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On the stabilization of a thermoelastic laminated
beam system with microtemperature effects

Foughali Fouzia and Djellali Fayssal

Abstract. The present article investigates a one dimensional thermoelastic lam-
inated beam with microtemperature effects. Using the energy method we prove
in the case of zero thermal conductivity that the unique dissipation due to the
microtemperatures is strong enough to exponentially stabilize the system if and
only if the wave speeds of the system are equal. Our result is new and improves
previous results in the literature.
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1. Introduction

In this paper, we address the following thermoelastic laminated beams with
microtemperature effects

ρϕtt +G (ψ − ϕx)x = 0,

Iρ (3s− ψ)tt −D (3s− ψ)xx −G (ψ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G (ψ − ϕx) + 4γs− δθ +mωx = 0,

cθt + κ1ωx + δst = 0,

αωt − κ2ωxx + κ3ω + κ1θx +mstx = 0,

(1.1)
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for (x, t) ∈ (0, 1) × R+, system (1.1) is complemented with the following boundary
conditions

ϕx(0, t) = ψ(0, t) = s(0, t) = θ(0, t) = ωx(0, t) = 0, t > 0,

ϕx(1, t) = ψ(1, t) = s(1, t) = θ(1, t) = ωx(1, t) = 0, t > 0, (1.2)

and the initial data

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), s(x, 0) = s0(x), x ∈ (0, 1),

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), st(x, 0) = s1(x), x ∈ (0, 1), (1.3)

θ(x, 0) = θ0(x), ω(x, 0) = ω0(x), x ∈ (0, 1),

where the functions ϕ(x, t) is the transversal displacement of the beam, ψ is the
volume fraction difference, (3s(x, t) − ψ(x, t)) is the effective rotation angle, θ is the
relative temperature and ω is the microtemperature difference and the coefficients,
ρ, Iρ, D, G, and γ are positive constant coefficients represent the density, the shear
stiffness, the mass moment of inertia, the flexural rigidity, and the adhesive damping
weight. And the coefficients γ, κ1, κ2, κ3, c, m and α are positive constants represent
the physical parameters describing the coupling between the various constituents of
the materials.

The initial data (ϕ0, ϕ1, ψ0, ψ1, s0, s1, θ0, ω0) are assumed to belong to a suitable
functional space.

The laminated beam model describes a vibrating structure of an interfacial slip.
It consists of two layered beams of uniform thickness which are attached by an adhe-
sive layer of small thickness in such a way that small amount of slip is possible while
they are continuously in contact with each other. And with the increasing demand
of advanced performance, the vibration suppression of the laminated beams has been
one of the main research topics in smart materials and structures, and these composite
laminates usually have superior structural properties such as adaptability.

The laminated beam problem was first introduced by Hansen and Spies in [14].
In that paper, the authors derived the mathematical model for two-layered beams
with structural damping due to the interfacial slip, namely

ρϕtt +G(ψ − ϕx)x = 0,

Iρ(3s− ψ)tt −D(3s− ψ)xx −G(ψ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G(ψ − ϕx) + 4γs+ 4αst = 0.

(1.4)

In recent years, researchers have focused on the study of the well-posedness and
asymptotic stability properties of (1.4). With additional dampings on the first two
equations or some sort of boundary damping mechanism, the authors [4, 5, 20, 21,
22, 27, 28, 32] showed that system (1.4) can be stabilized exponentially.

Regarding thermoelastic laminated-beam models, Apalara [2] analyzed a lami-
nated beam system with thermal effect in the slip instead of the frictional damping
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(4αst). More precisely, he studied the following laminated beam system
ρϕtt +G(ψ − ϕx)x = 0,

Iρ(3s− ψ)tt −D(3s− ψ)xx −G(ψ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G(ψ − ωx) + 4γs+ δθx = 0,

cθt − kθxx + δstx = 0,

and he came to the conclusion that an exponential stability result is achievable in the
case of equal wave speeds, that is,

ρ

G
=
Iρ
D
.

We refer the reader to [1, 3, 7, 6, 10, 8, 9, 11, 13, 17, 18, 16, 25, 26, 23, 29] and the
references cited therein for some other results.

In the matter of microtemperature effects, we bring up the study of Djeradi
et al. [12] where they examined the joint of microtemperature, nonlinear structure
damping, along with nonlinear time-varying delay term, and time- varying coefficient
on a thermoelastic laminated beam. They examined the system

ρϕtt +G (ψ − ϕx)x = 0,

Iρ (3s− ψ)tt −D (3s− ψ)xx −G (ψ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G (ψ − ϕx) + 4γs+ δθx +mωx

+βb(t)h1(st(x, t)) + µb(t)h2(st(x, t− ς(t))) = 0,

cθt − κ0θxx + κ1ωx + δstx = 0,

αωt − κ2ωxx + κ3ω + κ1θx +mstx = 0,

and established a general decay result in the case of equal wave speeds and particular
assumptions related to nonlinear terms.

The coupled system we’ve described involves several physical phenomena, includ-
ing thermoelasticity, laminated beams, and microtemprature effects. For example, a
laminated beam consists of multiple layers of different materials bonded together,
thermoelasticity refers to the combined behavior of thermal and elastic properties of
the materials, and microtemperature refers to the consideration of temperature vari-
ations at a very small scale, which can influence the overall behavior of the coupled
system.

Taking the above observations into account, we consider the one-dimensional
thermoelastic laminated beam problem with microtemperature effects and without
thermal conductivity (1.1)-(1.3), and we establish that the dissipation due solely to
microtemperature is adequate to stabilize the system exponentially in the case of
equal wave speeds. i,e.

χ =
ρ

G
− Iρ
D

= 0. (1.5)

Concerning the stability of some thermoelastic systems with microtemperature effects
and without thermal conductivity, we refer the reader to [15, 24, 31].

In order to be able to use Poincaré’s inequality for ϕ and ω, we perform the
following transformation. From the first equation in (1.1) and boundary conditions,
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it follows that

d2

dt2

∫ 1

0

ϕ(x, t)dx = 0, ∀t ≥ 0,

and therefore ∫ 1

0

ϕ(x, t)dx = t

∫ 1

0

ϕ1(x, t)dx+

∫ 1

0

ϕ0(x, t)dx, ∀t ≥ 0.

Consequently, if we set

ϕ(x, t) = ϕ(x, t)− t
∫ 1

0

ϕ1(x)dx−
∫ 1

0

ϕ0(x)dx, t ≥ 0,

we get ∫ 1

0

ϕ(x, t)dx = 0, ∀t ≥ 0.

Now, from the fifth equation of (1.1) and the boundry conditions, we get

d

dt

∫ 1

0

ω(x, t)dx+
κ3
α

∫ 1

0

ω(x, t)dx = 0, ∀t ≥ 0,

thus ∫ 1

0

ω(x, t)dx =

(∫ 1

0

ω0(x)dx

)
e−

κ3
α t,

so, if we put

ω(x, t) = ω(x, t)−
(∫ 1

0

ω0(x)dx

)
e−

κ3
α t, t ≥ 0,

we obtain ∫ 1

0

ω(x, t)dx = 0, ∀t ≥ 0.

Clearly, the use of Poincaré’s inequality for ϕ and ω is justified, and (ϕ,ψ, s, θ, ω)
satisfies the same equations in (1.1)-(1.3). Subsequently, we work with ϕ and ω instead
of ϕ and ω but write ϕ, ω for simplicity of notation.

For completeness we present a short discussion of the well-posedness and the
semigroup formulation of (1.1)-(1.3). For this purpose, we denote by ξ the effective
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rotation angle, that is, ξ = 3s− ψ. Then, system (1.1)-(1.3) is equivalent to

ρϕtt +G (3s− ξ − ϕx)x = 0,

Iρξtt −Dξxx −G (3s− ξ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G (3s− ξ − ϕx) + 4γs− δθ +mωx = 0,

cθt + κ1ωx + δst = 0,

αωt − κ2ωxx + κ3ω + κ1θx +mstx = 0,

ϕx(0, t) = ξ(0, t) = s(0, t) = θ(0, t) = ωx(0, t) = 0,

ϕx(1, t) = ξ(1, t) = s(1, t) = θ(1, t) = ωx(1, t) = 0,

ϕ(x, 0) = ϕ0(x), ξ(x, 0) = ξ0(x), s(x, 0) = s0(x),

ϕt(x, 0) = ϕ1(x), st(x, 0) = s1(x), ξt(x, 0) = ξ1(x),

θ(x, 0) = θ0(x), ω(x, 0) = ω0(x).

(1.6)

Clearly, by introducing the vector function U = (ϕ, φ, ξ, u, s, v, θ, ω)
T

, where φ = ϕt,
u = ξt, and v = st, system (1.6) can be written as{

d
dtU(t) = AU(t), t > 0,

U(0) = U0 = (ϕ0, ϕ1, ξ0, ξ1, s0, s1, θ0, ω0)
T
,

(1.7)

where A is a differential operator defined by

AU =



φ
−Gρ (3s− ξ − ϕx)x

u
1
Iρ

(
Dξxx +G (3s− ξ − ϕx)

)
v

1
3Iρ

(
3Dsxx − 3G (3s− ξ − ϕx)− 4γs+ δθ −mωx

)
− 1
c

(
κ1ωx + δv

)
1
α

(
κ2ωxx − κ3ω − κ1θx −mvx

)


.

We consider the following spaces

L2
∗(0, 1) =

{
Ψ ∈ L2(0, 1) :

∫ 1

0

Ψ(x) dx = 0

}
,

H1
∗ (0, 1) = H1(0, 1) ∩ L2

∗(0, 1),

H2
∗ (0, 1) =

{
Ψ ∈ H2(0, 1) : Ψx(0) = Ψx(1) = 0

}
.

The energy space

H = H1
∗ (0, 1)× L2

∗(0, 1)×H1
0 (0, 1)× L2(0, 1)×H1

0 (0, 1)× L2(0, 1)

× L2(0, 1)× L2
∗(0, 1)
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is a Hilbert space with respect to the inner product

〈U, Ũ〉H = ρ

∫ 1

0

φφ̃dx+ Iρ

∫ 1

0

uũdx+ 3Iρ

∫ 1

0

vṽdx+ c

∫ 1

0

θθ̃dx

+ α

∫ 1

0

ωω̃dx+G

∫ 1

0

(3s− ξ − ϕx)
(

3s̃− ξ̃ − ϕ̃x
)
dx (1.8)

+D

∫ 1

0

ξxξ̃xdx+ 4γ

∫ 1

0

ss̃dx+ 3D

∫ 1

0

sxs̃xdx,

for U = (ϕ, φ, ξ, u, s, v, θ, ω)
T ∈ H and Ũ =

(
ϕ̃, φ̃, ξ̃, ũ, s̃, ṽ, θ̃, ω̃

)T
∈ H.

The domain of A is then

D(A) =

{
U ∈ H

∣∣∣ ϕ, ω ∈ H2
∗ (0, 1) ∩H1

∗ (0, 1); ξ, s ∈ H2(0, 1) ∩H1
0 (0, 1);

φ ∈ H1
∗ (0, 1); u, v, θ ∈ H1

0 (0, 1)

}
.

Using the standard semigroup method (see, for instance [19, 30]), one easily establishes
the following well-posedness result:

Theorem 1.1. Let U0 ∈ H, then there exists a unique solution U ∈ C(R+,H) of
problem (1.1)-(1.3). Moreover, if U0 ∈ D(A). Then U ∈ C(R+,D(A)) ∩ C1(R+,H).

This paper is organized as follows. In section 2, we state and prove some technical
lemmas needed in the proof of our main results. In section 3, we show that the system
is exponentially stable under condition (1.5). In what follows, we use c1 to denote a
generic positive constant.

2. Technical lemmas

This section is devoted to the statements and proofs of some technical lemmas
needed for the proof of our stability result.

Lemma 2.1. Let (ϕ,ψ, s, θ, ω) be the solution of (1.1)-(1.3), then the energy functional
defined by

E(t) =
1

2

∫ 1

0

[
ρϕ2

t + Iρ (3st − ψt)2 + 3Iρs
2
t +D (3sx − ψx)

2

+ 3Ds2x + 4γs2 +G (ψ − ϕx)
2

+ cθ2 + αω2

]
dx, ∀t ≥ 0,

(2.1)

satisfies, along a strong solution of (1.1)-(1.3),

E′(t) = −κ2
∫ 1

0

ω2
xdx− κ3

∫ 1

0

ω2dx ≤ 0, ∀t ≥ 0. (2.2)

Proof. Equation (2.2) follows by multiplying the five equations of system (1.1) by
ϕt, (3st − ψt) , st, θ and ω respectively, integrating by parts over (0, 1), boundary con-
ditions (1.2) and summing up. �
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Lemma 2.2. The functional F1(t) defined by

F1(t) =
3αIρ
m

∫ 1

0

st

(∫ x

0

ω(y)dy

)
dx+

3κ1Iρ
m

∫ 1

0

sθdx

+
3κ1Iρδ

2mc

∫ 1

0

s2dx, (2.3)

satisfies, for any ε1, ε2, ε3 > 0, the estimate

F ′1(t) ≤ − Iρ
∫ 1

0

s2tdx+ ε1

∫ 1

0

s2xdx+ ε2

∫ 1

0

(ψ − ϕx)
2
dx

+ ε3

∫ 1

0

θ2dx+ c1

(
1 +

1

ε1
+

1

ε2
+

1

ε3

)∫ 1

0

ω2dx

+ c1

(
1 +

1

ε1

)∫ 1

0

ω2
xdx.

(2.4)

Proof. By taking the derivative of F1, using (1.1), integrating by parts and the fact

that
∫ 1

0
ω(x) dx = 0, we get,

F ′1(t) =− 3αD

m

∫ 1

0

sxωdx−
3αG

m

∫ 1

0

(ψ − ϕx)

∫ x

0

ω(y)dydx

− 4αγ

m

∫ 1

0

s

∫ x

0

ω(y)dydx+
αδ

m

∫ 1

0

θ

∫ x

0

ω(y)dydx

+ α

∫ 1

0

ω2dx+
3Iρκ2
m

∫ 1

0

stωxdx− 3Iρ

∫ 1

0

s2tdx

− 3Iρκ3
m

∫ 1

0

st

∫ x

0

ω(y)dydx− 3Iρκ
2
1

mc

∫ 1

0

sωxdx.

(2.5)

Using Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we have, for any
ε1, ε2, ε3 > 0

−3αD

m

∫ 1

0

sxωdx ≤
ε1
4

∫ 1

0

s2xdx +
c1
ε1

∫ 1

0

ω2dx, (2.6)

−3αG

m

∫ 1

0

(ψ − ϕx)

∫ x

0

ω(y)dydx

≤ ε2

∫ 1

0

(ψ − ϕx)
2
dx +

c1
ε2

∫ 1

0

(∫ x

0

ω(y)dy

)2

dx

≤ ε2

∫ 1

0

(ψ − ϕx)
2
dx +

c1
ε2

∫ 1

0

ω2dx, (2.7)

similarly,

−4αγ

m

∫ 1

0

s

∫ x

0

ω(y)dydx ≤ ε1
4

∫ 1

0

s2xdx +
c1
ε1

∫ 1

0

ω2dx, (2.8)
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αδ

m

∫ 1

0

θ

∫ x

0

ω(y)dydx ≤ ε3

∫ 1

0

θ2dx +
c1
ε3

∫ 1

0

ω2dx, (2.9)

3Iρκ2
m

∫ 1

0

stωxdx ≤ Iρ

∫ 1

0

s2tdx + c1

∫ 1

0

ω2
xdx, (2.10)

−3Iρκ3
m

∫ 1

0

st

∫ x

0

ω(y)dydx ≤ Iρ

∫ 1

0

s2tdx + c1

∫ 1

0

ω2dx, (2.11)

−3Iρκ
2
1

mc

∫ 1

0

sωxdx ≤
ε1
2

∫ 1

0

s2xdx +
c1
ε1

∫ 1

0

ω2
xdx. (2.12)

Estimate (2.4) follows by substituting (2.6)(2.12) into (2.5). �

Lemma 2.3. The functional F2(t) defined by

F2(t) =
αc

κ1

∫ 1

0

θ

(∫ x

0

ω(y)dy

)
dx, (2.13)

satisfies, the following estimate

F ′2(t) ≤ − c

2

∫ 1

0

θ2dx+ c1

∫ 1

0

s2tdx+ c1

∫ 1

0

ω2dx+ c1

∫ 1

0

ω2
xdx. (2.14)

Proof. Direct computations, using (1.1), integrating by parts and the fact that∫ 1

0
ω(x) dx = 0, yield

F ′2(t) =− c
∫ 1

0

θ2dx+ α

∫ 1

0

ω2dx− αδ

κ1

∫ 1

0

st

∫ x

0

ω(y)dydx

+
cκ2
κ1

∫ 1

0

θωxdx−
cκ3
κ1

∫ 1

0

θ

∫ x

0

ω(y)dydx− mc

κ1

∫ 1

0

θstdx.

(2.15)

By virtue of Young’s and Cauchy-Schwarz inequalities, we find

−αδ
κ1

∫ 1

0

st

∫ x

0

ω(y)dydx ≤ c1

∫ 1

0

s2tdx + c1

∫ 1

0

ω2dx, (2.16)

cκ2
κ1

∫ 1

0

θωxdx ≤
c

8

∫ 1

0

θ2dx + c1

∫ 1

0

ω2
xdx, (2.17)

−cκ3
κ1

∫ 1

0

θ

∫ x

0

ω(y)dydx ≤ c

8

∫ 1

0

θ2dx + c1

∫ 1

0

ω2dx, (2.18)

−mc
κ1

∫ 1

0

θstdx ≤
c

4

∫ 1

0

θ2dx + c1

∫ 1

0

s2tdx, (2.19)

which yields the desired result (2.14), by inserting (2.16)(2.19) into (2.15). �
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Lemma 2.4. The functional F3(t) defined by

F3(t) = −Dρ
G

∫ 1

0

ϕtsxdx+ Iρ

∫ 1

0

st (ψ − ϕx) dx, (2.20)

satisfies, for any ε4 > 0, the estimate

F ′3(t) ≤− G

2

∫ 1

0

(ψ − ϕx)
2
dx+ ε4

∫ 1

0

(3st − ψt)2 dx

+ c1

(
1 +

1

ε4

)∫ 1

0

s2tdx+ c1

∫ 1

0

s2dx+ c1

∫ 1

0

θ2dx

+ c1

∫ 1

0

ω2
xdx+Dχ

∫ 1

0

ϕtxstdx.

(2.21)

Proof. Differentiating F3, using (1.1) and intgrating by parts, we obtain

F ′3(t) =− Dρ

G

∫ 1

0

ϕtstxdx−G
∫ 1

0

(ψ − ϕx)
2
dx− 4

3
γ

∫ 1

0

s (ψ − ϕx) dx

+
δ

3

∫ 1

0

θ (ψ − ϕx) dx− m

3

∫ 1

0

ωx (ψ − ϕx) dx

+ Iρ

∫ 1

0

stψtdx− Iρ
∫ 1

0

stϕtxdx.

Using the simple equality ψt = − (3st − ψt) + 3st, we arrive at

F ′3(t) =−G
∫ 1

0

(ψ − ϕx)
2
dx− 4

3
γ

∫ 1

0

s (ψ − ϕx) dx+ 3Iρ

∫ 1

0

s2tdx

+
δ

3

∫ 1

0

θ (ψ − ϕx) dx− m

3

∫ 1

0

ωx (ψ − ϕx) dx

− Iρ
∫ 1

0

st (3st − ψt) dx+Dχ

∫ 1

0

ϕtxstdx.

(2.22)

Applying Young’s and Poincaré’s inequalities, for ε4 > 0, we get

−4

3
γ

∫ 1

0

s (ψ − ϕx) dx ≤ G

8

∫ 1

0

(ψ − ϕx)
2
dx + c1

∫ 1

0

s2dx, (2.23)

δ

3

∫ 1

0

θ (ψ − ϕx) dx ≤ G

8

∫ 1

0

(ψ − ϕx)
2
dx + c1

∫ 1

0

θ2dx, (2.24)

−m
3

∫ 1

0

ωx (ψ − ϕx) dx ≤ G

4

∫ 1

0

(ψ − ϕx)
2
dx + c1

∫ 1

0

ω2
xdx, (2.25)

−Iρ
∫ 1

0

st (3st − ψt) dx ≤ ε4

∫ 1

0

(3st − ψt)2 dx +
c1
ε4

∫ 1

0

s2tdx. (2.26)

By substituting (2.23)-(2.26) into (2.22), we obtain (2.21). �
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Lemma 2.5. The functional F4(t) defined by

F4(t) = −Dρ
G

∫ 1

0

ϕt (3sx − ψx) dx+ Iρ

∫ 1

0

(ψ − ϕx) (3st − ψt) dx, (2.27)

satisfies, the estimate

F ′4(t) ≤− Iρ
2

∫ 1

0

(3st − ψt)2 dx+G

∫ 1

0

(ψ − ϕx)
2
dx

+ c1

∫ 1

0

s2tdx+Dχ

∫ 1

0

(3st − ψt)ϕtxdx.
(2.28)

Proof. Direct differentiation of F4, using (1.1) and then integrating by parts, gives

F ′4(t) =− Dρ

G

∫ 1

0

ϕt (3sx − ψx)t dx+G

∫ 1

0

(ψ − ϕx)
2
dx

+ Iρ

∫ 1

0

(3st − ψt)ψtdx− Iρ
∫ 1

0

(3st − ψt)ϕtxdx.

By using the equality ψt = − (3st − ψt) + 3st, we obtain

F ′4(t) =− Iρ
∫ 1

0

(3st − ψt)2 dx+ 3Iρ

∫ 1

0

st (3st − ψt) dx

+G

∫ 1

0

(ψ − ϕx)
2
dx+Dχ

∫ 1

0

(3st − ψt)ϕtxdx.

Estimate (2.28) follows thanks Youngs inequality. �

Lemma 2.6. The functional F5(t) defined by

F5(t) = −ρ
∫ 1

0

(∫ x

0

ϕt(y)dy

)
sdx+ Iρ

∫ 1

0

stsdx, (2.29)

satisfies, for ε5 > 0, the estimate

F ′5(t) ≤− D

2

∫ 1

0

s2xdx− γ
∫ 1

0

s2dx+ ε5

∫ 1

0

ϕ2
tdx+ c1

∫ 1

0

θ2dx

+ c1

∫ 1

0

ω2
xdx+ c1

(
1 +

1

ε5

)∫ 1

0

s2tdx.

(2.30)

Proof. The derivative of F5, using (1.1), integration by parts and the boundary con-
ditions, give

F ′5(t) = −D
∫ 1

0

s2xdx−
4

3
γ

∫ 1

0

s2dx+
δ

3

∫ 1

0

θsdx− m

3

∫ 1

0

ωxsdx

+ Iρ

∫ 1

0

s2tdx− ρ
∫ 1

0

st

(∫ x

0

ϕt(y)dy

)
dx.

(2.31)

By using Young’s, Poincaré’s and Cauchy-Schwarz inequalities, for ε5 > 0, we have

δ

3

∫ 1

0

θsdx ≤ γ

3

∫ 1

0

s2dx + c1

∫ 1

0

θ2dx, (2.32)
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−m
3

∫ 1

0

ωxsdx ≤
D

2

∫ 1

0

s2xdx + c1

∫ 1

0

ω2
xdx, (2.33)

−ρ
∫ 1

0

st

(∫ x

0

ϕt(y)dy

)
dx ≤ ε5

∫ 1

0

ϕ2
tdx +

c1
ε5

∫ 1

0

s2tdx. (2.34)

Relation (2.30) follows by substituting (2.32)-(2.34) into (2.31). �

Lemma 2.7. The functional F6 defined by

F6(t) = −ρ
∫ 1

0

ϕtϕdx, (2.35)

satisfies, the estimate

F ′6(t) ≤ − ρ
∫ 1

0

ϕ2
tdx+

D

4

∫ 1

0

(3sx − ψx)
2
dx

+ c1

∫ 1

0

s2xdx+ c1

∫ 1

0

(ψ − ϕx)
2
dx. (2.36)

Proof. Direct differentiation of F6, using (1.1) and then integrating by parts, gives

F ′6(t) = −G
∫ 1

0

ϕx (ψ − ϕx) dx− ρ
∫ 1

0

ϕ2
tdx.

Using the simple relation ϕx = − (ψ − ϕx)− (3s− ψ) + 3s, we get

F ′6(t) =G

∫ 1

0

(ψ − ϕx)
2
dx+G

∫ 1

0

(ψ − ϕx) (3s− ψ) dx

− 3G

∫ 1

0

(ψ − ϕx) s dx− ρ
∫ 1

0

ϕ2
tdx.

Using Young’s and Poincaré’s inequalities, lead to the desired estimation. �

Lemma 2.8. The functional F7 defined by

F7(t) = Iρ

∫ 1

0

(3s− ψ) (3st − ψt) dx, (2.37)

satisfies, the estimate

F ′7(t) ≤ − D

2

∫ 1

0

(3sx − ψx)
2
dx+ Iρ

∫ 1

0

(3st − ψt)2 dx

+ c1

∫ 1

0

(ψ − ϕx)
2
dx. (2.38)

Proof. A simple differentiation of F7, using (1.1) together with integration by parts,
yield

F ′7(t) = Iρ

∫ 1

0

(3st − ψt)2 dx−D
∫ 1

0

(3sx − ψx)
2
dx

+G

∫ 1

0

(ψ − ϕx) (3s− ψ) dx.
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The use of Young’s and Poincaré’s inequalities lead to (2.38). �

3. Stability result

In this section, we prove under the condition of equal wave-speed propagation
(1.5) that the energy associated with (1.1)(1.3) is exponentially stable. To achieve
this goal, we define a Lyapunov functional L and show that it is equivalent to the
energy functional E.

Lemma 3.1. Let (ϕ,ψ, s, θ, ω) be the solution of (1.1)-(1.3) and assume χ = 0. Then,
for N, N1, N2, N3, N4, N5 > 0 to be chosen appropriately later, the functional defined
by

L(t) = NE(t) +N1F1(t) +N2F2(t) +N3F3(t) +N4F4(t)

+N5F5(t) + F6(t) + F7(t),
(3.1)

satisfies, for N sufficiently large,

τ1E(t) ≤ L(t) ≤ τ2E(t), ∀t ≥ 0, (3.2)

and the estimate

L′(t) ≤ −τ3E(t), (3.3)

where τ1, τ2 and τ3 are positive constants.

Proof. From (3.1) and the Lemmas in Section 2, it follows that

∣∣∣L(t)−NE(t)
∣∣∣ ≤3αIρ

m
N1

∫ 1

0

∣∣∣∣∣st
∫ x

0

ω(y)dy

∣∣∣∣∣dx+
3κ1Iρ
m

N1

∫ 1

0

∣∣∣∣∣sθ
∣∣∣∣∣dx

+
3κ1Iρδ

2mc
N1

∫ 1

0

s2dx+
αc

κ1
N2

∫ 1

0

∣∣∣θ ∫ x

0

ω(y)dy
∣∣∣dx

+
Dρ

G
N3

∫ 1

0

∣∣∣ϕtsx∣∣∣dx+ IρN3

∫ 1

0

∣∣∣st (ψ − ϕx)
∣∣∣dx

+
Dρ

G
N4

∫ 1

0

∣∣∣ϕt (3sx − ψx)
∣∣∣dx

+ IρN4

∫ 1

0

∣∣∣ (ψ − ϕx) (3st − ψt)
∣∣∣dx

+ ρN5

∫ 1

0

∣∣∣s∫ x

0

ϕt(y)dy
∣∣∣dx+ IρN5

∫ 1

0

∣∣∣sts∣∣∣dx
+ ρ

∫ 1

0

∣∣∣ϕtϕ∣∣∣dx+ Iρ

∫ 1

0

∣∣∣ (3st − ψt) (3s− ψ)
∣∣∣dx.
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Exploiting Young’s, Cauchy-Schwarz and Poincaré’s inequalities, we get∣∣∣L(t)−NE(t)
∣∣∣ ≤ c1

∫ 1

0

[
ϕ2
t + (3st − ψt)2 + s2t + (3sx − ψx)

2

+ s2x + s2 + (ψ − ϕx)
2

+ θ2 + ω2

]
dx.

Consequently, we have ∣∣∣L(t)−NE(t)
∣∣∣ ≤ c1E(t),

that is,

(N − c1)E(t) ≤ L(t) ≤ (N + c1)E(t).

By choosing N large enough, (3.2) follows. Next, to prove (3.3), we take the derivative
of L(t), use (2.2), (2.4), (2.14), (2.21), (2.28), (2.30), (2.36), (2.38), and set

ε1 =
DN5

4N1
, ε2 =

GN3

4N1
, ε3 =

cN2

4N1
, ε4 =

IρN4

4N3
, ε5 =

ρ

2N5
.

So, we arrive at

L′(t) ≤− ρ

2

∫ 1

0

ϕ2
tdx−

[
Iρ
4
N4 − Iρ

] ∫ 1

0

(3st − ψt)2 dx−
D

4

∫ 1

0

(3sx − ψx)
2
dx

−
[
IρN1 − c1N2 − c1N3

(
1 +

N3

N4

)
− c1N4 − c1N5 (1 +N5)

] ∫ 1

0

s2tdx

−
[
G

4
N3 −GN4 − c1

] ∫ 1

0

(ψ − ϕx)
2
dx−

[
D

4
N5 − c1

] ∫ 1

0

s2xdx

− [γN5 − c1N3]

∫ 1

0

s2dx−
[ c

4
N2 − c1N3 − c1N5

] ∫ 1

0

θ2dx

−
[
Nκ2 − c1N1

(
1 +

N1

N5

)
− c1N2 − c1N3 − c1N5

] ∫ 1

0

ω2
xdx

−
[
Nκ3 − c1N1

(
1 +

N1

N5
+
N1

N3
+
N1

N2

)
− c1N2

] ∫ 1

0

ω2dx.

At this point, we choose the constants carefully. First, let us take N4 > 4. We then
choose N3 large enough such that

G

4
N3 −GN4 − c1 > 0.

After that, we select N5 large enough so that

γN5 − c1N3 > 0 and
D

4
N5 − c1 > 0.

Next, we choose N2 large enough such that

c

4
N2 − c1N3 − c1N5 > 0.
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Then, we pick N1 so large that

IρN1 − c1N2 − c1N3

(
1 +

N3

N4

)
− c1N4 − c1N5 (1 +N5) > 0.

Finallay, we choose N very large enough (even larger so that (3.2) remains valid) such
that

Nκ2 − c1N1

(
1 +

N1

N5

)
− c1N2 − c1N3 − c1N5 > 0,

and

Nκ3 − c1N1

(
1 +

N1

N5
+
N1

N3
+
N1

N2

)
− c1N2 > 0.

Therefore, we arrive at

L′(t) ≤ −τ4
∫ 1

0

[
ϕ2
t + (3st − ψt)2 + s2t + (3sx − ψx)

2

+ s2x + s2 + (ψ − ϕx)
2

+ θ2 + ω2
x + ω2

]
dx, τ4 > 0.

We finally use Poincaré’s inequality to substitute −
∫ 1

0
ω2
xdx by −

∫ 1

0
ω2dx and, hence,

(3.3) is established. �

We are now ready to state and prove the following exponential stability result.

Theorem 3.2. Let (ϕ,ψ, s, θ, ω) be the solution of (1.1)-(1.3) and assume (1.5). Then,
there exist two positive constants λ1, λ2 such that the energy functional satisfies

E(t) ≤ λ1 e−λ2t, ∀t ≥ 0. (3.4)

Proof. The combination of (3.2) and (3.3) gives

L′(t) ≤ −λ2L(t), t ≥ 0, (3.5)

where λ2 = τ3
τ2

. A simple integration of (3.5) over (0, t) yields

L(t) ≤ L(0)e−λ2t, t ≥ 0.

which yields the desired result (3.4) by using the other side of the equivalence relation
(3.2) again. �
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