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New developments of fractional integral inequal-
ities and their applications

Adrian Nago (9, Artion Kashuri (%) and Rozana Liko

Abstract. In this paper, we propose the so-called higher order strongly m-
polynomial exponentially type convex functions. Some of its algebraic properties
are given and a new fractional integral identity is established. Applying the class
of higher order strongly m-polynomial exponentially type convex functions, we
deduce some fractional integral inequalities using the basic identity. Furthermore,
we offer some applications to demonstrate the efficiency of our results. Our results
not only generalize the known results but also refine them.

Mathematics Subject Classification (2010): 26A33, 26A51, 26D07, 26D10, 26D15,
26D20.

Keywords: Hermite-Hadamard inequality, Holder’s inequality, power mean in-
equality, higher order strongly m-polynomial exponentially type convex functions,
Bessel functions, bounded functions.

1. Introduction
A set T C R (R represents the set of real numbers) is said to be convex, if
Ub1 + (1 =9 € T, Vby,be € Tand 9 € [0, 1].
A function i : T — R is called convex, if
R(9by + (1 — 9)b2) < Ih(by) + (1 —F)h(b2), Vby,bo € Tandd €[0,1].  (1.1)

Moreover, h is concave whenever —h is convex.
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For the convex function the Hermite-Hadamard type integral inequality (H-H), is

given by [5]:
ba
h<b“;b2> < b;bl / h(z)dz < w (1.2)

The H-H integral inequality (1.2) has been applied to different types of convex
functions (see [3, 4, 9, 12, 13]).

Now, we recall some definitions of convex type functions.

Definition 1.1. [2] A function h: T CR — R is said to be exponentially conver, if

h(b
B(9hy + (1 —D)by) <0 e(gbll)

holds for all by,bs € T, 9 € [0,1] and ¢ € R.

h(b2)
+(1-9) > (1.3)
Toply et al. [10] introduced the class of m-polynomial convex functions as follows:

Definition 1.2. Let m € N. A function h : T C R — R is said to be m-polynomial
convezx, if

R(9p1 + (1 = 9)b2) < %i [1—(1—9)]hb)+ %

=1 7

NE

M- 0Thbs)  (14)

1

holds for allby,bs € T and 9 € [0,1].
With the help of the above definitions, we introduce the following definition.

Definition 1.3. Let m € N and ¢ € R. The function h: T — R is called higher order
strongly m-polynomial exponentially type convex, if there exists a constant ¢ > 0, such
that

(1.5)

= QP =) + (1 = 9)P] [p2 — ba [P
holds for everyby,by € T, ¥ € [0,1] and p > 1.

1 & 1 &
1—9 = N L
By + ( m; egbl +m; ']

Remark 1.4. From Definition 1.3, we can observe that:
1. If m =1 and ¢ — 07, then Definition 1.3 reduces to Definition 1.1.
2. If ¢ = 0 and ¢ — 07, then Definition 1.3 reduces to Definition 1.2.

Definition 1.5. Let £ > 0,b; < by and h € L[by,bs]. Then the Riemann—Liouville
fractional integrals (R-L) of order ¢ are defined by

jffh(x) = / (x —9) " h(9)dY, b <z

W bl
and

bo
j;;, h(z) = ﬁ/x (0 — ) h(9)dd, by >,

where T'(+) is the gamma function.



New developments of fractional integral inequalities and their applications 373

The H-H type integral inequalities are involved in fractional calculus models and
they has been applied for different types of convex functions (see [1, 6, 7]).

Motivated from above literatures our paper is organized as follows: In Section 2, we
introduce the higher order strongly m-polynomial exponentially type convex function
as a new class of convex functions with its algebraic properties. In Section 3, we derive
new integral inequality of H-H by using the new introduced definition. In Section 4,
we derive a generalized fractional identity and some related inequalities for the higher
order strongly m-polynomial exponentially type convex functions. In Section 5, we
give some applications of the Bessel functions and bounded functions to support the
main results from previous section. Finally, conclusions and future research are drawn
in Section 6.

2. Algebraic properties
Here we derive some algebraic properties of our new defined convex function.

Theorem 2.1. Let m € N and ¢ € R. Assume that h, hy, ho : T — R are three higher
order strongly m-polynomial exponentially type convex functions with respect to the
constants, ¢, (1 and (a2, Tespectively, then

(1) Ay +hg is higher order strongly m-polynomial exponentially type convex function,
with respect to the constant (1 + (5.

(2) For nonnegative real number c, ch is higher order strongly m-polynomial expo-
nentially type convex function, with respect to the constant cC.

Proof. The proof is evident, so we omit here. O

Theorem 2.2. Let m € N,¢ € R and U = {w € [p1,b2] : Ai(w) < +oo}. Assume that
hy 2 [b1,b2] = R is a family of higher order strongly m-polynomial exponentially type
conver functions with respect to the constant ¢ > 0 and h(w) := sup; hj(w). Then,
h is an higher order strongly m-polynomial exponentially type convex function with
respect to the constant ( on U.

Proof. Let by,bs € U and ¥ € [0,1], then we have
h(’ﬁbl + (1 - ﬁ)bg) = sup h](ﬂbl + (1 - ﬁ)bg)
j

Supj hj (bl)

<
= esh1

[1—(1=9)] +

3=
i

S

— (Y

(1 =) +9(1 =)} py = ba[?

[1 _ (1 _ 19)1] he(gbbll) + %Z (1 _ 19’) h(b2>

I
3|~
NE

esh2
1=1 =

—C[OP(1 = 9) +9(1 — 9)P] |ba — b1]? < +o0,
which completes the proof. O
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3. Main results

The aim of this section is to find some fractional integral inequalities of H-H type for
higher order strongly m-polynomial exponentially type convex functions.

Theorem 3.1. Let £ > 0, m € N and h : [b1,ba] = R be a higher order strongly m-
polynomial exponentially type convexr function with respect to the constant ¢ > 0. If
h € Lp1,b2] and s € R, then we have

o2 |1 b1 + b ¢ P
m(2m(m— 1)+1> £h< 2 ) = g2 =0 (B + 1,0 +3(p, 0) | (3.1)
1
S _ [Ah 1(§7b17b2) +Aﬁ 2(<7b17b2)}
(b2 —b1)"
1 h(b
S — [ (C,bl,b2)+B4m(§ablvb2)] (bl)
(bQ—bl) sb1
h(ba
[BQm(c,bl,bg) +Bgm(< b17b2)] e(gbj}
¢ e, 0,
— m |:Cl g(bg,bl,p) +02<(b2,b1,p)} )
where
bo b2
A%)l(g;bl,bg) ::/ (ba — x)fflh(i) dz, A%Q(C;bhbz) 1:/ (x— I’l)hl@dm
by e b1 €
and 1
J(p, €)== [ WP(1+9) " v,
1 m 2_1. [ 1‘—'71 ‘]
Bi ,,(s3b1,02) : m;/ _1 B (bz —b1> ] o
1 & bg—x [ by — '\
Bj 1 (Sib1,b2) : = 2 / _1 a (bz b1> ] e
1 & a:—bl [ by —z\']
Bsm(g7b1ab2 E p— / _1 B <b2 _b1> d dx’
1 & xfb [ z—b1\"]
B4m(§,blab2 m;/b _1(b2_b1>_d$’

CES(by, by, p) = /|7 % {(33 — 1) (b2 — )" + (x —b1)P (b2 — x)}dx,

bo —r -1
COrnp) = [ O b1 a = ) + (0 = 20) 02 - o]

Here, (-, -) is the beta function.
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Proof. Let x,y € [b1,bs]. Applying definition of higher order strongly m-polynomial
exponentially type convex function with respect to the constant ¢ > 0 of & on [by,bs]
and taking ¥ = 1/2, we have

m

h(x;y) §;2[1— (;)] [’1&%’1{?} eyt (32)

1=1

By making use of inequality (3.2) with & = ¥bo + (1 — )by and y = by + (1 — ¥)bs,
we get

by + by u 1\"] [A(0 + (1 —9)p1) ROy + (1 — 9)ha)
h< 2 > = EZ {1 - (2> ] [ e T g@rao | 39

- Q%(bz —by)P|1 — 207

Multiplying both sides of (3.3) by ¥*~! and integrating the result with respect to 9
over [0,1], we obtain

b1 + by
("3
1 2m — 1 Lo B(9hg 4+ (1 —9)by) Lo (b 4+ (1 —9)ba)
< m (m om ) l/o v es(Wha+(1—9)b1) dﬁ+/0 v es(9h1+(1—0)b2) dv
<— 1
~ Sy bl)p/ 911 = 209

2 — 1h() 2 _ -1 M)
/bl (g — 2yt 1) +/b (& —b1) ecmdaz]

_1(m_2m—1> 1
m om (bszl)f

1

e r b o B0+ 1,0) 4 3(p. 1)
1 2m —1 1
= (m— o ) a—or)" [Af 1 (s301,02) + Af 5(5301,b2)]
¢

= 5oz (02 =) B+ 1.0) + I(p. )],

which gives the left inequality of (3.5). In order to prove the right inequality of (3.5),
we use the definition of higher order strongly m-polynomial exponentially type convex
function with respect to the constant ( > 0 of & to get

B + (1 — 9)o1) |
@t (P = ecwbzm—ﬂ)m
. h(bz)
{m z; =71 €§b1 + Z ed’Z

— (P =9)+9(1 = 0)"] b2 - blp}-
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Similarly,
R(9h1 4+ (1 — 9)ba) < 1
es(Oh1+(1—0)b2) = oe(@by+(1—9)b2)
RS g h2) 1 oy fb1)
X {ng[l—ﬁ] e *EZ}D_“_W 5

— P (1= 0) £ (1 — 9]y — a7,
where ¥ € [0,1]. Then, by adding the above inequalities, we have
R(Obs + (1 —0)by)  A(9b1 + (1 —I)by)

es(Pba+(1—9)by) es(9b14+(1—9)b2)
1
= es(9ha+(1—0)b1)
1 & hi(by 1 — h(b
x{mzuw 0042y - -9 2
=1 € 1=1 ¢ (34)

= CP(A =) + 91 = 9)P] b2 = ba|” + SO+ (1= 0)b2)

1 — - h(b
SRR NS
1=1 1=1

=P =0) +9(1 = 0)P] by — 0 [".

Multiplying both sides of (3.4) by ¥*~! and integrating the obtained inequality
with respect to ¢ from 0 to 1 and making the change of the variables, we get

/1 ge-1 e + (1 ﬁ)bl)dﬂ+/1 ge—1 10b2 + (L= 0)by)
0 0

o5 (92t (1—9)b1) s (91 +(1—9)ba)

! l—1 1
S/0 v ec(ﬂbz-ﬁ-(l—ﬂ)bl)

1 & 1 — h(bg)
) {m;(l_ e<b1 +EZ e@z

=1

_ 1
1 & h(b)
X{mi‘:(l_ eCbz Li Zl_ L=915,

—(WPA=9) +9(1 = 9)*] b2 — b1\”d19
By simplifying it, we obtain

1
m [Af1(s3p1,b2) + A 5(3b1,b2)]
2 — V1
h(b1)

1
< W{ [Bf,m(g;b17b2) +Bﬁ,m(€;b17b2)] Tosht
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[BQ 77L(§ b17b2)+B3m(g blbe)] (b2)}

sha

- (bi)w (€15 (6r,02,9) + CE< 1, 02,)]
22— V1

The proof of Theorem 3.1 is completed. O

Corollary 3.2. Theorem 3.1 with ¢ =0 becomes

o
1
7 [Af 1 (b1,b2) + Af 5(01,b2))]

<« -
(b2 —by)

= (b_lby{ [B{,m(blabQ) —l—Bﬁ’m(bl’bz)] h(by)

+ [Bhm (01,02) + B3, (01, 02)] h(bz)}

- <)H [CL(53,51,p) + C(oa,51,7)]

(b2 =1

%h (bl ;b2) - 2p€re(b2 —b1)P(B(p+1,0) + I(p, 6))1 (3.5)

where
b2 b2
A% (b1,b2) ::/ (b2 — 2) " h(z)de, Al (b1,b2) ::/ (@ — b)) h(w)da
bl b1

and

1 m b -~
Bf,m(blabQ) = a Z/b (bg _ x)g_l 1_

(=)
B, (b1,02) : Z/b s — )" 1:1—(bbj_b”i)_dx,

(=)

(=)

dx,

1 b2 [
Bg}m(bl,bg) = E Z[) ($ — bl)e_l 1-— d.’[?,

B (b1,b2) : /b2 x—h1)" -1 -

ba
i1 = z—b1) (@ = b1) (b2 — 2))? + (x — b1)P (b2 — ) | da,
Cl(bl’”’p"‘/.,l( 1) [(@ = b1) (b2 = @) + (@ = 51)7 (02 — )] d

bo
4 — _xéfl $—1p 29— T — D1 2—.13p X.
Ch(01,2,p) 1= /., (b2 = 2) (2 = b2)" (o2 = ) + (2 = b1) (o2 — 2)"] d
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Corollary 3.3. Theorem 3.1 with { =1 leads to

(o) P () -]

1
STy [A%z,1(§;|?1, ba) + A;Ii’g(§;b17 ba)]
(b2 —b1)

1
< (bZ_bl){ [Bl m(§,b1, b2) + B4 m(<7 blvb?)}

h(b1)

cbl

N2

h(b
+ [B%,m(§7 bla b2) + B%,m(g; bl? bQ)} 6( 2) }

-G e nn < Gt
2 V1

Corollary 3.4. Letting ( — 07 in Theorem 3.1, we have

m 2m A b1 + by
t\2"m -1+ 1 2
1
< ——— [A51(501,b2) + Af 5 (b1, ba)]
(b2 —b1)

1 h(by
< @{ (B! 1 (5301,52) + B (5301,52)] 1)

(b2 —b1)

R(b
+ [BS pn (S501,02) + Bj 1 (<551,b2)] e(gbi) }

Corollary 3.5. Theorem 3.1 with ¢ = 0,£ =1 and { — 0T becomes [10, Theorem 4].

4. Further results

We need the following lemma in order to proceed with our next results.

Lemma 4.1. Let h: T C R — R be a differentiable function on T with b1,bs € T and
by < by. Also, let £ >0 and m € N. If i’ € L[p1,bs], then we have

QL (hibrba) : = <b2 4;1“) r(e+1)

> 2m )™ (m — )by + gbo
X Z { (I)Q - b1> jé(2(m71)71)b1+(2]+1)b2)_h <m)

= 2m

2m \* 7t (== b1+ (g + 1)
- by — by ((2<m—n—12)7>$+<21+1>b2)* m

S <<2<m — ) = D1+ (24 Db >

0

2m

<
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. by — by
h 4m

,Sf{/dwﬁ<wm—ﬁh+ﬁz+@—0Mm—J—Uh+U+D%>M
0

2 m 2 m
7=0
1 J— — J— J—
,/ e (ﬁ(m J= Vit G+ Dhs  (2-9) (m =) +Jb2>dﬁ}' (4.1)

Proof. Setting
1

g [ (B @O g O 1 i
0

2 m 2 m
and
1 J— J— J— J—
7 ::/ Y (19 (m—7—1)b1 + (7+1)b2 n (2 —19) (m — )by —|—jb2> b, (4.3)
0 2 m 2 m

By applying integration by parts on equality (4.2), we have
‘Z< %%>[MHCNm—ﬁh+ﬁz+@—0Mm—y—nh+0+nm>

1

b1 — by 2 m 2 m .
g/l 91k ﬁ (m — )by + gbo " 2= (m—7—1b1+ g+ 1)bs 59
0 2 m 2 m
- 2m B (2(m =) = 1)b1 4+ (29 4+ 1)b2
bl — bg 2m
2m ' / (m —7—1)b1 + (3 + 1)by
— (bl — |72> F(f + 1) jé(2(m_'7)_12)7b,3+(2'7+1)b2 >7h ( m ) .
(4.4)
Similarly, from equality (4.3), we obtain
Ty = 2m A (2(m — ) — 1)b1 + (27 + 1)bo
bQ — bl 2m
2m_\f (m — 2)b1 + b
_ <|72—b1> r+1) j(z(zmzfa)ﬂz)ybnlf(z;ﬂ)bz)—h (m) , (4.5)

forall )=0,1,2,...,m—1. Then, by subtracting equality (4.5) from (4.4), multiplying
by the factor (%) and summing over 7 from 0 to m — 1, we can easily attain the
desired identity (4.1). O

Remark 4.2. Lemma 4.1 with m = 1 leads to

w L Y, B b1 + by
@vaWwwwﬂwaW%ﬁ<z>
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_ (b2 —b1) /1 o (0 2=0) /1 o (0, (20
=2 B R L A e e KA

which is established in [8, Lemma 3].

Throughout the rest of this study, we consider

Vo = (m—gbr+5p2 4 Vo = (m—j— b1+ (g +1)2

m m

Theorem 4.3. Let ¢ > 0, m € N and h : [p1,b2] — R be a differentiable function
on (b1,b2) such that W' € Lb1,b2]. If |W'| is a higher order strongly m-polynomial
exponentially type convex function with respect to the constant ¢ > 0 on [by,bs] and
¢ € R, then we have

m—1

by — b W (vm B (U,
QY (s p1,b2)| < < o 1) [T+ M) S P e(wmj” " e(wm,jjf)] (4.7)
7=0
m( L+p+3 n by — by |7
e — 2P (U4 2,p+1) ) [——| ,
2p ((€+p+1)(€+p+2) 3 ( p+1) m

where

T, -—1§:/119‘f - (1-Y Z dd, M, '—127":/1192 - (Y Z v
m,{ -—m1:1 0 2 ) m,é-—mZ:1 0 2 .

Here, B,(+,-) is the incomplete beta function for all0 < z < 1.

Proof. By making use of Lemma 4.1 and properties of modulus, we can deduce

bo — b
Qo) < (22

m

2 m 2 m

Qs Qo0 n gm0 )

2 m 2 m

y <z9(mjl)b1+(J+1)b2 L 29 (mj)ler]bQ)‘dﬁ}.

Using the definition of higher order strongly m-polynomial exponentially type convex
function with respect to the constant ¢ > 0 of ||, we get

=) B ([ fE - (-]

7=0 1=1

S Q)] o0

R I\ I i)
AN 1- (13 ]
RS (1) ]

by — by

m

P
]dﬁ
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1 & ARIACAS] Do, 90 9 9 b —b1]f
er;[l <2>} esvm.a ¢ (2) (1 2)Jr 2(1 2) m di
22 =01\ e gy S [ Gm)l | i)
_ ( o > [T + MY 2& e
o
mC E+p+3 (4pi2 ) b2_b1 P
- — —2°TPTER, (L + 2 1 e
2p <(€+p+1)(£+p+2) (241D m |’
which completes the proof. O
Corollary 4.4. Theorem 4.3 with ¢ = 0 leads to
b —b m—1
Qb1 < (220 e+ Mo X I o)l + W el (05
m( L+p+3 fipi2 ) by — by |”
- —2"PTER, (042 ) |—
2p <(£+p+1)(12+p+2) (E+2p+l) m
Corollary 4.5. Theorem 4.3 with m = 1 leads to
21T (e + 1) |, . b1+ Do
NS j(@)ﬂi(bz)%-J(%),h(bl) —h< : )
by — b1 \ [IX/ (1) | |W(b2)]
< (4.9)
= <4<E+1>) [ e e
¢ ( L+p+3 ttpt2 >
- = —2PTER, (042 1)) |b2 — by|”.
2 \@rpt DE+p+2) gD be =i

Moreover, if ¢ = 0 and ¢ — 0%, we get

w 4 74 . b1+b2
B2y {‘7(“;”)”(””‘7(“;@)"1(“)} n( )|

by — by / /
< (5 ) ool + IWGal,

which is established in the first step of proof of [8, Theorem 5].

Theorem 4.6. Let £ > 0, m € N and hi : [p1,b2] — R be a differentiable function on
(b1,b2) such that I’ € L|p1,bs]. If |W/|9 is higher order strongly m-polynomial exponen-
tially type convex function with respect to the constant ¢ > 0 on [b1,bs] and ¢ € R,
then for q > 1, and % + % =1, we have

by —b Y
14 . 2 1
|Qm(hvb17b2)| < ( im ) (E’I’—l—l)

m—1 / ’
s { (Rmm(vm,mq Ly HEmpe)lt - ¢

eSUm.; €S Um g 41 p+1(p+2)

bo — by

m

1
p>q

J=
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ba — by

m

A (Vm,g41)]? |7 (vm,y)4 ¢
+ ( Ryy—————"— 4+ 5, - —
( b eStmat T eStmy (p+1)(p+2)

py } @.10)

<&t AN 2 1 1
fim = az/ [1—<1—2>]dﬂ_1+m21+1<2’+1_1)
_li/l 1— 4 ' dﬂ_l_ii 1
_mZ:1 0 2 N m <= 2:(+1)

Proof. By making use of Lemma 4.1, Holder’s inequality and properties of modulus,

we can deduce
9 _
h/ (19Vm,j + (19)VW7J+1> ‘ d¥

by — b1\ = [ [

4 . 2 1 Yi
e (552) 55 Lo
1 2 9

/19@ (( . )vaJFQVmJH)’dﬂ}
(”‘“)( rar)
el 9 2—9) AN
([ (o 250 )
9=0

2
L 29 9 AN
+</ h/(( . )vm7j+2vm_’j+l> dﬂ) .

0

Applying the definition of higher order strongly m-polynomial exponentially type
convex function with respect to the constant ¢ > 0 of |I/|?, we get

. by — by 1\~
it < (%5 (557)

1 & I\ W (Vin )|
sl (-g) e
é ' |7 (Ving41)[4

2

eSVm,j+1

<[ 09509
SO REE

where

and

1

1)

ba — by

m
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HEL-(]

1=

—

1

AN bzflh ‘
[(2> <1—) ACHIEI DN
b — by
4m Er—i—l
m—1 p 1
|7’ Vm])l [h'( Vin,y+1)] ¢ b1—1 q
X {( e+ Sm e e D(e+2) | mo )
9=0
(v, g
I (V1)1 W (Vi ¢ SN
+ <Rm e+ Sm eVmy @ FD(P+2) > }’
which ends our proof. O
Corollary 4.7. Theorem 4.6 with ¢ = 0 leads to
by — b 1 \"
e (2™
QG (b ba)]| < ( — ) (WH) (4.11)
m—1 1
q by — by p) ¢
| (O )17+ S| B (v 4.12
< S (Rl o) S0~ i [0 (4.12)
¢ 2 — by P)3
R, | (v, T4 S |7 (v ,)]? — . 4.13
(Rl i)+ Sl (o 7 = s 222 ) ) )
Corollary 4.8. Theorem 4.6 with m =1 leads to
2100+ 1) |, p b1 + b2
(bg—bl)é j(w)Jrh(bQ)“f‘j(@)fh(bl) —h< B > (414)
2 =by\ (L \T (N[ (IO W G2l ¢ b\
< — — _
() (w51) (3) {( T P T S A
(4.15)
B GuI? ] (b2)] ¢ %
- — . 4.1
+ <3 osh1 + eshz (p+1)(p+2) bo — by (4.16)

Moreover, if ¢ =0 and ¢ — 0%, we get

w |71+b2
B2 =)’ {%1”2) b”j(“*”)'h(b)} (™ )’

< (2 (51) (i)l{(|h’<b1>Q+3|h’<b2>Q>i+<3|h'<b1>|Q+|h’<b2>q>i},

4 r+1
which is established in [8, Theorem 6].
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Theorem 4.9. Let £ > 0, m € N and hi : [p1,b2] — R be a differentiable function on
(b1,b2) such that B’ € L|p1,bs]. If |W'|9 is higher order strongly m-polynomial exponen-
tially type convex function with respect to the constant ¢ > 0 on [b1,bs] and ¢ € R,
then for ¢ > 1, we have

QY (b1, ba)| < ("Q‘bl) (1>13’m21{
mAm e - dm {41

9=

L) | Y L TR VI

eSVm,y ’ eSUm,j+1

Tm,[

¢ |ba—by [P {+p+3 (+p+2
— —2tTPT2R, (f 42 1
0+l |y (L+p+1)(l+p+2) 0+ 2p+)
|7 (U g41) | |7/ (V)|
+ Tm*z eSUm,g+1 +Mm7 eSVm,;
1
C bg—blp €—|—p—|—3 O04+p+2 !
— —2VTPTER (042 1 4.17
2 | T | \WHpr){l+p+2) gr2p ) ) (417)

where Ty, o and M, ¢ are as given in Theorem 4.3.

m—1

Proof. By making use of Lemma 4.1, the power mean inequality and properties of
|QZ (hb b)|< bQ*bl Z
mAT L 2] = 4m

modulus, we have
1
= 0

2-9 9
h/ ( 5 )Vm,j + 2Vm’j+1) ‘ d’l?}

by — b ! g mol ! 9 (2 9)
< (5 ) (7o) XL () (oot B )

2
2—19 )
h/ (( 5 )Vm7]+ 2Vm)J+]_>

qdﬁ>; }

By the definition of higher order strongly m-polynomial exponentially type convex
function with respect to the constant ¢ > 0 of |#’|?, we have

by — b 1 \'w
|an(h;b1,b2)| < ( 24m 1) (M)
SIS O\ H ol 1
SRSl (-5)]

1= =1 2

(8 (-2)2 (-9 o)

0 2-9
4 <2Vm71 + (2)Vm7‘7+1> ‘ dy

q 7
dﬂ)

NE

1-— 4 T I (Vi y1)]?
1 2 esVm,g+1

bo — by

m
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/ i { < H H )| | 1 [1 - (ﬂ)} B (Vi )|
g esVm.+1 m — 2 esvm.
AN 7 )
_ 1- = 12
o[(3) (-3) +3( )] ") |

) () e

eCVm 2 m, 6§Vm,]+1
7=0

NgE

Q= S

by — by [P

Q=

¢

T 9ptl

by — by [P

m

{+p+3 o >

—2PTIB (0 4+2,p+ 1

<w+p+nw+p+2) 3241
|7 (

Vm,]+1)|q+M |7 (Vi)

eSVm,g+1 m, eSVm,y

+ Tm,[

¢

2r+1

by — by [P

m

€+p+3 0+
— 2P 2R (042, p+1
<w+p+nw+p+2> e+ 2p ]

which completes the proof.

Q=
——

Corollary 4.10. Theorem 4.9 with ¢ =0 leads to

Qo) < (2 (H11> (1.18)
X Tnzl{

=

T |1 (O )|" + Mo |2 (0 41)]

Q=

¢

—_ T

by — by |”

m

€+p+3 0+
— 2P TIB (0 4+2,p+1
<w+p+nw+p+2> HE+2p+ ]

+ | Dot (V1)1 + Mo B (0, )|

¢

Y

by — by [P

m

L+p+3 o )
—24PIB (1 +2,p+ 1
<@+p+nw+p+2) 32 +1)

Q=
.

Corollary 4.11. Theorem 4.9 with m = 1 leads to

21T (¢ + 1)

bl"‘bg
(b—bm?{jéﬁhyMb%hﬁww)h®g}—h<2)

by — by 1 \'"# 1 |W () 043 K (b))
5( 1 )(KHJ {(mﬂ+m e 20 D)(012) evs
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(+p+3 ‘
_2p€r1bg—b1|p<(€+p+1)(£+p+2)—2£+p+235(€+2,p+1))>
1 W (b2)|? {+3 |/ (by)|?
2(042) esh2 20+1)(0+2) e
(+p+3 ‘
2p<+1|b2b1|p((€+p+1§9(€+p+2)2€+p+2Bé(€+2,p+l)>> } (4.19)

Moreover, if ¢ =0 and ¢ — 0T, we get

w 4 14 _ b1+b2
PR {j(“;h>*h<”’+‘7(~;b2>h(bl)} n( >|

b —b t+1 4 q t+3 4 q %
: (4(2€+11)> {<Q(€+2)|h Gl + 2(€+2)|h (b2)] )

I R T SRR
+<2(€_|_2)|h(b2)| +2(€+2)|h(b1)> },

(4.20)
which is established in [8, Theorem 5].

5. Applications

5.1. Bessel functions
Consider the function B, : (0, +00) — [1,+00) with ¢ > —1, given by
Bo(z) :=2T(0 + 1)z~ 7P, (),

where P, is the modified Bessel function of the first kind defined by (see [11, on page
77):

+00 (£)0+2m
_ 2
lPU(x)iZm'F(O‘—Fl—‘rm)’ z €R.
m=0
Following [11], we have
P
B, (z) = o+ D) 1)Bg+1(x), (5.1)
2
B (z) = — Boi2@) | Boni(e) (5.2)

4o+1)(c+2) 2(c+1)
Assume that all assumptions of the used corollaries in the following examples are
satisfied.

Example 5.1. Let 0 < b; < by and o > —1. Then, by using Corollary 4.5 with £ = 1
for h(z) = B/ (z) and the identities (5.1) and (5.2), we have
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b2 — bl 4(0’ + 1) Ak

1 (b7Byia(b1)
= (o Benton)

TRt (%?;f%f +Bg+1(b2>)]

¢ p+4 +
S | —— 14 3B1 3.p+1 by —bq|P.
P (( 2)( 3) 5( » D )>| 2 1|

Example 5.2. Let 0 < b; < by and ¢ > —1. Then, by applying Corollary 4.8 with
¢ =1, h(z) = B/ (z) and the identities (5.1) and (5.2), we get

By (02) = Bo(b1) (b1 +b2) (bl;%)‘ = <“>
= o+

B (32 () ()
([ G ) 3 e )
I S
+ (fg ;_ 1)((;0 t%ga+2(bl) 1_ Ba+1(b1)>q N 1 ( 2B, 2(h2) N Ba+1(b2)>q

esh2

e \4o+1)(c+2) 20+1) 4(c+1)(c+2)  2(c+1)
¢ nE
~GroeTa ] }

Example 5.3. Let 0 < by < by and o > —1. Then, by using Corollary 4.11 with £ =1,
h(xz) = B! () and the identities (5.1) and (5.2), we obtain

B, (b2) = Bo (1) _ (b1 +)2) R PTEEAYE -3
by — b Ao+1) 7T\ 2 =\ 4 2

{ 1 (4(b%Ba+2<b1> +Ba+l<b1>>q+ 1 (4(b§Bo+2<b2> Bo+1(b2)>q

Gesht c+1)(c+2)  20+1) 3esz c+1)(c+2)  2(c+1)
SN G 5 S q
5o b2 = 1] ((p+2)(p+3) 2B (3,p+1)

1 bIBoy2(b1) Bo1(01)\* 1 b3Bo2(h2) Bo1(h2)\*
* [3e<b1 (4(0 TD(e+2) 2o+ ) T Ges (4(0— 0 +2) 2o+ 1) >
¢ ‘1‘}

LSRR R e S S E o
o b (G v 2 B+ )
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2. Bounded functions

Proposition 5.4. Let £ >0, m € N, ¢ € R and ki : [b1,b2] — R be a differentiable func-
tion on (b1,bs) such that B € Lby,bs]. If |W'| is a higher order strongly m-polynomial
exponentially type convex function, with respect to the constant ¢ > 0 and |[W/| < K
on [b1,bs], then we have

b—b m—1 1
Qb <K (22 ) Bt Mo Y | 4 | 69)

m(( {+p+3
22 \(l+p+ 1)l +p+2)

where T, ¢ and My, ¢ are as given in Theorem 4.5.

_2€+p+23% (€+27p+1)> M

Proposition 5.5. Let £ >0, m € N, ¢ € R and ki : [b1,ba] — R be a differentiable func-
tion on (b1,bs) such that W' € L[by,bs]. If |W'|? is higher order strongly m-polynomial
exponentially type convex function with respect to the constant ¢ > 0 and || < K on
[p1,b2], then for ¢ > 1 and % + % =1, we have

by — b 1y
|Qm( b17b2)| ( 24.m1) (f’l“i‘l)

2 egvmj AT Ki(p+1)(p+2)

Rm+sm_ ¢
ot e~ Ka(p+ 1)(p+2)

)
P)é } 5.4

Proposition 5.6. Let £ > 0, m € N,¢ € R and h : [b1,b2] = R be a differentiable func-
tion on (b1,ba) such that i’ € Lby,bs]. If |W'|? is higher order strongly m-polynomial
exponentially type convex function with respect to the constant ¢ > 0 and |[W| < K on
[b1,b2], then for ¢ > 1, we have

by —b 1 T — M,
¢ ) 2 1 L m,£
|Qm(h’b17b2)| < K( 4m ) <g+ 1> Z {[ecvmj eSVUm,j+1

Dy — by
m

bo — by

m

_|_

where R, and Sy, are as given in Theorem 4.6.

¢ |by—bi” (+p+3 P T
- — 24P +2p, (142 1
Ka2r+t | m L+p+1)(l+p+2) 3 ((+2p+1)
Tm,é Mm,l
+ |:€§’U1n,j+1 eSVm,y
¢ by — by |” {+p+3 2 7
— —24TPTIR, (1 42 1 5.5
Kot | m | \(Crpr)(E+p+2) sEF2p D[ (59)

where Thy, o and M, ¢ are as given in Theorem 4.3.
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6. Conclusion

In this article, we proposed the higher order strongly m-polynomial exponentially
type convex functions and some of its algebraic properties are given. Furthermore, we
deduced some fractional integral inequalities using the basic identity for the new class
of function. Moreover, we demonstrated the efficiency of our results via some appli-
cations. Our results not only generalized the previous known results but also refined
them. For future research in this direction, we will offer several new inequalities per-
taining to Hélder-i§can, Chebyshev, Markov, Young and Minkowski type inequalities
for this generic class of convex functions in fractional and quantum calculus.
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