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Study on interval Volterra integral equations
via parametric approach of intervals
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Abstract. This work investigates the interval Volterra integral equation (IVIE)
and its solution techniques through the parametric representation of intervals.
First, the general form of the second-kind IVIE is expressed in both lower-upper
bound format and its equivalent parametric form. Next, the methods of succes-
sive approximations and resolvent kernel are developed to solve the IVIE, utiliz-
ing parametric approaches and interval arithmetic. The solutions are presented
in both parametric and lower-upper bound representations. Lastly, a series of
numerical examples are provided to illustrate the application of these methods.
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1. Introduction

Integral equations play a crucial role in various fields of applied mathematics,
with numerous applications in real-world problems such as radioactive decay, diffu-
sion and heat transfer analysis, energy systems, web security, and population growth
models. In these cases, the parameters involved are often not fixed but fluctuate
within certain ranges due to randomness or uncertainty, making the problem impre-
cise. Based on the nature of these problems, the theory of integral equations can be
categorized into two types:

• Precise integral equations
• Imprecise integral equations
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Historically, integral equations have been studied in a crisp environment, where all
variables (dependent and independent) are deterministic. Numerous works have fo-
cused on solving these crisp integral equations. However, as uncertainty in areas such
as technology, energy, communications, and financial security continues to grow ex-
ponentially, scientists, engineers, and system analysts face increasing challenges in
solving decision-making problems under inexact conditions. To address this uncer-
tainty, researchers have introduced various approaches, such as stochastic, fuzzy, and
interval methods. Imprecise integral equations, therefore, can be classified as:

• Stochastic integral equations
• Fuzzy integral equations
• Interval integral equations

In stochastic integral equation, all the imprecise known and unknown functions are
represented by the random variables with suitable distribution functions. In this sec-
tor, many researchers and mathematicians contributed their works, among those some
excellent pieces are reported here. Mao [15] investigated the results on existence of
the solutions of a stochastic delay integral equation. Ogawa [20, 21]studied Fredholm
stochastic integral equation in random environment whereas Mirzaee et al. [16], Yong
et al. [30] derived computational method and backword method respectively for solv-
ing non-linear Volterra integral equations in stochastic environment. Recently, Mo-
hammadi [17], Samadyar and Mirzaee [24, 25] contributed their works on stochastic
integral equation.

In fuzzy integral equation, the imprecise functions are presented precisely by using
fuzzy set having appropriate membership functions or fuzzy numbers. In this area,
Subrahmanyam et al. [27], Agarwal et al. [2], Attari et al. [6] established different
methods of solving Volterra integral equations in fuzzy environment. Later Mordeson
and Newman [18] studied the different solution approaches of fuzzy integral equation.
Babolian et al. [7], Abbasbandy et al. [1] established some numerical technique for
solving Fredholm integral equation in fuzzy environment. Also, Bica and Popescu [8]
together developed a methodology for approximate solution of nonlinear Hammer-
stein fuzzy integral equation. Recently, Zakeri et al. [31], Ziari et al. [32], Agheli and
Firozja [3]and Noeiaghdam et al. [19] accomplished their works on different types of
fuzzy integral equations.

Alternatively, if the known and unknown functions of an imprecise integral equation
are presented in the form of intervals, then that imprecise integral equation is called
as interval integral equation (or IIE). The general form of an interval integral equation
(or IIE) is given below:

[gL, gU ] (u) [yL, yU ] (u) = [fL, fU ] (u) + λ

u oru1∫
u0

K (u, z) [yL, yU ] (z) dz

where [fL, fU ] , [gL, gU ] : [u0, u1]→ Kc defined by

[fL, fU ] (u) = [fL (u) , fU (u)] ,

[gL, gU ] (u) = [gL (u) , gU (u)]
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and
K : [u0, u1]× [u0, u1]→ R

which are known function whereas,

[yL, yU ] (u) = [yL (u) , yU (u)]

is unknown function.

In the above-mentioned integral equation, if the upper limit is fixed or variable, then
the integral equation is called interval Fredholm or interval Volterra integral equation
respectively. With the help of this concept of interval environment in the mathematical
lingua franca of these variables/parameters, the concepts of interval differential equa-
tion or interval system of differential equations have been formulated mathematically
for those real-life problems. The interval differential equations have been studied by
several researchers representing the imprecise parameters by random variables/fuzzy
sets/intervals. Among of them, the contributions of Kaleva et al. [11], Buckley et
al. [9], Vorobiev et al. [28], Stefanini et al. [26], Malinowski [13], Ramezanadeh et
al. [23], Wang et al. [29], de Costa et al. [10] and Ahmady [4] are noteworthy. On
the other hand, very few works on integral equations in interval environment were
accomplished among which works of An et al. [5], Otadi and Mosleh [22], Lupulescu
and Van [12] are worth mentioning. An et al. [5] in their work, studied the Fredholm
integral equation in interval environment using interval arithmetic and Hukuhara dif-
ferentiation. Otadi and Mosleh [22] developed simulation technique for the evaluation
of linear fuzzy Fredholm type integral equations. Further, Lupulescu and Van [12]
extended the theory of RiemannLiouville fractional integral to develop the theory of
the Abel integral equation in interval environment.

In this work, the theory of interval Volterra integral equation is studied using
parametric representation of intervals and parametric differentiation. To navigate
the derivation of the theorems properly, the concepts of set of parameterizations of
intervals, continuous parametric interval-valued functions along with metric with
respect to which their different analytical properties (like continuity, differentiability,
integrability etc.) are discussed. After that the class of all parametric interval valued
L2−functions is defined, over which all the discussions of interval Volterra interval
equations have been performed. Beside these, two types of solution methodologies of
interval Volterra integral equations named as successive approximation and Resolvent
kernel theorems are developed in the parametric form of intervals.

2. Basic notations and definitions

Let Kc = {[αL, αU ] : αL, αU ∈ R } the set of closed and bounded intervals.

Definition 2.1. Parametric representations of [αL, αU ] can be defined in the following
manner:

• Increasing form (IF):

[αL, αU ] = {α (ζ) = αL + ζ (αU − αL) : 0 6 ζ 6 1}
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• Decreasing form (DF):

[αL, αU ] = {α (ζ) = αU + ζ (αL − αU ) : 0 6 ζ 6 1}

Therefore, the set of all parametric intervals KP is defined as follows:

KP = {α (ζ) : α (ζ) is parametric form of the interval [αL, αU ] ∈ Kc} .

Definition 2.2. Let I1 = {α (ζ1) : ζ1 ∈ [0, 1]} , I2 = {β (ζ2) : ζ2 ∈ [0, 1]} ∈ Kp be the
parametric forms of two intervals [αL, αU ] and [βL, βU ] respectively and λ ∈ R. Then,

• Addition:

I1 + I2 = {α (ζ1) + β (ζ2) : ζ1, ζ2 ∈ [0, 1]}
• Subtraction:

I1 − I2 = {α (ζ1)− β (ζ2) : ζ1, ζ2 ∈ [0, 1]}
• Parametric difference:

I1	pI2 = {α (ζ)− β (ζ) : ζ ∈ [0, 1]}
• Multiplication:

I1I2 = {α (ζ1)β (ζ2) : ζ1, ζ2 ∈ [0, 1]}
• Division:

I1/I2 =

{
α (ζ1)

β (ζ2)
: ζ1, ζ2 ∈ [0, 1]

}
• Scalar multiplication:

λI1 = {λα (ζ) : ζ ∈ [0, 1]}
• Equality of two intervals:

I1 = I2 ⇔ α (ζ) = β (ζ) , ∀ζ ∈ [0, 1]

Proposition 2.3. Let I1 = [αL, αU ] , I2 = [βL, βU ] ∈ Kc, λ ∈ R and their paramet-
ric representations be I1 = {α (ζ1) : ζ1 ∈ [0, 1]} and I2 = {β (ζ2) : ζ2 ∈ [0, 1]}. The
different arithmetic operations on the set Kc can be obtained as follows:

• Addition:

I1 + I2 =

[
min

ζ1,ζ2∈[0,1]
(α (ζ1) + β (ζ2)) , max

ζ1,ζ2∈[0,1]
(α (ζ1) + β (ζ2))

]
• Subtraction:

I1 − I2 =

[
min

ζ1,ζ2∈[0,1]
(α (ζ1)− β (ζ2)) , max

ζ1,ζ2∈[0,1]
(α (ζ1)− β (ζ2))

]
• Parametric difference:

I1	pI2 =

[
min
ζ∈[0,1]

(α (ζ)− β (ζ)) , max
ζ∈[0,1]

(α (ζ)− β (ζ))

]
• Multiplication:

I1I2 =

[
min

ζ1,ζ2∈[0,1]
(α (ζ1)β (ζ2)) , max

ζ1,ζ2∈[0,1]
(α (ζ1)β (ζ2))

]
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• Division:

I1/I2 =

[
min

ζ1,ζ2∈[0,1]

(
α (ζ1)

β (ζ2)

)
, max
ζ1,ζ2∈[0,1]

(
α (ζ1)

β (ζ2)

)]
, 0 /∈ I2

• Scalar multiplication:

λI1 =

[
min
ζ∈[0,1]

(λα (ζ)) , max
ζ∈[0,1]

(λα (ζ))

]
Definition 2.4. The distance function on Kp is a function ρp : Kp ×Kp → R+ ∪ {0}
be a function defined by

ρp (α (ζ) , β (ζ)) = sup
ζ∈[0,1]

|α (ζ)− β (ζ)| , ∀α (ζ) , β (ζ) ∈ Kp.

Clearly ρp is a metric on Kp.

Proposition 2.5. Let α (ζ) , β (ζ) ∈ Kp, then

sup
ζ∈[0,1]

|α (ζ)− β (ζ)| = max
ζ∈{0,1}

|α (ζ)− β (ζ)| .

Corollary 2.6. Let ρ1p : Kp ×Kp → R+ ∪ {0} be defined by

ρ1p (α (ζ) , β (ζ)) = max
ζ∈{0,1}

|α (ζ)− β (ζ)| , ∀α (ζ) , β (ζ) ∈ Kp.

Then ρ1p is a metric on Kp.

Corollary 2.7. Let ρc : Kc ×Kc → R+ ∪ {0} be defined by

ρc ([αL, αU ] , [βL, βU ]) = max {|αL − βL| , |αU − βU |} , ∀ [αL, αU ] , [βL, βU ] ∈ Kc.

Then ρc is a metric on Kc.

Corollary 2.8. The metrics ρ1p and ρc are equivalent.

2.1. Parametric form of interval valued functions (IVF)

Definition 2.9. An IVF is a function [fL, fU ] : I ⊆ R → Kc given by [fL, fU ] (u) =
[fL (u) , fU (u)] , where fL, fU : I → R are real valued functions with fL (u) 6
fU (u) , ∀u ∈ I.

Definition 2.10. The parametric form (in IF) of IVF [fL, fU ] (u) is denoted as fζ∈[0,1] :
I → Kp and it is defined by

fζ∈[0,1] (u) = {fL (u) + ζ (fU (u)− fL (u)) : ζ ∈ [0, 1]} , ∀u ∈ I.

Let us consider an IVF in parametric form fζ∈[0,1] : I → Kp defined by

fζ∈[0,1] (u) = {fL (u) + ζ (fU (u)− fL (u)) : ζ ∈ [0, 1]} , ∀u ∈ I.

Definition 2.11. The IVF in parametric form fζ∈[0,1] : I → Kp is called continuous at

u0 ∈ I if the real valued function f̃ : I × [0, 1]→ R defined by

f̃ (u, ζ) = fL (u) + ζ (fU (u)− fL (u))

is continuous at (u0, ζ) , ∀ζ ∈ [0, 1] .
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Definition 2.12. The IVF in parametric form fζ∈[0,1] : I → Kp is called differentiable

at u0 ∈ I if the real valued function f̃ : I × [0, 1]→ R defined by

f̃ (u, ζ) = fL (u) + ζ (fU (u)− fL (u))

is differentiable at (u0, ζ) , ∀ζ ∈ [0, 1] . And the derivative is obtained by the following
limit:

∂f̃ (u, ζ)

∂u

∣∣∣∣∣
u=u0

= f̃u (u0, ζ) = lim
u→u0

f̃ (u, ζ)− f̃ (u0, ζ)

u− u0
.

The parametric derivative of fζ∈[0,1] at u0 is denoted by f ′ζ∈[0,1] (u0) .

Proposition 2.13.
1. The IVF fζ∈[0,1] is continuous at u0 iff both the bounds fL and fU are continuous
at u0.
2. The IVF fζ∈[0,1] is differentiable at u0 iff both the bounds fL and fU are differen-
tiable at u0.

Proposition 2.14. If the IVF in parametric form fζ∈[0,1] is differentiable at u0, then

f ′ζ∈[0,1] (u0) =
{
fL
′ (u0) + ζ

(
fU
′ (u0)− f ′L (u0)

)
: ζ ∈ [0, 1]

}
.

Definition 2.15. Let I be a Lebesgue measurable set. The IVF in parametric form
fζ∈[0,1] is said to be a Lebesgue measurable parametric interval valued function over

I if for every fixed ζ∗ ∈ [0, 1] , the function f̃ (u, ζ∗) is a measurable function.

Definition 2.16. The IVF in parametric form fζ∈[0,1] is said to be integrable over I if

for every fixed ζ∗ ∈ [0, 1] , the function f̃ (u, ζ∗) is integrable in over I and∫
I

fζ∈[0,1] (u) du = {IL + ζ (IU − IL) : ∀ζ ∈ [0, 1]} ,

where

IL =

∫
I

fL (u) du , IU =

∫
I

fU (u) du.

Proposition 2.17. The IVF fζ∈[0,1] is integrable over I iff both the bounds fL and fU
are integrable over I.

Definition 2.18. The IVF fζ∈[0,1] is said to be a parametric L2− function over I if

ρp

∫
I

fζ∈[0,1] (u) du, 0

 <∞.

Proposition 2.19. The IVF fζ∈[0,1] is L2− function over I iff both the bounds fL and

fU are L2− functions over I.

Remark 2.20. The set of all parametric L2− function over I is denoted by L2
p (I) .



Study on interval Volterra integral equations 307

2.2. Interval initial value problem (Interval IVP)

Let [yL, yU ] : [u0, u1]→ Kc be a p-differentiable function and the IVF [fL, fU ] :
[u0, u1]→ Kc be a continuous, then a second order interval valued initial value prob-
lem can be defined as follows:

d2

du2
([yL (u) , yU (u)]) + a1 (u)

d

du
([yL (u) , yU (u)]) + a2 (u) [yL (u) , yU (u)] (2.1)

= [fL (u) , fU (u)]

with [yL (u0) , yU (u0)] = [yL0, yU0] and
d

du
[yL (u) , yU (u)]

∣∣∣∣
u=u0

= [yL1, yU1]

where a1 (u) , a2 (u) are real valued continious functions over [u0, u1] .

The interval initial value problem (2.1) can be represented in parametric form as
follows:

y′′ζ∈[0,1] (u) + a1 (u) y′ζ∈[0,1] (u) + a2 (u) yζ∈[0,1] (u) = fζ∈[0,1] (u)

with yζ∈[0,1] (u0) = {y0 (ζ) : ζ ∈ [0, 1]} and y′ζ∈[0,1] (u0) = {y1 (ζ) : ζ ∈ [0, 1]}
where y0 (ζ) = y0L + ζ (y0U − y0L) and y1 (ζ) = y1L + ζ (y1U − y1L) .

3. Interval Volterra integral equation (IVIE)

In this section, we have presented some theoretical aspects regarding an IVIE
of second kind. Also, the different solution approaches viz. general solution method,
method of series solutions and resolvent kernel for solving an IVIE of second kind
are discussed.

The general form of an IVIE is

[gL, gU ] (u) [yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [yL, yU ] (z) dz (3.1)

where [fL, fU ] , [gL, gU ] : [u0, u1]→ Kc are known functions. However, [yL, yU ] (u) is
an unknown function and λ is a non-zero real number. Here we discuss IVIE of second
kind only.
An IVIE of second kind is defined as

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [yL, yU ] (z) dz (3.2)

The parametric form of (3.2) is of the following form:

yζ∈[0,1] (u) = fζ1∈[0,1] (u) + λ

u∫
u0

K (u, z) yζ∈[0,1] (z) dz (3.3)

where yζ∈[0,1] and fζ1∈[0,1] are respectively parametric forms of [yL, yU ] and [fL, fU ] .
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Remark 3.1. Here the real valued function K (u, z) is a L2− function and the para-
metric interval valued functions yζ∈[0,1] and fζ1∈[0,1] are taken from L2

p [u0, u1] .

Remark 3.2. For, yζ∈[0,1] and fζ1∈[0,1] the parametric forms are given by

ỹ (u, ζ) = yL (u) + ζ (yU (u)− yL (u)) and f̃ (u, ζ1) = fL (u) + ζ1 (fU (u)− fL (u)) .

Proposition 3.3. The interval Volterra integral equation (3.2) is equivalent to its para-
metric form (3.3).

Definition 3.4. The interval valued function [yL (u) , yU (u)] is called a solution of (3.2)
if it satisfies the equation (3.2). Similarly, the solution of (3.3) can be defined.

Proposition 3.5. The solutions of (3.2) and (3.3) are equivalent.

Proof. Proof follows from the equality of two intervals in parametric form. �

Before to discuss the solution procedures of the IVIE, an important formula
for converting multiple integrals into a single integral for integrable interval valued
functions is presented in the next subsection.

3.1. Conversion of multiple integrals into a single integral for interval integrals

Theorem 3.6. Let [yL, yU ] : [u0, u1]→ Kc be given by

[fL, fU ] (u) = [fL (u) , fU (u)] , ∀u ∈ [u0, u1]

be an integrable interval valued function. Then it satisfies the following integral for-
mula:

u∫
u0

[fL (z) , fU (z)] dzn =

u∫
u0

(u− z)n−1

(n− 1)!
[fL (z) , fU (z)] dz (3.4)

To prove this theorem, we have required the following Lemma:

Lemma 3.7. Let g, h : [u0, u1] → R be two differentiable functions with non-negative
derivatives over [u0, u1] . Then,

d

du

 h(u)∫
g(u)

[fL (z) , fU (z)] dz

 = [fL (h (u)) , fU (h (u))]
dh (u)

du
(3.5)

	p [fL (g (u)) , fU (g (u))]
dg (u)

du

Proof. From the parametric representation of [fL, fU ], it can written as

fζ∈[0,1] (u) =
{
f̃ (u, ζ) = fL (u) + ζ (fU (u)− fL (u)) : ζ ∈ [0, 1]

}
, ∀u ∈ I.
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From the Leibnitz’s rule of differentiation under the sign of integration for real valued
functions, it follows that

d

du

 h(u)∫
g(u)

f̃ (z, ζ) dz

 = f̃ (h (u) , ζ)
dh (u)

du
− f̃ (g (u) , ζ)

dg (u)

du
, ∀ζ ∈ [0, 1]

⇒

 d

du

 h(u)∫
g(u)

f̃ (z, ζ) dz

 : ζ ∈ [0, 1]


=

{
f̃ (h (u) , ζ)

dh (u)

du
− f̃ (g (u) , ζ)

dg (u)

du
: ζ ∈ [0, 1]

}

⇒

 d

du

 h(u)∫
g(u)

f̃ (z, ζ) dz

 : ζ ∈ [0, 1]


=

{
f̃ (h (u) , ζ)

dh (u)

du
: ζ ∈ [0, 1]

}
	p
{
f̃ (g (u) , ζ)

dg (u)

du
: ζ ∈ [0, 1]

}

⇒

 d

du

 h(u)∫
g(u)

f̃ (z, ζ) dz

 : ζ ∈ [0, 1]


=
{
f̃ (h (u) , ζ) : ζ ∈ [0, 1]

} dh (u)

du
	p
{
f̃ (g (u) , ζ) : ζ ∈ [0, 1]

} dg (u)

du
since, g′, h′ are non - negative

⇒ d

du

 h(u)∫
g(u)

[fL (z) , fU (z)] dz


= [fL (h (u)) , fU (h (u))]

dh (u)

du
	p [fL (g (u)) , fU (g (u))]

dg (u)

du
.

This completes the proof. �

Now, we have proved the Theorem 3.6.

Proof of Theorem 3.6

Proof. Let us consider the interval integral

[JLn, JUn] (u) =

u∫
u0

(u− z)n−1 [fL (z) , fU (z)] dz (3.6)
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Differentiating (3.6) successively with respect to u for k times and using Lemma 3.7,
we get

dk [JLn (u) , JUn (u)]

duk
= (n− 1) (n− 2) · · · (n− k) [JLn−k (u) , JUn−k (u)] , for n > k.

(3.7)

Therefore from (3.6) and (3.7), it follows that:

dn [JLn (u) , JUn (u)]

dun
= (n− 1)! [fL (u) , fU (u)] (3.8)

From (3.8), we get the following recurring integrals:

[JL1 (u) , JU1 (u)] =

u∫
u0

[fL (z1) , fU (z1)] dz1

[JL2 (u) , JU2 (u)] =

u∫
u0

z∫
u0

[fL (z1) , fU (z1)] dz1 dz

Proceeding similarly, one can get the following relation:

[JLn (u) , JUn (u)] = (n− 1)!

u∫
u0

z∫
u0

· · ·
zn−1∫
u0

[fL (zn−1) , fU (zn−1)] dzn−1dzn−2 · · · dz

(3.9)

=⇒ [JLn (u) , JUn (u)] = (n− 1)!

u∫
u0

[fL (u) , fU (u)] dzn, (3.10)

which is the required relation. �

3.2. General solution procedure for solving IVIE

Since the equations (3.2) and (3.3) are equivalent, to get the solution of (3.2), it
is sufficient to solve (3.3). Also, since the equation (3.3) represents the crisp Volterra
integral equation for each fixed ζ, ζ1 ∈ [0, 1], (3.3) can be solved by using any existing
method for solving the Volterra integral equation. Let ỹ (u, ζ) be the solutions of
(3.3). Then it satisfies (3.3). Thus,

∴ ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) ỹ (z, ζ) dz

Therefore, from IPF of intervals, it follows that

yL (u) = min
ζ∈[0,1]

{ỹ (u, ζ)} and yU (u) = max
ζ∈[0,1]

{ỹ (u, ζ)}

So, from Proposition 2.5, it follows that,

yL (u) = min
ζ∈{0,1}

{ỹ (u, ζ)} and yU (u) = max
ζ∈{0,1}

{ỹ (u, ζ)} (3.11)
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and y (u) = [yL (u) , yU (u)] is the desired solution of (3.2).

3.3. Solution of interval Volterra integral equation of second kind by iterative method

Theorem 3.8. Let us consider an IVIE of second kind of the form

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [yL, yU ] (z) dz (3.12)

satisfying the following conditions:

a) kernel K be a non-negative real valued continuous function on [u0, u1] × [u0, u1]
and ∃α > 0 such that

|K (u, z)| 6 α, ∀ (u, z) ∈ [u0, u1]× [u0, u1] . (3.13)

b)[fL, fU ] is an interval valued continuous function over [u0, u1] and ∃β > 0 such that

ρc (f (u) , 0) 6 β, ∀u ∈ [u0, u1] . (3.14)

c) λ > 0 be a non-negative constant.
Then the IVIE (3.12) has a series solution as follows:

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [fL, fU ] (z) dz (3.15)

+λ2
u∫

u0

K(u, z)

z∫
u0

K (z, z1) [fL, fU ] (z1) dz1dz + · · ·

Proof. From Proposition 3.5, the given IVIE is equivalent to its parametric form

yζ∈[0,1] (u) = fζ1∈[0,1] (u) + λ

u∫
u0

K (u, z) yζ∈[0,1] (z) dz (3.16)

Therefore for fixed ζ, ζ1 ∈ [0, 1]

ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) ỹ (z, ζ) dz (3.17)

After nth substitution, the equation (3.17) gives

ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) f̃ (z, ζ1) dz+λ2
u∫

u0

K (u, z)

z∫
u0

K (z, z1)f̃ (z1, ζ1) dz1dz

+ · · ·+ λn
u∫

u0

K (u, z)

z∫
u0

K (z, z1) · · ·
zn−2∫
u0

K (zn−2, zn−1)f̃ (zn−1, ζ1) dzn−1 . . . dz1dz

+ R̃n+1 (u, ζ) (3.18)
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where,

R̃n+1 (u, ζ) = λn+1

u∫
u0

K (u, z)

z∫
u0

K (z, z1) · · ·
zn−1∫
u0

K (zn−1, zn)ỹ (zn, ζ) dzn . . . dz1dz.

Let

M̃n (u, ζ1)=λn
u∫

u0

K (u, z)

z∫
u0

K (z, z1) · · ·
zn−2∫
u0

K (zn−2, zn−1)f̃ (zn−1, ζ1) dzn−1 . . . dz1dz,

then from the conditions (a) and (b) and by the equivalency of the metrics ρcand ρp,
we get ∣∣∣M̃n (z, ζ1)

∣∣∣ 6 |λ|nαn (b− a)
n

n!
β, ∀ζ1 ∈ [0, 1] , ∀u ∈ [u0, u1] (3.19)

Now
∑
n
|λ|nαn (b−a)n

n! β is convergent and hence
∑
n
M̃n (u, ζ1) is uniformly convergent

over [u0, u1], for every choice of ζ1 ∈ [0, 1].
So, if (3.17) has a solution, clearly it can be expressed by (3.19). Therefore ỹ (u, ζ) is
continuous over [u0, u1] and hence bounded.
Thus, let

|ỹ (u, ζ)| 6 γ (ζ) , ∀ζ ∈ [0, 1] . (3.20)

Now,∣∣∣R̃n+1 (u, ζ)
∣∣∣ =

∣∣∣∣∣∣λn+1

u∫
u0

K (u, z)

z∫
u0

K (z, z1) · · ·
zn−1∫
u0

K (zn−1, zn)ỹ (zn, ζ) dzn . . . dz1dz

∣∣∣∣∣∣
6 |λ|n+1

αn+1 (u1 − u0)
n+1

(n+ 1)!
max
ζ∈{0,1}

γ (ζ)→ 0 as n→∞.

Hence (3.17) has a series solution

ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) f̃ (z, ζ1) dz

+λ2
u∫

u0

K (u, z)

z∫
u0

K (z, z1)f̃ (z1, ζ1) dz1dz + · · ·

Therefore,

yζ∈[0,1] (u) = fζ1∈[0,1] (u) + λ

u∫
u0

K (u, z) fζ1∈[0,1] (z) dz

+λ2
u∫

u0

K (u, z)

z∫
u0

K (z, z1)fζ1∈[0,1] (z1) dz1dz + · · · .
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Hence,

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [fL, fU ] (z) dz

+ λ2
u∫

u0

K(u, z)

z∫
u0

K (z, z1) [fL, fU ] (z1) dz1dz + · · ·.

�

3.3.1. Solution of interval Volterra integral equation by the method of Resolvent
Kernel.

Theorem 3.9. Consider an IVIE of the form

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [yL, yU ] (z) dz. (3.21)

Then it has a solution of the form

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

R (u, z;λ) [yL (z) , yU (z)] dz, (3.22)

where, R (u, z;λ) =
∞∑
n=1

λn−1Kn (x, z) is the resolvent kernel.

Proof. Here the iterated kernel Kn (u, z) is defined as

K1 (u, z) = K (u, z) , Kn (u, z) =

u∫
z

K (u, z1)Kn−1 (z1, z) dt.

From Proposition 3.5, (3.21) is equivalent to

yζ∈[0,1] (u) = fζ1∈[0,1] (u) + λ

u∫
u0

K (u, z) yζ∈[0,1] (z) dz

Therefore for fixed ζ, ζ1 ∈ [0, 1]

ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) ỹ (z, ζ) dz

Let

ỹ0 (u, ζ) = f̃ (u, ζ1) . (3.23)
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Then,

ỹ1 (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) ỹ0 (z, ζ) dz

= f̃ (u, ζ1) + λ

u∫
u0

K (u, z) f̃ (z, ζ1) dz

Proceeding in this way and using (3.23), we get

ỹn (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) f̃ (z, ζ1) dz + λ2
u∫

u0

K2 (u, z) f̃ (z, ζ1) dz + · · ·

+λn
u∫

u0

Kn (u, z) f̃ (z, ζ1) dz.

Therefore, ∀ζ ∈ [0, 1],

ỹ (u, ζ) = lim
n→∞

ỹn (u, ζ) = f̃ (u, ζ1) +

u∫
u0

( ∞∑
n=1

λnKn (u, z)

)
f̃ (z, ζ1) dz

= f̃ (u, ζ1) + λ

u∫
u0

R (u, z;λ)f̃ (z, ζ1) dz

This gives,

{ỹ (u, ζ) : ζ ∈ [0, 1]} =

f̃ (u, ζ1) + λ

u∫
u0

R (u, z;λ)f̃ (z, ζ1) dz : ζ1 ∈ [0, 1]

 .

i.e.,

ỹζ∈[0,1] (u) = f̃ζ1∈[0,1] (u) + λ

u∫
u0

R (u, z;λ)f̃ζ1∈[0,1] (z) dz.

Hence, by the equivalency of parametric form, we have

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

R (u, z;λ) [yL (z) , yU (z)] dz.

This completes the proof. �
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4. Illustrative examples

To validate all the methods, three numerical examples are considered and solved.

Example 4.1. Let us consider the interval IVP:

d2

du2
[yL (u) , yU (u)] + u

d

du
[yL (u) , yU (u)] + [yL (u) , yU (u)] = 0

with the initial conditions

[yL (0) , yU (0)] = [1, 2] and [y′L (0) , y′U (0)] = [0, 1] . (4.1)

Solution. The parametric form of (4.1) is

y′′ζ∈[0,1] (u) + uy′ζ∈[0,1] (u) + yζ∈[0,1] (u) = 0

with the initial conditions

yζ∈[0,1] (0) = {1 + ζ : ζ ∈ [0, 1]} and y′ζ∈[0,1] (0) = {ζ : ζ ∈ [0, 1]} . (4.2)

Therefore, for a fixed ζ ∈ [0, 1], we have

y′′ (u, ζ) + uy′ (u, ζ) + y (u, ζ) = 0.

Let us take,

v (u, ζ1) = y′′ (u, ζ) . (4.3)

Integrating (4.3) from 0 to u and using the second initial condition of (4.2), we obtain

y′ (u, ζ) =

∫ u

0

v (z, ζ1) dz + ζ. (4.4)

Again, integrating (4.4) from 0 to u and using (4.2), it gives

y (u, ζ) =

∫ u

0

(u− z) v (z, ζ1) dz + ζu+ 1 + ζ. (4.5)

Now, multiplying (4.3) by 1, (4.4) by u and (4.5) by 1 and adding, we get,

v (u, ζ1) = −
∫ u

0

(2u− z) v (z, ζ1) dz − (1 + ζ)− 2ζu.

Therefore, the required interval integral equation is

[vL (u) , vU (u)] = − [1, 2u+ 2]−
∫ u

0

(2u− z) [vL (z) , vU (z)] dz.

This is the required interval Volterra integral equation.

Example 4.2. Consider the following interval Volterra integral equation:

[yL, yU ] (u) =
[
eu

2

, 3eu
2
]

+

∫ u

0

eu
2−z2 [yL (z) , yU (z)] dz (4.6)

Solution. The parametric representation of the equation (4.6) is

ỹ (u, ζ) = f̃ (u, ζ1) +

∫ u

0

eu
2−z2 ỹ (z, ζ) dz , ∀ζ, ζ1 ∈ [0, 1] (4.7)

where f̃ (u, ζ1) = (1 + 2ζ1) eu
2

and ỹ (u, ζ) = yL (u) + ζ (yU (u)− yL (u)).
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Therefore, by the method of successive approximation, the solution of (4.7) is

ỹ (u, ζ)= f̃ (u, ζ1)+

u∫
0

K (u, z) f̃ (z, ζ1) dz+

u∫
0

K (u, z)

z∫
0

K (z, z1)f̃ (z1, ζ1) dz1dz + · · ·

⇒ ỹ (u, ζ) = (1 + 2ζ1) eu
2

+ (1 + 2ζ1) eu
2

u+ (1 + 2ζ1) eu
2 u2

2!
+ · · ·

⇒ ỹ (u, ζ) = (1 + 2ζ1) eu
2+u

Therefore, the solution of the equation (4.6) is

[yL (u) , yU (u)] =
[
eu

2+u, 3eu
2+u
]
.

Example 4.3. Consider the following interval Volterra integral equation:

[yL, yU ] (u) = [1, 2] +

∫ u

0

[yL (z) , yU (z)] dz. (4.8)

Solution. The parametric representation of the equation (4.8) is

ỹ (u, ζ) = f̃ (u, ζ1) +

∫ u

0

ỹ (z, ζ) dz , ∀ζ, ζ1 ∈ [0, 1]

where f̃ (u, ζ1) = 1 + ζ1 and ỹ (u, ζ) = yL (u) + ζ (yU (u)− yL (u))

(4.9)

Here,

Kn (u, z) =

∫ u

z

K1 (u, z1)Kn−1 (z1, z) dz1 =
(u− z)n−1

(n− 1)!
, n = 1, 2, 3, . . .

Therefore, the resolvent kernel for this problem is of the form

R (u, z; 1) =
∑∞

n=1
Kn (u, z) =

∑∞

n=1

(u− z)n−1

(n− 1)!
= e(u−z).

Therefore, the solution of the equation (4.9) is of the form

ỹ (u, ζ) = 1 + ζ1 +

∫ u

0

(1 + ζ) eu−zdz ∀ζ, ζ1 ∈ [0, 1] .

Hence, the required solution of the equation (4.8) is

[yL (u) , yU (u)] = [eu, 2eu] .

5. Conclusion

In this work, the concept imprecise Volterra integral equation is introduced in
the interval form with a brief motivation. Then the solution procedure of interval
Volterra integral equation is derived in parametric form in a simple way. Then all
the results including solution procedure regarding interval Volterra integral equation
are derived in a simple way. In these derivations, all the results are presented in
parametric form of intervals. After that, a set of examples have been solved for the
illustration of the solution procedure. This concept of imprecise Volterra integral
equation can be implemented in various real-life problems viz. analyses of diffusion
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and heat transferring, power sector, web-security problems in which fluctuation of
parameters is occurred due to the uncertainty.

For future research, one may develop the same for nonlinear interval Volterra type
integral equations. One can develop the numerical methods for solving an interval
Volterra integral equation. Also, this concept can be extended by introducing interval-
valued kernels etc.
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