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Topological degree methods for a nonlinear
elliptic systems with variable exponents

Samira Lecheheb and Abdelhak Fekrache

Abstract. In this paper, we consider the existence of a distributional solution
for nonlinear elliptic system governed by (p(x),q(x))-Laplacian operators. We
show that the system has at least one solution by using the topological degree
theory. Our results improve and generalize existing results with another technical
approach.
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1. Introduction

The main purpose of this paper is to obtain existence of distributional solution
for the following nolinear elliptic system

−div(|∇u|p(x)−2∇u) = f(x,w,∇w) in Ω,

−div(|∇w|q(x)−2∇w) = h(x, u,∇u) in Ω,

u = w = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, p(·), q(·) ∈ C+(Ω̄).
We assume also that p(·), q(·) are log-Hölder continuous functions (see Lemma 2.10).

For it’s various applications in various fields, the study of elliptic equations or
systems with variable exponents became the most interesting and fascinating area of
research (see [1, 11, 28, 29, 34] and so on).
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In the previous decades, the existence of the nontrivial solutions for elliptic
equation involving p and p(x)-Laplacian have been a large investigation. We refer the
interested readers to [4, 9, 10, 14, 15, 16, 17, 18, 13, 20, 2, 25, 26, 27, 30, 23, 31, 24]
and the references therein. Now let us briefly comment certain known results of them.

In [10], Chabrowski and Fu studied the p(x)-Laplacian problem{
−div(a(x)|∇u|p(x)−2∇u) + b(x)|u|p(x)−2u = f(x, u), x ∈ Ω,

u = 0 on ∂Ω,
(1.2)

wheere Ω is a bounded domain in Rn, 0 < a0 ≤ a(x) ∈ L∞(Ω), 0 ≤ b0 ≤ b(x) ∈
L∞(Ω), p is Lipschitz continuous on Ω̄ and satisfies 1 < p1 ≤ p(x) ≤ p2 < n. When
f(x, u) is assumed to satisfy their prototype cases, they obtained the existence of
nontrivial and nonnegative solutions for problem (1.2).

Fan and Zhang [18] presents several sufficient conditions for the existence of
solutions for the problem (1.2) with a(x) ≡ 1 and b(x) = 0. Especially, an existence
criterion for infinite many pairs of solutions for the problem was obtained by them.
By using the degree theory for p(x) is a constant function with values in (2, N), Kim
and Hong [20] studied the problem{ −∆pu = u+ f(x, u,∇u), x in Ω,

u = 0 on ∂Ω,
(1.3)

where Ω is a bounded domain in RN with smooth boundary. When p(x) is a variable
function, Ait Hammou et al [2] studied the problem on bounded domains. Under
certain conditions, they established some results on the existence of solutions by the
topological degree theory for a class of demicontinuous operators of generalized (S+)
type.

Inspired by the works mentioned above, especially by [20, 2], we try to extend
the results in [2] to the system (1.1). More precisely, the aim of this paper is to
show the existence of solutions for (1.1) in the variational frame work by using the
topological degree constructed by Kim and Hong [20]. This method may be one of
the most effective tools in the study of nonlinear equations. For more details about
the important stages in the history of this method, the reader can see [3, 6, 7, 8, 22].

The rest of this paper is organized as follows. In Section 2, we introduce
some classes of mappings of generalized (S+) type, topological degree, some basic
properties for variable exponent Sobolev spaces and we present several important
properties of p(x)−Laplacian which will be later needed. In Section 3, we give our
basic assumptions and we prove the main results of this paper. Finally, in Section 4,
we present a discussion about our research results.

Notation. Throughout this paper, we shall denoted by ”→” and ”⇀” the strong
and weak convergence. We use BR(a) to denote the open ball in the Banach space X
of radius R > 0 centered at a. The symbol ”↪→” means the continuous embedding.
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2. Mathematical preliminaries

2.1. Classes of mappings and topological degree

For the reader’s convenience, we bring in some necessary properties and defini-
tions of the classes of mappings mentioned in the introduction which will be the key
to proving the existence solution of system (1.1).

Definition 2.1. Let X and Y be two real separable, reflexive Banach spaces and Ω a
nonempty subset of X. A mapping F : Ω ⊂ X → Y is

1. demicontinuous, if for each u ∈ Ω and any sequence (un) in Ω, un → u implies
F (un) ⇀ F (u).

2. bounded, if it takes any bounded set into a bounded set.
3. compact, if it is continuous and the image of any bounded set is relatively com-

pact.

Definition 2.2. Let X be a real separable reflexive Banach space with dual space X∗.
An operator F : Ω ⊂ X → X∗ is said to be

1. of class (S+), if for any sequence (un) in Ω with un ⇀ u and
lim sup〈Fun, un − u〉 ≤ 0, we have un → u.

2. quasimonotone, if for any sequence (un) in Ω with un ⇀ u, we have
lim sup〈Fun, un − u〉 ≥ 0.

Definition 2.3. Let T : Ω1 ⊂ X → X∗ be a bounded mapping such that Ω ⊂ Ω1. For
any mapping F : Ω ⊂ X → X, we say that

1. F satisfies condition (S+)T , if for any sequence (un) in Ω with un ⇀ u,
yn := Tun ⇀ y and lim sup〈Fun, yn − y〉 ≤ 0, we have un → u.

2. F has the property (QM)T , if for any sequence (un) in Ω with un ⇀ u,
yn := Tun ⇀ y, we have lim sup〈Fun, yn − y〉 ≥ 0.

Now, let O be the collection of all bounded open set in X. For any Ω ⊂ X, we
consider the following classes of operators:

F1(Ω) := {F : Ω→ X∗|F is bounded, demicontinuous and of class (S+)},
FT,B(Ω) := {F : Ω→ X|F is bounded, demicontinuous and of class (S+)T },
FT (Ω) := {F : Ω→ X|F is demicontinuous and of class (S+)T },
FB(X) := {F ∈ FT,B(G)|G ∈ O, T ∈ F1(G)},
F(X) := {F ∈ FT (G)|G ∈ O, T ∈ F1(G)}.

Here, T ∈ F1(G) is called an essential inner map to F .

Lemma 2.4 ([5], Lemmas 2.2 and 2.4). Let T ∈ F1(G), G ∈ O, be continuous and
S : DS ⊂ X∗ → X a bounded demicontinuous mapping such that T (G) ⊂ DS. Then
the following statements are true:

1. If S is quasimonotone, then I + SoT ∈ FT (G), where I denote the identity
operator.

2. If S of class (S+), then SoT ∈ FT (G).
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Definition 2.5. Let F, S ∈ FT (G) and let G be a bounded open subset of a real
reflexive Banach space X. The affine homotopy H : [0, 1]×G→ X given by

H(λ, u) := (1− λ)Fu+ λSu, for (λ, u) ∈ [0, 1]×G
is called an admissible affine homotopy with the continuous essential inner map T .

Remark 2.6. [5] The above affine homotopy satisfies condition (S+).

Now, we introduce the Berkovits topological degree for the class FB(X). For
more details see [5].

Theorem 2.7. There exists a unique degree function

degB : {(F,G, h)|G ∈ O, T ∈ F1(G), F ∈ FT,B(G), h /∈ F (∂G)} → Z
that satisfies the following properties:

1. (Existence) If degB(F,G, h) 6= 0, then the equation Fu = h has a solution in G.
2. (Normalization) For any h ∈ G, we have degB(I,G, h) = 1.
3. (Additivity) Let F ∈ FT,B(G). If G1 and G2 are two disjoint open subsets of G

such that h /∈ F (G \ (G1 ∪G2)), then we have

degB(F,G, h) = degB(F,G1, h) + degB(F,G2, h).

4. (Homotopy invariance) If H : [0, 1] × G → X is a bounded admissible affine
homotopy with a common continuous essential inner map and h :: [0, 1] ×X is
a continuous path in X such that h(λ) /∈ H(λ, ∂G) for all λ ∈ [0, 1], then the
value of degB(H(λ, ·), G, h(λ)) is constant for all λ ∈ [0, 1]

2.2. Notation and preliminary results

In order to solve the problem (1.1), we need some necessary properties on variable

exponent spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). For a deeper treatment on these spaces,

we refer to [12, 14, 15, 17, 19, 21], and the references therein.
In the sequel, we consider a bounded domain Ω ⊂ RN , N ≥ 2 with a Lipschitz

boundary ∂Ω and the set

C+(Ω) = {g ∈ C(Ω) | inf
x∈Ω

g(x) > 1},

g− = min
x∈Ω

g(x), g+ = max
x∈Ω

g(x), for any g ∈ C+(Ω).

For any p ∈ C+(Ω), we define the generalized Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) =

{
u | u : Ω→ R is a measurable function, ρp(x)(u) <∞

}
,

where

ρp(x)(u) =

∫
Ω

|u(x)|p(x)dx,

this space endowed with the Luxemburg norm

‖u‖p(x) = inf{λ > 0 | ρp(x)(
u

λ
) ≤ 1},

and (Lp(x)(Ω), ‖ · ‖p(x)) becomes a Banach space.
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Lemma 2.8. [21]

1. The space Lp(x)(Ω) is a separable and reflexive Banach space.

2. The conjugate space of Lp(x)(Ω) is Lp
′(x)(Ω), where 1/p(x) + 1/p′(x) = 1. Then

for any u ∈ Lp(x)(Ω) and w ∈ Lp′(x)(Ω), we have the following Hölder inequality∣∣∣ ∫
Ω

uwdx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖p(x)‖w‖p′(x) ≤ 2‖u‖p(x)‖w‖p′(x).

3. If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω)

Lemma 2.9. [19, 33] If u, un ∈ Lp(x)(Ω), then the following assertions hold true:

1. ‖u‖p(x) < 1 (= 1, > 1)⇔ ρp(x)(u) < 1 (= 1, > 1).

2. ‖u‖p(x) < 1⇒ ‖u‖p
+

p(x) ≤ ρp(x)(u) ≤ ‖u‖p
−

p(x).

3. ‖u‖p(x) > 1⇒ ‖u‖p
−

p(x) ≤ ρp(x)(u) ≤ ‖u‖p
+

p(x).

4. lim
n→∞

‖un − u‖p(x) = 0⇔ lim
n→∞

ρp(x)(un − u) = 0.

5. ‖u‖p(x) ≤ ρp(x)(u) + 1.

6. ρp(x)(u) ≤ ‖u‖p
−

p(x) + ‖u‖p
+

p(x).

Now, we define the usual Sobolev space with variable exponent W 1,p(x)(Ω) as

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)},

whose norm is defined as

‖u‖W 1,p(x) = ‖u‖p(x) + ‖∇u‖p(x). (2.1)

Let W
1,p(x)
0 (Ω) denote the subspace of W 1,p(x)(Ω) which is the closure of C∞0 (Ω) with

respect to the norm (2.1).

Lemma 2.10. [12, 19, 21]

1. The two spaces W
1,p(x)
0 (Ω) and W 1,p(x)(Ω) are a Banach spaces separable and

reflexive.
2. If p(x) satisfies the log-Hölder continuity condition, i.e., there is a constant α > 0

such that for every x, y ∈ Ω, x /∈ y with |x− y| ≤ 1
2 one has

|p(x)− p(y)| ≤ α

− log |x− y|
,

then there exists a constant C > 0, such that

‖u‖p(x) ≤ C‖∇u‖p(x), ∀u ∈W 1,p(x)
0 (Ω).

3. If p ∈ C+(Ω) for any x ∈ Ω, then the imbedding W
1,p(x)
0 (Ω) ↪→ Lp(x)(Ω) is

compact.

Remark 2.11. By (2) of Lemma 2.10, we know that ‖∇u‖p(x) and ‖u‖ are equivalent

norms on W
1,p(x)
0 (Ω).
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The dual space of W
1,p(x)
0 (Ω) is W−1,p′(x)(Ω), which endowed with the norm

‖w‖−1,p′(x) = inf
{
‖w0‖p′(x) +

N∑
i=1

‖wi‖p′(x)

}
,

where the infinimum is taken on all possible decompositions w = w0 − divF with
w0 ∈ Lp

′(x)(Ω) and F = (w1, · · · , wN ) ∈ (Lp
′(x)(Ω))N .

Let us define V = W
1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω) endowed with the norm ‖(u,w)‖V =
max(‖u‖1,p(x), ‖w‖1,q(x)) where ‖u‖1,p(x) = ‖∇u‖p(x) and (V, ‖ · ‖) is a Banach space,
separable and reflexive.

2.3. Properties of (p(x), q(x))-Laplacian operators

In the present subsection, we discuss the properties of (p(x), q(x))-Laplacian
operators

−∆p(x)u = −div(|∇u|p(x)−2∇u),

and

−∆q(x)w = −div(|∇w|q(x)−2∇w).

We consider the following functional:

J (u,w) =

∫
Ω

|∇u|p(x)

p(x)
dx+

∫
Ω

|∇w|q(x)

q(x)
dx.

It is well known that J ∈ C1(V,R) and for any (ϕ, φ) ∈ V

〈J ′(u,w), (ϕ, φ)〉

=

∫
Ω

|∇u|p(x)−2∇u∇ϕdx+

∫
Ω

|∇w|q(x)−2∇w∇φdx, ∀u,w ∈ V.

Denote M = J ′ : V → V ∗.

Theorem 2.12. [18]

1. M : V → V ∗ is a mapping of type (S+).
2. M : V → V ∗ is a continuous, bounded and strictly monotone operator.
3. M : V → V ∗ is a homeomorphism.

The proof of the above theorem can be found in [18].

3. Hypotheses and the main results

3.1. Hypotheses

Let Ω be a bounded domain in RN (N ≥ 2) with a Lipschitz boundary ∂Ω.
Let p, q ∈ C+(Ω̄), 1 < p− ≤ p(x) ≤ p+ < ∞, 1 < q− ≤ q(x) ≤ q+ < ∞ and
f, h : Ω× R× RN → R are a real-valued functions such that

(A1). (Continuity) f, h are the Carathéodory functions ( i.e., f(x, ·, ·) is continuous
in (s1, s2) for almost every x ∈ Ω and f(·, s1, s2) is measurable in x for each
(s1, s2) ∈ R× RN )
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(A2). (Growth) There exist a positive constants c1, c2, b ∈ Lp′(x)(Ω), d ∈ Lq′(x)(Ω)
and 1 < α− ≤ α(x) ≤ α+ < p−, 1 < β− ≤ β(x) ≤ β+ < q−, such that

|f(x, s1, s2)| ≤ c1(b(x) + |s1|α(x)−1 + |s2|α(x)−1),

|h(x, ξ1, ξ2)| ≤ c2(d(x) + |ξ1|β(x)−1 + |ξ2|β(x)−1).

3.2. Main results

The main tool that we shall use to prove the existence of weak solutions of the
problem (1.1) is the degree theory introduced in section 2.

Definition 3.1. We say that (u,w) ∈ V is a distributional solution of the system (1.1)
if for any (ϕ, φ) ∈ V we have∫

Ω

|∇u|p(x)−2∇u∇ϕdx+

∫
Ω

|∇w|q(x)−2∇w∇φdx

=

∫
Ω

f(x,w,∇w)ϕdx+

∫
Ω

h(x, u,∇u)φdx

(3.1)

Lemma 3.2. Assume that (A1) and (A2) hold. Then the operator T : V → V ∗ given
by 

(u,w) ∈ V,

〈T (u,w), (ϕ, φ)〉 = −
∫

Ω

f(x,w,∇w)ϕdx−
∫

Ω

h(x, u,∇u)φdx, ∀(ϕ, φ) ∈ V

is compact.

Proof. First, let χ : W
1,p(x)
0 → Lp

′(x)(Ω), π : W
1,q(x)
0 → Lq

′(x)(Ω) be two operators
defined by

χu(x) = −h(x, u,∇u) for u ∈W 1,p(x)
0 and x ∈ Ω,

and
πw(x) = −f(x,w,∇w) for w ∈W 1,q(x)

0 and x ∈ Ω.

We divide the proof into three steps.

Step 1. We show that χ and π are bounded.

For each u ∈ W 1,p(x)
0 (Ω), we have by (5), (6) of Lemma 2.9 and the assumption

(A2) that

‖χu‖p′(x) ≤ ρp′(x)(χu) + 1

=

∫
Ω

|h(x, u(x),∇u(x))|p
′(x) + 1

≤ const
(∫

Ω

(
|d|+ |u|β(x)−1 + |∇u|β(x)−1

)p′(x)

dx
)

≤ const
(
ρp′(x)(d) + ργ(x)(u) + ργ(x)(∇u)

)
+ 1

≤ const
(
‖d‖p

′−

p′(x) + ‖d‖p
′+

p′(x) + ‖u‖γ
−

γ(x) + ‖u‖γ
+

γ(x) + ‖∇u‖γ
−

γ(x)

+ ‖∇u‖γ
+

γ(x)

)
+ 1,
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where

γ(x) = (β(x)− 1)p′(x) < p(x).

By (2) of Lemma 2.10 and the continuous embedding Lp(x) ↪→ Lγ(x), we get

‖χu‖p′(x) ≤ const
(
‖d‖p

′−

p′(x) + ‖d‖p
′+

p′(x) + ‖u‖γ
−

1,p(x) + ‖u‖γ
+

1,p(x)

)
+ 1,

which implies that χ is bounded on W
1,p(x)
0 .

Similarly, we can show that π is bounded on W
1,q(x)
0 .

Step 2. We show that χ and π are continuous.
Let (un, wn) converge to (u,w) in V . Then

un → u and ∇un → ∇u in W
1,p(x)
0 ,

wn → w and ∇wn → ∇w in W
1,q(x)
0 .

Hence there exist two subsequences denote again by (un), (wn) and measurable func-
tions g1 (resp. g2) in Lp(x)(Ω) (resp. in Lq(x)(Ω)) and g∗1 (resp.g∗2) in (Lp(x)(Ω))N

(resp. in (Lq(x)(Ω))N ), such that

un(x)→ u(x) and ∇un(x)→ ∇u(x),

wn(x)→ w(x) and ∇wn(x)→ ∇w(x),

|un(x)| ≤ g1(x), |∇un(x)| ≤ |g∗1(x)|
and

|wn(x)| ≤ g2(x), |∇wn(x)| ≤ |g∗2(x)|,
for almost all x ∈ Ω and all n ∈ N . From (A1) and (A2), we have

h(x, un(x),∇un(x))→ h(x, u(x),∇u(x)) for almost all x ∈ Ω,

and

|h(x, un(x),∇un(x))| ≤ const
(
d(x) + |g1(x)|β(x)−1 + |g∗1(x)|β(x)−1

)
,

for almost all x ∈ Ω and all n ∈ N and

d+ |g1|β(x)−1 + |g∗1 |β(x)−1 ∈ Lp
′(x)(Ω).

Taking into account the equality

ρp′(x)(χun − χu) =

∫
Ω

|h(x, un(x),∇un(x))− h(x, u(x),∇u(x))|p
′(x)dx,

the equivalence (4) of Lemma 2.9 and the Lebesgue dominated convergence theorem
imply that

χun → χu in Lp
′(x)(Ω),

which shows that the entire sequence (χun) is continuous.
Similarly, we obtain that the entire sequence (πwn) is continuous.

Step 3. As the embedding I : V → U is compact, it is known that the adjoint operator
I∗ : U∗ → V ∗is also compact. So the compositions I∗oχ and I∗oπ : V → V ∗ are
compact, which completes the proof. �
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Let us now mention our main result in this paper:

Theorem 3.3. Under conditions (A1) and (A2), problem (1.1) has a distributional
solution (u,w) in V .

Proof. Let T be an operator from V into its dual V ∗ as defined in Lemma 3.2, ant
let M : V → V ∗, as in subsection 2.3, given by


(u,w) ∈ V,

〈M(u,w), (ϕ, φ)〉 =

∫
Ω

|∇u|p(x)−2∇u∇ϕdx+

∫
Ω

|∇w|q(x)−2∇w∇φdx,

for all (ϕ, φ) ∈ V . Then (u,w) ∈ V is a distributional solution of (1.1) if and only if

M(u,w) = −T (u,w). (3.2)

Thanks to Lemma 3.2, the operator T is bounded, continuous and quasimonotone.
On the other hand, according to the properties of the operator M seen in Theorem
2.12 and by using the Minty-Browder Theorem (see [32], Theorem 26A), the inverse
operator N = M−1 : V ∗ → V is bounded, continuous and satisfies condition (S+).

Therefore, equation (3.2) is equivalent to

(u,w) = N(ϕ, φ) and (ϕ, φ) + ToN(ϕ, φ) = 0. (3.3)

To solve (3.3), we shall using the degree theory introduced in subsection 2.1. For this,
we first show that the set

Σ = {(ϕ, φ) ∈ V ∗|(ϕ, φ) + λToN(ϕ, φ) = 0 for some λ ∈ [0, 1]}

is bounded. Indeed, let (ϕ, φ) ∈ Σ and take (u,w) = N(ϕ, φ), then

‖N(ϕ, φ)‖V = ‖(u,w)‖V = max(‖∇u‖p(x), ‖∇w‖q(x)).

If ‖∇u‖p(x) ≤ 1 and ‖∇w‖q(x) ≤ 1, then ‖N(ϕ, φ)‖V is bounded.

If ‖∇u‖p(x) > 1 and ‖∇w‖q(x) > 1, then by using the assumption (A2), (3), (6) of
Lemma 2.9, (2) of Lemma 2.8 and the Young inequality, we obtain the estimate
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‖N(ϕ, φ)‖min(p−,q−)
V = ‖(u,w)‖min(p−,q−)

V

≤ ρp(x)(∇u) + ρq(x)(∇w)

= 〈M(u,w), (u,w)〉
= 〈(ϕ, φ), N(ϕ, φ)〉
= −λ〈ToN(ϕ, φ), N(ϕ, φ)〉

= λ
(∫

Ω

f(x,w,∇w)udx+

∫
Ω

h(x, u,∇u)wdx
)

≤ const
(
‖b‖p′(x)‖u‖p(x) +

1

α′−
ρα(x)(w) +

1

α−
ρα(x)(u)

+
1

α′−
ρα(x)(∇w) +

1

α−
ρα(x)(u) + ‖d‖q′(x)‖w‖q(x)

+
1

β′−
ρβ(x)(u) +

1

β−
ρβ(x)(w) +

1

β′−
ρβ(x)(∇u)

+
1

β−
ρβ(x)(w)

)
≤ const

(
‖u‖p(x) + ‖w‖α

+

α(x) + ‖u‖α
+

α(x) + ‖∇w‖α
+

α(x)

+ ‖w‖q(x) + ‖u‖β
+

β(x) + ‖w‖β
+

β(x) + ‖∇u‖β
+

β(x)

)
.

By (2) of Lemma 2.10 and the continuous embedding Lp(x) ↪→ Lα(x) and Lq(x) ↪→
Lβ(x), we get

‖N(ϕ, φ)‖min(p−,q−)
V ≤ const (‖N(ϕ, φ)‖V + ‖N(ϕ, φ)‖max(α+,β+)

V ).

If ‖∇u‖p(x) > 1 and ‖∇w‖q(x) ≤ 1 (resp. if ‖∇u‖p(x) ≤ 1 and ‖∇w‖q(x) > 1), we can
also get that ‖N(ϕ, φ)‖V is bounded.
Consequently {N(ϕ, φ)|(ϕ, φ) ∈ Σ} is bounded.

Since the operator T is bounded, it is obvious from (3.3) that the set Σ is
bounded in V ∗. Hence, we can choose a positive constant R such that

‖(ϕ, φ)‖V ∗ < R for all (ϕ, φ) ∈ Σ.

It follows that

(ϕ, φ) + λToN(ϕ, φ) 6= 0 for all (ϕ, φ) ∈ ∂BR(0) and all λ ∈ [0, 1],

where BR(0) is the ball of radius R and center 0 in V ∗.
By Lemma 2.4, we have

I + ToN ∈ FT (BR(0)) and I = MoN ∈ FT (BR(0)).

Since the operators I, T and N are bounded, I + ToN is also bounded. We conclude
that

I + ToN ∈ FT,B(BR(0)) and I ∈ FT,B(BR(0)).

Now, we consider an affine homotopy H : [0, 1]×BR(0)→ V ∗ given by

H(λ, ϕ, φ) := (ϕ, φ) + λToN(ϕ, φ) for (λ, ϕ, φ) ∈ [0, 1]×BR(0).



Topological degree methods 891

All those properties allow us to apply the homotopy invariance and normalization
property of the degree degB stated in Theorem 2.7 and obtain

degB(I + ToN,BR(0), 0) = degB(I,BR(0), 0) = 1,

consequently, there exists a point (ϕ, φ) ∈ BR(0) such that

(ϕ, φ) + ToN(ϕ, φ) = 0.

This implies that (u,w) = N(ϕ, φ) is a distributional solution of (1.1). The proof is
complete. �

4. Conclusion

In this paper, we have studied the existence of distributional solutions for a
nonlinear elliptic systems with variable exponents. By using the topological degree
theory, we showed that system (1.1) has at least one solutions when the functions f
and h satisfying some suitable conditions. This study can be extend in the futur works
to more general boundary value problems involving fractional derivatives models.
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[26] Moussaoui, A., Vélin, J., Existence and a priori estimates of solutions for quasilinear
singular elliptic systems with variable exponents, J. Elliptic Parabol Equ., 4(2018), 417-
440.

[27] Pucci, P., Xiang, M., Zhang, B., Existence and multiplicity of entire solutions for frac-
tional p-Kirchhoff equations, Adv. Nonlinear Anal., 5(2016), no. 1, 27-55.

[28] Radulescu, V., Repovs, D., Partial Differential Equations with Variable Exponents, Vari-
ational Methods and Qualitative Analysis, Monographs and Research Note in Mathemat-
ics, CRC Press, Boca Raton, FL, 2015.

[29] Ruzicka, M., Electrorheological Fluids: Modelling and Mathematical Theory, Springer-
Verlag, Berlin, 2000.
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