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1. Introduction

In this paper, we consider the following second-order p-Laplacian impulsive difierential
equation with Dirichlet boundary conditions on the half-line −(ρ(x)|u′|p−2u′)′ + |u|p−2u = f(x, u), x ̸= xj , a.e. x ≥ 0,

△(ρ(xj)|u′(xj)|p−2u′(xj)) = g(xj)Ij(u(xj)), j ∈ N∗,
u(0) = u(∞) = 0,

(1.1)

where p > 1, ρ : [0,∞) → (0,∞) satisfies ρ−
1

p−1 ∈ L1[0,∞) and

M0 =

(∫ ∞

0

(∫ ∞

x

ρ−
1

p−1 (s)ds

)
dx

)
< ∞.

The functions f ∈ C([0,∞)× R,R), Ij : R → R and g : [0,∞) → (0,∞) are assumed
to be continuous with

∑∞
j=1 g(xj) < ∞, 0 = x0 < x1 < x2 < ... < xj < ... < xm → ∞,

as m → ∞, are the impulse points, and

△(ρ(xj)|u′(xj)|p−2u′(xj)) = ρ(x+
j )|u

′(x+
j )|

p−2u′(x+
j )− ρ(x−

j )|u
′(x−

j )|
p−2u′(x−

j ),
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such that u′(x±
j ) = limx→x±

j
u′(x) for j ∈ N∗.

Recently, there is increasing interest in the existence and multiplicity of solutions
for several types of differential equations with a p-Laplacian operator by applying
variational methods and critical point theory. Meanwhile, some people begin to study
p-Laplacian differential equations with impulsive effects, for example, see [1, 2, 4, 7,
8, 9] and the references therein.

Motivated by the works cited above, in this paper, we shall discuss the existence
of solutions for problem (1.1) on the half-line by adoptting Browder theorem. The
results obtained here improve some existing results in the literature.

2. Variational structure

Let define the following reflexive Banach space

X =
{
u ∈ W 1,p(0,∞) : u(0) = u(∞) = 0, ρ

1
pu′ ∈ Lp(0,∞)

}
,

equipped with the norm

∥u∥ =

 +∞∫
0

ρ(x)|u′(x)|pdx+

+∞∫
0

|u(x)|pdx


1
p

,

or the equivalent norm

∥u∥X = ∥ρ
1
pu′∥p + ∥u∥p.

Also consider the space

C0[0,+∞) =
{
u ∈ C([0,+∞),R) : lim

x→∞
u(x) = 0

}
,

endowed with the norm

∥u∥∞ = sup
x∈[0,+∞)

|u(x)|.

In what follows, we shall convert the problem (1.1) into an integral equation.
Multiply the two sides of the equality

−(ρ(x)|u′|p−2u′)′ + |u|p−2u = f(x, u),

by v ∈ X and integrate from 0 to ∞, to obtain,

−
+∞∫
0

(ρ(x)|u′(x)|p−2u′(x))′v(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx =

+∞∫
0

f(x, u(x))v(x)dx.

Let consider the first term

−
+∞∫
0

(ρ(x)|u′(x)|p−2u′(x))′v(x)dx =

∞∑
j=0

x−
j+1∫

x+
j

−(ρ(x)|u′(x)|p−2u′(x))′v(x)
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=

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

∞∑
j=1

[
ρ(x+

j )|u
′(x+

j )|
p−2u′(x+

j )

− ρ(x−
j )|u

′(x−
j )|

p−2u′(x−
j )

]
v(xj)

=

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+
∞∑
j=1

△(ρ(xj)|u′(xj)|p−2u′(xj))v(xj)

=

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

∞∑
j=1

g(xj)Ij(u(xj))v(xj),

and then, we have

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx+

∞∑
j=1

g(xj)Ij(u(xj))v(xj)

=

+∞∫
0

f(x, u(x))v(x)dx.

This leads us to introduce the following concept for the solution for (1.1).

Definition 2.1. We say that a function u ∈ X is a weak solution of the impulsive
problem (1.1) if u satisfies

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx+

∞∑
j=1

g(xj)Ij(u(xj))v(xj)

−
+∞∫
0

f(x, u(x))v(x)dx = 0.

Concerning the previous spaces, we have the following vital embeddings.

Lemma 2.2. Let u ∈ X. Then

∥u∥pp ≤ M0∥u∥p, (2.1)

where

M0 =

∫ ∞

0

(∫ ∞

x

ρ−
1

p−1 (s)ds

)
dx.

Proof. For u ∈ X, we find

|u(x)| =
∣∣∣ ∫ ∞

x

u′(s)ds
∣∣∣ = ∣∣∣ ∫ ∞

x

ρ
1
p (s)u′(s)ρ−

1
p (s)ds

∣∣∣.
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Then, by the Hölder inequality, we obtain

|u(x)|p ≤
(∫ ∞

x

ρ(s)|u′(s)|pds
)(∫ ∞

x

ρ−
1

p−1 (s)ds

)
≤

(∫ ∞

0

ρ(s)|u′(s)|pds
)(∫ ∞

x

ρ−
1

p−1 (s)ds

)
.

Hence, ∫ ∞

0

|u(x)|pdx ≤
(∫ ∞

0

(∫ ∞

x

ρ−
1

p−1 (s)ds

)
dx

)(∫ ∞

0

ρ(s)|u′(s)|pds
)
.

As a result we obtain (2.1). □

Lemma 2.3. Let u ∈ X. Then

∥u∥∞ ≤ M∥u∥,

where M = ∥ρ−
1

p−1 ∥
p−1
p

1 .

Proof. For u ∈ X, we get

|u(x)| =
∣∣∣ ∫ x

0

u′(s)ds
∣∣∣

≤
∫ x

0

ρ−
1
p (s)ρ

1
p (s)|u′(s)|ds

≤
(∫ ∞

0

ρ−
1

p−1 (s)ds

) p−1
p

(∫ ∞

0

ρ(s)|u′(s)|pds
) 1

p

≤ ∥ρ−
1

p−1 ∥
p−1
p

1 ∥u∥.

Hence, ∥u∥∞ ≤ M∥u∥. □

To prove that X embeds compactly in C0[0,+∞) we need the following Cor-
duneanu compactness criterion.

Lemma 2.4. [5] Let D ⊂ C0([0,+∞),R) be a bounded set. Then D is relatively compact
if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of R+, i.e.

∀ J ⊂ [0,+∞) compact,∀ ε > 0, ∃ δ > 0, ∀x1, x2 ∈ J :

|x1 − x2| < δ =⇒|u(x1)− u(x2)| ≤ ε,∀u ∈ D;

(b) D is equiconvergent at +∞ i.e.,

∀ ε > 0,∃T = T (ε) > 0 such that

∀x : x ≥ T (ε) =⇒ |u(x)− u(+∞)| ≤ ε, ∀u ∈ D.

Lemma 2.5. The embedding X ↪→ C0[0,∞) is compact.
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Proof. Let D ⊂ X be a bounded set. Then, D is bounded in C0[0,∞) by Lemma 2.3.
Let R > 0 be such that ∥u∥ ≤ R for all u ∈ D. We will apply Lemma 2.4.

(a) D is equicontinuous on every compact interval of [0,+∞). Let u ∈ D and
x1, x2 ∈ J ⊂ [0,+∞) where J is a compact sub-interval. Using Hölder inequality, we
have

|u(x1)− u(x2)| =
∣∣∣ ∫ x2

x1

u′(s)ds
∣∣∣

=
∣∣∣ ∫ x2

x1

ρ−
1
p (s)ρ

1
p (s)u′(s)ds

∣∣∣
≤

(∫ x2

x1

ρ−
1

p−1 (s)ds
) p−1

p
(∫ x2

x1

ρ(s)|u′(s)|pds
) 1

p

≤
(∫ x2

x1

ρ−
1

p−1 (s)ds
) p−1

p ∥u∥ ≤ R
(∫ x2

x1

ρ−
1

p−1 (s)ds
) p−1

p −→ 0,

as |x1 − x2| → 0.

(b) D is equiconvergent at +∞. For x ∈ [0,+∞) and u ∈ D, using the fact that
u(∞) = 0 and by Hölder inequality, we have

|u(x)− u(∞)| = |u(x)|

=
∣∣∣ ∫ ∞

x

u′(s)ds
∣∣∣

≤
(∫ ∞

x

ρ
1
p (s)|u′(s)|ds

)(∫ ∞

x

ρ−
1

p−1 (s)
) p−1

p

≤
(∫ ∞

x

ρ−
1

p−1 (s)ds
) p−1

p ∥u∥

≤ R
(∫ ∞

x

ρ−
1

p−1 (s)ds
) p−1

p −−−−→x → ∞0.

□

Finally, we present the Browder Theorem which will be needed in our argument.

Definition 2.6. [6] Let X be a reflexive real Banach space and X∗ its dual. The operator
L : X → X∗ is called to be demicontinuous if L maps strongly convergent sequences
in X to weakly convergent sequences in X∗.

Lemma 2.7 (Browder theorem). [3], [6] Let X be a reflexive real Banach space. More-
over, Let L : X → X∗ be an operator satisfying the following conditions:
(i) L is bounded and demicontinuous;

(ii) L is coercive, that is, lim∥u∥→∞
⟨L(u), u⟩

∥u∥
= +∞;

(iii) L is monotone on the space X; that is; for all u, v ∈ X; one has

⟨L(u)− L(v), u− v⟩ ≥ 0. (2.2)
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Then the equation L(u) = f∗ has at least one solution u ∈ X for every f∗ ∈ X∗.
If, moreover, the inequality (2.2) is strict for all u, v ∈ X, u ̸= v, then the equation
L(u) = f∗ has precisely one solution u ∈ X for all f∗ ∈ X∗.

3. Results

Suppose the following hypotheses hold:

(H1) The function f(x, u) is decreasing about u, uniformly in x ∈ [0,∞); and Ij(u)
(j ∈ N∗) are increased functions with u.

(H2) There exist αj , βj > 0 and γ ∈ [1, p) with
∑∞

j=1 αjg(xj) < ∞,
∑∞

j=1 βjg(xj) <
∞, such that

|Ij(u)| ≤ αj + βj |u|γ−1, for all u ∈ R and j ∈ N∗.

(H3) There exist positive functions c1, c2 ∈ L
p

p−1 [0,∞) and a constant µ ∈ (0, p− 1)
such that

|f(x, u)| ≤ c1(x) + c2(x)|u|µ, ∀(x, u) ∈ [0,∞)× R.
Let L be the operator defined from X into X∗ by

⟨L(u), v⟩ = ⟨L1(u), v⟩+ ⟨L2(u), v⟩ − ⟨L3(u), v⟩, ∀u, v ∈ X,

where

⟨L1(u), v⟩ =
+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx,

⟨L2(u), v⟩ =
∞∑
j=1

g(xj)Ij(u(xj))v(xj),

⟨L3(u), v⟩ =
+∞∫
0

f(x, u(x))v(x)dx.

We search for a weak solution of problem (1.1) which is a solution for the operator
equation L(u) = 0.

Theorem 3.1. Assume that (H1)-(H3) hold. Then (1.1) has a unique weak solution.

Proof. The proof consists of four steps:
Claim 1. L is bounded and demicontinuous.
It is sufficient to show that the operators Li(i = 1, 2, 3) are bounded and continuous.
Firstly, we prove that L is bounded.
Using Hölder inequality, together with the following result

∀a, b, c, d > 0 ∀β ∈ (0, 1) : (a+ b)β(c+ d)1−β ≥ aβc1−β + bβd1−β ,

we obtain for all u, v ∈ X, (see [7]),

|⟨L1(u), v⟩| =
∣∣∣ +∞∫

0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx
∣∣∣
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≤

 +∞∫
0

ρ(x)|u′(x)|pdx+

+∞∫
0

|u(x)|pdx


p−1
p

×

 +∞∫
0

ρ(x)|v′(x)|pdx+

+∞∫
0

|v(x)|pdx


1
p

≤ ∥u∥p−1∥v∥
< ∞,

as a result, L1 is bounded.
Now, we prove the boundedness of L2 and L3 respectively. Using Lemma 2.3 and
(H2), gives

|⟨L2(u), v⟩| =
∣∣∣ ∞∑
j=1

g(xj)Ij(u(xj))v(xj)
∣∣∣

≤
∞∑
j=1

g(xj)|Ij(u(xj))||v(xj)|

≤
∞∑
j=1

g(xj)(αj + βj |u(xj)|γ−1)|v(xj)|

≤
∞∑
j=1

(αjg(xj) + βjg(xj)∥u∥γ−1
∞ )∥v∥∞

≤ M
( ∞∑

j=1

αjg(xj) +Mγ−1∥u∥γ−1
∞∑
j=1

βjg(xj)
)
∥v∥

< ∞, ∀u, v ∈ X,

that implies L2 is bounded.
From the condition (H3), we get

|⟨L3(u), v⟩| =
∣∣∣ +∞∫

0

f(x, u(x))v(x)dx
∣∣∣ ≤ +∞∫

0

(c1(x) + c2(x)|u(x)|µ) |v(x)|dx,

by the Hölder inequality, Lemma 2.2 and Lemma 2.3, we arrive immediately at

|⟨L3(u), v⟩| ≤
(∫ +∞

0

|c1(x)|
p

p−1 dx
) p−1

p
(∫ +∞

0

|v(x)|pdx
) 1

p

+ ∥u∥µ∞(∫ +∞

0

|c2(x)|
p

p−1 dx
) p−1

p
(∫ +∞

0

|v(x)|pdx
) 1

p

≤ ∥c1∥ p
p−1

∥v∥p + ∥u∥µ∞∥c2∥ p
p−1

∥v∥p

≤ M
1
p

0

(
∥c1∥ p

p−1
+Mµ∥c2∥ p

p−1
∥u∥µ

)
∥v∥

< ∞,



480 Meriem Djibaoui

as a consequence, L3 is bounded. We deduce that L is a bounded operator.
Secondly, we prove that L is demicontinuous.
For un → u in X, we have

|⟨L1(un)− L1(u), un − u⟩| ≤
( +∞∫

0

ρ(x)
(
|u′

n(x)|p−2u′
n(x)− |u′(x)|p−2u′(x)

) p
p−1

dx

+

+∞∫
0

(
|un(x)|p−2un(x)− |u(x)|p−2u(x)

) p
p−1

dx
) p−1

p ∥un − u∥.

Since limn→∞ ∥un − u∥ = 0, the last integral tends to zero. We see that L1 is contin-
uous.
To show the continuity of L2, we prove that L2 is strongly continuous, that is, if
un ⇀ u in X then L2(un) → L2(u), as n → ∞.
Assume un ⇀ u in X, Lemma 2.5 guarantees that (un) converges uniformly to u on
[0,∞), as n → ∞. Since Ij are continuous, then

Ij(un(xj)) → Ij(u(xj)), n → ∞, j ∈ N∗,

moreover, from (H2) we get

∞∑
j=1

g(xj)Ij(un(xj)) < ∞,

by applying Lebesgue’s dominated convergence theorem, we obtain

∞∑
j=1

g(xj)Ij(un(xj)) →
∞∑
j=1

g(xj)Ij(u(xj)) as n → ∞,

concequently,

|⟨L2(un)− L2(u)⟩| → 0 as n → ∞,

that means L2 is strongly continuous and therefore it is continuous.
In what follows, we discuss the continuity of L3.
Let (un) be such that un ⇀ u in X. So (un) is bounded in X and by Lemma 2.5, we
have that (un) is bounded in C0[0,+∞). By Lemma 2.5, un → u in C0[0,+∞). We
have

∥L3(un)− L3(u)∥X∗ = sup
∥v∥≤1

|⟨L3(un)− L3(u)⟩|

= sup
∥v∥≤1

∣∣∣ +∞∫
0

[
f(x, un(x))− f(x, u(x))

]
dx

∣∣∣
≤ sup

∥v∥≤1

( +∞∫
0

|f(x, un(x))v(x)|dx
)
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+ sup
∥v∥≤1

( +∞∫
0

|f(x, u(x))v(x)|dx
)

≤ sup
∥v∥≤1

( +∞∫
0

(c1(x)|v(x)|+ c2(x)|un(x)|µ|v(x)|)dx
)

+ sup
∥v∥≤1

( +∞∫
0

(c1(x)|v(x)|+ c2(x)|u(x)|µ|v(x)|dx
)

≤ 2∥c1∥ p
p−1

+
(
∥un∥µ∞ + ∥u∥µ∞

)
≤ 2∥c1∥ p

p−1
+Mµ∥c2∥ p

p−1

(
∥un∥µ + ∥u∥µ

)
≤ 2∥c1∥ p

p−1
+ CMµ∥c2∥ p

p−1
.

for some constant C > 0. Since un → u, n → ∞ in C0[0,+∞), we obtain

+∞∫
0

(f(x, un(x))− f(x, u(x))) v(x)dx → 0 as n → ∞,

this implies that L3 is continuous. Thus the operator L is continuous and hence it is
demicontinuous. So assumption (i) of Lemma 2.7 holds.

Claim 2. L is monotone.
By (H1), for all u, v ∈ X, we have

⟨L(u)− L(v), u− v⟩ =
+∞∫
0

ρ(x)
[
|u′(x)|p−2u′(x)− |v′(x)|p−2v′(x)

]
(u′(x)− v′(x))dx

+

+∞∫
0

[
|v(x)|p−2v(x)− |v(x)|p−2v(x)

]
(u(x)− v(x))dx

−
+∞∫
0

[
f(x, u(x))− f(x, v(x))

]
(u(x)− v(x))dx

+

∞∑
j=1

[
g(xj)Ij(u(xj))− g(xj)Ij(v(xj))

]
(u(xj)− v(xj))

≥
+∞∫
0

ρ(x)
[
|u′(x)|p−2u′(x)− |v′(x)|p−2v′(x)

]
(u′(x)− v′(x))dx

+

+∞∫
0

[
|v(x)|p−2v(x)− |v(x)|p−2v(x)

]
(u(x)− v(x))dx
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≥
(
∥u∥p−1 − ∥v∥p−1

)(
∥u∥ − ∥v∥

)
≥ 0,

so, L is monotone.
Claim 3. L is coercive.
For all u, v ∈ X, we have

⟨L(u), u⟩ = ∥u∥p +
∞∑
j=1

g(xj)Ij(u(xj))u(xj)−
+∞∫
0

f(x, u(x))u(x)dx.

From Lemma 2.2 and Lemma 2.3, combining assumption (H2) and (H3), we find

⟨L(u), u⟩ ≥ ∥u∥p −
∞∑
j=1

g(xj)Ij(u(xj))u(xj)−
+∞∫
0

f(x, u(x))u(x)dx

≥ ∥u∥p −
∞∑
j=1

g(xj)
(
αj + βj |u(xj)|γ−1

)
u(xj)

−
+∞∫
0

(
c1(x) + c2(x)|u(x)|µ

)
|u(x)|dx

hence,

⟨L(u), u⟩ ≥ ∥u∥p −
( ∞∑

j=1

αjg(xj) +

∞∑
j=1

βjg(xj)∥u∥γ−1
∞

)
∥u∥∞ −

+∞∫
0

c1(x)|u(x)|dx

−
+∞∫
0

c2(x)|u(x)|µ|u(x)|dx

≥ ∥u∥p −
( ∞∑

j=1

αjg(xj) +

∞∑
j=1

βjg(xj)∥u∥γ−1
∞

)
∥u∥∞ − ∥c1∥ p

p−1
∥u∥p

− ∥u∥µ∞∥c2∥ p
p−1

∥u∥p

≥ ∥u∥p −
(
M

∞∑
j=1

αjg(xj) +M
1
p

0 ∥c1∥ p
p−1

)
∥u∥ −

(
Mγ

∞∑
j=1

βjg(xj)
)
∥u∥γ

−M
1
p

0 Mµ∥c2∥ p
p−1

∥u∥µ+1,

so lim∥u∥→∞
⟨L(u),u⟩

∥u∥ = +∞.

Lemma 2.7 guarantees that problem (1.1) has a weak solution.
Claim 4. Uniqueness.
For all u, v ∈ X, u ̸= v, we have

⟨L(u)− L(v), u− v⟩ ≥
(
∥u∥p−1 − ∥v∥p−1

)(
∥u∥ − ∥v∥

)
> 0,
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so L is strictly monotone. □

Example 3.2. Let p = 4 and γ = 5
2 . Consider the problem

−(e3x|u′|u′)′ + |u|u = e−x − 2e−3xu2, a.e. x ̸= xj , x ≥ 0,

△(e3ju′(j)) = e−j
(

1
j + 1

j2 |u(j)|
3
2

)
, j ∈ N∗,

u(0) = u(∞) = 0,

where c1(x) = e−x, c2(x) = 2e−3x and g(x) = e−x.
It’s clear that (H1)− (H3) hold true. Hence, we may apply Lemma 2.7 and conclude
that (1.1) has precisely a weak solution.

Next, we consider the limit case µ = p− 1.

Theorem 3.3. Assume that (H1) and (H2) are hold both with

(H4) There exist positive functions c1, c2 ∈ L
p

p−1 [0,∞) such that

|f(x, u)| ≤ c1(x) + c2(x)|u|p−1, ∀(x, u) ∈ [0,∞)× R.

with

M
1
p

0 Mp−1∥c2∥ p
p−1

< 1.

Then (1.1) has a unique weak solution.

Proof. Arguing as in the proof of Theorem 3.1, we prove that L is bounded, demi-
continuous and monotone.
We check that L is a coercive. Indeed, under (H2), (H4), in view of Lemma 2.2 and
Lemma 2.3, it is easy to verify that

⟨L(u), u⟩ ≥ ∥u∥p −
( ∞∑

j=1

αjg(xj) +

∞∑
j=1

βjg(xj)∥u∥γ−1
∞

)
∥u∥∞ −

+∞∫
0

c1(x)|u(x)|dx

−
+∞∫
0

c2(x)|u(x)|p−1|u(x)|dx

≥ ∥u∥p −
( ∞∑

j=1

αjg(xj) +

∞∑
j=1

βjg(xj)∥u∥γ−1
∞

)
∥u∥∞

− ∥c1∥ p
p−1

∥u∥p − ∥u∥p−1
∞ ∥c2∥ p

p−1
∥u∥p

≥ ∥u∥p −M
( ∞∑

j=1

αjg(xj) +Mγ−1∥u∥γ−1
∞∑
j=1

βjg(xj)
)
∥u∥ −M

1
p

0 ∥c1∥ p
p−1

∥u∥

−M
1
p

0 Mp−1∥c2∥ p
p−1

∥u∥p

≥
(
1−M

1
p

0 Mp−1∥c2∥ p
p−1

)
∥u∥p −

(
M

∞∑
j=1

αjg(xj) +M
1
p

0 ∥c1∥ p
p−1

)
∥u∥
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−
(
Mγ

∞∑
j=1

βjg(xj)
)
∥u∥γ ,

we conclude that lim∥u∥→∞
⟨L(u),u⟩

∥u∥ = +∞.

Theorem 3.3 guarantees that problem (1.1) has a unique weak solution. □

Example 3.4. Let p = 2 and γ = 1
2 . Consider the problem

−(ex|u′|u′)′ + |u|u = e−
1
2x − e−x|u|, a.e. x ̸= xj , x ≥ 0,

△(eju′(j)) = e−j
(

1
j + 1

j2 |u(j)|
1
2

)
, j ∈ N∗,

u(0) = u(∞) = 0,

where c1(x) = e−
1
2x, c2(x) = e−x, ∥c2∥2 = 1√

2
, g(x) = e−x and M = M0 = 1.

It’s clear that (H1), (H2) and (H4) hold true. Hence, from Lemma 2.7 we find that
problem (1.1) has precisely a weak solution.
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