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Strongly nonlinear periodic parabolic equation
in Orlicz spaces

Erriahi Elidrissi Ghita , Azroul Elhoussine and
Lamrani Alaoui Abdelilah

Abstract. In this paper, we prove the existence of a weak solution to the following
nonlinear periodic parabolic equations in Orlicz-spaces:

∂u

∂t
− div(a(x, t,∇u)) = f(x, t)

where −div(a(x, t,∇u)) is a Leray-Lions operator defined on a subset of

W 1,x
0 LM (Q). The ∆2-condition is not assumed and the data f belongs to

W−1,xEM (Q).
The Galerkin method and the fixed point argument are employed in the proof.
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1. Introduction

Let Ω be a bounded subset of RN , and let Q be the cylinder Ω×(0, T ) with some
given T > 0. In this paper we deal with the following periodic parabolic boundary
value problem: 

∂u
∂t − div(a(x, t,∇u)) = f(x, t) in Q ,

u(x, t) = 0 on ∂Ω× (0, T ) ,

u(x, 0) = u(x, T ) in Ω ,

(1.1)
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where A is a second-order operator in divergence form

A(u) = −div(a(x, t,∇u)),

with the coefficient a satisfying Leray-Lions conditions related to some N-function.
The study of nonlinear partial differential equations in Orlicz-spaces is motivated
by numerous phenomena of physics, namely the problems related to non-Newtonian
fluids of strongly inhomogeneous behavior with a high ability of increasing their vis-
cosity under a different stimulus, like the shear rate, magnetic or electric field (see for
examples [1], [10], [14], [15], [16] and [21]).
Consider first the case where a have polynomial growth with respect to u and ∇u.
Therefore A is a bounded operator from Lp(0, T,W 1,p(Ω)), 1 < p <∞, into its dual.
In this setting, Brézis and Browder in cite16 proved the existence of problem (1) when
p > 2 and the periodic condition is replaced by the initial one, and by Landes and
Mustonen when 1 < p < 2 [19].
Specifically, when we have the periodicity condition Boldrini and Crema in [4] studied
the following problem:

∂u
∂t −∆pu = m(t)g(u) + h(x, t) in QT ;

u(x, t) = 0 on ∂Ω× (0, T );

u(x, T ) = u(x, 0) in Ω;

(1.2)

g is a continuous function such that |g(v)| ≤ a(|v|s + 1), where s and a are positive
constants. The existence of a solution to this problem is established under the condi-
tion 0 ≤ s < p−1, and for s = p−1 by using Schauder’s fixed point theorem. Related
topics can be found in [7], [8], [9]. However, when attempting to relax the restric-

tion on a, we replace the space Lp(0, T,W 1,p
0 ) with an inhomogeneous Orlicz-Sobolev

space W 1,x
0 LM (Q), constructed from an Orlicz space LM instead of Lp, where the

N-function M is related to the actual growth of a. Several studies have explored this
setting, considering u(x, 0) = u0 and a depending on u and ∇u, see for instance, the
works of Donaldson in [6] and Robert in [20], who proved the existence of a solution
for a nonlinear parabolic problem under the ∆2 condition, u2 ≤ cM(ku), with c and k
are positive constants, and A is monotone. Additionally, in cases where the ∆2 condi-
tion is not assumed and under various assumptions, other authors have demonstrated
the existence of solutions to diverse parabolic problems (see [2], [14], [17], [19]).
The objective of this paper is to establish the existence of a solution to problem (1.1)
when f belongs to W−1,xEM (Q), without assuming the ∆2 condition. Moreover,
we consider the periodicity condition instead of the initial one, which necessitates
demonstrating the existence of the approximate problem once more. To achieve this,
we assume that u2 ≤ cM(ku) with c and k are positive constants.
We employ the Galerkin method due to Landes and Mustonen, along with the fixed
point argument due to Schauder.
The paper is structured as follows: In Section 2, we provide a review of some prelim-
inary concepts concerning Orlicz-Sobolev spaces, along with various inequalities and
compactness results. Section 3 is dedicated to stating the assumptions and presenting
the main result. In the fourth section, we prove the existence theorem. In the appendix
we prove the existence of a solution to the approximate problem.
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2. Preliminaries

2.1. Orlicz-Sobolev Spaces-Notations and Properties

• let M : R+ → R+ be an N-function, i.e continuous, convex, with M(t) >
0 for t > 0,M(t)/t→ 0 as t→ 0 and M(t)/t→∞ as t→∞.

Equivalently, M admits the representation: M(t) =
∫ t

0
m(τ)dτ where m : R+ →

R+ is non-decreasing, right continuous, with m(0) = 0, m(t) > 0 for t > 0 and
m(t)→∞ as t→∞.

The N-function M conjugate to M is defined by M(t) =
∫ t

0
m(τ)dτ where

m : R+ → R+ is given by m(t) = sup{s : m(s) ≤ t}.
The N-function M is said to satisfy a ∆2 condition if, for some k > 0:

M(2t) ≤ kM(t) ∀t ≥ 0

When this inequality holds only for t ≥ t0 > 0, M is said to satisfy the
∆2−condition near infinity.

• Let Ω be an open subset of RN . The Orlicz class LM (Ω) (resp. the Orlicz space
LM (Ω) ) is defined as the set of (equivalence classes of) real-valued measurable
functions u on Ω such that

∫
Ω
M(u(x))dx < +∞ (resp.

∫
Ω
M(u(x)/λ)dx < +∞

for some λ > 0 ).
LM (Ω) is a Banach space under the norm:

‖u‖M,Ω = inf

{
λ > 0 :

∫
Ω

M

(
u(x)

λ

)
dx ≤ 1

}
and LM (Ω) is a convex subset of LM (Ω). The closure in LM (Ω) of the set
of bounded measurable functions with compact support in Ω is denoted by
EM (Ω).
The equality EM (Ω) = LM (Ω) holds if and only if M satisfies the ∆2 condition,
for all t or for t large according to whether Ω has infinite measure or not.
The dual of EM (Ω) can be identified with LM (Ω) by means of the pairing∫

Ω
u(x)v(x)dx, and the dual norm on LM (Ω) is equivalent to ‖ · ‖M,Ω.

The space LM (Ω) is reflexive if and only if M and M satisfy the ∆2 condition
(near infinity only if Ω has finite measure).

• We now turn to the Orlicz-Sobolev spaces. W 1LM (Ω) (resp. W 1EM (Ω) ) is the
space of all functions u such that u and its distributional derivatives up to order
1 lie in LM (Ω) (resp. EM (Ω) ). It is a Banach space under the norm:

‖u‖1,M,Ω =
∑
|α|≤1

‖Dαu‖M,Ω .

Thus W 1LM (Ω) and W 1EM (Ω) can be identified with subspace of the product
of (N + 1) copies of LM (Ω). Denoting this product by ΠLM , we will use the
weak topologies σ (ΠLM ,ΠEM ) and σ (ΠLM ,ΠLM ).
The space W 1

0EM (Ω) is defined as the (norm) closure of the Schwartz space
D(Ω) in W 1EM (Ω) and the space W 1

0LM (Ω) as the σ (ΠLM ,ΠEM ) closure of
D(Ω) in W 1LM (Ω).
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• We say that un converges to u for the modular convergence in W 1LM (Ω) if for
some λ > 0 ∫

Ω

M ((Dαun −Dαu) /λ) dx→ 0 for all |α| ≤ 1

This implies convergence for σ (ΠLM ,ΠLM ). Note that, if un → u in LM (Ω) for
the modular convergence and vn → v in LM (Ω) for the modular convergence,
we have ∫

Ω

unvndx→
∫

Ω

uvdx as n→∞

If M satisfies the ∆2−condition on R+, then modular convergence coincides
with norm convergence.

• Let W−1LM (Ω) [resp. W−1EM (Ω) denote the space of distributions on Ω which
can be written as sums of derivatives of order at most 1 of functions in LM (Ω)
[resp. W−1EM (Ω)]. It is a Banach space under the usual quotient norm.

• If the open set Ω has the segment property then the space D(Ω) is dense in
W 1

0LM (Ω) for the modular convergence and thus for the topology σ(ΠLM ,ΠLM )
(cf. [13], [19]). Consequently, the action of a distribution S in W−1LM (Ω) on an
element of W 1

0LM (Ω) is well defined, it will be noted by < S, u >.

2.2. The Inhomogeneous Orlicz-Sobolev

Let Ω be a bounded open subset of RN , T > 0 and set Q = Ω×] 0, T [. Let M
be an N-function. For each α ∈ NN , denote by Dα

x the distributional derivative on Q
of order α with respect to the variable x ∈ RN . The inhomogeneous Orlicz-Sobolev
spaces of order 1 are defined as follows

W 1,xLM (Q) = {u ∈ LM (Q) : Dα
xu ∈ LM (Q),∀|α| ≤ 1}

and

W 1,xEM (Q) = {u ∈ EM (Q) : Dα
xu ∈ EM (Q),∀|α| ≤ 1}

The last space is a subspace of the former. Both are Banach spaces under the norm

‖u‖ =
∑
|α|≤1

‖Dα
xu‖M,Q .

The space W 1,x
0 LM (Q) is defined as the (norm) closure in W 1,xLM (Q) of D(Q) and

we have.

W 1,x
0 LM (Q) = D(Q)

σ(ΠLM ,ΠLM)
.

We can easily show that they form a complementary system when Ω satisfies the seg-
ment property. These spaces are considered as subspaces of the product space ΠLM (Q)
which has (N+1) copies. We shall also consider the weak topologies σ(ΠLMΠEM )
and σ(ΠLM ,ΠLM ). If u ∈ W 1,xLM (Q), then the function: t 7→ u(t) = u(., t) is de-
fined on (0, T ) with values in W 1LM (Ω). If, further, u ∈ W 1,xEM (Q), then u(., t) is
W 1EM (Ω)-valued and is strongly measurable.
Furthermore, the following continuous imbedding holds: W 1,xEM (Q) ⊂ L1(0, T ),
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W 1EM (Ω). The space W 1,xLM (Q) is not in general separable; if u ∈W 1,xLM (Q), we
cannot conclude that the function u(t) is measurable from (0, T ) into W 1,xLM (Ω).
However the scalar function t 7→ ‖Dα

xu(t)‖M,Ω is in L1(0, T ) for all |α| ≤ 1.

Furthermore, W 1,x
0 EM (Q) = W 1,x

0 LM (Q)∩ΠEM . Poincare’s inequality also holds in

W 1,x
0 LM (Q) and then there is a constant C > 0 such that for all u ∈ W 1,x

0 LM (Q)
one has ∑

|α|≤1

‖Dα
xu‖M,Q ≤ C

∑
|α|=1

‖Dα
xu‖M,Q

thus both sides of the last inequality are equivalent norms on W 1,x
0 LM (Q). We have

then the following complementary system(
W 1,x

0 LM (Q) F

W 1,x
0 EM (Q) F0

)
F being the dual space of W 1,x

0 EM (Q). It is also, up to an isomorphism, the quotient

of ΠLM by the polar set W 1,x
0 EM (Q)⊥, and will be denoted by F = W−1,xLM (Q)

and it is shown that

W−1,xLM (Q) =

f =
∑
|α|≤1

Dα
xfα : fα ∈ LM (Q)


This space will be equipped with the usual quotient norm:

‖f‖ = inf
∑
|α|≤1

‖fα‖M,Q

where the infinum is taken on all possible decompositions

f =
∑
|α|≤1

Dα
xfα, fα ∈ LM (Q)

The space F0 is then given by

F0 =

f =
∑
|α|≤1

Dα
xfα : fα ∈ EM (Q)


and is denoted by F0 = W−1,xEM (Q).

2.3. Some inequalities

Lemma 2.1. [17] Let M be an N-function, we have the following inequality:

st ≤M(s) +M(t)

called Young inequality.

Lemma 2.2. [17] The generalized Holder inequality∣∣∣∣∫
Ω

u(x)v(x)|dx
∣∣∣∣ ≤ 2‖u‖M‖v‖M

hold for any pair function u ∈ LM (Ω) and v ∈ LM (Ω).
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Proof. The proof of this inequalities is detailed in [17] (see pages 18 for the first one
111 for the second). �

2.4. Approximation theorem and trace result

Let Ω is an open subset of RN with the segment property and I is a sub-interval
of R (both possibly unbounded) and Q = Ω× I. It is easy to see that Q also satisfies
the segment property.

Definition 2.3. [12] We say that un → u in W−1,xLM (Q) + L2(Q) for the modular
convergence if we can write

un =
∑
|α|≤1

Dα
xu

α
n + u0

n

u =
∑
|α|≤1

Dα
xu

α + u0

with uαn → uα in LM (Q) for the modular convergence for all |α| ≤ 1 and u0
n → u0

strongly in L2(Q).

This implies, in particular, that un → u in W−1,xLM (Q) + L2(Q) for the weak
topology σ(ΠLM + L2,ΠLM ∩ L2) in the sense that < un, v >→< u, v > for all

v ∈W 1,x
0 LM (Q) ∩ L2(Q), where here and throughout the paper, < ., . > means

either the pairing between W 1,x
0 LM (Q) and W−1,xLM (Q), or the pairing between

W 1,x
0 LM (Q) ∩ L2(Q) and W−1,xLM (Q) + L2(Q). Indeed,

〈un, v〉 =
∑
|α|61

(−1)|α|
∫
Q

uαnD
α
xv dx dt+

∫
Q

u0
nv dx dt

and since for all |α| 6 1, uαn → uα in LM (Q) for the modular convergence, and so for
σ (LM , LM ), we have∑

|α|61

(−1)|α|
∫
Q

uαnD
α
xv dx dt+

∫
Q

u0
nv dx dt

→
∑
|α|61

(−1)|α|
∫
Q

uαDα
xv dx dt+

∫
Q

u0v dx dt = 〈u, v〉.

Moreover, if vn → v in W 1,x
0 LM (Q)∩L2(Q) for the modular convergence (i.e. vn → v

in W 1,x
0 LM (Q) for the modular convergence and in L2(Q) strong), we have 〈un, vn〉 →

〈u, v〉 as n→∞.

Theorem 2.4. [12] If u ∈W 1,xLM (Ω)∩L2(Ω) (respectively W 1,x
0 LM (Ω)∩L2(Ω)) and

∂u
∂t ∈ W

−1,xLM (Q) + L2(Q), then there exists a sequence (vj) in D(Q) (respectively
D(I,D(Ω))) such that

vj → u in W 1,xLM (Ω) ∩ L2(Ω)

∂vj
∂t
→ ∂u

∂t
in W−1,xLM (Q) + L2(Q)

for the modular convergence.
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Remark 2.5. If in the statement of theorem (2.4), one considers Ω × R instead of Q
we have D(Ω× R) is dense in

{u ∈W 1,x
0 (Ω× R) ∩ L2(Ω× R) :

∂u

∂t
∈W−1,xLM (Ω× R) + L2(Ω× R)}

for the modular convergence.

A first application of Theorem (2.4) is the following trace result generalizing a
classical result which states that if u belongs to L2(a, b;H1

0 (Ω)) and ∂u
∂t belongs to

L2(a, b;H−1(Ω)), then u is in C(a, b;L2(Ω)).

Lemma 2.6. [12] Let a < b ∈ R and let Ω be a bounded subset of RN with the segment
property, then

{u ∈W 1,x
0 LM (Ω×(a, b))∩L2(Ω×(a, b));

∂u

∂t
∈W−1,xLM (Ω×(a, b))+L2(Ω×(a, b))}

is a subset of C([a, b], L2(Ω)).

3. Existence result

3.1. Assumption and statement of main result

Let Ω be a bounded open subset of RN (N ≥ 2) with the segment property, and
Q be the cylinder Ω× (0, T ) with some given T > 0. Let M be an N-function.

Consider the second order operator A : D(A) ⊂ W 1,x
0 LM (Q)→ W−1,xLM (Q) of the

form:

A(u) = −div(a(x, t,∇u))

where a : Ω × (0, T ) × RN → RN are a Carateodory function satisfying for almost
every (x, t) ∈ Ω× (0, T ) and all ξ 6= ξ∗ ∈ RN we have the following assumptions:

|a(x, t, ξ)| ≤ β(h1(x, t) +M
−1
M(δ|ξ|)) ; (3.1)

[a(x, t, ξ)− a(x, t, ξ∗)][ξ − ξ∗] > 0 ; (3.2)

a(x, t, ξ)ξ ≥ αM
( |ξ|
λ

)
; (3.3)

f ∈W−1,xEM (Q) ; (3.4)

where h1 ∈ L1(Q), and β, δ, α, λ > 0.

and suppose that there exist s
′
> 0 and c, k two positive constant such that for all

s ≥ s′ :
s2 ≤ cM(ks) (3.5)

We shall prove the following existence theorem

Theorem 3.1. Assume that (3.1)-(3.5) hold true then there exist a unique solution

u ∈ D(A) ∩W 1,x
0 LM (Q) ∩ C(0, T, L2(Ω)) of (1.1) in the following sense:

<
∂u

∂t
, ϕ >Q +

∫
Q

a(x, t,∇u)∇ϕdxdt =< f,ϕ >Q; (3.6)
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for every ϕ ∈ W 1,x
0 LM (Q) ∩ L2(Q) with ∂ϕ

∂t ∈ W−1,xLM (Q) + L2(Q). where here

< ., . > means for either the pairing between W 1,x
0 LM (Q) and W−1,xLM (Q), or

between W 1,x
0 LM (Q) ∩ L2(Q) and W−1,xLM (Q) + L2(Q).

Integrating by part and using the periodicity condition equation (3.6) can be
written as:

−
∫
Q

∂ϕ

∂t
udxdt+

∫
Q

a(x, t,∇u)∇ϕdxdt =< f,ϕ >Q (3.7)

Remark 3.2. Note that all term in (3.7) are well defined, and by the trace result of
lemma (2.6) we have that u ∈ C([0, T ), L2(Ω)) wish make sense of the periodicity
condition.

4. The proof of the main result

The proof of theorem (3.1) is divided into five steps:

Proof. Step 1: Firstly we have to prove that the solution u is unique. For that we
suppose that there exist another solution v of problem (1.1) then v satisfy also (3.6),
then by taking ϕ = u(t)− v(t) we can easily see that

1

2

d

dt

∫
Q

(u(t)− v(t))2dx+

∫
Q

(a(x, t,∇u)− a(x, t,∇v))(∇u−∇v)dxdt = 0 (4.1)

Using periodicity condition and (3.2) we get ∇u = ∇v, then we have by
(4.1) that u(t) = v(t) for almost every t ∈ (0, T ), finally we deduce that u = v.
Step 2: Approximate problem: As in [12] we will use Galerkin method due to Landes
and Mustonen [19]. For that we choose a sequence {w1, w2, w3, · · · } in D(Ω) such that⋃∞
n=1 Vn with

Vn = span{w1, w2, w3, · · · }
is dense in Hm

0 (Ω)with m large enough such that Hm
0 (Ω) is continuously embedded in

C1(Ω). For any v ∈ Hm
0 (Ω), there exists a sequence (vk) ⊂

⋃∞
n=1 Vn such that vk → v

in Hm
0 (Ω)and in C1(Ω) too.

We denote further Vn = C([0, T ], Vn). We have that the closure of
⋃∞
n=1 Vn with

respect to the norm:

‖v‖C1,0(Q) = sup
|α|≤1

{|D|α|x v(x, t)| : (x, t) ∈ Q}

contains D(Q), for more detail see [11] and [18]).

This implies that, for any f ∈W−1,xEM (Q), there exists a sequence (fk) ⊂
⋃∞
n=1 Vn

such that fk → f strongly in W−1,xEM (Q). Indeed, let ε > 0 be given. Writing

f =
∑
|α|≤1

Dα
xf

α
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for all |α| ≤ 1, there exists gα ∈ D(Q) such that, ‖fα − gα‖M,Q ≤
ε

2N+2 . Moreover,

by setting g =
∑
|α|≤1D

α
x g

α, we see that for any g ∈ D(Q), and so there exists

ϕ ∈
⋃∞
n=1 Vn such that ‖g − ϕ‖∞,Q ≤ ε

2meas(Q) . We deduce then

‖fα − gα‖W−1,xEM (Q) ≤
∑
|α|≤1

‖fα − gα‖M,Q + ‖g − ϕ‖∞,Q

Now, let us consider the following approximate problem:
un ∈ Vn; ∂un

∂t ∈ L
1(0, T, Vn);

un(x, 0) = un(x, T ) ;

and for all ϕ ∈ Vn∫
Q
∂un

∂t ϕdxdt+
∫
Q
a(x, t,∇un)∇ϕdxdt =

∫
Q
fnϕdxdt

(4.2)

See the appendix for the prove of the existence of un ∈ Vn.
Step 3: a priori estimates
Let as prove that:

‖un‖W 1,x
0 LM (Q) ≤ C ;

∫
Q

a (x, t,∇un)∇un dx ≤ C
′

(4.3)

and

a (x, t,∇un) is bounded in (LM (Q))
N

(4.4)

where here C,C
′

are a positives constants not depending on n.

Proof. Taking un as a test function in (4.2), then using periodicity condition and
young inequality we have∫

Q

a(x, t,∇un)∇undxdt ≤
1

ε
‖fn‖M,Q + ε‖un‖M,Q.

By using (3.2) and applying Poinccare inequality there exist C1 > 0 such that

α

∫
Q

M
( |∇un|

λ
)dxdt ≤ ‖fn‖M,Q + εC1

∫
Q

M
( |∇un|

λ
)dxdt.

By a choice of ε and the fact that ‖fn‖M,Q ≤ C we obtain∫
Q

M
( |∇un|

λ
)dxdt ≤ C. (4.5)

This implies that (un) is bounded in W 1,x
0 LM (Q) and so in L2(Q). By using (3.1)

and (4.5) we can conclude that there exist a constant C
′
> 0 such that∫

Q

a(x, t,∇un)∇undxdt ≤ C
′
; (4.6)

To prove that a(x, t,∇un) is bounded in (LM (Q))N , let ϕ ∈ (EM (Q))N with
‖ϕ‖M,Q = 1. By (3.2) we have∫

Q

(a(x, t,∇un)− a(x, t, ϕ))(∇un, ϕ)dxdt > 0
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which gives∫
Q

a(x, t,∇un)ϕ <

∫
Q

a(x, t,∇un)∇undxdt−
∫
Q

a(x, t, ϕ)(∇un − ϕ)dxdt

Using (3.1) and (4.3) we can easily see that∫
Q

a(x, t,∇un)ϕ < C

and so a(x, t,∇un) is bounded in (LM (Q))N .
Thus for a subsequence still denote un and for some h ∈ (LM (Q))N :

un ⇀ u weakly in W 1,x
0 LM (Q) for σ (ΠLM ,ΠEM ) , (4.7)

and weakly in L2(Q).

a(x, t,∇un) ⇀ h weakly in (LM (Q))N for σ (ΠLM ,ΠEM ) (4.8)

�

Step 4: Almost everywhere convergence of the gradient.
For all ϕ ∈ C1(0, T,D(Ω)), we get by (4.2) and (4.8) that

−
∫
Q

u
∂ϕ

∂t
+

∫
Q

h∇ϕdxdt =

∫
Q

f∇ϕdxdt. (4.9)

We can see by taking ϕ arbitrary in D(Q) that ∂u
∂t ∈W

−1,xLM (Q), then by theorem
(2.4) there exist a subsequence denote vk ∈ D(Q) such that:

vk → u in W 1,x
0 LM (Q) ∩ L2(Q) and

∂vk
∂t
→ ∂u

∂t
in W−1,xLM (Q) + L2(Q)

for the modular convergence, then by lemma (2.6), we have vk → u in C([0, T ], L2(Ω))
and so u ∈ C([0, T ], L2(Ω)).
From (4.2), (3.7) we have

lim sup
n→∞

∫
Q

a(x, t,∇un)∇un − h∇vkdxdt

≤ lim sup
n→∞

(
−
∫
Q

∂un
∂t

undxdt
)

+

∫
Q

∂vk
∂t

udxdt

+ lim sup
n→∞

∫
Q

(
fnundxdt−

∫
Q

fnvk
)
dxdt

= lim sup
n→∞

( ∫
Q

∂un
∂t

(vk − un)dxdt
)

+

∫
Q

f(u− vk)dxdt

where we have used the fact that

−
∫
Q

∂vk
∂t

udxdt = lim
n→∞

−
∫
Q

∂vk
∂t

undxdt

= lim
n→∞

−
∫
Q

∂un
∂t

vkdxdt+

∫
Ω

[
un(t)vk(t)

]T
0
dx
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then the periodicity condition imply

−
∫
Q

∂vk
∂t

udxdt = lim
n→∞

−
∫
Q

∂un
∂t

vkdxdt.

For the first term in the right hand sand we have

lim sup
n→∞

∫
Q

∂un
∂t

(vk − un)dxdt = lim sup
n→∞

(
− 1

2

d

dt

∫
Q

(un(t)− vk(t))2dxdt
)

+ lim sup
n→∞

∫
Q

∂vk
∂t

(vk − un)dxdt

= lim sup
n→∞

(
− 1

2

∫
Ω

[
un(t)− vk(t))2

]T
0
dx
)

+ lim sup
n→∞

∫
Q

∂vk
∂t

(vk − un)dxdt

the fact that ∂vk
∂t ∈ EM (Q) and vk → u gives

lim sup
k→∞

lim sup
n→∞

∫
Q

∂vk
∂t

(vk − un)dxdt = 0.

By periodicity condition we have

lim sup
k→∞

lim sup
n→∞

∫
Q

∂un
∂t

(vk − un)dxdt = 0.

Then we obtain

lim sup
n→∞

∫
Q

a(x, t,∇un)∇undxdt =

∫
Q

h∇vkdxdt+

∫
Q

f(u− vk)dxdt

Having in mind that vk converge strongly to u in W 1,x
0 LM (Q) for the modular con-

vergence, we can pass to the limit sup in k, to deduce

lim sup
k→∞

lim sup
n→∞

∫
Q

a(x, t,∇un)∇un =

∫
Q

h∇vdxdt. (4.10)

Fix a real number r > 0 and any k ∈ N, we denote by χrk and χr the character-
istic functions of Qrk = {(x, t) ∈ Q : |∇vk| 6 r} and Qr = {(x, t) ∈ Q: |∇u| 6 r},
respectively. We also denote by ε(n, k, s) all quantities (possibly different)such that

lim
s→∞

lim
k→∞

lim
n→∞

ε(n, k, s) = 0,

and this will be the order in which the parameters we use will tend to infinity, that
is, first n, then k, and finally s. Similarly, we will write only ε(n), or ε(n, k), . . . to
mean that the limits are only on the specified parameters.
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Taking s ≥ r one has

0 ≤
∫
Qr

(
a(x, t,∇un)− a(x, t,∇u

)(
∇un −∇u

)
dxdt

≤
∫
Qs

(
a(x, t,∇un)− a(x, t,∇u

)(
∇un −∇u

)
dxdt

=

∫
Qs

(
a(x, t,∇un)− a(x, t,∇uχs

)(
∇un −∇uχs

)
dxdt

≤
∫
Q

(
a(x, t,∇un)− a(x, t,∇uχs

)(
∇un −∇uχs

)
dxdt.

On the other hand∫
Q

[a (x, t,∇un)− a (x, t,∇uχs)] [∇un −∇uχs] dxdt

=

∫
Q

[a (x, t,∇un)− a (x, t,∇vkχsk)]

× [∇un −∇vkχsk] dxdt

+

∫
Q

a (x, t,∇vkχsk) [∇un −∇vkχsk] dxdt

+

∫
Q

a (x, t,∇un) [∇vkχsk −∇uχs] dxdt

+

∫
Q

a (x, t,∇uχs) [∇uχs −∇un] dxdt

= I1 + I2 + I3 + I4.

We shall go to the limit in all integrals Ii (for i=1, 2, 3, 4) as first n, then k, and
finally s tend to infinity.
Starting with I2 and letting n → ∞, since ∇un ⇀ ∇u in LM (Q)N by Lebesgue
theorem we get that

I2 =

∫
Q

a (x, t,∇vkχsk) [∇u−∇vkχsk] dxdt+ ε(n).

Letting then k →∞ this imply

I2 =

∫
{|∇u|>s}

a (x, t, 0)∇udxdt+ ε(n, k).

Finally we deduce when s tends to infinity that

I2 = ε(n, k, s). (4.11)

For I3 we have by letting n→∞ and using (4.8) that

I3 =

∫
Q

h(∇vkχsk −∇uχs)dxdt
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and so, by letting k → ∞ in the integral of the last side and using the fact that

∇vkχsk → ∇uχs strongly in (EM (Q))
N

, we deduce that I2 = ε(n, k). For the fourth
term I4, we have, by letting n→∞,

I4 = −
∫
{|∇u|>s}

a(x, t, 0)∇udxdt+ ε(n),

and since the first term of the last side tends to zero as s → ∞, we obtain I4 =
ε(n, k, s). We have then proved that∫

Q

[a (x, t,∇un)− a (x, t,∇uχs)] [∇un −∇uχs] dxdt

=

∫
Q

[a (x, t,∇un)− a (x, t,∇vkχsk)] [∇un −∇vkχsk] dxdt

+ ε(n, k, s).

Finally we can deduce that

0 ≤
∫
Qr

(
a(x, t,∇un)− a(x, t,∇u

)(
∇un −∇u

)
dxdt (4.12)

≤
∫
Q

[a (x, t,∇un)− a (x, t,∇vkχsk)] [∇un −∇vkχsk] dxdt+ ε(n, k, s)

we can write∫
Q

[a (x, t,∇un)− a (x, t,∇vkχsk)] [∇un −∇vkχsk] dxdt =

∫
Q

a(x, t,∇un)∇undxdt

−
∫
Q

(a(x, t,∇un)− a(x, t,∇vkχsk)∇vkχskdxdt

= J1 + J2 + J3. (4.13)

First all we have by using (4.10) that

lim sup
k→∞

lim sup
n→∞

J1 =

∫
Q

h∇udxdt. (4.14)

For J2, letting first n→∞ then k, and using Lebesgue theorem hence∇vkχsk → ∇uχs

strongly in (EM (Q))
N

we get

J2 = −
∫
Q

(h− a(x, t,∇uχs))∇uχsdxdt+ ε(n, k).

We can easily see that

J2 = −
∫
Qs

(h− a(x, t,∇u))∇udxdt+ ε(n, k). (4.15)

Letting n→∞ on J3 we have

J3 = −
∫
Qs

a(x, t,∇u)∇udxdt−
∫
{|∇u|>s}

a(x, t, 0)∇udxdt. (4.16)
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Finally by combining (4.13), (4.14), (4.15), (4.16) we conclude that∫
Q

[a (x, t,∇un)− a (x, t,∇vkχsk)] [∇un −∇vkχsk] dxdt = (4.17)

= −
∫
{|∇u|>s}

a(x, t, 0)∇udxdt+ ε(n, k)

So, when s tend to infinity (4.12) and( 4.17) gives

lim
n→∞

∫
Qr

(
a(x, t,∇un)− a(x, t,∇u

)(
∇un −∇u

)
dxdt = 0

and thus, as in the elliptic case see [3], we deduce that, for a subsequence still denoted
by un,

∇un → ∇u a.e. in Q (4.18)

Since a(x, t, .) is continuous then

a(x, t,∇un)→ a(x, t,∇u) a.e in Q

If we take in consideration that a(x, t,∇un) is bounded in (LM (Q))N we have by
lemma (4.4) of [19] that

a(x, t,∇un) ⇀ a(x, t,∇u) weakly in (LM (Q))N .

Therefore, we get for all ϕ ∈ C1([0, T ],D(Ω)),

−
∫
Q

u
∂ϕ

∂t
dxdt+

∫
Q

a(x, t,∇u)∇ϕdxdt =< f,ϕ >Q (4.19)

Step 5: Passage to the limit
Going back to the approximating equations (4.2), then we obtain in the sense of
distribution when n tend to infinity that

∂u

∂t
− div(a(x, t,∇u)) = f(x, t) and u(x, t) = 0

Furthermore, by the fact that ∂un

∂t →
∂u
∂t in W−1,xLM (Q) + L2(Q) for the modular

convergence and we have already that un → u in W 1,x
0 LM (Q)∩L2(Q) for the modular

convergence, then by lemma (2.6) we get un → u in C([0, T ], L2(Ω), so using the
periodicity condition, since

<
∂u

∂t
, u >= lim

n→∞
<
∂un
∂t

, un >=
1

2
[un(T )2 − un(0)2] = 0

we deduce finally

u(x, 0) = u(x, T ) in Ω.

Then the proof of theorem (3.1) is completed.
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5. Appendix

let us consider the following approximate problem:
un ∈ Vn; ∂un

∂t ∈ L
1(0, T, Vn);

un(x, 0) = un(x, T ) ;

and for all ϕ ∈ Vn∫
Q
∂un

∂t ϕdxdt+
∫
Q
a(x, t,∇un)∇ϕdxdt =

∫
Q
fnϕdxdt

(5.1)

we will use the point fixed theorem due to Leray-Schauder to prove the existence of
solution, for that let us consider the following initial boundary value problem

∂un

∂t +A(un) = fn

un(x, t) = 0

un(0) = u0n

(5.2)

where u0n in Vn. And let Bn(0, R) be a closed ball in the space Vn with the norm ‖.‖.
We define the Poincarré operator by

P : Bn(0, R)→ Bn(0, R)

u0n 7→ un(T )

We have to prove that P is continuous and relatively compact (i.e find the existence
of a constant R > 0 such that ‖u0n‖ ≤ R→ ‖un(T )‖ ≤ R .
let consider ϕ = un in (4.2) we have∫

Ω

∂un
∂t

undx+

∫
Ω

a(x, t,∇un)∇undx =

∫
Ω

fnundx.

Using Hölder inequality to the term in the left hide sand we get∫
Ω

∂un
∂t

undx+

∫
Ω

a(x, t,∇un)∇undx ≤ 2‖fn‖M,Ω‖un‖M,Ω.

Then we can easily see that for ε > 0 there exist a constant c(ε) such that

1

2

d

dt

∫
Ω

(un(t))2dx+

∫
Ω

a(x, t,∇un)∇undx ≤ C(ε)‖fn‖2M,Ω
+ ε‖un‖2M,Ω

Using (3.2) we obtain

1

2

d

dt

∫
Ω

(un(t))2dx+ α

∫
Ω

M(
|∇un|
λ

)dx ≤ C(ε)‖fn‖2M,Ω
+ ε‖un‖2M,Ω.

By lemma 5.7 of [19] there exist two positive constants δ, λ such that∫
Q

M(v)dxdt ≤ δ
∫
Q

M(λ|∇v|)dxdt for all v ∈W 1,x
0 LM (Q).

Then for c1 > 0 we obtain

1

2

d

dt

∫
Ω

(un(t))2dx+ αc1

∫
Ω

M(|un|)dx ≤ C(ε)‖fn‖2M,Ω
+ ε‖un‖2M,Ω
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Using now (3.5), and by the choice of ε we can easily see that there exist c2 > 0 such
that

1

2

d

dt

∫
Ω

(un(t))2dx+ c2‖un‖2 ≤ C(ε)‖fn‖M,Ω

Multiplying by ec2t and integrating by part we obtain

ec2T ‖un(T )‖2 ≤ 2‖fn‖M,Q +R2

we choice R such that R2 > 2e−c2T

1−e−c2T we deduce the existence of R > 0.

Now we pass to prove the continuity of P , for that we consider u0n and ν0n two
sequences in Bn(0, R) , by taking ϕ = un − νn such that un and νn satisfy (4.2) we
get

1

2

d

dt

∫
Q

(un(t)− νn(t))2dxdt+

∫
Q

(a(x, t,∇un)− a(x, t,∇νn)(∇un −∇νn)dx = 0

then using (3.2), we can write

‖un(T )− νn(T )‖2 ≤ ‖u0n − ν0n‖2.
Finally we deduce the continuity of P , hence by the point fixed argument there exist
un solution of (4.2) satisfy un(T ) = un(0). �
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