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Existence, uniqueness and continuous depen-
dence results of coupled system of Hilfer frac-
tional stochastic pantograph equations with non-
local integral conditions
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Abstract. This study explores the existence, uniqueness, and continuous depen-
dence of solutions for coupled system of Hilfer fractional stochastic pantograph
equations with nonlocal integral conditions. The existence of solutions is demon-
strated using topological degree theory for condensing maps. The uniqueness
is established via Banach’s contraction principle. To address continuous depen-
dence, the generalized Gronwall inequality is applied. Additionally, a numerical
example is provided to illustrate and confirm the theoretical findings.
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1. Introduction

Fractional derivatives provide a flexible tool for modeling intricate processes in various
fields by extending classical differentiation to non-integer orders. Several definitions of
fractional derivatives exist, including the Riemann-Liouville (R-L) and Caputo deriva-
tives. The R-L derivative offers a foundational approach to fractional differentiation
[14], while the Caputo derivative is often used in practical applications due to its com-
patibility with standard initial conditions [14]. To unify and extend these approaches,
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Hilfer introduced a generalized fractional differential operator that combines the Ca-
puto and R-L derivatives. This operator, called the fractional Hilfer derivative (HFD),
has shown great promise in modeling systems with complex boundary conditions and
temporal delays [3, 13, 20, 22, 30].

Fractional differential equations represent a substantial advancement in math-
ematical modeling, particularly in fields such as signal processing, biology, and
engineering. By incorporating non-integer order derivatives, these equations cap-
ture complex system dynamics. A significant category within this domain is frac-
tional pantograph delay differential equations, which integrate delays to model sys-
tems with memory effects. When combined with stochastic calculus, these equations
evolve into stochastic fractional pantograph differential equations, which are valuable
for describing systems influenced by both memory effects and random fluctuations
[5, 7, 8, 21, 23, 24, 25, 28, 29, 31, 32, 34, 35].

The continuous dependence of stochastic fractional differential equations is cru-
cial for ensuring that small changes in initial or nonlocal conditions lead to propor-
tionally small variations in the solutions. Research has shown that mild solutions
of mean-field stochastic functional differential equations exhibit sensitivity to initial
data and coefficients within an appropriate topological framework [4, 27, 36, 37, 38].
Similarly, generalized Cauchy-type problems involving HFD demonstrate continuous
dependence on the fractional order, supported by a generalization of Gronwall’s in-
equality [1, 9, 11, 27, 33]. Solutions to random fractional-order differential equations
with nonlocal conditions also maintain continuous dependence on initial conditions
[15].

Coupled system with nonlocal conditions are particularly useful for modeling
physical, chemical, or other processes that occur at multiple points within a domain
rather than being restricted to boundary conditions. El-Sayed [16] explored the con-
tinuous dependence of solutions for stochastic differential equations with nonlocal
conditions, while more recently, Arioui [6] studied the existence of coupled systems
of fractional stochastic differential equations involving HFD. For more study about
coupled systems, we refer to [2, 10, 17, 18, 19, 26, 39, 40]

To the best of our knowledge, no existing study has addressed the existence and
continuous dependence of solutions for coupled systems of Hilfer fractional stochastic
pantograph equations with nonlocal conditions. This paper aims to fill this gap by
introducing a novel class of coupled system of Hilfer fractional stochastic pantograph
equations with nonlocal integral conditions

HDgi”qj 0(t) =1 (1, 0(0),0(kt),&E(L), ve€J:=(0,b],

D 2E() = o (1, 0(0), € (1), E(52)) dVYTL’

37700 = [ 01 (s.0(s). € VG). =1+,

(1.1)

o7 26(0) = /0 92 (s,0(),£(5)) ds,  v2 = p2 + g2 — P2,
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where Ci WL’ and # @gi’q” are the fractional mtegral of order 1 — v; and the HFD

of order p; and type g;, respectively, j = 1,2. Here, é <p; <10 <gqg <1
Let (W(¢)),>o be 1-dimensional standard Brownian motion defined in the complete
probability space (Q, F,,P) with a normal filteration (F),>0- @js 95 : I XRXRXR —
R are measurable functions and 0 < & < 1. a

2. Preliminaries

Let L2 (Q, F,,R) = L?(Q,R) is the Hilbert space of real-valued random variables
that are square-integrable with respect to the probability measure on (Q,F,). Let
C(J,1.2 (2, R)) is the space of continuous time stochastic processes that are square-

integrable with the norm ||o||* = sup {]E lo()|]* : v € J}, where E is the mathematical
expectation. On the other hand, define the Banach space
gj = Cl*’vj (J’ L? (Qv R))
={0:J = L*(QR): () € C(J,L* (L, R))},0<v; < 1,5 =1,2,
using the norm
s 2
lollz, = supE [|o" = o(1)||" .
veJ

Furthermore, let £ := & x & with the norm || (o,€) |l = max{||olls,,||&|le, }- It is
clear that £ forms a Banach space.

Definition 2.1. [14] For p > 0, the fractional R-L integral with order p for a continuous
function g : [a,00) = R can be written as
1 L
3P, o(t) = —/ (1 — 8)P"to(s)ds.
o L(p) Ja

Definition 2.2. [14] For n — 1 < p < n, the fractional R-L derivative with order p for
a continuous function o is represented as

o000 = D) = o () [ atsas

Definition 2.3. [20] For n — 1 < p < n, the HFD with order p and type 0 < ¢ <1 of
0 is represented as

Hgypa o(t) = jqn p)D”j(l q(n P) o(t) = jqn p)©a+ u9<)

a*b at, at,

where D = % and 0 =p+q(n—p).

Lemma 2.4. [20] Forn —1 <p <mn, f € L'(a,b), 0 < 3 <1, and j{(li—:z)(n—p)g c
AC¥a,b], then
n 6 k k
P Hgypsa (t—a) T d” (1-g)(n-p)
G O k=1 F +1- L*l{&a dek Jat oft).
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Lemma 2.5. [20] Let p > 0 and g > 0. Following that Vi € J there is

[3§+,L(b)q_l} (L) = F(E(qu)p)ﬂ-ﬂ)_l’

and
[®Z+ L(b)”‘l} (1)=0, 0<p<L

)

Lemma 2.6. A stochastic process (9,&) € & is called a solution of problem (1.1) if
(0,€) satisfies the following stochastic integral equation

L’Y171 b
o(t) F(%)/o 91 (s, 0(s),£(s)) AV (s)
1 L Pl (s ofs ris ) ds
i | T s els) o (me) () d
and

21 b

L Lb_spzflw s s s s s
T 9 ()€ 0) ) ).

Definition 2.7. [12] Let A: S — & be a bounded continuous map, where S C . Then
A is
(i) U-Lipschitz if there exists r > 0 such that 9(AK)) < rd(K) for all bounded
subsets IC C S;
(i) Strict 9-contraction if there exists 0 < r < 1 such that 9(A(K)) < rd(K);
(iii) ¥-condensing if I(A(K)) < ¥(K) for all bounded subsets K C S with (K) > 0,

where ¥ is the Kuratowski measure of non-compactness.

Proposition 2.8. [21] If A,B : § — & are 9-Lipschitz with respective constants 1
and ro, then A+ B is O-lipschitz with constant r1 + r5.

Proposition 2.9. [21] If A: S — & is Lipschitz with constant r, then A is 9-lipschitz
with the same constant r.

Proposition 2.10. [21] If A: S — & is compact, then Z is V-lipschitz with constant
r=0.

Theorem 2.11. [21] Let C : S — £ is ¥-condensing and
I's = {0 €C : there exists 0 < 0 < 1 such that o = 6Cp}.
If s is a bounded set in &, then there exists a > 0 such that T's C B, (0) and
Deg (I —0C,B,(0),0) =1 for all § € [0, 1].
Thus, C has at least one fized point, and the set of all fixed points of C lies in B,(0).
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3. Existence and uniqueness results

In this part we will use the degree theory to prove the existence of solutions to the
problem (1.1).
First, we give the following essential hypotheses:
(Hy): For arbitrary (o1, 02) ,(£1,&2) € &1 X &z, there exist positive constants Lo, , L, ,
M, and q1,¢2 € (0,1) such that

w1 (¢, 01(0), 01(R0), 02(0)) = @1 (1, € (0), € (e), E2()) 1

< Lo, <L2(1—v1)2 lot — &1|% + 20772 | gg — §2||2> 7

@1 (4, 01(¢), 01(ke), Qz(b))H2

< Ly (20072 gy [P 4 2059 | %)
(Hs): For arbitrary (o1, 02), (£1,&2) € & x &, there exist positive constants Lo, , (e, ,
Mg, and q1,q2 € (0, 1) such that

92 (1, 01(2), 02(1), 02(K1)) — 2 (1, €1(1), E2(1), & (k0)) ||

<o, (Lz(lwl) ot — &1[[% + 2.20-72) || gy — 52”2) 7

2 (1, 01(1), 02(1), 02(k0)) ||

<y (0O gy P2 4 20207922 + g,
(H3): For arbitrary (o1, 02), (£1,82) € &1 x &2, there exist positive constants Ly, 1.,
mg,; (j =1,2) and q1,¢2 € (0,1) such that

2
g (v 01(2), 02(¢)) = g5 (¢, €1.(¢), &2(0)) |
< £,, (2079 flor — &P + 207 g — &)

ng (L, 01(1), 02(L))H2 < lg,- <L2q1(1—71) ||Q1||2q1 + (202(1—72) ||Q2||2q2) +my,.

To make clarity, we set the following notations:

2L,
1, = yJ = L, 4
T T (y)
20l,,.
Ny, = i =1,2,
2T T2(yy)
bmy,
3j = T/ \?
I2(v5)
3L b2 2025
A P = - : 7j = 1727
b Tpy)2p - 1

A = max {Ah,A12} , A = max {A41,A42} .
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Based on Lemma 2.6, we let the operators A, B,C : &1 x &5 — &1 X & defined by

A(0,6)(1) = (A1(0,6)(1), A2(0,6) (1)), B(0,€)(t) = (Bi(,€) (1), B2(0,€)(1))
C(0,8)(1) = A(0,6)(t) + B(o,6)(1),

where R
Ax(e. ) = /0 g1 (s, 0(s). £(s)) AW (s).
21 b
(0. 0) = i [ o (s.0l) € (5D s
and
Bi(e.)0) = g [ (1= 91 (50000, 09 5D s
Ba(0,&)(1) = F(;) /OL@ — 5)P2 "Ly (s, 0(s), € (), E(ks)) dAWV(s).

We shall now prove, step-by-step, that the proposed operators satisfy the conditions
of Theorem 2.11.

Lemma 3.1. The operator A is 9-Lipschitz with a constant A. Furthermore, A adheres
to the inequality presented below

1A, )I[2 <A+ Afl(0, &)IIF, where
A =max{A3,,As,} and (3.1)
]\ = maX{Agl y A22}.
Proof. Let (01,02),(&1,&) € &1 x &, we have

E[e " (Ar (o1, 02) (1) — A1 (61, &2) ()]

2

b
ST || (o) ea(s) = g1 (s, 6a0) (o)) s

By applying Ito isometry and (Hj), we arrive at
_ 2
E ]! (A (01, 02) (1) — A1 (§1,&2) (1)) ]|

b
_réc&) / [0 E Jlo1(s) = &1(5)I” + 520 E oa(s) — &a(s)]] ds.
Therefore,
bl
E HL1—71 (A1 (01, 00) (1) — Ay (€1, &) (L))H2 SFQ(;?I) (llor — &lIE, + [lo2 — &I12,) -

Consequently,

A1 (01, 02) — A1 (&1, 62) I, A1l (01, 02) — (&1, &2) [I2-
Similar by the Cauchy-Schwartz (C-S) inequality, we can obtain

[ Az (01, 02) — Az (&1, &2) |17, <AL (01, 02) — (&1.&) II-
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It follows that

|A (01, 02) — A(&1,62) ||% <Al (01,02) — (&1,&2) ||§

Thus, A satisfies the Lipschitz condition with the constant A. By Proposition 2.9, A
is also ¥-Lipschitz with the same constant A.

For the growth condition.

Let (0,&) € &1 x &. Under the Ito isometry and (Hs), we have

B 0 O g [ [ 15 0 B Lo
g, 5720 [ (5)] ] ds.
Therefore,
B[ 41 0.8) O <gzs (mor + Ll + 1 1)
Y1)

Consequently,
141 (0,€) 17, <As, + Aa, | () I,

where ¢ = max {q1,¢2}.
Similarly, we find that

A2 (0,€) 12, <As, + As, | (0,€) |13
It follows that
1A, €)I12 < A+ Al (0,12

O
Lemma 3.2. The operator B is continuous. Furthermore, B satisfies the inequality
1B(e.€)13 <=+ E(0, )1, where
_ 22Ny 222y
= = max{ 2(p1)2p1 — 17 T2(p2)2ps — 1 b and (3.2)

x 3b2_2’)’1+2pllw1 ’ 3b2—2~/2+2pzlw2 .
I2(p1)2p1 — 17 T2(p2)2p2 — 1

Proof. For the continuity of B, let (on,&,) — (0,€) in . From the fact that o
and wy are continuous functions linking with the Lebesgue dominated convergence
theorem, we can obtain

|B(on,&n) — Blo, £)||% —0 as n — oco.

[

= m

Moreover, B satisfies the growth condition.
Using the C-S inequality, we have

E ||~ 81 (0, 6) ()|

<0 s [ 20 VB [ (5,069, 0069).€ () s
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Based on the assumptions (H), it can be concluded that

E '™ Bi(e,€)(x)

Subsequently,

||2 27271 +2p

e — AR, T S Y[ 2‘12).
<tagrap =1 (e + He ! + o]

b2—2m+2p1 My 3h2—271+2p1]
”81(97 )HSl =19 2
I2(p1)2p1 — 1T (p1)2p1 —

e Ol

Similarly,
b2- 272+21)2m 3p2—272+2p2]

||82(Q7 )HEZ = FQ( )2p2 — 1 FQ( )2p = ||( )”

Thus,
—_ = 2
1B(0,O)IIF <E+Ell(e, &), where
b2—2’>’1+2plmwl b2—2"/2+2p2mw2

T2(p1)2p1 — 17 T%(p2)2p2 — 1
3b2 2’Y1+2p1l 3b2—272+2p21w2

UT2(py)2ps — 1 2 (p2)2p2 — 1

= max{

(1]

[1]
Il
5

Lemma 3.3. B is compact; consequently, B is ¥-Lipschitz with a zero constant.

Proof. Let B, = {(0,&) € & x & : |[(0,€)|| < 7} and consider a bounded set K such
that IC C B;. It remains to demonstrate that B(K) is relatively compact in €. For
this purpose, let (o,£) € K C B; and by (3.2), we derive

1B(e;)IIF <E+Ell(0, I :==T.

Thus, B(K) C B, and as a result, B(K) is bounded.
It remains to prove the equicontinuity of B.
Let 0 < e < e <band (p,§) € B, then

& " (Bi(0,€)) (e2) — 1 ™ (Bi(0,9)) (e >H2

1 I 2(1-m) —1_ 20-m) -1
<2FE / [e Mg —g)P17 1 _¢ (e, — g)P1 ]
lron [ [ =dt

x w1 (s, 0(s), 0(ks), £(s))ds||”
/62 307 (63 — ) Ve (s, 0(s), o(ks), £(s))ds

)
y C-S inequality (H;), we obtain

1—m 1—m 2

& (Bi(0.€)) (e2) — e (Ba(e,)) (1)

2¢1 (Mg, + 3lew, 79) /El 2(1—~1) 1 2(1-m) 172

< 1 1 1 _ D1 _ 71 _ p1—1

= I2(py) o [ €9 (€2 —s) € (€1 —5) } ds

2(e2 — €1) (M, + 3w, 79) 63(1_%)
['2(p1)2p1 — 1

2
1

+ 2E H
(Pl

2p1—1

+

(e2 — €1) — 0, as € — €a.



Hilfer fractional stochastic pantograph equations 399

Similarly, we get

2
577 (Ba(e,9)) (e2) — 1 (Bal,9)) ()|
2€1 (My + 3ly79) /61 [ 2(1—2) 1 2(1—72) 1]?
< € €g —s)P1t — VT (g — 5)P27 Y| (s
Fz(pg) 0 2 ( 2 ) 1 ( 1 )
2(e2 — €1) (M, + 3,70 ) 2ps 1
+ €2 —€1) P2 — 0, as € — €.
T2(p2)2ps — 1 (€2 —€1) 1 2
Therefore, we find that

&b (Bu(e,9) (e2) — e (Ba(e. ) (@)
™ (B2(0,6)) (e2) = 7 (Bl ) ()|

approaches zero as €; — €9. By applying the Arzela-Ascoli theorem, it can be con-
cluded that the operator B is compact. As a result of Proposition 2.10, B is ¥-Lipschitz
with a zero constant. O

E

2

)

Theorem 3.4. Assume that (Hy) — (Hs) hold and 0 < A < 1. Then the problem (1.1)
has at least one solution on E. Moreover, the set of the solutions of the problem (1.1)
is bounded in E.

Proof. By Lemma 3.1, the operator A is shown to be ©¥-Lipschitz with a constant
A € (0,1). Similarly, from Lemma 3.3, the operator B is ¥-Lipschitz with a constant
equal to zero. Consequently, based on Proposition 2.8 and Definition 2.7, the operator
C qualifies as a 1-contraction with the constant A. This implies that C is ¥-condensing.
Now, consider the following set

I's ={(0,§) € &1 x & :(0,§) =0C(0,§), for 0<6 <1}

We need to demonstrate that I's is bounded in & x &. Let (p,&) € T's. Then, by
Lemma 3.1 and 3.2, it follows that

(0,8 17 = 6%l A(0,€) + B (0,) |1
<28 (A (&) Iz + 1B (2,9 1IZ)
<2A+E)+2(A+2) | (0,6) |

Thus, the set I's is bounded in €. If this is not true, by dividing the above inequality
by 0 := | (0,€) |2 — oo, we obtain

1 = T, =
1< 15205[ A+Z2)+2(A+E)07 =0

which is a contradiction. Consequently, Theorem 2.11 ensures that C has at least one
fixed point. Therefore, our problem (1.1) has at least one solution. O

Theorem 3.5. Assume assumptions (Hy) — (Hz) hold and 0 < 2(A+A) < 1, it
follows that the problem (1.1) has a unique solution.
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Proof. By applying the Banach contraction theorem, for any (o1, 02), (£1,&2) € &1 X
&y, it follows from the arguments presented in the proof of Lemma 3.3 that

A (01, 02) = A(&1,&) 2 <Al (01, 00) — (&1,62) |12
Next, by the C-S inequality, we obtain

E i1 (Bi(e, 02)(1) = Bi(6a, £)(0)||°

< 20-m)__t /L _ 52D
=L Fg(pl) 0 (L 8) ||w1 (87 91(5)7 Ql(’%s)v 02 (S))

—1 (5,61(5), €(k5), &2 ()| ds,
Based on the assumptions (H;), it can be concluded that
- 2
E o= (Bi (o1, 02) (1) = Bi (61, &) ()|
ﬁwl $+27271+2p
T I2(p1)2p -1 (

2[lo1 — &lIZ, + llo2 — &l12,) -

Subsequently,
3£W1 b2—2m+2p1

FQ(p1)2p1 1 ||(Qla QQ) - (gl,gQ)H%

1B1(01, 02) — Bi(é1,&)||F, <

Similarly,
3L, b2~ 22 2p2

B R - B ) z S Top2m =1
1B2(01, 02) 261 &2)lle, < ['2(p2)2p2 — 1

||(91792) - (51;52)”:2?'

Therefore,

1B(o1,02) — B(&1, )12 < All(e1, 02) — (61,82) 3.
Thus,
HC(Qh 92) - 0(51,52)”% <2 (||A(Q1, 92) - A(fu&)”% + ||B(917 92) - 6(51152)”%)
<2(A+A) (01, 02) — (&1,6)]7.

This implies that C is a contraction. As a result, the problem (1.1) has a unique
solution.
O

4. Continuous dependence of solutions

Now, we study the continuous dependence on the nonlocal conditions of the solutions
of problem (1.1).

Definition 4.1. The solution (g,&) € &1 x & of problem (1.1) is said to be continuously
dependent on the nonlocal conditions g1 and go if for all € > 0, 3§ > 0 such that

ng (87'7') - gj* (87 R )H2 < 5; .7 =12 implz'es that H(Qag) - (@v g)H?) < e

Theorem 4.2. Assume hypotheses (Hiy)-(Hs) are fulfilled, then the solution of the
problem (1.1) is continuously dependent on g1 and gs.
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Proof. Let (p,§), (g,f_) be the solutions of problem (1.1) such that

i1

o) = 5 | o s els). ) )
1

" Tl / (1= 8)" " @ (5, 0(5), 0 () £(s)) ds
L’Y2—1 L
§(t) = mA g2 (s,0(s),&(s))ds

and

where

By the Ito isometry linking with the C-S inequality, we get

E [l (o(e) — 2())|)?

2 ¢ w{ s E 2
<oy ) Ello (060,60 =i (s 206).E() [ s

2,2(1=m),

—_ LL—s2(p1_1) w1 (s, 0(s KS s

) /0< PR [ (s, 0(5), 0 ()  £(5)

w1 (s,2(5), 0 (k5) . &(5))|” ds

<t [ (Hgl 5.0(5):6(5)) — 97 (5.0(5).(5))
9).6(5) ~ 97 (s, 2(5), &) |*) ds

L= IR o (0090, 09 665)

TG
— 1 (5, 8(5), 8 (5s) , E(5

+H91 s,0(s

2,2(1=71),

)| ds.

e LL*.SPQ*lw s, 0(s S KS s
i 9 ()€ 5) ) ),

401
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By applying (H;) and (Hs), we arrive at
2
EHLl M (o) — L))H
4b 4£ L _ A2
e’ T /0 $2E | gfs) = 2(s)|I + 52T €(s) — &(9)]*] ds
) /0“ )21 [20=00F |o(s) — a(s) > + 521K [lo(xs) — a(ss)]”

b3 2’)’1
+5207E |l6(s) - &(s)]*] ds

S T2(y)

Let ,
©1(1) = sup,e o) B[~ (o(s) — a(s))||” and
2(1) = supe (o ) E |11 (€(s) — &(s)) ||, for v € J.
We have
E | (o(s) — 2(s))||” < er(s)
E |12 (£(s) — €(5)) ||” < wa(s),
and

E |7 (o(ks) — a(ks))||* < ¢1(s)
E[|o'77 (¢(rs) — E(rs))||” < wa(s).

Then, for ¢ € J, we get

=% (o)) — (NP 4b Ay [* s s))ds
B[ (o)~ 80D < st + a2y | (10 + palo)d
2b372"/1£w1 L . 2p1-1) ) ) )
T [ =Y 2a(0) + (s s
Then
4b AL, [t
010 < st gary | (@) + eal) ds
2b3—2’¥1£w1 L 2pr—1
W/o (1 —8)2P1=Y (20 (s) + @a(s)) ds.
Similar, we find that
4b AL, [
) < a0+ fay | (@) + eal)ds
2b37272£w2 2 . 2pa—1) ) ) )
T [ =P (o) + 205 s

Take now ¢ = max{p1, 2}, it follows that

(1) < pd + §R/ s)ds + \S/OL( 5)2(p_1)<p(s)ds,
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where
8L,
o= max{ Fzét: ), Fz(,y2 }7 §R maX{ I“2 ’Yl)’ F2(»y2)}
& 667 M Lo, 672 L,
S = max{ T2(y) T2(72) }
p= maX{plaPQ}'
So,

) < b + §R/ s)ds + \5/ (1 — 8)2P=Yp(s)ds.
0
By Generalised Gronwall inequality, we obtain
0 <p5 + §R/ ds) By (ST(2p — 1))
< N6+ h/ p(s)ds,
0
where
N = pFs, 1 (ST(2p — 1)b2p—1) . h=REy, | (ST(2p — 1)b?~1).

By Gronwall inequality, we obtain

©(1) < Noel.

Hence,
max{[lo — oll?,, 1§ — €]} < Rde™ = .

We conclude that the solution of the problem (1.1) is continuously dependent on g;
and go.
O

5. An example

Consider the following coupled system of Hilfer fractional stochastic pantograph equa-
tions with nonlocal integral conditions

H@gf‘jo %0(1) = w1 (1, 0(1), 0 (0.50) ,£(2)), € (0,1],

HDYE006 (1) = wa (1. 0(1), € (1) , £(0.50)) dVYT(L)

5.1
3077 0(0 / g1 (1, 0(0), (1)) AW (s), "
257760 = [ cloh )
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where

@1 (¢, 0(2),0(0.50),6(1) =

—TL

S T (elo)| + el + [ sin(€(w).

(1 0(0):€ 1) £(050) = 77 + 1= (le(0)]+ | cos(€)] + VEOH]).

1

910, 0(0),€(0)) = 17 + 7 (le()[ + [sin(€())]),

—L

e
L,0(L),&(L)) = cos(o(¢))| +1&(e)]) .
0.0, £0) = 55— s ([eos(ol0)] + 1<)
Here, p1 = 0.75, po = 0.85, ¢ = 0.5, g2 = 0.6, kK = 0.5, 73 = 0.875, 72 = 0.94. The

assumptions (Hy), (Hz) and (Hj) are satisfied with L, = I, = o, Lo, = I, = 55,
_ 2 _ 1 _ _ 1 _ _ 4 _" _ 2
My = 135 Mwy = 7, [’91 - lgl - 3 Egz - lgz = 310 Mg1 = 717 a‘nd Mg, = 57-

Additionally, we find A = 0.239329 < 1. Theorem 3.4 shows that problem (5.1) has
at least one solution. Further, 2 (A + A) = 0.80914 < 1. Thus by Theorem 3.5 the
problem has a unique solution.

Next, we plot the approximate solution (g(¢),£(¢)) of problem (5.1) for different values
of p1, p2, ¢1 and ga.
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FIGURE 1. Solution (o(t),&(¢)) for p; = 0.75, ¢1 = 0.5, p2 = 0.85,
g2 = 0.6.
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FIGURE 2. Solution (o(¢),&(:)) for p; = 0.8, ¢1 = 0.6, p2 = 0.9, g2 = 0.7.
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FIGURE 3. Solution (o(t),&(¢)) for p1 = 0.55, g1 = 0.65, pa = 0.95,

q2 = 0.7.
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