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Optimal control of a frictional contact problem
with unilateral constraints

Rachid Guettaf and Arezki Touzaline

Abstract. We consider a mathematical model that describes a static contact with
a nonlinear elastic body and a foundation. The contact boundary is composed
of two measurable parts. In one part, the contact is frictionless with Signorini’s
conditions. In the other part, the normal stress is given and associated with
Coulomb’s friction law. We state an optimal control problem that consists of
leading the stress tensor as close as possible to a given target by acting with a
control on the boundary. Then, we study the penalized and regularized control
problem for which we establish a convergence result.
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1. Introduction

Contact problems involving deformable bodies are very common in industry and
everyday life and play a large role in structural and mechanical systems. Given the
significance of these processes, considerable effort has been devoted to modelling and
numerical simulation of these problems. The first of frictional contact problems in
the context of variational inequalities was carried out in [9]. To get a background in
contact mechanics from the mathematical or engineering point of view, the reader can
consult for instance [2,12,14,18,21,22,26,23,24,25]. In addition to the numerical study
of contact problems at present, we are also interested in studying the optimal control
of such problems. Recall that the theory of optimal control of variational inequalities
is very elaborate, see for instance [10,18]. In [19], we find the study of the optimal
control of linear or nonlinear elliptic problems and variational inequalities. However,
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the optimal control issues for contact models are very significant, but they are not
overly developed, see [1,3,4,5,6,7,8,10,13,15,16,18,19,20,26] and the references therein.
Recently, in [16,17] two optimal control problems for elastic frictional contact models
were studied. In particular, in [17], the authors investigated the optimal control of a
frictional contact problem with normal compliance.

In this paper, we consider a nonlinear elastic body which is in static contact
with a foundation. The boundary contact is divided into two measurable parts such
that their measures must not equal zero at the same time. In one part, the contact
is frictionless with unilateral constraints. In the other part, the normal stress is given
and the contact is described by Coulomb’s friction law. This model of contact was
used in [27] to study a viscoelastic contact problem with a long memory. Thus, we
contribute by proposing the model from which we derive a variational formulation
(Problem P2) of the mechanical problem and prove the existence and uniqueness of
a weak solution. Next, the optimal control problem concerning this model is denoted
by C1. It consists of minimizing a cost functional which is convex and continuous.
Indeed, we are interested to led the stress tensor field as close as possible to a given
target when we act with control on the boundary of the body. We prove that Problem
C1 admits at least one solution, and then we introduce a penalized and regularized
problem (Problem Pδ) such that the solution converges to the solution of Problem
P2. Also, we introduce a regularized and penalized optimal control problem C2 and
obtain a convergence result.

The paper is structured as follows. In section 2, we describe the mechanical
model, introduce some notations, establish a variational formulation and prove its
weak solvability, Theorem 2.1. In section 3, we state the optimal control problem C1
and prove that it has at least one solution, Theorem 3.2. In section 4, we state and
analyze a penalized and regularized optimal control problem, Theorem 4.4.

2. The model and its weak solvability

We denote by Sd the space of second order symmetric tensors on Rd(d = 2, 3),
while ‘.’ and |.| represent the inner product and the norm on Sd. Thus, for every σ,

τ ∈ Sd, σ.τ = σijτij , |τ | = (τ.τ)
1
2 . Here and below, the indices i and j lie between 1

and d and the summation convention over repeated indices is adopted. We also use
the usual notation for the normal components and the tangential parts of vectors
and tensors, respectively, given by vν = v.ν = viνi, vτ = v − vνν, σν = σν.ν and
στ = σν − σνν.

We consider the following physical setting. Let an elastic body occupy a bounded
Lipschitzian domain Ω ⊂ Rd (d = 2, 3). The boundary Γ of Ω is partitioned into three
measurable parts such that Γ = Γ1 ∪ Γ2∪ Γ3, where Γi, i = 1, 2, 3, are disjoint and
meas (Γ1) > 0. The body is subjected to volume forces of density ϕ0 and tractions ϕ
on Γ2. On Γ1, the displacement vanishes and the body is clamped here. Γ3 is divided
into Γ3,1 and Γ3,2 such that their measures must not equal zero at the same time.
This latter hypothesis allows that where one of the two subsets Γ3,1 and Γ3,2 is empty,
then the corresponding contact condition below is suppressed from the problem. We
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assume a frictionless contact with Signorini’s conditions on Γ3,1, and Coulomb’s law
of dry friction on Γ3,2.

Under these conditions, the classic formulation for the contact problem is as
follows.
Problem P1. Find a displacement field u : Ω→ Rd such that

divσ (u) = −ϕ0 in Ω, (2.1)

σ (u) = Fε (u) in Ω , (2.2)

u = 0 on Γ1, (2.3)

σν = ϕ on Γ2, (2.4)

uν ≤ 0, σν ≤ 0, σνuν = 0, στ = 0 on Γ3,1, (2.5)

−σν = S, |στ | ≤ µ |σν | ,
−στ = µ |σν |

uτ
|uτ |

if uτ 6= 0

}
on Γ3,2. (2.6)

Here (2.1) represents the equilibrium equation where σ = σ (u) denotes the stress
tensor and divσ = σij,j is the divergence of σ. Next, equation (2.2) is the elastic con-
stitutive law in which ε (u) is the strain tensor defined by ε (u) = (εij (u)) , εij (u) =
1
2 (∂jui + ∂iuj) and F is a given nonlinear function. Equations (2.3) and (2.4) are
the displacement and traction boundary conditions, respectively, in which ν denotes
the unit outward normal vector on Γ and σν represents the Cauchy stress vector.
Over Γ3,1, (2.5) describes the frictionless contact with Signorini’s conditions. On Γ3,2,
Coulomb’s law of dry friction with the hypothesis that the normal stress is given. In
(2.6) S is a nonnegative function, µ is a coefficient of friction and µS a friction bound.

To proceed with the variational formulation, Problem P1, we need additional
notations and need to recall some assumptions in the sequel.

H = L2 (Ω)
d
, Q =

{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
H1 =

{
u = (ui) |ui ∈ H1(Ω), i = 1, d

}
, Q1 = {σ ∈ Q |div σ ∈ H }

H, Q, H1, Hd are real Hilbert spaces endowed with the respective inner products:

(u, v)H =

∫
Ω

uividx, 〈σ, τ〉Q =

∫
Ω

σijτijdx,

(u, v)H1
= 〈u, v〉H + (ε(u), ε(v))Q , (σ, τ)Hd = 〈σ, τ〉Q + (div σ, divτ)H .

We denote respectively the norms associated with ‖.‖H , ‖.‖Q, ‖.‖H1
and ‖.‖Hd .

Recall that the following Green’s formula holds:
For every element v ∈ H1, we also write v for the trace of v on Γ. Recall that if

σ is a regular function, then the following Green’s formula holds:

(σ, ε (v))Q + (divσ, v)H =

∫
Γ

σν.vda ∀v ∈ H1,

where da is the measure surface element.
Next, let V be the closed subspace of H1 defined by

V = {v ∈ H1; v = 0 on Γ1} .
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Since meas (Γ1) > 0, the following Korn’s inequality holds [9],

‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V, (2.7)

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V with the
inner product given by

(u, v)V = (ε (u) , ε(v))Q,

and let ‖.‖V be the associated norm. It follows from (2.7) that the norms ‖.‖H1
and

‖.‖V are equivalent and (V, ‖.‖V ) is a real Hilbert space. Moreover, by Sobolev’s trace
theorem, there exists a constant dΩ > 0 depending only on the domain Ω, Γ1 and Γ3

such that

‖v‖
(L2(Γ3))d

≤ dΩ ‖v‖V ∀v ∈ V. (2.8)

We introduce the closed convex set of admissible displacements defined as

K = {v ∈ V ; vν ≤ 0 a.e. on Γ3,1} .
For the study of Problem (P ) we adopt the following assumptions on the data:

The operator of elasticity F satisfies

(a) F : Ω× Sd → Sd;
(b) there exists M > 0 such that

|F (x, ε1)−F (x, ε2)| ≤M |ε1 − ε2|
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(c) there exists m > 0 such that

(F (x, ε1)−F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(d) the mapping x→ F (x, ε) is Lebesgue measurable on Ω,
for all ε ∈ Sd;

(e) F (x, 0Sd) = 0 for a.e. x ∈ Ω.

(2.9)

Examples of nonlinear elasticity operators can be found in [11, 28] .
We assume that the densities of the body force and the surface traction satisfies

ϕ0 ∈ H, ϕ ∈
(
L2 (Γ2)

)d
. (2.10)

Finally, the coefficient of friction µ and the normal stress S are assumed to satisfy

µ ∈ L∞ (Γ3,2) and µ ≥ 0 a.e. on Γ3,2, (2.11)

S ∈ L2 (Γ3,2) and S ≥ 0 a.e. on Γ3,2. (2.12)

Next, we define the functional j : V → R by

j (v) =

∫
Γ3,2

(Svν + µS |vτ |)da, ∀v ∈ V.

Using Riesz representation theorem, there exists f ∈ V such that

(f, v)V = (ϕ0, υ)H + (ϕ, υ)(L2(Γ2))d ∀v ∈ V.
A standard procedure allows us to derive the following variational formulation from
the mechanical P1.
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Problem P2. Find u ∈ K such that

(Au, v − u)V + j (v)− j (u) ≥ (f, v − u)V , ∀v ∈ K. (2.13)

Here, the operator A is defined by

(Au, v)V = (Fε (u) , ε (v))Q, ∀u, v ∈ V.
The main result of this section is on the existence and uniqueness of the weak

formulation P2. One has the following theorem.

Theorem 2.1. Let (2.9), (2.10), (2.11) and (2.12) hold. Then, there exists a unique
solution of Problem P2.

Proof. We use (2.9) (b), (2.9) (c) to show that the operator A is Lipschitz continuous
and strongly monotone. Using (2.11) and (2.12), we see that the functional j : V → R
is proper, convex and lower semicontinuous; K is a non empty closed convex of V .
Then, it follows from the theory of elliptic variational inequalities (see [24]) that the
inequality (2.13) has a unique solution. �

3. The optimal control problem

For a fixed ϕ0 ∈ H, we consider the state problem below.
Problem Q1. For a given ϕ ∈ (L2 (Γ2))d (called control), find u ∈ K such that{

(Au, v − u)V + j (υ)− j (u)
≥ (ϕ0, υ − u)H + (ϕ, υ − u)(L2(Γ2))d , ∀v ∈ K.

(3.1)

Theorem 3.1. Let (2.9), (2.10), (2.11) and (2.12) hold. Then Problem Q1 has a unique
solution.

By the same arguments used in the proof of Theorem 2.1, this problem has a
unique solution u = u (ϕ) .

Now, by acting the control on the boundary Γ2, we focus that the resulting stress
be as close to a given target σd. We assume that σd = Fε(ud) where ud ∈ V and
recall that σ = Fε(u). Then we have ‖σ − σd‖Q ≤ M ‖u− ud‖V and we see that if

‖u− ud‖V is sufficiently small, it follows that σ approach σd in the sense of Q−norm.
Thus, we consider the cost functional L : V × (L2 (Γ2))d → R+ defined as

L (u, ϕ) = α ‖u− ud‖2V + β ‖ϕ‖2(L2(Γ2))d , (3.2)

where α, β > 0. We define the set Uad of admissible pairs by

Uad =
{

(u, ϕ) ∈ (K × (L2 (Γ2))d), such that (3.1) is satisfied
}
.

Then we consider the following optimal control problem.
Problem C1. Find (u∗, ϕ∗) ∈ Uad such that

L (u∗, ϕ∗) = min
(u,ϕ)∈Uad

L (u, ϕ) .

Theorem 3.2. Assume (2.9), (2.10), (2.11) and (2.12). Then Problem C1 has at least
one solution.
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Proof. We put v = 0V in (3.1), then, using (2.7), (2.8) and (2.9) (c), we deduce that
the solution u of Problem Q1 is bounded in V as

‖u‖V ≤
c0
m

(
‖ϕ0‖H + dΩ ‖ϕ‖(L2(Γ2))d + dΩ ‖S‖L2(Γ3,2)

)
,

where c0 > 0. This estimate below implies that

inf
(u,ϕ)∈Uad

{L (u, ϕ)} <∞.

Now, let us denote

inf
(u,ϕ)∈Uad

{L (u, ϕ)} = θ. (3.3)

Then, there exists a minimizing sequence (un, ϕn) ⊂ Uad such that

lim
n→∞

L (un, ϕn) = θ. (3.4)

The sequence (un, ϕn) is bounded in V × (L2 (Γ2))d, so there exists an element

(u∗, ϕ∗) ∈ V × (L2 (Γ2))d

such that passing to a subsequence still denoted by (un, ϕn), we deduce that as n→∞,

un → u∗ weakly in V. (3.5)

We note that K is a closed convex subset of the space V and (un) ⊂ K. Then the
convergence (3.5) implies that u∗ ∈ K.

ϕn → ϕ∗ weakly in (L2 (Γ2))d. (3.6)

Now, we need to prove that

un → u∗ strongly in V as n→∞. (3.7)

Indeed, as (un, ϕn) ∈ Uad , then un is the solution of the inequality below.{
(Aun, v − un)V + j (v)− j (un)
≥ (ϕ0, υ − un)H + (ϕn, υ − un)(L2(Γ2))d , ∀υ ∈ K.

(3.8)

Using (2.9) (c) and (3.8), we deduce that

m ‖un − u∗‖2V ≤ (Aun −Au∗, un − u∗)V
≤ −(Au∗, un − u∗)V + j (u∗)− j (un)
+ (ϕ0, u

n − u∗)H + (ϕn, un − u∗)(L2(Γ2))d .
(3.9)

Using (3.5), we have that

lim
n→∞

(Au∗, un − u∗)V = 0.

On the other hand, since un → u∗ weakly in V implies un → u∗ strongly in H, then
lim

n→+∞
(ϕ0, u

n − u∗)H = 0. Also, as (ϕn) is bounded in (L2 (Γ2))d, then using that

(3.5) implies un → u∗ strongly in (L2 (Γ2))d. It follows that

lim
n→∞

(ϕn, un − u∗)(L2(Γ2))d = 0 and lim
n→∞

j (un) = j (u∗) .

Thus, the right hand side of inequality (3.9) tends to zero as n → +∞ and then we
get (3.7) . Moreover, using (3.6) and (3.7), we pass to the limit as n→ +∞ in (3.8) to
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obtain that u∗ satisfies the inequality (3.1) with ϕ = ϕ∗. Hence, from Theorem 3.1,
we deduce that

(u∗, ϕ∗) ∈ Uad. (3.10)

On the other hand, the functional L is convex and lower semicontinuous, then it is
weakly lower semicontinuous. So we deduce that

lim inf
n→+∞

L (un, ϕn) ≥ L (u∗, ϕ∗) . (3.11)

It follows now from (3.4) and (3.11) that

θ ≥ L (u∗, ϕ∗) . (3.12)

In addition, (3.3) yields

L (u∗, ϕ∗) ≥ θ. (3.13)

Then, to end the proof, it suffices to combine the inequalities (3.12) and (3.13) .� �

4. The penalized and regularized optimal control problem

Let δ > 0, we replace the contact condition (2.5) by the condition

σ
δν (u) = −1

δ
(uν)+

where we recall that for r ∈ R, r+ = max (r, 0), and consider the smooth function

ψ (x) =
√
x2 + δ2.

Now, we introduce the following penalized and regularized problem.
Problem Pδ. Find uδ ∈ V such that

(Auδ, υ − uδ)V +
1

δ

(
(uδν)+, vν − uδν

)
L2(Γ3,1)

+

∫
Γ3,2

µS
(
ψ (vτ )− ψ

(
uδτ
))
da

+

∫
Γ3,2

S
(
vν − uδν

)
da ≥ (f, υ − uδ)V ∀υ ∈ V.

(4.1)

Theorem 4.1. Assume that (2.9), (2.10), (2.11) and (2.12) hold.Then, there exists a
unique solution of Problem Pδ.

Proof. We define the operator B : V → V by

(Bu, v)V = (Au, v)V +
1

δ

(
(uν)+ , vν

)
L2(Γ3,1)

∀u, v ∈ V .

Using that for a, b ∈ R, (a− b) (a+ − b+) ≥ (a+ − b+)
2

and |a+ − b+| ≤ |a− b|, we
deduce by (2.8) and (2.9) that the operator B is Lipschitz continuous and strongly
monotone as for all u, v ∈ V :

‖Bu−Bv‖V ≤ (M +
d2

Ω

δ
) ‖u− v‖V ,

(Bu−Bv, u− v)V ≥ m ‖u− v‖
2
V .
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So, there exists a unique solution uδ of (4.1). In addition, take v = 0 in (4.1) and use
(2.7), (2.8) and (2.9) (c) implies that∥∥uδ∥∥

V
≤ c0
m

(‖ϕ0‖H + dΩ ‖ϕ‖(L2(Γ2))d + dΩ ‖S‖L2(Γ3,2)). (4.2)

�

Now for a fixed ϕ0 ∈ H, we define the penalized and regularized state problem
as follows.
Problem Q2. For a given ϕ ∈ (L2 (Γ2))d (called control), find uδ ∈ V such that

(Auδ, υ − uδ)V +
1

δ

(
(uδν)+, vν − uδν

)
L2(Γ3,1)

+

∫
Γ3,2

µS
(
ψ (vτ )− ψ

(
uδτ
))
da

+

∫
Γ3,2

S (vν − uν) da ≥ (ϕ0, υ − uδ)H + (ϕ, υ − uδ)(L2(Γ2))d ∀υ ∈ V.

With the same arguments used in Theorem 4.1 this problem has a unique solu-
tion. Moreover, we define the set of admissible pairs as

Uδad =
{

(u, ϕ) ∈ V × (L2 (Γ2))d, such that (4.1) is satisfied
}
.

Then using the functional L, given by (3.2), we formulate below the regularized
and penalized optimal control problem.
Problem C2. Find (ūδ, ϕ̄δ) ∈ U δad such that

L
(
ūδ, ϕ̄δ

)
= min

(u,ϕ)∈Uδad
{L (u, ϕ)} .

With arguments similar to those used in Theorem 3.1, the following result can
be proved.

Theorem 4.2. Assume (2.9) , (2.10), (2.11) and (2.12) hold.Then, Problem C2 has at
least one solution.

In the first part of this section, we prove that the unique solution of the penalized
and regularized state problem Q2 converges to the unique solution of the state problem
Q1. More precisely, the following theorem takes place.

Theorem 4.3. Assume that (2.9), (2.10), (2.11) and (2.12) hold. Then, the following
strong convergence holds:

uδ → u strongly in V as δ → 0. (4.3)

Proof. Taking into account (4.2), it follows that there exists an element ũ ∈ V such
that passing to a subsequence still denoted in the same way, we have the convergence:

uδ → ũ weakly in V as δ → 0. (4.4)

Now take v ∈ K in (4.1) and taking account that for a, b ∈ R,

(a+ − b+) (a− b) ≥ (a+ − b+)
2
,
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we deduce that

(Auδ, υ − uδ)V +

∫
Γ3,2

µS
(
ψ (vτ )− ψ

(
uδτ
))
da+

∫
Γ3,2

S(vν − uδν)da

≥ (ϕ0, υ − uδ)H + (ϕ, υ − uδ)(L2(Γ2))d ∀υ ∈ K.

(4.5)

Using (2.11) and (2.12), we have that

∫
Γ3,2

µS(ψ (vτ )− |vτ |)da = O (δ), then∫
Γ3,2

µS(ψ (vτ ))→
∫

Γ3,2

µS |vτ | da as δ → 0. (4.6)

On the other hand, we have∫
Γ3,2

µSψ
(
uδτ
)
da =

∫
Γ3,2

µS(ψ
(
uδτ
)
−
∣∣uδτ ∣∣)da+

∫
Γ3,2

µS
∣∣uδτ ∣∣ da.

By (2.11) and (2.12), we have that∫
Γ3,2

µS(ψ
(
uδτ
)
−
∣∣uδτ ∣∣)da = O (δ) .

Then, ∫
Γ3,2

µSψ
(
uδτ
)
da = O (δ) +

∫
Γ3,2

µS
∣∣uδτ ∣∣ da. (4.7)

With compactness arguments, as uδτ → ũτ strongly in
(
L2 (Γ2)

)d
, we have that∫

Γ3,2

µS
∣∣uδτ ∣∣ da→ ∫

Γ3,2

µS |ũτ | da as δ → 0.

Then from (4.7) we deduce that∫
Γ3,2

µSψ
(
uδτ
)
da→

∫
Γ3,2

µS |ũτ | da as δ → 0. (4.8)

Then using (2.11), (2.12), (4.4), (4.5), (4.6), (4.8) and the compact imbedding

H
1
2 (Γ) ↪→ L2 (Γ) , yields

lim sup
δ→0

(
Auδ, uδ − v

)
V
≤ (ϕ0, ũ− v)H + (ϕ, ũ− v)(L2(Γ2))d (4.9)

+ j(ũ)− j (v) ∀v ∈ K.
Using now the pseudo-monotonicity of A, we deduce that

lim inf
δ→0

(
Auδ, uδ − v

)
V
≥ (Aũ, ũ− v)V ∀v ∈ V. (4.10)

Then, we combine (4.9) and (4.10) to get that{
(Aũ , v − ũ)V + j (v)− j(ũ)
≥ (ϕ0, v − ũ)H + (ϕ, v − ũ)(L2(Γ2))d ∀v ∈ K.

(4.11)

On the other hand, take v = 0 in (4.1) implies that(
(ũδν)+, ũ

δ
ν

)
L2(Γ3,1)

≤ δ
(

(ϕ0, u
δ)H + (ϕ, uδ)(L2(Γ2))d −

(
S, uδν

)
L2(Γ3,2)

)
.
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Then, from this inequality, we deduce that

‖(ũν)+‖L2(Γ3,1) ≤ lim inf
δ→0

∥∥(uδν)+

∥∥
L2(Γ3,1)

≤

lim
δ→0

√
c0δ

m

(
‖ϕ0‖H + dΩ ‖ϕ‖(L2(Γ2))d + dΩ ‖S‖L2(Γ3,2)

)
.

This inequality above implies that ‖(ũν)+‖L2(Γ3,1) = 0, then (ũν)+ = 0 a.e. on Γ3,1.

Hence, it follows that ũ ∈ K. Then, we deduce that ũ is a solution of Problem P1, so
that u = ũ from the uniqueness part of Theorem 2.1. Now, we have all ingredients to
end the proof of Theorem 4.2. Indeed, by the arguments used above, it follows that
any weakly convergent subsequence of the sequence (uδ) ⊂ V converges weakly to
the unique solution u of Problem P2. Estimate (4.2) implies that the sequence (uδ)
is bounded in V . Thus, by a standard compactness argument, we conclude that the
whole sequence (uδ) converges weakly to u. Then we use (2.9) (c) to have

m
∥∥uδ − u∥∥2

V
≤ (Auδ −Au, uδ − u)V

= (Auδ, uδ − u)V − (Au, uδ − u)V (4.12)

Now take v = u in (4.5) and (4.9), then as u = ũ, we get

0 ≤ lim inf
δ→0

(
Auδ, uδ − u

)
V
≤ lim sup

δ→0

(
Auδ, uδ − u

)
V
≤ 0.

Hence,

lim
δ→0

(
Auδ, uδ − u

)
V

= 0.

Moreover, from (4.12) since lim
δ→0

(
Au, uδ − u

)
V

= 0, we deduce that

lim
δ→0

∥∥uδ − u∥∥
V

= 0.

Then, we obtain (4.3). �

Next, we prove the convergence result below.

Theorem 4.4. Assume that (2.9), (2.10), (2.11), (2.12) hold and let (ūδ, ϕ̄δ) be a
solution of Problem C2. Then, there exists a solution (ū, ϕ̄) of Problem C1 such that
after passing to a subsequence still denoted in the same way, the following convergences
as δ → 0 hold :

(a) ūδ → ū strongly in V, (4.13)

(b) ϕ̄δ → ϕ̄ weakly in (L2(Γ2))d.

Proof. Let uδ0 ∈ V be the unique solution of Problem Q2 with ϕ = 0(L2(Γ2))d . We
have

L
(
uδ0, 0(L2(Γ2))d

)
= α

∥∥uδ0 − ud∥∥2

V
≤ 2α

(∥∥uδ0∥∥2

V
+ ‖ud‖2V

)
.

On the other hand, by (2.7), (2.8) and (2.9) (c), we have∥∥uδ0∥∥V ≤ c1
m

(
‖ϕ0‖H + dΩ ‖S‖L2(Γ3,2)

)
,
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where c1 > 0. Then, denote
c1
m

(
‖ϕ0‖H + dΩ ‖S‖L2(Γ3,2)

)
= C, we deduce that

L
(
ūδ, ϕ̄δ

)
≤ L

(
uδ0, 0(L2(Γ2))d

)
≤ 2α(C2 + ‖ud‖2V ).

Therefore,
(
ūδ, ϕ̄δ

)
is a bounded sequence in V ×(L2(Γ2))d. Consequently, there exists

(ū, ϕ̄) ∈ V × (L2(Γ2))d such that passing to a subsequence still denoted in the same
way, we have the convergences as δ → 0 :

ūδ ⇀ ū weakly in V,

ϕ̄δ ⇀ ϕ̄ weakly in (L2(Γ2))d.

Moreover, denote jδ (v) =

∫
Γ3,2

(Sµψ (vτ ) + Svν)da, we see that

m
∥∥ūδ − ū∥∥2

V
≤

(
Aū−Aūδ, ū− ūδ

)
V

≤
(
Aū, ū− ūδ

)
V

+ jδ (ū)− jδ
(
ūδ
)

+(ϕ0, ū− uδ)H + (ϕ, ū− uδ)(L2(Γ2))d .

Then, taking in mind that ūδ ⇀ ū weakly in V implies that ūδ → ū strongly in
(L2(Γ2))d, it follows that jδ (ū) − jδ

(
ūδ
)
→ 0 as δ → 0. Hence we deduce that the

right hand side of the above inequality tends to zero, thus we obtain (4.13) (a). Also,
we must prove that (ū, ϕ̄) ∈ Uad. Indeed, using (4.3), it follows that as δ → 0, the
following convergences hold:

(Aūδ, v − ūδ)V → (Aū, v − ū)V ,

lim
δ→0

(jδ (v)− jδ (ū)) = j (v)− j (ū) ,

(ϕ0, υ − uδ)H + (ϕ, υ − uδ)(L2(Γ2))d → (ϕ0, υ − ū)H + (ϕ, υ − ū)(L2(Γ2))d .

Therefore, passing to the limit as δ → 0 in (4.5), we deduce that (ū, ϕ̄) satisfies (3.1)
and (ū, ϕ̄) ∈ Uad.Let now (u∗, ϕ∗) be a solution of Problem C1 and let us consider
the sequence

(
uδ
)
δ

such that, for each δ > 0, uδ is the unique solution of Problem Q2

with ϕ∗ ∈ (L2(Γ2))d. Obviously, for every δ > 0,
(
uδ, ϕ∗

)
∈ Uδad. Using Theorem 4.3

we deduce that (
uδ, ϕ∗

)
→ (u∗, ϕ∗) in V × (L2(Γ2))d as δ → 0. (4.14)

Since the functional L is convex and continuous, we have

L (u∗, ϕ∗) ≤ lim
δ→0

inf L
(
ϕ̄δ, ūδ

)
. (4.15)

Also, as
(
ūδ, ϕ̄δ

)
is a solution of Problem C2, we have

lim
δ→0

supL
(
ūδ, ϕ̄δ

)
≤ lim
δ→0

supL
(
uδ, ϕ̄

)
. (4.16)

Using (4.13), we have

lim
δ→0

supL
(
uδ, ϕ̄

)
= L (ū, ϕ̄) , (4.17)

and as (ū, ϕ̄) is a solution of Problem C1, then

L (ū, ϕ̄) ≤ L (u∗, ϕ∗) . (4.18)
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Thus, from (4.15)-(4.18) , we deduce that L (ū, ϕ̄) = L (u∗, ϕ∗) . �
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