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Bernstein polynomials iterative method for
weakly singular and fractional Fredholm integral
equations

Alexandru Mihai Bica and Zoltan Satmari

Abstract. A novel iterative method based on Picard iterations and Berstein poly-
nomials is proposed for solving weakly singular and fractional Fredholm integral
equations. On a uniform mesh, at each iterative step a Bernstein type spline is
constructed by using the values computed at the previous step. The error esti-
mates are obtained in terms of the Lipschitz constants and the convergence of the
method is proved. Some numerical examples are presented in order to illustrate
the accuracy of this iterative method.
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Introduction

The interest for fractional order differential and integral equations is motivated
by the multiple applications of fractional calculus in fluid dynamics, viscoelasticity
(see [7] and [38] for the Bagley-Torvik fractional differential model), heat transfer, dif-
fusive transport, signal processing and various areas of engineering, economy, plasma
physics, hematopoiesis, epidemiology, and in modeling of memory and hereditary
properties of materials (see [12], [14], [15], [20], [30], [37]). According to the Scot Blair
model the fractional order of a derivative is an index of memory (see [14]). A signif-
icant development in the field of fractional calculus, including fractional differential
and integral equations, was realized in recent years and the results are presented in
the monographs of Baleanu et al. (see [8]), Diethelm (see [12]), Kilbas et al. (see [20]),
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Lakshmikantham et al. (see [21]), Miller and Ross (see [29]), Muskhelishvili and Radok
(see [31]), and Podlubny (see [33]). The numerical integration of fractional type inte-
grals is usually realized by product integration and adapted quadrature rules (see [6]).
Fractional integral equations are suitable models for several phenomena from physics
and electro-chemistry such as crystal growth and heat transfer (see [17] and [39]). The
corresponding fractional integral equations equivalent with various types of boundary
value problems associated to nonlinear fractional differential equations with Caputo
fractional derivative and existence results can be found in [1]. Usually, the existence
and uniqueness of the solution for fractional integral equations is investigated by using
the Banach fixed point theorem (see [1], [12], and [27]). Regularity properties of the
solution of weakly singular and fractional Fredholm integral equations were obtained
in [19] and [35].

In order to solve Volterra fractional integral equations, various numerical meth-
ods were proposed based on the following techniques: product integration and quadra-
ture rules (see [6], [5], [27], [28]), collocation (see [9], [10], [13], and [44]), Runge-Kutta
techniques (see [23]), Adams-Bashforth procedures (see [12]), Bernstein’s approxima-
tion (see [39]), Haar, Legendre and Riesz wavelets (see [30] and [43]), variational
iteration (see [40]). In the case of weakly singular and fractional Fredholm integral
equations, the numerical solution is obtained by applying sinc, spectral and Haar
wavelet collocation (see [3], [24], [32] and [41]), B-spline wavelets Galerkin technique
(see [25]), product integration (see [2] and [36]), Taylor-series expansion (see [34]),
hybrid collocation (see [11]), Galerkin and iterated Galerkin methods (see [18] and
126]).

In this paper, we approximate the solution of the following type Fredholm inte-
gral equation with singularities

b(t) |t —s|*" f(s,z(s))ds, t €[0,T] (0.1)

8
=
+
>
S—

where A > 0, a € (0,1) and ¢,b : [0,7] = R, f : [0,T] x R — R are continuous
with b(t) > 0, Vt € [0,T]. The choice A\ = ﬁ corresponds to the case of fractional
integral equations, while A = 1 usually describes weakly singular integral equations.

In the case A = ﬁ of fractional integral equations, we use the left-sided and

right-sided Riemann-Liouville fractional integrals which are defined as follows.

Definition 0.1. (see [39]) Let f : [0,7] — R.The left-sided fractional integral of f of
order o € (0,1) is defined as

¢

1
ITf(t) (a/ )21 f(s)ds, fort >0
0



Bernstein polynomials method for Fredholm integral equations 697

o0

where T'(« / e x> dx, for x > 0. The right-sided fractional integral of f of
0
order o € (0,1) is
) T
I2f(t) = / )"t f(s)ds, fort<T.
()
t

Our method comes from the product integration technique and an iterative pro-
cedure is obtained based on piecewise Bernstein polynomials involved at each iterative
step. More precisely, at each iterative step we construct a Bernstein spline based on
the values computed in the previous step and the integral is approximated by us-
ing the Bernstein type quadrature formula. This method differs by the technique
developed in [39] where the solution was directly approximated by Bernstein polyno-
mials inserted in the two sides of the integral equation and the convergence analysis
was based on Voronovskaia’s type theorem. The product integration method firstly
appears in 1954, in the work of Young (see [42]), and as it is specified in [16] the
most used procedures are rectangular and trapezoidal schemes with the order of con-
vergence O (hmin(”o"Z)). For integral equations such as (0.1), our Bernstein splines
method has the order of convergence O (h®) as it is specified in Theorem 2.1.

The paper is organized as follows: in Section 1 we present some uniform bounded-
ness and uniform Hoélder type Lipschitz properties of the Picard iterations, including
the description of the iterative algorithm for solving the integral equation (0.1). Sec-
tion 2 is devoted to the convergence analysis of this iterative method. In order to
confirm the obtained theoretical result and to illustrate the accuracy of the method,
in Section 3 we present some numerical experimets. Finally, we point out some con-
cluding remarks.

1. The properties of Picard’s iterations and the iterative method
We see that in (0.1) the singularity appears inside the open interval (0,7) which
can be moved at extremeness by writing (0.1) as
t T
x(t):g(t)+)\/b(t)(t75)a*1f(s,x ds+)\/b ) (s — )7 f (s,2(s)) ds
0 i
and we consider the corresponding integral operator A : C[0,7] — C0,T] that is
well-defined according to [4],
¢
A) (t) = g(t) + )\/b (1) (t — )27 (5, 2(s)) ds+
0
T
+ A/b(t) (5 — )2~ Lf (s, 2(s)) ds. (1.1)

t
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Concerning the existence and uniqueness of the solution and the properties of Picard’s
iterations we obtain the following result.

Theorem 1.1. If g,b : [0,7] = R, f : [0,T] x R = R are continuous, b(t) > 0,
Vit € [0,T], L > 0 is such that
If(s,u) — f(s,0)] < Lju—nv|, Vsel0,T], u,v€R (1.2)

and if 0 = % < 1, then the integral equation (0.1) has unique solution x* €
C[0,T) where My, > 0, with |b(t)] < My, VYt € [0,T], and the sequence of Picard
iterations given by xg = ¢, Ty = A(Tm-1), m € N* is uniformly bounded having

lim x,, =2* in (C[0,T7], || ) and
m—r o0
O™ AM, My T™
*(t) — < — T - 1.
|z (t) — zp (1)| < all—0) vVt € [0,T], m € N*, (1.3)
[ (1) 20 (O] < 1o [ ()~ 2 (O], VEC0.T], mEN, (L)
where ||z|| . = r%a)j(ﬂ] |z (t)|. If in addition, there exist B8,7,n > 0 such that
teo,
lg(t) —g @) <nmlt—t], bE)=bE) <Blt—t], vt €0,T] (1.5)
If (s,u) — f(s' u)| <vyls—s], Vs, s €[0,T], ueR (1.6)

then the sequence (Tm,),,cn- of Picard iterations is uniform Hélder type Lipschitz.

Proof. Elementary calculus lead to
ALMT
4@) (6) = A ) (O] < 2 e =yl

for all z,y € C[0,T], t € [0,T] and according to Banach’s fixed point principle the

integral operator A has unique fixed point that is the unique solution z* € C[0,T] of

(0.1) with lim @, (t) = z* (¢) uniformly for ¢ € [0, 7] and the apriori and a posteriori
m—roo

error estimates (1.3) and (1.4) follows. For the Picard iterations
¢

g () = () + A / b(t) (t— )27 f (5, 2m(s)) ds

0

+ )\/b(t) (5 — )2 Lf (s, 2m(5)) ds (1.7)

in inductive manner we get
|2 (8) = -1 ()] < Ollzm-1 = Tm-2lloe < . <O [l21 = z0llo
and thus,

AMyMoyT
AM, MoT® |

|Z (B)] < |z (8) — 20 (B)] + 2o ()| < (1 + 0+ ...+ 6™ 1) 5

M,
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for all t € [0,T], m € N*, where My, M, > 0 are such that |f (¢,9(¢))] < Mo,
lg (t)| < Mgy, Vt € [0,T]. By denoting

AMy MyTe

a(l—0)

we have |z, (t)] < R for all t € [0,T], m € N*, that is the uniform boundedness of

the sequence (2,,),,cn- Of Picard iterations. If we denote F, (t) = f (¢, (t)) for
t € [0,7] and m € N, and use the Lipschitz property it obtains,

[Fo (O] < |f (& 2m (1) = f (820 (0)] + |f (£, 20 (2))]
_ ALM,MyT®
- a(l-90)
for all £ € [0,T] and m € N*, and thus the sequence (F,),,cy is uniformly bounded,
too.
Now, by considering arbitrary ¢, € [0,T7], if t < ¢ (the case ' <t being approached
similarly) we have (' — s)*~" < (t — s)*~" and consequently,

R=M,+

+My=M (1.8)

[ e -t v -2 as
S/WMﬂ%—MﬂHﬂ—Sf”ds+w@ﬂ/xky_sffw+Ms_wa4Dds

<Blt—t|-

[t—t|"  2My |t —t'|*
Jr
Q@ @
obtaining,

[ () = wm ()] < ft —1'|

o [pere -9 s -1 (el ds

0
()1 =" b0 (5= 07| 1f (5. ma ()] ds

“ / B (s =) = b (s =)' |- If (5,21 () ds

«

<(n+ [t—¢|", VmeN¥,

IANM BT ot MM,
(6% (8%

AM
-1+ 2Py
o
that is the uniform Hélder type Lipschitz property of the sequence (z,,),,cy- of Picard
iterations. Under the Lipschitz conditions (1.5) and (1.6) we have

ALMB
(0%

a+1

|Fon (t) — Fo, (t/)| < 'V|t_tl| +L|zm (t/) —zm ()] < |t_t/|
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2A\BMT™ ANLM M, o .
+[7+L(n+6a>]|t—t’|+ab|t—t’| , VmeN (1.9)
for all ¢,¢" € [0,T1], that is the uniform Holder type Lipschitz property of the sequence
(Fin) In that follows, we will denote

- ABMT®Y , _ ALM§
(0% «Q

meN"
ANL M M,
70[ .

Lo=v+1L ,and L' = O

For the case of fractional integral equations with A\ = ﬁ the contraction con-
dition becomes
LMT*
0= ———7<L1
INa+1)
Our iterative method is based on approximating the Picard iterations (1.7) and
for this purpose we consider a uniform mesh of [0, 7] with the knots ¢t; = i-h, i = 0,n,
where h = % is the stepsize. On these knots the Picard iterations become

tq

ey () = g(t) + A / b(t:) (i — )% f (5, 2m(s)) ds

0

+)\/b (s —t)* ' f(s,2m(s))ds, i=0,n, meN* (1.10)

and on each submterval [ti_1,t], ¢ = 1,n, we approximate the continuous function
F,,, by the Bernstein polynomial of a given degree ¢ > 1 :

kh
B thC’“ bt 07t B (1 5 ) v o]

where C'q = m, and in this way F},, will be approximated on [0, T] by a Bernstein

spline B, for all m € N*. For estimating the remainder in the Bernstein approxima-
tion formula F, (t) = By, (t) + R, (t) , we use the inequality of Lorentz (see [22])
described in terms of the modulus of continuity,

5 h
Buns (0 50 (B 22 ) Vi€ ot Vi = T me

According to the uniform Hélder type Lipschitz property of the sequence (F,)
this inequality becomes
5 ( Loh  L'h® L"hott
|Rpni (£)] < b (0 + =+ a+1> , YVt € [tio1,t], Yi=1,n (1.12)
vi o (VO (va)

meN*?

for all m € N.
Based on (1.10) and (1.11) we obtain the following iterative algorithm:
Step 1: z¢ (t) = g (¢), Vt € [0,T] and for k=0,n—1,1=0,qg— 1 let

T
lh lh lh
ri|lth+— ) =g lte+— )+ 0|t +—
q q q J

a—1

f(s,9(s))ds

t,k +— —s
q
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:gck+?)+xbch+ )E:/

:g(m+]h) A (m+ﬁh)§:§: Tk

i=175=0

ih ih [ lh [
- f (ti—l + %,9 <t¢—1 + ]q>> + Ry k) =71 (tk + q) + Ry (k1) (1.13)

a—1

t _|_ — — 3 (B()A,i (S) + R(],i (8)) ds

k=0,n—1,1=0,q—1 (1.15)

Onj = / (t, — S)O‘_1 (s — ti_l)j (t; — s)q_j ds, j=0,q. (1.16)

ti—1

In the computation of the integrals (1.15)-(1.16) we use the change of variable
s=t;_1+uh

obtaining ¢ ; = k7 gy ; (i) and ¢, j = k9T %p, ; (i) with
1

k(1) = /uj (1— )t~

0

l
k4 ——(i—1)—
. (i—1)

du

1

and ¢, ; (i) = /uj 1—w)7 (n—i—u+1)*"du
0
Step 2: Construct the Bernstein splines By and B, given for i = 1,n by

kh
By, (t E:Ck - (ttﬂ’“ﬁa(,1+q>,teﬁth] (1.17)
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and

— 1 <K . . jh __ jh

By (t) = 7 ]gocg(t — tifl)](ti -7 . f (til + ?71‘1 <ti1 + q)) , (1.18)
te [tifl,ti].

Step 3: In inductive way, for m > 2, with k =0,n— 1,1 =0,q — 1 let

T
lh 1 lh
-I—)\b(tk-f—)/tk-l——s f(s,xml(s))d3:9<tk+>
q , q
I\ O f oot
+ Ab (tk + (]) / tk + E — S (Bm—l,i (S) + Rm—l,i (S)) ds

]'t
lh A lh
=g (tk—‘r ) e <tk+ ) chq@klg

i=175=0

ih ih [
fltio + me—l ti—1 + 2 + Rpy (k)
q q

lh
=%<tk+ q)+R (kD) (1.19)

and

T
T () = g (t0) + \b () / (b — )L F (5,21 () ds = g ()
0

+Ab (t) Z / (tn —8)* " (Bm_1.(s) + Rim_1.4 (s)) ds = g (tn) + %b(tn)

i L
chq@nj f(z 1+ sy Tm—1 <ti1+]q>>+Rm,n:$m(tn)+Rmn (1 20)

i=135=0
where
k q—k kh
Bin,i hq ZO o (t ) “Fp |t + ? JtE [tict,t] (1.21)
and
kh kh
. k o _ k [ p— _ Kh
m,z hq ZC (t t)q f ( i—1 1 q sy Lm, (tz—l + p >) (122)

fort € [t;_1,t;] and i = 1, n are the Bernstein splines B, 1 and B,,_1. The algorithm
is stopped to a previously chosen iteration m and at this iterative step we construct
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the Bernstein spline By given on the subintervals [t;_1,¢;], ¢ = 1, n, by

o kh
m,i = ch - Yt —t) k7, <ti—1 + q) € [tim ] (1.23)

This spline E; will be the continuous approximation of the solution.

2. Convergence analysis

Concerning the convergence of the above presented iterative method we obtain
the following main result.

Theorem 2.1. Under the conditions of Theorem 1.1, including (1.5) and (1.6), the

sequence (m (tk + %)) with k = 0,n — 1, I = 0, q, approzimates the solution
meN*

of the integral equation (0.1) on the knots of a uniform mesh and the sequence of
Bernstein splines (/B\;) approzimates the same solution on [0,T]. The error

meN*

estimates in the discrete and continuous approximation is

i ( lh) ( lh)‘ 0 \M, M T®
Nt + — | =Ty |tk + < —
q q a(l—10)

SAMT Loh n L'he n L"hott
w2 \ v e
fork=0,n—1,1=0,q, and

) , VYmeN (2.1)

o (1) = B ()

O™ AMy MyT™ i SAM, T Loh n L'h~ n L'pott
a(l—0) 4a (1 - 7)‘“§bTa) Va (\/a)a (\/Q)Q—H
2NBMT™ h L'he L"hot1
+§ <<n+/\ﬂ)—|— & a+1>’ VtG[O,T] (22)
4 a Vi (Vi) (va)

where 0 = 7’\”ng .

Proof. Since

(e g) T (wr |l (w0 ) o (14 F)
N\t +— )| Tl +— || |27 [t +— ) —xp [t + —
q q q q
(w4 %) -7 (04 5))
T\t +— | — T | T +
q q

+




704 Alexandru Mihai Bica and Zoltan Satmari

by (1.3) we have to estimate |R kl)| = ‘l‘m (tk + lh) — T (tk + )‘ for m € N*,
k=0,n—1,1=0,q. Based on (1.12) and (1.13) we have

lh lh
xr1 tk+7 —T1 tk+q

<)\Mb2/ |Ro.i (s

Ry k| =

a—1

tk—l—@—s ds

a—1
ds

5AM, <L0h L'he  LV'pot! )
< -|- — =S

S\ Tt

SAM,T® [ Loh L'h* L'"pott
< [ g -+ —
do \ve o (va)"  (va)
and by (1.14) we get

), k=0,n—1,1=0,q—1

‘Rl,n’ S

5/\MbTa <Loh+ L'he N L//ha+1>
4o Va (\/&)0‘ (\/a)a-i-l

Now, let us consider |Rm,1| = max{|Rm,1,n| , max
k=0,n—1,l=0,q—

-1, (k1) |}, and since

lh

a—1 haT
ty, +— —s ds <
q

S

(67

n i q
> / > Ci(s—tia)’ (ti—s)"
=l \J=0

. qa
Z/ I(s —tic1)’ (ti —8)T77 | (tn — 8)* Hds < T

«
= ltb 1 7=0

by induction for m > 2, and by (1.2) and (1.17)-(1.22) it obtains

a—1
’ kl)‘<)‘MbZ/|Rm 1, ( tk-l-&—s ds
1= ]f7 )
+— MbZ/ ZCJ s —t;_ 1 (t 75) —J
1= ltb ) 7=0

-L

ih ih lh
Tm—1 (tz 1+] ) —Tm—1 (tz 1+] )H(tk+ _S)a 1d
q q q

SAMyT® (Loh — L'h*  L'hot! )\LMbT
<— | =+ 5+ —
o \ve (V@) (va)

[ R
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with £k =0,n — 1,1 =0,q — 1. Similarly, we get
SAMT [ Loh n L'h® n L"pott ALM,T
4o \/a (\/a)a (\/a)a-‘rl

For estimating |Rm,1| we have

’Rmm‘ S o ‘ m71|-

(07

[ ALM,T® | SAMT® [ Loh L'he L petl
|Ro, k)| < {1 + b ] b (0 ) )

e+
4o \/q (\/a) (\/a)a-‘rl
k=0n—1,1=0g—1

and

|R2,n| S

5AM, T (Loh L'he LVpot! ) ( )\LMbTO‘)
A —F * o + a+1 - )
da Vi o (va)© (A

obtaining in inductive manner for m > 3, the estimate

«

’Rm,(k,l)‘ < |1+

LM, T (ALMJ@)’”*] SAM, T
el RS el o
« 4o

. <L0h . L' he . L/ pott )
Vi (vt ()t
SAMT Loh L'he L potl
o1 =) <ﬁ T w@““)

with k =0,n — 1,1 =0, q. Now, the inequality (2.1) follows.
The estimate (2.2) will be obtained by using the scheme

<

z* — z,, — B, — B,

— q
where Bm,i (t) = % Z Ctl;(t — ti—l)k(ti — t)qfk C T (ti,1 + %) for t € [tiflvti]»
k=0

i = 1,n. According to the proof of Theorem 1.1 we have
2A\BMT™
o () = ()] < -+ 222 )

for t € [0,T], m € N*, and with the inequality of Lorentz we get

= 5 2A\BMT*\ h L' he [/ potl
Tm - Bm - [ - -
(t) (t)’ : 4 <(77+ e > \/a (\/5) (\/a)a >

t—t|+L|t—t|"+L" [t —t|"""

for all ¢ € [0, T]. By (1.23) and (2.1) it follows,

1 q
fTZ CR(t — i)k (t; — 1)~

k=0
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SAM,T™ Loh L'h® L'"potl
< ALM,T< =T a + a+1
da(1-222)\ve (VA (Va)
for t € [ti—1,t;], i = 1,n, and with (1.3) we obtain the error estimate (2.2). O

By the error estimate (2.2) we observe that the order of convergence of this
iterative method is Hmm — BmH =0 (h%).
o0

3. Numerical experiments

In order to test the obtained theoretical result and to illustrate the accuracy
of the Bernstein spline iterative method, in that follows we present some numerical
examples.

Example 3.1. The weakly singular linear integral equation (Example 6.1. in [32])

x(t):g(t)—i—i/\/t»sﬁ—sr%x(s)ds, t€[0,1) (3.1)
0

é\/f(l —t) [15 - VI—t(1+4t)] + %tQ (4t — 5)

has the exact solution z* (¢) = 3/t (1 —t). By considering separately the degree of
Bernstein polynomials ¢ = 1 and ¢ = 4, we apply the algorithm (1.13)-(1.22) with
m = 30 iterations, and take n = 10, n = 50, and n = 100 for the test of convergence.
The results are presented in Tables 1 and 2, where e; = |[T,,(t;) — 2*(¢;)|, ¢ = 0, n, are
the pointwise errors. Investigating Tables 1 and 2, the convergence is confirmed and
improved results can be observed when the degree of Bernstein polynomials increases
by ¢ = 1 to ¢ = 4. It is interesting to see that the case ¢ = 1 corresponds to the
trapezoidal product integration and as was expected, the Bernstein splines iterative
method provides better results.

Table 1. Numerical results for (3.1) with ¢ =1

m=30¢g=1

t;/e; | n=10 n = 50 n =100
0.0 10,00 0,00 0,00

0,2 | 1,86F —03 | 7,88E — 05 | 2,00E — 05
0.4 |2,98E —03 | 1,26E —04 | 3,20E — 05
0,6 |3,96E—03|1,68E—04|4,25E—05
0.8 | 4,63E —03 | 1,97E —04 | 5,00E — 05
1,0 | 3,88E—03 | 1,64FE —04 | 4,15F — 05
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Table 2. Numerical results for (3.1) with ¢ =4

m=30q¢g=4

ti/e; | n=10 n = 50 n = 100
0,0 |0,00 0,00 0,00

0,2 |4,75E —04 | 1,99E — 05 | 5,02E — 06
0,4 | 7,66 —04|3,20E—05|8,06E — 06
0,6 |1,02E —03 | 4,25E —05 | 1,07E — 05
0,8 |1,20E—03 |5,00E—05|1,26E — 05
1,0 |1,01E —03 | 4,16E —05 | 1,05E — 05

Example 3.2. We test the Bernstein spline iterative method (1.17)-(1.23) on fractional
integral equations too, and for the nonlinear integral equation

1
1 _1
z(t)=g(t)+ =77 /It—SI : o (s)]2ds, € [0,1] (32)
Ar(3) J
with
1 1
)\—].7 b(t)_i’ a—i,
and
1 3 3
90 =VIT=0+ 7= {tz (4t —5) — (1 —t)? (4t+1)}
the exact solution is x* (t) = 1/t (1 — t). The contraction condition
LM,T> 1
- <1
MNa+1) =

is fulfilled and the iterative method (1.17)-(1.23) applied with m = 30, n = 10, n = 50,
n =100, ¢ = 1 and g = 4, respectively, provides the results presented in Tables 3 and
4. The convergence is confirmed and we observed better results when we pass by ¢ = 1
to ¢ = 4. So, the Bernstein splines iterative method is better than the trapezoidal
product integration method for fractional integral equations, too.

Table 3. Numerical results for (3.2) with ¢ =1

m=30¢q¢g=1

ti/e; | n=10 n = 50 n = 100

0,0 |5,87TE—04|2,48E—05]6,27TFE — 06
0,2 |8,1bE—04 | 3,48E — 05| 8,81F — 06
0,4 |8 93E —04 | 3,80E —05 | 9,62E — 06
0,6 |8,93FE—04|3,80E—05]|9,62F — 06
0.8 |8, 15E —04 | 3,48E — 05 | 8,81E — 06
0,7 | 8,64 —04|3,68E—05]|9,32F — 06
1,0 5, 8TE —04 | 2,48E — 05 | 6,27TFE — 06
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Table 4. Numerical results for (3.2) with ¢ =4

m=30q¢g=4

ti/e; | n=10 n = 50 n = 100

0,0 | 1,51E —04 | 6,26E — 06 | 1,58E — 06
0,2 | 2,10E — 04 | 8,78E — 06 | 2,22E — 06
0,4 |2,30E—-04]9,60E—06 | 2,42F — 06
0,6 | 2,30E —04 | 9,60E —06 | 2,42E — 06
0,8 |2,10E—04 |8,78E —06 | 2,22E — 06
1,0 | 1,51E —04 | 6,26E —06 | 1,58E — 06

Example 3.3. In order to make a comparison with other methods from the existing
literature we present the results obtained on the following example. The linear weakly
singular integral equation (Example 1. in [25], Example 6.2. in [32], Example 4. in

[34])
1

1 _1

— _ 3 1

10/|1f s 3x(s)ds, te]0,1]
0

z(t) =g(t) + (3-3)

27
30800

has the exact solution z* (t) = ¢2 (1 — ¢)*. By applying the iterative method (1.17)-
(1.23) with m = 30, n = 10, n = 50, n = 100, and taking ¢ = 1 and ¢ = 4, we
obtain the results presented in Tables 5 and 6. Comparing the results between Table
6 (n = 100) and Table 1 in [25] (where the accuracy is O (107%)), we see better
accuracy for our method. In Tables 5 and 6 we see that the accuracy is improved by
passing from n = 10 to n = 100, that confirm the convergence of Bernstein splines
method stated in Theorem 2.1. Moreover, for ¢ = 4 the accuracy is better than those
for ¢ = 1, which means that again the Bernstein splines method provides better
accuracy than the trapezoidal product integration method.

8
3

[£3 (542 = 126t +77) + (1 = 1) (544 + 18t + 5)]

Table 5. Numerical results for (3.3) with ¢ =1

m=30q¢g=1

t;/e; | n=10 n = 50 n = 100

0,0 |1,70E —05 | 8,94F — 07 | 2,32E — 07
0,1 | 1,74E —05 | 8,48 — 07 | 2,19E — 07
0,2 | 1,59FE —06 | 4,51FE —08 | 1,06E — 08
0,3 | 1,99E — 05| 8,73E — 07 | 2,22E — 07
0,4 |3,23E—05|1,43E —06 | 3,63E — 07
0,5 |3,67E—05]1,62E —06 | 4,13E — 07
0,6 |3,23E—05|1,43E—06 | 3,63E — 07
0,7 | 1,99E — 05| 8,73E — 07 | 2,22E — 07
0,8 | 1,59FE —06 | 4,51FE —08 | 1,06E — 08
0,9 | 1,74E — 05 | 8,48E — 07 | 2,19E — 07
1,0 | 1,70E —05 | 8,94FE — 07 | 2,32FE — 07
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Table 6. Numerical results for (3.3) with ¢ =4

m=30q¢g=4

ti/e; | n=10 n = 50 n = 100

0,0 | 4,48E —06 | 2,25E — 07 | 5,81 — 08
0,1 | 4,40E —06 | 2,13E — 07 | 5,43E — 08
0,2 | 4,13E—07 | 1,135 — 03 | 2,66E — 09
0,3 5 03F —06 | 2,19E — 07 | 5,56 F — 08
0,4 |8,16E—06 | 3,58E—07|9,10E —08
0,5 9,26FE — 06 | 4,06E — 07 | 1,03E — 07
0,6 |8, 16E—06 | 3,58E—07|9,10E —08
0,7 |503FE—-06 |2 19E —07 | 5,56 F — 08
0,8 |4,13E—07 |1,13E—08 | 2,66E — 09
0,9 | 4,40E —06 | 2,13E — 07 | 5,43E — 08
1,0 | 4,48E—06 | 2,25FE —07 | 5,81E — 08

4. Conclusions

The iterated Bernstein splines method was applied to second kind weakly singu-
lar and fractional Fredholm integral equations and in Theorem 2.1 the convergence of
this method was proved providing the order of convergence O (h*). The condition that
ensures the convergence is the same as the contraction condition and therefore, the
applicability of this method is limited by the contraction condition. On the other hand
the accuracy of this method is better than those provided by the trapezoidal product
integration, as was observed in the previously presented numerical examples and, on
some cases, provides better accuracy than the existing methods from literature.
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