Certain theorems involving differential superordination and sandwich-type results

Hardeep Kaur, Richa Brar and Sukhwinder Singh Billing

Abstract. To obtain the main result of the present paper, we use the technique of differential superordination. As special cases of our main result, we obtain sufficient conditions for $f \in \mathcal{A}$ to be ϕ -like, parabolic ϕ -like, starlike, parabolic starlike, close-to-convex and uniform close-to-convex. We also obtain sandwich-type results regarding these functions. For demonstration of the results, we have plotted the images of open unit disk under certain functions using Mathematica 7.0.

Mathematics Subject Classification (2010): 30C80, 30C45.

Keywords: Analytic function, differential superordination, ϕ -like function, star-like function, close-to-convex function.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the unit disk $\mathbb{E} = \{z \in \mathbb{C} : |z| < 1\}$. For $a \in \mathbb{C}$ and $n \in \mathbb{N}$, let $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of the functions of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots$$

Let \mathcal{A} be the class of functions f, analytic in the unit disk \mathbb{E} and normalized by the conditions f(0) = f'(0) - 1 = 0.

Let S denote the class of all analytic univalent functions f defined in the open unit disk \mathbb{E} which are normalized by the conditions f(0) = f'(0) - 1 = 0. The Taylor series expansion of any function $f \in S$ is

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

Received 15 July 2022; Accepted 27 October 2022.

[©] Studia UBB MATHEMATICA. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Let the functions f and g be analytic in \mathbb{E} . We say that f is subordinate to g written as $f \prec g$ in \mathbb{E} , if there exists a Schwarz function ϕ in \mathbb{E} (i.e. ϕ is regular in |z| < 1, $\phi(0) = 0$ and $|\phi(z)| \le |z| < 1$) such that

$$f(z) = g(\phi(z)), |z| < 1.$$

Let $\Phi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be an analytic function, p an analytic function in \mathbb{E} with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E} . Then the function p is said to satisfy first order differential subordination if

$$\Phi(p(z), zp'(z); z) \prec h(z), \ \Phi(p(0), 0; 0) = h(0).$$
(1.1)

A univalent function q is called dominant of the differential subordination (1.1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1.1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1.1), is said to be the best dominant of (1.1). The best dominant is unique up to the rotation of \mathbb{E} .

Let $\Psi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be an analytic and univalent function in domain $\mathbb{C}^2 \times \mathbb{E}$, h be analytic function in \mathbb{E} , p be analytic and univalent in \mathbb{E} with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$. Then p is called the solution of the first order differential superordination if

$$h(z) \prec \Psi(p(z), zp'(z); z), h(0) = \Psi(p(0), 0; 0).$$
 (1.2)

An analytic function q is called a subordinant of the differential superordination (1.2) if $q \prec p$ for all p satisfying (1.2). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (1.2), is said to be the best subordinant of (1.2). The best subordinant is unique up to the rotation of \mathbb{E} .

A function $f \in \mathcal{A}$ is said to be starlike in the open unit disk \mathbb{E} , if it is univalent in \mathbb{E} and $f(\mathbb{E})$ is a starlike domain. The well known condition for the members of class \mathcal{A} to be starlike is that

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \mathbb{E}.$$

Let \mathcal{S}^* denote the subclass of \mathcal{S} consisting of all univalent starlike functions with respect to the origin.

A function $f \in \mathcal{A}$ is said to be close-to-convex in \mathbb{E} , if there exists a starlike function g (not necessarily normalized) such that

$$\Re\left(\frac{zf'(z)}{g(z)}\right) > 0, \ z \in \mathbb{E}.$$

In addition, if g is normalized by the conditions g(0) = 0 = g'(0) - 1, then the class of close-to-convex functions is denoted by C.

A function $f \in \mathcal{A}$ is called parabolic starlike in \mathbb{E} , if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \left|\frac{zf'(z)}{f(z)} - 1\right|, \ z \in \mathbb{E},\tag{1.3}$$

and the class of such functions is denoted by S_P .

A function $f \in \mathcal{A}$ is said to be uniformly close-to-convex in \mathbb{E} , if

$$\Re\left(\frac{zf'(z)}{g(z)}\right) > \left|\frac{zf'(z)}{g(z)} - 1\right|, \ z \in \mathbb{E},\tag{1.4}$$

for some $g \in S_P$. Let UCC denote the class of all such functions. Note that the function $g(z) \equiv z \in S_P$. Therefore, for $g(z) \equiv z$, condition (1.4) becomes:

$$\Re(f'(z)) > |f'(z) - 1|, \ z \in \mathbb{E}.$$
 (1.5)

Ronning [11] and Ma and Minda [6] studied the domain Ω and the function q(z) defined below:

$$\Omega = \left\{ u + iv : u > \sqrt{(u-1)^2 + v^2} \right\}.$$

Clearly the function

$$q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$$

maps the unit disk \mathbb{E} onto the domain Ω . Hence the conditions (1.3) and (1.5) are, respectively, equivalent to

$$\frac{zf'(z)}{f(z)} \prec q(z), \ z \in \mathbb{E},$$

and

$$f'(z) \prec q(z)$$

Let ϕ be analytic in a domain containing $f(\mathbb{E})$, $\phi(0) = 0$ and $\Re(\phi'(0)) > 0$. Then, the function $f \in \mathcal{A}$ is said to be ϕ - like in \mathbb{E} , if

$$\Re\left(\frac{zf'(z)}{\phi(f(z))}\right) > 0, \ z \in \mathbb{E}.$$

This concept was introduced by Brickman [2]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ - like for some analytic function ϕ . Later, Ruscheweyh [12] investigated the following general class of ϕ -like functions:

Let ϕ be analytic in a domain containing $f(\mathbb{E})$, where $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for some $w \in f(\mathbb{E}) \setminus \{0\}$, then the function $f \in \mathcal{A}$ is called ϕ -like with respect to a univalent function q, q(0) = 1, if

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \ z \in \mathbb{E}.$$

A function $f \in \mathcal{A}$ is said to be parabolic ϕ -like in \mathbb{E} , if

$$\Re\left(\frac{zf'(z)}{\phi(f(z))}\right) > \left|\frac{zf'(z)}{\phi(f(z))} - 1\right|, \ z \in \mathbb{E}.$$
(1.6)

Equivalently, condition (1.6) can be written as:

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z) = 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2.$$

In 2005, Ravichandran et al. [10] proved the following result for ϕ -like functions: Let $\alpha \neq 0$ be a complex number and q(z) be a convex univalent function in \mathbb{E} . Suppose $h(z) = \alpha q^2(z) + (1 - \alpha)q(z) + \alpha z q'(z)$ and

$$\Re\left\{\frac{1-\alpha}{\alpha} + 2q(z) + \left(1 + \frac{zq''(z)}{q'(z)}\right)\right\} > 0, \ z \in \mathbb{E}.$$

If $f \in \mathcal{A}$ satisfies

$$\frac{zf'(z)}{\phi(f(z))}\left(1+\frac{\alpha zf''(z)}{f'(z)}+\frac{\alpha(f'(z)-(\phi(f(z)))'}{\phi(f(z))}\right) \prec h(z),$$

then

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \ z \in \mathbb{E},$$

and q(z) is best dominant. Later on, Shanmugam et al. [13] and Ibrahim [9] also obtained the results for ϕ -like functions similar to the above mentioned results of Ravichandran [10].

In 2017, Kaur and Billing [4] investigated the following operator

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$

to obtain $\phi-{\rm likeness},$ starlikeness and close-to-convexity of normalized analytic functions.

Later, in 2019, Adegani et al. [1] studied the operator

$$\frac{\lambda z f'(z)}{g(z)} \left(1 + \frac{1}{\lambda} + \frac{z f''(z)}{f'(z)} - \frac{z g'(z)}{g(z)}\right)$$

and derived criteria for close-to-convexity of normalized analytic functions.

Recently, Mohammed et al. [8] studied the geometric properties of some subfamilies of holomorphic functions in this direction.

In this paper, we obtain the superordination theorem for the differential operator

$$\left(\frac{zf'(z)}{\phi(g(z))}\right)^{\gamma} \left[a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))^{'}}{\phi(g(z))}\right)\right]^{\beta}$$

where $f, g \in \mathcal{A}$ and β, γ be complex numbers such that $\beta \neq 0$. Also ϕ is an analytic function in a domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$, for real numbers $a, b(\neq 0)$. Further, we derive sandwich-type theorem. As consequences of our main results, we obtain sufficient conditions for ϕ -like, parabolic ϕ -like, starlike, parabolic starlike, close-to-convex, and uniform close-to-convex functions.

2. Preliminaries

We shall need the following definition and lemma to prove our main result.

Definition 2.1. ([7], Definition 2, p.817) Denote by \mathbb{Q} , the set of all functions f(z) that are analytic and injective on $\overline{\mathbb{E}} \setminus \mathbb{E}(f)$, where

$$\mathbb{E}(f) = \left\{ \zeta \in \partial \mathbb{E} \ : \ \lim_{z \to \zeta} f(z) = \infty \right\},\$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{E} \setminus \mathbb{E}(f)$.

Lemma 2.2. ([3]). Let q be univalent in \mathbb{E} and let θ and φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$. Set $Q_1(z) = zq'(z)\varphi[q(z)]$, $h(z) = \theta[q(z)] + Q_1(z)$ and suppose that either

(i)
$$Q_1$$
 is starlike and
(ii) $\Re\left(\frac{\theta'q(z)}{\varphi(q(z)})\right) > 0$ for all $z \in \mathbb{E}$.
If $p \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with $p(\mathbb{E}) \subset \mathbb{D}$ and $\theta[p(z)] + zp'(z)\varphi[p(z)]$ is univalent in \mathbb{E} and
 $\theta[q(z)] + zq'(z)\varphi[q(z)] \prec \theta[p(z)] + zp'(z)\varphi[p(z)], z \in \mathbb{E}$,

then $q(z) \prec p(z)$ and q is the best subordinant.

3. A superordination theorem

Theorem 3.1. Let β and γ be complex numbers such that $\beta \neq 0$ and $a, b(\neq 0)$ are real numbers. Let $q(z) \neq 0$ with q(0) = 1 be a univalent function in \mathbb{E} , such that

(i)
$$\Re \left[1 + \frac{zq''(z)}{q'(z)} + \left(\frac{\gamma}{\beta} - 1\right) \frac{zq'(z)}{q(z)} \right] > 0$$
 and
(ii) $\Re \left[\frac{a}{b} \left(1 + \frac{\gamma}{\beta} \right) q(z) \right] > 0.$

Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ and

$$\left(\frac{zf'(z)}{\phi(g(z))}\right)^{\gamma} \left[a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)\right]^{\beta}$$

is univalent in \mathbb{E} , satisfy

$$(q(z))^{\gamma} \left[aq(z) + b \frac{zq'(z)}{q(z)} \right]^{\beta} \prec \left(\frac{zf'(z)}{\phi(g(z))} \right)^{\gamma} \left[a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) \right]^{\beta}$$
(3.1)

then

$$q(z) \prec \frac{zf'(z)}{\phi(g(z))}, \ z \in \mathbb{E},$$

and q(z) is the best subordinant.

Proof. On writing $p(z) = \frac{zf'(z)}{\phi(g(z))}$, the superordination (3.1) can be rewritten as:

$$(q(z))^{\gamma} \left(aq(z) + b \frac{zq'(z)}{q(z)} \right)^{\beta} \prec (p(z))^{\gamma} \left(ap(z) + b \frac{zp'(z)}{p(z)} \right)^{\beta}$$

or

$$a(q(z))^{\frac{\gamma}{\beta}+1} + b(q(z))^{\frac{\gamma}{\beta}-1} zq'(z) \prec a(p(z))^{\frac{\gamma}{\beta}+1} + b(p(z))^{\frac{\gamma}{\beta}-1} zp'(z)$$

Let us define the functions θ and ϕ as follows:

$$\theta(w) = aw^{\frac{\gamma}{\beta}+1} \ and \ \phi(w) = bw^{\frac{\gamma}{\beta}-1}$$

Obviously, the functions θ and ϕ are analytic in domain $\mathbb{D} = \mathbb{C} \setminus \{0\}$ and $\phi(w) \neq 0$ in \mathbb{D} .

Therefore,

$$Q(z) = \phi(q(z))zq'(z) = b(q(z))^{\frac{\gamma}{\beta} - 1}zq'(z)$$

and

$$h(z) = \theta(q(z)) + Q(z) = a(q(z))^{\frac{\gamma}{\beta}+1} + b(q(z))^{\frac{\gamma}{\beta}-1} zq'(z)$$

On differentiating, we obtain

$$\frac{zQ'(z)}{Q(z)} = 1 + \frac{zq''(z)}{q'(z)} + \left(\frac{\gamma}{\beta} - 1\right)\frac{zq'(z)}{q(z)}$$

and

$$\frac{\theta'(q(z))}{\phi(q(z))} = \frac{zh'(z)}{Q(z)} - \frac{zQ'(z)}{Q(z)} = \frac{a}{b}\left(1 + \frac{\gamma}{\beta}\right)q(z).$$

In view of the given condition (i) and (ii), we see that Q is starlike and

$$\Re\left(\frac{\theta'(q(z))}{\phi(q(z))}\right) > 0.$$

Therefore, the proof, now follows from the Lemma [2.2].

Remark 3.2. Together with the corresponding result for differential subordination (see Kaur et al. [5]), we get the following "sandwich result".

4. Sandwich-type result and its applications

Theorem 4.1. Let β and γ be complex numbers such that $\beta \neq 0$ and $a, b(\neq 0)$ are real numbers. Let $q_1, q_2 \ (q_1(z) \neq 0, q_2(z) \neq 0, z \in \mathbb{E})$, be univalent functions in \mathbb{E} , such that

(i)
$$\Re \left[1 + \frac{zq_i''(z)}{q_i'(z)} + \left(\frac{\gamma}{\beta} - 1\right) \frac{zq_i'(z)}{q_i(z)} \right] > 0 \text{ and}$$

(ii) $\Re \left[\frac{a}{b} \left(1 + \frac{\gamma}{\beta} \right) q_i(z) \right] > 0; i = 1, 2.$

540

Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ and

$$\left(\frac{zf'(z)}{\phi(g(z))}\right)^{\gamma} \left[a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)\right]^{\beta}$$
 is univalent in \mathbb{F} satisfy

$$(q_{1}(z))^{\gamma} \left[aq_{1}(z) + b \frac{zq_{1}'(z)}{q_{1}(z)} \right]^{\beta} \\ \prec \left(\frac{zf'(z)}{\phi(g(z))} \right)^{\gamma} \left[a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) \right]^{\beta} \\ \prec (q_{2}(z))^{\gamma} \left[aq_{2}(z) + b \frac{zq_{2}'(z)}{q_{2}(z)} \right]^{\beta}$$

$$(4.1)$$

then

$$q_1(z) \prec \frac{zf'(z)}{\phi(g(z))} \prec q_2(z), \ z \in \mathbb{E}$$

where $q_1(z)$ and $q_2(z)$ are the best subordinant and the best dominant respectively.

Remark 4.2. When we select $q_1(z) = 1 + m_1 z$, $q_2(z) = 1 + m_2 z$; $0 < m_1 < m_2 \le 1$, $\beta = 1, \gamma = 0$ in Theorem 4.1, we obtain:

Corollary 4.3. Let $a, b(\neq 0)$ are real numbers such that $\frac{a}{b} > 0$. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$

is univalent in \mathbb{E} and satisfy

$$a(1+m_1z) + \frac{bm_1z}{1+m_1z} \prec \left[a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) \right]$$
$$\prec a(1+m_2z) + \frac{bm_2z}{1+m_2z}$$

then

$$1 + m_1 z \prec \frac{zf'(z)}{\phi(g(z))} \prec 1 + m_2 z, \text{ where } 0 < m_1 < m_2 \le 1, \ z \in \mathbb{E}.$$

By selecting a = 1, b = 1, $m_1 = \frac{1}{3}$, $m_2 = 1$ in Corollary 4.3, we get

Example 4.4. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with

$$1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(g(z))} - \frac{z(\phi(g(z)))}{\phi(g(z))}$$

is univalent in \mathbbm{E} and satisfy

$$\frac{z^2 + 9z + 9}{3z + 9} \prec 1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(g(z))} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \prec \frac{z^2 + 3z + 1}{z + 1}$$

then

$$1 + \frac{z}{3} \prec \frac{zf'(z)}{\phi(g(z))} \prec 1 + z, \ z \in \mathbb{E}.$$

By selecting g(z) = f(z) in Example 4.4, we have

Example 4.5. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(f(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with

$$1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(f(z))} - \frac{z(\phi(f(z)))'}{\phi(f(z))}$$

is univalent in $\mathbb E$ and satisfy

$$\frac{z^2 + 9z + 9}{3z + 9} \prec 1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(f(z))} - \frac{z(\phi(f(z)))'}{\phi(f(z))} \prec \frac{z^2 + 3z + 1}{z + 1}$$

then

$$1 + \frac{z}{3} \prec \frac{zf'(z)}{\phi(f(z))} \prec 1 + z, \ z \in \mathbb{E}.$$

i.e. f is ϕ -like.

By selecting $\phi(z) = z$ and g(z) = f(z) in Example 4.4, we get

Example 4.6. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with $1 + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfies

$$\frac{z^2 + 9z + 9}{3z + 9} \prec 1 + \frac{zf''(z)}{f'(z)} \prec \frac{z^2 + 3z + 1}{z + 1}$$

then

$$1 + \frac{z}{3} \prec \frac{zf'(z)}{f(z)} \prec 1 + z, \ z \in \mathbb{E},$$

and hence f(z) is starlike.

By selecting $\phi(z) = g(z) = z$ in Example 4.4, we have

Example 4.7. If $f \in \mathcal{A}$, $f'(z) \in \mathcal{H}[1, 1] \cap \mathbb{Q}$, with $f'(z) + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfy

$$\frac{z^2 + 9z + 9}{3z + 9} \prec f'(z) + \frac{zf''(z)}{f'(z)} \prec \frac{z^2 + 3z + 1}{z + 1}$$

then

$$1 + \frac{z}{3} \prec f'(z) \prec 1 + z, \ z \in \mathbb{E},$$

and hence f(z) is close-to-convex.

For illustration, in Figure 4.1, we plot the images of unit disk $\mathbb E$ under the functions

$$w_1(z) = \frac{z^2 + 9z + 9}{3z + 9}$$
 and $w_2(z) = \frac{z^2 + 3z + 1}{z + 1}$.

In Figure 4.2, the images of unit disk \mathbb{E} under the functions

$$q_1(z) = 1 + \frac{z}{3}$$
 and $q_2(z) = 1 + z$

are given. In the light of Example 4.4, when the differential operator

$$1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(g(z))} - \frac{z(\phi(g(z)))'}{\phi(g(z))}$$

takes values in the light shaded portion as shown in Figure 4.1, then $\frac{zf'(z)}{\phi(g(z))}$ takes values in the light shaded region as given in Figure 4.2. Consequently, in view of Example 4.5, Example 4.6, Example 4.7, f(z) is $\phi - like$, starlike and close-to-convex respectively.

Remark 4.8. When we select

$$q_1(z) = \left(\frac{1+z}{1-z}\right)^{\delta_1}, \ q_2(z) = \left(\frac{1+z}{1-z}\right)^{\delta_2}, \ 0 < \delta_1 < \delta_2 \le 1, \ \beta = 1, \ \gamma = 0$$

in Theorem 4.1, we obtain the following result:

Corollary 4.9. For real numbers $a, b(\neq 0)$ with same sign. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$

is univalent in $\mathbb E$ and satisfy

$$a\left(\frac{1+z}{1-z}\right)^{\delta_1} + \left(\frac{2b\delta_1 z}{1-z^2}\right) \prec a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$
$$\prec a\left(\frac{1+z}{1-z}\right)^{\delta_2} + \left(\frac{2b\delta_2 z}{1-z^2}\right),$$

then

$$\left(\frac{1+z}{1-z}\right)^{\delta_1} \prec \frac{zf'(z)}{\phi(g(z))} \prec \left(\frac{1+z}{1-z}\right)^{\delta_2}; 0 < \delta_1 < \delta_2 \le 1, \ z \in \mathbb{E}.$$

Selecting $\delta_1 = 0.3$, $\delta_2 = 1$ and a = 1, b = 1 in Corollary 4.9, we have:

Example 4.10. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with

$$1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(g(z))} - \frac{z(\phi(g(z)))'}{\phi(g(z))}$$

is univalent in \mathbb{E} and satisfy

$$\left(\frac{1+z}{1-z}\right)^{0.3} + \left(\frac{0.6z}{1-z^2}\right) \prec \frac{zf'(z)}{\phi(g(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right) \\ \prec \left(\frac{1+z}{1-z}\right) + \left(\frac{2z}{1-z^2}\right),$$

then

$$\left(\frac{1+z}{1-z}\right)^{0.3} \prec \frac{zf'(z)}{\phi(g(z))} \prec \left(\frac{1+z}{1-z}\right); \ z \in \mathbb{E}.$$

By selecting g(z) = f(z) in Example 4.10, we get

Example 4.11. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(f(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with

$$1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(f(z))} - \frac{z(\phi(f(z)))'}{\phi(f(z))}$$

is univalent in \mathbb{E} and satisfy

$$\left(\frac{1+z}{1-z}\right)^{0.3} + \left(\frac{0.6z}{1-z^2}\right) \prec \frac{zf'(z)}{\phi(f(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))'}{\phi(f(z))}\right)$$
$$\prec \left(\frac{1+z}{1-z}\right) + \left(\frac{2z}{1-z^2}\right),$$

then

$$\left(\frac{1+z}{1-z}\right)^{0.3} \prec \frac{zf'(z)}{\phi(f(z))} \prec \left(\frac{1+z}{1-z}\right); \ z \in \mathbb{E}.$$

i.e. f is ϕ -like.

By selecting $\phi(z) = z$ and g(z) = f(z) in Example 4.10, we obtain

Example 4.12. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with $1 + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfies

$$\left(\frac{1+z}{1-z}\right)^{0.3} + \left(\frac{0.6z}{1-z^2}\right) \prec \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \left(\frac{1+z}{1-z}\right) + \left(\frac{2z}{1-z^2}\right),$$

then

$$\left(\frac{1+z}{1-z}\right)^{0.3} \prec \frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right); \ z \in \mathbb{E}.$$

i.e. f is starlike.

By selecting $\phi(z) = g(z) = z$ in Example 4.10, we have

Example 4.13. If $f \in \mathcal{A}$, $f'(z) \in \mathcal{H}[1, 1] \cap \mathbb{Q}$, with $f'(z) + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfy

$$\left(\frac{1+z}{1-z}\right)^{0.3} + \left(\frac{0.6z}{1-z^2}\right) \prec f'(z) + \frac{zf''(z)}{f'(z)} \prec \left(\frac{1+z}{1-z}\right) + \left(\frac{2z}{1-z^2}\right),$$

then

$$\left(\frac{1+z}{1-z}\right)^{0.3} \prec f'(z) \prec \left(\frac{1+z}{1-z}\right); \ z \in \mathbb{E}.$$

i.e. f is close-to-convex.

Using Mathematica 7.0, we plot the images of unit disk \mathbb{E} under the functions

$$w_3(z) = \left(\frac{1+z}{1-z}\right)^{0.3} + \frac{0.6z}{1-z^2} \text{ and } w_4(z) = \frac{1+z}{1-z} + \frac{2z}{1-z^2},$$

which are given by Figure 4.3 and the images of unit disk $\mathbb E$ under the functions

$$q_1(z) = \left(\frac{1+z}{1-z}\right)^{0.3}$$
 and $q_2(z) = \frac{1+z}{1-z}$,

which are shown in Figure 4.4. It follows from Example 4.10 that the differential operator $\frac{zf'(z)}{\phi(g(z))}$ takes values in the light shaded region of Figure 4.4 when the differential operator

$$\frac{zf'(z)}{\phi(g(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$

takes values in the light shaded region of Figure 4.3. Therefore, from Example 4.11, Example 4.12, Example 4.13, we can say that f(z) is $\phi - like$, starlike and close-to-convex respectively.

Remark 4.14. When we select $q_1(z) = e^{z/2}$, $q_2(z) = \frac{1+z}{1-z}$, $\beta = 1$, $\gamma = 0$ in Theorem 4.1, we get the following result:

Corollary 4.15. For real numbers $a, b(\neq 0)$ of same sign. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$

is univalent in \mathbb{E} and satisfy

$$\begin{aligned} ae^{z/2} + \frac{bz}{2} \prec a \frac{zf'(z)}{\phi(g(z))} + b \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))} \right) \\ \prec a \left(\frac{1+z}{1-z} \right) + \left(\frac{2bz}{1-z^2} \right), \end{aligned}$$

then

$$e^{z/2} \prec \frac{zf'(z)}{\phi(g(z))} \prec \frac{1+z}{1-z}, \ 0 \leq \delta < 1, \ z \in \mathbb{E}.$$

Selecting a = 1 and b = 1 in Corollary 4.15, we obtain:

Example 4.16. Let ϕ be analytic function in the domain containing $q(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{A}$ $z f''(z) = z f'(z) = z (\phi(q(z)))'$ 7

$$\mathcal{H}[1, \ 1] \cap \mathbb{Q} \text{ with } 1 + \frac{zf'(z)}{f'(z)} + \frac{zf'(z)}{\phi(g(z))} - \frac{z(\phi(g(z)))}{\phi(g(z))} \text{ is univalent in } \mathbb{E} \text{ and satisfies}$$
$$e^{z/2} + \frac{z}{2} \prec \frac{zf'(z)}{\phi(g(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right) \prec \frac{z^2 + 4z + 1}{1 - z^2},$$

then

$$e^{z/2} \prec \frac{zf'(z)}{\phi(g(z))} \prec \frac{1+z}{1-z}, \ 0 \le \delta < 1, \ z \in \mathbb{E}.$$

By selecting g(z) = f(z) in Example 4.16, we get

Example 4.17. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(f(z))} \in \mathcal{A}$ $\mathcal{H}[1, 1] \cap \mathbb{Q}$ with $1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(f(z))} - \frac{z(\phi(f(z)))'}{\phi(f(z))}$ is univalent in \mathbb{E} and satisfy $e^{z/2} + \frac{z}{2} \prec \frac{zf'(z)}{\phi(f(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))^{'}}{\phi(f(z))}\right) \prec \frac{z^{2} + 4z + 1}{1 - z^{2}},$

then

$$e^{z/2} \prec \frac{zf'(z)}{\phi(f(z))} \prec \frac{1+z}{1-z}, \ 0 \le \delta < 1, \ z \in \mathbb{E}.$$

i.e. f is ϕ -like.

By selecting $\phi(z) = z$ and g(z) = f(z) in Example 4.16, we have

Example 4.18. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with $1 + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfies

$$e^{z/2} + \frac{z}{2} \prec \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \frac{z^2 + 4z + 1}{1 - z^2}$$

then

$$e^{z/2} \prec \frac{zf'(z)}{f(z)} \prec \frac{1+z}{1-z}, \ z \in \mathbb{E}.$$

i.e. f is starlike.

By selecting $\phi(z) = g(z) = z$ in Example 4.10, we obtain

Example 4.19. If $f \in \mathcal{A}$, $f'(z) \in \mathcal{H}[1, 1] \cap \mathbb{Q}$, with $f'(z) + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfy

$$e^{z/2} + \frac{z}{2} \prec f'(z) + \frac{zf''(z)}{f'(z)} \prec \frac{z^2 + 4z + 1}{1 - z^2},$$

then

$$e^{z/2} \prec f'(z) \prec \frac{1+z}{1-z}, \ z \in \mathbb{E}.$$

i.e. f is close-to-convex.

For demonstration, we plot the images of unit disk $\mathbb E$ under the functions

$$w_5(z) = e^{z/2} + \frac{z}{2}$$
 and $w_6(z) = \frac{z^2 + 4z + 1}{1 - z^2}$,

which are shown by Figure 4.5. In Figure 4.6, the images of unit disk $\mathbb E$ under the functions

$$q_1(z) = e^{z/2}$$
 and $q_2(z) = \frac{1+z}{1-z}$

are given. It follows from Example 4.16 that the differential operator $\frac{zf'(z)}{\phi(g(z))}$ takes values in the light shaded region of Figure 4.6 when the differential operator

$$\frac{zf'(z)}{\phi(g(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$

takes values in the light shaded portion of Figure 4.5. Thus in view of Example 4.17, Example 4.18, Example 4.19, f(z) is ϕ -like, starlike and close-to-convex respectively.

$$q_1(z) = e^{z/2}, \ q_2(z) = 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \ \beta = 1, \ \gamma = 0$$

in Theorem 4.1, we derive the following result:

Corollary 4.21. For real numbers $a, b \neq 0$ of same sign. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for

$$w \in g(\mathbb{E}) \setminus \{0\}. \text{ If } f, \ g \in \mathcal{A}, \ \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, \ 1] \cap \mathbb{Q} \text{ with}$$
$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$

is univalent in \mathbb{E} and satisfy

$$ae^{z/2} + \frac{bz}{2} \prec a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$
$$\prec \left\{a + \frac{2a}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2 + \frac{\frac{4b\sqrt{z}}{\pi^2(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1 + \frac{2}{\pi^2}\left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2}\right\}$$

then

$$e^{z/2} \prec \frac{zf'(z)}{\phi(g(z))} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \ z \in \mathbb{E}.$$

Selecting a = 1 and b = 1 in Corollary 4.21, we obtain:

Example 4.22. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with

$$1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(g(z))} - \frac{z(\phi(g(z)))'}{\phi(g(z))}$$

is univalent in \mathbbm{E} and satisfies

$$e^{z/2} + \frac{z}{2} \prec \frac{zf'(z)}{\phi(g(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$$
$$\prec \left\{1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2 + \frac{\frac{4\sqrt{z}}{\pi^2(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2}\right\}$$

then

$$e^{z/2} \prec \frac{zf'(z)}{\phi(g(z))} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \ z \in \mathbb{E}.$$

By selecting g(z) = f(z) in Example 4.22, we get

Example 4.23. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$.

If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(f(z))} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with $1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{\phi(f(z))} - \frac{z(\phi(f(z)))'}{\phi(f(z))}$ is univalent in \mathbb{E} and satisfies

$$e^{z/2} + \frac{z}{2} \prec \frac{zf'(z)}{\phi(f(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(f(z)))'}{\phi(f(z))}\right)$$

Hardeep Kaur, Richa Brar and Sukhwinder Singh Billing

$$\prec \left\{ 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2 + \frac{\frac{4\sqrt{z}}{\pi^2(1-z)} \log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2} \right\}$$

then

$$e^{z/2} \prec \frac{zf'(z)}{\phi(f(z))} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \ z \in \mathbb{E}.$$

i.e. f is parabolic ϕ -like.

By selecting $\phi(z) = z$ and g(z) = f(z) in Example 4.22, we have

Example 4.24. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \in \mathcal{H}[1, 1] \cap \mathbb{Q}$ with $1 + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfy

$$e^{z/2} + \frac{z}{2} \prec \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \left\{1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2 + \frac{\frac{4\sqrt{z}}{\pi^2(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^2}\right\}$$

then

$$e^{z/2} \prec \frac{zf'(z)}{f(z)} \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \ z \in \mathbb{E}.$$

i.e. f is parabolic starlike.

By selecting $\phi(z) = g(z) = z$ in Example 4.22, we obtain

Example 4.25. If $f \in \mathcal{A}$, $f'(z) \in \mathcal{H}[1, 1] \cap \mathbb{Q}$, with $f'(z) + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfies

$$e^{z/2} + \frac{z}{2} \prec f'(z) + \frac{zf''(z)}{f'(z)} \prec \left\{ 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2 + \frac{\frac{4\sqrt{z}}{\pi^2(1-z)} \log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2} \right\}$$

then

$$e^{z/2} \prec f'(z) \prec 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2, \ z \in \mathbb{E}.$$

i.e. f is uniform close-to-convex.

Using Mathematica 7.0, we draw the images of unit disk \mathbb{E} under the functions

$$w_{7}(z) = e^{z/2} + \frac{z}{2} \text{ and } w_{8}(z) = \left\{ 1 + \frac{2}{\pi^{2}} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^{2} + \frac{\frac{4\sqrt{z}}{\pi^{2}(1-z)} \log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1 + \frac{2}{\pi^{2}} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^{2}} \right\},$$

which are shown by Figure 4.7 and the images of unit disk $\mathbb E$ under the functions

$$q_1(z) = e^{z/2}$$
 and $q_2(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$

are given by Figure 4.8. Hence from Example 4.22, we can say that the differential operator $\frac{zf'(z)}{\phi(g(z))}$ takes values in the light shaded portion of Figure 4.8 when the differential operator $\frac{zf'(z)}{\phi(g(z))} + \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z)))'}{\phi(g(z))}\right)$ takes values in the light shaded region of Figure 4.7. Therefore, in light of Example 4.23, Example 4.24, Example 4.25, f(z) is parabolic ϕ -like, parabolic starlike and uniform close-to-convex

.

Acknowledgement. Authors are thankful to the referee for valuable suggestions.

References

- Adegani, E.A., Bulboacă T., Motamednezhad, A., Simple sufficient subordination conditions for close-to-convexity, Mathematics, 7(2019), no. 3.
- [2] Brickman, L., ϕ -like analytic functions, I, Bull. Amer. Math. Soc., 79(1973), 555-558.
- [3] Bulboacă T., Differential Subordinations and Superordinations: Recent Results, House of science Book Publ., Cluj-Napoca 2005.
- [4] Kaur, P., Billing, S.S., Some sandwich type results for φ- like functions, Acta Univer. Apul., 51(2017), 115-134.
- [5] Kaur, H., Brar, R., Billing, S.S., Certain sufficient conditions for ϕ like functions in a parabolic region, Stud. Univ. Babeş-Bolyai Math., (Accepted).
- [6] Ma, W.C., Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(1992), no. 2, 165-175.
- [7] Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York and Basel, 2000.
- [8] Mohammed, N.H., Adegani, E.A., Bulboaca, T., Cho, N.E., A family of holomorphic functions defined by differential inequality, Math. Inequal. Appl., 25(2022), no. 1, 27-39.
- [9] Rabha, W.I., On certain univalent class associated with first order differential subordinations, Tamkang J. Math., 42(2011), no. 4, 445-451.
- [10] Ravichandran, V., Mahesh, N., Rajalakshmi, R., On certain applications of differential subordinations for φ-like functions, Tamkang J. Math., 36(2005), no. 2, 137-142.

- [11] Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196.
- [12] Ruscheweyh, St., A subordination theorem for φ-like functions, J. London Math. Soc., 2(1976), no. 13, 275-280.
- [13] Shanmugam, T.N., Sivassubramanian, S., Darus, M., Subordination and superordination results for φ-like functions, Journal of Ineq. in Pure and Applied Mathematics, 8(2007), no. 1, Art. 20, 1-6.

Hardeep Kaur

"Sri Guru Granth Sahib World" University, Department of Mathematics, Fatehgarh Sahib, 140407, Punjab, India e-mail: kaurhardeep959@gmail.com

Richa Brar "Sri Guru Granth Sahib World" University, Department of Mathematics, Fatehgarh Sahib, 140407, Punjab, India e-mail: richabrar4@gmail.com

Sukhwinder Singh Billing "Sri Guru Granth Sahib World" University, Department of Mathematics, Fatehgarh Sahib, 140407, Punjab, India e-mail: ssbilling@gmail.com