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The Minty-Browder theorem for nonlinear ellip-
tic equations involving p-Laplacian with singular
coefficients under form boundary conditions

Mykola Yaremenko

Abstract. We consider the elliptic parabolic partial differential equation with
singular coefficients under the rather general form boundary conditions. We
proved that the bounded operator associated with the elliptic equation satisfies
monotony, coercivity, and semicontinuity conditions. Employing Minty-Browder
arguments, we establish the existence and uniqueness of the weak solution to the
elliptic equation with singular coefficients under form-boundary conditions.
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1. Introduction

In this article, we consider the existence of the weak solution to a quasi-linear elliptic
differential equation in the divergent form

λu |u|p−2 − d

dxi
ai (x, u, ∇u) + b (x, u, ∇u) = 0

with a positive parameter λ, where the divergent term is given by

d

dxi
ai (x, u, ∇u) =

∑
i=1, ..., l

∂ai (x, u, ∇u)
∂xi

in domain Ω ⊆ Rl, l ≥ 3. As a model example of the main term, we can consider the

operator ∆pu ≡ div
(
∇u |∇u|p−2

)
and lower term b (x, u, ∇u) = c (x)u |u|p−2

.
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Due to the plethora of applications of elliptic partial differential equations, the
theory of the existence of solutions is well developed. There are many approaches
to the solvability theory for elliptic equations, such as the mountain pass theorem,
method of sub-super solutions, degree theory, and fixed point theory to name a few.
A general version of the Minty-Browder theorem states that if an operator A from
real, separable, reflexive Banach space X into its dual space X∗ is semicontinuous,
monotone, and coercive, then for each ψ ∈ X∗ there is a solution f ∈ X to the equa-
tion A (f) = ψ. The classical results of the Minty-Browwder theorem can be found in
[3 – 5, 15, 16], where the method of monotone operators was developed and its appli-
cation to the Dirichlet problem for a quasi-linear elliptic partial differential equation
in the divergence form was considered [16]. In [4, 5], nonlinear elliptic boundary value
problems were considered in Hilbert spaces by the method of monotone operators,
the semi-boundedness was employed instead of the positivity condition, also, the per-
turbation of such operators by compact operators was studied.

In this article, we consider elliptic differential equations in the divergent form
under form-boundary conditions on its coefficients. The local singularities of the co-
efficients are supposed such that they belong to certain classes PK (β).

Definition 1.1. For a given number β ∈ (0, 1), the class of form-boundary functions
PK (β) consists of all functions f ∈ L1

loc (Ω) such that the inequality

∥fϕ∥2L2 ≤ β ∥∇ϕ∥2L2 + c (β) ∥ϕ∥2L2 , (1.1)

holds with a positive constant c (β) and for all ϕ ∈W 2
1 (Ω).

Some additional information on this type of form-boundary condition can be
founded in [22, 23, 24].

From the definition of form-boundary class, assuming γ ≥ 0 and γ
1
2 ∈ PK (β),

we obtain ∫
Ω

γ |ϕ|p dx ≤ β
p2

4
∥ϕ∥p−2

Lp ∥∇ϕ∥2Lp + c (β) ∥ϕ∥pLp ,

for all ϕ ∈W p
1 (Ω) and p ≥ 2. Indeed, we estimate∫

Ω
γ |ϕ|p dx =

∫
Ω

(
|γ|

1
2 |ϕ|

p
2

)2

dx =
∥∥∥|γ| 12 |ϕ| p2 ∥∥∥2

L2

≤ β
∥∥∇ (

ϕ
p
2

)∥∥2
L2 + c (β)

∥∥ϕ p
2

∥∥2
L2

= β

∫
Ω

(
∇
(
ϕ

p
2

))2
dx+ c (β)

∫
Ω

(
|ϕ|

p
2

)2

dx

= β

∫
Ω

(
p
2ϕ

p
2−1∇ϕ

)2
dx+ c (β)

∫
Ω
|ϕ|p dx

= β p2

4

∫
Ω
ϕp−2 (∇ϕ)2 dx+ c (β) ∥ϕ∥pLp .

Next, applying the Holder inequality, we obtain∫
Ω
γ |ϕ|p dx ≤ β p2

4

∥∥ϕp−2
∥∥
L

p
p−2

∥∥∥(∇ϕ)2∥∥∥
L

p
2
+ c (β) ∥ϕ∥pLp

= β p2

4 ∥ϕ∥p−2
Lp ∥∇ϕ∥2Lp + c (β) ∥ϕ∥pLp .
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The form-boundary condition guarantees the coercitivity of the associated qua-

dratic form in L2, namely, the linear operator −∆ + f⃗ · ∇ is coercive in L2 if∣∣∣f⃗ ∣∣∣ ∈ PK (β).

We proved that the operator A : W p
1 (Ω) → W p

1 (Ω) given in (2.1), satisfies the
monotony, coercivity, and semi-continuity conditions. The existence and the unique-
ness of the weak solution to the considered equation follow from the Minty-Browder
theorem applied to the operator A.

2. An elliptic partial differential equation

2.1. Basic properties of Sobolev spaces

Let Ω be a smooth domain in Rl for l ≥ 3. The Sobolev space W p
k (Ω) is a Banach

space consisting of all elements u ∈ Lp (Ω) such that for all multy-index α with
|α| ≤ k, the distributional mixed partial derivative

Dαu = u(α) =
∂|α|u

∂xα1
1 ...∂xαl

l

exists and belongs to Lp (Ω), i.e.,
∥∥u(α)∥∥

Lp <∞. The norm in W p
k (Ω) is defined by

∥u∥Wp
k
=

∫
Ω

|u|p +
∑

m=1, ..., k

∑
(m)

∣∣∣D(m)u
∣∣∣p
 dx

 1
p

,

or equivalent form in the sense of equivalence of norms

∥u∥∼Wp
k
= ∥u∥Lp +

∑
m=1, ..., k

∑
(m)

∥∥∥D(m)u
∥∥∥
Lp
,

where the symbol
∑

(m) means summation by all possible derivatives of u up to order

m. For the domains Ω with smooth enough boundaries ∂Ω, the spaceW p
k (Ω) coincides

with the closure of the set C∞ (Ω) of all infinitely differentiable functions in clos (Ω).
In particular, the norm of W p

1 (Ω) is given by

∥u∥Wp
1
= (∥u∥pLp + ∥∇u∥pLp)

1
p ,

or equivalent form in the sense of equivalence of norms

∥u∥∼Wp
1
= ∥u∥Lp + ∥∇u∥Lp .

Property. For p ∈ (1, ∞) and for each integer m ≥ 0, the Sobolev space W p
k (Ω)

is a reflexive separable Banach space with the dual W q
−k (Ω), where

1
p +

1
q = 1. The set

C∞ (clos (Ω)) is dense subset of W p
k (Ω). The subspace W p

k,0 (Ω) is dense in W p
k (Ω).

In W p
1,0, the following inequality holds true (Poincare inequality)

∥u∥Lp ≤ c ∥∇u∥Lp ,

for all u ∈W p
1,0 (Ω), where the constant c depends only on the domain Ω and exponent

p.
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The Sobolev embedding theorem establishes that if m ≥ s andm− l
p ≥ s− l

r then

the embedding W p
k (Ω) ⊆ W r

s (Ω) is continuous, and moreover, when m− l
p > s− l

r

then the embedding is completely continuous, i.e., each relatively weakly compact
subset maps into a relatively compact subset.

In this paper, we use the following Holder inequality∫
Ω

|fgφ| dx ≤ ∥f∥Lp ∥g∥Lq ∥φ∥Lr ,

where 1
p + 1

q + 1
r = 1. Also, for all x, y ≥ 0, we use the Young inequality

xy ≤ 1

a
(εx)

a
+

1

b

(y
ε

)b

for all a, b ≥ 1 such that 1
a + 1

b = 1, and all ε > 0.

2.2. A nonlinear elliptic partial differential equation involving p-Laplace operator

Let Ω be a smooth domain in Rl for l ≥ 3, which can coincide with whole Rl. For
some λ > 0, we consider a nonlinear elliptic partial differential equation

A (u) ≡ λu |u|p−2 − div (ai (x, u, ∇u)) + b (x, u, ∇u) = 0, (2.1)

where u (x) an unknown function in Ω ⊆ Rl.
Functions ai (x, u, ξ) and b (x, u, ξ) are defined for all x ∈ clos (Ω) and all

u ∈ R, ξ ∈ Rl; ai (x, u, ξ) and b (x, u, ξ) are continuous at u and ξ.
We assume the following conditions∑

i

ai (x, u, ξ) ξi ≥ ν |ξ|p , (2.2)

∑
i

(ai (x, u, ξ)− ai (x, v, η)) (ξi − ηi) > ν1 |ξ − η|p > 0, (2.3)

|ai (x, u, ξ)| ≤ µ |ξ|p−1
+ γ1 (x) |u|p−1

+ γ2 (x) , (2.4)

|ai (x, u, ξ)− ai (x, v, η)| ≤ µ3 |ξ − η|p−1
+ γ6 (x) |u− v|p−1

, (2.5)

|b (x, u, ξ)| ≤ µ1 |ξ|p−1
+ γ3 (x) |u|p−1

+ γ4 (x) , (2.6)

|b (x, u, ξ)− b (x, v, η)| ≤ µ2 |ξ − η|p−1
+ γ5 (x) |u− v|p−1

, (2.7)

for all ξ ∈ Rl. We assume

γ1
q
2 , γ3

q
2 , γ5

q
2 , γ6

q
2 ∈ PK (β) , γ3

1
2 , γ5

1
2 ∈ PK (β) ,

and

γ4 ∈ Lq (Ω) .

We remark that the inequalities(
ξ |ξ|p−2 − η |η|p−2

, ξ − η
)
≥ c (p) |ξ − η|p

and ∣∣∣x |x|p−2 − y |y|p−2
∣∣∣ ≤ (p− 1) |x− y|

(
|x|p−2

+ |y|p−2
)
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hold for all ξ, η ∈ Rl and x, y ∈ R with the constant c (p) = 22−p. Employing this

estimate, we obtain that p-Laplacian a (u) = ∆p (u) = div
(
∇u |∇u|p−2

)
satisfies our

conditions.

Definition 2.1. The function u (x, t) is called a weak solution to the equation (2.1) if
u ∈W p

1 (Ω) and the identity

λ

∫
Ω

|u|p−2
ϕdx+

∫
Ω

ai (x, u, ∇u)∇iϕdx+

∫
Ω

b (x, u, ∇u)ϕdx = 0 (2.8)

holds for all ϕ ∈ W p
1, 0 (Ω). The solution u is called a bounded weak solution to the

equation (2.1) if essmax
Ω

|u| <∞.

Definition 2.2. The operator A : W p
1 (Ω) → W q

−1 (Ω) is called monotone if the
inequality

⟨A (u)−A (v) , (u− v)⟩ ≥ 0 (2.9)

holds for all u, v ∈W p
1,0 (Ω).

The operator A : W p
1 (Ω) →W q

−1 (Ω) is called strictly monotone if the inequality

⟨A (u)−A (v) , u− v⟩ > 0 (2.10)

holds for all u, v ∈W p
1,0 (Ω), u ̸= v.

Definition 2.3. The operator A : W p
1 (Ω) →W q

−1 (Ω) is called coercive if the inequal-
ity

⟨A (u) , u⟩
∥u∥Wp

1

∥u∥W
p
1
→∞

−→ ∞. (2.11)

Definition 2.4. The operator A : W p
1 (Ω) → W q

−1 (Ω) is called semicontinuous if the
mapping t 7→ ⟨A (u+ tv) , w⟩ is continuous for all u, v, w ∈W p

1,0 (Ω).

Below, we assume that the operator A : W p
1 (Ω) →W q

−1 (Ω) is associated with
the elliptic equation (2.1).

Lemma 2.5. Let p ≥ 2 and let q be its conjugate, i.e., 1
p+

1
q = 1. Assume the conditions

(2.2)-(2.8) are satisfied. Then, the operator

A : W p
1 (Ω) →W q

−1 (Ω)

is bounded.

Proof. For all u, v ∈W p
1,0 (Ω), we have

|⟨A (u) , v⟩| ≤ λ

∫
Ω
λ |u|p−1 |v| dx

+

∫
Ω

(
µ |∇u|p−1

+ γ1 (x) |u|p−1
+ γ2 (x)

)
|∇v| dx

+

∫
Ω

(
µ1 |∇u|p−1

+ γ3 (x) |u|p−1
+ γ4 (x)

)
|v| dx

≤ λ ∥u∥p−1
Lp ∥v∥Lp + µ ∥∇u∥p−1

Lp ∥∇v∥Lp +
∥∥∥γ1 1

p−1u
∥∥∥p−1

Lp
∥∇v∥Lp

+ ∥γ2∥Lq ∥∇v∥Lp + µ1 ∥∇u∥p−1
Lp ∥v∥Lp

+
∥∥∥γ3 1

p−1u
∥∥∥p−1

Lp
∥v∥Lp + ∥γ4∥Lq ∥v∥Lp .
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Applying the Young inequality for a = p
p−2 and b = p

2 , and the form-boundary

condition, we have∫
Ω

γ1
q |u|p dx ≤ β

∫
Ω

(
∇
(
|u|

p
2

))2

dx+ c (β)

∫
Ω

|u|p dx

≤ β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+ c (β) ∥u∥pLp ,

and similarly, we obtain∫
Ω
γ3

q |u|p dx

≤ β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+ c (β) ∥u∥pLp ,

so we conclude

|⟨A (u) , v⟩| ≤ λ ∥u∥p−1
Lp ∥v∥Lp + µ ∥∇u∥p−1

Lp ∥∇v∥Lp

+

 β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+

+c (β) ∥u∥pLp

p−1

∥∇v∥Lp

+ ∥γ2∥Lq ∥∇v∥Lp + µ1 ∥∇u∥p−1
Lp ∥v∥Lp

+

 β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+

+c (β) ∥u∥pLp

p−1

∥v∥Lp

+ ∥γ4∥Lq ∥v∥Lp ,

thus, the operator A is bounded.

Lemma 2.6. Let p ≥ 2 and let q be its conjugate, i.e., 1
p+

1
q = 1. Assume the conditions

(3)-(8) are satisfied. Then, the operator

A : W p
1 (Ω) →W q

−1 (Ω)

is monotone.

Proof. For all u, v, w ∈W p
1,0 (Ω) , we have

⟨A (u)−A (v) , u− v⟩

= λ

∫
Ω

(
u |u|p−2 − v |v|p−2

)
(u− v) dx

+

∫
Ω
(ai (x, u, ∇u)− ai (x, v, ∇v)) (∇iu−∇iv) dx

+

∫
Ω
(b (x, u, ∇u)− b (x, v, ∇v)) (u− v) dx

≥ λc (p) ∥u− v∥pLp + ν1 ∥∇ (u− v)∥pLp

−
∫

Ω

(
µ2 |∇ (u− v)|p−1

+ γ5 (x) |u− v|p−1
)
(u− v) dx

≥ λc (p) ∥u− v∥pLp + ν1 ∥∇ (u− v)∥pLp

−
(
µ2

1
εpp ∥u− v∥pLp + µ2

εq

q ∥∇ (u− v)∥pLp

)
−
∫

Ω
γ5 (x) |u− v|p dx.
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We assume γ5
1
2 ∈ PK (β). Applying the form-boundary condition, we have∫

Ω
γ5 (x) |u− v|p dx

≤ β

∫
Ω

(
∇
(
|u− v|

p
2

))2

dx+ c (β)

∫
Ω
|u− v|p dx

≤ β p2

4

(
2

ε
p
2 p

∥∇ (u− v)∥pLp + (p− 2) ε
p

p−2

p ∥u− v∥pLp

)
+c (β) ∥u− v∥pLp ,

so, we conclude

⟨A (u)−A (v) , u− v⟩
≥

(
λc (p)− µ2

1
εpp − β (p− 2) ε

p
p−2 p

4 − c (β)
)
∥u− v∥pLp

+
(
ν1 − µ2

εq

q − β p

ε
p
2 2

)
∥∇ (u− v)∥pLp > 0,

thus, the operator A is strictly monotone.

Lemma 2.7. Let p ≥ 2 and let q be its conjugate, i.e., 1
p+

1
q = 1. Assume the conditions

(3)-(8) are satisfied. Then, the operator

A : W p
1 (Ω) →W q

−1 (Ω)

is coercive.

Proof. From the definition, we obtain

⟨A (u) , u⟩ = λ

∫
Ω
|u|p dx

+

∫
Ω
ai (x, u, ∇u)∇iudx+

∫
Ω
b (x, u, ∇u)udx

≥ λ ∥u∥pLp + ν ∥∇u∥pLp −
∫

Ω

(
µ1 |∇u|p−1

+ γ3 (x) |u|p−1
+ γ4 (x)

)
udx

≥
(
λ− µ1

1
ε1pp

)
∥u∥pLp +

(
ν − µ1

ε1
q

q

)
∥∇u∥pLp

−
∫

Ω
γ3 (x) |u|p dx−

∫
Ω
γ4 |u| dx,

for all u ∈W p
1,0 (Ω). By form-boundary condition, we have∫

Ω
γ3 (x) |u|p dx ≤ β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+c (β) ∥u∥pLp ,

thus, it follows that

⟨A (u) , u⟩ ≥
(
λ− β p

4 (p− 2) ε
p

p−2 − εp

p − µ1
1

ε1pp

)
∥u∥pLp

+
(
ν − µ1

ε1
q

q − β p

ε
p
2 2

)
∥∇u∥pLp − εq

q ∥γ4∥qLq ,

and
⟨A(u), u⟩
∥u∥Lp

≥
(
λ− β p

4 (p− 2) ε
p

p−2 − εp

p − µ1
1

ε1pp

)
∥u∥p−1

Lp

+
(
ν − µ1

ε1
q

q − β p

ε
p
2 2

)
∥∇u∥p

Lp

∥u∥Lp
− εq

q

∥γ4∥q
Lq

∥u∥Lp

∥u∥Lp→∞
−→ ∞,

so, A is a coercive operator.
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Lemma 2.8. Let p ≥ 2 and let q be its conjugate, i.e., 1
p+

1
q = 1. Assume the conditions

(3)-(8) are satisfied. Then, the operator

A : W p
1 (Ω) →W q

−1 (Ω)

is semicontinuous.

Proof. Due to the arbitrarity of the element v ∈ W p
1,0 (Ω) in the definition of

semicontinuity, we conclude that the operator A : W p
1 (Ω) →W q

−1 (Ω) is semicontin-
uous if the limit

⟨A (u+ tv) , w⟩ t→0−→ ⟨A (u) , w⟩

holds for all u, v, w ∈W p
1,0 (Ω). So, it is sufficient to show that

|⟨A (u+ tv)−A (u) , w⟩| t→0−→ 0,

for all u, v, w ∈W p
1,0 (Ω).

For u, v, w ∈W p
1,0 (Ω), we calculate

|⟨A (u+ tv)−A (u) , w⟩|

= λ

∫
Ω

(
(u+ tv) |u+ tv|p−2 − u |u|p−2

)
wdx

+

∫
Ω
(ai (x, u+ tv, ∇ (u+ tv))− ai (x, u, ∇u))∇iwdx

+

∫
Ω
(b (x, u+ tv, ∇ (u+ tv))− b (x, u, ∇u))wdx

≤ λt (p− 1)

∫
Ω
|v|

(
|u+ tv|p−2

+ |u|p−2
)
wdx

+t

∫
Ω

(
µ2 |∇v|p−1

+ γ6 (x) |v|p−1
)
|∇w| dx

+t

∫
Ω

(
µ3 |∇v|p−1

+ γ5 (x) |v|p−1
)
|w| dx.

Applying Holder inequality and form-boundary condition, we estimate∫
Ω

(
µ2 |∇v|p−1

+ γ6 (x) |v|p−1
)
|∇w| dx

+

∫
Ω

(
µ3 |∇v|p−1

+ γ5 (x) |v|p−1
)
|w| dx

≤ µ2 ∥∇v∥Lp
p−1 ∥∇w∥Lp

+

(
β p2

4

(
2

ε
p
2 p

∥∇v∥pLp + (p− 2) ε
p

p−2

p ∥v∥pLp

)
+ c (β) ∥v∥pLp

) 1
q

∥∇w∥Lp

+µ3 ∥∇v∥Lp
p−1 ∥w∥Lp

+

(
β p2

4

(
2

ε
p
2 p

∥∇v∥pLp + (p− 2) ε
p

p−2

p ∥v∥pLp

)
+ c (β) ∥v∥pLp

) 1
q

∥w∥Lp .
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Using the Holder inequality, we deduce

|⟨A (u+ tv)−A (u) , w⟩|
≤ λt (p− 1)

(
∥v∥Lp ∥u+ tv∥Lp

p−2 ∥w∥Lp + ∥v∥Lp ∥u∥Lp
p−2 ∥w∥Lp

)
+tµ2 ∥∇v∥Lp

p−1 ∥∇w∥Lp + tµ3 ∥∇v∥Lp
p−1 ∥w∥Lp

+t

(
β p2

4

(
2

ε
p
2 p

∥∇v∥pLp + (p− 2) ε
p

p−2

p ∥v∥pLp

)
+ c (β) ∥v∥pLp

) 1
q

∥∇w∥Lp

+t

(
β p2

4

(
2

ε
p
2 p

∥∇v∥pLp + (p− 2) ε
p

p−2

p ∥v∥pLp

)
+ c (β) ∥v∥pLp

) 1
q

∥w∥Lp

t→0−→ 0.

3. The Minty-Browder theorem

To complete our investigation, we present the scheme of the proof of the existence and
uniqueness of the solution. The proof is based on Minty’s ideas [9, 16] and on a variant
of the Galerkin method, which are applied to the operator A : W p

1 (Ω) → W q
−1 (Ω),

and employment of limits in weak topology.

Theorem 3.1 (Minty-Browder). Let p ≥ 2 and q its conjugate i.e., 1
p +

1
q = 1. Assume

conditions (3) – (8) are satisfied. Then the elliptic equation (2) has a unique weak
solution in the Sobolev space W p

1 (Ω) .

Proof. Let
A : W p

1 (Ω) →W q
−1 (Ω)

be the operator associated with equation (2.1). Under conditions (2.2)-(2.8), the op-
erator

A : W p
1 (Ω) →W q

−1 (Ω)

is a bounded, monotone, coercive, and semi-continuous operator. Thus, we are going
to show that there exists a solution u ∈ W p

1 (Ω) to the operator equation A (u) = φ
for each fixed φ ∈W q

−1,0.

Let {vi} be a basis in W p
1,0 and Xk be a linear span of {v1, ..., vk}. We compose

the nonlinear Galerkin approximation system

⟨A (uk)− φ, vi⟩ = 0,

where uk ∈ Xk, i = 1, ..., k so we denote uk =
∑

i=1,...,k cikvi with coefficients cik to
be calculated.

Since the operator A is coercive there exists a number R > 0 such that

⟨A (u)− φ, u⟩ > 0

for all u ∈W p
1,0, ∥u∥ ≥ R. Therefore, we have the system〈

A

 ∑
i=1,...,k

cikvi

− φ, vj

〉
= 0

with an unknown real vector {c1k, ..., ckk}. The function

u 7→ ⟨A (u)− φ, vi⟩
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is continuous on W p
1,0 with respect to variables {c1k, ..., ckk}. The system

∑
j=1,...,k

〈
A

p(·)
λ

 ∑
i=1,...,k

cikvi

− φ, vj

〉
cjk > 0

has a solution for all uk ∈ Xk, i = 1, ..., k such that uk ∈W p
1,0, ∥uk∥Wp

1
= R.

The fixed point theorem states that: let function〈
A

 ∑
i=1,...,k

cikvi

− φ, vj

〉
: clos (B (0, R)) → R

be continuous for each j = 1, ..., k and

∑
j=1,...,k

〈
A

 ∑
i=1,...,k

cikvi

− φ, vj

〉
cjk > 0

for all uk ∈W p
1,0, ∥uk∥Wp

1
= R; then the system〈
A

 ∑
i=1,...,k

cikvi

− φ, vj

〉
= 0

has a solution for all uk ∈W p
1,0, ∥uk∥Wp

1
≤ R. □

From

⟨A (u)− φ, u⟩ = 0

and statement that

⟨A (u)− φ, u⟩ > 0

for all u ∈ W p
1,0, ∥u∥Wp

1
≥ R, we deduce that ∥u∥Wp

1
≤ R, which provides us with

a priori solution estimate.
The sequences {uk} and {A (uk)} are bounded since the operator A is bounded,

therefore, A (uk)
weakly−→ φ in W q

−1,0 and there exists a subsequence
{
uk̃

}
⊂ {uk} such

that uk̃
weakly−→ u. Thus, we have〈

A
(
uk̃

)
, uk̃

〉
=

〈
φ, uk̃

〉 k̃→∞−→ ⟨φ, u⟩ .

In finite-dimensional Banach spaces, the strong and weak convergences coincide. We

choose subsequence
{
uk̃

}
⊂ {uk} such that uk̃

weakly−→ u and

A
(
uk̃

) weakly−→ φ,

and 〈
A
(
uk̃

)
, uk̃

〉 k̃→∞−→ ⟨φ, u⟩ .
So, we have

uk̃
weakly−→ u
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and

A
(
uk̃

) weakly−→ A (u) .

Thus, the equationA (u) = 0 has a solution inW p
1 (Ω), which proves the existence

of a weak solution to elliptic equation (2.1) under the conditions (2.2)-(2.8).
Let u ∈ W p

1 (Ω) and v ∈ W p
1 (Ω) be two different solution to (2.1) so that

A (u) = 0 and A (v) = 0. On another hand, the strict monotony yields that from

⟨A (u)−A (v) , u− v⟩ = 0

follows u = v, thus we have proved the uniqueness of the solution.
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