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Some saturation classes for deferred Riesz
and deferred Norlund means

Seyda Sezgek (@, Ilhan Dagadur ( and Cumali Catal

Abstract. One of main problem in approximation theory is determination a sat-
uration class for given method. The problem of determining a saturation class
has been considered by Zamanski, Sunouchi and Watari and others. Mohaparta
and Russel have considered some direct and inverse theorems in approximation
of functions. Sunouchi and Watari have studied the Riesz means of type n. In
[5], Goel et al. have extended these results by considering Norlund means. In this
paper, we examine some direct and inverse theorems in approximation of func-
tions under weaker conditions by considering Deferred Riesz means and Deferred
Norlund means. Also, we extent above mentioned results.
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1. Introduction

Let f be a 2m-periodic function and f € L, := Ly[—n, x| for p > 1, where L,
consists of all measurable functions for which denote the L,-norm with respect to x

and defined by
1 " »
o P
1= {5z | Ir@lras)

Cs, denote the set of all continuous functions defined on [—m,7]. For p = oo,
L,[—m, 7] space replace by the space Ca.
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Each f € L' has the Fourier series

flx) ~ %ao + i(ak coskx + by sinkz) = iAk(x) . (1.1)
k=0

k=1

The partial sum of the first (n + 1) terms of the Fourier series of f at a point x
is defined by

1 n n
Sp(f;z) = 200 + Z(ak coskx + by sin kz) = Z Ag(x) .
k=1 k=0

The conjugate series of the series (1.1) is

oo

Z Bi(z) = Z(b’f coskx — ay sinkx) .
k=1

k=1

and also the conjugate function f of f is given by
~ 1 ™ t
f(x) = %/0 {flx+1) —f(x—t)}cotidt .

The integral is known as a Cauchy integral. Also, f exists almost everywhere
whenever f is integrable.
Moreover, if wy(0, f) = O(6%), then f € Lip(c,p), (p > 1), where
wp(6, f) = sup [[f(z + h) = f(2)llp
|n|<6

is the integral modulus of continuity of f € L,. Clearly, if f € Lip(a,p) for some
«a > 1, then f must be constant. So it is interesting only in case of 0 < o < 1. Also
for p > 1, the generalized Minkowski’s inequality is given in [7] as follow

H/ flo.t)di) < / 1f (. )|t -

Throughout the paper, we consider K, = {f € L, : fe Lip(1,p)} for 1 <p < o0
and Ko = {f € Cor : f € Lipl} for p = 0.
In 1932, Agnew [1] defined the Deferred Cesaro mean of the sequence {si} by

2
Sap+1 + Sa,+2 + ... + Sp, 1
(Da,ba S)n = - b Li w T = b —_a § Sk
n n n U N

where a = {a,,} and b = {b,,} are sequences of non-negative integers satisfying

an <b,, n=123,... and lim b, =00.
n—oo

We note here that D, is clearly regular for any choice of {a,} and {b,}.

Let {p,} be a sequence of non-negative real numbers. Deferred Riesz and De-
ferred Norlund means of (1.1) are defined as follows

b
1 n

an+l k=a,+1

DR, (f:z):
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and
1 o
DyN,(f; ) = Dhaman—1 > o kSk(fiz)
0 k=an+1

where

b bp—an—1

Prrag= Y w#0, Frh= 3 g #0
k=an+1 k=0

(see [11], [2] and [12]).

Taking b, = n and a,, = 0, Deferred Riesz and Deferred Norlund means give us
classically known Riesz and Norlund means of the series (1.1), respectively. Also, in
case p, = 1 for all k, both of them yield Deferred Cesaro means of Si(f;x) as follows

bn
Db (fi2) i= — > Sk(fix)

b, —a

n k=a,+1
Let gp(n) k = 1,2,... be the summating function and consider a family of
transform of (1.1) of a summability method G,

1 o0
P.(z) = 540 + Z 9x(n)(ag cos kx + by sin kx) (1.2)
k=1

where the parameter n needs not be discrete.
If there are a positive non-increasing function ¢(n) and a class K of functions
in such a way that

| f(z) — P,(x) || = o(¢(n)) implies f(z) = constant; (1.3)
| f(x) = Pu(z) | = O(¢(n)) implies f(z) € K; (1.4)
for every f € K, onehas | f(z) — P,(z) || = O(¢(n)), (1.5)

then it is said that the method of summation G is saturated with order ¢(n) and its
class of saturation in K ([3]).

Ever since the definition of saturation of summability methods was given by
Favard [4] many authors have studied the saturation property of operators which are
obtained as transforms of the n-th partial sum of the Fourier series by summability
methods. Zamanski [14] have studied the notion of determining a saturation class
by considering (C,1). Sunouchi and Watari [13] have obtained the saturation order
and class for Cesaro, Abel and the (R, A, k) method. Goel et al. [5] have examined
order and class of saturation of Norlund means with supremum norms. Mohapatra
and Russell [10] have analyzed order and class of (N,c,d)-methods in the L, spaces.
Kuttner, Mohapatra and Sahney [8] have obtained results on saturation for a general
class of summability methods in the supremum norm.

In this paper, our object is to extent some of these results under weaker condi-
tions by considering Deferred Riesz means and Deferred Norlund means.

We shall give some well-known results that we will use them to prove our theo-
rems.
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Lemma 1.1. [6] If f belongs to Lip(1,p), 1 < p < oo, then f is equivalent to the
indefinite integral of a function belonging to L,. Also, if f € Lipl, then f is the
indefinite integral of a bounded function.

Lemma 1.2. [15] If f € LP, 1 < p < oo, then f € LP. Moreover, S[f] = S[f].
Lemma 1.3. [5]

T s 1 1
/ sin(k + 1)udu’ . { 2(k2+ Dlog (gt ) 0< (k+1)t<
t

u e E>0,t>0.

Lemma 1.4. [9] Suppose that dy; > 0 (Vn, k), >7—dnr =1 and

Zd"k loghk < oo .
k=1

Let ¢(n) be a positive function. In order that D should be saturated with order ¢(n)
and some class, it is necessary and sufficient that

0 < lim inf 20V

n—roo n0

< o0

2. Main results

If there are a positive non-increasing function ¢(n) and a class of functions K
with the following properties

| £(2) = DERa(f:2) || = o(¢(n)) = f is constant (2.1)
| f(z) = DyRu(f;2) | = O(8(n)) = feK (2.2)

and
feK = | f(x) = DiRu(f;2) | = O(g(n)) (2.3)

then we say that DY R, (f;x) is saturated with the order ¢(n) and class K.
Now, we give interesting results for Deferred Riesz means.

Lemma 2.1. Let 1 <p < o0 and

b
1 n
Pon Z prlogk < oco.
an+l k=a,+1

If

f _DZRn g p— ( P, )
| f(z) (f;2) llp=o P

then f is constant.

To proof the following lemma we use the same technique in [8].
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Proof. Let us write D2 R, (z) instead of D2R, (f;x). By definition of DR, (x), we
get
1 I T

— DR, (x+t)cosktdt = = Z prSr(x + t) cos ktdt

b'VL
TJ—n Pll +1 r=a,+1

= Z pr (x + t) cos ktdt
a +1 r=a,+1 -r

= Z prAk

an+1 r=k

since hypothesis and

1 4 | Ag(z), r>k
7r/ S’T(Jc—l—t)cosk:tdt—{ 0. ek

—Tr

Hence, we obtain

A ZprAk ( e Z pr> :

an+1 r==k an+1 r=k+1

Sn(f) converges to f uniformly whenever f is continuous [15]. So, from hypothesis
and generalized Minkowski’s inequality we get

1 ™ 1 ™
H — Sy(x +t) cos ktdt — — DYR,, (x +t) cos ktdt
T J_x ™

—T

p
0

1 /" 1
H — Sy(x +t) cos ktdt — — flx +1t)cos ktdt
TJ_x ™

—T

IN

p

1 (" 1 (7
— fz+1t)cosktdt — — Db R, (z 4 t) cos ktdt
- T

™

+

—Tr

p

IN

1 (7 1 [7
- = fllpdt + = — DYR, ||pdt
= 18 = gt + = [ 17 = DL,

—T

i ( p,,,z )
= D, .
Pan+1

Therefore for all £ > 1 we have

Db,
b bn
(Pan+1 r=k+1 Pan+1

Ai(z) (pk+1 +p;:2... +pb”) =o(1).

Because of (W%ﬂjb") > 1 for each r > 1, we get Ax(x) = 0. Consequently

f(x) = $ao which is a constant. O

ie.,
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Lemma 2.2. Let the limit
. Dr
lim
n— 00 pbn

hold for a fized a,, +1 <1 < b,. If the equation

=1

pn
| Fw) — DyRa(f2) ||p=o< > )
18 hold, then

= 0(1).

Proof. Suppose that A,,(z) := f(z) — D’R,,(f;x). In this case,

bn, an
An(@)~ 3 (1—be§ )Aku).
+1

k=a,+2

N
> k-an-n) (1- 52 )

k=a,+2

Let N < b, taking N-th arithmetic mean of A, (x) we get

N b Ca. —
on([T; Ay = Z (1— i)k ><1—]];_(;;_21)Ak(x).

k=a,+2 Pan,+1
bn
» Pan—i-l

On account of [|A,|| > [lon[z; As]ll, we obtain

N b
P k—a,—2
Z <1_ an > (1_ N_an_:l)Ak(x)

k=a,+2 an+1
N b b
P =P k—a,—2
an+1 k mn
—nt- = 1—-—) A =0(1
= 2 ( . )( ==t )| =ow
k=an+2 " P
al D +p +..+p k
. a,+1 a,+2 k—1 _ _
= 2 ” ) (1= w) 4| =00
k=a,+2 " p
al k
k=an+2 P
This completes the proof. O

Lemma 2.3. Let

1 i cos(k +1/2)t

P Pk :
Py it sin(t/2)

M, (t) =

and

Go(t) = /t " My (u)du. (2.4)
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[ 1Gato1=0 (”“) (25)
+1

CL

If

an

an+1

and f € K, (1 <p<o0) then || f(z) — DER,(f;x) |lp=0 ( Db, >

Proof. Let Sy (f;x) denote the partial sums of the conjugate series related to f(z).
So,
- cos(t/2) — cos(k + 1/2)t

( 3 L 27‘(‘ / {f T+ t f(ﬂﬁ - t)} sin(t/2) dt.
With a simple analysis, we get
U 1 bn L
SR (Sk(fix)) = piSk(fi )

pbn
Pan +1 k= an,+1

= Pb Z Pk*/ {fla+1) -

U«n+1 k= an—&-l

Pb” Z pki

an+1l k=a,+1

f(z—t)} cot(t/2)dt

cos(k + 1/2)t

sin(t/2) dt.

{fx+1) = fl@—1)}
0
By Lemma 1.2, f € L, (1 < p < c0) implies fe L,. So f € L,, and thus we obtain
S'(f) = S(f) If p = oo then it means that f € Lipl. Therefore, we say that —f + %ao
is equal to f. As a result f — D?R,,(Sk(f;x)) is identical to f(x) — D? Ry (Sk(f;x)).
From hypothesis we get

bn

Pbl Z pkf(l“)

an+l k=a,+1

! k*/ {flx+1)—

b"l
Plln+1 k=a,+1

f(@) = DoRn(f;2) =

f(x— 1)} cot(t/2)dt

cos(k + 1/2)t

+ 1 k—/{fxﬂ

a +1 k=a,+1

= an Z pki/ {fl’-i—t

ant+l k=a,+1

Z pk*/ {fz+1) -

an+1 k= an+1

Z pk*/ {f(x+1)

lln+1 k=a,+1

flz =1} sin(t/2)
f(z—1t)} cot(t/2)dt
f(x — 1)} cot(t/2)dt

~fa-0} sin(t/2)

cos(k + 1/2)t
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—/{fx+t Fla — )} Mo (t). (2.6)
As f € K, by Lemma 1.1, we get f'e L,, p > 1. By integrating in (2.6) we have

@) = DoRo(io) = =5 [ (@t 0)+ 7@ = 0)Gu (0

By generalized Minkowski’s inequality, we obtain

5@ = Dhrasiall, = |5 [0+ PG

P
< / Pz +t) + ' a:—t}H (1)|dt
< M/ W()]dt = (p””>.
a +1
This completes the proof of Lemma. O

Theorem 2.4. Let 1 < p < o0, (ay,) and (by,) be sequences of non-negative integers
satisfying

an < b,, lim b, =0
n— oo

and {pn} be a sequence of non-negative real numbers such that

bn

> bk = prral = O(ps,) (2.7)

k=a,+1

Pap+1 = 07 P, +1 = 0. Iff € Kp7 1< p < 00, then

| f() = DgRa(f;2) [lp=O < e ) : (2.8)

bn,
PanJrl

Proof. Due to Lemma 2.3, it is enough to show (2.5). By Abel’s transform, we get

1 1 on
M, (t) = Py /2 P v +1 { Z sin(k + 1)¢)(pk —pk+1)}

k=a,+1
Since
1 2
————==5+0
2sin®(t/2) 12 (1),
we have
2 1 on
M,(t) = P { Z (sin(k + 1)t) (p —pk+1)}
an+1l (k=a,+1

bn
+0 (Pbl { Z (sin(k + 1)t)(pk pk+1)}>

an+l \k=a,+1
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bn
- = { 2}@m@+nmm—pﬂo}+0(€“>.

+2 pban n
t Pan"!‘l k=a,+1 Pan"rl

From the last equation we obtain

b,

T [T sin(k + Du
Z |pk*pk+1|/ ’/ 7( 5 ) du
- o |Jt u
To complete the proof, we shall show the following equation
T[T sin(k +1
I :=/ / bln(u;—)udu‘ dt =0(1) . (2.9)
0

t
By Lemma 1.3 we get

B 1/e(k+1)
e / / bm(kw‘du‘ ai = /
o |Ji 0

u?
“
1/e(k+1)

dt.

/ sm(k—z!—l)udu)dt
¢ u

T sin(k + 1
/Sm<+>udu‘dt
t

u2

1/e(bx+1) 1
< 2(k+ 1)1 dt
< ( )Og<(k+1)t)
g 2
+/ ———dt = O(1).
1e(brt1) (k+1)E2
This completes the proof. O

Now, we can give our results for Deferred Norlund means.
If there are a positive non-increasing function ¢(n) and a class of functions K
with the following properties

| f(z) = DoN(fi2) || = o(¢(n)) = [ is constant (2.10)
| f(2) = DN, (fi2) || = O(6(n)) = feK (2.11)

and
feK =| f(x) = DiNu(fiz) | = O(¢(n)) (2.12)

then we say that D2 N, (f;z) is saturated with the order ¢(n) and class K.

Lemma 2.5. Let 1 < p < oo and
b

> po,—klogh < 0.
k=an+1

1

If
| f(x) = DY N, (f; ) |l,= o <po>

Pgn —an—1

then f is constant.
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Proof. Let us write D N,,(z) instead of DN, (f;z). Now we get

1 us
= / DY N, (x + t) cos ktdt

™

—T

b
1 i 1 n
= 2 g X e peoskia

™
r=an+1

T

b,
n 1

Z Db, —r— / Sy(x + t) cos ktdt
7r

1
bp—an,—1
PO r=ap+1 -n

b
L b
= e 2 P Ak()
PO r==k

since summation and integration can be replace by hypothesis and since

[  Ak(z), r>k
;/ Sr(ert)cosktdt{ 0. ek

—Tr
Hence, we obtain
1 by, 1 bn,
An(@) = o=t D P Ar() = An(@) <Pb1 > wa)
0 r=k 0 r=k+1

Sn(f) converges to f uniformly whenever f is continuous [15]. So, from hypothesis
and generalized Minkowski’s inequality we get

1 [/" 1 (7
H — Sy(x +t) cos ktdt — — DY N, (z + t) cos ktdt
7r ™
—7 -7 P
1 /" 1 (7
< H — Sy(x +t) cos ktdt — — flx +t)cosktdt
71'
—7 — p
1" 1,
+ |- f(z+t)cosktdt — — D) N, (x +t) cos ktdt
i 7r
-7 -7 p
1
<

™ 1 ™
=[S =ttt [ 17 = AN

_ Po
= o0 7})0%7%71 .
Hence we have
1 on P
0
Ak(x) (an Z pbn—?") =0 <anan1>
an+1 r=k+1 0

Ap() (pbnkl +p1b)gfk72~-~ +po) — o(1).

for all k£ > 1, i.e.,
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Po
f(x) = Fao which is a constant. O

Because of (pb"‘k‘1+pb“"k‘2“'+p°) > 1, Ag(z) = 0 for each r > 1. Consequently

Lemma 2.6. Let the limit
i Db, —k+1
im ———

hold for a fized a,, +2 < k < by,. If the equation

=1

| f(a) = DeNu(f;2) [|,= O (po>

by —an—1
PO

is hold, then
N

> (k—an—1) (1 m> Ag(z)

k=a,+2

=0(1).

P

Proof. Suppose that A,,(x) := f(z) — D2N,,(f;z). In this case,

bn pba—k
An(@)~ 3 |1 ot | Arl@):
k=an,+2 0

Let N < b,. Taking N-th arithmetic mean of A, (z) we have

N b —F
Py k—a,—2

A,] = 1 -0 1———" “ 1A .
iran= 3 (1o ) (1 A==

Since ||Arl| > |lon[z; Ar]l] we obtain

N by —k
P k—ap,—2
1— -0 1™ “14
Z < Pgn—an_1> ( N — an — 1) k(x)
P

k=an+2

N b —an—1 b —k
Pyt — Py k—ap—2
1———— ) Ag =0(1
) ( ~ )( 22w =on)
k=an,+2 P
al +ot k
Z lim (pb"kﬂ pb"a"1> (1 “ N1 1) Ag(z)|| =0(1)
k=an+2 e Po + P
al k
k — — _ . =
S (kan—1) (1 NH)Akm o)
k=a,+2 p
This completes the proof. O
Lemma 2.7. Let
b
1 “ cos(k + 1/2)t
My(t) = ——— Dok
phn—an=t k:;H sin(t/2)
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= /F M, (u)du. (2.13)
/ Gt (Pb ]f‘;n_1> (2.14)

and f € K,(1 < p < 00) then || f(z) — DONo(f;2) |,= O (%)

by —ap—1
PO

and

If

Proof. Let Sy(f;x) denote the partial sums of the conjugate series related to f(z).
So,
I Y - cos(t/2) — cos(k + 1/2)t
D=5 [ e+t - fa-n) G dt.

With a simple analysis, we get

bn,
DEN(S4(fi ) = % S o 1Si(F5)
an+1
= Pb p— Zpb —kf/ {fx+1t)— f(z —t)} cot(t/2)dt
an+1
1 cos(k + 1/2)t
R gy [ 0= fle -0y B

By Lemma 1.2, f € L, (1 < p < o0) implies f e L,. So f € Ly, and we get
S(f) = S(f). If p = oo then it means that f € Lipl. Therefore, —f + 3ag is equal to

f. Thus f — DZNn(Sk(f; 7)) is identical to f(x) — DY N, (Sk(f;z)). From hypothesis
we get

fl@ )— DgNn(f3)
- pha—n= 1az+1pb k*/ {f(xz+1t) — f(x —t)} cot(t/2)dt
Pb “n—1 anzﬂpb k*/ {f(x+1t) = f(x —1t)} cot(t/2)dt

cos(k + 1/2)¢
+pb<ﬁn T Z Db, —k*/ {flx+1t)— fla— )}Wdt

an+1
- /{fx+t Fla — )} Mo (8). (2.15)
As f € K, by Lemma 1.1, we have f’ € L,, p > 1. By integrating in (2.15), we get

@) = DN (i) = =5 [ (7o) 4 o= D)ooy
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By generalized Minkowski’s inequality, we obtain

5@ = DiNufill, = |5 [0+ F - 0G0

P
< / Fl(z+1) + f' x—t}H |G (1)t
Po
< M/‘ (1)t = <%m%l>
This completes the proof of Lemma. O

Theorem 2.8. Let 1 < p < oo, (ay,) and (by,) be sequences of non-negative integers
satisfying

an < b, , nhn;ob =0

and {pn} be a sequence of non-negative real numbers such that

bn

Z |pbn7k: _pbn7k71| = O(po% (2-16)

k=an,+1
Dby—an,—1 =0 andp_1 =0. If f € K,(1 <p < 0) then

Iﬂ@—D%Mﬁ@b=0<ﬁf;1>- (2.17)
0

Proof. Due to the Lemma 2.7, it is enough to show (2.14). From Abel’s transform,
we get

b,
M,(t) = ! 1 { Z (sin(k + 1)t) (Pb, -k — pbn—k—l)} :
[ +1

25sin*(t/2) P, Pt
Since . )
= =+ 0(),
2sin?(t/2)  t2 (1)
we have
2 1 G
My (t) = 2 phian—1 Z (sin(k + 1)t) (Po, —k — Db, —k—1)
0 k=an,+1
1 on
+0 <W { > (sin(k +1)t)(py, -k _pbn—k—l)}>
PO k=a,+1
2 1 G
= @phiand > (sinlk + 1)) (po,—k — Pb—k-1)
0 k=an+1

Po
*0<%n%1>
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From the last equation we get

br

T 1
/ |Gn(t)|dtﬁm Z |Pb—k — Pb,—k— 1|/
0 0

k=an+1

/51nk+ 1)u du‘dt

By Theorem 2.4 and hypothesis, we have

This completes the proof. (|

If we take pp = 1 for all k, both of them yield Deferred Cesaro means of the
series (1.1). So we get following corollary.

Corollary 2.9. Let

M, () = cos|((by, + a, +2)/2)t] sin[((by, — an)/2)1]
(bp, — ap)sin (t/2)
and
t) = /t M, (u)du
If

/07r|Gn(t)|:O(bnian> (2.18)

and f € K,(1 < p < o0) then || f(z) — D(f;z) Hp:O< L )

bp—an

If we take pj, = 1 for all k, a,, = 0 and b, = A(n), where A(n) is a strictly increas-
ing sequence of positive integers, both of them yield Cy\-method. So, we immediately
get following corollary.

Corollary 2.10. Let

1 [cos((A(n) +2)/2)t.sin((A(n) —1)/2)t
M- (2) ( sin®(¢/2) >

p = /tﬁ M, (w)du
/OW Go(t)] = O (@) (2.19)

and f € K, (1 < p < o0) then || f(x) —o)(f;7) |l,= O (ﬁ)

and

If
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