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Nonnegative solutions for a class of fourth order
singular eigenvalue problems
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Abstract. In this paper, we discuss the existence of nonnegative solutions to a
fourth order singular boundary value problem at two points. Our result is based
on a recent Birkhoff-Kellogg type fixed point theorem developed on translates of
a cone on a Banach space.
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1. Introduction

In the present paper, we investigate the following fourth order singular differen-
tial equation with parameter

v(4) = λg(t)f(v(t)), 0 < t < 1, (1.1)

subject to the boundary conditions

v(0) = a1, v(1) = a2, v′′(0) = a3, v′′(1) = a4, (1.2)

where aj ≥ 0, j ∈ {1, 2, 3, 4}, are given constants,

(H1). f ∈ C([0,∞)),

0 < A1 ≤ f(x) ≤ A2 +

k∑
j=0

Bjx
j , x ∈ [0,∞),

A2 ≥ A1 > 0 and Bj ≥ 0, j ∈ {0, . . . , k}, k ∈ N0, are given constants.
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(H2). g : (0, 1) → R+ is continuous and may be singular at t = 0 or/and t = 1 ,

g 6≡ 0 on (0, 1) and
∫ 1

0
s(1− s)g(s)ds <∞.

Fourth order two-point boundary value problems (BVPs for short) have been
received much attention by many authors due to their importance in physics. Usually,
they are essential in describing a vast class of elastic deflections with several types
of boundary conditions such as whose ends are simply-supported at 0 and 1 (v(0) =
v(1) = v′′(0) = v′′(1) = 0). A great number of research has been devoted to investigate
the existence of positive solutions to this class of problems, see [2, 1, 3, 4, 8, 9, 10,
11, 12, 13] and the references therein. The authors in [2] discussed the existence,
uniqueness and multiplicity of positive solutions to the following eigenvalue BVP by
means of fixed point theorem and degree theory

v(4) = λf(t, (v(t)), 0 < t < 1, (1.3)

v(0) = v(1) = v′′(0) = v′′(1) = 0, (1.4)

where λ > 0 is a constant and f : [0, 1] × [0,∞) → [0,∞) is continuous. In [12] by
applying a Krasnosel’skii fixed point theorem of cone expansion and compression
the author obtained the existence and multiplicity results of equation (1.3) with
boundary conditions v(0) = v(1) = v′(0) = v′(1) = 0. In the literature, there
are few papers devoted to study fourth order singular eigenvalue problems. In the
case when aj = 0, j ∈ {1, 2, 3, 4}, the BVP (1.1)-(1.2) is investigated in [7] when
f ∈ C([0,∞)), f > 0 on [0,∞), f is nondecreasing on [0,∞) and there exist δ > 0,
m ≥ 2 such that f(u) > δum, u ∈ [0,∞), and g ∈ C(0, 1), g > 0 on (0, 1) and

0 <
∫ 1

0
s(1− s)g(s)ds <∞. In [7], Feng and Ge used the method of upper and lower

solutions and the fixed point index to discuss the existence of positive solutions.

Our main result is as follows where we do not require any monotonicity assump-
tions on f , and we do not assume that f is either superlinear or sublinear.

Theorem 1.1. Suppose that (H1) and (H2) hold. Then there is a λ∗ > 0 such that the
BVP (1.1)-(1.2) has at least one nonnegative solution for λ = λ∗.

Note that our main result, in the particular case aj = 0, j ∈ {1, 2, 3, 4}, is valid
in the case when f is decreasing on [0,∞), while the corresponding result in [7] is
not valid. For instance, f(x) = 1 + 1

1+x2 , x ∈ [0,∞), satisfies (H1) for A1 = 1,

A2 = 2, Bj = 0, j ∈ {0, . . . , k}, and f is decreasing on [0,∞), whereupon it does not
satisfy the conditions in [7]. Also, the conditions for g in [7] are more restrictive than

(H2). For instance, g(t) =
( 1

2−t)
2

t(1−t) , t ∈ (0, 1), satisfies (H2) and does not satisfy the

conditions in [7] because g
(
1
2

)
= 0. Thus, we can consider the particular case of our

main result, aj = 0, j ∈ {1, 2, 3, 4}, as a complementary result to the result in [7].
The approach used in this paper is to rewrite the (BVP) (1.1)-(1.2) into a perturbed
integral equation of which we search for solutions in a suitable subset of a Banach
space by means of recent fixed point theorem of Birkhoff-Kellogg type developed by
Calamai and Infante in [5]. Note that this fixed point theorem has been applied very
recently to discuss the solvability of fourth order retarded equations in [6].
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The paper is organized as follows. In Section 2, we give some auxiliary results
needed for the proof of our main result. In Section 3, we prove our main result. In
Section 4, we give an example.

2. Auxiliary results

Let X be a real Banach space.

Definition 2.1. A mapping F : Ω ⊂ X → X is said to be completely continuous if it
is continuous and maps bounded sets into relatively compact sets.

Definition 2.2. A closed, convex set K of X is said to be cone if

1. αx ∈ K for any α ≥ 0 and for any x ∈ K,
2. x,−x ∈ K implies x = 0.

For a given y ∈ X, we consider the translate of a cone K, namely

Ky = K + y = {x+ y : x ∈ K}.
Given an open bounded subset D of X we denote DKy

= D ∩ Ky, an open subset of
Ky.

Theorem 2.3. [5, Corollary 2.4] Let (X, ‖ ‖) be a real Banach space, K ⊂ X be a
cone, and D ⊂ X be an open bounded set with y ∈ DKy and DKy 6= Ky. Assume that

F : DKy
→ K is a completely continuous map and assume that

inf
x∈∂DKy

‖Fx‖ > 0.

Then there exists x∗ ∈ ∂DKy
and λ∗ ∈ (0,∞) such that

x∗ = y + λ∗F (x∗).

Let

y1(t) =
(
a1 +

a4
6

)
(1− t) + a2t+

a3
6

(1− t)3 +
a4
6

(t3 − 1) +
a3
6

(t− 1), t ∈ [0, 1].

We have
0 ≤ y1(t) ≤ a1 + a2 + a3 + a4, t ∈ [0, 1],

and

y′1(t) = −a1 −
a4
6

+ a2 −
1

2
a3(1− t)2 +

1

2
a4t

2 +
a3
6
, t ∈ [0, 1].

y′′1 (t) = a3(1− t) + a4t, t ∈ [0, 1].

Hence,
y1(0) = a1, y1(1) = a2, y′′1 (0) = a3, y′′(1) = a4.

Set
y(t) = −y1(t), t ∈ [0, 1].

Now, consider the BVP

u(4) = λg(t)f(u(t)− y(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(2.1)
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where f and g satisfy (H1) and (H2), respectively.
Let X = C([0, 1]) be endowed with the norm ‖u‖ = max

t∈[0,1]
|u(t)|. Define

K = {u ∈ X : u(t) ≥ 0, t ∈ [0, 1]}.

Since 0 ≤
∫ 1

0
s(1− s)g(s)ds <∞, there exists a nonnegative constant C0 such that∫ 1

0

s(1− s)g(s)ds = C0.

Because g 6≡ 0 on (0, 1), there are C1 > 0, s0 ∈ (0, 1) and ε > 0 such that s0−ε, s0+ε ∈
(0, 1) and

g(s) ≥ C1, s ∈ (s0 − ε, s0 + ε).

Define

G(t, s) =

 t(1− s) 2s−s2−t2
6 , 0 ≤ t ≤ s ≤ 1,

s(1− t) 2t−t2−s2
6 , 0 ≤ s ≤ t ≤ 1.

We have

0 ≤ G(t, s) ≤ 1

6
s(1− s) ≤ 1

6
, 0 ≤ t, s ≤ 1,

Note that∫ 1

0

G(s0 + ε, s)g(s)ds ≥
∫ s0+ε

s0−ε
G(s0 + ε, s)g(s)ds

≥ C1

∫ s0+ε

s0−ε
G(s0 + ε, s)ds

= C1

∫ s0+ε

s0−ε
s(1− s0 − ε)

2(s0 + ε)− (s0 + ε)2 − s2

6
ds

≥ 2

3
C1ε(s0 − ε)2(1− s0 − ε)2

> 0.

For u ∈ X, define the operator

Tu(t) =

∫ 1

0

G(t, s)g(s)f(u(s)− y(s))ds, t ∈ [0, 1].

In [7], it is proved that any fixed point u ∈ X of the operator λT is a solution to the
BVP (2.1). Fix C2 > a1 + a2 + a3 + a4 arbitrarily. Define

D = {u ∈ X : ‖u‖ < C2}.

We have that D is an open bounded set in X, y ∈ D and DKy
= D ∩Ky 6= Ky. Note

that for any u ∈ DKy , we have

u(t) = y(t) + z(t), t ∈ [0, 1],
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for some z ∈ K, and so u(t)− y(t) = z(t) ≥ 0, t ∈ [0, 1], and

f(u(t)− y(t)) ≤

A2 +

k∑
j=0

Bj(u(t)− y(t))j


≤

(
A2 +

k∑
j=0

Bj2
j
(
|u(t)|j + |y1(t)|j

))

≤
(
A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

))
, t ∈ [0, 1].

2.1. Proof of the main result

Since f ∈ C([0,∞)) and g ∈ C(0, 1), we have that T : DKy → K is a continuous

operator. Next, for u ∈ DKy
, we have

Tu(t) =

∫ 1

0

G(t, s)g(s)f(u(s)− y(s))ds

≤ 1

6

A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

)∫ 1

0

s(1− s)g(s) ds

=
1

6
C0

A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

) , t ∈ [0, 1],

whereupon

‖Tu‖ ≤ C0

A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

) .

Then, T (DKy ) is uniformly bounded. Moreover, for u ∈ DKy and t1, t2 ∈ [0, 1], t1 < t2,
the Lebesgue dominated convergence theorem guarantees that

|Tu(t1)− Tu(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)|g(s)f(u(s)− y(s))ds ds

≤

A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

)∫ 1

0

g(s)|G(t1, s)−G(t2, s)|ds

→ 0, t1 → t2,

Therefore, T (DKy
) is equicontinuous. According to the Arzelà-Ascoli compactness

criterion, we conclude that the operator T : DKy
→ K is completely continuous.
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Observe that, for u ∈ ∂DKy
,

max
t∈[0,1]

|Tu(t)| ≥ Tu(s0 + ε) =

∫ 1

0

G(s0 + ε, s)g(s)f(u(s)− y(s))ds

≥ A1

∫ 1

0

G(s0 + ε, s)g(s)ds

≥ 2

3
A1C1ε(s0 − ε)2(1− s0 − ε)2

> 0.

Consequently

inf
u∈∂DKy

‖Tu‖ ≥ 2

3
A1C1ε(s0 − ε)2(1− s0 − ε)2 > 0.

Now, applying Theorem 2.3, we conclude that there are λ∗ ∈ (0,∞) and u∗ ∈ ∂DKy

such that

u∗(t) = y(t) + λ∗
∫ 1

0

G(t, s)g(s)f(u∗(s)− y(s))ds, t ∈ [0, 1].

Let

v∗(t) = u∗(t)− y(t), t ∈ [0, 1].

Then

v∗(0) = u∗(0)− y(0) = a1,

v∗(1) = u∗(1)− y(1) = a2,

v∗′′(0) = u∗′′(0)− y′′(0) = a3,

v∗′′(1) = u∗′′(1)− y′′(1) = a4

and

v∗(t) = λ

∫ 1

0

G(t, s)g(s)f(v∗(s))ds, t ∈ [0, 1],

whereupon

v∗(4)(t) = λg(t)f(v∗(t)), 0 < t < 1.

Since u∗ ∈ ∂DKy
, we have that u∗(t) = y(t) + z∗(t), t ∈ [0, 1], for some z∗ ∈ K, and

then

v∗(t) = u∗(t)− y(t) = z∗(t) + y(t)− y(t) = z∗(t) ≥ 0, t ∈ [0, 1].
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3. An example

Consider the BVP

u(4) = λ
( 1

2−t)
2

t(1−t)

(
1 + 1

1+(u(t))2

)
, t ∈ (0, 1),

u(0) = 0, u(1) = 1, u′′(0) = 1
2 , u′′(1) = 1.

(3.1)

Here

f(x) = 1 +
1

1 + x2
, x ∈ [0,∞), g(t) =

(
1
2 − t

)2
t (1− t)

, t ∈ (0, 1),

and

a0 = 0, a1 = 1, a2 =
1

2
, a3 = 1.

By our main result, it follows that the BVP (3.1) has at least one nonnegative solution.

References

[1] Bai, Z., The method of lower and upper solutions for a bending of an elastic beam
equation, J. Math. Anal. Appl., 248(2000), no. 1, 195-202.

[2] Bai, Z., Wang, H., On positive solutions of some nonlinear fourth-order beam equations,
J. Math. Anal. Appl., 270(2002), no. 2, 357-368.

[3] Benslimane, S., Georgiev, S.G., Mebarki, K., Multiple nonnegative solutions for a of
class fourth-order BVPs via a new topological approach, Adv. Theory Nonlinear Anal.
Appl., 6(2022), no. 3, 390-404.

[4] Bouchal, L., Georgiev, S.G., Mebarki, K., On the existence of solutions for a class of
nonlinear fully fourth order differential system, Proyecciones, 43(2024), no. 3, 613-629.

[5] Calamai, A., Infante, G., An affine Birkhoff-Kellogg-type result in cones with applications
to functional differential equations, Math. Methods Appl. Sci., (2022), 1-9.

[6] Calamai, A., Infante, G., On fourth order retarded equations with functional boundary
conditions: A unified approach, Discrete Contin. Dyn. Syst. - S, Early access January
2023.

[7] Feng, M., Ge, W., Existence of positive solutions for singular eigenvalue problems, Elec-
tron. J. Differential Equations, 2006(2006), no. 105, 1-9.

[8] Han, G., Xu, Z., Multiple solutions of some nonlinear fourth-order beam equations, Non-
linear Anal., 68(2008), no. 12, 3646-3656.

[9] Liu, B., Positive solutions of fourth-order two point boundary value problems, Appl.
Math. Comput., 148(2004), no. 2, 407-420.

[10] Ma, R., Wang, H., On the existence of positive solutions of fourth-order ordinary differ-
ential equations, Appl. Anal., 59(1995), no. 1-4, 225-231.

[11] Pang, C., Dong, W., Wei, Z., Multiple solutions for fourth-order boundary value problem,
J. Math. Anal. Appl., 314(2006), no. 2, 464-476.

[12] Yao, Q., Positive solutions for eigenvalue problems of fourth-order elastic beam equa-
tions, Appl. Math. Lett., 17(2004), no. 2, 237-243.

[13] Zhu, Y., Weng, P., Multiple positive solutions for a fourth-order boundary value problem,
Bol. Soc. Parana. Mat., 21(2003), no. 1-2, 9-19.



912 Lydia Bouchal, Karima Mebarki and Svetlin Georgiev Georgiev

Lydia Bouchal
Laboratory of Applied Mathematics,
Faculty of Exact Sciences,
University of Bejaia, 06000 Bejaia, Algeria
e-mail: lydia.bouchal@univ-bejaia.dz

Karima Mebarki
Laboratory of Applied Mathematics,
Faculty of Exact Sciences,
University of Bejaia, 06000 Bejaia, Algeria
e-mail: karima.mebarki@univ-bejaia.dz

Svetlin Georgiev Georgiev
Department of Differential Equations,
Faculty of Mathematics and Informatics,
University of Sofia, Sofia, Bulgaria
e-mail: svetlingeorgiev1@gmail.com

https://orcid.org/0000-0002-2728-0298
https://orcid.org/0000-0002-6679-5059
https://orcid.org/0000-0001-8015-4226

	1. Introduction
	2. Auxiliary results
	2.1. Proof of the main result

	3. An example
	. References

