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Existence results for a coupled system of
higher-order nonlinear differential equations
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Abstract. In this paper, we establish the existence and uniqueness criteria for
solutions of an integral-multipoint coupled boundary value problem involving a
system of nonlinear higher-order ordinary differential equations. We apply the
Leray-Schauder’s alternative to prove an existence result for the given problem,
while the uniqueness of its solutions is accomplished with the aid of Banach’s fixed
point theorem. Examples are constructed for illustrating the obtained results.
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1. Introduction

The topic of boundary value problems is an important area of investigation in
view of extensive occurrence of such problems in several diverse disciplines. Examples
include conservation laws [8], nano boundary layer fluid flow [4], magnetohydrody-
namic flow [18], magneto Maxwell nano-material [19], fluid flow problems [28], cellular
systems and aging models [1], etc.

Much of the literature on boundary value problems includes classical boundary
conditions. However, these conditions cannot model the physical and chemical pro-
cesses taking place within the given domain. In order to cope with this situation, the
concept of nonlocal conditions representing the changes happening at some interior
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points or sub-segments of the given domain was introduced. One can find the details
and applications of nonlocal boundary conditions in the articles [14, 11, 22, 16, 24, 15]
and the references cited therein.

Integral boundary conditions serve as an effective tool in the mathematical mod-
eling of the problems arising in the flow and drag phenomena in arteries [27], heat
conduction [9, 20, 10], biomedical CFD [23], etc. In fact, these conditions provide
a practical approach to fluid flow problems with arbitrary shaped blood vessels, for
instance, see [25]. For the boundary value problems involving integral boundary con-
ditions, for instance, see the papers [26, 21, 3, 7, 2, 6, 5, 13].

In [3], the authors obtained some existence results for nth-order ordinary dif-
ferential equations and inclusions supplemented with nonlocal multi-point integral
boundary conditions:

ul™(t) = f(t,u(t), ut™(t) € F(t,u(?))),t € [0,1],
_5/ s)ds, u'(0) =0, u”(0) =0,...,u""2(0) =0,

au(l) + fu'(1 z%/ s)ds, 0 <E<P1 < Pa<...<fBm <1,

where f : [0,1] xR — R is a given continuous function, F : [0,1] xR — P(R), P(R)
is the family of all nonempty subsets of R, and «, 5, v, 6, & B; (i =1,2,...,m)
are appropriately chosen real constants.

In this paper, motivated by [3], we formulate and investigate a boundary value
problem for a coupled system of higher-order nonlinear differential equations comple-
mented with coupled integral-multipoint boundary conditions given by

u(”)(t) = f(t,u,v), p(m) (t) = g(t,u,v), t €10,1],
§
w(0) = 5, /O o(s)ds,  w(0)=0, w'(0)=0,.... u2(0)=0,
v(0) = 8, /5 u(s) ds, v'(0) =0, 2"(0)=0, M2 (0) =0
0 . 5 . (1.1)
)+ G/ (1) = Yo [ vl + Y wron),
v s T
eav(1) + v’ (1) = Z Ai/o u(s)ds + Z@u(nj),

where 0 < £ < B1 < Ba < ... < Bp < m < 1m2 < ... < g <1, 01,00,€1,€3,
¢y Cosvis Viswi,w; € Ryi=1,2,...,p,j =1,2,...,q and f,g:[0,1] x R* — R are
given functions.

The objective of the present work is to develop the existence theory for the
problem (1.1) by applying the standard fixed point theorems. The outcome of the
proposed work will be a useful contribution to the existing literature on nonlinear
differential systems supplemented with coupled nonlocal integral boundary conditions.
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The rest of the paper is arranged as follows. In Section 2, we prove an auxiliary
lemma related to the linear variant of the problem (1.1). The main results for the
given problem are proved in Section 3. Section 4 contains examples illustrating the

main results.

2. An auxiliary lemma

In the following lemma, we solve a linear variant of the system (1.1) and use it
to convert the problem (1.1) into a fixed point problem.

Lemma 2.1. Let (J1 Ky — JoK;) # 0, (1 —616262) # 0 and y1,y2 € C([0,1],R). Then,

the linear boundary value problem

W) =yi(t), o) =we(t), te0,1],
€
w(0) = 5, /0 o(s)ds,  W(0)=0, u'(0)=0,..., u"2(0)=0,
3
v(0)252/ u(s)ds, ' (0)=0, v (0)=0,..., v™2(0)=0,
0 » : q (2.1)
eru(1) + G (1 Z o [ ot + S,
e2v(1) + (v'(1 Z / | (3)d8+zw/\ju(ﬁj)’
s equivalent to a pair of integral equations
t 9
(t—s)™
Z/l s)ds + N1 (t y2(s)ds
- [T [
j(e »
+No(t) ;!8 y1(8)ds
0 14 B (B q ’7;‘( )m—l
; s)ds wi [ TS (s)ds
+Ns<t>[;%o/ TR CCLEDY / (e
1
- [ a9 Gt D]
0
/4 B (ﬁ q )n—l
—H\Q(t)[; Z-O/ - ds—}—jz_:leb/ ol y1(s)ds
1
- [ - 9+ Gl = o], (22
0
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(m— 1)1 72

t 3
(t—s)m" E—9s)™
v(t) = ——————yo(s)ds + N5(t) | ——y2(s)ds
0/ 0/

where

Ni(t)
Ny(t)
N7 (t)

Ay

Ao

A10

n!
0
+N7(t)[zp:,y_7(ﬂ ds+zw /-)_1y2(s)d5
=1} m! ’ - 1!
1
1 n—2
_/ ( T 8)1)' [e1(1—8)+ Ci(n— 1)}y1(3)d3}
0
b g
+N8(t)[z Ai/ oy s)ds + ij/ — — 1 (s)ds
=1 J
1
1— m—2
_/ ((m i)ly [e2(1 = ) + Ga(m — D)]ya(s )dS} (2.3)
0
A+ Ast™h, No(t) = A+ Aet™ ™", Na(t) = Az + Aqt" 1,
Ag+ At Ns(t) = Ag + Aat™ ", No(t) = Ao + Agat™ !,

Aqr 4 Agst™ Ng(t) =

Agg 4+ Agst™

pa(no €M K1 + m61(52£n+1K2) — pe(n61€™ Ty + m(5152£n+1j2)

p1+

ps(N61E™ K + mé1826" T Ko) —

M(1 — 616262)mn

p7(n51§mJ1 =+ m6152§”+1.]2)

P2 M(l —51(5252)77,

(n51§mK1 + m61§2§”+1K2)
M(l — 515262)77171 ’

(pa K2 — peJ2) A —
M » =6 M

Ay =

(n51£WJ1 + m5162§"+1J2)

(ps K2 — p7J2)

(n5152§m+1K1 + m61§"K2) —

M(l — 515262)77171 ’

K> J2

) A7:M7 Aszﬁv

pe(nd1626™ 1 J1 +mé1€" J2)

p3+p4

M(l — 515252)77%71

p5(nd1026™ T K1 4+ md1€" Ka) — pr(nd1626™ T I + mé1€" J2)

p1+

M(l — 51(5252)’”@1@

)

)

)
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A N (n51(52£m+1K1 + m51§”K2) Avy —
" o M(l - 5152{2)7’117’1, ’ 2=

(nd1026™ 1 + mé1 €™ J)
M(l — (515252)7’17,” ’

K1 — peJ K1 — prd K J
A = efazpe) STE D py = eFamerh) ST L, Ais=57 Aw= 75
_ 1 o A2 o Bz _ BngfC&
P e PP T T 6002 PP T T 5002 P T 1 — 50062
Dy - Ay _ B:Er - I B - Ay
Pe = A 5,2 P T 1 60,2 T T T 5100620
6 5 n+1 —6 nD
o= % 26Dy | b Gi(n 1),

n(l — 51(5252)

51026 — 626" ey
n(l — 61(5252)

_ 01€"(626D1 — &) _
S = m(1 — §102€2) +Ds, Ko =

+ By,

o (51€m(52£€2 — Fl) . _
Ky = —m(175152€2) +D2, M = J1 Ko J2K1,

P q p q
B -
Dy = E viBi + E w;n;, D2 = E Vi —+ E winy*
i=1 j=1 i=1 Jj=1

P q P n q
D LT RS i R Y (2.4
i=1 j=1 i=1 j=1

Proof. Solving the system of ordinary differential equations in (2.1), we get

G .
u(t) = A W%(S) S+co+cit+...+cp_1t" T,

(t _ S)m—l 1 (2 5)
t) = - ds+byg+bit+ ...+ b1t
o(t) /0 (m—1)! yo(s)ds + by + bt 4 ... + 1
where ¢;,b; € R, i = 0,1,...,n — 1,m — 1, are arbitrary constants. Making use of
the conditions u'(0) = 0, v”(0) = 0,..., =2 (0) = 0 and v'(0) = 0, v"(0) = 0,...,
v™=2)(0) = 0 in (2.5), we get ¢; = 3 = ...,cpo =0,bg = by = ..., b1 = 0. In

consequence, (2.5) takes the form

t n—1
t_
u(t):/o 7( 5) ! yl(s)ds—i—co—i—cn,lt”_l,

n—1
— ! (t(_ S)m?_l d b b m—1 (2 6)
’U(t) = o WyQ(S) s + o0 + mflt .
3 13
Using (2.6) in the conditions u(0) = 1 [ v(s)ds and v(0) = d2 [ u(s)ds, we get
0 0

(2.7)

)

13 _\m
co =01 / 7(6 mT) yo(r)dr + 0160 + 61bpm—1
O .

2|73
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and

¢
bO = 62/ (5 ;L'T) Y1 (’I“)d’l“ + 60525 + Cnflég%. (28)
0

Now, inserting (2.6) in the conditions:

p Bi q
eu(l) + G’ (1) = 35 / o(s)ds + 3 wio(n),
i=1 =1

0

P 8; q
ev(1) + o' (1) = Zf?z/o u(s)ds + Z@u(m),
i=1 =1

we obtain

co€1 + cn—1ler + CG(n—1)] + /0 (1- s)"—2[61(S—f))!+ ¢i(n—1)]

= by [Z%ﬁﬂrzwﬂb] + b1 [Zv

+ Z’yi/o ' %f)my2(s)ds + ZOJJ‘ /Onj %yg(s)ds, (29)

y1(8)ds

bo€a + bp—1]e2 + Ca(m

P q r.opgn &
Foa n—1
E § wji| +cn-1 E i + E Wi,
i=1 j=1 i=1 j=1
p q ; —
B e
i 7y (s)ds + w-/ —————y1(s)ds. (2.10)
; 0 n! ' Jz::l " Jo (n—1)! '

We can express equations (2.7)-(2.10) in the form

co — Azby — Azby—1 = Ay,

—Bacg + by — Bsen—1 = By,

Cico — D1bg + Cocp—1 — Daby—1 = D3 — Cs,
—Fico + Erbg — Facp—1 + Eoby,—1 = F3 — Es,

(2.11)

where Dy, Do, F} and Fy are given in (2.4) and
€

A = 51[/%%(”%}’ Ay = §1€, As 25157

n

0
€

B = 52[/(5"") p()dr|,  By=0¢  By=b,
0
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Ci = e, Co =e€1 +(i(n—1),
1 —8)" 2[e(1—s 1(n —
oy = /0(1 ) [((nl_l))"FC( 1)}y1(5)d8’
_ _ gym-1
Dy = Z%/ ds+z%/ 7’_)1)!y2(s)ds,
E; = e, Ey = €3 + (a(n — 1),
By = /0(1_3)m— [62((1:3'_'—@(”1_1)]y2(s)ds, (2.12)

n—1

[P (B (1 —9)
B = ;’yi/o - ds—!—ij/ wyl(s)d&

Solving the first two equations in (2.11) for ¢g and by in term of ¢,,—; and b,,—1and
using the notation in (2.12), we obtain

co = G1 + Gaby—1 + Gsep_1,

(2.13)
bo = Hi + Hobp,—1 + Hzcp—1,
where
A Ao B A AsB AB B
G A G A o A BBy
Ii 5 ! 5 ! ! (2.14)
Hy =22 27 H3:*37 rp=1— 010262
T1 T1

Substituting the values of ¢o and by from (2.13) in the last two equations of (2.11),
we get

Cn—1J1 — bpm—1J2 = J3,
{ a1 K1 — b1 Ky = K, (2.15)
where Jy, Ja, K1, Ko are given in (2.4) and
A1(BxD1 — Ch) + B1(Dy — AxC
Iy = 1(B2Dy 1) 1(D1 21)+D3_03’
1
Ay(ByEy — Fy) + By (E; — AyF (2.16)
— + J—
Ky — 1(B2Ey 1) 1(E1 21)+E3—F3.
T1
Solving the system (2.15) for b,,—1 and ¢,_1, we find that
L JsKa = DK,
"L Ky — DKy
(2.17)
J3K1 — J1K3
bm—l =

J1 Ky — oKy
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Inserting (2.17) in (2.13), we obtain

G1(J1 K2 — Jo K1) + Go(Js K1 — J1K3) + G3(J3 K2 — J2 K3)
LKy — JoK) ’

Co =
(2.18)
Hy(J1 K2 — J2 K1) + Ha(Js Ky — J1K3) + Hs(Js Ko — J2K3)
JiKs — J2 K1 '
Substituting the above values of ¢,_1, byn_1, co and by into (2.6) together with the
notation (2.4), we obtain the solution (2.2) and (2.3). One can obtain the converse of
the lemma by direct computation. O

bo =

In the sequel, we set
N; = max |N;(t)],i=1,2,...,8,
t€[0,1]
§m+1 £n+1

1= (m+1) 102 = (n+1)

Bt 1] [SY (2.19)
Zl’yl m+1)! +Z‘J| U4:<711!+(n11)[>’
| n+1 + |A| _ @‘F |<2|
Z% +1 Z jn" 7%= \ml (m—-1)!)"

where N;(t),i =1,2,...,8, are given in (2.4).

3. Main results

In the forthcoming analysis, we need the assumptions:

(H1) There exist real constants m;,n; > 0,5 = 1,2 and mo > 0,79 > 0 such that
Vu,v € R,

[f (&, u, )| < o + M ful +malvl,  [g(t, u, v)| < Ro + D ful + 1z v;

(Hs) There exist positive constants ¢; and fs such that, V¢ € [0,1] and u;,v; € R,
i=1,2,

|f(t,ur,v1) — f(t, w2, v2)] < li(Jur — ua| + |v1 — val),
lg(t,ur,v1) — g(t,uz,v2)| < La(|ur — uz| + [v1 — v2l).

For the sake of convenience in the mathematical computations, we set

Qo = min{l — (@171 + Q271),1 — (Q1M2 + Q27i2)},

Q1 =q1+q, Q2=q + ¢,

@1 = 7 + N202 + N30y + Naos, ¢t = Nioy + Nsos + Nyos, (3.1)

_ _ _ 1 _ _ _
g2 = N¢oo + N7oyg + Ngos, ¢ = oo + Nso1 + N7o3 + Ngog.
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Let X = {u(t) | u(t) € C([a,b])} be the space equipped with norm

[ull = sup{[u(®)], ¢ € [a,b]}.

Then, (X, |-||) is a Banach space and consequently, the product space (X x X, ||(u,v)||)
is also a Banach space endowed with the norm ||(u, v)|| = ||u||+||v] for (u,v) € X x X.
By Lemma 1, we define an operator 7 : X x X — X x X associated with the problem

(1.1) as

where

and

T (u, 0)(t) := (Tu(u, 0)(1), T2(u, v)(t)),

T (u, v) (1)

t

. e
/%f(s,mv)dwr]\]l(t)/(é

£
—|—N2(t)/ (& — S)Hf(s u,v)ds + N3(t [Z%/ )mg(s,u,v)ds

s)™
—9(s,u,v)ds

o

n!

p Bi e q j gt
+N4(t)[. yﬁ-/%f(s,u,v)derZw/\j/%f(s,u,v)ds
,/%(EQ(PS)HQW* )g(s,u,0)ds], (3.2)
T2(u, v)(t)
/ t—s)mt §
/ﬁg(s u,v)ds + N5(t (s,u,v)ds

1S
+N6(t)/(£;!5) f(s,u,v)ds + N7 (¢ [Z%/ ) 22 g(s,u,v)ds
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+Ns(t [Z%/ suvds—chw/ n—l f(s,u,v)ds
1

/ 0= (61— 5) + Golm — 1)g(s, . v)ds]. (33)

0

3.1. Existence of solutions
In this subsection, we discuss the existence of solutions for the problem (1.1) by
using Leray-Schauder’s alternative [17], which is stated below.

Lemma 3.1. Let T : K — K be a completely continuous operator (that is, a map
restricted to any bounded set in K is compact). Let

Y(T) ={x € K :z=¢T(x) for some 0 < ¢ < 1}.
Then, either the set ¥(T) is unbounded or T has at least one fized point.

Theorem 3.2. Let f, g : [0,1] xR? — R be continuous functions. Assume that condition
(Hy) holds, and

Q1m1 + Qg <1 Q1Mma + Q22 < 1,
where Q1 and Q2 are given by (3.1). Then, there exists at least one solution for the
problem (1.1) on [0,1].

Proof. First of all, we show that the operator 7 : X x X — X x X is completely
continuous. Notice that the operator 7 is continuous as the functions f and g are
continuous. Let ¥ = {(u,v) € X X X : ||(u,v)]] < p}. For any u,v € ¥ we have

|f(t u, 0)|

Mo + malul + malv| < mo + (M1 4 ma)(Jlull + [[v])
77/7}) + (77/1\1 +77/1\2),0 =RE,

IN A

and similarly
lg(t,u,v)| <o+ (P71 +N2)p i= Ky.
Then, for any (u,v) € B,, we obtain
)

T, 0) 0
oo e
< é}é‘i}{ / ﬁuw,u,vndwman | et wotas
vl [ s it

(n

|Ns<>[/0 %[a( )+ Guln = D)1 (s, 0)lds

Bi (B, _ )™ kl M (n: —
# 3 [ O atswolas + 3 [ O s oas

+|N4<t>[ | S et = )+ alm = Dl w v)lds

(m
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+Z%/ )Ifsuv|d8+zwg/ e f(s,u,v>|dsH

Nio1 + Nsoz + N4U6:|

IN

1 _ _ _
o + Naooo + N3oy + Naos | + kg

S qul"_ffgq_h

which implies that || 7i(u,v)|| < Kpq1 + K¢G1, where ¢; and ¢; are given in (3.1).
Similarly, one can obtain that ||72(u, v)|| < Kfq2 + keg2, where go and ¢ are defined
n (3.1). From the forgoing inequalities, we get |7 (u, v)|| < kfQ1 + kgQ2, where Q1
and @9 are given in (3.1), which shows that the operator 7 is uniformly bounded.
Next, we establish that T is equicontinuous. For t1,ts € [0,1] with ¢; < t2, we have

|71 (w1, v1)(t2) — T1(uz,v2)(t1)]

< /Otz%f(&u,v)ds—/otl %f(s,u,u)ds
N (62) ~ Na(m)] j C % s, ) s
HNa(t2) = Na(ts)] | T o w0
[ Na(t2) = Na(tr)| { / 1 %[elu —5)+ Gl = D] F(s,u,0)lds
+§%/Om (ﬁimls)m|g(s,u,v)d8+gw1 /O"j %Li);n)l|g(s,u,v)ds]
I Na(tz) — Na(to)| { / %[ex ) + Galm — Dllg(s,u,v)|ds
+Z%/ ) (5,0, \derZw]/ n(n__s)l)l|f(s,u,v)ds]}
< L (Ata — )" 15— 1)+ INu(12) — Na(t)lgor + Na(t2) — Na(ta) s

+|N3(t2) — N3(t1)|(kfoa + kgos) + |Na(tz) — Na(tr)|(kros5 + Kg06),

which tends to zero as (t2 —t1) — 0 independent of (u,v) € ¥. In a similar manner,
it can be shown that |T2(u1, v1)(t2) — Ta(uz2,v2)(t1)| = 0 as (t2 —t1) — 0 independent
of (u,v) € U. Thus, the operator T is equicontinuous.

Finally, it will be verified that the set ¢ = {(u,v) € X x X|(u,v) = ¢T (u,v),
0 < ¢ < 1} is bounded. Let (u,v) € ®. Then (u,v) = ¢T (u,v) for any ¢t € [0,1].
Therefore, we have u(t) = 71 (u,v)(t), v(t) = ¢T2(u,v)(t). In consequence, it follows
by the assumption (H;) that

lu(t)| = qimo + @i + (ma + @na) ||ul| + (game + @) ||v||, (3.4)

and
[v(t)| = gamo + 2o + (g2 + @) ||ul] + (g2me + G@nz) v, (3.5)
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where ¢1,¢2.G1, and @2 are given in (3.1). From (3.4) and (3.5), we have

lull + vl < (g1 + g2)mo + (G1 + G2)70 + [(q1 + g2)a + (G1 + G2)ma][|u|
+(q1 + g2)m2 + (@1 + G2)nz] ],
which, in view of (3.1), can be written as
Q1Mo + Q2o
Qo '

This shows that the set ¢ is bounded. Hence, by Lemma 3.1, the operator T has at
least one fixed point. Therefore, the problem (1.1) has at least one solution on [0, 1].
This completes the proof. O

1w, )] <

3.2. Uniqueness of solutions
Here, we establish the uniqueness of solutions for the problem (1.1) by means of
Banach’s contractions mapping principle [12].

Theorem 3.3. Suppose that f, g : [0,1] xR? — R are continuous functions, the assump-
tion (Hs) and the following condition

Q1l1 + Q262 < 1, (3.6)
hold, where Q1 and Qo are given in (8.1). Then, the problem (1.1) has a unique

solution on [0, 1].

Proof. Firstly, we show that 7B, C B, where B, = {(u,v) € X X X : ||(u,v)| < r}

is a closed ball with
Q1N + Q2N

T 1—(Q1l + Qala)
Let us set sup,ejo 17 [f(¢,0,0)] = p1 and supse(o1719(¢,0,0)[ = po. Then, by the as-
sumption (Hs), we have
(s, u(s), v(s))| = [f(s,u(s),v(s)) = f(s,0,0) + f(5,0,0)|
< [f(s,u(s),v(s)) = f(5,0,0)[ +[f(s,0,0)|
< O((lull + [loll) + w1 < bl (w, 0) | + p1 < b+

(3.7)

Likewise, one can obtain that

l9(s, u(s), v(s))] < lor + pa.
For (u,v) € B,, we have

|71 (u, v)(2)]
ft—s)"! (e
< { / (n_ 1)! suolas+ 0] [ ED g(o,, s
5
+[N2(t)] If s,u,v)|ds

0

+|N3<t>[/0 %[a( )+ Culn — D] f(s,u,v)|ds

(n
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p Bi (B _ g\™m ki M (. _ ym—1
#3 [ P ets w3 [ %m@,w)ds}

N0 [ / %[Q(l — )+ Galm — 1)lg(s,w,v)lds

-|-ny,/ ) |f(s,u,v |ds+zwg/ ‘n_j)ln : f(s,u7v)|ds}}

[61r + pa] [ﬁ + Naooo + Naoy + N405] + [lar + pe2] [NlUl + Nzoz + Nzﬂe]
q1(1r 4+ p1) + G (lar + p2),

which implies that

(|71 (uw,0))|| < qu(lar + p1) + G (bor + p2).

Similarly, we can get

H7—2(ua U))H < qQ(Elr + ,ul) + @(627‘ + Mg).

From the above estimates together with (3.7), it follows that |7 (u,v)| < r. Since
(u,v) € B, is an arbitrary element, therefore 7B, C B,.
Now, we show that the operator T is a contraction. For (u1,v1), (ug,v2) € X X X, we

have

IN

[T (w, v1)(t) — 7'1(u2av2)(t)\

sup {/ (s,u1,v1) — f(s,u2,v2)|ds
0

te(0,1]
-f

+N1(1)] |9 s,u1,v1) — g(s,u2,v2)|ds
0
€ (

+| N2 ()] |f s,u1,v1) — f(s,u2,v2)|ds

0

+INs(?) [/O 178 [61(1—8)+Cl(n—1)]|f(8,m,v1)—f(s,Uz,vz)lds
P Bl o m
+Z’Yz/ 78)|g(8 U17’U1) —g(S7UQ7U2)|d5
j L mfl
+;w]/0 %Lg(svulavl) g(S,’lI,277_)2)|d8:|

LN ()] [ / A= 7 1,(1— s) 4 Calm — 1)]lg(s, u, 01) — g(s, uz, v2)|ds

(m —1)!
L Bi _\n
+;’%/0 %Iﬂ&uhm) — f(s,uz,v2)|ds
2 i . _ o\n—1
+;@ | (nj(n_S)l)V(S,uhm)f(s,u27v2)|d3:|}
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IN

1 _ _ _
4y [ﬁ + Naoa + N3oa + N4U5} (Jur — u2| + |v1 — v2])

+L2 []\7101 + Nsos +N40'6:| (Jur — uz| + |v1 — v2|)

IN

(Lrgr + L2q1) (Jur — uz| + |v1 — v2)),
which implies that

(71 (w1, v1) = Ti(ug, v2)|| < (Lrqr + Loqi)(Jur — uz| + [v1 — val). (3.8)
In a similar manners, we get
(T2 (w1, v1) — Ta(uz, v2)|| < (b1g2 + £2G2)(Jur — ua| + |v1 — va). (3.9)

From (3.8) and (3.9), we deduce that
[T (u1,v1) = T (uz, v2)|| < (Quly + Q2b2)([Jur — szl + [[vr — v2l]),

where @)1 and Q5 are given in (3.1). By the assumption (3.7), it follows from the above
inequality that the operator T is a contraction. Thus, by the Banach’s contraction
mapping principle, the operator 7 has a unique fixed point, which corresponds to a
unique solution to the problem (1.1) on [0, 1]. O

4. Examples

Example 4.1. Consider the integral-multipoint boundary value problem of nonlinear
differential equations
1 1 |u?| et
(3) i
u (¢ + + sin v, t e |0,1],
(1) = 2+9 V24414 |u) 412%4 [0,1]

et U CoS v v lu

U(4)(t)=T6+ %t2+36+(t2+5) A+ u)’
3 3
u(0) = 51/0 v(s)ds, u'(0) = 0, v(0) = 52/0 u(s)ds, v'(0) =0, v"(0) =0,

3
equ(1) + Gl (1 Z% / v(s)ds + 3 wiv(m),
ng
exv(1) + Gov' (1 Z% / u(s)ds + S Gulny),

€ [0,1],

(4.1)
where n =3, m =4, 0, = 1.2, 65 = 1.5, e; = 0.7, € = 0.4, (; = 2.6, (» = 2.1, £ = 0.1,
By =02, By =03, B3 =04, Bs =05, 1 =06, 75 = 0.7, 73 = 0.8, 71 = 0.325,
No = 0.572, v3 = 0.811, 74 = 0.124, wy = 0.267, wo = 0.489, ws = 0.712, 71 = 0.452,
F = 0.695, 33 = 0.831, 74 = 0.203, &, = 0.378, &o = 0.617, @3 = 0.954.

Using the given data in (2.4), (2.19) and (3.1), we find that N; ~ 0.978509,
Ny ~ 0.3632664, N3 ~ 0.172781, Ny ~ 0.020315, N5 ~ 0.621273, Ns ~ 1.038184,
N; ~ 0.035554, Ng = 0.221574, o1 ~ 0.0000008, o2 ~ 0.000004, o3 ~ 0.017157,
o4 ~ 1416667, o5 =~ 0.118329, ¢ ~ 0.413846, g2 ~ 0.076591, g1 ~ 0.010413,

G ~ 0.123521, Q1 ~ 0.490437, Q2 ~ 0.133934.
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Also it is easy to find that |f(¢,u,v)] < 1/9 + 1/2[uf + 1/4|v], [g(t,u,v)| <
1/16+1/6|U|+1/5|U|, Q1m1+Q2h\1 ~ 0.267541 < 1 and lez-f—QQ/ﬁQ ~ (0.149396 < 1.
Clearly all the assumptions of Theorem 3.2 are satisfied. Therefore, there exists at

least one solution to the problem (4.1).
Example 4.2. Consider the system of ordinary differential equations
1 _1 1 [v] et
———tan" tu+ + =, telo,1],
VETT0 @y rpy T 0N

V() = - inu+ — osv+ L teo,1]
_t2+ t‘3+47 PR b

subject to the boundary cond1t10ns in Example 4.1.

Observe that ¢ =1/10,¢, = 1/2 as

u® (t) =

1

|f(t7u17vl)_f(t7u27/02)‘ < (|’U,1 —U2|+|U1 —’U2|)

,_\>—~

lg(t,ur,v1) — g(t, ug, v2)| < (|U1 — ug| + |v1 — val).

Moreover, Q141 + Q24> ~ 0.088091 < 1. Thus7 the hypotheses of Theorem 3.3 are
satisfied and hence its conclusion applies to the problem (4.2).

5. Conclusions

‘We have developed the existence and uniqueness results for a new class of coupled
systems of two nonlinear ordinary differential equations of order n and m subject to
the coupled integral-multipoint boundary conditions. Our results are not only new in
the given configuration but also yield some new ones by fixing the parameters involved
in the given boundary data. In future, we plan to develop the multivalued version of
the problem studied in this paper.
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