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Existence results for some anisotropic
possible singular problems via
the sub-supersolution method

Abdelrachid El Amrouss , Hamidi Abdellah and Kissi Fouad

Abstract. Using the sub-super solution method, we prove the existence of the
solutions for the following anisotropic problem with singularity:

−
N∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
= f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary and a given singular
nonlinearity f : Ω× (0,∞) −→ [0,∞).

Mathematics Subject Classification (2010): 35B50, 35B51, 35J75, 35J60.

Keywords: Anisotropic problem, singular nonlinearity, sub-super solution, strong
maximum principle.

1. Introduction

Partial differential equations with anisotropic operators appear in several scien-
tific domains, in physics for example, such kind of operators models the dynamics of
liquids with different conductivities in different directions. Furthermore, in biology
for example, such type of operators are related to model describing the spread of epi-
demics in heterogeneous environments. Regarding the mentioned examples, we point
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out the references [14, 18, 23, 24].
Problems involving anisotropic operators ~p-Laplacian

−∆~p u = −
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)
, (1.1)

are extensively studied in the literature and we cite them as examples [1, 3, 6, 7, 11].
We note that the operator (1.1) becomes the Laplacian operator in the case of pi = 2
and the p-Laplacian operator that is ∆pu = div

(
|∇u|p−2∇u

)
in the case of pi = p for

all i. There are many studies on Laplacian and p-Laplacian problems with singularity
in the second member, we refer to [19, 4, 22, 16, 25]. There is now a substantial body
of work and growing interest in singular problems involving anisotropic operators,
some recent results can be found in [2, 20, 17, 14].

In this paper, we study the following anisotropic problem with singularity:
−

N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

where Ω ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary and
f : Ω × (0,∞) → [0,∞) is a continuous function such that f(., t) is in Cθ(Ω) with
0 < θ < 1. Without loss of generality, we assume that p1 ≤ ... ≤ pN .

Against several works that used the approximation methods, we focuse in this
work on singular problems which have applications in anisotropic operator using the
sub and supersolution method. More precisely, we generalize the existence results
existing in [21] through replacing the p-Laplacian operator by the anisotropic one.
Moreover, we have weakened conditions given on f . In other part, this work generalise
the second member existing in [20, 17] with keeping the same anisotropic operator.

The natural functional space relevant to the problem (1.2) is the anisotropic
Sobolev spaces

W 1,~p(Ω) =
{
v ∈W 1,1(Ω); ∂iv ∈ Lpi(Ω)

}
,

and

W 1,~p
0 (Ω) = W 1,~p(Ω) ∩W 1,1

0 (Ω),

endowed by the usual norm

‖v‖
W 1,~p

0 (Ω)
=

N∑
i=1

‖∂iv‖Lpi (Ω) .

Where ∂ui denotes the i− th weak partial derivative of u.
In the following, we assume that p < N , with

1

p
=

1

N

N∑
i=1

1

pi
,

N∑
i=1

1

pi
> 1,
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p∗ =
pN

N − p
and p∞ = max {p∗, pN} .

Then for every r ∈ [1, p∞] the embedding

W 1,~p
0 (Ω) ⊂ Lr(Ω),

is continuous, and compact if r < p∞. We refer to see [13].
Owing to the absence of a strong maximum principle, we will usually assume that
pi ≥ 2 for all i.

Definition 1.1. We will say that u ∈ W 1,~p
0 (Ω) is a solution to (1.2) if and only if, the

following equality holds:

N∑
i=1

∫
Ω

|∂iu|pi−2
∂iu∂iϕ dx =

∫
Ω

f(x, u)ϕ dx , (1.3)

for all ϕ ∈W 1,~p
0 (Ω).

Now, we are in a position to present our first results. For this, let g be a continu-
ous positive function on (0,∞). Assume that f and g satisfy the following conditions

(G) g(0+) = lim
t→0+

g(t) = +∞.

(H0) ςµ(x) = sup
t≥µ

f(x, t) ∈ Lr(Ω) for each µ > 0 with r >
N

p
.

(H1) There exist two measurable nontrivial functions β, γ and a positive constant

λ such that

β(x) ≤ f(x, s) 6 γ(x)g(s) for every 0 < s < λ, a.e. x ∈ Ω,

with 0 ≤ β(x) ≤ γ(x) a.e. x ∈ Ω, γ ∈ Lr(Ω), r >
N

p
.

Theorem 1.2. If (H0) − (H1), (G) hold and g is non-increasing, then problem (1.2)

has a solution in W 1,~p
0 (Ω).

Theorem 1.3. If (H0)− (H1), (G) hold and g satisfies the following condition

lim sup
t−→0+

tg(t) < +∞,

then problem (1.2) has a solution in W 1,~p
0 (Ω).

Remark 1.4. Consider g(s) = 1
sαlnβ(s+1)

, with 0 < α < 1 and β ≥ 1−α. The function

g satisfies the conditions of Theorem 1.2, however g doesn’t verify the condition (3)
of (G2) of Theorem3.1 in [21].
Also, the function g given by g(t) = 1

tθ
satisfies the conditions of Theorem 1.2 for

each θ > 0, but the same function g verifies the condition (3) of (G2) of Theorem [21]
for only θ > 1.

This paper is organized as follows: in section 2, we recall some necessary defini-
tions of the classical anisotropic operator, also we mention a technical Lemma and we
prove it. In section 3, by using comparison principle and sub-supersolution method,
we give the proofs of our results.
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2. Preliminaries

Consider the following anisotropic problem:{
−
∑N
i=1 ∂i

(
|∂iu|pi−2

∂iu
)

= f(x, u) in Ω,

u = τ on ∂Ω,
(2.1)

where τ in W 1,~p(Ω).

Definition 2.1. Let u ∈W 1,~p(Ω) such that u− τ ∈W 1,~p
0 (Ω), u is a solution of (2.1) if

and only if for every ϕ ∈W 1,~p
0 (Ω)∫

Ω

(
N∑
i=1

|∂iu|pi−2
∂iu∂iϕ − f(x, u)ϕ

)
dx = 0 . (2.2)

Definition 2.2. Let (u, ū) ∈W 1,~p(Ω)×W 1,~p(Ω),
u is called a subsolution of the problem (2.1), if∫

Ω

N∑
i=1

|∂iu|pi−2
∂iu∂iϕdx ≤

∫
Ω

f(x, u)ϕdx and (u− τ)+ ∈W 1,~p
0 (Ω),

u is said a supersolution of the problem (2.1), if∫
Ω

N∑
i=1

|∂iu|pi−2
∂iu∂iϕdx ≥

∫
Ω

f(x, u)ϕdx and (u− τ)− ∈W 1,~p
0 (Ω),

for all functions 0 ≤ ϕ ∈W 1,~p
0 (Ω).

Now, we need to proved the following lemma.

Lemma 2.3. Let f satisfies (H0) and τ ∈ W 1,−→p (Ω) with τ > 0 in Ω. Let φsub and
φsuper be sub-solution and super-solution of (2.1) respectively with φsuper > φsub a.e.
in Ω.
If 0 < µ < φsub a.e. in Ω, where µ is a constant, then the problem (2.1) has at least

one positive solution u ∈W 1,−→p (Ω) such that φsub < u < φsuper a.e. in Ω.

Proof. Let T : Ω× R −→ R be defined by

T (x, t) :=

{
f(x, µ) if t < µ,

f(x, t) if t > µ.

We will consider the following problem−
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= T (x, u) in Ω,

u = τ on ∂Ω.

(2.3)

It is easy to see that φsub and φsuper are sub and super-solution respectively of
this problem. Since T (x, .) is Hölder continuous in R for each x ∈ Ω, |T (x, t)| ≤ ςµ(x)

in Ω× R and ςµ ∈ Lr(Ω) with r > N
p , then by [[5], Theorem 4.14] the problem (2.3)
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has a solution u ∈ W 1,−→p (Ω) such that φsub ≤ u ≤ φsuper, a.e. in Ω. Since µ < φsub
a.e. in Ω, then T (x, u) = f(x, u) a.e. in Ω. Finally, we note that u is a solution of (2.1)
as claimed. �

3. Proof of the main results

Proof of Theorem 1.2. Let φ be a solution of the following problem−
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= γ(x) in Ω,

u = 1 on ∂Ω.

(3.1)

As γ ∈ Lr(Ω) with r ≥ N
p , then according to [[6], Theorem 2.1], we have φ ∈W 1,~p(Ω)∩

L∞(Ω). Using comparison lemma in [[10], Lemma 2.5], we get φ ≥ 1 a.e. in Ω. We
can assume without loss of generality that φ < λ a.e. in Ω. If not, we replace λ by
λ∗ = max{λ , ‖φ‖L∞(Ω) + 1}.
From (H1) and as φ ≥ 1 a.e. in Ω, then∫

Ω

f(x, φ)ϕ ≤
∫

Ω

γ(x)g(φ)ϕ

=

∫
{φ≥1}

γ(x)g(φ)ϕ

≤
∫
{φ≥1}

γ(x)g(1)ϕ.

Without lost of generality, by replacing γ by g(1)γ and g by g
g(1) , we deduce that∫

Ω

f(x, φ)ϕ ≤
∫

Ω

γ(x)ϕ. (3.2)

Let k ∈ N∗, we consider the following problem

(Pk)

−
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= f(x, u) in Ω,

u = 1
k on ∂Ω.

From the inequality (3.2) and the condition (H0), we obtain∫
Ω

N∑
i=1

|∂iφ|pi−2
∂iφ∂iϕdx−

∫
Ω

f(x, φ)ϕdx

≥
∫

Ω

N∑
i=1

|∂iφ|pi−2
∂iφ∂iϕdx−

∫
Ω

γϕdx = 0,

for all positive function ϕ ∈ W 1,~p
0 (Ω) and (φ − 1

k )− ∈ W 1,~p
0 (Ω). Thus, φ is a super-

solution of the problem (Pk) in Ω for all k = 1, 2, ....



854 Abdelrachid El Amrouss, Hamidi Abdellah and Kissi Fouad

Take φk be the solution of−
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= βk(x) in Ω,

u = 1/k on ∂Ω,

(3.3)

for k = 1, 2, ..., where βk(x) = min{β(x)k+1
k }, for x ∈ Ω.

Let φ∞ the solution of (3.3) when k = ∞ and β∞(x) = min{β(x)}. As βk ∈ Lr(Ω)
with r > N

P
, it follows that φk ∈ L∞(Ω) ( see [[6], Theorem 2.1] ). By the comparison

lemma in [[10], Lemma 2.5 ], we have

0 ≤ φ∞ ≤ φk ≤ φ1 a.e. in Ω, for all k = 1, 2, ...

Moreover φk ≥ k−1 a.e. in Ω for all k = 1, 2, ...
Since β∞ ∈ L∞(Ω), β∞ 6= 0 in Ω and p1 ≥ 2, using the Strong Maximum Principle
see ([8], Corollary 4.4.) and ([7], Theorem 1.1), we easily see that φ∞ > 0 for all
compact K in Ω.
By comparison lemma in [[10], Lemma 2.5 ], since 0 ≤ β ≤ γ a.e. x in Ω, we deduce
that φk ≤ φ for a.e. x in Ω and every k = 1, 2, ...
Then from the condition (H0) and since φk ≤ φ < λ a.e. in Ω for all k = 1, 2, ..., we get

∫
Ω

N∑
i=1

|∂iφk|pi−2
∂iφk∂iϕdx−

∫
Ω

f(x, φk)ϕdx

≤
∫

Ω

N∑
i=1

|∂iφk|pi−2
∂iφk∂iϕdx−

∫
Ω

γϕdx = 0,

for all positive function ϕ in W 1,~p
0 (Ω) and (φk − 1

k )+ ∈ W 1,~p
0 (Ω). Hence φk is a

sub-solution of (Pk) for all k = 1, 2, ...
Now let j ∈ N∗, by Lemma 2.3 there exist a solution uj of the problem (Pj) such that
φj ≤ uj ≤ φ a.e. in Ω. Moreover uj is a super-solution of (Pj+1), using again Lemma
2.3, there is a solution uj+1 of the problem (Pj+1) where φj+1 ≤ uj+1 ≤ uj a.e. in
Ω. By continuing to do so, we build a sequence (uk) of solutions of the problem (Pk)
such that for every k ≥ j we have

φ∞ ≤ uk+1 ≤ uk ≤ ... ≤ uj ≤ φ a.e. in Ω.

We should also note that uk ≥ k−1 a.e. in Ω. We define u(x) = lim
k→∞

uk(x) a.e in Ω.

Now, as φ∞ is locally Hölder continuous in Ω (see [7]) and φ∞ > 0 for all compact K
in Ω, hence inf

supp(φ)
φ∞ > 0. Take

ζk =
uk − k−1

g

(
inf

supp(φ)
φ∞

)
as a test function, then in view of (H0) and [[12], Theorem 1.3.], we distinguish two
cases:
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If g

(
inf

supp(φ)
φ∞

)
≥ 1, we get the following inequality

‖ζk‖p0
W 1,−→p

0 (Ω)

NpN−1
−N ≤

N∑
i=1

∫
Ω

|∂iζk|pidx

≤ 1

g

(
inf

supp(φ)
φ∞

) N∑
i=1

∫
Ω

|∂iuk|pidx

=

∫
Ω

f(x, uk)
uk − k−1

g

(
inf

supp(φ)
φ∞

)dx
≤
∫

Ω

f(x, uk)
uk

g

(
inf

supp(φ)
φ∞

)dx ,
where p0 = p1 if ‖ζk‖W 1,−→p

0 (Ω)
≥ 1 and p0 = pN if ‖ζk‖W 1,−→p

0 (Ω)
< 1.

From (H1) and since uk ≤ φ < λ for all k = 1, 2, ..., a.e. in Ω, we obtain

‖ζk‖p0
W 1,−→p

0 (Ω)

NpN−1
−N ≤

∫
Ω

γ(x)g(uk)
φ

g

(
inf

supp(φ)
φ∞

)dx
=

∫
supp(φ)

γ(x)g(uk)
φ

g

(
inf

supp(φ)
φ∞

)dx.
On the other hand as g is non-increasing, g (uk) ≤ g(φ∞) a.e. in Ω and g (φ∞) ≤

g

(
inf

supp(φ)
φ∞

)
a.e. in supp(φ). Then according to the above equality, we find

‖ζk‖p0
W 1,−→p

0 (Ω)
≤ λNpN−1‖γ‖L1(Ω) +NpN .

If g

(
inf

supp(φ)
φ∞

)
< 1, we have

‖uk − k−1‖p0
W 1,−→p

0 (Ω)

NpN−1
−N ≤

N∑
i=1

∫
Ω

|∂i
(
uk − k−1

)
|pidx

=

∫
Ω

f(x, uk)
(
uk − k−1

)
dx

≤
∫
supp(φ)

γ(x)g(uk)φdx ,

where p0 = p1 if ‖uk − k−1‖
W 1,−→p

0 (Ω)
≥ 1 and p0 = pN if ‖uk − k−1‖

W 1,−→p
0 (Ω)

< 1.

Since g (uk) ≤ g

(
inf

supp(φ)
φ∞

)
< 1 a.e. in supp(φ) and φ < λ for a.e. in Ω, then we
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obtain

‖uk − k−1‖p0
W 1,−→p

0 (Ω)
≤ λNpN−1‖γ‖L1(Ω) +NpN ,

which implies the inequality

‖ζk‖p0
W 1,−→p

0 (Ω)
=

1

g

(
inf

supp(φ)
φ∞

)p0 ‖uk − k−1‖p0
W 1,−→p

0 (Ω)

≤ 1

g

(
inf

supp(φ)
φ∞

)p0 (λNpN−1‖γ‖L1(Ω) +NpN
)

and thus

‖ζk‖p0
W 1,−→p

0 (Ω)
≤
λNpN−1‖γ‖L1(Ω) +NpN

g

(
inf

supp(φ)
φ∞

)p0 .

Finally, we conclude that ζk ∈W 1,−→p
0 (Ω) ∩ L∞(Ω) for every k.

Since (ζk) is bounded in W 1,−→p
0 (Ω), it follows that ζk ⇀ v in W 1,−→p

0 (Ω) and (ζk)

converge weakly to the same limit in W 1,−→p (Ω). As (uk) is bounded in W 1,−→p (Ω), we

have uk ⇀ u in W 1,−→p (Ω), strongly in Lp(Ω) and almost everywhere in Ω.

In other part, we have uk = g

(
inf

supp(φ)
φ∞

)
ζk+k−1 ⇀ g

(
inf

supp(φ)
φ∞

)
v in W 1,−→p (Ω),

strongly in Lp(Ω) and almost everywhere in Ω. Therefore, we can conclude that

u = g

(
inf

supp(φ)
φ∞

)
v almost everywhere in Ω, we easily see that v ∈W 1,−→p

0 (Ω) which

implies that u ∈W 1,−→p
0 (Ω).

Let Ω0 be a compact domain in Ω. We define µ = min
Ω0

φ∞, from ([7], Theo-

rem 1.1), φ∞ > 0 a.e. in Ω, we have µ > 0. Hence

|(f (x, uk)− f (x, uj)) (uk − uj)| 6 4ςµ(x)φ,

which implies that

N∑
i=1

∫
Ω0

(
|∂iuk|pi−2

∂iuk − |∂iuj |pi−2
∂iuj

)
∂i (uk − uj) dx→ 0 (3.4)

as k, j →∞. From ([15], Proposition 1.) and (3.4), we get

N∑
i=1

∫
Ω0

|∂iuk − ∂iuj |pidx→ 0, k, j →∞. (3.5)

We observe that

uk −→ u in Lpi(Ω0). (3.6)

From (3.5), (3.6), we obtain that (uk) is Cauchy sequence in W 1,−→p (Ω0) which is a

Banach space, therefore uk −→ u in W 1,−→p (Ω0). We conclude that for any compact
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set Ω0 in Ω, there exist a subsequence (uk) such that uk −→ u in W 1,−→p (Ω0).
We mention the following estimates. We have for all pi ≥ 2 with i ∈ {1, 2, ..., N}

‖ (|∂iuk|+ |∂iu|)
(pi−2)pi
pi−1 ‖Lpi−1/(pi−2)(Ω0) =

(∫
Ω0

(|∂iuk|+ |∂iu|)pi dx
)pi−2/(pi−1)

≤ 2pi−2

(∫
Ω0

|∂iuk|pi + |∂iu|pidx
)pi−2/(pi−1)

≤ 2pi−2M, (3.7)

where M is a positive constant independent of x. Using Hölders inequality, we get∫
Ω0

(|∂iuk|+ |∂iu|)(pi−2)p′i dx ≤‖ (|∂iuk|+ |∂iu|)
(pi−2)pi
pi−1 ‖Lpi−1/(pi−2)(Ω0)(|Ω0|pi−1).

(3.8)

By the inequality (3.7), we have∫
Ω0

(|∂iuk|+ |∂iu|)(pi−2)p′i dx ≤2pi−2M |Ω0|pi−1. (3.9)

Using again Hölders inequality, we obtain

N∑
i=1

∫
Ω0

|∂iuk − ∂iu| (|∂iuk|+ |∂iu|)pi−2
dx

≤
N∑
i=1

‖∂iuk − ∂iu‖Lpi (Ω0)‖ (|∂iuk|+ |∂iu|)pi−2 ‖
Lp
′
i (Ω0)

,

from the inequality (3.9), we deduce that

N∑
i=1

∫
Ω0

|∂iuk − ∂iu| (|∂iuk|+ |∂iu|)pi−2
dx

≤ M2pN−2 (|Ω0|+ 1)
pN−1

N∑
i=1

‖∂iuk − ∂iu‖Lpi (Ω0)

≤ M2pN−2 (|Ω0|+ 1)
pN−1 ‖uk − u‖W 1,−→p (Ω0). (3.10)

Now, we recall the fallowing useful inequality (see [9]) that hold for all a, b in RN and
pi ≥ 2 for all i = 1, 2, ..., N

||a|pi−2a− |b|pi−2b| ≤ c(|a|+ |b|)pi−2|a− b|, (3.11)

where c is a positive constant independent of a and b. By estimation (3.10) and
inequality (3.11), it follows that

lim
k→+∞

N∑
i=1

∫
Ω0

||∂iuk|pi−2∂iuk − |∂iu|pi−2∂iu|dx = 0 . (3.12)
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Let ξ ∈ C∞0 (Ω) such that supp (ξ) ⊆ Ω0 ⊂ Ω. From the limite (3.12), we conclude
that

N∑
i=1

∫
Ω

|∂iuk|pi−2∂iuk∂iξ dx −→
N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iξ dx as k −→ +∞. (3.13)

On the other hand, since |f(x, uk)ξ| ≤ Cςµ(x) a.e. in Ω0, where C is a positive
constant independent of x and ςµ ∈ L1(Ω), we obtain∫

Ω

f (x, uk) ξ dx→
∫

Ω

f(x, u)ξ dx. (3.14)

Hence by (3.13) and (3.14), we conclude that for all ξ ∈ C∞0 (Ω)

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iξ dx =

∫
Ω

f(x, u)ξ dx.

Consequently, the identity (1.3) holds for every ξ in C∞0 (Ω). Now it remains to shows

that identity (1.3) is satisfied for every ξ ∈ W 1,−→p
0 (Ω). Let ν ∈ W 1,−→p

0 (Ω), choose a
sequence (ηk) of non-negative functions in C∞0 (Ω) such that

ηk → |ν| in W 1,−→p
0 (Ω).

For subsequence if necessary, we can suppose that ηk → |ν| a.e. in Ω, then through
the Fatou’s lemma and Hölder’s inequality, we have∣∣∣∣∫

Ω

f(x, u)ν

∣∣∣∣ ≤ ∫
Ω

f(x, u)|ν| ≤ lim inf
k→∞

∫
Ω

f(x, u)ηk

= lim inf
k→∞

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iηk

≤ lim inf
k→∞

N∑
i=1

‖|∂iu|pi−2∂iu‖Lp′i (Ω)
‖∂iηk‖Lpi (Ω)

≤ lim inf
k→∞

N∑
i=1

‖∂iu‖pi−1
Lpi (Ω)‖∂iηk‖Lpi (Ω)

≤‖u‖q−1

W 1,−→p
0 (Ω)

lim inf
k→∞

N∑
i=1

‖∂iηk‖Lpi (Ω)

≤‖u‖q−1

W 1,−→p
0 (Ω)

lim inf
k→∞

‖ηk‖W 1,−→p
0 (Ω)

≤‖u‖q−1

W 1,−→p
0 (Ω)

‖ν‖
W 1,−→p

0 (Ω)
,

with q = p1 if ‖u‖
W 1,−→p

0 (Ω)
< 1 and q = pN if ‖u‖

W 1,−→p
0 (Ω)

≥ 1 . Now for ξ ∈W 1,−→p
0 (Ω),

choosing again a sequence (ξk) of function in C∞0 (Ω) such that ξk → ξ. By taking
ν = ξk − ξ in the previous inequality, we get

lim
k→∞

∫
Ω

f(x, u)ξk dx =

∫
Ω

f(x, u)ξ dx .
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Furthermore

lim
k→+∞

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iξk dx =

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iξ dx.

Hence (1.3) holds for every ξ in W 1,−→p
0 (Ω). Consequently u ∈ W 1,−→p

0 (Ω) is a solution
of (1.2) such that φ∞ ≤ u ≤ φ a.e. in Ω. �

Proof of Theorem 1.3. From Lemma 2.3 and comparison lemma in [[10], Lemma 2.5
], and by following the same steps of the proof of Theorem 1.2, we can build a sequence
(uk) of solutions of the problem (Pk) such that

φ∞ ≤ uk+1 ≤ uk ≤ ... ≤ uj ≤ φ a.e. in Ω, for k ≥ j,

where (Pk) is defined in the proof of Theorem 1.2. We also note that uk ≥ k−1 a.e.
in Ω. We define u(x) = lim

k→∞
uk(x) a.e in Ω.

We take ζk = uk−k−1 as a test function. From the condition (H0) and [[12], Theorem
1.3.], we have

‖ζk‖p0
W 1,−→p

0 (Ω)

NpN−1
−N ≤

N∑
i=1

∫
Ω

|∂iuk|pidx

=

∫
Ω

f(x, uk)
(
uk − k−1

)
dx

≤
∫

Ω

f(x, uk)uk dx

≤
∫
supp(uk)

γ(x)g(uk)uk dx , (3.15)

where p0 = p1 if ‖ζk‖W 1,−→p
0 (Ω)

≥ 1 and p0 = pN if ‖ζk‖W 1,−→p
0 (Ω)

< 1.

Since lim sup
t−→0+

tg(t) < +∞, then there exist tow positive constants C and ε such that

tg(t) 6 C for all 0 < t < ε.

If 0 < uk < ε, we obtain

γ(x)g(uk)uk ≤ Cγ(x) a.e. in supp(uk). (3.16)

If ε ≤ uk ≤ λ, as g is continuous on (0,∞), we get

γ(x)g(uk)uk ≤ λMγ(x) a.e. in supp(uk), (3.17)

with M is a constant positive such that g(s) < M for all ε ≤ s ≤ λ. By the inequality
(3.16) and (3.17), we deduce

γ(x)g(uk)uk ≤ max{λM,C}γ(x) a.e. in supp(uk). (3.18)

From the inequality (3.15), (3.18) and as γ ∈ Lr(Ω) with r > N
p̄ , we obtain

‖ζk‖p0
W 1,−→p

0 (Ω)
< max{λM,C}NpN−1‖γ‖L1(Ω) +NpN .
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Thus the sequence (ζk) is bounded in W 1,−→p
0 (Ω).

Following the same techniques of the proof of Theorem 1.2. We prove the existence
of solution
u ∈W 1,−→p

0 (Ω) of the problem (1.2) such that φ∞ ≤ u ≤ φ a.e. in Ω. �

Remark 3.1. Note that if the conditions (H0)− (H1), (G) are satisfied and we replace
the condition of g in the Theorem 1.2 by h(s) = sg(s) where s > 0 is nondecreasing.
Then the problem (1.2) has a solution.
It suffices to show that ∫

Ω

f (x, uk)uk dx <∞.

In fact ∫
Ω

f (x, uk)uk dx ≤
∫

Ω

γ(x)g(uk)uk dx.

As h is nondecreasing for all s > 0, it follows that∫
Ω

f (x, uk)uk dx ≤
∫
supp(φ)

γ(x)g(φ)φdx

≤
∫
supp(φ)

γ(x)g(‖φ‖L∞(Ω))‖φ‖L∞(Ω) dx

≤ g(‖φ‖L∞(Ω))‖φ‖L∞(Ω)‖γ‖L1(Ω) <∞ .

Corollary 3.2. Let g be a nonincreasing function from (0,∞) to (0,∞), satisfies (G).
Suppose that ∫ λ

0

g(x) dx < +∞

for same λ > 0. If f(x, t) = γ(x)g(t) for some non-trivial and non-negative γ ∈ Lr(Ω)

with r > N
p , then (1.2) has a weak solution in W 1,−→p

0 (Ω).

Proof. Using the fact that f(x, t) = γ(x)g(t) and γ ∈ Lr(Ω) with r > N
p , then

conditions (H0) − (H1) are satisfied. Hence, similar to the proof of Theorem 1.3, we
can build a sequence (uk) of solutions of the problem (Pk) such that

φ∞ ≤ uk+1 ≤ uk ≤ ... ≤ uj ≤ φ a.e. in Ω, for k ≥ j.

In addition, since
∫ λ

0
g(x) dx < +∞, then tg(t) ≤ M for all 0 < t < λ and some

positive constant M, thus

γ(x)g(uk)uk ≤ Mγ(x) a.e. in supp(uk).

As in the proof of Theorem 1.3, we combine the above inequality with (3.15), we get

‖ζk‖p0
W 1,−→p

0 (Ω)
< MNpN−1‖γ‖L1(Ω) +NpN ,

where ζk = uk − k−1. Thus ζk is bounded in W 1,−→p
0 (Ω). The proof is completed. �
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