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On reachability and controllability for a Volterra
integro-dynamic system on time scales

Iguer Luis Domini dos Santos and Sanket Tikare

Abstract. The paper studies and relates the notions of reachability and control-
lability for the Volterra integro-dynamic system on time scales. More specifically,
we obtain necessary and sufficient conditions for reachability and controllability.
In addition, we obtain an equivalence between the concepts of reachability and
controllability studied.
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1. Introduction

The Volterra integro-dynamic systems on time scales have been considered in
several articles in the literature, which can be witnessed by [1], [2], [8], [10], and [11]. In
[1], [2] and [10], the authors have studied the linear Volterra integro-dynamic system
on time scales of the type x∆(t) = A(t)x(t) +

∫ t

t0

K(t, s)x(s)∆s+B(t)u(t), t ∈ [0,∞)Tκ

x(t0) = x0.

(1.1)

Adıvar [1] introduced the variation of parameters for Eq. (1.1) and then Adıvar and
Raffoul [2] used it to obtain the necessary and sufficient conditions for the uniform sta-
bility of the zero solutions of Eq. (1.1) employing the resolvent equation. Lupulescu et
al. [10] studied asymptotic behaviour of solutions for (1.1). Karpuz and Koyuncuoğlu
[8] obtained the necessary and sufficient conditions for the positivity and uniform
exponential stability for the Volterra integro-dynamical systems means of Metzler
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matrices. Further, Younus and ur Rahaman [11] studied controllability, observability,
and asymptotic behaviour for the Volterra integro-dynamic system on time scales.

Inspired by [3], [9], and [11], the present study investigates the reachability and
controllability for system (1.1). Here T is a time scale T0 = [0,∞)Tκ and t0 ∈ T0 is
fixed, u : T0 → Rm is control function, the functions A : T0 → Rn×n and B : T0 →
Rn×m are continuous on T0, and K : T0×T0 → Rn×n is continuous on Ω := {(t, s) ∈
Tκ × Tκ : 0 ≤ s ≤ t < ∞}. Also, the control functions u can admit a finite number
of discontinuities at tu1

, . . . , tup in T0 \ {0, supT} with p ∈ I(u) ⊂ N and tui >
t0 for every i ∈ {1, . . . , p}, such way that for 1 ≤ i ≤ p, there exist the left and
right limit of u(t) at t = tui in time scale context, i.e., u(t−ui) = limh→0+ u(tui − h)
and u(t+ui) = limh→0+ u(tui + h), respectively. Further, we have u(t−ui) 6= u(t+ui) =
u(tui). We emphasize that throughout the work Rn denotes the space of n-dimensional
column vectors, equivalently, Rn also denotes the space of real matrices n× 1.

For system (1.1), we use the notions of reachability and controllability analogous
to those given in [3] and establish necessary and sufficient conditions similar to [3,
Theorem 1] and [3, Proposition 5]. We also establish an equivalence between the
reachability and controllability of (1.1) analogous to [3, Proposition 6]. To do this, we
first state and prove the existence result to system (1.1). The novelty of the results
obtained here on controllability in relation to [11] are the new necessary and sufficient
conditions to controllability. On the other hand, to the best of our knowledge, there is
no studies in the time scales literature related to the reachability for Volterra integro-
dynamic system on time scales.

The paper is organized as follows. The next section provides useful background
concepts of time scales theory, such as the ∆-derivative in addition to the ∆-integral
for reading the paper. In Section 3, we define and obtain the existence of solution to
system (1.1). Section 4 contains the results concerning the reachability and control-
lability to system (1.1). Finally, Section 5 brings the conclusions of the work.

2. Preliminaries

In this section, we include basic concepts of time scales theory that will be used
throughout the work.

2.1. Time Scales

Given a time scale T, i.e., a nonempty closed subset of the real numbers, here
we assume that there exist a, b ∈ T0 such that a < b. The forward jump operator
σ : T→ T is defined by

σ(t) = inf{s ∈ T : s > t}
and the backward jump operator ρ : T→ T by

ρ(t) = sup{s ∈ T : s < t}.

In this case, we assume that inf ∅ = supT and sup ∅ = inf T. Also, the graininess
function µ : T→ [0,+∞) is defined by

µ(t) = σ(t)− t.
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We say that t ∈ T is left-dense, left-scattered, right-dense, and right-scattered when-
ever ρ(t) = t, ρ(t) < t, σ(t) = t, and σ(t) > t, respectively. For A ⊂ R, we write
AT = A ∩ T. In case supT < +∞, we set Tκ = T \ (ρ(supT), supT]T, otherwise, if
supT = +∞ we set Tκ = T.
Take a function f : T→ R and t ∈ Tκ. If ξ ∈ R is such that, for all ε > 0 there exists
δ > 0 satisfying

|f(σ(t))− f(s)− ξ(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ (t−δ, t+δ)T, it is said that ξ is the delta derivative of f at t and we denote
it by f∆(t).
Now, consider a function f : T→ Rn, f = (f1, f2, · · · , fn), and t ∈ Tκ. We say that f
is ∆-differentiable at t if each component fi : T → R of f is ∆-differentiable at t. In
this case f∆(t) = (f∆

1 (t), . . . , f∆
n (t)).

2.2. ∆-Integrability

For fixed a1, b1 ∈ T0 with a1 < b1, without loss of generality, we consider the
time scale T1 = [a1, b1]T. We denote the family of ∆-measurable sets of T1 by ∆. We
recall that ∆ is a σ-algebra of T1 (see, for instance, [7]).
Suppose that f : T1 → R is a ∆-measurable function, that is, for any r ∈ R the set
{t ∈ T1 : f(t) < r} is ∆-measurable. If E ∈ ∆, we indicate by∫

E

f(s)∆s

the Lebesgue ∆-integral of f over E. Now, if f : T1 → Rm and E ∈ ∆, then f
is Lebesgue ∆-integrable over E if each component fi : T1 → R of f is Lebesgue
∆-integrable over E. In this case, we have∫

E

f(s)∆s =

(∫
E

f1(s)∆s, . . . ,

∫
E

fm(s)∆s

)
.

Also, if ‖ · ‖ denotes the Euclidean norm on Rn, we will indicate by L2(E;Rm) the set
of functions f : T1 → Rm such that the function ‖f‖2 is Lebesgue ∆-integrable over
E.
In the vector space L2([a1, b1]T;Rm), we can define the inner product

〈f, g〉L2 :=

∫
[a1,b1)T

gT (s)f(s)∆s,

where f, g ∈ L2([a1, b1]T;Rm) and gT (s) denotes the transpose of the column vector
g(s) ∈ Rm.

Similarly to [5, Théorème IV.8.], we have the following remark.

Remark 2.1. The vector space L2([a1, b1]T;Rm) is a Banach Space when equipped
with the norm induced by the inner product 〈·, ·〉L2 .

We recall that a function f : T1 → Rn is said to be right-dense continuous (rd-
continuous) if f is continuous at each right-dense point t ∈ T1, and if limh→0+ f(t−h)
exists and finite at each left-dense point t ∈ T1.
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The Cauchy integral and the Lebesgue ∆-integral of an rd-continuous function
can be related as follows. For this, let f : T1 → R be an rd-continuous function. From
[4], we can see that function f has an antiderivative F : T → R, if F∆(t) = f(t) for
each t ∈ Tκ1 . Thus, the Cauchy integral of f is defined as∫ d

c

f(s)∆s = F (d)− F (c)

for all c, d ∈ T1. Hence, the Cauchy integral and the Lebesgue ∆-integral of f relate
as ∫ d

c

f(s)∆s =

∫
[c,d)T1

f(s)∆s

with c, d ∈ T1 and c ≤ d.
More about the integration on time scales, can be found in [4], [6], and [7].

3. Existence to Eq. (1.1)

Here we define the solution to system (1.1) and then establish the existence
of solution in Theorem 3.1. For this, we first consider the principal matrix solution
Z(t, s) of the integro-dynamic equation x∆(t) = A(t)x(t) +

∫ t

s

K(t, τ)x(τ)∆τ, t ∈ [s,∞)Tκ

x(s) = x0,
(3.1)

where s ∈ Tκ. The principal matrix solution of Eq. (3.1) is the n× n matrix function
Z(t, s) defined as

Z(t, s) = [x1(t, s), . . . , xn(t, s)]

where xi(t, s), i = 1, . . . , n, are the linearly independent solutions of Eq. (3.1). Given
the control function u(t) ∈ Rm, we define the solution x of system (1.1) as follows. If
u is continuous on T0, as can be seen in [1, Theorem 19], the solution x of Eq. (1.1)
on T0 is given by

x(t) = Z(t, t0)x0 +

∫ t

t0

Z(t, σ(s))B(s)u(s)∆s, (3.2)

where Z(t, s) is the principal matrix solution of Eq. (3.1).
Now, if the control function u(t) ∈ Rm admits the discontinuities tu1

, . . . , tup in
T0 \ {0, supT}, with p ∈ I(u) ⊂ N, for i = 1, we consider the continuous function
w1 : [0,∞)Tκ → Rm defined by

wi(t) =

{
u(t) if t ∈ [0, tui)Tκ ,
u(t−ui) if t ∈ [tui ,∞)Tκ ,

(3.3)

and for 1 < i ≤ p, we take the continuous function wi : [0,∞)Tκ → Rm given by

wi(t) =


u(t+ui−1

) if t ∈ [0, tui−1)Tκ ,

u(t) if t ∈ [tui−1 , tui)Tκ ,
u(t−ui) if t ∈ [tui ,∞)Tκ .

(3.4)
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We also consider the continuous function wp+1 : [0,∞)Tκ → Rm given by

wp+1(t) =

{
u(t+up) if t ∈ [0, tup)Tκ ,

u(t) if t ∈ [tup ,∞)Tκ .
(3.5)

Hence for i = 1, let xi = x1 be the solution of integro-dynamic equation x∆
1 (t) = A(t)x1(t) +

∫ t

t0

K(t, s)x1(s)∆s+B(t)w1(t),

x1(t0) = x0

(3.6)

on [0,∞)Tκ and for 1 < i ≤ p, let xi be the solution of integro-dynamic equation x∆
i (t) = A(t)xi(t) +

∫ t

tui−1

K(t, s)xi(s)∆s+B(t)wi(t),

xi(tui−1
) = xi−1(tui−1

)

(3.7)

on [tui−1 ,∞)Tκ . Futhermore, let xp+1 be the solution of integro-dynamic equation x∆
p+1(t) = A(t)xp+1(t) +

∫ t

tup

K(t, s)xp+1(s)∆s+B(t)wp+1(t),

xp+1(tup) = xp(tup)

(3.8)

on [tup ,∞)Tκ . Thus, we define the solution x of system (1.1) as

x(t) =

 x1(t) if t ∈ [0, tu1)Tκ ,
xi(t) if t ∈ [tui−1 , tui)Tκ , 1 < i ≤ p,
xp+1(t) if t ∈ [tup ,∞)Tκ .

The principal matrix Z(t, s) is said to be transition matrix if Z(s, s) = Id. According
to [11, Lemma 2.2], the transition matrix Z(t, s) of Eq. (3.1) admits, among others,
the following properties:

(i) Z(t, s) = Z(t, τ)Z−1(s, τ);
(ii) Z(t, s) = Z−1(s, t);

(iii) Z(t, r)Z(r, s) = Z(s, t).

Theorem 3.1. Suppose that the control function u : T0 → Rm in Eq. (1.1) admits the
discontinuities tu1 , . . . , tup in T0 \ {0, supT}. Then the solution x of system (1.1) is
given by

x(t) = Z(t, t0)x0 +

∫
[t0,t)T

Z(t, σ(s))B(s)u(s)∆s

on [0,∞)Tκ .

Proof. For the control function u(t) ∈ Rm we consider continuous functions wi
(1 ≤ i ≤ p) and wp+1 as defined in Eqs. (3.3), (3.4), and (3.5). Let x1 be the so-
lution of Eq. (3.6) on [0,∞)Tκ , and for 1 < i ≤ p, xi be the solution of Eq. (3.7)
on [tui−1

,∞)Tκ . Also, let xp+1 be the solution of Eq. (3.8) on [tup ,∞)Tκ . Hence, the
solution x of system (1.1) is given by

x(t) =

 x1(t) if t ∈ [0, tu1
)Tκ ,

xi(t) if t ∈ [tui−1 , tui)Tκ , 1 < i ≤ p,
xp+1(t) if t ∈ [tup ,∞)Tκ .
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Using [1, Theorem 19] repeatedly, we have

x1(t) = Z(t, t0)x0 +

∫ t

t0

Z(t, σ(s))B(s)w1(s)∆s

for t ∈ [0, tu1
]Tκ ,

xi(t) = Z(t, tui−1
)xi−1(tui−1

) +

∫ t

tui−1

Z(t, σ(s))B(s)wi(s)∆s

for t ∈ [tui−1
, tui ]Tκ , 1 < i ≤ p, and

xp+1(t) = Z(t, tup)xp(tup) +

∫ t

tup

Z(t, σ(s))B(s)wp+1(s)∆s

for t ∈ [tup ,∞)Tκ . Thus the solution x is given by

x(t) = Z(t, t0)x0 +

∫
[t0,t)T

Z(t, σ(s))B(s)u(s)∆s

for t ∈ [0, tu1 ]Tκ ,

x(t) = Z(t, tui−1
)x(tui−1

) +

∫
[tui−1

,t)T

Z(t, σ(s))B(s)u(s)∆s

for t ∈ [tui−1
, tui ]Tκ , 1 < i ≤ p, and for t ∈ [tup ,∞)Tκ , it is expressed by

x(t) = Z(t, tup)x(tup) +

∫
[tup ,t)T

Z(t, σ(s))B(s)u(s)∆s.

Note that for p = 1 and t ∈ [tu1
,∞)Tκ , the solution is given by

x(t) = Z(t, tu1
)x(tu1

) +

∫
[tu1 ,t)T

Z(t, σ(s))B(s)u(s)∆s

with

x(tu1
) = Z(tu1

, t0)x0 +

∫
[t0,tu1 )T

Z(tu1
, σ(s))B(s)u(s)∆s,

and by using properties of transition matrices and integrals, we can conclude that

x(t) = Z(t, t0)x0 +

∫
[t0,t)T

Z(t, σ(s))B(s)u(s)∆s

for each t ∈ [tu1 ,∞)Tκ . Thus,

x(t) = Z(t, t0)x0 +

∫
[t0,t)T

Z(t, σ(s))B(s)u(s)∆s

for every t ∈ [0,∞)Tκ . Now, for p > 1 and t ∈ [tu1 , tu2 ]Tκ , the solution is

x(t) = Z(t, tu1
)x(tu1

) +

∫
[tu1 ,t)T

Z(t, σ(s))B(s)u(s)∆s,

where

x(tu1) = Z(tu1 , t0)x0 +

∫
[t0,tu1 )T

Z(tu1 , σ(s))B(s)u(s)∆s.
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Again, we can use properties of transition matrices and integrals to conclude that

x(t) = Z(t, t0)x0 +

∫
[t0,t)T

Z(t, σ(s))B(s)u(s)∆s

for every t ∈ [tu1
, tu2

]Tκ . Similarly, recursively we get

x(t) = Z(t, t0)x0 +

∫
[t0,t)T

Z(t, σ(s))B(s)u(s)∆s

for t ∈ [tui−1
, tui ]Tκ and 1 ≤ i ≤ p. In this case, for t ∈ [tup ,∞)Tκ , we have

x(t) = Z(t, tup)x(tup) +

∫
[tup ,t)T

Z(t, σ(s))B(s)u(s)∆s

with

x(tup) = Z(tup , t0)x0 +

∫
[t0,tup )T

Z(tup , σ(s))B(s)u(s)∆s.

Hence, we can also deduce that

x(t) = Z(t, t0)x0 +

∫
[t0,t)T

Z(t, σ(s))B(s)u(s)∆s

for each t ∈ [tup ,∞)Tκ . Therefore

x(t) = Z(t, t0)x0 +

∫
[t0,t)T

Z(t, σ(s))B(s)u(s)∆s

for each t ∈ [0,∞)Tκ . This completes the proof. �

4. Reachability and controllability

Now, we consider the notions of reachability and controllability for system (1.1)
analogous to those given in [3]. Then we establish the results on necessary and suffi-
cient conditions for reachability and controllability (theorems 4.3, 4.4, 4.6, and 4.7).
Thus, in theorems 4.3 and 4.4, we establish the results on reachability and in theo-
rems 4.6 and 4.7, we establish results on controllability. Besides, we also establish an
equivalence that relates reachability and controllability (Theorem 4.8).

Suppose that U denotes the set of control functions to system (1.1). Hence,
if τ ∈ (0,∞)Tκ and t0 ∈ [0, τ)T, U(t0, τ) will denote the functions from the set U
restricted to [t0, τ ]T. We point out that U(t0, τ) is a subspace of L2([t0, τ ]T;Rm).

Definition 4.1.

1. A state x1 ∈ Rn is said to be reachable at time τ ∈ [0,∞)Tκ if for some t0 ∈
[0, τ)T and for every initial state x0 ∈ Rn, there is an input u ∈ U(t0, τ) such
that the state x of system (1.1) with x(t0) = x0 satisfies x(τ) = x1.

2. The system (1.1) is called reachable at time τ ∈ [0,∞)Tκ if each state x1 ∈ Rn
is reachable at time τ .
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3. The reachability map Br(t0, τ) : U(t0, τ)→ Rn is defined as

Br(t0, τ)[u] =

∫
[t0,τ)T

Z(τ, σ(s))B(s)u(s)∆s.

4. The adjoint of Br(t0, τ), indicated by B∗r (t0, τ) : Rn → U(t0, τ), is defined by

B∗r (t0, τ)[w](t) = BT (t)ZT (τ, σ(t))w,

for all w ∈ Rn and for any t ∈ [t0, τ ]T.
5. The Gramian reachability map GrB(t0, τ) : Rn → Rn is given by

GrB(t0, τ)[w] = Br(t0, τ) ◦ B∗r (t0, τ)[w]

=

∫
[t0,τ)T

Z(τ, σ(s))B(s)BT (s)ZT (τ, σ(s))w∆s.

Definition 4.2.

1. A state x0 ∈ Rn is said to be controllable at time t0 ∈ [0,∞)Tκ if for some
τ ∈ (t0,∞)Tκ there exists an input u ∈ U(t0, τ) such that the state x of system
(1.1) with x(t0) = x0 satisfies x(τ) = 0.

2. The system (1.1) is called controllable at time t0 ∈ [0,∞)Tκ if each state x0 ∈ Rn
is controllable at time t0.

3. The controllability map Bc(t0, τ) : U(t0, τ)→ Rn is defined as

Bc(t0, τ)[u] =

∫
[t0,τ)T

Z(t0, σ(s))B(s)u(s)∆s.

4. The adjoint of Bc(t0, τ), indicated by B∗c (t0, τ) : Rn → U(t0, τ), is given by

B∗c (t0, τ)[w](t) = BT (t)ZT (t0, σ(t))w,

for all w ∈ Rn and all t ∈ [t0, τ ]T.
5. The Gramian controllability map GcB(t0, τ) : Rn → Rn is defined by

GcB(t0, τ)[w] = Bc(t0, τ) ◦ B∗c (t0, τ)[w]

=

∫
[t0,τ)T

Z(t0, σ(s))B(s)BT (s)ZT (t0, σ(s))w∆s.

The necessary and sufficient condition for the reachability of (1.1) in terms of
the Gramian reachability matrix is proved in Theorem 4.3.

Theorem 4.3. For a fixed τ ∈ [0,∞)Tκ , the system (1.1) is reachable at time τ if and
only if there exists t0 ∈ [0, τ)T such that the n×n Gramian reachability matrix defined
by

Gr(t0, τ) :=

∫
[t0,τ)T

Z(τ, σ(s))B(s)BT (s)ZT (τ, σ(s))∆s

is invertible, where Z(t, s) is the transition matrix of Eq. (3.1).

Proof. Suppose the Gramian matrix Gr(t0, τ) is invertible. Define the input u ∈
U(t0, τ) by

u(t) = −BT (t)ZT (τ, σ(t))G−1
r (t0, τ)(Z(τ, t0)x0 − x1), (4.1)
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where x0, x1 ∈ Rn. Then, the state x of system (1.1) with x(t0) = x0 is such that

x(τ) = Z(τ, t0)x0 +

∫
[t0,τ)T

Z(τ, σ(s))B(s)u(s)∆s.

Now, substituting the value of u(s) from (4.1), we get

x(τ) = Z(τ, t0)x0

− G−1
r (t0, τ)(Z(τ, t0)x0 − x1)

∫
[t0,τ)T

Z(τ, σ(s))B(s)BT (s)× ZT (τ, σ(s))∆s

= x1.

Therefore the system (1.1) is reachable at time τ . On the other hand, assume Gr(t0, τ)
not invertible and the system (1.1) reachable at time τ . Hence there exists a nonzero
vector xa ∈ Rn such that

0 = xTa Gr(t0, τ)xa

=

∫
[t0,τ)T

xTaZ(τ, σ(s))B(s)BT (s)ZT (τ, σ(s))xa∆s

=

∫
[t0,τ)T

∥∥BT (s)ZT (τ, σ(s))xa
∥∥2

∆s.

This gives

BT (s)ZT (τ, σ(s))xa = 0, s ∈ [t0, τ ]T,

i.e.,

xTaZ(τ, σ(s))B(s) = 0, s ∈ [t0, τ ]T. (4.2)

Since the system (1.1) is reachable at time τ , for x0 = Z(t0, τ)xa + Z(t0, τ)x1, there
exists an input u ∈ U(t0, τ) such that the state x of system (1.1) with x(t0) = x0

obeys

x(τ) = x1 = Z(τ, t0)x0 +

∫
[t0,τ)T

Z(τ, σ(s))B(s)u(s)∆s.

Hence,

x1 = xa + x1 +

∫
[t0,τ)T

Z(τ, σ(s))B(s)u(s)∆s

and we deduce that

xa = −
∫

[t0,τ)T

Z(τ, σ(s))B(s)u(s)∆s.

Now, multiplying the last equation by xTa and using Eq. (4.2) we get

xTa xa = −
∫

[t0,τ)T

xTaZ(τ, σ(s))B(s)u(s)∆s

= 0.

That is, ‖xa‖ = 0 and hence xa = 0, a contradiction. Thus, the Gramian matrix
Gr(t0, τ) is invertible. �
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Theorem 4.4 given below establishes necessary and sufficient conditions to reach-
ability for system (1.1).

Theorem 4.4. Suppose τ ∈ [0,∞)Tκ . The system (1.1) is reachable at time τ if and
only if there exists t0 ∈ [0, τ)T such that one of the following statements is satisfied.

(i). The operator Br(t0, τ) is onto (surjective).
(ii). The operator B∗r (t0, τ) is one to one (injective).
(iii). The Gramian reachability operator GrB(t0, τ) is invertible.
(iv). There is a positive constant γ such that

‖w‖2 ≤ γ
∫

[t0,τ)T

‖BT (s)ZT (τ, σ(s))w‖2∆s

for all w ∈ Rn.

Remark 4.5. In Theorem 4.4, the equivalence between statement (iii) and reachability
of system (1.1) at time τ can be obtained from Theorem 4.3, since the n×n Gramian
reachability matrix Gr(t0, τ) is the matrix representation of operator GrB(t0, τ) relative
to the canonical basis.

From [11, Theorem 2.4] we have the following result.

Theorem 4.6. Assume t0 ∈ [0,∞)Tκ . Hence, the system (1.1) is controllable at time t0
if, and only if, there exists τ ∈ (t0,∞)Tκ such that the n× n controllability Gramian
matrix defined by

Gc(t0, τ) =

∫
[t0,τ)T

Z(t0, σ(s))B(s)BT (s)ZT (t0, σ(s))∆s

is invertible, where Z(t, s) is the transition matrix of Eq. (3.1).

The necessary and sufficient conditions to controllability for system (1.1) is given
below.

Theorem 4.7. Assume t0 ∈ [0,∞)Tκ . The system (1.1) is controllable at time t0 if and
only if there exists τ ∈ (t0,∞)Tκ such that one of the following statements is satisfied.

(i). The operator Bc(t0, τ) is onto (surjective).
(ii). The operator B∗c (t0, τ) is one to one (injective).
(iii). The Gramian controllability operator GcB(t0, τ) is invertible.
(iv). There is a positive constant γ such that

‖w‖2 ≤ γ
∫

[t0,τ)T

‖BT (s)ZT (t0, σ(s))w‖2∆s

for every w ∈ Rn.

Proof. The equivalence between controllability of system (1.1) at time τ and state-
ment (iii) follows from Theorem 4.6, since the n × n Gramian controllability matrix
Gc(t0, τ) is the matrix representation of operator GcB(t0, τ) relative to the canonical
basis. The remaining equivalences can be obtained as in proof of [3, Proposition 5]. �

Finally, we have the following equivalence that relates reachability and control-
lability.
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Theorem 4.8. If system (1.1) is reachable at time τ in [0,∞)Tκ if and only if the
system (1.1) is controllable at some time t0 < τ in [0,∞)Tκ .

5. Conclusions

The paper studies the notions of reachability and controllability for linear
Volterra integro-dynamic system on time scales. In such a way that the study carried
out here on reachability is a pioneer in the time scales literature. In Theorems 4.3,
4.4, 4.6, and 4.7, we establish results on the necessary and sufficient conditions to
reachability and controllability. Also, we relate the notions of reachability and con-
trollability in Theorem 4.8. In Theorem 4.7, new necessary and sufficient conditions
to controllability are obtained. On the other hand, Theorems 4.3 and 4.4 establish
new necessary and sufficient conditions to reachability.
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