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Hankel and symmetric Toeplitz determinants
for Sakaguchi starlike functions

Sushil Kumar, Swati Anand and Naveen Kumar Jain

Abstract. In this paper, we consider the class of starlike functions with respect to
symmetric points which are also known as Sakaguchi starlike functions. We de-
termine best possible bounds on Zalcman conjecture |a% —azn—1| and generalized
Zalcman conjecture \aman — Gm4n—1| for n = 2 and n = 4, m = 2, respectively
for such functions. Further, we compute estimate on third order and fourth or-
der Hankel determinants. As well, we also obtain estimates on third and fourth
symmetric Toeplitz determinants.
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1. Introductory text

Let A be the family of all normalized analytic functions f defined on D = {z €
C : |z| < 1} with series expansion f(z) = 2z + a22® + azz® + ---. The subfamily
S C A contains univalent functions. Let &* and K represent the subfamily of S
containing starlike and convex functions, respectively. Analytically, S* = {f € S :
Re(zf'(2)/f(z)) >0,ze€ D} and K= {f € S: 1 +Re(zf"(2)/f'(z)) >0, z € D}
[11]. The class P consists of all analytic functions p : D — C satisfying conditions
p(0) =1 and Re p(z) > 0. Recent results for a more general class of P can be found in
[3]. In 1959, Sakaguchi [33] studied the subclass S§ of S consisting of starlike functions
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with respect to the symmetric points. The analytical description of these functions is

2:4(2)
7 — (=)

The functions f € S§ are also called Sakaguchi starlike functions. The coefficient
estimates related literature gives the geometric properties of univalent functions. The
bound on the initial coefficient as contribute in growth, distortion and covering theo-
rems. Zalcman conjecture and Hankel determinants are two of the coefficient problems
that have been discussed by several authors. In recent years, many authors have stud-
ied the Toeplitz determinant T, (n) for various values of ¢ and n for several subclasses
of analytic functions. A significant problem concerning the coefficients in the series
expansion of the the function f € A is the Zalcman conjecture which is defined as

ng{feS: eP,zeID)}.

\ai —agn—1| < (n-— 1)27 n>2.

From [7], we observe that the Zalcman conjecture implies the Bieberbach conjecture.
Ma [24] verified Zalcman conjecture (n > 4) for close-to-convex functions. Further,
Ma [25] explored the generalized Zaleman conjecture which is defined as

|aman — @min—1| < (m—-1)(n—-1); m>2,n>2

for the starlike functions and the univalent functions with real coefficients. In [32],
Ravichandran and Verma established the generalized Zalcman conjecture for certain
starlike and convex functions. In [34], the Zalcman conjecture and the generalized
Zalcman conjecture for the locally univalent functions were discussed using extreme
point theory. Recently, in [26] the Zalcman conjecture and the generalized Zalcman

conjecture were shown for the class U defined asUf = {z € A: ‘(z/f(z))2 f'(z) — 1‘ <

1, 2 € D}. For ¢ > 1 and n > 1, the ¢** Hankel determinant H,(n)(f) for a function
[ € Sis given by Hy(n)(f) := det{antitj—2}i;, 1 <4, j < g, where a; = 1. For ¢ = 2
and n = 1, the Hankel determinant H(1) = a3 — a3 is the Fekete Szegé functional.
The study of Hankel determinant was initiated by Pommerenke [27, 28] for the starlike
functions. Since then the growth of H,(n)(f) has been studied for different subclasses
of univalent functions. One of the notable results in this direction is by Hayman [12]
giving the best possible upper bound as Mn'/? on Hy(n)(f), where M is an absolute
constant. For ¢ = 2 and n = 2, Janteng et al.[13] obtained the sharp estimates on
second order Hankel determinant Ho(2)(f) = azas — a3 for the classes of starlike and
convex functions. However, the sharp bound for the whole class & is not known till
now. For the class of Bazilevic functions, Krishna and RamReddy [16] determined
H5(2)(f). Recently, Anand et al. [4] studied the second order Hankel determinant for
a class of normalized analytic functions.
For ¢ = 3 and n = 1, 2, 3, the third Hankel determinants are given as

H3(1)(f) = as(agas — a3) + as(azas — aq) + as(az — a3) (1.1)
H3(2)(f) = az(asas — a?) — az(azas — asas) + as(azas — a?) (1.2)

H3(3)(f) = as(asar — a2) — as(asar — asag) + as(asas — a?). (1.3)
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The study of the third order Hankel determinant Hz(1)(f) for the classes S* and
K was initiated by Babalola (2010) [6] which was later improved by Zaprawa [36].
However, the bounds obtained in [36] were not sharp. The best possible bound on third
order Hankel determinant H3(1)(f) for the class of convex functions was computed by
Kowalczyk et al. [15]. Also, Lecko et al. [23] computed the best possible upper bound
on H3(1)(f) for the starlike functions of order 1/2. Krishna et al. [17] obtained the
bound on H3(1)(f) for the class S§. Recently, Kumar et al. [20] improved the existing
bound for the class S§. For more recent developments on coeflicient estimates and
third order Hankel determinant, see [14, 17, 29, 37, 22, 21, 35]. For ¢ =4 and n = 1,
the fourth order Hankel determinant is given by

Hy(1)(f) = arH3(1)(f) — asA1 + asdg — asA3 (1.4)
where
Ay = (azag — asas) — az(agae — azas) + as(agay — a3),
Ay = (agag — ai) — az(azag — asas) + az(azas — a3)
and

Az = az(agas — a2) — az(azag — asas) + as(azas — a3).
Arif et al. [5] obtained the bound on H4(1)(f) for the functions with bounded turning.
Cho and Kumar [9] computed the bound on Hy(1)(f) for starlike functions associated
with a lune-shaped region. For recent results on fourth order Hankel determinant,
see [19, 10]. For ¢ > 1 and n > 1, the symmetric Toeplitz determinant T,(n) for a
function f € S is defined as

Qn, n41 Gn+4q—1
Ap41 G, e [
Ty(n) =
Onyq—1 Ontq - an,

where a; = 1. In particular, for ¢ = 2 and n = 2,3 the second Toeplitz deteminants
are given by T»(2) = a3 — a3 and T5(3) = a3 — a3.
For ¢ = 3 and n = 1, 2 the third Toeplitz determinants are as follows

T3(1) = 1+ 2a3(az — 1) — a3 and T3(2) = (a2 — a4)(a3 — 2a3 + azay). (1.5)
For ¢ = 4 and n = 2 the fourth Toeplitz determinant is given by
Ty(2) = (a3 — a2)* + 2(a2 — azas)(asay — azas) — (azas — azay)? (1.6)

+ (a — asas)® — (azas — azas)’.

In 2019, Zhang et al. [38] computed the upper bound on the Toeplitz determinant
T5(2) for the starlike functions associated with the sine function. Ahuja et al. [1]
studied the Toeplitz determinants T5(2) and 75(1) for unified class of starlike and
convex functions. Recently, in [39], Zhang and Tang obtained the upper bound on
fourth Toeplitz determinant T4(2) for the starlike functions associated with the sine
function. For more recent details, see [2, 18]

In this manuscript, we prove Zaleman Conjecture |a2 — ag,_1| < (n —1)? for
n = 2 and generalised Zalcman Conjecture |am,an, — Gmin—1| < (m —1)(n — 1) for
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m = 2, n = 4. Further, we obtain the estimates on the third order Hankel determi-
nant Hs(1)(f) for such functions which is an improvement to the existing estimate
computed in [20]. In addition, we compute the bounds on third order Hankel de-
terminants H5(2)(f), Hs(3)(f) and the fourth order Hankel determinant Hy(1)(f).
Moreover, bounds on the symmetric Toeplitz determinants T5(2), T2(3), T5(1),75(2)
and Ty(2) are also determined.

2. Inductive lemmas

In order to establish the main results, we need following lemmas related to
coeflicient estimates.

Lemma 2.1. [30] Let w(z) = c12 + c222 + -+ be a Schwarz function. Then
les + peres +ved| < 1,
where 1/2 < |u| <2, 4(|p| +1)*/27 — (jul +1) <v < 1.
Let B be the class of functions f € A satisfying | f(z)| < 1 for all z € D.

&)
Lemma 2.2. [8] Let f(z) =ap+ Y, anz™ be in B. Then

n=1
|a2n+1‘ S 1-— |CL0|2 - |CL1|2 -t |a'n|27 n= 0a17"' (21)
and
laon] <1 —laol* = |a1|* — -+ = |an_1|* — lan[* n=12-- (2.2)
2n| > 0 1 n—1 1+|a0|a y 4y . .

Equality in (2.1) holds for

ap + a1z + -+ apz" + 22t
) = el =1

1+ (@pz"t + @122 + - - +agz?n Tl

and in (2.2) for

ag+ a1z + -+ an_12"" 1+ Tty + gz

z) = — , lel=1
f( ) 1_|_(1f‘zo‘zn+mzn+l+_._+%Z2n>€ | |

where agln,2€ is non-positive real.

In view of Lemma 2.2, for a Schwarz function w(z) = ¢12z + c22% + - - -, we have
2 2 |ca|? 2 2
lea] <1 —lerl”, [es] <1 —Jea” — and [cq| <1 —[e1|” = [ez|”. (2.3)
L+ e

o0

Lemma 2.3. [33] Let f(z) = 2+ > an2™ be univalent and starlike with respect to
n=2

symmetric points in D. Then

lan] <1,n>2
equality being attained by the function z/(1 4+ ez), |e| < 1.
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Lemma 2.4. [31] If p(z) = 1 4+ p12 + p22? + p3z® + - -+ € P then for all n,m € N

2 0<p<l1
elsewhere.

|,upnpm 7pm+n| < { 2|2'u_ 1|7

If 0 < pu < 1, the inequality is sharp for the function p(z) = (1 + 2"T™)/(1 —
In other cases, the inequality is sharp for the function p(z) = (1+ z)/(1 — z).

3. Zalcman conjecture

Zner) .

In this section, we first prove Zalcman conjecture (n = 2) for starlike functions

with respect to the symmetric space.

Theorem 3.1. If the function f € S% is of the form f(z) = z + a22® + azz® + - -.

Then
la2 — as| < 1.

The inequality is sharp.
Proof. Let f € §5. Then we have

22f'(2) 1+2
f(z)=f(=2) 1-=z
for all z € D so that
22f'(2)

O

where < denotes subordination and p(z) = 1 + p1z + p222 + -+ € P. On comparing

the coefficients of like power terms on both sides, we get

0, — PL.
2 — 2 )
v .
3 2 )
1
ay = g(plpz + 2p3);
1
as = g(pg + 2p4);
1
ag = 15 (4pops + p1(p3 + 2pa) + 8ps);
1 .
a7 = @(pg + 6p2ps + 8pg);

It follows from (3.1) and (3.2) that

Bag =P
2 3 9"
By using Lemma 2.4, we get
1|1
a3 — a3| = 3 ‘217% —p2| < 1.

(3.1)
(3.2)
(3.3)
(3.4)
(3.5)

(3.6)
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The inequality is sharp for the function

22f'(2) 14 22 9 4
- =1+222 4224+ 3.7
f(z2)=f(=2) 1-22 37
by noting the fact ap = 0,a3 = 1 implies |a3 — as| = 1. -

Next we prove the generalized Zalcman conjecture for m = 2 and n = 4.
Theorem 3.2. Let the function f(z) = z + a2z + azz® + - -- € S&. Then
lagay —as| < 1.
The inequality is sharp.

Proof. If the function f € 8§, then using (3.1),(3.3) and (3.4), we get

1 1,
Q204 — A5 = Tﬁpl(le + 2p3) — g(Pz + 2p4)

1 14 n 1/1
= 8P2 2101 2] 1 2291103 Pa -
Using triangle inequality

1 1 1
lasay — as| < g\m\ 517% — P2 5P1Ps = pa

4

1
5

Applying Lemma 2.4 and the fact |p,| < 2, we get
|a2a4 — (l5| < 1.

The inequality is sharp for the function f defined by (3.7). O

4. Hankel determinants

Using the technique discussed in [37], the following theorem gives an improved
estimate on H3(1) for the functions f in the class S%.

Theorem 4.1. Let the function f € S% be of the form f(z) = z + a22® + azz® + - - -.
Then
329

|[Ha(1)(F)] < J5q = 0-8225.
Proof. Let f € 8. Then we have
2zf'(z) . 142
f)=f(=2) 1-—=2

so that
22f'(2) _ 14+ w(z)
f2)=f(=2) 1-w(z)

zeD
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where < denotes subordination and w(z) = ¢12 + 222 + -+ is a Schwarz function.
On comparing the coefficients of like powers of z, we get
1
as =ci, a3 =ci +c2, ag = 5(03 + 3ciea + 2¢3) (4.1)
_1 2 4 2
as = 2(04 + 2c102 + Bejea + 2¢] + 2¢3). (4.2)

Therefore, in view of (1.1), (4.1) and (4.2) the third order Hankel determinant Hs(1)
becomes

1
H3(1)(f) = 1(0%63 + 2c1c9c3 — C% + 20264)
1
= 1(—203(63 —c162) + 3 + cics + 2cacy).

Hence, applying Lemma 2.1 (4 = —1,v = 0) and inequalities given in (2.3), we get

2
|H3(1)(f)|<1(2(1—c1|2— e2]” )+(1_|cl|2_ eof? )
— 4 1+|Cl| 1+‘Cll

+ lerPleal® + 2lea] (1= |ea]? = Jeal?))

1
= ZG(\Cﬂa |cal)-
The function G(z,y) is given by

G(z,y) = g1(z,y) + g2(x, y) + g3(z,9),

where
Y 3
- 1
4 —32% — 23
=2(1— )y — —— = 42
g2(z,y) = 2(1 —a%)y T
g3(z,y) = —y° +a* — 42® + 3
where © = |c;| and y = |c2|. In view of |ea| < 1 — |¢1]?, we maximize the function

G(z,y) in the region
Q={(z,9):2>0,y >0,y <1—2°}.
It is noted that
g1(z,y) <0. (4.3)
Since go(x,y) is a quadratic expression in y, so it attains its maximum value at
(1—-2?)(1+2x)
4—3x2 — g3
Also yo < 1 — 22 for all z € [0,1] and thus we have
(1-2)1+x)3
(24 2)?

Yo =

92(z,y) < g2(x,y0) = =: f(x).
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A simple calcultaion shows that zo = 0.3 is a critical point of the function f in (0,1).
Hence,

29

g2(z,y) < flzo) = 100° (4.4)

For the function gs(z,y), it is evident that
g3(z,y) < g3(2,0) = 2* — 42® + 3 =: h(z).
Now h/(z) = 4z(x? — 2), so h(z) < h(0). This gives
ga(z,y) < h(0) = 3. (4.5)

Using (4.3), (4.4) and (4.5), we get G(z,y) < 329/100.
Therefore, we have |H3(1)(f)| < 329/400 ~ 0.8225. O

Remark 4.2. The obtained upper bound igg ~ 0.8225 on H3(1)(f) (4.1) improves the

existing bound 2 ~ 1.25 [20, Theorem 2.3, p.227] for the functions f € S%.
Next theorem gives bound on H3(2) for the functions f € S§.
Theorem 4.3. If f € S% is of the form f(z) = z + a22® + azz® + ---. Then
83
|Hs(2)(f)| < 51 = 3.45.

Proof. On substituting the values of a4, as and ag from (3.3), (3.4) and (3.5), respec-
tively in the expression asag — a2, we have

1
asa — a2 = 38 1 ——(p1p2 + 2p3) (4paps + p1p5 + 2p1ps + 8ps) — ) — (p5 4 4p3 + 4pips)
1
=33 4( P1P3D3 + DiPs + 2pipapa + 8p1paps + 8pap3 + 2p1p3ps + 4p1papa
+ 16p3ps) — ! = pi— !
PsPs) = & 4 T 1 6p2p4
1 N 1 N 1 N N 1 N 1
384p1p2 64p1p2p3 48p2p3 192p1p2p4 96p1p4p3 48p1p2p5
N 1 1 A 1 1
52PPs ~ gaP2 ~ Pi — TgPaP

_ 1 5/1, 1 1 " 1 1 n
—64p2 6271 D2 16 p1p3 y2Z 24203 2172]?3 Ps

1 1 1 1
+ T6p4 (6191]93 - p4) + ZSP1P2 <4P1p4 +p5> .

By triangle inequality, we get

L 1,1 1 1
|asag — a5| < 64|P2| 6 — P2 +T6\p2\ 1?1173—]94 +ﬂ|]93| 5272]93 + D5
= Ipsl T Ipallpal | Spipa +
yZ p1p3 yZ 48 P1lP2 4;01174 Ps| -
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Using Lemma 2.4 and the inequality |p,| < 2, we get
19
12°

Again, on substituting the values of a3, a4, as and ag from (3.2), (3.3), (3.4) and (3.5),
respectively in the expression aszag — aqas, we have

|a4a6 a5| < (46)

1
azag — asas = %(42931?3 + p1p3 + 2p1papa + 8paps)

1
~ 5l — (p1p3 + 2p1papa + 203pa + 2p3p3 + 4p3pa)
1 1, 1 L] 1
96]922?3 192]91]?2 96p1p2P4 12172]?5 16103;04-
So that
lasas — asas| < |p3| — D4 \p2‘|P1p2 D3l + \p2| p1p4 — D5
16 192
By Lemma 2.4 and the fact |p,| < 2, we have
5
|a3a6 - a4a5\ S g (47)

On substituting the values of ag, a4 and as from (3.2), (3.3) and (3.4), respectively
in the expression azas — a3, we have

9 1 2 1 1 1 1,
asas — ay = - = — — - —
345 4 16 p1 D2 82?2 2p1p3 P4 16193

so that
lasas — a3 < <ol | 703 — pa| + Sl | Sops —pa| + e lpal?
805 — ai| < Toip2 2| + glp2l |5P1Ps — pa) + FElpsl™
Using Lemma 2.4 and the inequality |p,| < 2, we have
2 5
lasas —az| < —. (4.8)

4
It follows from (1.2) that

|H3(2)(f)| < |az||asas — a3| + |as||asas — asas| + |asl|asas — aj.

Using inequality (4.6), (4.7) and (4.8) and Lemma 2.3, we have |H3(2)(f)| < 83/24 ~
3.45. O

In the next theorem we estimate third order Hankel determinant H3(3) for f € S%.

Theorem 4.4. If f(2) =2+ ) a,z" € S%, then
n=2
89

|H3(3)(f)] < 51 = 3.7.



526 Sushil Kumar, Swati Anand and Naveen Kumar Jain

Proof. On substituting (3.4),(3.5) and (3.6), we have

1
asar —ag = 38 4 —(p + 6p5pa + 8p3ps + 2p3pa + 12pap] + 16paps) — 230 1 ——(16p3p3

+ pip3 + 4pip] + 64p2 + 8p1p3ps + 16p1popspa + 64papsps + 4pip3pa
+ 16p1p3ps + 32p1paps)
_ 1 2 2 2 1 4 1 2 1 2 1 2
= 96p2 <p6 31)3) + 384192 <p2 6]91 + 1921)4 D2 3])1
1

4+ 3 _ g + i _ i L
64102 2 91?1173 192]92194 P4 15?1103 192172}?4

1, 4 1 1 1 2 1,
p2 — 3]91 24274 Ps 32?1135 96 Ps 3P1p5 36135

1
- %Pzpsps)-

Using triangle inequality, Lemma 2.4 and the fact |p,| < 2, we get

lasar — a2| < 3 (4.9)

Again in view of (3.3),(3.4),(3.5) and (3.6), we have

a4y — Q605 = 38 4 == (p1p3 + 6p1p3p4 + 8p1p2ps + 2p5ps + 12papsps + 16pspe)

38 1 — (4p3p3 + 8papspa + p1ps + 4p1p3pa + 4p1p; + 8p3ps + 16paps)

1 2 1 _ _'_i 1 _ _A'_L ( _ 2)
48 p1p4 D5 24104 8192]93 Ps 192}72103 Ps — Po

1 1 n n 1 9
24176 p1p2 b3 96p1p4-

Using triangle inequality, by Lemma 2.4 and |p,| < 2, we have

19
lasar — agas| < YR (4.10)

It follows from (1.3) that
|H3(3)| < |as||asar — ag| + |asl|asar — agas| + |as||asas — a3].

Using (4.6),(4.9), and (4.10) and Lemma 2.3, we have |H5(3)(f)| <89/24 ~3.7. O

Next we compute an estimate on the fourth Hankel determinant Hy(1).

Theorem 4.5. Let f € S% be of the form f(z) = z + asz® + azz® +---. Then

[Ha(1)(f)] < 1.84.
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Proof. Since f € S§, then in view of (1.4), (3.1), (3.2), (3.3), (3.4),(3.5) and (3.6), we
get

36864 H4(1)(f) = pi(p3 — 4pa)” + 8} (p3 — 4pa) (P23 — 4ps)

— 32p1(2p5ps — 2p5pspa — 2paps + 12ps(—2p] + paps)

+ p2(—3p3 + 20paps — 12p3ps)) + 8(3p5 — 6papa + 4p5(9pF + 20psps)
— 4p5(p3 + 12ps) + 6(3p3 — 12p} + 16pspaps — 8p3pe)

— 32p2(3p3pa + 2p3 — 3paps)) — 87 (P5 — 8p3pa

+ 16p2(pf + paps) — p3(5p3 + 12pg) + 4(3p3pa — 8p2 + 12papg)).

36864 H,(1)(f) = pips — 8pip5 + 24p5 + 8pip3ps — 64p1p3ps + 40pipsp;
— 32p3p3 + 96p1pap; + 144p; — 8pipapa + 64pTpaps — 48p3pa
— 32p3popspa + 64p1p3pspa — 96pTP3Ps — T68pap3ps + 16p7p]
— 1287 pop] + 288p3p; + T68p1pspy — 576p; — 32pip3ps + 64p1p3ps
— 128pTpapsps + 640pspsps — 384p1p3ps + 128p3paps
— 640p1 papaps + T68p3paps + 256pTp2 — 512pap2 + 96pIpape
— 384p3pe + 384p1papsps — 384p3ps — 384pTpaps + T68p2paps.

A simple calculation gives

1 1 1 1
36864 H4(1)(f) = 8pilp§ (8p§ —p4> + ip:f <4P§ - p4) (4]92173 - p5)

1 5)
~ o1 (93 - ) — S4musm 2 — o)+ 320303 (0t - 2

1
+ 48pj (21?3 - P4> — 96p1p3pa(p1ps — pa) + 576p3 (p1p3 — pa)

5
— 640papa(p1ps — pe) + 384p3ps (p1p2 — p3) — 128paps(3pT — p2)

2 1 2 2 1 2 3 1
+ 512p3 P12 )+ 192p5ps oP1—p2)+ 192p; 3P1P5 — Do

1
— T68p3pa(p2ps — ps) — 96p1p3 (p1p2 — p3) — 640papsps <p? - P2>

1 1
— 384p1p3 <8P2p3 - P5> — 288pap] <9P% - P2>

. 1
— 144p} (—3171]?2 - p3)
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which implies

1 1.1 1
36864|Ha(1)(f)| < 8pips gpg —pa| + gp‘i’ ZP% — paf|gP2ps = D5

1 5

+ 64pips gpﬁ = pa| + 64p1p3ps[p; — pal + 32p3p3 | pT — p2

1
+ 48p3 510% — pa| + 96p1p3pa|p1ps — pa| + 576p3 P13 — P4l
2 1 2
+ T68pspa|paps — ps| + 96p1ps|p1p2 — p3| + 640p2psps 5P~ P2

+ 640p2pa|p1ps — pe| + 384psps|pipe — p3| + 128paps|3p; — po

1 1 1
+512p3 | 51 — p2| + 192p3ps | 5p1 — p2| + 19295 | 5p1ps — po
2|1 21 5 3| 1
+ 384p1p3 gP2Ps —Ps| + 288papy gPi— P2\t 144p3 —3P1P2 — D3|
Using Lemma 2.4 and the fact |p,| < 2, we get
4241
Hy(1 < —— ~1.84.
HA(1)(7)] < gt ~ 18
Thus, we have the required bound for |Hy(1)(f)]. O

5. Toeplitz determinants

In this section, we first compute the bound on second Toeplitz determinant
T5(2).

Theorem 5.1. If f € S% be of the form f(z) = z + azz® + azz® +---. Then
T2(2)(f)] < 2.
The inequality is sharp.

Proof. Since f € S%, then on putting the values of a2 and a3 from (3.1) and (3.2) in

expression T3(2) = a3 — a3, we get

12(2)] = 1o} - a3 = | 22 - EL].
Applying triangle inequality and using the fact |p,| < 2, we get
[T2(2)] < 2.
The inequality is sharp for the function f : D — C defined as
z
1) = 1—iz’
It is noted that ay = i,a3 = —1 and thus |a3 — a3| = 2. O

Next, we obtain an estimate for second Toeplitz determinant T5(3).
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Theorem 5.2. Let f € S be of the form f(z) = z + asz® + azz® +---. Then
T2(3)(f) < 2.
The inequality is sharp.

Proof. For f € S%, then on putting the values of ag and a4 from (3.2) and (3.3) in
expression T3(3) = a% — a3, we get

1 2
Ta)] = o} - a3 = | g o + 200 = 22

1/ 1 >
16 2191192 b3 4|

Applying triangle inequality, Lemma 2.4 and the fact |p,| < 2, we get

IT2(3)] < 2.
To prove the sharpness, consider the function f : D — C defined as
z
1E) =15
Here a3 = —1 and a4 = —i and thus |a] — a3| = 2. O

In the next theorem we obtain an estimate for the bound on third Toeplitz
determinant T3(1).

Theorem 5.3. If f € S% be of the form f(z) = z + a2z® + azz® + . Then

T3(1)(F)] < 4.
The inequality is sharp.

Proof. Let f € St. Then in view of (1.5), (3.1) and (3.2), we get

2 2
IT3(1) = |1+ 2a3(as — 1) — a3| = ‘1+2111 (Z-1)- <’j42>’

1
=7 |44 pip2 — 207 — P3|
1
= 714+ P20t —p2) — 2p1|.
Using triangle inequality, we obtain
1
ITs(D)] < 5 (4+ [p2llpt = po| + 21pt)),

Applying Lemma 2.4 and using the fact that |p,| < 2, we get
IT5(1)] < 4.

For the function f(z) = %, we have ag = ¢ and a3 = —1. Thus, we get
— iz

|1+ 2a3(az — 1) — a3| = 4.
This proves the sharpness of the result. 0
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Next we compute the bound on third Toeplitz determinant T5(2).

Theorem 5.4. Let f € S% be of the form f(z) = z + asz® + azz® +---. Then

IT5(2)(f)| = (a2 — as)(a3 — 203 + azas)| < 6.

Proof. In view of (3.1) and (3.3), we get

T5(2)(f)]
= |(ag — a4) (a3 — 243 + azay)|
p1 1 P1 p1 Y41
= _Z 2. 7 2
(2 8(p1p2+ p3)> <4 i 16(191192 - ps))’
_ pi + 1 + 1 1 2
i 8 32]91192 128]91192 16?1103 321711721?3 32p1p3
Zﬁ—pi—ip3 e ) + = (—spapr—ps ) — i
8 8 1P\ P2 T Ps | haoPiba { T PPz = Ps | o Pips)
Using triangle inequality, we obtain
1 1 1 1 1
Ta(2 < = 3 - 4 - 3|_ = _ - 2
T < gl + gl + gl |~ 5pipe = ps| + 3 lmnl I

+ Pl |-
32 P11l P2 4271192 P3| -

By using Lemma 2.4 and the inequality |p,| < 2, we get |T5(2)(f)| < 6.

The following theorem gives an estimate on fourth Toeplitz deteminant T4(2).

Theorem 5.5. Let f € S be of the form f(z) = z + asz® + azz® +---. Then

IT4(2)(f)] =[(a3 — a3)® + 2(a3 — azas)(azas — azas) — (azas — asas)?

+ (a4 — a3a5) — (a3a4 — a2a5)2| < 15.12.
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Proof. In view of (1.6), (3.1), (3.2), (3.3) and (3.4) and on rearranging the terms, we
have

4096T4(2)(f)

= 256(p; — p3)> — 16p3(p1(—4 + p2) + 2p3)* — 64(p2ps — p1pa)?
+ ((p1p2 + 295)% — Apa(P2 + 2pa))2 — 32(p2ps — 4p2 + 2p1ps)
(pip2 + 2p1ps — p2(p3 + 2p4))

= 256p} — T68pIp3 — 32pipa + 256p3ps + 2564 + 16p3ps + pips
— 128p3 — 8pips + 16p5 — 128pipaps + 512p1p5ps + 8pipps
— 32p1p3ps — 128pips — 128p3p3 + 24pTpsp; — 32p5p3 + 32p1paps
+ 16p5 + 64pTp3ps — 256p3ps — 16pTp3ps + 64p3ps + 256p1p2pspa
— 64p1p3psps — 64pap3ps — 64pip; + 64psp;

1 1 1
= —256p3p3 <8p? — p2> + 128p; <8p? - p2> — 16p; <2pf - pz)

1 1 3
— 512p1paps <4p§ - pz) — 64p3 (2p1p3 - p4> + 32p3p3 (419? - p2>

1 1
+ 16pip3 <2P1p3 — p4) + 64pap3 (2101}73 - P4> + 64pipa(p3 — ps)

— 64p3pa(p1ps — pa) + 256p] — T68p7p3 + 256p; + pipy — 128p7p3
— 128p3p3 + 16p5 — 256p3ps + 256p1 popspa.

Using triangle inequality, we get

1 1
4096|T4(2)(f)| < 256|p1[*[p2|? gp?—pz + 128]ps|* gpf—pz

+ 16|po|° + 512|p1||p2||ps]

1 1
ZP% — pa| + 64pa|* ‘2111173 — P4

1,
§p1 — D2

+ 32[pa|*|ps|?

1
+ 16|p1|?|p2|? ’mps —pa

3 5
4101 b2 )

+ 64|p1|*|p4l[p3 — pa

1
+ 64|ps||ps|? ‘2291173 — P4

+ 64|pa|*|p4l|p1ps — pa| + 256]p1|* + 768|p1|*|p2|® + 256|pa|*
+ |p1|*|pal* + 128]p1 *[ps|* + 128|pa[*[ps|? + 16]ps|* + 256|p2 | |p4]
+ 256|p1||p2|[p3]|pal-

Applying Lemma 2.4 and the fact that |p,| < 2, we get |T4(2)(f)] < 15.12. O
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