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Threshold results of blow-up solutions to Kirch-
hoff equations with variable sources
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Abstract. This paper analyzes an initial boundary value problem for variable
source Kirchhoff-type parabolic equations. We aim to derive a new sub-critical
energy threshold for finite-time blow-up, a new blow-up condition, and estimates
for lifespan and upper bounds for blow-up time across various initial energy cases.
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1. Introduction

In recent years, there has been a significant interest among numerous mathematical
researchers in examining the blow-up time properties of solutions to equations used
for describing the transverse vibrations of a stretched string while taking into account
the change in the string length. These equations, proposed by Kirchhoff [19], [26] are
widely employed in engineering disciplines like automotive, aerospace, and large-scale
structures. The extensive applications of these materials have led to a growing desire
among researchers to establish findings related to the presence and control of elasticity
problems. Almeida Junior et al. [25] studied polynomial stability for the equations of
porous elasticity in one-dimensional bounded domains. Iesan et al. [16, 17, 18] studied
the theory of thermoelastic materials with voids. Santos et al. [30] considered a porous
elastic system with porous dissipation In recent years, there has been a significant
amount of research focused on developing mathematical models for nonlocal diffusion.
These models are formulated by using parabolic equations that combine linear or non-
linear diffusion with a Kirchhoff term. The Kirchhoff problems are a type of problem
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that includes the term M
(∫

Ω
|∇u|2dx

)
, which causes the equation to no longer be a

pointwise identity
ut −M

(∫
Ω
|∇u|2dx

)
∆u = g (x, u) , (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

The Kirchhoff problems are a type of problem that includes the term M
(∫

Ω
|∇u|2dx

)
,

which causes the equation to no longer be a pointwise identity. The nonlinear Kirchhoff
equation (NLKE) is a partial differential equation used to describe the transverse
vibrations of a stretched string while taking into account the change in the string
length [19]. It is also used to describe the movement of a semi-infinite string [26] and
is an underlying equation of quantum mechanics. Partial differential equations have a
wide range of applications, as listed in reference [33]. The study of Kirchhoff equations
has a long history and was examined in detail in Lions research [23], where it became
possible to investigate the existence, uniqueness, and regularity of the solutions in
Kirchhoff’s equations. For more information, interested readers can refer to [10, 11, 24]
and the references therein. This paper studies a parabolic problem with a nonlocal
diffusion coefficient, where a nonlinear source term modeled by an operator appears
in the Kirchhoff equation.

ut −M
(∫

Ω
|∇u|2dx

)
∆u = |u|q(x)−1u, (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω, we assume
that u0 ∈ H1

0 (Ω) and u0(x) ̸≡ 0, the diffusion coefficient has the specific form M(s) =
a+ bs with positive parameters a, b, Ω ⊂ Rn, q is constant and satisfy

(H1)3 < q1 ≤ q (x) ≤ q2 ≤ n+ 2

n− 2
if n ≥ 3, x ∈ Ω; (1.2)

(H2) 1 < q1 ≤ q (x) ≤ q2 < 3 if n ≥ 1, x ∈ Ω.

We consider a mathematical model, where u0 belongs to the Sobolev space H1
0 (Ω) and

−∆ denotes the Laplace operator concerning the spatial variables. Our focus is on the
explosion property in finite time. To this end, we use the potential well method and
various inequality techniques to establish the the blow-up of weak solutions within
a finite time and obtain a new blow-up criterion. Additionally, we determine the
lifespan and an upper bounds for the blow-up time in different initial energy cases. It
is important to note that the model (1.1) is called degenerate when a = 0, and when
a > 0, we refer to it as a non-degenerate model. The exponent q(.) is a measurable
function on Ω that satisfies certain conditions.

1 < q1 = ess inf
x∈Ω

q (x) ≤ q (x) ≤ q2 = ess sup
x∈Ω

q (x) < ∞, (1.3)

and the following Zhikov–Fan uniform local continuity condition. There exist a con-
stant k > 0 such that for all points x, y in Ω with 0 < |x− y| < 1

2 , we have the
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inequality
|q (x)− q (y)| ≤ k (|x− y|) , (1.4)

where k(r) satisfies

lim sup
r→0+

k(r) ln

(
1

r

)
= c < ∞.

This problem has its origin in the mathematical explanation of system in real world
from the mathematical modeling for axially moving viscoelastic materials, they ap-
pear in numerous applications in the natural sciences, for instance models of flows
of electro-rheological fluids or fluids with temperature-dependent viscosity, nonlinear
viscoelasticity, filtration processes through a porous media [3, 4, 28], and the process-
ing of digital images [2, 9, 22], and can all be linked with problem (1.1), further details
on the subject can be seen in [5, 6, 29] and the other references contained therein.
In recent years, the study of mathematical nonlinear models with variable exponent
nonlinearity has attracted the attention of many researchers. Let us highlight some
of these issues. For example, Pinasco [27] established the local existence of positive
solutions for the parabolic problem.

ut −∆u = f(u) in Ω× (0, T )

u = 0, in ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω

where the source term is of the form

f(u) = a(x)up(x) or f(u) = a(x)

∫
Ω

uq(y)dy.

He also proved that with sufficiently large initial data, solutions blow up in a finite
time. Alaoui et al. [21] considered the following nonlinear heat equation,

ut − div
(
|∇u(x)|m(x)−2∇u

)
= |u|p(x)−2u+ f.

Under appropriate conditions on m and p, and with f = 0, they demonstrated
that any solution with a nontrivial initial condition will experience a blow-up in
finite time. Additionally, they provided numerical examples in two dimensions to
illustrate their findings. Autuori et al. [7] investigated a nonlinear Kirchhoff system
involving the p(x, t)-Laplace operator, a nonlinear force f(t, x, u), and a nonlinear
damping term Q = Q(t, x, u, u t). They established a global nonexistence result
under suitable conditions on f , Q, and p. In the classical case of constant exponent
(q(x) =constant= q), this equation has its origin in the nonlinear vibration of an
elastic string, were the source term uq−1u forces the negative-energy solutions to
explode in finite time. It’s known that several authors have looked at problem (1.1)
concerning the findings of the global existence and blow-up of solutions, and a
powerful method for treating it is the ”potential well method,” which was founded by
the first author Sattinger [31] in 1968 and later been enhanced by Liu and Zhao [32]
by introducing the so-called family of potential wells which later became a significant
technique for the study of nonlinear evolution equations and has also given many
interesting results. Recently, authors of [14, 15] discussed in a bounded domain of Rn

with 3 < q < n+2
n−2 the global existence and finite time blow-up of solutions to problem
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(1.1) when the initial data are at different energy levels E(u0) < d, E(u0) = d, and
E(u0) > d respectively. If we know that the solutions of a given system explode in
finite time, it is important to estimate the bounds of the explosion time from both
above and below, which is the main goal of this work. We will expand the assumptions
about the given q in the aforementioned works, assuming a new assumption on the
critical exponent q (.) such that 1 < q1 ≤ q (x) ≤ q2 < (n + 2)/(n − 2), under some
sufficient conditions we giving a new blow-up criterion for problem (1.1) if the initial
energy is not -negative, and derive the upper and lower bounds of this blow-up time.
The table below provides a summary of the background for our work.

Table 1: Main results.

Main results q Initial data Blow-up(
B1√
a

)−q1+1

(2.4) E (u0) < E1, Blow-up (2.6)

Theorem 2 (H1) ≥

 a∥∇u0∥22

+
b

2
∥∇u0∥42


q1+1

2

> α1 E1 as in (2.4) lim
t→T̂

∥u(t)∥22 = ∞

E (u0) < 0 Blow-up
E (u0) ≤ Ed,

Ed as in (1.11) lim
t→T∗

∫ t

0
∥u(τ)∥22dτ

Theorem 3 (H1) u0∈ H1
0 (Ω), u0 ̸= 0 0 ≤ E (u0) = ∞

< C0 ∥u0∥22 (iii)

E(u0) Blow-up

Theorem 3 (H2) u0 ∈ H1
0 (Ω) < − q1+1

q1+5
b
4εc (ε)

(2.21),(2.22) lim
t→T

∥u(t)∥22 = ∞.

Table 2: The estimate of blow-up time.
E(u0) Upper bound estimate Lower bound estimate

E (u0) < E1
√

E (u0) < 0
√

E (u0) = 0 ? ?
E (u0) < Ed

√

0 ≤ E (u0) < C0 ∥u0∥22
√

E(u0) < − q1+1
q1+5

b
4εc (ε)

√
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1.1. Modified potential wells

For u ∈ H1
0 (Ω), we define the functionals

E(u (t)) =: E(t) =
a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

∫
Ω

1

q(x) + 1
|u|q(x)+1dx,

I(u (t)) =a∥∇u∥22 + b∥∇u∥42 −
∫
Ω

|u|q(x)+1dx.

M(u (t)) =: M(t) =
1

2
∥u (t) ∥22.

(1.5)

and testing (1.1) by ut we have E(t) is nonincreasing, i.e.,

d

dt
E(t) = −∥ut(t)∥22 ≤ 0, (1.6)

and

E(t) +

∫ t

0

∥ut(t)∥22 ds ≤ E(u0) a.e. t ∈ (0, T ), (1.7)

L′(t) = −I(u (t)) a.e. t ∈ (0, T ). (1.8)

We then have the following lemma.

Lemma 1.1. For q(x) be (1.4) and u ∈ H1
0 (Ω)\{0}. Let F : [0,+∞) → R the Euler

functional defined by

F (λ) =
λ2

2
a∥∇u∥2 + λ4

4
b∥∇u∥4 −

∫
Ω

λq(x)+1

q(x) + 1
|u|q(x)+1dx,

then, F keeps the following properties:

(i) . limλ→0+ F (λ) = 0 and limλ→+∞ F (λ) = −∞.
(ii). There is at least one solution to the equation F ′(λ) = 0 on the interval [λ1, λ2] ,

where

λ1 = min
[
ρ (u)

−1
1−q2 , ρ (u)

−1
3−q1

]
, λ2 = max

[
ρ (u)

−1
1−q2 , ρ (u)

−1
3−q1

]
, (1.9)

and

ρ (u) :=
a∥∇u∥2 + b∥∇u∥4∫

Ω
|u|q(x)+1dx

.

(iii) . There exists a λ∗ = λ∗(u) > 0 such that F (λ) gets its maximum at λ = λ∗.
Furthermore, we have that 0 < λ∗ < 1, λ∗ = 1 and λ∗ > 1 provided I(u) < 0,
I(u) = 0 and I(u) > 0, respectively.

Proof. Since q(x) ∈ C+(Ω̄) =

{
p ∈ C(Ω̄) : inf

x∈Ω̄
q (x) > 3

}
, the assertion (i) is shown

by the following:

F (λ) ≤ λ2

2
a∥∇u∥2 + λ4

4
b∥∇u∥4 −min

{
λq1+1, λq2+1

}∫
Ω

1

q(x) + 1
|u|q(x)+1dx,

and

F (λ) ≥ λ2

2
a∥∇u∥2 + λ4

4
b∥∇u∥4 −max

{
λq1+1, λq2+1

}∫
Ω

1

q(x) + 1
|u|q(x)+1dx,
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For (ii). We have

F ′(λ) = λa

∫
Ω

|∇u(x)|2dx+ λ3b∥∇u∥4 −
∫
Ω

λq(x)|u|q(x)+1dx,

which implies that F ′(λ) lies in the following two inequalities

F ′(λ) ≥ λa

∫
Ω

|∇u(x)|2dx+ λ3b∥∇u∥4 −max {λq1 , λq2}
∫
Ω

|u|q(x)+1dx

= max {λq1 , λq2}

 min
{
λ1−q1 , λ1−q2

}
a

∫
Ω

|∇u(x)|2dx

+min
{
λ3−q1 , λ3−q2

}
a

∫
Ω

|∇u(x)|4dx−
∫
Ω

|u|q(x)+1dx

 ,

and

F ′(λ) ≤ λa

∫
Ω

|∇u(x)|2dx+ λ3b∥∇u∥4 −min {λq1 , λq2}
∫
Ω

|u|q(x)+1dx

= min {λq1 , λq2}

 max
{
λ1−q1 , λ1−q2

}
a

∫
Ω

|∇u(x)|2dx

+max
{
λ3−q1 , λ3−q2

}
a

∫
Ω

|∇u(x)|4dx−
∫
Ω

|u|q(x)+1dx

 ,

Since q2 ≥ q1 > 3, we signify that F ′(λ) has at least one zero point λ satisfying (1.9).
So we get (ii). The definition of λ∗ and the relation I(λu) = λF ′(λ) and

F ′(λ) ≤ (λ− λq2) a

∫
Ω

|∇u(x)|2dx+
(
λ3 − λq2

)
b

∫
Ω

|∇u(x)|4dx+λq2I(u), for λ ∈ (0, 1),

and

F ′(λ) ≥ (λ− λq2) a

∫
Ω

|∇u(x)|2dx+
(
λ3 − λq2

)
b

∫
Ω

|∇u(x)|4dx+λq2I(u), for λ ∈ (1,∞),

lead to the last claim (iii). Completeness of the proof. □

1.2. Assumptions and main results

As E is the Fréchet-differentiable functional with derivative E′, let suppose that u ̸= 0
is a critical point of E, i.e., E′(u) = 0. Then necessarily u is contained in the set

N =
{
u ∈ H1

0 (Ω)\{0} : I(u) = ⟨E′(u), u⟩ = 0
}
,

so N is a natural constraint for the problem of finding nontrivial critical points of E,
N is called the Nehari manifold associated with the energy functional E. By Lemma
1.1 we know that N is not empty set. It is clear that E(u) is coercive on N . The
depth of the potential well, denoted as d, characterized by

d = inf
u∈N

E(u). (1.10)

Under the appropriate conditions we have d is a positive finite number and is therefore
well-defined. For Ed is a constant given by

Ed =
q1 − 1

q1 + 1

q2 + 1

q2 − 1
d ≤ d, (1.11)
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we define the modified stable and unstable sets as follows

W =
{
u ∈ H1

0 (Ω) : E(u) < Ed, I(u) > 0
}
∪ {0},

U =
{
u ∈ H1

0 (Ω) : E(u) < Ed, I(u) < 0
}
.

2. Blow-up and bounds of blow-up time

In this section, we get new bounds for the blow-up time to problem (1.1) if the
variable exponent q(.) and the initial data satisfy some conditions. Before stating our
main results, without proof, we preferably give the following theorem of existence and
uniqueness, as well as the regularity:

Definition 2.1 (Weak solution). [20]A function u(x, t) is said to be a weak solu-
tion of problem (1.1) defined on the time interval [0, T ], provide that u(x, t) ∈
L∞ (0, T ;H1

0 (Ω)
)
with ut ∈ L2

(
0, T ;L2(Ω)

)
, if for every test-function η ∈ H1

0 (Ω)
and a.e. t ∈ [0, T ], the following identity holds:

(ut, η)Ω +
(
a+ b∥∇u∥22

)
(∇u,∇η)Ω =

(
|u|q(x)−1u, η

)
Ω
, a.e. t ∈ (0, T ), (2.1)

with u(x, 0) = u0 ∈ H1
0 (Ω).

Without proof, we give the local existence of a solution of (1.1) that can be ob-
tained by the Faedo-Galerkin methods together with the Banach fixed point theorem
[1, 8].

Theorem 2.2. Assume that (1.3)-(1.4) hold. Then the problem (1.1) for given u0 ∈
H1

0 (Ω) admits a unique local solution

u ∈ C
(
[0, Tmax) ;H

1
0 (Ω)

)
, ut ∈ C

(
[0, Tmax) ;L

2(Ω)
)
,

where Tmax > 0 is the maximal existence time of u(t).

2.1. Function spaces and lemmas

In this section, we present some preliminary concepts and notations that we shall
employ in our further analysis. Let us start by introducing the variable-order Lebesgue
space Lp(.)(Ω), which is defined for all p : Ω → [1,+∞] a measurable function as

Lp(.)(Ω) :=

{
u : Ω → R measurable :

∫
Ω

|u(x)|p(x) dx < +∞
}
.

We then know that Lp(.)(Ω) is a Banach space, equipped with the Luxemburg-type
norm

∥u∥p(.) := inf

{
λ > 0,

∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣p(x) dx ≤ 1

}
.

Next, we define the variable-order Sobolev space W 1,p(.)(Ω) as

W 1,p(.)(Ω) :=
{
u ∈ Lp(.)(Ω) : ∇u ∈ Lp(.)(Ω)

}
,

equipped with the norm

∥u∥W 1,p(.)(Ω) = ∥u∥2p(.) + ∥∇u∥2p(.). (2.2)
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Moreover, in what follows we will need the following embedding result from [12, 13].

Lemma 2.3. Let Ω ⊂ Rn be a bounded regular domain. It holds the following.

1. If p ∈ C(Ω) and q : Ω → [1,+∞) is a measurable function such that

ess inf
x∈Ω

(
p∗(x)− q(x)

)
> 0,

with p∗ defined as in (1.2), then W
1,p(.)
0 (Ω) ↪→ Lq(.)(Ω) with continuous and

compact embedding.

2. If p satisfy (1.3), then ∥u∥p(.) ≤ C∥∇u∥p(.) for all u ∈ W
1,p(.)
0 (Ω). In particular,

∥u∥1,p(.) = ∥∇u∥p(.) defines a norm on W
1,p(.)
0 (Ω) which is equivalent to (2.2).

It is not difficult to set up the following lemma’s, so we will ignore its proof here.

Lemma 2.4. Allow (1.3)-(1.4) to apply. Let u(t) := u(x, t) be a local solution to prob-
lem (1.1). Then, the following assertions hold:

(i). If there is a time t0 ∈ [0, Tmax) such that u (t0) ∈ W and E (t0) < d, then u(t)
stays within the set W for all t ∈ [t0, Tmax).

(ii). If there is a time t0 ∈ [0, Tmax) such that u (t0) ∈ U and E (t0) < d, then u(t)
stays within the set U for all t ∈ [t0, Tmax).

Lemma 2.5. Suppose that a positive, twice-differentiable function φ (t) satisfies on
t ≥ 0 the inequality

φ′′φ− (1 + α) (φ′)
2 ≥ 0, α > 0.

If

φ(0) > 0, and φ′(0) > 0,

then, then there exists t1 ∈
(
0, φ(0)

αφ′(0)

)
such that

φ (t) → ∞ as t → t1.

Lemma 2.6. Let Ω be a bounded domain of Rn, q(.) satisfies (1.2) and (1.4), then

B ∥∇u∥2 ≥ ∥u∥q(.)+1 , for all u ∈ W 1,2
0 (Ω). (2.3)

where the optimal constant of Sobolev embedding B is depends on q1,2 and |Ω|.

Lemma 2.7. Assuming (u0, u1) are in H1
0 (Ω)×L2(Ω) and that u0 is an element of U ,

the following holds:

d ≤
(
1

2
− 1

q2 + 1

)
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
b∥∇u(t)∥42, for t ∈ [0, Tmax) .

Proof. Because u0 ∈ U , according to Lemma 2.4 u(t) ∈ U for t ∈ [0, Tmax) and thus
I(u(t)) < 0. By Lemma 1.1 there exists λ∗ ∈ (0, 1) such that I (λ∗u) = 0, i.e.∫

Ω

(λ∗)
q(x)+1 |u(t)|q(x)+1dx = a (λ∗)

2 ∥∇u∥22 + b (λ∗)
4 ∥∇u∥42
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Thanks to λ∗ < 1 we can derive from the definition of d

d ≤ E (λ∗u(t)) = a
(λ∗)

2

2
∥∇u(t)∥22 + b

(λ∗)
4

4
∥∇u∥42 −

∫
Ω

(λ∗)
q(x)+1

q(x) + 1
|u(t)|p(x)dx

≤ a
(λ∗)

2

2
∥∇u(t)∥22 + b

(λ∗)
4

4
∥∇u∥42 −

1

q2 + 1

∫
Ω

(λ∗)
q(x)+1 |u(t)|q(x)+1dx

=

(
1

2
− 1

q2 + 1

)
(λ∗)

2
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
(λ∗)

4
b∥∇u(t)∥42 +

1

q2 + 1
I (λ∗u(t))

≤
(
1

2
− 1

q2 + 1

)
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
b∥∇u(t)∥42.

The proof is completed. □

Suppose there are positive constants B1, α1, α0, and E1 that satisfy the following
argument:

B1 = max (1, B) , α0 =

√
a∥∇u0∥22 +

b

2
∥∇u0∥42,

α1 =

(
B2

1

a

)
− q1+1

2(q1−1) ,E1 =

(
1

2
− 1

q1 + 1

)
α2
1.

(2.4)

Based on equations (2.3) and (2.1), we can come to a conclusion that

E (t) ≥a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

1

q1 + 1
max

(
∥u∥q2+1

q(.)+1 , ∥u∥
q1+1
q(.)+1

)
≥a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

1

q1 + 1
max

((
B2

1 ∥∇u∥22
) q2+1

2

,
(
B2

1 ∥∇u∥22
) q1+1

2

)

≥1

2
α2 − 1

q1 + 1
max

(B2
1

a

) q2+1
2

αq2+1,

(
B2

1

a

) q1+1
2

αq1+1

 := g (α) ∀α ≥ 0,

(2.5)

where α =
√

a∥∇u∥22 + b
2∥∇u∥42.

To the best of our knowledge, no evidence has been found regarding the blow-up
of solutions to this equation in Rn, given the initial data at a high energy level. This
paper aims to investigate this matter by examining the finite-time explosion of weak
solutions in the initial boundary value problem provided.

In the following sections, we will present our main theorems

For 3 < q1 ≤ q (x) ≤ q2 ≤ n+2
n−2 , we have the following result

2.2. Results on the blow-up time

Theorem 2.8. Supposed that q satisfies (H1). If u0 ̸= 0 is chosen in such a way that

E(u0) < E1 and
(

B1√
a

)−q1+1

≥
(
a∥∇u0∥22 + b

2∥∇u0∥42
) q1+1

2 > α1. Then the solution

of the problem (1.1) will eventually blow-up in finite time T . Moreover, the blow-up
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time T can be estimated from above by T̂ , where

T̂ = max



(q1 + 1) |Ω|
q1−2

2
(∫

Ω
u2
0dx
) 1−q1

2

(q1 − 1) (q1 − 3)

(
1−

(
(q1 + 1)

(
1
2 − E(u0)

α2
1

))−q1−1
q1−1

) ,

(q1 + 1) |Ω|
q1−2

2
(∫

Ω
u2
0dx
) 1−q2

2

(q2 − 1) (q1 − 3)

(
1−

(
(q1 + 1)

(
1
2 − E(u0)

α2
1

))−q1−1
q1−1

) .


(2.6)

Lemma 2.9. Let define h : [0,+∞) → R as

h (α) =
1

2
α2 − 1

q1 + 1

(
B2

1

a

) q1+1
2

αq1+1. (2.7)

Then, under the assumptions of Theorem 2.8, the following properties hold :

(i). h is increasing for 0 < α ≤ α1 and decreasing for α ≥ α1;
(ii). lim

α→+∞
h (α) = −∞ and h (α1) = E1.

Proof. By the assumption that B1 > 1 and p1 > 1, h(α) = g (α) , for 0 < α ≤(
B1√
a

)−q1+1

. Moreover, h(α) is continuous and differentiable in [0,+∞).

h′(α) = α−
(
B2

1

a

) q1+1
2

αq1 , 0 ≤ α <

(
B1√
a

)−q1+1

.

Then (i) follows. Since q1− 1 > 0, we have lim
α→+∞

h (α) = −∞. A typical computation

yields to h(α1) = E1. This means that (ii) is true. □

Lemma 2.10. According to Theorem 2.8, it can be assumed that there is a positive
constant α2 > α1 such that√

a∥∇u∥22 +
b

2
∥∇u∥42 ≥ α2, t ≥ 0, (2.8)

∫
Ω

1

q (x) + 1
|u (x, t)|q(x)+1

dx ≥ 1

q1 + 1

(
B2

1

a

) q1+1
2

αq1+1
2 , (2.9)

and

α2

α1
≥
(
(q1 + 1)

(
1

2
− E(u0)

α2
1

)) 1
q1−1

> 1. (2.10)

Proof. According to Lemma 2.9, since E(u0) < E1, there must be a positive constant
α2 > α1 such that E(u0) = h(α2). Using equation (2.5), we can see that h(α0) =
g(α0) ≤ E(u0) = h(α2). With the help of Lemma 2.9(i), we can conclude that α0 ≥ α2,
which proves that (2.8) holds for t = 0. Now, to prove (2.8) by contradiction, let’s

assume that there exists a t∗ > 0 with
√
a∥∇u (t∗) ∥22 + b

2∥∇u (t∗) ∥42 < α2. By the
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continuity of
√
a∥∇u (., t∗) ∥22 + b

2∥∇u (., t∗) ∥42 and α2 > α1, we may take t∗ such that

α2 >
√
a∥∇u (t∗) ∥22 + b

2∥∇u (t∗) ∥42 > α1, then it follows from (2.5) and (2.7) that

E(u0) = h(α2) < h

(√
a∥∇u (t∗) ∥22 +

b

2
∥∇u (t∗) ∥42

)
≤ E (t∗) ,

which contradicts to (1.6), and (2.8) follows. By (2.1) and (??), we obtain∫
Ω

1

q (x) + 1
|u (x, t)|q(x)+1

dx ≥a

2
∥∇u∥22 +

b

4
∥∇u∥42 − E(u0)

≥1

2
α2
2 − h(α2) =

1

q1 + 1

(
B2

1

a

) q1+1
2

αq1+1

(2.11)

and (2.9) follows. Since E(u0) < E1, by a simple calculation, we can check(
(q1 + 1)

(
1

2
− E(u0)

α2
1

)) 2
q1−1

> 1,

then the second inequality in (2.10) holds, and we only need to show the first in-
equality. Denote β = α2

α1
, then β > 1 by the fact that α2 > α1. So it results from

E(u0) = h(α2), B1 > 1 and (2.4) that

E(u0) = h(α2) = h (βα1) =α2
1

(
1

2
β2 − 1

q1 + 1

1

a
q1+1

2

Bq1+1
1 βq1+1αq1−1

1

)
= α2

1β
2

(
1

2
− 1

q1 + 1
βq1−1

)
≥α2

1

(
1

2
− 1

q1 + 1
βq1−1

)
,

which implies that the first inequality in (2.10) holds. □

Consider H(t) = E1 − E(t) for t ≥ 0, the following lemma holds.

Lemma 2.11. According to Theorem 2.8, the functional H(t) mentioned earlier has
the following estimates:

0 < H(0) ≤ H(t) ≤
∫
Ω

1

q (x) + 1
|u (x, t)|q(x)+1

dx, t ≥ 0. (2.12)

Proof. By (1.6), H(t) is nondecreasing in t. Thus

H(t) ≥ H(0) = E1 − E(u0) > 0, t ≥ 0. (2.13)

Combining (2.1), (2.4), (2.8) and α2 > α1, we have

H(t)−
∫
Ω

1

q (x) + 1
|u (x, t)|q(x)+1

dx =E1 −
1

2

(
a∥∇u∥22 +

b

2
∥∇u∥42

)
≤
(
1

2
− 1

q1 + 1

)
α2
1 −

1

2
α2
1 < 0, t ≥ 0.

(2.14)

(2.12) follows from (2.13) and (2.14). □

With the three lemmas presented above, we can give the proof of the Theorem
2.8.
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Proof of Theorem 2.8. Let define the function

φ (t) =
1

2

∫
Ω

u (x, t)
2
dx, (2.15)

According to the definitions of E(t) and H(t), the derivative of φ′(t) meets the re-
quirements

φ′ (t) =

∫
Ω

u (x, t)ut (x, t) dx

=

∫
Ω

u (x, t)

(
M

(∫
Ω

|∇u|2dx
)
∆u+ |u|q(x)−1

u

)
dx

=− a

∫
Ω

|∇u (x, t)|2 dx− b

∫
Ω

|∇u (x, t)|4 dx+

∫
Ω

|u|q(x)+1
dx

≥
(
−4E(t) + a∥∇u∥22 − 4

∫
Ω

1

q(x) + 1
|u|q(x)+1dx

)
+

∫
Ω

|u|q(x)+1
dx

≥− 4 (E1 −H (t)) +

(
1− 4

q1 + 1

)∫
Ω

|u (x, t)|q(x)+1
dx

≥− 4E1 + 2H (t) +
q1 − 3

q1 + 1

∫
Ω

|u (x, t)|q(x)+1
dx

(2.16)

By (2.4) and (2.8), we see

4E1 =4
q1 − 1

2 (q1 + 1)

(
B2

1

a

)
− q1+1

q1−1 = 2
q1 − 1

q1 + 1

(
B2

1

a

) q1+1
2

αq1+1
1

=2
q1 − 1

q1 + 1

(
α1

α2

)q1+1
(B2

1

a

) q1+1
2

αq1+1
2


≤2

q1 − 1

q1 + 1

(
α1

α2

)q1+1 ∫
Ω

|u (x, t)|q(x)+1
dx

≤q1 − 3

q1 + 1

(
α1

α2

)q1+1 ∫
Ω

|u (x, t)|q(x)+1
dx.

(2.17)

According to Lemmas 2.11, (2.16) and (2.17), this result

φ′ (t) ≥ γ

∫
Ω

|u (x, t)|q(x)+1
dx (2.18)

where

γ =
q1 − 3

q1 + 1

(
1−

(
α1

α2

)q1+1
)

> 0

According to Hölder’s inequality we have

φ
q1+1

2 (t) ≤ C1

∫
Ω

|u|q1+1
dx,

φ
q2+1

2 (t) ≤ C2

∫
Ω

|u|q2+1
dx

(2.19)
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where

C1 = |Ω|
q1−2

2

(
1

2

) q1+1
2

, and C2 = |Ω|
q2−1

2

(
1

2

) q2+1
2

.

|Ω| is the Lebesgue measure of Ω. Then it follows from (2.18) and (2.19) that

φ′ (t) ≥γmin

(∫
Ω

|u (x, t)|q1+1
dx,

∫
Ω

|u (x, t)|q2+1
dx

)
≥γmin

(
φ

q2+1
2 (t)

C2
,
φ

q1+1
2 (t)

C1

)
,

this implies

φ(t) ≥ min



((
1

2

∫
Ω

u2
0dx

) 1−q1
2

− γ (q1 − 1)

2C1
t

) −2
q1−1

,

((
1

2

∫
Ω

u2
0dx

) 1−q2
2

− γ (q2 − 1)

2C2
t

) −2
q2−1


.

Now, let

0 < T ∗ := max

(
2

q1
2 C1

γ (q1 − 1)

(∫
Ω

u2
0dx

) 1−q1
2

,
2

q2
2 C2

γ (q2 − 1)

(∫
Ω

u2
0dx

) 1−q2
2

)
< ∞,

(2.20)
then φ(t) blows up at time T ∗. Hence, u(x, t) discontinues at some finite time T ≤ T ∗,
that is to means, u(x, t) blows up at a finite time T . Next, we estimate T . By (2.10)
and the values of γ, C1, C2, we have

2
q1
2 C1

γ (q1 − 1)
≤ (q1 + 1) |Ω|

q1−2
2

(q1 − 1) (q1 − 3)

(
1−

(
(q1 + 1)

(
1
2 − E(u0)

α2
1

))−q1−1
q1−1

) ,

2
p2
2 C2

γ (q2 − 1)
≤ (q1 + 1) |Ω|

q1−2
2

(q2 − 1) (q1 − 3)

(
1−

(
(q1 + 1)

(
1
2 − E(u0)

α2
1

))−q1−1
q1−1

) .

The pair of inequalities shown above coupling (2.20) imply that T ≤ T ∗ ≤ T̂ , with T̂
being a fixed in (2.6). □

For 1 < q1 ≤ q (x) ≤ q2 ≤ n+2
n−2 , we have the following blow-up results

Theorem 2.12. Let u(x, t) the weak solution to problem (1.1) with the initial data
u0 ∈ H1

0 (Ω) are such that u0 ̸= 0.

1. Let q satisfy (H1). Suppose that one of the following claims holds:
(i). E (u0) < 0,
(ii). E (0) ≤ Ed,
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(iii). 0 ≤ E (u0) < C0 ∥u0∥22 ≜ min
(

a(q1−1)
q1+1 λ1,

b(q1−3)
2(q1+1)λ

2
1∥u0∥22

)
∥u0∥22, where

λ1 > 0 is the first eigenvalue of −∆ in Ω with homogeneous Dirichlet
boundary condition.
Then u(x, t) blows up in finite time. Moreover, the upper bound for T has

the following proprieties:

In case (i), T ≤ ∥u0∥2
2

(1−q21)E(u0)
.

In case (ii), when E(u0) < Ed, then the T can be bounded above as:

T ≤
4q1 ∥u0∥22

(q1 − 1)2 (q1 + 1) (Ed − E(0))
.

In case (iii), T ≤ 4q1∥u0∥2
2

(q1−1)2
(
min

(
a(q1−1)λ1,

b(q1−3)
2 λ2

1∥u0∥2
2

)
∥u0∥2

2−(q1+1)E(u0)
) .

2. Let q satisfy (H2) . Suppose that the following claim holds: E(u0) < − q1+1
q1+5

b
4εc (ε),

where

0 < c (ε) = max


3− q1

4

(
Bε−

q1+1
4

q1 + 1

4

) 4
3−q1

,

3− q2
4

(
Bε−

q2+1
4

q2 + 1

4

) 4
3−q2

 , (2.21)

and

0 < ε ≤ b (q1 + 1)
2

16
(2.22)

. Then T < +∞, which implies that u(x, t) blows up in finite time. Moreover,
the upper bound for T has the following form

T ≤
∥u0∥22

(1− q21)
(

q1+5
q1+1E(u0) +

b
4εc (ε)

) .
Proof. 1. (I) Set

M(t) =
1

2
∥u(t)∥22, J(t) = −E(u(t)) ≜ −E(u(x, t)),

then M(0) > 0, J(0) > 0. By (1.7) we have J′(t) = − d
dtE(u(t)) = ∥ut(t)∥22 ≥ 0,

which infers that J(t) ≥ J(0) > 0 for all t ∈ [0, T ). Evoking (1.5), (1.8) and the
fact that q1 > 3, we gain, for any t ∈ [0, T ), that

M′(t) = −I(u(t)) ≥ − (q1 + 1)E(u) + (q1 − 1)
a

2
∥∇u∥22 +

b

4
(q1 − 3) ∥∇u∥42

≥ (q1 + 1)J(t),
(2.23)

This, when combined with the Cauchy-Schwarz inequality, results

M(t)J′(t) =
1

2
∥u(t)∥22 ∥ut(t)∥22 ≥ 1

2
∥u(t)∥22 ∥ut(t)∥22

≥1

2
(u, ut)

2
=

1

2
(M′(t))

2 ≥ q1 + 1

2
M′(t)J(t).

(2.24)
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Based on direct calculations, it can be inferred from (2.24) that(
J(t)M− q1+1

2 (t)
)′

= M− q1+3
2 (t)

(
J′(t)M(t)− q1 + 1

2
J(t)M′(t)

)
≥ 0.

Therefore,

0 < κ := J(0)M− q1+1
2 (0) ≤ J(t)M− q1+1

2 (t)

≤ 1

q1 + 1
M′(t)L− q1+1

2 (t) =
2

1− q21

(
M

1−q1
2 (t)

)′
. (2.25)

By integrating (2.25) over the interval [0, t], where t belongs to the open interval
(0, T ), and taking into consideration that q1 > 3, we can derive the following
result

κt ≤ 2

1− q21

(
M

1−q1
2 (t)−M

1−q1
2 (0)

)
,

or equivalently

0 ≤ M
1−q1

2 (t) ≤ M
1−q1

2 (0)− q21 − 1

2
κt, t ∈ (0, T ). (2.26)

It is clear that (2.26) cannot hold for all t > 0, implying T < +∞. Furthermore,
it can be deduced from (2.26) that

T ≤ 2

(q21 − 1)κ
M

1−q1
2 (0) =

∥u0∥22
(1− q21) E (u0)

.

(II) Assuming the existence of u(t) globally, we will use contradiction and define
the following function:

θ(t) =

∫ t

0

∥u(s)∥22ds+ (T0 − t) ∥u0∥22 + β (t+ t0)
2
, t ∈ [0, T0], t0 > 0. (2.27)

where t0, T0 and β are positive constants to be determined later. Then we have

θ′(t) =∥u(t)∥22 − ∥u0∥22 + 2β (t+ t0)

=

∫ t

0

d

ds
∥u(s)∥22ds+ 2β (t+ t0)

=2

∫ t

0

∫
Ω

ut(s)u(s)dxds+ 2β (t+ t0) ,

(2.28)

and

θ′′(t) = 2

∫
Ω

ut(t)u(t)dx+ 2β. (2.29)

Using (1.1), and (2.29) we deduce that

θ′′(t) = −a∥∇u∥22 − b∥∇u∥42 +
∫
Ω

|u|q(x)+1dx+ 2β. (2.30)
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Based on (2.27), (2.28) and (2.30), it can be concluded that

θ′′(t)θ(t)−q1 + 1

2
(θ′(t))

2

=2θ(t)

[
−a∥∇u∥22 − b∥∇u∥42 +

∫
Ω

|u|q(x)+1dx+ β

]
− q1 + 1

2

(
2

∫ t

0

∫
Ω

ut(s)u(s)dxds+ 2β (t+ t0)

)2

=2θ(t)

[
−a∥∇u∥22 − b∥∇u∥42 +

∫
Ω

|u|q(x)+1dx+ β

]
+ 2 (q1 + 1)

[
η(t)−

(
θ(t)− (T − t) ∥u0∥22

)(
β +

∫ t

0

∥ut(s)∥22ds
)]

(2.31)

where η : [0, T ] → R is the function given by

η(t) =

(
β (t+ t0)

2
+

∫ t

0

∥u(s)∥22ds
)(

β +

∫ t

0

∥ut(s)∥22 ds
)

−
(
β (t+ t0) +

∫ t

0

∫
Ω

ut(s)u(s)dxds

)2

. (2.32)

By utilizing the Cauchy-Schwarz and Young’s inequalities, we can ensure that:(∫
Ω

u(t)ut(t)dx

)2

≤∥u(t)∥22 ∥ut(t)∥22 ,

2β (t+ σ)

∫ t

0

∫
Ω

ut(s)u(s)dxds ≤β (t+ t0)
2
∫ t

0

∥ut(s)∥22 ds+ β

∫ t

0

∥u(s)∥22ds
(2.33)

By (2.33), we get

η(t) ≥ β (t+ t0)
2
∫ t

0

∥ut(s)∥22 ds+ β

∫ t

0

∥u(s)∥22ds+
∫ t

0

∥ut(s)∥22 ds
∫ t

0

∥u(s)∥22ds

−2β (t+ t0)

∫ t

0

∫
Ω

ut(s)u(s)dxds−
(∫ t

0

∫
Ω

ut(s)u(s)dxds

)2

≥ 0, ∀t ∈ [0, T ].

(2.34)
From (2.31) and (2.34) we obtain

θ′′(t)θ(t)− q1 + 1

2
(θ′(t))

2 ≥ θ(t)ζ(t), (2.35)

where ζ(t) is given by

ζ(t) = −2a∥∇u∥22−2b∥∇u∥42+2

∫
Ω

|u|q(x)+1dx+2β−2 (q1 + 1)

(
β +

∫ t

0

∥ut
..
(s)∥22ds

)
(2.36)
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We will now make an estimation of ζ(t), using equations (1.7), and (2.36) yields

ζ(t) =− 2a∥∇u∥22 − 2b∥∇u∥42 + 2

∫
Ω

|u|q(x)+1dx

+ 2 (q1 + 1)E (u)− 2 (q1 + 1)E(u0)− 2q1β

≥− 2a∥∇u∥22 − 2b∥∇u∥42 + (q1 + 1) a∥∇u∥22

+
b

2
(q1 + 1) ∥∇u∥42 − 2 (q1 + 1)E(u0)− 2q1β

=(q1 − 1) a∥∇u∥22 +
q1 − 3

2
b∥∇u∥42 − 2 (q1 + 1)E(u0)− 2q1β

=2 (q1 + 1)


(
1

2
− 1

q1 + 1

)
a∥∇u∥22 +

(
1

4
− 1

q1 + 1

)
b∥∇u∥42

−E(u0)−
q1

q1 + 1
β



(2.37)

Let β be a positive value such that β ∈
(
0, q1+1

q1
(Ed − E(u0))

]
, and since u0 ∈ U

by Lemma 2.7, we have:

d ≤
(
1

2
− 1

q2 + 1

)
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
b∥∇u(t)∥42. (2.38)

And by assuming E(u0) < Ed we get

E(u0) <
q1 − 1

q1 + 1

q2 + 1

q2 − 1
d ≤ d

≤
(
1

2
− 1

q2 + 1

)
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
b∥∇u(t)∥42.

(2.39)
If we connect (2.37) and (2.39) we obtain

ζ(t) > ρ > 0. (2.40)

From (2.35) and (2.40), we reach at

θ′′(t)θ(t)− q1 + 1

2
(θ′(t))

2 ≥ ρθ(t). (2.41)

By the continuity of θ and equation (2.38), we can infer that there exists a
positive constant c such that θ(t) ≥ c for t in the interval [0, T ]. Therefore,
equation (2.41) produces

θ′′(t)θ(t)− q1 + 1

2
(θ′(t))

2 ≥ cρ. (2.42)

In this case, we prove that T cannot be infinite, meaning there is no weak solution
at all times. We use Lemma 2.5 to infer that θ(t) → ∞ as t → T∗, where

T∗ ≤ θ(0)

(q1 − 1)θ′(0)
=

T0 ∥u0∥22 + βt20
(q1 − 1)βt0

,
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there exists a T ∗ < T∗ which

lim
t→T∗

∫ t

0

∥u(s)∥22ds+ (T0 − t) ∥u0∥22 + β (t+ t0)
2
= +∞.

Let’s choose appropriate values for t0 and T0. We can set t0 to any number that
depends only on q1, d− E(0) and u0

t0 >
∥u0∥22

(q1 − 1)β

If t0 is fixed, then T0 can be chosen as

T0 =
T0 ∥u0∥22 + βt20
(q1 − 1)βt0

,

so that

T0 =
βt20

(q1 − 1)βt0 − ∥u0∥22
.

The lifespan of the solution u(x, t) is bounded by a certain number as

T0 = inf
t≥t0

βt2(
(q1 − 1)βt− ∥u0∥22

) =
4 ∥u0∥22

(q1 − 1)2β
=

4q1 ∥u0∥22
(q1 − 1)2 (q1 + 1) (Ed − E(u0))

.

Due to the arbitrariness of T0 < T it follows that

T ≤
4q1 ∥u0∥22

(q1 − 1)2 (q1 + 1) (Ed − E(u0))
.

(III) To deal with the case 0 ≤ E(u0) < C0 ∥u0∥22, first, it follows from the
definitions of I(u), E(u) and the assumption (ii) that

I (u0) = (q1 + 1)E (u0)−
a(q1 − 1)

2
∥∇u0∥22 −

b(q1 − 3)

4
∥∇u0∥42

= (q1 + 1)
(
E (u0)− C0 ∥u0∥22

)
− a(q1 − 1)

2

(
∥∇u0∥22 − λ1 ∥u0∥22

)
− b(q1 − 3)

4
∥∇u0∥42 < 0.

We claim that for all t ∈ [0, T ), I(u(t)) < 0. Otherwise, there would exist a
t0 ∈ (0, T ) such that I(u(t)) < 0 for all t ∈ [0, t0) and I (u (t0)) = 0. By (2.23),
we have that ∥u(t)∥22 and ∥u(t)∥42 are strictly increasing in t for t ∈ [0, t0), and
therefore

0 ≤ E (u0) < C0 ∥u0∥22 < C0 ∥u (t0)∥22 . (2.43)
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On the other hand, we can deduce from the monotonicity of E(u(t)) and
(1.5)

E (u0) ≥E (u (t0)) =
a(q1 − 1)

2(q1 + 1)
∥∇u (t0)∥22 +

b(q1 − 3)

4(q1 + 1)
∥∇u (t0)∥42 +

1

q1 + 1
I (u (t0))

≥min

(
a(q1 − 1)

(q1 + 1
λ1,

b(q1 − 3)

2(q1 + 1)
λ2
1∥u0∥22

)
∥u (t0)∥22 = C0 ∥u (t0)∥22 ,

Therefore, since (2.43) is contradictory, we have I(u(t) < 0 for all t ∈ [0, T ).
Then, ∥u(t)∥22 is strictly increasing on [0, T ) and ∥u(t)∥42 is also strictly increasing
on [0, T ). For any T0 ∈ (0, T ), β > 0, and t0 > 0, we define

F (t) =

∫ t

0

∥u(τ)∥22dτ − (T0 − t) ∥u0∥22 + β(t+ t0)
2, t ∈ [0, T0] . (2.44)

Through a direct calculations

F ′(t) =∥u(t)∥22 − ∥u0∥22 + 2β(t+ t0) =

∫ t

0

d

dτ
∥u(τ)∥22dτ + 2β(t+ t0)

=2

∫ t

0

(u, uτ ) dτ + 2β(t+ t0),

F ′′(t) =2 (u, ut) + 2β = −2I(u(t)) + 2β

=− 2(q1 + 1)E(u(t)) + a(q1 − 1)∥∇u(t)∥22 +
b(q1 − 3)

2
∥∇u(t)∥42 + 2β

=− 2(q1 + 1)E (u0) + 2(q1 + 1)

∫ t

0

∥uτ (τ)∥22 dτ + a(q1 − 1)∥∇u(t)∥22

+
b(q1 − 3)

2
∥∇u(t)∥42 + 2β.

(2.45)

For t ∈ [0, T0], set

θ(t) =

(∫ t

0

∥u(τ)∥22dτ + β(t+ t0)
2

)(∫ t

0

∥uτ∥22 dτ + β

)
−
(∫ t

0

(u, uτ ) dτ + β(t+ t0)

)2

.

By applying Cauchy-Schwarz and Hölder’s inequalities, we can show that F (t) is
non-negative on the interval [0, T0]. As a result, we can use equation (2.44)-(2.45)
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and the monotonicity of ∥u(t)∥22 and ∥u(t)∥42 to conclude

F (t)F ′′(t)− q1 + 1

2
(F ′(t))

2

=F (t)F ′′(t)− 2(q1 + 1)

(∫ t

0

(u, uτ ) dτ + β(t+ t0)

)2

=F (t)F ′′(t) + 2(q1 + 1)

[
θ(t)−

(
F − (T − t) ∥u0∥22

)(∫ t

0

∥uτ∥22 dτ + β

)]
≥F (t)F ′′(t)− 2(q1 + 1)F (t)

(∫ t

0

∥uτ∥22 dτ + β

)
=F (t)

[
−2(q1 + 1)E (u0) + 2(q1 + 1)

∫ t

0

∥uτ∥22 dτ + a(q1 − 1)∥∇u(t)∥22

+
b(q1 − 3)

2
∥∇u(t)∥42 + 2β − 2(q1 + 1)

∫ t

0

∥uτ∥22 dτ − 2(q1 + 1)β

]
≥F (t)

[
−2(q1 + 1)E (u0) + a(q1 − 1)λ1∥u(t)∥22 +

b(q1 − 3)

2
λ2
1∥u(t)∥42 − 2q1β

]
≥F (t)

[
−2(q1 + 1)E (u0) + min

(
a(q1 − 1)λ1,

b(q1 − 3)

2
λ2
1∥u0∥22

)
∥u0∥22 − 2q1β

]
=2(q1 + 1)F (t)

[
C0 ∥u0∥22 − E (u0)−

q1β

q1 + 1

]
≥ 0.

(2.46)

Choosing 0 < β < q1+1
q1

(
C0 ∥u0∥22 − E (u0)

)
. Then using Lemma 2.5, to infer

F (t) → ∞ as t → T ∗, where

T ∗ ≤ F (0)

(q1 − 1)F ′(0)
=

T0 ∥u0∥22 + βt20
(q1 − 1)βt0

. (2.47)

Let’s choose appropriate values for t0 and T0. We can set t0 to any number that
only depends on q1, d− E(0) and u0 as

t0 >
∥u0∥22

(q1 − 1)β
.

Fix t0, then T0 can be picking a

T0 =
T0 ∥u0∥22 + βt20
(q1 − 1)βt0

,

so that

T0 =
βt20

(q1 − 1)βt0 − ∥u0∥22
.

Therefore, the lifespan of the solution u(x, t) is bounded by

T0 = inf
t≥t0

βt2

(q1 − 1)βt− ∥u0∥22
=

4q1 ∥u0∥22
(q1 − 1)2 (q1 + 1)

(
C0 ∥u0∥22 − E (u0)

) ,
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due to the arbitrariness of T0 < T it follows that

T0 ≤
4q1 ∥u0∥22

(q1 − 1)2 (q1 + 1)
(
min

(
a(q1 − 1)λ1,

b(q1−3)
2 λ2

1∥u0∥22
)
∥u0∥22 − E (u0)

) .
2. To handle the case where 1 < q1 ≤ q (x) ≤ q2 ≤ 3, we modify the energy

functional E by setting

M(t) =
1

2
∥u(t)∥22, J(t) = −E(u(t))−

(
4

q1 + 1
E(0) +

b

4ε
c (ε)

)
≜ −E(u(x, t))−

(
4

q1 + 1
E(u0) +

b

4ε
c (ε)

)
,

then M(0) > 0, J(0) > 0. By (1.7) we also have

J′(t) = − d

dt
E(u(t)) = ∥ut(t)∥22 ≥ 0.

It implies that J(t) ≥ J(0) for all t ∈ [0, T ). Additionally, Lemma 2.6 states that
for any ε > 0∫

Ω

|u|q(x)+1dx ≤ Bmax
(
∥∇u∥q1+1

2 , ∥∇u∥q2+1
2

)

≤ max


ε∥∇u∥42 +

3− q1
4

(
B

ε
q1+1

4

q1 + 1

4

) 4
3−q1

,

ε∥∇u∥42 +
3− q2

4

(
B

ε
q2+1

4

q2 + 1

4

) 4
3−q2


≤ ε∥∇u∥42 + c (ε) ,

which give

∥∇u∥42 ≥ 1

ε

∫
Ω

|u|q(x)+1dx− 1

ε
c (ε) ,

and from (1.5)

E(u) =
a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

∫
Ω

1

q(x) + 1
|u|q(x)+1dx

≥ a

2
∥∇u∥22 +

b

4

1

ε

∫
Ω

|u|q(x)+1dx− 1

q1 + 1

∫
Ω

|u|q(x)+1dx− b

4ε
c (ε) ,

also using (1.5), and (1.5)2 we have

b∥∇u∥42 ≤ 4E(0) +
4

q1 + 1

∫
Ω

|u|q(x)+1dx,

in which (1.5)2 becomes

I(u) ≤ a∥∇u∥22 + 4E(u0) +
4

q1 + 1

∫
Ω

|u|q(x)+1dx

−
∫
Ω

|u|q(x)+1dx+
a(q1 − 1)

2
∥∇u0∥22
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thus we obtain, for any t ∈ [0, T ), that

(q1 + 1)E(u)− I(u)

≥ q1 − 1

2
a∥∇u∥22 +

b (q1 + 1)

4ε

∫
Ω

|u|q(x)+1dx−
∫
Ω

|u|q(x)+1dx

−4E(u0)−
b (q1 + 1)

4ε
c (ε)− 4

q1 + 1

∫
Ω

|u|q(x)+1dx+

∫
Ω

|u|q(x)+1dx

≥
(
b (q1 + 1)

4ε
− 4

q1 + 1

)∫
Ω

|u|q(x)+1dx− 4E(u0)−
b (q1 + 1)

4ε
c (ε)

≥ −4E(u0)−
b (q1 + 1)

4ε
c (ε) ,

this meaning that

M′(t) = −I(u) ≥ − (q1 + 1)E(u)− 4E(u0)−
b (q1 + 1)

4ε
c (ε) = − (q1 + 1) J(t),

which, together with Cauchy-Schwarz inequality, yields

M(t)J′(t) =
1

2
∥u(t)∥22 ∥ut(t)∥22 ≥ 1

2
(u, ut)

2
=

1

2
(M′(t))

2 ≥ q + 1

2
M′(t)J(t).

By direct computations as previously, it follows that

0 ≤ M
1−q1

2 (t) ≤ M
1−q1

2 (0)− q21 − 1

2
J(0)M− q1+1

2 (0)t, t ∈ (0, T ). (2.48)

It is obvious to see that (2.48) cannot hold for all t > 0. Therefore, T < +∞.
Moreover, it can be inferred that

T ≤ 2

(q21 − 1) J(0)L− q1+1
2 (0)

M
1−q1

2 (0) =
∥u0∥22

(1− q21)
(

q1+5
q1+1E(u0) +

b
4εc (ε)

) .
□

Remark 2.13. It is not possible to compare the conditions in Theorem2.8 and The-
orem2.12, which use Ed, E1, and E(u0). However, when 1 < q1 ≤ q (x) ≤ q2 ≤ 3,
instead of 3 < q1 ≤ q (x) ≤ q2 ≤ 2∗, and n ≥ 3, three new blow-up criteria are
obtained which have not been addressed before in [14, 15].
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