . . . ) 2 digits

x2 = 1.2571694681(095 . . . ) 10 digits

x3 = 1.2571694680815424432241617137059968029201312(853 . . . ) 43 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 176 digits

• inverse Padé (2, 1), order 4 (formula (3.1))

x1 = 1.2(727 . . . ) 1 digits

x2 = 1.2571694(737 . . . ) 8 digits

x3 = 1.2571694680815424432241617137059969(004 . . . ) 34 digits

x4 = 1.2571694680815424432241617137059968029201312650(. . . ) 137 digits

• modified method, order 4 (formula (4.2))

x1 = 1.3(106 . . . ) 1 digits

x2 = 1.25717(411 . . . ) 5 digits

x3 = 1.257169468081542443224(458 . . . ) 21 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 86 digits

• Padé (1, 3), order 5 (formulas (2.2) and (2.3))

x1 = 1.257(703 . . . ) 3 digits

x2 = 1.257169468081542443(624 . . . ) 18 digits

x3 = 1.257169468081542443224161713705996802920131265(. . . ) 94 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 472 digits

Note that this method was tested for Digits set to 500.
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• inverse Padé (2, 2), order 5 (formula (3.2))

x1 = 1.26(. . . ) 2 digits

x2 = 1.2571694680815(682 . . . ) 13 digits

x3 = 1.257169468081542443224161713705996802920131265(. . . ) 69 digits

x4 = 1.25716946808154244322416171370599680292013126504(. . . ) 348 digits

• modified method, order 5 (formula (4.3))

x1 = 1.(2846 . . . ) 1 digits

x2 = 1.257169(479 . . . ) 7 digits

x3 = 1.257169468081542443224161713705996802920(249 . . . ) 39 digits

x4 = 1.2571694680815424432241617137059968029201312650(. . . ) 199 digits

Tables 1 and 2 give the error after each iteration for 4th order and for 5th order
methods, respectively.

Iteration Padé Inverse Padé Modified
(1, 2) (2, 1) order 4

1 5.4033e− 03 1.5528e− 02 5.3445e− 02
2 2.7982e− 11 5.6144e− 09 4.6404e− 06
3 2.0247e− 44 9.7495e− 35 2.9607e− 22
4 5.5508e− 177 8.8659e− 138 4.9061e− 87

Table 1. Errors for each iteration, 4th order methods

Iteration Padé Inverse Padé Modified
(1, 3) (2, 2) order 5

1 5.3370e− 04 3.7722e− 03 2.7441e− 02
2 4.0001e− 19 2.5751e− 14 1.0904e− 08
3 9.4690e− 95 3.8318e− 70 1.1775e− 40
4 7.0386e− 473 2.7954e− 349 1.7284e− 200

Table 2. Errors for each iteration, 5th order methods

6. Conclusions

All methods presented computes a large number of correct digits in a small
number of iterations. Direct Padé and inverse Padé methods are superior to modified
methods. Direct Padé methods, (in fact, Householder methods) have a better accuracy
than methods based on inverse Padé interpolation of the same total degree, at least for
equation (5.1). The approach presented in this paper could be useful in the context of
symbolic computation, when a large number of digits is required, and to automatically
generate numerical methods for the solution of nonlinear equations.
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Abstract. Here we present several complex left Caputo type fractional inequalities
of well known kinds, such as of Ostrowski, Poincare, Sobolev, Opial and Hilbert-
Pachpatte.
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1. Introduction

We are motivated by the following result for functions of complex variable:
Complex Ostrowski type inequality

Theorem 1.1. (see [3]) Let f be holomorphic in G, an open domain and suppose
γ ⊂ G is a smooth path from z (a) = u to z (b) = w. If v = z (x) with x ∈ (a, b), then
γu,w = γu,v ∪ γv,w,∣∣∣∣f (v) (w − u)−

∫
γ

f (z) dz

∣∣∣∣ ≤ ‖f ′‖γu,v ;∞ ∫
γu,v

|z − u| |dz|

+ ‖f ′‖γv,w;∞

∫
γv,w

|z − w| |dz|

≤

[∫
γu,v

|z − u| |dz|+
∫
γv,w

|z − w| |dz|

]
‖f ′‖γu,w;∞ ,

and∣∣∣∣f (v) (w − u)−
∫
γ

f (z) dz

∣∣∣∣ ≤ max
z∈γu,v

|z − u| ‖f ′‖γu,v ;1 + max
z∈γv,w

|z − w| ‖f ′‖γv,w;1

≤ max

{
max
z∈γu,v

|z − u| , max
z∈γv,w

|z − w|
}
‖f ′‖γu,w;1 .



330 George A. Anastassiou

If p, q > 1 with 1
p + 1

q = 1, then∣∣∣∣f (v) (w − u)−
∫
γ

f (z) dz

∣∣∣∣ ≤
(∫

γu,v

|z − u|q |dz|

) 1
q

‖f ′‖γu,v ;p

+

(∫
γv,w

|z − w|q |dz|

) 1
q

‖f ′‖γv,w;p

≤

(∫
γu,v

|z − u|q |dz|+
∫
γv,w

|z − w|q |dz|

) 1
q

‖f ′‖γu,w;p .

Above |·| is the complex absolute value.

We are also motivated by the next complex Opial type inequality:

Theorem 1.2. (see [2]) Let f : D ⊆ C → C be an analytic function on the domain
D and let x, y, w ∈ D. Suppose γ is a smooth path parametrized by z (t), t ∈ [a, b]
with z (a) = x, z (c) = y, and z (b) = w, where c ∈ [a, b] is floating. Assume that
f (k) (x) = 0, k = 0, 1, ..., n, n ∈ Z+, and p, q > 1 : 1

p + 1
q = 1. Then

1) ∣∣∣∣∣
∫ b

a

f (z (t)) f (n+1) (z (t)) z′ (t) dt

∣∣∣∣∣
≤
∫ b

a

|f (z (t))|
∣∣∣f (n+1) (z (t))

∣∣∣ |z′ (t)| dt
≤ 1

2
1
q n!

[∫ b

a

(∫ c

a

|z (c)− z (t)|pn |z′ (t)| dt
)
|z′ (c)| dc

] 1
p

·

(∫ b

a

∣∣∣f (n+1) (z (t))
∣∣∣q |z′ (t)| dt) 2

q

,

equivalently it holds
2) ∣∣∣∣∣

∫
γx,w

f (z) f (n+1) (z) dz

∣∣∣∣∣ ≤
∫
γx,w

|f (z)|
∣∣∣f (n+1) (z)

∣∣∣ |dz|
≤ 1

2
1
q n!

[∫ b

a

(∫
γx,y

|z (c)− z|pn |dz|

)
|z′ (c)| dc

] 1
p
(∫

γx,w

∣∣∣f (n+1) (z)
∣∣∣q |dz|) 2

q

.

Here we utilize on C the results of [1] which are for general Banach space valued
functions.

Mainly we give different cases of the left fractional C-Ostrowski type inequality
and we continue with the left fractional: C-Poincaré like and Sobolev like inequalities.

We present an Opial type left C-fractional inequality, and we finish with the
Hilbert-Pachpatte left C-fractional inequalities.
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2. Background

In this section all integrals are of Bochner type.
We need

Definition 2.1. (see [4]) A definition of the Hausdorff measure hα goes as follows: if
(T, d) is a metric space, A ⊆ T and δ > 0, let Λ (A, δ) be the set of all arbitrary collec-
tions (C)i of subsets of T , such that A ⊆ ∪iCi and diam (Ci) ≤ δ (diam =diameter)
for every i. Now, for every α > 0 define

hδα (A) := inf
{∑

(diamCi)
α | (Ci)i ∈ Λ (A, δ)

}
. (2.1)

Then there exists lim
δ→0

hδα (A) = sup
δ>0

hδα (A), and hα (A) := lim
δ→0

hδα (A) gives an outer

measure on the power set P (T ), which is countably additive on the σ-field of all Borel
subsets of T . If T = Rn, then the Hausdorff measure hn, restricted to the σ-field of the
Borel subsets of Rn, equals the Lebesgue measure on Rn up to a constant multiple.
In particular, h1 (C) = µ (C) for every Borel set C ⊆ R, where µ is the Lebesgue
measure.

Definition 2.2. ([1]) Let [a, b] ⊂ R, X be a Banach space, ν > 0; n := dνe ∈ N, d·e is
the ceiling of the number, f : [a, b] → X. We assume that f (n) ∈ L1 ([a, b] , X). We
call the Caputo-Bochner left fractional derivative of order ν:

(Dν
∗af) (x) :=

1

Γ (n− ν)

∫ x

a

(x− t)n−ν−1 f (n) (t) dt, ∀ x ∈ [a, b] . (2.2)

If ν ∈ N, we set Dν
∗af := f (ν) the ordinary X-valued derivative, defined similarly to

the numerical one, and also set D0
∗af := f.

By [1] (Dν
∗af) (x) exists almost everywhere in x ∈ [a, b] and Dν

∗af ∈ L1 ([a, b] , X).

If
∥∥f (n)∥∥

L∞([a,b],X)
<∞, then by [1] Dν

∗af ∈ C ([a, b] , X) .

We need the left-fractional Taylor’s formula:

Theorem 2.3. ([1]) Let n ∈ N and f ∈ Cn−1 ([a, b] , X) , where [a, b] ⊂ R and X is a
Banach space, and let ν ≥ 0 : n = dνe. Set

Fx (t) :=

n−1∑
i=0

(x− t)i

i!
f (i) (t) , ∀ t ∈ [a, x] , (2.3)

where x ∈ [a, b] .

Assume that f (n) exists outside a µ-null Borel set Bx ⊆ [a, x], such that

h1 (Fx (Bx)) = 0, ∀ x ∈ [a, b] . (2.4)

We also assume that f (n) ∈ L1 ([a, b] , X). Then

f (x) =

n−1∑
i=0

(x− a)
i

i!
f (i) (a) +

1

Γ (ν)

∫ x

a

(x− z)ν−1 (Dν
∗af) (z) dz, (2.5)

∀ x ∈ [a, b] .
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Next we mention an Ostrowski type inequality at left fractional level for Banach
valued functions.

Theorem 2.4. ([1]) Let ν ≥ 0, n = dνe. Here all as in Theorem 2.3. Assume that
f (i) (a) = 0, i = 1, ..., n− 1, and that Dν

∗af ∈ L∞ ([a, b] , X). Then∥∥∥∥∥ 1

b− a

∫ b

a

f (x) dx− f (a)

∥∥∥∥∥ ≤ ‖D
ν
∗af‖L∞([a,b],X)

Γ (ν + 2)
(b− a)

ν
. (2.6)

We mention an Ostrowski type Lp fractional inequality:

Theorem 2.5. ([1]) Let p, q > 1 : 1
p + 1

q = 1, and ν > 1
q , n = dνe. Here all as in

Theorem 2.3. Assume that f (k) (a) = 0, k = 1, ..., n − 1, and Dν
∗af ∈ Lq ([a, b] , X),

where X is a Banach space. Then∥∥∥∥∥ 1

b− a

∫ b

a

f (x) dx− f (a)

∥∥∥∥∥ ≤ ‖Dν
∗af‖Lq([a,b],X)

Γ (ν) (p (ν − 1) + 1)
1
p

(
ν + 1

p

) (b− a)
ν− 1

q . (2.7)

It follows

Corollary 2.6. ([1]) (to Theorem 2.5, case of p = q = 2). Let ν > 1
2 , n = dνe.

Here all as in Theorem 2.3. Assume that f (k) (a) = 0, k = 1, ..., n − 1, and Dν
∗af ∈

L2 ([a, b] , X). Then∥∥∥∥∥ 1

b− a

∫ b

a

f (x) dx− f (a)

∥∥∥∥∥ ≤ ‖Dν
∗af‖L2([a,b],X)

Γ (ν)
(√

2ν − 1
) (
ν + 1

2

) (b− a)
ν− 1

2 . (2.8)

Next comes the L1 case of fractional Ostrowski inequality:

Theorem 2.7. ([1]) Let ν ≥ 1, n = dνe, and all as in Theorem 2.3. Assume that
f (k) (a) = 0, k = 1, ..., n− 1, and Dν

∗af ∈ L1 ([a, b] , X). Then∥∥∥∥∥ 1

b− a

∫ b

a

f (x) dx− f (a)

∥∥∥∥∥ ≤ ‖D
ν
∗af‖L1([a,b],X)

Γ (ν + 1)
(b− a)

ν−1
. (2.9)

We continue with a Poincaré like fractional inequality:

Theorem 2.8. ([1]) Let p, q > 1 : 1
p + 1

q = 1, and ν > 1
q , n = dνe. Here all as in

Theorem 2.3. Assume that f (k) (a) = 0, k = 0, 1, ..., n− 1, and Dν
∗af ∈ Lq ([a, b] , X),

where X is a Banach space. Then

‖f‖Lq([a,b],X) ≤
(b− a)

ν

Γ (ν) (p (ν − 1) + 1)
1
p (qν)

1
q

‖Dν
∗af‖Lq([a,b],X) . (2.10)

Next comes a Sobolev like fractional inequality.

Theorem 2.9. ([1]) All as in the last Theorem 2.8. Let r > 0. Then

‖f‖Lr([a,b],X) ≤
(b− a)

ν− 1
q+

1
r

Γ (ν) (p (ν − 1) + 1)
1
p

(
r
(
ν − 1

q

)
+ 1
) 1
r

‖Dν
∗af‖Lq([a,b],X) . (2.11)
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We mention the following Opial type fractional inequality:

Theorem 2.10. ([1]) Let p, q > 1 : 1
p + 1

q = 1, and ν > 1
q , n := dνe. Let [a, b] ⊂ R, X

a Banach space, and f ∈ Cn−1 ([a, b] , X). Set

Fx (t) :=

n−1∑
i=0

(x− t)i

i!
f (i) (t) , ∀ t ∈ [a, x] , where x ∈ [a, b] . (2.12)

Assume that f (n) exists outside a µ-null Borel set Bx ⊆ [a, x], such that

h1 (Fx (Bx)) = 0, ∀ x ∈ [a, b] . (2.13)

We also assume that f (n) ∈ L∞ ([a, b] , X).
Assume also that f (k) (a) = 0, k = 0, 1, ..., n− 1. Then∫ x

a

‖f (w)‖ ‖(Dν
∗af) (w)‖ dw

≤ (x− a)
ν−1+ 2

p

2
1
q Γ (ν) ((p (ν − 1) + 1) (p (ν − 1) + 2))

1
p

(∫ x

a

‖(Dν
∗af) (z)‖q dz

) 2
q

, (2.14)

∀ x ∈ [a, b] .

We finish this section with a Hilbert-Pachpatte left fractional inequality:

Theorem 2.11. ([1]) Let p, q > 1 : 1
p + 1

q = 1, and ν1 >
1
q , ν2 >

1
p , ni := dνie, i = 1, 2.

Here [ai, bi] ⊂ R, i = 1, 2; X is a Banach space. Let fi ∈ Cni−1 ([ai, bi] , X), i = 1, 2.
Set

Fxi (ti) :=

ni−1∑
ji=0

(xi − ti)ji

ji!
f
(ji)
i (ti) , (2.15)

∀ ti ∈ [ai, xi], where xi ∈ [ai, bi]; i = 1, 2. Assume that f
(ni)
i exists outside a µ-null

Borel set Bxi ⊆ [ai, xi], such that

h1 (Fxi (Bxi)) = 0, ∀ xi ∈ [ai, bi] ; i = 1, 2. (2.16)

We also assume that f
(ni)
i ∈ L1 ([ai, bi] , X), and

f
(ki)
i (ai) = 0, ki = 0, 1, ..., ni − 1; i = 1, 2, (2.17)

and (
Dν1
∗a1f1

)
∈ Lq ([a1, b1] , X) ,

(
Dν2
∗a2f2

)
∈ Lp ([a2, b2] , X) .

Then ∫ b1

a1

∫ b2

a2

‖f1 (x1)‖ ‖f2 (x2)‖ dx1dx2(
(x1−a1)p(ν1−1)+1

p(p(ν1−1)+1) + (x2−a2)q(ν2−1)+1

q(q(ν2−1)+1)

)
≤ (b1 − a1) (b2 − a2)

Γ (ν1) Γ (ν2)

∥∥Dν1
∗a1f1

∥∥
Lq([a1,b1],X)

∥∥Dν2
∗a2f2

∥∥
Lp([a2,b2],X)

. (2.18)
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3. Main results

We need a special case of Definition 2.2 over C.

Definition 3.1. Let [a, b] ⊂ R, ν > 0; n := dνe ∈ N, d·e is the ceiling of the number
and f ∈ Cn ([a, b] ,C). We call Caputo-Complex left fractional derivative of order ν:

(Dν
∗af) (x) :=

1

Γ (n− ν)

∫ x

a

(x− t)n−ν−1 f (n) (t) dt, ∀ x ∈ [a, b] , (3.1)

where the derivatives f ′, ...f (n) are defined as the numerical derivative.
If ν ∈ N, we set Dν

∗af := f (ν) the ordinary C-valued derivative and also set
D0
∗af := f.

Notice here (by [1]) that Dν
∗af ∈ C ([a, b] ,C) .

We make

Remark 3.2. Suppose γ is a smooth path parametrized by z (t), t ∈ [a, b] (i.e. there
exists z′ (t) and is continuous) and from now on f is a complex function which is
continuous on γ.

Put z (a) = u and z (b) = w with u,w ∈ C. We define the integral of f on
γu,w = γ as∫

γ

f (z) dz =

∫
γu,w

f (z) dz :=

∫ b

a

f (z (t)) z′ (t) dt =

∫ b

a

h (t) dt, (3.2)

where h (t) := f (z (t)) z′ (t), t ∈ [a, b] .
We notice that the actual choice of parametrization of γ does not matter.
This definition immediately extends to paths that are piecewise smooth. Suppose

γ is parametrized by z (t), t ∈ [a, b], which is differentiable on the intervals [a, c] and
[c, b], then assuming that f is continuous on γ we define∫

γu,w

f (z) dz :=

∫
γu,v

f (z) dz +

∫
γv,w

f (z) dz,

where v := z (c). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length∫

γu,w

f (z) |dz| :=
∫ b

a

f (z (t)) |z′ (t)| dt

and the length of the curve γ is then

l (γ) =

∫
γu,w

|dz| :=
∫ b

a

|z′ (t)| dt.

We mention also the triangle inequality for the complex integral, namely∣∣∣∣∫
γ

f (z) dz

∣∣∣∣ ≤ ∫
γ

|f (z)| |dz| ≤ ‖f‖γ,∞ l (γ) , (3.3)

where ‖f‖γ,∞ := sup
z∈γ
|f (z)|.

We give the following left-fractional C-Taylor’s formula:
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Theorem 3.3. Let h ∈ Cn ([a, b] ,C), n = dνe, ν ≥ 0. Then

h (t) =

n−1∑
i=0

(t− a)
i

i!
h(i) (a) +

1

Γ (ν)

∫ t

a

(t− λ)
ν−1

(Dν
∗ah) (λ) dλ, (3.4)

∀ t ∈ [a, b], in particular it holds,

f (z (t)) z′ (t) =

n−1∑
i=0

(t− a)
i

i!
(f (z (a)) z′ (a))

(i)

+
1

Γ (ν)

∫ t

a

(t− λ)
ν−1

(Dν
∗af (z (·)) z′ (·)) (λ) dλ, (3.5)

∀ t ∈ [a, b] .

Proof. By Theorem 2.3. �

It follows a left fractional C-Ostroswski type inequality

Theorem 3.4. Let n ∈ N and h ∈ Cn ([a, b] ,C), where [a, b] ⊂ R, and let ν ≥ 0 : n =
dνe. Assume that h(i) (a) = 0, i = 1, ..., n− 1. Then∣∣∣∣∣ 1

b− a

∫ b

a

h (t) dt− f (a)

∣∣∣∣∣ ≤ ‖D
ν
∗ah‖∞,[a,b]

Γ (ν + 2)
(b− a)

ν
, (3.6)

in particular when h (t) := f (z (t)) z′ (t) and (f (z (t)) z′ (t))
(i) |t=a = 0, i = 1, ...n−1,

we get∣∣∣∣∣ 1

b− a

∫
γu,w

f (z) dz − f (u) z′ (a)

∣∣∣∣∣ =

∣∣∣∣∣ 1

b− a

∫ b

a

f (z (t)) z′ (t) dt− f (z (a)) z′ (a)

∣∣∣∣∣
≤
‖Dν
∗af (z (t)) z′ (t)‖∞,[a,b]

Γ (ν + 2)
(b− a)

ν
. (3.7)

Proof. By Theorem 2.4. �

The corresponding C-Ostrowski type Lp inequality follows:

Theorem 3.5. Let p, q > 1 : 1
p + 1

q = 1, and ν > 1
q , n = dνe. Here h ∈ Cn ([a, b] ,C).

Assume that h(i) (a) = 0, i = 1, ..., n− 1. Then∣∣∣∣∣ 1

b− a

∫ b

a

h (t) dt− h (a)

∣∣∣∣∣ ≤ ‖Dν
∗ah‖Lq([a,b],C)

Γ (ν) (p (ν − 1) + 1)
1
p

(
ν + 1

p

) (b− a)
ν− 1

q , (3.8)
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in particular when h (t) := f (z (t)) z′ (t) and (f (z (t)) z′ (t))
(i) |t=a = 0, i = 1, ...n−1,

we get:∣∣∣∣∣ 1

b− a

∫
γu,w

f (z) dz − f (u) z′ (a)

∣∣∣∣∣ =

∣∣∣∣∣ 1

b− a

∫ b

a

f (z (t)) z′ (t) dt− f (z (a)) z′ (a)

∣∣∣∣∣
≤
‖Dν
∗a (f (z (t)) z′ (t))‖Lq([a,b],C)

Γ (ν) (p (ν − 1) + 1)
1
p

(
ν + 1

p

) (b− a)
ν− 1

q .

(3.9)

Proof. By Theorem 2.5. �

It follows

Corollary 3.6. (to Theorem 3.5, case of p = q = 2). We have that∣∣∣∣∣ 1

b− a

∫
γu,w

f (z) dz − f (u) z′ (a)

∣∣∣∣∣ ≤ ‖D
ν
∗a (f (z (t)) z′ (t))‖L2([a,b],C)

Γ (ν)
√

2ν − 1
(
ν + 1

2

) (b− a)
ν− 1

2 .

(3.10)

We continue with an L1 fractional C-Ostrowski type inequality:

Theorem 3.7. Let ν ≥ 1, n = dνe. Assume that h ∈ Cn ([a, b] ,C), where

h (t) := f (z (t)) z′ (t) ,

and such that h(i) (a) = 0, i = 1, ..., n− 1. Then∣∣∣∣∣ 1

b− a

∫
γu,w

f (z) dz − f (u) z′ (a)

∣∣∣∣∣ ≤ ‖D
ν
∗a (f (z (t)) z′ (t))‖L1([a,b],C)

Γ (ν + 1)
(b− a)

ν−1
.

(3.11)

Proof. By Theorem 2.7. �

It follows a Poincaré like C-fractional inequality:

Theorem 3.8. Let p, q > 1 : 1
p + 1

q = 1, and ν > 1
q , n = dνe. Let h ∈ Cn ([a, b] ,C).

Assume that h(i) (a) = 0, i = 1, ..., n− 1. Then

‖h‖Lq([a,b],C) ≤
(b− a)

ν ‖Dν
∗ah‖Lq([a,b],C)

Γ (ν) (p (ν − 1) + 1)
1
p (qν)

1
q

, (3.12)

in particular when h (t) := f (z (t)) z′ (t) and (f (z (t)) z′ (t))
(i) |t=a = 0, i = 1, ...n−1,

we get:
‖f (z (t)) z′ (t)‖Lq([a,b],C)

≤ (b− a)
ν

Γ (ν) (p (ν − 1) + 1)
1
p (qν)

1
q

‖Dν
∗a (f (z (t)) z′ (t))‖Lq([a,b],C) . (3.13)

Proof. By Theorem 2.8. �

The corresponding Sobolev like inequality follows:
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Theorem 3.9. All as in Theorem 3.8. Let r > 0. Then

‖f (z (t)) z′ (t)‖Lr([a,b],C)

≤ (b− a)
ν− 1

q+
1
r

Γ (ν) (p (ν − 1) + 1)
1
p

(
r
(
ν − 1

q

)
+ 1
) 1
r

‖Dν
∗a (f (z (t)) z′ (t))‖Lq([a,b],C) . (3.14)

Proof. By Theorem 2.9. �

We continue with an Opial type C-fractional inequality

Theorem 3.10. Let p, q > 1 : 1
p + 1

q = 1, and ν > 1
q , n := dνe, h ∈ Cn ([a, b] ,C).

Assume h(k) (a) = 0, k = 0, 1, ..., n− 1. Then∫ x

a

|h (t)| |(Dν
∗ah) (t)| dt

≤ (x− a)
ν−1+ 2

p

2
1
q Γ (ν) ((p (ν − 1) + 1) (p (ν − 1) + 2))

1
p

(∫ x

a

|(Dν
∗ah) (t)|q dt

) 2
q

, (3.15)

∀ x ∈ [a, b] , in particular when h (t) := f (z (t)) z′ (t) and (f (z (t)) z′ (t))
(i) |t=a = 0,

i = 1, ...n− 1, we get:∫ x

a

|f (z (t))| |(Dν
∗a (f (z (t)) z′ (t)))| |z′ (t)| dt

≤ (x− a)
ν−1+ 2

p

2
1
q Γ (ν) ((p (ν − 1) + 1) (p (ν − 1) + 2))

1
p

(∫ x

a

|Dν
∗a (f (z (t)) z′ (t))|q dt

) 2
q

,

(3.16)
∀ x ∈ [a, b] .

Proof. By Theorem 2.10. �

We finish with Hilbert-Pachpatte left C-fractional inequalities:

Theorem 3.11. Let p, q > 1 : 1
p + 1

q = 1, and ν1 >
1
q , ν2 >

1
p , ni := dνie, i = 1, 2. Let

hi ∈ Cni ([ai, bi] ,C), i = 1, 2. Assume h
(ki)
i (ai) = 0, ki = 0, 1, ..., ni − 1; i = 1, 2.

Then ∫ b1

a1

∫ b2

a2

|h1 (t1)| |h2 (t2)| dt1dt2(
(t1−a1)p(ν1−1)+1

p(p(ν1−1)+1) + (t2−a2)q(ν2−1)+1

q(q(ν2−1)+1)

)
≤ (b1 − a1) (b2 − a2)

Γ (ν1) Γ (ν2)

∥∥Dν1
∗a1h1

∥∥
Lq([a1,b1],C)

∥∥Dν2
∗a2h2

∥∥
Lp([a2,b2],C)

, (3.17)

in particular when h1 (t1) := f1 (z1 (t1)) z′1 (t1) and h2 (t2) := f2 (z2 (t2)) z′2 (t2), with

h
(ki)
i (ai) = 0, ki = 0, 1, ...ni − 1; i = 1, 2, we get:∫ b1

a1

∫ b2

a2

|f1 (z1 (t1)) z′1 (t1)| |f2 (z2 (t2)) z′2 (t2)| dt1dt2(
(t1−a1)p(ν1−1)+1

p(p(ν1−1)+1) + (t2−a2)q(ν2−1)+1

q(q(ν2−1)+1)

) ≤ (b1 − a1) (b2 − a2)

Γ (ν1) Γ (ν2)
·

∥∥Dν1
∗a1 (f1 (z1 (t1)) z′1 (t1))

∥∥
Lq([a1,b1],C)

∥∥Dν2
∗a2 (f2 (z2 (t2)) z′2 (t2))

∥∥
Lp([a2,b2],C)

. (3.18)
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Proof. By Theorem 2.11. �
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Classes of an univalent integral operator

Camelia Bărbatu and Daniel Breaz

Abstract. In this paper we introduce a new general integral operator for ana-
lytic functions in the open unit disk U and we obtain sufficient conditions for
univalence of this integral operator.
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1. Introduction

Let A be the class of the functions f which are analytic in the open unit disk
U = {z ∈ C :| z |< 1} and f(0) = f

′
(0)− 1 = 0.

We denote by S the subclass of A consisting of functions f ∈ A, which are
univalent in U.

We consider the integral operator

Tn(z) =

{
δ

∫ z

0

tδ−1
n∏
i=1

[(
fi(t)

t

)αi−1
·
(
gi(t)

′)βi · (hi(t)
ki(t)

)γi
·
(
hi
′(t))

ki
′(t)

)δi]
dt

} 1
δ

(1.1)
for fi, gi, hi, ki ∈ A and the complex numbers δ, αi, βi, γi, δi, with δ 6= 0, i = 1, n,
n ∈ N \ {0} .

Remark 1.1. The integral operator Tn defined by (1.1), is a general integral operator
of Pfaltzgraff, Kim-Merkes and Ovesea types which extends also the other operators
as follows:

i) For n = 1, δ = 1, α1 − 1 = α1 and β1 = γ1 = δ1 = 0 we obtain the integral
operator which was studied by Kim-Merkes [7].

Fα(z) =

∫ z

0

(
f(t)

t

)α
dt,
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ii) For n = 1, δ = 1 and α1 − 1 = γ1 = δ1 = 0 we obtain the integral operator which
was studied by Pfaltzgraff [18].

Gα(z) =

∫ z

0

(f ′(t))
α

dt,

iii) For αi − 1 = αi and βi = γi = δi = 0 we obtain the integral operator which
was defined and studied by D. Breaz and N. Breaz [2].

Dn(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

(
fi(t)

t

)αi
dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by Pascu
and Pescar [12].

iv) For αi − 1 = γi = δi = 0 we obtain the integral operator which was defined
and studied by D. Breaz, Owa and N. Breaz [4]

In(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

[f ′i(t)]
αi dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by Pescar
and Owa in [17] .

v) For αi − 1 = αi and γi = δi = 0 we obtain the integral operator which was
defined and studied by Frasin [5]

Fn(z) =

[
δ

∫ z

0

tδ−1
n∏
i=1

(
fi(t)

t

)αi (
fi
′(t)
)βi

dt

] 1
δ

,

this integral operator is a generalization of the integral operator introduced by Ovesea
in [9].

vi) For αi − 1 = βi = 0 we obtain the integral operator which was defined and
studied by Pescar [13].

In(z) =

δ ∫ z

0

tδ−1
n∏
i=1

(
fi(t)

gi(t)

)γi (f ′

i (t)

g
′
i(t)

)δi
dt

 1
δ

,

Thus, the integral operator Tn, introduced here by the formula (1.1), can be considered
as an extension and a generalization of these operators above mentioned.

We need the following lemmas.

Lemma 1.2. [11] Let γ, δ be complex numbers, Reγ > 0 and f ∈ A. If

1− |z|2Reγ

Reγ

∣∣∣∣zf ′′(z))f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then for any complex number δ, Reδ ≥ Reγ , the function Fδ defined by

Fδ(z) =

(
δ

∫ z

0

tδ−1f ′(t)dt

) 1
δ

,
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is regular and univalent in U.

Lemma 1.3. [14] Let δ be complex number, Reδ > 0 and c a complex number, |c| ≤ 1,
c 6= −1, and f ∈ A, f(z) = z + a2z

2 + .... If∣∣∣∣c |z|2δ +
(

1− |z|2δ
) zf ′′(z))
δf ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then the function Fδ defined by

Fδ(z) =

(
δ

∫ z

0

tδ−1f ′(t)dt

) 1
δ

,

is regular and univalent in U.

Lemma 1.4. [8] Let f be the function regular in the disk UR = {z ∈ C : |z| < R} with
|f(z)| < M , M fixed. If f(z) has in z = 0 one zero with multiply ≥ m, then

|f(z)| ≤ M

Rm
zm,

the equality for z 6= 0 can hold only if

f(z) = eiθ
M

Rm
zm,

where θ is constant.

2. Main results

Theorem 2.1. Let γ, δ, αi, βi, γi, δi be complex numbers, c = Reγ > 0, Mi, Ni, Pi, Qi,
Ri, Si real positive numbers and fi, gi, hi, ki ∈ A,

fi(z) = z + a2iz
2 + a3iz

3 + ...,

gi(z) = z + b2iz
2 + b3iz

3 + ...,

hi(z) = z + c2iz
2 + c3iz

3 + ...,

ki(z) = z + d2iz
2 + d3iz

3 + ..., i = 1, n.

If ∣∣∣∣zf ′i(z)fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′i(z)gi(z)
− 1

∣∣∣∣ ≤ Ni, ∣∣∣∣zh′i(z)hi(z)
− 1

∣∣∣∣ ≤ Pi,∣∣∣∣zk′i(z)ki(z)
− 1

∣∣∣∣ ≤ Qi, ∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri, ∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,
for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |γi| (Pi +Qi) + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
, (2.1)

then, for all δ complex numbers, Reδ ≥ Reγ, the integral operator Tn, given by (1.1)
is in the class S.
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Proof. Let us define the function

Hn (z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1
·
(
gi(t)

′)βi · (hi (t)

ki(t)

)γi
·
(
hi
′ (t)

ki
′(t)

)δi]
dt,

for fi, gi, hi, ki ∈ A, i = 1, n.
The function Hn is regular in U and satisfy the following usual normalization

conditions Hn(0 ) = H
′

n(0 )− 1 = 0 .
Now

Hn
′ (z) =

n∏
i=1

[(
fi(t)

t

)αi−1
·
(
gi(t)

′)βi · (hi (z)

ki(z)

)γi
·
(
h′i (z)

k′i(z)

)δi]
.

We have
zH ′′n(z)

H ′n(z)
=

n∑
i=1

[
(αi − 1)

(
zf ′i(z)

fi(z)
− 1

)
+ βi

zg′′i (z)

g′i(z)

]

+

n∑
i=1

[
γi

(
zh′i(z)

hi(z)
− zk′i(z)

ki(z)

)
+ δi

(
zh′′i (z)

h′i(z)
− zk′′i (z)

k′i(z)

)]
,

for all z ∈ U.
Thus, we have

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ =
1− |z|2c

c

n∑
i=1

[
(αi − 1)

(
zf ′i(z)

fi(z)
− 1

)
+ βi

zg′′i (z)

g′i(z)

]

+
1− |z|2c

c

n∑
i=1

[
γi

(
zh′i(z)

hi(z)
− zk′i(z)

ki(z)

)
+ δi

(
zh′′i (z)

h′i(z)
− zk′′i (z)

k′i(z)

)]
,

for all z ∈ U.
Therefore

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 1− |z|2c

c

n∑
i=1

[
|αi − 1|

∣∣∣∣zf ′i(z)fi(z)
− 1

∣∣∣∣+ |βi|
∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣]

+
1− |z|2c

c

n∑
i=1

[
|γi|
(∣∣∣∣zh′i(z)hi(z)

− 1

∣∣∣∣+

∣∣∣∣zk′i(z)ki(z)
− 1

∣∣∣∣)]

+
1− |z|2c

c

n∑
i=1

[
|δi|
(∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣+

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣)] ,
for all z ∈ U.

By applying the General Schwarz Lemma (1.4) we obtain∣∣∣∣zf ′i(z)fi(z)
− 1

∣∣∣∣ ≤Mi |z| ,
∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni |z| , ∣∣∣∣zh′i(z)hi(z)
− 1

∣∣∣∣ ≤ Pi |z| ,∣∣∣∣zk′i(z)ki(z)
− 1

∣∣∣∣ ≤ Qi |z| , ∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri |z| , ∣∣∣∣zK ′′i (z)

K ′i(z)

∣∣∣∣ ≤ Si |z| ,
for all z ∈ U, i = 1, n.
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Using these inequalities we have

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣
≤ 1− |z|2c

c
|z|

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |γi| (Pi +Qi) + |δi| (Ri + Si)] , (2.2)

for all z ∈ U.
Since

max
|z|≤1

(
1− |z|2c

)
|z|

c
=

2

(2c+ 1)
2c+1
2c

,

from (2.2), we obtain

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣
≤ 2

(2c+ 1)
2c+1
2c

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |γi| (Pi +Qi) + |δi| (Ri + Si)] ,

and hence, by (2.1) we have

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 2

(2c+ 1)
2c+1
2c

· (2c+ 1)
2c+1
2c

2
= 1,

for all z ∈ U.
So,

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 1. (2.3)

and using (2.3), by Lemma 1.2, it results that the integral operator Tn, given by (1.1)
is in the class S. �

If we consider δ = 1 in Theorem 2.1, obtain the next corollary:

Corollary 2.2. Let γ, αi, βi, γi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ,
Mi, Ni, Pi, Qi, Ri, Si real positive numbers and fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)fi(z)

− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni, ∣∣∣∣zh′i(z)hi(z)
− 1

∣∣∣∣ ≤ Pi,∣∣∣∣zk′i(z)ki(z)
− 1

∣∣∣∣ ≤ Qi, ∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri, ∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,
n∑
i=1

[|αi − 1|Mi + |βi|Ni + |γi| (Pi +Qi) + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Fn defined by

Fn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1
·
(
gi(t)

′)βi · (hi(t)
ki(t)

)γi
·
(
hi
′(t))

ki
′(t)

)δi]
dt, (2.4)

is in the class S.
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If we consider δ = 1 and δ1 = δ2 = ... = δn = 0 in Theorem 2.1, obtain the next
corollary:

Corollary 2.3. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ,
Mi, Ni, Pi, Qi real positive numbers and fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)fi(z)

− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni,∣∣∣∣zh′i(z)hi(z)
− 1

∣∣∣∣ ≤ Pi, ∣∣∣∣zk′i(z)ki(z)
− 1

∣∣∣∣ ≤ Qi,
for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |γi| (Pi +Qi)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Sn defined by

Sn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1
·
(
gi(t)

′)βi · (hi(t)
ki(t)

)γi]
dt, (2.5)

is in the class S.

If we consider δ = 1 and β1 = β2 = ... = βn = 0 in Theorem 2.1, obtain the next
corollary:

Corollary 2.4. Let γ, αi, γi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ,
Mi, Pi, Qi, Ri, Si real positive numbers and fi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)fi(z)

− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zh′i(z)hi(z)
− 1

∣∣∣∣ ≤ Pi, ∣∣∣∣zk′i(z)ki(z)
− 1

∣∣∣∣ ≤ Qi,∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri, ∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,
for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |γi| (Pi +Qi) + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Xn defined by

Xn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1
·
(
hi(t)

ki(t)

)γi
·
(
hi
′(t))

ki
′(t)

)δi]
dt, (2.6)

is in the class S.

If we consider δ = 1 and α1 = α2 = ... = αn = 0 in Theorem 2.1, obtain the
next corollary:
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Corollary 2.5. Let γ, βi, γi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ,
Ni, Pi, Qi, Ri, Si real positive numbers and gi, hi, ki ∈ A. If∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni, ∣∣∣∣zh′i(z)hi(z)
− 1

∣∣∣∣ ≤ Pi, ∣∣∣∣zk′i(z)ki(z)
− 1

∣∣∣∣ ≤ Qi,∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri, ∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,
for all z ∈ U, i = 1, n and

n∑
i=1

[|βi|Ni + |γi| (Pi +Qi) + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Dn defined by

Dn(z) =

∫ z

0

n∏
i=1

[(
gi(t)

′)βi · (hi(t)
ki(t)

)γi
·
(
hi
′(t))

ki
′(t)

)δi]
dt, (2.7)

is in the class S.

If we consider δ = 1 and γ1 = γ2 = ... = γn = 0 in Theorem 2.1, obtain the next
corollary:

Corollary 2.6. Let γ, αi, βi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ,
Mi, Ni, Ri, Si real positive numbers and fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)fi(z)

− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni,∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri, ∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,
for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Yn defined by

Yn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1
·
(
gi(t)

′)βi · (hi′(t))
ki
′(t)

)δi]
dt, (2.8)

is in the class S.

If we consider n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.1, obtain
the next corollary:

Corollary 2.7. Let α be complex number, Reα > 0, M,N,P,Q,R, S real positive num-
bers and f, g, h, k ∈ A. If∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ ≤M,

∣∣∣∣zg′′(z)g(z)′

∣∣∣∣ ≤ N, ∣∣∣∣zh′(z)h(z)
− 1

∣∣∣∣ ≤ P,∣∣∣∣zk′(z)k(z)
− 1

∣∣∣∣ ≤ Q, ∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ R, ∣∣∣∣zk′′(z)k′(z)

∣∣∣∣ ≤ S,
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for all z ∈ U, and

|α− 1| (M +N + P +Q+R+ S) ≤ (2Reα+ 1)
2Reα+1
2Reα

2
,

then the integral operator T defined by

T (z) =

[
α

∫ z

0

(
f(t) · g′(t) · h(t)

k(t)
· h
′(t))

k′(t)

)α−1
dt

] 1
α

, (2.9)

is in the class S.

Theorem 2.8. Let γ, αi, βi, γi, δi be complex numbers, c = Reγ > 0 and fi, hi, ki ∈ S,
gi
′, hi

′, ki
′ ∈ P. If

4

n∑
i=1

|αi − 1|+ 2

n∑
i=1

|βi|+ 8

n∑
i=1

|γi|+ 4

n∑
i=1

|δi| ≤
c

2
, for 0 < c < 1 (2.10)

or

4

n∑
i=1

|αi − 1|+ 2

n∑
i=1

|βi|+ 8

n∑
i=1

|γi|+ 4

n∑
i=1

|δi| ≤
1

2
, for c ≥ 1 (2.11)

then, for any complex numbers δ, Reδ ≥ c, the integral operator Tn defined in (1.1)
is in the class S.

Proof. After the same steps as in the proof of Theorem 2.1., we get

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 1− |z|2c

c

n∑
i=1

[
|αi − 1|

(∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣+ 1

)
+ |βi|

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣]

+
1− |z|2c

c

n∑
i=1

[
|γi|
(∣∣∣∣zh′i(z)hi(z)

∣∣∣∣+ 1 +

∣∣∣∣zk′i(z)ki(z)

∣∣∣∣+ 1

)]

+
1− |z|2c

c

n∑
i=1

[
|δi|
(∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣+

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣)] ,
for all z ∈ U.

Since fi, hi, ki ∈ S we have∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

,

∣∣∣∣zh′i(z)hi(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

,

∣∣∣∣zk′i(z)ki(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

,

for all z ∈ U, i = 1, n.
For gi

′, hi
′, ki
′ ∈ P we have∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ 2 |z|
1− |z|2

,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ 2 |z|
1− |z|2

,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ 2 |z|
1− |z|2

,

for all z ∈ U, i = 1, n.
Using these relations we get

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 1− |z|2c

c

(
1 + |z|
1− |z|

+ 1

) n∑
i=1

|αi − 1|
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+
1− |z|2c

c
· 2 |z|

1− |z|2
n∑
i=1

|βi|+
1− |z|2c

c

(
1 + |z|
1− |z|

+ 1 +
1 + |z|
1− |z|

+ 1

) n∑
i=1

|γi|

+
1− |z|2c

c

(
2 |z|

1− |z|2
+

2 |z|
1− |z|2

)
n∑
i=1

|δi|

≤ 1− |z|2c

c
· 2

1− |z|

n∑
i=1

|αi − 1|+ +
1− |z|2c

c
· 2 |z|

1− |z|2
n∑
i=1

|βi|

+
1− |z|2c

c
· 4

1− |z|

n∑
i=1

|γi|+
1− |z|2c

c
· 4 |z|

1− |z|2
n∑
i=1

|δi| , (2.12)

for all z ∈ U.
For 0 < c < 1, we have 1− |z|2c ≤ 1− |z|2, z ∈ U and by (2.12), we obtain

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 4

c

n∑
i=1

|αi − 1|+ 2

c

n∑
i=1

|βi|+
8

c

n∑
i=1

|γi|+
4

c

n∑
i=1

|δi| , (2.13)

for all z ∈ U.
From (2.10) and (2.13) we have

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 1. (2.14)

for all z ∈ U and 0 < c < 1.

For c ≥ 1 we have 1−|z|2c
c ≤ 1− |z|2, for all z ∈ U and by (2.12), we obtain

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 4

n∑
i=1

|αi − 1|+ 2

n∑
i=1

|βi|+ 8

n∑
i=1

|γi|+ 4

n∑
i=1

|δi| , (2.15)

for all z ∈ U and c ≥ 1.
From (2.11) and (2.15) we obtain

1− |z|2c

c

∣∣∣∣zH ′′n(z)

H ′n(z)

∣∣∣∣ ≤ 1. (2.16)

for all z ∈ U and c ≥ 1.
And by (2.14), (2.16) and Lemma 1.2, it results that the integral operator Tn,

defined by (1.1) is in the class S. �

If we consider δ = 1 in Theorem 2.8, we obtain the next corollary:

Corollary 2.9. Let γ, αi, βi, γi, δi be complex numbers, 0 < Reγ ≤ 1 and fi, hi, ki ∈ S,
gi
′, hi

′, ki
′ ∈ P. If

4

n∑
i=1

|αi − 1|+ 2

n∑
i=1

|βi|+ 8

n∑
i=1

|γi|+ 4

n∑
i=1

|δi| ≤
Reγ

2
, for 0 < c < 1

then the integral operator Fn defined by (2.4) belongs to the class S.

If we consider δ = 1 and β1 = β2 = ... = βn = 0 in Theorem 2.8, we obtain the
next corollary:
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Corollary 2.10. Let γ, αi, γi, δi be complex numbers, 0 < Reγ ≤ 1 and fi, hi, ki ∈ S,
hi
′, ki
′ ∈ P. If

4

n∑
i=1

|αi − 1|+ 8

n∑
i=1

|γi|+ 4

n∑
i=1

|δi| ≤
Reγ

2
, for 0 < c < 1

then the integral operator Xn defined by (2.6) belongs to the class S.

If we consider δ = 1 and γ1 = γ2 = ... = γn = 0 in Theorem 2.8, we obtain the
next corollary:

Corollary 2.11. Let γ, αi, βi, δi be complex numbers, 0 < Reγ ≤ 1 and fi ∈ S,
gi
′, hi

′, ki
′ ∈ P. If

4

n∑
i=1

|αi − 1|+ 2

n∑
i=1

|βi|+ 4

n∑
i=1

|δi| ≤
Reγ

2
, for 0 < c < 1

then the integral operator Yn defined by (2.8) belongs to the class S.

If we consider δ = 1 and α1 = α2 = ... = αn = 0 in Theorem 2.8, we obtain the
next corollary:

Corollary 2.12. Let γ, βi, γi, δi be complex numbers, 0 < Reγ ≤ 1 and hi, ki ∈ S,
gi
′, hi

′, ki
′ ∈ P. If

2

n∑
i=1

|βi|+ 8

n∑
i=1

|γi|+ 4

n∑
i=1

|δi| ≤
Reγ

2
, for 0 < c < 1

then the integral operator Dn defined by (2.7) belongs to the class S.

If we consider δ = 1 and δ1 = δ2 = ... = δn = 0 in Theorem 2.8, we obtain the
next corollary:

Corollary 2.13. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1 and fi, hi, ki ∈ S,
gi
′ ∈ P. If

4

n∑
i=1

|αi − 1|+ 2

n∑
i=1

|βi|+ 8

n∑
i=1

|γi| ≤
Reγ

2
, for 0 < c < 1

then the integral operator Sn defined by (2.5) belongs to the class S.

Theorem 2.14. Let γ, δ, αi, βi, γi, δi be complex numbers, Reγ > 0, Mi, Ni, Pi real
positive numbers and fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)fi(z)

− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′i(z)hi(z)
− 1

∣∣∣∣ ≤ Ni,∣∣∣∣zk′i(z)ki(z)
− 1

∣∣∣∣ ≤ Pi, ∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ 1,
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for all z ∈ U, i = 1, n and

|c| ≤ 1− 1

|δ|

[
(2 +Mi)

n∑
i−1
|αi − 1|+

n∑
i=1

|βi|

]

− 1

|δ|

[
(Ni + Pi + 4)

n∑
i=

|γi|+ 2

n∑
i=1

|δi|

]
, (2.17)

where c ∈ C, c 6= −1, then the integral operator Tn, defined by (1.1) is in the class S.

Proof. Also, a simple computation yields∣∣∣∣|c |z|2δ +
(

1− |z|2δ
) zH ′′n(z)

δH ′n(z)

∣∣∣∣
≤ |c|+ 1

|δ|

n∑
i−1
|αi − 1|

(∣∣∣∣zf ′i(z)fi(z)

∣∣∣∣+ 1

)
+

1

|δ|

n∑
i−1
|βi|

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣
+

1

|δ|

n∑
i=1

|γi|
[(∣∣∣∣zh′i(z)hi(z)

∣∣∣∣+ 1

)
+

(∣∣∣∣zk′i(z)ki(z)

∣∣∣∣+ 1

)]

+
1

|δ|

n∑
i=1

|δi|
(∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣+

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣) , (2.18)

for all z ∈ U.
Using these inequalities from hypothesis we have∣∣∣∣|c |z|2δ +

(
1− |z|2δ

) zH ′′n(z)

δH ′n(z)

∣∣∣∣ ≤ |c|+ 1

|δ|

[
(2 +Mi)

n∑
i−1
|αi − 1|+

n∑
i=1

|βi|

]

+
1

|δ|

[
(Ni + Pi + 4)

n∑
i=

|γi|+ 2

n∑
i=1

|δi|

]
,

for all z ∈ U. and hence, by inequality (2.17) we have∣∣∣∣|c |z|2δ +
(

1− |z|2δ
) zH ′′n(z)

δH ′n(z)

∣∣∣∣ ≤ 1, (2.19)

for all z ∈ U.
Applying Lemma 1.3, we conclude that the integral operator Tn, given by (1.1)

is in the class S. �

If we consider δ = γ = α and αi − 1 = βi = γi and n = 1 in Theorem 2.14, we
obtain the next corollary:

Corollary 2.15. Let α be complex number, Reα > 0 M,N,P real positive numbers,
and f, g, h, k ∈ A. If∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ ≤M,

∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′(z)h(z)
− 1

∣∣∣∣ ≤ N,∣∣∣∣zk′(z)k(z)
− 1

∣∣∣∣ ≤ P, ∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′(z)k′(z)

∣∣∣∣ ≤ 1,
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for all z ∈ U and

|c| ≤ 1−
∣∣∣∣α− 1

α

∣∣∣∣ (Mi +Ni + Pi + 8) , c ∈ C, c 6= −1,

then the integral operator T , given by (2.9) is in the class S.
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Sufficient conditions for analytic functions
defined by Frasin differential operator

Tariq Al-Hawary

Abstract. Very recently, Frasin [7] introduced the differential operator Iζm,λf(z)
defined as

Iζm,λf(z) = z +

∞∑
n=2

(
1 + (n− 1)

m∑
j=1

(
m

j

)
(−1)j+1λj

)ζ
anz

n.

The current work contributes to give an application of the differential operator
Iζm,λf(z) to the differential inequalities in the complex plane.

Mathematics Subject Classification (2010): 30C45.

Keywords: Analytic functions, differential operator.

1. Introduction and preliminaries

Let A be the class of all normalized analytic functions in U = {z ∈ C : |z| < 1}
that has a Taylor-Maclaurin series expansion of the form:

f(z) = z +

∞∑
n=2

anz
n. (1.1)

For a function f in A, and using the binomial series

(1− λ)m =

m∑
j=0

(
m

j

)
(−1)jλj (m ∈ N, j ∈ N0 = N ∪ {0}, N = {1, 2, · · · }),

let Iζm,λf(z) be the differential operator defined as follows:

I0f(z) = f(z),

I1m,λf(z) = (1− λ)mf(z) + (1− (1− λ)m)zf ′(z) = Im,λf(z), λ > 0;m ∈ N,

Iζm,λf(z) = Im,λ(Iζ−1f(z)) (ζ ∈ N). (1.2)
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For f ∈ A, we see that

Iζm,λf(z) = z +

∞∑
n=2

1 + (n− 1)

m∑
j=1

(
m

j

)
(−1)j+1λj

ζ

anz
n, ζ ∈ N0. (1.3)

Using (1.3), it is easily verified that

Cmj (λ)z(Iζm,λf(z))′ = Iζ+1
m,λf(z)− (1− Cmj (λ))Iζm,λf(z), ζ ∈ N0, (1.4)

where Cmj (λ) :=
m∑
j=1

(
m
j

)
(−1)j+1λj .

From the identity (1.4), we readily have

Cmj (λ)z(Iζ−1m,λf(z))′ = Iζm,λf(z)− (1− Cmj (λ))Iζ−1m,λf(z), ζ ∈ N0 (1.5)

and
Cmj (λ)z(Iζ+1

m,λf(z))′ = Iζ+2
m,λf(z)− (1− Cmj (λ))Iζ+1

m,λf(z), ζ ∈ N0. (1.6)

The above differential operator Iζm,λf(z) was introduced and studied by Frasin [7].

Note that for m = 1, we obtain the differential operator Iζ1,λ defined by Al-Oboudi [1]

and for m = λ = 1, we get Sălăgean differential operator Iζ [9] (see also Aouf [2, 3]).

Our aim in this work is to provide an application of the differential operator Iζm,λf(z),

(see for example, [4, 5, 6, 8, 10]).

For our purpose, using the operator Iζm,λf(z), we define the classes Q and G respec-
tively.

Definition 1.1. Let Q be the set of continuous complex functions q(r, s, t) : C3 → C in
D ⊂ C3 such that (0, 0, 0) ∈ D, | q(0, 0, 0)| < 1 and∣∣q(eiθ, [Cmj (λ)δ + (1− Cmj (λ))]eiθ,

[Cmj (λ)]2β + [Cmj (λ)(2− Cmj (λ))δ + (1− Cmj (λ))2]eiθ
∣∣

≥ 1

whenever (
eiθ, [Cmj (λ)δ + (1− Cmj (λ))]eiθ,

[Cmj (λ)]2β + [Cmj (λ)(2− Cmj (λ))δ + (1− Cmj (λ))2]eiθ
)

∈ D
with Re{βe−iθ} ≥ δ(δ − 1) for real θ, δ ≥ 1.

Definition 1.2. Let G be the set of continuous complex functions g(r, s, t) : C3 → C in
D ⊂ C3 such that (1, 1, 1) ∈ D, | g(1, 1, 1)| < L (L > 1) and∣∣∣∣∣g

(
Leiθ, Leiθ + Cmj (λ)δ,

[Cmj (λ)]2(δ + µ) + 3LCmj (λ)δeiθ + L2e2iθ

Cmj (λ)(Leiθ + Cmj (λ)δ)

)∣∣∣∣∣ ≥ L
whenever(

Leiθ, Leiθ + Cmj (λ)δ,
[Cmj (λ)]2(δ + µ) + 3LCmj (λ)δeiθ + L2e2iθ

Cmj (λ)(Leiθ + Cmj (λ)δ)

)
∈ D
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with Re{µ} ≥ δ(δ − 1) for real θ, δ ≥ L−1
L+1 .

2. Main results

To prove our theorems in this section, we recall two lemmas for Miller and
Mocanu.

Lemma 2.1. [8] Let a function w(z) ∈ A with w(z) 6= 0 in U. If z0 = r0e
iθ (0 < r0 < 1)

and |w(z0)| = max
|z|≤r0

|w(z)|. Then

z0w
′(z0) = δw(z0) (2.1)

and

Re

{
1 +

z0w
′′(z0)

w′(z0)

}
≥ δ, δ ≥ 1. (2.2)

Lemma 2.2. [8] Let w(z) = a+wkz
k + · · · be analytic in U with w(z) 6= a and k ≥ 1.

If z0 = r0e
iθ (0 < r0 < 1) and |w(z0)| = max

|z|≤r0
|w(z)|. Then

z0w
′(z0) = δw(z0) (2.3)

and

Re

{
1 +

z0w
′′(z0)

w′(z0)

}
≥ δ, (δ ∈ R) (2.4)

where

δ ≥ k |w(z0)− a|2

|w(z0)|2 − |a|2
≥ k |w(z0)| − |a|
|w(z0)|+ |a|

.

Applying Lemma 2.1, we prove Theorem 2.3.

Theorem 2.3. Let q(r, s, t) ∈ Q and f(z) ∈ A such that(
Iζm,λf(z), Iζ+1

m,λf(z), Iζ+2
m,λf(z)

)
∈ D ⊂ C3 (2.5)

and ∣∣∣q (Iζm,λf(z), Iζ+1
m,λf(z), Iζ+2

m,λf(z)
)∣∣∣ < 1 (2.6)

for ζ ∈ N0, m ∈ N, λ >0 and z ∈ U. Then∣∣∣Iζm,λf(z)
∣∣∣ < 1 (z ∈ U). (2.7)

Proof. Let

Iζm,λf(z) = w(z),

then w(z) ∈ A and w(z) 6= 0 (z ∈ U). Using the identity (1.4), we have

Iζ+1
m,λf(z) = Cmj (λ)zw′(z) + (1− Cmj (λ))w(z)

and

Iζ+2
m,λf(z) = [Cmj (λ)]2(z2w′′(z)) + Cmj (λ)(2− Cmj (λ))zw′(z) + (1− Cmj (λ))2w(z).
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Letting z0 = r0e
iθ (0 < r0 < 1), |w(z0)| = max

|z|≤r0
|w(z)| = 1, w(z0) = eiθ and using

(2.1), we have

Iζm,λf(z0) = w(z0) = eiθ,

Iζ+1
m,λf(z0) = Cmj (λ)δw(z0) + (1− Cmj (λ))w(z0)

= [Cmj (λ)δ + (1− Cmj (λ))]eiθ,

and

Iζ+2
m,λf(z0) = [Cmj (λ)]2(z20w

′′
(z0)) + Cmj (λ)(2− Cmj (λ))δw(z0) + (1− Cmj (λ))2w(z0)

= [Cmj (λ)]2β + [Cmj (λ)(2− Cmj (λ))δ + (1− Cmj (λ))2]eiθ.

where

β = z20w
′′
(z0) and δ ≥ 1 .

Moreover, an application of (2.2) gives

Re

{
z0w

′′(z0)

w′(z0)

}
= Re

{
z20w

′′(z0)

δeiθ

}
≥ δ − 1,

or

Re{βe−iθ} ≥ δ(δ − 1).

Since q(r, s, t) ∈ Q, we have∣∣∣q (Iζm,λf(z), Iζ+1
m,λf(z), Iζ+2

m,λf(z)
)∣∣∣

=
∣∣q(eiθ, [Cmj (λ)δ + (1− Cmj (λ))]eiθ,

[Cmj (λ)]2β + [Cmj (λ)(2− Cmj (λ))δ + (1− Cmj (λ))2]eiθ)
∣∣

> 1

which opposes the condition (2.6) of Theorem 2.3. So we have∣∣∣Iζm,λf(z)
∣∣∣ < 1 (z ∈ U). �

In Theorem 2.3, if ζ = 0, λ = 1 and m = 1 we get

Corollary 2.4. Let q(r, s, t) ∈ Q and f(z) ∈ A such that(
f(z), zf ′(z), z2f ′′(z) + zf ′(z)

)
∈ D ⊂ C3

and ∣∣q (f(z), zf ′(z), z2f ′′(z) + zf ′(z)
)∣∣ < 1, z ∈ U.

Then

|f(z)| < 1 (z ∈ U).

Now, using Lemma 2.2 we will prove the following theorem.
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Theorem 2.5. Let g(r, s, t) ∈ G and f(z) ∈ A satisfy(
Iζm,λf(z)

Iζ−1m,λf(z)
,
Iζ+1
m,λf(z)

Iζm,λf(z)
,
Iζ+2
m,λf(z)

Iζ+1
m,λf(z)

)
∈ D ⊂ C3 (2.8)

and ∣∣∣∣∣g
(
Iζm,λf(z)

Iζ−1m,λf(z)
,
Iζ+1
m,λf(z)

Iζm,λf(z)
,
Iζ+2
m,λf(z)

Iζ+1
m,λf(z)

)∣∣∣∣∣ < L (2.9)

for m ∈ N, ζ ≥ 1, λ > 0, L > 1 and all z ∈ U. Then∣∣∣∣∣I
ζ
m,λf(z)

Iζ−1m,λf(z)

∣∣∣∣∣ < L (z ∈ U).

Proof. Let

Iζm,λf(z)

Iζ−1m,λf(z)
= w(z) (ζ ≥ 1). (2.10)

Then w(z) is analytic function in U, w(0) = 1 and w(z) 6= 1. Differentiating (2.10)
logarithmically and multiplying by z, we get

z(Iζm,λf(z))′

Iζm,λf(z)
−
z(Iζ−1m,λf(z))′

Iζ−1m,λf(z)
=
zw′(z)

w(z)
.

Using the identities (1.4) and (1.5), we have

Iζ+1
m,λf(z)

Iζm,λf(z)
= w(z) + Cmj (λ)

zw′(z)

w(z)
. (2.11)

Differentiating (2.11) logarithmically and multiply by z, we have

z(Iζ+1
m,λf(z))′

Iζ+1
m,λf(z)

−
z(Iζm,λf(z))′

Iζm,λf(z)

=
z
[
w(z) + Cmj (λ) zw

′(z)
w(z)

]′
w(z) + Cmj (λ) zw

′(z)
w(z)

=

zw′(z) + Cmj (λ)

[
zw′(z)
w(z) + z2w

′′
(z)

w(z) −
(
zw′(z)
w(z)

)2]
w(z) + Cmj (λ) zw

′(z)
w(z)

. (2.12)
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Using the identities (1.4) and (1.6), it follows from (2.12) that

1

Cmj (λ)

Iζ+2
m,λf(z)

Iζ+1
m,λf(z)

=
1

Cmj (λ)

Iζ+1
m,λf(z)

Iζm,λf(z)
+

zw′(z) + Cmj (λ)

[
zw′(z)
w(z) + z2w

′′
(z)

w(z) −
(
zw′(z)
w(z)

)2]
w(z) + Cmj (λ) zw

′(z)
w(z)

=
1

Cmj (λ)
w(z) +

zw′(z)

w(z)
+

zw′(z) + Cmj (λ)

[
zw′(z)
w(z) + z2w

′′
(z)

w(z) −
(
zw′(z)
w(z)

)2]
w(z) + Cmj (λ) zw

′(z)
w(z)

Letting z0 = r0e
iθ (0 < r0 < 1), max

|z|≤r0
|w(z)| = |w(z0)| = L, w(z0) = Leiθ and using

Lemma 2.2 with a = 1 and k = 1, we have

Iζm,λf(z0)

Iζ−1m,λf(z0)
= Leiθ,

Iζ+1
m,λf(z0)

Iζm,λf(z0)
= Leiθ + Cmj (λ)δ,

Iζ+2
m,λf(z0)

Iζ+1
m,λf(z0)

=
[Cmj (λ)]2(δ + µ) + 3LCmj (λ)δeiθ + L2e2iθ

Cmj (λ)(Leiθ + Cmj (λ)δ)
,

where

µ =
z20w

′′
(z0)

w(z0)
and δ ≥ L− 1

L+ 1
.

Moreover, an application of (2.2) gives Re{µ} ≥ δ(δ − 1).

Since g(r, s, t) ∈ G, we have∣∣∣∣∣g
(
Iζm,λf(z0)

Iζ−1m,λf(z0)
,
Iζ+1
m,λf(z0)

Iζm,λf(z0)
,
Iζ+2
m,λf(z0)

Iζ+1
m,λf(z0)

)∣∣∣∣∣
=

∣∣∣∣∣g
(
Leiθ, Leiθ + Cmj (λ)δ,

[Cmj (λ)]2(δ + µ) + 3LCmj (λ)δeiθ + L2e2iθ

Cmj (λ)(Leiθ + Cmj (λ)δ)

)∣∣∣∣∣
≥ L

which contradicts the condition (2.9) of Theorem 2.5. Thus

|w(z)| =

∣∣∣∣∣I
ζ
m,λf(z)

Iζ−1m,λf(z)

∣∣∣∣∣ < L.

for m ∈ N, ζ ≥ 1, λ > 0 and all z ∈ U. The proof is complete. �

In Theorem 2.5, if ζ = 1, λ = 1 and m = 1 we get
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Corollary 2.6. Let g(r, s, t) ∈ G and f(z) ∈ A satisfy(
zf ′(z)

f(z)
,
zf ′′(z) + f ′(z)

f ′(z)
,
z2f (3)(z) + 3zf ′′(z) + f ′(z)

zf ′′(z) + f ′(z)

)
∈ D ⊂ C3 (2.13)

and ∣∣∣∣g(zf ′(z)f(z)
,
zf ′′(z) + f ′(z)

f ′(z)
,
z2f (3)(z) + 3zf ′′(z) + f ′(z)

zf ′′(z) + f ′(z)

)∣∣∣∣ < L (2.14)

for L > 1 and all z ∈ U. Then∣∣∣∣zf ′(z)f(z)

∣∣∣∣ < L (z ∈ U).
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A study of existence and multiplicity of
positive solutions for nonlinear fractional
differential equations with nonlocal boundary
conditions

Noureddine Bouteraa and Slimane Benaicha

Abstract. This paper deals with the existence, uniqueness and the multiplicity
of solutions for a class of fractional differential equations boundary value prob-
lems involving three-point nonlocal Riemann-Liouville fractional derivative and
integral boundary conditions. Our results are based on some well-known tools of
fixed point theory such as Banach contraction principle, fixed point index theory
and the Leggett-Williams fixed point theorem. As applications, some examples
are presented at the end to illustrate the main results.

Mathematics Subject Classification (2010): 34A08, 26A33, 34A60.

Keywords: Positive solution, fractional differential equations, existence, multiplic-
ity, nonlocal boundary, Green’s function.

1. Introduction

In this paper, we are interested in the existence of solutions for the nonlinear
fractional differential equation

Dα
0+u (t) + a(t)f (t, u (t)) = 0, t ∈ (0, 1) , (1.1)

subject to the boundary condition

u(i) (0) = 0, i ∈ {0, 1, 2} , Dβ
0+u (1) = λIβ0+u (η) , (1.2)

where Dα
0+ , D

β
0+ are the standard Riemann-Liouville fractional derivative of order

α ∈ (3, 4] , β ∈ [2, 3], Iβ0+ is the stantard Riemann-Liouville fractional integral of
order β ∈ [2, 3].
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Due to the fact that the tools of fractional calculus has numerous applications
in various disciplines of science and engineering such as physics, mechanics, chem-
istry, biology, aerodynamics, electrodynamics of complex medium, polymer rheology,
Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electro-
analytical chemistry, control theory, fitting of experimental data, involves derivatives
of fractional order. In consequence, the subject of fractional differential equations is
gaining much importance and attention. Therefore, there have been many papers and
books dealing with the theoretical development of fractional calculus and the solutions
or positive solutions of boundary value problems for nonlinear fractional differential
equations. For more details we refer the reader to [10, 19, 21] and the references cited
therein.

Many mathematicians show strong interest in fractional differential equations
and many wonderful results have been obtained. The techniques of nonlinear analysis,
as the main method to deal with the problems of nonlinear fractional differential
equations, plays an essential role in the research of this field, such as establishing the
existence and the uniqueness or the multiplicity of solutions to nonlinear fractional
differential equations boundary value problems, see [2, 5, 7, 9, 11, 14, 16, 18] and the
references therein.

In [17], the authors studied the existence of positive solutions to the following
fractional boundary value problem{

Dα
0+u (t) + h (t) f (t, u (t)) = 0, t ∈ (0, 1) ,

u (0) = u′ (0) = u′′ (0) = 0, u (1) = λ
∫ η

0
u (η) ds,

where Dα
0+ are the standard Riemann-Liouville fractional derivative of order α ∈

(3, 4] , η ∈ (0, 1] , and 0 ≤ ληα

α < 1.

In [22], the authors studied the boundary value problems of the fractional order
differential equation:{

Dα
0+u (t) = f (t, u (t)) = 0, t ∈ (0, 1) ,

u (0) = 0, Dβ
0+u (1) = aDβ

0+u (η) ,

where 1 < α ≤ 2, 0 < η < 1, 0 < a, 0 < β ≤ 1, f ∈ C ([0, 1]× [0,∞) , [0,∞)) and

Dα
0+ , D

β
0+ are the standard Riemann-Liouville fractional derivative of order α, β.

They obtained the multiple positive solutions by the Leray-Schauder nonlinear alter-
native and the fixed point theorem on cones.
In 2017, Benaicha and Bouteraa [3] studied the existence and uniqueness of solutions
for nonlinear fractional differential equation

cDαu (t) = f (t, u (t) , u′ (t)) , t ∈ J = [0, 1]

subject to three-point boundary conditions
βu (0) + γu (1) = u (η) ,

u (0) =
∫ η

0
u (s) ds,

βcDpu (0) + γcDpu (1) = cDpu (η) ,
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where 2 < α ≤ 3, 1 < p ≤ 2 0 < η < 1, β, γ ∈ R+, f : [0, 1] × R × R → R is a
continuous function and cDα denotes the Caputo fractional derivative of order α.
In 2018, Bouteraa and Benaicha [6] interested in the existence of solutions for the
nonlinear fractional differential equation

Dα
0+u (t) + f (t, u (t)) = 0, t ∈ (0, 1) ,

subject to the boundary conditions

u(i) (0) = 0, i ∈ {0, 1, . . . , n− 2} , Dβ
0+u (1) =

p∑
j=1

ajD
β
0+u (ηj) ,

where Dα
0+ , D

β
0+ are the standard Riemann-Liouville fractional derivative of order

α (n− 1, n] , β ∈ [1, n− 2] for n ∈ N∗ and n ≥ 3 and f ∈ C ((0, 1)× R,R) is allowed
to be singular at t = 0 and/or t = 1 and aj ∈ R+, j = 1, 2, . . . , p, 0 < η1 < η2 < . . . <
ηp < 1, for p ∈ N+. The existence and uniqueness of positive solutions for the above
nonlocal boundary value problem obtained by applying the iterative method.

Inspired and motivated by the works mentioned above, we focus on the existence
of positive solutions for the nonlocal boundary value problem (1.1)− (1.2). The paper
is organized as follows. In Section 2, we recall some preliminary facts that will be need
in the sequel. In Section 3, we establish the existence, uniqueness and multiplicity of
the positive solutions for boundary value problem (1.1)−(1.2) by applying some well-
known tools of fixed point theory such as Banach contraction principle, fixed point
index theory and the Leggett-Williams fixed point theorem and we give two examples
to illustrate our results.

2. Preliminaries

In this section, we recall some definitions and facts which will be used in the
later analysis.

Definition 2.1. ([20]) Let E be a real Banach space. A nonempty closed set K ⊂ E is
said to be a cone provided that
(i) c1u+ c2v ∈ K for all c1 ≥ 0, c2 ≥ 0, and
(ii) u ∈ K, −u ∈ K implies u = 0.
Every cone K induces an ordering in E given by u ≤ v if and only if v − u ∈ K.

Definition 2.2. ([10, 15]) The Riemann-Liouville fractional integral of order α > 0 of
a function u : (0,∞)→ R is given by

Iα0+u (t) =
1

Γ (α)

t∫
0

(t− s)α−1
u (s) ds, t > 0,

where Γ (·) is the Euler gamma function, provided that the right side is pointwise
defined on (0,∞).
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Definition 2.3. ([10, 15]) The Riemann-Liouville fractional derivative order α > 0 of
a continuous function u is defined by

Dα
0+u (t) =

1

Γ (n− α)

dn

dtn

t∫
0

(t− s)n−α−1
u (s) ds, t > 0,

where Γ (·) is the Euler gamma function and n = dαe + 1, dαe denotes the integer
part of number α, provided that the right side is pointwise defined on (0,∞).

Lemma 2.4. ([10]) (i) If u ∈ Lp (0, 1) , 1 ≤ p ≤ +∞, β > α > 0, then

Dα
0+I

β
0+u (t) = Iβ−α0+ u (t) , Dα

0+Iα0+u (t) = u (t) , Iα0+I
β
0+u (t) = Iα+β

0+ u (t) .

(ii) If β > α > 0, then Dαtβ−1 = Γ(β)tβ−α−1

Γ(β−α) .

(iii) If α > 0 and γ ∈ (−1,+∞), then Iα0+tγ = Γ(γ+1)
Γ(α+γ+1) t

α+γ .

Lemma 2.5. ([10]) Let α > 0 and for any y (·) ∈ L1 (0, 1). Then, the general solution
of the fractional differential equation Dα

0+u (t) + y (t) = 0, 0 < t < 1 is given by

u (t) = − 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds+ c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where c0, c1, ..., cn−1 are real constants and n = dαe+ 1.

Now, let 0 < d < l < r be given and let β be a nonnegative continuous concave
functional on the cone K i.e.,

β (λu+ (1− λ) v) ≥ λβ (u) + (1− λ)β (v) ,

for all u, v ∈ K and λ ∈ [0, 1].
Define the convex sets Kl and K (β, l, r) by

Kl = {u ∈ K : ‖u‖ < l} ,
and

K (β, l, r) = {u ∈ K : l ≤ β (u) , ‖u‖ ≤ r} .
The key tools in our approaches are the following fixed point theorem and lemmas

Theorem 2.6. (Leggett-Wiliams fixed point (See [20])) Let E be a Banach space and
K ⊂ E be a cone in E. T : K̄c → K̄c be a completely continuous and β be a nonneg-
ative continuous concave functional on K with β (u) ≤ ‖u‖ for all u ∈ Kc. Suppose
there exist 0 < d < l < r ≤ c such that
(i) u ∈ {K (β, l, r) : β (u) > l} 6= ∅ and β (Tu) > l for u ∈ K (β, l, r),
(ii) ‖Tu‖ < d for ‖u‖ ≤ d,
(iii) β (Tu) > l for u ∈ K (β, l, c) with ‖Tu‖ > r.
Then T has at least three positive solutions u1, u2, u3 satisfying

‖u1‖ < d, l < β (u2) , ‖u3‖ > d and β (u3) < l.

Lemma 2.7. (Krein-Rutman [20]) Let K be a reproducing cone in a real Banach space
E, and L : E → E be a compact linear operator with L (K) ⊆ K and spectral radius
r (L). If r (L) > 0, then there exists ϕ ∈ K \ {0} such that Lϕ = r (L)ϕ.
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Lemma 2.8. (Fixed point index theory [20]) Let E be a Banach space and K is
a cone in E and Ω (K) is a bounded open subset in K. Furthermore, assume that

T : Ω (K) → K is a completely continuous operator Then the following conclusion
hold:
(i) there exists u0 ∈ K \ {0} such that Tu + λu0 6= u for all u ∈ ∂Ω (K) and λ ≥ 0,
then the fixed point index i (T,Ω (K) ,K) = 0,
(ii) if 0 ∈ Ω (K) and Tu 6= λu for all u ∈ ∂Ω (K) and λ ≥ 1, then the fixed point
index i (T,Ω (K) ,K) = 1.

Lemma 2.9. Let y (·) ∈ C [0, 1]. Then the solution of the fractional boundary value
problem 

Dα
0+u (t) + y (t) = 0,

u(i) (0) = 0, i ∈ {0, 1, 2} ,
Dβ

0+u (1) = λIβ0+u (η) ,

(2.1)

is given by

u (t) =

1∫
0

G (t, s) y (s) ds, (2.2)

where

G (t, s) =



−PΓ(α−β)Γ(α+β)(t−s)α−1+∆
PΓ(α)Γ(α−β)Γ(α+β) , 0 ≤ s ≤ t ≤ 1, s ≤ η,

∆
PΓ(α)Γ(α−β)Γ(α+β) , 0 ≤ t ≤ s ≤ η ≤ 1,
−PΓ(α−β)Γ(α+β)(t−s)α−1+Λ

PΓ(α)Γ(α−β)Γ(α+β) , 0 ≤ η ≤ s ≤ t ≤ 1,

Γ(α)Γ(α+β)(1−s)α−β−1tα−1

PΓ(α)Γ(α−β)Γ(α+β) , 0 ≤ t ≤ s ≤ 1, s ≥ η,

(2.3)

where

∆ = tα−1
[
Γ (α) Γ (α+ β) (1− s)α−β−1 − λΓ (α) Γ (α− β) (η − s)α+β−1

]
,

and
Λ = Γ (α+ β) Γ (α) (1− s)α−β−1

tα−1,

where

P =
Γ (α)

Γ (α− β)
− λΓ (α)

Γ (α+ β)
ηα+β−1.

Proof. In view of Lemma 2.5, the general solution for the above equation in (2.1) is

u (t) = − 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds+ c1t

α−1 + c2t
α−2 + c3t

α−3 + C4t
α−4,

where c1, c2, c3, c4 ∈ R.
The boundary condition u (0) = u′ (0) = u′′ (0) = 0, implies that c2 = c3 = c4 = 0.
Thus

u (t) = − 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds+ c1t

α−1. (2.4)
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By (2.4) and Lemma 2.4, we get

Dβ
0+u (t) =

1

Γ (α− β)

c1Γ (α) tα−β−1 −
t∫

0

(t− s)α−β−1
y (s) ds

 .
In view of boundary condition Dβ

0+u (1) = λIβ0+u (η), we conclude that

c1 =
1

P

 1

Γ (α− β)

1∫
0

(1− s)α−β−1
y (s) ds− λ

Γ (α+ β)

η∫
0

(η − s)α+β−1
y (s) ds

 .
Therefore, the unique solution of the problem (2.1) is given by

u (t) =
tα−1

PΓ (α− β)

1∫
0

(1− s)α−β−1
y (s) ds− λtα−1

PΓ (α+ β)

η∫
0

(η − s)α+β−1
y (s) ds

− 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds.

For t ≤ η, one has

u (t) =
tα−1

PΓ (α− β)

 t∫
0

(1− s)α−β−1
y (s) ds+

η∫
t

(1− s)α−β−1
y (s) ds

+

1∫
η

(1− s)α−β−1
y (s) ds

− 1

Γ (α)

t∫
0

(t− s)α−1
y (s) ds

− λtα−1

PΓ (α+ β)

 t∫
0

(η − s)α+β−1
y (s) ds+

η∫
t

(η − s)α+β−1
y (s) ds


=

t∫
0

−PΓ (α− β) Γ (α+ β) (t− s)α−1
+ ∆

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

+

η∫
t

∆

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

+

1∫
η

Γ (α) Γ (α+ β) (1− s)α−β−1
tα−1

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

=

1∫
0

G (t, s) y (s) ds.
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For t ≥ η, one has

u (t) =

η∫
0

−PΓ (α− β) Γ (α+ β) (t− s)α−1
+ ∆

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

+

t∫
η

−PΓ (α− β) Γ (α+ β) (t− s)α−1
+ Γ (α) Γ (α+ β) (1− s)α−β−1

tα−1

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

+

1∫
t

Γ (α) Γ (α+ β) (1− s)α−β−1
tα−1

PΓ (α) Γ (α+ β) Γ (α− β)
y (s) ds

=

1∫
0

G (t, s) y (s) ds.

The proof is complete. �

We need some properties of function G (t, s) to establish the existence of positive
solutions.

Lemma 2.10. The Green’s function G (t, s) has the following properties:
(i) The function G (t, s) is continuous on [0, 1]× [0, 1].
(ii) G (t, s) > 0 for all s ∈ (0, 1),
(iii) for all t, s ∈ (0, 1), we have G (t, s) ≤ G (1, s),
(iv) there exists a positive function γ (s) ∈ C (0, 1) such that

min
η≤t≤1

G (t, s) ≥ γ (s) max
0≤t≤1

G (t, s) = ηα−1G (1, s) , 0 < s < 1. (2.5)

Proof. It is easy to prove (i). Now, we prove (ii)− (iv). Let

g1 (t, s) =
∆− PΓ (α− β) Γ (α+ β) (t− s)α−1

PΓ (α) Γ (α+ β) Γ (α− β)
,

where ∆ defined above.

g2 (t, s) =
tα−1Γ (α) Γ (α+ β) (1− s)α−β−1 − PΓ (α− β) Γ (α+ β) (t− s)α−1

PΓ (α) Γ (α+ β) Γ (α− β)

g3 (t, s) =
tα−1Γ (α)

(
Γ (α+ β) (1− s)α−β−1 − λΓ (α− β) (η − s)α+β−1

)
PΓ (α) Γ (α+ β) Γ (α− β)

g4 (t, s) =
tα−1Γ (α) Γ (α+ β) (1− s)α−β−1

PΓ (α) Γ (α+ β) Γ (α− β)
.

We will first show that

g1 (t, s) > 0, 0 ≤ min {t, η} < 1.

To simplify we introduce the abbreviation

41 = tα−1Γ (α) Γ (α+ β) (1− s)α−β−1
.
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We can rewrite 41 as

41 = tα−1Γ (α) Γ (α+ β)

(
Γ (α− β)

Γ (α− β)
− λΓ (α− β)

Γ (α+ β)
ηα+β−1

+
λΓ (α− β)

Γ (α+ β)
ηα+β−1

)
(1− s)α−β−1

= tα−1Γ (α− β) Γ (α+ β)

(
Γ (α)

Γ (α− β)
− λΓ (α)

Γ (α+ β)
ηα+β−1

+
λΓ (α)

Γ (α+ β)
ηα+β−1

)
(1− s)α−β−1

= tα−1Γ (α− β) Γ (α+ β)

(
P +

λΓ (α) ηα+β−1

Γ (α+ β)

)
(1− s)α−β−1

,

λtα−1Γ (α) Γ (α− β) (η − s)α+β−1
= λtα−1Γ (α) Γ (α− β) ηα+β−1

(
1− s

η

)α+β−1

,

and

PΓ (α− β) Γ (α+ β) (t− s)α−1
= Ptα−1Γ (α− β) Γ (α+ β)

(
1− s

t

)α−1

.

Thus

g1 (t, s) = Q

{
Ptα−1Γ (α− β) Γ (α+ β)

[
(1− s)α−β−1 −

(
1− s

t

)α−1
]

+ λtα−1Γ (α) Γ (α− β)

[
ηα−β−1 (1− s)α−β−1 − ηα+β−1

(
1− s

η

)α+β−1
]}

> Q

{
Ptα−1Γ (α− β) Γ (α+ β)

[
(1− s)α−1 −

(
1− s

t

)α−1
]

+ λtα−1Γ (α) Γ (α− β)

[
ηα+β−1 (1− s)α+β−1 − ηα+β−1

(
1− s

η

)α+β−1
]}

> Q
{
Ptα−1Γ (α− β) Γ (α+ β)

[
(1− s)α−1 − (1− s)α−1

]
+ λtα−1Γ (α) Γ (α− β) ηα+β−1

[
(1− s)α+β−1 − (1− s)α+β−1

]}
= 0,

where Q = 1
PΓ(α)Γ(α−β)Γ(α+β) .

We deduce that g1 (t, s) > 0, 0 ≤ min {t, η} < 1.
By the similar argument we can conclude that

g2 (t, s) > 0, 0 < η ≤ s ≤ t ≤ 1, g3 (t, s) > 0, 0 ≤ t ≤ s ≤ η ≤ 1,

and

g4 (t, s) > 0, 0 ≤ max {s, η} ≤ s ≤ 1.

Therefore G (t, s) > 0 for any t, s ∈ (0, 1).
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Now, we show that G (t, s) ≤ G (1, s) for any t, s ∈ (0, 1).
Let h1 (t, s) = g1 (t, s) Γ (α) Γ (α− β) Γ (α+ β). Then, as the above argument but for
the derivative of h1 (t, s) with respect to t on [s, 1], we have

∂h1 (t, s)

∂t
=

(α− 1) tα−2

P

{
PΓ (α− β) Γ (α+ β)

[
(1− s)α−β−1 −

(
1− s

t

)α−2
]

+ λΓ (α) Γ (α− β)

[
ηα−β−1 (1− s)α−β−1 − ηα+β−1

(
1− s

η

)α+β−1
]}

>
(α− 1) tα−2

P

{
PΓ (α− β) Γ (α+ β)

[
(1− s)α−2 − (1− s)α−2

]
+ λtα−1Γ (α) Γ (α− β) ηα+β−1

[
(1− s)α+β−1 − (1− s)α+β−1

]}
= 0,

so, we have h1(t,s)
∂t > 0, then g1 (t, s) is increasing with respect to t on [s, 1].

Next, we show that g2 (t, s) is increasing with respect to t on [s, 1].
Let h2 (t, s) = g2 (t, s) Γ (α) Γ (α− β) Γ (α+ β). Then, we have

∂h2 (t, s)

∂t
=

(α−1) tα−2

P

{
Γ (α+ β)

[
Γ (α) (1− s)α−β−1 − PΓ (α− β)

(
1− s

t

)α−2
]}

≥ (α− 1) tα−2

P

{
Γ (α+ β)

[
Γ (α) (1− s)α−β−1 − PΓ (α− β) (1− s)α−2

]}
≥ (α− 1) (1− s)α−2

tα−2

P

{
Γ (α+ β)

[
Γ (α) (1− s)1−β − PΓ (α− β)

]}
=

(α− 1) (t (1− s))α−2

P

{
Γ (α+ β)

[
Γ (α) (1− s)1−β − PΓ (α− β)

]}
=

(α− 1) (t (1− s))α−2

P

{
Γ (α+ β) Γ (α) (1− s)1−β

+ λΓ (α) Γ (α− β) ηα+β−1

−Γ (α) Γ (α+ β)}

≥ (α− 1) (t (1− s))α−2

P

{
Γ (α) Γ (α+ β)

[
(1− s)1−β − 1

]}
≥ 0,

so, we have h2(t,s)
∂t > 0, then g2 (t, s) is increasing with respect to t on [s, 1].

Then, we conclude that G (t, s) is increasing with respect to t on [s, 1]. Hence,
G (t, s) ≤ G (1, s) for s, t ∈ [0, 1].
On the hand, we know that

min
η≤t≤1

G (t, s) =

 min
η≤t≤1

{g1 (t, s) , g3 (t, s)} , 0 ≤ s ≤ η,

min
η≤t≤1

{g2 (t, s) , g4 (t, s)} , η ≤ s ≤ 1,

=

{
g1 (η, s) , 0 ≤ s ≤ η,
g2 (η, s) , η ≤ s ≤ 1.

Let

γ (s) ≤


g1(η,s)
G(1,s) , 0 < s ≤ η,
g2(η,s)
G(1,s) , η < s ≤ 1,
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where

G (1, s) =

{
g1 (1, s) , 0 ≤ s ≤ η,
g2 (1, s) , η ≤ s ≤ 1.

=


Γ(α)(Γ(α+β)(1−s)α−β−1−λΓ(α−β)(η−s)α+β−1)−PΓ(α−β)Γ(α+β)(1−s)α−1

PΓ(α)Γ(α+β)Γ(α−β) , 0 ≤ s ≤ η
Γ(α)Γ(α+β)(1−s)α−β−1−PΓ(α−β)Γ(α+β)(1−s)α−1

PΓ(α)Γ(α−β)Γ(α+β) , η ≤ s ≤ 1.

Therefore, we have

γ (s) = ηα−1 ∈ (0, 1) .

Then

min
η≤t≤1

G (t, s) ≥ γ (s) max
0≤t≤1

G (t, s) = ηα−1G (1, s) , 0 < s < 1.

The proof is complete. �

3. Existence results

We shall consider the Banach space E = C [0, 1] equipped with the norm

‖u‖ = max
0≤t≤1

|u (t)|

and let a closed cone K ⊂ E by

K = {u ∈ E : u (t) ≥ 0, t ∈ [0, 1]} ,

where 0 is the the zero function. Obviously, K is a reproducing cone of E.
Define the operator T : K → K and the linear operator L : K → K as follows

T (u) (t) =

1∫
0

G (t, s) a (s) f (s, u (s)) ds, t ∈ [0, 1] , (3.1)

and

L (u) (t) =

1∫
0

G (t, s) a (s)u (s) ds, t ∈ [0, 1] , (3.2)

where G (t, s) is given by (2.3). It is not hard to see that fixed points of operator T
coincide with the solutions to the problem (1.1)− (1.2).
First, for the existence results of problem (1.1)− (1.2), we need the following assump-
tions.
(H1) f : [0, 1]× [0,∞)→ [0,∞) is continuous function,
(H2) a (·) ∈ L1 (0, 1) is a nonnegative function, a (t) does not vanish identically on

any subinterval of [0, 1] and 0 <
∫ 1

0
a (s) (1− s)α−β−1

sα−1ds <∞.

Lemma 3.1. Assume (H1) and (H2) hold. Then the operators T : K → K and
L : K → K are completely continuous.
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Proof. For any u ∈ K, it follows from (H1), (H2) and Lemma 2.10, T (u)(t) ≥ 0, t ∈
[0, 1]. So, T : K → K and L : K → K are continuous.
Let Φ ⊂ K be bounded .i.e., there exists a positive constant M such that f (t, u) ≤M
for all t ∈ [0, 1] , u ∈ Φ. Then, It follows from (3.1) that

|Tu (t)| ≤ Mtα−1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) ds+

M

Γ (α)

t∫
0

(t− s)α−1
a (s) ds

+
λMtα−1

PΓ (α+ β)

η∫
0

(η − s)α+β−1
a (s) ds

≤ M

PΓ (α− β)

1∫
0

a (s) ds+
M

Γ (α)

1∫
0

a (s) ds

+
λM

PΓ (α+ β)

1∫
0

a (s) ds

≤ M (Γ (α) Γ (α+ β) + PΓ (α+ β) Γ (α− β) + λΓ (α) Γ (α− β))

PΓ (α) Γ (α+ β) Γ (α− β)

1∫
0

a (s) ds.

Thus ‖Tu‖ <∞ for all u ∈ Φ. Hence, {Tu, u ∈ Φ} is bounded.
Now, we show that T maps bounded sets into equicontinuous sets of K.
Let t1, t2 ∈ [0, 1] with t1 < t2 and u ∈ Φ is a bounded set of K. Then

|Tu (t2)− Tu (t1)| ≤

∣∣∣∣∣∣ tα−1
2

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) f (s, u (s)) ds

− tα−1
1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) f (s, u (s)) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣ t
α−1
1

Γ (α)

t1∫
0

(t1 − s)α−1
a (s) f (s, u (s)) ds− tα−1

2

Γ (α)

t2∫
0

(t2 − s)α−1
a (s) f (s, u (s)) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣ λtα−1
1

PΓ (α+ β)

η∫
0

(η − s)α−1
a (s) f (s, u (s)) ds

− λtα−1
2

PΓ (α+ β)

η∫
0

(η − s)α−1
a (s) f (s, u (s)) ds

∣∣∣∣∣∣
≤
M
(
tα−1
2 − tα−1

1

)
PΓ (α− β)

1∫
0

a (s) ds+
λM

(
tα−1
2 − tα−1

1

)
PΓ (α− β)

1∫
0

a (s) ds
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+
M
(
tα−1
1 − tα−1

2

)
Γ (α)

∣∣∣∣∣∣
t1∫

0

(t1 − s)α−1
a (s) ds

∣∣∣∣∣∣+
Mtα−1

2

Γ (α)

∣∣∣∣∣∣
t2∫
t1

(t2 − s)α−1
a (s) ds

∣∣∣∣∣∣ .
Obviously, the right hand side of the above inequality tends to zero as t2 → t1. Thus
‖(Tu) (t2)− (Tu) (t1)‖ → 0, as t2 → t1. This shows that the operator T is completely
continuous, by the Arzela-Ascoli theorem.
By the same method we can get that L : K → K is a completely continuous operator.
The proof is complete. �

Now, we present the existence result for the boundary value problem (1.1)− (1.2) via
Banach contraction principle.

Theorem 3.2. Assume (H1) and (H2) hold. Suppose that f : [0, 1]× [0,∞)→ [0,∞)
be a continuous function satisfying the condition
(H3) |f (t, u)− f (t, v)| ≤ l |u− v| , for t ∈ [0, 1] , l > 0 and u, v ∈ [0,+∞).

If 0 <
∫ 1

0
G (1, s) a (s) ds < 1, then the boundary value problem (1.1) − (1.2) has a

unique positive solution on [0, 1].

Proof. As the first step, by Lemma 2.9 we know that T : K → K.
Now, let u, v ∈ K and for each t ∈ [0, 1], it follows from assumption (H3) that

‖Tu (t)− Tv (t)‖ = max
t∈[0,1]

|Tu (t)− Tv (t)|

≤
1∫

0

G (t, s) a (s) |f (s, u (s))− f (s, v (s))| ds

≤ l
1∫

0

G (1, s) a (s) |u (s)− v (s)| ds

≤ l
1∫

0

G (1, s) a (s) ds ‖u− v‖ .

Thus,

‖(Tu)− (Tv)‖ ≤ l
1∫

0

G (1, s) a (s) ds ‖u− v‖ .

Since l
∫ 1

0
G (1, s) a (s) ds < 1, so T s a contraction. Hence it follows by Banach’s

contraction principle that the boundary value problem (1.1) − (1.2) has a unique
positive solution on [0, 1]. The proof is complete. �

Now, we are in a position to study the existence of solutions for the boundary
value problem (1.1)− (1.2) by applying the fixed point index theory.

Lemma 3.3. Assume (H1) and (H2) hold. Then the spectral radius of the operator L
is positive that is r (L) > 0.
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Proof. Take u (t) = tα−1 ∈ E. Then ‖u‖ = 1. We have

Lu (t) =
tα−1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s)u (s) ds

− λtα−1

PΓ (α+ β)

η∫
0

(η − s)α+β−1
a (s)u (s) ds− 1

Γ (α)

t∫
0

(t− s)α−1
a (s)u (s) ds

=
tα−1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) sα−1ds

−λt
α−1ηα+β−1

PΓ (α+ β)

η∫
0

(
1− s

η

)α+β−1

a (s) sα−1ds− tα−1

Γ (α)

t∫
0

(
1− s

t

)α−1

a (s) sα−1ds

= tα−1

− ληα+β−1

PΓ (α+ β)

η∫
0

(
1− s

η

)α+β−1

a (s) sα−1ds

+
1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) sα−1ds− 1

Γ (α)

t∫
0

(
1− s

t

)α−1

a (s) sα−1ds


> tα−1

− ληα+β−1

PΓ (α+ β)

1∫
0

(
1− s

η

)α+β−1

a (s) sα−1ds

+
1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) sα−1 − 1

Γ (α)

1∫
0

(
1− s

t

)α−1

a (s) sα−1ds


> tα−1

− ληα+β−1

PΓ (α+ β)

1∫
0

(1− s)α+β−1
a (s) sα−1ds

+
1

PΓ (α− β)

1∫
0

(1− s)α−β−1
a (s) sα−1ds− 1

Γ (α)

1∫
0

(1− s)α−1
a (s) sα−1ds


= tα−1

− 1

Γ (α)

1∫
0

(1− s)α−1
a (s) sα−1ds

+
1

Γ (α)

1∫
0

(1− s)α−β−1
a (s) sα−1ds

 = νtα−1 > 0,
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where

ν = − 1

Γ (α)

1∫
0

(1− s)α−1
a (s) sα−1ds+

1

Γ (α)

1∫
0

(1− s)α−β−1
a (s) sα−1ds.

Since L : K → K, according the monotonicity of L and (H2), we deduce

L2u (t) = L (Lu (t)) > L
(
νtα−1

)
> νL

(
tα−1

)
> ν2tα−1.

Repeating the process gives Lnu (t) > νntα−1. So, we get ‖Ln‖ > νn. Hence

‖Ln‖
1
n > ν, r (L) = lim

n→∞
‖Ln‖

1
n > ν > 0.

The proof is complete. �

For convenience, we introduce the following notation:

f∞ = lim
u→∞

sup max
t∈[0,1]

f (t, u)

u
,

f0 = lim
u→0+

inf min
t∈[0,1]

f (t, u)

u
,

Kc = {u ∈ K : ‖u‖ < c} ,

r (L) =
1

µ
, µ ∈ R+.

Lemma 3.4. Assume (H1), (H2) hold and µ < f0 ≤ ∞. Then there exists ρ0 > 0 such
that for ρ ∈ (0, ρ0], if u 6= Tu, u ∈ ∂Kρ, then i (T,Kρ,K) = 0.

Proof. It follows from µ < f0 that there exist ε > 0 and ρ0 > 0 such that for t ∈ [0, 1]
and 0 ≤ u ≤ ρ0 we have

f (t, u) ≥ (µ+ ε)u. (3.3)

For 0 < ρ < ρ0 assume that u 6= Tu, u ∈ ∂Kρ. By Lemma 2.7 and Lemma 2.8 (i), we
need only to prove that

u 6= Tu+ λϕ, λ > 0,

where ϕ ∈ K \ {0} with Lϕ = r (L)ϕ.
Otherwise, there exist u0 ∈ ∂Kρ and λ0 > 0 such that

u0 6= Tu0 + λ0ϕ. (3.4)

Then u0 ≥ Tu0 and u0 ≥ λ0ϕ.
From (2.1), we get

Tu0 (t) =

1∫
0

G (t, s) a (s) f (s, u0 (s)) ds ≥ (µ+ ε)Lu0 (t) . (3.5)

Considering u0 ≥ λ0ϕ, we have

lu0 ≥ λ0Lϕ.

For Lϕ = r (L)ϕ, (µ+ ε) r (L) > 1, so that (µ+ ε) r (L)ϕ > ϕ.
Thus, we can conclude Tu0 ≥ (µ+ ε)λ0Lϕ > λ0ϕ.
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Together with the boundary conditions in (2.1), we have u0 ≥ 2λ0ϕ. By (3.3), we
obtain Tu0 ≥ 2λ0ϕ. Thus, u0 ≥ 3λ0ϕ.
Repeating this process, we get that u0 ≥ nλ0ϕ. Hence, we have ‖u0‖ ≥ nλ0 ‖ϕ‖ → ∞
as n→∞. This is a contradiction.
It follows from Lemma 2.8 (ii) that i (T,Kρ,K) = 0 for ρ ∈ (0, ρ0]. The proof is
complete. �

Lemma 3.5. Assume (H1), (H2) hold and 0 ≤ f∞ < µ. Then there exists τ0 > 0 such
that for τ > τ0, if λu 6= Tu, u ∈ ∂Kτ , then i (T,Kρ,K) = 1.

Proof. let ε > 0 satisfy f∞ < µ− ε. Then there exist τ1 > 0 and such that for u > τ1
and t ∈ [0, 1], we have

f (t, u) ≤ (µ− ε)u. (3.6)

Set Ψ (t) = max
u∈[0,τ1]

f (t, u). Then, for all u ∈ R+ and t ∈ [0, 1], we have

f (t, u) ≤ (µ− ε)u+ Ψ (t) . (3.7)

Let

F =

∥∥∥∥∥∥
1∫

0

G (t, s) a (s) Ψ (s) ds

∥∥∥∥∥∥ , τ0 =

∥∥∥∥∥ F

µ− ε

(
I

µ− ε
− L

)−1
∥∥∥∥∥ .

Take τ > τ0. We will show that λu 6= Tu, for all u ∈ ∂Kτ and λ ≥ 1.
Otherwise, there exist u0 ∈ ∂Kτ and λ0 ≥ 1 such that

Tu0 = λ0u0. (3.8)

Together with (3.7), we have

u0 ≤ λu0 = Tu0 ≤ (µ− ε)Lu0 + F.

Then F
µ−ε ≥

(
I

µ−ε − L
)
u0 (t) for t ∈ [0, 1]. So, F

µ−ε −
(

I
µ−ε − L

)
u0 (t) ∈ K.

It follows from L (K) ⊂ K that u0 (t) ≤ F
µ−ε

(
I

µ−ε − L
)−1

t ∈ [0, 1]. Therefore, we

have ‖u0‖ ≤ τ0 < τ . This is a contradiction. Thus, we conclude that for all u ∈ ∂Kτ

and λ ≥ 1

Tu 6= λu.

It follows from Lemma 2.8 (ii) that i (T,Kτ ,K) = 1 for τ0 < τ .
The proof is complete. �

Theorem 3.6. Assume (H1), (H2) hold, µ < f0 ≤ ∞ and 0 ≤ f∞ ≤ µ. Then, the
boundary value problem (1.1)− (1.2) has at least one positive solution on [0, 1].

Proof. It follows from µ < f0 ≤ ∞ and Lemma 3.4 that there exist 0 < ρ < τ such
that either there exists u ∈ ∂Kρ with u = Tu or i (T,Kρ,K) = 0. From 0 ≤ f∞ ≤ µ
and Lemma 3.5 there exists τ > 0 such that i (T,Kτ ,K) = 1. Thus, we can conclude
that T has fixed point u ∈ K with ρ < ‖u‖ < τ by the properties of index. Hence,
the boundary value problem (1.1) − (1.2) has at least one positive solution on [0, 1].
The proof is complete. �
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Now, we are in the position to present the third main results of this paper. The
existence and the multiplicity result is based on the Leggett-Williams fixed point
theorem.

Theorem 3.7. Assume (H1)and (H2) hold. Furthermore, suppose that there exist con-
stants 0 < d < l < c such that

(H4) f (t, u) < Md, (t, u) ∈ [0, 1]× [0, d],

(H5) f (t, u) ≤Mc, for (t, u) ∈ [0, 1]× [0, c],

(H6) f (t, u) ≥ Nl, for (t, u) ∈ [η, 1]× [l, c],

where

M =

 1∫
0

a (s)G (1, s) ds

−1

,

and

N =

 1∫
η

a (s) γ (s)G (1, s) ds

−1

, and γ (s) ∈ (0, 1) .

Then the boundary value problem (1.1) − (1.2) has at least three positive solutions
u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.

Proof. Let β (u) = min
t∈[η,1]

|u (t)|. Then β (u) is nonnegative continuous concave func-

tional on the cone K satisfying β (u) ≤ ‖u‖ for all u ∈ K.

Let u ∈ K̄c, then ‖u‖ ≤ c. It follows from (H5) and Lemma 2.10 (iii) that

|Tu (t)| =

∣∣∣∣∣∣
1∫

0

G (t, s) a (s) f (s, u (s)) ds

∣∣∣∣∣∣
≤Mc

1∫
0

G (1, s) a (s) ds = c,

which implies that ‖Tu‖ ≤ c, which shows that Tu ∈ Kc. Hence, we have shown
that if (H5) holds, then T maps Kc into Kc and by Lemma 3.1, T is completely
continuous.

If u ∈ Kd, then it follows from (H4) and Lemma 2.10 (iii) that

(Tu) (t) =

1∫
0

G (t, s) a (s) f (s, u (s)) ds

< Md

1∫
0

G (1, s) a (s) ds = d.
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We verify that {u/K (β, l, r) : β (u) > l } 6= φ and β (Tu) > l for all u ∈ K (β, l, r).
Take ϕ0 (t) = l+r

2 , for t ∈ [0, 1]. Then

ϕ0 ∈ {u/u ∈ K (β, l, r) , β (u) > l} .

This shows that

{u/u ∈ K (β, l, r) : β (u) > l } 6= φ.

Finally, we assert that if u ∈ K (β, l, c) and ‖Tu‖ > c, then β (Tu) > l.

Suppose u ∈ K (β, l, c) and ‖u (t)‖ > r, t ∈ [η, 1], then ‖u‖ < c. It follows from (H6)
that

β (Tu) = min
t∈[η,1]

(Tu) (t)

≥ min
t∈[η,1]

1∫
0

G (t, s) a (s) f (s, u (s)) ds

> Nl

1∫
η

G (1, s) a (s) γ (s) ds = l,

which implies that β (Tu) > l for u ∈ K (β, l, c).

To sum up, the hypotheses of Theorem 2.6 hold. Therefore, boundary value problem
(1.1)− (1.2) has at least three positive solutions u1, u2 and u3 such that

‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.

The proof is complete. �

We present two examples to illustrate the applicability of the results shown before.

Example 3.8. Consider the following boundary value problem

D
7
2

0+u (t) +
1

(t+ cos t+ 3)
2

(
sin2 t+ arctan (u) +

|u|
1 + |u|

)
= 0, t ∈ (0, 1) , (3.9)

u (0) = u′ (0) = u′′ (0) = 0, D
5
2u (1) =

1

2
I

5
2

0+u

(
1

2

)
, (3.10)

where α = 7
2 , β = 5

2 , λ = 1
2 , η = 1

2 and

f (t, u) =
1

(t+ cos t+ 3)
2

(
sin2 t+ arctan (u) +

|u|
1 + |u|

)
.

Clearly l = 2
9 as |f (t, u)− f (t, v)| ≤ 2

9 |u− v|.
We take a (t) = 1. A simple calculation leads to P ∼= 1, 32620.
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Furthermore, by simple computation, we have

1

M
=

1∫
0

a (s)G (1, s) ds

=
Γ (α) Γ (α+ β)

∫ 1

0
ds− PΓ (α− β) Γ (α+ β)

∫ 1

0
(1− s)

5
2 ds

PΓ (α) Γ (α− β) Γ (α+ β)

+
Γ (α) Γ (α+ β)

∫ 1

η
(1− s) ds

PΓ (α) Γ (α− β) Γ (α+ β)
∼= 0, 27303,

so,

0 < l

1∫
0

a (s)G (1, s) ds ≤ 2

9
(0, 27303) ∼= 0, 060673 < 1.

Thus all assumptions of Theorem 3.2 are satisfied. So, by the conclusion of Theorem
3.2, problem (3.9)− (3.10) has a unique solution on [0, 1].

Example 3.9. Consider the following boundary value problem

D
7
2

0+u (t) + f (t, u (t)) = 0, t ∈ (0, 1) , (3.11)

u (0) = u′ (0) = u′′ (0) = 0, D
5
2u (1) =

1

2
I

5
2

0+u

(
1

2

)
, (3.12)

where α = 7
2 , β = 5

2 , λ = 1
2 , η = 1

2 , and here

f (t, u) =

{
10u+ t, (t, u) ∈ [0, 1]× [0, 1] ,

10, (t, u) ∈ [0, 1]× (1,+∞) .

We take a (t) = 1. We see that f ∈ C ([0, 1]× [0,∞) , [0,∞)), so, assumption (H1)
satisfied. And

0 <

1∫
0

a (s) (1− s)α−β−1
sα−1ds =

1∫
0

(1− s) s 5
2 ds =

4

63
<∞,

so, assumption (H2) satisfied.
By simple calculation, we obtain P ∼= 1, 32620, M ∼= 3, 66264 and N ∼= 7218, 14758.
Choosing, d = 1

4 , l = 1 and c = 3, we have

f (t, u) = 10u+ t ≤ 3.5 < Md ∼= 14, 65056, (t, u) ∈ [0, 1]×
[
0,

1

4

]
,

f (t, u) = 10 ≤Ml ∼= 10, 98792, (t, u) ∈ [0, 1]× (1, 3] ,

and

f (t, u) = 10 ≥ Nr ∼= 9, 00765, (t, u) ∈
[

1

2
, 1

]
× (1, 3] .

Thus, all assumptions and conditions of Theorem 3.7 are satisfied. Hence Theorem
3.7, implies that the problem (3.11)− (3.12) has at least three solutions u1, u2 and u3

such that
‖u1‖ < d, l < β (u2) , u3 > d with β (u3) < l.
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product spaces

Silvestru Sever Dragomir

Abstract. In this paper we obtain some additive inequalities related to the cele-
brated Bessel’s inequality in inner product spaces. They complement the results
obtained by Boas-Bellman, Bombieri, Selberg and Heilbronn, which have been
applied for almost orthogonal series and in Number Theory.
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1. Introduction

Let (H; 〈·, ·〉) be an inner product space over the real or complex number field K.
If (ei)1≤i≤n are orthonormal vectors in the inner product space H, i.e., 〈ei, ej〉 = δij
for all i, j ∈ {1, . . . , n} where δij is the Kronecker delta, then the following inequality
is well known in the literature as Bessel’s inequality :

n∑
i=1

|〈x, ei〉|2 ≤ ‖x‖2 for any x ∈ H. (1.1)

For other results related to Bessel’s inequality, see [8] – [11] and Chapter XV in
the book [14].

In 1941, R. P. Boas [2] and in 1944, independently, R. Bellman [1] proved the
following generalization of Bessel’s inequality (see also [14, p. 392]):

Theorem 1.1. If x, y1, . . . , yn are elements of an inner product space (H; 〈·, ·〉) , then
the following inequality holds

n∑
i=1

|〈x, yi〉|2 ≤ ‖x‖2

 max
1≤i≤n

‖yi‖2 +

 ∑
1≤i 6=j≤n

|〈yi, yj〉|2
 1

2

 . (1.2)
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It is obvious that (1.2) will give for orthonormal families the well known Bessel
inequality.

In [7] we pointed out the following Boas-Bellman type inequalities:

n∑
i=1

|〈x, yi〉|2 ≤ ‖x‖ max
1≤i≤n

|〈x, yi〉|


n∑

i=1

‖yi‖2 +
∑

1≤i 6=j≤n

|〈yi, yj〉|


1
2

, (1.3)

for any x, y1, . . . , yn vectors in the inner product space (H; 〈·, ·〉) .
We also have, see [7]

n∑
i=1

|〈x, yi〉|2 ≤ ‖x‖

(
n∑

i=1

|〈x, yi〉|2p
) 1

2p

(1.4)

×


(

n∑
i=1

‖yi‖2q
) 1

q

+ (n− 1)
1
p

 ∑
1≤i 6=j≤n

|〈yi, yj〉|q
 1

q


1
2

,

for any x, y1, . . . , yn ∈ H, p > 1, 1
p + 1

q = 1.

Further, we recall [7] that

n∑
i=1

|〈x, yi〉|2 ≤ ‖x‖2
{

max
1≤i≤n

‖yi‖2 + (n− 1) max
1≤i 6=j≤n

|〈yi, yj〉|
}
, (1.5)

for any x, y1, . . . , yn ∈ H. It is obvious that (1.5) will give for orthonormal families
the well known Bessel inequality.

In 1971, E. Bombieri [3] gave the following generalization of Bessel’s inequality.

Theorem 1.2. If x, y1, . . . , yn are vectors in the inner product space (H; (·, ·)) , then
the following inequality holds:

n∑
i=1

|〈x, yi〉|2 ≤ ‖x‖2 max
1≤i≤n


n∑

j=1

|〈yi, yj〉|

 . (1.6)

It is obvious that if (yi)1≤i≤n are orthonormal, then from (1.6) one can deduce
Bessel’s inequality.

It is not widely known, but it appears in a number of places that, the importance
of extensions of the Bombieri and Bessel inequality were first shown by J. Sándor (at a
Symposium on Mathematical Inequalities, Sibiu, December, 1984), who proved some
generalizations of these inequalities, and who was deeply interested in applications in
Number Theory. Also, Bessel’s inequality and Gram’s inequality have been studied
by the author and J. Sándor in [12] as well.

Another generalization of Bessel’s inequality was obtained by A. Selberg (see for
example [14, p. 394]):
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Theorem 1.3. Let x, y1, . . . , yn be vectors in H with yi 6= 0 (i = 1, . . . , n). Then one
has the inequality:

n∑
i=1

|〈x, yi〉|2∑n
j=1 |〈yi, yj〉|

≤ ‖x‖2 . (1.7)

Another type of inequality related to Bessel’s result, was discovered in 1958 by H.
Heilbronn [13] (see also [14, p. 395]).

Theorem 1.4. With the assumptions in Theorem 1.2, one has

n∑
i=1

|〈x, yi〉| ≤ ‖x‖

 n∑
i,j=1

|〈yi, yj〉|

 1
2

. (1.8)

In [8] we obtained the following Bombieri type inequalities

n∑
i=1

|〈x, yi〉|2 ≤ ‖x‖ max
1≤i≤n

|〈x, yi〉|

 n∑
i,j=1

|〈yi, yj〉|

 1
2

, (1.9)

n∑
i=1

|〈x, yi〉|2 (1.10)

≤ ‖x‖ max
1≤i≤n

|〈x, yi〉|
1
2

(
n∑

i=1

|〈x, yi〉|r
) 1

2r

 n∑
i=1

 n∑
j=1

|〈yi, yj〉|

s
1
2s

,

where 1
r + 1

s = 1, s > 1,

n∑
i=1

|〈x, yi〉|2 (1.11)

≤ ‖x‖ max
1≤i≤n

|〈x, yi〉|
1
2

(
n∑

i=1

|〈x, yi〉|

) 1
2

 max
1≤i≤n

 n∑
j=1

|〈yi, yj〉|

 ,
n∑

i=1

|〈x, yi〉|2 (1.12)

≤ ‖x‖ max
1≤i≤n

|〈x, yi〉|
1
2

(
n∑

i=1

|〈x, yi〉|p
) 1

2p

 n∑
i=1

 n∑
j=1

|〈yi, yj〉|q
 1

q


1
2

,

where p > 1, 1
p + 1

q = 1 and

n∑
i=1

|〈x, yi〉|2 ≤ ‖x‖2


n∑
i,j=1

|〈yi, yj〉|2


1
2

(1.13)
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for any x ∈ H.
It has been shown that for different selection of vectors the upper bound provided

by the inequality (1.13) is some time better other times worse than the one obtained
by Bombieri above in (1.6).

In this paper we obtain some inequalities related to the celebrated Bessel’s in-
equality in inner product spaces. They complement the results obtained by Boas-
Bellman, Bombieri, Selberg and Heilbronn above, which have been applied for almost
orthogonal series and in Number Theory.

2. Some results via CBS inequality

We have:

Theorem 2.1. Let x, y1, ..., yn ∈ H and α1, ..., αn ∈ C. Then

Re

 n∑
j=1

αj 〈yj , x〉

 ≤ 1

2

‖x‖2 +

n∑
k=1

|αk|2
 n∑

j,k=1

|〈yj , yk〉|2
1/2

 . (2.1)

Proof. We have for any x, y1, ..., yn ∈ H and α1, ..., αn ∈ C that

0 ≤

∥∥∥∥∥∥
n∑

j=1

αjyj − x

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

j=1

αjyj

∥∥∥∥∥∥
2

− 2Re

〈
n∑

j=1

αjyj , x

〉
+ ‖x‖2

=

〈
n∑

j=1

αjyj ,

n∑
k=1

αkyk

〉
− 2Re

 n∑
j=1

αj 〈yj , x〉

+ ‖x‖2

=

n∑
j,k=1

αjαk 〈yj , yk〉 − 2Re

 n∑
j=1

αj 〈yj , x〉

+ ‖x‖2 ,

which implies the inequality

Re

 n∑
j=1

αj 〈yj , x〉

 ≤ 1

2

‖x‖2 +

n∑
j,k=1

αjαk 〈yj , yk〉

 (2.2)

for which the term
∑n

j,k=1 αjαk 〈yj , yk〉 is obviously nonnegative for any y1, ..., yn ∈ H
and α1, ..., αn ∈ C.

By using the Cauchy-Buniakowski-Schwarz’s inequality for double sums,

n∑
j,k=1

|ajkbjk| ≤

 n∑
j,k=1

|ajk|2
1/2 n∑

j,k=1

|bjk|2
1/2
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for complex numbers ajk, bjk where j, k ∈ {1, ..., n} , then we have

n∑
j,k=1

αjαk 〈yj , yk〉 =

∣∣∣∣∣∣
n∑

j,k=1

αjαk 〈yj , yk〉

∣∣∣∣∣∣ ≤
n∑

j,k=1

|αjαk| |〈yj , yk〉| (2.3)

≤

 n∑
j,k=1

|αjαk|2
1/2 n∑

j,k=1

|〈yj , yk〉|2
1/2

=

 n∑
j,k=1

|αj |2 |αk|2
1/2 n∑

j,k=1

|〈yj , yk〉|2
1/2

=

 n∑
j=1

|αj |2
n∑

k=1

|αk|2
1/2 n∑

j,k=1

|〈yj , yk〉|2
1/2

=

n∑
k=1

|αk|2
 n∑

j,k=1

|〈yj , yk〉|2
1/2

for any y1, ..., yn ∈ H and α1, ..., αn ∈ C.
By making use of (2.2) and (2.3) we get the desired result (2.1). �

Corollary 2.2. With the assumptions of Theorem 2.1 and for p ≥ 1 we have

n∑
j=1

|〈x, yj〉|p ≤
1

2

‖x‖2 +

n∑
k=1

|〈x, yk〉|2(p−1)
 n∑

j,k=1

|〈yj , yk〉|2
1/2

 . (2.4)

Proof. If we take in (2.1) αj = 〈x, yj〉 |〈x, yj〉|p−2 then we get

Re

 n∑
j=1

〈x, yj〉 |〈x, yj〉|p−2 〈yj , x〉


≤ 1

2

‖x‖2 +

n∑
k=1

∣∣∣〈x, yj〉 |〈x, yj〉|p−2∣∣∣2
 n∑

j,k=1

|〈yj , yk〉|2
1/2

 ,
which is equivalent to (2.4). �

Remark 2.3. If we take in (2.4) p = 1, then we get the following Heilbronn type
inequality

n∑
j=1

|〈x, yj〉| ≤
1

2

‖x‖2 + n

 n∑
j,k=1

|〈yj , yk〉|2
1/2

 (2.5)

for any x, y1, ..., yn ∈ H.
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If we take in (2.4) p = 2, then we get

n∑
j=1

|〈x, yj〉|2 ≤
1

2

‖x‖2 +

n∑
k=1

|〈x, yk〉|2
 n∑

j,k=1

|〈yj , yk〉|2
1/2

 , (2.6)

that is equivalent to (see also [10])2−

 n∑
j,k=1

|〈yj , yk〉|2
1/2

 n∑
j=1

|〈x, yj〉|2 ≤ ‖x‖2 (2.7)

for any x, y1, ..., yn ∈ H.
The inequality (2.7) is meaningful if

2 ≥

 n∑
j,k=1

|〈yj , yk〉|2
1/2

.

Also if

1 ≥

 n∑
j,k=1

|〈yj , yk〉|2
1/2

,

then

n∑
j=1

|〈x, yj〉|2 ≤

2−

 n∑
j,k=1

|〈yj , yk〉|2
1/2

 n∑
j=1

|〈x, yj〉|2 ≤ ‖x‖2 , (2.8)

for any x ∈ H, which improves Bessel’s inequality.

We observe that if the family of vectors {y1, ..., yn} is orthogonal, then

n∑
j,k=1

|〈yj , yk〉|2 =

n∑
k=1

‖y‖4k ,

so, if we assume that
n∑

k=1

‖y‖4k ≤ 1

then by (2.8) we get the refinement of Bessel’s inequality

n∑
j=1

|〈x, yj〉|2 ≤

2−

(
n∑

k=1

‖y‖4k

)1/2
 n∑

j=1

|〈x, yj〉|2 ≤ ‖x‖2 . (2.9)
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Corollary 2.4. With the assumptions of Theorem 2.1 we have
n∑

j=1

|〈x, yj〉|2∑n
k=1 |〈yk, yj〉|

(2.10)

≤ 1

2

‖x‖2 +

n∑
j=1

|〈x, yj〉|2

(
∑n

k=1 |〈yk, yj〉|)
2

 n∑
j,k=1

|〈yj , yk〉|2
1/2

 ,
for any x ∈ H.

Proof. We take in (2.1)

αj =
〈x, yj〉∑n

k=1 |〈yk, yj〉|
, j = 1, ..., n

to get (2.10). �

Using the Schwarz’s inequality we get from (2.4) that

n∑
j=1

|〈x, yj〉|p (2.11)

≤ 1

2
‖x‖2

1 + ‖x‖2(p−2)
n∑

k=1

‖yk‖2(p−1)
 n∑

j,k=1

|〈yj , yk〉|2
1/2

 ,
for any x, y1, ..., yn ∈ H and p ≥ 1.
For p = 2 we get

n∑
j=1

|〈x, yj〉|2 ≤
1

2
‖x‖2

1 +

n∑
k=1

‖yk‖2
 n∑

j,k=1

|〈yj , yk〉|2
1/2

 , (2.12)

for any x, y1, ..., yn ∈ H.
From (2.10) we also get Selberg’s type inequality

n∑
j=1

|〈x, yj〉|2∑n
k=1 |〈yk, yj〉|

(2.13)

≤ 1

2
‖x‖2

1 +

n∑
j=1

‖yj‖2

(
∑n

k=1 |〈yk, yj〉|)
2

 n∑
j,k=1

|〈yj , yk〉|2
1/2

 ,
for any x, y1, ..., yn ∈ H.

Theorem 2.5. Let x, y1, ..., yn ∈ H and α1, ..., αn ∈ C. Then

Re

 n∑
j=1

αj 〈yj , x〉

 ≤ 1

2

‖x‖2 + max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


n∑

k=1

|ak|2
 . (2.14)
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Proof. By using the Cauchy-Buniakowski-Schwarz’s weighted inequality for double
sums,

n∑
j,k=1

mjk |ajkbjk| ≤

 n∑
j,k=1

mjk |ajk|2
1/2 n∑

j,k=1

mjk |bjk|2
1/2

for complex numbers ajk, bjk and nonnegative numbers mjk where j, k ∈ {1, ..., n} ,
then we have

n∑
j,k=1

αjαk 〈yj , yk〉 (2.15)

=

∣∣∣∣∣∣
n∑

j,k=1

αjαk 〈yj , yk〉

∣∣∣∣∣∣ ≤
n∑

j,k=1

|αjαk| |〈yj , yk〉| =
n∑

j,k=1

|αj | |ak| |〈yj , yk〉|

≤

 n∑
j,k=1

|〈yj , yk〉| |aj |2
1/2 n∑

j,k=1

|〈yj , yk〉| |ak|2
1/2

=

n∑
j,k=1

|ak|2 |〈yj , yk〉| .

Now, observe that

n∑
j,k=1

|ak|2 |〈yj , yk〉| =
n∑

k=1

|ak|2
 n∑

j=1

|〈yj , yk〉|


≤ max

k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


n∑

k=1

|ak|2 ,

which proves the desired inequality (2.14). �

Corollary 2.6. With the assumptions of Theorem 2.5 and for p ≥ 1 we have

n∑
j=1

|〈x, yj〉|p ≤
1

2

‖x‖2 + max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


n∑

k=1

|〈x, yk〉|2(p−1)
 . (2.16)

Proof. If we take in (2.14) αj = 〈x, yj〉 |〈x, yj〉|p−2 then we get

Re

 n∑
j=1

〈x, yj〉 |〈x, yj〉|p−2 〈yj , x〉


≤ 1

2

‖x‖2 + max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


n∑

k=1

∣∣∣〈x, yj〉 |〈x, yj〉|p−2∣∣∣2
 ,

which is equivalent to (2.16). �
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Remark 2.7. If we take in (2.16) p = 1, then we get the following Heilbronn type
inequality

n∑
j=1

|〈x, yj〉| ≤
1

2

‖x‖2 + max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


 . (2.17)

for any x, y1, ..., yn ∈ H.

If we take in (2.16) p = 2, then we get

n∑
j=1

|〈x, yj〉|2 ≤
1

2

‖x‖2 + max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


n∑

k=1

|〈x, yj〉|2
 , (2.18)

which is equivalent to2− max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


 n∑

j=1

|〈x, yj〉|2 ≤ ‖x‖2 (2.19)

for any x, y1, ..., yn ∈ H.

The inequality (2.19) is meaningful if

2 ≥ max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|

 .

Also if

1 ≥ max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|

 ,

then

n∑
j=1

|〈x, yj〉|2 ≤

2− max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


 n∑

j=1

|〈x, yj〉|2 ≤ ‖x‖2 , (2.20)

for any x ∈ H, which improves Bessel’s inequality.

We observe that if the family of vectors {y1, ..., yn} is orthogonal, then

max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|

 = max
k∈{1,...,n}

‖y‖2k ,

so, if we assume that maxk∈{1,...,n} ‖y‖
2
k ≤ 1 then by (2.20) we get

n∑
j=1

|〈x, yj〉|2 ≤
[
2− max

k∈{1,...,n}
‖y‖2k

] n∑
j=1

|〈x, yj〉|2 ≤ ‖x‖2 , (2.21)

for any x ∈ H.
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Corollary 2.8. With the assumptions of Theorem 2.5 we have

n∑
j=1

|〈x, yj〉|2∑n
k=1 |〈yk, yj〉|

(2.22)

≤ 1

2

‖x‖2 + max
j∈{1,...,n}

{
n∑

k=1

|〈yj , yk〉|

}
n∑

k=1

|〈x, yk〉|2(∑n
j=1 |〈yk, yj〉|

)2
 ,

for any x ∈ H.

Proof. We take in (2.1)

αk =
〈x, yk〉∑n

j=1 |〈yk, yj〉|
, k = 1, ..., n

to get (2.10). �

Using the Schwarz’s inequality we get from (2.16) that

n∑
j=1

|〈x, yj〉|p (2.23)

≤ 1

2
‖x‖2

1 + ‖x‖2(p−2) max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


n∑

k=1

‖yk‖2(p−1)
 ,

for any x, y1, ..., yn ∈ H.

If in this inequality we take p = 2, then we get

n∑
j=1

|〈x, yj〉|2 ≤
1

2
‖x‖2

1 + max
k∈{1,...,n}


n∑

j=1

|〈yj , yk〉|


n∑

k=1

‖yk‖2
 , (2.24)

for any x, y1, ..., yn ∈ H.

From (2.22) we also get the Selberg type inequality

n∑
j=1

|〈x, yj〉|2∑n
k=1 |〈yk, yj〉|

(2.25)

≤ 1

2
‖x‖2

1 + max
j∈{1,...,n}

{
n∑

k=1

|〈yj , yk〉|

}
n∑

k=1

‖yk‖2(∑n
j=1 |〈yk, yj〉|

)2
 ,

for any x, y1, ..., yn ∈ H.

3. Related inequalities

We have:
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Theorem 3.1. Let x, y1, ..., yn ∈ H and α1, ..., αn ∈ C. Then

Re

 n∑
j=1

αj 〈yj , x〉

 ≤ 1

2

‖x‖2 + max
j,k∈{1,...,n}

{|〈yj , yk〉|}

 n∑
j=1

|αj |

2
 (3.1)

and

Re

 n∑
j=1

αj 〈yj , x〉

 ≤ 1

2

‖x‖2 + max
k∈{1,...,n}

{
|αk|2

} n∑
j,k=1

|〈yj , yk〉|

 . (3.2)

Proof. From (2.3) we have

n∑
j,k=1

αjαk 〈yj , yk〉 =

∣∣∣∣∣∣
n∑

j,k=1

αjαk 〈yj , yk〉

∣∣∣∣∣∣ ≤
n∑

j,k=1

|αjαk| |〈yj , yk〉|

≤ max
j,k∈{1,...,n}

{|〈yj , yk〉|}
n∑

j,k=1

|αjαk|

= max
j,k∈{1,...,n}

{|〈yj , yk〉|}
n∑

j,k=1

|αj | |αk|

= max
j,k∈{1,...,n}

{|〈yj , yk〉|}

 n∑
j=1

|αj |

2

,

for any x, y1, ..., yn ∈ H and α1, ..., αn ∈ C, which proves (3.1).

Similarly, we have

n∑
j,k=1

αjαk 〈yj , yk〉 =

∣∣∣∣∣∣
n∑

j,k=1

αjαk 〈yj , yk〉

∣∣∣∣∣∣ ≤
n∑

j,k=1

|αjαk| |〈yj , yk〉|

≤ max
j,k∈{1,...,n}

{|αjαk|}
n∑

j,k=1

|〈yj , yk〉|

= max
k∈{1,...,n}

{
|αk|2

} n∑
j,k=1

|〈yj , yk〉|

for any x, y1, ..., yn ∈ H and α1, ..., αn ∈ C, which proves (3.2). �

Corollary 3.2. With the assumptions of Theorem 3.1 and for p ≥ 1 we have

n∑
j=1

|〈x, yj〉|p ≤
1

2

‖x‖2 + max
j,k∈{1,...,n}

{|〈yj , yk〉|}

 n∑
j=1

|〈x, yj〉|p−1
2
 (3.3)
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and

n∑
j=1

|〈x, yj〉|p ≤
1

2

‖x‖2 + max
k∈{1,...,n}

{
|〈x, yj〉|2(p−1)

} n∑
j,k=1

|〈yj , yk〉|

 (3.4)

for any x, y1, ..., yn ∈ H.

Proof. If we take in (3.1) and (3.2) αj = 〈x, yj〉 |〈x, yj〉|p−2 then we get (3.3) and
(3.4). �

Remark 3.3. If we take in (3.3) and (3.4) p = 1, then we get
n∑

j=1

|〈x, yj〉| ≤
1

2

[
‖x‖2 + n2 max

j,k∈{1,...,n}
{|〈yj , yk〉|}

]
(3.5)

and
n∑

j=1

|〈x, yj〉| ≤
1

2

‖x‖2 +

n∑
j,k=1

|〈yj , yk〉|

 (3.6)

for any x, y1, ..., yn ∈ H.
If we take in (3.3) and (3.4) p = 2, then we get

n∑
j=1

|〈x, yj〉|2 ≤
1

2

‖x‖2 + max
j,k∈{1,...,n}

{|〈yj , yk〉|}

 n∑
j=1

|〈x, yj〉|

2
 (3.7)

and
n∑

j=1

|〈x, yj〉|2 ≤
1

2

‖x‖2 + max
k∈{1,...,n}

{
|〈x, yk〉|2

} n∑
j,k=1

|〈yj , yk〉|

 (3.8)

for any x, y1, ..., yn ∈ H.

Using Schwarz’s inequality we have from (3.3) and (3.4) that
n∑

j=1

|〈x, yj〉|p (3.9)

≤ 1

2
‖x‖2

1 + ‖x‖2(p−2) max
j,k∈{1,...,n}

{|〈yj , yk〉|}

 n∑
j=1

‖yj‖p−1
2


and
n∑

j=1

|〈x, yj〉|p (3.10)

≤ 1

2
‖x‖2

1 + ‖x‖2(p−2) max
k∈{1,...,n}

{
‖yk‖2(p−1)

} n∑
j,k=1

|〈yj , yk〉|


for any x, y1, ..., yn ∈ H.
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For p = 2 we get

n∑
j=1

|〈x, yj〉|2 ≤
1

2
‖x‖2

1 + max
j,k∈{1,...,n}

{|〈yj , yk〉|}

 n∑
j=1

‖yj‖

2
 (3.11)

and
n∑

j=1

|〈x, yj〉|2 ≤
1

2
‖x‖2

1 + max
k∈{1,...,n}

{
‖yk‖2

} n∑
j,k=1

|〈yj , yk〉|

 (3.12)

for any x, y1, ..., yn ∈ H.
We observe that if y1, ..., yn ∈ H are such that

max
j,k∈{1,...,n}

{|〈yj , yk〉|}

 n∑
j=1

‖yj‖

2

≤ 1,

then (3.1) provides a refinement of Bessel’s inequality. Also, if

max
k∈{1,...,n}

{
‖yk‖2

} n∑
j,k=1

|〈yj , yk〉| ≤ 1,

then (3.12) also provides a refinement of Bessel’s inequality.
By using Hölder’s inequality we can provide other inequalities as follows:

Theorem 3.4. Let x, y1, ..., yn ∈ H and α1, ..., αn ∈ C. Then for r, q > 1 with 1
r + 1

q = 1

Re

 n∑
j=1

αj 〈yj , x〉

 ≤ 1

2

‖x‖2 +

 n∑
j,k=1

|〈yj , yk〉|r
1/r n∑

j=1

|αj |q
2/q

 (3.13)

Proof. From (2.3) and Hölder’s inequality we have

n∑
j,k=1

αjαk 〈yj , yk〉 =

∣∣∣∣∣∣
n∑

j,k=1

αjαk 〈yj , yk〉

∣∣∣∣∣∣ ≤
n∑

j,k=1

|αjαk| |〈yj , yk〉|

≤

 n∑
j,k=1

|〈yj , yk〉|r
1/r n∑

j,k=1

|αjαk|q
1/q

=

 n∑
j,k=1

|〈yj , yk〉|r
1/r n∑

j,k=1

|αj |q |αk|q
1/q

=

 n∑
j,k=1

|〈yj , yk〉|r
1/r n∑

j=1

|αj |q
2/q

,

for any x, y1, ..., yn ∈ H and α1, ..., αn ∈ C, which proves (3.13). �
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Corollary 3.5. With the assumptions of Theorem 3.4 and for p ≥ 1 we have

n∑
j=1

|〈x, yj〉|p ≤
1

2

‖x‖2 +

 n∑
j,k=1

|〈yj , yk〉|r
1/r n∑

j=1

|〈x, yj〉|q(p−1)
2/q

 (3.14)

for any x, y1, ..., yn ∈ H. In particular, we have

n∑
j=1

|〈x, yj〉| ≤
1

2

‖x‖2 + n2/q

 n∑
j,k=1

|〈yj , yk〉|r
1/r

 (3.15)

and

n∑
j=1

|〈x, yj〉|2 ≤
1

2

‖x‖2 +

 n∑
j,k=1

|〈yj , yk〉|r
1/r n∑

j=1

|〈x, yj〉|2q
2/q

 . (3.16)

We observe that, by Schwarz’s inequality we get for p ≥ 1
n∑

j=1

|〈x, yj〉|p (3.17)

≤ 1

2
‖x‖2

1 + ‖x‖2(p−2)
 n∑

j,k=1

|〈yj , yk〉|r
1/r n∑

j=1

‖yj‖q(p−1)
2/q

 ,
for any x, y1, ..., yn ∈ H, where r, q > 1 with 1

r + 1
q = 1.

For p = 2, we get

n∑
j=1

|〈x, yj〉|2 ≤
1

2
‖x‖2

1 +

 n∑
j,k=1

|〈yj , yk〉|r
1/r n∑

j=1

‖yj‖q
2/q

 , (3.18)

for any x, y1, ..., yn ∈ H, where r, q > 1 with 1
r + 1

q = 1.

We observe that if y1, ..., yn ∈ H are such that n∑
j,k=1

|〈yj , yk〉|r
1/r n∑

j=1

‖yj‖q
2/q

≤ 1,

where r, q > 1 with 1
r + 1

q = 1, then (3.18) provides a refinement of Bessel’s inequality.
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[11] Dragomir, S.S., Mond, B., Pečarić, J.E., Some remarks on Bessel’s inequality in inner
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Nonlinear systems with a partial Nash type
equilibrium

Andrei Stan

Abstract. In this paper fixed point arguments and a critical point technique are
combined leading to hybrid existence results for a system of three operator equa-
tions where only two of the equations have a variational structure. The compo-
nents of the solution which are associated to the equations having a variational
form represent a Nash-type equilibrium of the corresponding energy function-
als. The result is achieved by an iterative scheme based on Ekeland’s variational
principle.

Mathematics Subject Classification (2010): 47H10, 47J30, 34C25.

Keywords: Nash-type equilibrium, Perov contraction, Ekeland variational princi-
ple, periodic solution.

1. Introduction

Many nonlinear equations can be seen as a problem of fixed point N (u) = u,
where N is a certain operator. One says that the equation has a variational form if
it is equivalent with a critical point equation E′(u) = 0. In the paper [7], R. Precup
studied systems of the form {

N1(u, v) = u

N2(u, v) = v
(1.1)

in a Hilbert space, where each of the equations has a variational form, i.e. there are
two C1 functionals E1 and E2 such that

E11 (u, v) = u−N1 (u, v) and

E22 (u, v) = v −N2 (u, v) ,

where E11 and E22 are the partial Fréchet derivatives of E1 and E2 with respect to
u and v, respectively. Sufficient conditions have been established for that the system
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admits a solution which is a Nash type equilibrium for the functionals E1 and E2,
that is

E1(u, v) = inf
u
E(·, v),

E2(u, v) = inf
v
E(u, ·).

Related results are obtained in [1].
The concept of a Nash equilibrium goes back to 1838 when Antoine Augustin

Cournot [3] used it in his economics studies about the best output of a firm depend-
ing on the outputs of the other firms. The existence of such an equilibrium in the
framework of the game theory was proved later in 1951 by John Forbes Nash Jr [5] by
using Brouwer’s fixed point theorem. Now the concept is also used outside economics
to systems of variational equations. From a physical point of view, a Nash-type equi-
librium (u, v) for two interconnected mechanisms whose energies are E1, E2 is such
that the motion of each mechanism is conformed to the minimum energy principle by
taking into account the motion of the other.

Also, in the paper [2], a system of type (1.1) is studied under the assumption
that only one of the equations, say the second one, has a variational form, and the
authors prove the existence of a solution (u, v) such that v minimizes E (u, ·) , where E
is the energy functional associated with the second equation. For the proof, they use
a hybrid fixed point - critical point method based on Banach’s contraction theorem
and Ekeland’s variational principle.

The aim of this paper is to combine the techniques used in [7] and [2], for the
study of a system of three equations

N1(u, v, w) = u

N2(u, v, w) = v

N3(u, v, w) = w,

where only the last two equations have a variational form. Our goal is to obtain a
solution (u, v, w) such that the pair (v, w) is a Nash type equilibrium for the two
functionals associated to the last two equations.

2. Main result

Let (X1, d) be a complete metric space and (X2, | · |2), (X3, | · |3) be two real
Hilbert spaces which are identified with their duals. Denote X := X1 ×X2 ×X3. Let
Ni : X → Xi (i = 1, 2, 3) be continuous and assume that N2, N3 have a variational
structure, i.e. there exist functionals E2, E3 : X → R such that E2(u, ·, w) is Fréchet
differentiable for every (u,w) ∈ X1×X3, E3(u, v, ·) is Fréchet differentiable for every
(u, v) ∈ X1 ×X2 and

E22(u, v, w) = v −N2(u, v, w),

E33(u, v, w) = w −N3(u, v, w).

Here E22, E33 are the Fréchet derivatives of E2(u, ·, w) and E3(u, v, ·), respectively.
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We also assume that the operator N : X → X,

N(u, v, w) = (N1(u, v, w), N2(u, v, w), N3(u, v, w))

is a Perov contraction, i.e. there is a square matrix A = [aij ]1≤i,j≤3 ∈M3(R+) such
that Ak tends to the zero matrix 03 as k → ∞ and the following vector Lipschitz
condition is satisfiedd (N1(u, v, w), N1(u, v, w))

|N2(u, v, w)−N2(u, v, w)|2
|N3(u, v, w)−N3(u, v, w)|3

 ≤ A
 d(u, u)
|v − v|2
|w − w|3

 (2.1)

for every (u, v, w) ∈ X.

Note that the for a square matrix A ∈Mn(R+), condition Ak tends to the zero
matrix 0n as k →∞ is equivalent (see [6]) to each one of the following properties:

(i) The spectral radius of A is less than one;

(ii) In −A is invertible and (In −A)−1 ∈Mn(R+);

(iii) In −A is invertible and In +M +M2 + ... = (In −A)
−1
.

Here In stands for the unit matrix in Mn(R).

The main result is the following theorem.

Theorem 2.1. Assume that the above conditions are satisfied. Moreover assume that
E2(u, ·, w), E3(u, v, ·) are bounded from below for every (u, v, w) ∈ X and that are
constants R2, R3, a > 0 such that

E2(u, v, w) ≥ inf
X2

E2(u, ·, w) + a for all (u,w) ∈ X1 ×X3 and |v|2 ≥ R2, (2.2)

E3(u, v, w) ≥ inf
X3

E3(u, v, ·) + a for all (u, v) ∈ X1 ×X2 and |w|3 ≥ R3. (2.3)

Then the unique fixed point (u∗, v∗, w∗) ensured by the Perov contraction theorem
has the property that (v∗, w∗) is a Nash type equilibrium for the pair of functionals
(E2, E3), i.e.

E2(u∗, v∗, w∗) = inf
X2

E2(u∗, ·, w∗),

E3(u∗, v∗, w∗) = inf
X3

E3(u∗, v∗, ·).

For the proof we need alternatively one of the following two auxiliary results.

Lemma 2.2. Let (Ak,p)k≥1 , (Bk,p)k≥1 be two sequences of vectors in Rn
+ (column

vectors) depending on a parameter p, such that

Ak,p ≤MAk−1,p +Bk,p

for all k and p, where M ∈ Mn(R+) is a matrix with spectral radius less than one.
If the sequence (Ak,p)k≥1 is bounded uniformly with respect to p and Bk,p → 0n as

k →∞ uniformly with respect to p, then Ak,p → 0n as k →∞ uniformly with respect
to p.
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Proof. Since Bk,p → 0n as k →∞ uniformly with respect to p, for any fixed column
vector ε ∈ (0,∞)

n
, we can find k1 independent of p such that Bk,p ≤ ε for all k ≥ k1

and all p. Then, for k > k1 we have

Ak,p ≤ MAk−1,p + ε ≤M2Ak−2,p + ε+Mε

≤ ...

≤ Mk−k1Ak1,p + ε(In +M + ...Mk−k1)

≤ Mk−k1Ak1,p + ε (In −M)
−1
.

The conclusion now follows since (Ak,p)k≥1 is bounded uniformly with respect to p

and Mk−k1 → 0n as k →∞. �

Lemma 2.3. Let (xk,p)k≥1 , (yk,p)k≥1 be two sequences of nonnegative real numbers

depending on a parameter p which are bounded uniformly with respect to p. Assume
that for all k and p,

axk,p + byk,p ≤ a′xk−1,p + b′yk−1,p + qk,p

where 0 < a′ < a, 0 ≤ b′ < b, b′

a′ <
b
a , and (qk,p)k≥1 is a sequence of positive real

numbers converging to zero uniformly with respect to p. Then xk,p → 0 and yk,p → 0
as k →∞ uniformly with respect to p.

Proof. By the uniform convergence to zero of qk,p , taking ε > 0, we can find k1
independent of p, such that

qk,p

a < ε for all k > k1. Consider k > k1 and assume
a > b. Then

xk,p +
b

a
yk,p ≤

a′

a

(
xk−1,p +

b′

a′
yk−1,p

)
+ ε ≤ a′

a

(
xk−1,p +

b

a
yk−1,p

)
+ ε

≤
(
a′

a

)2(
xk−2,p +

b′

a′
yk−2,p

)
+ ε

(
a′

a
+ 1

)
· ··

≤
(
a′

a

)k−k1
(
xk1,p +

b′

a′
yk1,p

)
+ ε

((
a′

a

)k−k1−1

+ ...+ 1

)

≤
(
a′

a

)k−k1
(
xk1,p +

b′

a′
yk1,p

)
+ ε

1

1− a′

a

.

Taking into account that a′

a < 1 and the boundedness of xk,p and yk,p, it is clear

that xk,p + b
ayk,p → 0 as k → ∞ uniformly with respect to p. This clearly gives the

conclusion. The case a < b can be treated analogously. �

Proof of the theorem. First note that since the spectral radius of matrix A is less than
one, the elements aii of the main diagonal are less than one. Consequently, for every
(v, w) ∈ X2 ×X3, the operator N1 (·, v, w) : X1 → X1 is a contraction. We now use
an iterative procedure to construct an approximating sequence (uk, vk, wk). We start
with some fixed element (v0, w0) ∈ X2 ×X3. Then, by Banach contraction principle,
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there exists u1 ∈ X1 such that N1(u1, v0, w0) = u1. Next, for fixed (u1, w0) , according
to Ekeland variational principle, there is v1 ∈ X2 such that

E2(u1, v1, w0) ≤ inf
X2

E2(u1, ·, w0) + 1, |E22(u1, v1, w0)|2 ≤ 1.

Using again Ekeland variational principle for fixed (u1, v1), there is w1 ∈ X3 with

E3(u1, v1, w1) ≤ inf
X3

E2(u1, v1, ·) + 1, |E33(u1, v1, w1)|3 ≤ 1.

At step k, we find a triple (uk, vk, wk) having the following proprieties:

N1(uk, vk−1, wk−1) = uk, (2.4)

E2(uk, vk, wk−1) ≤ inf
X2

E2(uk, ·, wk−1) +
1

k
, |E22(uk, vk, wk−1)|2 ≤

1

k
,

E3(uk, vk, wk) ≤ inf
X3

E3(uk, vk, ·) +
1

k
, |E33(uk, vk, wk]|3 ≤

1

k
.

Our next task is to prove that the sequences uk, vk, wk are Cauchy, which will ensure
their convergence. Since N1(uk, vk−1, wk−1) = uk, we have

d(uk+p, uk) = d(N1(uk+p, vk+p−1, wk+p−1), N1(uk, vk−1, wk−1))

≤ a11d(uk+p, uk) + a12|vk+p−1 − vk−1|2 + a13|wk+p−1 − wk−1|3,
whence

d(uk+p, uk) ≤ a12
1− a11

|vk+p−1 − vk−1|2 +
a13

1− a11
|wk+p−1 − wk−1|3.

For the sequence (vk) and (wk) we have

|vk+p − vk|2 ≤ | −N2(uk+p, vk+p, wk+p−1) + vk+p − vk +N2(uk, vk, wk−1)|2 (2.5)

+ |N2(uk+p, vk+p, wk+p−1)−N2(uk, vk, wk−1)|2,

|wk+p − wk|3 ≤ | −N3(uk+p, vk+p, wk+p) + wk+p − wk +N3(uk, vk, wk)|3 (2.6)

+ |N3(uk+p, vk+p, wk+p)−N3(uk, vk, wk)|3.
Denote

βk,p := | −N2(uk+p, vk+p, wk+p−1) + vk+p − vk +N2(uk, vk, wk−1)|2
= |E22(uk+p, vk+p, wk+p−1)− E22(uk, vk, wk−1))|2,

γk,p := | −N3(uk+p, vk+p, wk+p) + wk+p − wk +N3(uk, vk, wk)|3
= |E33(uk+p, vk+p, wk+p)− E33(uk, vk, wk−))|3,

xk,p := d(uu+p, uk), yk,p := |vk+p − vk|2, zk,p := |wk+p − wk|3.

With these notations, using (2.5), (2.6) and the Perov contraction condition, we obtain

xk,p ≤ a11xk,p + a12yk−1,p + a13zk−1,p, (2.7)

yk,p ≤ a21xk,p + a22yk,p + a23zk−1,p + βk,p, (2.8)

zk,p ≤ a31xk,p + a32yk,p + a33zk,p + γk,p. (2.9)

For the continuation of the proof we may use either Lemma 2.2 or Lemma 2.3.
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1) Use of Lemma 2.2. Letting

A′ =

a11 0 0
a21 a22 0
a31 a32 a33

 and A′′ = A−A′,

the following inequality holdsxk,pyk,p
zk,p

 ≤ A′
xk,pyk,p
zk,p

+A′′

xk−1,pyk−1,p
zk−1,p

+

 0
βk,p
γk,p

 . (2.10)

Note that if ρ(A) < 1, than also ρ(A′) < 1. Indeed, one clearly has A′k < Ak, and so
if Ak → 0 as k →∞, then A′k → 0 too.
Rewriting (2.10) as

(I −A′)

xk,pyk,p
zk,p

 ≤ A′′
xk−1,pyk−1,p
zk−1,p

+

 0
βk,p
γk,p


and using the fact that I −A′ is invertible and its inverse has positive entries, we can
multiply by (I −A′)−1 to obtainxk,pyk,p

zk,p

 ≤ (I −A′)−1A′′
xk−1,pyk−1,p
zk−1,p

+ (I −A′)−1
 0
βk,p
γk,p

 .
Observe that M := (I−A′)−1A′′ has the spectral radius less than one. To prove this,
it is enough to show that I −M is invertible with the inverse has nonegative entries.
Is clear that

M = (I −A′)−1A′′ = (I −A′)−1(A−A′) = (I −A′)−1(I −A′ +A− I)

= I − (I −A′)−1(I −A),

hence I −M = (I − A′)−1(I − A). Because (I − A′)−1 and I − A are invertible, by
taking Q := (I −A)−1(I −A′), we have Q(I −M) = (I −M)Q = I, hence I −M is
invertible and its inverse is Q. One has

Q = (I −A)−1(I −A′) = (I −A)−1(I −A+A′′) = I + (I −A)−1A′′

and since (I −A)−1A′′ and I are positive matrices, it follows that Q is also positive.
Therefore, the spectral radius of M is less than one.
From (2.2) and (2.3) we have that yk,p and zk,p are bounded uniformly with respect
to p. Because of this, is immediate that xk,p is also bounded uniformly with respect
to p. Moreover, it is clear that  0

βk,p
γk,p


converges to zero uniformly with respect to p. Applying Lemma 2.2 we obtain that
xk,p, yk,p, zk,p are convergent to zero uniformly with respect to p. Hence the sequences
uk, vk and wk are Cauchy as desired.
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2) Use of Lemma 2.3. The relations (2.7), (2.8), (2.9) can be rewritten under the
form

xk,p ≤ a11xk,p + a12yk,p + a13zk,p + a12(yk−1,p − yk,p) + a13(zk−1,p − zk,p),

yk,p ≤ a21xk,p + a22yk,p + a23zk,p + βk,p + a23(zk−1,p − zk,p),

zk,p ≤ a31xk,p + a32yk,p + a33zk,p + γk,p,

which can be put under the vector formxk,pyk,p
zk,p

 ≤ A
xk,pyk,p
zk,p

+

a12(yk−1,p − yk,p) + a13(zk−1,p − zk,p)
βk,p + a23(zk−1,p − zk,p)

γk,p

 .
Denoting (I −A)−1 = C = [cij ]1≤i,j≤3 we havexk,pyk,p

zk,p

 ≤ C
a12(yk−1,p − yk,p) + a13(zk−1,p − zk,p)

βk,p + a23(zk−1,p − zk,p)
γk,p

 ,
whence

yk,p ≤ c21a12(yk−1,p − yk,p) + c21a13(zk−1,p − zk,p) (2.11)

+ c22a23(zk−1,p − zk,p) + c22βk,p + c33γk,p,

zk,p ≤ c31a12(yk−1,p − yk,p) + c31a13(zk−1,p − wk,p) (2.12)

+ c32a23(zk−1,p − zk,p) + c32βk,p + c33γk,p.

We make the following notations

a′ = c12a13 + c22a2,3 + c31a13 + c32a23,

b′ = c21a12 + c31a12.

Adding (2.11) and (2.12) we obtain

yk,p + zk,p ≤ a′yk−1,p−a′yk,p + b′zk−1,p− b′zk,p + c22βk,p + c33γk,p + c32βk,p + c33γk,p,

whence, with the notations a = 1 + a′, b = 1 + b′ and

qk,p := c22βk,p + c33γk,p + c32βk,p + c33γk,p,

one has
ayk,p + bzk,p ≤ a′yk−1,p + b′zk−1,p + qk,p.

Note that the sequence qk,p := c22βk,p + c33γk,p + c32βk,p + c33γk,p converges to zero
as k → ∞ uniformly with respect to p, and that from (2.2) and (2.3), the sequences
(yk,p)k≥1 , (zk,p)k≥1 are bounded uniformly with respect to p. Also note that if b′ < a′,

then b′

a′ <
b
a and from Lemma 2.3 we obtain that yk,p and zk,p converge to zero as

k → ∞ uniformly with respect to p. Similarly, if a′ < b′, then we obtain the same
conclusion if we apply Lemma 2.3 by interchanging a with b and yk,p with zk,p. Next,
from (2.7) we deduce that xk,p → 0 as k → ∞ uniformly with respect to p, and as
above, that the sequences uk, vk and wk are Cauchy as desired.
Finally the limits u∗, v∗, w∗ of the sequences uk, vk and wk give the desired solution
of the system after passing to the limit in (2.4). �
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3. Application

Consider the system
−u′′ + a21u = f1(t, u(t), v(t), w(t), u′(t))

−v′′ + a22v = ∇yf2(t, u(t), v(t), w(t))

−w′′ + a23w = ∇zf3(t, u(t), v(t), w(t))

(3.1)

with the periodic conditions

u(0)− u(T ) = u′(0)− u′(T ) = 0,

v(0)− v(T ) = v′(0)− v′(T ) = 0,

w(0)− w(T ) = w′(0)− w′(T ) = 0,

where f2, f3 : (0, T )×Rk1×Rk2×Rk3 → R and f1 : (0, T )×Rk1×Rk2×Rk3×Rk1 → Rk1 .
We will assume that f1, f2, f3,∇yf2 and ∇zf3 are L1- Carathéodory functions.

For i = 1, 2, 3, let H1
p

(
0, T ;Rki

)
be the closure in H1

(
0, T ;Rki

)
of the space

{u ∈ C1
(
[0, T ] ;Rki

)
: u (0) = u (T ) , u′ (0) = u′ (T )}. We shall endow this space with

the inner product

(u, v)i := (u′, v′)L2(0,T ;Rki) + a2i (u, v)L2(0,T ;Rki)

and the corresponding norm

|u|i =
(
|u′|2L2(0,T ;Rki) + a2i |u|

2
L2(0,T ;Rki)

) 1
2

.

Also we consider the operator Ji : (H1
p

(
0, T ;Rki

)
)′ → H1

p

(
0, T ;Rki

)
given by

Jih = uh
(
h ∈ (H1

p

(
0, T ;Rki

)
)′
)
, where uh ∈ H1

p

(
0, T ;Rki

)
is the weak solution of

the problem {
−u′′ + a2iu = h on (0, T )

u(0)− u(T ) = u′(0)− u′(T ) = 0
(3.2)

For every h ∈ L2
(
[0, T ];Rki

)
we have

|Jih|2i = (Jih, Jih)i = (h, Jih)L2 ≤ |h|L2 |Jih|L2 ≤ 1

ai
|h|L2 |Jih|i, (3.3)

hence

|J1h1|i ≤
1

ai
|h|L2 .

Associate to the second and the third equation from (3.1) the functionals

E2, E3 : H1
p (0, T ;Rk1)×H1

p (0, T ;Rk2)×H1
p (0, T ;Rk3)→ R

defined by

E2(u, v, w) =
1

2
|v|22 −

∫ T

0

f2(t, u(t), v(t), w(t))dt

and

E3(u, v, w) =
1

2
|w|23 −

∫ T

0

f3(t, u(t), v(t), w(t))dt.
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According to [4, Theorem 1.4] we have

E22(u, v, w) = L2v −∇yf2(·, u, v, w),

or equivalently, for any ϕ ∈ H1
p (0, T ;Rk2),

(E22(u, v, w), ϕ) = (L2v, ϕ)− (∇yf2(u, v, w, u′, w′), ϕ)

= (v − J2∇yf2, ϕ)2.

Hence E22(u, v, w) = v − J2∇yf2. Similarly,

E33(u, v, w) = w − J3∇zf3.

On the other hand, system (3.1) is equivalent to the following fixed point equation
N1(u, v, w) = u

N2(u, v, w) = v

N3(u, v, w) = w

where

N1(u, v, w) = J1f1(·, u, v, w, u′),
N2(u, v, w) = J2∇yf2(·, u, v, w),

N3(u, v, w) = J3∇zf3(·, u, v, w).

Related to f1, f2, f3 we assume that the following Lipschitz conditions hold for some
constants aij :

|f1(t, x1, ..., x4)− f1(t, x1, ..., x4)| ≤
4∑

j=1

a1j |xj − xj |, (3.4)

|∇yf2(t, x1, x2, x3)−∇yf2(t, x1, x2, x3)| ≤
3∑

j=1

a2j |xj − xj |, (3.5)

|∇zf3(t, x1, x2, x3)−∇zf3(x1, x2, x3)| ≤
3∑

j=1

a3j |xj − xj |. (3.6)

Then

|N1(u, v, w)−N1(u, v, w)|1 = |J1 (f1(·, u, v, w, u′)− f1(·, u, v, w, u′)) |1

≤ 1

a1
|f1(·, u, v, w, u′)− f1(·, u, v, w, u′)|L2

≤ 1

a1

(∫ T

0

(a11|u(t)− u(t)|+ a14|u′(t)− u′(t)|)2dt

) 1
2

+
a12
a1
|v − v|L2 +

a13
a1
|w − w|L2

≤ 1

a1

((
a11
a1

)2

+ a214

) 1
2

|u− u|1 +
a12
a1
|v − v|L2 +

a13
a1
|w − w|L2 .
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Is clear that |v − v|L2 ≤ 1
a2
|v − v|2 and |w − w|L2 ≤ 1

a3
|w − w|3. Hence, the above

inequality becomes

|N1(u, v, w)−N1(u, v, w)|1

≤ 1

a1

((
a11
a1

)2

+ a214

) 1
2

|u− u|1 +
a12
a1a2

|v − v|2 +
a13
a1a3

|w − w|3.

For N2(u, v, w) we obtain the following estimate

|N2(u, v, w)−N2(u, v, w)|2 ≤ |J2∇yf2(·, u, v, w)−∇yf2(·, u, v, w)|2

≤ 1

a2
|∇yf2(·, u, v, w)−∇yf2(·, u, v, w)|L2

≤ a21
a2
|u− u|L2 +

a22
a2
|v − v|L2 +

a23
a2
|w − w|L2

≤ a21
a2a1

|u− u|1 +
a22
a22
|v − v|2 +

a23
a2a3

|w − w|3.

Similarly

|N3(u, v, w)−N3(u, v, w)|3 ≤
a31
a3a1

|u− u|1 +
a32
a2a3

|v − v|2 +
a33
a23
|w − w|3.

Therefore, the condition related to (2.1) holds provided that the spectral radius of
the matrix

A =


1
a1

((
a11

a1

)2
+ a214

) 1
2

a12

a1a2

a13

a1a3

a21

a2a1

a22

a2
2

a23

a2a3
a31

a3a1

a32

a2a3

a33

a2
3

 (3.7)

is less than one.
In what follows we are trying to establish conditions for E2(u, ·, w) and E3(u, v, ·) to
be bounded from below. To this aim, assume that for i ∈ {2, 3} and j ∈ {1, 2, 3, 4},
there are σij ∈ L1(0, T ;R+) and γi ∈ R with γ2i <

a2
i

2 such that

f2(t, x, y, z) ≤ γ22 |y|2 + σ21(t)|x|+ σ22(t)|y|+ σ23(t)|z|+ σ24(t) (3.8)

and

f3(t, x, y, z) ≤ γ23 |z|2 + σ31(t)|x|+ σ32(t)|y|+ σ33(t)|z|+ σ34(t). (3.9)

Then taking into account the continuous embedding of H1
p

(
0, T ;Rki

)
into

C
(
[0, T ] ;Rki

)
, we obtain

E2(u, v, w) =

∫ T

0

(
1

2
|v′(t)|2 +

a22
2
|v2(t)| − f2(t, u(t), v(t), w(t))

)
dt

≥
∫ T

0

(
1

2
|v′(t)|2+

1

2
(a22−2γ22)v2(t)−σ21(t)|u(t)|−σ22(t)|v(t)|−σ23(t)|w(t)|−σ24(t)

)
dt

≥
(

1− 2γ22
a22

)
|v|22 − C21|u|1 − C22|v|2 − C23 |w|3 − C24
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for some constants C2j , j − 1, 2, 3, 4.
This shows us that E2(u, v, w) → ∞ as |v|2 → ∞. Similarly, E3 (u, v, w) → ∞ as
|w|3 → ∞. Thus the functionals E2(u, ·, w) and E3(u, v, ·) are coercive. Then, as in
[7, Lemma 4.1], these functionals are bounded from bellow.
Finally, assume that for i ∈ {2, 3}, there are L1-Carathéodory functions
gi1, gi2 : (0, T )× Rki → R of coercive type such that

g21(t, y) ≤ f2(t, x, y, z) ≤ g22(t, y) (3.10)

and

g31(t, z) ≤ f3(t, x, y, z) ≤ g32(t, z) (3.11)

for all for all (x, y, z) ∈ Rk1 × Rk2 × Rk3 and t ∈ (0, T ) . Here, for example, by the
coercivity of g21 (t, y) we mean that

1

2
|v|22 −

∫ T

0

g21 (t, v) dt→∞ as |v|2 →∞.

Fix a > 0. Using the above assumption one has

inf
v∈H1

p

E2(u, ·, w) + a ≤ inf
v∈H1

p

(
1

2
|v|22 −

∫ T

0

g21 (t, v) dt

)
+ a.

By the coercivity of g22, there exists R2 > 0 such that

inf
v∈H1

p

(
1

2
|v|22 −

∫ T

0

g21 (t, v) dt

)
+ a ≤ 1

2
|v|22 −

∫ T

0

g22 (t, v) dt,

for all |v|2 ≥ R2. Now, for |v|2 ≥ R2 and all (u,w) ∈ H1
p (0, T ;Rk1) ×H1

p (0, T ;Rk3),
using again (3.10) we obtain

E2 (u, v, w) ≥ 1

2
|v|22 −

∫ T

0

g22 (t, v) dt ≥ inf
v∈H1

p

E2(u, ·, w) + a,

as desired. The similar inequality for E3 can be established analogously.
Under the assumptions (3.4), (3.5),(3.6), (3.8), (3.9), (3.10), (3.11) and if the spectral
radius of matrix (3.7) is less than one, then all the hypotheses of Theorem 2.1 are
fulfilled.
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