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Coupled system of sequential partial
σ (., .)−Hilfer fractional differential equations
with weighted double phase operator: Existence,
Hyers-Ulam stability and controllability

Nadir Benkaci-Ali

Abstract. In this paper, we are concerned by a sequential partial Hilfer fractional
differential system with weighted double phase operator. First, we introduce the
concept of Hyers-Ulam stability with respect to an operator L for an abstract
equation of the form u = LFu in Banach lattice by using the fixed point ar-
guments and spectral theory. Then, we prove the controllability and apply the
previous results obtained for abstract equation to prove existence and Hyers-
Ulam stability of a coupled system of sequential fractional partial differential
equations involving a weighted double phase operator. Finally, example illustrat-
ing the main results is constructed. This work contains several new ideas, and
gives a unified approach applicable to many types of differential equations.
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1. Introduction

Fractional order and Hilfer fractional order differential equations involving a p-
Laplacian operator are of great importance and are interesting class of problems. Such
kinds of problems have been studied by many authors, see [3, 4, 5, 17]. At the same
time, the studies of Hyers-Ulam stability have attracted a great deal of attention in
the last ten years, (see [1, 2, 9, 10, 11, 12, 15, 13, 16]), and the references therein.
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In [19], the authors discussed the existence of positive solutions for the double
phase differential equation

−Dp,q (u) (x) = f (x, u) , x ∈ Ω ⊂ Rn,

with double phase differential operator Dp,q (u) = ∆pu+ a.∆qu.
In [14], existence and uniquness of solutions to sequential fractional differential

equation

λDαu (t) +Dβu (t) = f (t, u (t))

was investigated.
In [8], the authors worked on the existence and Hyers–Ulam stability for the

following sequential fractional differential system:[
cDν

q + r.cDσ
q

]
u (t) = f

(
t, u (t) , u (αt) ,cDσ

q (αt)
)
, t ∈ (0, T )

where Dν , Dσ are the Caputo fractional derivatives of orders ν ∈ (1, 2] and σ ∈ (0, 1]
respectively.

Motivated by the works mentioned above, in this paper, we give the existence,
Hyers-Ulam stability and controllability results for the abstract equation LFu =
u and their application to the following coupled sequential partial Hilfer fractional
differential system with weighted double phase partial differential operator:

(
ζ1 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ1 (x)

∂u1
∂x

)))
(t, x) + f1 (t, x, u1, u2) = 0,

t, x > 0,

(
ζ2 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ2 (x)

∂u2
∂x

)))
(t, x) + f2 (t, x, u1, u2) = 0,

t, x > 0,

uj (0, x) = uj (t, 0) = lim
x→+∞

∂uj
∂x

(t, x) = 0, j ∈ {1, 2} ,
(1.1)

where Dα,ω,σ
0+,t is the partial σ (., .)−Hilfer fractional derivative with respect to the

variable t of order α and type 0 ≤ ω ≤ 1 with 0 < α < 1,

φ = φp− + φp+ , 1 < p− < p+

with

φpν (x) = |x|p
ν−2

.x, for ν ∈ {−,+} ,
and for j ∈ {1, 2} ,

ζj (t) = aj + t, aj > 0,

The function σ (t, x) is bounded and positive on R+×R+ having a continuous and posi-

tive derivative
∂σ

∂t
(t, x) > 0 with respect to the variable t on (0,+∞) with σ (0, x) = 0

for all x ≥ 0 and such that(
σ+
)α ∈ L1

(
R+
)

and σ+ (x) = lim
t→+∞

σ (t, x) .
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2. Abstract background

Let (E, ‖.‖) be a real Banach space. A nonempty subset P of E is said to be
a cone if P is closed and convex, P ∩ (−P ) = 0 and for all t ≥ 0, tP ⊂ P . In
this situation, P induces a partial order in the Banach space E defined by x ≤ y if
y − x ∈ P.

The mapping L : E → E is said to be bounded if it maps bounded subsets in
E into bounded subsets in E. L is said to be compact if it is continuous and maps
bounded subsets in E into relatively compact subsets in E.

Definition 2.1. A normed lattice E is a vector space with a norm ‖.‖ and a partial
ordering (≤) under which it is a Riesz space and the following condition holds:
if |x| ≤ |y| , then ‖x‖ ≤ ‖y‖ , where

|u| = sup {u,−u} .

If (E, ‖‖) is complete, it is called a Banach lattice.

Let us recall the definition and some properties of the resolvent:

Definition 2.2. [7, 18]Let L : E → E be a bounded and linear operator. The resolvent
set of L is the set

ρ (L) = {λ ∈ C : λI − L is invertible in Q (E)} ,

where Q (E) is the unital Banach algebra defined by

Q (E) = {f : E → E : f is linear and bounded}

and I : E → E is the identity.
The resolvent of L is rL : ρ (L)→ Q (E) defined by

rL (λ) = (λI − L)
−1 ∈ Q (E) .

The spectrum of L, σ (L) = C\ρ (L) is non-empty, compact and

r (L) = max
λ∈σ(L)

|λ| = lim
n→∞

‖Ln‖
1
n ,

called the spectral radius of L.

The serie’s representation of the resolvent: If |λ| > r (L) , then λ ∈ ρ (L) and
rL (λ) is given by

rL (λ) =

+∞∑
k=0

λ−k−1Lk.

Let E+ = {u ∈ E, u ≥ 0} be the positive cone of a real Banach lattice
(E, ‖.‖ ,≤) .

We consider an operator T : E → E defined by

Tu = LFu, u ∈ E

where L : E → E is a completely continuous operator and F : E → E is a continuous
and bounded map.
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Remark 2.3. T is completely continuous, because it is the composition of the com-
pletely continuous operator L and the bounded continuous map F .

We consider the equation
u = Tu. (2.1)

Definition 2.4. Equation (2.1) is said to be Hyers-Ulam stable in E with respect to L
( or L-Hyers-Ulam stable), if T = LF and there exists N > 0, such that the following
(pN ) property is satisfied: For all ε > 0 and all (v, w) ∈ E × B̄ (0, ε) \ {0} ,

if v = L (F (v) + w) then T admits a fixed point u ∈ G such that
‖u− v‖ ≤ N.ε.

(pN )

The main tools of this work are the following Theorems:

Theorem 2.5. [6] Let E be a Banach space, C be a nonempty bounded convex and
closed subset of E, and T : C → C be a compact and continuous map. Then T has
at least one fixed point in C.

3. Main results

3.1. Existence and Hyers-Ulam stability of abstract equation

Throughout this paper, we assume that the following hypothesis hold:{
There exists an operator L(k) : E+ → E+ such that, for all u ∈ E

|L (u)| ≤ L(k) (|u|) , (3.1)

where L(k) is bounded, increasing, k−positively homogeneous and sub-additive on E,
k ∈ (0, 1], with L(k) (E+\ {0}) ⊂ E+\ {0} .

F : E → E is a continuous mapping such that{
There exist (g, h) ∈ E+\ {0} × E+ such that

∥∥L(k) (g)
∥∥ < 1 and

|F (u)| ≤ g ‖u‖
1
k + h, for all u ∈ E.

(3.2)

Lemma 3.1. Assume that If the hypothesis (3.1) and (3.2) hold true, and let Then T
admits a fixed point u in B̄ (0, r), r > r0, where

r0 =

∥∥L(k) (h)
∥∥

1−
∥∥L(k) (g)

∥∥ ≥ 0.

Proof. Let u ∈ B̄ (0, r) , r > r0. So,

|Tu| = |LFu| ≤ L(k) (|Fu|) ≤ L(k)
(
‖u‖

1
k .g + h

)
≤ ‖u‖ .L(k) (g) + L(k) (h)

this implies that

‖Tu‖ ≤ r.
∥∥∥L(k) (g)

∥∥∥+
∥∥∥L(k) (h)

∥∥∥ = (r − r0) .
∥∥∥L(k) (g)

∥∥∥+ r0 ≤ r,

then T
(
B̄ (0, r)

)
⊂ B̄ (0, r) . From Schauder fixed point theorem, we deduce that T

has at least one fixed point u ∈ B̄ (0, r) . �
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Lemma 3.2. Assume that hypothesis (3.1) and (3.2) hold true.

If (v, w) ∈ E × B̄ (0, ε) \ {0} , ε > 0 such that

v = L (F (v) + w) ,

then v ∈ B̄ (0, rε), with

rε =

∥∥L(k) (h)
∥∥+ εkM

1−
∥∥L(k) (g)

∥∥ and M = sup
{∥∥∥L(k) (x)

∥∥∥ , x ∈ B̄ (0, 1)
}
.

Proof. Indeed, if v = L (Fv + w) , then

|v| = |L (Fv + w)| ≤ L(k) (|Fv|+ |w|) ≤ L(k)
(
‖v‖

1
k .g + h+ |w|

)
≤ ‖v‖ .L(k) (g) + L(k) (h) + L(k) (|w|) .

This leads

‖v‖ ≤ ‖v‖ .
∥∥∥L(k) (g)

∥∥∥+
∥∥∥L(k) (h)

∥∥∥+
∥∥∥L(k) (|w|)

∥∥∥ .
Thus

‖v‖ ≤
∥∥L(k) (h)

∥∥+
∥∥L(k) (|w|)

∥∥
1−

∥∥L(k) (g)
∥∥ ≤

∥∥L(k) (h)
∥∥+ εkM

1−
∥∥L(k) (g)

∥∥ . �

Let r∗ = max
{
r0, (r0)

1
k ‖g‖+ ‖h‖

}
≥ 0, where r0 is the constant given in

Lemma (3.1). We consider the following hypothesis:

There exist ρ ∈ E+\ {0} , λ > 0 and r > r∗ such that, for all u, v ∈ B̄ (0, r) ,

|Fu− Fv| ≤ ρ ‖u− v‖ , (3.3)

and

|L (u)− L (v)| ≤ λL+ |u− v| . (3.4)

where L+ is a linear, bounded and strictly positive operator on E.

Theorem 3.3. Assume that hypothesis (3.1), (3.2), (3.3) and (3.4) hold true, and

λ ∈
(

0, ‖L+ (ρ)‖−1
)
. (3.5)

Then, equation (2.1) is L-Hyers-Ulam stable in E.

Proof. Suppose that

v = L (F (v) + w) ,

where (v, w) ∈ E × B̄ (0, ε) \ {0} , ε > 0.

Let r > r∗ = max
{
r0, (r0)

1
k ‖g‖+ ‖h‖

}
be the constant given in the hypothesis (3.3).

We deduce from lemmas (3.1) and (3.2) that T admits a fixed point u ∈ B̄ (0, r)
and v ∈ B̄ (0, rε) , with

rε =

∥∥L(k) (h)
∥∥+ εkM

1−
∥∥L(k) (g)

∥∥ and M = sup
{∥∥∥L(k) (x)

∥∥∥ , x ∈ B̄ (0, 1)
}
.
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Now, let x0 > 0 be the unique positive solution of the algebraic equation

(
r0 +

M

1−
∥∥L(k) (g)

∥∥ .xk
)1

k
‖g‖+ ‖h‖+ x− r = 0.

We distinguish the following three cases:

Case 1. If r < (rε)
1
k ‖g‖+ ‖h‖+ ε, then ε > x0. This leads

‖u− v‖ ≤ r + rε ≤ x−10

(
2r +

M.xk0
1−

∥∥L(k) (g)
∥∥
)
.ε.

Case 2. If r < rε, then ε > µ, with

µ =

[
(r − r0)

(
1−

∥∥L(k) (g)
∥∥)

M

]1

k
,

and so,

‖u− v‖ ≤ 2r +
εkM

1−
∥∥L(k) (g)

∥∥ ≤ µ−1
(

2r +
M.µk

1−
∥∥L(k) (g)

∥∥
)
.ε.

Case 3. If max
{
rε, (rε)

1
k ‖g‖+ ‖h‖+ ε

}
≤ r, then (Fu, (Fv) + w) ∈ B̄ (0, r) ×

B̄ (0, r) , and from hypothesis (3.4), it follows that

|L (Fu)− L (Fv + w)| ≤ λL+ |Fu− Fv − w| .

And by using (3.3), we obtain

|u− v| ≤ λL+ |Fu− Fv − w|
≤ λL+ |Fu− Fv|+ λL+ (|w|)

≤ λ. ‖u− v‖L+ (ρ) + λεL+

(
|w|
‖w‖

)
thus

‖u− v‖ ≤
(

λ ‖L+‖
1− λ. ‖L+ (ρ)‖

)
.ε.

Consequently,

‖u− v‖ ≤ N.ε
where

N = max

{
γ′1

(
2r +

M.γ′2
1−

∥∥L(k) (g)
∥∥
)
,

(
λ ‖L+‖

1− λ. ‖L+ (ρ)‖

)}
,

with

γ′1 = max
{
x−10 , µ−1

}
and γ′2 = max

(
xk0 , µ

k
)
.

Proving our claim. �
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Now, we replace the hypothesis (3.3) and (3.4) by the following conditions:
There exists λ0 > 0 and r > r∗ such that, for all u, v ∈ B̄ (0, r) ,

|F (u)− F (v)| ≤ λ0 |u− v| , (3.6)

and

|L (u)− L (v)| ≤ L0 |u− v| , (3.7)

where L0 : E → E is a linear, compact and strictly positive operator.

Theorem 3.4. Assume that hypothesis (3.1), (3.2), (3.6) and (3.7) hold, and

r(L0) < λ−10 . (3.8)

Then equation (2.1) is L-Hyers-Ulam stable in E.

Proof. Suppose that v = L (F (v) + w) , (v, w) ∈ E × B̄ (0, ε) \ {0} , ε > 0.

Let r > r∗ = max
{
r0, (r0)

1
k ‖g‖+ ‖h‖

}
is the constant given in the hypothesis (3.6).

It follows from lemmas (3.1) and (3.2), that v ∈ B̄ (0, rε) and T admits a fixed point
u ∈ B̄ (0, r) , with

rε =

∥∥L(k) (h)
∥∥+ εkM

1−
∥∥L(k) (g)

∥∥ and M = sup
{∥∥∥L(k) (x)

∥∥∥ , x ∈ B̄ (0, 1)
}
.

We have seen in the proof of theorem (3.3) that, if

r ≤ max
{
rε, (rε)

1
k ‖g‖+ ‖h‖+ ε

}
,

then ε ≥ max {µ, x0}, where x0 > 0 is the positive solution of the algebraic equation

(
r0 +

M

1−
∥∥L(k) (g)

∥∥ .xk
)1

k
‖g‖+ ‖h‖+ x− r = 0

In this case, we have

‖u− v‖ ≤ γ′1

(
2r +

M.γ′2
1−

∥∥L(k) (g)
∥∥
)
.ε,

where

γ′1 = max
{
x−10 , µ−1

}
and γ′2 = max

(
xk0 , µ

k
)
.

Now, we assume that max
{
rε, (rε)

1
k ‖g‖+ ‖h‖+ ε

}
≤ r. Then (Fu, (Fv) + w) ∈

B̄ (0, r)× B̄ (0, r) , and by using hypothesis (3.4), it follows that

|L (Fu)− L (Fv + w)| ≤ L0 |Fu− Fv − w| . (3.9)

By using (3.6), inequality (3.9) leads

|u− v| ≤ L0 |Fu− Fv − w|
≤ L0 |Fu− Fv|+ L0 (|w|)
≤ λ0.L0 (|u− v|) + ε.πw,
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where

πw = L0

(
|w|
‖w‖

)
∈ E+\ {0} .

Then

z = |u− v| ≤ λ0.L0 (z) + εL0

(
|w|
‖w‖

)
≤ λ0.L0 (z) + επw

≤ λ0.L0 (λ0.L0 (z) + επw) + επw

≤ λ30.L
3
0 (z) + ε.

(
λ20.L

2
0 (πw) + λ0.L0 (πw) + πw

)
≤ λn0 .L

n
0 (z) + ε.

n−1∑
k=0

λk0L
k
0 (πw) ∈ E+\ {0} , for all n ∈ N∗.

As λ0.r (L0) = λ0. limn→∞
n
√
‖Ln0‖ < 1 then limn→∞ λn0 .L

n
0 (z) = 0, λ−10 ∈ ρ (L0)

and (I − λ0.L0) is invertible. The serie’s representation of the resolvent rL0 at λ−10 is
given by

rL0

(
λ−10

)
=
(
λ−10 I − L0

)−1
=

+∞∑
k=0

(λ0)
k+1

Lk0 .

Then
+∞∑
k=0

λk0L
k
0 (πw) = (I − λ0.L0)

−1
(πw) ∈ E+\ {0} .

Thus,

‖u− v‖ ≤
∥∥∥(I − λ0.L0)

−1
(πw)

∥∥∥ .ε ≤ ∥∥∥(I − λ0.L0)
−1
∥∥∥ ‖L0‖ .ε.

Consequently,

‖u− v‖ ≤ N.ε
where

N = max

{
γ′1

(
2r0 +

M.γ′2
1−

∥∥L(k) (g)
∥∥
)
,
∥∥∥(I − λ0.L0)

−1
∥∥∥ ‖L0‖

}
.

Proving our claim. �

3.2. Existence and Hyers-Ulam stability of coupled system IVS

In this section, we use the results obtained in the previous section to prove ex-
istence and Hyers-Ulam stability of the coupled system of sequential time σ−Hilfer
fractional differential equations (1.1), where Dα,ω,σ

0+,t is the σ−Hilfer fractional deriva-

tive with respect to the variable t of order α and type 0 ≤ ω ≤ 1 with 0 < α < 1,

φ = φp− + φp+ , 1 < p− < p+

with

φpν (x) = |x|p
ν−2

.x, for ν ∈ {−,+} ,
and for j ∈ {1, 2} ,

ζj (t) = aj + t, aj > 0.
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We suppose that the following conditions hold,
fj ∈ C

(
R+ × R+ × R2,R

)
, 1
θj
∈ L1 (R+,R+)

and
σ+ ∈ Lα (R+) ,

(3.10)

with

0 < σ+ (x) = sup {σ (t, x) , t ≥ 0} <∞, ∀x ≥ 0.

Next, we recall the definitions of σ−Hilfer fractional orders integrals and derivatives
of order α and type 0 ≤ ω ≤ 1, where J ⊂ Rn and σ : I × J → R+ is the positive

function on I×J ⊂ R+×R+ having a continuous and positive derivative
∂σ

∂t
(t, x) > 0

with respect to the variable t on (0,+∞) with σ (0, x) = 0 for all x ≥ 0.

Definition 3.5. [17] Let a ∈ R+, α > 0 and J ⊂ Rn. Then the σ−left-sided fractional
integral of a function u with respect to t on R+ is defined by

Iα,σa+,tu(t, x) =
1

Γ (α)

∫ t

a

∂σ

∂t
(t, x) (σ (t, x)− σ (τ, x))

α−1
u(τ, x)dτ.

In the case α = 0, this integral is interpreted as the identity operator I0,σa+ u = u.

Definition 3.6. [17] Let α ∈ (n− 1, n) with n ∈ N, u and σ two functions such that
t 7→ u (t, .) ∈ Cn (R+,R) and t 7→ σ (t, .) ∈ Cn (R+,R) . The σ-Hilfer fractional
derivative Dα,ω,σ

a+,t of u with respect to t of order n − 1 < α < n and type 0 ≤ ω ≤ 1

is defined by

Dα,ω,σ
a+,t u (t, x) = I

ω(n−α),σ
a+,t

(
1

σ′t(t, x)

∂

∂t

)n
I
(1−ω)(n−α),σ
a+,t u (t, x) ,

where σ′t(t, x) =
∂σ

∂t
(t, x) .

Let’s also recall the following important result ([17]):

Theorem 3.7. If t 7→ u (t, x) ∈ Cn (R+) , n − 1 < β < α < n, 0 ≤ ω ≤ 1 and
ξ = α+ ω (n− α) , then

Iα,σa+,t.D
α,ω,σ
a+,t u (t, x)

= u(t, x)−
n∑
k=1

(σ(t, x)− σ(a, x))
ξ−k

Γ (ξ − k + 1)

(
1

σ′t(t, x)

∂

∂t

)n−k
I
(1−ω)(n−α),σ
a+,t u (a, x) .

Moreover,

Iα,σa+,tI
β,σ
a+,t (u) = Iα+β,σa+,t , Dα,ω,σ

a+,t

(
Dβ,ω,σ
a+,t u

)
= Dα+β,ω,σ

a+,t u,

D1,ω,σ
a+,t u = D1

t u =
∂u

∂t
and Dα,ω,σ

a+,t I
α,σ
a+,t (u) = u.
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Remark 3.8. In this paper, we assume that σ : R+ × R+ → R+ is continuous having

a positive and continuous derivative
∂σ

∂t
(t, x) on R+ × R+ such that σ (0, x) = 0, for

all x ∈ R+. If α ∈ (0, 1) , then n = 1 and for t, x > 0

Iα,σ0+,t.D
α,ω,σ
0+,t u (t, x) = u(t, x)− (σ(t, x))

ξ−1

Γ (ξ)

(
I
(1−ω)(1−α),σ
0+,t u

) (
0+, x

)
.

Moreover, if u is continuous, then

lim
t→0+

(
I
(1−ω)(1−α),σ
0+,t u

)
(t, x) = 0, ∀x ≥ 0

and so Iα,σ0+,t.D
α,ω,σ
0+,t u (t, x) = u(t, x).

Definition 3.9. We say that IVS (1.1) has the Hyers-Ulam stability in a Banach space
E = G×G if there exits a constant N > 0 such that for every ε > 0, v = (v1, v2) ∈ E,
if

∣∣∣∣(ζ1 (t) .Dα+1,ω,σ
0+,t +Dα,ω,σ

0+,t

)( ∂

∂x

(
φ

(
θ1 (x)

∂v1
∂x

)))
(t, x) + f1 (t, x, v1, v2)

∣∣∣∣ ≤ ε,
t, x > 0,∣∣∣∣(ζ2 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ2 (x)

∂v2
∂x

)))
(t, x) + f2 (t, x, v1, v2)

∣∣∣∣ ≤ ε,
t, x > 0,

vj (0, x) = vj (t, 0) = lim
x→+∞

∂vj
∂x

(t, x) = 0, j ∈ {1, 2} ,
(3.11)

then there exists a solution u ∈ E of IVS (1.1), such that

‖u− v‖ ≤ N.ε. (3.12)

We call such N a Hyers-Ulam stability constant.

Let E = G×G be a real Banach space with

G =

{
u ∈ C(R+ × R+,R) : sup

t,x≥0
|u(t, x)| <∞

}
equipped with the norm ‖(u, v)‖ = max (‖u‖0 , ‖v‖0) where

‖u‖0 = sup
t,x∈R+

(|u(t, x)|) .

Remark 3.10. E is a Banach lattice under the partial ordering (≤) defined by

(u1, u2) ≤ (v1, v2)⇔ u1 (x) ≤ v1 (x) and u2 (x) ≤ v2 (x) for all x ≥ 0.

under which it is a Riesz space and |(u, v)| = (|u| , |v|).
Moreover, E+ = {(u, v) ∈ E, (u, v) ≥ 0} is the positive cone of (E, ‖.‖ ,≤) .
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We consider the operator T : E → E defined by

T (u1, u2) = LF (u1, u2) , (u1, u2) ∈ E

where

L (u1, u2) = (L1 (u1, u2) , L2 (u1, u2)) and F (u1, u2) = (F1 (u1, u2) , F2 (u1, u2)) ,

such that for j ∈ {1, 2}

Lj (u1, u2) (t, x) =

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(uj) (τ, s) dτ

)
(t, s) ds

)
dz,

Fj (u1, u2) (t, x) = fj (t, x, u1 (t, x) , u2 (t, x)) ,

where ψ = φ−1 : R→ R is the inverse function of sum of pi-Laplacian operators

φ =

i=N∑
i=1

φpi ,

with φpi (x) = |x|pi−2 .x and ψpi is the inverse function of φpi .

We denote

T = (T1, T2)

with

Tj = LjF, j ∈ {1, 2} .

Remark 3.11. Let p− = min {p1, p2...pN} and p+ = max {p1, p2...pN}. For all x ≥ 0,
i ∈ {1, 2...N}

φpi (x) ≤ φ (x) ≤ N.φ+ (x)

where

φ+ (x) =

{
φp+ (x) if x ≥ 1
φp− (x) if x ≤ 1

and so, we conclude that

ψ+
( x
N

)
≤ ψ (x) ≤ ψpi (x) (3.13)

where

ψ+
( x
N

)
=

{
ψp+

(
x
N

)
if x ≥ 1

ψp−
(
x
N

)
if x ≤ 1.

Moreover, for x ≥ y ≥ 0,
ψp (x+ y) ≤ ψp (x) + ψp (y) , if p ≥ 2,

ψp (x+ y) ≤ (2)

2− p
p− 1 . [ψp (x) + ψp (y)] , if p < 2.

(3.14)

Remark 3.12. The condition (3.10) makes that the operator Lj is completely contin-
uous and Fj is bounded for each j ∈ {1, 2} , and so, T is completely continuous.
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Lemma 3.13. Let h1, h2 ∈ C (R+ × R+,R+) be continuous and bounded functions.
(u1, u2) ∈ C1 (R+ × R+)× C1 (R+ × R+) is solution of IVS (3.15)

(
ζ1 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ1 (x)

∂u1
∂x

)))
(t, x) + h1 (t, x) = 0,

t, x > 0,

(
ζ2 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ2 (x)

∂u2
∂x

)))
(t, x) + h2 (t, x) = 0,

t, x > 0,

uj (0, x) = uj (t, 0) = lim
x→+∞

∂uj
∂x

(t, x) = 0, j ∈ {1, 2} ,
(3.15)

if and only if

uj(t, x)=

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

)
dz, for j ∈ {1, 2} .

(u1, u2) is fixed point of T (i.e T (u1, u2) = (u1, u2)).

Proof. First, assume that (u1, u2) ∈ E is a solution of IVS (3.15), then for each
j ∈ {1, 2}, The function uj satisfies equation

D1
t

(
(aj + t) .Dα,ω,σ

0+,t

[
∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))])
(t, x) = −hj (t, x) ,

where φ = φp− + φp+ . Integrating, we have

Dα,ω,σ
0+,t

[
∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))]
(t, x) =

−1

aj + t

∫ t

0

hj (τ, x) dτ, t > 0. (3.16)

Applying Iα,σ0+,t on both sides of equation (3.16) and using Lemma (3.7) and initial

condition
∂uj
∂x

(0, x) = 0, we obtain

∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))
(t, x) = −Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, x) dτ

)
(t, x)

By integrating on [x,+∞[ and using the boundary conditions

uj (t, 0) = lim
x→+∞

∂uj
∂x

(t, x) = 0,

we have

φ

(
θj (x)

∂uj
∂x

)
=

∫ +∞

x

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

and so

uj (t, x) =

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

)
dz.
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Conversely, assume that (u1, u2) ∈ E such that for j ∈ {1, 2} ,

uj (t, x) =

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

)
dz.

Then uj ∈ C1 (R+ × R+) and verifies

uj(x, 0) = uj (0, x) = 0.

Moreover, by derivating with respect to the variable x, we obtain

∂uj
∂x

(t, x) =
1

θj (x)
ψ

(∫ +∞

x

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

)
, (3.17)

and so
∂

∂x
φ

(
θj (x)

∂uj
∂x

)
= −Iα,σ0+,t

(
1

ζi (t)

∫ t

0

hj (τ, x) dτ

)
(t, x) . (3.18)

Applying Dα,ω,σ
0+,t on both sides of equation (3.18) and using Lemma (3.7) we have

ζj (t) .Dα,ω,σ
0+,t

[
∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))]
(t, x) = −

∫ t

0

hj (τ, x) dτ,

so, uj is solution of the equation

D1
t

(
ζj (t) .Dα,ω,σ

0+,t

[
∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))])
(t, x) = −hj (t, x) .

Now, we show that lim
x→+∞

∂uj
∂x

(t, x) = 0. Let Hj = sup {hj (t, x) , t, x ≥ 0}. We have

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ≤ Hj .I

α,σ
0+,t (1) (t, s) =

Hj

Γ (α+ 1)
σα (t, s) ,

then ∫ +∞

x

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds ≤ Hj

Γ (α+ 1)

∫ +∞

x

σα (t, s) ds

so, it follows from equation (3.17) that

∂uj
∂x

(t, x) ≤ 1

θj (x)
ψ

(
Hj

Γ (α+ 1)

∫ +∞

x

σα (t, s) ds

)
≤ 1

θj (x)
ψ

(
Hj

Γ (α+ 1)

∫ +∞

0

(
σ+
)α

(s) ds

)
Since

1

θi (x) .
∈ L1 (R+,R+) then

lim
x→+∞

∂uj
∂x

(t, x) = 0.

Thus, (u1, u2) is solution of IVS (3.15). This completes the proof. �

Remark 3.14. We deduce from Lemma (3.13) that, (u1, u2) ∈ C1 (R+ × R+,R) is
solution of IVS (1.1) if and only if (u1, u2) is a fixed point of T .
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Lemma 3.15. If equation (2.1) is L-Hyers-Ulam stable in E then IVS (1.1) has the
Hyers-Ulam stability in E.

Proof. Assume that equation (2.1) is L-Hyers-Ulam stable in E. Let ε > 0 and
v = (v1, v2) ∈ E verifying inequalities (3.11). Let w = (w1, w2) ∈ B̄E (0, ε) such that

wj (t)=−
(
ζj (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θj (x)

∂vj
∂x

)))
(t, x)−fj (t, v1 (t) , v2 (t)) ,

j ∈ {1, 2} .
We have from Lemma (3.13) that

vj (x) = Tj (v1, v2) (x) == Lj (F (v1, v2) + w) ,

then

v = L (F (v) + w) .

If w = (0, 0) then v is a fixed point of T , and so, u = v is solution of IVS (1.1) and
we have

‖u− v‖ = 0 ≤ N.ε.
Now, if w ∈ B̄E (0, ε) \ {0} , as (2.1) is L-Hyers-Ulam stable then there exists a fixed
point u of T which is solution of IVS (1.1) such that

‖u− v‖ ≤ N.ε.

Thus, IVS (1.1) has the Hyers-Ulam stability in E. �

Lemma 3.16. Assume that

p+ ≥ 2. (3.19)

Then L verifies the condition (3.1), with L(k) =
(
L
(k)
1 , L

(k)
2

)
such that

k =
1

p+ − 1
≤ 1,

where for j ∈ {1, 2}

L
(k)
j (u1, u2) (t, x) =

∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

uj (τ, s) dτ

)
(t, s) ds

)
dz.

Proof. Let u = (u1, u2) ∈ E. For j ∈ {1, 2}

|Lj (u1, u2) (t, x)| =

∣∣∣∣∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

uj (τ, s) dτ

)
(t, s) ds

)
dz

∣∣∣∣
≤

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

|uj (τ, s)| dτ
)

(t, s) ds

)
dz.

By using the inequality (3.13) we find that for all t, x ≥ 0,

|Lj (u1, u2) (tx)| ≤
∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

|uj (τ, s)| dτ
)

(t, s) ds

)
dz

= L
(k)
j (|u1| , |u2|) (x)
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and then |L (u)| ≤ L(k) (|u|) . Moreover, L(k) is bounded, increasing, k−positively
homogeneous and verifies

L(k)
(
E+\ {0}

)
⊂ E+\ {0} .

And the condition (3.14) leads that L(k) is sub-additive. �

Lemma 3.17. Assume that
1 < p− ≤ 2. (3.20)

Then For all r > 0 and for all u, v ∈ B̄ (0, r) ,

|L (u)− L (v)| ≤ λL+ |u− v| .
where

L+ = (L+,1, L+,2)

with

L+,j (u1, u2) =

∫ x

0

1

θj (z)

∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

uj (τ, s) dτ

)
(t, s) dsdz, j ∈ {1, 2} ,

λ = λ (r) =
1

p− − 1

(
r.
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

)2− p−

p− − 1
> 0,

and
σ+ (x) = lim

t→∞
σ (t, x) .

Proof. Let r > 0 and u, v ∈ B̄ (0, r) , for each j ∈ {1, 2} ,we have

|Lj (u)− Lj (v)|

=

∣∣∣∣∫ x

0

1

θj (z)

[
ψ

(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds

)
− ψ

(∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)]
dz

∣∣∣∣
≤
∫ x

0

1

θj (z)

∣∣∣∣ψ(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds

)
− ψ

(∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)∣∣∣∣ dz,
where

Bjuj (t, s) =
1

ζj (t)

∫ t

0

uj (τ, s) dτ ≤ ‖u‖ , for all u ∈ E.

Let t, x > 0 such that uj 6= vj on [0, t]× [x,+∞[, and let χt,x ∈ [bt,x, ct,x] \ {0} where

bt,x = min

(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds,

∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)
and

ct,x = max

(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds,

∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)
,

such that

ψ

(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds

)
− ψ

(∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)
= A (χt,x)

∫ +∞

z

Iα,σ0+,t (Bj (uj − vj)) (t, s) ds



840 Nadir Benkaci-Ali

where

A (χt) =
1

(p+ − 1) |ψ (χt,x)|p
+−2

+ (p− − 1) |ψ (χt,x)|p
−−2 .

We have

A (χt) =
1

(p+ − 1) (ψ (|χt,x|))p
+−2

+ (p− − 1) (ψ (|χt,x|))p
−−2

≤ (ψ (|χt,x|))2−p
−

p− − 1

≤
(
ψp− (|χt,x|)

)2−p−
p− − 1

.

Moreover,

|χt,x| ≤ |ct,x|

≤ max

(∫ +∞

z

Iα,σ0+,t (Bj (|uj |) (t, s)) ds,

∫ +∞

z

Iα,σ0+,t (Bj (|vj |) (t, s)) ds

)
≤ r.

∫ +∞

z

Iα,σ0+,t (Bj (1)) ds

≤ r.

∫ +∞

0

Iα,σ0+,t (1) ds = r.

∫ +∞

0

σα (s, t)

Γ (α+ 1)
ds

≤ r.

∥∥(σ+)
α∥∥

L1

Γ (α+ 1)
,

this leads∣∣∣∣ψ(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds

)
− ψ

(∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)∣∣∣∣
≤ λ

∫ +∞

z

Iα,σ0+,t (Bj (|uj − vj |)) (t, s) ds

and so,

|Lj (u)− Lj (v)| ≤ λ
∫ x

0

1

θj (z)

∫ +∞

z

Iα,σ0+,t (Bj (|uj − vj |)) (t, s) ds.

Thus

|L (u)− L (v)| ≤ λL+ |u− v| . �

Remark 3.18. Since L+ is linear, bounded and strictly positive on E, then Lemma
(3.17) implies that the condition (3.4) holds for all r∗ > 0. Moreover, the operator

L0 = λL+ = (λL+,1, λL+,2)

is linear, compact and strictly positive operator, so, the condition (3.7) is also satisfied.
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Lemma 3.19. Let θ0 = min {θ1, θ2} . Then

r (L0) ≤ β =
λ
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

∫ ∞
0

dt

θ0(t)
, (3.21)

where r (L0) is the spectral raidus of L0.

Proof. Assume that (3.21) holds. Let u = (u1, u2) ∈ ∂BE (0, 1) . For j ∈ {1, 2}

L0,j (u) = λ

∫ x

0

1

θj (z)

∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

uj (τ, s) dτ

)
(t, s) dsdz

≤ λ

∫ x

0

1

θ0 (z)

∫ +∞

z

Iα,σ0+,t (1) (t, s) dsdz

≤
λ
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

∫ ∞
0

dz

θ0 (z)
,

then for all n ∈ N∗,
Ln0 (µ) ≤ (βn, βn) .

Thus,

r (L0) = lim
n→+∞

n

√
‖Ln0‖ ≤ β. �

We consider the following hypothesis:
There exist (g1, g2) ∈ E+\ {0} and (h1, h2) ∈ E+ such that∥∥L(k) (g1, g2)

∥∥ < 1, and for all (t, x, y1, y2) ∈ R+ × R+ × R2

|fj (t, x, y1, y2)| ≤ gj (t, x) . (max (|y1| , |y2|))
1
k + hj (t, x) , ∀j ∈ {1, 2} .

(3.22)

Let r∗ = max
{
r0, (r0)

1
k ‖(g1, g2)‖+ ‖(h1, h2)‖

}
and

r0 =

∥∥L(k) (h1, h2)
∥∥

1−
∥∥L(k) (g1, g2)

∥∥ .
Theorem 3.20. Assume that the condition (3.22) holds and

1 < p− ≤ 2 ≤ p+.

If there exist r > r∗, ρ
∗ > 0 and ρ0 ∈ G\ {0} such that for all j ∈ {1, 2} , fj verifies

one of the following conditions for all t, x ∈ R+ and all (x1, x2) , (y1, y2) ∈ [−r, r]2;
|fj (t, x, x1, x2)− fj (t, x, y1, y2)| ≤ ρ0 (t) .max (|x1 − y1| , |x2 − y2|)

and

λ < ‖L+ (ρ0, ρ0)‖−1
(3.23)

or 
|fj (t, x, x1, x2)− fj (t, x, y1, y2)| ≤ ρ∗. |xj − yj | ,

and
λ.
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

∫∞
0

dt

θj(t)
< (ρ∗)

−1
,

(3.24)

then IVS (1.1) is Hyers-Ulam stable in E.
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Proof. We have from hypothesis (3.22) and remark 3.18 that the conditions (3.1),
(3.2), (3.4) and (3.7) hold.
1. Assume that the condition (3.23), this means that the hypothesis (3.3) and (3.5)
hold with

ρ = (ρ1, ρ2) = (ρ0, ρ0) ,

so, it follows from theorem 3.3) that equation (2.1) is L-Hyers-Ulam stable, and from
Lemma (3.15) that IVS (1.1) is Hyers-Ulam stable in E.
2. Now, assume that f verifies (3.24). It follows from Lemma (3.19) and (3.24) that

r(L0) ≤ β =
λ.
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

∫ ∞
0

dt

θ0(t)
< (ρ∗)

−1

and so, the conditions (3.6) and (3.8) of theorem (3.4) hold with

λ0 = ρ∗.

Consequently, IVS (1.1) is Hyers-Ulam stable in E. �

3.3. Existence and controllability

In this section, we assume that for all (t, x, u1, u2) ∈ (R+)
2 × R2 :

f (t, x, u1, u2) = G (t, x, u1, u2) + h (t, x) ,

where h ∈ E is the control function of IVS (1.1) and G ∈ E+ such that, for each
j ∈ {1, 2} ,

Gj (u1, u2) ≤ λ̄max
(
|u1|p

+−1
, |u2|p

+−1
)
, (3.25)

with

λ̄

∥∥∥∥ 1

θj

∥∥∥∥p+−1
L1

(∥∥(σ+)
α∥∥

L1

Γ (α+ 1)

)
< 1. (3.26)

We denote by C1
0,φ (R+) the set

C1
0,φ

(
R+
)

=

{
u ∈ C1

(
R+
)

: φ (u) ∈ AC
(
R+
)
, u (0) = lim

x→+∞
u′ (x) = 0

}
.

Definition 3.21. IVS (1.1) is said to be controllable in E at ∞, if given any x∞ ∈
C1

0,φ (R+) × C1
0,φ (R+) , there exists a control function h ∈ E, such that the solution

u of IVS (1.1) satisfies lim
x→+∞

u (t, x) = x∞.

Lemma 3.22. We have lim
t→∞

Iα,σ0+,t

(
t

ζj(t)

)
(t, x) > 0, ∀x ≥ 0.
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Proof. Let x ≥ 0. Since
∂σ

∂t
(t, x) > 0;

lim
t→∞

Iα,σ0+,t

(
t

ζj (t)

)
=

1

Γ (α)
lim
t→∞

∫ σ(t,x)

0

Tσ′t (T, x)

ζj (T )
(σ (t, x)− σ (T, x))

α−1
dT

≥ 1

Γ (α)
lim
t→∞

∫ σ(t,x)

σ(1,x)

Tσ′t (T, x)

aj + T
(σ (t, x)− σ (T, x))

α−1
dT

≥ lim
t→∞

σ (1, x)

Γ (α) (aj + σ (t, x))

∫ σ(t,x)

σ(1,x)

σ′t (T, x) (σ (t, x)− σ (T, x))
α−1

dT

≥ lim
t→∞

σ (1, x)

Γ (α) (aj + σ (t, x))

∫ σ(t,x)

σ(1,x)

(σ (t, x)− σ)
α−1

dσ

≥ σ (1, x)

Γ (α+ 1) (aj + σ+ (x))

(
σ+ (x)− σ (1, x)

)α
> 0.

�

Theorem 3.23. Assume that (3.25) and (3.26) hold true. Then for all h ∈ E, IVS
(1.1) admits a solution.

Proof. Let h ∈ E. We show that there exists R > 0 such that T
(
B̄ (0, R)

)
⊂ B̄ (0, R)

and then we deduce from Schauder’s theorem that the compactness of T guarantees
the existence of at least one fixed point of T which is, from Lemma (3.13), a solution
of IVS (1.1).

Assume on the contrary that for all n ∈ N∗, there is u(n) =
(
u
(n)
1 , u

(n)
2

)
∈ B̄ (0, n) ,

(t, x) ∈ R+ × R+ and j ∈ {1, 2}, such that

n ≤
∣∣∣Tj (u(n)) (t, x)

∣∣∣
=

∣∣∣∣∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(
Gj

(
u
(n)
1 , u

(n)
2

)
+ hj

)
(τ, s) dτ

)
ds

)
dz

∣∣∣∣ .
By using the inequality (3.13) of Remark (3.11), it follows:

1≤ 1

n

∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(
Gj

(
u
(n)
1 , u

(n)
2

)
+ |hj |

)
(τ, s) dτ

)
ds

)
dz

≤
∫ x

0

1

θj (z)
ψp+

∫ +∞

z

Iα,σ0+,t

 1

ζj (t)

∫ t

0

Gj
(
u
(n)
1 , u

(n)
2

)
+ |hj |

np+−1

 (τ, s) dτ

ds
dz

≤ ψp+
(
λ̄+

‖hj‖0
np+−1

)∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
t

ζj (t)

)
ds

)
dz

≤ ψp+
(
λ̄+

‖hj‖0
np+−1

)∫ x

0

1

θj (z)
ψp+

(∫ +∞

0

Iα,σ0+,t (1) ds

)
dz
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≤
(
λ̄+

‖hj‖0
np+−1

) 1
p+−1

∥∥∥∥ 1

θj

∥∥∥∥
L1

(∥∥(σ+)
α∥∥

L1

Γ (α+ 1)

) 1
p+−1

.

Letting n→∞, we have

λ̄

∥∥∥∥ 1

θj

∥∥∥∥p+−1
L1

(∥∥(σ+)
α∥∥

L1

Γ (α+ 1)

)
≥ 1.

This contradicts hypothesis (3.26) and the proof is finished. �

Theorem 3.24. Assume that (3.25) and (3.26) hold true. Then IVS (1.1) is control-
lable.

Proof. For each u∞ = (u∞1 , u
∞
2 ) ∈ C2

0 (R+)× C2
0 (R+ × R+) , let

h (t, x) = − 1

lim
t→∞

Iα,σ0+,t

(
t

ζj(t)

) ( ∂

∂x
φ

(
θj .
∂u∞j
∂x

)
(x)

+ lim
t→∞

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

Gj (u1, u2) (τ, x) dτ

))
. (3.27)

Let u = (u1, u2) ∈ C1 (R+ × R+)× C2 (R+ × R+) be solution of IVS (1.1). We have
from Lemma (3.13) that for each j ∈ {1, 2} ;

uj (t, x) =

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(Gj (u1, u2) + hj) (τ, s) dτ

)
ds

)
dz.

This means that for every x ≥ 0,

yj (x) = lim
t→∞

uj (t, x)

=

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

lim
t→∞

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(Gj (u1, u2) + hj) (τ, s) dτ

)
ds

)
dz

⇒ − ∂

∂x
φ

(
θj .
∂yj
∂x

)
(x) = lim

t→∞
Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(Gj (u1, u2) + hj) (τ, x) dτ

)
⇒ − ∂

∂x
φ

(
θj .
∂yj
∂x

)
(x)− lim

t→∞
Iα,σ0+,t

(
1

ζj (t)

∫ t

0

Gj (u1, u2) (τ, x) dτ

)
= lim
t→∞

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, x) dτ

)
.

then

− ∂

∂x
φ

(
θj .
∂yj
∂x

)
(x)− lim

t→∞
Iα,σ0+,t

(
1

ζj (t)

∫ t

0

Gj (u1, u2) (τ, x) dτ

)
= lim
t→∞

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, x) dτ

)
. (3.28)

Substituting (3.27) into (3.28), we find that

∂

∂x
φ

(
θj .
∂u∞j
∂x

)
(x) =

∂

∂x
φ

(
θj .
∂yj
∂x

)
(x) ,
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and using lim
x→∞

∂u∞j
∂x

(x) = lim
x→∞

∂yj
∂x

(x) = 0 and the fact that φ is invertible, we can

get

∂u∞j
∂x

(x) =
∂yj
∂x

(x) ,

and also, from u∞j (0) = yj (0) , it follows that

lim
t→∞

uj (t, x) = yj (x) = u∞j (x) .

Thus, at the stat ∞, u (∞, .) = u∞j . So, IVS (1.1) is controllable. �

Example 3.25. Let α = 1
2 , σ(t, x) = π

4 (1− e−t)2 e−2x and φ (x) = |x|−
1
2 .x + |x| .x.

For j ∈ {0, 1}, we have

fj (t, x, x1, x2) = Gj (t, x, x1, x2) + hj (t, x) ,

θj(x) = 1 + x2,

where hj (t, x) ∈ E is a control function.
1. If Gj (t, x, x1, x2) = gj (t, x) .xj , with

gj (t, x) =
1

π2
= λ̄.

Then p− = 3
2 < 2 < p+ = 3,

∥∥(σ+)
α∥∥

L1 =
∥∥∥√σ+

∥∥∥
L1

=

√
π

2

σ+ (x) =
π

4
e−2x.

We have λ̄ =
1

π2
and

λ̄

∥∥∥∥ 1

θj

∥∥∥∥p+−1
L1

(∥∥(σ+)
α∥∥

L1

Γ (α+ 1)

)
= λ̄

(π
2

)2( 1

Γ
(
3
2

)√π

4

)
=

1

4
< 1.

So, the conditions (3.25) and (3.26) of theorems (3.23) and (3.24) hold true. Then
IVS (1.1) is controllable.
2. Now, we assume that Gj (t, x, x1, x2) = gj (t, x) .x2j and hj (t, x) = η ∈ R+

with

gj (t, x) =
1

π2
= g+

and η verifies

η < min

{√
π

4π
,

√
π
√
π

2 (2π + 1)

}
. (3.29)



846 Nadir Benkaci-Ali

We have

L
(k)
j (g1, g2) (t, x) =

∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

gj (τ, s) dτ

)
(t, s) ds

)
dz

=

∫ x

0

1

1 + z2

√
g+
(∫ +∞

z

Iα,σ0+,t (1) (t, s) ds

)
dz

≤
∫ x

0

dz

1 + z2

√
g+ ‖(σ+)

α‖L1

Γ
(
3
2

)
≤

∫ x

0

dz

1 + z2

√√√√√g+
√
π

2
Γ
(
3
2

) =
√
g+. arctan (x) ,

then ∥∥∥L(k) (g1, g2)
∥∥∥ ≤ 1

2
< 1.

This means that 3.22 holds.
Moreover,

L
(k)
j (h1, h2) ≤

∫ x

0

1

θj (z)

√(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

η.dτ

)
(t, s) ds

)
dz

<
π

2

√
η

then

r0 =

∥∥L(k) (h1, h2)
∥∥

1−
∥∥L(k) (g1, g2)

∥∥ ≤ 2
∥∥∥L(k) (h1, h2)

∥∥∥ < π
√
η.

Then, from (3.29), we have

r∗ = max

{
r0,

2

π
(r0)

2
+ ‖(h1, h2)‖

}
≤ max {π√η, (2π + 1) .η}

<

√
π
√
π

2
.

Now, let r > 0 such that

r∗ < r <

√
π
√
π

2
.

For all t, x ≥ 0, (x1, x2) [−r, r]2 , (y1, y2) ∈ [−r, r]2 we have

|fj (t, x, x1, x2)− fj (t, x, y1, y2)| = gj (t, x) .
∣∣x2j − y2j ∣∣

≤ 2.r.g+. |xj − yj | = ρ∗. |xj − yj | ,

where

ρ∗ =
2.r

π2
,
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and

λ =
1

p− − 1

(
r.
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

) 2−p−

p−−1

=
4√
π
r.

As r <

√
π
√
π

2
, we have

ρ∗

Γ (α+ 1)

∫ ∞
0

∥∥(σ+)
α∥∥

L1

θj(t)
dt ≤ 2.r

π2

∫ ∞
0

1

1 + t2
dt

≤ r

π
<

√
π

4r
= λ−1.

Then, hypothesis (3.24) is also satisfied. Thus, we deduce from theorem (3.20) that
IVS (1.1) is Hyers-Ulam stable in E.
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