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Existence and asymptotic stability for
a semilinear damped wave equation with
dynamic boundary conditions involving
variable nonlinearity

Saf Salim , Nadji Touil and Abita Rahmoune

Abstract. We investigate the solvability of a class of quasilinear elliptic equations
characterized by a (p(x), k(x)) growth structure and nonlinear boundary condi-
tions, specifically in the context of Kelvin-Voigt damping with arbitrary data. Our
approach involves analyzing the problem within appropriate functional spaces,
utilizing Lebesgue and Sobolev spaces with variable exponents. In the first step,
we establish the existence and uniqueness of results for solutions to the model,
provided the data meet certain regularity conditions. Our methodology primarily
relies on fixed-point theory and Faedo-Galerkin techniques, incorporating some
novel strategies. In the second part, we consider scenarios with sufficiently large
data sets and show that the system’s energy grows exponentially.
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1. Introduction

Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with a smooth boundary Γ = ∂Ω. In
this work, we deal with the existence and asymptotic behavior of weak solutions of a
weakly damped wave equation with dynamic boundary conditions and source terms
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involving nonlinearities with variable exponents. More specifically, let’s look at the
problem

utt (x, t)−∆u (x, t)− γ∆ut (x, t) = |u|p(x)−2
u (x, t) , x ∈ Ω, t > 0,

u (x, t) = 0, x ∈ Γ0, t > 0,

utt (x, t) = −a
(
∂u
∂ν (x, t) + γ ∂ut∂ν (x, t) + r |ut|k(x)−2

ut (x, t)
)
, x ∈ Γ1, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
(1.1)

where u = u (x, t) , t ≥ 0, γ, a and r are positive real numbers and −∆ represent the
Laplace operator with respect to the spatial variable. The boundary Γ of Ω is assumed
to be regular and the union of two closed and disjoint parts Γ0, Γ1, where Γ0 6= ∅ .
∂u
∂ν denotes the unit of the exterior normal derivative, u0, u1 are given functions and
the exponents k(.) and p(.) are given measurable functions on Ω to satisfy{

2 ≤ p1 ≤ p (x) ≤ p2 <∞,
2 ≤ k1 ≤ k (x) ≤ k2 <∞,

(1.2)

where we fix q on Ω for any given measurable function:

q2 = ess sup
x∈Ω

q (x) , q1 = ess inf
x∈Ω

q (x) . (1.3)

We also assume that the following uniform Zhikov-Fan local continuity condition holds

|p (x)− p (y)|+ |k (x)− k (y)| ≤ M

|log |x− y||
, for all x, y in Ω, (1.4)

with 0 < |x− y| < 1

2
, M > 0.

In recent years, many authors have engaged in the study of nonlinear hyperbolic,
parabolic and elliptic equations with a non-standard growth condition, since they are
applicable to real problems and many physical phenomena such as flows of electro-
rheological fluids or fluids with temperature-dependent viscosity, nonlinear viscoelas-
ticity, filtration processes through a porous media [3, 18], and the processing of digital
images [2, 7], and can all be associated with problem (1.1), more details on the subject
can be found in [19] and the other references contained therein. In the classical case
of constant exponent (k(x) =constant = p, p(x) =constant = p), this equation has its
origin in the nonlinear dynamic evolution of a viscoelastic rod that is fixed at one end
and has a tip mass attached to its free end [5, 14, 13], where the source term |u|p−2

u
forces the negative-energy solutions to explode in finite time, and the dissipation term

|ut|k−2
ut assures the existence (in time) of global solutions. The dynamic boundary

conditions represent Newton’s law for the attached mass [5, 4]. In two-dimensional
space, as shown in [15], boundary conditions of this kind appear when we consider
the transverse motion of a flexible membrane, the boundary of which is only allowed
to be affected by vibrations in one region. For other applications and related results,
we refer the reader to [9, 16, 1, 17]. The aim of this article is to consider a class
of nonlinear damped wave equations with dynamic boundary conditions and source
terms with variable exponents and to prove a local existence theorem and sufficient
conditions and initial data for the exponential energy increase to appear, indicate



Well-posedness for semilinear damped wave equation 85

that this study is through the presence of the strong damping term −∆ut and the
variable exponents differs from those previously considered. For this reason, extensive
changes in the approaches are required.

2. Preliminaries

2.1. Function spaces

Throughout this paper, we assume that Ω is a bounded domain of Rn, n ≥ 1
with a smooth boundary Γ = ∂Ω. Let p (x) ≥ 2 be a measurable bounded function
defined in Ω. We introduce the set of functions

Lp(.)(Ω) =

u (x) : u is measurable in Ω, %p(.) (u) ≡
∫
Ω

|u (x)|p(x)
dx <∞

 .

The set Lp(.)(Ω) equipped with the norm (Luxemburg norm)

‖u‖p(.) = inf

λ > 0,

∫
Ω

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1

 ,

becomes a Banach space. The set C∞(Ω) is dense in Lp(.)(Ω), provided that the
exponent p(x) ∈ C0(Ω). Hölder’s inequality holds for the elements of these spaces in
the following form:∫

Ω

|u (x) v (x)|dx ≤
(

1

p1
+

1

q1

)
‖u‖p(x) ‖v‖q(x) ,

for all u ∈ Lp(.)(Ω), v ∈ Lq(.)(Ω) with p (x) ∈ [p1, p2] ⊂ (1,∞) , q (x) = p(x)
p(x)−1 ∈

[q1, q2] ⊂ (1,∞). With W
1,p(.)
0 (Ω) we denote the Banach space

W
1,p(.)
0 (Ω) =

{
u ∈ Lp(.)(Ω) | |∇u|p(x) ∈ L1(Ω), u = 0 on Γ = ∂Ω

}
.

An equivalent norm of W
1,p(.)
0 (Ω) is given by

‖u‖
W

1,p(.)
0 (Ω)

= ‖∇u‖p(.) =
∑
i

‖Diu‖
p(.)

+ ‖u‖p(.) ,

and W−1,p′(.)(Ω) is defined in the same way as the usual Sobolev spaces (see [8]).

Here we note that the space W
1,p(.)
0 (Ω) is usually defined differently for the variable

exponent case. The
(
W

1,p(.)
0 (Ω)

)′
is the dual space of W

1,p(.)
0 (Ω) with respect to

the inner product in L2(Ω) and is defined as W−1,q(.)(Ω), where 1
p(.)

+ 1
q(.) = 1. If

p ∈ C
(
Ω
)
, q : Ω → [1,+∞) is a measurable function and ess inf

x∈Ω
(p∗ (x)− q (x)) > 0

with p∗ (x) = np(x)
(n−p(x))2

, then W
1,p(.)
0 (Ω) ↪→ Lq(.)(Ω) is continuous and compact.
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Lemma 2.1. ([8]) If Ω is a bounded domain of Rn, p(.) ⊂ (1,∞) is a measurable
function on Ω, then

min
(
%p(.) (u)

1
p1 , %p(.) (u)

1
p2

)
≤ ‖u‖p(.) ≤ max

(
%p(.) (u)

1
p1 , %p(.) (u)

1
p2

)
, (2.1)

for any u ∈ Lp(.)(Ω).

Proposition 2.2. (See [12]) If Ω is a bounded domain in Rn, p ∈ C0,1
(
Ω
)
, 1 < p1 ≤

p (x) ≤ p2 < n. Then, for every q ∈ C(Γ) with 1 ≤ q(x) ≤ (n−1)p(x)
n−p(x) , there is a

continuous trace W 1,p(x)(Ω) → Lq(x)(Γ), when 1 ≤ q(x) << (n−1)p(x)
n−p(x) , the trace is

compact, and in particular, the continuous trace W 1,p(x)(Ω)→ Lp(x)(Γ) is compact.

2.2. Mathematical Hypotheses

We start this section by introducing some hypotheses and our main result. In
this paper we use standard function spaces and denote that ‖.‖q,Γ1

, ‖.‖p(.),Γ1
are the

Lq(Γ1) norm and the Lp(.)(Γ1) norm such that

‖u‖p(.),Γ1
=

∫
Γ1

|u (x)|p(x)
dΓ.

And we define (u, v) =
∫

Ω
u (x) v (x) dx and (u, v)Γ1

=
∫

Γ1
u (x) v (x) dΓ. Furthermore,

we use standard functional spaces and denote that (., .), ‖.‖ the inner products and
norms are represented in L2(Ω) and H1

0 (Ω) and they are given by

(u, v) =

∫
Ω

u (x) v (x) dx and ‖u‖2L2(Ω) =

∫
Ω

|u|2 dx.

We adopt the fixed definition of the H1
0 (Ω) norm as

‖u‖2H1
0 (Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) , ∀u ∈ H

1
0 (Ω) .

Next we give the assumptions for the problem (1.1).

(H) Hypotheses on p(.), k(.). Let k(.) and p(.) be measurable functions on Ω that
satisfy the following condition:

2 < p1 ≤ p (x) ≤ p2 <∞, and 2 ≤ k1 ≤ k (x) ≤ k2 <∞. (2.2)

We will use the embedding H1
Γ0

(Ω) ↪→ Lq(Γ1), 2 ≤ q ≤ q, where q = 2n−2
n−2 ,

n > 2 and 1 ≤ q <∞ if n = 2 where

H1
Γ0

(Ω) =
{
u ∈ H1 (Ω) : u |Γ0= 0

}
,

equipped with the Hilbert structure induced by H1 (Ω) is a Hilbert space.

3. Existence of weak solutions

In this section we prove the existence of weak solutions to our problem (1.1). Our
proof method is based on the Faedo-Galerkin approximation, the fixed point theory
in Banach spaces, and the concept of compactness, which we discussed in this section.
For the sake of simplicity, a = 1.
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Theorem 3.1. Let 2 ≤ p1 ≤ p (x) ≤ p2 ≤ q and max
(

2, q
q+1−p2

)
≤ k1 ≤ k (x) ≤ k2 ≤

q. Then given (u0, u1) ∈ H1
Γ0

(Ω) × L2 (Ω) , there exists T > 0 and a unique solution
u of the problem (1.1) on (0, T ) such that

u ∈ C
(
0, T ;H1

Γ0
(Ω)
)
∩ C1

(
0, T ;L2 (Ω)

)
,

ut ∈ L2
(
0, T ;H1

Γ0
(Ω)
)
∩ Lk(.) ((0, T )× Γ1) .

In order to prove the main theorem, we need the local existence and uniqueness
of the solution to the following related problem:

vtt (x, t)−∆v (x, t)− γ∆vt (x, t) = |u|p(x)−2
u (x, t) in Ω× R+,

v = 0 on Γ0 × (0,+∞) ,

vtt (x, t) = −
[
∂v
∂ν (x, t) + γ ∂vt∂ν (x, t) + r |vt|k(x)−2

vt (x, t)
]

on Γ1 × (0,+∞) ,
v(x, 0) = u0(x), vt(x, 0) = u1(x), x ∈ Ω.

(P4)

We now have to give the following existence result of the local solution of problem
(P4) for an arbitrary initial value (u0, u1) ∈ H1

Γ0
(Ω)× L2 (Ω).

Lemma 3.2. Let 2 ≤ p1 ≤ p (x) ≤ p2 ≤ q and max
(

2, q
q+1−p2

)
≤ k1 ≤ k (x) ≤ k2 ≤ q.

Then given (u0, u1) ∈ H1
Γ0

(Ω)×L2 (Ω) there exists T > 0 and a unique solution v of
the problem (P4) on (0, T ) such that

v ∈ C
(
0, T ;H1

Γ0
(Ω)
)
∩ C1

(
0, T ;L2 (Ω)

)
,

vt ∈ L2
(
0, T ;H1

Γ0
(Ω)
)
∩ Lk(.) ((0, T )× Γ1) .

To justify Lemma (3.2), we first investigate the following problem for every T > 0
and f ∈ H1(0, T ;L2(Ω))

vtt (x, t)−∆v (x, t)− γ∆vt (x, t) = f (x, t) in Ω× R+,
v (x, t) = 0 on Γ0 × (0,+∞) ,

vtt (x, t) = −
[
∂v
∂ν (x, t) + γ ∂vt∂ν (x, t) + r |vt|k(x)−2

vt (x, t)
]

on Γ1 × (0,+∞) ,
v(x, 0) = u0(x), vt(x, 0) = u1(x), x ∈ Ω.

(P5)

At this point, as reported by Doronin et al. [11], we need to know exactly what kind
of solutions to problem (P5) we need

Definition 3.3. We say that a function v is a local generalized solution to problem
(P5) if

(i). v ∈ L∞
(
0, T ;H1

Γ0
(Ω)
)
,

(ii). vt ∈ L2
(
0, T ;H1

Γ0
(Ω)
)
∩ Lk(.) ((0, T )× Γ1) ∩ L∞

(
0, T ;H1

Γ0
(Ω)
)
∩

L∞
(
0, T ;L2 (Γ1)

)
,

(iii). vtt ∈ L∞
(
0, T ;L2 (Ω)

)
∩ L∞

(
0, T ;L2 (Γ1)

)
,

(iv). v(x, 0) = u0(x), vt(x, 0) = u1(x),
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(v). for all ϕ ∈ H1
Γ0

(Ω) ∩ Lk(.) (Γ1) and a.e. t ∈ [0, T ] with φ ∈ C (0, T ) and
φ (T ) = 0, the following identity hold:∫ T

0
(f, ϕ) (t)φ (t) dt =

∫ T
0

[(vtt, ϕ) (t) + (∇v,∇ϕ) (t) + γ (∇vt,∇ϕ) (t)]φ (t) dt

+
∫ T

0
φ (t)

∫
Γ1

[
vtt (t) + r |vt|k(x)−2

vt (t)
]
ϕdΓdt.

Using the Galerkin arguments, we prove the following lemma on the existence
and uniqueness of a local solution of (P5) in time.

Lemma 3.4. Let 2 ≤ p1 ≤ p (x) ≤ p2 ≤ q and 2 ≤ k1 ≤ k (x) ≤ k2 ≤ q. Then, for all
(u0, u1) ∈ H2 (Ω)∩H1

Γ0
(Ω)∩Lk(.) (Γ1)×H2 (Ω) and f ∈ H1(0, T ;L2(Ω)), there is a

unique solution v of problem (P5) in the sense of definition (3.3).

The proof of the above lemma depends on the Faedo-Galerkin method, which
consists of constructing approximations of the solution. Then we get the necessary a
priori estimates to ensure the convergence of these approximations. It seems difficult
to get second-order estimates for vtt(0). To obtain them we relied on the ideas of
Doronin and Larkin in [10] and Cavalcanti et al. [6] be inspired.

Proof of Lemma (3.4). We propose the following modification of variables:

ṽ(t, x) = v(t, x)− ω(t, x) with ω(t, x) = u0(x) + tu1(x).

Hence we have the following problem with the unknown ṽ(t, x) and null initial condi-
tions

ṽtt −∆ṽ − γ∆ṽt = f (x, t) + ∆ω + γ∆ωt in Ω× R+,
ṽ = 0 on Γ0 × (0,+∞) ,

ṽ (x, t) = −

[
∂(ṽ+ω)
∂ν (x, t) + γ ∂(ṽt+ωt)

∂ν (x, t)

+r |ṽt + ωt|k(x)−2
(ṽt + ωt) (x, t)

]
on Γ1 × (0,+∞) ,

ṽ(x, 0) = 0, vt(x, 0) = 0, x ∈ Ω.

(P6)

Therefore we first prove the existence and uniqueness of the local solution for (P5).
Let (wj) , j = 1, 2, ..., be a complete orthonormal system in L2(Ω) ∩ L2(Γ1) with the
following properties:
∗ ∀j;wj ∈ H1

Γ0
(Ω) ∩ Lk(.) (Γ1);

∗ The family {w1, w2, ..., wm} is linearly independent;
∗ Vm the space generated by {w1, w2, ..., wm} , ∪

m
Vm is dense in H1

Γ0
(Ω) ∩ Lk(.) (Γ1).

We construct approximate solutions, ṽm (m = 1, 2, 3, ...) in Vm in the form

ṽm(t) =

m∑
i=1

Kjm(t)wi, m = 1, 2, ..., (3.1)

where Kjm(t) are determined by the following ordinary differential equation:(
d2

dt2 ṽm(t), wj

)
+ (∇ (ṽm + ω) ,∇wj) + γ (∇ (ṽm + ω)t ,∇wj)

+
(

d2

dt2 ṽm(t) + r |(ṽm + ω)t|
k(x)−2

(ṽm + ω)t , wj

)
Γ1

= (f (t) , wj) , j = 1, 2, ...,

and is completed by the following initial conditions vm(0), vtm(0) that satisfy

ṽm(0) = ṽtm(0) = 0. (3.2)
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Then (
d2

dt2 ṽm(t), v
)

+ (∇ (ṽm + ω) ,∇v) + γ (∇ (ṽm + ω)t ,∇v)

+
(

d2

dt2 ṽm(t) + r |(ṽm + ω)t|
k(x)−2

(ṽm + ω)t , v
)

Γ1

= (f (t) , v) ,
(3.3)

it holds for any given v ∈ Span {w1, w2, ..., wm} , due to the theory of ordinary differ-
ential equations, the system (3.1)-(3.3) has a unique local solution, which is extended
to maximal intervals [0, tm] .

A solution ṽ of problem (1.1) in an interval [0, tm] is obtained as the limit of
ṽm as m → ∞. Then, as a consequence of the a priori estimates to be proved in the
next step, this solution can be extended to the entire interval [0, T ] for all T > 0. In
this section, C > 0 and c∗ > 0 denote various positive constants that vary from line
to line, are independent of the natural number m, and only (possibly) depend on the
initial value.
Estimates for ṽtm(t)

By taking v = ṽtm(t) in (3.3), we have for t ∈ (0, tm)

1
2

(∫
Ω
|ṽtm|2 dx+

∫
Ω
|∇ṽm|2 dx+ ‖ṽtm‖2Γ1

)
+ γ

∫ t
0

∫
Ω
|∇ṽtm|2 dxds

+
∫ t

0
(∇ω,∇ṽtm) ds+ γ

∫ t
0

(∇ωt,∇ṽtm) ds

+r
∫ t

0

(
|(ṽm + ω)t|

k(x)−2
(ṽm + ω)t , ṽtm

)
Γ1

ds =
∫ t

0
(f, ṽtm) ds.

(3.4)

Using Young’s inequality, there are δ1 > 0 (actually small enough) so they hold

γ

∫ t

0

(∇ωt,∇ṽtm) ds ≤ δ1
∫ t

0

∫
Ω

|∇ṽtm|2 dxds+
1

4δ1

∫ t

0

∫
Ω

|∇ωt|2 dxds, (3.5)

and ∫ t

0

(∇ω,∇ṽtm) ds ≤ δ1
∫ t

0

∫
Ω

|∇ṽtm|2 dxds+
1

4δ1

∫ t

0

∫
Ω

|∇ω|2 dxds. (3.6)

By the inequalities of Hölder and Young there is C > 0 such that∫ t

0

(f, ṽtm) ds ≤ C
∫ t

0

∫
Ω

(
|f |2 + |ṽtm (s)|2

)
dxds. (3.7)

The last term on the left of Equation (3.4) can be written as follows∫ t
0

(
|(ṽm + ω)t|

k(x)−2
(ṽm + ω)t , ṽtm

)
Γ1

ds

=
∫ t

0

(
|(ṽm + ω)t|

k(x)−2
(ṽm + ω)t , (ṽm + ω)t

)
Γ1

ds

−
∫ t

0

(
|(ṽm + ω)t|

k(x)−2
(ṽm + ω)t , ωt

)
Γ1

ds

=
∫ t

0

∫
Γ1
|(ṽm + ω)t|

k(x)
dΓds−

∫ t
0

(
|(ṽm + ω)t|

k(x)−2
(ṽm + ω)t , ωt

)
Γ1

ds.

Therefore, Young’s inequality grants us for δ2 > 0∣∣∣∣∫ t0 (|(ṽm + ω)t|
k(x)−2

(ṽm + ω)t , ωt

)
Γ1

ds

∣∣∣∣ ≤ 1
k1

∫ t
0

∫
Γ1
δ
k(x)
2 |(ṽm + ω)t|

k(x)
dΓds

+k2−1
k1

∫ t
0

∫
Γ1
δ
− k(x)
k(x)−1

2 |ωt|k(x)
dΓds.

(3.8)
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So if we apply inequalities (3.5), (3.6), (3.7) and (3.8) to Equation (3.4) and make δ1
and δ2 small enough, we can conclude∫

Ω

|ṽtm|2 dx+

∫
Ω

|∇ṽm|2 dx+ ‖ṽtm‖2Γ1

+

∫ t

0

|∇ṽtm|2 ds+

∫ t

0

∫
Γ1

|(ṽm + ω)t|
k(x)

dΓds ≤ CT , (3.9)

where CT is a positive constant independent of m. Thus the solution can be extended
to [0, T ) and also hold

(ṽm) is a bounded sequence in L∞
(
0, T ;H1

Γ0
(Ω)
)

, (3.10)

(ṽtm) is a bounded sequence in (3.11)

L∞
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1

Γ0
(Ω)
)
∩ L∞

(
0, T ;L2 (Γ1)

)
,

Now applying the following algebraic inequality:

Aλ = (A+B −B)
λ ≤ 2λ−1

(
(A+B)

λ
+Bλ

)
, A, B > 0 and λ ≥ 1,

there are C1 > and C2 > 0 such that∫ t

0

∫
Γ1

|ṽtm|k(x)
dΓds =

∫ t

0

∫
Γ1

|(ṽm + ω)t − ωt|
k(x)

dΓ1ds

≤ C1

∫ t

0

∫
Γ1

|(ṽm + ω)t|
k(x)

dΓds+ C2

∫ t

0

∫
Γ1

|ωt|k(x)
dΓds.

Hence, from inequalities (3.9) and (3.6), there are C ′T > 0 such that∫ t

0

∫
Γ1

|ṽtm|k(x)
dΓds ≤ C ′T .

Thus

(ṽtm) is a bounded sequence in Lk(.) ((0, T )× Γ1) . (3.12)

Estimates for ṽttm(t)
First we estimate ṽttm(0). Putting t = 0 and v = ṽttm(0) in (3.3) and considering

(3.11), we get ∫
Ω

|ṽttm(0)|2 dx+ ‖ṽttm(0)‖22,Γ1
+ (∇ω (0) ,∇ṽttm(0))

+γ (∇ωt (0) ,∇ṽttm(0)) +
(
r |ωt (0)|k(x)−2

ωt (0) , ṽttm(0)
)

Γ1

= (f (0) , ṽttm(0)) .

Knowing that the following inequalities hold:

(∇ωt (0) ,∇ṽttm(0)) = − (∆ωt (0) , ṽttm(0)) +

(
ωt (0) ,

∂ṽttm(0)

∂ν

)
Γ1

,

(∇ω (0) ,∇ṽttm(0)) = − (∆ω (0) , ṽttm(0)) +

(
ω (0) ,

∂ṽttm(0)

∂ν

)
Γ1

,
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and from 2 (k1 − 1) ≤ 2 (k2 − 1) ≤ 2n
n−2 ,∣∣∣∣(r |ωt (0)|k(x)−2

ωt (0) , ṽttm(0)
)

Γ1

∣∣∣∣
≤ rmax

( ∫
Γ1
|ωt (0)|k2−2 |ωt (0)| |ṽttm(0)|dΓ,∫

Γ1
|ωt (0)|k1−2 |ωt (0)| |ṽttm(0)|dΓ

)

≤ rmax

(
||ωt (0)||k2−2

(k2−2)n,Γ1
||ωt (0)|| 2n

n−2 ,Γ1
||ṽttm(0)||2,Γ1

,

||ωt (0)||k1−2
(k1−2)n,Γ1

||ωt (0)|| 2n
n−2 ,Γ1

||ṽttm(0)||2,Γ1

)

≤ Crmax

(
||∇ωt (0)||k2−2

2,Γ1
||∇ωt (0)||2,Γ1

,

||∇ωt (0)||k1−2
2,Γ1

||∇ωt (0)||2,Γ1

)
||ṽttm(0)||2,Γ1

≤ Crmax
(
|ωt (0)|k2−1

, |ωt (0)|k1−1
)
||ṽttm(0)||2,Γ1

.

(3.13)

Then from (u0, u1) ∈ H2 (Ω)∩H1
Γ0

(Ω)∩Lk(.) (Γ1)×H2 (Ω) and f ∈ H1(0, T ;L2(Ω)),

by applying Young’s inequality and embedding H1(Ω) ↪→ Lk2(Γ1) and H1(Ω) ↪→
Lk1(Γ1) we conclude that there is C > 0 independent of m such that∫

Ω

|ṽttm(0)|2 dx+ ‖ṽttm(0)‖22,Γ1
≤ C. (3.14)

By differentiating equation (3.3) with respect to t and replacing v with ṽttm(t), we
get

1
2

d
dt

(∫
Ω
|ṽttm|2 dx+

∫
Ω
|∇ṽtm|2 dx+ ‖ṽttm‖22,Γ1

)
+ γ

∫
Ω
|∇ṽttm|2 dx+ (∇ωt,∇ṽttm)

+r
∫

Γ1
(k (x)− 1) |(ṽm + ω)t|

k(x)−2
(ṽm + ω)tt ṽttmdΓ = (ft, ṽttm) .

(3.15)
Since ωtt = 0, the last term on the left-hand side of Equation (3.15) can be expressed
as follows ∫

Γ1
|(ṽm + ω)t|

k(x)−2
(ṽm + ω)tt ṽttmdΓ

=
∫

Γ1

4
k2(x)

(
∂
∂t

(
|ṽtm (t) + ωt|

k(x)−2
2 (ṽtm (t) + ωt)

))2

dΓ.

Now Equation (3.15) is integrated over (0, t) using estimate (3.14) and the Young and

Poincare’s inequalities (as in (3.8)) there is C̃T > 0 such that(∫
Ω
|ṽttm|2 dx+

∫
Ω
|∇ṽtm|2 dx+ ‖ṽttm‖22,Γ1

)
+ γ

∫ t
0
|∇ṽttm|2 ds

+r 4(k1−1)

(k2)2

∫ t
0

∫
Γ1

(
∂
∂t

(
|ṽtm (t) + ωt|

k(x)−2
2 (ṽtm (t) + ωt)

))2

dΓds ≤ C̃T .

Consequently we come to the following results:

(ṽttm) is a bounded sequence in L∞
(
0, T ;L2 (Ω)

)
,

(ṽttm) is a bounded sequence in L∞
(
0, T ;L2 (Γ1)

)
,

(ṽtm) is a bounded sequence in L∞
(
0, T ;H1

Γ0
(Ω)
)
.

(3.16)

From (3.10), (3.11), (3.12) and (3.16), we have that (ṽm) is bounded in
L∞

(
0, T ;H1

Γ0
(Ω)
)
. Then, (ṽm) is bounded in L2

(
0, T ;H1

Γ0
(Ω)
)
. Since (ṽtm) is

bounded in L∞
(
0, T ;L2 (Ω)

)
, (ṽtm) is bounded in L2

(
0, T ;L2 (Ω)

)
. Thus, (ṽm) is
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bounded in H1(Q). Since the embedding H1(Q) ↪→ L2(Q) is compact, by the Aubin-
Lions theorem we have that there is a subsequence of (ṽm) , still denoted by (ṽm), so
that

ṽm → v strongly in L2(Q).

Therefore

ṽm → v strongly and a.e. on (0, T )× Ω.

Using Lion’s Lemma, we get

|ṽm|p(.)−2
ṽm → |ṽ|p(.)−2

ṽ strongly and a.e. on (0, T )× Ω.

On the other hand, we have from (3.11)

(ṽtm) is a bounded sequence in L∞
(
0, T ;L2 (Γ1)

)
.

From (3.10) and (3.16), since

‖ṽm‖
H

1
2 (Γ1)

≤ C ‖∇ṽm‖2 and ‖ṽtm‖
H

1
2 (Γ1)

≤ C ‖∇ṽtm‖2 ,

we derive that

(ṽm) is a bounded sequence in L2
(

0, T ;H
1
2 (Γ1)

)
,

(ṽtm) is a bounded sequence in L2
(

0, T ;H
1
2 (Γ1)

)
,

(ṽttm) is a bounded sequence in L2
(
0, T ;L2 (Γ1)

)
.

Since the embedding H
1
2 (Γ1) ↪→ L2 (Γ1) is compact, again using the Aubin-Lions

theorem, we conclude that we can extract a subsequence of (ṽm) still denoted by (ṽm)
so that

ṽtm → vt strongly in L2
(
0, T ;L2 (Γ1)

)
. (3.17)

So we get that from (3.12)

|ṽtm|k(.)−2
ṽtm → κ weakly in L

k(.)
k(.)−1 ((0, T )× Γ1) .

It is enough to prove that κ = |ṽt|k(.)−2
ṽt.

Clearly, from (3.17) we get

|ṽtm|k(.)−2
ṽtm → |ṽt|k(.)−2

ṽt strongly and a.e. on (0, T )× Γ1.

Again, using the Lions lemma, we get κ = |ṽt|k(.)−2
ṽt. The proof can now be com-

pleted as follows
Proof of uniqueness:

Let u1 and u2 be two solutions of the problem (P5) with the same initial data.
Let us denote w = u1 − u2. It is easy to see that w satisfies(∫

Ω
|wt|2 dx+

∫
Ω
|∇w|2 dx+ ‖wt‖2Γ1

)
+ 2γ

∫ t
0
|∇wt|2 ds

+2r
∫ t

0

∫
Γ1

(
|u1t|k(x)−2

u1t − |u2t|k(x)−2
u2t

)
wt (s) dΓds = 0.

By using the inequality(
|a|k(x)−2

a− |b|k(x)−2
b
)
. (a− b) ≥ 0, (3.18)
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for all a, b ∈ Rn and a.e. x ∈ Ω, we have∫
Ω

|wt|2 dx+

∫
Ω

|∇w|2 dx+ ‖wt‖22,Γ1
= 0,

which implies that w = C = 0. Hence, the uniqueness follows.

This completes the proof of the lemma (3.4). �

Proof of lemma (3.2). First we approximate u ∈
(
C[0, T ], H1

Γ0
(Ω)
)
∩C1([0, T ], L2(Ω))

equipped with the norm ‖u‖ = max
t∈[0,T ]

(
‖ut‖2 + ‖u‖H1(Ω)

)
, by a sequence (uµ) ∈

C∞
(
([0, T ])× Ω

)
by standard convolution arguments. It is clear that |uµ|p1−2

uµ

and |uµ|p2−2
uµ ∈ H1([0, T ], L2(Ω)), since 2 (p1 − 1) ≤ 2 (p2 − 1) ≤ 2n

n−2 . Next, we

approximate the initial data u1 ∈ L2(Ω) by a sequence (uµ1 ) in C∞0 (Ω) since the

space H2 (Ω) ∩H1
Γ0

(Ω) ∩Lk(.) (Γ1) is dense in H1
Γ0

(Ω) for the H1 endowed norm we

approximate u0 ∈ H1
Γ0

(Ω) by a sequence (uµ0 ) in H2 (Ω) ∩ H1
Γ0

(Ω) ∩ Lk(.) (Γ1). We
examine the set of the following approximation problems:

vµtt −∆vµ − γ∆vµt = |uµ|p(x)−2
uµ in Ω× R+,

vµ = 0 on Γ0 × (0,+∞) ,

vµtt (x, t) = −
[
∂vµ

∂ν (x, t) + γ
∂vµt
∂ν (x, t) + r |vµt |

k(x)−2
vµt (x, t)

]
on Γ1 × (0,+∞) ,

vµ(x, 0) = uµ0 (x), vµt (x, 0) = uµ1 (x), x ∈ Ω.

(3.19)

Since Lemma (3.4) is hypothesized, we can find a sequence of unique solutions (vµ)
to problem (3.19). We will show that the sequence {(vµ, vµt )} is a Cauchy sequence in
space

WT =

{
(v, vt) | v ∈ C

(
[0, T ] , H1

Γ0
(Ω)
)
∩ C1([0, T ], L2(Ω)),

vt ∈ L∞
(
0, T ;H1

Γ0
(Ω)
)
∩ Lk(.) ((0, T )× Γ1) ,

}
endowed with the norm

‖(v, vt)‖2WT
= max
t∈[0,T ]

(
‖vt‖22 + ‖∇v‖22

)
+ ‖vt‖2Lk(.)((0,T )×Γ1)

+
∫ t

0
‖∇vt (s)‖22 ds.

For this purpose we set U = uµ − uτ , V = vµ − vτ . It is easy to see that V satisfies

Vtt −∆V − γ∆Vt = |uµ|p(x)−2
uµ − |uτ |p(x)−2

uτ in Ω× R+,
V = 0 on Γ0 × (0,+∞) ,

Vtt (x, t) = −

[
∂V
∂ν (x, t) + γ ∂Vt∂ν (x, t)

+r
(
|vµt |

k(x)−2
vµt (x, t)− |vτt |

k(x)−2
vτt (x, t)

) ]
on Γ1 × (0,+∞) ,

V (x, 0) = uµ0 (x)− uτ0(x), Vt(x, 0) = uµ1 (x)− uτ1(x), x ∈ Ω.
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Multiply the above differential equations by Vt for all t ∈ (0, T ) and integrate over
(0, t)× Ω we get(

|Vt|2 + |∇V |2 + ‖Vt‖22,Γ1

)
+ 2γ

∫ t
0

∫
Ω
|∇Vt|2 dxds

+2r
∫ t

0

∫
Γ1

(
|vµt |

k(x)−2
vµt (x, t)− |vτt |

k(x)−2
vτt (x, t)

)
(vµt − vτt ) (s) dΓds

=
(
|Vt (0)|2 + |∇V (0)|2 + ‖Vt (0)‖22,Γ1

)
+2
∫ t

0

∫
Ω

(
|uµ|p(x)−2

uµ − |uτ |p(x)−2
uτ
)

(vµt − vτt ) (s) dxds.

Using the inequality (3.18), we get(
|Vt|2 + |∇V |2 + ‖Vt‖2Γ1

)
+ 2γ

∫ t
0

∫
Ω
|∇Vt|2 dxds

≤
(
|Vt (0)|2 + |∇V (0)|2 + ‖Vt (0)‖2Γ1

)
+2
∫ t

0

∫
Ω

(
|uµ|p(x)−2

uµ − |uτ |p(x)−2
uτ
)

(vµt − vτt ) (s) dxds.

(3.20)

Let’s estimate the last term of the second member of the above inequality∫
Ω

(
|uµ|p(x)−2

uµ − |uτ |p(x)−2
uτ
)

(vµt − vτt ) dx

≤ (p2 − 1)
∫

Ω
sup

(
|uµ|p(x)−2

, |uτ |p(x)−2
)
|uµ − uτ | |vµt − vτt |dx

≤ cmax

 (
||uµ (t)||p2−2

(p2−2)n + ||uµ (t)||p1−2
(p1−2)n

)
||U || 2n

n−2
‖Vt‖2 ,(

||uτ (t)||p2−2
(p2−2)n + ||uτ (t)||p1−2

(p1−2)n

)
||U || 2n

n−2
‖Vt‖2


≤ cc∗max

 ∫
Ω

(
|∇uµ (t)|p2−2

+ |∇uµ (t)|p1−2
)

dx,∫
Ω

(
|∇uτ (t)|p2−2

+ |∇uτ (t)|p1−2
)

dx

 ||∇U ||2 ‖Vt‖2 .
(3.21)

Then the estimate (3.20) takes the form(∫
Ω
|Vt|2 dx+

∫
Ω
|∇V |2 dx+ ‖Vt‖22,Γ1

)
+ 2γ

∫ t
0

∫
Ω
|∇Vt|2 dxds

≤
(∫

Ω
|Vt (0)|2 dx+

∫
Ω
|∇V (0)|2 dx+ ‖Vt (0)‖22,Γ1

)
+2cc∗

∫ t
0

max

 ∫
Ω

(
|∇uµ (t)|p2−2

+ |∇uµ (t)|p1−2
)

dx,∫
Ω

(
|∇uτ (t)|p2−2

+ |∇uτ (t)|p1−2
)

dx

 ||∇U ||2 ‖Vt‖2 ds.

(3.22)
From (3.10) , (3.22) becomes(∫

Ω
|Vt|2 dx+

∫
Ω
|∇V |2 dx+ ‖Vt‖2Γ1

)
+ 2γ

∫ t
0
‖∇Vt‖22 ds

≤
(∫

Ω
|Vt (0)|2 dx+

∫
Ω
|∇V (0)|2 dx+ ‖Vt (0)‖22,Γ1

)
+C

∫ t
0
||∇U ||2 ‖Vt‖2 ds.

Thus, applying Young’s and Gronwall inequalities, there is C that depending only on
Ω, p1 and p2 such that

‖V ‖WT
≤ C

(∫
Ω

|Vt (0)|2 dx+

∫
Ω

|∇V (0)|2 dx+ ‖Vt (0)‖22,Γ1

)
+ CT ‖U‖WT

.
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Since {(uµ0 )}, {(uµ1 )} and {(uµ)} Cauchy in H1
Γ0

(Ω) , L2 (Ω) and
(
C[0, T ], H1

Γ0
(Ω)
)
∩

C1([0, T ], L2(Ω)) we vonclude that {vµt } and {vµ} are Cauchy in WT . Thus, (vµ, vµt )
converges to a limit (v, vt) ∈ WT .

We now prove that the limit (v (x, t) , vt (x, t)) is a weak solution of (P4).

To this end, we multiply equation (3.19) by ψ in D (Ω) and integrate over Ω;
then, we get

d2

dt2

∫
Ω
vµψdx+ d

dt

∫
Γ1
vµt ψdΓ +

∫
Ω
∇vµ∇ψdx+ γ

∫
Ω
∇vµt ∇ψdx

+r
∫

Γ1
|vµt |

k(x)−2
vµt (t)ψdΓ =

∫
Ω
|uµ|p(x)−2

uµψdx.

As µ→∞, the followings hold in C ([0, T ]):

d2

dt2

∫
Ω

vµψdx→
∫
Ω

vψdx;
∫

Ω
∇vµ∇ψdx→

∫
Ω
∇v∇ψdx;∫

Ω
∇vµt ∇ψdx→

∫
Ω
∇vt∇ψdx;

∫
Γ1
vµt ψdΓ→

∫
Γ1
vtψdΓ;∫

Ω
|uµ|p(x)−2

uµψdx→
∫

Ω
|u|p(x)−2

uψdx;
∫

Γ1
|vµt |

k(x)−2
vµt (t)ψdΓ→∫

Γ1
|vt|k(x)−2

vt (t)ψdΓ.

It follows that
∫
Ω

vttψdx = lim
µ→∞

∫
Ω

vµttψdx is an absolutely continuous function on

[0, T ], hence (v (x, t) , vt (x, t)) is a weak solution to the problem (P4) for almost all
t ∈ [0, T ] .

Remaining to prove uniqueness, we denote that vµ, vν are the corresponding
solutions of problem (P4) to uµ, uν , respectively. Then obviously V = vµ− vν satisfies(∫

Ω

|Vt|2 dx+

∫
Ω

|∇V |2 dx+ ‖Vt‖22,Γ1

)
+ 2γ

∫ t

0

‖∇Vt‖22 ds ≤ C
∫ t

0

||∇U ||2 ‖Vt‖2 ds.

This shows that V = 0 for uµ = uν which implies the uniqueness. �

Proof of theorem (3.1). Let us define for T > 0 the convex closed subset of WT

YT = {(v, vt) ∈ WT such that v (0) = u0 and vt (0) = u1} .

Let’s denote

BR (YT ) =
{

(v, vt) ∈ WT such that ‖(v, vt)‖WT
≤ R

}
.

Then Lemma (3.2) implies that for every u ∈ YT we define v = Φ(u) as the unique
solution of problem (P4) corresponding to u. We want to show that this is a satisfying
contractive map

Φ (BR (YT )) ⊂ BR (YT ) .

Let u ∈ BR (YT ) and v = Φ (u). Then for all t ∈ [0, T ](∫
Ω
|vt|2 dx+

∫
Ω
|∇v|2 dx+ ‖vt‖22,Γ1

)
+ 2γ

∫ t
0
|∇vt|2 ds+ 2r

∫ t
0

∫
Γ1
|vt|k(x)

dΓds

=
(∫

Ω
|vt (0)|2 dx+

∫
Ω
|∇v (0)|2 dx+ ‖vt (0)‖22,Γ1

)
+ 2

∫ t
0

∫
Ω
|u|p(x)−2

uvt (s) dxds.

(3.23)
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Using Hölder’s inequality, we can examine the last term on the right-hand side of
inequality (3.23) as follows∫ t

0

∫
Ω

|u|p(x)−2
uvt (s) dxds ≤ (p2 − 1)

∫
Ω

max
(
|u|p2−2

, |u|p1−2
)
|u| |vt|dx

≤ cmax
((
||u (t)||p2−2

(p2−2)n , ||u (t)||p1−2
(p1−2)n

)
||u|| 2n

n−2
‖vt‖2

)
≤ cc∗max

(∫
Ω

|∇u (t)|p2−2
dx,

∫
Ω

|∇u (t)|p1−2
dx

)
||∇u||2 ‖vt‖2

= cc∗max
(
||∇u||p2−1

2 , ||∇u||p1−1
2

)
‖vt‖2 .

Since (p1 − 2)n ≤ (p2 − 2)n ≤ 2n
n−2 . Thus, by Young’s and Sobolev’s inequalities, we

get ∀δ > 0, ∃C(δ) > 0, such that ∀t ∈ (0, T ),∫ t

0

∫
Ω

|u|p(x)−2
uvt (s) dxds ≤ C(δ)tmax

(
R2(p2−1), R2(p1−1)

)
+ δ

∫ t

0

|∇vt|2 ds.

Plugging the last estimate into inequality (3.23) and choosing δ small enough we get

‖v‖2YT ≤
(∫

Ω
|vt (0)|2 dx+

∫
Ω
|∇v (0)|2 dx+ ‖vt (0)‖22,Γ1

)
+CT max

(
R2(p2−1), R2(p1−1)

)
.

(3.24)

By choosing R large enough so that∫
Ω

|vt (0)|2 dx+

∫
Ω

|∇v (0)|2 dx+ ‖vt (0)‖22,Γ1
≤ 1

2
R2,

then T sufficiently small so that CT max
(
R2(p2−1), R2(p1−1)

)
≤ 1

2R
2, it follows that

‖v‖YT ≤ R from (3.24), hence v ∈ BR (YT ) . Next, we have to check that it is a

contraction. To this point, we set U = u − u, V = v − v where v = Φ (u) and
v = Φ (u)

Vtt −∆V − γ∆Vt = |u|p(x)−2
u− |u|p(x)−2

u in Ω× R+,
V = 0 on Γ0 × (0,+∞) ,

Vtt (x, t) = −

[
∂V
∂ν (x, t) + γ ∂Vt∂ν (x, t)

+r
(
|vt|k(x)−2

vt (x, t)− |vt|k(x)−2
vt (x, t)

) ]
on Γ1 × (0,+∞) ,

V (x, 0) = 0, Vt(x, 0) = 0, x ∈ Ω.

(3.25)

Multiplying the first equation in (3.25) by Vt, integrating over (0, t) × Ω, and using
the algebraic inequality in (3.18) and the estimate (3.21) yields(∫

Ω
|Vt|2 dx+

∫
Ω
|∇V |2 dx+ ‖Vt‖22,Γ1

)
+ 2γ

∫ t
0
|∇Vt|2 ds

≤ 2cc∗
∫ t

0
max

 ∫
Ω

(
|∇u (t)|p2−2

+ |∇u (t)|p1−2
)

dx,∫
Ω

(
|∇u (t)|p2−2

+ |∇u (t)|p2−2
)

dx

 ||∇U ||2 ||Vt||2 ds.

So

‖V ‖2YT ≤ 4cc∗T
(
Rp2−2 +Rp1−2

)
‖U‖2YT ≤ CTR

p2−2 ‖U‖2YT . (3.26)
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If one chooses T small enough to have CTRp2−2 < 1, estimate (3.26) shows that Φ is
a contraction. The contraction mapping theorem guarantees the existence of a unique
solution v that satisfies v = Φ (v). This completes the proof of Theorem (3.1). �

4. Exponential growth

In this section we consider the problem (1.1) from an energetic point of view:
The energy grows exponentially and with it the Lp1 and Lp2 norms. To state and
prove the result, we declare the following notations. From Corollary 3.3.4 in [8] we
know Lp2(Ω) ↪→ Lp(.)(Ω). Hence it is a consequence of embedding H1

0 (Ω) ↪→ Lp2(Ω)
and Poincar’s inequality

‖u‖p(.) ≤ B ‖∇u‖2 , (4.1)

where B is the best constant of the embedding H1
0 (Ω) ↪→ Lp(.) (Ω) determined by

B−1 = inf
{
‖∇u‖2 : u ∈ H1

0 (Ω) , ‖u‖p(.) = 1
}
.

We also define the following constant which will play an important role in the proof
of our result.

Let B1, α1, α0, E1, and E (0) be satisfying constants

B1 = max (1, B) , α1 = B1

−2p1
p1−2 ,

α0 = ‖∇u0‖22 , E1 =
(

1
2 −

1
p1

)
α1.

E (0) = 1
2 ‖u1‖22 + 1

2 ‖∇u0‖22 + 1
2 ‖u1‖22,Γ1

−
∫

Ω
1

p(x) |u0|p(x)
dx.

(4.2)

For the sake of simplicity, we also write %(u) instead of %p(.)(u).

For this purpose we start with the following lemma, which defines the energy of
the solution.

Lemma 4.1. We define the energy of a solution u of (1.1) as:

E (t) =
1

2
‖ut‖22 +

1

2
‖∇u‖22 +

1

2
‖ut‖22,Γ1

−
∫

Ω

1

p (x)
|u|p(x)

dx. (4.3)

If we multiply the first equation in (1.1) by ut and integrate over Ω and with respect
to t, we get

E (t)− E (s) = −
∫ t

s

(
γ ‖∇ut (τ)‖22 +r ‖ut (τ)‖k(.),Γ1

)
dτ ≤ 0, ∀ 0 < s ≤ t < T.

(4.4)
Thus the function E is decrease along the trajectories.

Theorem 4.2. Let k2 < p1 ≤ p (x) ≤ p2 with 2 < p1 ≤ p (x) ≤ p2 ≤ q. Assume that the

initial value u0 is chosen suvh that E(0) < E1 and B−2
1 ≥ ‖∇u0‖22 > α1 hold. Then,

under the above conditions, the solution to problem (1.1) will grow exponentially in
the norms Lp1 and Lp2 .
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We conclude from (4.3) and (4.1)

E (t) ≥ 1
2 ‖∇u‖

2
2 −

1
p1

max
(
‖u‖p2p(.) , ‖u‖

p1
p(.)

)
≥ 1

2 ‖∇u‖
2
2 −

1
p1

max ((B1 ‖∇u‖2)
p2 , (B1 ‖∇u‖2)

p1)

= 1
2α−

1
p1

max
((
B2

1α
) p2

2 ,
(
B2

1α
) p1

2

)
:= g (α) ∀α ∈ [0,+∞) ,

(4.5)

where α = ‖∇u‖22 .

Lemma 4.3. Let h : [0,+∞)→ R be defined by

h (α) =
1

2
α− 1

p1

(
B2

1α
) p1

2 . (4.6)

Then the following claims hold under the hypotheses of Theorem (4.2):

(i). h is increasing for 0 < α ≤ α1 and decreasing for α ≥ α1;
(ii). lim

α→+∞
h (α) = −∞ and h (α1) = E1.

Proof. By the assumption that B1 > 1 and p1 > 2, one can see that h(α) = g (α) ,
for 0 < α ≤ B−2

1 . Furthermore, h(α) is differentiable and continuous in [0,+∞). We
can see that

h′(α) =
1

2
− 1

2
Bp11 α

p1−2
2 , 0 ≤ α < B−2

1 .

Then follows (i). Since p1− 2 > 0, we have lim
α→+∞

h (α) = −∞. A common calculation

gives h(α1) = E1. Then (ii) holds. �

Lemma 4.4. Under the assumptions of Theorem (4.2), there exists a positive constant
α2 > α1 such that

‖∇u‖22 ≥ α2, t ≥ 0, (4.7)∫
Ω

|u (x, t)|p(x)
dx ≥

(
B2

1α2

) p1
2 . (4.8)

Proof. Since E(0) < E1, Lemma (4.3) implies that there is a positive constant α2 > α1

such that E(0) = h(α2). By (4.5) we have h(α0) = g(α0) ≤ E(0) = h(α2), from
Lemma (4.3)(i) it follows that α0 ≥ α2 so (4.7) holds for t = 0. Now we prove

(4.7) by contradiction. Suppose ‖∇u (t∗)‖22 < α2 for some t∗ > 0. Suppose that

‖∇u (t∗)‖22 < α2 for some t∗ > 0. By the continuity of ‖∇u (., t)‖2 and α2 > α1, we

can assume t∗ such that α2 > ‖∇u (t∗)‖22 > α1, then (4.5) yildes

E (0) = h(α2) < h
(
‖∇u (t∗)‖22

)
≤ E (t∗) ,

which contradicts to Lemma (3.2), and (4.7) holds.
By (4.3) and (4.4), we obtain

1
p1

∫
Ω
|u (x, t)|p(x)

dx ≥
∫

Ω
1

p(x) |u (x, t)|p(x)
dx ≥ 1

2 ‖∇u‖
2
2 − E (0)

≥ 1
2α2 − E (0) = 1

2α2 − h(α2) = 1
p1

(
B2

1α2

) p1
2 ,

(4.9)

and (4.8) follows. �

Let H(t) = E1 − E(t) for t ≥ 0, we have the following lemma:
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Lemma 4.5. Under the assumptions of Theorem (4.2) the function H(t) presented
above gives the following estimates:

0 < H(0) ≤ H(t) ≤
∫

Ω

1

p (x)
|u (x, t)|p(x)

dx, t ≥ 0. (4.10)

Proof. By Lemma (3.2), H(t) is nondecreasing in t thus

H(t) ≥ H(0) = E1 − E(0) > 0, t ≥ 0. (4.11)

If we combine (4.3), (4.2), (4.7) and α2 > α1, we get

H(t)−
∫

Ω
1

p(x) |u (x, t)|p(x)
dx ≤ E1 − 1

2 ‖∇u‖
2
2

≤
(

1
2 −

1
p1

)
α1 − 1

2α1 < 0, t ≥ 0,
(4.12)

and (4.10) follows from (4.11) and (4.12). �

Based on the above three lemmas, we can provied the proof of Theorem (4.2).

Proof of Theorem (4.2). We then define the auxiliary function for the value ε > 0
small to be selected later

L (t) = H (t) + ε

∫
Ω

utudx+ ε

∫
Γ1

utudΓ +
1

2
εγ

∫
Ω

|∇u|2 dx. (4.13)

Let’s consider that L is a small perturbation of the energy. Taking the time derivative
of (4.13), we get

dL(t)
dt = γ

∫
Ω
|∇ut|2 dx+ ε

∫
Ω
|ut|2 dx+ ε ‖ut‖2Γ1

+ r
∫

Γ1
|ut|k(x)

dΓ

+ε
∫

Ω
uttudx+ ε

∫
Γ1
uttudΓ + εγ

∫
Ω
∇u∇utdx.

(4.14)

Using problem (1.1), we get from equation (4.14)

dL(t)
dt = γ

∫
Ω
|∇ut|2 dx+ ε

∫
Ω
|ut|2 dx+ ε ‖ut‖22,Γ1

+ r
∫

Γ1
|ut|k(x)

dΓ

−ε
∫

Ω
|∇u|2 dx+ ε

∫
Ω
|u (t)|p(x)

dx− εr
∫

Γ1
|ut|k(x)

utudΓ.
(4.15)

To estimate the last term on the right-hand side of the previous equation, let δ > 0
shall be determined later. Young’s inequality drives∫

Γ1

|ut|k(x)
utudΓ ≤ 1

k1

∫
Γ1

δk(x) |u|k(x)
dΓ +

k2 − 1

k1

∫
Γ1

δ−
k(x)
k(x)−1 |ut|k(x)

dΓ.

This is obtained by substituting in (4.15)

dL(t)
dt ≥ γ

∫
Ω
|∇ut|2 dx+ ε

∫
Ω
|ut|2 dx+ ε ‖ut‖22,Γ1

+ r
∫

Γ1
|ut|k(x)

dΓ

−ε
∫

Ω
|∇u|2 dx+ ε

∫
Ω
|u (t)|p(x)

dx− εr 1
k1

∫
Γ1
δk(x) |u|k(x)

dΓ

−εr k2−1
k1

∫
Γ1
δ−

k(x)
k(x)−1 |ut|k(x)

dΓ.

(4.16)

Let us evoke the inequality concerning the continuity of the trace operator∫
Γ1

|u|k(x)
dΓ ≤ max

(∫
Γ1

|u|k2 dΓ,

∫
Γ1

|u|k1 dΓ

)
≤ C ‖u‖Hs(Ω) ,
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who works for

k1 ≥ 1 and 0 < s < 1, s ≥ n
2 −

n−1
k2
≥ n

2 −
n−1
k1

> 0,

because k1 ≤ k2 ≤ 2n−2
n−2 ,

and the interpolation and Poincaré’s inequalities

‖u‖Hs(Ω) ≤ C ‖u‖
1−s
2 ‖∇u‖s2 ≤ C ‖u‖

1−s
p(.) ‖∇u‖

s
2 , according to Lp(.)(Ω) ↪→ L2(Ω).

So we have the following inequality:∫
Γ1
|u|k(x)

dΓ ≤ C ‖u‖1−sp(.) ‖∇u‖
s
2

≤ C max
(
% (u)

1−s
p1 , % (u)

1−s
p2

)
‖∇u‖s2 , (see (2.1)).

If s < 2
k2

and we use the Young’s inequality again, we get∫
Γ1
|u|k(x)

dΓ ≤ C ‖u‖1−sp(.) ‖∇u‖
s
2

≤ C

[
max

(
% (u)

(1−s)k2µ
p1 , % (u)

(1−s)k2µ
p2

)
+
(
‖∇u‖22

) k2sθ
2

]
.

(4.17)

for 1/µ + 1/θ = 1. Here we choose θ = 2
k2s

to get µ = 2/(2 − k2s). Therefore, the
previous inequality becomes∫

Γ1

|u|k(x)
dΓ ≤ C

[
max

(
% (u)

2(1−s)k2
(2−k2s)p1 , % (u)

2(1−s)k2
(2−k2s)p2

)
+ ‖∇u‖22

]
. (4.18)

Chose s such that

0 < s ≤ min

(
2 (p1 − k2)

k2 (p1 − 2)
,

2 (p2 − k2)

k2 (p2 − 2)

)
,

we get

2k2 (1− s)
(2− k2s) p2

≤ 2k2 (1− s)
(2− k2s) p1

≤ 1. (4.19)

If inequality (4.19) is satisfied, we apply the classical algebraic inequality

zd ≤ (z + 1) ≤
(

1 +
1

ω

)
(z + ω) , ∀z ≥ 0, 0 < d ≤ 1, ω ≥ 0,

to get the following estimate:

max

(
% (u)

2(1−s)k2
(2−k2s)p1 , % (u)

2(1−s)k2
(2−k2s)p2

)
≤
(

1 +H (0)
−1
)

(% (u) +H (0))

≤ C (% (u) +H (t)) ∀t ≥ 0 (4.20)

Inserting estimate (4.20) into (4.18), we get the following inequality:∫
Γ1

|u|k(x)
dΓ ≤ C

(
% (u) + 2H (t) + ‖∇u‖22

)
. (4.21)
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which eventually gives

∫
Γ1
|u|k(x)

dΓ ≤ C
(
% (u) + 2E1 −

∫
Ω
|ut|2 dx− ‖ut‖22,Γ1

+
∫

Ω
2

p(x) |u|
p(x)

dx
)

≤ C
(

2E1 −
∫

Ω
|ut|2 dx− ‖ut‖22,Γ1

+
(

1 + 2
p1

) ∫
Ω
|u|p(x)

dx
)
.

(4.22)
Therefore, by injecting inequality (4.22) into inequality (4.16), we get

dL(t)
dt ≥ γ

∫
Ω
|∇ut|2 dx+ ε

(
1 + rC

k1
max

(
δk2 , δk1

)) ∫
Ω
|ut|2 dx

+ε
(

1 + rC
k1

max
(
δk2 , δk1

))
‖ut‖22,Γ1

−2 εrk1 max
(
δk2 , δk1

)
CE1

−ε
∫

Ω
|∇u|2 dx+ ε

(
1− rC

k1
max

(
δk2 , δk1

) (
1 + 2

p1

)) ∫
Ω
|u (t)|p(x)

dx

+r
(

1− ε(k2−1)
k1

max
(
δ−

k2
k1−1 , δ−

k1
k2−1

)) ∫
Γ1
|ut|k(x)

dΓ.

(4.23)
Of inequality

2H (t) = −
(∫

Ω

|ut|2 dx+

∫
Ω

|∇u|2 dx+ ‖ut‖2Γ1
−
∫

Ω

2

p (x)
|u|p(x)

dx

)
,

we have

−
∫

Ω
|∇u|2 dx = 2H (t) +

∫
Ω
|ut|2 dx+ ‖ut‖22,Γ1

−
∫

Ω
2

p(x) |u|
p(x)

dx

≥ 2H (t)− 2E1 +
∫

Ω
|ut|2 dx+ ‖ut‖22,Γ1

− 2
p1

∫
Ω
|u|p(x)

dx.
(4.24)

So if we inject it into (4.23) we get the following inequality:

dL(t)
dt ≥ γ

∫
Ω
|∇ut|2 dx+ ε

(
2 + rC

k1
max

(
δk2 , δk1

)) ∫
Ω
|ut|2 dx

+ε
(

2 + rC
k1

max
(
δk2 , δk1

))
‖ut‖22,Γ1

+ε
(

1− 2
p1
− rC

k1
max

(
δk2 , δk1

) (
1 + 2

p1

)) ∫
Ω
|u|p(x)

dx

+ε
(

2H (t)− 2
(

1 + r
k1

max
(
δk2 , δk1

)
C
)
E1

)
+r
(

1− ε(k2−1)
k1

max
(
δ−

k2
k1−1 , δ−

k1
k2−1

)) ∫
Γ1
|ut|k(x)

dΓ.

(4.25)

Using the definition of α2 and E1 (see Equation (4.2) and Lemma (4.4)), we have

−2E1 − 4 r
k1

max
(
δk2 , δk1

)
CE1

= −2E1

(
B2

1α2

)−p1
2
(
B2

1α2

) p1
2

−4 r
k1

max
(
δk2 , δk1

)
CE1

(
B2

1α2

)−p1
2
(
B2

1α2

) p1
2

≥
(
−2E1

(
B2

1α2

)−p1
2 − 4 r

k1
max

(
δk2 , δk1

)
CE1

(
B2

1α2

)−p1
2

)∫
Ω
|u|p(x)

dx.
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Finally we get

dL(t)
dt ≥ γ

∫
Ω
|∇ut|2 dx+ ε

(
2 + rC

k1
max

(
δk2 , δk1

)) ∫
Ω
|ut|2 dx

+ε
(

2 + rC
k1

max
(
δk2 , δk1

))
‖ut‖22,Γ1

+ε

 1− 2
p1
− 2E1

(
B2

1α2

)−p1
2

− rCk1 max
(
δk2 , δk1

) [(
1 + 2

p1

)
+ 4E1

(
B2

1α2

)−p1
2

] ∫Ω |u|p(x)
dx

+2ε
(
H (t) + r

k1
max

(
δk2 , δk1

)
CE1

)
+r
(

1− ε(k2−1)
k1

max
(
δ−

k2
k1−1 , δ−

k1
k2−1

)) ∫
Γ1
|ut|k(x)

dΓ,

(4.26)
because

1− 2

p1
− 2E1

(
B2

1α2

)−p1
2 > 0 since α2 > B1

− 2p1
p1−2 ,

we can now choose δ small enough such that 1− 2
p1
− 2E1

(
B2

1α2

)−p1
2

− rCk1 max
(
δk2 , δk1

) [(
1 + 2

p1

)
+ 4E1

(
B2

1α2

)−p1
2

]  > 0.

Once δ is fixed, let’s select ε small enough(
1− ε (k2 − 1)

k1
max

(
δ−

k2
k1−1 , δ−

k1
k2−1

))
> 0 and L (0) > 0.

Hence the inequality (4.26) becomes

dL (t)

dt
≥ εη

[
H (t) +

∫
Ω

|ut|2 dx+ ‖ut‖22,Γ1
+

∫
Ω

|u|p(x)
dx+ E1

]
(4.27)

for some η > 0.

Next it is clear that by Young’s inequality and Poincaré’s inequality we obtain

L (t) ≤ λ
[
H (t) +

∫
Ω

|ut|2 dx+ ‖ut‖22,Γ1
+

∫
Ω

|∇u|2 dx

]
for some λ > 0. (4.28)

From (4.12), we have∫
Ω

|∇u|2 dx ≤ 2E1 +
2

p1

∫
Ω

|u (x, t)|p(x)
dx, t ≥ 0.

So the inequality (4.28) becomes

L (t) ≤ ζ
[
H (t) +

∫
Ω

|ut|2 dx+ ‖ut‖22,Γ1
+

∫
Ω

|u|p(x)
dx+ E1

]
for some ζ > 0. (4.29)

From the two inequalities (4.27) and (4.29), we finally get the differential inequality

dL (t)

dt
≥ µL (t) for some µ > 0. (4.30)
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Integrating the previous differential inequality (4.30) on (0, t) gives the following es-
timate for the function L:

L (t) ≥ L (0) eµt. (4.31)

On the other hand, from the definition of the function L (and for small values of the
parameter ε) follows

L (0) eµt ≤ L (t) ≤ 1

p1

∫
Ω

|u|p(x)
dx

≤ 1

p1
max

(∫
Ω

|u|p2 dx,

∫
Ω

|u|p1 dx

)
. (4.32)

From the two inequalities (4.31) and (4.32) we derive the exponential growth of the
solution in the Lp2 and Lp1 norms. �
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