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Gheorghe Moroşanu – On the occasion of his 70th
birthday

Adrian Petruşel

Gheorghe Moroşanu was born on April 30, 1950, in Darabani, Botoşani County,
Romania. After a 12-year period of education, from primary to high school (1957-
1969), in 1969, Gheorghe Moroşanu started studying Mathematics at ”Alexandru
Ioan Cuza” University in Iaşi, Romania. In 1981, under the joint supervision of Adolf
Haimovici and Viorel Barbu, he obtained his Ph.D. in Mathematics with a dissertation
entitled Qualitative Problems for Nonlinear Differential Equations of Accretive Type
in Banach Spaces.

Regarding his teaching or research positions, we note that Gheorghe Moroşanu
was, between 1991 and 2004, Full Professor of Mathematics at ”Alexandru Ioan Cuza”
University in Iaşi, after previously holding positions (since 1975) at the same univer-
sity. Between 2001 and 2002, Professor Moroşanu held a research position at the
University of Stuttgart, Germany. In 2002, Professor Moroşanu joined the Depart-
ment of Mathematics and its Applications, Central European University, Budapest,
Hungary. He served this institution from 2002 to 2020, acting as Head of Department
between 2004 and 2012. Since 2015, Gheorghe Moroşanu has been Invited Professor
of the Babeş-Bolyai University in Cluj-Napoca. He was also a visiting professor at the
University of Jyväskylä, Finland (1989) and at Ohio University, Athens, Ohio, U.S.A.
(1998 and 2000).

Professor Moroşanu was a prolific Ph.D. supervisor; the following individu-
als (in alphabetical order) have completed their Ph.D. theses under his supervi-
sion or co-supervision: Muhammad Ahsan (2013), Panait Anghel (1999), Narcisa
Apreutesei (1999), Luminiţa Barbu (1998), Oganeditse A. Boikanyo (2011), Christian
Coclici (1998), Nicuşor Costea (2015), Paul Georgescu (2008), Tihomir Gyulov (2010),
Alexandru Kristály (2010), Gabriela Lorelai Liţcanu (2001), Rodica Luca (1995), Mi-
hai Mihăilescu (2010), Viorica Venera Motreanu (2003), and Andras Sereny (2008).

Concerning his rich teaching and research activities, the main fields of interest
of Professor Gheorghe Moroşanu were: Ordinary and Partial Differential Equations,
Difference Equations, Calculus of Variations, Evolution Equations in Banach Spaces,
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Fluid Mechanics, Singular Perturbation Theory, and various topics in Applied Math-
ematics. Gheorghe Moroşanu is the author or co-author of 16 books (monographs
and textbooks) as well as of more than 150 research papers in top-ranked journals
or proceedings. Gheorghe Moroşanu was director or (main) investigator for several
research grants in Romania and abroad.

His research achievements have had a great impact on the mathematical commu-
nity; his publications have collected until now over 1500 citations, while the current
Google Scholar H-index of Gheorghe Moroşanu is 19. In 1983, he was awarded the
Gheorghe Lazar Prize of the Romanian Academy in recognition of his outstanding
contributions to the theory of hyperbolic partial differential equations. Along the
same lines, Professor Gheorghe Moroşanu is Doctor Honoris Causa of Ovidius Uni-
versity in Constanţa and of Craiova University as well as Professor Honoris Causa of
Babeş-Bolyai University, Cluj-Napoca, Romania. In 2020, he became a corresponding
member of the Academy of Romanian Scientists, Romania. During all these years,
Professor Moroşanu visited many institutions for research purposes, such as: Interna-
tional Centre for Theoretical Physics Trieste, University of Jyväskylä, University of
Stuttgart, Ohio University, Athens, Ohio, Technical University München, University
of Rousse, Babeş-Bolyai University Cluj-Napoca, University of Iowa, Ovidius Univer-
sity in Constanţa, Craiova University, Simion Stoilow Institute of Mathematics of the
Romanian Academy, and many others. He cooperated with many researchers on var-
ious topics within his areas of interest or neighboring areas and disciplines, including
biology, chemistry, economics, engineering, mechanics and physics.

The authors included in this issue are happy and honored to dedicate their
papers to Professor Gheorghe Moroşanu, for his long and outstanding career and for
the remarkable achievements in the field of mathematics.

The editors of the journal would like to thank all authors who contributed to
this special issue and the reviewers who kindly accepted the invitation to provide
their expertise and gave constructive comments.

Adrian Petruşel
Babeş-Bolyai University, Faculty of Mathematics and Computer Science
Kogălniceanu Str. no. 1, 400084 Cluj-Napoca, Romania
e-mail: petrusel@math.ubbcluj.ro



Stud. Univ. Babeş-Bolyai Math. 66(2021), No. 1, 5–15
DOI: 10.24193/subbmath.2021.1.01

Applications of implicit parametrizations

Dan Tiba

Dedicated to Professor Gheorghe Moroşanu on the occasion of his 70th anniversary.

Abstract. We review several applications of the implicit parametrization theorem
in optimization. In nonlinear programming, we discuss both new forms, with less
multipliers, of the known optimality conditions, and new algorithms of global
type. For optimal control problems, we analyze the case of mixed equality con-
straints and indicate an algorithm, while in shape optimization problems the
emphasis is on the new penalization approach.

Mathematics Subject Classification (2010): 34A34, 49K21, 49Q10, 26B10.

Keywords: Implicit functions and implicit parametrizations, optimization, opti-
mal control, shape optimization.

1. Introduction

In several papers [17, 10, 19], a constructive extension was proposed for the
classical implicit functions theorem, involving implicit parametrizations in finite di-
mensional spaces. While it is intuitive that implicit parametrizations offer, in general,
a more advantageous representation of implicitly defined manifolds, the representation
is even global in some important cases. For instance, in dimension two, in the general
setting of the Poincaré-Bendixson theorem [4, 14], the implicit parametrization that
we construct, is always global [18]. In dimension three, we quote the example of the
torus, from [10]. In fact, this is an important question for the applications: when have
the implicit parametrizations a global character, also in dimension three?

This new representation of manifolds (of arbitrary dimension and codimension)
was intended for applications in geometric optimization problems and we quote [18,
7, 21, 22] for recent results in this respect. It turns out that it is also useful in
mathematical programming and in optimal control as shown in [23, 20, 25].

In this paper, we briefly review such results and their possible extensions. The
Section 2 is devoted to the implicit parametrization question. In Section 3, applications
in nonlinear programming and optimal control are briefly discussed. The last section
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includes some relevant properties obtained in shape optimization and their possible
generalizations.

2. Implicit parametrizations

We consider a system of l < d equalities defined in some bounded open set
Ω ⊂ Rd, with l, d natural numbers:

F1(x) = F2(x) = . . . = Fl(x) = 0, x ∈ Ω. (2.1)

Above we assume that F1, F2, . . . , Fl ∈ C1(Ω) and there is x0 ∈ Ω such that
(2.1) is satisfied and

D(F1, F2, . . . , Fl)

D(x1, x2, . . . , xl)
6= 0 in x0 = (x0

1, x
0
2, . . . , x

0
d). (2.2)

Notice that (2.2) remains valid on a neighbourhood V of x0, V ⊂ Ω. In V , we
define the linear algebraic system

v(x) · ∇Fj(x) = 0, j = 1, l, (2.3)

where the unknown vector v(x) ∈ Rd.
It is known that (2.1), under condition (2.2), defines a d−l dimensional manifold

contained in Ω and ∇F1(x),∇F2(x), . . . ,∇Fl(x) are a basis in the normal space at x,
to this manifold.

Therefore, any solution to (2.3) is a vector in the tangent space to this manifold
and we fix v1, v2, . . . , vd−l as continuous (in V ) independent solutions of (2.3) that
is a basis in the tangent space to the manifold. The choice of v1, v2, . . . , vd−l is not
unique [19].

We associate to them a system of nonlinear partial derivatives of order one:

∂y1(t1)

∂t1
= v1(y1(t1)), t1 ∈ I1 ⊂ R, y1(0) = x0; (2.4)

∂y2(t1, t2)

∂t2
= v(y2(t1, t2)), t2 ∈ I2(t1) ⊂ R, y2(t1, 0) = y1(t1); (2.5)

. . .

. . .

∂yd−l(t1, t2, . . . , td−l)

∂td−l
= vd−l(yd−l(t1, t2, . . . , td−l)),

td−l ∈ Id−l(t1, t2, . . . , td−l),

yd−l(t1, t2, . . . , td−l−1, 0) = yd−l−1(t1, t2, . . . , td−l−1).

(2.6)

The system (2.4) - (2.6) has an iterated character.
Each equation has one supplementary independent variable and the initial condi-
tion corresponding to it is given by the solution of the previous equation (by x0 in
the first one). Moreover, each equation includes just one derivative, therefore (2.4) -
(2.6) is in fact a system of d− l ordinary differential subsystems, each of dimension d.
By I1, I2(t1), . . . , Id−l(t1, t2, . . . , td−l) we denote the corresponding existence intervals,
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around the origin. The existence is ensured by the Peano theorem, due to the con-
tinuity of v1, v2, . . . , vd−l. The independent variables not involved in derivation, play
the role of parameters and they enter just via the initial condition. The numerical
solution via Matlab is standard and easy.

Furthermore, each of the system (2.4), (2.5), . . . , (2.6) solves an inverse problem:
given F1, F2, . . . , Fl ∈ C1(Ω) with conditions (2.1), (2.2), the mentioned systems are
constructed in such a way that F1, F2, . . . , Fl are prime integrals for any of them (see
[19]).

Theorem 2.1. For every k = 1, l, j = 1, d− l, we have

Fk(yj(t1, t2, . . . , tj)) = 0, (2.7)

for any (t1, t2, . . . , tj) ∈ I1 × I2(t1)× . . .× Ij(t1, t2, . . . , tj−1).

Due to the conservation property in (2.7) and to the examples in [17], [10], we
call such systems to be of Hamiltonian type. They have unexpected properties.

Theorem 2.2. Under condition (2.2), each system has the uniqueness property in V ,
the intervals I2(t1), . . . , Id−l(t1, t2, . . . , td−l−1) may be chosen independently of the
parameters and the unique solutions of (2.4), (2.5), . . . , (2.6) are of class C1 in each
of their arguments and

∂yd−l
∂tk

(t1, t2, . . . , td−l) = vk(yd−l(t1, . . . , td−l)), k = 1, d− l. (2.8)

Relation (2.8) is immediately extended to y1, . . . , yd−l−1 due to the initial con-
ditions in (2.4), (2.5), . . . , (2.6).

The most important property obtained via (2.4), (2.5), . . . , (2.6) is the following.

Theorem 2.3. Under the above assumptions, the mapping

yd−l : I1 × I2 × . . .× Id−l → Rd

is regular and one-to-one on its image.

That is, yd−l gives a parametrization of the manifold (2.1) around x. In [19], it is
also shown that the classical implicit functions theorem may be obtained as well as a
special case of the above constructive approach. However, as we have already argued,
parametrizations offer a more complete description of the manifold.

We also recall that the classical hypothesis (2.2) may be dropped and a gener-
alized solution of the system (2.1) may be introduced and studied according to [17],
[19].

In dimension two, the iterated system (2.4), (2.5), . . . , (2.6) becomes the simplest
Hamiltonian system associated to some g ∈ C1(Ω), a new notation of F1, such that
g(x0) = 0, ∇g(x0) 6= 0, x0 ∈ Ω ⊂ R2, which correspond to the conditions (2.1), (2.2):

x′1(t) = − ∂g

∂x2
(x1(t), x2(t1)), t ∈ I,

x′2(t) =
∂g

∂x1
(x1(t), x2(t1)), t ∈ I,

(2.9)

(x1(0), x2(0)) = x0. (2.10)
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Obviously, the Theorem 2.1, Theorem 2.2, Theorem 2.3 remain valid for the
system (2.9), (2.10), including relations (2.7), (2.8). We introduce now the hypothesis

|∇g(x1, x2)| > 0 on G = {(x1, x2) ∈ Ω; g(x1, x2) = 0}, (2.11)

which is a reformulation of the hypothesis in the Poincaré - Bendixson theorem [4],
[14], for (2.9), (2.10).

For convenience, we also assume that

g(x1, x2) > 0 on ∂Ω. (2.12)

Theorem 2.4. Under conditions (2.11), (2.12), G is a finite union of disjoint closed
curves, without self intersections and not intersecting ∂Ω, parametrized by the solution
of (2.9), (2.10), when some initial condition x0 is chosen on each of its components.

This result was proved in [18] and gives the global existence and the periodicity
of the solution for the Hamiltonian system (2.9), (2.10). It has an important role
in the analysis of shape optimization problems in dimension two, which is a case of
interest [18], [7].

Remark 2.5. The question of the extension of Thm. 2.4 to dimension three or higher,
is open, [10]. This is mainly due to the fact that the Poincare-Bendixson theorem
is valid just in dimension two. The extension (of interest in the setting of shape
optimization problems) refers to the iterated Hamiltonian systems (2.4), (2.5), . . . ,
(2.6) and consists of finding reasonable sufficient conditions ensuring that the obtained
manifold is closed and the representation via (2.4), (2.5), . . . , (2.6) is global.

3. Optimization and optimal control

We discuss here the general constrained nonlinear programming problem in Rd:

Min{h(x1, . . . , xd)} (3.1)

subject to (2.1) and to inequality constraints

Gj(x1, . . . , xd) ≤ 0, j = 1,m, (3.2)

where h, Fi, i = 1, l, Gj , j = 1,m are in C1(Rd) and the classical Mangasarian -
Fromowitz assumption, see [1], is valid.

That is (2.2) is assumed and there is e ∈ Rd such that

∇Fi(x0)e = 0, i = 1, l,∇Gj(x0)e < 0, j ∈ I(x0). (3.3)

Here, I(x0) is the set of indices j = 1,m of the active inequality constraints at x0.
By using Thm. 2.3 (the special case of implicit functions, when the parametrization
yd−l has the last d− l components given by the coordinates in Rd, see [19]) we obtain
the reduced optimization problem that involves just inequality constraints:

Min{h(y1
d−l, y

2
d−l, . . . , y

l
d−l, t1 + x0

l+1, . . . , td−l + x0
d)} (3.4)

subject to

Gj(y
1
d−l, y

2
d−l, . . . , y

l
d−l, t1 + x0

l+1, . . . , td−l + x0
d) ≤ 0, j = 1,m, (3.5)
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where (t1, . . . , td−l) is in a neighbourhood of the origin in Rd−l.
It turns out (see [23]) that the reduced problem (3.4), (3.5) also satisfies the

Mangasarian - Fromowitz condition (3.3) (adapted to this setting) in the origin of
Rd−l. Using derivation formulas as in (2.8), we get

Theorem 3.1. Let x0 be a local solution of the problem (3.1), (2.1), (3.2). Then, there
are βj ≥ 0, j = 1,m such that

0 = ∇h(x0) · vs(x0) +

m∑
j=1

βj∇Gj(x0) · vs(x0), s = 1, d− l, (3.6)

0 = βjGj(x0), j = 1,m. (3.7)

This is a simplified version of the KKT optimality conditions since the multipliers
associated to (2.1) are eliminated. If we consider just the optimization problem with
equality constraints (3.1), (2.1), then (finally) we obtain the optimality conditions in
Fermat form by taking βj = 0, j = 1,m, in Thm. 3.1.

Notice that the first term in (3.6) is the tangential derivative of the cost in
x0 (the components of ∇h(x0) from the tangent plane to the manifold of equality
constraints). This allows to formulate an algorithm of gradient type with projection
for the problem (3.1), (2.1). The novelty here is that the projection can be effectively
computed as yd−l in each step of this algorithm.

Details in [23], and we underline that the question of the computation of the
projection is this main drawback for this type of numerical methods, Ciarlet [2].
Moreover, in the general case of the problem (3.1), (2.1), (3.2) we notice that the
inequality constraints that are not active at x0 define a neighbourhood of x0. One
can reformulate equivalently the problem on this neighbourhood and involving just
the equality constraints (2.1) and the equality constraints obtained from the active
inequality constraints. Therefore, the conditions (3.6), (3.7) reduce to (3.6) with βj =
1, j ∈ I(x0) and βj = 0 otherwise and {vs} restricted to include just the basis of
the tangent space to the manifold defined by all these equality constraints (assumed
independent in x0).

Using the maximal (in space) description offered by Thm. 2.3, of the manifold
defined by (2.1), we introduce a class of algorithms of ”global type”. Namely, they
search for solution in a maximal admissible neighbourhood of x0 (which is just an
admissible point here) and may find all the solutions from this admissible set.

The basic observation is that the solution of (2.4) , (2.5), . . . , (2.6) exists (roughly
speaking), up to the ”moment” of meeting a critical point. And the computation of
yd−l on this maximal existence interval, for a finer and finer discretization, provides a
dense set of points in the manifold defined by (2.1). We denote it by An, in the n-th
discretization step. The constraints (3.2) are to be just checked on this points in An.
We may impose even supplementary abstract constraints in the problem (3.1), (2.1),
(3.2), of the form:

x ∈ D, D ⊂ Rd closed subset. (3.8)

We denote by Cn the discrete admissible set of points, in step n, obtained after
checking the points in An for (3.2) and (3.8). The algorithm is as follows:
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Algorithm 3.2

1) choose n = 1, the discretization step 1
n in (3.4) - (3.6) and the solution

intervals In1 , . . . , I
n
d−l, the small parameter δ.

2) compute An and Cn.

3) find in Cn, the minimum of h(·), by direct computation, denoted by xn.

4) test |h(xn)− h(xn−1)| < δ.

5) If YES, then STOP; if NO, then GO TO step 1).

In this setting, it is enough to assume h and Gj , j = 1,m to be in C(Rd),

Fi, i = 1, l satisfy (2.2) and D has nonvoid interior. By density, we get

Theorem 3.2. The algorithm is convergent for n→∞.

The admissible set for the problem (3.1), (2.1) may have several connected com-
ponents, see [23].

Then, it is necessary to know an initial point x0 on each component, for the
algorithm to work. If hypothesis (2.2) is not fulfilled, we suggest to work with gene-
ralized solutions of (2.4), (2.5), . . . , (2.6). This subject is not yet investigated in the
literature.

Finally, we mention the recent paper [16], that proposes an alternative approach
in similar situation. We have reworked in [23] their main numerical example (in R6)
by employing implicit parametrizations and starting from the solutions they found.
Our investigation allows a very consistent decrease of the optimal value for the per-
formance index. The Algorithm 3.2 easily allows to extend the search region, simply
by increasing the computations intervals for (2.4), (2.5), . . . , (2.6). Some high dimen-
sional applications are also reported in [9].

Similar ideas work for constrained optimal control problems.

Here, we briefly discuss the difficult case of mixed equality constraints, following
[23]. The problem, of Mayer type, is the following:

Min{l(x(0), x(1))}, (3.9)

x′(t) = f(t, x(t), u(t)), t ∈ [0, 1], (3.10)

h(x(t), u(t)) = 0, t ∈ [0.1], (3.11)

and it is inspired from the recent works [3], [12], where the maximum principle is
discussed.

Here l(·, ·), f(t, ·, ·), h(·, ·) are defined in finite dimensional spaces X ×X,X ×U
of appropriate dimension and (3.10) is assumed to be uniquely and globally solvable,
as it is standard in optimal control theory. Later, we shall add to it initial conditions.
We require l continuous, f continuous and locally Lipschitzian in (x, u), h of class C1,
with locally Lipschitzian gradient for each component, such that there is the vector
(x0, u0) in X × U satisfying

h(x0, u0) = 0, ∇h(x0, u0) of maximal rank. (3.12)

The finite dimensional nonlinear algebraic system h(x, u) = 0, under condition
(3.12), defines a manifold M ⊂ X × U that can be parametrized and discretized



Applications of implicit parametrizations 11

via the system (2.4), (2.5), . . . , (2.6). Moreover, the relations (3.10), (3.11) can be
interpreted as a DAE system and we differentiate (3.11) and replace it by:

∇xh(x(t), u(t)f(t, x(t)), u(t)) +∇uh(x(t), u(t))u′(t) = 0. (3.13)

The important remark is that the manifold M provides consistent initial condi-
tions for (3.10), (3.13).

Theorem 3.3. Any trajectory of (3.10), (3.13) starting from a point in M , remains in
M .

This gives a characterization of the admissible global trajectories for the con-
strained control problem (3.9) - (3.11). Consequently, it can be shown that the dis-
cretization of M provided by (2.4), (2.5), . . . , (2.6), generates a dense family of ad-
missible trajectories and an algorithm of global type, similar to Algorithm 3.2, can
be formulated and its convergence remains valid [23].

Some academic examples can be found in [23] as well.

4. Shape optimization

Shape optimization problems have a similar structure with optimal control prob-
lems, for instance:

Min
Ω

∫
Ω

j(x, y(x))dx, (4.1)

−∆y = f in Ω, (4.2)

y = 0 on ∂Ω. (4.3)

Here f ∈ L2(D) and j(·, ·) is a Caratheodory mapping, the admissible domains
satisfy Ω ⊂ D, D a given domain bounded in Rd.

Other elliptic operators (or even evolution operators, [24]), other boundary con-
ditions or cost functionals (defined on ∂Ω, or on some given subset E ⊂ Ω, for any Ω
admissible, or depending as well on ∇y(x), etc.), more constraints (for instance, on
the state y) may be considered in (4.1) - (4.3).

An important choice is the admissible family of geometries in Rd, denoted by
O. In one of the first approaches in shape optimization, due to Murat and Simon [6],
the family O is given as the image of some fixed domain B ⊂ Rd (for instance, a ball)
via a family F of mapping T : B → Rd, of class C2, one-to-one on their image T (B)
and T−1 of class C2 as well.

Then, (4.1) - (4.3) may be transported on B and the transformation T ∈ F
will enter, together with its derivatives, in the coefficients of the transformed elliptic
operator in B. The geometric optimization problem (4.1) - (4.3) is then equivalent
with a control by the coefficients problem, if O is defined as above. The drawback of
this approach is that all the admissible domains Ω ∈ O have to be simply connected
(when B is a ball), that is this family O is not general enough.

A similar discussion may be pursued in the case of the speed method of Zolesio,
[26]. See [13], [15], [8] for information in this respect.
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A more far reaching point of view is to assume that the admissible domains
Ω ∈ O are given via an implicit representation, using a family of functions Φ ∈ F :

Ω = ΩΦ = {x ∈ Rd; Φ(x) < 0, Φ ∈ F}, (4.4)

where F is now a subset in C(D) with D ⊂ Rd some given bounded domain. Ob-
viously, relation (4.4) defines an open set and supplementary information should be
given in order to select some connected component of interest, not necessarily simply
connected. In this way, both topological and boundary variations may be considered
in the problem (4.1) - (4.3).

This point of view was introduced by Osher and Sethian [11] in the setting of free
boundary problems and the treatment is based on the Hamilton - Jacobi equation.

In shape optimization, implicit representation of domains were considered in-
dependently, already in [5]. Recently, it was shown that iterated Hamiltonian type
systems, as discussed in §2, play a fundamental role in this setting [18]. Such ordi-
nary differential systems are much easier to handle as Hamilton - Jacobi equations
and Thm. 2.4 is the key result in dimension two, which is a case of interest in shape
optimization.

A frequently met supplementary constraint on the admissible Ω ∈ O is E ⊂ Ω,
where E ⊂ D is another given open subset.

This geometric condition, under definition (4.4), is expressed as Φ(x) < 0 in E,
a very simple algebraic condition. Notice that it also selects the connected component
of ΩΦ, that is the domain of interest in the optimization problem. Similarly, one may
ask that, for a given point x0 ∈ D, we have x0 ∈ ∂ΩΦ (or for some given submanifold
Γ ⊂ D, we have Γ ⊂ ∂ΩΦ). This is expressed algebraically as Φ(x0) = 0 (or Φ(x) = 0
on Γ) and again selects in (4.4) the connected component of interest of ΩΦ.

We underline that, if we assume just F ⊂ C(D), then ∂ΩΦ may have positive
measure. Under condition (2.11), this cannot happen and the above examples are
clearly defined, while the facility to translate geometric constraints in simple algebraic
conditions is remarkable.

It turns out that the geometric optimization problem (4.1) - (4.3) is equivalent
with a state constraint optimal control problem in D, for O given by (4.4).

Theorem 4.1. Assume (2.11), (2.12) and let ΩΦ be defined by (4.4). For any Φ ∈ F ,
there is uΦ ∈ L2(D) (not unique) such that the solution of

−∆y = f +H(Φ)uΦ in D, (4.5)

y = 0 on ∂D, (4.6)

coincides in ΩΦ with the solution of (4.2), (4.3) and satisfies the constraint∫
∂ΩΦ

|y(σ)|2dσ = 0. (4.7)

The cost (4.1) corresponding to ΩΦ is identical with the cost associated to
[yφ,Φ, uΦ] given in (4.5), (4.6).
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Here, H(·) : R→ R is the Heaviside function.
The condition (4.7) may be expressed in the form (independently of the geome-

try):
TΦ∫
0

|y(x1(t), x2(t))|2
√
x′1(t)2 + x′2(t)2dt = 0, (4.8)

where (x1(t), x2(t)) solves (2.9), (2.10) on the period [0, TΦ] and x0 is some fixed
given point on ∂ΩΦ. Moreover, the cost functional (4.1) may be also rewritten in an
”independent of the geometry” form:∫

D

(1−H(Φ))j(x, y(x))dx (4.9)

and, in fact, H(Φ) is the characteristic function of D \ ΩΦ, under hypotheses (2.11),
(2.12).

Consequently, the optimal control problem (4.5), (4.6), (4.8), (4.9) (with controls
Φ ∈ F , u ∈ L2(D)) is independent of the geometry and is equivalent with the shape
optimization problem (4.1) - (4.3), on O defined by F via (4.4).

A standard procedure in state constrained control problem is the penalization
of the constraint in the cost (ε > 0):∫

D

(1−H(Φ))j(x, y(x))dx+
1

ε

TΦ∫
0

|y(x1(t), x2(t))|2
√
x′1(t)2 + x′2(t)2dt. (4.10)

General approximation properties of the problem (4.5), (4.6), (4.10) with re-
spect to the constrained problem (4.5), (4.6), (4.8), (4.9) or to the original shape op-
timization problem (4.1), (4.2), (4.3), are discussed in [18]. We indicate here just one
property, when the cost integrand in (4.1) depends as well on ∇y, j(x, y(x),∇y(x)).

Theorem 4.2. Assume that j(·, ·, ·) is Caratheodory on D × R × R2 and satisfies the
coercivity assumption

j(x, y, v) ≥ α1|v|2 + β1|y|2 + γ, α1 > 0, β1 > 0, γ ∈ R
and j(x, y, ·) is convex. Then, if [yεn,Φ

ε
n, u

ε
n] denote a minimizing sequence in the

penalized problem (4.5), (4.6), (4.10) and y∗,Ω∗ are cluster points of the sequence
[yεn,ΩΦε

n
] in the weak topology of L2(D), respectively in the Hausdorff - Pompeiu

complementary topology, then [y∗,Ω∗] is an optimal pair for the problem (4.1) - (4.3).

The technique employed in [18] includes as well a modification of {yεn} outside
ΩΦε

n
. In the paper [7], a differentiable variant of this approach is studied. The implicit

parametrization theorem gives a global representation of the boundary and allows
to compute integrals as in (4.7), (4.8), (4.10). It also allows to discuss boundary
observation problems [22].

Remark 4.3. One question of interest, in this context, is to obtain efficient gradient
algorithms, in general shape optimization problems. Certain results of this type are
reported in [7], for Dirichlet boundary conditions. Another question is related to the
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possibility to use just one control in the ”extension” (4.5), (4.6) of the state system,
while preserving all the other properties.
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1. Introduction

In this note we study two classes of evolution differential inclusions. First we
consider the problem

x′′(t) ∈ A(t)x(t) +

∫ t

0

K(t, s)F (s, x(s))ds, x(0) = x0, x
′(0) = y0, (1.1)

where F : [0, T ] × X → P(X) is a set-valued map lipschitzian with respect to the
second variable, X is a Banach space, {A(t)}t≥0 is a family of linear closed operators
from X into X that genearates an evolution system of operators {G(t, s)}t,s∈[0,T ],
∆ = {(t, s) ∈ [0, T ] × [0, T ]; t ≥ s}, K(., .) : ∆ → R is continuous and x0, y0 ∈ X.
The general framework of evolution operators {A(t)}t≥0 that define problem (1.1) has
been developed by Kozak ([19]) and improved by Henriquez ([17]).

Existence results and some qualitative properties of the mild solutions of problem
(1.1) may be found in [14] in the case when X is a separable Banach space.

De Blasi and Pianigiani ([15]) obtained the existence of mild solutions for semi-
linear differential inclusions on an arbitrary, not necessarily separable, Banach space
X. Even if Filippov’s ideas ([16]) are still present, the approach in [15] is fundamental
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different: it consists in the construction of the measurable selections of the multifunc-
tion. This construction does not use classical selection theorems such as Kuratowski
and Ryll-Nardzewski’s ([20]) or Bressan and Colombo’s ([7]).

The aim of this note is to obtain an existence result for problem (1.1) similar
to the one in [15]. We will prove the existence of solutions for problem (1.1) in an
arbitrary space X under Filippov-type assumptions on F .

In several recent papers ([2, 3, 5, 12, 13, 17, 18]) existence results and qualitative
properties of mild solutions have been obtained for the following problem

x′′(t) ∈ A(t)x(t) + F (t, x(t)), x(0) = x0, x
′(0) = y0, (1.2)

with A(.) and F (., .) as above.

On one hand, the result in the present paper extends to the integro-differential
framework (1.1) the result in [12] obtained for problem (1.2) and, on the other hand,
this paper extends to second-order integro-differential inclusions a similar result in
[10] obtained for a class of first-order integro-differential inclusions.

The second class of evolution inclusions that we are considering is

x′ ∈ Ax+ F (t, x) a.e. ([0, T ]), (1.3)

x(0) +

m∑
i=1

aix(ti) = x0, (1.4)

where X is a real separable Banach space, ai ∈ R, ai 6= 0, i = 1,m, x0 ∈ X,
0 < t1 < t2 < ... < tm < T , F : [0, T ]×X → P(X) is a set-valued map and A is the
infinitesimal generator of a linear semigroup {G(t); t ≥ 0}.

The nonlocal condition (1.4) was used by Byszewski ([8, 9]). If ai 6= 0, i = 1,m
the results can be applied in kinematics to determine the evolution t → x(t) of the
location of a physical object for which the positions x(0), x(t1), ..., x(tm) are unknown
but it is known the condition (1.4). Consequently, to describe some physical phenom-
ena the nonlocal condition may be more useful than the standard initial condition
x(0) = x0. Obviously, when ai = 0, i = 1,m, one has the classical initial condition.

Existence of mild solutions of problem (1.3)-(1.4) has been obtained in [4, 6]
for convex as well as nonconvex set-valued maps. All these results are based on some
suitable theorems of fixed point theory. In our recent paper [11] it is shown that
Filippov’s ideas ([1, 16]) can be suitably adapted in order to prove the existence of
solutions to problem (1.3)-(1.4) provided the Banach space X is separable.

The result that we established in non separable Banach spaces for problem (1.3)-
(1.4) may be interpreted as extension of the result in [15] from Cauchy problems to
boundary value problems defined by nonlocal conditions and as an extension of the
result in [11] to non separable Banach spaces.

The paper is organized as follows: in Section 2 we present the notations, defini-
tions and preliminary results to be used in the sequel and in Section 3 we prove the
main results.
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2. Preliminaries

Consider X, an arbitrary real Banach space with norm |.| and with the corre-
sponding metric d(., .). Let P(X) be the space of all bounded nonempty subsets of X
endowed with the Hausdorff pseudometric

dH(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup
a∈A

d(a,B),

where d(x,A) = infa∈A |x− a|, A ⊂ X,x ∈ X.
Let L be the σ-algebra of the (Lebesgue) measurable subsets of R and, for A ∈ L,

let µ(A) be the Lebesgue measure of A.
Let X be a Banach space and Y be a metric space. An open (resp., closed)

ball in Y with center y and radius r is denoted by BY (y, r) (resp., BY (y, r). In what
follows, B = BX(0, 1).

A multifunction F : Y → P(X) with closed bounded nonempty values is said to
be dH -continuous at y0 ∈ Y if for every ε > 0 there exists δ > 0 such that for any
y ∈ BY (y0, r) there is dH(F (y), F (y0)) ≤ ε. F is called dH -continuous if it is so at
each point y0 ∈ Y .

Let A ∈ L, with µ(A) < ∞. A multifunction F : Y → P(X) with closed
bounded nonempty values is said to be Lusin measurable if for every ε > 0 there
exists a compact set Kε ⊂ A, with µ(A\Kε) < ε such that F restricted to Kε is
dH -continuous.

It is clear that if F,G : A→ P(X) and f : A→ X are Lusin measurable, then so
are F restricted to B (B ⊂ A measurable), F+G and t→ d(f(t), F (t)). Moreover, the
uniform limit of a sequence of Lusin measurable multifunctions is Lusin measurable,
too.

Let I stand for the interval [0, T ], T > 0, C(I,X) is the Banach space of all
continuous functions from I to X with the norm ||x||C = supt∈I |x(t)| and L1(I,X)
is the Banach space of (Bochner) integrable functions u(.) : I → X endowed with

the norm ||u||1 =
∫ T

0
|u(t)|dt. Denote by B(X) the Banach space of bounded linear

operators from X into X with the norm ||N || = sup{|N(y)|; |y| = 1}.
In what follows {A(t)}t≥0 is a family of linear closed operators from X into X

that genearates an evolution system of operators {G(t, s)}t,s∈I . By hypothesis the
domain of A(t), D(A(t)) is dense in X and is independent of t.

Definition 2.1. ([17, 19]) A family of bounded linear operators G(t, s) : X → X,
(t, s) ∈ ∆ := {(t, s) ∈ I × I; s ≤ t} is called an evolution operator of the equation

x′′(t) = A(t)x(t) (2.1)

if
i) For any x ∈ X, the map (t, s)→ G(t, s)x is continuously differentiable and

a) G(t, t) = 0, t ∈ I.

b) If t ∈ I, x ∈ X then ∂
∂tG(t, s)x|t=s = x and ∂

∂sG(t, s)x|t=s = −x.

ii) If (t, s) ∈ ∆, then ∂
∂sG(t, s)x ∈ D(A(t)), the map (t, s) → G(t, s)x is of class C2

and
a) ∂2

∂t2G(t, s)x ≡ A(t)G(t, s)x.
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b) ∂2

∂s2G(t, s)x ≡ G(t, s)A(t)x.

c) ∂2

∂s∂tG(t, s)x|t=s = 0.

iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂sG(t, s)x, ∂3

∂s2∂tG(t, s)x and

a) ∂3

∂t2∂sG(t, s)x ≡ A(t) ∂∂sG(t, s)x and the map (t, s) → A(t) ∂∂sG(t, s)x is con-
tinuous.

b) ∂3

∂s2∂tG(t, s)x ≡ ∂
∂tG(t, s)A(s)x.

As an example for equation (2.1) one may consider the problem (e.g., [19])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],

z(t, 0) = z(t, π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],

where a(.) : I → R is a continuous function. This problem is modeled in the space

X = L2(R,C) of 2π-periodic 2-integrable functions from R to C, A1z = d2z(τ)
dτ2 with

domain H2(R,C) the Sobolev space of 2π-periodic functions whose derivatives belong
to L2(R,C). It is well known thatA1 is the infinitesimal generator of strongly con-
tinuous cosine functions C(t) on X. Moreover, A1 has discrete spectrum; namely the
spectrum of A1 consists of eigenvalues −n2, n ∈ Z with associated eigenvectors

zn(τ) =
1√
2π
einτ , n ∈ N.

The set zn, n ∈ N is an orthonormal basis of X. In particular,

A1z =
∑
n∈Z
−n2 < z, zn > zn, z ∈ D(A1).

The cosine function is given by

C(t)z =
∑
n∈Z

cos(nt) < z, zn > zn

with the associated sine function

S(t)z = t < z, z0 > z0 +
∑
n∈Z∗

sin(nt)

n
< z, zn > zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)
dτ with domain D(A2(t)) = H1(R,C).

Set A(t) = A1 + A2(t). It has been proved in [19] that this family generates an
evolution operator as in Definition 2.1.

Definition 2.2. A continuous mapping x(.) ∈ C(I,X) is called a mild solution of
problem (1.1) if there exists a (Bochner) integrable function f(.) ∈ L1(I,X) such
that

f(t) ∈ F (t, x(t)) a.e. (I), (2.2)

x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

G(t, s)

∫ s

0

K(s, τ)f(τ)dτ, t ∈ I. (2.3)
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We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2)
and x(.) is defined by (2.3).

We note that condition (2.3) can be rewritten as

(2.4) x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds ∀t ∈ I,

where U(t, s) =

∫ t

s

G(t, τ)K(τ, s)dτ .

Hypothesis H1. i) There exists an evolution operator {G(t, s)}t,s∈I associated to the
family {A(t)}t≥0.

ii) There exist M,M0 ≥ 0 such that |G(t, s)|B(X) ≤M , | ∂∂sG(t, s)| ≤M0, for all
(t, s) ∈ ∆.

iii) K(., .) : ∆→ R is continuous.

Hypothesis H2. i) A is the infinitesimal generator of a strongly continuous and com-
pact semigroup {G(t); t ≥ 0} in X.

ii) There exists an operator C : X → X defined by

C = [I +

m∑
i=1

aiG(ti)]
−1.

Let m0 ≥ 0 be such that |G(t)| ≤ m0 ∀t ∈ I.
According to [4] if we assume that

∑m
i=1 |ai| <

1
m0

then there exists C as in

Hypothesis H2 ii).

Definition 2.3. A continuous mapping x(.) ∈ C(I,X) is called a mild solution of
problem (1.3)-(1.4) if there exists a (Bochner) integrable function f(.) ∈ L1(I,X)
such that

f(t) ∈ F (t, x(t)) a.e. (I) (2.5)

x(t) = G(t)Cx0 −
m∑
i=1

aiG(t)C

∫ ti

0

G(ti − u)f(u)du+

∫ t

0

G(t− u)f(u)du, t ∈ I. (2.6)

Remark 2.4. If we denote

H(t, s) =

m∑
i=1

aiG(t)CG(ti − s)χ[0,ti](s) + G(t− s)χ[0,t](s),

where χS(·) is the characteristic function of the set S, then the solution x(·) in Defi-
nition 2.3 may be written as

x(t) = G(t)Cx0 −
∫ T

0

H(t, s)f(s)ds. (2.7)

Obviously,

|H(t, s)| ≤
m∑
i=1

|ai|m2
0||C||+m0 =: m ∀ t, s ∈ I.
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In what followsX is a real Banach space and we assume the following hypotheses.

Hypothesis H3. i) F (., .) : I × X → P(X) has nonempty closed bounded values and
for any x ∈ X F (., x) is Lusin measurable on I.

ii) There exists l(.) ∈ L1(I, (0,∞)) such that, ∀t ∈ I
dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2|, ∀ x1, x2 ∈ X.

iii) There exists q(.) ∈ L1(I, (0,∞)) such that ∀t ∈ I we have

F (t, 0) ⊂ q(t)B.

Denote L =

∫ T

0

l(s)ds.

The technical results summarized in the following lemma are essential in the
proof of our results. For the proof, we refer the reader to [15].

Lemma 2.5. i) Let Fi : I → P(X), i=1,2 be two Lusin measurable multifunctions and
let εi > 0, i=1,2 be such that

H1(t) := (F1(t) + ε1B) ∩ (F2(t) + ε2B) 6= ∅, ∀t ∈ I.
Then the multifunction H1 : I → P(X) has a Lusin measurable selection h : I → X.

ii) Assume that Hypothesis H3 is satisfied. Then for any continuous x(.) : I →
X, u(.) : I → X measurable and any ε > 0 one has

a) the multifunction t→ F (t, x(t)) is Lusin measurable on I.
b) the multifunction H2 : I → P(X) defined by

H2(t) := (F (t, x(t)) + εB) ∩BX(u(t), d(u(t), F (t, x(t))) + ε)

has a Lusin measurable selection g : I → X.

3. The results

Set n(t) =
∫ t

0
l(u)du, t ∈ I, denote K0 := sup(t,s)∈∆ |K(t, s)| and note that

|U(t, s)| ≤MK0(t− s) ≤MK0T.

Theorem 3.1. We assume that Hypotheses H1 and H3 are satisfied. Then, for every
x0, y0 ∈ X, Cauchy problem (1.1) has a mild solution x(.) ∈ C(I,X).

Proof. Let us first note that if z(.) : I → X is continuous, then every Lusin measurable
selection u : I → X of the multifunction t→ F (t, z(t)) + B is Bochner integrable on
I. More precisely, for any t ∈ I, there holds

|u(t)| ≤ dH(F (t, z(t)) +B, 0) ≤ dH(F (t, z(t)), F (t, 0)) + dH(F (t, 0), 0) + 1

≤ l(t)|z(t)|+ q(t) + 1.

Let 0 < ε < 1, εn = ε
2n+2 .

Consider f0(.) : I → X, an arbitrary Lusin measurable, Bochner integrable
function, and define

x0(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)f0(s)ds, t ∈ I.
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Since x0(.) is continuous, by Lemma 2.5 ii) there exists a Lusin measurable function
f1(.) : I → X which, for t ∈ I, satisfies

f1(t) ∈ (F (t, x0(t)) + ε1B) ∩B(f0(t), d(f0(t), F (t, x0(t))) + ε1)

Obviously, f1(.) is Bochner integrable on I. Define x1(.) : I → X by

x1(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)f1(s)ds, t ∈ I.

By induction, we construct a sequence xn : I → X, n ≥ 2 given by

xn(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)fn(s)ds, t ∈ I, (3.1)

where fn(.) : I → X is a Lusin measurable function which, for t ∈ I, satisfies:

fn(t) ∈ (F (t, xn−1(t)) + εnB) ∩B(fn−1(t), d(fn−1(t), F (t, xn−1(t))) + εn). (3.2)

At the same time, as we saw at the beginning of the proof, fn(.) is also Bochner
integrable.
From (3.2), for n ≥ 2 and t ∈ I, we obtain

|fn(t)− fn−1(t)| ≤ d(fn−1(t), F (t, xn−1(t))) + εn

≤ d(fn−1(t), F (t, xn−2(t))) + dH(F (t, xn−2(t)), F (t, xn−1(t))) + εn

≤ εn−1 + l(t)|xn−1(t)− xn−2(t)|+ εn.

Since εn−1 + εn < εn−2, for n ≥ 2, we deduce that

|fn(t)− fn−1(t)| ≤ εn−2 + l(t)|xn−1(t)− xn−2(t)|. (3.3)

Denote p0(t) := d(f0(t), F (t, x0(t))), t ∈ I. We next prove by recurrence, that for
n ≥ 2 and t ∈ I

|xn(t)− xn−1(t)| ≤
n−2∑
k=0

∫ t

0

εn−2−k
(MK0T )k+1(n(t)− n(u))k

k!
du

+ ε0

∫ t

0

(MK0T )n(n(t)− n(u))n−1

(n− 1)!
du

+

∫ t

0

(MK0T )n(n(t)− n(u))n−1

(n− 1)!
p0(u)du. (3.4)

We start with n = 2. In view of (3.1), (3.2) and (3.3), for t ∈ I, there is

|x2(t)− x1(t)| ≤
∫ t

0

|U(t, s)| · |f2(s)− f1(s)|ds

≤
∫ t

0

MK0T [ε0 + l(s)|x1(s)− x0(s)|]ds

≤ ε0MK0Tt+

∫ t

0

[
MK0T l(s)

∫ s

0

|U(s, r)| · |f1(r)− f0(r)|dr
]
ds

≤ ε0MK0Tt+

∫ t

0

[
(MK0T )2l(s)

∫ s

0

(p0(u) + ε1)du

]
ds
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≤ ε0MK0Tt+

∫ t

0

[
(MK0T )2(p0(u) + ε1)

∫ t

u

l(s)ds

]
du

= ε0MK0Tt+

∫ t

0

(MK0T )2(n(t)− n(s))[p0(s) + ε0]ds,

i.e, (3.4) is verified for n = 2.
Using again (3.3) and (3.4), we conclude

|xn+1(t)− xn(t)| ≤
∫ t

0

|U(t, s)|.|fn+1(s)− fn(s)|ds

≤
∫ t

0

MK0T [εn−1 + l(s)|xn(s)− xn−1(s)|]ds

≤ εn−1MK0Tt+

∫ t

0

l(s)

[
n−2∑
k=0

∫ s

0

εn−2−k
(MK0T )k+2(n(s)− n(u))k

k!
du

+

∫ s

0

(MK0T )n+1(n(s)− n(u))n−1

(n− 1)!
(p0(u) + ε0)du

]
ds

= εn−1MK0Tt+

n−2∑
k=0

εn−2−k

∫ t

0

[∫ s

0

(MK0T )k+2(n(s)− n(u))k

k!
l(s)du

]
ds

+

∫ t

0

l(s)

(∫ s

0

(MK0T )n+1(n(s)− n(u))n−1

(n− 1)!
l(s)[p0(u) + ε0]du

)
ds

= εn−1MK0Tt+

n−2∑
k=0

εn−2−k

∫ t

0

(∫ t

u

(MK0T )k+2(n(s)− n(u))k

k!
l(s)ds

)
du

+

∫ t

0

(∫ t

u

(MK0T )n+1(n(s)− n(u))n−1

(n− 1)!
l(s)ds

)
[p0(u) + ε0]du

= εn−1MK0Tt+

n−2∑
k=0

εn−2−k

∫ t

0

(MK0T )k+2(n(s)− n(u))k+1

(k + 1)!
du

+

∫ t

0

(MK0T )n+1(n(s)− n(u))n

n!
[p0(u) + ε0]du

=

n−1∑
k=0

εn−1−k ·
∫ t

0

(MK0T )k+1(n(s)− n(u))k

k!
du

+

∫ t

0

(MK0T )n+1(n(s)− n(u))n

n!
[p0(u) + ε0]du

and statement (3.8) it is true for n+ 1.
From (3.8) it follows that for n ≥ 2 and t ∈ I

|xn(t)− xn−1(t)| ≤ an, (3.5)

where

an =

n−2∑
k=0

εn−2−k
(MK0T )k+1n(T )k

k!
+

(MK0T )nn(T )n−1

(n− 1)!

[∫ 1

0

p0(u)du+ ε0

]
,
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Obviously, the series whose n-th term is an converges. So, from (3.5) we infer
that xn(.) converges to a continuous function, x(.) : I → X, uniformly on I.

On the other hand, in view of (3.3) there is

|fn(t)− fn−1(t)| ≤ εn−2 + l(t)an−1, t ∈ I, n ≥ 3

which implies that the sequence fn(.) converges to a Lusin measurable function
f(·) : I → X.

Since xn(.) is bounded and

|fn(t)| ≤ l(t)|xn−1(t)|+ q(t) + 1,

we infer that f(.) is also Bochner integrable.

Passing with n → ∞ in (3.1) and using the Lebesgue dominated convergence
theorem, we obtain

x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds, t ∈ I.

On the other hand, from (3.2) we get

fn(t) ∈ F (t, xn(t)) + εnB, t ∈ I, n ≥ 1

and letting n→∞ we obtain

f(t) ∈ F (t, x(t)), t ∈ I,

which completes the proof. �

Theorem 3.2. Assume that Hypotheses H2 and H3 are satisfied and mL < 1.

Then, for every x0 ∈ X problem (1.3)-(1.4) has a solution x(.) : I → X.

Proof. The proof follows the same pattern as in the proof of Theorem 3.1. This time

xn(t) = G(t)Cx0 −
∫ T

0

H(t, s)fn(s)ds, ∀t ∈ I,

with fn(·) as before and

|xn(t)− xn−1(t)| ≤
n−2∑
j=0

εn−2−jm
j+1LjT +mnLn−1

∫ T

0

(p0(s) + ε0)ds

for n ≥ 2 and t ∈ I. The estimate in (3.5) becames

|xn(t)− xn−1(t)| ≤ an,

where

an =

n−2∑
j=0

εn−2−jm
j+1LjT +mnLn−1

∫ T

0

(p0(s) + ε0)ds

Taking into account the fact that mL < 1, we deduce that the series whose n-th term
is an is convergent. �
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Abstract. In this paper we present an heuristic introduction to Bratu problem
and we give some variants of Bratu’s theorem (G. Bratu, Sur les équations
intégrales non linéaires, Bulletin Soc. Math. France, 42(1914), 113-142). Using
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1. Introduction

The classical Bratu problem is the following boundary value problem{
−y′′(x) = λey(x), x ∈ [0, 1]
y(0) = 0, y(1) = 0,

(1.1)

where λ > 0 is a parameter.
Bratu’s problem has both theoretical and applicative relevance.
It was proved that Bratu’s problem in one-dimensional planar coordinates has

analytical solution in the following form:

y(x) = −2 log

(
cosh[(x− 1

2 ) θ2 ]

cosh θ
4

)
,

where θ is the solution of

θ =
√

2λ cosh
θ

4
.
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Notice that y has the maximum value (denoted by µ) at x = 1
2 and there is

an analytical expression between µ and λ discovered by Liouville in 1853, see [37].
Moreover, Bratu’s problem has at most two solutions and the distribution of the
solutions depends on a critical value of λ, denoted by λc. The critical value λc satisfies
the equation

1 =
1

4

√
2λ sinh

θ

4

and it was approximated as λc ≈ 3.513830719, see, e.g. [9]. More precisely, if 0 < λ <
λc then (1.1) has two solutions, if λ = λc there is one solution for (1.1), while for
λ > λc there is no solution for Bratu’s problem.

Bratu’s problem governs several important real life problems, such as the fuel
ignition model in the thermal combustion theory, the model of thermal reaction pro-
cess, the Chandrasekhar model related to the expansion of the universe and to some
relativity theory models and it is connected to models from chemical reaction the-
ory, radiative heat transfer theory and nanotechnologies (see [23], [19], [20], [1], [15],
[22],...).

In the last two decades, many published papers have focused on solving (1.1) by
analytical (e.g., Adomian decomposition method, homotopy analysis method, vari-
ational iteration methods, Laplace transform decomposition method or differential
transformation method) and numerical (e.g., B-spline method, the finite difference
method, weighted residual method, the shooting method, multigrid-based methods,
the Sinc-Galerkin method, collocation methods based on B-spline basis functions,
Bessel collocation method) methods, see [13], [14], [15], [51], [52],[7], [8], [9], [16], [17],
[29], [32], [35],...

An extension of Bratu’s problem is the following boundary value problem, so-
called Liouville-Bratu-Gelfand problem (see [26], [21], [27], [28], [30], [35], [41]) :{

−∆u(x) = λeu(x), x ∈ Ω
u(x) = 0, x ∈ ∂Ω

(1.2)

where λ > 0 is a parameter and Ω ⊂ Rn is a bounded domain.

The aim of our paper is to we give some variants of a Bratu’s theorem (G. Bratu,
Sur les équations intégrales non linéaires, Bulletin de la Soc. Math. France, 42(1914),
113-142) using the positivity of Green’s function, monotone iteration technique and
the contraction principle. Some generalizations of Bratu’s result are also given.

The structure of the paper is the following one:

1. Introduction

2. Preliminaries

3. Heuristic considerations on particular solutions of Bratu equation

4. Some variants of Bratu theorem

5. Bratu-type problems

6. Other generalizations

7. Numerical aspects of Bratu-type problem.

The Reference list will conclude the paper.
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2. Preliminaries

2.1. Linear two point boundary value problem

Let L0 := − d2

dx2
+ p(x)

d

dx
and L := L0 + q(x), where p, q ∈ C[a, b]. We consider

the following two-point boundary value problem

L(u) = f (2.1)

l1(y; a) := a10y(a)− a11y′(a) = r1 (2.2)

l2(y; b) := a20y(b) + a21y
′(b) = r2 (2.3)

where f ∈ C[a, b], aij ≥ 0, i = 1, 2, j = 0, 1, a10 · a20 > 0 and r1, r2 ∈ R.
It is well known that if q(x) ≥ 0, for x ∈ [a, b], then the Green function for this

problem exists and is positive. However, the assumption q(x) ≥ 0 is not a necessary
condition for the positivity of the Green’s function. Moreover, we have the following
theorem of equivalent statements concerning the positivity of Green’s function.

Theorem 2.1. (I.A. Rus [47]) The following statements are equivalent:
(i) There exists a function v ∈ C2(]a, b[) ∩ C1[a, b] such that: v > 0 on [a, b],

(L0 + q)(v) > 0 on [a, b], l1(y; a) > 0 and l2(y; b) > 0.
(ii) The following implication holds:

y ∈ C2(]a, b[) ∩ C1[a, b], (L0 + q1)(y) = 0, l1(y; a) = 0, l2(y; b) = 0⇒ y = 0,

for each q1 ∈ C[a, b] with q1(x) ≥ q.
(iii) The following implication holds:

y ∈ C2(]c, d[) ∩ C1[c, d], (L0 + q)(y) = 0, l1(y; c) = 0, l2(y; d) = 0⇒ y = 0,

for each [c, d] ⊂ [a, b].
(iv) There exists the Green function G(x, s), corresponding to problem (2.1),

(2.2), (2.3), and G(x, s) ≥ 0, ∀ x, s ∈ [a, b].
(v) The first eigenvalue of the Sturm-Liouville problem

(L0 + q)(y) = λy,

l1(y; a) = 0, l2(y; b) = 0,

is positive.

By definition, we have the strong uniqueness property for the problem (2.1),
(2.2), (2.3) if one (i.e., all) of the statements, in the above Theorem 2.1, is a theorem.
In this case, we call the interval [a, b], a strong uniqueness interval.

In many results on boundary value problems, the condition q(x) ≥ 0 appears.
The problem is in which of them we can put a strong uniqueness condition instead of
q(x) ≥ 0 condition ?

In deep connection with this problem is the following notion. Let us consider the
second order linear differential equation

Ly := −y′′ + py′ + qy = 0, for x ∈ [a, b], where p, q ∈ C[a, b].

We suppose that [a, b] is not a strong uniqueness interval with respect to (L, l1, l2),
where l1(y)(a) = y(a) and l2(y)(b) = y(b).
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By definition, an interval [α, β[⊂ [a, b] is a maximum strong uniqueness interval
in [a, b] if [α, β] is not a uniqueness interval and each interval [c, d] ⊂ [α, β[ is a strong
uniqueness interval.
Let h(p, q) := min{β − α : [α, β[ is a maximum strong uniqueness interval in [a, b]}.
It is clear that h(p, q) > 0. An interesting problem is to give estimates for h(p, q) in
terms of p and q, see [41], [42], [4],[5], [47], [18], [46] (pp. 99-112).

Remark 2.2. For the Green function technique in nonlinear boundary value problems,
see [5], [24], [44], [45], [48], [4], [11], [30], [36], [40], [42], [38],...

2.2. Saturated contraction principle

In our paper, we shall use the following variant of the contraction principle.

Theorem 2.3. [49] Let (X, d) be a complete metric space and f : X → X be an
l-contraction. Then we have:

(i) There exists x∗ ∈ X such that

Ffn = {x∗}, ∀ n ∈ N∗.

(ii) For all x ∈ X, fn(x)→ x∗ as n→∞.

(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀ x ∈ X, where ψ(t) =
t

1− l
, t ≥ 0.

(iv) If {yn}n∈N is a sequence in X such that

d(yn, f(yn))→ 0 as n→∞,

then yn → x∗ as n→∞.

(v) If {yn}n∈N is a sequence in X such that

d(yn+1, f(yn))→ 0 as n→∞,

then yn → x∗ as n→∞.

2.3. Fixed point of increasing operators

In this section, as a tool for the monotone iteration technique, two fixed point
theorems for increasing operators on an ordered Banach space (B,+,R,≤) are pre-
sented.

Theorem 2.4. [2] Let (B,+,R,≤) be an ordered Banach space and X ⊂ B be an order
convex subset of B. Let f : X → B be an operator. We suppose that:

(1) f is increasing and continuous;

(2) f is relatively compact on every order interval in X;

(3) there exist x, x̂ ∈ X with x < x̂ such that x ≤ f(x) and f(x̂) ≤ x̂.

Then:

(a) f has a minimum and a maximum fixed point in [x, x̂]. Moreover, we have

xmin = lim
n→∞

fn(x) and xmax = lim
n→∞

f(x̂).

(b) If, additionally, xmin ≥ xmax, then f
∣∣
[x,x̂]

is a PO.
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Theorem 2.5. Let (B,+,R, ‖ · ‖,≤) be an ordered Banach space and

P := {x ∈ B | x ≥ 0}.
Let f, g : P → P be two operators. We suppose that:

(i) f and g are increasing and continuous;

(ii) f([0, x]) and g([0, x]) are compact subset for each x ∈ P ;
(iii) f ≤ g;
(iv) Fg = {x∗}.

Then:
(1) the interval [0, x∗] is invariant for f and g;
(2) g : [0, x∗]→ [0, x∗] is a Picard operator;
(3) {fn(0)}n∈N converges to the minimum fixed point of f in [0, x∗] and {fn(x∗)}

converges to the maximum fixed point of f in [0, x∗];
(4) if f has a unique fixed point in [0, x∗], then f : [0, x∗] → [0, x∗] is a Picard

operator.

Proof. (1) The fact that the interval [0, x∗] is invariant with respect to g follows
immediately by (i) and (iv). Let x ∈ [0, x∗]. Then 0 ≤ x ≤ x∗. By (i) and (iii) we have

0 ≤ f(0) ≤ f(x) ≤ f(x∗) ≤ g(x∗) = x∗.

Thus, [0, x∗] is invariant with respect to f .
(2) Take any x ∈ [0, x∗]. Then, by (i) and (iii), we have, for any n ∈ N∗, that

0 ≤ gn(x) ≤ x∗.

Consequently, the sequence {gn(x)}n∈N is contained in the compact set g([0, x]), and
thus, it has at least one limit point. By induction, it is easily seen that the sequence
{gn(0)}n∈N is increasing. This implies that it has exactly one limit point and that the
whole sequence converges to this point. Since g is continuous, {gn(0)}n∈N converges
to x∗. Thus, for any x ∈ [0, x∗], we have that

gn(0) ≤ gn(x) ≤ x∗, for any n ∈ N.
By passing to the limit we get the desired conclusion.

(3) The third conclusion follows by Theorem 2.4 (a).
(4) The last conclusion follows by Theorem 2.4 (b). �

Remark 2.6. For the fixed point theory in ordered sets and ordered Banach spaces
see [2], [3], [33], [25], [39], [50],...

3. Heuristic considerations on particular solutions of Bratu equation

Let us consider Bratu’s equation

−y′′ = λey, λ > 0. (Bλ)

We start this section with some remarks on the solutions y ∈ C2(R) of this
equation.

Remark 3.1. If y is a solution of (Bλ), then y is a strictly concave function. This
implies that y′ is a strictly decreasing function.
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Remark 3.2. If y is a solution of (Bλ), then:

(1) y(x+ c), x ∈ R is a solution of (Bλ), ∀ c ∈ R;

(2) y(−x+ c), x ∈ R is a solution of (Bλ), ∀ c ∈ R;

(3) c+ y
(
e
c
2x
)
, x ∈ R is a solution of (Bλ), ∀ c ∈ R.

Remark 3.3. Let y be a solution of (Bλ) such that there exists x0 ∈ R, with y′(x0) = 0.
Let z(x) = y(2x0 − x). We observe that: z(x0) = y(x0) and z′(x0) = −y′(x0) = 0. By
the uniqueness of the solution of Cauchy problem, we have that y(x) = z(x), ∀ x ∈ R,
i.e., y(x) = y(2x0 − x), ∀ x ∈ R. From this, it follows that y(x0 − x) = y(x + x0),
∀ x ∈ R, i.e., the graphic of y is symmetric with respect to the line, x = x0.

Now let us make the change of the function y, by ey =
1

u2
. Then for u we have

the equation

2(u′′u− u′2) = λ.

If u is such that u′′ = u and u2 − u′2 = 1, then y = ln
1

u2
is a solution of

(B2). Such a function u is, for example, u(x) = cosh(x). Therefore, the function
y(x) = −2 ln(coshx), x ∈ R is a solution of (B2).

In order to find a solution for (Bλ), let us try with

y(x) = −2 ln(c1 cosh c2x), x ∈ R, c1 ∈ R∗+, c2 ∈ R.

Such a function is a solution of (Bλ), if c1c2 =

√
λ

2
. By Remark 3.2(1), if

c1c2 =

√
λ

2
, the function

y(x) = −2 ln[c1 cosh(c2(x− x0) + c3)], x, x0, c3 ∈ R, c1, c2 ∈ R∗

is a solution of (Bλ).

Now we shall prove that, for each x0 ∈ R, this is the general solution of (Bλ).
For to do this, let us consider the Cauchy problem

−y′′ = λey, y(x0) = y0, y
′(x0) = y′0, x0, y0 ∈ R.

From the Cauchy problem, we have for c1, c2, c3, the following system of equations
c1c2 =

√
λ

2

c1 cosh c3 = e−
y0
2

c2 tanh c3 = −y
′
0

2

Since this system has a unique solution, the conclusion is obvious. Moreover, we have
the following result.

Theorem 3.4. The Cauchy problem for (Bλ) has a unique saturated solution defined
on R.
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From this theorem it follows that:
If y ∈ C2[0, b] or y ∈ C2(]0, b[) ∩ C[0, b] is a solution of Bratu problem

−y′′ = λey, λ > 0, y(0) = 0, y(b) = 0, b > 0 (Bλ,b)

then there exists a unique solution ỹ ∈ C∞(R) of (Bλ) such that ỹ
∣∣
[0,b]

= y.

4. Some variants of Bratu theorem

We start by considering the following problems (for λ > 0):
Bratu problem:

−y′′ = λey, y(0) = 0, y(b) = 0, b > 0 (Bλ,b)

Gelfand problem:

−y′′ = λey, y(−a) = y(a) = 0, a > 0 (Gλ,a)

Cauchy problem:

−y′′ = λey, y(0) = 0, y′(0) = µ > 0 (Cλ,µ)

Nicoletti problem:

−y′′ = λey, y(0) = 0, y(x0) = a, x0 > 0 (Nλ,x0)

For the problem (Bλ,b) the following result is well known.

Bratu Theorem. ([10], [12]) For each λ > 0, there exists b∗(λ) > 0 such that:
(1) for 0 < b < b∗(λ), the problem (Bλ,b) has two solutions;
(2) the problem (Bλ, b

∗(λ)) has a unique solution;
(3) for b > b∗(λ), the problem (Bλ,b) has no solution.
For each b > 0, there exists λ∗(b) such that:
(1′) for 0 < λ < λ∗(b), the problem (Bλ,b) has two solutions;
(2′) the problem (Bλ∗(b),b) has a unique solution;
(3′) for λ > λ∗(b), the problem (Bλ,b) has no solutions.

There exist some deep relations between the problems (Bλ,b), (Gλ,a), (Cλ,µ) and
(Nλ,x0).

For example, from Bratu’s Theorem we have:

Gelfand Theorem. ([23]) For each λ > 0 there exists a∗(λ) such that:
(1) for 0 < a < a∗(λ), the problem (Gλ,a) has two solutions;
(2) the problem (Gλ, a

∗(λ)) has a unique solution;
(3) for a > a∗(λ), the problem (Gλ,a) has no solutions.

Proof. y ∈ C2(R) is a solution of (Bλ,b) if and only if y

(
x+

b

2

)
is a solution of(

Gλ, b2

)
. See Remark 3.2(1) and Theorem 3.4.

From our remarks in Section 3, we also have:
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Theorem 4.1. (1) If y ∈ C2(R) is a solution of (Bλ,b), then y is a solution of
(
Nλ, b2

)
.

(2) If y ∈ C2(R) is a solution of (Nλ,x0
), then y is a solution of (Bλ,2x0

).
(3) If y∗ is the unique solution of (Bλ∗(b),b) then there exists a unique µ∗ > 0 such

that y∗ is a solution of (Cλ∗(b),µ∗). If 0 < λ < λ∗(b), then there exists µ1 < µ∗ < µ2

such that if yi is the unique solution of (Cλ,µi), then the solution set of (Bλ,b) is
{y1, y2}. Moreover, y1 < y∗ < y2.

In what follow, we shall study the problem (Bλ,b), where 0 < λ < λ∗(b). From
Theorem 4.1 it is clear that the problem (Bλ,b) has a unique solution in the order
interval [0, y∗]. On the other hand, the problem (Bλ,b) is equivalent to the fixed point
equation

y(x) = λ

∫ b

0

G(x, s)ey(s)ds, x ∈ [0, b]. (4.1)

Let Pλ : C([0, b],R+)→ C([0, b],R+), be defined by

Pλ(y)(x) := λ

∫ b

0

G(x, s)ey(s)ds, x ∈ [0, b]. (4.2)

Notice that the operator Pλ is completely continuous, increasing and
Pλ([0, y∗]) ⊂ Pλ([0, y∗]), for 0 < λ < λ∗(b). By Theorem 2.4 we have the follow-
ing result.

Theorem 4.2. For 0 < λ < λ∗(b), the mapping Pλ : [0, y∗] → [0, y∗] defined by (4.2)
is a Picard operator.

Proof. By Theorem 4.1, we get that FPλ = {yλ}. By Theorem 2.4 we obtain

Pnλ (0)→ yλ as n→∞ and Pnλ (y∗)→ yλ as n→∞.

Since Pλ is increasing, if y ∈ [0, y∗], then Pn(0) ≤ Pn(y) ≤ Pn(y∗). This implies that
Pn(y)→ yλ as n→∞. �

On the other hand, since λ > 0 and b > 0, then

‖Pλ(y)‖∞ ≤
λb2

8
e‖y‖∞ , for all y ∈ C([0, b],R+).

Let M > 0. If λ and b are such that
λb2

8
eM ≤ M , then the order interval

[0,M ] ⊂ C([0, b],R+) is invariant subset of Pλ. If, in addition,
λb2

8
eM < 1, then

Pλ : [0,M ] → [0,M ] is a contraction. Thus, in terms of the Saturated Contraction
Principle (see Theorem 2.3 or Theorem 1.1 in [49]) we can obtain more information
with respect to the solution of (Bλ,b) in [0,M ]. We have the following result.

Theorem 4.3. Let us consider the problem (Bλ,b). For 0 < λ < λ∗(b) and λb2 < 8
e ,

take any M ∈]0, ln 8
λb2 [. Then, the following conclusions hold:

(i) the problem (Bλ,b) has a unique solution y∗ in the order interval [0,M ] ⊂
C([0, b],R+);
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(ii) the sequence (yn)n∈N defined by

yn+1(x) := λ

∫ b

0

G(x, s)eyn(s)ds, x ∈ [0, b], n ∈ N,

(where y0 is arbitrary in the order interval [0,M ] ⊂ C([0, b],R+)) converges to y∗;

(iii) for every y from the order interval [0,M ] ⊂ C([0, b],R+) we have

‖y − y∗‖∞ ≤
1

1−K
‖y − Pλy‖∞,

where Pλ(y)(x) := λ
∫ b
0
G(x, s)ey(s)ds and K :=

λb2

8
eM ;

(iv) if (un)n∈N is a sequence in the order interval [0,M ] ⊂ C([0, b],R+) such
that

‖un − Pλun‖∞ → 0 as n→∞,
then un → y∗ as n→∞;

(iv) if (un)n∈N is a sequence in the order interval [0,M ] ⊂ C([0, b],R+) such
that

‖un+1 − Pλun‖∞ → 0 as n→∞,
then un → y∗ as n→∞.

Proof. Consider the fixed point equation equation (4.1) and the operator Pλ defined
by (4.2). By the above assumptions, we have that

λb2

8
eM ≤M and

λb2

8
eM < 1.

Thus, Pλ : [0,M ]→ [0,M ] and it is a contraction. The rest of the conclusions follow
from Theorem 1.1 in [49]. �

Remark 4.4. For a better understanding of this result it is useful to compare it with
Theorem 1 in [29].

5. Bratu-type problems

From the above considerations (see Section 3) on Bratu’s equation, we are mo-
tivated to adopt the following notions.

Let us consider the equation

−y′′ = λf(y) (Ef,λ)

where λ > 0, f ∈ C2(R) and f (k)(t) > 0, for all t ∈ R and k ∈ {0, 1, 2}. Since f is
locally Lipschitz, each Cauchy problem associated to (Ef,λ) has a unique saturated
solution y ∈ C2(]x−, x+[). We suppose that: x− = −∞ and x+ = +∞.

By definition, the equation (Ef,λ) is of Bratu-type if the above conditions are
satisfied. In this case, we denote it by (BT (f, λ)).

As in Section 3, we have:
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Remark 5.1. If y is a solution of (BT (f, λ)) then:
(1) y is strictly concave function;
(2) the function x 7→ y(x+ c), x ∈ R, is a solution of (BT (f, λ)), for all c ∈ R;
(3) the function x 7→ y(−x+ c), x ∈ R, is a solution of (BT (f, λ)), for all c ∈ R;
(4) if y′(x0) = 0, then y(x0 − x) = y(x0 + x), ∀ x ∈ R;
(5) if y(0) = 0, y′(x0) = 0, 0 < x0, then y(2x0) = 0;
(6) if y(a) = 0, y(b) = 0, a < b, then y′(a) > 0, y′(b) < 0 and y(x) > 0,

∀ x ∈]a, b[.

By definition, we call the problem{
−y′′ = λf(y)
y(0) = 0, y(b) = 0, 0 < b,

the Bratu-type problem. We denote it by (BT (f, λ, b)).
For the Bratu-type problem, we have the following result.

Theorem 5.2. For each λ > 0, there exists b∗(λ) > 0 such that:
(1) for 0 < b < b∗(λ), the problem (BT (f, λ, b)) has two solutions;
(2) the problem (BT (f, λ, b∗(λ))) has a unique solution;
(3) for b > b∗(λ), the problem (BT (f, λ, b)) has no solution.
For each b > 0, there exists λ∗(b) such that:
(1′) for 0 < λ < λ∗(b), the problem (BT (f, λ, b)) has two solutions;
(2′) the problem (BT (f, λ∗(b), b)) has a unique solution;
(3′) for λ > λ∗(b), the problem (BT (f, λ, b)) has no solutions.

Proof. Let g(t) =

∫ t

0

f(s)ds + 1. In terms of g, the Bratu-type problem takes the

following form

−y′′ = λg′(y), y(0) = 0, y(b) = 0.

If y is a solution of this problem, then y′(0) = µ > 0, and from

−2y′y′′ = 2λy′g′(y),

we have that

−y′2(x) + µ2 = 2λg(y(x))− 2λ, ∀ x ∈ [0, b].

From now on, we follow Bratu’s proof of his theorem. �

6. Other generalizations

In this section, we shall consider the following boundary value problem with
increasing nonlinearity (see $ 2.2), denoted by (BV P ):{

L(y) := −y′′ + p(x)y′ + q(x)y = f(x, y)

l1(y)(a) = 0, l2(y)(b) = 0

where p, q ∈ C[a, b], f ∈ C([a, b]× R+), f(x, t) > 0, for all x ∈ [a, b], t ∈ R+, and the
interval [a, b] is a strong uniqueness interval with respect to (L, l1, l2).
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Let us denote

S+(BV P ) := {y ∈ C2([a, b],R+) | y is a solution of (BV P )}.

The problem (BV P ) is equivalent to the fixed point equation (in C([a, b],R+),

y(x) =

∫ b

a

G(x, s)f(s, y(s))ds, x ∈ [a, b], (IE)

where G(x, s) is the Green function corresponding to (L, l1, l2).
Since [a, b] is a strong uniqueness interval, hence G(x, s) ≥ 0, ∀ x, s ∈ [a, b].
We consider the operator P : C([a, b],R+)→ C([a, b],R+) defined by

P (y)(x) := second part of (IE).

It is clear that S+(BV P ) = FP .
For the problem (BV P ), we have the following result:

Theorem 6.1. In addition, we suppose that:
(1) f(x, ·) : R+ → R+ is strictly increasing, ∀ x ∈ [a, b];
(2) the (BV P ) has a positive strict supersolution denoted by ŷ.
In these conditions we have that:
(i) the ordered set (S+(BV P ),≤) has a minimum element ymin (see [39]);
(ii) ymin = lim

n→∞
Pn(0), in (C([a, b],R+, ‖ · ‖∞));

(iii) if limPn(ŷ) = ymin, then P
∣∣
[0,ŷ]

is PO.

Proof. First, we remark that the operator P is completely continuous and strictly
increasing. Moreover, 0 is a strict lower fixed point of P . Now the proof follows from
Theorem 3.4.

Remark 6.2. If q(x) ≥ 0, then Theorem 6.1 generalizes some results given in [31], [2],
[3], [43],...

Example 6.3. We consider the boundary value problem

L(y) =

m∑
k=1

λke
ukx, x ∈ [a, b],

l1(y)(a) = 0, l2(y)(b) = 0.

If λk > 0 and µk > 0, then this problem satisfies the conditions of Theorem 6.1.

In what follows, we shall use Hadamard linearized technique to study some
semilinear problems. Let us consider the following second-order linear differential
equations

Ly := −y′′ + py′ + qy = 0, for x ∈ [a, b], where p, q ∈ C[a, b] (6.1)

and

Ly := −y′′+py′+qy = f(x, y), for x ∈ [a.b], p, q ∈ C[a, b] and f ∈ C([a, b]×J), (6.2)
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with J ⊂ R a nondegenerate interval.
If y ∈ C2[a, b] is a nontrivial solution of (6.1) such that y(x) ≥ 0 for every x ∈ [a, b],
then y(x) > 0 for every x ∈]a, b[.

By this well-known property, we have the following lemma.

Lemma 6.4. We suppose that ∂f
∂y ∈ C[a, b]× J). If y1, y2 ∈ C2[a, b] are two solutions

of (6.2) such that y1(x) ≤ y2(x) for every x ∈ [a, b], then y1(x) < y2(x) for every
x ∈]a, b[.

Proof. We have that

L(y2 − y1)(x) = f(x, y1(x))− f(x, y2(x)) =∫ 1

0

∂f

∂y
(x, y1(x) + t (y2(x)− y1(x))) dt · (y2 − y1)(x),

i.e., u := y2 − y1 is a solution of the linear equation

Lu(x)−Q(x, y1(x), y2(x))u(x) = 0,

where Q(x, y1(x), y2(x)) :=
∫ 1

0
∂f
∂y (x, y1(x) + t (y2(x)− y1(x))) dt. Since y1(x) ≤ y2(x)

for every x ∈ [a, b], then y1(x) < y2(x) for every x ∈]a, b[. �
By the above lemma, we also have the following theorem.

Theorem 6.5. We suppose that the following assumptions hold:
(1) ∂f

∂y ∈ C[a, b]× J);

(2) ∂f
∂y (x, t) < 0 for every x ∈ [a, b] and t ∈ J ;

(3) the interval [a, b] is a strong uniqueness interval corresponding to (L, l1, l2),
where l1(y)(a) = y(a) and l2(y)(b) = y(b).

Then, the boundary value problem{
L(y) := −y′′ + p(x)y′ + q(x)y = f(x, y), x ∈ [a, b]

y(a) = 0, y(b) = 0

has at most a solution.

Proof. Let y1, y2 ∈ C2[a, b] are two solutions of (6.5) and u := y2 − y1. Then u is a
solution of the linear equation

Lu(x)−Q(x, y1(x), y2(x))u(x) = 0,

where Q(x, y1(x), y2(x)) was introduced in Lemma 6.4 and has the property that
Q(x, y1(x), y2(x))u(x) < 0 for every x ∈ [a, b]. Thus q(x)−Q(x, y1(x), y2(x))u(x) > 0
for every x ∈ [a, b]. By (3) and Theorem 2.1 (ii), we get that u := 0. �

Another result in the linear case is the following Sturm comparison theorem
([34], [46], [48], [24]).

Let p, q1, q2 ∈ C[a, b] with q1(x) < q2(x) for every x ∈ [a, b]. Let y be a nontrivial
solution of

L(y) := −y′′ + p(x)y′ + q1(x)y = 0, x ∈ [a, b]

and z be a notrivial solution of

L(z) := −z′′ + p(x)z′ + q2(x)z = 0, x ∈ [a, b].
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If z(a) = z(b) = 0, then there exists x0 ∈]a, b[ such that y(x0) = 0. By this result, we
immediately obtain the following theorem.

Theorem 6.6. We consider the boundary value problem (6.5). We suppose that the
following assumptions hold:

(1) ∂f
∂y ∈ C[a, b]× J);

(2) ∂f
∂y (x, ·) : J → R is strictly increasing for every t ∈ J .

Then, each totally ordered subset of the solution set of (6.5) has at most two
elements.

Proof. Let y1 ≤ y2 ≤ y3 three solutions of (6.5). By Lemma 6.4 we get that y1 < y2 <
y3 for every x ∈]a, b[. Let y := y3 − y1 and z := y2 − y1. Then

Ly(x)−Q(x, y1(x), y3(x))y(x) = 0,

and

Lz(x)−Q(x, y1(x), y2(x))z(x) = 0,

for every x ∈ [a, b]. Since ∂f
∂y (x, ·) is strictly increasing for every t ∈ J and y(x) > z(x)

for every x ∈]a, b[, by Sturm comparison theorem we get that y must change the
sign in ]a, b[. Since y(x) > 0 for every x ∈]a, b[, this is a contradiction to our initial
assumption. The proof is complete. �

Remark 6.7. For similar results to Theorem 6.6 see [44] (pp. 253-254) and the refer-
ences therein. Another result for the boundary value problem (6.5) can be obtained
by Theorem 2.4.

7. Numerical analysis of Bratu type problems

We know that Bratu’s problem (1.1) has the exact solution of the form:

y(x) = −2 log

(
cosh[(x− 1

2 ) θ2 ]

cosh θ
4

)
,

where θ is the solution of the equation

θ =
√

2λ cosh
θ

4
. (7.1)

To get numerical approximations for the solutions of the equation (7.1) we apply
the Newton’s method for finding the roots of the function

ϕ (θ) = θ −
√

2λ cosh
θ

4
,

defined by

θn+1 = θn −
ϕ (θn)

ϕ′ (θn)
, (7.2)
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with a starting value θ0 ∈ [a, b] chosen such that in [a, b] equation (7.1) has only one
solution and ϕ′ (θ0) 6= 0. It is clear that ϕ ∈ C2 (R) is a concave function with a
maximum in

θ∗ (λ) = 4arc sinh

(
4√
2λ

)
.

Figure 1. The graph of ϕ (θ) for λ = 3.

The existence of the critical value λc comes from the condition that, in order
to have solutions for the equation (7.1), the maximum value ϕ (θ∗ (λ)) should be
nonnegative. Thus, λc is obtained as a solution of

ϕ (θ∗ (λ)) = 0,

and, in the case of Bratu’s problem (1.1), we have λc ≈ 3.513830719.

If 0 < λ < λc, then ϕ (θ∗ (λ)) > 0 and the equation has two solutions
θ1 (λ), θ2 (λ). Since ϕ (0) < 0 and lim

θ→+∞
ϕ (θ) = −∞ then θ1 (λ) ∈ (0, θ∗ (λ)) and

θ2 (λ) ∈ (θ∗ (λ) ,+∞). In order to get a numerical approximation of θ1 (λ), respec-
tively, of θ2 (λ), we may choose as a starting value θ0 ∈ (0, θ∗ (λ)), respectively,
θ0 ∈ (θ∗ (λ) , θ∗ (λ) + ε) for some ε > 0.

If λ = λc then ϕ (θ∗ (λc)) = 0, so θ∗ (λc) is the unique solution of (7.1). This
value can be obtained as the limit θ1 (λ) or θ2 (λ) when λ→ λc.

In the case of λ = 3, we have

θ∗ (3) = 4 arcsinh

(
2

3

√
6

)
≈ 5.065364187

and the following iterations:
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θ0 = 0 θ0 = 10
θ1 = 2.4494897427831780982 8.1438003057516703864
θ2 = 3.2377069463405279948 7.0734727359775392946

...
...

...
θ10 = 3.3735077642858915405 6.5765692592543752601

...
...

...
θ19 = 3.3735077642858915405 6.5765692592543752601
θ20 = 3.3735077642858915405 6.5765692592543752601

For different values of λ < λc, we obtain the following approximating values for θ1 (λ)
and θ1 (λ):

λ θ1 (λ) θ2 (λ)
1 1.5171645990507543685 10.938702772122106800
2 2.3575510538774020426 8.5071995707130261296
3 3.3735077642858915407 6.5765692592543752601

3.513 4.7374700066634551382 4.8604846857553034188
3.513830719125 4.7987137042679359281 4.7987154177935504693

Figure 2. The graph of Bratu’s problem solutions for different
values of λ.
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44 Adrian Petruşel, Ioan A. Rus and Marcel Adrian Şerban
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150(1910), 896-899.
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no. 3, 699-721.

[19] Frank-Kamenetskii, D.A., Calculation of thermal explosion limits, Acta Phys., USSR,
10(1939), 365.

[20] Frank-Kamenetskii, D.A., Diffusion and Heat Exchange in Chemical Kinetics, Princeton
Univ. Press, 1955.

[21] Fujita, H., On the nonlinear equations ∆u + eu = 0 and
∂v

∂t
= ∆v + ev, Bull. Amer.

Math. Soc., 75(1969), 132-135.

[22] Galaktionov, V.A., Vázquez, J.L., The problem of blow-up in nonlinear parabolic equa-
tions, Discrete and Continuous Dynamical Systems, 8(2002), no. 2, 399-433.

[23] Gelfand, I.M., Some problems in the theory of quasilinear equations, Amer. Math. Soc.
Transl., 29(1963), 295-381 (Usp. Mat. Nauk, 14(1959), no. 2, 87-158).



Theoretical and numerical considerations on Bratu-type problems 45

[24] Hartman, P., Ordinary Differential Equations, Wiley New York, 1964.

[25] Hirsch, M.W., The dynamical systems approach to differential equations, Bull. Amer.
Math. Soc., 11(1984), no. 1, 1-64.

[26] Jacobsen, J., Schmitt, K., The Liouville-Bratu-Gelfand problem for radial operators, J.
Diff. Eq., 184(2002), 283-298.

[27] Joseph, D., Lundgren, Quasilinear Dirichlet problems driven by positive source, Arch.
Rational Mech. Anal., 49(1973), 241-269.

[28] Joseph, D., Sparrow, E.M., Nonlinear diffusion induced by nonlinear sources, Quarterly
Appl. Math., 28(1970), no. 3, 327-342.

[29] Kafri, H.Q., Khuri, S.A., Bratu’s problem: A novel approach using fixed point iterations
and Green’s functions, Computer Physics Communications, 198(2016), 97-104.

[30] Keller, H.B., Existence theory for two point boundary value problems, Bull. Amer. Math.
Soc., 72(1966), 728-731.

[31] Keller, H.B., Cohen, D.S., Some positone problems suggested by nonlinear heat genera-
tion, J. Math. Mech., 16(1967), no. 12, 1361-1376.

[32] Khuri, S.A., Louhichi, I., A novel Ishikawa-Green’s fixed point scheme for the solution
of BVPs, Appl. Math. Letters, 82(2018), 50-57.

[33] Krasnoselskii, M.A., Positive Solutions of Operator Equations, Noordhof, 1964.

[34] Kreith, K. PDE generalization of the Sturm comparison theorem, Memoirs Amer. Math.
Soc., 48(1984), no 298, 31-46.

[35] Laetsch, T., On the number of solutions of boundary value problems with convex non-
linearities, J. Math. Anal. Appl., 35(1971), 389-404.

[36] Lebovitz, N., Oscillation theory and the spectra of eigenvalues, in: Ordinary Differential
Equations, http://people.cs.uchicago.edu/ lebovitz/odes.html

[37] Liouville, J., Sur l’équation aux différences partielles
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Univ. Babeş-Bolyai Math., 61(2016), no. 3, 343-358.
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Abstract. The Liénard system dx
dt

= y, dy
dt

= −f(x)y− g(x) is considered. Under
some assumptions on functions f(x) and g(x), we prove the existence of a periodic
solution of this system.
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1. Introduction

On the phase plane to periodic solutions of an autonomous system

ẋ = X(x, y), ẏ = Y (x, y)

correspond closed trajectories. Such solutions usually describe continuous periodic
processes. Periodic solutions are an important class of solutions to ordinary differential
equations, since many of the processes described by ordinary differential equations are
periodic. A large number of scientific papers are devoted to their study. At his time,
Henri Poincaré attached great importance to periodic solutions represented by closed
orbits. According to his plans, they were to become a support in the study of all other,
non-periodic movements. In a certain sense, periodic solutions are the only type of
solutions that can be completely observed in the process of their evolution, since the
entire evolution of a periodic solution is determined by the knowledge of this solution
over a finite period of time. Periodic solutions are the simplest type of oscillatory
solutions.

In 1928, Liénard [7, 8] considered equations of the form

d2x

dt2
+ f(x)

dx

dt
+ x = 0, (1.1)
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where f(x) is a polynomial of even degree. These equations arose as a generalization
of the famous van Der Pol equation [12]

d2x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0, (1.2)

which studied in detail the case f(x) = x2−1. Moreover, the generalization was infor-
mal and mathematical, and naturally arose from the nonlinear damping of vibrations
in electrical circuits considered by Liénard. Setting dx/dt = z, Liénard wrote equation
(1.1) in the following form of the system of differential equations of first order

dx

dt
= z,

dz

dt
= −x− f(x)z. (1.3)

But in his proof of the uniqueness of a periodic solution of equation (1.1), Liénard
used other system of differential equations which is equivalent to system (1.3). For
this, in system (1.3) he changed the variable z = y − F (x), where

F (x) =

∫ x

0

f(ξ)dξ, (1.4)

and obtained the system

dx

dt
= y − F (x),

dy

dt
= −x. (1.5)

Equation (1.1) is referred to as a Liénard equation, and both systems of equations
(1.3) and (1.5) are called Liénard systems.

Consider the following differential equation

d2x

dt2
+ f(x)

dx

dt
+ g(x) = 0, (1.6)

which is a generalization of equation (1.1). These equations were obtained by Levinson
and Smith [6] in 1942. Equation (1.6) as well as equation (1.1) most of authors call
the Liénard equation 1. The differential equation (1.6) have been studied in many
papers [1, 9, 5, 2, 3, 11]. Equation (1.6) one can write in the form of the system of
ordinary differential equations

dx

dt
= y,

dy

dt
= −f(x)y − g(x). (1.7)

This system can model mechanical systems, where f(x) is known as the damping
term and g(x)) is called the restoring force or stiffness. System (1.7) is also used to
model resistor inductor capacitor circuits with nonlinear circuit elements.

In papers [4, 10, 15, 13] the authors obtained conditions, under which system
(1.7) or the equivalent system

dx

dt
= z − F (x),

dz

dt
= −g(x) (1.8)

has a periodic solution.
The aim of this paper is to obtain other sufficient conditions of the existence of

a periodic solution of system (1.7).

1Some authors call equation (1.6) the generalized Liénard equation.
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2. On the existence of periodic solutions of system (1.7)

Let us find the conditions that ensure the existence of periodic solutions of system
(1.7). Note that the periodic solution of system (1.7) exists if and only if there is a
periodic solution of system (1.8). The following theorem gives sufficient conditions for
the existence of periodic solutions of system (1.8).

Theorem 2.1. Suppose that F (x) is continuously differentiable, g(x) is locally Lips-
chitz, and besides

• xg(x) > 0 for x 6= 0;
• the equation F (x) = 0 has three real roots: x = b1 > 0, x = b2 < 0, and x = 0;
F (x) > 0 for x ∈ (b2, 0) ∪ (b1,+∞); F (x) < 0 for x ∈ (−∞, b2) ∪ (0, b1);

• F (x) monotonically increases in the intervals (−∞, b2) and (b1,+∞);
F (x)→ +∞ as x→ +∞, F (x)→ −∞ as x→ −∞.

Then system (1.8) has a nontrivial (nonzero) periodic solution.

Proof. As has been shown in [3, 14], any solution of system (1.8) is a clockwise rotation
around the origin, i.e. any solution that starts on the positive semiaxis of ordinate
Oz, sequentially passes the first quadrant, then the fourth, third, second, first again,
and so on. Consider the trajectory x(t), z(t) of system (1.8) in the plane Oxz starting
at the point H with the coordinates (0, zH) at the zero moment of time t (see Fig. 1).

Figure 1

Denote by J and S the points of intersection of this trajectory with the curve
z = F (x), by I and L the points of intersection of the trajectory with the straight line
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x = b1, by U and N the points of intersection of the trajectory with the straight line
x = b2, and, finally, by W and M the points of intersection of the trajectory x(t), z(t)
with the axis Oz.

Obviously, the solution x(t), z(t) is periodic if and only if the points H and W
coincide, i.e. zH = zW .

Denote

G(x) :=

∫ x

0

g(ξ)dξ.

Consider the function

v(x, z) =
z2

2
+G(x).

Its derivative along solutions of system (1.8) is equal

dv(x(t), z(t))

dt
= −z(t)g(x(t)) + g(x(t))[z(t)− F (x(t))] = −g(x(t))F (x(t)). (2.1)

The change of the function v from point H to point W is equal to

∆v = v(0, zW )− v(0, zH) =

∫ τ

0

dv(x(t), z(t))

dt
dt = −

∫ τ

0

g(x(t))F (x(t))dt (2.2)

where τ is moment of time when the trajectory x(t), z(t) reaches the point W . Assume
that zH is sufficiently large, such that xJ > b1, xS < b2. Let us show that ∆v is a
decreasing function of zH . To do this, we break the trajectory between H and W into
6 pieces, where the first piece is a segment of the trajectory between points H and
I, the second piece is a segment of the trajectory between points I and L, the third
piece is the segment of the trajectory between the points L and M , the fourth piece
is the segment of the trajectory between the points M and N , the fifth piece is a
segment of the trajectory between the points N and U , the sixth piece is a segment
of the trajectory between the points U and W . So ∆v can be represented in the
form ∆v =

∑6
i=1 ∆vi where ∆vi is the change of the function v on i-th piece of

the trajectory. On the first, third, fourth and sixth pieces, z can be represented as a
function of a variable x, because on these pieces x(t) either monotonically increases
or monotonically decreases; hence, the change of variable dt = dx

z−F (x) is quite correct.

On the second and fifth pieces we use the substitution dt = − dz
g(x) . We want

to argue that ∆v is a monotonically decreasing function of zH . So consider two tra-
jectories starting at t = 0 from points (0, zH) and (0, zH + ∆zH), where ∆zH > 0.
We denote the trajectories of system (1.8), starting at t = 0 from the points (0, zH)
and (0, zH + ∆zH) by symbols T1 and T2 respectively. By virtue of the conditions
of the theorem of existence and uniqueness of solutions of system (1.8), trajectories
T1 and T2 have no common points, hence, the trajectory T2 is located outside of
the trajectory T1, i.e. any ray emerging from the origin, first intersects the trajec-
tory T1 and then the trajectory T2. Let us discover how changes the expression for
∆vi (i = 1, . . . , 6) in the transition from the trajectory T1 to the trajectory T2.

∆v1 =

∫ b1

0

g(x)[−F (x)]

z(x)− F (x)
dx =

∫ b1

0

g(x)|F (x)|
|z(x)− F (x)|

dx.
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The value for z(x) on the trajectory T2 is more then the value for z(x) on T1, hence,
∆v1(T2) < ∆v1(T1). Here and below ∆vi(T2) and ∆vi(T1) denote the values of ∆vi
on trajectories T2 and T1 respectively.

∆v2 = −
∫ zL

zI

g(x)F (x)

[
− dz

g(x)

]
= −

∫ zI

zL

F (x(z))dz.

Taking into account that on this piece F (x) is positive and monotonically increasing
and x(z)|T2 > x(z)|T1, we obtain that ∆v2(T2) < ∆v2(T1).

∆v3 =

∫ 0

b1

g(x)[−F (x)]

z(x)− F (x)
dx =

∫ b1

0

g(x)|F (x)|
|z(x)− F (x)|

dx

In this case we also have ∆v3(T2) < ∆v3(T1).

∆v4 =

∫ b2

0

[−g(x)]F (x)

z(x)− F (x)
dx =

∫ 0

b2

[−g(x)]F (x)

F (x)− z(x)
dx,

whence ∆v4(T2) < ∆v4(T1).

∆v5 = −
∫ zU

zN

g(x)F (x)

[
− dz

g(x)

]
=

∫ zU

zN

F (x(z))dz.

On this piece F (x) is negative. Since x(z)|T2 < x(z)|T1, then

F (x(z))|x(z)∈T2 < F (x(z))|x(z)∈T1 ,

hence ∆v5(T2) < ∆v5(T1).

∆v6 = −
∫ 0

b2

g(x)F (x)

z(x)− F (x)
dx =

∫ 0

b2

[−g(x)]F (x)

z(x)− F (x)
dx.

Here z(x)|T2 > z(x)|T1, therefore ∆v6(T2) < ∆v6(T1). Thus it has been proved that
∆vi (i = 1, . . . , 6) decrease if zH increase, hence ∆v also decreases with increasing
zH . Let us show that

lim
zH→+∞

∆v = −∞.

To do this, it is enough to prove that

lim
zH→+∞

∆v2 = −∞.

We will show that zI increases indefinitely with unlimited increase of the value zH .
Getting rid of t in system (1.8) and passing to the argument x, we write the differential
equation which describes the orbit HIJ :

dz

dx
= − g(x)

z − F (x)
. (2.3)

According to the condition of the theorem F (x) < 0 for x ∈ (0, b1), hence

g(x)

z − F (x)
<
g(x)

z
for x ∈ (0, b1). (2.4)
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From equation (2.3) and inequality (2.4) it follows

−dz
dx

<
g(x)

z
for x ∈ (0, b1).

Separating variables and integrating, we obtain

1

2
z2(b1)− 1

2
z2H > −

∫ b1

0

g(x)dx,

whence bearing in mind that z(b1) = zI , we get that zI → +∞ if zH → +∞.
Let c ∈ (b1, xJ). Let us designate the ordinates of the intersection points of the

trajectory T1 and the line x = c on pieces IJ and JL, respectively z∗ and z∗∗. Taking
into account that L is the intersection point of the trajectory T1 and the line x = b1,
we conclude that zL < 0 (see Fig.1). Bearing in mind the continuity of the trajectory
T1, the value c ∈ (b1, xJ) we choose so close to the value of b1 that z∗∗ < 0.

Let z(x) be the solution of equation (2.3) such that z(0) = zH . We shall show
that z(c) → +∞ if zH → +∞. The inequality z − F (x) > z − F (c) holds on the
interval (b1, c) because the function F (x) monotonically increases on this interval.
Hence equation (2.3) yields

−dz
dx

=
g(x)

z − F (x)
<

g(x)

z − F (c)
.

Separating variables and integrating, we obtain

−
[

1

2
z2 − F (c)z

]z(c)
zI

<

∫ c

b1

g(x)dx,

whence (taking into account that z(c) = z∗ > 0) it follows the inequality

z(c) > F (c) +

√
[zI − F (c)]

2 − 2

∫ c

b1

g(x)dx.

Since zI → +∞ if zH → +∞, then z∗ = z(c)→ +∞ if zH → +∞.
Bearing in mind that F (x) increases for x > b1, we have

∆v2 = −
∫ zI

zL

F (x(z))dz < −F (c)(z∗ − z∗∗)

< −F (c)

[
F (c) +

√
[zI − F (c)]

2 − 2

∫ c

b1

g(x)dx

]
. (2.5)

The obtained inequality implies that ∆v2 → −∞ if zH → +∞.
If we choose zH small enough, such that the entire trajectory between points H

and W is located in the domain x ∈ (b2, b1), then obviously that ∆v > 0. Taking into
account that ∆v tends to −∞ when zH → +∞, one can conclude that there exists a
value zH > 0 such that ∆v = 0. This means that there exists a periodic solution of
system (1.8). The proof is comlpete.

Remark 2.2. If additionally to conditions of the theorem, one of the following condi-
tions
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• G(a1) = G(a2) where a1 and a2 are positive and negative roots of equation
f(x) = 0, and G(±∞) = +∞,

• f(x) is even, g(x) is odd, G(+∞) = +∞,

is satisfied, then equation (1.7) has a single periodic solution [14].
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1. Introduction

This paper is dedicated to prof. Gheorghe Moroşanu on the occasion of his 70th
birthday. The topic of our paper fits perfectly with one of prof. Moroşanu ’s fields
of interests, namely the study of eigenvalue problems for elliptic operators, on which
he brought a couple of nice contributions which will be recalled in the main body of
this article. It is an opportunity and an honour for us to dedicate this work to our
professor and friend Gheorghe Moroşanu on the occasion of his 70th birthday.

The goal of this paper is to collect some known results on perturbed eigenvalue
problems. We split the discussion in two main parts. More precisely, we will start
our survey by presenting results on the classical eigenvalue problem for the p-Laplace
operator in both local and nonlocal cases (including a discussion on the limiting case
when p→∞), and we will continue with the case of the perturbed eigenvalue problems
of the p-Laplace operator on bounded domains under different boundary conditions
or on unbounded domains.

1.1. Notations

Throughout this paper Ω will stand for an open set (bounded or unbounded) of
the Euclidean space RN . We will denote by ∂Ω the boundary of Ω while ν will stand
for the unit outward normal to ∂Ω and ∂u

∂ν will represent the normal derivative of u.

The Euclidean norm on RN will be denoted by | · |N .
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2. Eigenvalue problems for the p-Laplace operator

2.1. The case of the (local) p-Laplace operator

For each real number p ∈ (1,∞) and each function u : Ω→ R, smooth enough,
we define the (local) p-Laplace operator by

∆pu := div(|∇u|p−2
N ∇u) .

2.1.1. The case of bounded domains. In this section we will assume that Ω ⊂ RN
(N ≥ 1) is a bounded domain with smooth boundary ∂Ω. The classical eigenvalue
problem for the p-Laplace operator reads as follows

−∆pu = λ|u|p−2u, in Ω , (2.1)

where λ ∈ R is a real parameter. This problem was studied under different boundary
conditions (see, e.g. Lê [16] for more details), such as

• Dirichlet boundary conditions

u = 0, on ∂Ω , (2.2)

• Neumann boundary conditions

|∇u|p−2
N

∂u

∂ν
= 0, on ∂Ω , (2.3)

• Robin boundary conditions

|∇u|p−2
N

∂u

∂ν
+ α|u|p−2u = 0, on ∂Ω , (2.4)

where α > 0 is a given real number, etc. In this context, a parameter λ is called an
eigenvalue of problem (2.1) if the problem possesses a nontrivial (weak) solution u
which belongs to a suitable Sobolev space denoted by W (Ω), where either W (Ω) =

W 1,p
0 (Ω), if we are working under the Dirichlet boundary conditions, or W (Ω) =

W 1,p(Ω), if we are working under the Neumann or Robin boundary conditions. More
precisely, if we are working under boundary conditions (2.2) or (2.3) then λ is an
eigenvalue of problem (2.1) if there exists u ∈W (Ω) \ {0} such that∫

Ω

|∇u|p−2
N ∇u∇φ dx = λ

∫
Ω

|u|p−2uφ dx, ∀ φ ∈W (Ω) ,

while, if we are working under boundary conditions (2.4) then λ is an eigenvalue of
problem (2.1) if there exists u ∈W (Ω) \ {0} such that∫

Ω

|∇u|p−2
N ∇u∇φ dx+ α

∫
∂Ω

|u|p−2uφ dσ(x) = λ

∫
Ω

|u|p−2uφ dx, ∀ φ ∈W (Ω) .

A function u as above is called an eigenfunction corresponding to the eigenvalue λ.

It is well-known (see, e.g. Lindqvist [18] or Lê [16]) that problem (2.1) (under
any of the boundary conditions (2.2), (2.3), or (2.4)) has an increasing and unbounded
sequence of nonnegative eigenvalues, say {λk(p; Ω)}k≥1, which can be produced using,
for instance, the Ljusternik-Schnirelman theory. We recall that for each integer k ≥ 1
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the eigenvalue λk(p; Ω), under the boundary conditions (2.2) or (2.3), has the following
variational characterisation, (see, e.g. [16]),

λk(p; Ω) := inf
A∈Σk

sup
u∈A

∫
Ω

|∇u|pN dx∫
Ω

|u|p dx
, (2.5)

while, under the boundary condition (2.4) its variational characterisation reads as

λk(p; Ω) := inf
A∈Σk

sup
u∈A

∫
Ω

|∇u|pN dx+ α

∫
∂Ω

|u|p dσ(x)∫
Ω

|u|p dx
, (2.6)

where

Σk := {A ⊂W (Ω) | A is symmetric and compact in the

topology of W (Ω), γ(A) ≥ k} ,

and γ(A) stands for the Krasnosel’skii genus of A, which is defined as the smallest
integer m for which there exists a continuous odd map f : A→ Rm \ {0}. If no such
integer exists, then we set γ(A) =∞, while γ(∅) = 0. Note that in the particular cases
when p = 2 (and N ≥ 1), that is the case when the eigenvalue problem (2.1) is linear,
or N = 1 (and p ∈ (1,∞)), that is the 1-dimensional case, the sequence {λk(p; Ω)}k≥1

describes completely the set of eigenvalues of problem (2.1). However, when N ≥ 2
and p ∈ (1,∞) \ {2} the existence of other eigenvalues in the interval (λ2(p; Ω),∞)
different from those given by the sequence {λk(p; Ω)}k≥3 remains an open question.
Actually, in the latter case it is not known if the set of all eigenvalues of the problem
is discrete or not.

In order to simplify the exposition, in the rest of this paper we will use three
different notations for the sequences of eigenvalues of problem (2.1) depending on the
boundary conditions that will be considered. More precisely, we let {λDk (p; Ω)}k≥1,
{λNk (p; Ω)}k≥1 and {λRk (p; Ω)}k≥1 be the sequences of eigenvalues of problem (2.1)
under the boundary conditions (2.2), (2.3) and (2.4), respectively.

At this point it is instructive to point out the following simple observations
concerning the variational characterisations of the lowest eigenvalues of problem (2.1)
under the three different boundary conditions presented above

λD1 (p; Ω) := inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|pN dx∫
Ω

|u|p dx
, (2.7)

λN1 (p; Ω) := inf
u∈W 1,p(Ω)\{0}

∫
Ω

|∇u|pN dx∫
Ω

|u|p dx
,
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λR1 (p; Ω) := inf
u∈W 1,p(Ω)\{0}

∫
Ω

|∇u|pN dx+ α

∫
∂Ω

|u|p dσ(x)∫
Ω

|u|p dx
.

All these minimization problems possess minimizers which are corresponding eigen-
functions for the eigenvalues λD1 (p; Ω), λN1 (p; Ω) and λR1 (p; Ω). These minimizers be-
long to a certain Hölder space C1,β(Ω) (for some β ∈ (0, 1)) and do not change sign
in Ω. On the other hand, the eigenvalues λD1 (p; Ω), λN1 (p; Ω) and λR1 (p; Ω) are simple
and isolated. Moreover, we recall that

λD1 (p; Ω) > 0 and λR1 (p; Ω) > 0, ∀ p ∈ (1,∞) ,

while

λN1 (p; Ω) = 0, ∀ p ∈ (1,∞) .

Since the lowest eigenvalue of problem (2.1)+(2.3) vanishes it is important to present
the variational characterisation of the second eigenvalue λN2 (p; Ω) (that is the first
positive eigenvalue of the problem), namely

λN2 (p; Ω) := inf
u∈Xp(Ω)\{0}

∫
Ω

|∇u|pN dx∫
Ω

|u|p dx
,

where Xp(Ω) := {u ∈W 1,p(Ω) :
∫

Ω
|u|p−2u dx = 0}.

2.1.2. The∞-eigenvalue problem under the Dirichlet boundary conditions. For each
p ∈ (1,∞) we can rewrite problem (2.1)+(2.2) as{

−∆pu = λ|u|p−2u in Ω,
u = 0 on ∂Ω .

(2.8)

The asymptotic behavior as p → ∞ of problems (2.8) with λ = λD1 (p; Ω) has been
studied by Fukagai, Ito, & Narukawa [11] and Juutinen, Lindqvist, & Manfredi [15]).
A first step in this direction was to show that

lim
p→∞

p

√
λD1 (p; Ω) =

[
max
x∈Ω

dist(x, ∂Ω)

]−1

,

where dist(·, ∂Ω) stands for the distance function to the boundary of Ω, (recall that
dist(x, ∂Ω) := infy∈∂Ω |x − y|N , for all x ∈ Ω). Next, since the corresponding eigen-
functions of λD1 (p; Ω) are, actually, minimizers for the minimization problem (2.7)
that do not change sign in Ω, we can let, for each p ∈ (1,∞), up > 0 to be an eigen-
function corresponding to the eigenvalue λD1 (p; Ω). Juutinen, Lindqvist & Manfredi
showed in [15] that there exists a subsequence of {up} which converges uniformly in
Ω to a nontrivial and nonnegative viscosity solution of the limiting problem min

{
|∇u|N −

[
max
x∈Ω

dist(x, ∂Ω)

]−1

u, −∆∞u

}
= 0 in Ω,

u = 0 on ∂Ω,

(2.9)
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where ∆∞ is the∞-Laplace operator, which on sufficiently smooth functions u : Ω→
R is given by ∆∞u := 〈D2u∇u,∇u〉 =

∑N
i,j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xi∂xj

. Note that dist(·, ∂Ω) is

not always a viscosity solution of (2.9), but, in the particular case when Ω is a ball it
turns out that dist(·, ∂Ω) is the only viscosity solution of (2.9). However, for general
domains Ω the convergence of the entire sequence up to a unique limit, as p→∞, is
an open question.

2.1.3. The case of unbounded domains. In the first part of this section we will let
Ω ⊆ RN (N ≥ 3) be a general open set (bounded or unbounded) and V : Ω → R be
a function which satisfies the hypotheses{

V ∈ L1
loc(Ω), V + = V1 + V2 6= 0, V1 ∈ LN/2(Ω),

lim
|x|N→∞

|x|2NV2(x) = 0, lim
x→y
|x− y|2NV2(x) = 0 for any y ∈ Ω. (2.10)

Note that in particular the function V may change sign in Ω.
In [25] Szulkin & Willem analyzed the eigenvalue problem

−∆u = λV (x)u, u ∈ D1,2
0 (Ω) , (2.11)

where D1,2
0 (Ω) stands for the closure of C∞0 (Ω) under the L2-norm of the gradient.

Using an elementary argument based on a simple minimization procedure it was
proved in [25, Theorems 2.2 & 2.3] the existence of infinitely many eigenvalues of
(2.11). A similar result was obtained in the case when instead of the Laplace operator
was considered the general p-Laplace operator in equation (2.11) (naturally, in this
new case conditions (2.10) were slightly modified in order to be compatible with the
new situation).

In the second part of this section we let Ω ⊂ RN (N ≥ 2) be a simply connected
bounded domain, containing the origin, with C2 boundary denoted by ∂Ω and we
denote by Ωext := RN \ Ω the exterior of Ω. Let K : Ωext → (0,∞) be a function
having the property that K ∈ L∞ (Ωext) ∩ LN/p (Ωext), for some p ∈ (1, N). Chhetri
and Drábek studied in [6] the eigenvalue problem −∆pu = λK(x)|u|p−2u, for x ∈ Ωext,

u(x) = 0, for x ∈ ∂Ω,
u(x)→ 0, as |x|N →∞ .

(2.12)

In particular, they showed that the lowest eigenvalue of problem (2.12) has the fol-
lowing variational characterization

λ1(p; Ωext) := inf
u∈C∞

0 (Ωext)\{0}

∫
Ωext

|∇u|pNdx∫
Ωext

K(x)|u|pdx
. (2.13)

Moreover, λ1(p; Ωext) is simple, isolated and its corresponding eigenfunctions have
constant sign in Ωext. In particular, the results from [6] complemented to the case
of exterior domains the results obtained on the classical eigenvalue problem of the
p-Laplacian on bounded domains subject to the homogeneous Dirichlet boundary
conditions (that is problem (2.1)+(2.2), or, equivalently, problem (2.8)).
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2.2. The case of the nonlocal p-Laplace operator

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω. For
each p ∈ (1,∞) and s ∈ (0, 1) we define the nonlocal nonlinear operator

(−∆p)
su(x) := 2 lim

ε↘0

∫
|x−y|N≥ε

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
N

dy, x ∈ RN . (2.14)

Since for p = 2 the above definition reduces to the linear fractional Laplacian, (−∆)s,
we will refer to (−∆p)

s as being a fractional (s, p)-Laplace operator.
The eigenvalue problem for the fractional (s, p)-Laplacian reads as follows{

(−∆p)
su(x) = λ|u(x)|p−2u(x), for x ∈ Ω,

u(x) = 0, for x ∈ RN\Ω .
(2.15)

Problem (2.15) was extensively studied in the literature in the last decade. Among the
results related with this problem we just recall some facts from the paper by Lindgren
& Lindqvist [17]. First, in order to explain the notion of eigenvalue for problem (2.15)

let us denote by W̃ s,p
0 (Ω) the fractional Sobolev space where it is natural to seek weak

solutions for this problem. Next, for simplicity, for each p ∈ (1,∞) and s ∈ (0, 1) we
will consider the notation

Es,p(u, v) :=

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp
N

dx dy , (2.16)

for all u, v ∈ W̃ s,p
0 (Ω). A real number λ ∈ R will be called an eigenvalue of problem

(2.15) if there exists a function u ∈ W̃ s,p
0 (Ω) such that

Es,p(u, v) = λ

∫
Ω

|u(x)|p−2u(x)v(x) dx, ∀ v ∈ W̃ s,p
0 (Ω) . (2.17)

Further, we define

λ1(s, p) := inf
u∈W̃ s,p

0 (Ω)\{0}

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
N

dx dy∫
RN

|u|p dx
. (2.18)

It is known that λ1(s, p) is attained at some u ∈ W̃ s,p
0 (Ω) \ {0} (see [17, Theorem 5]),

with ‖u‖Lp(RN ) = ‖u‖Lp(Ω) = 1 and∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
N

dx dy∫
RN

|u|p dx
= λ1(s, p) .

Moreover, it holds true that

Es,p(u, ϕ) = λ1(s, p)

∫
RN

|u(x)|p−2u(x)ϕ(x)dx, ∀ ϕ ∈ W̃ s,p
0 (Ω) ,

which means that λ1(s, p) is an eigenvalue of problem (2.15).
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Next, let us recall a result on an eigenvalue problem involving the fractional
Laplacian studied on the whole Euclidean space RN . More precisely, the second author
of this survey studied in [12] the eigenvalue problem

(−∆)
s
u(x) = λV (x)u(x), ∀ x ∈ RN , (2.19)

where s ∈ (0, 1) is a given real number, λ is a real parameter and V : RN → R is a
function that may change sign and which satisfies the hypothesis

V ∈ L1
loc(RN ), V + = V1 + V2 6= 0, V1 ∈ L

N
2s (RN ) and

lim
x→y
|x− y|2sN V2(x) = 0, for all y ∈ RN and lim

|x|N→∞
|x|2sN V2(x) = 0.

(Ṽ )

It was shown in [12, Theorem 1.3] that under condition (Ṽ) the problem (2.19)
has an unbounded, increasing sequence of positive eigenvalues. In particular this result
extended to the case of nonlocal operators the result by Szulkin & Willem from [25,
Theorems 2.2 & 2.3].

3. Perturbed eigenvalue problems for the p-Laplace operator

In this section we will analyze some perturbations of classical eigenvalue prob-
lems. All the perturbed eigenvalue problems are, actually, nontypical eigenvalue prob-
lems since the differential operators involved in their constructions are inhomogeneous.
However, their formulations are similar with those of the typical eigenvalue problems
and for that reason we will continue to call the parameter λ involved in these equations
an eigenvalue if the corresponding problem possesses a nontrivial weak solution.

3.1. The perturbation of the (local) p-Laplace operator

3.1.1. The case of bounded domains. In this section we will assume that Ω ⊂ RN
(N ≥ 1) is a bounded domain with smooth boundary ∂Ω. Let p ∈ (1,∞) be a given
real number. We will call a perturbation of the eigenvalue problem (2.1) a problem of
type

−∆pu−∆qu = λ|u|p−2u, in Ω , (3.1)

where q ∈ (1,∞) \ {p} is a given real number and λ ∈ R is a real parameter. Our goal
will be to determine the set of all parameters λ for which problem (3.1) has nontrivial
solutions, under different boundary conditions. This kind of parameters will be called
eigenvalues of problem (3.1).
I. The case of the Dirichlet boundary conditions. We consider the case when problem

(3.1) is investigated subject to the boundary conditions (2.2). More precisely, we
consider the problem {

−∆pu−∆qu = λ|u|p−2u in Ω,
u = 0 on ∂Ω .

(3.2)

For this problem a weak solution is a function u ∈W 1,max{p,q}
0 (Ω) such that∫

Ω

(|∇u|p−2
N + |∇u|q−2

N )∇u∇φ dx = λ

∫
Ω

|u|p−2uφ dx, ∀ φ ∈W 1,max{p,q}
0 (Ω) .
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We will say that λ from the above relation is an eigenvalue of problem (3.2) if

u ∈ W 1,max{p,q}
0 (Ω) \ {0}. In that case we will refer to u as being an eigenfunction

corresponding to the eigenvalue λ.

Independently, Tanaka [23] and Bocea and the third author of this paper [5,
Theorem 1.1] proved the following result.

Theorem 3.1. The set of eigenvalues of problem (3.2) is exactly given by the open
interval (λD1 (p; Ω),∞). Moreover, for each λ ∈ (λD1 (p; Ω),∞) there exists a nontrivial
and nonnegative weak solution for problem (3.2).

Note the interesting fact that in the case of the perturbed eigenvalue problems
under the Dirichlet boundary conditions, such as (3.2), the set of eigenvalues can be
entirely described and it is a continuous set. In particular, this is in sharp contrast
with the situation which occurs in the case of the Laplace operator when the set of
eigenvalues is discrete.

We would like to point out that similar results with those obtained in Theorem
3.1 were obtained by Bhattacharya, Emamizadeh, & Farjudian in [3] and by the
first author of this paper in [8, Theorem 1] but for a class of anisotropic differential
operators.

Further, let us assume that for each real number p ∈ (1,∞) the parameter
q ∈ (1,∞) \ {p} which is involved in the construction of problem (3.2) depends on
p. In other words we assume that q : (1,∞) → (1,∞) is a function which depends

on p, i.e. q = q(p). Furthermore, we assume that lim
p→∞

q(p)
p = Q ∈ (0,∞) \ {1}, and

where either q(p) < p if Q ∈ (0, 1) or q(p) > p if Q ∈ (1,∞). In [5] the authors
investigated the asymptotic behavior of positive solutions of the problems (3.2) as
p → ∞. They showed that for any Λ ∈ [(max

x∈Ω
dist(x, ∂Ω))−1,∞) and each sequence

{λp}, with λp ∈ (λD1 (p; Ω),∞), such that limp→∞(λp)
1/p = Λ the sequence of positive

weak solutions of (3.2) with λ = λp possesses a subsequence which converges to a
nontrivial and nonnegative viscosity solution of the limiting problem{

min
{

max{|∇u|N , |∇u|QN} − Λu,−∆∞u
}

= 0 in Ω,

u = 0 on ∂Ω.
(3.3)

On the other hand, it was shown that for all Λ ∈ (−∞, (max
x∈Ω

dist(x, ∂Ω))−1) there are

no nonnegative and nontrivial solutions of problem (3.3). Thus, in comparison to the
well-known problem (2.9), the analysis of (3.3) reveals a markedly different situation:

while for the original problem a single value of Λ, namely

[
max
x∈Ω

dist(x, ∂Ω)

]−1

, is

known for which the corresponding viscosity solution is nonnegative, in the case of
problem (3.3) this situation extends to the entire interval [(max

x∈Ω
dist(x, ∂Ω))−1,∞)

(see [5, Theorem 1.3] for details).

II. The case of the Neumann boundary conditions. We consider the case when prob-
lem (3.1) is investigated subject to the Neumann-type boundary conditions. More
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precisely, we consider the problem{ −∆pu−∆qu = λ|u|p−2u in Ω,

(|∇u|p−2
N + |∇u|q−2

N )
∂u

∂ν
= 0 on ∂Ω .

(3.4)

where p, q ∈ (1,∞) and p 6= q. For this problem a weak solution is a function u ∈
W 1,max{p,q}(Ω) such that∫

Ω

(|∇u|p−2
N + |∇u|q−2

N )∇u∇φ dx = λ

∫
Ω

|u|p−2uφ dx, ∀ φ ∈W 1,max{p,q}(Ω) .

We will say that λ is an eigenvalue of problem (3.4) if u ∈ W 1,max{p,q}(Ω) \ {0}. In
that case we will refer to u as being an eigenfunction corresponding to the eigenvalue
λ.

Problem (3.4) was investigated in the case when p = 2 and q ∈ (1,∞) \ {2} by
three of the authors of this paper in [19, Theorem 1.1] (for the case q ∈ (2,∞)) and
[9, Theorem 1] (for the case q ∈ (1, 2)) while the case p ∈ (2,∞) and q ∈ (1,∞) \ {p}
it was analyzed by Moroşanu and the third author of this paper in [21, Theorem 1.1].
We summarise all the results on problem (3.4) in the following theorem.

Theorem 3.2. Assume that p ∈ [2,∞) and q ∈ (1,∞)\{p}. For each such two numbers
p and q define

Xp,q(Ω) :=

{
u ∈W 1,max{p,q}(Ω) :

∫
Ω

|u|p−2u dx = 0

}
.

Then the set of eigenvalues of problem (3.4) is precisely

{0} ∪ (µ1(p, q; Ω),∞) ,

where

µ1(p, q; Ω) := inf
u∈Xp,q(Ω)\{0}

∫
Ω

|∇u|pN dx∫
Ω

|u|p dx
,

is a positive constant.

Note that in the case when q ∈ (1, p) and p ≥ 2 we have µ1(p, q; Ω) = λN2 (p; Ω)
and thus the constant µ1(p, q; Ω) does not depend on q in this case. On the other
hand, in the case where q ∈ (p,∞) the constant µ1(p, q; Ω) depends on q since in
this case W 1,max{p,q}(Ω) = W 1,q(Ω). In that case we can deduce only the fact that
µ1(p, q; Ω) ≥ λN2 (p; Ω).

The conclusion of Theorem 3.2 is interesting if we compare it, for example,
with two classical well-known results on similar problems. First, recall the fact that
when q = p = 2 then problem (3.4) reduces to the eigenvalue problem for the Laplace
operator under the homogenous Neumann boundary conditions. In that case we recall
the well-known fact that the problem possesses a discrete set of eigenvalues which can
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be organized as an increasing and unbounded sequence of positive real numbers. On
the other hand, if we consider for instance the problem

{ −∆u = λ|u|q−2u in Ω,
∂u

∂ν
= 0 on ∂Ω ,

(3.5)

with q ∈ (1,∞) \ {2} then the set of all parameters λ for which problem (3.5) has
nontrivial weak solutions is exactly the interval [0,∞). In that case the set of eigen-
values of problem (3.5) is continuous. The case of problem (3.4) with p = 2 and
q ∈ (1,∞) \ {2} brings to our attention a new situation when the set of eigenvalues
of the problem possesses on the one hand, a continuous part, that is the interval
(µ1(2, q; Ω),∞), and, on the other hand, one more eigenvalue, i.e. λ = 0, which is
isolated.

Finally, we would like to point out three similar results with those obtained
in Theorem 3.2. The first result was recently obtained by Abreu & Madeira in [1]
in the case when in problem (3.4) we have p = 2, q ∈ (1,∞) \ {2} but working
under parametric-type boundary conditions instead of the Neumann-type boundary
conditions. The other two results are due to Costea & Moroşanu [7] and Barbu &
Moroşanu [2] for some Steklov-type eigenvalue problems.

III. The case of the Robin boundary conditions. Assume that we are working in an
Euclidean space having dimension N ≥ 2. We consider the case when problem (3.1)
is investigated subject to the Robin-type boundary conditions. More precisely, for a
given real number α > 0 we consider the problem

{ −∆pu−∆qu = λ|u|p−2u in Ω,

(|∇u|p−2
N + |∇u|q−2

N )
∂u

∂ν
+ α|u|p−2u = 0 on ∂Ω ,

(3.6)

where p, q ∈ (1,∞) and p 6= q.
For this problem a weak solution is a function u ∈W 1,max{p,q}(Ω) such that∫

Ω

(|∇u|p−2
N + |∇u|q−2

N )∇u∇φ dx+ α

∫
∂Ω

|u|p−2uφ dσ(x) = λ

∫
Ω

|u|p−2uφ dx ,

for all φ ∈ W 1,max{p,q}(Ω). We will say that λ is an eigenvalue of problem (3.6) if
u ∈ W 1,max{p,q}(Ω) \ {0}. In that case we will refer to u as being an eigenfunction
corresponding to the eigenvalue λ.

The perturbed eigenvalue problem (3.6) has been investigated by Gyulov &
Moroşanu in [14]. In order to recall their result let us define two quantities which play
an important role in the analysis of the problem. More precisely, we define

λ? := α
mN−1(∂Ω)

mN (Ω)
,
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where mN−1(∂Ω) and mN (Ω) denote the corresponding N − 1 and N dimensional
Lebesgue measures of the boundary ∂Ω and the set Ω, respectively, and

ν1(p, q; Ω) := inf
u∈W 1,max{p,q}(Ω)\{0}

∫
Ω

|∇u|pN dx+ α

∫
∂Ω

|u|p dσ(x)∫
Ω

|u|p dx
.

By [14, Remark 2] it is clear that λ? > ν1(p, q; Ω). Moreover, we point out that
if q ∈ (1, p) then W 1,max{p,q}(Ω) = W 1,p(Ω) and, consequently, in that case
ν1(p, q; Ω) = λR1 (p; Ω). By contrary, if q ∈ (p,∞) then W 1,max{p,q}(Ω) = W 1,q(Ω)
and, consequently, in that case ν1(p, q; Ω) ≥ λR1 (p; Ω). The main result on (3.6) is a
consequence of Theorems 1-3 from [14].

Theorem 3.3. For each p, q ∈ (1,∞) in the interval (−∞, λR1 (p; Ω)] there is no eigen-
value of problem (3.6). If q ∈ (p,∞) then each λ ∈ (ν1(p, q; Ω), λ?) is an eigenvalue of
problem (3.6). If q ∈ (1, p) then each λ ∈ (λR1 (p; Ω), λ?) is an eigenvalue of problem
(3.6).

The case λ ≥ λ? is open.

3.1.2. The case of unbounded domains. In the first part of this section we will let
Ω ⊆ RN (N ≥ 3) be a general open set (bounded or unbounded) and V : Ω → R a
function which satisfies the hypothesis (2.10).

Motivated by the results from [25] on the eigenvalue problem (2.11) in [22] the
last two authors of this paper studied the set of parameters λ for which the following
perturbed eigenvalue problem has nontrivial solutions

−∆u−∆pu = λV (x)u, u ∈ D1,Φp

0 (Ω) , (3.7)

where p ∈ (1, N)\{2} and Φp : R→ R is given by Φp(t) := t2

2 + |t|
p

p , the Orlicz-Sobolev

type space D1,Φp

0 (Ω) is obtained as the closure of C∞0 (Ω) under the Luxemburg-type
norm

‖u‖ := inf

{
µ > 0;

∫
Ω

Φp

(
|∇u(x)|N

µ

)
dx ≤ 1

}
,

(see [22, Section 2] for more details regarding the definition and properties of Φp and

D1,Φp

0 (Ω)). We recall that in the above framework we say that u is a weak solution of

equation (3.7) if there exists u ∈ D1,Φp

0 (Ω) \ {0} such that∫
Ω

∇u∇w dx+

∫
Ω

|∇u|p−2
N ∇u∇w dx = λ

∫
Ω

V (x)uw dx, ∀ w ∈ D1,Φp

0 (Ω).

The main result on problem (3.7) is formulated in the following theorem.

Theorem 3.4. Assume condition (2.10) is fulfilled. Then the set of parameters λ
for which problem (3.7) possesses nontrivial solutions is exactly the open interval
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(λ1,+∞), where λ1 is given by

λ1 := inf
u∈C∞

0 (Ω)\{0}

∫
Ω

|∇u(x)|2N dx∫
Ω

V (x)u2(x) dx

. (3.8)

Note that by [25, Theorem 2.2] it is obvious that λ1 defined in (3.8) is achieved

in D1,2
0 (Ω) which is larger than D1,Φp

0 (Ω) (see [22, Section 2] for details).

In the second part of this section we let Ω ⊂ RN (N ≥ 2) be a simply connected
bounded domain, containing the origin, with C2 boundary denoted by ∂Ω and we
denote by Ωext := RN \Ω the exterior of Ω. Let K : Ωext → (0,∞) be a function having
the property that K ∈ L∞ (Ωext) ∩ LN/p (Ωext) for some p ∈ (1, N). Let λ1(p; Ωext)
be the first eigenvalue of problem (2.12) given by relation (2.13). In [13] the second
author of this paper investigated a perturbation of problem (2.12) obtained when we
perturb the p-Laplacian by a q-Laplacian with q 6= p. More precisely, he studied the
problem  −∆pu−∆qu = λK(x)|u|p−2u, for x ∈ Ωext,

u(x) = 0, for x ∈ ∂Ω,
u(x)→ 0, as |x|N →∞,

(3.9)

where p, q ∈ (1, N) with p 6= q. Note that the natural function space framework for

problem (3.9) is given by the Orlicz-Sobolev space W
1,Ψp,q

0 (Ωext) constructed with

the aid of the N -function Ψp,q : [0,∞) → R, given by Ψp,q(t) := tp

p + tq

q . In that

framework, we say that u ∈W 1,Ψp,q

0 (Ωext) is a weak solution of problem (3.9), if the
following relation holds∫

Ωext

(|∇u|p−2
N + |∇u|q−2

N )∇u∇ϕdx = λ

∫
Ωext

K(x)|u|p−2uϕdx,

for all ϕ ∈W 1,Ψp,q

0 (Ωext) .

The main result on problem (3.9) is given by the following theorem.

Theorem 3.5. The set of all parameters λ for which problem (3.9) possesses nontrivial
weak solutions is the open interval (λ1(p; Ωext),∞).

3.2. The perturbation of the nonlocal (s, p)-Laplace operator

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω. In [10]
three of the authors of this paper studied a perturbation of the eigenvalue problem
(2.15), namely{

(−∆p)
su(x) + (−∆q)

tu(x) = λ|u(x)|r−2u(x), for x ∈ Ω,
u(x) = 0, for x ∈ RN\Ω ,

(3.10)

where s, t, p and q are real numbers satisfying the assumption

0 < t < s < 1, 1 < p < q <∞, s− N

p
= t− N

q
, (3.11)
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r ∈ {p, q} and λ ∈ R is a parameter. The goal was to determine all the parameters
λ for which problem (3.10) possesses nontrivial weak solutions. By a weak solution of

problem (3.10) we understand a function u ∈ W̃ s,p
0 (Ω) such that

Es,p(u, v) + Et,q(u, v) = λ

∫
Ω

|u(x)|r−2u(x)v(x) dx, ∀ v ∈ W̃ s,p
0 (Ω) , (3.12)

where the quantities Es,p(u, v) and Et,q(u, v) are given by relation (2.16).
Define

λ1 :=

{
λ1(s, p), if r = p,
λ1(t, q), if r = q ,

(3.13)

where λ1(s, p) and λ1(t, q) are given by relation (2.18). The main result on problem
(3.10) is given by the following theorem (see [10, Theorem 1.1]).

Theorem 3.6. Assume condition (3.11) is fulfilled. Then the set of all real parameters λ
for which problem (3.10) has at least a nontrivial weak solution is the interval (λ1,∞),
with λ1 defined by relation (3.13). Moreover, the weak solution could be chosen to be
non-negative.

Next, we recall a result obtained by the second author of this paper in [12] on a
perturbation of problem (2.19), namely

(−∆)
s
u(x) + (−∆p)

t
u(x) = λV (x)u(x), ∀ x ∈ RN , (3.14)

under the assumption

0 < t < s < 1 and s− N

2
= t− N

p
, (3.15)

where λ is a real parameter and V : RN → [0,∞) is a function satisfying the hypoth-

esis (Ṽ). Note that in the case of problem (3.14) we have V = V +. We will say that

λ ∈ R is an eigenvalue of problem (3.14), if there exists u ∈ Ds,20 (RN ) \ {0} such that

Es,2(u, ϕ) + Et,p(u, ϕ) = λ

∫
RN

V (x)u(x)ϕ(x) dx , (3.16)

for all ϕ ∈ Ds,20 (RN ), where the quantities Es,2(u, v) and Et,q(u, v) are given by re-
lation (2.16). Furthermore, u from the above relation will be called an eigenfunction
corresponding to the eigenvalue λ.

Define

λ̃1 := inf
u∈C∞

0 (RN )\{0}

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
N

dxdy∫
RN

V (x)u2 dx

. (3.17)

The main result regarding problem (3.14) is given by the following theorem (see [12,
Theorem 1.5]).

Theorem 3.7. Assume that V : RN → [0,∞) is a function which satisfies condition

(Ṽ). Under assumption (3.15), the set of eigenvalues of problem (3.14) is the open

interval (λ̃1,∞). Moreover, the corresponding eigenfunctions can be chosen to be non-
negative.
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Remark. A simple analysis of the proof of Theorem 1.3 from [12] shows that in the

case when function V satisfies V (x) ≥ 0, for all x ∈ RN , then λ̃1 defined in relation
(3.17) is the smallest eigenvalue of problem (2.19).

3.3. A perturbed eigenvalue problem involving rapidly growing operators
in divergence form

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary ∂Ω. In this
section our goal is to recall some results on the perturbation of the classical eigenvalue
problem of the Laplace operator subject to the homogenous Dirichlet boundary con-
ditions (that is problem (2.8) with p = 2) with a so-called rapidly growing operator

in divergence form (that is div(e|∇u|
2
N−1∇u)). More precisely, we are concerned with

the problem {
−div(e|∇u|

2
N−1∇u)−∆u = λu in Ω,

u = 0 on ∂Ω.
(3.18)

This problem was investigated by Bocea and the third author of this paper in [4].
Using a similar terminology as in the case of the classical eigenvalue problems a
real number λ is called an eigenvalue of problem (3.18) if the problem possesses a
nontrivial weak solution. Note the fact that the nature of the problem asks for a

function space framework involving an Orlicz-Sobolev space, say X0 := W 1,Ψ
0 (Ω)

which is constructed with the aid of the N -function Ψ : [0,∞)→ R, given by Ψ(t) :=

et
2 − 1.

Next, note that the Euler-Lagrange functional associated to the problem (3.18)
is Λ : X0 → R defined by

Λ(u) :=
1

2

∫
Ω

Φ(|∇u(x)|N ) dx+
e

2

∫
Ω

|∇u(x)|2N dx− λe
2

∫
Ω

|u(x)|2 dx.

If Λ was smooth on X0, then one could define an eigenvalue for (3.18) as a real number
λ for which there exists a function u ∈ X0 \ {0} such that∫

Ω

e|∇u|
2
N∇u∇v dx+ e

∫
Ω

∇u∇v dx− λe
∫

Ω

uv dx = 0, ∀ v ∈ X0 .

Unfortunately, in our framework, the functional Λ is not smooth on X0. However, the
functional g : X0 → R defined by

g(u) :=
e

2

∫
Ω

|u(x)|2dx (3.19)

is of class C1(X0,R), and we have 〈g′
(u), v〉 = e

∫
Ω

uv dx for all u, v ∈ X0. On the

other hand, the functional f : X0 → R given by

f(u) :=
1

2

∫
Ω

Φ(|∇u(x)|N )dx+
e

2

∫
Ω

|∇u(x)|2Ndx (3.20)

is convex, weakly? lower semicontinuous, and coercive but f 6∈ C1(X0,R). To over-
come this drawback, we will work with the following reformulation (à la Szulkin [24])
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of the problem (3.18) as a variational inequality:{
f(v)− f(u)− λ〈g′

(u), v − u〉 ≥ 0, ∀ v ∈ X0,
u ∈ X0.

(3.21)

A real number λ such that (3.21) has nontrivial solutions u ∈ X0 is called an eigenvalue
for the problem (3.21). In this context the main result on problem (3.18) is given by
the following theorem (see [4, Theorem 1])

Theorem 3.8. The set of eigenvalues for problem (3.18) is the open interval((
1 +

1

e

)
λD1 (2; Ω),∞

)
,

where λD1 (2; Ω) stands for the first eigenvalue of the Laplace operator under the ho-
mogenous Dirichlet boundary conditions (see relation (2.7) with p = 2).

3.4. The spectrum of the relativistic mean curvature operator

In this section our goal is to characterize the spectrum of the relativistic mean
curvature operator, i.e.

Mu := −div

(
∇u√

1− |∇u|2N

)
,

acting on maps u defined in an open, bounded domain Ω ⊂ RN (N ≥ 1) with
smooth boundary ∂Ω, subject to the homogeneous Dirichlet boundary conditions.
More precisely, our goal is to analyze the problem{

Mu = λu in Ω,
u = 0 on ∂Ω.

(3.22)

The starting point in the study of problem (3.22) is to explain the function space
framework that will be considered in the sequel. Thus, we note that the structure of
the relativistic mean curvature operator asks for a condition of type |∇u(x)|N ≤ 1 for
a.e. x ∈ Ω. That fact and the homogeneous Dirichlet boundary conditions involved
in problem (3.22) imply that a good candidate for the functional space framework
would be a subset of

W 1,∞
0 (Ω) := {u ∈W 1,∞(Ω) : u = 0, on ∂Ω} ,

namely

K0 := {u ∈W 1,∞
0 (Ω) : |∇u(x)|N ≤ 1, a.e. x ∈ Ω} .

We remark that K0 is a convex and closed subset of W 1,∞(Ω) which is the dual of
a separable Banach space. This leads to the idea of constructing the Euler-Lagrange
functional associated to the relativistic mean curvature operator as I : W 1,∞(Ω) →
[0,∞] defined by

I(u) :=


∫

Ω

F (|∇u|N ) dx if u ∈ K0 ,

+∞ if u ∈W 1,∞(Ω) \K0 ,
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where F : [−1, 1] → R is given by F (t) := 1 −
√

1− t2 for all t ∈ [−1, 1]. Then, the
Euler-Lagrange functional associated to the problem (3.22) is Jλ : W 1,∞(Ω) → R
defined by

Jλ(u) := I(u)− λ

2

∫
Ω

u2 dx, ∀ u ∈W 1,∞(Ω) .

We observe that Jλ is the sum of a convex, lower semi-continuous function and a
C1-functional, and, consequently, it has the structure required by Szulkin’s critical
point theory (see [24]). More precisely, the functional Jλ is the sum of the functional
hλ : W 1,∞(Ω)→ R defined by

hλ(u) := −λ
2

∫
Ω

u2 dx ,

which belongs to C1(W 1,∞(Ω),R) and has the derivative given by

〈h′λ(u), v〉 = −λ
∫

Ω

uv dx, ∀ u, v ∈W 1,∞(Ω) ,

with the functional I which is convex and weakly∗ lower semicontinuous. Then, we
will work with a reformulation of problem (3.22) as a variational inequality, namely{

I(v)− I(uλ) + 〈h′

λ(uλ), v − uλ〉 ≥ 0 for all v ∈W 1,∞(Ω),
uλ ∈W 1,∞(Ω) .

(3.23)

or, equivalently,{
I(v)− I(uλ) + 〈h′

λ(uλ), v − uλ〉 ≥ 0 for all v ∈ K0,
uλ ∈ K0 .

(3.24)

In this context a real number λ ∈ R is called an eigenvalue for problem (3.22) if
problem (3.24) has a nontrivial solution uλ ∈ K0. uλ will be called an eigenfunction
corresponding to the eigenvalue λ. According to the terminology from [24], we refer
to uλ as being a critical point of functional Jλ.

The main result on problem (3.22) is given by the following theorem (see [20,
Theorem 1.1]).

Theorem 3.9. The set of eigenvalues for problem (3.22) is the open interval
(λD1 (2; Ω),∞) where λD1 (2; Ω) stands for the principal frequency of the Laplace op-
erator in Ω subject to the homogeneous Dirichlet boundary conditions (see relation
(2.7) with p = 2). Moreover, for each eigenvalue λ we can choose a corresponding
eigenfunction uλ ∈ K0 which is nonnegative on Ω and minimizes Jλ.

Note that problem (3.22) can be regarded as a perturbation of the classical eigen-
value problem of the Laplace operator subject to the homogenous Dirichlet boundary
conditions (that is problem (2.8) with p = 2). Indeed, first note that the function

F : [−1, 1]→ R, given by F (t) := 1−
√

1− t2, for all t ∈ [−1, 1], admits the following
extension into power series

F (t) =
1

2
t2 +

∑
n≥2

ant
2n, ∀ t ∈ [−1, 1] ,
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where for each integer n ≥ 2 we let an := (2n−3)!!
2nn! . Thus, the above simple remark

suggests to us that the differential operator,

u 7→ −div

(
∇u√

1− |∇u|2N

)
,

on the left hand side of the PDE in (3.22) can be regarded as being equivalent with
the differential operator

u 7→ −∆u−
∑
n≥2

an∆2nu ,

where ∆2nu stands for the 2n-Laplacian of u (i.e. ∆2nu = div(|∇u|2n−2
N ∇u)), for each

positive integer n. Thus, problem (3.22) can be reformulated as{
−∆u−

∑
n≥2

an∆2nu = λu in Ω,

u = 0 on ∂Ω.
(3.25)
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[14] Gyulov, T., Moroşanu, G., Eigenvalues of −(∆p + ∆q) under a Robin-like boundary
condition, Ann. Acad. Rom. Sci. Ser. Math. Appl., 8(2016), 114-132.

[15] Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem, Arch. Rational
Mech. Anal., 148(1999), 89-105.
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minima
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To Professor Gheorghe Moroşanu, with friendship, on his 70th birthday.

Abstract. We get a new multiplicity result for gradient systems. Here is a very
particular corollary: Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain and let
Φ : R2 → R be a C1 function, with Φ(0, 0) = 0, such that

sup
(u,v)∈R2

|Φu(u, v)|+ |Φv(u, v)|
1 + |u|p + |v|p < +∞

where p > 0, with p = 2
n−2

when n > 2.

Then, for every convex set S ⊆ L∞(Ω) × L∞(Ω) dense in L2(Ω) × L2(Ω), there
exists (α, β) ∈ S such that the problem

−∆u = (α(x) cos(Φ(u, v))− β(x) sin(Φ(u, v)))Φu(u, v) in Ω

−∆v = (α(x) cos(Φ(u, v))− β(x) sin(Φ(u, v)))Φv(u, v) in Ω

u = v = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) ×

H1
0 (Ω) of the functional

(u, v)→ 1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)

−
∫

Ω

(α(x) sin(Φ(u(x), v(x))) + β(x) cos(Φ(u(x), v(x))))dx .

Mathematics Subject Classification (2010): 35J47, 35J50, 49K35.

Keywords: Minimax, multiple global minima, variational methods, semilinear
elliptic systems.
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1. Introduction

Let S be a topological space. A function g : S → R is said to be inf-compact if,
for each r ∈ R, the set g−1(]−∞, r]) is compact.

If Y is a real interval and f : S × Y → R is a function inf-compact and lower
semicontinuous in S, and concave in Y , the occurrence of the strict minimax inequality

sup
Y

inf
S
f < inf

S
sup
Y
f

implies that the interior of the set A of all y ∈ Y for which f(·, y) has at least two
local minima is non-empty. This fact was essentially shown in [4], giving then raise
to an enormous number of subsequent applications to the multiplicity of solutions for
nonlinear equations of variational nature (see [7] for an account up to 2010).

In [6] (see also [5]), we realized that, under the same assumptions as above, the
occurrence of the strict minimax inequality also implies the existence of ỹ ∈ Y such
that the function f(·, ỹ) has at least two global minima. It may happen that ỹ is
unique and does not belong to the closure of A (see Example 7 of [1]).

In [8] and [12], we extended the result of [6] to the case where Y is an arbitrary
convex set in a vector space. We also stress that such an extension is not possible for
the result of [4]. We then started to build a network of applications of the results of
[8] and [12] which touches several different topics: uniquely remotal sets in normed
spaces ([8]); non-expansive operators ([9]); singular points ([10]); Kirchhoff-type prob-
lems ([11]); Lagrangian systems of relativistic oscillators ([13]); integral functional of
the Calculus of Variations ([14]); non-cooperative gradient systems ([15]); variational
inequalities ([16]).

The aim of this paper is to establish a further application within that network.

2. Results

The main abstract result is as follows:

Theorem 2.1. Let X be a topological space, (Y, 〈·, ·, 〉) a real Hilbert space, T ⊆ Y a
convex set dense in Y and I : X → R, ϕ : X → Y two functions such that, for each
y ∈ T , the function x → I(x) + 〈ϕ(x), y〉 is lower semicontinuous and inf-compact.
Moreover, assume that there exists a point x0 ∈ X, with ϕ(x0) 6= 0, such that
(a) x0 is a global minimum of both functions I and ‖ϕ(·)‖ ;
(b) infx∈X〈ϕ(x), ϕ(x0)〉 < ‖ϕ(x0)‖2 .

Then, for each convex set S ⊆ T dense in Y , there exists y∗ ∈ S such that the
function x→ I(x) + 〈ϕ(x), y∗〉 has at least two global minima in X.

Proof. In view of (b), we can find x̃ ∈ X and r > 0 such that

I(x̃) +
r

‖ϕ(x0)‖
〈ϕ(x̃), ϕ(x0)〉 < I(x0) + r‖ϕ(x0)‖ . (2.1)
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Thanks to (a), we have

I(x0) + r‖ϕ(x0)‖ = inf
x∈X

(I(x) + r‖ϕ(x)‖) . (2.2)

The function y → infx∈X(I(x) + 〈ϕ(x), y〉) is weakly upper semicontinuous, and so
there exists ỹ ∈ Br such that

inf
x∈X

(I(x) + 〈ϕ(x), ỹ〉) = sup
y∈Br

inf
x∈X

(I(x) + 〈ϕ(x), y〉) , (2.3)

Br being the closed ball in X, centered at 0, of radius r. We distinguish two cases.

First, assume that ỹ 6= rϕ(x0)
‖ϕ(x0‖ . As a consequence, taking into account that r‖ϕ(x0)‖

is the maximum of the restriction to Br of the continuous linear functional 〈ϕ(x0), ·〉
(attained at the point rϕ(x0)

‖ϕ(x0)‖ only), we have

inf
x∈X

(I(x) + 〈ϕ(x), ỹ〉) ≤ I(x0) + 〈ϕ(x0), ỹ〉 < I(x0) + r‖ϕ(x0)‖ . (2.4)

Now, assume that ỹ = rϕ(x0)
‖ϕ(x0‖ . In this case, due to (2.1), we have

inf
x∈X

(I(x) + 〈ϕ(x), ỹ〉) ≤ I(x̃) + 〈ϕ(x̃), ỹ〉 = I(x̃) +
r

‖ϕ(x0)‖
〈ϕ(x̃), ϕ(x0)〉

< I(x0) + r‖ϕ(x0)‖ . (2.5)

Therefore, from (2.2), (2.3), (2.4) and (2.5), it follows that

sup
y∈Br

inf
x∈X

(I(x) + 〈ϕ(x), y〉) < inf
x∈X

sup
y∈Br

(I(x) + 〈ϕ(x), y〉) . (2.6)

Now, let S ⊆ T be a convex set dense in Y . By continuity, we clearly have

sup
y∈Br∩S

〈ϕ(x), y〉 = sup
y∈Br

〈ϕ(x), y〉

for all x ∈ X. Therefore, in view of (2.6), we have

sup
y∈Br∩S

inf
x∈X

(I(x) + 〈ϕ(x), y〉) ≤ sup
y∈Br

inf
x∈X

(I(x) + 〈ϕ(x), y〉)

< inf
x∈X

sup
y∈Br

(I(x) + 〈ϕ(x), y〉) = inf
x∈X

sup
y∈Br∩S

(I(x) + 〈ϕ(x), y〉) .

At this point, the conclusion follows directly applying Theorem 1.1 of [12] to the
restriction of the function (x, y)→ I(x) + 〈ϕ(x), y〉 to X × (Br ∩ S). �

We now present an application of Theorem 2.1 to elliptic systems.

In the sequel, Ω ⊆ Rn (n ≥ 2) is a bounded domain with smooth boundary.

We denote by A the class of all functions H : Ω×R2 → R which are measurable
in Ω, C1 in R2 and satisfy

sup
(x,u,v)∈Ω×R2

|Hu(x, u, v)|+ |Hv(x, u, v)|
1 + |u|p + |v|p

< +∞

where p > 0, with p < n+2
n−2 when n > 2.
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Given H ∈ A, we are interested in the problem

−∆u = Hu(x, u, v) in Ω

−∆v = Hv(x, u, v) in Ω

u = v = 0 on ∂Ω ,

Hu (resp. Hv) denoting the derivative of H with respect to u (resp. v).

As usual, a weak solution of this problem is any (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) such that∫
Ω

∇u(x)∇ϕ(x)dx =

∫
Ω

Hu(x, u(x), v(x))ϕ(x)dx ,∫
Ω

∇v(x)∇ψ(x)dx =

∫
Ω

Hv(x, u(x), v(x))ψ(x)dx

for all ϕ,ψ ∈ H1
0 (Ω).

Define the functional IH : H1
0 (Ω)×H1

0 (Ω)→ R by

IH(u, v) =
1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)
−
∫

Ω

H(x, u(x), v(x))dx

for all (u, v) ∈ H1
0 (Ω)×H1

0 (Ω).

Since H ∈ A, the functional IH is C1 in H1
0 (Ω)×H1

0 (Ω) and its critical points are
precisely the weak solutions of the problem. Moreover, due to the Sobolev embedding
theorem, the functional (u, v)→

∫
Ω
H(x, u(x), v(x)) has a compact derivative and, as

a consequence, it is sequentially weakly continuous in H1
0 (Ω)×H1

0 (Ω).

Also, we denote by λ1 the first eigenvalue of the Dirichlet problem

−∆u = λu in Ω

u = 0 on ∂Ω .

Our result is as follows:

Theorem 2.2. Let F,G ∈ A, with p = 2
n−2 when n > 2, and let K ∈ A, with

K(x, 0, 0) = 0 for all x ∈ Ω, satisfy the following conditions:
(a1) one has

lim
s2+t2→+∞

supx∈Ω(|F (x, s, t)|+ |G(x, s, t)|)
s2 + t2

= 0 ;

(a2) there is η ∈
]
0, λ1

2

[
such that

K(x, s, t) ≤ η(s2 + t2)

for all x ∈ Ω, s, t ∈ R ;
(a3) one has

meas({x ∈ Ω : 0 < |F (x, 0, 0)|2 + |G(x, 0, 0)|2}) > 0 (2.7)

and

|F (x, 0, 0)|2 + |G(x, 0, 0)|2 ≤ |F (x, s, t)|2 + |G(x, s, t)|2 (2.8)

for all x ∈ Ω, s, t ∈ R ;
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(a4) one has

meas({x ∈ Ω : inf
(s,t)∈R2

(F (x, 0, 0)F (x, s, t) +G(x, 0, 0)G(x, s, t))

< |F (x, 0, 0)|2 + |G(x, 0, 0)|2}) > 0 .

Then, for every convex set S ⊆ L∞(Ω)×L∞(Ω) dense in L2(Ω)×L2(Ω), there exists
(α, β) ∈ S such that the problem

−∆u = α(x)Fu(x, u, v) + β(x)Gu(x, u, v) +Ku(x, u, v) in Ω

−∆v = α(x)Fv(x, u, v) + β(x)Gv(x, u, v) +Kv(x, u, v) in Ω

u = v = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) ×H1

0 (Ω)
of the functional

(u, v)→ 1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)

−
∫

Ω

(α(x)F (x, u(x), v(x)) + β(x)G(x, u(x), v(x)) +K(x, u(x), v(x)))dx .

Proof. We are going to apply Theorem 2.1, with the following choices: X is the space
H1

0 (Ω)×H1
0 (Ω) endowed with the weak topology induced by the scalar product

〈(u, v), (w,ω)〉X =

∫
Ω

(∇u(x)∇w(x) +∇v(x)∇ω(x))dx ;

Y is the space L2(Ω)× L2(Ω) with the scalar product

〈(f, g), (h, k)〉Y =

∫
Ω

(f(x)h(x) + g(x)k(x))dx ;

T is L∞(Ω)× L∞(Ω); I is the function defined by

I(u, v) =
1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)
−
∫

Ω

K(x, u(x), v(x))dx

for all (u, v) ∈ X; ϕ is the function defined by

ϕ(u, v) = (F (·, u(·), v(·)), G(·, u(·), v(·)))
for all (u, v) ∈ X; x0 is the zero of X. Let us show that the assumptions of Theorem
2.1 are satisfied. First, from (2.7) and (2.8) it clearly follows, respectively, that

‖ϕ(0, 0)‖2Y =

∫
Ω

(|F (x, 0, 0)|2 + |G(x, 0, 0|2)dx > 0

and that

‖ϕ(0, 0)‖2Y ≤ ‖ϕ(u, v)‖2Y
for all (u, v) ∈ X. Moreover, from (a2), thanks to the Poincaré inequality, we get∫

Ω

K(x, u(x), v(x))dx ≤ η
∫

Ω

(|u(x)|2 + |v(x)|2)dx ≤ η

λ1

∫
Ω

(|∇u(x)|2 + |∇v(x)|2)dx

(2.9)
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for all (u, v) ∈ X. In particular, since K(x, 0, 0) = 0 in Ω and η
λ1
< 1

2 , from (2.9) we

infer that (0, 0) is a global minimum of I in X. So, condition (a) is satisfied. Now, let
us verify condition (b). To this end, set

P (x, s, t) = F (x, 0, 0)F (x, s, t) +G(x, 0, 0)G(x, s, t)− |F (x, 0, 0)|2 − |G(x, 0, 0)|2

for all (x, s, t) ∈ Ω×R2 and

D =

{
x ∈ Ω : inf

(s,t)∈R2
P (x, s, t) < 0

}
.

By (a4), D has a positive measure. In view of the Scorza-Dragoni theorem, there
exists a compact set C ⊂ D, with positive measure, such that the restriction of P to
C ×R2 is continuous. Fix a point x̃ ∈ C such that the intersection of C and any ball
centered at x̃ has a positive measure. Choose s̃, t̃ ∈ R \ {0} so that P (x̃, s̃, t̃) < 0. By
continuity, there is r > 0 such that

P (x, s̃, t̃) < 0

for all x ∈ C ∩B(x̃, r). Set

γ = sup
(x,s,t)∈Ω×[−|s̃|,|s̃|]×[−|t̃|,|t̃|]

|P (x, t, s)| .

Since F,G ∈ A, γ is finite. Now, choose an open set A such that

C ∩B(x̃, r) ⊂ A ⊂ Ω

and

meas(A \ (C ∩B(x̃, r))) < −

∫
C∩B(x̃,r)

P (x, s̃, t̃)dx

γ
. (2.10)

Finally, choose two functions ũ, ṽ ∈ H1
0 (Ω) such that

ũ(x) = s̃ , ṽ(x) = t̃

for all x ∈ C ∩B(x̃, r) ,

ũ(x) = ṽ(x) = 0

for all x ∈ Ω \A and

|ũ(x)| ≤ |s̃| , |ṽ(x)| ≤ |t̃|
for all x ∈ Ω. Then, taking (2.10) into account, we have

〈ϕ(ũ, ṽ), ϕ(0, 0)〉Y − ‖ϕ(0, 0)‖2Y =

∫
Ω

P (x, ũ(x), ṽ(x))dx

=

∫
C∩B(x̃,r)

P (x, s̃, t̃)dx+

∫
A\(C∩B(x̃,r))

P (x, ũ(x), ṽ(x))dx

<

∫
C∩B(x̃,r)

P (x, s̃, t̃)dx+ γmeas(A \ (C ∩B(x̃, r)) < 0 .

This shows that (b) is satisfied. Finally, fix α, β ∈ L∞(Ω). Clearly, the function

(x, s, t)→ α(x)F (x, s, t) + β(x)F (x, s, t) +K(x, s, t)
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belongs to A, and so the functional

(u, v)→ I(u, v) + 〈ϕ(u, v), (α, β)〉Y
is sequentially weakly lower semicontinuous in X. Let us show that it is coercive. Set

θ = max
{
‖α‖L∞(Ω), ‖β‖L∞(Ω)

}
and fix ε > 0 so that

ε <
1

θ

(
λ1

2
− η
)
. (2.11)

By (a1), there is cε > 0 such that

|F (x, s, t)|+ |G(x, s, t)| ≤ ε(|s|2 + |t|2) + cε

for all (x, s, t) ∈ Ω×R2. Then, for each u, v ∈ H1
0 (Ω), recalling (2.9), we have

I(u, v) + 〈ϕ(u, v), (α, β)〉Y

≥
(

1

2
− η

λ1

)∫
Ω

(|∇u(x)|2 + |∇v(x)|2)dx

−
∫

Ω

|α(x)F (x, u(x), v(x)) + β(x)G(x, u(x), v(x))|dx

≥
(

1

2
− η

λ1

)∫
Ω

(|∇u(x)|2 + |∇v(x)|2)dx− θε
∫

Ω

(|u(x)|2 + |v(x)|2)dx− θcεmeas(Ω)

≥
(

1

2
− η

λ1
− θε

λ1

)∫
Ω

(|∇u(x)|2 + |∇v(x)|2)dx− θcεmeas(Ω) .

Notice that, in view of (2.11), we have 1
2 −

η
λ1
− θε

λ1
> 0, and so

lim
‖(u,v)‖X→+∞

(I(u, v) + 〈ϕ(u, v), (α, β)〉Y ) = +∞ ,

as claimed.
In particular, this also implies that the functional (u, v)→ I(u, v) + 〈ϕ(u, v), (α, β)〉Y
is weakly lower semicontinuous, by the Eberlein-Smulyan theorem. Thus, the assump-
tions of Theorem 2.1 are satisfied. Therefore, for each convex set S ⊆ L∞(Ω)×L∞(Ω)
dense in H1

0 (Ω)×H1
0 (Ω), there exists (α, β) ∈ S, such that the functional

(u, v)→ 1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)

−
∫

Ω

(α(x)F (x, u(x), v(x)) + β(x)G(x, u(x), v(x)) +K(x, u(x), v(x)))dx

has at least two global minima in H1
0 (Ω)×H1

0 (Ω). Finally, by Example 38.25 of [17],
the same functional satisfies the Palais-Smale condition, and so it admits at least
three critical points, in view of Corollary 1 of [3]. The proof is complete. �

Remark 2.3. We are not aware of known results close enough to Theorem 2.2 in order
to do a proper comparison. This sentence also applies to the case of single equations,
that is to say when F,G,K depend on x and s only. For an account on elliptic systems,
we refer to [2].
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Among the various corollaries of Theorem 2.2, we wish to stress the following ones:

Corollary 2.4. Let K ∈ A, with K(x, 0, 0) = 0 for all x ∈ Ω, satisfy condition (a2).
Moreover, let Φ : R2 → R be a non-constant C1 function, with Φ(0, 0) = 0, belonging
to A, with p = 2

n−2 when n > 2.

Then, for every convex set S ⊆ L∞(Ω)× L∞(Ω) dense in L2(Ω)× L2(Ω), there
exists (α, β) ∈ S such that the problem

−∆u = (α(x) cos(Φ(u, v))− β(x) sin(Φ(u, v)))Φu(u, v) +Ku(x, u, v) in Ω

−∆v = (α(x) cos(Φ(u, v))− β(x) sin(Φ(u, v)))Φv(u, v) +Kv(x, u, v) in Ω

u = v = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) ×H1

0 (Ω)
of the functional

(u, v)→ 1

2

(∫
Ω

|∇u(x)|2dx+

∫
Ω

|∇v(x)|2dx
)

−
∫

Ω

(α(x) sin(Φ(u(x), v(x))) + β(x) cos(Φ(u(x), v(x))) +K(x, u(x), v(x)))dx .

Proof. It suffices to apply Theorem 2.2 to the functions F,G : R2 → R defined by

F (s, t) = sin(Φ(s, t)) ,

G(s, t) = cos(Φ(s, t))

for all (s, t) ∈ R2. �

Corollary 2.5. Let F,G : R → R belong to A, with p = 2
n−2 when n > 2. Moreover,

assume that F,G are twice differentiable at 0 and that

lim
|s|→+∞

|F (s)|+ |G(s)|
s2

= 0 ,

0 < |F (0)|2 + |G(0)|2 = inf
s∈R

(|F (s)|2 + |G(s)|2) ,

F ′′(0)F (0) +G′′(0)G(0) < 0 . (2.12)

Then, for every convex set S ⊆ L∞(Ω)×L∞(Ω) dense in L2(Ω)×L2(Ω), there exists
(α, β) ∈ S such that the problem

−∆u = α(x)F ′(u) + β(x)G′(u) in Ω

u = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) of the

functional

u→ 1

2

∫
Ω

|∇u(x)|2dx−
∫

Ω

(α(x)F (u(x)) + β(x)G(u(x)))dx .
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Proof. We apply Theorem 2.2 taking K = 0. Since 0 is a global minimum of the
function |F (·)|2 + |G(·)|2, we have

F ′(0)F (0) +G′(0)G(0) = 0

and so, in view of (2.12), 0 is a strict local maximum for the function

F (·)F (0) +G(·)G(0).

Hence, (a4) is satisfied and Theorem 2.2 gives the conclusion. �
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Eigenvalues for anisotropic p−Laplacian
under a Steklov-like boundary condition
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Abstract. The eigenvalue problem

−div
(1

p
∇ξ
(
F p
(
∇u)

)
= λa(x) | u |q−2 u,

with q ∈ (1,∞), p ∈
(

Nq
N+q−1

,∞
)
, p 6= q, subject to Steklov-like boundary

condition,

F p−1(∇u)∇ξF (∇u) · ν = λb(x) | u |q−2 u

is investigated on a bounded Lipschitz domain Ω ⊂ RN , N ≥ 2. Here, F stands
for a C2(RN \ {0}) norm and a ∈ L∞(Ω), b ∈ L∞(∂Ω) are given nonnegative
functions satisfying ∫

Ω

a dx+

∫
∂Ω

b dσ > 0.

Using appropriate variational methods, we are able to prove that the set of eigen-
values of this problem is the interval [0,∞).

Mathematics Subject Classification (2010): 35J60, 35J92, 35P30.

Keywords: Eigenvalues, anisotropic p−Laplacian, Steklov-like boundary condi-
tion, Sobolev spaces, variational methods.

1. Introduction

Let F be a norm in RN , that is a nonnegative, positively homogeneous of degree
1, convex function defined in RN . Moreover, we assume that F ∈ C2(RN \ {0}).

Next, let us introduce the so-called anisotropic p−Laplacian, defined as follows

Qpu := div
(1

p
∇ξ
(
F p
(
∇u)

)
.
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When p = 2, Q2 is the anisotropic operator, also known as the Finsler-Laplace oper-
ator [6]. We point out that a typical example of F satisfying the above conditions is
the lr−norm

F (ξ) :=
( N∑
i=1

| ξi |r
)1/r

, r > 1,

for which the operator Qp has the form

∆r,pu := div
(
‖ ∇u ‖p−rr ∇ru

)
,

where

∇ru :=

(∣∣∣ ∂u
∂x1

∣∣∣r−2 ∂u

∂x1
, · · · ,

∣∣∣ ∂u
∂xN

∣∣∣r−2 ∂u

∂xN

)
.

Note that ∆r,p is a nonlinear operator unless p = r = 2 when it reduces to the usual
Laplacian operator. Two important special cases are r = 2 and p ∈ (1,∞) when ∆2,p

coincides with the usual p-Laplace operator (see [12]) and the case r = p, when ∆p,p is
the so-called pseudo p-Laplacian. A physical motivation to study differential equations
involving such operators is given by the fact that they appear in well-established
models of surface energies in metallurgy, crystallography, crystalline fracture theory,
or noise-removal procedures in digital image processing (see for instance, [9], [15], and
references therein). Meanwhile, a geometric motivation for the investigation of such
operators comes from the fact that such anisotropies appears naturally in the Finsler
geometry, such as, for instance, the Minkowski geometry (see the seminal works of P.
Finsler [7] and H. Minkowski [13]).

The paper concerns the study of the following Steklov-like eigenvalue problem
for Qp: {

−Qpu := −div
(

1
p∇ξ

(
F p
(
∇u)

)
= λa(x) | u |q−2 u in Ω,

F p−1(∇u)∇ξF (∇u) · ν = λb(x) | u |q−2 u on ∂Ω,
(1.1)

under the following hypotheses

(Hpq) q ∈ (1,∞), p ∈
(

Nq
N+q−1 ,∞

)
, p 6= q;

(HΩ) Ω ⊂ RN , N ≥ 2, is a bounded domain with Lipschitz continuous boundary
∂Ω;

(Hab) a, b ∈ L∞(Ω) are given nonnegative functions satisfying∫
Ω

a dx+

∫
∂Ω

b dσ > 0. (1.2)

In (1.1)2, ν stands for the outward unit normal to ∂Ω.

The solution u of (1.1) is understood in a weak sense, as an element of the
Sobolev space W 1,p(Ω) satisfying equation (1.1)1 in the sense of distributions and
boundary condition (1.1)2 in the sense of traces:
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Definition 1.1. λ ∈ R is an eigenvalue of problem (1.1) if there exists uλ ∈W 1,p \ {0}
such that for all w ∈W 1,p(Ω)∫

Ω

(
F (∇uλ)

)p−1

∇ξF (∇uλ) · ∇w dx

= λ
(∫

Ω

a | uλ |q−2 uλw dx+

∫
∂Ω

b | uλ |q−2 uλw dσ
)
.

(1.3)

Indeed, according to a Green type formula (see [4], p. 71), u ∈ W 1,p(Ω) is a solution
of (1.1) if and only if it satisfies (1.3).
Our goal is to determine the set of all eigenvalues of problem (1.1). Fortunately we
are able to offer a complete description of this set.

The main result of our paper is given by the following theorem

Theorem 1.2. Assume that (Hpq), (HΩ) and (Hab) above are fulfilled. Then the set of
eigenvalues of problem (1.1) is [0,∞).

It is worth pointing out that this nice result is due to the fact that operator
Qp is nonhomogeneous (p 6= q). The homogeneous case (p = q) is more delicate. For
example, if p = q and either a ≡ 1, b ≡ 0 or a ≡ 0, b ≡ 1 and F is the usual euclidian
norm, then the eigenvalue set of the corresponding (Neumann type) problem is fully
known only if p = q = 2; otherwise, i.e. if p = q ∈ (1,∞) \ {2}, then it is only known
that, as a consequence of the Ljusternik-Schnirelman theory, there exists a sequence of
positive eigenvalues of problem (1.1) with Q = −∆p (see, e.g., [11]), but this sequence
may not constitute the whole eigenvalue set.

Regarding the assumption p ∈
(

Nq
N+q−1 ,∞

)
we point out that this is directly

related to the well-known embeddings W 1,p(Ω) ↪→ Lq(Ω) which hold in the cases: (1)
1 ≤ q ≤ p∗ = pN/(N − p), if 1 < p < N ; (2) p ≤ q < ∞, if p = N ; (3) q = ∞, if
p > N. Moreover, these embeddings are compact when 1 ≤ q < p∗ in case (1), all q in
case (2), and when reinterpreted as W 1,p(Ω) ↪→ C1(Ω) in case (3). We also have trace
compactly embeddings W 1,p(Ω) ↪→ Lq(∂Ω) for all 1 ≤ p ≤ q < p(N − 1)/(N − p) if
1 ≤ p < N, and similarly as before in the other ranges of p (see [1], [3, Section 9.3]).

Also, we restrict ourselves to functions a ∈ L∞(Ω), b ∈ L∞(∂Ω) since assuming
weaker regularity for these functions leads to similar results without essential changes.

The Dirichlet eigenvalue problem associated with operator −Qp for q = 2 has
been studied in [5]. As far as the problem (1.1) is concerned, a separate analysis is
needed since some specific situations have to be addressed, including those related to
the trace on ∂Ω and the fact that the eigenfunctions of our problem belong to the set
C (see Section 2, (2.2) for the definition of C). It is worth pointing out that results
concerning the existence and nonexistence of solutions for the case of p−Laplacian
under Dirichlet boundary conditions and appropriate assumptions on Ω have been
obtained by M. Ôtani in the well known paper [14].

2. Preliminary results

Our hypotheses (Hpq), (HΩ), (Hab) will be assumed throughout this paper. Test-
ing equation (1.3) against w = uλ we observe that the eigenvalues of problem (1.1)
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cannot be negative numbers. It is also obvious that λ0 = 0 is an eigenvalue of this
problem and the corresponding eigenfunctions are the nonzero constant functions. So
any other eigenvalue belongs to (0,∞).

If we assume that λ > 0 is an eigenvalue of problem (1.1) and choose w ≡ 1 in
(1.3) we deduce that every eigenfunction uλ corresponding to λ satisfies the equation∫

Ω

a | uλ |q−2 uλ dx+

∫
∂Ω

b | uλ |q−2 uλ dσ = 0. (2.1)

So all eigenfunctions corresponding to positive eigenvalues necessarily belong to the
set

C :=
{
u ∈W 1,p(Ω);

∫
Ω

a | u |q−2 u dx+

∫
∂Ω

b | u |q−2 u dσ = 0
}
. (2.2)

This is a symmetric cone and we can see that C is a weakly closed subset of W 1,p(Ω).
Indeed, let

(
un
)
n
⊂ C such that un ⇀ u0 in W 1,p(Ω). From assumption (Hpq),

W 1,p(Ω) ↪→ Lq(Ω) and W 1,p(Ω) ↪→ Lq(∂Ω) compactly, hence there exists a subse-
quence of

(
un
)
n
, which is also denoted

(
un
)
n
, such that

un → u0 in Lq(Ω), un → u0 in Lq(∂Ω).

By Lebesgue’s Dominated Convergence Theorem (see also [3, Theorem 4.9]) we obtain
u0 ∈ C.
In addition, C has nonzero elements (see [2, Section 2]).
Now let us define the positively homogeneous of order p functional

J : W 1,p(Ω)→ R, J(w) :=

∫
Ω

(
F (∇w)

)p
dx ∀ w ∈W. (2.3)

Standard arguments can be used in order to deduce that functional J is convex and
weakly lower semicontinuous (see, for instance [16, Proposition 25.20]).
Consider the minimization problem

µ := inf
w∈C1

J(w) , (2.4)

where

C1 := C ∩
{
u ∈W 1,p(Ω);

∫
Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ = 1
}
.

The next result states that J attains its minimal value and this value is positive.

Lemma 2.1. For each p > 1 there exists u∗ ∈ C1 such that

µ := J(u∗) = inf
w∈C1

J(w) > 0.

Proof. Let
(
un
)
n
⊂ C1 be a minimizing sequence for J , i. e.,

J(un)→ inf
w∈C1q

J(w) := µ.

We can prove that
(
un
)
n

is bounded in W 1,p(Ω). Assume the contrary, that there

exists a subsequence of
(
un
)
n
, again denoted

(
un
)
n
, such that ‖ un ‖W 1,p(Ω)→∞ as

n→∞. Define

vn =
un

‖ un ‖W 1,p(Ω)
∀ n ∈ N .
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Clearly sequence
(
vn
)
n

is bounded in W 1,p(Ω) so there exist a v ∈ W 1,p(Ω) and a

subsequence of
(
vn
)
n
, again denoted

(
vn
)
n
, such that

vn ⇀ v in W 1,p(Ω).

Taking into account assumption (Hpq) we obtain that W 1,p(Ω) ↪→ Lq(Ω) and
W 1,p(Ω) ↪→ Lq(∂Ω) compactly, therefore, up to a subsequence, we have

vn → v in Lq(Ω), vn → v in Lq(∂Ω).

As ‖ vn ‖W 1,p(Ω)= 1 ∀ n ∈ N we have ‖ v ‖W 1,p(Ω)= 1, and∫
Ω

(
F (∇v)

)p
dx ≤ lim inf

n→∞

∫
Ω

(
F (∇vn)

)p
dx

= lim inf
n→∞

1

‖ un ‖pW 1,p(Ω)

J(un) = 0,

which shows that v is a constant function. On the other hand, since
(
vn
)
n
⊂ C and C

is weakly closed in W 1,p(Ω), we infer that v ∈ C, hence v ≡ 0. But this contradicts the
fact that ‖ v ‖W 1,p(Ω)= 1. Therefore,

(
un
)
n

is indeed bounded in W 1,p(Ω), thus, by

passing to a subsequence, we can assume that
(
un
)
n

converges weakly to a function

u∗ ∈W 1,p(Ω) and

un → u∗ in Lq(Ω), un → u∗ in Lq(∂Ω).

By Lebesgue’s Dominated Convergence Theorem we obtain u∗ ∈ C1, so the weak lower
semicontinuity of J leads to µ = J(u∗). In addition, J(u∗) > 0. Indeed, assuming by
contradiction that J(u∗) = 0 would imply that u∗ ≡ Const., which is impossible
because u∗ ∈ C1. �

3. Proof of the main result

The following lemma plays a crucial role in the proof of our main theorem

Lemma 3.1. Assume that (Hpq), (HΩ) and (Hab) above are fulfilled. Let u∗ ∈W 1,p(Ω)
be a minimizer of the functional J defined by (2.3) on the set

C1 := C ∩
{
u ∈W 1,p(Ω);

∫
Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ = 1
}
.

Then u∗ is an eigenfunction of problem (1.1) with eigenvalue µ = inf
w∈C1

J(w).

Proof. Since the constraint C1 is no more a C1 manifold if q < 2, we can not use a
reasoning based on Lagrange Multipliers Rule. In order to avoid this inconvenience
let us define the functional

Jµ : W 1,p(Ω)→ R, Jµ(u) =

∫
Ω

(
F (∇u)

)p
dx

− µ
(∫

Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ
) p

q ∀ u ∈W 1,p(Ω).

(3.1)
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Standard arguments can be used in order to deduce that Jµ ∈ C1(W 1,p(Ω);R), with
the derivative given by

〈J ′µ(u), w〉 = p

∫
Ω

(
F (∇u

)p−1∇ξF (∇u) · ∇w dx

− µp
(∫

Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ
) p

q−1

·
(∫

Ω

a | u |q−2 uw dx+

∫
∂Ω

b | u |q−2 uw dσ
) (3.2)

for all u,w ∈W 1,p(Ω).

It is obviously that u∗ is an eigenfunction of problem (1.1) with eigenvalue µ if
and only if u∗ is a critical point of Jµ, i. e. J ′µ(u∗) = 0. In order to show this, we fix
v ∈ Lip(Ω) arbitrarily. For each n ∈ N∗ define fn : R→ R,

fn(s) =

∫
Ω

a
∣∣∣u∗ +

1

n
v + s

∣∣∣q dx+

∫
∂Ω

b
∣∣∣u∗ +

1

n
v + s

∣∣∣q dσ ∀ s ∈ R. (3.3)

It is easily seen that fn is coercive, since we have

fn(s) ≥ 2−q | s |q
(
‖ a ‖L∞(Ω)| Ω |N + ‖ b ‖L∞(∂Ω)| ∂Ω |N−1

)
−
∫

Ω

a
∣∣∣u∗ +

1

n
v
∣∣∣q dx− ∫

∂Ω

b
∣∣∣u∗ +

1

n
v
∣∣∣q dσ,

where | · |N and | · |N−1 denote the Lebesgue measures of the two sets. We have also
used the inequality

| x |q≤ (| x+ y | + | y |)q ≤ 2q(| x+ y |q + | y |q) ∀ x, y ∈ R, q > 1.

Moreover, function fn is continuous differentiable on R (see [8, Theorem 2.27]) and
convex (its derivative is an increasing function). Therefore, for all n ∈ N∗, fn admits
a minimum point sn, such that f ′n(sn) = 0, that is∫

Ω

a
∣∣∣u∗ +

1

n
v + sn

∣∣∣q−2(
u∗ +

1

n
v + sn

)
dx

+

∫
∂Ω

b
∣∣∣u∗ +

1

n
v + sn

∣∣∣q−2(
u∗ +

1

n
v + sn

)
dσ = 0.

(3.4)

We denote

un := u∗ + 1/n v + sn ∀ n ∈ N∗. (3.5)

From (3.4) we derive that
(
un
)
n
⊂ C.

Next, we claim that the sequence
(
nsn

)
n

is bounded. Arguing by contradiction,
let us assume that, up to a sequence, nsn →∞ or nsn → −∞ as n→∞. Taking into
account that v ∈ Lip(Ω) there exists N1 large enough such that we have either

v(·) + nsn > 0 in Ω, or v(·) + nsn < 0 in Ω ∀ n ≥ N1.
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Since the function γ →| u∗ + γ |q−2 (u∗ + γ) is strictly increasing on R, we get

0 =

∫
Ω

a | un |q−2 un dx+

∫
∂Ω

b | un |q−2 un dσ

>

∫
Ω

a | u∗ |q−2 u∗ dx+

∫
∂Ω

b | u∗ |q−2 u∗ dσ = 0 ∀n ≥ N1,

(3.6)

if v(·) + nsn > 0 in Ω, or the reverse inequality in the second situation, when

v(·) + nsn < 0 in Ω.

In both cases we get a contradiction.
We point out that inequality in relation (3.6) is strictly. Indeed, we note that

(1.2) implies that either |{x ∈ Ω; a(x) > 0}|N > 0 or a = 0 a.e. in Ω and

|{x ∈ ∂Ω; b(x) > 0}|N−1 > 0,

hence we can not have equality between the two terms containing integrals.
Consequently,

(
nsn

)
n

should be bounded. This in turn implies there exists S ∈ R
such that, up to a subsequence, nsn → S as n→∞.

We note that the subsequence of
(
un
)
n
, denoted

(
un
)
n

again, with the property

that
(
nsn

)
n

has the limit S, converges in W 1,p(Ω), more exactly,

un → u∗ and n
(
un − u∗

)
→ v + S in W 1,p(Ω) as n→∞. (3.7)

We also note that from (3.7), combining with u∗ 6≡ 0, there exists N2 large enough,
such that

(
un
)
n
⊂ C \ {0} ∀ n ≥ N2. Next, using this subsequence, we are going

to construct a minimizing sequence for Jµ restricted to the constraint set C1. In this
respect, we can define

tn :=
(
‖ a1/qun ‖qLq(Ω) + ‖ b1/qun ‖qLq(∂Ω)

)1/q
, zn :=

un
tn
, (3.8)

for all n sufficiently large. Obviously, we have

tn →
∫

Ω

a | u∗ |q dx+

∫
∂Ω

b | u∗ |q dσ = 1,(
zn
)
n
⊂ C1, zn → u∗ in W 1,p(Ω) as n→∞.

(3.9)

Next, we claim that sequence
(
n(tn− 1)

)
n

is bounded. In order to proof this, we first

show that
(
n(t

1/q
n − 1)

)
n

is bounded. To this aim, we define the functional

Iq : W 1,p(Ω)→ R, Iq(u) :=

∫
Ω

a | u |q dx+

∫
∂Ω

b | u |q dσ ∀ u ∈W 1,p(Ω).

Under assumption (Hpq), it is known that Iq ∈ C1
(
W 1,p(Ω);R

)
(see, for instance

[11]) and for all u,w ∈W 1,p(Ω),

〈I ′q(u), w〉 = q
(∫

Ω

a | u |q−2 uw dx+

∫
∂Ω

b | u |q−2 uw dσ
)
. (3.10)

Since Iq(u∗) = 1, we note that for all n ∈ N∗,

n
(
t1/qn − 1

)
=
Iq(un)− Iq(u∗)

1
n

. (3.11)
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Now, taking into account that I ′q ∈
(
W 1,p(Ω)

)∗
, we get

lim
n→∞

n(t1/qn − 1) = lim
n→∞

n
(
Iq(un)− Iq(u∗)

)
= lim
n→∞

〈I ′q(u∗), n(un − u∗)〉+ o(n;u∗, v)

= 〈I ′q(u∗), v + S〉 = 〈I ′q(u∗), v〉,

(3.12)

where o(n;u∗, v) is a notation for the term which tends to zero in the definition of
the Fréchet differential of Iq at u∗, that is o(n, u∗, v)→ 0 as n→∞. Therefore, there

exists K > 0 such that n | t1/qn − 1 |≤ K, or equivalently

0 < 1− K

n
≤ t1/qn ≤ 1 +

K

n
,

for all n ∈ N∗, n large enough, which implies

n

((
1− K

n

)q
− 1

)
≤ n(tn − 1) ≤ n

((
1 +

K

n

)q
− 1

)
, (3.13)

for all n sufficiently large. It is elementary to check that

lim
x→0+

(1 +Kx)q − 1

x
= qK, lim

x→0+

(1−Kx)q − 1

x
= −qK.

This in combination with (3.13) implies that the sequence
(
n(tn − 1)

)
n

is bounded,

thus, by possibly passing to a subsequence, there exists T ∈ R, such that n(tn−1)→ T
as n→∞.

Now, it is easy to observe that u∗ minimizes functional Jµ over C1. By using the
minimality of u∗ and the fact that

(
zn
)
n
⊂ C1 we obtain that

0 ≤ lim
n→∞

Jµ(zn)− Jµ(u∗)
1
n

. (3.14)

Since functional Jµ ∈ C1(W 1,p(Ω);R), we have

n
(
Jµ(zn)− Jµ(u∗)

)
=
(
〈J ′µ(u∗), n(zn − u∗)〉+ o(n;u∗, v), (3.15)

with o(n;u∗, v)→ 0 as n→∞. Taking into account (3.5) and (3.8) we can see that

n(zn − u∗) =
1

tn

(
nu∗

(
1− tn

)
+ v + nsn

)
→ −Tu∗ + v + S as n→∞. (3.16)

It follows from (3.14)-(3.16) that

0 ≤ 〈J ′µ(u∗), v + S − Tu∗〉. (3.17)

From (3.2), Lemma 2.1, and u∗ ∈ C1, we get that 〈J ′µ(u∗), u∗〉 = 0, 〈J ′µ(u∗), S〉 = 0,
hence (3.17) implies

0 ≤ 〈J ′µ(u∗), v〉.
A similar reasoning with −v instead of v shows that 0 = 〈J ′µ(u∗), v〉.

The conclusion then follows by exploiting the density of Lipschitz functions in
W 1,p(Ω) which is true according to assumption (HΩ) (see [10, Theorm 3.6]. �
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Proof of Theorem 1.2. By Lemma 3.1, there exists an eigenfunction u∗ of problem
(1.1) corresponding to eigenvalue µ = inf

w∈C1
J(w) > 0, thus∫

Ω

(
F (∇u∗)

)p−1

∇ξF (∇u∗) · ∇w dx

= µ
(∫

Ω

a | u∗ |q−2 u∗w dx+

∫
∂Ω

b | u∗ |q−2 u∗w dσ
) (3.18)

for all w ∈W 1,p(Ω).
Consider λ > 0 fixed. Let τ > 0. If we take u∗ of the form u∗ = τv∗ in (3.18) and
taking into account that F and ∇ξF are positively homogeneous of degree 1 and 0,
respectively, we derive ∫

Ω

(
F (∇v∗)

)p−1

∇ξF (∇v∗) · ∇w dx

= τ q−pµ
(∫

Ω

a | v∗ |q−2 v∗w dx+

∫
∂Ω

b | v∗ |q−2 u∗w dσ
) (3.19)

for all w ∈W 1,p(Ω).

Finally, if we choose τ = (λ/µ)1/(q−p) > 0, then v∗ = τu∗ is an eigenfunction
of problem (1.1) with eigenvalue λ. As has already been pointed out, λ = 0 is an
eigenvalue of problem (1.1). This conclude the proof.

�
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[13] Minkowski, H., Allgemeine Lehrsatze uber die konvexen Polyeder, Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, 1897, 198-219.
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Abstract. The paper focuses on a nonstandard Dirichlet problem driven by the
operator −∆p+µ∆q, which is a competing (p, q)-Laplacian with lack of ellipticity
if µ > 0, and exhibiting a reaction term in the form of a convection (i.e., it
depends on the solution and its gradient) composed with the convolution of the
solution with an integrable function. We prove the existence of a generalized
solution through a combination of fixed-point approach and approximation. In
the case µ ≤ 0, we obtain the existence of a weak solution to the respective elliptic
problem.

Mathematics Subject Classification (2010): 35J92, 47H30.

Keywords: Competing (p, q)-Laplacian, Dirichlet problem, convection, convolu-
tion, generalized solution, weak solution.

1. Introduction

In this paper we consider the following quasilinear problem with homogeneous
Dirichlet boundary condition on a bounded domain Ω ⊂ RN with the boundary ∂Ω,{

−∆pu+ µ∆qu = f(x, ρ ∗ u,∇(ρ ∗ u)) in Ω,
u = 0 on ∂Ω

(1.1)

for 1 < q < p < +∞, µ ∈ R, and ρ ∈ L1(RN ). To ease the exposition we assume
p < N mentioning that the complementary case p ≥ N can be handled along the
same lines.

In order to simplify the notation, for any real number r > 1, we set r′ = r/(r−1)
(the Hölder conjugate of r). In particular, we have p′ = p/(p− 1) < q′ = q/(q− 1). In
the left-hand side of equation (1.1) there are the negative p-Laplacian

−∆p : W 1,p
0 (Ω)→W−1,p′(Ω)
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expressed as

〈−∆pu, v〉 =

∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx for all u, v ∈W 1,p
0 (Ω)

and the negative q-Laplacian −∆q : W 1,q
0 (Ω)→W−1,q′(Ω) expressed as

〈−∆qu, v〉 =

∫
Ω

|∇u(x)|q−2∇u(x) · ∇v(x) dx for all u, v ∈W 1,q
0 (Ω).

Hereafter, | · | stands for the Euclidean norm in RN . Since 1 < q < p < +∞, it

holds the continuous embedding W 1,p
0 (Ω) ↪→ W 1,q

0 (Ω), so the operator −∆p + µ∆q

is well defined on W 1,p
0 (Ω). In the sequel, p∗ stands for the Sobolev critical exponent

p∗ = Np/(N − p) (recall that we assume p < N).

The right-hand side of the equation in (1.1) is described by means of a
Carathéodory function f : Ω × R × RN → R (meaning that f(·, s, ξ) is measur-
able on Ω for all (s, ξ) ∈ R × RN and f(x, ·, ·) is continuous for a.e. x ∈ Ω) which is
composed with the convolution

ρ ∗ u(x) =

∫
RN
ρ(x− y)u(y) dy for a.e. x ∈ RN

of some ρ ∈ L1(RN ) and u ∈W 1,p
0 (Ω) ⊂W 1,p(RN ). Notice that the convolution ρ ∗u

is well defined.

There are two noticeable aspects related to the right-hand side of the equation
in (1.1). The first one is the fact that it exhibits dependence not only with respect
to the solution u but also with respect to its gradient ∇u. Such a term is usually
called convection and its presence prevents us to make use of variational methods. A
systematic study of problems with convection can be found in [4]. A second significant
feature related to the right-hand side of the equation in (1.1) is the fact that the
convection is composed with a convolution which is nonlocal operator. The study
of the problems involving the composition of convection and convolution has been
started in [6], specifically for problem (1.1) with µ ≤ 0. This study incorporates the
case where the operator is the p-Laplacian −∆p (for µ = 0) and the ordinary (p, q)-
Laplacian −∆p − ∆q (for µ = −1). The investigation of a (nonsmooth) version of
problem (1.1) for an arbitrary µ ∈ R, but without convection and convolution, was
initiated in [3]. Problem (1.1) with the “competing” (p, q)-Laplacian −∆p + ∆q (i.e.,
in the case where µ = 1) and convection but without convolution was addressed in
[5].

Let λ1,p > 0 denote the first eigenvalue of the negative p-Laplacian on W 1,p
0 (Ω),

which is given by the following variational characterization (see, e.g., [7, §9.2]),

λ1,p = min
{‖∇u‖p

Lp(Ω,RN )

‖u‖pLp(Ω)

: u ∈W 1,p
0 (Ω) \ {0}

}
. (1.2)

We assume that the following growth condition for f(x, s, ξ) is satisfied.
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Assumption 1.1. There holds

|f(x, s, ξ)| ≤ σ(x) + a1|s|p−1 + a2|ξ|p−1 (1.3)

for a.e. x ∈ Ω, all s ∈ R, and ξ ∈ RN , with a function σ ∈ Lr′(Ω) where r ∈ [1, p∗)
and constants a1, a2 ≥ 0 satisfying

‖ρ‖p−1
L1(RN )

(a1λ
−1
1,p + a2N

p−1λ
− 1
p

1,p ) < 1. (1.4)

Remark 1.2. The condition (1.4) in Assumption 1.1 can be expressed by saying that
the parameter ρ ∈ L1(RN ) in problem (1.1) is small enough with respect to its L1

norm.

Remark 1.3. (a) If the Carathéodory function f satisfies the growth condition

|f(x, s, ξ)| ≤ σ(x) + a1|s|p−1 + a2|ξ|β

as in (1.3) except that the exponent of |ξ| is some β ∈ [0, p− 1), then Assumption 1.1
is fulfilled provided that

a1‖ρ‖p−1
L1(RN )

< λ1,p.

(b) If f satisfies the stronger growth condition

|f(x, s, ξ)| ≤ σ(x) + a1|s|α + a2|ξ|β

with α, β ∈ [0, p− 1), then Assumption 1.1 is fulfilled.

By a generalized solution to problem (1.1) we mean any function u ∈ W 1,p
0 (Ω)

for which there exists a sequence {un}n≥1 in W 1,p
0 (Ω) such that

(a) un ⇀ u in W 1,p
0 (Ω) as n→∞;

(b) −∆pun + µ∆qun − f(·, ρ ∗ un(·),∇(ρ ∗ un)(·)) ⇀ 0 in W−1,p′(Ω) as n→∞;
(c) lim

n→∞
〈−∆pun + µ∆qun, un − u〉 = 0.

The essential point in our work is that the driving operator −∆p + µ∆q in
problem (1.1) has a fundamentally different behavior depending on whether µ ≤ 0 or
µ > 0. Indeed, in the latter case, the operator lacks the ellipticity: notice for instance
that, for a nonzero u0 ∈W 1,p

0 (Ω) and a number λ > 0, the quantity

〈−∆p(λu0) + µ∆q(λu0), λu0〉 = λp‖∇u0‖pLp(Ω,RN )
− λqµ‖∇u0‖qLq(Ω,RN )

does not keep a constant sign if µ > 0. It is positive for λ > 0 sufficiently large and it
is negative for λ > 0 sufficiently small. In view of this, in [3], the operator −∆p+µ∆q

for µ > 0 was called a competing (p, q)-Laplacian. Due to the lack of ellipticity there
is no available method to handle problem (1.1) for arbitrary µ. In order to bypass this
drawback, the notion of generalized solution was introduced in [3] for a counterpart
of problem (1.1) without convolution. Note that, in the case where µ ≤ 0, the notions
of generalized solution and weak solution coincide (see Lemma 3.3). In Theorem 3.4,
we prove the existence of a generalized solution to problem (1.1) for arbitrary µ. Our
approach relies on a fixed-point theorem and approximation process. Our treatment
of problem (1.1) is unified in the sense that it does not distinguish according to the
sign of µ.
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2. Preliminaries

In the sequel, the space W 1,p
0 (Ω) is considered endowed with the norm

‖∇(·)‖Lp(Ω,RN ).

2.1. Galerkin basis

Due to the density of C∞0 (Ω) in W 1,p
0 (Ω), the Banach space W 1,p

0 (Ω) with

1 < p < +∞ is separable. Therefore, there exists a Galerkin basis of W 1,p
0 (Ω), that is

a sequence {Xn}n≥1 of vector subspaces of W 1,p
0 (Ω) satisfying

(i) dimXn <∞, ∀n ≥ 1;
(ii) Xn ⊂ Xn+1, ∀n ≥ 1;

(iii)
⋃
n≥1

Xn = W 1,p
0 (Ω).

For the rest of the paper we fix a Galerkin basis {Xn}n≥1 of W 1,p
0 (Ω).

2.2. Rellich-Kondrachov theorem

For 1 < p < N , as known from the Rellich-Kondrachov theorem, the Sobolev
space W 1,p

0 (Ω) is compactly embedded into Lθ(Ω) if 1 ≤ θ < p∗(= Np
N−p ) and continu-

ously embedded if θ = p∗. For every θ ∈ [1, p∗] we denote by Sθ > 0 the best constant
for this embedding, hence

‖u‖Lθ(Ω) ≤ Sθ ‖∇u‖Lp(Ω,RN ), ∀u ∈W 1,p
0 (Ω). (2.1)

For θ = p, we have that Sp = λ
− 1
p

1,p (see (1.2)).

2.3. Convolution

For easy reference we list a few useful properties of the convolution ρ ∗ u of
ρ ∈ L1(RN ) and u ∈ W 1,p

0 (Ω); we refer to [1, §4.4, §9.1] for details. In order to have

well defined the convolution ρ ∗ u of ρ ∈ L1(RN ) with u ∈ W 1,p
0 (Ω), it is convenient

to consider the Sobolev space W 1,p
0 (Ω) embedded in W 1,p(RN ) by identifying every

u ∈ W 1,p
0 (Ω) with its extension equal to zero outside Ω. The convolution ρ ∗ u is

defined by

ρ ∗ u(x) =

∫
RN
ρ(x− y)u(y) dy for a.e. x ∈ RN .

The weak partial derivatives of the convolution ρ ∗ u are expressed by

∂

∂xi
(ρ ∗ u) = ρ ∗ ∂u

∂xi
∈ Lp(RN ), ∀i = 1, . . . , N.

There hold the estimates

‖ρ ∗ u‖Lr(RN ) ≤ ‖ρ‖L1(RN )‖u‖Lr(Ω) (2.2)

whenever r ∈ [1, p∗] and∥∥∥ρ ∗ ∂u
∂xi

∥∥∥
Lp(RN )

≤ ‖ρ‖L1(RN )

∥∥∥ ∂u
∂xi

∥∥∥
Lp(Ω)

, ∀i = 1, . . . , N. (2.3)
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Using the convexity of the function t 7→ tp on (0,+∞) and (2.3), we derive that

‖∇(ρ ∗ u)‖p
Lp(RN ,RN )

=

∫
RN
|∇(ρ ∗ u)|p dx =

∫
RN

(
N∑
i=1

(
ρ ∗ ∂u

∂xi

)2
) p

2

dx

≤
∫
RN

(
N∑
i=1

∣∣∣ρ ∗ ∂u
∂xi

∣∣∣)p dx ≤ Np−1
N∑
i=1

∥∥∥ρ ∗ ∂u
∂xi

∥∥∥p
Lp(RN )

≤ Np−1‖ρ‖p
L1(RN )

N∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥p
Lp(Ω)

≤ Np‖ρ‖p
L1(RN )

‖∇u‖p
Lp(Ω,RN )

. (2.4)

2.4. Fixed point theorem

An essential tool in our approach will be the following consequence of Brouwer’s
fixed point theorem (see [8, page 37]).

Lemma 2.1. Let X be a finite-dimensional space endowed with the norm ‖ ·‖X and let
A : X → X∗ be a continuous mapping. Assume that there is a constant R > 0 such
that

〈A(v), v〉 ≥ 0 for all v ∈ X with ‖v‖X = R.

Then there exists u ∈ X with ‖u‖X ≤ R satisfying A(u) = 0.

3. Main result

In this section we provide our main result regarding the existence of solutions
to problem (1.1).

3.1. Nonlinear operator associated to problem (1.1)

Hereafter we consider the operator A : W 1,p
0 (Ω)→W−1,p′(Ω) given by

〈A(u), v〉 = 〈−∆pu+ µ∆qu, v〉 −
∫

Ω

f(x, ρ ∗ u(x),∇(ρ ∗ u)(x))v(x) dx (3.1)

which arises from problem (1.1).

Lemma 3.1. Suppose that (1.3) in Assumption 1.1 is fulfilled. Then, the operator

A : W 1,p
0 (Ω)→W−1,p′(Ω) defined in (3.1) is continuous.

Proof. Relations (2.2) and (2.4) imply that the operator T : W 1,p
0 (Ω) → Lp(Ω) ×

Lp(Ω)N given by T (u) = (ρ ∗ u|Ω,∇(ρ ∗ u)|Ω) is linear and continuous. The growth
condition in (1.3) allows to apply the Krasnoselskii theorem [2] which implies that
the Nemytskii operator

Nf : Lp(Ω)× Lp(Ω)N → Lp
′
(Ω), (v, w) 7→ f(·, v(·), w(·))

is well defined and continuous. We infer that the operator

W 1,p
0 (Ω)→ Lp

′
(Ω), u 7→ f(·, ρ ∗ u(·),∇(ρ ∗ u)(·)) (3.2)

is continuous as the composition of continuous operators. Note also that Lp
′
(Ω) is

continuously embedded in W−1,p′(Ω).
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The operators −∆p : W 1,p
0 (Ω) → W−1,p′(Ω) and −∆q : W 1,q

0 (Ω) → W−1,q′(Ω)

are continuous. Since q < p and Ω is bounded, we have that W 1,p
0 (Ω) is continu-

ously embedded in W 1,q
0 (Ω) and W−1,q′(Ω) is continuously embedded in W−1,p′(Ω).

Therefore, −∆p + µ∆q : W 1,p
0 (Ω)→W−1,p′(Ω) is continuous.

Altogether, this shows that the operator A is continuous. �

3.2. Finite-dimensional approximations

Given a Galerkin basis {Xn}n≥1 of W 1,p
0 (Ω), we construct a corresponding se-

quence of approximate solutions related to problem (1.1).

Proposition 3.2. Suppose that Assumption 1.1 is fulfilled. Then, for every n ≥ 1, there
exists un ∈ Xn such that

〈−∆pun + µ∆qun, v〉 =

∫
Ω

f(x, ρ ∗ un(x),∇(ρ ∗ un)(x))v(x) dx (3.3)

for all v ∈ Xn. Moreover, the sequence {un}n≥1 so obtained is bounded in W 1,p
0 (Ω).

Proof. On each finite-dimensional space Xn we consider the mapping An : Xn → X∗n
defined by

〈An(u), v〉 = 〈−∆pu+ µ∆qu, v〉 −
∫

Ω

f(x, ρ ∗ u(x),∇(ρ ∗ u)(x))v(x) dx

for all u, v ∈ Xn. Note that An is continuous (see Lemma 3.1). Our goal is to apply
Lemma 2.1 to the operator An. To this end, we note from (1.3) in Assumption 1.1
and Hölder’s inequality that

〈An(v), v〉 =

∫
Ω

(|∇v|p − µ|∇v|q − f(x, ρ ∗ v,∇(ρ ∗ v))v) dx

≥ ‖∇v‖p
Lp(Ω,RN )

− µ|Ω|
p−q
p ‖∇v‖q

Lp(Ω,RN )
− ‖σ‖Lr′ (Ω)‖v‖Lr(Ω)

−a1‖ρ ∗ v‖p−1
Lp(RN )

‖v‖Lp(Ω) − a2‖∇(ρ ∗ v)‖p−1
Lp(RN ,RN )

‖v‖Lp(Ω)

for all v ∈ Xn. Hereafter, we denote by |Ω| the Lebesgue measure of Ω. Then (2.2),
(2.4), and (2.1) lead to the estimate

〈An(v), v〉 ≥ ‖∇v‖p
Lp(Ω,RN )

− µ|Ω|
p−q
p ‖∇v‖q

Lp(Ω,RN )

−‖σ‖Lr′ (Ω)‖v‖Lr(Ω) − a1‖ρ‖p−1
L1(RN )

‖v‖pLp(Ω)

−a2N
p−1‖ρ‖p−1

L1(RN )
‖∇v‖p−1

Lp(Ω,RN )
‖v‖Lp(Ω)

≥ ‖∇v‖p
Lp(Ω,RN )

− µ|Ω|
p−q
p ‖∇v‖q

Lp(Ω,RN )
− Sr‖σ‖Lr′ (Ω)‖∇v‖Lp(Ω,RN )

−(a1S
p
p‖ρ‖

p−1
L1(RN )

+ a2SpN
p−1‖ρ‖p−1

L1(RN )
)‖∇v‖p

Lp(Ω,RN )
(3.4)

for all v ∈ Xn. Taking into account (1.4) (recall that Sp = λ
− 1
p

1,p ) and that p > q > 1,
the following estimate is true

〈An(v), v〉 ≥ 0 whenever v ∈ Xn with ‖∇v‖Lp(Ω,RN ) = R
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provided R > 0 is sufficiently large. Then Lemma 2.1 yields the existence of un ∈ Xn

satisfying An(un) = 0, that is, (3.3).

It remains to show that the sequence {un}n≥1 is bounded in W 1,p
0 (Ω). By in-

serting v = un ∈ Xn in (3.4), we find that(
1− ‖ρ‖p−1

L1(RN )
(a1S

p
p + a2SpN

p−1)
)
‖∇un‖pLp(Ω,RN )

≤ µ|Ω|
p−q
p ‖∇un‖qLp(Ω,RN )

+ Sr‖σ‖Lr′ (Ω)‖∇un‖Lp(Ω,RN ).

The desired conclusion is readily obtained from assumption (1.4) and the fact that
p > q > 1. �

3.3. Main result on the existence of a solution to problem (1.1)

First, we show that the notions of generalized solution and weak solution coincide
for problem (1.1) in the case where µ ≤ 0.

Lemma 3.3. Suppose that µ ≤ 0. For every u ∈W 1,p
0 (Ω), the following conditions are

equivalent:

(i) u is a weak solution to problem (1.1), that is, u satisfies

〈−∆pu+ µ∆qu, v〉 =

∫
Ω

f(x, ρ ∗ u(x),∇(ρ ∗ u)(x))v(x) dx

for all v ∈W 1,p
0 (Ω);

(ii) u is a generalized solution to problem (1.1).

Proof. The implication (i)⇒(ii) is immediate (take un = u) and actually does not
require the condition that µ ≤ 0. Conversely, assume that u is a generalized solution
to problem (1.1), and let {un}n≥1 be a sequence satisfying conditions (a)–(c) of the
definition of generalized solution with respect to u. Using the monotonicity of the
operator −∆q we note that

〈−∆pun, un − u〉 ≤ 〈−∆pun, un − u〉 − µ〈−∆qun + ∆qu, un − u〉
= 〈−∆pun + µ∆qun, un − u〉 − µ〈∆qu, un − u〉.

By (a) and (c), this leads to

lim sup
n→∞

〈−∆pun, un − u〉 ≤ 0.

Then we are able to conclude the strong convergence un → u in W 1,p(Ω) (see, e.g.,

[7, Proposition 2.72]). By Lemma 3.1, this implies that A(un)→ A(u) in W−1,p′(Ω),

where A : W 1,p
0 (Ω)→W−1,p′(Ω) is the operator defined in (3.1). In view of condition

(b) of the definition of generalized solution, this yields A(u) = 0, which precisely
means that u is a weak solution to problem (1.1). �

We can now state our main result.

Theorem 3.4. Suppose that Assumption 1.1 holds. Then there exists a generalized
solution to problem (1.1). In particular, if µ ≤ 0, there exists a weak solution to
problem (1.1).
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Proof. Consider the sequence {un}n≥1 ⊂W 1,p
0 (Ω) constructed in Proposition 3.2. As

asserted therein, this sequence is bounded in W 1,p
0 (Ω). In view of the reflexivity of

the space W 1,p
0 (Ω), we can pass to a subsequence still denoted by {un}n≥1 such that

un ⇀ u in W 1,p
0 (Ω) (3.5)

with some u ∈W 1,p
0 (Ω). Moreover, since the sequence {un}n≥1 is bounded in W 1,p

0 (Ω),
invoking the continuity of the operator in (3.2), we have that

the sequence {f(·, ρ ∗ un,∇(ρ ∗ un))}n≥1 is bounded in Lp
′
(Ω). (3.6)

On the basis of the reflexivity of W−1,p′(Ω), we can assume that

−∆pun + µ∆qun − f(·, ρ ∗ un,∇(ρ ∗ un)) ⇀ η in W−1,p′(Ω) (3.7)

with some η ∈W−1,p′(Ω).
Now let v ∈

⋃
n≥1Xn. Fix an integer m ≥ 1 such that v ∈ Xm. Proposition 3.2

provides that (3.3) holds for all n ≥ m. Letting n → ∞ in (3.3), by means of (3.7)
we get

〈η, v〉 = 0 for all v ∈
⋃
n≥1

Xn.

By the density of
⋃
n≥1Xn in W 1,p

0 (Ω) (see (iii) in the definition of Galerkin basis in

Section 2.1), it turns out that η = 0. Therefore, (3.7) renders

−∆pun + µ∆qun − f(·, ρ ∗ un,∇(ρ ∗ un)) ⇀ 0 in W−1,p′(Ω). (3.8)

Next, setting v = un in (3.3), we obtain

〈−∆pun + µ∆qun, un〉 −
∫

Ω

f(x, ρ ∗ un,∇(ρ ∗ un))un dx = 0 (3.9)

for all n ≥ 1, while (3.8) gives

〈−∆pun + µ∆qun, u〉 −
∫

Ω

f(x, ρ ∗ un,∇(ρ ∗ un))u dx→ 0 (3.10)

as n→∞. Altogether, (3.9) and (3.10) yield

〈−∆pun + µ∆qun, un − u〉 −
∫

Ω

f(x, ρ ∗ un,∇(ρ ∗ un))(un − u) dx→ 0 (3.11)

as n → ∞. Moreover, from (3.5), Rellich-Kondrachov compact embedding theorem
which ensures that un → u strongly in Lp(Ω), and (3.6), we derive that

lim
n→∞

∫
Ω

f(x, ρ ∗ un,∇(ρ ∗ un))(un − u) dx = 0. (3.12)

Inserting (3.12) into (3.11) enables us to assert

lim
n→∞

〈−∆pun + µ∆qun, un − u〉 = 0. (3.13)

At this point we can notice that (3.5), (3.8), and (3.13) are just the conditions (a),

(b), and (c) expressing that u ∈ W 1,p
0 (Ω) is a generalized solution to problem (1.1),

which proves the first assertion in the theorem. The last assertion in the theorem is a
consequence of Lemma 3.3. �
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Département de Mathématiques,
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1. Introduction

It is known that possibility theory is an alternative theory to the probability
theory, dealing with certain types of uncertainty and treatment of incomplete infor-
mation (see, e.g., [2], [4]). In the possibilistic models, all the probabilistic indicators
(like expected value, variance, probability measure, integral with respect to a mea-
sure, etc) are replaced with suitable possibility indicators. These analogies allow to
extend many classical results based on probability theory, to the possibilistic frame.
We can mention here the contributions of the first named author to results concerning
approximation by possibilistic operators (called also max-product operators), see [1],
[3], [7], [9] or to the possibilistic laws of large numbers, see, e.g., [8], and the references
therein.

In this paper we continue our researches in this directions, by extending in the
frame of possibility theory, results concerning classical integral equations.

In this sense, it is natural and of interest to replace in the classical integral
equations, the linear Lebesgue integral by various other kinds of nonlinear integrals.
Thus, in the very recent papers [5], [6], the first named author has replaced the linear
Lebesgue integral by its non linear extension called Choquet integral and studied
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the existence of the solutions for the corresponding Fredholm-Choquet and Volterra-
Choquet integral equations.

In this spirit of ideas, we study here the nonlinear equations obtained by re-
placing in the classical Fredholm and Volterra integral equations, the linear Lebesgue
integral with the nonlinear possibilistic integral (Pos)

∫
with respect to a possibility

measure Pλ generated by the possibility distribution λ. More exactly, we study the
nonlinear possibilistic integral equations

ϕ(x) = f(x) + α · (Pos)
∫

Ω

K(x, s)ϕ(s)dPλ(s), x ∈ Ω, (1.1)

with the given data α ∈ R, f : Ω → R, K : Ω × Ω → R and the unknown function
ϕ : Ω→ R in the case of Fredholm type equation, and by

ϕ(x) = f(x) + α · (Pos)
∫ x

a

K(x, s, ϕ(s))dPλ(s), x ∈ [a, b], (1.2)

with the given data α ∈ R, f : [a, b]→ R, K : [a, b]× [a, b]×R→ R and the unknown
function ϕ : [a, b]→ R, in the case of Volterra type equation.

As we will see, due to the definition of the possibilistic integral, in fact we obtain
functional equations which have solutions under some additional conditions. Also, it
is worth mentioning that while the classical Fredholm and Volterra integral equations
are linear, due to the nonlinearity of the possibilistic integral, obviously that the
Fredholm and Volterra possibilistic integral equations are nonlinear.

Section 2 contains some preliminaries on the possibility measures and integrals
we will need in the next sections. In Section 3, the existence and construction of the
solutions for the Fredholm nonlinear possibilistic integral equation (1.1). Thus, for
Pλ belonging to large classes of possibility measures, we show that this functional
equation has solutions under some appropriate conditions (similar to those in the
classical case) on the given data f , α and K.

Finally, in Section 4 we study the existence of the solutions for the Volterra
nonlinear possibilistic integral type equation (1.2).

2. Preliminaries on possibility measures and integrals

Firstly, we summarize some known concepts in possibility theory, which will be
used in the next sections. For details, see e.g. [4] or [2].

Definition 2.1. Let Ω be a non-empty set.

(i) A possibilistic (fuzzy) variable X is simply an application X : Ω→ R.

(ii) A possibility distribution (on Ω), is a function λ : Ω → [0,+∞), such that
sup{λ(s); s ∈ Ω} = V < +∞. If V = 1, then λ it is called normalized possibility
distribution.

(iii) A possibility measure is a mapping P : P(Ω) → [0,+∞), satisfying the
axioms P (∅) = 0, P (Ω) = 1 and P (

⋃
i∈I Ai) = sup{P (Ai); i ∈ I} for all Ai ∈ Ω, and

any I, family of indices.
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It is well-known (see e.g. [4]) that any possibility distribution λ on Ω, induces
a possibility measure Pλ, given by the formulas Pλ(A) = sup{λ(s); s ∈ A}, for all
A ⊂ Ω, A 6= ∅, Pλ(∅) = 0.

(iv) (see e.g. [2]) The possibilistic integral of f : Ω→ R+ on A ⊂ Ω, with respect
to the possibilistic measure Pλ induced by the possibilistic distribution λ, is defined
by

(Pos)

∫
A

f(t)dPλ(t) = sup{f(t) · λ(t); t ∈ A}.

It is clear that this definition is a particular case of the t-possibilistic integral with
respect to a semi-norm t, introduced in [2], by taking there t(x, y) = x · y.

(v) The following properties hold : for all f, g ≥ 0 and c ∈ R, c ≥ 0

(Pos)

∫
A

(f(s) + g(s))dPλ(s) ≤ (Pos)

∫
A

f(s)dPλ(s) + (Pos)

∫
A

g(s)dPλ(s),

(Pos)

∫
A

[cf(s)]dPλ(s) = c · (Pos)
∫
A

f(s)dPλ(s).

3. Fredholm possibilistic integral equations

Let us denote by B+(Ω), the Banach space of all positive and bounded functions
f : Ω → R+, endowed with the uniform norm, denoted here by ‖ · ‖. It is clear that
B+(Ω) endowed with the metric generated by the uniform norm, is a complete metric
space.

Taking into account the definition of the possibilistic integral in Definition 2.1,
the Fredholm possibilistic integral equation in (1.1), formally becomes the nonlinear
functional equation

ϕ(x) = f(x) + α · sup{K(x, s) · ϕ(s) · λ(s); s ∈ Ω}, x ∈ Ω. (3.1)

The first main result is the following.

Theorem 3.1. Let Ω 6= ∅ and Pλ be possibility measure induced by the possibility
distribution λ on Ω.

Let us also suppose that

0 ≤ K(x, s) ≤M < +∞, for all x, s ∈ Ω.

Then, for any f ∈ B+(Ω) and any 0 < α < 1
M , the Fredholm possibilistic

functional equation (3.1) has a unique solution ϕ∗ ∈ B+(Ω).

Moreover, denoting

A(ϕ)(x) = f(x) + α · sup{K(x, s)λ(s) · ϕ(s); s ∈ Ω} and An(ϕ0) = A[An−1(ϕ0)],

for any arbitrary ϕ0 ∈ B+(Ω), the following estimate holds

‖An(ϕ0)− ϕ∗‖ ≤ α ·M
1− α ·M

· ‖A(ϕ0)− ϕ0‖.
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Proof. For any x ∈ Ω fixed and ϕ ∈ B+(Ω), let us denote

T (ϕ)(x) = sup{K(x, s)ϕ(s)λ(s); s ∈ Ω}.

By hypothesis we immediately get T (ϕ) ∈ B+(Ω).
This implies that A(ϕ)(x) = f(x) + α · T (ϕ)(x) ∈ B+(Ω), for all 0 ≤ α <∞.

Let ϕ,ψ ∈ B+(Ω). We have ϕ = ϕ − ψ + ψ ≤ |ϕ − ψ| + ψ, which successively
implies

T (ϕ)(x) ≤ T (|ϕ− ψ|)(x) + T (ψ)(x),

that is

T (ϕ)(x)− T (ψ)(x) ≤ T (|ϕ− ψ|)(x).

Writing now ψ = ψ − ϕ + ϕ ≤ |ϕ − ψ| + ϕ and applying the above reasonings,
it follows

T (ψ)(x)− T (ϕ)(x) ≤ T (|ϕ− ψ|)(x),

which combined with the above inequality gives

|T (ϕ)(x)− T (ψ)(x)| ≤ T (|ϕ− ψ|)(x),

that is

| sup{K(x, s)ψ(s)λ(s); s ∈ Ω} − sup{K(x, s)ϕ(s)λ(s); s ∈ Ω}|
≤ sup{|K(x, s)ψ(s)λ(s)−K(x, s)ϕ(s)λ(s)|; s ∈ Ω}.

Since for all x ∈ Ω we have

|A(ϕ)(x)−A(ψ)(x)| = α · |T (ϕ)(x)− T (ψ)(x)| ≤ α · T (|ϕ− ψ|)(x)

≤M · α · ‖ϕ− ψ‖,

passing to supremum after x ∈ Ω, we immediately obtain

d(A(ϕ), A(ψ)) := ‖A(ϕ)−A(ψ)‖ ≤M · α · ‖ϕ− ψ‖ := M · α · d(ϕ,ψ).

The hypothesis implies that d : B+(Ω) × B+(Ω) → R+ is a contraction on the com-
plete metric space B+(Ω) endowed with the metric d(ϕ,ψ) = ‖ϕ− ψ‖, which by the
Banach’s fixed point theorem implies the desired conclusion. �

Remark 3.2. In general, under the conditions in Theorem 3.1 the sequence of succes-
sive approximation cannot be written in the explicit form as in the classical linear
Fredholm integral equation (i.e. by using the so called resolvent). However, under some
additional hypothesis on the input data f , λ and K, this can be done, exemplified by
the following result.

Corollary 3.3. Let Ω = [a, b] and Pλ be the possibility measure induced by the possibility
distribution λ, supposed to be nondecreasing on Ω.
Let us suppose that α > 0, f(x) ≥ 0, K(x, s) ≥ 0, for all x, s ∈ [a, b], K(b, b) > 0,

K(·, ·) is nondecreasing in each variable on [a, b],

f is nondecreasing on [a, b].

Then, for any α < 1
K(b,b) , the Fredholm possibilistic functional equation (3.1) has a

unique solution ϕ∗ ∈ B+[a, b], nondecreasing on [a, b].
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Moreover, denoting K1(x, t) = K(x, t) and by the recurrence formula

Kj(x, t) = (Pos)

∫ b

a

Kj−1(x, s)K(s, t)dPλ(s)

= sup{Kj−1(x, s)K(s, t) · λ(s); s ∈ [a, b]}, j ∈ N, j ≥ 2,

for the sequence of successive approximation with ϕ0 positive and nondecreasing on
[a, b], we have the representation

An(ϕ0)(x) = f(x) + α · (Pos)
∫ b

a

Rn(x, t;α)f(t)dPλ(t)

+ αn+1 · (Pos)
∫ b

a

Kn+1(x, t)ϕ0(t)dPλ(t)

= f(x) + α · sup{Rn(x, t;α)f(t)λ(t); t ∈ [a, b]}
+ αn+1 · sup{Kn+1(x, t)ϕ0(t)λ(t); t ∈ [a, b]}, (3.2)

where

Rn(x, t;α) =

n∑
j=1

αj−1Kj(x, t).

Also, for the solution ϕ∗(x) we have the representation

ϕ∗(x) = f(x) + α · (Pos)
∫ b

a

R(x, t;α)f(t)dPλ(t)

= f(x) + α · sup{R(x, t;α)f(t)λ(t); t ∈ [a, b]}, x ∈ [a, b], (3.3)

with

R(x, t;α) =

∞∑
j=1

αj−1 ·Kj(x, t), x, t ∈ [a, b].

Proof. Taking M = K(b, b), the hypothesis in Theorem 3.1 are fulfilled, fact which
implies that there exists uniquely ϕ∗ satisfying (3.1).

It remains to deal with the sequence of successive approximations.
Let us choose ϕ0 be positive and nondecreasing on [a, b] (clearly it follows that

ϕ0 is bounded too). We get

ϕ1(x) = A(ϕ0)(x) = f(x) + α · (Pos)
∫ b

a

K(x, s)ϕ0(s)dPλ(s)

= f(x) + α · sup{K(x, s)ϕ0(s)λ(s); s ∈ [a, b]},
which from the hypothesis immediately implies that ϕ1(x) ≥ 0, for all x ∈ [a, b] and
ϕ1 is nondecreasing (and therefore bounded) on [a, b].

Also, ϕ1 is the sum of two positive and both nondecreasing functions on [a, b].
Since it is easy to prove that if F and G are both nondecreasing on [a, b] then

(Pos)

∫ b

a

[F (s) +G(s)]dPλ(s) = sup{(F (s) +G(s))λ(s); s ∈ [a, b]}

= F (b)λ(b)) +G(b)λ(b) = sup{F (s)λ(s); s ∈ [a, b]}+ sup{G(s)λ(s); s ∈ [a, b]}
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= (Pos)

∫ b

a

F (s)dPλ(s) + (Pos)

∫ b

a

G(s)dPλ(s),

we obtain

ϕ2(x) = f(x) + α · (Pos)
∫ b

a

K(x, t) · ϕ1(t)dPλ(t)

= f(x) + α · (Pos)
∫ b

a

K(x, t)f(t)dPλ(t)

+α2 · (Pos)
∫ b

a

K(x, t)

[
(Pos)

∫ b

a

K(t, s)ϕ0(s)dPλ(s)

]
dPλ(t).

If, for each fixed x ∈ [a, b] we denote F (t, s) = K(x, t) ·K(t, s) ·ϕ0(s), then F (t, s) ≥ 0
for all t, s ∈ [a, b] and F (t, s) is nondecreasing in each variable t and s. Also, since F
is bounded on [a, b]× [a, b], it follows that we can write

(Pos)

∫ b

a

K(x, t)

[
(Pos)

∫ b

a

K(t, s)ϕ0(s)dPλ(s)

]
dPλ(t)

= sup{K(x, t)λ(t) · sup{K(t, s)ϕ0(s)λ(s); s ∈ [a, b]}; t ∈ [a, b]}
= sup{sup{K(x, t)K(t, s)λ(t); t ∈ [a, b]} · ϕ0(s)λ(s); s ∈ [a, b]}

= sup{K2(x, s)ϕ0(s)λ(s); s ∈ [a, b]}

= (Pos)

∫ b

a

K2(x, s)ϕ0(s)dPλ(s),

fact which leads to the formula

ϕ2(x) = f(x) +α · (Pos)
∫ b

a

K(x, t) · f(t)dPλ(t) +α2 · (Pos)
∫ b

a

K2(x, s)ϕ0(s)dPλ(s).

Continuing these kinds of reasonings, step by step we easily get the recurrence formula

ϕn+1(x) = An(ϕ0)(x)

= f(x) +

n∑
j=1

αj · (Pos)
∫ b

a

Kj(x, t)f(t)dPλ(t)

+αn+1 · (Pos)
∫ b

a

Kn+1(x, t)ϕ0(t)dPλ(t)

= f(x) + α · (Pos)
∫ b

a

 n∑
j=1

αj−1Kj(x, t)f(t)

 dPλ(t)

+αn+1 · (Pos)
∫ b

a

Kn+1(x, t)ϕ0(t)dPλ(t)

= f(x) + α · sup{Rn(x, t;α)f(t)λ(t); t ∈ [a, b]}
+αn+1 · sup{Kn+1(x, t)ϕ0(t)λ(t); t ∈ [a, b]}.

Now, by mathematical induction we easily can prove that

0 ≤ Kn+1(x, t) ≤ [K(b, b)]n+1,
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for all x, t ∈ [a, b] and n = 0, 1, ...,. This immediately implies (even uniformly with
respect to x ∈ [a, b])

0 ≤ lim
n→∞

αn+1 · (Pos)
∫ b

a

Kn+1(x, t)ϕ0(t)dPλ(t)

≤ lim
n→∞

(
[α ·K(b, b)]n+1 · (Pos)

∫ b

a

ϕ0(t)dPλ(t)

)
≤ lim
n→∞

(
[α ·K(b, b)]n+1 · ‖ϕ0‖

)
= 0

and

0 ≤
∞∑
j=1

αj−1Kj(x, t)f(t)λ(t) ≤
∞∑
j=1

(α ·K(b, b))j−1 · [K(b, b)f(b)].

Therefore, for each fixed x ∈ [a, b],

Rn(x, t;α) =

n∑
j=1

αj−1Kj(x, t)f(t)λ(t),

converges (for n→∞) to R(x, t;α) · f(t)λ(t), uniformly with respect to t ∈ [a, b].
Applying now the formula

| sup{Rn(x, t;α)f(t)λ(t); t ∈ [a, b]} − sup{R(x, t;α)f(t)λ(t); t ∈ [a, b]}|
≤ sup{|Rn(x, t;α)f(t)λ(t)−R(x, t;α)f(t)λ(t)|; t ∈ [a, b]},

we immediately arrive to formula (3.3). �

Remark 3.4. It is clear that Corollary 3.3 remains valid if in its statement we replace
everywhere the word ”nondecreasing” with the word ”nonincreasing” and K(b, b) with
K(a, a).

4. Volterra possibilistic integral equations

It is known that in the classical case, the Volterra integral equation has solution
for any value of the parameter α. Unfortunately, in the case of Volterra possibilistic
integral equation, this fact does not hold in general. However, for some appropriate
choices of the possibility measure Pλ in equation (1.2), it has unique solution for any
value of the parameter α.

Let us make the notation

B+[a, b] = {f : [a, b]→ R+; f is bounded and positive on [a, b]},
endowed with the uniform norm ‖ · ‖.

For our purpose and taking into account the definition of the possibilistic integral
in Definition 2.1, in the Volterra possibilistic integral equation in (1.2) we will consider
a family of possibility measures depending on a parameter τ > 0, for which (1.2)
formally becomes the nonlinear functional equation

ϕ(x) = f(x) + α · sup{K(x, s, ϕ(s)) · λτ (s); s ∈ [a, x]}, x ∈ [a, b], τ > 0, (4.1)

where λτ , τ > 0 is a family of possibility densities defined as in Definition 2.1, (ii).
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The main result is the following.

Theorem 4.1. Let Pλτ be the possibilistic measure induced by the possibilistic distri-
bution λτ on [a, b], τ > 0.

Let us suppose that

K ∈ B+([a, b]× [a, b]× R), (4.2)

where B+([a, b] × [a, b] × R) denotes the space of all positive and bounded functions
g : [a, b]× [a, b]× R→ R+, there exists L > 0 such that

|K(x, s, u)−K(x, s, v)| ≤ L · |u− v|, for all x, s ∈ [a, b], u, v ∈ R+ (4.3)

and that
lim

τ→+∞
sup{λτ (s); s ∈ [a, b]} = 0. (4.4)

Then there exists τ0 > 0 such that for any f ∈ B+[a, b], any α > 0 and any τ > τ0,
the Volterra possibilistic integral equation (4.1) has a unique solution ϕτ ∈ B+[a, b].

Proof. For any ϕ ∈ B+[a, b], let us denote

Tτ (ϕ)(x) = sup{K(x, s, ϕ(s))λτ (s); s ∈ [a, x]}, x ∈ [a, b], τ > 0.

It is well-defined for any fixed arbitrary x ∈ [a, b], because from hypothesis on K and
λτ (s), it easily follows that as function of s, K(x, s, ϕ(s)) there exists M > 0 such
that |K(x, s, ϕ(s))|λτ (s) ≤ M , for all x, s ∈ [a, b]. In what follows, we prove that
Tτ (ϕ) ∈ B+[a, b]. For any fixed x ∈ [a, b], we immediately get

Tτ (ϕ)(x) = |Tτ (ϕ)(x)| = | sup{K(x, s, ϕ(s))λτ (s); s ∈ [a, x]}|
≤ sup{|K(x, s, ϕ(s))λτ (s)|; s ∈ [a, x]} ≤M.

In conclusion Tτ (ϕ) ∈ B+[a, b] and this also implies that Aτ (ϕ) = f + α · Tτ (ϕ) ∈
B+[a, b].

Therefore, by using the hypothesis (4.3) and (4.4) too, we immediately obtain

|Tτ (ϕ)(x)− Tτ (ψ)(x)|
≤ sup{|K(x, s, ϕ(s)) · λτ (s)−K(x, s, ψ(s)) · λτ (s)|; s ∈ [a, x]}

≤ L sup{|ϕ(s)− ψ(s)|; s ∈ [a, x]}
and

|Aτ (ϕ)(x)−Aτ (ψ)(x)| = α · |Tτ (ϕ)(x)− Tτ (ψ)(x)|
≤ α · L sup{|ϕ(s)− ψ(s)|λτ (s); s ∈ [a, x]}
≤ α · L · sup{λτ (s); s ∈ [a, b]} · ‖ϕ− ψ‖,

which immediately implies

d(Aτ (ϕ), Aτ (ψ)) := ‖Aτ (ϕ)−Aτ (ψ)‖
≤ α · L · sup{λτ (s); s ∈ [a, b]} · ‖ϕ− ψ‖τ = α · L · sup{λτ (s); s ∈ [a, b]} · d(ϕ,ψ).

From condition (4.4), there exists τ0 such that for all τ > τ0 > 0 to get

α · L · sup{λτ (s); s ∈ [a, b]} < 1,

therefore d is a contraction on the complete metric space B+[a, b] and applying the
Banach’s fixed point theorem we arrive at the desired conclusion. �
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Remark 4.2. An important particular case is when K(x, s, v) := K(x, s) · v. In this
case, condition (4.2) becomes K ∈ B+([a, b] × [a, b]) and it immediately implies the
condition (4.3), with L = sup{K(x, s);x, s ∈ [a, b]}.

Remark 4.3. There are very many simple examples of families of possibilistic distri-
butions satisfying condition (4.4) in Theorem 4.1, like, for example,

λτ (s) = e−τ |s|+1, λτ (s) =
s2

τ
, λτ (s) =

| sin(s)|
τ

, τ > 0

and so on.
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1. Introduction

The instability behavior of evolution operators is a topic that has witnessed a
significant progress in recent years. The importance of the role played by this concept
in the theory of dynamical systems is illustrated by the appearance of various papers
in this domain for the exponential case ([3], [8], [11], [12], [14]) as well as for the
polynomial case ([1], [2], [13]), which appeared due to the fact that in some situation
the exponential behavior is too restrictive for the dynamics.

Another direction for the study of the instability behavior is given by M. Megan,
A.L. Sasu, B. Sasu in [9] where the authors express the uniform exponential instability
of evolution families in terms of Banach function spaces. The property of exponential
instability is generalized by M. Megan, C. Stoica [10] for skew-evolution semiflows
defined by means of evolution semiflows and evolution cocycles. Recently, P.V. Hai
[6] in his paper obtains results from the same perspective of using Banach spaces of
sequences for the polynomial instability concept.

In this work we deal with both exponential and polynomial instability behavior
for the uniform case of evolution operators in Banach spaces. In this sense, we give
some necessary and sufficient conditions due to Datko [5], firstly for the uniform
exponential instability concept and then we extend the theory to the polynomial
case, our theorems being proved by using different techniques from those known so
far.
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2. Notations and definitions

We consider X a real or complex Banach space, B(X) the Banach algebra of all
bounded linear operators acting on X and I the identity operator on X. The norms
on X and on B(X) will be denoted by ‖.‖. We also denote by

∆ = {(t, s) ∈ R2
+ : t ≥ s}, T = {(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0}.

Definition 2.1. An application U : ∆ → B(X) is said to be an evolution operator on
X if the following relations are satisfied:

(e1) U(t, t) = I for all t ≥ 0

(e2) U(t, s)U(s, t0) = U(t, t0) for all (t, s, t0) ∈ T.

Definition 2.2. An evolution operator U : ∆→ B(X) is said to be strongly measurable
if for all (s, x) ∈ R+ ×X, the mapping t 7→ ‖U(t, s)x‖ is measurable on [s,∞).

Definition 2.3. The evolution operator U : ∆→ B(X) has uniform exponential decay
(u.e.d.) if there exist the constants M ≥ 1 and ω > 0 such that:

‖U(s, t0)x0‖ ≤Meω(t−s)‖U(t, t0)x0‖, for all (t, s, t0, x0) ∈ T ×X.

Remark 2.4. The evolution operator U : ∆ → B(X) has uniform exponential decay
if and only if there exist the constants M ≥ 1 and ω > 0 such that:

‖x‖ ≤Meω(t−s)‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X.

Definition 2.5. The evolution operator U is said to be uniformly exponentially instable
(u.e.is.) if there exist N ≥ 1 and ν > 0 such that:

‖U(s, t0)x0‖ ≤ Ne−ν(t−s)‖U(t, t0)x0‖, for all (t, s, t0, x0) ∈ T ×X.

Remark 2.6. The evolution operator U is uniformly exponentially instable if and only
if there exist N ≥ 1 and ν > 0 such that:

‖x‖ ≤ Ne−ν(t−s)‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X.

Definition 2.7. The evolution operator U has uniform polynomial decay (u.p.d.) if
there exist the constants M ≥ 1 and ω > 0 such that:

‖U(s, t0)x0‖ ≤M
(
t+ 1

s+ 1

)ω
‖U(t, t0)x0‖, for all (t, s, t0, x0) ∈ T ×X.

Remark 2.8. The evolution operator U has uniform polynomial decay if and only if
there exist the constants M ≥ 1 and ω > 0 such that:

‖x‖ ≤M
(
t+ 1

s+ 1

)ω
‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X.

Definition 2.9. The evolution operator U is said to be uniformly polynomially instable
(u.p.is.) if there exist N ≥ 1 and ν > 0 such that:

‖U(s, t0)x0‖ ≤ N
(
s+ 1

t+ 1

)ν
‖U(t, t0)x0‖, for all (t, s, t0, x0) ∈ T ×X.
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Remark 2.10. The evolution operator U is uniformly polynomially instable if and only
if there exist N ≥ 1 and ν > 0 such that:

‖x‖ ≤ N
(
s+ 1

t+ 1

)ν
‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X.

Remark 2.11. The connections between the instability concepts and the decay prop-
erties mentioned above are given by the following diagram:

u.e.is. ⇒ u.p.is.
⇓ ⇓

u.e.d. ⇐ u.p.d.

The converse implications are not true (see [7], [13]).

We define U1 : ∆ → B(X), U1(t, s) = U(et − 1, es − 1) the evolution operator
associated to U .

Proposition 2.12. The evolution operator U : ∆ → B(X) has uniform polynomial
decay if and only if the evolution operator U1 : ∆ → B(X) has uniform exponential
decay.

Proof. Necessity. We suppose that U has u.p.d. which implies that there exist the
constants M ≥ 1, ω > 0 such that(

s+ 1

t+ 1

)ω
‖x‖ ≤M‖U(t, s)x‖, for all (t, s, x) ∈ ∆×X,

which implies (
es

et

)ω
‖x‖ ≤M‖U(et − 1, es − 1)x‖,

which is equivalent to

e−ω(t−s)‖x‖ ≤M‖U(et − 1, es − 1)x‖ = M‖U1(t, s)x‖, for all (t, s, x) ∈ ∆×X.

Then U1 has u.e.d.
Sufficiency. We suppose that U1 has u.e.d., which implies that there exist M ≥ 1,
ω > 0 such that

e−ω(t−s)‖x‖ ≤M‖U1(t, s)x‖ = M‖U(et − 1, es − 1)x‖, (2.1)

for all (t, s, x) ∈ ∆×X.
We denote by et− 1 = u, es− 1 = v, which implies t = ln(1 +u), s = ln(1 + v). Then,
from relation (2.1) we obtain(

1 + u

1 + v

)−ω
‖x‖ ≤M‖U(u, v)x‖, for all (u, v, x) ∈ ∆×X,

which implies that U has u.p.d. �

Proposition 2.13. The evolution operator U : ∆ → B(X) is uniformly polynomially
instable if and only if U1 : ∆→ B(X) is uniformly exponentially instable.



118 Rovana Boruga (Toma) and Mihail Megan

Proof. For the necessity, we suppose that U u.p.is. Then,

N‖U1(t, s)x‖ = N‖U(et − 1, es − 1)x‖

≥
(
et

es

)ν
‖x‖

= eν(t−s)‖x‖,

for all (t, s, x) ∈ ∆×X, which implies U1 is u.e.is.
Conversely, we suppose that U1 is u.e.is. Then,

N1‖U1(t, s)x‖ = N1‖U(et − 1, es − 1)x‖
= N1‖U(u, v)x‖

≥ eν(ln(1+u)−ln(1+v))‖x‖

= eν ln 1+u
1+v ‖x‖

=

(
1 + u

1 + v

)ν
‖x‖,

for all (t, s, x) ∈ ∆×X, which implies that U is u.p.is. �

3. The main results

In this section we give some characterization theorems of Datko type for the
uniform exponential instability and uniform polynomial instability for evolution op-
erators in Banach spaces.

Theorem 3.1. Let U be a strongly measurable evolution operator with uniform expo-
nential decay. Then U is uniformly exponentially instable if and only if there exist the
constants D > 1 and d ∈ [0, 1) such that

∞∫
s

edt

‖U(t, t0)x0‖
dt ≤ D eds

‖U(s, t0)x0‖
,

for all (s, t0, x0) ∈ ∆×X, U(s, t0)x0 6= 0.

Proof. Necessity. Let d ∈ (0, ν). We suppose that U is u.e.is. Then,

∞∫
s

edt

‖U(t, t0)x0‖
dt ≤ N

∞∫
s

edte−ν(t−s)

‖U(s, t0)x0‖
dt =

Neνs

‖U(s, t0)x0‖

∞∫
s

e(d−ν)tdt

=
N

ν − d
· eds‖U(s, t0)x0‖ ≤ Deds‖U(s, t0)x0‖,

where D = 1 =
N

ν − d
.
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Sufficiency. Case 1. Let d ∈ (0, 1). For t ≥ s+ 1 we obtain

edt

‖U(t, t0)x0‖
=

t∫
t−1

edt

‖U(t, t0)x0‖
dτ =

t∫
t−1

edt

‖U(t, τ)U(τ, t0)x0‖
dτ

≤M
t∫

t−1

edteω(t−τ)

‖U(τ, t0)x0‖
dτ = M

t∫
t−1

edτ · e(d+ω)(t−τ)

‖U(τ, t0)x0‖
dτ

≤Med+ω
∞∫
s

edτ

‖U(τ, t0)x0‖
dτ ≤ Neds

‖U(s, t0)x0‖
,

which is equivalent to

ed(t−s)‖U(s, t0)x0‖ ≤ N‖U(t, t0)x0‖,∀t ≥ s+ 1, s ≥ 0. (3.1)

Let t ∈ [s, s+ 1].

ed(t−s)‖U(s, t0)x0‖ ≤Me(d+ω)(t−s)‖U(t, t0)x0‖ ≤Med+ω‖U(t, t0)x0‖
≤ N‖U(t, t0)x0‖,

which is equivalent to

ed(t−s)‖U(s, t0)x0‖ ≤ N‖U(t, t0)x0‖,∀t ∈ [s, s+ 1], s ≥ 0. (3.2)

From (3.1) and (3.2) we obtain that

‖U(s, t0)x0‖ ≤ Ne−d(t−s)‖U(t, t0)x0‖,∀(t, s, x0) ∈ ∆×X,
where N = 1 +DMed+ω, so U is u.p.is.
Case 2. For d = 0, see [3]. �

Theorem 3.2. Let U be a strongly measurable evolution operator with uniform expo-
nential decay. Then U is uniformly exponentially instable if and only if there exist the
constants D > 1 and d ∈ [0, 1) such that

t∫
t0

‖U(s, t0)x0‖
eds

ds ≤ D‖U(t, t0)x0‖
edt

,

for all (t, t0, x0) ∈ ∆×X.

Proof. Case 1. For d ∈ (0, 1) see[12].
Case 2. For d = 0 see [14] . �

Theorem 3.3. Let U be a strongly measurable evolution operator with uniform polyno-
mial decay. Then U is uniformly polynomially instable if and only if there exist D > 1
and d ∈ [0, 1) such that

∞∫
s

(t+ 1)d−1

‖U(t, t0)x0‖
dt ≤ D(s+ 1)d

‖U(s, t0)x0‖
,

for all (s, t0, x0) ∈ ∆×X, U(s, t0)x0 6= 0.
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Proof. Case 1. Let d ∈ (0, 1). From Proposition 2.12 we have that U has u.p.d.
is equivalent to U1 has u.e.d. and from Proposition 2.13 we have that U u.p.is. is
equivalent to U1 u.e.is. which means from Theorem 3.1 that there exist D > 1 and
d ∈ [0, 1) such that

∞∫
s

edt

‖U1(t, t0)x0‖
dt ≤ Deds

‖U1(s, t0)x0‖
,

that is equivalent to

∞∫
s

edt

‖U(et − 1, et0 − 1)x0‖
dt ≤ Deds

‖U(es − 1, et0 − 1)x0‖
. (3.3)

Using the change of variables et − 1 = u and denoting by v0 = et0 − 1, u0 = es − 1,
relation (3.3) becomes

∞∫
u0

ed ln(u+1)

‖U(u, v0)x0‖
· du

u+ 1
≤ Ded ln(u0+1)

‖U(u0, v0)x0‖
,

that is equivalent to

∞∫
u0

(u+ 1)d−1

‖U(u, v0)x0‖
du ≤ D(u0 + 1)d

‖U(u0, v0)x0‖
,

so the theorem is proved.
Case 2. For d = 0 see [4]. �

Theorem 3.4. Let U be a strongly measurable evolution operator with uniform polyno-
mial decay. Then U is uniformly polynomially instable if and only if there exist D > 1
and d ∈ [0, 1) such that

t∫
t0

‖U(s, t0)x0‖
(s+ 1)d+1

ds ≤ D‖U(t, t0)x0‖
(t+ 1)d

,

for all (t, t0, x0) ∈ ∆×X.

Proof. Using Proposition 2.12 and Proposition 2.13 we have that U1 is u.e.is. with
u.e.d. and from Theorem 3.1 we obtain that there exist D > 1 and d ∈ [0, 1) such
that

t∫
t0

‖U1(s, t0)x0‖
eds

ds ≤ D‖U(t, t0)x0‖
edt

,

which is equivalent to

t∫
t0

‖U(es − 1, et0 − 1)x0‖
eds

ds ≤ D‖U(et − 1, et0 − 1)x0‖
edt

. (3.4)
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Using the change of variables es − 1 = u and denoting by v = et − 1, v0 = et0 − 1,
relation (3.4) becomes

v∫
u0

‖U(u, v0)x0‖
ed ln(u+1)

· du

u+ 1
≤ D‖U(v, v0)x0‖

(v + 1)d
,

that is equivalent to

v∫
u0

‖U(u, v0)x0‖
(u+ 1)d+1

du ≤ D‖U(v, v0)x0‖
(v + 1)d

,

so the theorem is proved. �
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1. Preliminaries

Recall the following sum rule for maximal monotone operators:

Theorem 1.1. (Rockafellar [5, Theorem 1 (a), p. 76]) Let (X, ‖ · ‖) be a reflexive
Banach space with topological dual X∗ and let A, B : X ⇒ X∗ be multi-valued
maximal monotone operators from X to X∗. If D(A) ∩ intD(B) 6= ∅ then A + B is
maximal monotone.

Here D(T ) := {x ∈ X | T (x) 6= ∅} is the domain of T : X ⇒ X∗, “intS” denotes
the topological interior of S ⊂ X, and A + B : X ⇒ X∗ is the Minkowski sum of A
and B defined by

(A+B)(x) := A(x) +B(x) := {y + v | y ∈ A(x), v ∈ B(x)},
for x ∈ D(A+B) := D(A) ∩D(B).

The proof of [5, Theorem 1, p. 76] relies on the use of the duality mapping J of
X and the (Minty’s style) characterization of maximal monotone operators defined in
reflexive Banach spaces. Similar arguments are used in the presence of an improved
qualification constraint in a second proof of Theorem 1.1 (see [2, Corollary 3.5, p. 286]).
A third proof of the main theorem involves the exact convolution of some specially
constructed functions based on the Fitzpatrick functions of A and B (see [10, Corollary
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4, p. 1166]). A different proof of Theorem 1.1 is based on the dual-representability
A+B in the presence of the qualification constraint (see [8, Remark 1, p. 276]) and the
fact that in a reflexive Banach space dual-representability is equivalent to maximal
monotonicity (see e.g. [1, Theorem 3.1, p. 2381]). All the previously mentioned proofs
make use of the duality mapping J which is characteristic to a normed space.

Our proof relies on the normal cone, is based on full-range characterizations of
maximal monotone operators with bounded domain, and uses the representability of
sums of representable operators, but, avoids the use of J or the norm. The following
intermediary result, is the main ingredient of our argument.

Theorem 1.2. Let X be a reflexive Banach space, let T : X ⇒ X∗ be maximal mono-
tone, and let C ⊂ X be closed convex and bounded. If D(T ) ∩ intC 6= ∅ then T +NC

is maximal monotone.

Here NC denotes the normal cone to C and is defined by x∗ ∈ NC(x) if, for
every y ∈ C, 〈y − x, x∗〉 ≤ 0. Here 〈·, ·〉 denotes the coupling or duality product of
X ×X∗ and is defined by

c(x, x∗) := 〈x, x∗〉 := x∗(x), x ∈ X, x∗ ∈ X∗.

An element z = (x, x∗) ∈ X × X∗ is monotonically related (m.r. for short) to
T if, for every (a, a∗) ∈ GraphT := {(u, u∗) ∈ X × X∗ | u ∈ D(T ), u∗ ∈ T (u)},
〈x− a, x∗ − a∗〉 ≥ 0.

Recall that a multi-valued operator T : X ⇒ X∗ is

• monotone if, for every x∗1 ∈ T (x1), x∗2 ∈ T (x2), 〈x1 − x2, x∗1 − x∗2〉 ≥ 0.

• maximal monotone if every m.r. to T element z = (x, x∗) ∈ X ×X∗ belongs
to GraphT .

• representable if there is a proper convex sX × w∗−lower semicontinuous h :
X ×X∗ → R ∪ {+∞} such that h ≥ c and

GraphT = [h = c] := {(x, x∗) ∈ X ×X∗ | h(x, x∗) = 〈x, x∗〉}.

Here sX denotes the strong topology of X and w∗ stands for the weak-star topology
of X∗.

• NI if ϕT ≥ c, where ϕT is the Fitzpatrick function of T which is defined by

ϕT (x, x∗) := sup{〈x− a, a∗〉+ 〈a, x∗〉 | (a, a∗) ∈ GraphT}, (x, x∗) ∈ X ×X∗. (1.1)

2. Proofs of the main result

Proof of Theorem 1.2. The operator T +NC is representable, which follows from the
facts that T , NC are maximal monotone thus representable and D(T )∩ intC 6= ∅ (see
e.g. [6, Corollary 5.6, p. 470] or [7, Theorem 16, p. 818]).

We prove that R(T + NC) = X∗ which implies that T + NC is of NI–type and
so it is maximal monotone (see [6, Theorem 3.4, p. 465] or [8, Theorem 1 (ii), (7)]).

It suffices to prove that 0 ∈ R(T +NC) otherwise we replace T by T −x∗ for an
arbitrary x∗ ∈ X∗.
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Consider F (x, x∗) := ϕT (x, x∗) + g(x, x∗), with g(x, x∗) := ιC(x) + σC(−x∗),
where ιC(x) = 0, for x ∈ C; ιC(x) = +∞, otherwise, and σC(x∗) := supx∈C〈x, x∗〉,
x∗ ∈ X∗.

Then F ≥ 0 due to ϕT (x, x∗) ≥ 〈x, x∗〉 and ιC(x) +σC(−x∗) ≥ −〈x, x∗〉 (see f.i.
[4]). Hence

0 ≤ inf
X×X∗

F = −(ϕT + g)∗(0, 0) = − min
(x,x∗)∈X×X∗

{ψT (x, x∗) + g∗(−x∗,−x)}, (2.1)

because C is bounded, g is sX × sX∗−continuous on intC ×X∗, and X is reflexive
(see f.i. [9, Theorem 2.8.7, p. 126]), where sX∗ is the strong topology of X∗. Here
“min” denotes an infimum that is attained when finite,

ψT (x, x∗) = ϕ∗T (x∗, x), (x, x∗) ∈ X ×X∗, (2.2)

the convex conjugation being taken with respect to the dual system

(X ×X∗, X∗ ×X∗∗)

and, for every (x, x∗) ∈ X ×X∗, ψT (x, x∗) ≥ 〈x, x∗〉 because T is monotone (see e.g.
[8, (12)]).

From g∗(x∗, x) = ιC(−x) + σC(x∗), (x, x∗) ∈ X × X∗ and (2.1) there exists
(x̄, x̄∗) ∈ X × X∗ such that ψT (x̄, x̄∗) + ιC(x̄) + σC(−x̄∗) ≤ 0 which implies that
ιC(x̄) + σC(−x̄∗) = −〈x̄, x̄∗〉, i.e., −x̄∗ ∈ NC(x̄) and ψT (x̄, x̄∗) = 〈x̄, x̄∗〉, that is,
x̄∗ ∈ T (x̄) since T is representable (see [8, Theorem 1, p. 270]).

Therefore 0 ∈ (T +NC)(x̄, x̄∗) and so 0 ∈ R(T +NC). �

Proof of Theorem 1.1. First we prove that we can assume without loss of generality
that D(B) is bounded. Indeed, assume that the result is true for that case.

Let z = (x, x∗) be m.r. to A+B. Take C ⊂ X closed convex and bounded with
x ∈ intC and D(A) ∩ intD(B) ∩ intC 6= ∅ e.g. C := [x0, x] + U , where

[x0, x] := {tx0 + (1− t)x | 0 ≤ t ≤ 1}

and U is a closed convex bounded neighborhood of 0, and x0 ∈ D(A)∩ intD(B). Note
that z is m.r. to A + B + NC = A + (B + NC) which is maximal monotone since,
according to Theorem 1.2, B+NC is maximal monotone, D(B+NC) is bounded, and
x0 ∈ D(A) ∩ intD(B +NC) 6= ∅. Hence z ∈ Graph(A+B +NC) or x∗ ∈ (A+B)(x)
because NC(x) = {0}. Therefore A+B is maximal monotone.

It remains to prove that, whenever D(B) is bounded, R(A + B) = X∗ or suffi-
ciently 0 ∈ R(A+B) (since A+B is representable, see again [6, Corollary 5.6]).

Let

F (x, x∗) := ϕA(x, x∗) + ϕB(x,−x∗), g(x, x∗) := ϕB(x,−x∗), (x, x∗) ∈ X ×X∗.

Since A, B are maximal monotone, for every (x, x∗) ∈ X ×X∗,

min{ϕA(x, x∗), ϕB(x, x∗)} ≥ 〈x, x∗〉

which imply F ≥ 0 and so

0 ≤ inf
X×X∗

F = −(ϕA + g)∗(0, 0) = − min
(x,x∗)∈X×X∗

{ψA(x, x) + ψB(x,−x∗)}, (2.3)
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because D(B) bounded provides D(B) × X∗ ⊂ dom g, g is sX × sX∗−continuous
on intD(B) × X∗, and X is reflexive (see again [9, Theorem 2.8.7, p. 126]). More
precisely, for every (x, x∗) ∈ D(B)×X∗ there is x∗ ∈ B(x) and so

ϕB(x, x∗) := sup{〈x− b, b∗〉+ 〈b, x∗〉 | (b, b∗) ∈ GraphB}
≤ sup{〈x− b, x∗〉+ 〈b, x∗〉 | (b, b∗) ∈ GraphB}
≤ 〈x, x∗〉+ ‖x∗ − x∗‖ sup

b∈D(B)

‖b‖ < +∞.

There exists (x̄, x̄∗) ∈ X × X∗ such that ψA(x̄, x̄∗) + ψB(x̄,−x̄∗) ≤ 0 which implies
that ψA(x̄, x̄∗) = 〈x̄, x̄∗〉, ψB(x̄,−x̄∗) = −〈x̄, x̄∗〉, i.e., x̄∗ ∈ A(x̄) and −x̄∗ ∈ B(x̄)
from which 0 ∈ R(A+B). �

Remark 2.1. Theorem 1.2 still holds if we replace the assumption C bounded with
D(T ) bounded. In this case an alternate proof of Theorem 1.1 can be performed with
A+NC instead of A and a similar argument as in the current proof.
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1. Introduction

For nearly sixty years now, there has been an intensive research activity regard-
ing the fixed point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for
example, [2, 4, 5, 3, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 27, 28, 29, 30, 32,
34, 38, 39, 40, 41] and references cited therein. This activity stems from Banach’s
classical theorem [1] concerning the existence of a unique fixed point for a strict con-
traction. It also covers the convergence of (inexact) orbits of a nonexpansive mapping
to one of its fixed points. Since that seminal result, numerous developments have
taken place in this field including, in particular, studies of feasibility and common
fixed point problems, which find important applications in engineering and medical
sciences [6, 7, 11, 35, 36, 37, 40, 41]. In this connection, see also the results regarding
the asymptotic behavior of infinite products of nonexpansive mappings which have
been established in, for instance, [8, 9, 10, 20, 22, 25, 26, 31] and references mentioned
therein.

In [30] we collected several results which demonstrate the convergence of inexact
iterates of a nonexpansive self-mapping of a complete metric space to one of its fixed
points. In the present paper we establish three variants of these results for inexact
infinite products of nonexpansive mappings, which take a nonempty closed subset of
a complete metric space into the space, in the case where the errors are sufficiently
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small. Prototypes of these results for inexact orbits of nonexpansive mappings have
recently been obtained in [33].

2. Main results

Let (Z, d) be a complete metric space. For each point z ∈ Z and each positive
number M , define

B(z,M) := {y ∈ Z : d(z, y) ≤M}.
For every point z ∈ Z and every nonempty set D ⊂ Z, put

d(z,D) := inf{d(z, y) : y ∈ D}.
Let K ⊂ Z be a nonempty closed set, let the mappings Aj : K → Z, j = 1, 2, . . . ,
satisfy

d(Aj(z), Aj(y)) ≤ d(z, y) for all z, y ∈ K (2.1)

for each integer j ≥ 1, and letR be a nonempty collection of mappings r : {1, 2, . . . } →
{1, 2, . . . }. Fix a point θ ∈ K. Assume that a point z∗ ∈ K satisfies

Aj(z∗) = z∗, j = 1, 2, . . . , (2.2)

and that the following two properties hold:
(P1) if r ∈ R and q ≥ 1 is an integer, then the mapping n→ r(n+q), n = 1, 2 . . . ,

belongs to the collection R;
(P2) for every positive number ε and every positive number M , there exists an

integer n(M, ε) ≥ 1 such that if z ∈ B(θ,M), r ∈ R and

n(M,ε)∏
i=1

Ar(i)(z)

exists, then

d

n(M,ε)∏
i=1

Ar(i)(z), z∗

 ≤ ε.
Note that property (P2) holds for Banach contractions and for many nonexpan-

sive mappings of contractive type [30]. In [30] we consider a large class of sequences
of nonexpansive mappings {Ai}∞i=1 and show that a generic (typical) sequence of
mappings possesses (P2).

In the present paper we establish the following three theorems.

Theorem 2.1. Let a pair of positive numbers ε,M be given. Then there exists an
integer n0 ≥ 1 such that for every δ ∈ (0, ε/2), every natural number n ≥ n0, every
mapping r ∈ R and every sequence {zi}ni=0 ⊂ K satisfying

d(z0, θ) ≤M,

d(zj+1, Ar(j+1)(zj)) ≤ (4n0)−1δ, j = 0, . . . , n− 1,

and
B(zj , δ) ⊂ K, j = 0, . . . , n,

the inequality d(zj , z∗) ≤ ε is true for all integers j = n0, . . . , n.



Asymptotic behavior of inexact infinite products 129

Theorem 2.2. Let r∗ ∈ (0, 1) satisfy

B(z∗, r∗) ⊂ K, (2.3)

and let a pair of positive numbers M and ε ∈ (0, r∗/2) be given. Then there exists an
integer n0 ≥ 1 such that for every δ ∈ (0, ε/2), every natural number n ≥ n0, every
mapping r ∈ R and every sequence {zj}nj=0 ⊂ K satisfying

d(z0, θ) ≤M,

d(zj+1, Ar(j+1)(zj)) ≤ (4n0)−1δ, j = 0, . . . , n− 1,

and

B(zj , δ) ⊂ K, j = 0, . . . , n0,

the inequality d(zj , z∗) ≤ ε is true for all integers j = n0, . . . , n.

Note that in Theorem 2.1 the sequence {zj}nj=0 ⊂ K satisfies the inclusion
B(zj , δ) ⊂ K for all j = 0, . . . , n, while in Theorem 2.2 the inclusion holds only for
j = 0, . . . , n0. On the other hand, in Theorem 2.2 we assume that z∗ is an interior
point of K. We do not need this assumption for Theorem 2.1.

Theorem 2.3. Let r∗ > 0,

B(z∗, r∗) ⊂ K, (2.4)

r ∈ R and let a sequence {zj}∞j=0 ⊂ K satisfy

lim
j→∞

d(zj+1, Ar(j+1)(zj)) = 0 (2.5)

and have a bounded subsequence {zjp}∞p=1. Assume that there exists a positive number
∆ such that

B(zj ,∆) ⊂ K
for all sufficiently large natural numbers j. Then

lim
j→∞

zj = z∗.

The proofs of these three theorems are presented in Sections 4–6 below. We begin,
however, with an auxiliary result which is stated and proved in the next section.

3. An auxiliary result

Proposition 3.1. Let ε,M > 0 be given. Then there exists an integer n0 ≥ 1 such that
for every number δ ∈ (0, ε), every mapping r ∈ R and every sequence {zj}n0

j=0 ⊂ K
satisfying

d(z0, θ) ≤M, (3.1)

d(zj+1, Ar(j+1)(zj)) ≤ (4n0)−1δ, j = 0, . . . , n0 − 1, (3.2)

and

B(zj , δ) ⊂ K, j = 0, . . . , n0, (3.3)

the inequality d(zn0
, z∗) ≤ ε holds true.
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Proof. In view of property (P2), there exists an integer n0 ≥ 1 such that the following
property holds:

(P3) for every point z ∈ B(θ,M) and every mapping r ∈ R for which∏n0

j=1Ar(j)(z) exists, we have

d

 n0∏
j=1

Ar(j)(z), z∗

 ≤ ε/4.
Fix δ ∈ (0, ε) and put

δ0 := (4n0)−1δ. (3.4)

Assume that r ∈ R and that a sequence of points {zj}n0
j=0 ⊂ K satisfies relations

(3.1)–(3.3). Define

y0 := z0, y1 := Ar(1)(z0). (3.5)

By (3.2), (3.4) and (3.5), we have

d(y1, z1) ≤ δ0. (3.6)

It follows from (3.3), (3.4) and (3.6) that

B(z1, δ) ⊂ K, y1 ∈ K (3.7)

and

B(y1, δ − δ0) ⊂ B(z1, δ) ⊂ K. (3.8)

Assume that 1 ≤ p < n0 is an integer and that a sequence of points {yi}pi=0 ⊂ K
satisfies

y0 = z0, (3.9)

yj+1 = Ar(j+1)(yj), j = 0, . . . , p− 1, (3.10)

and

d(yj , zj) ≤ jδ0, j = 0, . . . , p. (3.11)

(It is clear that by relations (3.5)–(3.8), our assumption is valid for p = 1.) We claim
that our assumption is true for p + 1 too. Indeed, in view of (3.3), (3.4) and (3.11),
we have yp ∈ K and

d(zp, yp) ≤ pδ0. (3.12)

Relations (3.4), (3.11) and (3.12) imply that

B(yp, δ − pδ0) ⊂ B(zp, δ) ⊂ K. (3.13)

By (3.13),

yp+1 = Ar(p+1)(yp) (3.14)

is well defined. It now follows from (2.1), (3.2), (3.4), (3.12) and (3.14) that

d(yp+1, zp+1) ≤ d(yp+1, Ar(p+1)(zp)) + d(Ar(p+1)(zp), zp+1)

≤ d(Ar(p+1)(yp), Ar(p+1)(zp)) + d(Ar(p+1)(zp), zp+1)

≤ d(yp, zp) + δ0 ≤ (p+ 1)δ0.



Asymptotic behavior of inexact infinite products 131

Thus the assumption made regarding p also holds for p + 1, as claimed (see (3.9)-
(3.11)). This means that we have shown by using induction that our assumption
holds for p = n0. Hence there exists a sequence of points {yj}n0

j=0 ⊂ K which satisfies

y0 = z0, (3.15)

yj+1 = Ar(j+1)(yj), j = 0, . . . , n0 − 1, (3.16)

and
d(yj , zj) ≤ jδ0, j = 0, . . . , n0. (3.17)

By (3.15) and (3.16),

yn0
=

n0∏
j=1

Ar(j)(x0).

It follows from property (P3), (3.1) and (3.15)–(3.17) that

d(yn0 , z∗) ≤ ε/4.
When combined with (3.4) and (3.17), this implies that

d(zn0
, z∗) ≤ d(zn0

, yn0
) + d(yn0

, z∗) ≤ n0δ0 + ε/4 < ε.

This completes the proof of Proposition 3.1. �

4. Proof of Theorem 2.1

We may assume that
M > d(θ, z∗) + 1 + ε. (4.1)

In view of Proposition 3.1, there exists an integer n0 ≥ 1 such that the following
property holds:

(P4) for every number δ ∈ (0, ε/2), every mapping r ∈ R and every sequence
{xj}n0

j=0 ⊂ K satisfying

d(x0, θ) ≤M,

d(xj+1, Ar(j+1)(xj)) ≤ (4n0)−1δ, j = 0, . . . , n0 − 1,

and
B(xj , δ) ⊂ K, j = 0, . . . , n0,

the inequality
d(xn0

, z∗) ≤ ε/2
holds true.
Fix δ ∈ (0, ε/2). Assume that n ≥ n0 is an integer, r ∈ R and that a sequence
{zj}nj=0 ⊂ K satisfies

d(z0, θ) ≤M, (4.2)

d(zj+1, Ar(j+1)(zj)) ≤ (4n0)−1δ, j = 0, . . . , n− 1, (4.3)

and
B(zj , δ) ⊂ K, j = 0, . . . , n. (4.4)

By (P4), the choice of n0 and relations (4.2)–(4.4), we have

d(zn0
, z∗) ≤ ε/2. (4.5)
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In order to complete the proof of the theorem, it suffices to show that

d(zj , z∗) ≤ ε, j = n0, . . . , n.

To this end, it is sufficient to consider the case where n > n0. Relations (2.1), (2.2),
(4.3) and (4.5) imply that

d(zn0+1, z∗) ≤ d(zn0+1, Ar(n0+1)(zn0)) + d(Ar(n0+1)(zn0), z∗)

≤ δ(4n0)−1 + ε/2. (4.6)

We claim that for each integer j ∈ {n0 + 1, . . . , n}, we have

d(zj , z∗) ≤ ε/2 + δ(j − n0)(4n0)−1. (4.7)

By (4.6), relation (4.7) is indeed true for i = n0 + 1.
Assume that p ∈ {n0 + 1, . . . , n} \ {n} and that

d(zp, z∗) ≤ ε/2 + δ(p− n0)(4n0)−1. (4.8)

Relations (2.1), (2.2), (4.3) and (4.8) imply that

d(zp+1, z∗) ≤ d(zp+1, Ar(p+1)(zp)) + d(Ar(p+1)(zp), z∗)

≤ δ(4n0)−1 + d(zp, z∗)

≤ ε/2 + δ(p− n0)(4n0)−1 + δ(4n0)−1

≤ ε/2 + δ(p+ 1− n0)(4n0)−1.

Thus the assumption made regarding p also holds for p+ 1, as claimed.
This means that we have shown by using induction that (4.7) is indeed true for all
integers j = n0 + 1, . . . , n.
Suppose now that there exists an integer q ∈ {n0, . . . , n} for which

d(zq, z∗) > ε. (4.9)

By (4.5) and (4.9), we have

q > n0.

In view of (4.7) and (4.9),

ε < d(zq, z∗) ≤ ε/2 + δ(q − n0)(4n0)−1,

ε/2 < δ(q − n0)(4n0)−1 < (ε/2)(q − n0)(4n0)−1,

q − n0 > 4n0

and

q > 5n0. (4.10)

By (4.5) and (4.10), we may assume without any loss of generality that

d(zj , z∗) ≤ ε, j = n0, . . . , q − 1. (4.11)

Define

xj := zj+q−n0 , j = 0, 1, . . . , n0, (4.12)

r̃(j) := r(j + q − n0), j = 1, 2, . . . . (4.13)
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Property (P1) implies that r̃ ∈ R. It follows from (4.3), (4.12) and (4.13) that for all
integers j = 0, . . . , n0 − 1, we have

d(xj+1, Ar̃(j+1)(xj)) = d(zj+1+q−n0
, Ar(j+1+q−n0)(zj+q−n0

)) ≤ (4n0)−1δ.

Property (P4), applied to the sequence xj , j = 0, . . . , n0, (4.1), (4.11), (4.12) and
(4.14) imply that

d(z∗, zq) = d(z∗, xn0
) ≤ ε/2.

This, however, contradicts (4.9). The contradiction we have reached completes the
proof of Theorem 2.1.

5. Proof of Theorem 2.2

We may assume that
M > d(θ, z∗) + 1 + ε. (5.1)

Recall that ε < r∗/2 (see (2.3)). Proposition 3.1 implies that there exists a natural
number n0 such that property (P4), which was introduced in the previous section,
holds. We recall it at this point for the convenience of the reader:

(P4) for every number δ ∈ (0, ε/2), every r ∈ R and every sequence of points
{xj}n0

j=0 ⊂ K which satisfies

d(x0, θ) ≤M,

d(xj+1, Ar(j+1)(xj)) ≤ (4n0)−1δ, j = 0, . . . , n0 − 1,

and
B(xj , δ) ⊂ K, j = 0, . . . , n0,

the inequality
d(xn0

, z∗) ≤ ε/2
is true.
Let δ ∈ (0, ε/2) be given. Assume that r ∈ R, n ≥ n0 is an integer and that a sequence
{zj}nj=0 ⊂ K satisfies

d(z0, θ) ≤M, (5.2)

d(zj+1, Ar(j+1)(zj)) ≤ (4n0)−1δ, j = 0, . . . , n− 1, (5.3)

and
B(zj , δ) ⊂ K, j = 0, . . . , n0. (5.4)

Property (P4) and relations (5.2)–(5.4) imply that

d(zn0
, z∗) ≤ ε/2. (5.5)

In order to complete the proof of the theorem, it is sufficient to show that

d(zj , z∗) ≤ ε, j = n0, . . . , n.

Suppose to the contrary that these inequalities are not valid. Then there exists a
natural number q ∈ {n0, . . . , n} for which

d(zq, z∗) > ε. (5.6)

Inequalities (5.5) and (5.6) imply that

q > n0. (5.7)
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In view of (5.7), we may assume without loss of generality that

d(zj , z∗) ≤ ε, j = n0, . . . , q − 1. (5.8)

Using induction and arguing as in the proof of Theorem 2.1, we can show that for all
natural numbers i = n0 + 1, . . . , n, we have

d(zi, z∗) ≤ ε/2 + δ(i− n0)(4n0)−1. (5.9)

In view of (5.6) and (5.9),

ε < d(zq, z∗) ≤ ε/2 + δ(q − n0)(4n0)−1,

ε/2 < δ(q − n0)(4n0)−1 < (ε/2)(q − n0)(4n0)−1,

q − n0 > 4n0

and
q > 5n0. (5.10)

Put
xj := zj+q−n0

, j = 0, . . . , n0, (5.11)

r̃(j) := r(j + q − n0), j = 1, 2, . . . . (5.12)

It follows from property (P1) that r̃ ∈ R. In view of (5.3), (5.11) and (5.12), we have,
for every integer j ∈ {0, 1, . . . , n0 − 1},

d(xj+1, Ar̃(j+1)(xj)) = d(zj+1+q−n0
, Ar(j+1+q−n0)(zj+q−n0

)) ≤ (4n0)−1δ. (5.13)

It follows from property (P4), (5.1), (5.8) and (5.10)–(5.13) that

d(z∗, zq) = d(z∗, xn0
) ≤ ε/2.

This, however, contradicts (5.6). The contradiction we have reached completes the
proof of Theorem 2.2.

6. Proof of Theorem 2.3

We may assume without any loss of generality that

B(zj ,∆) ⊂ K, j = 0, 1, . . . . (6.1)

There exists a number
M > d(θ, z∗) + 1

for which
d(zip , θ) ≤M, p = 1, 2, . . . . (6.2)

Fix
ε ∈ (0, r∗/4) (6.3)

(see (2.4)). Proposition 3.1 implies that there exists an integer n0 ≥ 1 for which
property (P4), which was introduced in Section 4, holds. We recall it now for the
convenience of the reader:

(P4) for every number δ ∈ (0, ε/2), every mapping r ∈ R and every sequence
{xj}n0

j=0 ⊂ K which satisfies

d(x0, θ) ≤M,

d(xj+1, Ar(j+1)(xj)) ≤ (4n0)−1δ, j = 0, . . . , n0 − 1,
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and
B(xj , δ) ⊂ K, j = 0, . . . , n0,

the inequality
d(xn0

, x∗) ≤ ε/2
is true.
Now let

δ := min{ε/4, ∆}. (6.4)

By (6.3) and (6.4),
δ ≤ 16−1r∗.

Relations (2.5) and (6.2) imply that there exists an integer p0 ≥ 1 such that

d(zip0 , θ) ≤M (6.5)

and
d(zi+1, Ar(i+1)(zi)) ≤ (4n0)−1δ for all integers i ≥ ip0 . (6.6)

For all integers j = 0, . . . , n0, define

xj := zj+p0 , (6.7)

r̃(i) := r(i+ ip0
), i = 1, 2, . . . . (6.8)

It follows from relations (6.6)–(6.8) that for each integer j ∈ {0, 1, . . . , n0 − 1}, we
have

d(xj+1, Ar̃(j+1)(xj)) = d(zj+1+ip0
, Ar(j+1+ip0 )

(zj+ip0
)) ≤ (4n0)−1δ. (6.9)

Property (P4) and relations (6.5), (6.7) and (6.9) imply that

ε/2 ≥ d(xn0
, z∗) = d(zip0+n0

, z∗).

In order to complete the proof of the theorem, it is sufficient to show that

d(zj , z∗) ≤ ε for all integers j ≥ ip0
+ n0.

Suppose to the contrary that this is not true. Then there exists a natural number
q > ip0

+ n0 such that
d(zq, z∗) > ε. (6.10)

We may assume without any loss of generality that

d(zj , z∗) ≤ ε, j = ip0 + n0, . . . , q − 1. (6.11)

Using induction and arguing as in the proof of Theorem 2.1, we can show that for
each integer i ≥ ip0 + n0, we have

d(zi, z∗) ≤ ε/2 + δ(i− ip0
− n0)(4n0)−1. (6.12)

Inequalities (6.10) and (6.11) imply that

ε < d(zq, z∗) ≤ ε/2 + δ(q − ip0
− n0)(4n0)−1,

ε/2 ≤ (ε/2)(q − ip0 − n0)(4n0)−1,

q − ip0
− n0 ≥ 4n0

and
q ≥ ip0

+ 5n0. (6.13)



136 Simeon Reich and Alexander J. Zaslavski

In view of (6.11) and (6.13), we have

d(zq−n0 , z∗) ≤ ε. (6.14)

By (6.14), we have

d(zq−n0
, θ) ≤M. (6.15)

For all integers j = 0, . . . , n0, put

xj := zq−n0+j , (6.16)

r̃(j) := r(q − n0 + j), j = 1, 2, . . . . (6.17)

It follows from property (P4), (6.1), (6.6), (6.13) and (6.15)–(6.17) that

ε/2 ≥ d(z∗, xn0
) = d(z∗, zq).

This, however, contradicts (6.10). The contradiction we have reached completes the
proof of Theorem 2.3.
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Stud. Univ. Babeş-Bolyai Math. 66(2021), No. 1, 139–158
DOI: 10.24193/subbmath.2021.1.13

Split equality variational inequality problems for
pseudomonotone mappings in Banach spaces

Oganeditse A. Boikanyo and Habtu Zegeye
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Abstract. A new algorithm for approximating solutions of the split equality varia-
tional inequality problems (SEVIP) for pseudomonotone mappings in the setting
of Banach spaces is introduced. Strong convergence of the sequence generated
by the proposed algorithm to a solution of the SEVIP is then derived without
assuming the Lipschitz continuity of the underlying mappings and without prior
knowledge of operator norms of the bounded linear operators involved. In ad-
dition, we provide several applications of our method and provide a numerical
example to illustrate the convergence of the proposed algorithm. Our results im-
prove, consolidate and complement several results reported in the literature.
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1. Introduction

Let K be a nonempty, closed and convex subset of a real Hilbert space H,
and T : C → H be a nonlinear mapping. The variational inequality problem (VIP),
first introduced by Stampacchia [31] and Fichera [19] in 1964, is a problem that
consist of finding an element x ∈ C such that 〈Tx, y − x〉 ≥ 0 for all y ∈ C. For a
nonlinear mapping T : C → H, we denote the solution of the VIP by V I(C, T ) if it is
nonempty. It is known that x solves the VIP if and only if x is a fixed point of the map
PC(I − λT ) : C → C. Variational inequality problems have been studied extensively
by several authors, thanks to their relevance in various applications in areas such
as mechanics, physics, engineering, convex programming and control theory. Among
these studies, VIPs for continuous and pseudomonotone maps will be of particular
interest to us. Let us remember that if T is continuous and pseudomonotone, then
V I(C, T ) is closed and convex [26]. In [30, 33, 34], the authors studied algorithms for



140 Oganeditse A. Boikanyo and Habtu Zegeye

solving uniformly continuous and weakly sequentially continuous pseudomonotone
VIPs in Hilbert spaces. The distinctive feature of the algorithms constructed and
analyzed in [33, 34] is mainly on the different Armijo-type line search rules used. For
further reading on the VIP, particularly iterative methods for finding solutions of
VIPs, the interested reader is referred to articles [2, 7, 10, 21–23, 25, 29, 38, 41], and
their references.
Let K1 and K2 be nonempty, closed and convex subsets of real Hilbert spaces H1

and H2, respectively. Also let A : H1 → H3 and B : H2 → H3 be bounded linear
mappings, where H3 is another real Hilbert space. Consider two nonlinear mappings
T : H1 → H1 and S : H2 → H2. The split equality variational inequality problem
(SEVIP) is formulated as a problem of finding:

(x, y) ∈ K1 ×K2 such that (x, y) ∈ V I(K1, T )× V I(K2, S) and Ax = By. (1.1)

The SEVIP is quite general and it includes as special cases, split equality zero point
problem (see, [18]), common solutions of the variational inequality problem [12], com-
mon zeros of mappings [16], split equality feasibility problem [27], has been studied
extensively by many authors and applied to solving many real life problems such as in
modelling intensity-modulated radiation therapy treatment planning [8, 9], modelling
of inverse problems arising from phase retrieval, and in sensor networks in comput-
erised tomography and data compression [5, 17].
If, in (1.1), we consider H2 = H3, and B = I, the identity mapping on H2, the SEVIP
reduces to the split varitional inequality problem (SVIP) that was recently introduced
by Censor et al. [10]. The SVIP consists of finding:

(x, y) ∈ K1 ×K2 such that (x, y) ∈ V I(K1, T )× V I(K2, S) and y = Ax, (1.2)

that is, the SVIP constitutes a pair of VIPs, which have to be solved so that the image
y = Ax, under a given bounded linear operator A of the solution x of the VIP in H1, is
a solution of another VIP in another space H2. In Moudafi [27], it was noted that the
SVIP generalizes the split fixed point problem, split variational inequality problem,
split zero point problem and split feasibility problem (see also [3, 4, 6, 13–15, 35, 40],
and the references therein). Many of the results cited above were obtained in the
setting of real Hilbert spaces. In [11], Censor et al. studied an iterative algorithm that
approximates a solution of the SVIP for a monotone mapping in Hilbert spaces and
proved weak convergence results of the algorithm. In [6], Byrne et al. constructed a
scheme which approximates the solution of the SVIP for monotone type mappings in
Hilbert spaces and proved weak and strong convergence results of the scheme under
certain assumptions.
Motivated by the work of Censor et al. [11], Byrne et al. [6] and Thong et al [33], we
introduce and study a new algorithm for solving the SEVIP for uniformly continu-
ous and weakly sequentially continuous pseudomonotone mappings in the setting of
Banach spaces. Strong convergence of the proposed algorithm is proved under mild
assumptions and without prior knowledge of operator norms of bounded linear map-
pings involved. Some applications of the main results are also provided. A numerical
example is given to illustrate the convergence of the proposed algorithm. Our results
improve, consolidate and complement several results in the literature.
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2. Preliminaries

Let E be a reflexive, strictly convex and smooth Banach space and let C be a
nonempty, closed and convex subset of E. Consider the function φ : E × E → R,
introduced by Alber [1], defined by

φ(y, x) = ||y||2 − 2〈y, Jx〉+ ||x||2, for x, y ∈ E, (2.1)

where J : E → E∗ is the normalized duality mapping defined by

Jx := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2, ||x|| = ||x∗||},∀x ∈ E.
It is known that if E is uniformly smooth, then J is uniformly norm to norm con-
tinuous on each bounded subset of E (see, [32]). Furthermore, if E is a reflexive and
strictly convex Banach space with a strictly convex dual, then J−1 is a duality map-
ping from E∗ into E which satisfies JJ−1 = IE∗ and J−1J = IE (see, [32]). The
generalized projection mapping, introduced by Alber [1], is a mapping ΠC : E → C
that assigns an arbitrary point x ∈ E to the minimizer, x̄, of φ(., x) over C.

Lemma 2.1. [1] Let C be a nonempty, closed and convex subset of a real reflex-
ive, strictly convex, and smooth Banach space E and let x ∈ E. Then φ(y,ΠCx) +
φ(ΠCx, x) ≤ φ(y, x) for all y ∈ C.

Lemma 2.2. [20] Let E be a real smooth and uniformly convex Banach space and let
(xn) and (yn) be two sequences in E. If either (xn) or (yn) is bounded and φ(xn, yn)→
0 as n→∞, then xn − yn → 0, as n→∞.

Lemma 2.3. [1] Let C be a convex subset of a real smooth Banach space E. Let x ∈ E.
Then x0 = ΠCx if and only if 〈z − x0, JEx− JEx0〉 ≤ 0,∀z ∈ C.

Consider the function V : E × E∗ → R, studied by Alber [1], defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2 , for all x ∈ E and x∗ ∈ E∗.

Lemma 2.4. [1] Let E be reflexive, strictly convex and smooth Banach space with E∗

as its dual. Then for all x ∈ E and x∗, y∗ ∈ E∗,
V (x, x∗) + 2〈J−1

E x∗ − x, y∗〉 ≤ V (x, x∗ + y∗).

Lemma 2.5. [28] If E is a smooth Banach space and {ti} ∈ (0, 1) with
∑N
i=1 ti = 1,

then

φ
(
z, J−1

E

( N∑
i=1

tiJExi

))
≤

N∑
i=1

tiφ(z, xi).

Lemma 2.6. [37] Let (an) be a sequence of nonnegative real numbers such that an+1 ≤
(1 − βn)an + βnδn, for all n ≥ 1, where (βn) ⊂ (0, 1) and (δn) ⊂ R satisfying
∞∑
n=1

βn =∞, and lim sup
n→∞

δn ≤ 0. Then, lim
n→∞

an = 0.

Lemma 2.7. [24] Let (an) be a sequence of real numbers such that there exists a
subsequence (ni) of (n) such that ani < ani+1 for all i ∈ N. Then there exists a
nondecreasing sequence (mk) ⊂ N such that mk → ∞ and max{amk

, ak} ≤ amk+1.
In fact, mk = max{j ≤ k : aj < aj+1}.
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Lemma 2.8. [39] Let E be a reflexive and smooth real Banach space. Then, there exists
α > 0 such that 〈x− y, JEx− JEy〉 ≥ α||x− y||2 for all x, y ∈ E.

Lemma 2.9. [36] Let E be a reflexive and smooth real Banach space. Then for each
x, y ∈ E, we have φ(y, x) ≥ 1

2 ||x− y||
2.

Lemma 2.10. Let C be a closed and convex set in a reflexive real Banach space E, h be
a real-valued function on E, and K be the set {x ∈ C : h(x) ≤ 0}. If K is nonempty
and h is Lipschitz continuous on C with constant L > 0, then

φ(x,ΠKx) ≥ 1

2L2
(h(x))2, for all x ∈ C. (2.2)

Proof. Clearly (2.2) holds for all x ∈ K. Hence, it suffices to show that (2.2) holds
for every x ∈ C\K. Let x ∈ C but x /∈ K. Since K is closed, there exists y ∈ K
such that φ(x, y) = φ(x,ΠKx). It follows from the Lipschitz continuity of h that
|h(x) − h(y)| ≤ L ‖x− y‖. Since x /∈ K and y ∈ K, we have h(x) > 0 and h(y) ≤ 0.
Thus, from Lemma 2.9, we have

h(x) ≤ h(x)− h(y) = |h(x)− h(y)| ≤ L||x− y|| ≤ L
(

2φ(x,ΠKx)
) 1

2

,

and hence the conclusion follows. �

Definition 2.11. Let T : C → E∗ be a mapping. Then T is called
(a) sequentially weakly continuous on C if for each sequence (xn) ⊆ C converging
weakly to x ∈ C, the sequence (Axn) converges weakly to Ax;
(b) monotone if 〈x− y, Tx− Ty〉 ≥ 0 for each x, y ∈ C;
(c) pseudomonotone on C if for all x, y ∈ C,

〈y − x, Tx〉 ≥ 0 implies 〈y − x, Ty〉 ≥ 0. (2.3)

Remark 2.12. In [30], Shehu et al. asserted that using the Monte-Carlo approach, it
can be shown that the map T : R2 → R2 defined by

T (x, y) =
([
x2 + (y − 1)2

]
(1 + y),−x3 − x(y − 1)2

)
is pseudomonotone on R2. The correctness of this method/approach in verifying pseu-
domonotonicity of an operator is questionable. We claim that there could still be a
pair of points, say (x, y), (u, v) ∈ R2, such that the implication (2.3) does not hold.
Indeed, (2.3) fails to hold for a pair of points (0, 1) and (−1, 2) in R2, as shown by
simple computations below

〈T (0, 1), (−1, 2)− (0, 1)〉 = 0 ≥ 0 and 〈T (−1, 2), (−1, 2)− (0, 1)〉 = −4 < 0.

Example 2.13. Let the map S : R2 → R2 be defined by

S(x, y) =
([
x2 + 1 + (y − 1)2

]
(1 + y),−x3 − x

[
1 + (y − 1)2

])
.

Claim 1: S is not monotone. Indeed, for the pair (1, 0) and (−1,−1), we have

〈S(1, 0)− S(−1,−1), (1, 0)− (−1,−1)〉 = −3 < 0.

Claim 2: S is pseudomonotone. To this end, we assume that 〈S(x, y), (u, v)−(x, y)〉 ≥ 0
is true for each pair (x, y), (u, v) ∈ R2. This means that[

x2 + 1 + (y − 1)2
]

(1 + y)(u− x) +
[
−x3 − x

[
1 + (y − 1)2

]]
(v − y) ≥ 0
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which implies that
[
x2 + 1 + (y − 1)2

]
[u+ uy − x− xv] ≥ 0 for all (x, y), (u, v) ∈ R2.

Therefore, u(1+y)−x(1+v) ≥ 0 for all (x, y), (u, v) ∈ R2. Since u2 +1+(v−1)2 > 0
for any u, v ∈ R, we have for any (x, y), (u, v) ∈ R2,

〈S(u, v), (u, v)− (x, y)〉 =
[
u2 + 1 + (v − 1)2

]
[u(1 + y)− x(1 + v)] ≥ 0.

Lemma 2.14. [26] Let K be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive real Banach space E. Let A be a continuous pseudomonotone
mapping from K into E∗. Then, V I(K,A) is closed and convex, and p ∈ V I(K,A) if
and only if 〈x− p,Ax〉 ≥ 0, for all x ∈ K.

3. Main results

In the sequel, we shall make use of the following assumptions:
Assumption 1:

(A1) Let E1 and E2 be uniformly smooth and uniformly convex real Banach spaces
with dual spaces E∗1 and E∗2 , respectively, and let E3 be a real Banach space
with dual space E∗3 .

(A2) Let A : E1 → E3 and B : E2 → E3 be bounded linear mappings with adjoints
A∗ : E∗3 → E∗1 and B∗ : E∗3 → E∗2 , respectively.

(A3) Let C ⊆ E1 and D ⊆ E2 be nonempty, closed and convex subsets.
(A4) Let T : E1 → E∗1 and S : E2 → E∗2 be uniformly continuous pseudomonotone

mappings that are sequentially weakly continuous on bounded subset of C and
D, respectively.

(A5) Let Γ := {(p, q) ∈ C × D : 〈x − p, Tp〉 ≥ 0,∀x ∈ C, 〈y − q, Sq〉 ≥ 0,∀y ∈
D, andAp = Bq} 6= ∅.

Assumption 2:

(B1) Let ξ = min{ξ1, ξ2}, where ξ1 and ξ2 are constants given in Lemma 2.8 associated
with JE1

and JE2
, respectively.

(B2) Let l ∈ (0, 1), µ > 0 and λ ∈ (0, ξµ ).

(B3) Let (αn) ⊂ (0, e] ⊂ (0, 1), for some constant e > 0, be such that lim
n→∞

αn = 0

and
∑∞
n=1 αn =∞.

(B4) Let 0 < γ ≤ γn ≤
ξ ‖Axn −Byn‖2

2[‖A∗JE3
(Axn −Byn)‖2 + ‖B∗JE3

(Axn −Byn)‖2]

for n ∈ Ω = {n ∈ N : Axn −Byn 6= 0}, otherwise γn = γ > 0.

Now, we introduce our algorithm for the SEVIP.

Algorithm 3.1
For arbitrary x0, u ∈ C and y0, v ∈ D, define an iterative algorithm by

1. Step 1. Compute: un = ΠCJ
−1
E1

[
JE1

xn − γnA∗JE3
(Axn −Byn)

]
and

r1(xn, un) = xn − un.
Compute vn = ΠDJ

−1
E2

[
JE2

yn+γnB
∗JE3

(Axn−Byn)
]

and s1(yn, vn) = yn−vn.

2. Step 2. Compute: zn = ΠCJ
−1
E1

[
JE1un − λTun

]
and r2(un, zn) = un − zn.

Compute wn = ΠDJ
−1
E2

[
JE2

vn − λSvn
]

and s2(vn, wn) = vn − wn.
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3. Step 3. Compute fn = un − τnr2(un, zn), where τn = ljn and jn is the smallest
non-negative integer j satisfying

〈r2(un, zn), Tun − T (un − ljr2(un, zn))〉 ≤ µ ‖r2(un, zn)‖2 (3.1)

and gn = vn−κns2(vn, wn), where κn = lhn and hn is the smallest non-negative
integer h satisfying

〈s2(vn, wn), Svn − S(vn − lhs2(vn, wn))〉 ≤ µ ‖s2(vn, wn)‖2 . (3.2)

4. Step 4. Compute: xn+1 = J−1
E1

[
αnJE1

u+ (1− αn)JE1
ΠCn

un
]
, where

Cn := {x ∈ C : 〈x− fn, Tfn〉 ≤ 0}, (3.3)

and yn+1 = J−1
E2

[
αnJE2

v + (1− αn)JE2
ΠDn

vn
]
, where

Dn := {y ∈ D : 〈y − gn, Sgn〉 ≤ 0}. (3.4)

5. Step 5. Set n := n+ 1 and go to Step 1.

Lemma 3.1. Assume that Conditions (A1) - (A5) and (B1) - (B4) are satisfied. Then,
the sequences (xn) and (yn) generated by Algorithm 3.1 are well defined.

Proof. It is enough to show that the search rules in (3.1) and (3.2) are well defined,
and the sets Cn and Dn are nonempty.

Since l ∈ (0, 1) and T is continuous on C, it follows that

〈r2(un, zn), Tun − T (un − ljr2(un, zn))〉 → 0, as j →∞.

On the other hand, since ‖r2(un, zn)‖ > 0, there exists a non-negative integer jn
satisfying inequality (3.1). Similarly, from the continuity of the mapping S on D,
there exists a non-negative integer hn satisfying inequality (3.2).

Furthermore, since Γ 6= ∅, choose (p, q) ∈ Γ. Then by Step 3 of the algorithm, fn ∈ C
and gn ∈ D for each n ≥ 0, and hence by Lemma 2.14, 〈p − fn, T fn〉 ≤ 0 and
〈q − gn, Sgn〉 ≤ 0 for each n ≥ 0. Hence, p ∈ Cn and q ∈ Dn for each n ≥ 0, showing
that Cn 6= ∅ and Dn 6= ∅ for each n ≥ 0. �

Lemma 3.2. Assume that Conditions (A1) - (A5) and (B1) - (B4) are satis-
fied. If (un), (zn), (vn) and (wn) are sequences generated by Algorithm 3.1, then

ξλ−1 ‖r2(un, zn)‖2 ≤ 〈r2(un, zn), Tun〉 and ξλ−1 ‖s2(vn, wn)‖2 ≤ 〈s2(vn, wn), Svn〉.

Proof. Using Lemma 2.3 and the definition of zn, we have

〈z − zn, JE1un − λTun − JE1zn〉 ≤ 0, ∀ z ∈ C.

In particular, for z = un ∈ C, we obtain 〈un− zn, JE1
un−JE1

zn〉 ≤ λ〈un− zn, Tun〉.
Using Lemma 2.8, we obtain

ξ ‖r2(un, zn)‖2 ≤ ξ1 ‖un − zn‖2 ≤ λ〈un − zn, Tun〉.

The second inequality of the lemma can be proved in a similar way. �
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Lemma 3.3. Assume that Conditions (A1) - (A5) and (B1) - (B4) are met.
Let (p, q) ∈ Γ, Fn(x) = 〈x− fn, T fn〉 and Gn(y) = 〈y − gn, Sgn〉. Then

(i) Fn(p) ≤ 0 and Fn(un) ≥ τn
(
ξλ−1 − µ

)
‖r2(un, zn)‖2, and

(ii) Gn(q) ≤ 0 and Gn(vn) ≥ κn
(
ξλ−1 − µ

)
‖s2(vn, wn)‖2.

In particular, if r2(un, zn) 6= 0 and s2(vn, wn) 6= 0, then Fn(un) > 0 and Gn(vn) > 0,
respectively.

Proof. (i) Since (p, q) ∈ Γ, it follows that p ∈ VI(C, T ) and q ∈ VI(D,S).
By Lemma 2.14, Fn(p) = 〈p− fn, Tfn〉 ≤ 0 for each n ≥ 0.
Next, we observe from Step 3 of the algorithm and the definition of Fn that

Fn(un) = 〈un − fn, T fn〉 = 〈τnr2(un, zn), T fn〉 = τn〈r2(un, zn), T fn〉.

But from the search rule (3.1), 〈r2(un, zn), Tun − Tfn〉 ≤ µ ‖r2(un, zn)‖2, which to-
gether with Lemma 3.2 imply that

Fn(un) = τn〈r2(un, zn), T fn〉 ≥ τn

[
〈r2(un, zn), Tun〉 − µ ‖r2(un, zn)‖2

]
≥ τn

[
ξλ−1 ‖r2(un, zn)‖2 − µ ‖r2(un, zn)‖2

]
.

Obviously, if r2(un, zn) 6= 0, then from Condition (B2), we have Fn(un) > 0.
(ii) The proof is similar to the proof of part (i) above. �

Lemma 3.4. Assume that Conditions (A1) - (A5) and (B1) - (B4) hold.
(a). If there exist (unk

) ⊂ (un) and (znk
) ⊂ (zn) such that (unk

) converges weakly to

x ∈ E1 and τnk
‖unk

− znk
‖2 → 0 as k →∞, then x ∈ VI(C, T ).

(b). If there exist (vni
) ⊂ (vn) and (wni

) ⊂ (wn) such that (vni
) converges weakly to

y ∈ E2 and κni
‖vni

− wni
‖2 → 0 as i→∞, then y ∈ VI(D,S).

Proof. (a). By considering two possible cases on τnk
, we first show that

lim
k→∞

‖unk
− znk

‖ = 0. (3.5)

Case I: Assume that lim inf
k→∞

τnk
> 0.

Then there exists a constant τ > 0 such that τnk
≥ τ > 0 for all k ∈ N. Then

‖unk
− znk

‖2 = τ−1
nk

[
τnk
‖unk

− znk
‖2
]
≤ τ−1

[
τnk
‖unk

− znk
‖2
]
. (3.6)

Therefore, (3.5) follows from (3.6) and the assumption in the lemma.
Case II: Assume that lim inf

k→∞
τnk

= 0.

In this case, we take a subsequence (nkj ) of (nk) if necessary, we assume without loss
of generality that

lim
k→∞

τnk
= 0 and lim

k→∞
‖unk

− znk
‖ = a > 0. (3.7)

Let fk = 1
l τnk

znk
+
(
1− 1

l τnk

)
unk

. Using (3.7), we get

lim
k→∞

‖fk − unk
‖ = lim

k→∞
l−1τnk

‖unk
− znk

‖ = 0. (3.8)

Since T is uniformly continuous on bounded subsets of C, it follows from (3.8) that
‖Tfk − Tunk

‖ → 0 as k →∞.
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From (3.1), we have 〈Tunk
− Tfk, unk

− znk
〉 > µ ‖unk

− znk
‖2, and it follows that

‖unk
− znk

‖ → 0 as k →∞. This contradicts (3.7), hence the limit in (3.5) must hold.
Finally, we show that x ∈ VI(C, T ).
Since C is weakly closed, we have x ∈ C. Furthermore, from the fact that JE1

is
uniformly continuous on bounded subsets of E1, we have

lim
k→∞

‖JE1
unk
− JE1

znk
‖ = 0. (3.9)

From Lemma 2.3 and zn ∈ C, we get 〈z − znk
, JE1

unk
− λTunk

− JE1
znk
〉 ≤ 0 for all

z ∈ C, which implies that

〈z − znk
, JE1unk

− JE1znk
〉 − λ〈unk

− znk
, Tunk

〉 ≤ λ〈z − unk
, Tunk

〉. (3.10)

Taking the limit inferior as k →∞ and using (3.9), we get

lim inf
k→∞

〈z − unk
, Tunk

〉 ≥ 0 ∀ z ∈ C. (3.11)

Thus the inequality in (3.11) implies that we can choose a decreasing sequence of
positive real numbers (δk) such that (δk) converges to zero as k → ∞, and for each
δk there exists Nk, the smallest positive integer, such that

〈z − unj
, Tunj

〉+ δk ≥ 0 ∀ j ≥ Nk and ∀ z ∈ C. (3.12)

Since (δk) is decreasing, the sequence (Nk) is increasing.
Note that if there exists N > 0 such that TuNk

= 0 for all k ≥ N , then it can be
shown easily that x ∈ VI(C, T ).
On the other hand, if there exists a subsequence (Nki) of (Nk), again denoted by
(Nk), such that TuNk

6= 0 for all k ∈ N, then 〈aNk
, TuNk

〉 = 1 for each k ∈ N, where

aNk
=
J−1
E1
TuNk

‖TuNk
‖2
.

From (3.12), we deduce that 〈z + δkaNk
− uNk

, TuNk
〉 ≥ 0 for each k ∈ N and z ∈ C.

Since T is pseudomonotone, it follows that

〈z + δkaNk
− uNk

, T (z + δkaNk
)〉 ≥ 0 ∀ k ∈ N and ∀ z ∈ C. (3.13)

But by our assumption, (uNk
) converges weakly to x ∈ C. Also T is sequentially

weakly continuous on E1 implies that (TuNk
) converges weakly to Tx. Moreover, we

can suppose that Tx 6= 0 (otherwise, x is in VI(C, T )) and so

0 ≤ ‖Tx‖ ≤ lim inf
k→∞

‖TuNk
‖ .

Since (uNk
) ⊂ (unk

) and (δk) converges to zero as k →∞, we obtain that

0 ≤ lim sup
k→∞

‖δkaNk
‖ = lim sup

k→∞

(
δk

‖TuNk
‖

)
≤ lim supk→∞ δk

lim infk→∞ ‖TuNk
‖
≤ 0

‖Tx‖
,

and hence ‖δkaNk
‖ → 0 as k → ∞. Therefore, taking the limit in (3.13) as k → ∞,

we get 〈z − x, Tz〉 ≥ 0 for all z ∈ C. In view of Lemma 2.14, we conclude that
x ∈ VI(C, T ).
Part (b) of the Lemma can be proved in a similar way. �
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Remark 3.5. If in Lemma 3.4, T : E1 → E∗1 and S : E2 → E∗2 are uniformly continuous
and monotone mappings, then for all z ∈ C, we have from (3.10)

〈z − znk
, JE1unk

− JE1znk
〉 + λ〈znk

− unk
, Tunk

〉 ≤ λ〈z − unk
, Tunk

− Tz〉
+ λ〈z − unk

, T z〉 ≤ λ〈z − unk
, T z〉.

Taking the limit as k →∞, we get 0 ≤ 〈z − x, Tz〉. It then follows from Lemma 2.14
that x ∈ VI(C, T ). Similarly, we get y ∈ VI(D,S).

Lemma 3.6. Let (xn) and (yn) be sequences generated by Algorithm 3.1. Assume that
the Conditions (A1) - (A5) and (B1) - (B4) hold. Then (xn) and (yn) are bounded.
Hence, (un), (vn), (zn) and (wn) are bounded sequences.

Proof. Let (p, q) ∈ Γ. Then p ∈ VI(C, T ), q ∈ VI(D,S) and Ap = Bq.
Denote qn = J−1

E1

[
JE1xn − γnA

∗JE3(Axn − Byn)
]
. Then un = ΠCqn and so from

Lemmas 2.1 and 2.4, and the properties of the mapping V , we obtain

φ(p, un) ≤ φ
(
p, J−1

E1

[
JE1

xn − γnA∗JE3
(Axn −Byn)

])
= V (p, JE1xn − γnA∗JE3(Axn −Byn))

≤ V (p, JE1xn)− 2〈qn − p, γnA∗JE3(Axn −Byn)〉
= φ(p, xn)− 2γn〈qn − p,A∗JE3(Axn −Byn)〉
= φ(p, xn)− 2γn〈Aqn −Ap, JE3(Axn −Byn)〉. (3.14)

Furthermore, from Lemma 2.5, Lemma 2.1 and (3.14), we have

φ(p, xn+1) ≤ αnφ(p, u) + (1− αn)φ(p,ΠCn
un) (3.15)

≤ αnφ(p, u) + (1− αn)φ(p, un)

≤ αnφ(p, u) + (1− αn) [φ(p, xn)

− 2γn〈Aqn −Ap, JE3
(Axn −Byn)〉] . (3.16)

Similarly, if we denote tn = J−1
E2

[
JE2

yn + γnB
∗JE3

(Axn −Byn)
]
, then

φ(q, vn) ≤ φ(q, yn) + 2γn〈Btn −Bq, JE3(Axn −Byn)〉, (3.17)

and therefore, from Lemma 2.5, Lemma 2.1 and (3.17)

φ(q, yn+1) ≤ αnφ(q, v) + (1− αn)φ(q,ΠDnvn) (3.18)

≤ (1− αn) [φ(q, yn) + 2γn〈Btn −Bq, JE3(Axn −Byn)〉]
+ αnφ(q, v). (3.19)

Denote Υ = φ(p, u) + φ(q, v) and Θn = φ(p, xn) + φ(q, yn). Then adding (3.16) and
(3.19), we get

Θn+1 ≤ (1− αn)[Θn − 2γn〈Aqn −Btn, JE3(Axn −Byn)〉] + αnΥ. (3.20)

Now observe that

−〈Aqn −Btn, JE3
(Axn −Byn)〉 = −〈Axn −Byn, JE3

(Axn −Byn)〉
−〈Aqn −Axn, JE3

(Axn −Byn)〉 − 〈Byn −Btn, JE3
(Axn −Byn)〉

≤ ‖qn − xn‖ ‖A∗JE3
(Axn −Byn)‖ − ‖Axn −Byn‖2

+ ‖yn − tn‖ ‖B∗JE3
(Axn −Byn)‖ . (3.21)
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From Lemma 2.8 and the definition of qn, we obtain

‖qn − xn‖ ≤
1

ξ1
‖γnA∗JE3

(Axn −Byn)‖ ≤ γn
ξ
‖A∗JE3

(Axn −Byn)‖ . (3.22)

Similarly, from Lemma 2.8 and the definition of tn, we obtain

‖yn − tn‖ ≤ γnξ
−1 ‖B∗JE3(Axn −Byn)‖ . (3.23)

Combining (3.21), (3.22) and (3.23), we obtain

− 2γn〈Aqn −Btn, JE3(Axn −Byn)〉 ≤ −2γn ‖Axn −Byn‖2

+ 2γ2
nξ
−1[‖A∗JE3(Axn −Byn)‖2 + ‖B∗JE3(Axn −Byn)‖2]

≤ −γ ‖Axn −Byn‖2 (3.24)

for all n ∈ Ω, where the last inequality follows from Assumption (B4). If n /∈ Ω,
then Axn−Byn = 0, and in this case inequality (3.24) follows trivially. Finally, using
(3.24) in (3.20), we obtain Θn+1 ≤ (1 − αn)Θn + αnΥ. By mathematical induction,
Θn ≤ max{Θ0,Υ} for all n ≥ 0, showing that the sequence (φ(p, xn) + φ(q, yn)) is
bounded, which implies that (φ(p, xn)) and (φ(q, yn)) are bounded. By the properties
of φ, we conclude that (xn) and (yn) are bounded. Consequently, (un), (vn), (zn) and
(wn) are bounded. �

Theorem 3.7. Suppose the Assumptions (A1) - (A5) and (B1) - (B4) hold. Then the
sequence ((xn, yn)) generated by Algorithm 3.1 converges strongly to (x∗, y∗) ∈ Γ,
where (x∗, y∗) =

∏
Γ(u, v).

Proof. Let (x∗, y∗) ∈ Γ be such that (x∗, y∗) =
∏

Γ(u, v). Denote

Λn = 2〈(xn, yn)− (x∗, y∗), (JE1
u, JE2

v)− (JE1
x∗, JE2

y∗)〉.

Then for some M1 > 0, we have

Λn+1 = 2 [〈xn − x∗, JE1
u− JE1

x∗〉+ 〈yn − y∗, JE2
v − JE2

y∗〉]
+ 2 [〈xn+1 − xn, JE1

u− JE1
x∗〉+ 〈yn+1 − yn, JE2

v − JE2
y∗〉]

≤ Λn +M1 [‖xn+1 − xn‖+ ‖yn+1 − yn‖] . (3.25)

Since the sequences (un) and (zn) are bounded by Lemma 3.6, the sequence (fn) is
bounded. But T is uniformly continuous implies that there exists L > 0 such that
‖Tfn‖ ≤ L for all n ≥ 0. We can then deduce that for each n ≥ 0, the mapping Fn is
Lipschitz continuous with Lipschitz constant L > 0.
Now, from Lemma 2.1,

φ(x∗,ΠCn
un) ≤ φ(x∗, un)− φ(ΠCn

un, un). (3.26)

Using Lemmas 2.10 and 3.3, we obtain

φ(ΠCn
un, un) ≥ L1τ

2
n ‖r2(un, zn)‖4 (3.27)

for some L1 > 0. Combining (3.26), (3.27) and (3.14), we get

φ(x∗,ΠCn
un) ≤ φ(x∗, xn)− 2γn〈Aqn −Ax∗, JE3

(Axn −Byn)〉
− L1τ

2
n ‖un − zn‖

4
. (3.28)
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From the definition of xn, the properties of the map V and Lemma 2.4,

φ(x∗, xn+1) = V (x∗, αnJE1
u+ (1− αn)JE1

ΠCn
un)

≤ V (x∗, αnJE1
x∗ + (1− αn)JE1

ΠCn
un)

+ 2αn〈xn+1 − x∗, JE1
u− JE1

x∗〉
= φ(x∗, J−1

E1

[
αnJE1

x∗ + (1− αn)JE1
ΠCn

un
]
)

+ 2αn〈xn+1 − x∗, JE1
u− JE1

x∗〉. (3.29)

Using Lemma 2.5, (3.29) and (3.28), we obtain for some K̂1 > 0,

φ(x∗, xn+1) ≤ (1− αn)φ(x∗,ΠCnun) + 2αn〈xn+1 − x∗, JE1u− JE1x
∗〉

≤ (1− αn) [φ(x∗, xn)− 2γn〈Aqn −Ax∗, JE3(Axn −Byn)〉]
+ 2αn〈xn+1 − x∗, JE1

u− JE1
x∗〉 − K̂1τ

2
n ‖un − zn‖

4
. (3.30)

Similarly, we deduce that for each n ≥ 0,

φ(y∗,ΠDn
vn) ≤ φ(y∗, vn)− φ(ΠDn

vn, vn), (3.31)

and also, for some K̂2 > 0, we derive

φ(y∗, yn+1) ≤ (1− αn) [φ(y∗, yn) + 2γn〈Btn −By∗, JE3
(Axn −Byn)〉]

+ 2αn〈yn+1 − y∗, JE2v − JE2y
∗〉 − K̂2κ

2
n ‖vn − wn‖

4
. (3.32)

Denote Θ∗n = φ(x∗, xn) + φ(y∗, yn) and Υ∗ = φ(x∗, u) + φ(y∗, v). Then combining
(3.30), (3.32) and (3.24), we get

Θ∗n+1 ≤ (1− αn)Θ∗n + αnΛn+1 − L∗
[
τ2
n ‖un − zn‖

4
+ κ2

n ‖vn − wn‖
4
]

(3.33)

for some L∗ > 0. Furthermore, from (3.15), (3.26) and (3.14), we obtain

φ(x∗, xn+1) ≤ αnφ(x∗, u) + (1− αn) [φ(x∗, xn)− φ(ΠCnun, un)]

− 2(1− αn)γn〈Aqn −Ax∗, JE3(Axn −Byn)〉. (3.34)

Similarly, from (3.18), (3.31) and (3.17), we obtain

φ(y∗, yn+1) ≤ αnφ(y∗, v) + (1− αn) [φ(y∗, yn)− φ(ΠDnvn, vn)]

+ 2(1− αn)γn〈Btn −By∗, JE3(Axn −Byn)〉. (3.35)

Adding (3.34) and (3.35), and using (3.24), we obtain for some M > 0

Θ∗n+1 ≤ Θ∗n + αnM − γ ‖Axn −Byn‖2 − [φ(ΠCnun, un) + φ(ΠDnvn, vn)] ,

which implies that

φ(ΠCn
un, un) + φ(ΠDn

vn, vn) + γ ‖Axn −Byn‖2 ≤ Θ∗n −Θ∗n+1

+ αnM. (3.36)

Finally, we show that the sequence (Θ∗n) converges strongly to zero as n → ∞. For
this, we consider two possible cases on (Θ∗n).
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Case I. Assume that there exists n0 ∈ N such that the sequence of real numbers (Θ∗n)
is decreasing for all n ≥ n0. It then follows that (Θ∗n) is convergent. Taking the limit
in (3.36) as n→∞, we get

lim
n→∞

‖Axn −Byn‖ = 0. (3.37)

From the definition of qn, Lemma 2.1, Lemma 2.4 and (3.22), we have

φ(xn, un) ≤ φ(xn, J
−1
E1

[
JE1

xn − γnA∗JE3
(Axn −Byn)

]
)

= V (xn, JE1
xn − γnA∗JE3

(Axn −Byn))

≤ V (xn, JE1
xn)− 2〈qn − xn, γnA∗JE3

(Axn −Byn)〉
≤ φ(xn, xn) + 2γ2

nξ
−1 ‖A‖2 ‖Axn −Byn‖2 .

Taking the limit as n→∞ and noticing (3.37), yield φ(xn, un)→ 0 as n→∞. Using
Lemma 2.2, we obtain

lim
n→∞

‖xn − un‖ = 0. (3.38)

Similarly, starting with the definition of tn, we obtain

lim
n→∞

‖yn − vn‖ = 0. (3.39)

Moreover, we also obtain from (3.36) and Lemma 2.2

lim
n→∞

‖ΠCn
un − un‖ = 0 and lim

n→∞
‖ΠDn

vn − vn‖ = 0. (3.40)

From the definition of xn and Lemma 2.8,

‖xn+1 − un‖ ≤ ξ−1
1 ‖αnJE1u+ (1− αn)JE1ΠCnun − JE1un‖

≤ αnK1 + ξ−1
1 ‖JE1

ΠCn
un − JE1

un‖ , (3.41)

for some constant K1 > 0. Since JE1
is norm to norm uniformly continuous on

bounded subsets of E1, we conclude from (3.40) and (3.41) that

lim
n→∞

‖xn+1 − un‖ = 0. (3.42)

Therefore, combining (3.38) and (3.42) yield

lim
n→∞

‖xn+1 − xn‖ = 0. (3.43)

Similarly, one can show that

lim
n→∞

‖yn+1 − yn‖ = 0. (3.44)

Since (xn) and (yn) are bounded by Lemma 3.6, we obtain from (3.33)

L∗
[
τ2
n ‖un − zn‖

4
+ κ2

n ‖vn − wn‖
4
]
≤ Θ∗n −Θ∗n+1 + αnΛn+1, (3.45)

But the convergence of (Θ∗n) and Assumption (B3) imply that

lim
n→∞

τn ‖un − zn‖2 = 0 and lim
n→∞

κn ‖vn − wn‖2 = 0. (3.46)
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Now, we deduce from Lemma 3.6 that ((xn, yn)) is a bounded sequence in C × D.
Therefore, there exists a subsequence ((xnk

, ynk
)) of ((xn, yn)) such that ((xnk

, ynk
))

converges weakly to (x, y) in E1 × E2 and

lim sup
n→∞

Λn = lim
k→∞

Λnk
. (3.47)

It then follows that (xnk
) converges weakly to x in E1 and (ynk

) converges weakly to y
in E2. From (3.38), (unk

) converges weakly to x in E1 and from (3.39), (vnk
) converges

weakly to y in E2. Using (3.46) and Lemma 3.4, we conclude that x ∈ VI(C, T ) and
y ∈ VI(D,S), respectively. Moreover,

‖Ax−By‖2 ≤ 2〈Ax−Axnk
+Bynk

−By, JE3(Ax−By)〉+ ‖Axnk
−Bynk

‖2 .
Since (xnk

) converges weakly to x, it follows that (Axnk
) converges weakly to Ax.

Similarly, (ynk
) converges weakly to y implies that (Bynk

) converges weakly to By.
Using (3.37), we get Ax = By. Consequently, (x, y) ∈ Γ.
From (3.25), (3.47), (3.43), (3.44) and Lemma 2.3, we obtain

lim sup
n→∞

Λn+1 ≤ lim sup
n→∞

Λn +M1 lim sup
n→∞

[‖xn+1 − xn‖+ ‖yn+1 − yn‖]

= lim
k→∞

Λnk
+M1 lim

k→∞
[‖xnk+1 − xnk

‖+ ‖ynk+1 − ynk
‖]

= 2〈(x, y)− (x∗, y∗), (JE1
u, JE2

v)− (JE1
x∗, JE2

y∗)〉
≤ 0. (3.48)

Finally, from (3.33), we have Θ∗n+1 ≤ (1−αn)Θ∗n+αnΛn+1. Therefore, from (3.48) and
Lemma 2.6, we conclude that (Θ∗n) converges to zero as n→∞. That is, φ(x∗, xn)→ 0
and φ(y∗, yn)→ 0 as n→∞. Hence by Lemma 2.2, we have (xn) and (yn) converges
to x∗ and y∗, respectively.
Case II. Assume that there exists a subsequence (Θ∗ni

) of (Θ∗n) such that Θ∗ni
< Θ∗ni+1

for all i ≥ 0. Then in view of Lemma 2.7, we can define a nondecreasing sequence
(mk) ⊂ N such that mk →∞ as k →∞ and

Θ∗mk
≤ Θ∗mk+1 and Θ∗k ≤ Θ∗mk+1 (3.49)

for all k ∈ N. Following similar steps as in Case I, we derive

lim sup
k→∞

Λmk+1 ≤ 0. (3.50)

From (3.33) and (3.49), we obtain αmk
Θ∗mk+1 ≤ αmk

Λmk+1, which reduces to
Θ∗mk+1 ≤ Λmk+1. Taking the limit as k → ∞ and using (3.50), we conclude that
Θ∗mk+1 → 0 as k →∞. Again from (3.49), it follows that Θ∗k → 0 as k →∞. There-
fore, φ(x∗, xk) → 0 and φ(y∗, yk) → 0 as k → ∞. Hence by Lemma 2.2, we have
xk → x∗ and yk → y∗ as k →∞. �

If u = 0 and v = 0, then Algorithm 3.1 can be used to locate an element of the
solution with the minimum norm.

Corollary 3.8. Let the Assumptions (A1) – (A5) and (B1) – (B4) hold. Then, the
sequence ((xn, yn)) generated by Algorithm 3.1 with u = 0 = v converges strongly to
the minimum norm point (x∗, y∗) ∈ Γ, that is, (x∗, y∗) =

∏
Γ(0, 0).
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Corollary 3.9. Assume that T : E1 → E∗1 and S : E2 → E∗2 are uniformly continuous
and monotone mappings. Let the Assumptions (A1) – (A3), (A5) and (B1) – (B4) be
satisfied. Then the sequence ((xn, yn)) generated by Algorithm 3.1 converges strongly
to (x∗, y∗) ∈ Γ, where (x∗, y∗) =

∏
Γ(u, v).

Proof. The mappings T and S are pseudomonotone, hence by Lemma 3.6, (xn) and
(yn) are bounded. It then follows from (3.46) and Remark 3.5 that x ∈ VI(C, T ) and
y ∈ VI(D,S), where x and y are weak cluster points of (xn) and (yn), respectively.
The rest of the proof is similar to the proof of Theorem 3.7. �

4. Applications

In this section, we apply our main result to solve the following problems: split
equality zero point problem (SEZPP), common solutions of the variational inequality
problem, common zeros of pseudomonotone mappings, split variational inequality
problem, split zero point problem (SZPP), split equality feasibility problem (SEFP)
and split feasibility problem (SFP).

4.1. Split equality zero point problem

If C = E1 and D = E2, then the SEVIP reduces to the SEZPP, which is to
find x ∈ T−1(0) and y ∈ S−1(0) such that Ax = By, where T−1(0) = {p ∈ E1 :
0 = Tp} and S−1(0) = {q ∈ E2 : 0 = Sq}. Denote the solution of this problem by
z = {(p, q) ∈ E1 × E2 : p ∈ T−1(0), q ∈ S−1(0) andAp = Bq}.

Corollary 4.1. Assume that z 6= ∅. Let the Assumptions (A1), (A2), (A4) and (B1)
– (B4) be satisfied with C = E1 and D = E2. Then the sequence ((xn, yn)) generated
by Algorithm 3.1 converges strongly to (x∗, y∗) ∈ z, where (x∗, y∗) =

∏
z(u, v).

4.2. Common solutions of the variational inequality problem

Let E = E1 = E2 = E3, A = I and B = I. In this case, the SEVIP reduces to
finding common solutions of two variational inequality problems for pseudomonotone
mappings. Denote F = {(p, q) ∈ C ×D : 〈x− p, Tp〉 ≥ 0,∀x ∈ C and 〈y − q, Sq〉 ≥ 0,
∀y ∈ D such that p = q}.

Corollary 4.2. Assume that F 6= ∅. Let the Assumptions (A1), (A3), (A4) and
(B1) – (B4) be satisfied with E = E1 = E2 = E3 and A = I = B. Then the
sequence ((xn, yn)) generated by Algorithm 3.1 converges strongly to (x∗, y∗) ∈ F ,
where (x∗, y∗) =

∏
F (u, v).

4.3. Common zeros of pseudomonotone mappings

Let E = E1 = E2 = E3, A = I and B = I. If C = E and D = E, then
the SEVIP reduces to finding common zeros of pseudomonotone mappings. Denote
F ′ = {(p, q) ∈ E × E : p ∈ T−1(0) and q ∈ S−1(0) such that p = q}.

Corollary 4.3. Let the Assumptions (A1), (A4), (B1) – (B4) be satisfied with C = D =
E = E1 = E2 = E3 and A = I = B. If F ′ 6= ∅, then the sequence ((xn, yn)) generated
by Algorithm 3.1 converges strongly to (x∗, y∗) ∈ F ′, where (x∗, y∗) =

∏
F ′(u, v).
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4.4. Split variational inequality problem

If E2 = E3 and B = I, then the SEVIP reduces to the split variational inequality
problem (SVIP) which is to find x ∈ V I(C, T ) and y ∈ V I(D,S) such that Ax = y.
Denote T = {(p, q) ∈ C ×D : p ∈ V I(C, T ), q ∈ V I(D,S) andAp = q}.

Corollary 4.4. Assume that the Assumptions (A1) – (A4) and (B1) – (B4) hold with
E3 = E2 and B = I. If T 6= ∅, then the sequence ((xn, yn)) generated by Algorithm
3.1 converges strongly to (x∗, y∗) ∈ T , where (x∗, y∗) =

∏
T (u, v).

4.5. Split zero point problem

Let E = E2 = E3 and B = I. If C = E and D = E, then the SEVIP reduces
to the SZPP which is to find x ∈ T−1(0) and y ∈ S−1(0) such that Ax = y. Denote
S = {(p, q) ∈ E × E : p ∈ T−1(0), q ∈ S−1(0) andAp = q}.

Corollary 4.5. Assume that the Assumptions (A1), (A2), (A4), (B1) – (B3) and (B4)
with B = I hold. If S 6= ∅, then the sequence ((xn, yn)) generated by Algorithm 3.1
converges strongly to (x∗, y∗) ∈ S, where (x∗, y∗) =

∏
S(u, v).

Remark 4.6. (a). If E = E1 = E2 = E3, S = 0, A = 0 and B = 0, then Theorem 3.7
can be used to find solutions of variational inequality problems for uniformly contin-
uous pseudomonotone mappings that are sequentially weakly continuous on bounded
subsets of E as well as for uniformly continuous monotone mappings. If in addition,
we take C = E and D = E, then Corollary 4.1 will approximate zeros of uniformly
continuous pseudomonotone mappings that are sequentially weakly continuous on
bounded subsets of E and also zeros of uniformly continuous monotone mappings.
(b). In view of Corollary 3.9, and the discussion in this section, one can use the results
of this section to find solutions of split equality zero point problem for uniformly con-
tinuous monotone mappings, common solutions of the variational inequality problem
for uniformly continuous monotone mappings, common zeros of uniformly continuous
monotone mappings, split variational inequality problems for uniformly continuous
monotone mappings, split zero point problem for monotone mappings.
(c). The special cases of the above results can be obtained by taking E1 = H1,
E2 = H2 and E3 = H3 to be real Hilbert spaces.

Note that if E = H, a real Hilbert space, then JE = I, the identity mapping on H, and
ΠC = PC , the metric projection onto C. A well known example of a uniformly con-
tinuous, monotone and hence pseudomonotone map is I − PC . Henceforth, E1 = H1,
E2 = H2 and E3 = H3 are real Hilbert spaces, C ⊂ H1 and D ⊂ H2 are nonempty,
closed and convex subsets. Also A : H1 → H3 and B : H2 → H3 are bounded linear
mappings with adjoints A∗ and B∗, respectively, T = I − PC and S = I − PD. Thus,
we obtain the following applications in Hilbert spaces.

4.6. Split equality feasibility problem

Replacing T with I − PC and S with I − PD, then the SEZPP reduces to the
SEFP which seeks to find x ∈ C and y ∈ D such thatAx = By. Denote

Γ′ = {(p, q) ∈ C ×D : Ax = By}.
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Corollary 4.7. Assume that Γ′ 6= ∅. Let the Assumptions (B2),(B3), (B4) be satis-
fied. Then the sequence ((xn, yn)) generated by Algorithm 3.1 converges strongly to
(x∗, y∗) ∈ Γ′, where (x∗, y∗) = PΓ′(u, v).

4.7. Split feasibility problem

Setting T = I − PC , S = I − PD, H2 = H3 and B = I, the identity mapping on
H2, then the SEFP reduces to the SFP which seeks to find x ∈ C such that Ax ∈ D.
This problem can also be expressed as a problem of finding x ∈ C and y ∈ D such
that Ax = y. Denote S ′′ = {(p, q) ∈ C ×D : Ap = q}.

Corollary 4.8. Assume that S ′′ 6= ∅. Let the Assumptions (B2), (B3), (B4) with
B = I be satisfied. Then the sequence ((xn, yn)) generated by Algorithm 3.1 with
B = I converges strongly to (x∗, y∗) ∈ S ′′, where (x∗, y∗) = PS′′(u, v).

Remark 4.9. If we take u = 0 and v = 0, then one can obtain elements of minimum
norm for all the application areas listed in this section.

5. Numerical example

In this section, we give a numerical example to demonstrate that the sequence (zn) =
((xn, yn)) generated by Algorithm 3.1 converges to an element z∗ = (x∗, y∗) in Γ for
different initial values z0 = (x0, y0).

Example 5.1. Let ‖ · ‖ be the norm on R2 induced by the inner product 〈·, ·〉. De-

fine the map T : R2 → R2 by T (x, y) =
(

3
2 +

√
x2 + y2

)
(x − 1, y). Assume that

〈T (x, y), (u, v)− (x, y)〉 ≥ 0 for all (x, y), (u, v) ∈ R2. Then(
3

2
+
√
x2 + y2

)
〈(x− 1, y), (u− x, v − y)〉 ≥ 0,

which implies that 〈(x− 1, y), (u− x, v − y)〉 ≥ 0 for all (x, y), (u, v) ∈ R2. Therefore,

〈T (u, v), (u, v)− (x, y)〉 =

(
3

2
+
√
u2 + v2

)
〈(x− 1, y), (u− x, v − y)〉

+

(
3

2
+
√
u2 + v2

)
[〈(u− 1, v), (u− x, v − y)〉 − 〈(x− 1, y), (u− x, v − y)〉]

≥
(

3

2
+
√
u2 + v2

)
‖(u− x, v − y)‖2 ≥ 0,

for all (x, y), (u, v) ∈ R2, showing that T is pseudomonotone on R2.

Example 5.2. Let E1 = E2 = E3 = R2 be equipped with the usual norm. Assume that
A,B : R2 → R2 are given by A(x, y) = (0, 3y) and B(x, y) = (2x, 0) with adjoints
A∗(x, y) = (0, 3y) and B∗(x, y) = (2x, 0), respectively.

Let C = {(x, y) ∈ R2 :
√
x2 + y2 ≤ 1} and D = {(x, y) ∈ R2 :

√
x2 + y2 ≤ 3}.

Let S, T : R2 → R2 be pseudomonotone maps defined as in Examples 2.13 and 5.1,
respectively.
Then 〈T (1, 0), (x, y) − (1, 0)〉 ≥ 0 for all (x, y) ∈ C, 〈S(0,−1), (x′, y′) − (0,−1)〉 ≥ 0
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for all (x′, y′) ∈ D and A(1, 0) = (0, 0) = B(0,−1), and so ((1, 0), (0,−1)) ∈ Γ 6= ∅.
Also, let µ = 0.9, λ = 1 and let

γn =


‖Axn−Byn‖2

8[‖A∗(Axn−Byn)‖2+‖B∗(Axn−Byn)‖2]
if n ∈ Ω

1
10000 if n /∈ Ω.

and αn = 1
n+1 . Thus assumptions (A1) – (A5) and (B1) – (B4) are satisfied. Using

MATLAB, we get Figure 1 below which shows that for any choice of initial values
the sequence generated by Algorithm 3.1 converges to a solution of the split equality
variational inequality problem. The numerical example also shows that the conver-
gence of the sequence is faster if the parameter l ∈ (0, 1) is closer to 1 compared to
when it is closer to 0.
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Figure 1. Convergence of (zn) to z∗

6. Conclusion

In this paper, we have constructed an algorithm for solving the split equality vari-
ational inequality problem in real uniformly smooth and uniformly convex Banach
space settings. We also established a strong convergence theorem under the assump-
tion that the associated mappings are uniformly continuous, pseudomonotone and
sequentially weakly continuous. The algorithm does not require prior knowledge of
operator norms of A and B. We also gave some applications of our results to some
problems in Banach spaces. A numerical example was also provided to demonstrate
the behavior of the convergence of the proposed algorithm. Our results in this paper
extend the results of Censor et al. [11], Byrne et al. [6] and Thong et al [33] to a
more general SEVIP in uniformly smooth and uniformly convex Banach spaces more
general than Hilbert spaces.
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1. Introduction

Matrix Riccati differential equations have been extensively studied during the
past decades by researchers both in control theory and differential equations area.
First, in the work of Kalman [13] it is obtained the existence of global solution for a
matrix Riccati differential equation under the controllability and observability condi-
tions. Second, Wonham [20] established these results to the framework of stochastic
control considering the so-called Riccati equations of stochastic control. Both results
have been related to the so-called LQ optimisation problem.

The above earlier results impose controllability and observability conditions,
which are somewhat conservative. More recent works replace these conditions by some
weaker ones, as stabilizability and detectability.

In the particular case of constant coefficients, the well-known (standard) alge-
braic Riccati equation arise naturally and play an essential role. The solutions, whose
existence is assured by Popov conditions, properties and applications are studied in
many works, see e.g. [8], [15], and [18]. In the study of stochastic case, a class of
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modified algebraic Riccati equations appear. The result from [23] provides a neces-
sary and sufficient condition for the existence of a mean-square stabilizing solution
for this kind of equations. This assures that the corresponding stochastic LQ problem
is solvable, i.e. the cost function is minimized and the stochastic closed-loop system is
mean-square stable. Also, it was shown in [10] that a mean-square stabilizing solution
of a modified algebraic Riccati equation, is unique (if it exists) and coincides with the
maximal solution. In [19] it is considered LQ optimal stochastic control problem with
random coefficients via the stochastic maximum principle.

Further, if we consider the case of periodic coefficients, the early results that
provide the existence of a stabilizing solution for a matrix Riccati differential equation
goes to [21]. In addition, the method developed for algebraic Riccati equation has been
extended to the Riccati equations for continuous-time linear periodic systems in [17].
More recently, [14] extends the eigenvalue method to the differential Riccati equation
in terms of nonlinear eigenvalues and eigenvectors. Various results concerning periodic
systems are presented in [1].

The novelty to be pursued in this paper is the use of spectral theory of positive
operators to deal with generalized Riccati differential equation (GRDE) in order to
obtain necessary and sufficient conditions for the existence and uniqueness of the
stabilizing solution. The contribution of the paper can be summarised as follows. First,
regarding the set-up of the problem, i.e. the class of nonlinear backward differential
equation we first present several special cases. We consider LQ optimal regulator
and stochastic LQ optimal regulator. For stochastic framework the cases when the
controlled system is affected by multiplicative white noise and of the perturbation
model by a Markov process simultaneous, respectively, is considered. This indicates
that the considered problem arises in a natural way in optimal control problems
and incorporates all these cases. Discussions on backward differential equations and
applications can be found in [6] and [22].

Motivated by this goal, we present the definition of stabilizing solution of the
class of nonlinear continuous-time backward equation under consideration, see Defini-
tion 2.5. Further, we introduce the concept of unobservable characteristic multipliers
of a pair formed by a continuous-time linear equation with periodic coefficients and
an output, see Definition 3.2. In this framework it is proved the central contribu-
tion of the paper, i.e. the existence of the stabilizing solution of the GRDE under
consideration, see Theorem 4.3.

Organization of the paper. First, in Subsection 1.1 we introduce useful notations.
Section 2 is devoted to the formulation of the problem. It presents our framework,
motivated by several special cases of LQ control problems related to our model. Section
3 is dedicated to state and describe some preliminary results, while Section 4 contains
the main result of the paper, i.e. the existence of the positive semidefinite and periodic
stabilizing solution of the GRDE. Finally, in Section 5, we draw conclusions.
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1.1. Notations

The notations used in this work are in general the standard ones. Here we men-
tion some notations less met. If m,n,N are fixed natural numbers, then

MN
nm

∆
= Rn×m × · · · × Rn×m︸ ︷︷ ︸

N times

,

Rn×m being the linear space of the matrices with n−rows and m−columns. B ∈MN
nm

if and only if B = (B1, B2, . . . , BN ), Bi ∈ Rn×m. When n = m we shall write MN
n

instead of MN
nn. If B ∈MN

nm, C ∈MN
mp then BC is defined by

BC = (B1C1, B2C2, . . . , BNCN ) ∈MN
np.

If A = (A1, A2, . . . , AN ) ∈MN
n is such that det Ai 6= 0, 1 ≤ i ≤ N, then

A−1 ∆
= (A−1

1 , A−1
2 , . . . , A−1

N ) ∈MN
n .

If X = (X1, X2, . . . , XN ) ∈MN
mp then

XT ∆
= (XT

1 , X
T
2 , . . . , X

T
N ) ∈MN

pm.

Here and in the sequel superscript ()
T

stands for the transpose of a matrix or a vector.
Sn ⊂ Rn×n stands for the linear space of symmetric matrices of size n× n and

SNn
∆
= Sn × Sn × · · · × Sn︸ ︷︷ ︸

N times

.

SNn has a structure of finite dimensional real Hilbert space induced by the inner
product

〈X,Y〉 =

N∑
i=1

Tr [XiYi], (1.1)

for all X = (X1, X2, . . . , XN ), Y = (Y1, Y2, . . . , YN ) from SNn . T r [·] denotes the trace
of a matrix. On SNn one should consider the order relation � induced by the solid,
closed, normal, convex cone

SN+
n

∆
= {X ∈ SNn | X = (X1, X2, . . . , XN ) with Xi ≥ 0, 1 ≤ i ≤ N}.

Here Xi ≥ 0 means that Xi is positive semidefinite matrix. If X , Y are two vector
spaces, then B(X ,Y) denotes the linear space of linear operators T : X → Y. If X = Y
we shall write B(X ) instead of B(X ,X ).

2. A class of nonlinear backward differential equations

2.1. Model description and basic assumptions

On the Hilbert space SNn we consider backward differential equation

− d

dt
X(t) = R(t,X(t)), t ∈ R, (2.1)
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with the unknown function X(t) = (X(t, 1), X(t, 2), . . . , X(t,N)) ∈ SNn . In (2.1) the
pair (t,X)→ R(t,X) : Dom R ⊂ R× SNn → SNn is described by

R(t,X) = (R1(t,X),R2(t,X), . . . ,RN (t,X))

with

Ri(t,X) =AT (t, i)X(i) +X(i)A(t, i) + Π1(t)[X](i)

− (X(i)B(t, i) + Π2(t)[X](i) + L(t, i))

· (Π3(t)[X](i) +R(t, i))−1(X(i)B(t, i)

+ Π2(t)[X](i) + L(t, i))T +M(t, i), 1 ≤ i ≤ N. (2.2)

Here,

X→ Π1(t)[X]
∆
= (Π1(t)[X](1), . . . ,Π1(t)[X](N)) : SNn → SNn ;

X→ Π2(t)[X]
∆
= (Π2(t)[X](1), . . . ,Π2(t)[X](N)) : SNn →MN

nm;

X→ Π3(t)[X]
∆
= (Π3(t)[X](1), . . . ,Π3(t)[X](N)) : SNn → SNm ;

are given linear operators.

Dom R ∆
= {(t,X) ∈ R× SNn | det (Π3(t)[X](i) +R(t, i)) 6= 0, 1 ≤ i ≤ N}.

According to the convention of notations from Subsection 1.1, we may rewrite (2.2)
in a compact form as:

R(t,X) =AT (t)X + XA(t) + Π1(t)[X]− (XB(t) + Π2(t)[X] + L(t))

· (Π3(t)[X] + R(t))−1(XB(t) + Π2(t)[X] + L(t))T + M(t) (2.3)

for all (t,X) ∈ Dom R, where we have used the following notations:

A(t) = (A(t, 1), A(t, 2), . . . , A(t,N)) ∈MN
n ,

B(t) = (B(t, 1), B(t, 2), . . . , B(t,N)) ∈MN
nm, (2.4a)

M(t) = (M(t, 1),M(t, 2), . . . ,M(t,N)) ∈ SNn ,
L(t) = (L(t, 1), L(t, 2), . . . , L(t,N)) ∈MN

nm,

R(t) = (R(t, 1), R(t, 2), . . . , R(t,N)) ∈ SNm . (2.4b)

Based on the operators Πk(t)[·](i) involved in (2.2) we define:

Π(t)[X] = (Π(t)[X](1),Π(t)[X](2), . . . ,Π(t)[X](N))

as

Π(t)[X](i) =

(
Π1(t)[X](i) Π2(t)[X](i)
ΠT

2 (t)[X](i) Π3(t)[X](i)

)
∈ SNn+m. (2.5)

Hence, for each t ∈ R, X→ Π(t)[X] : SNn → SNn+m is a linear operator.
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Remark 2.1. From (2.3) one sees that the operator R(·, ·) is defined by the quadruple
(A(·),B(·),Π(·),Q(·)) where A(·), B(·) are described in (2.4a), the operator valued
function X→ Π(·)[X] is described in (2.5) and

Q(t) =

(
M(t) L(t)
LT (t) R(t)

)
∈ SNn+m. (2.6)

Obvious the components Q(t, i) of Q(t) are

Q(t, i) =

(
M(t, i) L(t, i)
LT (t, i) R(t, i)

)
∈ Sn+m, 1 ≤ i ≤ N.

The developments from this work are done under the following assumption:

(H).

(a). A(·) : R → MN
n , B(·) : R → MN

nm, M(·) : R → SNn , L(·) : R → MN
nm,

R(·) : R→ SNn are continuous functions which are periodic of period θ.
(b). t→ Π(t)[·] : R→ B(SNn ,SNn+m) is a continuous operator valued function which

is periodic with period θ.
(c). for each t ∈ R, X→ Π(t)[X] : SNn → SNn+m is a positive operator, i.e. Π(t)[X] �

0 whenever X � 0.
(d).

R(t, i) > 0 (2.7a)

M(t, i)− L(t, i)R−1(t, i)LT (t, i) ≥ 0 (2.7b)

for all t ∈ R, 1 ≤ i ≤ N.

2.2. Several relevant special cases of the differential equation (2.1)

In this subsection we display several special cases of the backward differential
equation (2.1) arising in a natural way, in some optimal control problems in both
deterministic and stochastic framework.

A. The LQ optimal regulator.
We consider the optimal control problem described by the controlled system

ẋ(t) = A(t)x(t) +B(t)u(t)

x(t0) = x0 (2.8)

the performance criterion

J(x0, u) =

∞∫
t0

(xT (t)M(t)x(t) + 2xT (t)L(t)u(t) + uT (t)R(t)u(t))dt (2.9)

and the class of admissible controls u(·) ∈ L2([t0,∞);Rm). The problem of the optimal
regulator requires the finding of the conditions which guarantee the existence of a
control ũ(·) which minimizes the cost function (2.9) along of the trajectories of the
controlled system (2.8) determined by the all admissible controls u(·). One shows
that if R(t) > 0, M(t)−L(t)R−1(t)LT (t) ≥ 0, for all t ≥ t0, then the optimal control
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may be computed using a special solution named ”stabilizing solution” of the matrix
differential equation

−Ẋ(t) =AT (t)X(t) +X(t)A(t)− (X(t)B(t) + L(t))R−1(t)

· (X(t)B(t) + L(t))T +M(t). (2.10)

The problem of the existence of the optimal control which solves the optimization
problem described by (2.8)-(2.9) reduces to the problem of the existence of the sta-
bilizing solution of the matrix differential equation (2.10). The differential equation
(2.10) may be regarded as a special case of (2.1) when N = 1, Πk(t)[X] = 0, 1 ≤ k ≤ 3,
X ∈ S1

n. Since, for n = 1 the differential equation (2.10) reduces to the well known
scalar differential equation studied by the mathematician Jacopo Francesco Riccati
in the first part of the 18th century, the equation (2.10) was called ”matrix Riccati
differential equation”.

B. The stochastic linear quadratic optimal regulator.

The case when the controlled system is affected by multiplicative white noise
perturbations.
In this case, the optimal control problem consists of the finding of a control ũ(·) which
minimizes the cost function

J(x0, u) = E

 ∞∫
0

(xT (t)M(t)x(t) + 2xT (t)L(t)u(t) + uT (t)R(t)u(t))dt

 (2.11)

along of the trajectories of the controlled system

dx(t) = (A(t)x(t) +B(t)u(t))dt+ (C(t)x(t) +D(t)u(t))dw(t)

x(0) = x0 ∈ Rn (2.12)

determined by the admissible controls u(t) from a class of admissible stochastic pro-
cesses U(x0). Here and in the sequel E[·] stands for the mathematical expectation. In
(2.12) {w(t)}t≥0 is an 1-dimensional standard Wiener process defined on a given prob-
ability space (Ω,F ,P) (see [11], [16]). In 1968, to solve this problem W. M. Wonham
(see [20]) introduced the following matrix differential equation

−Ẋ(t) =AT (t)X(t) +X(t)A(t) + CT (t)X(t)C(t)

− (X(t)B(t) + CT (t)X(t)D(t) + L(t))

· (DT (t)X(t)D(t) +R(t))−1(BT (t)X(t) +DT (t)X(t)C(t)

+ LT (t)) +M(t). (2.13)

Since in the special case C(t) = 0, D(t) = 0, the differential equation (2.13) re-
duces to the matrix Riccati differential equation (2.10), it was called ”matrix Riccati
differential equation of stochastic control”.

The problem of the stochastic linear quadratic optimal regulator in the case of
the simultaneous presence of multiplicative white noise perturbations and of the per-
turbation modeled by a Markov process.
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In this case, the controlled system is of the form:

dx(t) = (A(t, ηt)x(t) +B(t, ηt)u(t))dt+ (C(t, ηt)x(t) +D(t, ηt)u(t))dw(t)

(2.14)

and the performance criterion:

J(x0, u) = E[

∞∫
0

(xT (t)M(t, ηt)x(t)+2xT (t)L(t, ηt)u(t)+uT (t)R(t, ηt)u(t))dt]. (2.15)

Here, {w(t)}t≥0 is 1-dimensional standard Wiener process as before, and {ηt}t≥0 is
a standard Markov process defined by the same probability space (Ω,F ,P), taking
values in the finite set N = {1, 2, . . . , N} and having the transition semigroup P (t) =
eQt. The elements qij of the generator matrix Q have the properties:

qij ≥ 0, if i 6= j,

N∑
l=1

qil = 0, for all i, j ∈ N .

For more details we refer to [2], [3], [7], [11]. It is assumed that the processes {w(t)}t≥0

and {ηt}t≥0 are independent stochastic processes.
In the computation of the control which minimizes the cost functional (2.15)

along of the trajectories of the controlled system (2.14) one uses the stabilizing solution
of the following system of matrix Riccati type differential equations:

−Ẋ(t, i) =AT (t, i)X(t, i) +X(t, i)A(t, i) + CT (t, i)X(t, i)C(t, i)

− (X(t, i)B(t, i) + CT (t, i)X(t, i)D(t, i) + L(t, i))

· (DT (t, i)X(t, i)D(t, i) +R(t, i))−1(BT (t, i)X(t, i) (2.16)

+DT (t, i)X(t, i)C(t, i) + LT (t, i)) +

N∑
j=1

qijX(t, j) +M(t, i).

1 ≤ i ≤ N. One sees that (2.16) is a special case of (2.1) with A(t, i) replaced by

A(t, i) +
1

2
qiiIn,

Π1(t)[X](i) = CT (t, i)X(i)C(t, i) +

N∑
j=1
j 6=i

qijX(j),

Π2(t)[X](i) = CT (t, i)X(i)D(t, i)

Π3(t)[X](i) = DT (t, i)X(i)D(t, i), 1 ≤ i ≤ N,
X = (X(1), X(2), . . . , X(N)) ∈ SNn .

Remark 2.2. From the previous examples, one sees that the differential equation (2.1)
contains as special cases different types of Riccati differential equations arising in both
deterministic and stochastic framework. That is why, in the sequel we shall call the
differential equation (2.1) ”generalized Riccati differential equation” (GRDE).



166 Vasile Drăgan and Ioan-Lucian Popa

2.3. The stabilizing solution of a GRDE

Let Fad be the set of all continuous and θ periodic functions F : R→MN
mn. In

the developments from this work these functions will be named ”admissible feedback
gains”.

If Π(·) is the operator valued function described in (2.5) and F(·) is an arbitrary
admissible feedback gain, we associate a new operator valued function ΠF(·) defined
as follows:

ΠF(t)[X] = (ΠF(t)[X](1),ΠF(t)[X](2), . . . ,ΠF(t)[X](N)) (2.17a)

ΠF(t)[X](i) = (In FT (t, i))Π(t)[X](i)(In FT (t, i))T , 1 ≤ i ≤ N. (2.17b)

Remark 2.3. (a). From (2.5) and (2.17) we infer that X → ΠF(t)[X] ∈ B(SNn ).
Moreover, if the assumption (H) (c) is fulfilled, then ΠF(t)[X] � 0 whenever
X � 0.

(b). In the sequel, Π∗F(t)[·] denotes the adjoint operator of ΠF(t)[·] with respect to
the inner product (1.1). Thus, in the special case when Π(t)[·] is associated to
the Riccati differential equation (2.13) we infer that

Π∗F(t)[X] = (C(t) +D(t)F (t))X(C(t) +D(t)F (t))T , for all X ∈ S1
n, (2.18)

and in the case when the operator Π(t)[·] is associated to the Riccati differential
equation (2.16), one obtains that

Π∗F(t)[X](i) =(C(t, i) +D(t, i)F (t, i))X(i)(C(t, i) +D(t, i)F (t, i))T

+

N∑
j=1
j 6=i

qjiX(j), for all X ∈ SNn . (2.19)

Employing the triple (A(·),B(·),Π(·)) described in (2.4a) and (2.5), for each
F ∈ Fad we may define the operator valued function LF : R→ B(SNn ) by

LF(t)[X] = (A(t) + B(t)F(t))X + X(A(t) + B(t)F(t))T + Π∗F(t)[X], (2.20)

for all X ∈ SNn .

Remark 2.4. From (2.18)-(2.20) one sees that in the case when the GRDE (2.1) takes
one of the special forms (2.13) or (2.16), the linear operator LF(t)[·] defined in (2.20)
recover the well known Lyapunov type operators involved in the definition of the
property of the stochastic stabilizability of the systems (2.12) and (2.14), respectively.

Now we are in position to define the notion of ”stabilizing solution” of the GRDE (2.1).

Definition 2.5. A solution X̃(·) : R→ SNn of the GRDE (2.1),

X̃(·) = (X̃(·, 1), . . . , X̃(·, N))

is named stabilizing solution if the linear differential equation on the linear space SNn
Ẏ(t) = LF̃(t)[Y(t)] (2.21)

is exponentially stable, where LF̃[·] is defined as in (2.20) for F(·) replaced by

F̃(·) = (F̃ (·, 1), . . . , F̃ (·, N))
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described by

F̃ (t, i) =− (Π3(t)[X̃(t)](i) +R(t, i))−1(X̃(t, i)B(t, i) + Π2(t)[X̃(t)](i)

+ L(t, i))T . (2.22)

Invoking Remark 2.4, we may infer that in the case when the GRDE (2.1) takes
one of the special forms (2.10), (2.13) or (2.16), the concept of stabilizing solution
introduced in the Definition 2.5, recover the traditional definition of the stabilizing
solution of a Riccati differential equation from deterministic / stochastic control.
Applying Corollary 5.4.2 and Theorem 5.4.3 from [9] we obtain:

Corollary 2.6. Under the assumption (H) the GRDE (2.1) has at most one bounded
and stabilizing solution. Moreover, this solution, if it exists is a periodic function with
period θ.

Our aim is to provide a set of necessary and sufficient conditions for the existence
of the stabilizing solution of a GRDE of type (2.1).

3. Some auxiliary issues

3.1. Monodromy operators. Characteristic multipliers

In this subsection we recall several definitions and results regarding the linear
differential equations with periodic coefficients specialized to the case of linear differ-
ential equations on SNn of the form

Ẏ(t) = LF(t)[Y(t)] (3.1)

when LF(t)[·] is associated via (2.20) to the triple (A(·),B(·),Π(·)) and to an arbitrary
F(·) ∈ Fad.

For t, t0 ∈ R we denote TF(t, t0) the linear evolution operator on SNn defined by
the linear differential equation (3.1) by

TF(t, t0)X0 = Y(t; t0,X0)

where Y(·; t0,X0) is the solution of the linear differential equation (3.1) with the
initial condition Y(t0; t0,X0) = X0. The main properties of the operator TF(t, t0)
involved in the developments of this paper, are summarized in the following lemma.

Lemma 3.1. (a). TF(t, t0) = ISN
n
, for all t0 ∈ R, ISN

n
is the identity operator on SNn ;

(b). TF(t, t1)TF(t1, t0) = TF(t, t0), for all t, t1, t0 ∈ R;
(c). T−1

F (t, t0) = TF(t0, t), for all t, t0 ∈ R;
(d). if the assumption (H) is fulfilled, then TF(t + jθ, t0 + jθ) = TF(t, t0), for all

t, t0 ∈ R, j ∈ Z;
(e). for each t ≥ t0 ∈ R, TF(t, t0) : SNn → SNn is a positive operator, i.e. TF(t, t0)X �

0, for all t ≥ t0 if X � 0.

Proof. The proof of these properties is omitted because they are known in a more gen-
eral framework for linear differential equations in both finite and infinite dimensional
case, see e.g. Chapter 3 from [4] for infinite dimensional case and Chapter 1.3. from
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[12] for finite dimensional case. Assertion (e) may be obtained applying Corollary
2.2.6 from [9]. �

In the rest of the paper we assume that (H) is fulfilled. For each t0 ∈ R, we set

TF(t0)
∆
= TF(t0 + θ, t0). (3.2)

According to the terminology used in connection with the linear differential equations
with periodic coefficients, TF(t0) will be named the monodromy operator associated
to the linear operator LF(·) or, equivalently the monodromy operator associated to
the linear differential equation (3.1). From Lemma 3.1 (d), (e) and (3.2) one gets that
TF(·) is an operator valued function periodic of period θ and for each t0 ∈ R, TF(t0)
is a positive operator on the ordered space (SNn ,SN+

n ). The elements of the spectrum
σ(TF(t0)) are named characteristic multipliers of the linear differential equation (3.1).
If λ ∈ σ(TF(t0)) then there exists 0 6= X ∈ SNn such that

TF(t0)X = λX. (3.3)

By direct calculations based on Lemma 3.1 we obtain that (3.3) is equivalent to

TF(t1)TF(t1, t0)X = λTF(t1, t0)X, for all t1 ∈ R. (3.4)

From the equivalence of (3.3) and (3.4) we may conclude that the spectrum of the
monodromy operator does not depend upon t0. In our development an important role
will be played by the characteristic multipliers from the subset

σ+(TF(t0)) = {µ ∈ σ(TF(t0))|∃0 6= Y ∈ SN+
n such that TF(t0)Y = µY}.

If µ ∈ σ+(TF(t0)) we denote

VF(µ, t0) = {Y ∈ SN+
n | Y 6= 0, TF(t0)Y = µY}.

One sees that σ+(TF(t0)) ⊂ [0,∞). In this work, the elements of σ+(TF(t0)) will be
named distinctive characteristic multipliers. These represent the time-varying counter
part of the concept of distinctive eigenvalues introduced in [23] to characterize a subset
of the spectrum of a Lyapunov type operators arising in stochastic control.

Let ρF be the spectral radius of the monodromy operator. Applying, for example,
Theorem 2.6 from [5] in the case of linear operator T∗F(t0) defined on the ordered space
(SNn ,SN+

n ) we obtain that there exists 0 6= Y ∈ SN+
n such that TF(t0)Y = ρFY, so

ρF ∈ σ+(TF(t0)), for all t0 ∈ R.

3.2. Unobservable characteristic multipliers

Let C(·) : R→MN
pn be a continuous function which is periodic of period θ.

Definition 3.2. (a). We say that the distinctive characteristic multiplier µ is an un-
observable characteristic multiplier at t0 with respect to the pair (C(·),LF(·)) if
there exists Y ∈ VF(µ, t0) such that

C(t)TF(t, t0)Y = 0, ∀ t ∈ [t0, t0 + θ]. (3.5)

(b). A distinctive characteristic multiplier µ is named unobservable characteristic
multiplier for the pair (C(·),LF(·)) if it is an unobservable characteristic multi-
plier at any t0 ∈ R.
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Remark 3.3. (a). Even if the property of unobservability could be defined for any
characteristic multiplier we preferred to restrict the definition to the distinc-
tive characteristic multipliers, because, in this framework this property will be
involved in the next sections.

(b). From the periodicity property of the functions involved in Definition 3.2, one
obtaines that (3.5) holds for any t ≥ t0 if it is true for t ∈ [t0, t0 + θ].

3.3. An useful representation formula of the operator R
Using Lemma 5.1.1 from [9] applied to the operator (2.2), we obtain:

Corollary 3.4. Let F(·) = (F (·, 1), F (·, 2), . . . , F (·, N)) be an admissible feedback
gain. Under the assumption (H) we have the following representation of the oper-
ator Ri(·, ·):

Ri(t,X) =L∗F(t)[X](i)− (F (t, i)− FX(t, i))T (Π3(t)[X](i) +R(t, i)

× (F (t, i)− FX(t, i)) +M(t, i)− L(t, i)R−1(t, i)LT (t, i) (3.6)

+ (F (t, i) +R−1(t, i)LT (t, i))TR(t, i)(F (t, i) +R−1(t, i)LT (t, i))

for all 1 ≤ i ≤ N, (t,X) ∈ Dom R, where L∗F[X] = (L∗F(t)[X](1), . . . ,L∗F(t)[X](N)) is
the adjoint of the operator LF(t)[·] associated via (2.20) to the triple (A(·),B(·),Π(·))
and to the admissible feedback gain F(·), while,

FX(t, i)
∆
=− (Π3(t)[X](i) +R(t, i))−1(X(i)B(t, i) + Π2(t)[X](i)

+ L(t, i))T . (3.7)

Employing the convention of notation established in Subsection 1.1, we may
rewrite (3.6) and (3.7) in a compact form:

R(t,X) =L∗F(t)[X]− (F(t)− FX(t))T (Π3(t)[X] + R(t))

· (F(t)− FX(t)) + M(t)− L(t)R−1(t)LT (t)

+ (F(t) + R−1(t)LT (t))TR(t)(F(t) + R−1(t)LT (t)) (3.8)

FX(t) = −(Π3(t)[X] + R(t))−1(XB(t) + Π2(t)[X] + L(t))T , (3.9)

for all (t,X) ∈ Dom R.

4. The main result

4.1. The statement of the main result

First we recall the definition of the concept of stabilizability of a triple
(A(·),B(·),Π(·)) where A(·), B(·) are defined in (2.4a) and Π(·) is described by
(2.5). The next definition is an adaptation of the Definition 5.3.2 from [9] to the
triples involved here.

Definition 4.1. We say that (A(·),B(·),Π(·)) is stabilizable if there exists an admis-
sible feedback gain F(·) with the property that the linear differential equation on
SNn :

Ẏ = LF(t)[Y](t) (4.1)
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is exponentially stable, LF(t)[·] being the linear operator associated via (2.20) to
(A(·),B(·),Π(·)) and to the admissible feedback gain F(·). The admissible feedback
gains for which the linear differential equation (4.1) is exponentially stable will be
named stabilizing admissible feedback gains.

Remark 4.2. When the triple (A(·),B(·),Π(·)) is associated to the Riccati equations
(2.10), (2.13) or (2.16), respectively, the concept of stabilizability introduced by Defi-
nition 4.1 recover the notions of stabilizability known in the deterministic and/or
stochastic control.

The main result of this work is stated in the following theorem:

Theorem 4.3. Under the assumption (H) the following are equivalent:

(i). the GRDE (2.1) has a bounded and stabilizing solution

X̃(·) = (X̃(·, 1), . . . , X̃(·, N))

with X̃(t, i) ≥ 0, for all t ∈ R, 1 ≤ i ≤ N ;
(ii). (a). the triple (A(·),B(·),Π(·)) is stabilizable;

(b). µ = 1 is not an unobservable distinctive characteristic multiplier for the

pair (C̃(·),L−R−1LT (·)) where C̃(·) = (C̃(·, 1), . . . , C̃(·, N)),

C̃(t, i) = (M(t, i)− L(t, i)R−1(t, i)LT (t, i))1/2 (4.2)

and L−R−1LT (·) is the linear operator of type (2.20) associated to the triple
(A(·),B(·),Π(·)) and the feedback gains F (t, i) = −R−1(t, i)LT (t, i).

4.2. Several intermediate results

For the proof of Theorem 4.3 we need several results which can be interesting
by themselves. In this subsection we present their proofs.

Lemma 4.4. Let Fk(·) = (Fk(·, 1), . . . , Fk(·, N)), k = 1, 2 be two admissible feedback
gains. Let LFk

(t) : SNn → SNn , k = 1, 2 be the linear operators associated to the triple
(A(·),B(·),Π(·)) and the feedback gain Fk(·) as in (2.20). We denote TFk

(t, t0) the
linear evolution operator on SNn defined by the linear differential equation

Ẋ(t) = LFk
(t)[X(t)], k = 1, 2. (4.3)

If there exists Y ∈ SN+
n \ {0} with the property that

F1(t)TF1
(t, t0)Y = F2(t)TF1

(t, t0)Y, t ∈ [t0, t0 + θ], t0 ∈ R (4.4)

then we have

TF1
(t, t0)Y = TF2

(t, t0)Y, for all t ∈ [t0, t0 + θ]. (4.5)

Proof. Let Xk(t) = Xk(t; t0,Y)
∆
= TFk

(t, t0)Y, k = 1, 2. The linear differential equa-
tion (4.3) satisfied by Xk(·) may be rewritten as:

Ẋk(t) =A(t)Xk(t) + Xk(t)AT (t) + B(t)Fk(t)Xk(t)

+ (B(t)Fk(t)Xk(t))T + Π∗Fk
(t)[Xk(t)], k = 1, 2. (4.6)
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Substituting (4.4) in (4.6) written for k = 1, we obtain that X1(·) satisfies the differ-
ential equation:

Ẋ1(t) =(A(t) + B(t)F2(t))X1(t) + X1(t)(A(t) + B(t)F2(t))T

+ Π∗F1
(t)[X1(t)], t ∈ [t0, t0 + θ]. (4.7)

We show now that if (4.4) holds, then

Π∗F1
(t)[X1(t)] = Π∗F2

(t)[X1(t)], t ∈ [t0, t0 + θ]. (4.8)

To this end we set X1(t) = (X1(t, 1), . . . , X1(t,N)). This allows us to write the
componentwise version of (4.4) as

F1(t, i)X1(t, i) = F2(t, i)X1(t, i), t ∈ [t0, t0 + θ], 1 ≤ i ≤ N. (4.9)

Let Z = (Z(1), . . . , Z(N)) ∈ SNn \ {0} be arbitrary. Using the definition of the adjoint
operator with respect to the inner product (1.1) we may write via (2.17) that

〈Z,Π∗F1
(t)[X1(t)]〉 = 〈Π∗F1

(t)[Z],X1(t)〉 =

N∑
i=1

Tr[Π∗F1
(t)[Z](i)X1(t, i)]

=

N∑
i=1

Tr[Π(t)[Z](i) ·Ψ(X1(t, i), F1(t, i))] (4.10)

where

Ψ(X1(t, i), F1(t, i))
∆
= (In FT1 (t, i))TX1(t, i)(In FT1 (t, i)) ∈ Sn+m. (4.11)

Substituting (4.9) in (4.11) we obtain

Ψ(X1(t, i), F1(t, i)) = Ψ(X1(t, i), F2(t, i)). (4.12)

Plugging (4.12) in (4.10), we obtain after some calculations based on the properties
of the trace operator that

〈Z,Π∗F1
(t)[X1(t)]〉 = 〈Z,Π∗F2

(t)[X1(t)]〉.

This equality confirms the validity of (4.8) because Z is arbitrary in SNn . Now, (4.8)
allows us to rewrite (4.7) as

Ẋ1(t) =(A(t) + B(t)F2(t))X1(t) + X1(t)(A(t) + B(t)F2(t))T

+ Π∗F2
(t)[X1(t)], t ∈ [t0, t0 + θ]. (4.13)

Writing (4.6) for k = 2 and comparing with (4.13) we remark that X2
∆
= TF2

(t, t0)Y
is also a solution of the linear differential equation (4.13). On the other hand X1(t0) =
X2(t0) = Y. From the uniqueness of the solution of an initial value problem we deduce
that

X2(t; t0,Y) = X1(t; t0,Y), t ∈ [t0, t0 + θ]

which shows that (4.5) is true. Thus the proof is complete. �
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Proposition 4.5. Let X̃(·) = (X̃(·, 1), . . . , X̃(·, N)) be a θ−periodic solution of the

GRDE (2.1) such that X̃(t, i) ≥ 0, for all t ∈ R, 1 ≤ i ≤ N. Let

F̃(t) = (F̃ (t, 1), . . . , F̃ (t,N))

be the corresponding feedback gain (2.22) associated to the solution X̃(·). Under the
assumption (H), if µ ∈ σ+(TF̃(t0)) is such that µ ≥ 1 then µ is an unobservable at

t0 distinctive characteristic multiplier for the pair (C̃(·),L−R−1LT (·)) where C̃(·) is
defined as in (4.2).

Proof. Comparing (2.22) and (3.7) we see that F̃(t) = FX(t), for all t ∈ R+. Using

(3.8) with F(t) = F̃(t) we obtain that the equation (2.1) satisfied by X̃(·) becomes

− d

dt
X̃(t) = L∗

F̃
(t)[X̃(t)] + W(t) (4.14)

where we denote

W(t) =M(t)− L(t)R−1(t)LT (t) + (F̃(t) + R−1(t)LT (t))T

·R(t)(F̃(t) + R−1(t)L(t)). (4.15)

From (4.14) we deduce

X̃(t0) = T∗
F̃

(t0)X̃(t0 + θ) +

t0+θ∫
t0

T∗
F̃

(t, t0)W(t)dt (4.16)

with T∗
F̃

(t0) and T∗
F̃

(t, t0) are the adjoint operators of TF̃(t0) and TF̃(t, t0), respec-

tively, with respect to the inner product (1.1). From (2.7) we infer that W(t) � 0, for
all t ∈ [t0, t0 + θ]. This leads to

Ψ
∆
=

t0+θ∫
t0

T∗
F̃

(t, t0)W(t)dt � 0 (4.17)

because T∗
F̃

(t, t0)W(t) � 0, for all t ∈ [t0, t0 + θ].

On the other hand from µ ∈ σ+(TF̃(t0)) we deduce that there exists Y ∈ SN+
n \ {0}

such that

TF̃(t0)Y = µY. (4.18)

From (1.1), (4.16), (4.17) and (4.18) together with X̃(t0) = X̃(t0 + θ), we get

0 ≤〈Ψ,Y〉 = 〈X̃(t0),Y〉 − 〈T∗
F̃

(t0)X̃(t0 + θ),Y〉

= 〈X̃(t0),Y〉 − 〈X̃(t0),TF̃(t0)Y〉 = (1− µ)〈X̃(t0),Y〉 ≤ 0.

Hence, 〈Ψ,Y〉 = 0, which yields to

t0+θ∫
t0

〈W(t),TF̃(t, t0)Y〉dt = 0. (4.19)
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From (4.15) and (4.19) we deduce that

t0+θ∫
t0

〈M(t)− L(t)R−1(t)LT (t),TF̃(t, t0)Y〉dt = 0, (4.20a)

t0+θ∫
t0

〈W1(t),TF̃(t, t0)Y〉dt = 0. (4.20b)

where W1(t) = (F̃(t) + R−1(t)LT (t))TR(t)(F̃(t) + R−1(t)LT (t)).
From (2.7a) and (4.20a) we get

〈M(t)− L(t)R−1(t)LT (t),TF̃(t, t0)Y〉 = 0.

Further, from (1.1), (4.2) one gets

N∑
i=1

Tr
[
C̃(t, i)(TF̃(t, t0)Y)(i)C̃T (t, i)

]
= 0, for all t ∈ [t0, t0 + θ].

Since C̃(t, i)(TF̃(t, t0)Y)(i)C̃T (t, i) ≥ 0 we may conclude that

C̃(t)TF̃(t, t0)Y = 0, for all t ∈ [t0, t0 + θ]. (4.21)

Proceeding analogously we obtain from (4.20b) that

F̃(t)TF̃(t, t0)Y = −R−1(t)LT (t)TF̃(t, t0)Y, for all t ∈ [t0, t0 + θ]. (4.22)

Applying Lemma 4.4 with F1(t) = F̃(t) and F2(t) = −R−1(t)LT (t) in the case of the
equality (4.22) we may infer that

TF̃(t, t0)Y = T−R−1LT (t, t0)Y, for all t ∈ [t0, t0 + θ]. (4.23)

From (4.18) together with (4.23) written for t = t0 + θ, we obtain

T−R−1LT (t0)Y = µY. (4.24)

Finally, from (4.21) and (4.23) we obtain that

C̃(t)T−R−1LT (t, t0)Y = 0, for all t ∈ [t0, t0 + θ]. (4.25)

From (4.24) and (4.25) we may conclude that µ is a distinctive characteristic multiplier

unobservable at instance time t0 for (C̃(·),L−R−1LT (·)) which ends the proof. �

Proposition 4.6. Under the assumption (H), if µ = 1 is a distinctive characteristic

multiplier unobservable at instance time t0 for the pair (C̃(·),L−R−1LT (·)) then for

any positive semidefinite and θ−periodic solution X̃(·) of the GRDE (2.1) we have

that 1 ∈ σ+(TF̃(t0)) where F̃(·) is the feedback gain associated via (3.9) to the solution

X̃(·) and C̃(·) is defined in (4.2).

Proof. If µ = 1 is a distinctive characteristic multiplier unobservable at t0 for
(C̃(·),L−R−1LT (·)), there exists Y ∈ SN+

n \ {0} with the properties

T−R−1LT (t0)Y = Y (4.26)
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and
C̃(t)T−R−1LT (t, t0)Y = 0, for all t ∈ [t0, t0 + θ]. (4.27)

Let X̃(·) be an arbitrary positive semidefinite and θ−periodic solution of GRDE (2.1).
Applying Corollary 3.4, taking F(t) = −R−1(t)LT (t) we may rewrite the equation

(2.1) satisfied by X̃(·) as:

− d

dt
X̃(t) = L∗−R−1LT (t0)[X̃(t)] + M(t)− L(t)R−1(t)LT (t)

− (R−1(t)LT (t) + F̃(t))T (Π3(t)[X̃] + R(t))(R−1(t)LT (t) + F̃(t)).

This allows us to write the following representation of the solution X̃(·) :

X̃(t0) = T∗−R−1LT (t0)X̃(t0 + θ) +

t0+θ∫
t0

T∗−R−1LT (t, t0)C̃2(t)dt

−
t0+θ∫
t0

T∗−R−1LT (t, t0)Υ(t)dt (4.28a)

Υ(t) = (R−1(t)LT (t) + F̃(t))T (Π3(t)[X̃(t)]

+ R(t))(R−1(t)LT (t) + F̃(t)). (4.28b)

Employing (4.26), (4.27) together with periodicity property of X̃(·), we get

〈T∗−R−1LT (t0)X̃(t0 + θ)− X̃(t0),Y〉+

〈 t0+θ∫
t0

T∗−R−1LT (t, t0)C̃2(t)dt,Y

〉
= 0. (4.29)

Further, (4.28a) and (4.29) yield

t0+θ∫
t0

〈T∗−R−1LT (t, t0)Υ(t),Y〉dt = 0. (4.30)

From (1.1), (4.28b) we infer that (4.30) is true, if and only if

〈T∗−R−1LT (t, t0)Υ(t),Y〉 = 0, for all t ∈ [t0, t0 + θ].

This is equivalent to

〈Υ(t),T−R−1LT (t, t0)Y〉 = 0, for all t ∈ [t0, t0 + θ]. (4.31)

Combining (1.1), (2.7a), (4.28b) we may conclude that (4.31) is true if and only if

−R−1(t)LT (t)T−R−1LT (t, t0)Y = F̃(t)T−R−1LT (t, t0)Y, (4.32)

for all t ∈ [t0, t0 + θ].

Applying Lemma 4.4 taking F1(t) = −R−1(t)LT (t) and F2(t) = F̃(t), we conclude
from (4.32) that

T−R−1LT (t, t0)Y = TF̃(t, t0)Y. (4.33)

Finally, (4.26) together with (4.33) written for t = t0 + θ, yield TF̃(t0)Y = Y. This
shows that µ = 1 lies in σ+(TF̃(t0)) which complete the proof. �



Stabilizing solution of a class of Riccati type differential equations 175

4.3. The proof of the main result

First we prove the implication (i) =⇒ (ii). The stabilizability of the triple
(A(·),B(·),Π(·)) is a necessary condition for the existence of the stabilizing solution
of the GRDE (2.1) because the feedback gain associated via (2.22) to the stabiliz-
ing solution stabilizes this triple in the sense of the Definition 4.1. Let us assume
by contrary that (ii) (b) from the statement of the Theorem 4.3 is not true. This
means that there exists t0 ∈ R such that µ = 1 is a distinctive characteristic multi-
plier unobservable at t0 for (C̃(·),L−R−1LT (·)). From Proposition 4.6 we deduce that

µ = 1 ∈ σ+(TF̃(t0)) where F̃(·) is the stabilizing feedback gain associated via (2.22)

to the solution X̃(·) of the GRDE (2.1). Hence ρF̃ ≥ 1, which contradicts the fact that

X̃(·) is the stabilizing solution. So, we have shown that the implication (i) =⇒ (ii)
holds.

Now we prove (ii) =⇒ (i). Applying Theorem 5.3.5 from [9] we deduce that under
the assumption (H) if the triple (A(·),B(·),Π(·)) is stabilizable then the GRDE (2.1)

has a solution X̃(·) which is maximal in the class of positive semidefinite solutions of

(2.1). Moreover, X̃(·) is a periodic function of period θ. Let F̃(t) be the feedback gain

associated to the solution X̃(·) via (3.9) written for X replaced by X̃(t). We denote
TF̃(t0), t0 ∈ R, the monodromy operator defined by the linear differential equation

with periodic coefficients of type (3.1) when F(t) is replaced by F̃(t). In the proof of
Theorem 5.3.5 from [9] TF̃(t0) is obtained as the limit of a sequence of linear operators
having the spectral radius strictly less than 1. Hence, the spectral radius ρF̃ of the

monodromy operator TF̃(t0) satisfies ρF̃ ≤ 1. To show that the maximal solution X̃(·)
is just the stabilizing solution we have to show that ρF̃ < 1. Let us assume by contrary
that ρF̃ = 1. In this case, µ = 1 ∈ σ+(TF̃(t0)), for all t0 ∈ R. Then from Proposition
4.5 it follows that µ = 1 is a distinctive characteristic multiplier unobservable for the
pair (C̃(·),L−R−1LT (·)) which contradicts (ii) (b). Thus, ρF̃ < 1 which complete the
proof.

5. Conclusions

This paper studies the stabilizing solution for a class of continuous-time back-
ward nonlinear equations. The concept of unobservable characteristic multipliers for
a pair adequately chosen is introduced. Based on this spectrum technique, we obtain
a necessary and sufficient condition for the existance of the stabilizing solution of the
GRDE. The proposed techniques are formulated as the solvability of a linear equation.
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Abstract. Structural equation modeling finds linear relations between exogenous
and endogenous latent and observable random vectors. In this paper, the model
equations are considered as a linear dynamical system to which the celebrated
R. E. Kálmán’s filtering technique is applicable. An artificial intelligence is devel-
oped, where the partial least squares algorithm of H. Wold and the block Cholesky
decomposition of H. Kiiveri et al. are combined to estimate the parameter matri-
ces from a training sample. Then the filtering technique introduced is capable to
predict the latent variable case values along with the prediction error covariance
matrices in the test sample. The recursion goes from case to case along the test
sample, without having to re-estimate the parameter matrices. The algorithm is
illustrated on real life sociological data.
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1. Introduction

We consider structural equation model (SEM) for two latent random vectors that
depend through a linear model on two observable random vectors, respectively (they
usually include exogenous and endogenous variables). This kind of models was first
investigated by T. Haavelmo [1], who obtained the Nobel Prize for it later. Unlike
the traditional factor analysis, where latent variables were introduced and given a
meaning based on the factor loadings, here the latent variables are organic parts of
the model. The latent variables, e.g., alienation, ambition in [2] or mobility in our
example, are given by the experts, and the observed (measurement) variables are
indicators of them. In this way, so-called inner and outer relations are stated between
the latent variables and between the observable and latent ones, respectively.
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The estimation of the parameter matrices of this model was elaborated both in
the Gaussian and distribution-free cases, former by K. G. Jöreskog (LISREL) [2], while
the other by H. Wold (PLS) [8] in the 1970-1980s. These two approaches are sometimes
called covariance-based and component-based SEM. However, we can consider the
model equations as a linear dynamical system to which the celebrated R. E. Kálmán’s
filtering technique [3] is applicable. This technique was developed in the 1960s for time
series to make predictions for the hidden state variables of a state space model, and
was used in the lunar landing, for instance. We will show how to apply this technique
in the more complicated dynamical system, containing two state and two observable
equations, describing inner relations between the observable and latent variables, both
for the exogenous and endogenous ones. Our contribution is that we connect these
two approaches.

The parameter matrices are estimated from a training sample. We combine the
first stage of the PLS algorithm of H. Wold to estimate the case values of the latent
variables and the method of H. Kiiveri et al. [5] to decompose the inverse of the product
moment matrix obtained with the latent case value estimates. At this point, we apply
the block Cholesky decomposition. Then the filtering technique to be introduced is
capable to make predictions for the endogenous variables based on the exogenous
ones, through the latent variables. The driving force is that we propagate the error
covariance matrices of the exogenous and endogenous latent variables in a recursion.

The test sample is a succession of observations coming one by one (like a time
series or just subsequent observations), and the algorithm predicts their endogenous
variables based on their own exogenous ones. Our contribution is that we combine
existing methods for parameter estimation, and then apply filtering technique for pre-
diction, so we develop an artificial intelligence. The computational gain is that the pa-
rameter matrices need not be estimated for every new-coming case in the test sample,
but are estimated only once, in the training sample. The method is distribution-free
(just second moments are used in the linear state equations) and applicable to small
training, and not necessarily independent test samples.

The organization of the paper is as follows. In Section 2, the most important
notions and facts about best linear predictions in Hilbert spaces are introduced. In
Section 3, the prediction and propagation of the error covariance matrices are derived
in two stages. The main results are summarized in Theorem 3.1 of Section 3.3. Then
the proposed algorithm is illustrated on real life sociological data in Section 4. Even-
tually, the last Section 5 discusses the benefits of the proposed method together with
some possible further perspectives.

2. Preliminaries

The following linear dynamical system that resembles the one to which
R. E. Kálmán gave a recursive algorithm is considered:

Bη = Aξ + ζ,

where η is m- and ξ is n-dimensional latent vector, B and A are m×m and m× n
coefficient matrices, and ζ is a random vector of residuals of uncorrelated components.
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It is also uncorrelated with ξ, and B is nonsingular. In the recursive models, B is
upper triangular, with 1s along its main diagonal.

Here η and ξ are not observed, but instead, the p-dimensional Y and the q-
dimensional X are observed such that

X = Cξ + ε, Y = Gη + δ,

where ε and δ are vectors of measurement errors in X and Y, respectively. They are
uncorrelated with each other and ζ. Typically, n ≤ q and m ≤ p.

For the estimation of the matrices A, B, C, G, and the covariance matrices of
the errors, there is the LISREL algorithm of K. G. Jöreskog [2] (assuming multivari-
ate Gaussian distribution of the measurement variables and large sample sizes) and
component-wise SEM algorithms (not postulating normality and being able to treat
small sample sizes), e.g., [7, 8], at our disposal.

In the first stage of his PLS algorithm, H. Wold [8] gives an iteration to find the
case values of the latent variables. He states that this fixed point iteration converges.
We use only this first stage to calculate the product moment estimate of the covariance
matrix of the latent variables. Then we decompose the inverse of this matrix as LDLT

with L and D having the form

L =

(
BT O
−AT I

)
, D =

(
Q−1 O
O F−1

)
, (2.1)

where B is m ×m upper triangular matrix with 1s along its main diagonal, and A
is m × n matrix. The block-diagonal matrix D comprises the inverse of the error
covariance matrix Q of ζ and F of ξ, where Q itself is a diagonal matrix. For this
purpose we use the block Cholesky decomposition with block sizes 1, . . . , 1, n with
number1 m of 1s.

Wold’s algorithm also provides the outer relation matrices C and G. In this way,
we can estimate the parameter matrices A,B,C,G based on a training sample and
on adjacency matrices that specify which latent variable is related to which observable
one, both among the exogenous and endogenous variables. This is the point where
the expert can intervene the system. For a detailed description, see Section 4.

In the heart of the estimation and the forthcoming filtering there is the simul-
taneous usage of OLS (ordinary least squares) regression, tracing back to the Gauss
normal equations. We give a short summary of that.

Now we concentrate on linear estimates in Hilbert spaces that are the best
whenever the underlying distribution is multivariate Gaussian, but is also applicable
to second order processes.

Lemma 2.1. Let Y ∈ Rp and X ∈ Rq be random vectors on a joint probability space
with existing second moments and zero expectation. Then
E‖Y −ATX‖2 is minimized with

A = [EXXT ]−[EXYT ], (2.2)

1Number of endogenous latent variables in the model.
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where A is a q × p matrix and we use generalized inverse − if the covariance matrix
EXXT of X is singular. If it is positive definite, then we get a unique estimate for A
with the unique inverse matrix [EXXT ]−1.

Note that the notation − applies to any (not necessarily unique) generalized
inverse, whereas + will be used for the uniquely defined Moore–Penrose generalized
inverse, see [6].

Proof. Observe that minimizing

E‖Y −ATX‖2 =

p∑
i=1

(Y i − aT
i X)2

with respect to A = (a1 . . .ap) falls apart into the following p minimization tasks,
with respect to the q-dimensional column vectors of A:

min
ai

(Y i − aT
i X)2, i = 1, . . . , p.

The solution (e.g., with the help of differentiation) gives the well known Gauss normal
equations from the classical theory of multivariate regression:

[EXXT ]ai = [EXYi], i = 1, . . . , p.

Since this system of linear equations is consistent (the vector EXYi is in the column
space of EXXT ), it always has a solution in the general form:

ai = [EXXT ]−[EXYi], i = 1, . . . , p.

Therefore the matrix A giving the optimum is

A = [EXXT ]−[EXYT ],

that is unique only if EXXT is invertible (positive definite), otherwise (if EXXT is
singular, positive semidefinite) infinitely many versions of the generalized inverse give
infinitely many convenient As. However, these always provide the same optimal linear
prediction (projection) for Y as follows:

ProjH(X)Y = Ŷ =


Ŷ1
Ŷ2
...

Ŷp

 =


aT
1 X

aT
2 X
...

aT
p X

 = ATX,

where ProjH(X) denotes the projection onto the Hilbert space spanned by the lin-

ear combinations of the components of X (the expectations are zeros and the inner
product is the covariance). �

Lemma 2.2. Let Y ∈ Rp and X ∈ Rq be random vectors on a joint probability space
with existing second moments and zero expectation, and let ProjH(X)Y denotes the
best linear prediction of Y based on X, as before. Then with any p× p matrix Φ,

ProjH(X)(ΦY) = ΦProjH(X)Y.
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Proof. We saw that ProjH(X)Y = ATX, where by (2.2), A = [EXXT ]−[EXYT ], and

we use the generalized inverse − if the covariance matrix EXXT of X is singular.
Then

ProjH(X)(ΦY) = {[EXXT ]−[EX(ΦY)T ]}TX = [E(ΦYXT )][EXXT ]−X

= Φ[E(YXT )][EXXT ]−X = ΦProjH(X)Y.

�

The above lemma shows that this projection is linear in Y and it commutes with Φ.
In the Gaussian case, obviously, we have that

ProjH(X)(ΦY) = E(ΦY |X) = ΦE(Y |X) = ΦProjH(X)(Y)

by the properties of the conditional expectation.
The above setup is used for simultaneous (in other words, multiple response)

regressions when we regress the components of a random vector (target) with all the
components of the predictors.

3. The linear dynamical system for the prediction

Discrete time observations Xt, Yt arrive, whereas ξt and ηt are latent state
variables corresponding to them. Starting at time 0, for t = 1, 2, . . . , the estimate of
η̂t is found, while observing X1, . . . ,Xt. Actually, to find η̂t, we only need the estimate

ξ̂t and the last observation Xt. Then to find ξ̂t+1, the preceding estimate η̂t and the
last observation Yt are needed. In this way, a recursion is given via the propagation of
the error covariance matrices. During the calculations, we use the linearity of the state
equations and the predictions, for which we confine ourselves to the second moments
of the underlying distributions (second order processes).

The linear dynamical system is

Bηt = Aξt + ζt

Uξt+1 = V ηt + γt

Xt = Cξt + εt

Yt = Gηt + δt,

(3.1)

where A is m × n, B is m × m, V is n × m, U is n × n, C is q × n, and G is
p×m specified matrix; B and U are non-singular (in recursive models they are upper
triangular with 1s along their main diagonals). Further, ζt is an orthogonal process
with EζtζTs = δstQ with diagonal covariance matrix Q; γt is an orthogonal process
with EγtγT

s = δstR with diagonal covariance matrix R; EξTs ζt = 0 and EηT
s γt = 0

for s ≤ t; εt is independent of ξt, δt is independent of ηt, they are also independent
of each other and of ζt and γt. For simplicity, we assume that all the expectations are
zeros.

The A,B,U ,V matrices are estimated from a training sample. Actually, the
matrices A and B together with Q and F come from the block Cholesky decomposi-
tion (2.1), based on the product-moments of the estimated latent scores of the pairs
ξs,ηs, where s < 0 is integer from the past (training sample). Likewise, the matrices
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U and V together with R and F ∗ come from the block Cholesky decomposition (3.2)
below, based on the product-moments of the estimated latent scores of the shifted
pairs ηs, ξs+1 (s < 0). The inverse of this matrix is decomposed as L∗D∗L∗T with
L∗ and D∗ having the form

L∗ =

(
UT O
−V T I

)
, D∗ =

(
R−1 O

O F ∗−1

)
, (3.2)

where recall that, in the recursive model, U is n× n upper triangular matrix with 1s
along its main diagonal, and V is n×m. The block-diagonal matrix D∗ comprises the
inverse of the error covariance matrix R of γ and F ∗ of η, where R itself is a diagonal
matrix. For this purpose we use the block Cholesky decomposition with block sizes
1, . . . , 1,m with number2 n of 1s.

The matrices C ad G are estimated by the PLS algorithm of H. Wold [8]. The
details are given in Section 4.

Now a recursion is introduced for the following problem: starting the observations
at time 0 in the test sample, we want to estimate ηt based on Xt, and ξt+1 based
on Yt component-wise, with minimum mean square error. Former observations also
play role, but only through the last one and through the propagation of the error
covariance matrices. Here X0 and Y0 can be taken from the training sample.

3.1. First stage: Xt → η̂t

For t ≥ 1, letHt−1(X) = Span (X0, . . . ,Xt−1) consists of the linear combinations
of all the components of X0, . . . ,Xt−1 over a common probability space. They are also
in a Hilbert space (L2 space) with the covariance as inner product. We denote the

optimal prediction of ξt based on X0, . . . ,Xt−1 by ξ̂t.

If X0, . . . ,Xt−1 are observed, i.e., Ht−1(X) is known, then the newly observed
(measured) Xt can be orthogonally decomposed as

Xt = ProjHt−1(X)Xt + X̃t = Xt + X̃t, (3.3)

where the orthogonal component X̃t ∈ It(X), and It(X) is the so-called innovation

subspace (actually, the components of X̃t generate It(X)). Assume that It(X) is not
the sole 0 vector, otherwise observing Xt does not give any additional information to
Ht−1(X). If {Xt} is weakly stationary, it means that the process is regular.

Equation (3.3) implies the decomposition of the corresponding subspaces like

Ht(X) = Ht−1(X)⊕ It(X), (3.4)

that is the analogue of multidimensional Wold decomposition when we make one-step
ahead prediction based on finitely many past values. (The Wold decomposition applies
to the stationary and infinite past case. Indeed, when t→∞, i.e., going to the future,
we approach this situation in the stationary case).

2Number of exogenous latent variables in the model.
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Assume that we have already found ξ̂t. We shall give a recursion to find η̂t by
using the new value of Xt. In view of Equation (3.4), we proceed as follows:

Bη̂t = ProjHt(X)(Bηt) = ProjHt−1(X)(Bηt) + ProjIt(X)(Bηt)

= AProjHt−1(X)ξt + ProjHt−1(X)ζt +KtX̃t

= Aξ̂t +KtX̃t,

(3.5)

where we utilized that ζt ⊥ Ht−1(X), Lemma 2.1 and the first state equation of (3.1).
We refer to the linearity of the projection, see Lemma 2.2. Since ProjIt(X)Bηt is

the linear combination of the coordinates of the vector X̃t ∈ It(X), its effect can be

written as a matrix Kt multiplied with X̃t. This m × q matrix Kt is called Kálmán
gain matrix after R. E. Kálmán (in fact, this notation was first used in the paper [4]
of Kálmán and Bucy).

To specify the matrix Kt, we have to write X̃t in terms of ξ̂t and Xt. For this
purpose, let us project both sides of the first observation equation of (3.1), i.e., of
Xt = Cξt + εt, onto Ht−1(X). We get that

Xt = Cξ̂t.

Taking the orthogonal decomposition (3.3) of Xt into consideration yields that

X̃t = Xt −Xt = Xt −Cξ̂t. (3.6)

We substitute this into the last line of Equation (3.5) and obtain that

Bη̂t = Aξ̂t +KtX̃t = (A−KtC)ξ̂t +KtXt.

With the notation

A∗
t = A−KtC (3.7)

for the updated transition matrix, we get the new linear dynamics:

Bη̂t = A∗
t ξ̂t +KtXt. (3.8)

We also have the alternative expression

Bη̂t = Aξ̂t +KtX̃t = Aξ̂t +Kt(Xt −Cξ̂t). (3.9)

The estimation error is also governed by the linear dynamical system. This error
term has two alternative forms. Using (3.8), the one is

Bη̃t = Bηt −Bη̂t = Aξt + ζt −A∗ξ̂t −KtCξt −Ktεt

= A∗
t (ξt − ξ̂t) + ζt −Ktεt = A∗

t ξ̃t + ζt −Ktεt.

Then, using (3.9), the other is

Bη̃t = Aξt + ζt −Aξ̂t −Kt(Xt −Cξ̂t) = Aξ̃t + ζt −Kt(Xt −Cξ̂t).

From here, we get the following recursion for the covariance matrix

Pt = Eξ̃tξ̃Tt (3.10)



186 Marianna Bolla and Fatma Abdelkhalek

of the optimal error (of predicting ξt) and so, of Kt:

B[Eη̃tη̃T
t ]BT = E[Bη̃t][Bη̃t]

T

= E[A∗ξ̃t + ζt][Aξ̃t + ζt −Kt(Xt −Cξ̂t)]T

= A∗
tPtA

T +Q,

(3.11)

where recall that Q = EζtζTt , obtainable by (2.1). We used that ζt is uncorrelated

with ξt and, therefore, with ξ̃t too. We also used that Xt−Cξ̂t is in It(X), and ζt is
uncorrelated with εt.

It remains to find an explicit formula for Kt, and thus, also for A∗
t . Recall that

Kt is the matrix of the linear operation ProjIt(X)Bηt, therefore by the projection

principle (see Lemma 2.1):

Kt = [EBηtX̃T
t ][E(X̃tX̃

T
t ]+,

where + denotes the Moore–Penrose generalized inverse (we use regular inverse if the
underlying matrix is invertible).

Now we calculate the matrices in brackets. By the third equation of (3.1), that

extends to X̃t = Cξ̃t + εt and to their predictions, we get that

EX̃tX̃
T
t = E(Cξ̃t + εt)(Cξ̃t + εt)

T = CPtC
T +E,

where E = EεtεTt . E is obtainable by (2.1) in the following way:

EXtX
T
t = C(EξtξTt )CT +E = CFCT +E.

So E is the difference between EXtX
T
t (estimated as Σ̂XX from the training sample)

and CFCT , where F is the inverse of the second diagonal block of D in (2.1).

By the first and third equation of (3.1) and the orthogonality of ξ̂t and ξ̃t we
get that

E(BηtX̃
T
t ) = AE(ξtX̃

T
t ) = AE[(ξ̂t + ξ̃t)(Cξ̃t)

T ] = APtC
T . (3.12)

Therefore,

Kt = APtC
T [CPtC

T +E]+ (3.13)

with the Moore–Penrose inverse.
With this matrix Kt of Equation (3.13) and using Equation (3.11), we are able

to write the error covariance matrix in the form of a symmetric matrix:

B[Eη̃tη̃T
t ]BT = A∗PtA

T +Q = (A−KtC)PtA
T +Q

=
(
A−APtC

T [CPtC
T +E]+C

)
PtA

T +Q

= A
(
I − PtC

T [CPtC
T +E]+C

)
PtA

T +Q

= APtA
T −APtC

T [CPtC
T +E]+CPtA

T +Q,

so

BP ∗
t B

T = APtA
T −APtC

T [CPtC
T +E]+CPtA

T +Q, (3.14)

where P ∗
t = E(η̃tη̃

T
t ) is the covariance matrix of the error when predicting ηt. In the

next stage, we use it to find Pt+1.
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3.2. Second stage: Yt → ξ̂t+1

For t ≥ 1, letHt−1(Y) = Span (Y0, . . . ,Yt−1) consists of the linear combinations
of all the components of Y0, . . . ,Yt−1 over a common probability space. We denote
the optimal prediction of ηt based on Y0, . . . ,Yt−1 by η̌t.

If Y0, . . . ,Yt−1 are observed, i.e., Ht−1(Y) is known, then the newly observed
(measured) Yt can be orthogonally decomposed as

Yt = ProjHt−1(Y)Yt + Ỹt = Yt + Ỹt, (3.15)

where the orthogonal component Ỹt ∈ It(Y), and It(Y) is the innovation subspace

(actually, the components of Ỹt generate It(Y)). Assume that It(Y) is not the sole 0
vector, otherwise observing Yt does not give any additional information to Ht−1(Y).

Equation (3.15) implies the decomposition of the corresponding subspaces like

Ht(Y) = Ht−1(Y)⊕ It(Y). (3.16)

Assume that we have already found η̌t. We shall give a recursion to find ξ̌t+1 by
using the new value of Yt. In view of Equation (3.16):

Uξ̌t+1 = ProjHt(Y)(Uξt+1) = ProjHt−1(Y)(Uξt+1) + ProjIt(Y)(Uξt+1)

= V ProjHt−1(Y)ηt + ProjHt−1(Y)γt +MtỸt

= V η̌t +MtỸt,

(3.17)

where we utilized that γt ⊥ Ht−1(Y), Lemma 2.1 and the second state equation
of (3.1). Furthermore, we refer to the linearity of the projection, see Lemma 2.2. Since

ProjIt(Y)Uξt+1 is the linear combination of the coordinates of the vector Ỹt ∈ It(Y),

its effect can be written as a matrix Mt multiplied with Ỹt. This n× p matrix Mt is
another gain matrix.

To specify the matrix Mt, we have to write Ỹt in terms of η̌t and Yt. For this
purpose, let us project both sides of the second observation equation of (3.1), i.e., of
Yt = Gηt + δt, onto Ht−1(Y). We get that

Yt = Gη̌t.

Taking the orthogonal decomposition (3.15) of Yt into consideration yields that

Ỹt = Yt −Yt = Yt −Gη̌t. (3.18)

We substitute this into the last line of Equation (3.17) and obtain that

Uξ̌t+1 = V η̌t +MtỸt = (V −MtG)η̌t +MtYt.

With the notation

V ∗
t = V −MtG (3.19)

for the updated transition matrix, we get the new linear dynamics:

Uξ̌t+1 = V ∗
t η̌t +MtYt. (3.20)

We also have the alternative expression

Uξ̌t+1 = V η̌t +MtỸt = V η̌t +Mt(Yt −Gη̌t). (3.21)
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The estimation error is also governed by the linear dynamical system. This error
term has two alternative forms. Using (3.20), the one is

Uξ̆t+1 = Uξt+1 −Uξ̌t+1 = V ηt + γt − V ∗
t η̌t −MtGηt −Mtδt

= V ∗
t (ηt − η̌t) + γt −Mtδt = V ∗

t η̆t + γt −Mtδt.

Then, using (3.21), the other is

Uξ̆t+1 = V ηt + γt − V η̌t −Mt(Yt −Gη̌t) = V η̆t + γt −Mt(Yt −Mtη̌t).

From here, we get the following recursion for the covariance matrix

P ∗
t = Eη̆tη̆T

t (3.22)

of the optimal error (of predicting ηt) and so, of Mt:

U [Eξ̆t+1ξ̆
T
t+1]UT = E[Uξ̆t+1][Uξ̆t+1]T

= E[V ∗η̆t + γt −Mtδt][V η̆t + γt −Mt(Yt −Gη̌t)]T

= V ∗
t P

∗
t V

T +R,

(3.23)

where recall thatR = EγtγT
t , obtainable by (3.2), and we used that γt is uncorrelated

with ηt and, therefore, with η̆t too; further, V ∗
t = V −MtG. We also used that

Yt −Gη̌t is in It(Y), and that γt is uncorrelated with δt.

Now an explicit formula is found for Mt, and thus, also for V ∗
t . Recall that

Mt is the matrix of the linear operation ProjIt(Y)Uξt+1, therefore by the projection

principle (see Lemma 2.1):

Mt = [E(Uξt+1Ỹ
T
t )][E(ỸtỸ

T
t ]+,

where + denotes the Moore–Penrose generalized inverse (we use regular inverse if the
underlying matrix is invertible). We calculate the matrices in brackets. By the last

equation of (3.1), that extends to Ỹt = Gη̃t +δt and to their predictions, we get that

E(ỸtỸ
T
t ) = E[(Gη̆t + δt)(Gη̆t + δt)

T = GP ∗
t G

T + ∆,

where ∆ = EδtδTt . ∆ is obtainable by (3.2) in the following way:

EYtY
T
t = G(EηtηT

t )GT + ∆ = GF ∗GT + ∆.

So ∆ is the difference between EYtY
T
t (estimated as Σ̂YY from the training sample)

and GF ∗GT , where F ∗ is the inverse of the second diagonal block of D∗ in (3.2).

By the second and fourth equation of (3.1) and the orthogonality of η̌t and η̆t
we get that

E(Uξt+1Ỹ
T
t ) = V E(ηtỸ

T
t ) = V E[(η̌t + η̆t)(Gη̆t)

T ] = V P ∗
t G

T . (3.24)

Therefore,

Mt = V P ∗
t G

T [GP ∗
t G

T + ∆]+ (3.25)

with the Moore–Penrose inverse.
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With this matrix Mt of Equation (3.25) and using Equation (3.23), we are able
to write the error covariance matrix in the form of a symmetric matrix:

U [Eξ̆t+1ξ̆
T
t+1]UT = V ∗

t P
∗
t V

T + ∆ = (V −MtG)P ∗
t V

T +R

= (V − V P ∗
t G

T [GP ∗
t G

T + ∆]+GP ∗
t V

T +R

= V (I − P ∗
t G

T )[GP ∗
t G

T + ∆]+GP ∗
t V

T +R

= V P ∗
t V

T − V P ∗
t G

T [GP ∗
t G

T + ∆]+GP ∗
t V

T +R,

so

UPt+1U
T = V P ∗

t V
T − V P ∗

t G
T [GP ∗

t G
T + ∆]+GP ∗

t V
T +R, (3.26)

where we assumed that the error covariance matrix of ξ̃t and ξ̆t, akin to that of η̃t
and η̆t is the same. This fact gives rise to a recursion by connecting (3.14) and (3.26).

Finally, with (3.9) and (3.21) we are able to recursively estimate the latent state
variables. During the P1 → P ∗

1 → P2 → P ∗
2 . . . recursion, from Pt, we find Kt

by (3.13) and η̂t by (3.9). Then, from P ∗
t , we find Mt by (3.25) and ξ̌t+1 by (3.21).

As for the relation between ξ̂t and ξ̌t, akin to that between η̂t and η̌t, we can
estimate their cross-covariance matrices from the training sample, and then, linearly

predict η̌t with η̂t and linearly predict ξ̌t with ξ̂t by Lemma 2.1 as follows:

η̌t = Σ̂ηYΣ̂+
YYΣ̂YXΣ̂+

XXΣXη[Eη̂tη̂T
t ]+η̂t

and

ξ̂t+1 = Σ̂ξXΣ̂+
XXΣ̂XYΣ̂+

YYΣ̂Yξ[Eξ̌t+1ξ̌
T
t+1]+ξ̌t+1.

Here, from Equation (3.11), we conclude that

Eη̂tη̂T
t = Σ̂ηη −B−1[(A−KtC)PtA

T +Q](B−1)T .

Likewise, from Equation (3.23), we conclude that

Eξ̌tξ̌Tt = Σ̂ξξ −U−1[(V −MtG)P ∗
t V

T
t +R](U−1)T .

3.3. The main result

We assume that the system was at rest until time 0. The parameter matrices are
estimated from the past, whereas newer and newer estimates for the latent variables
are given, as observations arrive at time t (t = 1, 2, . . . up to the end of the exper-
imental time T ). Thus, we can summarize the results in the subsequent theorem. It
is important that in the derivation of the formulas we used the best linear prediction
theory of Hilbert spaces.

Theorem 3.1. In the linear dynamical system (3.1), the optimal estimate η̂t of ηt and
ξ̌t+1 of ξt+1 given X1, . . . ,Xt and Y1, . . . ,Yt is generated by the new linear dynamical
system

Bη̂t = A∗
t ξ̂t +KtXt

and

Uξ̌t+1 = V ∗
t η̌t +MtYt.

The expected quadratic losses are trP ∗
t and trPt+1, where P ∗

t and Pt+1 are the prop-
agated covariance matrices of the estimation errors. The minimizing matrices and the
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one-step ahead predictions η̂t and ξ̂t+1 together with the error covariance matrices P ∗
t

and Pt+1 are uniquely determined by the initial conditions

ξ̂1 = ProjX0
ξ1, ξ̃1 = ξ1 − ξ̂1, P1 = Eξ̃1ξ̃T1

and the recursions for t = 1, 2, . . . as follows.

Kt = APtC
T [CPtC

T +E]+

η̂t = B−1[Aξ̂t +Kt(Xt −Cξ̂t)]

Ŷt = Gη̂t

η̌t = Σ̂ηXΣ̂+
XXΣ̂XYΣ̂+

YYΣ̂Yη

[
Σ̂ηη −B−1((A−KtC)PtA

T +Q)(B−1)T
]+
η̂t

P ∗
t = B−1[APtA

T −APtC
T [CPtC

T +E]+CPtA
T +Q]B−1T

Mt = V P ∗
t G

T [GP ∗
t G

T + ∆]+

ξ̌t+1 = U−1[V η̌t +Mt(Yt −Gη̌t)]

ξ̂t+1 = Σ̂ξYΣ̂+
YYΣ̂YXΣ̂+

XXΣ̂Xξ

[
Σ̂ξξ −U−1((V −MtG)P ∗

t V
T +R)(U−1)T

]+
ξ̌t+1

X̂t+1 = Cξ̂t+1

Pt+1 = U−1[V P ∗
t V

T − V P ∗
t G

T [GP ∗
t G

T + ∆]+GP ∗
t V

T +R]U−1T ,

where + denotes the Moore–Penrose generalized inverse (usual inverse if the matrix
is invertible).

Note that ξ̂1 = ProjX0
ξ1 = Σ̂ξXΣ̂+

XXX0, by Lemma 2.1, where the last training
sample entry can be chosen for X0. To initialize P1, the whole training sample can be

used: if the L learning sample entries are indexed by `, then ξ̂` = Σ̂ξXΣ̂+
XXX` and

ξ̃` = ξ`−ξ̂`, where ξ` is the `th case estimate of ξ, based on the forthcoming PLS algo-

rithm in Section 4. Finally, the product moment estimate of P1 is 1
L

∑L
`=1 ξ̃`ξ̃

T
` if the

variables have zero expectation (otherwise, the sample means should be subtracted).
Note that the matrices U,V are also estimated from the learning sample with

the shifted product moments, as discussed in the next section.

4. Application

Using data from three Egyptian villages, we applied our proposed algorithm to
examine and predict to what extent parental views affect their daughters’ thinking
on two empowerment issues. Figure 1 visualizes the hypothesized outer and inner
relations. The inner model examines the cause-effect structure between the latent
variables (LVs): parental views on girls’ participation in decision making and girls’
mobility (exogenous: P-DM=ξ1 and P-Mob=ξ2) and the daughters’ views on the
same issues (endogenous: G-DM=η1 and G-Mob=η2), respectively. The outer model
links LVs and observed variables (OVs) together. Mode A is used to construct all
LVs in the model. To clarify, ξ1 is composed of four independent xs (OVs) that
measure parental views on girl’s responsibility in making decisions related to marriage,
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choosing a husband, entering and continuing schooling. ξ2 is linked to three xs that
ask parents whether girls can go alone to places such as market, field, and friends’
home. In the same manner, η1 and η2 are connected to the same number of OVs, but
the dependent ys that reflect the daughters’ views on the same indicators. Note, all
the OVs are on the same ordinal scale.

x7

x6

x5

P-Mob

ξ2

P-DM

ξ1

x4

x3

x2

x1

G-Mob

η2

G-DM

η1

y6

y7

y5

y3

y4

y2

y1

Figure 1. Schematic re-
presentation of the SEM
that considers the effect
of parental views on girls’
views related to empower-
ment issues.

A total sample of 349 parents and their daughters are considered. Prior to the
analysis, the data were standardized to have zero mean and unit variance. Then,
it was divided randomly into a training sample of size 279 and a test sample of
the remaining cases. We apply our proposed estimation algorithm on the training
sample to obtain the specified parameter matrices (A,B,C,G, Q, F , U ,V ,R, and
F ∗). These matrices are used in the derivation of the proposed prediction recursion
algorithm. Specifically, the filtering technique in Theorem 3.1 predicts the future
values for the test sample observations that come sequentially.

Recall that our integrated estimation algorithm to obtain the model specified
matrices combines the first stage of Wold’s PLS technique and the block Cholesky
decomposition of Kiiveri et al. The detailed explanation follows:

1. The first stage uses stage I of Wold’s PLS algorithm, in which the outer relations
and the LV case values are obtained from the training sample. It is an iterative
process that consists of the following steps:

i. Initialize the LV scores for each case as the weighted sum of the observed
indicators in the block that correspond to each LV:

H = NZ,

where H is the exogenous and endogenous LV scores matrix, N is the
training sample data matrix of size 279×14, and Z is the 14×4 adjacency
matrix of the measurement model. The entries zkj are ones, if the indicator
nkj belongs to the block that defines the corresponding LV; and zeros,
otherwise. After each step, the LV scores are standardized.

ii. Update the obtained matrix H with the inner weights

H̃ = HW ,

where W is the LV inner weights matrix which is computed for each LV to
indicate how strong it is connected to the other LVs in the model. There
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are three schemes to obtain these weights, for more details, see [7] and [8].
We used the centroid scheme.

iii. Use the obtained LV scores H̃ to estimate the outer relations (load-
ings/weights). There are two modes of constructing the measurement
model:
• Mode A (reflective), where the arrows point outward from the LV to

the OVs, as in our case, see Figure 1. The outer scores are called load-
ings (λkj) and estimated by OLS simple linear regression between each
observed indicator of the measurement block and the corresponding
LV score h̃j .
• Mode B (formative), where the arrows point inward from the observed

variables to the corresponding LVs. The outer estimated scores called
weights (wkj) and are calculated by OLS multiple linear regression in

which each LV score h̃j is regressed on all the observed indicators of
the corresponding block.

All the outer estimates λkjs and wkjs are collected in the updated weight

matrix Ŵ .
iv. Using the obtained weight matrix Ŵ to update the LV scores

H = NŴ ,

where H contains the LV scores of the last iteration process.
This stage iterates sequentially from Step i. to Step iv. until convergence. At the
convergence, the final LV case values H are obtained as well as the estimated
outer matrices C and G

C =



ξ1 ξ2

x1 .6759 0
x2 .7477 0
x3 .7739 0
x4 .7093 0
x5 0 .5326
x6 0 .8217
x7 0 .7356


, G =



η1 η2

y1 .6881 0
y2 .7408 0
y3 .7574 0
y4 .7287 0
y5 0 .4929
y6 0 .8132
y7 0 .7206


.

The matrices C and G contain the loadings that link the latent vectors ξ and
η with X and Y, respectively.

2. The second stage runs the block Cholesky decomposition of Kiiveri et al. two
times on the obtained LV case values. The first decomposition is applied on the
inverse of the product moment of the covariance matrix of the LV final scores Σ−1

H

that is obtained at the convergence of the Wold algorithm, see Equation (2.1).
The resulting block matrix L gives the estimated path coefficient matrices of the
inner relations,

B =

( η1 η2

η1 1 .107
η2 0 1

)
, A =

( ξ1 ξ2

η1 .337 .156
η2 −.068 .577

)
;
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whereas, the block matrix D yields the error covariance matrices

Q = cov(ζ) =

(
.869 0

0 .663

)
, F = cov(ξ) =

(
1 −.024

−.024 1

)
.

The second decomposition is performed on the inverse of the product mo-
ments of the shifted LV score pairs Σ−1

Hs,s+1
, see Equation (3.2). The resulting

block matrix L∗ contains

U =

( ξ1 ξ2

ξ1 1 .014
ξ2 0 1

)
, V =

( η1 η2

ξ1 .037 −.074
ξ2 .051 .145

)
;

while, the matrix D∗ gives the error covariance matrices

R = cov(γ) =

(
.992 0

0 .984

)
, F ∗ = cov(η) =

(
1 −.041

−.041 1

)
.

At this point, the specified parameter matrices are obtained from the training
sample. The estimated matrices C and G show the loadings of each OV on the
corresponding LV. The matrix B displays the extent to which girls’ views on mobility
affect her views on participating in making decisions; while A shows how parental
views on girls’ mobility and decision making influence their daughters’ opinions on
these issues. There is a direct effect of parental views on their daughters’ opinions in
the same domain, i.e., parents who reported a conservative view on girls’ participation
in making decisions tend to lead their daughters to think alike. The same scenario
is true for mobility, where daughters tend to reproduce their parents’ views. On the
contrary, the effect is small when we consider parental opinions of one domain on
their daughters’ views of the other domain.

As new cases come one by one at a time sequence (t = 1, 2, . . . T ), instead of
re-running the estimation algorithm, we give a recursion to predict the LV case values
for the new observation. To do so, the estimated parameter matrices based on the
training sample and the Kálmán filtering technique will be used. Theorem 3.1 discusses
the recursion from which the optimal prediction of the latent case values is obtained
along with the covariance matrix of the prediction error. Specifically, the prediction

of η̂t utilizes the estimated ξ̂t and the new observation Xt, while the new Yt and the

obtained η̂t are necessary to find ξ̂t+1. To start the recursion, the first propagated
matrix P1 ought to be initialized from the training sample. Then, the Kálmán gain
matrices Kt and Mt are obtained. The succession of calculations follows the order:

Pt →Kt → η̂t → η̌t → P ∗
t →Mt → ξ̌t+1 → ξ̂t+1 → X̂t+1 → Pt+1.

For t = 1, we show the results of the highlighted matrices of the recursion as
they are derived in Section 3.1 and Section 3.2.
First stage: X1 → η̂1

P1 =

( ξ1 ξ2

.007 .005

.005 .003

)
,



194 Marianna Bolla and Fatma Abdelkhalek

K1 =

( x1 x2 x3 x4 x5 x6 x7

−.018 −.036 −.036 −.022 .022 .064 .051
−.013 −.025 −.025 −.015 .015 .045 .036

)
,

η̂1 =
( η1 η2

.601 −.377
)
, P ∗

1 =

( η1 η2

.878 −.070
−.070 .664

)
.

where η̂1 show the predicted case values based on the information X1 of the new
observation; and P ∗

1 is the covariance matrix of the prediction error of η̂1.

Second stage: Y1 → ξ̂2

M1 =

( y1 y2 y3 y4 y5 y6 y7

.005 .016 .019 .009 −.022 −.042 −.034

.032 .011 .007 .018 .041 .086 .064

)
,

ξ̂2 =
( ξ1 ξ2

−.595 −1.460
)
, P2 =

( ξ1 ξ2

.993 −.014
−.014 .985

)
.

where ξ̂2 presents the estimated case values for the exogenous LVs at t = 2 based

on the new information Y1. Then the covariance matrix of the prediction error ξ̂2 is
obtained. From this we can calculate the propagation matrix P2 to start the recursion
once again at t = 2 for the next new observation.

The root mean square error (RMSE) statistic measures the prediction errors.
For the test sample of size 70 observations, we compared the predicted LV case values
that are obtained from the Wold algorithm and the filtering technique, simultaneously.
Table 1 shows the values of RSME. It indicates that the prediction capability of the
filtering technique and that of the Wold algorithm are quite homogeneous. Moreover,
the difference (in Frobenius norm) between the error covariance and gain matrices in
the tth and (t+ 1)th consecutive steps of the recursion are displayed in Table 2. This
shows that these matrices are stabilized after the first few steps.

Table 1. RMSE for the predictions of the test sample.

Test Obs. at Wold Prediction (W) Filtering Prediction (F)

Sequence “t” ξ̂1t ξ̂2t η̂1t η̂2t ξ̂1t ξ̂2t η̂1t η̂2t
1 -.44005 -.28108 -.25305 -.46325 -.33149 -.52816 -.32865 -.14788
2 .68377 .28108 .84937 -.46325 .89402 .30331 .44740 -.34648
3 .68377 .28108 .84937 -.46325 .35488 .18442 .46531 -.36156
4 .59157 1.50271 .18313 1.18603 .59467 2.43277 .73569 2.05939
...

...
...

...
...

...
...

...
...

70 -.53202 -.28108 -.69213 -.46325 -.47413 -.54895 -.59782 -.31266

RMSE:
√

1
T

∑T
t=1(W (LVt)− F (LVt))2 .3075 .4033 .3117 .3229
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Table 2. Consecutive norm for gain and propagation of predictions.

Sequence Frobenius Norm ||.||F
“t” Pt+1 − Pt Kt+1 −Kt P ∗

t+1 − P ∗
t Mt+1 −Mt

1 - - - -
2 1.391595 .5148828 .008475387 8.145129e-5
3 7.044589e-7 7.491063e-9 1.094965e-10 1.138605e-12
4 9.341999e-15 1.487013e-16 4.388542e-17 1.357636e-17
5 1.734723e-18 0 0 0
6 0 0 0 0
...

...
...

...
...

70 0 0 0 0

In sum, the numerical results show a good performance of our proposed algo-
rithm. Once the specified matrices are obtained from the training sample, the Kálmán
filtering technique yields an optimal prediction for the LV case values along with the
error covariance matrices for the test sample.

5. Discussion and Conclusion

It should be emphasized that the PLS method of Wold is applicable to a given
sample, where estimates for the endogeneus variables are given through the exogenous
latent ones, and the case values of the LVs are also estimated. The algorithm uses
a lot of OLS regressions and so, the estimation of the coefficient matrices is time
demanding akin to the block Cholesky decomposition we use. This is the case when we
have a long time series with small time intervals or data when the observations come
frequently in subsequent order. Our point is that for the new observations, we need
not to repeat the whole estimation procedure to obtain the model parameters, but
instead we can update the latent variable scores with the help of the new observable
data, the estimated matrices, and the Kálmán filtering technique.

In this way, an artificial intelligence is developed. The parameter matrices are
estimated from a training sample at the beginning, and the latent variable scores are
estimated as observable variables arrive one by one from the test sample. Moreover,
there is no need for any distribution assumptions and the data are not necessarily
independent. It should be noted that in the possession of a stationary time series, the
matrix sequences Kt and Mt (as t→∞) tend to fixed points of an iteration finding
the solution of a matrix Riccati equation (see [4]), but this is the topic of a further
research.
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Abstract. Steady motion of two types of incompressible Maxwell fluids with
power-law dependence of viscosity on the pressure is analytically studied between
infinite horizontal parallel plates when the gravity effects are taken into consid-
eration. Simple and exact expressions are established for the permanent compo-
nents of starting solutions corresponding to two oscillatory motions induced by
the lower plate that oscillates in its plane. Such solutions are very important for
the experimentalists who want to eliminate the transients from their experiments.
The similar solutions for the simple Couette flow of the same fluids, as well as
the permanent solutions corresponding to ordinary incompressible Maxwell fluids
performing the same motions, are obtained as limiting cases of general solutions.
The convergence of starting solutions to their permanent components as well as
the influence of physical parameters on the fluid motion is graphically underlined
and discussed.
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1. Introduction

Generally, in isothermal processes, the fluid viscosity depends on the flow con-
ditions and particularly on the shear-rate and pressure. The first who remarked that
the fluid viscosity could depend on the pressure was Stokes in his seminal work [21].
He also delineated motions in which the viscosity can be considered constant. Later,
experiments by Barus [2], Bridgman [3], Griest et al. [9], Bair et al. [1], Prusa et al. [16]
and so on certified this dependence. A linear dependence of viscosity on the pressure
was proposed by Barus [2] for low to medium pressure difference. At large pressure
differences, power or exponential law seems to be more suitable. In any case, exact
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solutions for steady (permanent) or unsteady motions of non-Newtonian fluids with
the pressure-dependent viscosity are lack in the existing literature excepting those of
Housiadas [10, 11] corresponding to a linear law of viscosity on the pressure.

In the following, we shall determine simple closed form solutions for the perma-
nent velocity fields corresponding to some unsteady motions of Maxwell fluids with
power-law dependence of the viscosity on the pressure. It is worth to point out the
fact that high pressure differences appear in many engineering applications such as
polymer processing operations [5], fluid film lubrication [22], microfluidics [4], phar-
maceutical tablet manufacturing, food processing and geophysics [20]. Techniques for
measuring the pressure dependent viscosity and of the pressure-viscosity coefficient
can be found in the work of Goubert et al. [8], respectively Park et al. [14]. An ex-
tensive literature regarding experimental and theoretical studies on these fluids was
provided by Malek and Rajagopal [13].

On the other hand, the gravity effects are important in many flows of the fluids
with practical applications. They are stronger in the case of fluid motions in which the
gravity acts along the direction in which the pressure varies. The first exact solutions
for steady motions of the Newtonian fluids with pressure-dependent viscosity are
those of Rajagopal [17, 18] between parallel plates or over an inclined plane due to
the gravity. Exact expressions in terms of the Kelvin functions have been established
by Prusa [15] for the solutions of modified Stokes problems of the same fluids. General
solutions for the same motions of the incompressible Newtonian fluids with power-
law or exponential dependence of viscosity on the pressure have been determined by
Rajagopal et al. [19] and Fetecau and Vieru [7].

In the present work we provide the first exact and simple expressions for per-
manent solutions corresponding to two oscillatory motions of incompressible Maxwell
fluids with exponential dependence of viscosity on the pressure between infinite hori-
zontal parallel plates. The fluid motion is generated by the lower plate that oscillates
in its plane. The similar solutions for the simple Couette flow of the same fluids as
well as some known solutions for the Newtonian fluids performing the same motions
are obtained as limiting cases of general solutions. Such solutions are important for
the experimentalists who want to eliminate the transients from their experiments. In
addition, they can be also used as tests to verify different numerical methods that are
used to study complex flow problems. Finally, the convergence of starting solutions
(numerical solutions) to their permanent components, as well as the effect of physical
parameters on the fluid motion, is graphically underlined and discussed.

2. Statement of the problem

Let us consider an incompressible upper-convected Maxwell (UCM) fluid with
power-law dependence of viscosity on the pressure at rest between two infinite hori-
zontal parallel plates at the distance d apart. Its constitutive equations, as it results
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from [12], are

T = −pI + S, S + λ δS
δt = η(p)A

with trA = 0 and δS
δt = dS

dt − LS− SLT,
(2.1)

where T is the Cauchy stress tensor, S the extra-stress tensor, I is the unit tensor,
A is the first Rivlin-Ericksen tensor, L is the gradient of the velocity vector u, p is
the Lagrange multiplier, λ is the relaxation time and η(p) is the fluid viscosity which
depends on the pressure.

In the next, we determine exact expressions for the permanent (steady-state or
long-time) solutions corresponding to some motions of the incompressible UCM fluids
with power-law dependence of viscosity on the pressure of the forms

η(p) = µ[α(p− p0) + 1]2 or η(p) = µ[α(p− p0) + 1]1/2, (2.2)

where µ is the fluid viscosity at the reference pressure p0 and the positive constant α
is the dimensional pressure-viscosity coefficient. The gravitational effects will be also
taken into consideration. If α = 0, η(p) = µ and Eqs. (2.1) correspond to the ordinary
UCM fluids. If both α and λ are zero, the governing equations (2.1) correspond to
incompressible ordinary Newtonian fluids.

At the moment t = 0+ the lower plate begins to oscillate in its plane according
to

u = U cos(ωt)i or u = U sin(ωt)i, (2.3)

where i is the unit vector along the x-direction of a suitable Cartesian coordinate
system x, y and z while U and ω are the amplitude, respectively the frequency of the
oscillations. Due to the shear the fluid is gradually moved and we are looking for a
solution of the form [15, 19, 12]

u = u(y, t)i, p = p(y). (2.4)

Using Eqs. (2.4) in (2.1) and introducing the obtained results in the balance of linear
momentum, we get the following relevant partial or ordinary differential equations
[12]

τ(y, t) + λ∂τ(y,t)∂t = η(p)∂u(y,t)∂y , ρ∂u(y,t)∂t = ∂τ(y,t)
∂y ,

dp(y)
dy + ρg = 0; 0 < y < d, t > 0,

(2.5)

where τ(y, t) is the non-trivial shear stress, ρ is the fluid density and g is the grav-
itational acceleration. The incompressibility condition is automatically satisfied and
Eq. (2.5)3 implies

p(y) = ρg(d− y) + p0 with p0 = p(d). (2.6)

Eliminating τ(y, t) between Eqs. (2.5)1 and (2.5)2 and bearing in mind the expressions
of η(p) and p(y) from Eqs. (2.2) and (2.6), we find the next governing equations

µ[αρg(d− y) + 1]2 ∂
2u(y,t)
∂y2 − 2µαρg[αρg(d− y) + 1]∂u(y,t)∂y

= ρ
[
λ∂

2u(y,t)
∂t2 + ∂u(y,t)

∂t

]
; 0 < y < d, t > 0,

(2.7)
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µ
√
αρg(d− y) + 1∂

2u(y,t)
∂y2 − µαρg

2
√
αρg(d−y)+1

∂u(y,t)
∂y

= ρ
[
λ∂

2u(y,t)
∂t2 + ∂u(y,t)

∂t

]
; 0 < y < d, t > 0,

(2.8)

for the velocity field u(y, t) corresponding to the motion of the two types of UCM fluids
with power-law dependence of viscosity on the pressure between infinite horizontal
parallel plates.

The appropriate initial and boundary conditions are given by the relations

u(y, 0) = 0,
∂u(y, t)

∂t

∣∣∣∣
t=0

= 0 if 0 ≤ y ≤ d, (2.9)

u(0, t) = U cos(ωt) or u(0, t) = U sin(ωt), u(d, t) = 0 for t > 0. (2.10)

Introducing the following non-dimensional variables, functions and parameters

y∗ =
y

d
, t∗ =

ν t

d2
, u∗ =

u

U
, τ∗ =

τ d

µU
, ω∗ =

d2

ν
ω, α∗ = αρgd, (2.11)

where ν = µ/ρ is the kinematic viscosity of the fluid and dropping out the star nota-
tion, we obtain the following two dimensionless initial and boundary value problems

[α(1− y) + 1]2 ∂
2u(y,t)
∂y2 − 2α[α(1− y) + 1]∂u(y,t)∂y

= We∂
2u(y,t)
∂t2 + ∂u(y,t)

∂t ; 0 < y < 1, t > 0,

(2.12)

u(y, 0) = ∂u(y,t)
∂t

∣∣∣
t=0

= 0, 0 ≤ y ≤ 1;

u(0, t) = cos(ωt) or sin(ωt), u(1, t) = 0 for t > 0,

(2.13)

and √
α(1− y) + 1∂

2u(y,t)
∂y2 − α

2
√
α(1−y)+1

∂u(y,t)
∂y

= We∂
2u(y,t)
∂t2 + ∂u(y,t)

∂t ; 0 < y < 1, t > 0,

(2.14)

u(y, 0) = ∂u(y,t)
∂t

∣∣∣
t=0

= 0, 0 ≤ y ≤ 1;

u(0, t) = cos(ωt) or sin(ωt), u(1, t) = 0 for t > 0,

(2.15)

where We = λν/d2 = λ/(d2/ν) is the Weissenberg number (the ratio of the relaxation
time of the fluid and a characteristic time scale).

3. Solution

In the following, in order to avoid confusion, we shall denote by uc(y, t) and
us(y, t) the starting solutions of the dimensionless initial and boundary value problems
characterized by Eqs. (2.12), (2.13) or (2.14), (2.15). Generally, these solutions can
be written as sums of their permanent and transient components, namely

uc(y, t) = ucp(y, t) + uct(y, t), us(y, t) = usp(y, t) + ust(y, t). (3.1)
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Some time after the motion initiation, the fluid moves according to starting solutions.
After this time when the transients disappear or can be neglected, its movement
is characterized by the permanent solutions ucp(y, t) or usp(y, t). In practice, the
experimentalists want to know the required time to reach the permanent state. This
is the time after which the fluid flows according to the permanent solutions. In order
to determine it, at least the permanent solutions corresponding to a given motion
have to be known. This is the reason that, in this section, we shall determine closed
form expressions for these solutions only.

3.1. Case η(p) = µ[αρg(d− y) + 1]2

To determine both permanent solutions in the same time, we use the complex
velocity

up(y, t) = ucp(y, t) + iusp(y, t), (3.2)

where i is the imaginary unit. This velocity has to satisfy the partial differential
equation

[α(1− y) + 1]2
∂2up(y,t)
∂y2 − 2α[α(1− y) + 1]

∂up(y,t)
∂y

= We
∂2up(y,t)

∂t2 +
∂up(y,t)

∂t ; 0 < y < 1, t ∈ R,
(3.3)

with the boundary conditions

up(0, t) = eiω t, up(1, t) = 0; t ∈ R. (3.4)

Making the following suitable change of the spatial variable

y =
α+ 1− er

α
or equivalently r = ln[α(1− y) + 1], (3.5)

Eq. (3.3) takes the simpler form

α2
[
∂2up(r,t)
∂r2 +

∂up(r,t)
∂r

]
= We

∂2up(r,t)
∂t2 +

∂up(r,t)
∂t ;

0 < r < a, t > 0,

(3.6)

where a = ln(α+ 1). The corresponding boundary conditions are

up(0, t) = 0, up(a, t) = eiω t; t ∈ R. (3.7)

Following [12], we are looking for a solution of the form

up(r, t) = U(r)eiω t; r ∈ (0, a), t ∈ R. (3.8)

Substituting up(r, t) from Eq. (3.8) in (3.6), we find that the unknown function U(r)
has to satisfy the following boundary value problem

α2[U ′′(r) + U ′(r)] + ω(ωWe− i)U(r) = 0 ; U(0) = 0, U(a) = 1. (3.9)

The solution of this boundary value problem is given by the next equality

U(r) =
er2r − er1r

er2a − er1a
; r1,2 =

−1±
√

1− 4ω(ωWe− i)/α2

2
. (3.10)
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Consequently, the complex velocity field up(y, t) is given by

up(y, t) =
[α(1− y) + 1]

r2 − [α(1− y) + 1]
r1

(α+ 1)
r2 − (α+ 1)

r1 eiωt; 0 < y < 1, t > 0, (3.11)

and the dimensionless permanent velocities ucp(y, t) and usp(y, t) have the expressions

ucp(y, t) = Re

{
[α(1− y) + 1]

r2 − [α(1− y) + 1]
r1

(α+ 1)
r2 − (α+ 1)

r1 eiω t
}
, (3.12)

usp(y, t) = Im

{
[α(1− y) + 1]

r2 − [α(1− y) + 1]
r1

(α+ 1)
r2 − (α+ 1)

r1 eiω t
}
, (3.13)

where Re and Im denote the real, respectively the imaginary part of that which
follows.

3.2. Case η(p) = µ[α(p− p0) + 1]1/2

In this case the corresponding dimensionless complex velocity up(y, t) has to
satisfy the following partial differential equation√

α(1− y) + 1
∂2up(y,t)
∂y2 − α

2
√
α(1−y)+1

∂up(y,t)
∂y

= We
∂2up(y,t)

∂t2 +
∂up(y,t)

∂t ; 0 < y < 1, t ∈ R,

(3.14)

with the same boundary conditions (3.4). Making the change of spatial variable

y =
α+ 1− r2

α
or equivalently r =

√
α(1− y) + 1, (3.15)

we attain to the next boundary value problem

α2

4r

∂2up(r, t)

∂r2
= We

∂2up(r, t)

∂t2
+
∂up(r, t)

∂t
; 1 < r < b, t > 0, (3.16)

where the constant b =
√
α+ 1.

Looking again for a solution of the form (3.8), we find that the corresponding
function U(r) has to satisfy the following boundary value problem

α2U ′′(r) + 4γ rU(r) = 0 ; U(1) = 0, U(b) = 1, (3.17)

where γ = ω(ωWe − i). The equation (3.17) is an ordinary differential equation of
Airy type whose general solution is of the form

U(r) =
√
r

[
C1J1/3

(
4r

3α

√
γ r

)
+ C2Y1/3

(
4r

3α

√
γ r

)]
, (3.18)

where C1 and C2 are arbitrary constants. On the basis of the boundary conditions
(3.17)2 and (3.17)3, it immediately results that

U(r) =

√
r√
b

Y 1
3

(
4
√
γ

3α

)
J 1

3

(
4r
3α

√
γ r
)
− J 1

3

(
4
√
γ

3α

)
Y 1

3

(
4r
3α

√
γ r
)

Y 1
3

(
4
√
γ

3α

)
J 1

3

(
4b
3α

√
γ b
)
− J 1

3

(
4
√
γ

3α

)
Y 1

3

(
4b
3α

√
γ b
) . (3.19)
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Consequently, the dimensionless velocity fields corresponding to this problem are

ucp(y, t) =

√
r√
b

Re

Y 1
3

(
4
√
γ

3α

)
J 1

3

(
4r
3α

√
γ r
)
− J 1

3

(
4
√
γ

3α

)
Y 1

3

(
4r
3α

√
γ r
)

Y 1
3

(
4
√
γ

3α

)
J 1

3

(
4b
3α

√
γ b
)
− J 1

3

(
4
√
γ

3α

)
Y 1

3

(
4b
3α

√
γ b
) eiω t

 , (3.20)

usp(y, t) =

√
r√
b

Im

Y 1
3

(
4
√
γ

3α

)
J 1

3

(
4r
3α

√
γ r
)
− J 1

3

(
4
√
γ

3α

)
Y 1

3

(
4r
3α

√
γ r
)

Y 1
3

(
4
√
γ

3α

)
J 1

3

(
4b
3α

√
γ b
)
− J 1

3

(
4
√
γ

3α

)
Y 1

3

(
4b
3α

√
γ b
) eiω t

 , (3.21)

where r =
√
α(1− y) + 1. These solutions, as well as those given by Eqs. (3.12)

and (3.13), are independent of initial conditions (2.15)1 and (2.15)2 but satisfy the
boundary conditions and the corresponding governing equations (2.12), respectively
(2.14).

4. Limiting cases

In order to obtain the steady solutions corresponding to the simple Couette flow
of the same fluids, as well as the permanent solutions for incompressible ordinary
UCM fluids performing the same motions or to recover some known results from the
existing literature, we shall consider in this section three special cases.

4.1. Case ω → 0 (Simple Couette flow)

Taking the limit of the permanent solution ucp(y, t) given by Eq. (3.12) when
ω → 0 and using the asymptotic approximations

Jν(z) ≈ zν

2νΓ(ν + 1)
, Yν(z) ≈ −2νΓ(ν)

πzν
for ν > 0 and z << 1, (4.1)

for ucp(y, t) given by Eq. (3.20), we recover the steady solutions [[6], Eqs. (44)]

uCp(y) =
(α+ 1)(1− y)

α(1− y) + 1
, respectively uCp(y) =

√
α(1− y) + 1− 1√

α+ 1− 1
, (4.2)

corresponding to the simple Couette flow of the two types of incompressible New-
tonian fluids with power-law dependence of viscosity on the pressure. This is not
a surprise since the governing equations corresponding to steady motions of incom-
pressible Newtonian or UCM fluids with/without pressure dependent viscosity are
identical. It is important to point out the fact that the dimensionless steady solutions
given by Eqs. (4.2) can be directly obtained from the corresponding boundary value
problems. They correspond to the fluid motion induced by the lower plate that is
moving in its plane with the constant velocity U.

4.2. Case α→ 0 (Flows of ordinary incompressible UCM fluids)

The governing equation corresponding to unsteady motions of incompressible
ordinary UCM fluids between infinite horizontal parallel plates, namely

We
∂2u(y, t)

∂t2
+
∂u(y, t)

∂t
=
∂2u(y, t)

∂y2
; 0 < y < 1, t > 0, (4.3)
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is obtained making α→ 0 in any one of the equations (2.12) or (2.14). Consequently,
the velocity fields uOcp(y, t) and uOsp(y, t) corresponding to unsteady motions of
these fluids generated by cosine, respectively sine oscillations of the lower plate can
be obtained as limiting cases of the solutions ucp(y, t) and usp(y, t) given by Eqs.
(3.12), (3.13) or (3.20), (3.21). Using the well known asymptotic approximations

Jν(z) ≈
√

2
πz cos

[
z − (2ν+1)π

4

]
,

Yν(z) ≈
√

2
πz sin

[
z − (2ν+1)π

4

]
for z >> 1,

(4.4)

in Eqs. (3.20) and (3.21), it is easy to show that for small enough values of the
dimensionless pressure-viscosity coefficient α

ucp(y, t) ≈
8
√
α+ 1

8
√
α(y − 1) + 1

Re


sin

{
4
√
γ

3α

[
1− 4

√
[α(1− y) + 1]

3

]}
sin

{
4
√
γ

3α

[
1− 4

√
(α+ 1)

3

]} eiω t

 , (4.5)

usp(y, t) ≈
8
√
α+ 1

8
√
α(y − 1) + 1

Im


sin

{
4
√
γ

3α

[
1− 4

√
[α(1− y) + 1]

3

]}
sin

{
4
√
γ

3α

[
1− 4

√
(α+ 1)

3

]} eiω t

 . (4.6)

Now, using the Maclaurin series expansions for [1 + α(1− y)]3/4 and (1 + α)3/4 in
Eqs. (4.5) and (4.6) and taking their limits when α → 0, we get the permanent
solutions

uOcp(y, t) = Re

{
sin[(1−y)

√
γ]

sin(
√
γ) eiω t

}
,

uOsp(y, t) = Im

{
sin[(1−y)

√
γ]

sin(
√
γ) eiω t

}
,

(4.7)

corresponding to the incompressible ordinary UCM fluids performing the same mo-
tions. To the best of our knowledge, the solutions given by Eqs. (4.7) are also new in
the literature. As expected, making α→ 0 in any one of the equalities (4.2) or ω → 0
in Eq. (4.7)1, the steady velocity field uNCp(y) = 1 − y corresponding to the simple
Couette flow of incompressible ordinary Newtonian fluids is recovered.

4.3. Case We→ 0 (Flows of Newtonian fluids with pressure-dependent viscosity)

By now letting We → 0 in all results that have been obtained in the third
section, we recover the dimensionless permanent solutions corresponding to the two
types of incompressible Newtonian fluids with power-law dependence of viscosity on
the pressure performing the same motions. More precisely, the permanent velocity
fields ucp(y, t) and usp(y, t) given by Eqs. (3.12), (3.13) and (3.20), (3.21) take the
simplified forms [6]

uNcp(y, t) = Re

{
[α(1− y) + 1]

r4 − [α(1− y) + 1]
r3

(α+ 1)
r4 − (α+ 1)

r3 eiω t
}
, (4.8)
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uNsp(y, t) = Im

{
[α(1− y) + 1]

r4 − [α(1− y) + 1]
r3

(α+ 1)
r4 − (α+ 1)

r3 eiω t
}
, (4.9)

respectively

uNcp(y, t) =

√
r√
b
Re

{
Y 1

3

(
4
√
−iω
3α

)
J 1

3
( 4r

3α

√
−iωr)−J 1

3

(
4
√
−iω
3α

)
Y 1

3
( 4r

3α

√
−iω r)

Y 1
3

(
4
√
−iω
3α

)
J 1

3
( 4b

3α

√
−iωb)−J 1

3

(
4
√
−iω
3α

)
Y 1

3
( 4b

3α

√
−iω b)

eiω t

}
,

(4.10)

uNsp(y, t) =

√
r√
b
Im

{
Y 1

3

(
4
√
−iω
3α

)
J 1

3
( 4r

3α

√
−iωr)−J 1

3

(
4
√
−iω
3α

)
Y 1

3
( 4r

3α

√
−iω r)

Y 1
3

(
4
√
−iω
3α

)
J 1

3
( 4b

3α

√
−iωb)−J 1

3

(
4
√
−iω
3α

)
Y 1

3
( 4b

3α

√
−iω b)

eiω t

}
,

(4.11)

where r3,4 =
−1±
√

1+4iω/α2

2 .

5. Numerical results, discussion and conclusions

Generally, starting solutions corresponding to oscillatory motions of fluids can
be presented as sums of their permanent and transient components. As it is known,
the transient solutions tend to zero for increasing values of the time t. Consequently,
the transients disappear in time and in practice it is important to know the time after
which the fluid flows according to the permanent solution. This is the required time to
reach the permanent state. To determine it, for a given motion, at least the permanent
solution has to be known. This is the reason that we established here closed form
expressions for the permanent solutions corresponding to some oscillatory motions of
two types of incompressible UCM fluids with power-law dependence of viscosity on
the pressure.

These expressions have been also used to determine the similar solutions (4.2)1
and (4.2)2 for the simple Couette flow of the same fluids and to provide the cor-
responding solutions from Eqs. (4.8)-(4.11) for ordinary incompressible UCM fluids
performing the same motions. In addition, as a proof of their correctness, known
solutions for the incompressible Newtonian fluids with power-law dependence of the
viscosity on the pressure performing the same motions have been obtained as limiting
cases of present solutions.

In order to get some physical insight of results that have been here obtained,
as well as to certify their correctness, Figs 1-4 have been prepared for different val-
ues of the physical parameters and the time t. Figs. 1 and 2 clearly show that, as
expected, the starting solutions uc(y, t) corresponding to the motion of the two types
of incompressible UCM fluids with power-law dependence of viscosity on the pressure
induced by cosine oscillations of the lower plate converge to their permanent compo-
nents ucp(y, t) given by Eqs. (3.12) and (3.20). Furthermore, from these figures it also
results that the required time to reach the permanent state diminishes for decreasing
values of the Weissenberg number We. Consequently, the permanent state is rather
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obtained for oscillatory motions of Newtonian fluids as compared to UCM fluids with
power-law dependence of viscosity on the pressure.

(a) We = 0.3

(b) We = 0.7

Figure (1) Convergence of starting solution uc(y, t) (numerical so-
lution) to its permanent component ucp(y, t) given by Eq. (3.12) for
α = 0.95, ω = π/12 and two values of We.

In the subsection 4.2 we analytically proved that, if the dimensionless pressure-
viscosity coefficient α → 0, the permanent solutions ucp(y, t) and usp(y, t) given
by Eqs. (3.20) and (3.21) tend to the permanent solutions uOcp(y, t), respectively
uOsp(y, t) corresponding to the ordinary incompressible UCM fluids performing the
same motions. For completion, as well as for the results validation, Figs. 3 have been
prepared to show the convergence of the other permanents solutions ucp(y, t) and
usp(y, t) given by Eqs. (3.12) and (3.13) to uOcp(y, t) and uOsp(y, t). In all cases, the
fluid velocity smoothly decreases from maximum values on the lower plate to the zero
value on the stationary wall.

The time variations of the dimensionless mid plane velocity fields ucp(0.5, t)
and usp(0.5, t) given by Eqs. (3.12) and (3.13) have been depicted in Figs. 4 for
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(a) We = 0.3

(b) We = 0.7

Figure (2) Convergence of starting solution uc(y, t) (numerical so-
lution) to its permanent component ucp(y, t) given by Eq. (3.20) for
α = 0.95, ω = π/12 and two values of We.

ω = π/12 and We = 0.2 and three different values of the pressure-viscosity coefficient
α. The oscillatory specific features of the two motions are better underlined and the
oscillations’ amplitude diminishes for decreasing values of the parameter α. As it was
to be expected, the order of magnitude of the oscillations’ amplitude is the same for
both motions and the phase difference is clearly observed.
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Abstract. Real continuous submodular functions, as a generalization of the corre-
sponding discrete notion to the continuous domain, gained considerable attention
recently. The analog notion for entropy functions requires additional properties:
a real function defined on the non-negative orthant of Rn is entropy-like (EL)
if it is submodular, takes zero at zero, non-decreasing, and has the Diminishing
Returns property. Motivated by problems concerning the Shannon complexity of
multipartite secret sharing, a special case of the following general optimization
problem is considered: find the minimal cost of those EL functions which satisfy
certain constraints. In our special case the cost of an EL function is the maximal
value of the n partial derivatives at zero. Another possibility could be the supre-
mum of the function range. The constraints are specified by a smooth bounded
surface S cutting off a downward closed subset. An EL function is feasible if at
the internal points of S the left and right partial derivatives of the function differ
by at least one. A general lower bound for the minimal cost is given in terms of
the normals of the surface S. The bound is tight when S is linear. In the two-
dimensional case the same bound is tight for convex or concave S. It is shown
that the optimal EL function is not necessarily unique. The paper concludes with
several open problems.
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1. Introduction

Continuous submodularity is a generalization of the discrete notion of submod-
ularity to the continuous domain. It has gained considerable attention recently [2, 4]
as efficient convex optimization methods can be extended to find the minimal and
maximal value of special multivariable continuous submodular functions over a com-
pact and convex domain. Such optimization algorithms have important applications



212 Laszlo Csirmaz

in many areas of computer science and applied mathematics such as training deep
neural networks [5], design of online experiments [6], or budget allocation [12]. For
more information see [1].

Interestingly, the same class of continuous submodular functions arises when the
continuous version of multipartite secret sharing schemes is considered. In classical
secret sharing [3] each participant receives a piece of information – their shares –
such that a qualified subset of participants can recover the secret from the shares
they received, while unqualified subsets – based on their shares only – should have no
information on the secret’s value at all. In the multipartite case [8, 9] participants are
in n disjoint groups, and members in the same group have equal roles. In particular,
a qualified subset is described uniquely by the n numbers telling how many members
this subset has from each group. The main question in secret sharing is the efficiency
– also called complexity – of the scheme, which is typically defined as the worst-case
ratio of the size of any of the shares (measured by their Shannon entropy) and the
size of the secret. Keeping track of the total entropy of different subsets of shares, tra-
ditional entropy inequalities imply a lower bound on the complexity [9, 10] known as
the Shannon-bound. No general method is known which would effectively determine,
or even estimate, the Shannon bound for an arbitrary collection of qualified subsets,
and numerical computation is intractable even for moderately sized problems. Inves-
tigating the same question in the continuous domain allows applying analytical tools,
and results achieved this way might shed light on the discrete case. This paper, based
partly on the last section of [7], is an attempt to initiate such a line of research.

No notion from secret sharing or from information theory will be used later
as they only serve as motivation for the definitions. The family of real functions
corresponding to the (normalized) multipartite entropy will be called entropy-like
functions and abbreviated as EL. This function family is defined in Section 2; actually
it is the family of pointed, increasing, submodular functions with the “Diminishing
Returns” property, see [4].

The optimization problem corresponding to finding an optimal multipartite se-
cret sharing scheme is discussed in Section 3. It differs from the well-studied optimiza-
tion problem for submodular functions [2, 4], where some member of the continuous
submodular function family is given, and the task is to find its maximal (minimal)
value over a compact, convex set. In our case the optimization problem asks to find
an EL function with the smallest cost satisfying certain constraints. Two cost func-
tions are considered. The first one corresponds to the discrete worst case complexity
discussed above, and it is the maximal partial derivative of the EL function at the
origin. The second possibility is the supremum of the function range; it corresponds
to another frequently investigated complexity measure in the discrete case: the total
randomness used by the scheme. In Section 3 a general lower bound for the worst
case complexity is given as Theorem 3.4. This bound is tight when the constraints
are specified by some linear surface.

Section 4 presents results for the bipartite, two-dimensional case. General con-
structions show that the lower bound of Theorem 3.4 is also tight for strictly convex or
strictly concave constraint curves. An alternate construction shows that the optimal
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EL function is not necessarily unique. Finally, Section 5 concludes the paper with a
list of open problems.

2. Submodular and entropy-like functions

A real function f defined on subsets of a set is submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

for arbitrary subsets A andB, see [2] and references therein. The same notion extended
to an arbitrary lattice requires

f(A) + f(B) ≥ f(A ∧B) + f(A ∨B)

for any two lattice members A and B. In particular, the n-variable real function f is
submodular if it is submodular in the lattice determined by the partial order on Rn

defined by x ≤ y if and only if xi ≤ yi for all coordinates 1 ≤ i ≤ n. In this case
x∧ y = min(x, y) and x∨ y = max(x, y) where minimization (maximization) is taken
coordinatewise, and the submodularity condition rewrites to

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y)).

Entropy-like real functions, also called EL functions, share additional properties with
discrete Shannon entropy functions [13], and are defined as follows.

Defnition 2.1. The n-variable real function f is entropy-like, or EL function for short,
if it satisfies properties (a) – (e) below.

(a) f is defined on the non-negative orthant Rn
>0 = {x ∈ Rn : x ≥ 0}.

(b) f is submodular.
(c) f(0) = 0 (f is pointed).
(d) f is non-decreasing: if 0 ≤ x ≤ y then f(x) ≤ f(y).
(e) f has the “Diminishing Returns” property [4]. It means that for two points

0 ≤ x ≤ y differing only in their i-th coordinate, increasing that coordinate at x
and also at y by the same amount ε, the gain at y is never bigger than the gain
at x. Formally, if ei is the i-th unit vector and y = x+ λei for some λ > 0, then
for every ε > 0,

f(x+ εei)− f(x) ≥ f(y + εei)− f(y). (2.1)

The “Diminishing Returns” property models the natural expectation that adding
one more unit of some resource contributes more in the case when one has less available
amount of that resource.

The left and right partial derivatives of the n-variable function f at x ∈ Rn are
denoted by f−i (x) and f+i (x), respectively, and their definition goes as

f−i (x) = lim
ε→+0

f(x)− f(x− εei)
ε

and
f+i (x) = lim

ε→+0

f(x+ εei)− f(x)

ε

assuming that the corresponding limits exist. Here ei is the i-th unit vector.
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The following claim summarizes some basic properties of EL functions.

Claim 2.2. Let f be an n-variable EL function.

(a) f is continuous.
(b) f is concave along any positive direction: if 0 ≤ x ≤ y and 0 ≤ λ ≤ 1 then

λf(x) + (1− λ)f(y) ≤ f(λx) + (1− λ)y).

(c) The Diminishing Returns property (2.1) holds for arbitrary pair of points
0 ≤ x ≤ y.

(d) f has both left and right partial derivatives at every point of its domain.
(e) The partial derivatives are non-negative and non-increasing along any positive

direction.

Proof. (a) It is enough to show that f is continuous along every coordinate. By
property (d) it is monotone increasing. The left limit limε→+0 f(x − εei) cannot be
strictly smaller than the right limit limε→+0 f(x + εei) as this would contradict the
Diminishing Returns property.

(b) Continuity and the Diminishing Returns property ensures that f is concave
along each coordinate. It means that statement (b) is true when points x and y
share n − 1 coordinates. Suppose we have two points sharing i coordinates, and the
claim has been established for point pairs sharing i+ 1 or more coordinates. Denote
these points by (c, x, a) and (d, y, a) where a stands for the joint i coordinates, x and
y are real numbers, and c and d are the remaining tuples. The linear combination
λ(c, x, a) + (1−λ)(d, y, a) is shortened to (c |◦ d, x |◦ y, a). Using (c, x, a) ≤ (d, y, a) and
the induction hypothesis for n− 1 (first line) and for i+ 1 (next two lines) we have

λf(c |◦ d, x, a) + (1− λ)f(c |◦ d, y, a) ≤ f(c |◦ d, x |◦ y, a),

λf(c, x, a) + (1− λ)f(d, x, a) ≤ f(c |◦ d, x, a),

λf(c, y, a) + (1− λ)f(d, y, a) ≤ f(c |◦ d, y, a).

From here the required inequality

λf(c, x, a) + (1− λ)f(d, y, a) ≤ f(c |◦ d, x |◦ y, a)

follows as the submodularity for the points (c, y, a) and (d, x, a) gives

f(c, y, a) + f(d, x, a) ≥ f(c, x, a) + f(d, y, a).

(c) Similarly to (b) by induction on how many coordinates x and y have in
common. Observe that if x and y do not differ at their i-th coordinate then (2.1) is
equivalent to submodularity.

(d) This is immediate as f is continuous and non-decreasing.
(e) Non-negativity is clear. Monotonicity: if x ≤ y then, for example,

f+i (x) = lim
ε→+0

f(x+ εei)− f(x)

ε

≥ lim
ε→+0

f(y + εei)− f(y)

ε
= f+i (y),

where the inequality follows from (c). Other cases are similar. �
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The next lemma follows easily from the fact that along each coordinate f is
increasing and concave, and is given without proof.

Lemma 2.3. If ε→ +0, then f+i (x+ εei)→ f+i (x), and f+i (x− εei)→ f−i (x). �

Remark 2.4. The family of EL functions is closed for non-negative linear combination
and truncation: if f1, f2 are EL, then so is λ1f1 + λ2f2 for λ1, λ2 ≥ 0; if f is EL and
M ≥ 0 then min(f,M) is EL. Consequently

f(x) = min
(∑

cixi,M
)

is EL for positive ci and M . Similarly, if f is EL and a ≥ 0, then g(x) = f(min(x, a))
is EL again. Further examples of EL functions will be given in Section 4.

Remark 2.5. If the sequence fk of EL functions converge pointwise, then the limit f
is also an EL function, moreover

f+i (x) ≤ lim inf
k

(fk)+i (x) ≤ lim sup
k

(fk)−i (x) ≤ f−i (x).

3. The optimization problem

According to the intuition discussed in Section 1 the value of n-variable EL
function f at x ∈ Rn

>0 can be considered as the value of the (scaled) entropy of the
set of shares assigned to a subset of participants which has members from the i-th
group proportional to the i-th coordinate of x. The right derivative f+i (x) can be
interpreted as the (scaled) entropy increase if one more member from the i-th group
joins this subset, and f−i (x) as the entropy decrease when one member from the i-th
group leaves the subset (defined only if xi > 0). Consequently the share size of a single
participant from group i can be identified to f+i (0), the i-th right partial derivative
of f at zero. Accordingly, the cost function corresponding to the maximal share size
is

Cost(f) = max{f+1 (0), f+2 (0), . . . , f+n (0) }.
While this cost function will be considered in this paper, there are other possibilities.
In the discrete cases the total entropy (the amount of randomness needed to generate
the whole scheme) is used frequently, this would correspond to the cost function
sup{f(x) : x ∈ Dom(f)}.

In secret sharing the shares of a qualified subset determine the secret, while
the same secret is (statistically) independent of the shares of an unqualified subset.
We call the point x ∈ Rn

>0 qualified if the corresponding subset is qualified. When
decreasing an unqualified subset it remains unqualified, thus the set of unqualified
points are downward closed: if x is unqualified and 0 ≤ y ≤ x then y is unqualified
as well. Suppose the unqualified and qualified points are separated by the smooth
(n − 1)-dimensional surface S. Downward closedness means that the normal vectors
of S pointing outwards (towards qualified points) have non-negative coordinates. This
surface S specifies the secret sharing problem, namely which subsets of the partici-
pants are qualified and which are not, and thus the optimization problem as well. The
definition below requires slightly stronger properties from such a separating surface
excluding certain problematic cases.
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Defnition 3.1. An s-surface (secret sharing surface) is a smooth (n− 1)-dimensional
surface S in the non-negative orthant Rn

>0 satisfying the following properties:

(a) S avoids 0,
(b) S is compact, and
(c) for every x ∈ S the normal vector ∇S(x) pointing outwards has strictly positive

coordinates.

Consider the subset of participants which corresponds to the point x ∈ S of the
s-surface S. If any member from the i-th group leaves this subset, then the subset
becomes unqualified – and then the secret must be independent of the joint collection
of the associated shares. If any new member from the i-th group joins that subset, it
becomes qualified – meaning that the new share collection determines the secret. Thus
the difference between the before and after entropy changes, namely f−i (x)− f+i (x),
must cover the entropy of the secret. The entropy of the secret can be taken to be 1 as
this changes all values up to a scaling factor only. The following definition summarizes
this discussion.

Defnition 3.2. The EL function f is feasible for S, or S-feasible, if for every positive
x ∈ S (that is, xi > 0 for all 1 ≤ i ≤ n),

f−i (x)− f+i (x) ≥ 1 (1 ≤ i ≤ n). (3.1)

(Positivity of x is ensures the existence of f−i (x).)

Optimization problems considered in this paper are of this form: given the s-
surface S, find the minimal cost of the S-feasible functions.

Defnition 3.3. For a given s-surface S ⊆ Rn
>0 OPT(S) is the optimization problem{

minimize: Cost(f)

subject to: f is an S-feasible EL function.

By an abuse of notation, both the problem and its solution – the infimum of the costs
of S-feasible functions – will be denoted by OPT(S).

As an example let us consider the case when S is the intersection of the hyper-
plane

c1x1 + c2x2 + · · ·+ cnxn = M

and the non-negative orthant, here ci and M are positive constants. Observe that the
normal at every x ∈ S is ∇S(x) = (c1, . . . , cn). Feasible EL functions will be searched
among the one-parameter family

f(y) = k ·min
{∑

ciyi,M
}

with positive k. All of them are EL functions by Remark 2.4. Pick the positive point
x ∈ S and consider f(x+ εei) as a function of ε. It has the constant value k ·M for
ε ≥ 0, and it is linear with slope k · ci for ε ≤ 0. Consequently

f−i (x)− f+i = k · ci,
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which is ≥ 1 if k ≥ 1/min{ci}. At zero the partial derivatives of f are k · ci, therefore
Cost(f) = k · max{ci}. The k = 1/min{ci} choice gives an S-feasible EL function
with cost max{ci}/min{ci}, thus

OPT(S) ≤ max{ci}
min{ci}

.

According to Theorem 3.4 below the optimal value is actually equal to this amount,
as in this case ∇Si(x) = ci for every x ∈ S.

Theorem 3.4. For every s-surface S, inner point x ∈ S and 1 ≤ i, j ≤ n the following
inequality holds:

OPT(S) ≥ ∇Sj(x)

∇Si(x)
.

Proof. By assumption S behaves linearly on a small neighborhood of x, thus for every
small enough positive w there is a unique positive h such that y = x−wei +hej ∈ S,
and

lim
w→+0

h

w
=
∇Sj(x)

∇Si(x)
.

Let f be any S-feasible EL function, u = min(x, y) = x − wei and v = max(x, y) =
x + hej . The following inequalities follow from the facts that f is monotone and
concave along each coordinate by Claim 2.2:

w · f+i (u) ≥ f(x)− f(u),

h · f+j (x) ≥ f(v)− f(x),

f(y)− f(u) ≥ h · f−j (y),

f(v)− f(y) ≥ 0.

Their sum proves the first inequality in the sequence

w · f+i (u) ≥ h
(
f−j (y)− f+j (x)

)
≥ h

(
1 + f+j (y)− f+j (x)

)
≥ h

(
1 + f+j (v)− f+j (x)

)
.

The second inequality follows from y ∈ S and that f is an S-feasible function. The
third one uses the monotonicity of the derivatives from Claim 2.2 (e). Letting w → +0,
f+i (u)→ f−i (x) and f+j (v)→ f+j (x) by Lemma 2.3, thus

f−i (x) ≥ ∇Sj(x)

∇Si(x)
.

From here the theorem follows as Cost(f) ≥ f+i (0) ≥ f−i (x) by the monotonicity of
the derivatives. �

Theorem 3.5. Suppose OPT(S) < +∞ for an s-surface S. The optimal value is taken
by some S-feasible function f , that is, Cost(f) = OPT(S).
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Proof. Let OPT(S) < M , and choose the sequence of S-feasible functions fk such
that Cost(fk) < M and limk Cost(fk) = OPT(S). Also pick a point a ∈ Rn

>0 such

that S is contained completely in the box B = {x ∈ Rn
>0 : x ≤ a}. The functions

gk(x) = f(min(x, a)) are EL by Remark 2.4, and Cost(gk) = Cost(fk). Each gk is
clearly S-feasible and is bounded by M ·(a1+· · ·+an). The sequence {gk} is uniformly
equicontinuous as all partial derivatives are bounded by M , thus the Arzelà–Ascoli
theorem [11] guarantees a subsequence which converges uniformly on B – and then
converges everywhere. Denote this subsequence also by {gk}, and let the pointwise
limit be g. By Remark 2.5 g is an EL function and Cost(g) ≤ lim infk Cost(gk) =
OPT(S). Also, each gk is S-feasible, that is, at the points of S the difference between
the left and right derivatives is at least 1:

(gk)−i (x)− (gk)+i (x) ≥ 1, x ∈ S.
By Remark 2.5 the same is true for the limit function g. Thus there is an S-feasible
function g with Cost(g) ≤ OPT(S), which proves the theorem. �

4. Two-dimensional cases

We have seen that the bound provided by Theorem 3.4 is sharp when S is linear.
We show that, at least in the two-dimensional case, it is also sharp when S is strictly
convex or strictly concave by constructing matching S-feasible EL functions.

In two dimensions S is a strictly decreasing continuous curve. Write S as
{(x, α(x)) : 0 ≤ x ≤ a}, and also as {(β(y), y) : 0 ≤ y ≤ b}, see Figure 1.

•Tty

0 tx a

b

α(x)

β(y)

Figure 1. The curve S

If S is either convex or concave, then ∇Si(x)/∇Sj(x) is increasing or decreasing
along the curve, thus attains its maximal value at one of the endpoints.

First assume that S is strictly convex. In this case both α and β are convex
functions. Let T = (tx, ty) be the point on S where the normal is (1, 1). On the
[0, tx] interval the derivative α′(x) is ≤ −1, and, similarly, β′(y) ≤ −1 on [0, ty]. The
function f depicted on Figure 2 is defined as follows.

If both x ≥ tx and y ≥ ty then f(x, y) = C, otherwise

f(x, y) =

 C + min{x− β(y), 0} if x ≥ tx,
C + min{y − α(x), 0} if y ≥ ty,
a− α(x) + b− β(y) otherwise,
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•T

Figure 2. Convex case

where C = a− tx + b− ty. Clearly f has a flat plateau of height C beyond the curve
S. It is a routine to check that f is an EL function; one has to use that −α(x) and
−β(y) are concave functions and have derivative 1 at x = tx and y = ty, respectively.
The left and right partial derivatives of f at (x, y) ∈ S are (1, 0) and (−β′(y), 0) when
x ≥ tx, and (−α′(x), 0) and (1, 0) when y ≥ ty. In all cases the values in the pair
differ by at least one, thus f is a feasible S-function. The partial derivatives of f at
zero are −α′(0) and −β′(0), thus

Cost(f) = max{−α′(0),−β′(0)}
matching the lower bound of Theorem 3.4.

In the case when no point on S has normal (1, 1) the simpler construction using
only the first (or second) line in the definition of the function f works.

A different construction is illustrated on Figure 3 which also meets the lower
bound of Theorem 3.4. It also shows that the optimal EL function, if exists, is not
necessarily unique. Using the same notation as above,

•T

Figure 3. Alternate construction for the convex case

the function f is defined analogously: f(x, y) = C if x ≥ tx and y ≥ ty, otherwise

f(x, y) =

 C + min{y − α(x), 0} if x ≥ tx,
C + min{x− β(y), 0} if y ≥ ty,
x+ y otherwise,

where C = tx+ty. This is again an EL function, its cost is clearly 1. The difference bet-
ween the left and right partial derivatives at points of S are −α′(x) and 1 when x ≥ tx,



220 Laszlo Csirmaz

and 1 and −β′(y) when y ≥ ty, thus the difference is at least k = min{−α′(a),−β′(b)}.
Consequently the EL function k−1f(x, y) is feasible for S, and its cost, 1/k, matches
the lower bound in Theorem 3.4.

The third construction, depicted on Figure 4, works for any strictly concave
curve S. In this case the plateau is not flat any more. Using the same notations as
before, the decreasing functions α(x) and β(y) are strictly concave, and T = (tx, ty) is
the curve point with normal (1, 1). The function f(x, y) is defined as f(x, y) = tx + ty

• T

Figure 4. Concave case

if both x ≥ tx and y ≥ ty, otherwise

f(x, y) =

 y + min{x, β(y)} if x ≥ tx,
x+ min{y, α(x)} if y ≥ ty,
x+ y otherwise.

This is an EL function. For example, for a fixed x ≥ tx it is increasing and concave
as y+β(y) is increasing on the [0, ty] interval (β′(y) ≤ −1 here), and is concave since
β is concave. The left and right partial derivatives of f at a point (x, y) of S with
x ≥ tx are 1 and 0, and 1 and 1 + β′(y), respectively. The difference between the
corresponding pairs is at least −β′(y) ≥ −β′(0). Choosing the multiplier k such that
k · (−α′(0)) ≥ 1 and k · (−β′(0)) ≥ 1, the EL function k · f will be S-feasible. The
minimal such k gives a cost k EL function which again matches the lower bound of
Theorem 3.4.

5. Conclusion

A continuous version of the discrete Shannon entropy functions, called entropy-
like, or EL functions, has been defined in Definition 2.1. They form a natural subclass
of multivariate continuous submodular functions which gained considerable attention
recently [2]. Interestingly, the same subclass emerged as a crucial one when investi-
gating possible parallelization of traditional submodular optimization algorithms [4].

Motivated by difficult problems in multipartite secret sharing [8], points in the
non-negative orthant are flagged as either qualified or unqualified, separated by a
secret sharing surface S, see Definition 3.1. An EL function is feasible for such a
surface S if at internal points of S all partial derivatives drop by at least one when
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passing from left to right. The following optimization problem was considered: for a
given s-surface S find the minimal cost of an S-feasible EL function. The first open
problem is to prove that this function set is never empty.

Problem 5.1. Prove that for every s-surface S there exists at least one S-feasible
function.

The cost of an EL function f is the maximum of its partial derivatives at zero, thus
it can be +∞. Definition 3.1 stipulates that for every S-surface there is a positive
constant c such that 1/c < ∇Si(x) < c at each point x ∈ S. The value in Theorem
3.4 bounding the cost of any S-feasible function from below is smaller than c2, thus
it does not exclude the following strengthening of Problem 5.1:

Problem 5.2. Prove that for every s-surface S there is at least one S-feasible function
with finite cost.

The lower bound on the cost of S-feasible EL functions proved in Theorem 3.4
was shown to be tight for linear s-surfaces, and also for two-dimensional convex and
concave s-surfaces.

Problem 5.3. Find an s-surface S for which the bound in Theorem 3.4 is not tight.

As a strenghtening of Problem 5.3 we offer a bold conjecture which might easily turn
out to be false.

Problem 5.4. If S is neither convex nor concave, then the bound of Theorem 3.4 is
not tight.

Constructions in Section 4 settled the problem of finding the optimal values for
two-dimensional convex and concave s-surfaces. It would be interesting to see optimal
solutions for convex and concave surfaces in higher dimensions.

Problem 5.5. Determine the optimal costs of convex and concave s-surfaces in dimen-
sion > 2.

As mentioned in Section 3, the cost function considered in this paper stems from the
worst case complexity of general secret sharing schemes. An alternate cost function
corresponding to the total entropy would be Costt(f) = sup{ f(x) : x ∈ Dom(f) }.
As an EL function can be truncated, the sup here can be limited to the points of S.
The two costs functions are obviously related, but it is not clear how this relationship
can be used to connect the corresponding optimization problems.

Problem 5.6. Prove lower bounds, similar to Theorem 3.4, for the optimization prob-
lem OPTt(S) using the Costt function.

By Theorem 3.5, if there is any S-feasible function at all then there is one with
minimal cost. The proof relied on the fact that finite cost EL functions have bounded
derivatives. For Costt this property does not hold anymore.

Problem 5.7. If there is an S-feasible function, then there is one with

Costt(f) = OPTt(S).
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Finally, extend the quite meager collection of s-surfaces from Section 4 for which the
exact bound is known.

Problem 5.8. Find optimal solutions for additional “interesting” s-surfaces for both
cost functions.
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Abstract. In single-time autonomous optimal control problems, the Hamiltonian
is constant on optimal evolution. In addition, if the final time is free, the opti-
mal Hamiltonian vanishes on the hole interval of evolution. The purpose of this
paper is to extend some of these results to the case of multitime optimal con-
trol. The original results include: anti-trace problem, weak and strong multitime
maximum principles, multitime-invariant systems and change rate of Hamilton-
ian, the variational derivative of volume integral, necessary conditions for a free
final multitime expressed with the Hamiltonian tensor that replaces the energy-
momentum tensor, change of variables in multitime optimal control, conversion
of free final multitime problems to problems over fixed interval.

Mathematics Subject Classification (2010): 93C20, 49K20.

Keywords: Weak and strong multitime maximum principles, multitime Hamilton-
ian, free final multitime.

1. Introduction

The scientific sources for this paper are: necessary conditions for multiple inte-
gral problem in the calculus of variations [1], lower semicontinuity of integral function-
als [2], time-optimal control of the Bi-Steerable Robot [4], Pontryagin functions for
multiple integral control problems [6], multitime maximum principle and multitime
dynamic programming [7]- [3].

We give a positive answer to an important question: does the Hamiltonian at-
tached to multitime control problems have properties similar to the Hamiltonian at-
tached to single-time control problems?

Section 2 underlines properties of Hamiltonian in single-time optimal control.
Section 3 studies the Hamiltonian in multitime optimal control. Section 4 analyses
the strong multitime maximum principle. Section 5 is dedicated to multitime-invariant
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dynamical systems and change rate of Hamiltonian. The variational derivative of
volume integral is analysed in Section 6. The necessary conditions for a free final
multitime are given in Section 7. The change of variables in multitime optimal control
is described in Section 8. The conversion of free end multitime problems to problems
over fixed interval is realized in Section 9. Section 10 contains conclusions.

We tested the theory in relevant applications: multitime control strategies for
skilled movements [3], minirobots moving at different partial speeds [16], optimal
control of electromagnetic energy [5], multitime optimal control for quantum systems
[10] etc.

The basic results are consequences of some properties that deserve to be empha-
sized: (1) the controlled PDEs used in the paper are completely integrable and this
means symmetry conditions, (2) in Section 4 are used the Goursat-Darboux system
and Goursat (hyperbolic) PDE, which are totally symmetric, and (3) the dynamical
systems analysed in Section 5 are multitime-invariant.

2. Hamiltonian in single-time optimal control

2.1. Maximum principle with algebraic constraints

Single-time optimal control problem. Find

max
u

J(u) = φ(x(t0), x(tf )) +

∫ tf

t0

L(x(t), u(t)) dt,

subject to

(i) ẋ(t) = X(x(t), u(t)), t ∈ (t0, tf ),

(ii) u(t) ∈ U , t ∈ (t0, tf ),

(iii) Φ(x(t0), x(tf )) ∈ K .

We have x : R → Rn, u : R → Rq, L : Rn × Rq → R, φ : Rn × Rn → R, X :
Rn ×Rq → Rn, Φ : Rn ×Rn → Rk, U ⊆ Rm, K ⊆ Rk. Usually U is bounded and K
is compact and convex.

Consider the Hamiltonian

H : Rn ×Rn ×Rq → R, H(x, p, u) = L(x, u) + 〈p,X〉

and the endpoints Lagrangian

Ψ : Rn ×Rn ×Rk → R,

Ψ((x0, xf ), ψ) = φ(x(t0), x(tf )) + 〈ψ,Φ(x(t0), x(tf ))〉.

Our problem becomes: find maxJ (u), where

J (u) = Ψ((x0, xf ), ψ) +

∫ tf

t0

(H(x(t), p(t), u(t)) − 〈p(t), X(x(t), u(t))〉) dt .
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Proposition 2.1. The optimal solution (x∗, p∗, u∗) satisfies the conditions

(a) ẋ∗(t) =
∂H

∂p
(x∗(t), p∗(t), u∗(t)) ,

(b) ṗ∗(t) = −∂H
∂x

(x∗(t), p∗(t), u∗(t)) ,

(c) H(x∗(t), p∗(t), u∗(t)) = max
u∈U

H(x∗(t), p∗(t), u) ,

(d) p∗(tf ) =
∂Ψ

∂xf
(x∗(t0), x∗(tf ), ψ∗) ,

(e) p∗(t0) = − ∂Ψ

∂x0
(x∗(t0), x∗(tf ), ψ∗) ,

and ψ∗ is an element of the normal cone to K at the point (x∗(t0), x∗(tf )) .

If the final time is free, we consider it as a new control which maximizes

J = Ψ(x(t0), x(tf ), ψ) +

∫ tf

t0

(
H(x(t), u(t), p(t))− pi(t)ẋi(t)

)
dt .

The necessary condition for extremum, using (d), is

0 =
∂J
∂t
|t=tf =

∂Ψ

∂xif
ẋi|t=tf +

(
H − piẋi

)
|t=tf = H(tf ) .

Hence, according with the Proposition 2.1, we have

Proposition 2.2. Let x∗, p∗, u∗ be the optimal solution for a free final time autonomous
problem. Then H∗(t) = 0 on the hole interval t0 ≤ t ≤ tf .

2.2. The Hamiltonian as a first integral

For any kind of single-time autonomous problem with bounded control, the fol-
lowing statement is true:

Proposition 2.3. Let x∗, p∗, u∗ be the optimal solution and

H∗(t) = H(x∗(t), p∗(t), u∗(t)) (2.1)

the pull-back of Hamiltonian on this solution. Then H∗(t) = constant.

Proof. According with maximum principle, in any interval of continuity, for each τ
and σ, we have

H∗(τ)−H∗(σ) ≥ H(x∗(τ), p∗(τ), u∗(σ))−H∗(σ) .

Then, for τ > σ, by the state and costate equations:

lim
τ↓σ

H∗(τ)−H∗(σ)

τ − σ
≥ lim

τ↓σ

H(x∗(τ), p∗(τ), u∗(σ))−H∗(σ)

τ − σ

=
∂H

∂x
(x∗(σ), p∗(σ), u∗(σ)) ẋ∗(σ) +

∂H

∂p
(x∗(σ), p∗(σ), u∗(σ)) ṗ∗(σ) = 0 .

Taking τ < σ , we obtain in a similar way the opposite inequality. Hence Ḣ∗(σ) = 0 .
The result follows.
With a bit completions at a point of discontinuity we have H∗(t) ≡ ct. �
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2.3. Conversion to problems over a fixed interval

For an optimal problem with free end time T, consider the change of variable
τ = t/T . Then the final time in the new variable is 1.

The functions of time expressed in this new variable become x̃(τ) = x(τT ),
ũ(τ) = u(τT ), the evolution is T X(x, u) and the running cost is T L(x, u).

Viewing T as a new state variable for the new problem, with Ṫ = 0 and costate
q, the new Hamiltonian will be H = T H. The optimality condition gives us

q̇ =
∂H
∂T

= H , q(0) = q(1) = 0 .

Then

0 = q(1)− q(0) =

∫ 1

0

H∗(τ) dτ

and, according with the Proposition 2.2, we have H∗(τ) = 0.

3. Hamiltonian in multitime optimal control

Generally, a multitime optimal control problem [7]-[3] is formulated in the fol-
lowing way: find

max
u

Q(u(·)) =

∫
Ω0t0

L(x(t), u(t))ω + g(x(t0))

subject to

∂xi

∂tα
(t) = Xi

α(x(t), u(t)), t ∈ Ω0t0 ⊂ Rm+ ,

a controlled PDEs evolution system which is completely integrable (m-flow), where
Ω0t0 ⊂ Rm+ is the parallelepiped determined by the diagonal opposite points 0 and t0,
x(t) = (x1(t), ..., xn(t)), t = (t1, ..., tm) ∈ Ω0t0 is the state vector, u(t) ∈ U, t ∈ Ω0t0

is the control vector, the C1 function L(x, u) is the running cost, ω = dt1 ∧ ... ∧ dtm
is the volume element, and g is a C1 function that defines the terminal cost.
The multitime maximum principle [7]- [3] involves the Hamiltonian H = L + pαi X

i
α,

the initial and adjoint PDEs

∂xi

∂tα
=
∂H

∂pαi
,
∂pαi
∂tα

= −∂H
∂xi

and the condition maxuH. Since the adjoint PDEs have too many solutions, we attach
an anti-trace problem which involves the Hamiltonian tensor field Hα

β = 1
mδ

α
βL +

pαi X
i
β , the initial and adjoint (completely integrable) PDEs

∂xi

∂tα
=
∂H

∂pαi
,
∂pαi
∂tβ

= −
∂Hα

β

∂xi

and the condition maxuH.
Anti-trace property: Any solution of the anti-trace problem is solution of multitime
maximum principle.



Properties of Hamiltonian in free final multitime problems 227

Remark 3.1. The complete integrability condition for the adjoint PDEs is essential.
Generally, we can write the anti-trace adjoint PDEs in the Pfaff form

dpαi = −
∂Hα

γ

∂xi
dtγ .

Then, let us consider ω = dt1 ∧ ... ∧ dtm and ωα =
∂

∂tα
cω. The (m− 1)-forms pαi ωα

have the exterior differentials d(pαi ωα) = dpαi ∧ ωα. This suggests to use

dpαi ∧ ωα = −
∂Hα

γ

∂xi
dtγ ∧ ωα

and the identities dtβ ∧ ωα = δβα ω. We find the divergence PDEs system

∂pαi
∂tα

= −∂H
∂xi

if and only if ω 6= 0 on the solutions (complete integrability conditions).

For any type of autonomous multitime problem with bounded control, let
x∗, p∗, u∗ be the optimal solution and we denote H∗(t) = H(x∗(t), p∗(t), u∗(t)), where
t = (t1, ..., tm).

Theorem 3.2. Suppose we have an autonomous multitime optimal problem (multitime-
invariant dynamics and Lagrangian), with bounded control. If the Lagrangian L is
independent on x = (xi) and the optimal solution x∗, p∗, u∗ fulfills the anti-trace
PDEs, then H∗ is constant on the optimal m-sheets.

Proof. According to the multitime maximum principle for any fixed σ in any m-
interval of continuity, τ ∈ Rm and ε ∈ R we have

H∗(σ + ετ)−H∗(σ) ≥ H(x∗(σ + ετ), p∗(σ + ετ), u∗(σ))−H∗(σ) .

Then, for ε > 0,

lim
ε↓0

H∗(σ + ετ)−H∗(σ)

ε
≥ lim

ε↓0

H(x∗(σ + ετ), p∗(σ + ετ), u∗(σ))−H∗(σ)

ε

=

[
∂H

∂xi
(x∗(σ), p∗(σ), u∗(σ))

∂x∗i

∂tγ
(σ) +

∂H

∂pαi
(x∗(σ), p∗(σ), u∗(σ))

∂p∗αi
∂tγ

(σ)

]
τγ .

By hypotheses (anti-trace property of multitime maximum principle), at x∗(σ), p∗(σ),
u∗(σ), we have

Hα
β =

1

m
δαβL+ pαi X

i
β , H = L+ pαi X

i
α.

∂xi

∂tα
=
∂H

∂pαi
,
∂pαi
∂tγ

= −
∂Hα

γ

∂xi
.

It follows

∂H

∂tγ
=
∂H

∂xi
∂xi

∂tγ
+
∂H

∂pαi

∂pαi
∂tγ

=
∂L

∂xi
∂xi

∂tγ
+
∂pαi
∂tγ

Xi
α + pαi

∂Xi
α

∂xj
∂xj

∂tγ

=
∂L

∂xi
Xi
γ

(
1− 1

m

)
+ pαi [Xγ , Xα]i = 0,
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([Xγ , Xα] = 0 means the complete integrability condition), i.e., H is a first integral
of the anti-trace PDEs.

Hence

lim
ε↓0

H∗(σ + ετ)−H∗(σ)

ε
≥ 0 .

Taking ε < 0, we obtain in a similar way the opposite inequality; the derivative of H∗

at σ in any direction τ vanishes. The result follows.
With some additions for points of discontinuity, it follows H∗(t) ≡ ct. �

4. Strong multitime maximum principle

This Section discusses the differences between two kind of evolution systems in-
volved into multitime optimal control problems: (i) a full completely integrable PDEs
system and (ii) a hyperbolic (diagonal) PDEs system which is completely integrable
via an m-order hyperbolic PDE.

4.1. Full PDEs evolution system, no running cost

This case involves the PDEs evolution system (m-flow)

(PDEf )
∂xi

∂tα
(t) = Xi

α(x(t), u(t)), t ∈ Ω0t0 ⊂ Rm+

with i = 1, ..., n, α = 1, ...,m, and a terminal cost.
The Hamiltonian and the Hamiltonian tensor are respectively

H(x, p, u) = pαi X
i
α(x, u) , Hα

β (x, p, u) = pαi X
i
β(x, u) ,

pαi being the costate variables. The (PDEf ) can be written ∂xi

∂tα = ∂H
∂pαi

. According

to the strong multitime maximum principle, we can built an optimal costate function
via the adjoint equations

(ADJ 1, 2)
∂pαi
∂tα

= −∂H
∂xi

,
∂pαi
∂tβ

= −
∂Hα

β

∂xi
.

4.2. Missing equations in PDEs evolution system, no running cost

Let us suppose that a PDEs evolution system does not contain all equations
previously indexed by i = 1, ..., n, α = 1, ...,m. An example could be a diagonal
system (hyperbolic system, Goursat-Darboux system)

∂xα

∂tα
(t) = Xα

α (x(t), u(t)), α = 1, ...,m (no sum).

To include these kinds of PDEs in the set of all first order normal PDEs, let us
use an indicator (characteristic) function χ which, generally, is a function defined on
a set A that indicates membership of an element in a subset A of A, having the value
1 for all elements of A and the value 0 for all elements of A not in A. In our case,
χ = 1, if the equation with indices i and α appears in the initial evolution system and
χ = 0, if not. So the (PDEf ) can be written

(PDEm) χ
∂xi

∂tα
(t) = χXi

α(x(t), u(t)), t ∈ Ω0t0 ⊂ Rm+
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with i = 1, ..., n, α = 1, ...,m.
Then the Hamiltonian and the Hamiltonian tensor are respectively

H(x, p, u) = pαi χX
i
α(x, u) , Hα

β (x, p, u) = pαi χX
i
β(x, u) ,

pαi being the costate variables.
According to the strong multitime maximum principle, we can built an optimal

costate function via the adjoint equations

(ADJ 1, 2)
∂χpαi
∂tα

= −∂H
∂xi

,
∂χpαi
∂tβ

= −
∂Hα

β

∂xi
.

Remark 4.1. In the case of missing equations in PDEs evolution system, we work only
with the ”active” equations. The formalism of characteristic function is doing this.

4.3. Free endpoint problem with running cost

Let us consider that the cost functional include a running cost, i.e.,

(Q) Q(u(·)) =

∫
Ω0t0

X0(x(t), u(t))ω + g(x(t0)),

where x(t) = (x1(t), ..., xn(t)) is the state vector, Ω0t0 is the parallelepiped determined
by the diagonal opposite points 0 and t0, the running cost X0(x, u) is a C1 function,
and g is a C1 function associated to the terminal cost. Suppose the controlled PDEs
evolution system

∂xi

∂tα
(t) = Xi

α(x(t), u(t)), t ∈ Ω0t0 ⊂ Rm+
is full.
Adding new variables. Introducing new variables xn+1, ..., xn+m, and new costates
pαn+α(·), we convert the theory to the foregoing case. The new state variables are con-
strained by the diagonal PDEs system (hyperbolic system, Goursat-Darboux system)

∂xn+α

∂tα
= xn+α

α = xn+α+1, α = 1,m− 1 ,
∂xn+m

∂tm
= X0(x1, ..., xn, u),

equivalent to the Goursat (hyperbolic) PDE

∂mxn+1

∂t1... ∂tm
= X0(x1, ..., xn, u) ;

denote also, for convenience, xn+m+1 = X0(x1, ..., xn, u).
We introduce a costate matrix p̄(·) = (pαi (·))⊕ (pαn+α(·)). For the new equations

and new costates, pαn+β(·), the values of the indicator χ are summarized by δαβ .
The control Hamiltonian is

H(x̄, p̄, u) = pαi X
i
α(x, u) +

m∑
α=1

pαn+αx
n+α+1

and the control Hamiltonian tensor field Hα
β must have the form

Hα
β (x̄, p̄, u) =

{
pαi X

i
β(x, u) if α 6= β

pαi X
i
α(x, u) + pαn+αx

n+α+1 if α = β (no sum upon α).
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To understand that the matrix Hα
β is the anti-trace of H, we need to have in

mind the diagonal matrices operations.
According to the strong multitime maximum principle, we can built a costate

function p̄∗(·) = (p∗αi (·))⊕ (p∗αn+α(·)) satisfying

(EDP1) xiα =
∂H

∂pαi
or xiα =

∂Hα
β

∂pβi
, (no sum), α, β = 1,m i = 1, n ,

(EDP2) xn+α
α =

∂H

∂pαn+α

or xn+α
α =

∂Hα
α

∂pαn+α

, α = 1,m (no sum),

(ADJ1)
∂p̄αi
∂tα

= −∂H
∂x̄i

, i = 1, n ;
∂pαn+α

∂tα
= − ∂H

∂xn+α
, α = 1,m (no sum)

(ADJ2)
∂pαi
∂tβ

= −
∂Hα

β

∂xi
, i = 1, n ;

∂pαn+α

∂tα
= − ∂Hα

α

∂xn+α
, α = 1,m (no sum).

All these PDEs systems are completely integrable.

5. Multitime-invariant dynamical systems and
change rate of Hamiltonian

Let us refer to open-end-multitime optimization problem. In the conditions of
Section 3, we have H∗ = constant as an alternative scalar necessary condition for
optimality.

Let us consider ω = dt1 ∧ ... ∧ dtm and ωα =
∂

∂tα
cω. Since the final multitime

tf is free to vary, we rewrite the functional

J =

∫
∂Ω0tf

vαωα +

∫
Ω0tf

(
H − pαi

∂xi

∂tα

)
ω

=

∫
Ω0tf

Div v +

∫
Ω0tf

(
H − pαi

∂xi

∂tα

)
ω,

where v(x(t)) = (vα(x(t))) is the generating vector field, and
∂vα

∂xi
(tf ) = pαi (tf ). Now

tf is an additional control variable for maximizing J . Consequently the cost sensitivity
via the total mixed operator Dt1...tm , to final multitime tf , should be zero, i.e.,

0 = Dt1...tmJ |t=tf =
∂vα

∂xi
∂xi

∂tα
|t=tf +

(
H − pαi

∂xi

∂tα

)
|t=tf = H(tf ).

Consequently, H∗ = 0 in the closed interval 0 ≤ t ≤ tf , i.e., in the hyperrectangle
Ω0tf .

Lemma 5.1. Let φ be a terminal cost, ψ be an algebraic condition for the terminal
point, both of class Cm, and v be a generating C1 vector field related by the PDE
Dt1...tm(φ+ νψ) = Div v, where ν is a constant Lagrange multiplier.

(i) Given v, there exists φ+ νψ; (ii) given φ+ νψ, there exists v.
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Proof. (i) Consequence of the formula φ(x(t)) + νψ(x(t)) =

∫
Ω0t

Div v ω.

(ii) Explicitly v1 =
1

m
Dt2...tm(φ+ νψ), ..., vm =

1

m
Dt1...tm−1(φ+ νψ). �

This Lemma shows that the cost functional can be written also as

J = φ(x(tf )) + νψ(x(tf )) +

∫
Ω0tf

(
H − pαi

∂xi

∂tα

)
ω.

6. The variational derivative of volume integral

For a domain that evolves with the velocity v from Ω0 to Ωε and for the function

I(ε) =

∫
Ωε

f(t, ε)ω,

we have
dI

dε
(ε = 0) =

∫
Ω0

(
∂f

∂ε
+ div (f v)

)
ω .

If we want that the hyperrectangle Ω0 = [0, T ] to become Ωε = [0, T + ε δt] , it should

take the transformation t→ t+εv(t), where for example, v = (vα), with vα =
tα

Tα
δtα

(no summation). Then, for the function

ε→ I(x(·) + εh(·);T + εδt) =

∫
Ωε

L(x(t) + εh(t), xα(t) + εhα(t))ω,

we find
dI

dε
(ε = 0) =

∫
Ω0

[
∂L

∂xi
− ∂

∂tα

(
∂L

∂xiα

)]
hi ω

+

∫
Ω0

[
∂

∂tα

(
∂L

∂xiα
hi
)

+ div(L(x(t), xγ(t)) v)

]
ω

=

∫
Ω0

[
∂L

∂xi
− ∂

∂tα

(
∂L

∂xiα

)]
hi ω

+

∫
∂Ω0

δαβ

(
∂L

∂xiα
hi + L(x(t), xγ(t))

tα

Tα
δtα
)
nβ dσ ,

with the transversality tensor

T α =
∂L

∂xiα
hi + L(x(t), xγ(t))

tα

Tα
δtα .

In this way we have consistency because on the initial faces the integrand is 0,
since hi = 0, tα = 0 and canonical normals, and on the final faces tα = Tα. Moreover,
using the vector v, we find the connection between h and δt on the faces, from their
relationship to the final multitime T .

On the faces, h is related to δt. Indeed

x(t+ εv) + εh(t+ εv) = φ(t+ εv),
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whence, differentiating at ε = 0, we find

∂x

∂tγ
vγ + h =

∂φ

∂tγ
vγ or hi =

(
∂φi

∂tγ
− ∂xi

∂tγ

)
vγ .

The transversality vector becomes

T α =
∂L

∂xiα

(
∂φi

∂tγ
− ∂xi

∂tγ

)
vγ + L(x(t), xγ(t)) vγ

=

(
∂L

∂xiα

∂φi

∂tγ
− ∂L

∂xiα

∂xi

∂tγ
+ δαγL(x(t), xγ(t))

)
vγ

=

(
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
vγ ,

where Tαγ is the energy-momentum tensor.

Case of boundary integral

We can write

0 =

∫
∂Ω0

δαβ

(
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
vγ nβ dσ,

where

vγ |tγ=Tγ = δtγ , vγ |tγ=0 = 0

(2m faces, m terms of summation). Hence

0 = δtγ
m∑
α=1

∫
Fα

(
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
dσ.

Since δtγ is arbitrary, it follows

0 =

m∑
α=1

∫
Fα

(
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
dσ.

Here we have an algebraic system of m equations with m unknowns T 1, ..., Tm.

Case of multiple integral

Consequently

0 =

∫
Ω0

∂

∂tα

((
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
vγ
)
ω.
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7. Necessary conditions for a free final multitime

Let us look for optimization of the functional

I(x(·); tf ) =

∫
Ω0tf

L(x(t), xγ(t)) ω,

where the final multitime tf is free to vary.

Setting the final time free means that we want to use the final time as yet another
parameter for optimization. Let us return back to the calculus of variations, having
in mind that understanding of the boundary conditions is crucial.

The key idea: derive the necessary conditions with the end point tf of Ω0tf on
a sheet prescribed by the function φ : Ω0tf → Rn, t → φ(t). This trick is, that the
stretching or shrinking of the hyperrectangle Ω0tf is done by perturbing the stationary
value of the final multitime, denoted tf , with the same ε as we use to perturb the
functions x(t):

I(x(·) + εh(·); tf + εδtf ) =

∫
Ω0tf+εδtf

L(x(t) + εh(t), xγ(t) + εhγ(t))ω.

Using the differentiation of a multiple integral with a parameter, we impose the nec-
essary condition

0 =
d

dε
I(ε)|ε=0 =

∫
Ω0tf

(
∂L

∂xi
−Dγ

∂L

∂xiγ

)
hi ω

+

∫
∂Ω0tf

δαβ

(
∂L

∂xiα
hi + Lδtαf

)
nβdσ.

Via Euler-Lagrange equations, it remains the only condition

0 =

∫
∂Ω0tf

δαβ

(
∂L

∂xiα
hi + Lδtαf

)
nβdσ,

where

δtαf |tβ=0 = 0, ∀α, β = 1, ...,m.

The surface integral represents the flux of the vector field

T α =
∂L

∂xiα
hi + Lδtαf

through the surface ∂Ω0tf .

Obviously h(t) and δt are related since x(t) is requested to lie in the sheet φ(t) on the
end faces tα = tαf , i.e.,

x(t+ εδt) + εh(t+ εδt) = φ(t+ εδt), on the end faces of Ω0tf .

Differentiating with respect to ε and evaluating at ε = 0, we find

∂x

∂tα
δtα + h =

∂φ

∂tα
δtα.
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Computing h(t), and replacing in Tα(t), we get the transversality vector

T α(t) =
∂L

∂xiα
(x(t), xγ(t))

(
∂φi

∂tβ
(t)− ∂xi

∂tβ
(t)

)
δtβ + L(x(t), xγ(t)δαβ δt

β

=

(
∂L

∂xiα
(x(t), xγ(t))

∂φi

∂tβ
(t)− Tαβ (t)

)
δtβ ,

where Tαβ is the energy-momentum tensor. Since δtβ is arbitrary, and the normal
vector field nα of each face of Ω0tf belongs to the set of canonical orthonormal versors
and their opposites in Rm, the transversality relation can be written as

∂L

∂xiα
(x(t), xγ(t))

∂φi

∂tβ
(t)− Tαβ (t) = 0, t ∈ union of end faces.

The energy-momentum tensor Tαβ = pαi x
i
β−Lδαβ can be changed into Hamiltonian ten-

sor Hα
β = pαi x

i
β− 1

m Lδαβ by scaling the partial velocities. The trace of the Hamiltonian

tensor is H = pαi x
i
α−L. It follows that for a free-final-multitime and fixed-final-state

scenario, in which φ(t) = c, c ∈ Rn, the transversality condition simplifies to

Hα
β (t) = 0 =⇒ H(t) = 0, t ∈ union of end faces.

Consequently, H∗ = 0 in the interval 0 ≤ t ≤ tf , i.e., in the hyperrectangle Ω0tf .

Remark 7.1. (i) The transition from the multitime calculus of variations to the mul-
titime optimal control, especially when it comes to the definition of Hamiltonian, is
somewhat tricky.

(ii) The classical Reynolds’ transport theorem is:

d

dε

∫
Ω(ε)

f(x, ε)dV =

∫
Ω(ε)

∂

∂ε
f(x, ε)dV +

∫
∂Ω(ε)

(vb · n)f(x, ε)dA,

where n(x, ε) is the outward-pointing unit-normal, x is a point in the region and is
the variable of integration, and dV , dA are volume and surface elements at x, and
vb(x, ε) is the velocity of the area element - so not necessarily the flow velocity.

8. Change of variables in multitime optimal control

In order to transform the control conditions to other coordinates and, over all, to
converse a free end multitime problem to a fixed end one, we must use the transforma-
tion of the independent variables as t = w(τ), i. e. tα = wα(τ1, ..., τm) , α = 1, ...,m.
Then a function x will change in x̄(τ) = x(w(τ)). Consider the Jacobian matrix of

the transformation, J =

(
∂wα

∂τβ

)
and assume that det(J) is not zero at all points of

the domain Ω. In the new variables, the domain Ω becomes Ωτ , the volume element
is transformed as

dt1...dtm = det(J) dτ1...dτm

and the partial derivatives in variables tα become in the new variables

∂xi

∂t
=

(
∂x̄i

∂τβ
∂τβ

∂tα

)
=
∂x̄i

∂τ
J−1 .
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Let us consider a non-autonomous multitime control problem given by a con-
trolled functional

I(u) =

∫
Ω

L(t, x(t), u(t))dt1...dtm

and a non-autonomous PDE system

∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)) .

We may transform this non-autonomous problem by a change of the multitime
in two ways.

8.1. Change the problem

The multitime controlled functional I becomes

Iτ =

∫
Ωτ

L(w(τ), x̄(τ), ū(τ)) det(J) dτ1...dτm

and the constraints change in

∂x̄i

∂τα
=
∂xi

∂tβ
∂wβ

∂τα
= Xi

β(w(τ), x̄(τ), ū(τ))
∂wβ

∂τα
,

or
∂x̄i

∂τ
= Xi(w(τ), x̄(τ), ū(τ)) J .

Then we obtain the Lagrange functional, with adjoint vectors qi = (qαi ) ,

I =

∫
Ωτ

[
L(w(τ), x̄(τ), ū(τ)) + Tr qi(τ)

(
Xi(w(τ), x̄(τ), ū(τ)) J − ∂x̄i

∂τ

)]
×det(J) dτ1...dτm .

The new Hamiltonian is

H1 =
(
L(w(τ), x̄(τ), ū(τ)) + Tr qi(τ)Xi(w(τ), x̄(τ), ū(τ)) J

)
det(J)

= H det(J)

and the corresponding variational equations are:

∂

∂τα
(det(J) qαi ) = − det(J)

∂H
∂x̄i

,
∂x̄i

∂τα
=
∂H
∂qαi

,
∂H
∂u

= 0 .

8.2. Change the variables in the Lagrange functional

The Lagrange functional, with adjoint vectors pi = (pαi ), is

J =

∫
Ω

[
L(t, x(t), u(t)) + pαi (t)

(
Xi
α(t, x(t), u(t))− ∂xi

∂tα

)]
dt1...dtm .

Changing the multitime by t = w(τ), the Lagrange functional becomes

J =

∫
Ωτ

[
L(w(τ), x̄(τ), ū(τ)) + Tr p̄i(τ)

(
Xi(w(τ), x̄(τ), ū(τ)) − ∂x̄i

∂τ
J−1

)]
×det(J) dτ1...dτm
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=

∫
Ωτ

[
L(w(τ), x̄(τ), ū(τ)) + Tr J−1 p̄i(τ)

(
Xi(w(τ), x̄(τ), ū(τ)) J − ∂x̄i

∂τ

)]
×det(J) dτ1...dτm .

The new Hamiltonian is

K1 =
(
L(w(τ), x̄(τ), ū(τ)) + Tr p̄i(τ)Xi(w(τ), x̄(τ), ū(τ))

)
det(J) = K det(J) .

For the two ways commute, the costates pi and qi must be related in a change of
variable following the rule

p̄i(τ) = J qi(τ) .

8.3. Conversion to problems over a fixed interval

By the multitime transformation sα =
1

Tα
tα, where Tα = tαf , for constants

tαf > 0, a free-end multitime problem is converted to problem over the fixed interval

Ω01 = [0, 1]m. The unknown end multitime T is represented by an additionally state

variable T = (Tα), for which
∂Tα

∂sβ
= 0 and T (0) = tf is assumed. The evolution

PDEs will be
∂x̄

∂tα
= δαβT

βXα ,
∂Tα

∂sβ
= 0 , T (0) = tf .

Using the Jacobian ∆ = T 1 · · ·Tm, it follows

J =

∫
Ω0tf

L(x(t), xγ(t))dt1...dtm =

∫
Ω01

L(x(Tα sα), u(Tα sα)) ∆ ds1...dsm

=

∫
Ω01

T 1 · · ·Tm L(x̄(s), ū(s)) ds1...dsm .

Denoting qβα the costates associated with the variables Tα we have the following new
extended Lagrangian

L = T 1 · · ·Tm
(
L(x̄, ū) + pαi X

i
αT

α − pαi xiα − qβαTαβ
)

= T 1 · · ·Tm
(
H− pαi xiα − qβαTαβ

)
,

where H = L(x̄, ū) + pαi X
i
αT

α is the new Hamiltonian.
The variational Euler equations with respect to x̄, p, ū, T and q, respectively give us

∂H
∂x̄i

+
∂pαi
∂sα

= 0 ,
∂H
∂pαi

− x̄iα = 0 ,
∂H
∂ū

= 0 ,

∂

∂Tα
(T 1 · · ·Tm H) +

∂qβα
∂sβ

= 0 , Tαβ = 0 .

Let us consider that there exist functions Qα such that

∂qβα
∂sβ

=
∂mQα

∂s1...∂sm
.

Then we have, by an integral on Ω01,∫
Ω01

∂

∂Tα
(T 1 · · ·Tm H) ds1...dsm = −

∫
Ω01

∂mQα
∂s1...∂sm

ds1...dsm = Qα(1) = 0 .
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8.4. Generating costates

In a multitime optimal control problem there exist generating costates pi such
that

pαi =
∂m−1pi

∂t1...∂̂tα...∂tm

(analogously for q). So we have

1

m

∂H
∂x̄i

+
∂mp̄i

∂s1...∂sm
= 0 and

1

m

∂H
∂Tα

+
∂mqα

∂s1...∂sm
= 0 .

By an integral on Ω01 we obtain

T 1...T̂α...Tm
∫

Ω01

H ds1...dsm = −m
∫

Ω01

∂mqα
∂s1...∂sm

ds1...dsm = qα(1) = 0 .

But H∗(t) ≡ ct and hence H∗(t) ≡ 0.

Let us consider the duality relation ∂mpi
∂t1...∂tm =

∂pαi
∂tα (divergence form, complete

integrability condition).
1) If pαi (t) are given, then

pi(t) =

∫
∂Ω0t

pαi ωα =

∫
Ω0t

∂pαi
∂tα

(t) dt1...dtm , with pi|tβ=0 = 0,

where ωα = (−1)α−1dt1...d̂tα...dtm .
Generally: If

ω = dt1 ∧ · · · ∧ dtm, ωα =
∂

∂tα
cω,

then ∫
∂Ω0t

pαi ωα =

∫
Ω0t

d(pαi ωα)

=

∫
Ω0t

∂pαi
∂tβ

dtβ ∧ ωα =

∫
Ω0t

∂pαi
∂tα

ω =

∫
Ω0t

∂mpi
∂t1...∂tm

ω

= pi(t)− Σαpi(t)|tα=0 + Σα6=βpi(t)|tα=0,tβ=0 − ...+ (−1)mpi(0).

2) If pi(t) is given, then we can take

pαi (t) =
1

m

∂m−1pi

∂t1... ˆ∂tα...∂tm
(t).

9. Conversion of free end multitime problems to
problems over fixed interval

The control problems considered so far are free end multitime problems, as
the end multitime tf of the interval Ω0tf = [0, tf ] is unspecified. By the multitime

transformation sα = 1
tαf
tα (no sum) for constants tαf > 0, such problems are converted

to problems over the fixed interval Ω01 = [0, 1]. The transformed problems are called
fixed end multitime problems. The unknown end multitime tf is represented by an

addition state variable y = (yα), for which ∂yα
∂sβ

= 0 and y(0) = tf is assumed.
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Definition 9.1. [Transformed multitime-optimal control problem with fixed end mul-
titime] A multitime optimal control problem is considered. Let z = (x̄, y) be the
extended state, M × Rm+ the extended state space, and

dx̄i = yαXαds
α, dy = 0

the extended control system. The problem to find an initial condition y(0) = tf and
an input map ū(·) such that a solution z(·) results which satisfies z(0) = (x0, tf ) and
z(1) = (xf , tf ) and gives the minimal value of the cost function I(z(·), ū(·)) = tf is
called transformed multitime-optimal control problem with fixed end multitime. Any
solution (z(·), ū(·)) to this problem is called transformed multitime-optimal solution.

Let us consider a free end multitime functional

J =

∫
Ω0tf

L(x(t), xγ(t)) dt1...dtm.

We introduce the changing of variables tα = tαf s
α, that moves Ω0tf to Ω01 and

∂x

∂tγ
=

∂x

∂sα
∂sα

∂tγ
=

1

tγf

∂x

∂sγ
.

Using the Jacobian ∆ = t1f ...t
m
f , it follows

J =

∫
Ω0tf

L(x(t), xγ(t)) dt1...dtm = ∆

∫
Ω01

L(x(tαf s
α),

1

tγf
xγ(tαf s

α)) ds1...dsm.

In this way, the free end multitime variational problem is changed into a fixed end
multitime variational problem.

Let us consider a free end controlled multitime functional

I(u) =

∫
Ω0tf

L(x(t), u(t)) dt1...dtm.

We introduce the changing of variables tα = tαf s
α, that moves Ω0tf to Ω01. Using the

Jacobian ∆ = t1f ...t
m
f , it follows

I =

∫
Ω0tf

L(x(t), u(t)) dt1...dtm = ∆

∫
Ω01

L(x(tαf s
α), u(tαf s

α)) ds1...dsm.

In this way, the free end controlled multitime problem is changed into a fixed end
multitime problem.

Remark 9.2. The evolution PDEs are

∂x̄

∂tα
= yαXα,

∂yα
∂sβ

= 0, y(0) = tf .
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10. Conclusions

We start with a single-time optimal control problem. The Hamiltonian is a func-
tion used to solve such a problem for a dynamical system. It was introduced by Lev
Pontryagin for single-time optimal control problems as part of his maximum princi-
ple. The idea is that a necessary condition for solving an optimal control problem
is that the control should be chosen so as to optimize the Hamiltonian. From Pon-
tryagin’s maximum principle, special conditions for the Hamiltonian can be derived.
When the final time tf is fixed and the Hamiltonian does not depend explicitly on
time (is autonomous), we have H(x∗(t), u∗(t), p∗(t)) ≡ ct, or if the terminal time is
free, then H(x∗(t), u∗(t), p∗(t)) ≡ 0. Further, if the terminal time tends to infinity, a
transversality condition on the Hamiltonian applies and limt→∞H(t) = 0.

The main question: do some of these properties from uni-temporal problems
survive for multi-temporal problems? Our goal was to provide positive answers where
possible, which we did in this paper.

In order to give positive answers, we had to go through the following steps of
original research: any solution of the anti-trace problem is solution of multitime maxi-
mum principle, weak and strong multitime maximum principle, multitime-invariant
dynamical systems and change rate of Hamiltonian, Hamiltonian tensor, change of
variables in multitime optimal control, generated costates. All these combine ideas
from differential geometry, multitemporal variational calculus and optimal multi-
temporal control, topics to which we have made an essential contribution in recent
years [5], [7]-[3].

Acknowledgments. The authors are indebted to the reviewers who insisted on getting
an improved version both scientifically and linguistically.
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For a closed linear operator A defined on a dense subspace DA of a Hilbert space
H the numerical range is defined by

V (A) = {〈Ax, x〉 : x ∈ DA, ‖x‖ = 1} .

This definition was extended by Lumer (1961) to a complex Banach space X:

V (A) = {〈Ax, x∗〉 : x ∈ DA, ‖x‖ = 1, x∗ ∈ J(x)} ,

where J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} and X∗ is the dual of X.
In both cases the numerical radius of the operator A is defined by

|V (A)| = sup{|λ| : λ ∈ V (A)}.

The operator A is called Hermitian if V (A) ⊂ R and dissipative if

{Reλ : λ ∈ V (A)} ⊂ (−∞, 0],

or, equivalently, ‖(tI −A)x‖ ≥ t‖x‖ for all x ∈ DA and all t > 0.
Numerical ranges turned out to be an essential tool in the study of semigroups of

linear operators on Banach spaces, mainly due to the famous Lumer-Phillips theorem
(1961): if A is dissipative and for some λ0 > 0 (hence, for all λ > 0) (λ0I−A)DA = X,
then A is the infinitesimal generator of a C0-semigroup of linear contractions on X.

The theory of linear semigroups of operators on a Banach space is presented in
the first chapter of the book, including the Hille-Yosida and Lumer-Phillips theorems,
the analytic extension of semigroups of linear operators, as well as an overview of
ergodic theory with emphasis on some classical and recent results on Cesàro and Abel
averages.

Harris (1971) defined the numerical range for holomorphic functions in the fol-
lowing way. For a convex domain D in a Banach space X and x ∈ ∂D put

Q(x) = {` ∈ X∗ : `(x) = 1,Re `(y) ≤ 1, ∀y ∈ D}.

1Our colleague, Prof. Gabriela Kohr, enthusiastically embarked on writing this review. Unfortunately,
her untimely death, a sad loss for all of us, prevented her from completing this task. This review is
dedicated to her fond memory (S.C.).
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For a holomorphic function h : D → X admitting a continuous extension to D
define the numerical range of h on D by

VD(h) = {`(h(x)) : x ∈ ∂D, ` ∈ Q(x)} ,
and let |VD(h)| = sup{|λ| : λ ∈ VD(h)} be the numerical radius of the function h
on D.

In the second chapter, Numerical range, the authors generalize Harris’ theory of
the numerical range of holomorphic mappings. The main properties of the so-called
quasi-dissipative mappings and their growth estimates are studied, including a non-
linear analog of the Lumer-Phillips theorem in the study of nonlinear semigroups and
their applications to evolution equations and to geometric properties of holomorphic
mappings in finite- and infinite-dimensional Banach spaces.

Another area of applications is that of fixed points, treated in the third chapter,
3. Fixed points of holomorphic mappings. The classical result in this field is the Grand
Fixed Point Theorem (as it is called by the authors) due to Denjoy and Wolff (1926),
but some extensions of the Earle-Hamilton and Bohl-Poincaré-Krasnoselskii Theo-
rems, including their connections with Schwarz-Pick systems of pseudometrics and
pseudo-contractive mappings, are presented as well. As the authors mention, another
goal is to prove existence and uniqueness of fixed points of holomorphic mappings
(not necessarily bounded) acting on the open unit ball of a Banach space.

A good companion in reading this chapter is the book by

S. Reich and D. Shoikhet, Nonlinear semigroups, fixed points, and geometry of
domains in Banach spaces, Imperial College Press, London, 2005,

where, in the fifth chapter, Denjoy-Wolff type results are presented at length.
Ch. 4, Semigroups of holomorphic mappings, is concerned with certain au-

tonomous dynamical systems acting on the open unit ball of a complex Banach space.
This study is motivated by the fact that if such a system is differentiable with respect
to time, then its derivative is a holomorphically dissipative mapping.

In Ch. 5, The ergodic theory for holomorphic mappings, the ergodic properties of
a holomorphic mapping around its fixed points are studied. Special attention is paid
to the so-called power bounded, dissipative and pseudo-contractive mappings.

The last chapter of the book, Ch. 6. Applications, is devoted to applications of
the numerical range to diverse geometric and analytic problems – radii of starlikeness
and spirallikeness, semigroups of composition operators on Hp-spaces, etc.

Combining methods from various areas of mathematical analysis (understood in
a wide sense – functional analysis, operator theory, operator equations, holomorphic
vector functions) and presenting both classical results and new developments, many
of the latter due to the authors, this fine book reflects the authors’ encyclopedic
knowledge of mathematics as well as their ability to present the results in an accessible
and clear manner. The book sheds a new light on the numerical range of holomorphic
mappings and its applications and invites people, especially young researchers, to
push further research in these areas.

S. Cobzaş
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Dorin Andrica and Ovidiu Bagdasar, Recurrent sequences. Key results, applications,
and problems, Problem Books in Mathematics. Cham: Springer 2020, xiv+402 p.
ISBN 978-3-030-51501-0/hbk; 978-3-030-51502-7/ebook.

The recurrence is a central theme in many fields of mathematics, primarily in the
study of dynamical systems, but also in the theory of algorithms, numerical analysis,
etc. It has deep applications in biology, physics, computer science, signal processing,
economics.

The present book is devoted to sequences defined by recurrence relations, both
in the real and complex field of numbers. The first two chapters, 1. Introduction
to recurrence relations and 2. Basic recurrent sequences, are concerned with some
fundamental results on recurrence sequences (including existence and uniqueness) and
the basic recurrent sequences and polynomials – Fibonacci, Lucas, Pell, or Lucas-Pell.
Homographic recurrences defined by linear fractional transformations in the complex
plane are also discussed in the second chapter. The reading of these chapters, as well
as of Chpter 5, requires only college algebra, complex numbers, analysis, and basic
combinatorics, while for Chapters 3, 4, and 6, some basic results in number theory,
linear algebra, and complex analysis are needed.

Chapter 3, Arithmetic and trigonometric properties of some classical recurrent
sequences, is concerned with further properties and formulae for some classical recur-
rent sequences, while Chapter 4, Generating functions, treats the important topic of
generating functions, both ordinary and exponential, for classical recurrent sequences.
This chapter also contains a new version of Cauchy’s integral formula, obtained by
the authors, with applications to exact integral formulae for the coefficients of some
classical polynomials as well as for some classical sequences.

Chapter 5, More on second-order linear recurrent sequences, is mainly concerned
with the important class of Horadam sequences, including graphical representations
in the complex plane of the orbits of these sequences. Here many original results of
the authors are included.

Chapter 6, Higher order linear recurrent sequences, presents the dynamics of
complex linear recurrent sequences of higher order and investigates the periodicity,
geometric structure, and enumeration of the periodic patterns.

Chapter 7, Recurrences in Olympiad training, contains 123 olympiad training
problems involving recurrent sequences, solved in detail in Chapter 8. Solutions to
proposed problems.

Written in a clear and alive style, the book contains many results concerning
recurrent sequences, reflecting the current research in the field and including authors’
contributions. The theoretical results are illustrated by numerous examples and dia-
grams and practical applications to algebra, number theory, geometry of the complex
plane, discrete mathematics, or combinatorics, are given.

The book is of interest to researchers working in this area and in related domains,
but college or university students and their instructors will also find a lot of useful
material in it.

S. Cobzaş
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