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On a unification of Mittag-Lefler function
and Wright function

Meera H. Chudasama

Abstract. We introduce here a function that unifies Mittag-Leffler function and
Wright function which is referred to here as an UMLW-function. This function
turns out to be a solution of an infinite order differential equation. With the aid
of this UMLW-function, an integral operator is constructed and shown that it
is bounded in Lebesgue measurable space. Further an eigen function property is
established for a particular UMLW-function with the help of hyper-Bessel opera-
tor and Caputo fractional derivative operator. Some well known functions occur
in the illustrations of these properties. At the end, the graphs of this UMLW-
function are plotted by suitably specializing the parameters and also compared
with the graph of exponential as well as Mittag-Leffler function.
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1. Introduction and main results

Gosta Mittag-Leffler [15], introduced the function given by

Eo(2) = nz:% Tan+1)’

where z is a complex variable and « € C with Re(a)) > 0, which reduces to e* when
a=1.

After some decades, its importance was realized due to its occurrence in many prob-
lems of Physics, Chemistry, Biology, and Engineering as a solution of fractional order
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differential or integral equations. During the course of time, this function was gen-
eralized and studied by many researchers among them Wiman [22], Prabhakar [16],
Kiryakova [11], Shukla and Prajapati [19], Srivastava and Tomovski [21], Garra and
Polito [10] are worth mentioning,.

With the aid of L-exponential function

ek(z)zgngm (1.1)

(of order k) due to Ricci and Tavkhelidze [18], Garra and Polito [10] defined and
studied a generalization of (1.1) in the form:

o0 "
Eop () = Z Tt (on )’

n=0

(1.2)

wherein x € R,a > —1,v > 0, and v € R, which they called a—Mittag-Leffler
function. Noticing the rapid convergence of the series due to Sikkema [20]

;W :;F”(n—f—l)’ (13)

we propose a more general series structure which would also encompass another func-
tion, namely the Wright function [12]

00 o
WA’#(Z) = Z:O m, A > —1,/,L e C. (14)

This was introduced and investigated by the eminent British mathematician E. Mait-
land Wright (in a series of notes starting from 1933) in the framework of the asymp-
totic theory of partitions [12].

Aiming at the unification of the series given by (1.2), (1.3) and (1.4), we introduce
the function defined by the power series as follows.

Definition 1.1. For Re(«ad) > 0, Re(86 + oy — g —r+1)>0, a,0 #0,and u,z € C,

o0

EU,V;’Y . — (,U)rn ﬁ 1.5
a3 a (175 2) ng() ron(an+ B) I''(on +v) n!’ (15)
where (1), = F(Iﬁ”a’;n) is generalized Pochhammer symbol.

We shall henceforth referred to this function as UMLW-function.

Remark 1.2. Chudasama M. H. and Dave B. 1. studied ¢-Hypergeometric function,
its particular cases and their g-analogues in [4, 3, 7, 5, 6, 2. In context of the study

of these, when 7, 0,v,a € NU {0} with z*:#zﬂ(ﬁ),we have
1
oy ) —
E@,,B,(S(:u,hz) - F'Y(l/)
© ptl ptr—1, o*
X HE | o Ty, (8 g B+a—1
¥ 1\7 o—1\7 . a—1 . ). .
R |(2)7, () ()T (2, B2 L sl
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The particular cases of (1.5) are worth mentioning; all of them are corresponding
to the common choice § = 0. The substitutions for the other parameters involved are
indicated in each special case below.

1. Exponential function : (y=p=r=v=0c=1)

o0 n

z 1,1,1
Zzg —— =FE;"(1,1; 2).
CT Xy

2. Mittag-Leffler function [15] : (y=p=r=v=1)

- 2" o,1,1
E,(z) = E —— =E;" (1,1;2).
(2) = T(on+1) 0 ?)

3. Wiman function [22] : (y=p=7r=1)

z o,v,1
E,. :E — =E;" (1,1 2).
s (Z) ~ F(O'TL+V) 0 ( Z)

4. Wright function [12] : (r =0,y = 1,0 # 0, v arbitrary)

oo n

< o,v,1
Woo(z) = — =E5" (,0; 2).
5. Prabhakar’s function [16] : (r =y =1)

- (M)n z" o,v,1
Ey () = Z:Om =Eg (w15 2).

6. Cosine function : (y =v =p=r = 1,0 = 2, z is replaced by —2z?)
Sad 1)mz"

cos(y/z) = 7;) IE(_2n—|—1) =E2V(1,1;—2).

7. Bessel Maitland function [14] : (y = 1,r = 0, v is replaced by v +1, z is replaced
by —2)

e}
(=2)" ov+1,1
JH(z) = E =E;" " 0; —2).

II(Z) —~ P(O”I’L—‘rl/“r 1) n! 0 (u’ ) Z)

8. Mainardi’s functions [12] : (y = 1,7 = 0,0 is replaced by —o with 0 < o < 1)
(v=0in F,(2)) (v=1—0in M,(2))

nw§§jﬁﬂEﬁmwmx

_ — (_Z)n _ m—o,l—0,1 .
MG(Z)iZF(—O’TL—I—l—O’)n! 7]EO (/L,O,Z).

n=0
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9. Kiryakova’s function [11] : (u = r = 1,y = m € N, in (1.5); and putting
1 :~--:umzu,pi1=-~-: pim =0 in [11, Eq.(13)])

oo Zn
=Y o =EJ" (1, 15 2).
Z) ~ Fm(U’I’L-ﬁ-V) 0 ( ’ 7Z)

10. Garra and Polito’s function [10] : (u=r=1,z=2z,v=7vy,y=a+ 1,0 =v)

oo
:L,n

_ _ wvvatl .
Eay () = ; Tt (n+y) Eo (1, L z).
11. Shukla and Prajapati’s function [19] : (y = 1,7 € NU (0,1))

7‘ rn 2" o,v,1 .
B Fon f oy (m+y = Eg¥ (75 2).

12. Srivastava and Tomovski’s function [21] : (v =1, Re(r) > 0)

2" w1 )
iz Fmi’;y = B¢ (.5 2).

Now as a main results, the domain of convergence, differential equation and the
integral operator of the UMLW-function are discussed.

Theorem 1.3. For Re(ad) > 0,Re(B8 + oy — g —r+1) >0, and a,0 # 0, the
UMLW-function (1.5) is an entire function.

Proof. We have

o0

Eo¥ L) — (1)rn o L
=p b Ti%) nzzjo ron(an + B)T (on +v) Z pn" (s27). (1.6)

Using Cauchy-Hadamard formula:

(#)rn
an+ B)I'(on + v) n!

1 . n .
o= dm s ] = i s |
and then applying Stirlng’s asymptotic Formula [9]

T(an+b) ~ V21 e (970 (an 4 b)ontt—3 (1.7)

for large n and for a = r,a, 0 and b = p, B, v respectively we have

L _ oy "
R s

P+ )

['(p) o7 (an + B) TV (on +v) F(n +1)

(E—y
V2 e~ W) ()2

1

~ lim sup
n—oo

1
X
V27 e~(anth8) (an + ﬁ)an-{-ﬁ_%
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1

1
X ’ 1
2T e—(on+y) (an + l/)onJerE

o1 e~ () (n 4 1) 12

. w_ 1
{|e—r| ()t (1 )55 (14 )

3R
3=
——

= lim sup
n—oo

y 6[36 604677,
S adn 5—2
(v/2r) (an)dlan+s—1) (1+ %) (1+ %)ﬂ 2
x|e?7| °r

a1 ”
ot | (b d e 1 2) 5 (1 )
= 5 55_% lim sup —
(\/ﬂ) ordale 3 | n—oo pn " 2n
adén
® !
on )
n nBo—4 (1+ %yi ( I aan)ﬁ 3
X e
(\/277)%0'%7% noy (nn)'VV 2n
1 en (1 + %)g_l
X = % I .1 (1.9)
() () 7|V i)
_ 6[3(5+(7'y—r+1,r,r 1 y %) adén 1
T | (Vamoerai-§ | [P a5k | | n Botor— 5 il
= O7
provided that Re(ad) > 0,Re(85 +~v0 — § —r+1) >0, and o, 0 # 0.
Thus, R = . g

Remark 1.4.
1. We stick to the conditions proved in Theorem 1.3 throughout the article unless

it is specified.
2. The series Y ¢, 2" thus, converges uniformly in any compact subset of C.

Next, to obtain the differential equation we define an operator as follows.
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1128

Definition 1.5. Let f(z) = anz™, 0 # z € C, p € NU{0} and a € C with

Re(a) > 0. Define [4,7]
AL = | Dol a1 ki pEN
f(2), phif p=0

where 6 = z<£ and (04 ¢)" = (0 +c)(@ +¢)... (0 +¢), ¢ is a constant.

n times
Using this operator, we have now obtained the differential equation of the
UMLW-function in the following theorem.

Theorem 1.6. Ifa=1,v€ NU{0},0,7,d € N and 8 #0,—1,—2,... then

o,v, (:U’)'rn z
w = El,ﬁ,g(:u’7r; Z) = Z an( -
n=0 :

n+ B)I7(on +v) n!
satisfies the differential equation :

(500} (ﬁ <9+ v+i _1>”> 9] —z*ﬁ [9+“:‘7} w=0, (111)

i=0 §=0

where z, = ﬂfirﬁ(m

In order to prove this theorem, we first prove the following lemma which allows us to
actually apply the operator 5A% onto the operand w.
For the sake of brevity, we put

{51 }H <9+ v —1) 0= 55O
In this notation, we have

Lemma 1.7. Ifa =1,y NU{0},0,r,0 € N andﬁ#() —1,-2,... with

Z?’l

SV

w:Elﬁéu,rz

ZF5" n—i—ﬁ FV(Un—&— v)n

and

B,(S@O',V,’Y(w) = Z fn(/”’a T, ﬂa 57 a,V,7; Z) (say),

then the operator 5,50, ~ 5 applicable to w provided that the series

> en fulpar,B,6,0,v,7;2)

converges (cf. [20, Definition 11, p.20]).
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Proof. We first write

11 TW) 1 { 1 r
M(on+v) Tr(w)T(on+v) TVW) | @)on]

then applying the formula [17, Lemma 6, p. 22]

(@ =H" (3) . <"+Z_1) ,

for a = p,v and k = r, o respectively, we have

_ = (1)rn 2" Fén(ﬁ)
wo= ) T (n + B)T7 (on + v) n! 197 (B)
_ G (:u)rn 2"
-2 (5)anmm ) nl T (3)
1 e 2 (FH'T 1)n P SN
I Z ) A e B
Now take
r’" z
o7 I‘é(ﬁ) 2y
then

()

S
|
—
(]2
|~
QIR [3 =
2|3
—~
N
+
Q
|
—
SN—
—
=S
=
>
3
s

3
Il
o

Now consider

N g ’
DI e

- F’Yl(y) {6A%}(9+V;0 ' t9+y_z+1>V <9+V;2
igigiimun—w {"*VUT

195

(1.12)
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n

pt+r—1
r

(

v+on—1

+§ prae }

g

T

5.690.v7(w)
_ 1 oy Jo= (B), - (), 2
~ e A {Z (%) (H2=2)) B3 (= 1)
X <V+0n1>7 (VJrUn?)’y_,. (W>W
1 = (B (), o
= T 04 {nz_:l (5o () oy (B (n— 1)’}
I S € P G e PN () T 0 e VR
= ]_—"Y(I/) ; (5)271 . (V+Zfl):lil (lﬂ)gn (TL — 1)| (1.13)
Now, observe that for § = z-L,
O+p-1)z = (0+5 1)( — F5(ﬁ))
= (O.U'Y F(S(ﬂ)> (9"’_5_1)2”
= (o) Crtenn o
= (O.U'Y F5(ﬁ)> (TL—I—ﬁ—l) 2"
= (n+p-1) =z

Similarly (6 + 8 —1)? 27 = (n + 8 — 1)? 2? and in general, for 6,n € NU {0}, (6 +
B—1)0" 27 = (n+ B —1)°" 27, Using this in (1.13), we have

ﬂ,tS@a,V,’y (’LU)

- )i () (7)), (Bnalnd 510 2
0= G () B (1)

= N ptr—1 n
S T L T T
F<>§:E; E:; S 0
i fnlp,m, 8,9, 0,v,7; 2) (say)
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To complete the proof of lemma, it remains to show that

S S (W (utrn),

is convergent.
For that take

()7 (),
r2on(n+ 8) I'2v(on +v) (n!)?’

Using Cauchy Hadamard formula:

&n

(1) (1 + 1))
n+8) I'?Y(on +v) (n!)?

and then applying Stirlng’s asymptotic formula (1.7), we have

1 . n o
7= nh_{r;o sup v/ |&,| = nlggo sup ’F25“(

(g +1) D(pu+rn +1)
[2(p) T(r) T2 (n + ) T*7(on +v) T2(n+ 1)

1*1
R s

(4 1m) T2 (4 +1)
T(4) T (r) Ton(u + ) T (on + ) T(n + 1)

= lim sup
n—oo

Proceeding in the similar manner from (1.8) to (1.9), we get

1 e2(Bo+oy—r+1),.2r 1 26n 1
R ['2(p)(v2m)20g207 | | e2P0+2 nh—{r;o‘ﬁ‘ n2(Bo+oy—3—r+1)

)

provided that Re(8d + yo — g —r+1)>0,and a,0 # 0.
This completes the proof of Lemma.

Proof. (of Theorem 1.6) From (1.14), we have

(1) L (e

r

n

T )n (:u+rn)7" Z*

Zx

B,ée)o,v,’y(w) = I‘"Y(V) Z (5)1 o (V+071)Z rr (5)% nl’

n=0 o

On the other hand,

r—1

2 H{QJFM:J}

: tr-2\ e (%), ("),
( v) (M“)Z(V)V...(W)jl (8)3n nl

n=0 \o/n o
+r—1> n
*

- rw(y)( +0) (9 W)

197

(1.15)
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ig(’é)n...(”ﬁ‘l)" 2 (u+m+r—1>

() B

[ea

n=0 o n

_ +r=3\ e (4),- ("),
= ™ () (9—1—':)(0—4—”7“)2 (%););...(V-Q-J—Z)'Y (8)5n n!
Jr

Xi E‘;)n...(‘ﬂ"‘l)" Zn (u+m+r—1> (u—l—rn—i—r—Q).

) (wke=1) 7 (B)on r v

n

Proceeding in this way, we finally arrive at

r—1

Zx H {0+u+‘7} w
=0 "
Zx > (%)n"'(u+:7l)n Z:}
e & ()] ()] B

x(p+rn+r—1(p+rm+r—2)...(g+rn+1)(p+rn)
Zx i (%)n (u+:_1)n (,U/‘i"f'n)r Zf

. (1.16)
CF=1ONE S O
The differential equation (1.11) now follows from (1.15) and (1.16). O
We next define an integral operator of E7';(u, r; x) as follows.
Definition 1.8. For Re(v) > 0,
Lorp(z) = /(m — )" B (s Mz — y) 7)o (y)dy. (1.17)

a

For this operator, we prove

Theorem 1.9. The operator Z,4 defined in (1.17) is bounded in L(a,b), the space of
all Lebesque measurable functions on finite interval (a,b) and

[ Zay ¢l < M |l ¢ |1,

where
rn| |/\‘n (b _ a)Re(V)+Re(U)n

M= Z « |70 ( an—i—ﬂ | ITY(on + v)| n! (Re(v) + Re(o)n)

We need the following lemma for proving this theorem.
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Lemma 1.10. The series
rn| |>\|n (b _ a)Re(V)-i—Re(a’)n

Zun n Z \F‘S” an—|—6 | IT7(on + v)| n! (Re(v) + Re(o)n)

converges absolutely under the convergence conditions as stated in Theorem 1.3.

The proof runs almost parallel to that of Theorem 1.3. Hence we omit the proof.

Proof. (of Theorem 1.9)
From the definition of integral operator (1.17), we have

b| x

[EAY / / (2 — )" S (3 Az — 9)7 o)y da

b x
//(gj _ y)Re(u)fl

Changing the order of integration, gives

b b
| Zovo i < / /(ac— JRe()-1
a y

Now taking = — y = u, we get

EL 5% (s Mz — y)7)| le(y)| dy d.

B3 (i Ma = y)7)| da ()] dy.

b b—y
IZaso < [ [ a0 B i da) du foty)] dy
a O
b—a
< / [t ez s )| du ool dy.
0

a

Using the Definition 1.1 of EZ'} 5 (11, 75 @), we obtain

|()rn] A"
Za <
[ Zate |l < HZ:O D% (an + B)| [T (on + v)| nl
x/ Re(v)+Re(o)n—1 g, /|<p )| dy
0

|( ) ‘ |)\|n (b _ a)Re(V)JrRe(o')n
= E n el
« [T2"(an + )| [I7(on +v)| n! (Re(v) + Re(o)n)

The series on the r.h.s. is of real constants which converges absolutely by Lemma 1.10.
Hence denoting its sum by M, the theorem follows. O
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2. Other results

In this section, we derive some results involving certain fractional order deriva-
tives and obtain the eigen function property of the UMLW-function. At last, some
special cases and graphs of the UMLW-function are compared.

Definition 2.1. The Riemann-Liouville fractional integral (RL-integral) operator of
order a € C,R(a) > 0 is defined as [13]

x

o f(z) = ﬁ /(x — 0P () dty x> a. 2.1)

a

Definition 2.2. The Riemann-Liouville fractional derivative (RL-derivative) of order
a€eC,m—1< Re(a) <m,m € N is defined as [13]

x

D™ /(w )" @) dt p e >a, (2.2)

a

Dg f(x) = Dg'1" " f(x) = Tm—a)

m
where D™ = 4

~ dxm-

Definition 2.3. The Caputo derivative of order « € C,m — 1 < Re(a) < m,m € N is
[13]

DEf@) = 1D @) = s [ DU @ =) dta >0 (23)

where D™ = jﬁ-
T

Then following hold true.

«@ _ F(BJ'_ 1) «
(1) 19 (x—a)ﬂ—m(x—a)BJr ,8>—-1,a>0. (2.4)
(2) D%z —a)’ = FF(/B—FD (x—a)’~™ B> —1,a>0. (2.5)

(a=p+1)

We take a = 0 now onwards. We define below hyper-Bessel type operators.

Definition 2.4. For x € R\ {0} and ¢ € N U {0}, the hyper-Bessel type operators
denoted and defined by

(I =1% 1% .. I% 1%, forn=0,1,2,..., (2.6)

(n+1) integrals

and
(*DY)" = D*2°D* ... D**D®, forn =0,1,2,..., (2.7)
(bn+1) derivatives
where I¢ denotes the RL-integral and D® will be either RL-derivative D* or Caputo
derivative .D® defined in (2.1), (2.2) and (2.3) respectively for a = 0.
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Theorem 2.5. For UMLW-function (1.5) with «,f3,6,0,v,u € C,n > 0,z # 0 and
v € N, the hyper-Bessel type operators furnish

e (2 B (e rian)) =2 B (et (28)
and
D (# B (o ria®)) = 2 R ursat), (29)

where I and *D" are as defined in the Definition 2.4.

That is, a fractional integration or differentiation transforms the function (1.5) with
the v-parameter is increased or decreased by the order of integration or differentiation
respectively.

Proof. The equation (2.8) is proved below which uses (2.4). In fact,
) (2B (e

B 3 _ (W)pn ©
= [Mpn[n . g WIWZ Fén(an+ﬂ)r'y+1(0n+”)n!

on+r—1

v+1 integrals n=0
s on+v—1
= [Mp=nn . Mg Z (Wrn @ ['(on+v)
ron(an + B)I+ (on +v)n! T(on + v + 1)

7 integrals

o0

— — Z (1) pp o™tV 1 I'(on+v)
T ron(an + B) 7t (on + v)n! TV (on + v + 1)

— v+n—1 Z (H)Tn X
ron(an + B) T+ (on + v + n)n!

= gvtn- 1E” V'H”(u,r x%).

We next prove (2.9).
Observing that

(D) (2 IE‘;;%“(M,T;IU))

(,LL)Tn on+rv—1
n+ 8) T+ (on + v)n!

= D"z"D". D%W’?ZW
n a

~+1 derivatives

(1) 71 I'(on +v)
— DD D" DN
= = Z ron(an + Bt (on+v)n! T(on+v —n)

~ derivatives

= — pn Z Jon 27TV M (on +v)
N ron( an+5 Y+t (on+v) n! T (on+v —1n)

— gV IZ )rn X
ron(an + )L+ (on + v —n)n!

= o 1]EZ,",M(M,T ).
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Hence the required result. O

For deriving the eigen function property, we first define the following operator.

Definition 2.6. Let f(z) = Y anz™, |z| < R, R > 0. Define an operator for z # 0 as
n=1

Lf= /e—%x—lf(t) dt. (2.10)
0

With the aid of this and the Caputo fractional derivative, we next define the
eigen function operator below.

Definition 2.7. Let f(z) = > anz™, |z] < R, R > 0 and ¢,k € NU {0}. Define an
n=0
operator for x # 0 as

4 k 7 T k T 14
Q M) =11, -1, (*D" D"z, 2.11
.27 (f(")) ("D")" £ (("D")2") (2.11)
¢ integrals
where D" represents an operator defined in (2.7) with D as the Caputo derivative

and I is as defined in (2.10).

Theorem 2.8. For  =oc =pu=r=1andv = a,n—1 < Re(a) < n,n € N,

o0
the UMLW-function B2 177 (1, 1; Aa®) = ZOWM =B} s(Ax®), say, \ €
=

C,a,z > 0, is an eigen function of the operator ZDm Q) in (2.11).
That is,

5,97 (ELs(0)) = AE] ;(a%), A€ R - {0},
Proof. Note that
5,97 (EL,0a)
= LI I, (*DY"E) , (A\*D%)%z
xlz C ( ) a,(s( ( ) L )

¢ integrals

S
AP
_ Y\ Y rya\on .an
SR ERENE D o

§ integrals

oo A"
N Z rontr+l(an + 1)

n=0

(*D*)onEY gon, (2.12)
J integrals
For n = 0, (*D*)%+7 20 = .D%* . D* ... .Dz*.D%(1) = 0.

~+1 derivatives

For n =1,
(DY) = Dz, D* ... . Dz . D" (z). (2.13)

d+~v+1 derivatives
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Observing that

D%z /a a—1)...(a=m+1)t*™ (x —t)" " at

0
T

_ a(afl)...(afm+1)xm7a71/taim (lt)maldt

'(m—a) x

0
and substituting ¢t = zu, we further have

1

-1 — e
Dz = ala 12( @ m+ /u (1—u)™“ L du

ala=1)...(a=m+1)
I'(m — «)
= T'(a+1).

Using this repeatedly in (2.13), we finally arrive at
(IDQ)‘HV % = I“H”H(a +1).
Now for n = 2,
("D*)*°*Y 2% = D*2®.D* ... . D2 .D* z**.

20+v+1 derivatives

We begin with
cDa( 2a)

= / 20— 1)... 2 —m 4+ 1) 2™ (x — )™ " Lat
0

. @0)20-1)...(Q0-m+ l)xmali j20mm (1 B t)m—“—ldt

I'(m—a) x

20)2a—1)...2a—m+ 1)x2a_af(m—a) F'2a—m+1)

'(m—a) T2a—a+1)
F(20{ + 1) 20—«
I'2a—a+1)
Therefore,
20+v+1
T ¥ a « a—o
( D )26-‘,— .’L'Q r (2 + 1) 2
S T2 (20 — o+ 1)
In general,
F5n+’y+l 1
(zDa)6n+'yxom _ (om + ) pan—a (214)

- Tontrtl(an — o+ 1)
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Now substituting (2.14) in (2.12) and then applying the operator defined in (2.10),
we find that

b7 (EL;0a)

00
An rontrtl(an 4+ 1
— IxIx . Ia: Z 5 5 ( ) an—o
A —— [onty+l(an + 1) Tontr+l(an —a+ 1)
4 fold integrals n=1
o 0o

_ . % -1 joan—o
- LL--I, Zr5n+v+1(an_a+1 /e a™ enTedt

6—1 fold integrals n=1 0

oo An o0 . —Q
= LL -1, gl = dt
S — Z rontr+l(an —a + 1) /6 ( >

0

§—1 fold integrals n=1
AP
B M Z F5”+’Y+1(an — o+ 1)

§—1 fold integrals n=1

" T(an — a+ 1).

Continuing in this way by applying the operator I, § — 1 times, we finally arrive at

(oo}
)\n
) v v o _ an—a 70
LAY (Eaﬁg()\x )) = ;I‘MJW“(an—a—&—l) T I(an —a+1)
B i AP pan—a
- n—9 1 _ :
o Ton=otrtl(an —a+ 1)
Hence,
5,97 (BL;00)) = AE] (M), (2.15)

O

Remark 2.9. From the definition of E ;(x) in the Theorem 2.8, observe that
E7 5(0) = 1 and from (2.15), &, ] (Egyé(ma)) = AE] ;(Az%), A€ R\ {0}.

3. Application

In the view of [8], we now discuss the application of particular UMLW-function
discussed in the Theorem 2.8. Let D be the bounded domain in R? with sufficiently
smooth boundary 0D. We consider the infinite order fractional evolution type problem

5.9 u(z,t) = w(z,t), t€[0,7], T>0; (3.1)

u(0,t) = f(t), (3.2)
where the operator ¢ D, Q? is as defined in (2.11) in L*°-space and is operating only on
the variable x and f( ) € C[0,T].
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Theorem 3.1. If 6,7 € NU{0}, n — 1 < Re(a) < n,n € N then the solution of
(3.1)-(3.2) is given by
3]
t)=E] C— ) ().
) =5, (s 1) £

Proof. To prove the theorem, we prove that u(z,t) = E] ;5 (z* %) f(t) satisfies the
problem described by (3.1)-(3.2).
Here, noticing that ZDI Q] is the operator operating only on the variable z, we have

from the Theorem 2.8,
0 0 0
4 y Y « — Y e}

= w(x,t).

0,7 u(x,1)

To complete the proof of the theorem it sufficient to prove that
lim ||u(z,.) — f]leo = 0. (3.3)
z—0
Observe that
lim [lu(z,.) = flle
z—0

0
— : vy o 7 _
- ks (o 31) £
0
— 3 Y a 7 _
= tim e |2 (= 5) 1|
But hmHIE]7 x® E 71’ =0 by Remark 2.9 and f € C[0,T] proves (3.3). O

Now, some of the special cases of the properties proved for UMLW-function are
shown.
Differential equation:
We illustrate the reducibility of the differential equation of Theorem 1.6 corresponding
to the special cases namely Garra and Polito’s function and Srivastava and Tomovski’s
function as follows.
(i) By taking 6 = 0, = r = 1 and replacing v by v+ 1, z by « in (1.11) we obtain
with z* = —7+, the equation

o—1 .

{ I [0+ 2 -1 9—1:*(9—1—1)}11}:07

i=0

where the solution w = E,,;,(z) = > Wgn-&-v) is Garra and Polito’s function.
n=0

(ii) The Srivastava-Tomovski’s function w = E!7(z) = Z 1“(&;11(/2)71' satisfies the

differential equation

=0 7=0
n (1.11), and 2* = ;—:z

o—1 . r—1 .
{ [T [0+2—1] 6—2*]] [9—1—“:‘7]}111:0, with substitutions 6 =0 and v =1
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Integral Operator:
(i) By taking § = 0,4 = r = 1 and replacing v by v+ 1, z by z in Theorem 1.9, we
obtain
M Z |)\|n )Re(u)+Re(o)n
< L7+ (on + )| (Re(v) + Re(o)n)’

which is a bound of 1ntegral operator of Garra and Polito’s function in Lebesgue

Measurable space.
(ii) In Theorem 1.9, on making substitutions § = 0 and v = 1, we find
M= Z Wral AP (b — a)Re()+Re(o)n
|F'Y on+v)| n! (Re(v) + Re(o)n)’

which is nothing but the Integral operator of Srivastava and Tomovski’s function [21

Theorem 2, Eq.(2.15)].

Eigen function property:
It is interesting to note that the substitutions § = 0, u = r = 1 and z = x in Theorem
. .

2.8, yields the eigen function property of the Garra and Polito’s function [10, Theorem

3.6, p. 776]
> an

E] o(2%) = Eyan(z®) = Y v

o0 e 2 T (an + 1)

with respect to the operator (*D%) 9.7
Following are the graphs of UMLW-function for the specific values of the parameters

involved.

(x), Graph C : Y%7, (1,2 2)
223

FIGURE 1. Graph A: exp(z), Graph B: E%,%
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300

1
110

1
FIGURE 2. Graph A : E}¥’ ’11(1,O;x), Graph B : E?'/’/(1,0;2),
3% 5.1,

NI pof—=

1
5014

2,1
%’1_’2 : (1,2,17)

Graph C : E (3,4;2), Graph D : Ei; L
27273

In the Figure 1, a graph of particular UMLW-function (Ei’i’i(lﬂ;x))
is compared with that of exponential function and ML-function in two param-
eters indicated by Graph C, Graph A and Graph B respectively. And in the
Figure 2, the graphs of certain specialized UMLW-functions are plotted. These
are indicated in Figure 2 as Graph A, Graph B, Graph C and Graph D. Click:
https://drive.google.com/file/d /0BwlylqnY QNxZbEJnc0JQdW5tNEOQ/view?Tusp=

sharing for more detail.

4. Conclusion

As a specific instance of the hypergeometric function ,F, if @« € NU {0}, the
new function defined in (1.5) may clearly be viewed as an extension of the Mittag-
Leffler and Wright functions (1 F, and ¢F,), reduced to the hyper Bessel function
ofFy. However, in the power series, ¢ in the second index and the summation index n
both go to infinity at this point. It’s also noteworthy to note that it solves an infinite
order differential equation, which may arise in the turbulence field or in a system
with an infinite number of degrees of freedom. Also, the integral involves this newly
defined UMLW function as a kernel is bouned in L(a, b). Notably, the specific instance
of this new function possessing an eigen function characteristic concerning the hyper
Bessel type fraction operators via which the infinite order evolution type problem is
formulated is also intriguing.
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