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Ma-Minda starlikeness of certain analytic
functions

Baskar Babujee Janani (©) and V. Ravichandran

Abstract. A normalized analytic function defined on the open unit disc D is
called Ma-Minda starlike if zf'(z)/f(2) is subordinate to the function ¢. For a
normalized convex function f defined on D and o > 0, we determine the radius
of Ma-Minda starlikeness of the function g defined as g(z) = (2f'(2)/f(2))” f(2)
for certain choices of . In particular, we investigate the radius of Janowski
starlikeness of the function g.
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1. Introduction and preliminaries

Let C denote the complex plane, D := {z € C: |z| < 1} represent the open unit
disc, and A denote the class of analytic functions defined on D, normalized by the
conditions f(0) = 0 and f’(0) = 1. Additionally, let S be the subclass of A consisting
of univalent (one-to-one) functions. A function f € A is considered starlike if it maps
D onto a domain that is starlike with respect to the origin. Similarly, a function f € A
is said to be convex if f(D) is a convex set. Let ST and CV denote the subclasses
of A respectively consisting of starlike and convex functions. Analytically, we have:
ST :={f € A:Re(zf'(2)/f(2)) >0} and CV := {f € A: 1+Re(zf"(2)/f'(2)) > 0}.
Alexander’s theorem [4] establishes a relationship between these two classes, stating
that f € CV if and only if zf’ € ST. For two analytic functions f and g, we say that
f is subordinate to g, written f < g, if there exists an analytic function w satisfying
the conditions w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). This relationship
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implies that f(0) = g(0) and f(D) C g(ID). Moreover, if the function g(z) is univalent
(one-to-one), then f < g if and only if f(0) = ¢g(0) and f(D) C g(ID). The function w
is commonly known as the Schwarz function. Using subordination, Ma and Minda [12]
investigated growth, distortion and covering theorems for the class ST () consisting
of starlike functions that satisfy the subordination

2f'(2)

o) o(2),
where ¢ : D — C is an analytic function that is univalent with a positive real part,
(D) is starlike with respect to ¢(0) = 1, symmetric about the real axis, and ¢’(0) > 0.
Different subclasses of starlike and convex functions are obtained for various choices
of . For instance, when ¢(z) = (14 Az)/(1+ Bz), where —1 < B < A < 1, the class
ST () is the class ST[A, B] of Janowski starlike functions [8]. An analytic function
p : D — C is known as a Carathéodory function if p(0) = 1 and Re(p(z)) > 0 for
every z € D. The class of all Carathéodory functions is denoted as P. For —1 < B <
A < 1and p(z) =1+ ¢z + - with positive real part, we say that p € P[A, B] if
p(z) < (1+ Az)/(1+ Bz),z € D.

Lemma 1.1. [16] If p € P[A, B], then
(2) - 1— ABr? (A— B)r
P 1—-B%2 | S 1- B2
The class of functions f € A with the property that zf'(z)/f(z)/ € P[A, B] is

denoted by ST[A, B]. In this manuscript, we are interested in the class J{* defined
as follows:

(2| < r < 1).

J = {g eA:g(z) = (fo;ij)

We determine ST (¢) radius of the class J* for various choices of ¢. In particular,
we consider the following classes of starlike functions:

)af(z), fecv,a> o}.

1. Mendiratta et al. [14] introduced the class consisting of all functions f € A such
that zf'(2)/f(z) < e® or equivalently |log(zf'(2)/f(2))] < 1.

2. Sharma et al. [18] studied the class ST ¢ = ST (¢¢), where pc(2) = 14+ (4/3)z+
(2/3)22. The boundary of ¢ (D) is a cardiod.

3. Raina and Sokdl [15] considered the class ST, = ST (¢m), where ¢,(2) =
z+ V1 + 22 and proved that f € ST, if and only if zf'(2)/f(z) € Qp, == {w €
C : |[w? — 1| < 2|w|} which is the interior of a lune.

4. Kumar and Kamaljeet [20] introduced the class ST, = ST (), where ¢, (2) =
1 + ze®. The boundary of ¢, (D) is a cardiod.

5. The class of starlike functions associated with a nephroid domain, given by
STNne = ST (one) where pne(2) = 1+ 2 — (23/3) was studied by Wani and
Swaminathan [22]. The function . maps the unit circle onto a 2-cusped curve,
(=17 +0* = 5)" — % =0,

6. The class ST sq¢ = ST (psa) where psa(z) = 2/(1 4+ e %) was introduced by
Goel and Kumar [7]. The boundary of s (D) is a modified sigmoid.

7. Cho et al. [3] introduced the class ST gin = ST (@sin), Where @gin(2) = 1+ sin z.
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8. Kumar and Arora [2] defined the class ST, = ST (¢n) where pp(z) = 1 +
sinh™*(z). The boundary of ¢, (D) is petal shaped.

These functions behave like the identity function for small values of a and hence
belong to the classes of our interest. However, for B = —1, the range of z¢'(z)/g(z)
is unbounded, and therefore these classes are not contained in various subclasses ob-
tained for special choices of the function ¢. When the inclusion fails, we are interested
in the corresponding radius problem. For two subclasses F and G of A, the largest
number R € (0, 1] such that for 0 < r <R, f(rz)/r € F for every f € G is called the
F-radius of the class G and is denoted by Rx(G). Many radius problems have been
extensively explored in recent times [1, 9, 10, 11, 13, 17]. In Theorem 2.1, we obtain
the Janowski starlikeness of the class J* and, in particular, the radius of starlikeness
of order 8. Theorem 2.2 gives ST () radius of the class J* for various choices of
o discussed above. To obtain the radii, we find the largest positive number R less
than 1 such that the image of the disc Dg := {z € C: |z| < R} under the mapping
29'(2)/g(z), for g in the classes defined, lie inside the image of the corresponding
superordinate functions and the radii obtained are sharp.

2. Radius estimates of various starlikeness for the class J,*

Our first theorem gives the radius of Janowski starlikeness of functions in the
class J and, in particular, the radius of starlikeness of order § (see (2.3)). It follows
that the class J;" is a subclass of starlike functions.

Theorem 2.1. The ST[A, B] radius of the class J, a > 0, is given by

A—-B
l+a+|A+aB|
Proof. Let g € J*. Then there is a function f € CV satisfying

o) = (T) s

RsTia,B) =

A computation shows that
29'(2) ( Zf”(Z)) <Zf’(2)>
=all+ +(1—« . 2.1
e e ) T U >y
Since f is convex, it is starlike of order 1/2 and therefore we have 1+ zf"(2)/f'(z) €
P ="P1[1,-1] and zf'(2)/f(z) € P(1/2) := P[0, —1]. Using the Lemma 1.1, we get

1+ 26 e 2 (<<
and z2f'(2) 1 r
flz)  1—r2] S 112 (el < r<1).
These inequalities together with (2.1) immediately yield
zg'(2) 14+ ar? < (1+a)r (2l <r <1). (2.2)

g(2) 1—1r2 1—72
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1. We first prove the result in the case when B = —1. In this case, we write A as

A =1-28, where 0 < 8 < 1 so that ST[A, B] radius is the same as ST (0)
radius. A simple calculation shows that the result in this becomes

(2.3)

1_5 11—«
B+a ta B> 152

With R = Rs7(s), our aim is to show that Re(zg'(z)/g(z)) > B for 2| =r < R
for every g € J¢. The inequality (2.2) shows that

zg'(2) l+ar? (14+a)r 1—ar
> - = = . 24
Re(g(z)) 1—1r2 1—1r2 1+7r o(r) (24)
Since ¢/(r) = —(1+ «)/(1 + r)?, the function ¢ is decreasing for 0 < r < 1. For
B8 < (1 — «)/2, the inequality (2.4) gives
zg'(z)) 11—«
Re = o(r) =2 o(1) = =>p
(225) 26002 00 =5
and so g € ST(p). For 5 > (1 — a)/2, the inequality (2.4) gives
zg’(Z))
Re >o(r) =2 o(R)=p
(225)) 2600 o)
for r < R. This shows that ST(5) radius of J* is at least R. To show that

the result is sharp, we consider the function g : D — C is given by g(z) =
z/(1 — z)'*+. This function corresponds to the function f € CV given by

RST(B) = min (17

~ z

fle) =1
The function g is clearly starlike of order (1 — ) /2. The result is therefore sharp
for 8 < (1 — a)/2. Note that
2'(z)  1+az
gz) — 1-2z
For 8 > (1 — «)/2 and z = R, using (2.6), we see that
2g'(2) 1—aR
R = =D,
(F5) =%

which proves the sharpness of R.

(2.5)

(2.6)

. Now we assume that B # —1. Let f € J*. Then, by (2.2), we see that

g(Dr) CH{w : [w —er(e,7)| < difa,r)}
where
1+ar? 1+ a)r
1_77‘2 and dl(OZ,T‘) = ﬁ

We show that, for r < R = Rs7(a,p), the inclusion

c1(a,r) =

{w:|w—=ci(a,r)| < di(a,r)} C{w: |w—a| <b}
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holds where
1-AB and b A-B
1— B2
Since {w : jlw—c¢| < d} C {w : jlw—a| < b} if and only if [a—c| < b—d (see [19] and
[6]), it is enough to show that, for r < R, the inequality |a—c; (o, 7)| < b—d; (v, 1)
holds. The inequality |a —¢1 (v, )| < b—d;(a,r) is equivalent to the inequalities
(o) +di(a,r) <a+bd (2.7)
and
a—b< o, r)—di(a,r). (2.8)
The inequality (2.7) becomes

1+4 l+ar?+(1+a)r  1+ar

1+B 7~ 1— 72 1—r"
This inequality holds for

A—-B
0<r <—mmMm =
l1+a+A+aB

Similarly, the inequality (2.8) becomes

p2-

17A< l+ar?—(14+a)r 1-—ar

1-B 1—1r2 14
or
0<T‘<—A_B = pP3
S S 14a-A—aB’ ’
Since

l+a+|A+aB|
it follows that the inequalities (2.7) and (2.8) holds for 0 < r < R. This shows
that ST[A, B] radius of Jy is at least R.

To prove the sharpness of R , we again consider the function f € CV defined
by (2.5). When A + aB > 0, then R = ps. For z = po, the equation (2.6) gives
29'(z) 1+A
g(z) 1+ B’
which proves the sharpness for ps. When A+aB < 0, then R = ps. For z = —ps,
the equation (2.6) gives

min(p2, p3]

I

29'(z) 1-A
9(z)  1-B’
which proves the sharpness for ps. O

Theorem 2.2. Let o > 0. For the class J, the following radius results hold:
1. The ST, radius is given by

e—1 .
if «
Rst. = {im{l .
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2. The ST . radius is given by
—= if a>1
R — 3a+1 =
ST { 2. if a<l

3. The ST, radius is given by

2—/2
R _ Oz—(l—\/i) Zf a 2 1
STm 2 if a<l1
a+(14+v2) =

4. The 8T, radius is given by

1 : 2

Rgy. =4 c(dta)—1 if a2 == -1
Yo lasmr i a<

5. The ST ne radius is given by

R = 3a2+ 5
6. ST sg radius is given by
RsTse = Mi;ﬁ'
7. The ST sin radius is given by
RsTun = (1_1_2)%~
8. The STy, radius is given by
sinh (1)

R = .
57 (1+ ) +sinh™'(1)

Proof. Let g € J{*. For various choices of ¢, we are interested in computing ST ()
radius of the function g. To do this, we first note that, by (2.2), we have g(D,.) C {w :
|w = c1(a,r)| < di(a,r)}, where

1+ar? 14+ a)r
1 —T’2 and dl(@,?”) = ﬁ
We compute the largest R, such that, for 0 < r < R, the disc {w : |w — ¢1(a,7)| <
dy(a, )} is contained in ¢(ID). For this purpose, we use the formula for the radius r,
of the largest disc centered at a contained in ¢(ID) obtained by various authors. We

c(a,r) = (2.9)
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also need the fact that the center ¢;(«,r) is an increasing function of r which follows
easily from the equation
21+«
c(a,r) = (g +7"2)>
One immediate consequence is that ¢;(a,r) = ¢1(o,0) = 1.
1. Let Q. be the image of the unit disc D under the exponential function p(z) = €.
Mendiratta et al. [14] proved that the inclusion {w : |w —a| < re} C Q= {w:
|logw| < 1} holds when

Using this inclusion result, we now show that, for 0 <r < R := Rsr,, the disc
{w : Jw—=c1(a,r)| < di(a,r)} is contained in Q. where ¢1(a,r) and dy(a,r)
given by (2.9).

First, we consider the case o > 1. Let the number

_ Jete =2 <1
L= 204+ e+ et

be the unique root of the equation ¢1(a,r) = (e +e~1)/2. Let the number
e—1
= <1
p2 ae+1

be the positive root of the equation d;(«,r) = ¢1(a,7) — 1/e or

1+ar27(1+a)r:1—ar:l' (2.10)
1—r2 1—1r2 1+7r e
A computation shows that ps < p; for @ > 1. We shall show that R = Rsy, =

p2-

Since ¢1 (o, 7) > 1, it follows that ¢i(c,r) > 1/e for 0 < r < pa < 1. Since
c1(a,r) is an increasing function, for r < p1, we have ¢1(a,7) < c1(a,p1) =
(e +e1)/2. Since ¢1(a,r) — di(a,7) is a decreasing function of r, it follows, for
0 < r < po, that

c1(a,r) —di(a,r) = e1(a, p2) —di(a, p2) = 1/e

and hence 1
di(a,m) < e, r) — —. (2.11)
e
Therefore, for 0 < r < R = pq, we have, using (2.2) and (2.11)
z9'(2) 1
- < ) -
) i) < arlonr) -

Therefore, the inclusion {w := z¢'(2)/g(2) : |lw—a|] < rs} C Qe :={w: |logw| <
1} holds which proves that ST, radius of J{ is at least R = pa.
To prove the sharpness, consider the function g € J¢* defined by g(z) =
z/(1 — z)1Te. Since
29'(z2) l1+4+az
i) 1-z

)
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we have, for z = —pa,

g 1-— 1

oe (7| = e () = s (2) | =
9(2) L+ p2 e

which proves the sharpness for ps.

We now consider the case when o < 1. Let the number
e—1
= <1
pa e+«

be the positive root of the equation d;(c,r) = e — ¢1(a, ) or

1+ar? (1+a)r 1+ar
1—r2 1—72 1-—7r
A computation shows that p3 > p; for a < 1. We shall show that R = Rs7, =
p3. For 0 < r < p3 < 1 it follows that ¢1(o, R) < e . Since ¢1(a,r) is an
increasing function, for r < p1, we have ¢;(a,7) < ¢1(a, p1) = (e+e71)/2. Since
c1(a,r) + di(ay,r) is an increasing function of r, it follows, for 0 < r < p3, that

ci(a,r) +di(a,r) <ci(a, p3) +di(a,p3) = e

—e. (2.12)

and hence
di(a,r) < e —cr(a,r). (2.13)
Therefore, for 0 < r < R = p3, we have, using (2.2) and (2.13)

29 (2)

9(2)
Therefore, the inclusion {w := z¢'(2)/g(z) : |[w—a| < re} C Qe :={w : |logw| <
1} holds which proves that ST, radius of J{ is at least R = ps.

To prove the sharpness, consider the function § € J* defined by g(z) =
z/(1 — z)1*+e. Since

—ca(a,r)| < e—ci(a,r).

29'(z)  1+az

9(z) 1—2’
we have, for z = p3,
~ 1
log (zg (Z)) = log( +ap3> =|loge| =1,
9(2) 1—p3

proving the sharpness for ps.

. Let Q¢ be the image of the unit disc D under the function ¢c(z) = 14 (4/3)z+

(2/3)22. Sharma et al. [18] proved that the inclusion {w : |w — a| < r,} C
vc (D) = Q¢ holds when

a—3 iff<a<?
T, =
“13-a if2<a<s.

Using the inclusion result, we now show that, for 0 < r < R the disc {w :
|lw —¢1(a,7)| < di(a,r)} is contained in Q¢ where ¢;(a,r) and dy(a,r) given
by (2.9).
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We first consider the case o« > 1. Let the number

/2
= <1
1 3a+5

be the unique root of the equation ¢ («,r) = 5/3. Let the number

p2 1= <1

3a+1

be the positive root of the equation dy (o, ) = ¢1(o,7) — 1/3 or

1+ar2_(1+a)r:1—ar:1. (2.14)
1—r2 1—r2 147 3
A computation shows that ps < p; for a > 1. We shall show that R = Rsr, =

p2-

Since ¢1 (o, 7) > 1, it follows that ¢;(«,r) > 1/3 for 0 < r < pa < 1. Since
c¢1(a, 1) is an increasing function, for r < p1, we have ¢; (o, r) < ¢1(, p1) = 5/3.
Since ¢1(a, r) — di(a, ) is a decreasing function of 7, it follows, for 0 < r < po,
that

c(a,r) —di(a,r) = (o, p2) —di(a, p2) =1/3

and hence
dy(a,r) < cr(ayr) — % (2.15)
Therefore, for 0 < r < R = py, we have, using (2.2) and (2.15)
29'(2) 1

) ca(a,r)| <ela,r) — 3
Therefore, the inclusion {w := z¢'(2)/g(z) : |lw — a| < 1.} C pc(D) = Q¢ holds
which proves that ST ¢ radius of J* is at least R = p».

To prove the sharpness, consider the function g € J defined by g(z) =
z/(1 — z)1Te. Since
2'(2) 1+ az

J(2) 1—z"~

we have, for z = —pa,

2g'(z) 1—apy 1
— = = — = _]. 9
3(2) 1+ po 3 pc(-1)
which proves the sharpness for ps.

We now consider the case when o < 1. Let the number
=2 <
S

be the positive root of the equation dy (o, r) =3 — ¢1(a, 1) or

l+ar? (14+a)r l4ar
1—r2 1—r2  1-—7
A computation shows that p3 > p; for a < 1. We shall show that R = Rs7, =
p3. For 0 < r < p3 < 11t follows that ¢; (o, R) < 3. Since ¢; (e, r) is an increasing

=3. (2.16)
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function, for r < p1, we have ¢;(a, 1) < ¢1(a, p1) = 5/3. Since ¢1 (o, ) + di (e, 1)
is an increasing function of r, it follows, for 0 < r < ps, that
c1(a,r) +di(a,r) < e, ps) +di(a,p3) =3
and hence
di(a,m) <3 —c1(a,r). (2.17)
Therefore, for 0 < r < R = p3, we have, using (2.2) and (2.17)

~—

z2g'(z

9(2)
Therefore, the inclusion {w := z¢'(2)/g(z) : |lw — a| < re} C pc(D) = Q¢ holds
which proves that ST ¢ radius of J{* is at least R = ps.

To prove the sharpness, consider the function § € J defined by g(z) =
z/(1 — z)t*+e. Since

—c(a,r)| <3—c(a,r).

29'(2)  1+az

9(2) 1-z’

we have, for z = ps,
2(2) _ 1+ aps
9(z)  1-ps
proving the sharpness for ps.

=3 =pc(l),

. Let Q,, be the image of the unit disc D under the function ¢,,(2) = z++v/1 + 22.

Gandhi and Ravichandran [5] proved that the inclusion {w : |w — a| < rq} C
m(D) = Qp, := {w : |w? — 1| < 2w|} holds when
ra=1-|V2—al

for v/2 — 1 < a < V2 + 1. Using the inclusion result, we now show that, for
0 < r < R the disc {w : |w — ¢1(a,7)| < di(a,7)} is contained in €, where
c1(a,r) and dy (o, r) given by (2.9).

First, we consider the case a > 1. Let the number

N ACEE

=\ ar 2

be the unique root of the equation ¢;(c,7) = v/2. Let the number
2-v2

a1y

be the positive root of the equation d(a,r) = ¢;(a,r) — (v/2 — 1) or

<1

<1

l+ar? (14+a)r 1-ar
— = =v2-1. 2.18
1—r2 1—7r2 1+ (2.18)
A computation shows that pa < p1 for o > 1. We shall show that R = Rsr,, =

P2

Since ¢q (o, r) > 1, it follows that ¢ (a, ) > V2—1for 0 < 7 < ps < 1. Since
c1(a,r) is an increasing function, for 7 < p1, we have ¢;(a,r) < ¢1(a, p1) = V2.
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Since ¢1(a, 1) — di(a, ) is a decreasing function of 7, it follows, for 0 < r < po,
that
ex(ayr) — di,r) > 1 (0 o) — du(a,p) = V3~ 1
and hence
di(o, ) < er(a,r) — (V2 1), (2.19)
Therefore, for 0 < r < R = ps, we have, using (2.2) and (2.19)

29'(2) _ a(a,r)| < ela,r) — (V2 -1).

Therefore, the inclusion {w := z¢'(2)/g(2) : |lw — a| < re} C (D) = Qpp, holds
which proves that ST, radius of J* is at least R = ps.
To prove the sharpness, consider the function g € J defined by g(z) =
z/(1 — z)1Te. Since
2'(2) 1+ az

g(z)  1-z’
we have, for z = —pa,
2§'(z) _ 1—aps NG
= = =V2-1= m -1 P
i) Tre o=l

which proves the sharpness for ps.
We now consider the case when o < 1. Let the number
V2

p3i=— <1

a+ (1+V2)
be the positive root of the equation di(a,7) = V241 —c¢1(a,r) or
1 2 1
+ar®  (I+a)r tar s

1—1r2 1—r2  1-r
A computation shows that ps > p; for o < 1. We shall show that R = Rsr,, =
p3. For 0 < 7 < p3 < 1 it follows that ¢;(a, R) < v/2 + 1 . Since ¢;(a,7) is
an increasing function, for r < p;, we have ci(o,7) < ¢1(a, p1) = /2. Since
c1(a, 1) +di(a,r) is an increasing function of r, it follows, for 0 < r < p3, that

c1(a, ) 4+ di(o, ) < era, p3) +di(o, p3) = V2 +1

(2.20)

and hence
di(o,r) <V2+1—ci(a,r). (2.21)
Therefore, for 0 < r < R = p3, we have, using (2.2) and (2.21)
29'(2)
9(2)
Therefore, the inclusion {w := z¢'(2)/g(2) : |lw — a| < ra} C (D) = Qyy, holds
which proves that ST, radius of J{* is at least R = ps.

To prove the sharpness, consider the function § € J* defined by g(z) =
z/(1 — z)t*+2. Since

—c(a,r)| < V241 —ci(a,r).

2'(2)  1+az

g(z) 1—2

)
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we have, for z = ps,

2g'(z)  1+aps
g(2) 1—ps

proving the sharpness for ps.

= \/§+ 1= @m(l)v

. Let Q, be the image of the unit disc D under the function ¢, (z) = 1+ze*. Kumar

and Kamaljeet [20] proved that the inclusion {w : |w —a| < r,} C (D) = Q,
holds when

1

(a—1+1 if1-l<ag<l+ =
Ta = 1
‘T le—(a—1) ifl+=E—<a<lte
Using the inclusion result, we now show that, for 0 < r < R the disc {w :
|lw—ci(a,r)| < di(a,r)} is contained in Q, where ¢ (o, ) and di(a, ) given by
(2.9).
First, we consider the case a > 1. Let the number

= e <1
pr= 21+ a)+e—e!

be the unique root of the equation ¢i(a,r) =1+ (e — e~1)/2. Let the number

1
=—F<1
e(l+a)—1

P2t

be the positive root of the equation d;i(«,r) = ¢1(a,7) — 14 (1/e) or

1+ozr2_(1+a)7":17ar:1_1' (2.22)
1—1r2 1—1r2 1+r e

A computation shows that ps < pp for a > 1. We shall show that R = 7257—p =

p2-

Since ¢;(a,r) = 1, it follows that ¢i(a,7) > 1 — (1/e) for 0 < r < p2 < 1.
Since ¢q (o, r) is an increasing function, for r < py, we have ¢1 (o, r) < ¢1(a, p1) =
1+ (e—e71)/2. Since ¢1(a, r) — di(a,7) is a decreasing function of r, it follows,
for 0 < r < po, that

c1(a,r) —di(a,r) = e1(a, p2) — di(a, p2) = % -1
and hence
dy(a,r) <cr(ayr) —1+ %. (2.23)
Therefore, for 0 < r < R = ps2, we have, using (2.2) and (2.23)

Zg/(z)—c a,r ci(a,r) — 1
g(z) 1(?)<1(a) 1+€.

Therefore, the inclusion {w = z¢'(2)/g(2) : |lw — a| < 14} C (D) = Q, holds
which proves that ST, radius of J* is at least R = p».
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To prove the sharpness, consider the function § € J* defined by g(z) =
z/(1 — z)t*+e. Since
2§'(z)  1+az

J(2) 1—z"
we have, for z = —po,
2§'(z) _ 1—aps 1
= = = ]_ — € = _1 5

which proves the sharpness for ps.
We now consider the case when o < 1. Let the number
e

— <1
at+e+1
be the positive root of the equation d;i(c,r) = e+ 1 — ¢1(a, ) or

p3 =

l+ar?  (14a)r l4ar

1—17r2 1—-r2  1-—7
A computation shows that p3 > p; for a < 1. We shall show that R = Rsr, =
p3. For 0 < r < p3 < 1 it follows that ¢;(a, R) < e+ 1 . Since ¢;(a,r) is an
increasing function, for r < p;, we have ¢y (a,7) < ci(a,p1) =1+ (e — e™1)/2.
Since ¢1 (o, r) + di(a, 1) is an increasing function of r, it follows, for 0 < r < ps,
that

=e+ 1 (2.24)

c1(a,r) +di(a,r) <e(a,ps) +di(a,p3) =e+1
and hence
di(a,r) < e+1—ci(a,r). (2.25)
Therefore, for 0 < r < R = p3, we have, using (2.2) and (2.25)
zg

(2)

9(2)

Therefore, the inclusion {w := 2¢'(2)/g(2) : |lw — a| < re} C pu(D) = Q, holds
which proves that ST, radius of J* is at least R = ps.

To prove the sharpness, consider the function § € Jy* defined by g(z) =
z/(1 — z)1Te. Since

—c(a,m)| <e+1—ci(a,r).

2'(z) 1+ az

9(2) 1-z"

we have, for z = ps3,
2'(z) _ 1+ aps
9(z)  1—ps3
proving the sharpness for ps.
. Let Que be the image of the unit disc D under the function pn.(z) =1+ 2z —

(23/3). Wani and Swaminathan [21] proved that the inclusion {w : |w — a| <
Ta} C one(D) = Qne holds when

1 el
a—= ifs<a<l
T‘a:{ 3 3 =

= 1+€:§0@(1),

2—a ifl<a<3.
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Using the inclusion result, we now show that, for 0 < r < R the disc {w :
|lw —¢1(a,r)| < di(a,r)} is contained in Qp,. where ¢;(a,r) and di(«,r) given
by (2.9).

Let the number )

3a+5
be the positive root of the equation dy(a,r) = (5/3) — ¢1(a, 1) or

p3 = <1

l+ar? (14+a)r 1+ar 5
2 " 12 T T3 (2.26)
We shall show that R = Rst, = p3- For 0 < r < R < 11it follows that
1< e(a,r) < c(a,R) < 5/3. Since ¢1(o, ) + di (o, r) is an increasing function
of r, it follows, for 0 < r < p3, that

5
01(04, 7’) +di (av T) < (aa ,03) + dl(aa pS) - g
and hence 5
dy(a, 1) < 3~ c1(a,r). (2.27)
Therefore, for 0 < r < R = p3, we have, using (2.2) and (2.27)
zg' (%) 5
- g o ) .
9 —aifar) < 5 —alan)
Therefore, the inclusion {w = z¢'(2)/g(z) : |Jw —a| < 14} C Ene(D) = Qne
holds which proves that ST ne radius of J* is at least R = ps.

To prove the sharpness, consider the function § € J¢* defined by g(z) =
z/(1 — z)1Te. Since

2'(z)  1+az
gz) 1=z

we have, for z = ps,

z2g'(z) l4+aps 5
- = = 5 = elv
i) 1-p 3 vl

proving the sharpness for ps.

. Let Qg be the image of the unit disc D under the function pga(z) = 2/(14+e7%).

Goel and Kumar [7] proved that the inclusion {w : |w —a| < ry} C psa(D) =
Qse = {w:|logw/(2 — w)| < 1} holds when

e—1
e+1
for 2/(1+e) < a < 2e¢/(1 + e). Using the inclusion result, we now show that,
for 0 < r < R the disc {w: |w—c1(a,r)| < di(a,r)} is contained in Qgg where
c1(a,r) and dy (o, r) given by (2.9).

Let the number

re = —|a—1|

e—1

=<1
Ps (e+ 1)a+ 2e
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be the positive root of the equation dy(a,7) = (e —1)/(e +1) +1 —c1(a,r) or

l+ar? (14+a)r l14+ar e—1
= = 1. 2.2
1—7“2+ 1—r2 1—r e+1+ (2.28)
We shall show that R = Rs7e. = p3. For 0 < r < R < 1 it follows that
2/(1+e)<1<calor) <ala,R) <cala,ps)+di(a,ps) =2e/(1+ e). Since
c1(a, 1) +di(a,r) is an increasing function of r, it follows for 0 < r < ps, that

e—1
Cl(avr) +d1(a7r) < Cl(a7p3) + dl(a»PB) = e+ 1 + 1
and hence
e—1
dy(a,r) < Py +1—ci(a,r). (2.29)

Therefore, for 0 < r < R = p3, we have, using (2.2) and (2.29)

zg' (%) e—1

—ci(a,r)| < +1—ci(a,7).
g(z) o) e+1 ()

Therefore, the inclusion {w := 2¢'(2)/g9(z) : |lw — a| < ry} € psa(D) = Qs =
{w : [logw/(2—w)| < 1} holds which proves that ST s¢ radius of Jy* is at least
R = pP3.
To prove the sharpness, consider the function g € J¢* defined by g(z) =
z/(1 — z)1Te. Since
2'(z)  1+az

J(2) 1—z’

we have, for z = ps,

z2g'(z) 14 aps 2e
= = = 1 s
i) - Top eri el

proving the sharpness for ps.

. Let Qg be the image of the unit disc D under the function ¢, (2) = 1 4+ sin z.
Cho et al. [3] proved that the inclusion {w : |w — a|] < 74} C @sin(D) = Qgin
holds when
re =s8inl —|a—1|
for 1 —sinl < a < 1+ sin1. Using the inclusion result, we now show that, for
0 < 7 < R the disc {w : |w—ci1(a,7)| < di(a, )} is contained in g, where
c1(a,r) and dy (a,r) given by (2.9).
Let the number
sin 1

=<1
Ps (1+a)+sinl
be the positive root of the equation di(«,r) = (sinl) + 1 — ¢1(a, 1) or

1+ar? (14+a)r 1l4ar
1—1r2 1—72 1-7

=1+sinl. (2.30)
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We shall show that R = Rs7,, = p3. For 0 < r < R < 1 it follows that
1—sinl <1< c¢(ayr) < e1(e, R) < c1(a, p3) +di(a,p3) = 1+ sinl. Since
c1(a,r) +di(a,r) is an increasing function of r, it follows, for 0 < r < p3, that
c(a,r) +di(a,r) < ei(a, p3) + difa, p3) =1 +sinl
and hence
di(a,r) < 1+4sinl —ci(a, 7). (2.31)
Therefore, for 0 < r < R = p3, we have, using (2.2) and (2.31)
29'(2)
9(2)
Therefore, the inclusion {w := 2¢'(2)/g9(z) : |[w — a|] < r4} C @sin(D) = Qin
holds which proves that ST gin radius of J* is at least R = ps.

To prove the sharpness, consider the function § € J¢* defined by g(z) =
z/(1 — z)1Te. Since

—c(a,r)| <1+sinl — ¢ (a,r).

2'(2) 1+ az

g(2) 1—z"~

we have, for z = ps,

2g'(z)  1+aps .
= = =1+sinl = gsin(1),
9(2) L —p3 M)

proving the sharpness for ps.

Let ©, be the image of the unit disc D under the function ¢y, (z) = 1+sinh™!(2).
Kumar and Arora [2] proved that the inclusion {w : |w—a| < r,} C @p(D) = Qp
holds when
a—(1—sinh™'(1)) if 1—sinh"'(1)<a<1
Ta = _ —
14+sinh (1) —a if 1<a<1+sinh™'(1).
Using the inclusion result, we now show that, for 0 < r < R the disc {w :
|w—c1 (e, r)| < dy(a,r)} is contained in Q where ¢1(a,r) and d; («,r) given by
(2.9).
Let the number
sinh (1)
(1+a) +sinh™'(1)

be the positive root of the equation d;(a,r) = 1 4+ sinh™ (1) — ¢; (e, ) or

p3 =

2

11+_o;1; (11?;27" = llto;’" =1+ sinh~}(1). (2.32)
We shall show that R = Rsr,, = p3. For 0 < r < R < 1 it follows that
1—sinh (1) < 1 < (o, 7) < (e, R) < ei(a, p3) + di (@, p3) = 1+ sinh ™ (1).
Since ¢ (a, r) + dq (o, 7) is an increasing function of r, it follows, for 0 < r < ps,
that

ci(a,r) 4+ di(a, ) < 1, p3) + di(a, p3) = 1 4 sinh™*(1)
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and hence
di(a,r) < 1+4sinh™ (1) = ¢1(a, 7). (2.33)
Therefore, for 0 < r < R = p3, we have, using (2.2) and (2.33)
29'(2) -
- <14 sinh™ (1) = e (e, 7).
o) c1(a,r) +sinh™ (1) — ¢1 (e, 1)

Therefore, the inclusion {w := z¢'(2)/g(z) : |lw — a| < re} C op(D) = Qp holds
which proves that ST, radius of J* is at least R = ps.
To prove the sharpness, consider the function § € J defined by g(z) =
z/(1 — z)t*+e. Since
29'(z) 1+ az

J(2) 1—z’

we have, for z = ps,

2§'(z) _ 1+ aps a1
= = =1+sinh™ (1) = pp(1),
i) T 1 =enll)

proving the sharpness for ps. O
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