
Stud. Univ. Babeş-Bolyai Math. 70(2025), No. 2, 219–232
DOI: 10.24193/subbmath.2025.2.04

Some classes involving a convolution of analytic
functions with some univalency conditions
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Abstract. In this paper, involving a convolution f ∗ g, two classes of normalized
analytic functions f are defined. Showing an inclusion relation between these
classes, various sufficient conditions for functions to be in these classes are es-
tablished. In particular, varied forms of univalency conditions of the convolution
function f ∗g are given which lead to some univalency conditions of several linear
operators.
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1. Introduction

Let H denote the class of functions analytic in the open unit disk

U = {z : |z| < 1} ,
and for k ∈ N = {1, 2, ...} and a ∈ C, let

H [a, k] =
{
f ∈ H : f(z) = a+ akz

k + ak+1z
k+1 + ...

}
.

Let A denotes a class of functions in H [0, 1] of the form

f(z) = z +

∞∑
k=1

ak+1z
k+1. (1.1)
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A subclass of univalent functions in A is denoted by S. Functions f ∈ A is said to be
in the class S∗, a class of starlike functions if

<
(
zf ′(z)

f(z)

)
> 0 in U.

A convolution (Hadamard product) ∗ of f ∈ A of the form (1.1) and g ∈ A of
the form

g(z) = z +

∞∑
k=1

bk+1z
k+1, (1.2)

is defined by

f(z) ∗ g(z) = z +

∞∑
k=1

ak+1bk+1z
k+1 = g(z) ∗ f(z). (1.3)

Note that the convolution preserves the class A.
Several linear operators have been studied in Geometric Function Theory so

far, which are defined in the form of convolution, differential, integral, and fractional
differintegral linear operators. Some of the known linear operators for the class A,
are the Dziok-Srivastava convolution operator [5], the Srivastava-Attiya linear oper-
ator [19], the Jung-Kim-Srivastava integral operator [7], a multiplier operator [16]
and a fractional differintegral operator introduced by Owa and Srivastava [10]. The
convolution representation of these operators may be given as follows:

The Dzoik-Srivastava operator [5]: pHq ([α1]) : A → A is defined by

pHq ([α1]) f(z) = z pFq(α1, ..., αp;β1, ..., βq; z) ∗ f(z) (1.4)

where

pFq(α1, ..., αp;β1, ..., βq; z) =

∞∑
k=0

p∏
i=1

(αi)k

q∏
i=1

(βi)k

zk

k!

(p ≤ q + 1, p, q ∈ N0 = {0, 1, 2, ...} , αi, βi ∈ C (βi 6= 0,−1,−2, ...); z ∈ U)

is the generalized hypergeometric function ([12, p. 19]). The symbol (λ)k is the
Pochhammer symbol defined by

(λ)k =
Γ (λ+ k)

Γ (λ)
= λ (λ+ 1) (λ+ 2) ... (λ+ k − 1) , k ∈ N; (λ)0 = 1.

The Srivastava-Attiya linear operator [19]: Ja,b : A → A is defined in terms of
generalized Hurwitz-Lerch Zeta function φ (b, a, z) [20] by

Ja,bf(z) = Ga,b(z) ∗ f(z), (1.5)

where

Ga,b(z) = (b+ 1)
a (
φ (b, a, z)− b−a

)
= z +

∞∑
k=1

(
b+ 1

b+ n

)a
zk+1

(b ∈ C (b 6= 0,−1,−2, ...) , a ∈ C; z ∈ U) .
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The fractional integral operator D−µz of order µ (µ > 0) for the function f ∈ A
is defined by (see [9])

D−µz f(z) =
1

Γ (µ)

z∫
0

f(t)

(z − t)1−µ dt (z ∈ U) ,

where the multiplicity of (z − t)µ−1
is removed by requiring log (z − t) to be real

when z− t > 0. Also, the fractional derivative operator Dλ
z of order λ (λ ≥ 0) for the

function f ∈ A is defined by

Dλ
z f(z) =

 1
Γ(1−λ)

d
dz

z∫
0

f(t)

(z−t)λ dt (0 ≤ λ < 1) ,

dn

dznD
λ−n
z f(z) (n ≤ λ < n+ 1, n ∈ N0 = N∪{0}) ,

where the multiplicity of (z − t)−λ is understood similarly.

Owa and Srivastava [10] introduced a fractional differintegral operator

Ωλz : A → A (−∞ < λ < 2)

by

Ωλzf(z) = Γ (2− λ) zλDλ
z f(z) (z ∈ U) ,

where Dλ
z f(z) is, respectively, the fractional integral of order λ( −∞ < λ < 0) and a

fractional derivative of order λ (0 ≤ λ < 2). The operator Ωλz for the function f ∈ A
is given in the form of convolution by

Ωλzf(z) = z 2F1 (2, 1; 2− λ; z) ∗ f(z) (−∞ < λ < 2; z ∈ U) . (1.6)

The Jung-Kim-Srivastava integral operator [7] Qαγ : A → A ( α > 0, γ > −1) is
defined by

Qαγ f(z) =

(
α+ γ
γ

)
α

zγ

z∫
0

(
1− t

z

)α−1

tγ−1f(t)dt (z ∈ U)

which can also be expressed as follows:

Qαγ f(z) = z 2F1 (γ + 1, 1;α+ γ + 1; z) ∗ f(z). (1.7)

The multiplier operator =mλ,µ : A → A, recently studied in [16] (see also [15, 18])

is defined for m ∈ Z = {...,−2,−1, 0, 1, 2, ...} , µ > −1, λ > 0, by

Jmλ,µf(z) =


f(z), m = 0,

µ+1
λ z1−µ+1

λ

z∫
0

t
µ+1
λ −2Jm+1

λ,µ f(t)dt, m ∈ Z− = {−1,−2, . . .} ,

λ
µ+1z

2−µ+1
λ

d
dt

(
z
µ+1
λ −1Jm−1

λ,µ f(z)
)
, m ∈ Z+ = {1, 2, . . .}

(1.8)
which may be given by

Jmλ,µf(z) = Φmλ,µ (z) ∗ f(z), (1.9)
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where

Φmλ,µ (z) =

∞∑
k=1

(
1 +

λ (k − 1)

µ+ 1

)m
zk.

Let f and g be analytic functions in the unit disc U. Then we say that f is
subordinate to g, and we write f ≺ g if there exists a function w analytic in unit disc
U, such that

w (0) = 0, |w (z)| < 1 (z ∈ U)

and

f(z) = g(w(z)),∀ z ∈ U.

In particular, if g is univalent in U, then we have the following equivalence:

f ≺ g ⇔ f(0) = g(0) and f(U) ⊂ g(U).

In [6], Janowski introduced the class S∗ [A,B] of functions f ∈ A satisfying the
condition:

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U) .

Geometrically, the above subordination condition means that the image of the unit

disc U by the function zf ′(z)
f(z) is in the open disc whose endpoints of the diameter

are 1−A
1−B and 1+A

1+B (in case B 6= −1) and in the positive half plane <
(
zf ′(z)
f(z)

)
>

1−A
2 (in case B = −1) .

For particular values of A,B, we get S∗[1,−1] = S∗, a class of starlike functions,
S∗[1− 2α,−1] = S∗ (α) (0 ≤ α < 1) , a class of starlike functions of order α;
S∗[1− α, 0] = S∗α and S∗[α,−α] = S∗[α] (see [2]).

On using convolution, we define following subclasses of the class A:

Definition 1.1. A function f ∈ A is said to be in the class S∗ [µ, g;A,B] if for

−1 ≤ B < A ≤ 1, µ ≥ −1 and for some g ∈ A with 0 6= (f∗g)(z)
z ∈ C, it satis-

fies (
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) ≺ 1 +Az

1 +Bz
(z ∈ U) , (1.10)

where only principle values of the exponent function are considered.

Remark 1.2. Let µ = 0 and g (z) = z
1−z (z ∈ U), we get S∗ [µ, g;A,B] = S∗ [A,B] .

Remark 1.3. If we put µ = 0, g (z) = z
(1−z)2 (z ∈ U) and A = 1 − 2α,B = −1 in

S∗ [µ, g;A,B] then we obtain the class K(α) convex functions of order α studied by
Robertson [17].

Definition 1.4. A function f ∈ A is said to be in the class B (g, µ;β) if for 1
2 < β ≤ 1,

µ ≥ −1 and for some g ∈ A with 0 6= (f∗g)(z)
z ∈ C, it satisfies∣∣∣∣∣

(
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z)− β

∣∣∣∣∣ < β (z ∈ U), (1.11)

where only principle values of the exponent function are considered.
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Example 1.5. The following example µ = 0, f(z) = z
(1−z)2 and g (z) = z

1−z satisfies

the conditions of Definitions 1.1 and 1.4.

In particular, S∗ [µ, g; 1, 0] ≡ B (g, µ; 1) .

Remark 1.6. If β = 1 and µ = 1, the class condition (1.11) for the class B (g, µ;β)
provides a univalency criterion for the functions f∗g according to Ozaki and Nunokawa
[11], see also [1, 4].

In this paper, for a certain function g ∈ A, involving a convolution f ∗ g, two
classes S∗ [µ, g;A,B] and B (g, µ;β) of f ∈ A, are defined. Showing an inclusion
relation between these classes, various sufficient conditions for functions to be in
these classes are established. In particular, varied sufficient conditions for univalency
of the convolution function f ∗ g are given which lead to the univalency conditions of
various known linear operators.

2. Main results

We first prove an inclusion result for the classes S∗ [µ, g;A,B] and B (g, µ;β)
which is as follows:

Theorem 2.1. Let f ∈ A and 0 ≤ B < A ≤ 1, 1
2 < β ≤ 1 be such that

A ≤ 2B (1− β) + 2β − 1. (2.1)

Let the classes S∗ [µ, g;A,B] and B (g, µ;β) be defined, respectively, by Definitions
1.1 and 1.4.Then

S∗ [µ, g;A,B] ⊂ B (g, µ;β) .

Proof. If f ∈ S∗ [µ, g;A,B] , then there is a Schwarz function w analytic in U with
w(0) = 0 and |w(z)| < 1 (z ∈ U) , such that(

z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) =

1 +Aw(z)

1 +Bw(z)
(z ∈ U) . (2.2)

Hence, for the given hypotheses (2.1) and for this Schwarz function w given by (2.2),
we get ∣∣∣∣∣

(
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z)− β

∣∣∣∣∣ =

∣∣∣∣1 +
(A−B)w(z)

1 +Bw(z)
− β

∣∣∣∣
< 1 +

A−B
1−B

− β ≤ β

which implies that f ∈ B (g, µ;β). This proves Theorem 2.1. �

Example 2.2. The following example µ = 0, f(z) = z + z2

2 and g (z) = z
1−z satisfies

the condition of Theorem 2.1.

In view of Remark 1.6, for β = 1 and µ = 1, Theorem 2.1 provides following
univalency condition for the convolution f ∗ g:
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Corollary 2.3. Let f ∈ A and let for some g ∈ A with 0 6= (f∗g)(z)
z ∈ C,(

z

(f ∗ g) (z)

)2

(f ∗ g)
′
(z) ≺ 1 +Az

1 +Bz
(0 ≤ B < A ≤ 1; z ∈ U) .

Then f ∗ g is univalent in U.

Now, we prove certain sufficient conditions for functions to be in the class
S∗ [µ, g;A,B] , for this, we apply the method of admissible function used in the fol-
lowing lemma which is the special case of the result [8, (ii) Theorem 2.3h, p. 34].

Lemma 2.4. [8, (ii) Theorem 2.3h, p. 34] Let Ω be a subset of the complex plane C
and let an admissible function ψ : C2 × U→ C satisfies the condition

ψ(Meiθ,mMeiθ; z) /∈ Ω

for real M > 0 and m ≥ k ≥ 1 and z ∈ U. If the function w ∈ H [a, k] , then

ψ(w(z), zw′(z); z) ∈ Ω⇒ |w(z)| < M (z ∈ U) .

Theorem 2.5. Let f ∈ A and let for some θ ∈ R,m ≥ 1, −1 ≤ B < A ≤ 1,∣∣∣∣1 +
(A−B)meiθ

(1 +Aeiθ) (1 +Beiθ)

∣∣∣∣ ≥ 1. (2.3)

If for some g ∈ A with 0 6= (f ∗ g)
′
(z) · (f∗g)(z)

z ∈ C in U,∣∣∣∣1 +
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < 1, (2.4)

then f ∈ S∗ [µ, g;A,B] .

Proof. Let

p(z) =

(
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) (2.5)

and w ∈ H [0, 1] be defined by

p(z) =
1 +Aw(z)

1 +Bw(z)
(z ∈ U) , (2.6)

then w is analytic in U. To prove the theorem we only need to prove |w(z)| < 1. For
this purpose, we define an admissible function Ψ : C2 × U→ C by

Ψ (r, s; z) = 1 +
(A−B) s

(1 +Ar) (1 +Br)
(−1 ≤ B < A ≤ 1) , (2.7)

where r 6= − 1
A ,−

1
B (in case A,B 6= 0). Then, from (2.3), we have∣∣Ψ (eiθ,meiθ; z)∣∣ ≥ 1. (2.8)

Differentiating equations (2.6) and (2.5) logarithmically, we obtain

1 +
zp′(z)

p(z)
= 1 +

(A−B) zw′(z)

(1 +Aw(z)) (1 +Bw(z))
(2.9)

= 1 +
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}
.
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Let Ω be a subset of the complex plane C such that in C \Ω, the admissible function
Ψ satisfies (2.8). Hence, Lemma 2.4 for the case M = 1 reveals in view of (2.7), (2.9)
and (2.4), that

|Ψ (w(z), zw′(z); z)| < 1⇒ |w(z)| < 1 (z ∈ U) ,

which proves that

p(z) ≺ 1 +Az

1 +Bz
,

and hence f ∈ S∗ [µ, g;A,B]. �

Theorem 2.6. Let f ∈ A and −1 ≤ B < A ≤ 1, let

λ =

{
2
√
A|B|

1−AB , if AB < 0 with
∣∣(A+B)

(
1 + 1

AB

)∣∣ ≤ 4,
A−B

(1+|A|)(1+|B|) , if AB ≥ 0.
(2.10)

If for some g ∈ A with 0 6= (f ∗ g)
′
(z) · (f∗g)(z)

z ∈ C in U,∣∣∣∣z (f ∗ g)
′′

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < λ, (2.11)

then f ∈ S∗ [µ, g;A,B] .

Proof. To prove the result, we define an admissible function φ : C2 × U→ C by

φ (r, s; z) = Ψ (r, s; z)− 1, (2.12)

where Ψ (r, s; z) is defined by (2.7). Then for some θ ∈ R and for some m ≥ 1∣∣φ (eiθ,meiθ; z)∣∣ =

∣∣∣∣ (A−B)meiθ

(1 +Aeiθ) (1 +Beiθ)

∣∣∣∣
=

(A−B)m

|(1 +Aeiθ)| |(1 +Beiθ)|

=
(A−B)m√

1 +A2 + 2At ·
√

1 +B2 + 2Bt

=
(A−B)m

h (t)
,

where t = cos θ ∈ [−1, 1]. Observe that

max
−1≤t≤1

h (t) =

{
(1 +A) (1 +B) , if 0 ≤ B < A ≤ 1,
(1−A) (1−B) , if − 1 ≤ B < A ≤ 0,

Hence, ∣∣φ (eiθ,meiθ; z)∣∣ ≥ A−B
(1 + |A|) (1 + |B|)

, if AB ≥ 0.

Further, if −1 ≤ B < 0 < A ≤ 1, i.e. if AB < 0, then the function h(t) attains its
maximum value at

t∗ = − (A+B)(1 +AB)

4AB
∈ [−1, 1].
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Hence, if AB < 0 with the condition: 4AB ≤ (A+B)(1+AB) ≤ −4AB or equivalently,∣∣(A+B)
(
1 + 1

AB

)∣∣ ≤ 4,

h(t∗) =
(A−B) (1−AB)

2
√
A |B|

.

So, ∣∣φ (eiθ,meiθ; z)∣∣ ≥ 2
√
A |B|

1−AB
, if AB < 0 with

∣∣∣∣(A+B)

(
1 +

1

AB

)∣∣∣∣ ≤ 4.

Hence, ∣∣φ (eiθ,meiθ; z)∣∣ ≥ λ, (2.13)

where λ is given by (2.10). Thus, in view of (2.12) and for p(z) defined by (2.5), we
get from (2.9),

|φ (w(z), zw′(z); z)| =

∣∣∣∣zp′(z)p(z)

∣∣∣∣ (2.14)

=

∣∣∣∣∣z (f ∗ g)
”

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣∣ .
Let Λ be a subset of the complex plane C such that in C \Λ, the admissible function
φ satisfies (2.13). Hence, applying Lemma 2.4 (in case M = 1), from (2.14) and (2.11)

|φ (w(z), zw′(z); z)| < λ⇒ |w(z)| < 1 (z ∈ U) ,

which proves

p(z) ≺ 1 +Az

1 +Bz
.

This establishes Theorem 2.6. �

From Theorem 2.1 and Theorem 2.6, we obtain following result.

Corollary 2.7. Let f ∈ A and 0 ≤ B < A ≤ 1, 1
2 < β ≤ 1 be such that

A ≤ 2B (1− β) + 2β − 1. (2.15)

If for some g ∈ A with (f∗g)(z)
z 6= 0 in U and for µ ≥ −1,∣∣∣∣z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < A−B
(1 +A) (1 +B)

(z ∈ U) , (2.16)

then f ∈ B (g, µ;β).

Proof. Applying Theorem 2.6 for 0 ≤ B < A ≤ 1, we get f ∈ S∗ [µ, g;A,B] if and
condition (2.16) holds, and from Theorem 2.1, S∗ [µ, g;A,B] ⊂ B (g, µ;β) if (2.15)
holds. Hence, this proves the result. �

Example 2.8. The following example µ = 0, f(z) = z + zn

n and g (z) = z
1−z satisfies

the condition of Corollary 2.7.

Again, in view of the Remark 1.6, for β = 1 and µ = 1, above Corollary 2.7
provides the following univalency condition for the convolution f ∗ g:
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Corollary 2.9. Let f ∈ A and 0 ≤ B < A ≤ 1. If for some g ∈ A with

0 6= (f ∗ g)
′
(z) · (f ∗ g) (z)

z
∈ C in U,∣∣∣∣z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ 2

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < A−B
(1 +A) (1 +B)

(z ∈ U) ,

then f ∗ g is univalent in U.
Also, for the special values: A = 1− 2α

(
0 ≤ α < 1

2

)
and B = −1, Theorem 2.6

provides following result:

Corollary 2.10. Let f ∈ A and 0 ≤ α < 1
2 , µ ≥ −1. If for some g ∈ A with

0 6= (f ∗ g)
′
(z) · (f ∗ g) (z)

z
∈ C in U,∣∣∣∣z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < √1− 2α

1− α
(z ∈ U) ,

then (
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) ≺ 1 + (1− 2α) z

1− z
(z ∈ U) .

In our next result we give some more sufficient conditions for the class S∗ [µ, g;A,B]
in case B = 0.

Theorem 2.11. Let f ∈ A and let 0 < A ≤ 1. If for some g ∈ A with

0 6= (f ∗ g)
′
(z) · (f ∗ g) (z)

z
∈ C

in U, any one of the following conditions holds∣∣∣∣∣
(

z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z)[

z (f ∗ g)
′′

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}]∣∣∣∣
< A (z ∈ U) , (2.17)∣∣∣∣∣

(
(f ∗ g) (z)

z

)µ+1
1

(f ∗ g)
′
(z)[

z (f ∗ g)
′′

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}]∣∣∣∣
<

A

(1 +A)
2 (z ∈ U), (2.18)∣∣∣∣∣∣∣

[
z(f∗g)′′(z)
(f∗g)′(z) + (µ+ 1)

{
1− z(f∗g)′(z)

(f∗g)(z)

}]
(

z
(f∗g)(z)

)µ+1

(f ∗ g)
′
(z)− 1

∣∣∣∣∣∣∣ <
1

1 +A
(z ∈ U), (2.19)

then f ∈ S∗ [µ, g;A, 0] .
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Proof. Let p(z) be defined by (2.5). Then p ∈ H [1, 1] and by the hypothesis
0 6= p(z) ∈ C in U. Then from (2.9), we obtain

zp′(z) =

(
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) ×[

z (f ∗ g)
′′

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}]
, (2.20)

zp′(z)

(p (z))
2 =

(
(f ∗ g) (z)

z

)µ+1
1

(f ∗ g)
′
(z)

× (2.21)[
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}]
,

and

zp′(z)

p (z) (p (z)− 1)
=

[
z(f∗g)′′(z)
(f∗g)′(z) + (µ+ 1)

{
1− z(f∗g)′(z)

(f∗g)(z)

}]
(

z
(f∗g)(z)

)µ+1

(f ∗ g)
′
(z)− 1

, (2.22)

where in (2.22) the singularity of the function at z = 0, is being removed by the
numerator. To prove the result, we use the similar method used in the above proofs
of Theorems 2.5 and 2.6 for the case if B = 0. Let u(z) be defined by

p(z) = 1 +Au(z). (2.23)

Then u(0) = 0 and now we prove |u(z)| < 1 in U. For this, we may define admissible
function ηi : C2 × U→ C for each i = 1, 2, 3, by

η1 (r, s; z) = As, (2.24)

η2 (r, s; z) =
As

(1 +Ar)
2

(
r 6= − 1

A

)
,

and

η3 (r, s; z) =
s

r (1 +Ar)

(
r 6= 0,− 1

A

)
.

Then for some θ ∈ R and for some m ≥ 1,∣∣η1

(
eiθ,meiθ; z

)∣∣ = Am ≥ A, (2.25)

∣∣η2

(
eiθ,meiθ; z

)∣∣ =
Am

|1 +Aeiθ|2
≥ A

(1 +A)
2 , (2.26)

and

|η3 (r, s; z)| = m

|1 +Aeiθ|
≥ 1

1 +A
. (2.27)
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Then from (2.23)

zp′(z) = zAu′(z), (2.28)

zp′(z)

(p (z))
2 =

zAu′(z)

(1 +Au(z))
2 , (2.29)

zp′(z)

p (z) (p (z)− 1)
=

zu′(z)

(1 +Au(z))u(z)
. (2.30)

Let for each i = 1, 2, 3, Ωi be a subset of the complex plane C such that in C \Ωi, the
admissible function ηi satisfies for each i = 1, 2, 3, the conditions, (2.25), (2.26) and
(2.27). Hence, by Lemma 2.4 for M = 1, in view of (2.20), (2.21) and (2.22), from the
conditions (2.17), (2.18) and (2.19) and using the values (2.28), (2.29) and (2.30), we
get

|η1 (u(z), zu′(z); z)| = |zp′(z)| < A⇒ |u(z)| < 1,

|η2 (u(z), zu′(z); z)| =

∣∣∣∣∣ zp′(z)(p (z))
2

∣∣∣∣∣ < A

(1 +A)
2 ⇒ |u(z)| < 1,

|η3 (u(z), zu′(z); z)| =

∣∣∣∣ zp′(z)

p (z) (p (z)− 1)

∣∣∣∣ < 1

1 +A
⇒ |u(z)| < 1.

This proves the Theorem 2.11. �

Using Theorem 2.1 for the case B = 0, we obtain following result from Theorem 2.11.

Corollary 2.12. Let f ∈ A and let 1
2 < β ≤ 1, 0 < A ≤ 2β − 1. If for some g ∈ A

with 0 6= (f ∗ g)
′
(z) · (f∗g)(z)

z ∈ C in U, any one of the conditions (2.17), (2.18) and
(2.19) in Theorem 2.11 holds, then f ∈ B (g, µ;β) .

In addition to the Corollaries 2.3 and 2.9, Corollary 2.12 provides for β = 1 and
µ = 1, the following univalency condition for the convolution function f ∗ g.

Corollary 2.13. Let f ∈ A and let 0 < A ≤ 1. If for some g ∈ A with

0 6= (f ∗ g)
′
(z) · (f ∗ g) (z)

z
∈ C in U,

f ∗ g satisfies any one of the following conditions:∣∣∣∣∣z2 (f ∗ g)
′
(z)

((f ∗ g) (z))
2

(
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ 2

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

})∣∣∣∣∣ < A (z ∈ U) ,

∣∣∣∣∣ ((f ∗ g) (z))
2

z2 (f ∗ g)
′
(z)

(
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ 2

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

})∣∣∣∣∣ < A

(1 +A)
2 (z ∈ U) ,

∣∣∣∣∣∣
z(f∗g)′′(z)
(f∗g)′(z) + 2

{
1− z(f∗g)′(z)

(f∗g)(z)

}
z2(f∗g)′(z)
((f∗g)(z))2 − 1

∣∣∣∣∣∣ < 1

1 +A
(z ∈ U) ,

then f ∗ g is univalent in U.
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Remark 2.14. For A = 1 and g(z) = z
1−z (z ∈ U), above Corollary 229 coincides with

the result [13, Corollary 3.2, p.361] for a function f ∈ A, and with the result [14,
Theorem 1, p. 2135] for the function f(z) = Kν,c(z), where Kν,c(z) is a normalized
form of generalized Bessel function defined in [3, 21] by

Kν,c(z) = z +

∞∑
k=2

(−c
4

)k−1

(ν + 1)k−1

zk

(k − 1)!
(c ∈ C, ν ∈ R, ν 6= −1,−2, ...; z ∈ U) .

3. Concluding remark

By considering special form of the function g, from our main results, we may
obtain results involving several linear operators of the class A, some of the known
linear operators are mentioned in the Introduction section. We give here only the
results giving varied univalency conditions of the Dzoik-Srivastava operator by taking
g(z) = z pFq(α1, ..., αp;β1, ..., βq; z). Results giving univalency conditions of other
linear operators mentioned in the Introduction section may similarly be obtained
by taking g(z) = Ga,b(z), z 2F1 (2, 1; 2− λ; z) , z 2F1 (γ + 1, 1;α+ γ + 1; z) and
Φmλ,µ (z) , respectively, in the Corollaries 2.3, 2.9 and 2.13.

Corollary 3.1. Let f ∈ A and pHq ([α1]) f be defined by (1.4) with

0 6= pHq ([α1]) f(z)

z
∈ C in U.

If (
z

pHq ([α1]) f(z)

)2

(pHq ([α1]) f)
′
(z) ≺ 1 +Az

1 +Bz
(0 ≤ B < A ≤ 1; z ∈ U) ,

then pHq ([α1]) f is univalent in U.

Corollary 3.2. Let f ∈ A and pHq ([α1]) f be defined by (1.4) with

0 6= (pHq ([α1]) f)
′
(z) · pHq ([α1]) f(z)

z
∈ C in U.

If ∣∣∣∣z (pHq ([α1]) f)
′′

(z)

(pHq ([α1]) f)
′
(z)

+ 2

{
1− z (pHq ([α1]) f)

′
(z)

pHq ([α1]) f(z)

}∣∣∣∣ < A−B
(1 +A) (1 +B)

(0 ≤ B < A ≤ 1; z ∈ U) ,

then pHq ([α1]) f is univalent in U.

Corollary 3.3. Let f ∈ A and pHq ([α1]) f be defined by (1.4) with

0 6= (pHq ([α1]) f)
′
(z) · pHq ([α1]) f(z)

z
∈ C in U.

If for 0 < A ≤ 1; z ∈ U, any one of the following conditions:∣∣∣∣∣z2 (pHq ([α1]) f)
′
(z)

(pHq ([α1]) f(z))
2

(
z (pHq ([α1]) f)

′′
(z)

(pHq ([α1]) f)
′
(z)

+ 2

{
1− z (pHq ([α1]) f)

′
(z)

pHq ([α1]) f(z)

})∣∣∣∣∣ < A,
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2

z2 (pHq ([α1]) f)
′
(z)

(
z (pHq ([α1]) f)

′′
(z)

(pHq ([α1]) f)
′
(z)

+ 2

{
1− z (pHq ([α1]) f)

′
(z)

pHq ([α1]) f(z)

})∣∣∣∣∣
<

A

(1 +A)
2 ,∣∣∣∣∣∣
z(pHq([α1])f)′′(z)
(pHq([α1])f)′(z)

+ 2
{

1− z(pHq([α1])f)′(z)

pHq([α1])f(z)

}
z2(pHq([α1])f)′(z)

(pHq([α1])f(z))2
− 1

∣∣∣∣∣∣ < 1

1 +A
,

holds, then pHq ([α1]) f is univalent in U.
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