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Abstract. In this work, we introduce and investigate a subclass Gh,p
Σm

(λ, γ) of

analytic and bi-univalent functions when both f and f−1 are m-fold symmetric
in the open unit disk U. Moreover, we find upper bounds for the initial coefficients
|am+1| and |a2m+1| for functions belonging to this subclass Gh,p

Σm
(λ, γ). The results

presented in this paper would generalize and improve those that were given in
several recent works.

Mathematics Subject Classification (2010): 30C45, 30C50.

Keywords: Analytic functions, bi-univalent functions, coefficient estimates, m-
fold symmetric bi-univalent functions.

1. Introduction

Let A denote the class of functions of the following normalized form:

f(z) = z +

∞∑
j=2

ajz
j (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.
Also, we denote by S the class of all functions in the normalized analytic function

class f ∈ A which are univalent in U.
Since univalent functions are one-to-one, they are invertible and the inverse

functions need not be defined on the entire unit disk U. The Koebe One-Quarter
Theorem [4] ensures that the image of U under every univalent function f ∈ S contains
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a disk of radius 1
4 . Hence, every function f ∈ S has an inverse f−1, which is defined

by

f−1(f(z)) = z (z ∈ U),

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥

1

4

)
,

where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U, if both f and f−1 are univalent in
U. The class consisting of bi-univalent functions are denoted by Σ.

Determination of the bounds for the coefficients an is an important problem in
geometric function theory as they give information about the geometric properties
of these functions. For example, the bound for the second coefficient a2 of functions
f ∈ S gives the growth and distortion bounds as well as covering theorems.

Lewin [8] investigated the class Σ of bi-univalent functions and showed that
|a2| < 1.51 for the functions belonging to Σ. Subsequently, Brannan and Clunie [2]

conjectured that |a2| ≤
√
2. Kedzierawski [7] proved this conjecture for a special case

when the function f and f−1 are starlike functions. Tan [14] obtained the bound for
|a2| namely |a2| ≤ 1.485 which is the best known estimate for functions in the class Σ.
Recently there are interest to study the bi-univalent functions class Σ (see [5, 6, 16, 17])
and obtain non-sharp estimates on the first two Taylor-Maclaurin coefficients |a2| and
|a3|. The coefficient estimate problem i.e. bound of |an| (n ∈ N−{1, 2}) for each f ∈ Σ
given by (1.1) is still an open problem. For each function f ∈ S the function h(z)
given by

h(z) = m
√
f(zm) (z ∈ U,m ∈ N)

is univalent and maps the unit disk U into a region with m-fold symmetry.
A function is called m-fold symmetric (see[11, 12, 13]) if the function f(z) has the
following normalized form:

f(z) = z +

∞∑
k=1

amk+1z
mk+1 (z ∈ U,m ∈ N) (1.3)

We denote by Sm the class of m-fold symmetric univalent functions in U, which
are normalized by the series expansion (1.3). In fact, the functions in the class S are
one-fold symmetric, that is

S1 = S
Analogous to the concept of m-fold symmetric univalent functions, we now introduce
the concept of m-fold symmetric bi-univalent functions. Each function f ∈ Σ generates
an m-fold symmetric bi-univalent function for each integerf ∈ N . The normalized
form of f is given as in (1.3). Furthermore, the series expansion for f−1 , which was
recently proven by Srivastava et al. [13], is given as follows:
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g(w) = w − am+1w
m+1 + [(m+ 1)a2m+1 − a2m+1]w

2m+1−[1
2
(m+ 1)(3m+ 2)a3m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · ,

where g = f−1 .
We denote by Σm the class of m-fold symmetric bi-univalent functions in U. In the
special case when m = 1, the formula (1.4) for the class Σm coincides with the formula
(1.2) for the class Σ. Some examples of m-fold symmetric bi-univalent functions are
given below: (

zm

1− zm

) 1
m

and [− log(1− zm)]
1
m

with the corresponding inverse functions given by(
wm

1− wm

) 1
m

and

(
ew

m − 1

ewm

) 1
m

respectively.
Quite recently, Wanas and Páll-Szabó [15] introduced two new general subclasses

ASΣm
(γ, λ;α) and AS∗

Σm
(γ, λ;β) of the m-fold symmetric bi-univalent function class

Σm consisting of analytic and m-fold symmetric bi-univalent functions in U and de-
rived the coefficient bounds for |am+1| and |a2m+1| for functions in each of these new
subclasses.

Definition 1.1. [15] A function f ∈ Σm given by (1.3) is said to be in the class
ASΣm(γ, λ;α) if it satisfies the following conditions:∣∣∣∣arg [(1− λ)

zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ∣∣∣∣ < απ

2

and ∣∣∣∣arg [(1− λ)
wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ∣∣∣∣ < απ

2
,

where z, w ∈ U, 0 < γ ≤ 1, 0 ≤ λ ≤ 1, 0 < α ≤ 1, m ∈ N and g = f−1.

Theorem 1.2 ([15]). Let f ∈ ASΣm
(γ, λ;α) be given by (1.3). Then

|am+1| ≤
2α

m
√

2αγ(1 + λm) + γ(γ − α)(1 + λm)2

and

|a2m+1| ≤
2α2(m+ 1)

m2γ2(1 + λm)2
+

α

mγ(1 + 2λm)
.

Definition 1.3. [15] A function f ∈ Σm given by (1.3) is said to be in the class
AS∗

Σm(γ, λ;β), if it satisfies the following conditions:

ℜ
[
(1− λ)

zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ
> β
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and

ℜ
[
(1− λ)

wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ
> β,

where z, w ∈ U, 0 < γ ≤ 1, 0 ≤ λ ≤ 1, 0 ≤ β < 1, m ∈ N and g = f−1.

Theorem 1.4 ([15]). Let f ∈ AS∗
Σm

(γ, λ;β) be given by (1.3). Then

|am+1| ≤
2

m

√
1− β

2γ(1 + λm) + γ(γ − 1)(1 + λm)2

and

|a2m+1| ≤
2(m+ 1)(1− β)2

m2γ2(1 + λm)2
+

1− β

mγ(1 + 2λm)
.

The main objective of this paper is to present an elegant formula for computing
the coefficients of the inverse functions for the class Σm of m-fold symmetric functions
by means of the residue calculus. As an application, we introduce a new subclass of bi-
univalent functions in which both f and f−1 are m-fold symmetric analytic functions
and obtain upper bounds for the coefficients |am+1| and |a2m+1| for functions in this

subclass. Our results for the bi-univalent function class Gh,p
Σm

(γ, λ), which we shall
introduce in section 2, would generalize and improve some recent works by Wanas
and Páll-Szabó [15] and some of other researchers[1, 9, 10]

2. Coefficient Estimates

In this section, we introduce and investigate the general subclass Gh,p
Σm

(γ, λ).

Definition 2.1. Let h, p : U → C be analytic functions and

min{ℜ(h(z)),ℜ(p(z))} > 0 (z ∈ U) and h(0) = p(0) = 1.

A function f given by (1.3) is said to be in the class Gh,p
Σm

(γ, λ), if the following
conditions are satisfied:[

(1− λ)
zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ
∈ h(U) (2.1)

and [
(1− λ)

wg′(w)

g(w)
+ λ

(
1 +

wg′′w)

g′(w)

)]γ
∈ p(U) (2.2)

where z, w ∈ U , 0 < γ ≤ 1 , 0 ≤ λ ≤ 1 , m ∈ N and g = f−1.

Remark 2.2. There are many choices of the functions h, p which would provide in-

teresting subclasses of the general class Gh,p
Σm

(γ, λ). For example, if we set γ = 1, the

subclass Gh,p
Σm

(γ, λ) reduces to the subclass f ∈ Mh,p
Σm

(λ, 1) which was introduced by
Motamednezhad et al. [10].
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If we let

h(z) = p(z) =

(
1 + zm

1− zm

)α

= 1 + 2αzm + 2α2z2m + · · · (0 < α ≤ 1),

it can easily be verified that the functions h(z) and p(z) satisfy the hypotheses of

Definition 2.1. Thus, if we have f ∈ Gh,p
Σm

(γ, λ), then∣∣∣∣arg [(1− λ)
zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ∣∣∣∣ < απ

2

and ∣∣∣∣arg [(1− λ)
wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ∣∣∣∣ < απ

2
.

In this case we say that f belongs to the subclass f ∈ ASΣm
(γ, λ;α). If we put

h(z) = p(z) =
(

1+zm

1−zm

)α

and γ = 1, the subclass Gh,p
Σm

(γ, λ) reduces to the subclass

MΣm
(α, λ, 1) which was considered by Motamednezad et al. [10].

Also, for h(z) = p(z) =
(

1+zm

1−zm

)α

, γ = 1 and λ = 0, the subclass Gh,p
Σm

(γ, λ)

reduces to the subclass Sα
Σm

which was considered by Altinkaya and Yalcin [1].

On the other hand, if we take

h(z) = p(z) =
1 + (1− 2β)zm

1− zm
= 1 + 2(1− β)zm + 2(1− β)z2m + · · · (0 ≤ β < 1).

then the conditions of Definition 2.1 are satisfied for both functions h(z) and p(z).

Thus, if f ∈ Gh,p
Σm

(γ, λ); then

ℜ
[
(1− λ)

zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ
> β

and

ℜ
[
(1− λ)

wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ
> β.

In this case we say that f belonges to the subclass f ∈ AS∗
Σm

(γ, λ;β). If we put

h(z) = p(z) = 1+(1−2β)zm

1−zm and γ = 1, the subclass Gh,p
Σm

(γ, λ) reduces to the subclass

MΣm
(β, λ, 1) which was considered by Motamednezad et al. [10].

Also, for h(z) = p(z) = 1+(1−2β)zm

1−zm , γ = 1 and λ = 0, the subclass Gh,p
Σm

(γ, λ)

reduces to the subclass Sβ
Σm

which was considered by Altinkaya and Yalcin [1].

Remark 2.3. For one-Fold symmetric bi-univalent functions, we denote the subclass

Gh,p
Σm

(γ, λ) = Gh,p
Σ (γ, λ). Special cases of this subclass illustrated below:

(A) By putting h(z) = p(z) =
(

1+z
1−z

)α

and γ = 1, then the subclass Gh,p
Σ (λ, γ)

reduces to the subclass MΣ(α, λ) studied by Li and Wang [9].

(B) By putting h(z) = p(z) =
(

1+z
1−z

)α

, γ = 1 and λ = 0, then the subclass Gh,p
Σ (λ, γ)

reduces to the subclass S∗
Σ(α) studied by Brannan and Taha[3].
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(C) By putting h(z) = p(z) =
(

1+z
1−z

)α

, and λ = γ = 1, then the subclass Gh,p
Σ (λ, γ)

reduces to the subclass MΣ(α, 1) studied by Li and Wang [9].

(D) By putting h(z) = p(z) = 1+(1−2β)z
1−z and γ = 1, then the subclass Gh,p

Σ (λ, γ)

reduces to the subclass BΣ(β, λ) studied by Li and Wang [9].

(E) By putting h(z) = p(z) = 1+(1−2β)z
1−z , γ = 1 and λ = 0, then the subclass

Gh,p
Σ (λ, γ) reduces to the subclass S∗

Σ(β) of bi-starlike functions of order β(0 ≤
β < 1) studied by Brannan and Taha[3].

(F) By putting h(z) = p(z) = 1+(1−2β)z
1−z and λ = γ = 1, then the subclass Gh,p

Σ (λ, γ)

reduces to the subclass BΣ(β, 1) of bi-convex functions of order β(0 ≤ β < 1)
studied by Li and Wang [9].

We are now ready to express the bounds for the coefficients |am+1| and |a2m+1|
for the subclass Gh,p

Σm
(γ, λ) of the normalized bi-univalent function class Σm.

Theorem 2.4. Let the function f given by (1.3) be in the class Gh,p
Σm

(γ, λ). Then

|am+1| ≤ min

{√
|h2m|+ |p2m|

m2γ[2(1 + λm) + (γ − 1)(1 + λm)2]
,√

|hm|2 + |pm|2
2[mγ(1 + λm)]2

}
(2.3)

and

|a2m+1| ≤ min

{
|h2m|+ |p2m|
4γm(1 + 2λm)

+
(m+ 1)(|hm|2 + |pm|2)

4γ2m2(1 + λm)2
,∣∣2m(1 + λm) + 2(m+ 1)(1 + 2λm) +m(γ − 1)(1 + λm)2
∣∣

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]
|h2m|+∣∣2(m+ 1)(1 + 2λm)− 2m(1 + λm)−m(γ − 1)(1 + λm)2
∣∣

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]
|p2m|

}
. (2.4)

Proof. The main idea in the proof of Theorem 2.4 is to get the desired bounds for the
coefficient |am+1| and |a2m+1|. Indeed, by considering the relations (2.1) and (2.2),
we have [

(1− λ)
zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ
= h(z) (2.5)

and [
(1− λ)

wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ
= p(z), (2.6)

where each of the functions h and p satisfies the conditions of Definition 1.3. In light
of the following Taylor-Maclaurin series expansions for the functions h and p, we get

h(z) = 1 + hmzm + h2mz2m + h3mz3m + · · · (2.7)
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and

p(w) = 1 + pmwm + p2mw2m + p3mw3m + · · · . (2.8)

By substituting the relations (2.7) and (2.8) into (2.5) and (2.6), respectively, we get

mγ(1 + λm)am+1 = hm, (2.9)

γm

[
(γ − 1)

2
m(1 + λm)2 − (λm2 + 2λm+ 1)

]
a2m+1

+2mγ(1 + 2λm)a2m+1 = h2m, (2.10)

−mγ(1 + λm)am+1 = pm (2.11)

and

γm

[(
3λm2 + 2(λ+ 1)m+ 1

)
+

(γ − 1)

2
m(1 + λm)2

]
a2m+1

−2mγ(1 + 2λm)a2m+1 = p2m. (2.12)

Comparing the coefficients (2.9) and (2.11), we obtain

hm = −pm (2.13)

and

2m2γ2(1 + λm)2a2m+1 = h2
m + p2m. (2.14)

Now, if we add (2.10) and (2.12), we get the following relation

m2γ
[
2(1 + λm) + (γ − 1)(1 + λm)2

]
a2m+1 = h2m + p2m. (2.15)

Therefore, from (2.14) and (2.15), we have

a2m+1 =
h2
m + p2m

2[mγ(1 + λm)]2
(2.16)

and

a2m+1 =
h2m + p2m

m2γ[2(1 + λm) + (γ − 1)(1 + λm)2]
, (2.17)

respectively.
Therefore, we find from the equations (2.16) and (2.17) that

|am+1|2 ≤ |hm|2 + |pm|2

2γ2m2(1 + λm)2

and

|am+1|2 ≤ |h2m|+ |p2m|
m2γ[2(1 + λm) + (γ − 1)(1 + λm)2]

,

respectively. We have thus derived the desired bound on the coefficient |am+1|.
The proof is completed by finding the bound on the coefficient |a2m+1|. Upon

subtracting (2.12) from (2.10), we get

a2m+1 =
h2m − p2m

4γm(1 + 2λm)
+

(m+ 1)

2
a2m+1. (2.18)
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Putting the value of a2m+1 from (2.16) into (2.18), it follows that

a2m+1 =
h2m − p2m

4γm(1 + 2λm)
+

(m+ 1)h2m + p2m
m2γ[2(1 + λm) + (γ − 1)(1 + λm)2]

.

Therefore, we conclude the following bound:

|a2m+1| ≤
|h2m|+ |p2m|
4γm(1 + 2λm)

+
(m+ 1)(|hm|2 + |pm|2)

4[γm(1 + λm)]2
. (2.19)

By substituting the value of a2m+1 from (2.17) into (2.18), we obtain

a2m+1 =
m[2(1 + λm) + (γ − 1)(1 + λm)2](h2m − p2m) + (m+ 1)(1 + 2λm)

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]
(2.20)

(h2m + p2m)

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

which readily yields

|a2m+1| ≤
∣∣2m(1 + λm) + 2(m+ 1)(1 + 2λm) +m(γ − 1)(1 + λm)2

∣∣
4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

|h2m|+

(2.21)∣∣2(m+ 1)(1 + 2λm)− 2m(1 + λm)−m(γ − 1)(1 + λm)2
∣∣

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]
|p2m|. (2.22)

Finally, from (2.19) and (2.21), we get the desired estimate on the coefficient |a2m+1|
as asserted in Theorem 2.4. The proof of Theorem 2.4 is thus completed. □

3. Corollaries and Consequences

If we put

h(z) = p(z) =

(
1 + zm

1− zm

)α

= 1 + 2αzm + 2α2z2m + · · · ,

in Theorem 2.4, then it can be obtained the following result.

Corollary 3.1. Let the function f given by (1.3) be in the class ASΣm
(γ, λ;α). Then

|am+1| ≤ min

{
2α

mγ(1 + λm)
,

2α

m
√

γ[2(1 + λm) + (γ − 1)(1 + λm)2]

}
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and

|a2m+1| ≤ min

{
α2

mγ(1 + 2λm)
+

2(m+ 1)α2

γ2m2(1 + λm)2
,∣∣∣∣2m(1 + λm) + 2(m+ 1)(1 + 2λm) +m(γ − 1)(1 + λm)2

2m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

∣∣∣∣α2 +∣∣∣∣2(m+ 1)(1 + 2λm)− 2m(1 + λm)−m(γ − 1)(1 + λm)2

2m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

∣∣∣∣α2

}
.

Remark 3.2. For the coefficient |a2m+1| it is easily seen that

α2

mγ(1 + 2λm)
+

2(m+ 1)α2

γ2m2(1 + λm)2
≤ α

mγ(1 + 2λm)
+

2(m+ 1)α2

γ2m2(1 + λm)2
.

Therefore, clearly, Corollary3.1 provides an improvement over Theorem1.2.

By setting γ = 1 in Corollary 3.1, we conclude the following result.

Corollary 3.3. Let the function f given by (1.3) be in the subclass MΣm(α, λ, 1). Then

|am+1| ≤ min

{
2α

m(1 + λm)
,

2α

m
√

2(1 + λm)

}
=


2α

m
√

2(1+λm)
, 0 ≤ λ ≤ 1

m

2α
m(1+λm) , 1

m ≤ λ < 1

and

|a2m+1| ≤ min

{
m(1 + λm)2 + 2(m+ 1)(1 + 2λm)

m2(1 + 2λm)(1 + λm)2
α2,

(m+ 1)

m2(1 + λm)
α2

}
.

By setting λ = 0 in Corollary 3.3, we conclude the following result.

Corollary 3.4. Let the function f given by (1.3) be in the subclass Sα
Σm

. Then

|am+1| ≤ min

{
2α

m
,

√
2α

m

}
=

√
2α

m

and

|a2m+1| ≤ min

{
(3m+ 2)α2

m2
,
(m+ 1)α2

m2

}
=

(m+ 1)α2

m2
.

Remark 3.5. The bounds on |am+1| and |a2m+1| given in Corollary 3.4 are better
than those given by Altinkaya and Yalcin [1, Corollary 6], because of

√
2α

m
≤ 2α

m
√
α+ 1

and

(m+ 1)α2

m2
≤ α

m
+

2(m+ 1)α2

m2
.

By setting γ = 1 and m = 1 in Corollary 3.1, we conclude the following result.
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Corollary 3.6. Let the function f given by (1.1) be in the subclass MΣ(α, λ). Then

|a2| ≤ min

{
2α

1 + λ
, α

√
2

1 + λ

}
= α

√
2

1 + λ

and

|a3| ≤ min

{
λ2 + 10λ+ 5

(1 + 2λ)(1 + λ)2
α2,

2α2

1 + λ

}
=

2α2

1 + λ
.

Remark 3.7. The bounds on |a2| and |a3| given in Corollary 3.6 are better than those
given by Li and Wang [9, Theorem 2.2].

By setting λ = 0 in Corollary 3.6, we conclude the following result.

Corollary 3.8. Let the function f given by (1.1) be in the subclass S∗
Σ(α). Then

|a2| ≤
√
2α and |a3| ≤ 2α2.

Remark 3.9. The bounds on |a2| and |a3| given in Corollary 3.10 are better than those
given by Brannan and Taha [3].

By setting λ = 1 in Corollary 3.6, we conclude the following result.

Corollary 3.10. Let the function f given by (1.1) be in the subclass MΣ(α, 1). Then

|a2| ≤ α and |a3| ≤ α2.

Remark 3.11. The bound on |a3| given in Corollary 3.8 are better than those given
by Li and Wang [9, Theorem 2.2] for λ = 1.

By letting

h(z) = p(z) =
1 + (1− 2β)zm

1− zm
= 1 + 2(1− β)zm + 2(1− β)z2m + · · · (0 ≤ β < 1).

in Theorem 2.4, we deduce the following corollary.

Corollary 3.12. Let the function f given by (1.3) be in the class f ∈ AS∗
Σm

(γ, λ;β).
Then

|am+1| ≤ min

{
2(1− β)

mγ(1 + λm)
,
2

m

√
(1− β)

γ[2(1 + λm) + (γ − 1)(1 + λm)2]

}
and

|a2m+1| ≤ min

{
1− β

mγ(1 + 2λm)
+

2(m+ 1)(1− β)2

γ2m2(1 + λm)2
,∣∣∣∣2m(1 + λm) + 2(m+ 1)(1 + 2λm) +m(γ − 1)(1 + λm)2

2m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

∣∣∣∣ (1− β) +∣∣∣∣2(m+ 1)(1 + 2λm)− 2m(1 + λm)−m(γ − 1)(1 + λm)2

2m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

∣∣∣∣ (1− β)

}
.
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Remark 3.13. Clearly, Corollary 3.12 provides an improvement over Theorem1.4.

By setting γ = 1 in Corollary 3.12, we conclude the following result.

Corollary 3.14. Let the function f given by (1.3) be in the subclass MΣm
(α, λ, 1).

Then

|am+1| ≤ min

{
2(1− β)

m(1 + λm)
,
2

m

√
(1− β)

2(1 + λm)

}
and

|a2m+1| ≤ min

{
1− β

m(1 + 2λm)
+

2(m+ 1)(1− β)2

m2(1 + λm)2
,

m+ 1

m2(1 + λm)
(1− β)

}
.

By setting λ = 0 in Corollary 3.14, we conclude the following result.

Corollary 3.15. Let the function f given by (1.3) be in the subclass Sβ
Σm

. Then

|am+1| ≤ min

{
2(1− β)

m
,

√
2(1− β)

m

}
=


√

2(1−β)

m , 0 ≤ β ≤ 1
2

2(1−β)
m , 1

2 ≤ β < 1

and

|a2m+1| ≤ min

{
m(1− β) + 2(m+ 1)(1− β)2

m2
,
m+ (1− β)

m2

}

=


m+(1−β)

m2 , 0 ≤ β ≤ 1+2m
2(1+m)

m(1−β)+2(m+1)(1−β)2

m2 , 1+2m
2(1+m) ≤ β < 1.

Remark 3.16. Clearly,the bounds on |am+1| and |a2m+1| given in Corollary 3.15 are
better than those given by Altinkaya and Yalcin [1, Corolary 7].

By setting γ = 1 and m = 1 in Corollary 3.12, we conclude the following result.

Corollary 3.17. Let the function f given by (1.1) be in the subclass BΣ(β, λ) . Then

|a2| ≤ min

{
2(1− β)

1 + λ
,

√
2(1− β)

1 + λ

}
=


√

2(1−β)
1+λ , 0 ≤ β ≤ 1−λ

2

2(1−β)
1+λ , 1−λ

2 ≤ β < 1

and

|a3| ≤ min

{
1− β

1 + 2λ
+

4(1− β)2

(1 + λ)2
,
2(1− β)

1 + λ

}

=


2(1−β)
1+λ , 0 ≤ β ≤ 3+4λ−3λ2

4(1+2λ)

1−β
1+2λ + 4(1−β)2

(1+λ)2 , 3+4λ−3λ2

4(1+2λ) ≤ β < 1.
.
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Remark 3.18. The bounds on |a2| and |a3| given in Corollary 3.17 is better than that
given by Li and Wang [9, Theorem 3.2].

By setting λ = 0 in Corollary 3.17, we conclude the following result.

Corollary 3.19. Let the function f given by (1.1) be in the subclass S∗
Σ(β). Then

|a2| ≤ min
{
2(1− β),

√
2(1− β)

}
=


√

2(1− β) , 0 ≤ β ≤ 1
2

2(1− β) , 1
2 ≤ β < 1

and

|a3| ≤ min {(1− β)(5− 4β), 2(1− β)} =

 2(1− β) , 0 ≤ β ≤ 3
4

(1− β)(5− 4β) , 3
4 ≤ β < 1.

Remark 3.20. The bounds on |a2| and |a3| given in Corollary 3.19 are better than
those given by Brannan and Taha [3].

By setting λ = 1 in Corollary 3.17, we conclude the following result.

Corollary 3.21. Let the function f given by (1.1) be in the subclass BΣ(β, 1). Then

|a2| ≤ min
{
1− β,

√
1− β

}
= 1− β

and

|a3| ≤ min

{
(1− β) + 3(1− β)2

3
, 1− β

}
=


1− β , 0 ≤ β ≤ 1

3

(1−β)+3(1−β)2

3 , 1
3 ≤ β < 1.

Remark 3.22. The bounds on |a2| and |a3| given in Corollary 3.21 are better than
those given by Li and Wang [9, Theorem 3.2] for λ = 1.

4. Conclusions

In this paper, we introduce a new subclass Gh,p
Σm

(γ, λ) of analytic functions, charac-
terized by m-fold symmetric as a foundational framework. It is worth noting that
this subclass is a generalization of many well-known or new subclasses, mentioned in
section 2. Moreover, by Theorem 2.4, we obtained sharp bounds of the coefficients
for many well-known subclasses as consequences. That in certain cases our data has
improved the results of others.
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