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Application of Riemann-Liouville fractional inte-
gral to fuzzy differential subordination of analytic
univalent functions

Sarika K. Nilapgol (), Girish D. Shelake () and Priyanka D. Jirage

Abstract. This paper focuses on geometric function theory, a subfield of complex
analysis that has been adapted for fuzzy set analysis. We construct new opera-
tor denoted by D7*NY," "7, formed by applying Riemann-Liouville fractional
integral to the linear combination of the Pascal and Catas operator. Using this
operator, we describe a specific fuzzy class of analytic univalent functions, pre-
sented by DNYF (n,m,0,b,v,9,a,¢) in the open unit disk. A number of novel
findings that are applicable to this class are found by applying the concept of
fuzzy differential subordination. Interesting corollaries are discovered using spe-
cific functions, and an example illustrates the practical usage of the results.
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1. Introduction

Lotfi A. Zadeh established the concept of fuzzy sets in 1965 [36], and it has seen
remarkable development to become employed in numerous areas of science and tech-
nology nowadays. The constantly concerns of mathematicians about incorporating the
concept of fuzzy sets into mathematical theories that were already well-established led
to the combination of fuzzy sets theory and geometric function theory. The authors
highlight Lotfi A. Zadeh’s scholarly contributions in their 2017 review article [10] by
going over the progress of the idea of a fuzzy set and its applications in numerous
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fields.

Differential subordination was first proposed by S.S. Miller and P.T. Mocanu in
[17, 19]. These approaches made it easier to verify the conclusions that had previously
been produced and inspired a great deal of new research using techniques specific to
this theory. The book written by S.S. Miller and P.T. Mocanu[17] and released in
2000 contains the essential elements of the theory of differential subordination. It is
effectively developed over subsequent decades by other authors [18, 12, 5, 6, 20]. There
are a few instances of differential subordination in utilization [9, 33, 4].

The fuzzy differential subordination theory is based on the general theory of
differential subordination and it evolves by incorporating the majority of the classical
theory’s concepts to provide novel outcomes. The notion of differential subordination
was newly extended from fuzzy set theory to geometric function theory by authors
G. I Oros and Gh. Oros[22, 23, 24]. Numerous authors have further expanded it
[32, 11, 25, 26, 14, 15, 21, 3, 13, 27], and they have produced findings using fuzzy dif-
ferential subordination. The progress made possible by the incorporation of quantum
calculus and elements of fractional calculus into geometric function theory.

Let % = {z € C: |z] < 1} and H(% ) denote the class of analytic functions in
% . Denote

Hle,n] ={t:teH(¥)and t(z) =c+cp2"+- - ,2€UY,
Ap={t:t e H%) and t(z2) = 2z + cpy12" ™+ 2 €U} and A = A.

Definition 1.1. [23] Consider, X be a non-empty set. An application F : X — [0,1] is
called fuzzy subset. An alternate definition, more precise would be the following:

A pair (S, Fs), where Fs : X — [0,1] and S = {x € X : 0 < Fs(z) < 1} is called fuzzy
subset. The function Fs is called membership function of the fuzzy subset (S, Fs).

Definition 1.2. [16] Let D is a set in C, zg € D is a fized point and let the functions
frg € H(D). The function f is named a fuzzy subordinate to g and written as [ <p g
if

L. f(20) = g(20)

2. Ff(p)f(z) < Fg(D)g(z),z e D.

Remark 1.3. 1. Let D C C, z5 € D be a fixed point, and the functions f, g € H(D).
If g is univalent function in D then f < ¢ if and only if f(z9) = g(20) and
f(D) c g(D).

2. A function F': C — [0, 1], can be defined as, for example F(z) = 2] F(z) =
T Isinzl], | cos [z]].

3. If D = % then the conditions become f(0) = ¢g(0) and f(%) C g(%) which is
same as the classical definition of subordination.

Definition 1.4. [35] Let h be univalent in % and ¥ : C3 x U — C. If P is analytic in
U and satisfies the fuzzy differential subordination

Fycaxar)(P(P(2), 2P'(2), 2°P"(2); 2)) < Fyar)h(2) (1.1)
i.e.U(P(2), 2P (2), 2°P"(2); 2) <p h(2),2 € %
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then P is called a fuzzy solution of the fuzzy differential subordination. The univalent
function q is called a fuzzy dominant of the fuzzy solutions of the fuzzy differential
subordination, or more simple a fuzzy dominant, if P <p q for all P satisfying (1.1).
A fuzzy dominant q that satisfies §(z) <r q(2),z2 € % for all fuzzy dominant q of
(1.1) is said to be the best fuzzy dominant of (1.1).

Definition 1.5. [14] Let f(D) = supp(f(D), Fyipy)={z € D : 0 < Fypy < 1}, where
Fy(py is the membership function of the fuzzy subset f(D) associated to the function

The membership function of the fuzzy set (uf)(D) associated to the function pf co-
incides with the membership function of the fuzzy set f(D) associated to the function
f, i.e. F(uf)D = Ff(D),Z eD.

The membership function of the fuzzy set (g + h)(D) associated to the function g+ h
coincide with the half sum of the membership functions of the fuzzy sets g(D) , re-
spectively h(D), associated to the function g, respectively h,

. Fyp)9(2) + Frpyh(2)

i.e. Flginm)((g+h)z) = 22 5 B 2 eD.

Definition 1.6. [34] Let t € A then a Pascal operator Yy : A — A is given by

Y (2 _Z+Z<r+n )ﬂr‘lcrzr;

(z€e, n>1,0<9<1).

Definition 1.7. [7] For t € A, Catas defined the operator as follow:

1+v+b(r—1
=z+ Z {1—1—71)} ez’
(neNy, ze %, b,v >0).
Now we define the linear operator N'Y;"%” : A — A as
NY5H(z) = (1= o), H(z) + oYlt(2).
In series form, it is able to shown as

o0
NY4(z) = 2 + Z = (n,n,0,b,v,9)c.2",

r=2
. 1+v+br—1)1" r+n—2Y 1
h =, = 1— - - - v 77 r
with Z,.(n,n,0,b,v,9) [( 0){ 5o } +0o n—1 )
(z€,n>1,0<9 < 1,neNy, bv,0 >0).

Definition 1.8. [8](see also [1, 2]) Given an analytical function t, the Riemann-
Liowville fractional integral of order « is

g L[ )
o: t(z)—F(a)/O gt a0
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where T(a) = [;° e~ "t* " dt with T(1) = 1,T(a+ 1) = oI (@), and t is an analytic
functzon i a simply connected region of the z-plane containing the origin and the
multiplicity of (z —t)1 =% is removed by requiring log(z —t) to be real when z —t > 0.

Applying the Riemann-Liouville fractional integral of order « to the linear op-
erator N'Y,""7 yields the following:

1 [FNYT
OTNYINE) = oy [ Tees D
L(a) Jo (z=0)'
After simple calculation which yields the series form
Z(1+a) (7’ + 1) (r+a)

QQQNYI:{,%U{(Z) = T2+a) + ;Hr n,n,o,b,v, ﬁ)qu

This study focuses on recent work in fuzzy differential subordination that in-
troduces new operators to construct and study a novel fuzzy class. Here, we discuss
multiple findings related to fuzzy differential subordination connected to the Riemann-
Liouville fractional integral from the linear combination of Pascal operator and Catas
operator. Fuzzy differential subordinations have been obtained in order to identify
the fuzzy best dominants. Specific functions are used to derive some corollaries of the
primary findings. A few examples are provided to illustrate the main findings.

Previous studies [28, 29, 30, 31] served as inspiration for this work.

To support our primary findings, we shall use the following Lemmas.

Lemma 1.9. [17] Let k € A. If R{1+ Z,]:,/;S)} > S 2 €U, then L [ k(t)dt is convex
function.

Lemma 1.10. [23] Let h be a convex function with h(0) = a and p € C* such that
R(p) > 0. If P € Hla,n] with P(0) = a and ¥ : C?> x % — C, V(P(z),2P'(2)) is
analytic in %, then

1
Fy(c2xa) [P(Z) + pZP'(Z)] < Fyanyh(z),
implies
FP( )7’( ) Fy@)9(2) < Fyar)h(2)
with the convex function g(z fo (t)tn—Ydt,z € U as the fuzzy best dominant.

Lemma 1.11. [23] Suppose that g be a convex function in % and h(z) = g(z) +
nAzg'(z),n € NA > 0. If P € H[g(0),n] and ¥ : C2 x % — C, Y(P(2),2P'(2)) =
P(z) + AzP'(z) is analytic in % , then

F\I;((CQX%) [P(z) + )\zP’(z)] < Fh(%)h(z),
implies sharp result,

Fp@anP(2) < Fyang(2), €U

and g 1s fuzzy best dominant.

We are going to define a new fuzzy class of univalent and analytic functions.
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Definition 1.12. If t € A satisfies the following criteria, it is said to be in the class
DNYF(n,n,0,b,v,9,a,5)

(2 +0)D; NV 74(=) )
Fo—a N, N, 2 > Qs
(DONY 8 (U) S

(z€%,n>1,0<9¥<1,neNy, byv,0 >0,a>0,5€[0,1)).

Remark 1.13. In particular, ¢(z) = z € A with F(z) = 1+1|Z| belongs to the class
DNYF(n,n,0,b,v,9,a,0).

2. Main results
Theorem 2.1. The class DN'Y Y (n,n,0,b,v,9,,5) is a convex set.
Proof. Consider

o0
t(2) :z—&—Zcﬁzr, i=1,2,
r=2

belongs to the class DNYF (n,n,a,b,v,9,a,s). We have to show that the function
hz) = Piti(z) + Bota(z2), B1,B82 > 0,81 + B2 = 1, belongs to the class
DNYF(nv n,o, ba v, 19a «, C).

!/
a)D ¢ T (o
NOW, h/(Z) _ 61t/1(2) +52t/2(2) and (F(2+ )07 Z/;/Yb,u,ﬂ h( ))

/ /
_ 5 (F(2+a)®z“NYJ?;)%”tﬂz)) + By (F(2+a)®z“NYb’?;@”tz(z)) )

z« z%

We have

i (24 )0 NV h(2)
(

—a n,n,o !5
DIONYTh) U < Lo

i T2+ )DL N (Buta(2) + Bm(z)))'
7

DIONY (Biti (2)+Bata)) U ( Lo

- D2+ a)D; *NY " Bita(2) )
—

DIONYT (BrtitBata)) U ( 2z

n g !
. T2+ a)D7 NY Bata(2)
+ (QQGNYJ{,T,'{;(ﬁl’tl +ﬂ2t2))l% o

F(2+0)Q;QNYbn1']n1’96‘1(z)
il )« -

! P L(24+a)D ;7 *NY, 7 o (2) !
23 —a n,n,o / a
z (92 Ny &2) u =

Q;QNYI)T?{:]{;U

As t1,t, € DNYF (n,n,0,b,v,9,a,5), we have
T2+ )D7ONY7t (2))
) % - =1

ZOC

DIONY 0

F
§<(
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<1

¢ < F(@;“NY;;:’;Q)’% S

<r<2 + @)D NV b (2) )

This implies,

’
> ) r(2+a)® O‘./\/’Yb”“‘”ﬁatl(z) +F r(2+a)D O‘/\/’Yh"v"ﬂolQ( z)
( —(XNY’VL natl) % 20 ( _QNY/’L/’]0£2) % 2

b,v,9 b,v,9

¢ < 5
<1
ie.
L2+ a)D;°NY, "7 h(z) '
© < Fozonvyiny e ( 2 =1
O
Theorem 2.2. Considering g as a convex function and h(z) = g(z) + C_%ng’(z), c>0.
Ifte DNY ¥ (n,n,0,b,v,9,a,5) and G(z) = &3 fo tet( t)dt then
(2 + @)D, *NY," 7t
Flozonyyyeya Enayh(2) (2.1)

implies the next sharp result

< Fy

g 7

r'2+a)® O‘/\fYJT;C?
F, - /
(DNYG)

and g is fuzzy best dominant.

2 z
Proof. Let G(z) = %/ t°t(t)dt.
z 0

Differentiating w.r.t. z, we get

(c+ 1DG(2) + 2G'(2) = (¢ + 2)t(2),
(c+1) (”2 o)DM %’,‘;%“G@) L. (F@ +)DONYG(z) )

ZO(

Z(l

= (c+2) -

(F(? +a)D N Y}Jf;’,’@"t(z)>

Again differentiating w.r.t z, we obtain

(r(g +a)D;NYG(2) > ' L (r@ +a)D;NYG(2) ) !

c+2'z e

ZO(

(P(Q + a)@zaj\/ybj;’j;t(z)>

Za
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Now, the Inequality (2.1) becomes

n [ed 4
L2+ a)D;“NY, Y G(2) N 1 B
c+2

F(@;“NY;;';’G)’% Lo

T2+ a)D°NYG(2) 1
o Vs < / ]
< o < Fya) {9(2’) + i 29 (z)}

n,n,o /
<F<2 +a)D N G(z))

Consider, p(z) = F(DZ_GNY;&(,G)/% por

Here, p € #H[1,1] and we obtain

Fya {P(Z) + C%ZPI(Z)} < Fya) [g(z) + H%ZQ/(Z)} :

Employing Lemma 1.3, we have

n o !
(F(Z +a)DINYLY G(z))

Fozenvimzoya

ZOL
and g is fuzzy best dominant. O
Theorem 2.3. Consider that h(z) = W and G(z) = &3 fo tet(t)dt, ¢ €

[0,1),¢ > 0 then
G[DNYF(TL, n,o, b) v, 197 @ §)] - DNYF(’IL n,o, ba v, 19’ «, C*),

where ¢* = (26 — 1) +2(c +2)(1 =) J, ttc-: dt.

Proof. Given that h(z) = W is convex function and following the same steps

from Theorem (2.2), we conclude the following fuzzy differential subordination
Fyar) [p(2) + 2520/ (2)] < Faganh(2)

L2+ a)D; NY,," G(2)

ZO{

where, p(z) =

From Lemma 1.10, we may conclude that

L(2+a)D; *NYG(2) )
Flozonyyyaya < TR < Fyy9(2) < Frnh(2),
where
c+2 [* 1+ (26— 1)t (c—|—2)(2—2§)/z ett
= et | o dt = (26— 1 dt.
9(z) 2”2/0 { 1+t } -+ ze+2 o t+1

Since, g is convex function and g(%) is symmetric with respect to real axis, we obtain

(F(? +a)D N 1@71171’9“G(z)>

Za

> min Fyy)9(2) = Fya9(1)

Frg—aprynmeo
(2z°NY Y G) w 2=1

b,v,9



416 Sarika K. Nilapgol, Girish D. Shelake and Priyanka D. Jirage

tc+1

dt. O
t+1

andg*:g(l):Qg—1+(c+2)(2—2g)/l
0

Theorem 2.4. Let’s take g be a convex function such that g(0) = 1 and h(z) = g(z) +
29/ (2). If t € A, the fuzzy differential subordination is satisfied

I'(2+a)D;“NY, ()
F(Q;QNY;,L;;"{?GJL)/% ( Za — S Fh(dZ/)h(z) (22)

implies the sharp result

T(2+ a)DI "NV 4(2)
F(DZ—O/NYb’V,l’l,:]{?U{)% ( zl+a S Fg(@/)g(z)7

and g is fuzzy best dominant.

L(2+ )97 NV H(2)
Zl+a

Proof. The function p(z) = < > belongs to H[1,1].

Furthermore, we may write

L2+ a)D "NY =)
zp(z) = - .

Za
Now, differentiating w.r.t. z, we have

n g !
L2+ a)D; "NV t(z))

ZOé

p(z) + 2p'(2) = (

The Inequality (2.2), becomes

Fyanp(2) + 2p'(2)] < Fygar)h(2).
Lemma 1.11 is applied, and we find that

L2+ a)D;°NY,""174(z2)
Flocenvyyy o ( lta < Foa9(2);
and ¢ is fuzzy best dominant. O
Example 2.5. Take g(z) = }jrj ans is convex in %, with ¢g(0) =1,
(o) =
T = a2
1—2%2-2
Now h(z) = 9(2) + 20 () =~y

Taking n = 0,0 = 0,1 = 1 and t(z) = 2 + 22, then we find that /\/Yboulgt(z) =2z+22%

1 2N 0H2) 1 (% 422
@701 YO’LOt _ / U, dt _ / dt
SNt D =Ty o T ) Jy o

1+« 2224-04

IF'2+a) +F(3+a)'
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Implies,
2+ a)@;aNYb?i;;)t(z) 222

2¢ _Z+(2+a)'

After differentiation, we get

<r<2+> QNY;“I’O())'_H %

2¢ 2+4+a)
Using Theorem 2.4 now, we can derive that the fuzzy subordination that follows
4z 1—22-2z

1 <
+2+oz F (1+2)

implies that
2z 1—-2

=< .
24« F1+z

Theorem 2.6. Let h be a analytic in % with h(0) = 1 and R (1 + Z,?:é?) > S If
t € A, the fuzzy differential subordination
<F(2 + a)@;a/\/'YbZﬁ’ft

Z()L

1+

(Z)> < Fuahz)  (23)

E (DN u

implies that

o AN
Flozonyyyou (F(2 - Q)QZHJZ’YI,’M t(2)> < Fyya(2),

where q(z) / h(t)dt is convex and it is fuzzy best dominant.

Proof. Given that (1 + Zh// ) > —%,z € %, and from Lemma 1.9, we find

that ¢(z) = / h(t)dt is convex function and it is solution of Fuzzy differential

)
bubordlnatlon (2.3), h(z) = q(2) + 2¢'(z), so it is fuzzy best dominant.
)D

Let zp(z) = I'2+a QNYbn nﬂa (2 ))

Differentiating w.r.t z, we get

pe) + 20/ (2) = -

n,n,o /
<F<2 +a)D NV t(z))

The fuzzy differential subordination (2.3) is transformed into
Fyanp(z) + 2p'(2)] < Fypayh(2).
Using Lemma 1.11, we find that

D(2 4+ a)D: "N (2)
( e < Fyrya(2)-

F(QZQNYJ,LL?&G tu
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O

Corollary 2.7. Assuming that h(z) = w,g € [0,1) is convex function in % . If

t € A, the following fuzzy differential subordination

I2+a)®;°NY, "7t '
( 2+a) bo9 (Z)> < Frayh(z) (2.4)

F(© N Ybn'unﬁo. ) 4 ze

implies that

Flozonvy s yu

b,v,9

L2+ a)D;°NY,"74(2)
< i7a 2 < Fyaya(z2),

where ¢(z) = (26 — 1) +2(1 - g)M

18 convex and fuzzy best dominant.
Proof. Given h(z) = B2 with h(0) = 1,1 (=) = HE5H 07 (2) = 1t
Consider ,

z) — . 1—7r cos ¢p—1irsin _ —r
§R(1+ h,() m(l Z)_g%( ¢—i w)_ 1—r >0> 1.

(z) 1+2z 147 cos ¢p+ir sin ¢ 1427 cos ¢p+12
Following  the same steps from  Theorem 2.6 with p(2) =
( T2+ a)D;oNY,5 " ()

ZlJra

) , the Inequality (2.4) becomes

Fo@a)[p(2) + 21’ (2)] < Fuga)h(2).
Employing Lemma 1.10 with n = p = 1, we deduce that

L2+ )9, NY, " "74(2)
< ey — < Fyaya(2),

Flozowvzryw

where g(z) = i/oz #ﬁ;l)tdt =(26-1)+2(1— g)@,

Example 2.8. Consider h(z) =
Taking n = 0,0 = 0,7 = 1 and t(z) = z + 22, then we find that N}@?L{ft(z) =242
] NYO;I,O 1 2 5
DN = s [ = L [
0 0

NG (z —t)l-@ INa z—t)1=?
1+« 2Z2+a

—Z . .
is convex in % .
z

z

“Tera) T@Bra)

Hence,
D2+ a)D7ONY H(2) 9,2

2¢ _Z+(2—|—a)'

After differentiation, we get

A
(2 +a)D; NV, 4(z) 4z
=14 —.
2o 2+ a)
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1 (71— In (1
Also, q(2) = 7/ tdt: 2n(1+2) —1.
= Jo

1+t z
Utilizing Theorem 2.6, we now possess the fuzzy differential subordination
14 4z 1—2

<
24a 142
implies the result

2z 2In(1+ 2)

1 =< —1.
+2—|—a F z

Theorem 2.9. Letting g be a convez function and consider that g(0) = 1. If t € A, the
fuzzy differential subordination

/

z@;“NYfIé’"’at(z)
< Fyayh(z) (2.5)

DONY, ()

E (@zoNY ) w

implies the sharp result
DN
Z (XNYZ:LUZ; (Z )

S Fg(”l)g(z)v

F(@;“NYb’jj;,f’l‘;’ Y

and g 1s fuzzy best dominant.
+1
DINY Ly H(2)
DNV =)
Differentiating w.r.t. z, we have the relation
27 a./\/'nnjéng t(2) '
DNV |

Proof. Suppose p(z) =

p(2) +2p'(2) =

Consequently, fuzzy differential subordination (2.5) turns into
Fypary[p(2) + 20" (2)] < Fiya)h(2) = Fyan)lg(2) + 29/ (2)]-
Now, applying Lemma 1.11, we have
DN H(2)
aNYn 1, Ty ( )

F(:Dz—aNYbiz';v’]{gat)% — Fg(%)g(z)5

and ¢ is fuzzy best dominant. O

Theorem 2.10. Let g be a convex function and consider that g(0) = 1 and h(z) =
9(2) + 729" (2),7, A > 0. If t € A and the fuzzy differential subordination

<F<2+a>®;wvntz%”*(2)>kl (F(QW)DZWN%’,%?é”“Z))/
t)%

Fry-a
( NY 2lta o

< Fuayh(z)
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implies the following sharp result

A
L2+ a)D,°NY,""74(z)
Forowyynroa ( Jta < Foan9(2),

and g 1s fuzzy best dominant.

L2+ a)D;“NY ()
Zl+a

A
Proof. Let p(z) = ) belongs to H[1,1].

Differentiating w.r.t. z, we obtain

s 1A=l <F<2+a>®z“NY:gﬁ;fm)
p/(z) — '+ a)@;aNn7;7é t(2) —
Zl+a >

Following a little computation, we have

1 PE+a)D  NY () ) (TR +0D°NY 1)\
p()+570'(2) = e -

ZQ
Therefore, fuzzy differential subordination (2.6), becomes

Fyanlp(2) + 529/ (2)] < Fuganh(2) = Fyganlo() + 729/ (2)].

Applying Lemma 1.11, we obtain that

A
I'(2+ )07 NY T H(2)
)% Jlta < Fg(@/)g(2)7

F(@;‘U\/Y"*"“’t

b,v,0
and ¢ is fuzzy best dominant. O

1—2 , 1—2z—22
Example 2.11. Suppose g(z) = T, and h(z) = g(2) + z¢'(2) = Ao

Take n = 0,0 = 0,7 =1 and t(z) = z + 22, then we find that Niﬂg;}l’ft(z) =2+ 22

1 2 NYuz) 1 [ 42
H-e Y07170t _ / U, di = / dt
SNV = 1y Jy e T @y o

Zl—i—a 22,2—!—04
I'2+a) + I'B+a)

Thus, we have

re+ a)@;“NYb?;{;;)t(z) 222

2% i 24 a)
After differentiation, we get
(F(2 +a)DONY) ) ) B 4z

=14 ooy

ZO(
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The following fuzzy differential subordination is obtained by using Theorem 2.10
- 22 \M! 14 4z /< 1—2z—22
2+a 24a) F (1422

14 22 \* ~ 1—2z

2+« Frlge

Theorem 2.12. Considering h as a convex function with h(0) = 1,A > 0. Ift € A, the
fuzzy differential subordination

L2+ a)07 NY () ) (T2 + )07 N ()
F(Z);‘*NYJL’J%“’()%

implies that

Z1+(x Zx

< Fyanyh(z)

(2.7)
implies the result
A
L2+ a)D;°NY, " "74(2)
Flozenvrmryw ( o < Foa9(2).
where g(z) = 1 fo t)dt is convex and fuzzy best dominant.
Proof. Following the same technique of Theorem 2.10 and taking
A
D2+ a)D- N H(2)
p(z) = P , we have
]' /
Fyo@ry |p(2) + NP (2)| < Fr@a)h(2).
Using Lemma 1.10, we deduce that
A
L2+ a)D;°NY, " "74(2)
Elozonvypou ( e < Foan9(2);
where g(z) = % fo t)dt is convex and fuzzy best dominant. O

Example 2.13. Considering h(z) =

.
Taken = 0,0 = 0,7 =1 and t(2) = 2 + 22, then we obtaln/\/YO’l’O t(z) = 2+ 27, then
we find that

with 2(0) = 1 and it is convex function in
1+z2

NYboulg)t(z) =z + 2%

Now,
Zl—i—a 2224-04

IF'2+a) +F(3+a)'

- 0,1,0
DNY, yt(z) =
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Thus,

L2+ a)NYDt(2) 222
— =z+ .
z 2+ a)

After differentiation, we obtain

<r<2 + a)NYb?;%;Et(z))’ e

ZO(

2+a)

Additionally,

g(z) = i/ozh(t)dt: M .Y

We have the fuzzy differential subordination described below using Theorem 2.12
14 2z \M! 1+ 4z _< 1—=2
2+« 2+a) 14z

A
2z 2In(1+ z)
1 < ————1.
( +2—|—a> r z

implies the result

Theorem 2.14. Let g is a convex function with g(0) = 1 and h(z) = g(z) + z¢'(2). If
t € A, the fuzzy differential subordination

"
DIONYIIHE) (DT ONY))
F(@;(!Nyn,n‘o't)% 1-— -

< Fpanh(z), (2.8)

b,v, 9 B n o i 2
(27 Ny (=) }
implies sharp result,
DIONY 7 4(2)
Forenvpmyou | < Fyan9 (@),
o 2 (@ZQNX/I,7;71’9 t(z)>

and g is fuzzy best dominant.
DIONY T H(2)

z (@Z“NYb";%Ut(z))
Differentiating w.r.t. z, we have the relation

(33;&./\/'}/1:271790{(,2)) (QQQN)/I]/,;L{)T’,L;Ut(Z))//

[(QZ“NYE,’,’JQ;“t(z))T

Proof. Suppose p(z) = - belongs to H[1,1] and z € % .

p(z)+2p'(z) =1—

Inequality (2.8), becomes
Fo@n[p(2) + 20’ (2)] < Fya)h(2),
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We now get the sharp fuzzy differential subordination using Lemma 1.11,
0L WNYLIC)

!/

2 (D7 NV )

Flozenvymygu < Foa)9(2).

and g is fuzzy best dominant. O

3. Conclusion

At this point, we discussed a number of fuzzy differential subordination results of an-
alytic functions that are connected to the Riemann-Liouville fractional integral and
the linear combination of the Pascal and Catas operator. A new fuzzy class was also
developed, and fuzzy differential subordination results and a few examples were in-
ferred.

With reference to this operator, further subclasses of analytic functions can be
created, and some of their features, including coefficient estimates, distortion theo-
rems, and closure theorems, can be examined. Also, New fuzzy class identification,
fuzzy superordination results, higher-dimensional results extension, and the use of
fuzzy differential subordination to address practical issues are important topics for
development.
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