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Some applications of a Wright distribution series
on subclasses of univalent functions
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Abstract. The purpose of the present paper is to find the sufficient conditions for
the subclasses of analytic functions associated with Wright distribution series to
be in subclasses of univalent functions and inclusion relations for such subclasses
in the open unit disk D. Further, we consider the properties of integral operator
related to Wright distribution series.
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1. Introduction

Let A denote the class of functions f of the form

f(z) =

∞∑
n=1

an z
n; (a1 := 1), (1.1)

which are analytic in the open unit disk given by U = {z ∈ C : |z| < 1}.
A function f ∈ A is said to be starlike of order γ(0 ≤ γ < 1), if and only if

Re (zf ′(z)/f(z)) > γ, which is denoted by S∗(γ). We also write S∗(γ) ⊆ S∗(0) := S∗,
where S∗ denotes the class of functions f ∈ A that f(U) is starlike with respect to
the origin. Also, a function f ∈ A is said to be convex of order γ(0 ≤ γ < 1), if and
only if Re (1 + (zf ′′(z)/f ′(z))) > γ. This function class is denoted by K(γ). We also
write K(γ) ⊆ K(0) := K, the well-known standard class of convex functions. It is an
established fact that f ∈ K(γ)⇔ zf ′ ∈ S∗(γ).
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A function f ∈ A is said to be starlike of reciprocal order γ(0 ≤ γ < 1), if and
only if

Re

(
f(z)

zf ′(z)

)
> γ, (z ∈ U). (1.2)

We denote the class of such functions by S∗r (γ). Also, a function f ∈ A is said to be
convex of reciprocal order γ(0 ≤ γ < 1), if and only if

Re

(
f ′(z)

f ′z) + zf ′′(z)

)
> γ, (z ∈ U). (1.3)

This function class is denoted by K∗r(γ). We also write S∗r (0) := S∗,K∗r(0) = K and
f ∈ K∗r(γ)⇔ zf ′ ∈ S∗r (γ).

In 2002, Owa and Srivastava [24] studied the classes of p-valent starlike and p-
valent convex functions of reciprocal order γ with γ > p, and further investigated by
Polatoglu et al. [25]. Uyanik et al. [36] introduced the classes of p-valently spirallike
and p-valently Robertson functions (cf. [31]). Frasin and Sabri [9] derived sufficient
condition for starlikeness of reciprocal order. Ravichandran and Kumar [30] inves-
tigated the argument estimates for the analytic functions f ∈ S∗r (γ). Al-Hawar and
Frasin [2] determine coefficient bounds and subordination results of analytic functions
of reciprocal order by means of Hadamard product. For more related results of some
associated classes, see [1, 4, 6, 13, 16, 20, 22, 32, 33, 37].

Frasin et al. [10] introduced the subclasses of analytic functions of reciprocal
order as

Definition 1.1. [10] A function f ∈ A is said to be in the class G−1(γ) of order γ if
and only if it satisfies the condition

Re

(
f(z)

zf ′(z)

)
> γ, (z ∈ U), (1.4)

for some γ > 1.

Definition 1.2. [10] A function f ∈ A is said to be in the class H−1(γ) of order γ if
and only if it satisfies the condition

Re

(
f ′(z)

f ′(z) + zf ′′(z)

)
> γ, (z ∈ U), (1.5)

for some γ > 1.

It can be seen from (1.4) and (1.5) that

f(z) ∈ H−1(γ) if and only if zf ′(z) ∈ G−1(γ).

Remark 1.3. Silverman [34], consider the condition∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− γ, (z ∈ U), (1.6)

for the class S∗(γ). This condition shows that the image of U by
zf ′(z)

f(z)
is inside of

the circle with the center at 1 and the radius 1 − γ, which is very small circle. If we
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consider the condition ∣∣∣∣zf ′(z)f(z)
− 1

2γ

∣∣∣∣ < 1

2γ
, (z ∈ U), (1.7)

for 0 < γ < 1 the condition (1.7) shows that

Re

(
f(z)

zf ′(z)

)
> γ, (z ∈ U),

which means that f(z) ∈ S∗r (γ). This condition (1.7) shows that the image of U

by
zf ′(z)

f(z)
is inside of the circle with the center at

1

2γ
and the radius

1

2γ
. Thus if

0 < γ < 1
2 , the condition (1.7) is better than (1.6). This is the motivation to discuss

of the classes S∗r (γ) and K∗r(γ).

Example 1.4. The function f(z) =
z

(1− z)2(1−γ)
, (0 < γ < 1) is a starlike function of

reciprocal order 0 in U ([23], Example 1).

Example 1.5. The function f(z) = ze(1−γ)z, (0 < γ < 1) is a starlike function of
reciprocal order 1/(2− γ) in U ([23], Example 2).

In recent years, several interesting subclasses of analytic functions were in-
troduced and investigated from different view points. Several researchers including
Altinkaya and Yalçin [3], Eker et al. [8], El-Deeb and Bulboacă [7], Nazeer et al.
[21], Porwal and Ahamad [26], Porwal and Kumar [27], Wanas and Khuttar [38], and
many more have studied interesting results on certain classes of univalent functions
for various distribution series (see also, [17, 32]).

In 1933, Wright [39] introduced a special function known as Wright functions, is
given by:

Wλ,κ(z) =

∞∑
n=0

1

Γ(λn+ κ)

zn

n!
, (1.8)

for λ > −1, κ ∈ C which is convergent for all z ∈ C, while for λ > −1 this is
absolutely convergent in U. Gorenflo et al. [11] and Mustafa [18] gave insight of some
characterizations and basic properties for the Wright functions. Prajapat [29] obtained
certain geometric properties including univalency, starlikeness, convexity and close-
to-convexity in the open unit disk U (see also, [15, 14, 19]). It is easy to see that the
series (1.8) is not in normalized form so we normalized it as

Wλ,κ = Γ(κ)zWλ,κ(z)

Wλ,κ(z) =

∞∑
n=0

Γ(κ)

Γ(λn+ κ)

zn+1

n!
, (1.9)

for λ > −1, κ > 0 and z ∈ U. Wright distribution recognized as a vitally important
distribution in its own right, first we define the series

Wλ,κ(s) =

∞∑
n=0

Γ(κ)

Γ(λn+ κ)

sn+1

n!
,
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which is convergent for all λ, κ, s > 0. The probability mass function of Wright dis-
tribution is given by

p(n) =
Γ(κ)

Γ(λn+ κ)Wλ,κ(s)

sn+1

n!
, λ, κ, s > 0;n = 0, 1, 2, · · · .

The Wright distribution is a particular case of the familiar Poisson distribution which
widely used as analysing traffic flow, fault prediction in electric cables, defects occur-
ring in manufactured objects such as castings, email messages arriving at a computer
and in the prediction of randomly occurring events or accidents.

Recently in 2022, Porwal et al. [28] invented Wright distribution series and gave
a nice application of it on certain classes of univalent functions. Porwal et al. [28]
introduce the Wright distribution series as follows

Kψ(λ, κ, s, z) = z +

∞∑
n=2

Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)
zn. (1.10)

Porwal et al. [28] introduced the linear operator I(λ, κ, s) : A → A defined by using
the Hadamard (convolution) product as

I(λ, κ, s)f(z) = Kψ(λ, κ, s, z)∗f(z) = z+

∞∑
n=2

Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)
anz

n. (1.11)

To establish our main results, we need to recall the following lemmas due to
Frasin et al. [10] and Dixit and Pal [5].

Lemma 1.6. [10] If f ∈ A satisfies
∞∑
n=2

(γn− 1)|an| ≤ γ − 1, (1.12)

for some γ > 1, then f(z) ∈ G−1(γ).

Lemma 1.7. [10] If f ∈ A satisfies
∞∑
n=2

n(γn− 1)|an| ≤ γ − 1, (1.13)

for some γ > 1, then f(z) ∈ H−1(γ).

Definition 1.8. A function f ∈ A is said to in the class Rτ (ϑ, δ), if it satisfies the
inequality ∣∣∣∣∣ (1− ϑ) f(z)z + ϑf ′(z)− 1

2τ(1− δ) + (1− ϑ) f(z)z + ϑf ′(z)− 1

∣∣∣∣∣ < 1, (z ∈ D),

where τ ∈ C \ {0}, δ < 1, 0 < ϑ ≤ 1.The class Rτδ (ϑ) was introduced by Swaminathan
[35].

Lemma 1.9. [5] If f ∈ Rτ (ϑ, δ) is of the form (1.1) then

|an| ≤
|τ |(ϑ− δ)

n
, n ∈ N \ {1}. (1.14)

The result is sharp.
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Motivated by the stated research works, we establish some sufficient con-
ditions for the Wright distribution series Kψ(λ, κ, s, z) belonging to the classes
G−1(γ) and H−1(γ). We also obtain inclusion relations for aforecited classes with
Rτ (C,D) by applying certain convolution operator I(λ, κ, s) defined by (1.11).

2. Main result

In this section, first we establish a sufficient condition for the function f ∈ A to
be in the class G−1(λ) and H−1(λ).

Theorem 2.1. Let λ, κ, s > 0 and for some γ(γ > 1). Then Kψ(λ, κ, s, z) ∈ G−1(γ) if

γΓ(κ)Wλ,κ+λ(s) ≤ (γ − 1)Γ(κ+ λ). (2.1)

Proof. To prove that Kψ(λ, κ, s, z) ∈ G−1(γ), according to Lemma 1.6, we must show
that

∞∑
n=2

(γn− 1)
Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)
≤ γ − 1

Now
∞∑
n=2

(γn− 1)
Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)

=

∞∑
n=2

{γ(n− 1) + γ − 1} Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)

=
1

Wλ,κ(s)

[ ∞∑
n=2

γΓ(κ)sn

Γ(λ(n− 1) + κ)(n− 2)!
+

∞∑
n=2

(γ − 1)Γ(κ)sn

(λ(n− 1) + κ)(n− 1)!

]

=
1

Wλ,κ(s)

[
γs

Γ(κ)

Γ(κ+ λ)
Wλ,κ+λ(s) + (γ − 1) {Wλ,κ(s)− s}

]
≤ γ − 1, by the given hypothesis.

This concludes the proof of Theorem 2.1. �

Theorem 2.2. Let λ, κ, s > 0 and for some γ(γ > 1). Then Kψ(λ, κ, s, z) ∈ H−1(γ) if

γs
Γ(κ)

Γ(κ+ 2λ)
Wλ,κ+2λ(s) + (3γ − 1)

Γ(κ)

Γ(κ+ λ)
Wλ,κ+λ(s) ≤ γ − 1. (2.2)

Proof. The proof is similar to Theorem 2.1. Therefore, we omit the details involved.
�

Theorem 2.3. Let λ, κ, s > 0, f ∈ Rτ (ϑ, δ) and for some γ(γ > 1).
Then I(λ, κ, s)f ∈ H−1(γ) if

(ϑ− δ)|τ |
Wλ,κ(s)

[
γs

Γ(κ)

Γ(κ+ λ)
Wλ,κ+λ(s) + (γ − 1) {Wλ,κ(s)− s}

]
≤ γ − 1. (2.3)
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Proof. To prove that I(λ, κ, s)f ∈ H−1(γ), according to Lemma 1.7, we must show
that

∞∑
n=2

n(γn− 1)
Γ(κ)sn|an|

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)
≤ γ − 1.

Since f ∈ Rτ (ϑ, δ), from Lemma 1.9, we have |an| ≤ |τ |(ϑ−δ)n .
Now

∞∑
n=2

n(γn− 1)
Γ(κ)sn|an|

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)

=
(ϑ− δ)|τ |
Wλ,κ(s)

∞∑
n=2

(γn− 1)
Γ(κ)sn|an|

Γ(λ(n− 1) + κ)(n− 1)!

=
(ϑ− δ)|τ |
Wλ,κ(s)

[ ∞∑
n=2

γΓ(κ)sn

Γ(λ(n− 1) + κ)(n− 2)!
+

∞∑
n=2

(γ − 1)Γ(κ)sn

(λ(n− 1) + κ)(n− 1)!

]

=
(ϑ− δ)|τ |
Wλ,κ(s)

[
γs

Γ(κ)

Γ(κ+ λ)
Wλ,κ+λ(s) + (γ − 1) {Wλ,κ(s)− s}

]
≤ γ − 1, by the given hypothesis.

This concludes the proof of Theorem 2.3. �

3. An integral operator

Theorem 3.1. If the function G(λ, κ, s, z) is given by

G(λ, κ, s, z) =

∫ z

0

Kψ(λ, κ, s, t)

t
dt, z ∈ U (3.1)

then G(λ, κ, s, z) ∈ H−1(γ) if

γΓ(κ)Wλ,κ+λ(s) ≤ (γ − 1)Γ(κ+ λ). (3.2)

Proof. Since

G(λ, κ, s, z) = z +

∞∑
n=2

Γ(κ)sn

n!Γ(λ(n− 1) + κ)Wλ,κ(s)
zn

by Lemma 1.7, we need only to show that
∞∑
n=2

n(γn− 1)
Γ(κ)sn|an|

n!Γ(λ(n− 1) + κ)Wλ,κ(s)
≤ γ − 1.

or, consistently
∞∑
n=2

(γn− 1)
Γ(κ)sn|an|

(n− 1)!Γ(λ(n− 1) + κ)Wλ,κ(s)
≤ γ − 1.

The enduring part of the proof of Theorem 3.1 is parallel to that of Theorem 2.1, and
so we omit the details. �
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4. Conclusions

In this paper we have considered the subclasses G−1(λ) and H−1(λ) of recip-
rocal order related with Wright distribution series. We obtained sufficient condition,
inclusion relation and properties related to integral operator for functions of these
subclasses related to Wright distribution series.

Acknowledgements. The author would like to thank the referee for his valuable sug-
gestions and comments which improve the presentation of the paper.
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97(2021), no. 3, 11-20.
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