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General decay rates of the solution energy
in a viscoelastic wave equation with boundary
feedback and a nonlinear source

Islem Baaziz, Benyattou Benabderrahmane and Salah Drabla

Abstract. In a bounded domain, we consider a viscoelastic equation

utt −∆u+

∫ t

0

g(t− τ)∆u(τ)dτ = |u|γu

with a nonlinear feedback localized on a part of the boundary, where γ > 0 and
the relaxation function g satisfied g′(t) ≤ ξ(t)gp(t), 1 ≤ p < 3

2
, and certain

initial data. We establish an explicit and general decay rate result, using some
properties of the convex functions. Our new results substantially improve several
earlier related results in the literature.
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1. Introduction

In this paper, we are concerned with the energy decay rate of the following
viscoelastic problem with nonlinear boundary dissipation and a nonlinear source

utt −∆u+
∫ t

0
g(t− τ)∆u(τ)dτ = |u|γu, in Ω× (0,∞)

u = 0, on Γ0 × (0,∞)
∂u
∂ν −

∫ t
0
g(t− τ)∂u∂ν (τ)dτ + h(ut) = 0, on Γ1 × (0,∞)

u(x, 0) = u0(x); ut(x, 0) = u1(x), x ∈ Ω

(1.1)
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where Ω is a bounded domain of Rn with a smooth boundary ∂Ω = Γ0 ∪ Γ1. Here,
Γ0 and Γ1 are closed and disjoint, with meas(Γ0) > 0, ν is the unit outward normal
to ∂Ω, γ > 0, and g, h are specific functions.

Let us mention some known results related to the viscoelastic problem with
nonlinear boundary dissipation. In [7], Cavalcanti and al. considered the following
problem 

utt −4u+
∫ t

0
g (t− s)4 u (s) ds = 0, in Ω× (0,∞)

∂u
∂ν −

∫ t
0
g (t− s) ∂u∂ν (s) ds+ h (ut) = 0, on Γ1 × (0,∞)

u (x, t) = 0, on Γ0 × (0,∞)
u (x, 0) = u0, ut (x, 0) = u1, x ∈ Ω.

(1.2)

The existence and uniform decay rate results were established under quite restrictive
assumptions on damping term h and the kernel function g. Later, Cavalcanti and
al. [6] generalized this result without imposing a growth condition on h and under a
weaker assumption on g. Recently, Messaoudi and Mustafa [18] exploited some prop-
erties of convex functions [2] and the multiplier method to extend these results. They
established an explicit and general decay rate result without imposing any restrictive
growth assumption on the damping term h and greatly weakened the assumption
on g. Also, Li et al [11] have analyzed the global existence and decay estimates for
nonlinear viscoelastic wave equation with boundary dissipation. They established uni-
form decay rate of the energy under suitable conditions on the initial data and the
relaxation function g. Let us also mention other papers in connection with viscoelastic
effects such as Dafermos [8] [9], Mustafa MI [22], Lagnese [10], Aassila et al. [1]. On
considering the boundary dissipation,we refer the reader to related works Mohammad
M. Al-Gharabli [3], [20], [21], [23] and the references therein.

In a situation in which a source term is competing with the viscoelastic dissi-
pation, many authors have established stability results. For example, Messaoudi [16]
looked at

 utt −∆u+
∫ t

0
g(t− τ)∆u(τ)dτ = |u|γu, in Ω× (0,∞)

u = 0, on ∂Ω× (0,∞)
u(x, 0) = u0(x); ut(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary, γ > 0, and the
relaxation function g is a positive and uniformly decaying function satisfies a relation
of the form

g′(t) ≤ −ξ(t)g(t), (1.3)

where ξ is a nonincreasing differentiable function such that∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ ≤ k, ξ(t) > 0, ξ′(t) ≤ 0, ∀t > 0,

∫ ∞
0

ξ(t)dt = +∞.

He established a more general decay result, from which the usual exponential and
polynomial decay rates are only special cases.
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In a situation in which a source term is competing with the viscoelastic dissipa-
tion and on considering the boundary dissipation, Shun and Hsueh [24] considered

utt − k0 4 u (t) +

∫ t

0

g (t− s) div (a (x)∇u (s)) ds+ b (x)ut = f (u) , in Ω× (0,∞) ,

k0
∂u

∂ν
−
∫ t

0

g (t− s) (a (x)∇u (s)) .νds+ h (ut) = 0, on Γ1 × (0,∞) ,

u (x, t) = 0, on Γ0 × (0,∞) ,

u (x, 0) = u0, ut (x, 0) = u1, x ∈ Ω,

where Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary, the relaxation
function g is a positive and uniformly decaying function satisfying (1.3), and where ξ
is a nonincreasing differentiable positive function such that∫ ∞

0

ξ(t)dt = +∞.

The authors established the general decay rate of the solution energy which is not
necessarily of exponential or polynomial type. Another problems, in which in which
a source term is competing with the viscoelastic dissipation and on considering the
boundary dissipation, were discussed in [5], [14], [12] and [13], and the existence,
uniform decay rate results were established.

In this article, we devote ourselves to the study of the problem (1.1). Motivated
by previous work and by the idea of Messaoudi and Mustafa [17], which considers a
wider class of relaxation functions g, we obtain a more general and explicit energy
decay formula, to from which the exponential and the polynomial decay rates are
only special cases of our result. In fact, our decay formulas extend and improve some
results of the literature.

2. Preliminaries

In this section we prepare some material needed in the proof of our result. We
have the imbedding: H1

Γ0
↪→ L2(γ+1) (Ω) . Let Ce > 0 be the optimal constant of

Sobolev imbedding which satisfies the following inequality:

‖u‖2(γ+1) ≤ Ce ‖∇u‖2 , ∀u ∈ H
1
Γ0
, (2.1)

and we use the trace-Sobolev imbedding: H1
Γ0

↪→ Lk (Γ1) , 1 ≤ k < 2(n−1)
n−2 . In this

case, the imbedding constant is denoted by B1, that is

‖u‖k,Γ1
≤ B1‖∇u‖2. (2.2)

Next, we state the assumptions for problem (1.1) as follows.
For the relaxation function g we assume the following:

(G1) g : R+ −→ R+ is a nonincreasing C1 function satisfying

g(0) > 0, 1−
∫ ∞

0

g(s)ds = l > 0.
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(G2) There exists a nonincreasing differentiable function ξ : R+ → R+, with ξ (0) > 0,
and satisfying

g′(t) ≤ ξ(t)gp(t), 1 ≤ p < 3

2
, t ≥ 0.

(G3) For the nonlinear term, we assume

0 < γ ≤ 2

(n− 2)
, n ≥ 3

γ > 0, n = 1, 2.

(G4) h : R −→ R is a nondecreasing C0 function such that there exist a strictly
increasing function h0 ∈ C1([0,+∞)), with h0(0) = 0, and positive constants c1, c2,
ε such that

h0(| s |) ≤| h(s) |≤ h−1
0 (| s |) for all | s |≤ ε

c1 | s | ≤| h(s) |≤ c2 | s | for all | s |≥ ε.

In addition, we assume that the function H, defined by H(s) =
√
sh0(
√
s), is a strictly

convex C2 function on (0, r2], for some r > 0, when h0 is nonlinear.
By using the Galerkin method and procedure similar to that of [11], and [23],

we have the following local existence result for problem (1.1).

Theorem 2.1. Let hypotheses (G1)-(G4) hold and assume that u0 ∈ H1
Γ0
∩ H2(Ω),

u1 ∈ H1
Γ0
. Then there exists a strong solution u of (1.1) satisfying

u ∈ L∞
(
[0, T ) ;H1

Γ0
∩H2 (Ω)

)
ut ∈ L∞

(
[0, T ) ;H1

Γ0

)
utt ∈ L∞

(
[0, T ) ;L2 (Ω)

)
,

for some T > 0.

Proposition 2.2. Suppose that (G1), (G3) and (G4) hold. Let (u0, u1) ∈ V ×L2(Ω) be
given, satisfying (2.7). Then the solution u of (1.1) is global and bounded.

We introduce the following functionals

J (t) =
1

2

(
k1 −

∫ t

0

g (s) ds

)
‖∇u‖22 +

1

2
(g ◦ ∇u) (t)− 1

γ + 2
‖u‖γ+2

γ+2

E (t) = J (u (t)) +
1

2
‖ut‖22 , for t ∈ [0, T ) (2.3)

I (t) = I (u (t)) =

(
k1 −

∫ t

0

g (s) ds

)
‖∇u‖22 + (g ◦ ∇u) (t)− ‖u‖γ+2

γ+2 , (2.4)

where

(g ◦ v) (t) =

∫ t

0

g (t− s) ‖v (t)− v (s)‖22 ds, (2.5)

and E (t) is the energy functional.
A direct differentiation, using (1.1), leads to

E′(t) =
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t) ‖ ∇u(t) ‖22 −

∫
Γ1

ut(t)h(ut(t))dΓ ≤ 0, (2.6)



A viscoelastic system with boundary feedback 387

For completeness, using similar procedure in [15], we state the global existence result.

Lemma 2.3. Suppose that (G1) and (G3) hold, and (u0, u1) ∈ V × L2(Ω), such that

β =
Cγ+2
e

l

(
2(γ + 2)

γl
E(u0, u1)

)γ/2
< 1 (2.7)

I(u0) > 0,

then I(u(t)) > 0, ∀t > 0.

Proposition 2.4. Suppose that (G1), (G3) and (G4) hold. Let (u0, u1) ∈ V ×L2(Ω) be
given, satisfying (2.7). Then the solution u of (1.1) is global and bounded.

Adopting the proof of [17], we have the following results which are crucial for
the proof of our main result.

Lemma 2.5. Assume that g satisfies (G1) and (G2) then∫ +∞

0

ξ (t) g1−σ (t) dt < +∞, ∀σ < 2− p.

Lemma 2.6. Assume that g satisfies (G1) and (G2), and u is the solution of (1.1)
then, for 0 < δ < 1, we have

(g ◦ ∇u) (t) ≤ C
[(∫ +∞

0

g1−σ (t) dt

)
E (0)

] p−1
p−1+δ

(gp ◦ ∇u)
δ

p−1+δ (t) .

By taking δ = 1
2 , we get

(g ◦ ∇u) (t) ≤ C
[∫ t

0

g
1
2 (s) ds

] 2p−2
2p−1

(gp ◦ ∇u)
1

2p−1 (t) . (2.8)

Corollary 2.7. Assume that g satisfies (G1) and (G2), and u is the solution of (1.1)
then

ξ (t) (g ◦ ∇u) (t) ≤ C [−E′ (t)]
1

2p−1 . (2.9)

If G is a convex function on [a, b] , (−G is convex), f : Ω → [a, b] and h are
integrable functions on Ω, with h (x) ≥ 0 and

∫
Ω
h (x) dx = k > 0, then Jensen’s

inequality states that

1

k

∫
Ω

G [f (x)]h (x) dx ≤ G
[

1

k

∫
Ω

f (x)h (x) dx

]
. (2.10)

For the special case G (y) = y
1
q , y ≥ 0, p > 1, we have

1

k

∫
Ω

[f (x)]
1
q h (x) dx ≤

[
1

k

∫
Ω

f (x)h (x) dx

] 1
q

.
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3. Decay of solutions

In this section we state and prove the main result of our work. For this purpose,
we adopt the following result from [24] without proof.

Lemma 3.1. There exist positive constants ε1, ε2, m, t0 such that the fun

F (t) := E(t) + ε1ψ1(t) + ε2ψ2(t), (3.1)

is equivalent to E and satisfies

F ′(t) ≤ −mE(t) + c

∫
Γ1

h2(ut)dτ + c(g ◦ ∇u)(t). (3.2)

where

ψ1(t) :=

∫
Ω

uutdx, (3.3)

ψ2(t) := −
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ))dτdx.

Lemma 3.2. [19] Under the assumptions (G1), (G2) and (G4), the solution satisfies
the estimates ∫

Γ1

h2(ut)dΓ ≤
∫

Γ1

uth(ut)dΓ, if h0 is linear (3.4)

∫
Γ1

h2(ut)dΓ ≤ cH−1(J(t))− cE′(t), if h0 is nonlinear (3.5)

where

J(t) =
1

| Γ12 |

∫
Γ12

uth(ut)dΓ ≤ E′(t),

and

Γ12 = {x ∈ Γ1 : |ut| ≤ ε1}.

Proof. Case 1: h0 is linear, using (G4) we have

c′1 |ut| ≤| h(ut) |≤ c′2 |ut| ,

and hence

h2(ut) ≤ c′2uth(ut).

So, (3.4) is established.
Case 2: h0 is nonlinear on [0, ε]:

First, we assume that max {r, h0(r)} < ε; otherwise we take r smaller. Let
ε0 = min {r, h0(r)}; them for ε0 ≤| s |≤ ε, using (G4), we have

| h(s) |≤ h−1
0 (| s |)
| s |

| s |≤ h−1
0 (ε)

ε0
| s | and | h(s) |≥ h0(| s |)

| s |
| s |≥ h0(ε0)

ε
| s |,

so, we conclude that{
h0(| s |) ≤| h(s) |≤ h−1

0 (| s |) for all | s |< ε0

c′1 | s |≤| h(s) |≤ c′2 | s | for all | s |≥ ε0.
(3.6)
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Since H(s2) =| s | h0(| s |), then using (3.6), we obtain

H(h2(s)) ≤ sh(s) for all | s |≤ ε0,

which gives

h2(s) ≤ H−1(sh(s)) for all | s |≤ ε0.

To estimate the last integral in (3.2), we consider the following partition of Γ1:

Γ11 = {x ∈ Γ1 : |ut| > ε0}, Γ12 = {x ∈ Γ1 : |ut| ≤ ε0}.

Recalling the definition of ε0 and using (3.6), we obtain on Γ12,

uth(ut) ≤ ε0h
−1
0 (ε0) ≤ h0(r)r = H(r2) (3.7)

and

uth(ut) ≤ ε0h
−1
0 (ε0) ≤ rh−1

0 h0(r) = r2.

Jensen’s inequality gives

H−1(J(t)) ≥ c
∫

Γ12

H−1(uth(ut))dΓ. (3.8)

Thus, using (3.6)− (3.8), we get∫
Γ1

h2(ut)dΓ =

∫
Γ12

h2(ut)dΓ +

∫
Γ11

h2(ut)dΓ

≤
∫

Γ12

H−1(uth(ut))dΓ + c

∫
Γ11

uth(ut)dΓ

≤ cH−1(J(t))− cE′(t). (3.9)

�

Theorem 3.3. Let (u0, u1) ∈
(
H1

Γ0
× L2 (Ω)

)
be given . Assume that (G1)-(G4) are

satisfied and h0is linear. Then, for any t0 > 0, there exist two positive constants K,
and λ such that the solution of (1.1) satisfies, for all t ≥ t0,

E (t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

, if p = 1. (3.10)

E (t) ≤ K

[
1

1 +
∫ t
t0
ξ2p−1 (s) ds

] 1
2p−2

, 1 < p <
3

2
. (3.11)

Moreover, if ∫ +∞

0

[
1

tξ2p−1 (t) + 1

] 1
2p−2

dt < +∞, 1 < p <
3

2
, (3.12)

then

E (t) ≤ K

[
1

1 +
∫ t
t0
ξp (s) ds

] 1
p−1

, 1 < p <
3

2
. (3.13)
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Proof. Multiplying (3.2) by ξ(t) and using Eqs. 3.4, we get

ξ(t)F ′(t) ≤ −mξ(t)E(t) + cξ(t)(g ◦ ∇u)(t) + cξ(t)

∫
Γ1

h2(ut)dτ

≤ −mξ(t)E(t) + cξ(t)(g ◦ ∇u)(t)− cξ(t)E′ (t)
which gives, as ξ(t) is non-increasing,

(ξF+CE)
′
(t) ≤ −mξ(t)E (t) + cξ(t)(g ◦ ∇u)(t), ∀t ≥ t0. (3.14)

Let L (t) := ξ (t)F (t) +CE (t) , then clearly L ∼ E and we have, for some m1 > 0,

L′ (t) ≤ −m1ξ(t)L (t) + cξ(t)(g ◦ ∇u)(t), ∀t ≥ t0.
Now, using the procedure similar to that of [17], we obtain the results of the theorem.

�

Theorem 3.4. Let (u0, u1) ∈ V ×L2(Ω) be given, satisfying (2.7). Assume that (G1)−
(G4) hold and h0 is nonlinear. Then there exist positive constants k1, k2 and k3such
that the solution of (1.1) satisfies , for all t ≥ t0,

E(t) ≤ k3H
−1
1

(
k1

∫ t

t0

ξ(s)ds+ k2

)
, p = 1. (3.15)

E(t) ≤ k3H
−1
1

(
k1

∫ t

t0

ξ2p−1(s)ds+ k2

)
, 1 < p <

3

2
. (3.16)

Moreover, if ∫ +∞

0

H−1
1

(
k1tξ

2p−1(t) + k2

)
dt < +∞, 1 < p <

3

2
, (3.17)

then

E(t) ≤ k3H
−1
2

(
k1

∫ t

t0

ξp(s)ds+ k2

)
, 1 < p <

3

2
, (3.18)

where H1(t) =
∫ 1

t

1

t2p−1H ′(ε0t))
ds. and where H2(t) =

∫ 1

t

1

t2p−1H ′(ε0t))
ds.

Here, H1 and H2 are strictly decreasing and convex on (0, 1], with lim
t−→0

Hi(t) = +∞,

i = 1, 2.
Simple calculations show that (3.16) and (3.17) yield∫ +∞

t0

E (t) dt < +∞.

Proof. Case of p = 1. Recalling G(2) and (2.6), Multiplying (3.2) by ξ(t), we obtain,
for all t ≥ t0

ξ(t)F ′ (t) ≤ −mξ(t)E (t) + C (ξ(t)g ◦ ∇u) (t) + cξ(t)

∫
Γ1

h2(ut)dτ (3.19)

≤ −mξ(t)E (t)− C (g′ ◦ ∇u) (t) + cξ(t)

∫
Γ1

h2(ut)dτ

≤ −mξ(t)E (t)− CE′ (t) + cξ(t)

∫
Γ1

h2(ut)dτ,



A viscoelastic system with boundary feedback 391

which leads to

(ξF+CE)
′
(t) ≤ −mξ(t)E (t) + cξ(t)

∫
Γ1

h2(ut)dτ, ∀t ≥ t0. (3.20)

Let L (t) := ξ (t)F (t) +CE (t) , then clearly L ∼ E and we have, for some m1 > 0,

L′ (t) ≤ −m1ξ(t)L (t) + cξ(t)

∫
Γ1

h2(ut)dτ, ∀t ≥ t0.

Now, using the procedure similar to that of [19], we obtain the results of the theorem.

Case of 1 < p <
3

2
.

Multiplying (3.2) by ξ(t) and we using 2.7, we obtain

ξ(t)F ′(t) ≤ −mξ(t)E(t) + cξ(t)

∫
Γ1

h2(ut)dτ + k(−E′
1

2p−1 (t)),

multiplying by ξ2p−2(t)E2p−2(t) and using Young’s inequality

ξ2p−1(t)E2p−2(t)F ′(t) ≤ −mξ2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)

∫
Γ1

h2(ut)dτ

+ k (−E′(t))
1

2p−1 (t)ξ2p−2(t)E2p−2(t)

≤ −mξ2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)

∫
Γ1

h2(ut)dτ

+ k(−E′2p−1(t)E2p−1(t)

F ′2(t) ≤ k1ξ
2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)

∫
Γ1

h2(ut)dτ.

(3.21)

With F2(t) = F (t)ξ2p−1(t)E2p−2(t) + kE(t); F0 ∼ E.
Therefore, using (3.5), (2.5) becomes

F ′2(t) ≤ k1ξ
2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)

(
H−1(λ(t))− E′(t)

)
F ′2(t) ≤ k1ξ

2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)H−1(λ(t))− cξ2p−1(0)E2p−2(0)E′(t)

F ′3(t) ≤ k1ξ
2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)H−1(λ(t))

with F3 = F2 + CE then, F3 ∼ E.
Now, for ε0 < r2 and c0 > 0, using (3.9) and the fact that E′ ≤ 0, H ′ ≥ 0, H ′′ ≥ 0
on (0, r2], we find that the functional F2 defined by

F4(t) := H ′
(
ε0
E(t)

E(0)

)
F2(t) + c0E(t)

satisfies, for some α1, α2 > 0,

α1F4(t) ≤ E(t) ≤ α2F4(t) (3.22)
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and

F ′4(t) = ε0
E′(t)

E(0)
H ′′

(
ε0
E(t)

E(0)

)
F2(t) +H ′

(
ε0
E(t)

E(0)

)
F ′2(t) + c0E

′(t)

≤ −kξpEp(t)H ′
(
ε0
E(t)

E(0)

)
+ cξp(t)Ep−1(t)H−1(λ(t))H ′

(
ε0
E(t)

E(0)

)
+ c0E

′(t).

(3.23)

Let H∗ be the convex conjugate of H in the sense of young (see [4] p. 61− 64); then

H∗(s) = s (H ′)
−1

(s)−H
[
(H ′)

−1
(s)
]
, if s ∈

[
0, H ′2)

]
and H∗ satisfies the following Young’s inequality:

AB ≤ H∗(A) +H(B), if A ∈
(
0, H ′2)

]
, B ∈

(
0, r2

]
. (3.24)

With A = H ′
(
ε0
E(t)

E(0)

)
and B = H−1(λ(t)), using (2.6), (3.7) and (3.23) − (3.24),

we arrive at

F ′4(t) ≤ −kξ2p−1E2p−1(t)H ′
(
ε0
E(t)

E(0)

)
+ cξ(t)λ(t)

+cξ2p−1(t)E2p−2(t)H∗
(
H ′
(
ε0
E(t)

E(0)

))
+ c0E

′(t),

that gives

F ′4(t) ≤ −kξ2p−1E2p−1(t)H ′
(
ε0
E(t)

E(0)

)
+ cε0ξ

2p−1(t)
E2p−1(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
−cE′(t) + c0E

′(t).

Consequently, with a suitable choice of ε0 and k, we obtain, for all t ≥ t0,

F ′4(t) ≤ −k1ξ
2p−1(t)

(
E(t)

E(0)

)2p−1

H ′
(
ε0
E(t)

E(0)

)
= −k1ξ

2p−1(t)H2

(
E(t)

E(0)

)
,

(3.25)
where H2(t) = t2p−1H ′(ε0t).
Since h0 ∈ C1 ([0,+∞]), then it is evident that H ∈ C1 ([0,+∞]) and H ′(0) = h′0(0).
So, H2(0) = 0 and since

H ′2(t) = (2p− 1)t2p−2H ′(ε0t) + ε0t
2p−1H ′′(ε0t)

then, using the strict convexity of H on (0, r2], we find that H ′2(t), H2(t) > 0 on [0, 1].

Thus, with R(t) =
α1F4(t)

E(0)
, and using (3.22) and (3.25), we have R ∼ E and, for

some k1 > 0,

R′(t) ≤ −k1ξ
2p−1(t)H2(R(t)), ∀ t ≥ t0.

Then, a simple integration gives, for some k2 > 0,

R(t) ≤ H−1
1

(
k1

∫ t

t0

ξ2p−1(s)ds+ k2

)
, ∀t > t0,
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where H1(t) =
∫ 1

t

1

H2(s)
ds.

To establish (3.18) Multiplying(3.2) by ξ(t) and recall Remark 3. So, we have

ξ(t)F ′ (t) ≤ −mξ(t)E (t) + Cξ(t) (g ◦ ∇u) (t) + cξ(t)

∫
Γ1

h2(ut)dτ

= −mξ(t)E (t) + C
η (t)

η (t)

∫ t

0

[ξp (s) gp (s)]
1
p ‖∇u (t)−∇u (t− s)‖22

+ cξ(t)

∫
Γ1

h2(ut)dτ, (3.26)

where

η (t) =

∫ t

0

‖∇u (t)−∇u (t− s)‖22 ds ≤ C
∫ t

0

‖∇u (t)‖22 + ‖∇u (t− s)‖22 ds

≤ C

∫ t

0

[E (t) + E (t− s)] ds ≤ 2C

∫ t

0

E (t− s) ds

= 2C

∫ t

0

E (s) ds < 2C

∫ +∞

0

E (s) ds < +∞.

Applying Jensens’s inequality (2.10) for the second term on the right hand side of
(3.26), with

G(y) = y
1
p , y > 0, f (s) = ξp (s) gp (s)

and

h (s) = ‖∇u (t)−∇u (t− s)‖22 ,
to get

ξ(t)F ′ (t) ≤ −mξ(t)E (t) + cξ(t)

∫
Γ1

h2(ut)dτ,

+Cη (t)

[
1

η (t)

∫ t

0

ξp (s) gp (s) ‖∇u (t)−∇u (t− s)‖22 ds
] 1
p

where we assume that η(t) > 0.

Therefore, we obtain

ξ(t)F ′ (t) ≤ −mξ(t)E (t) + cξ(t)

∫
Γ1

h2(ut)dτ

+Cη
p−1
p (t)

[
ξp−1 (0)

∫ t

0

ξ (s) gp (s) ‖∇u (t)−∇u (t− s)‖22 ds
] 1
p

≤ −mξ(t)E (t) + C (−g′ ◦ ∇u)
1
p (t) + cξ(t)

∫
Γ1

h2(ut)dτ

≤ −mξ(t)E (t) + C (−E′ (t))
1
p + cξ(t)

∫
Γ1

h2(ut)dτ.
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Multiplying by ξp (t)Ep(t), and repeating the same computations as in above, we
arrive at

E(t) ≤ k3H
−1
2

(
k1

∫ t

t0

ξp(s)ds+ k2

)
, 1 < p <

3

2
,

where H2(t) =
∫ 1

t

1

tpH ′(ε0t))
ds.

Remark 3.5. In the case where ‖ ∇u(t) − ∇u(t − s) ‖= 0 and hence from (3.2) we
have

F ′ (t) ≤ −mE (t) + c

∫
Γ1

h2(ut)dτ,

using the procedure similar to that of [19], we obtain

Case h0 linear

E (t) ≤ Ce−mt.
Case h0 nonlinear

E (t) ≤ H−1
1 (k1t+ k2) , ∀t > t0

This completes the proof of our main result. �

Example 3.6. As in [17], we give an example to illustrate the existence of relaxation
function g and ξ satisfying (G2):

If p = 1:

Let g (t) = ae−b(1+t), where b > 0 < ν ≤ 1 and a > 0 is chosen so that∫ +∞
0

g (t) dt < 1. Then g′ (t) = −ξ (t) g (t) where ξ (t) = b.

If 1 < p <
3

2
:

Let g (t) = a
(1+t)ν , ν > 2, where a > 0 is a constant so that

∫ +∞
0

g (t) dt < 1. We have

g′ (t) = − aν

(1 + t)
ν+1 = −b

(
a

(1 + t)
ν

) ν+1
ν

= −bgp (t) , p =
ν + 1

ν
<

3

2
, b > 0.

with ξ (t) = b.

Example 3.7. As in [2, 6], we give an example to illustrate the energy decay rates
given by Theorem (3.3) and Theorem (3.4).
If h satisfies

c1 min {| s |, | s |q} ≤| h(s) |≤ c2 max
{
| s |, | s |1/q

}
,

for some c1, c2 > 0 and q ≥ 1. Then h0(s) = csq and H̄(s) =
√
sh0(
√
s) = cs

q+1
2

is a strictly convex C2 function on (0,∞), then H−1
1 (t) = (ct + c1)

−2
4p+q−5 , and the

relaxation function g and ξ given in Example 3.6.
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Then, we obtain for some constants c, c′, c′′ > 0:
If p = 1 and q = 1 (h0 is linear), by Theorem (3.3) we arrive at

E(t) ≤ ce−c
′ ∫ t

0
ξ(s)ds = ce−c

′bt.

If 1 < p < 3
2 and q = 1 (h0 is linear), by Theorem (3.3) we arrive at

E(t) ≤ c
(
c′
∫ t

0

ξ2p−1(s)ds+ c′′
)− 1

2p−2

= c (c′bt+ c′′)
− 1

2p−2 .

If p = 1 and q > 1 (h0 is nonlinear), by Theorem (3.4) we arrive at

E(t) ≤ c
(
c′
∫ t

0

ξ(s)ds+ c′′
)− 2

q−1

= c (c′bt+ c′′)
− 2
q−1 .

If 1 < p < 3
2 and q > 1 (h0 is nonlinear), by Theorem (3.4) we arrive at

E(t) ≤ c
(
c′
∫ t

0

ξ2p−1(s)ds+ c′′
)− 2

4p+q−5

= c (c′bt+ c′′)
− 2

4p+q−5 .
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[21] Muñoz Rivera, J.E., Peres Salvatierra, A., Asymptotic behaviour of the energy in partially
viscoelastic materials, Quarterly of Applied Mathematics, 59(2001), no. 3, 557-578.

[22] Mustafa, M.I., Uniform decay rates for viscoelastic dissipative systems, J. Dyn. Control
Syst., 22(1)(2016), 101-116.

[23] Park, J.Y., Park, S.H., Existence and asymptotic stability for viscoelastic problems with
nonlocal boundary dissipation, Czechoslovak Mathematical Journal, 56(2006), no. 2, 273-
286.

[24] Shun-Tang, W., Chen, H.F., Uniform decay of solutions for a nonlinear viscoelastic wave
equation with boundary dissipation, Journal of Function Spaces and Applications, (2012),
Art. ID 421847, 17 pages.

[25] Wu, S.T., General decay for a wave equation of Kirchhoff type with a boundary control
of memory type, Boundary Value Problems, 55(2011).

Islem Baaziz
Department of Mathematics, Faculty of Sciences,
Farhat Abbas of Setif1, Setif 19000, Algeria

e-mail: islam.baaziz@univ-setif.dz



A viscoelastic system with boundary feedback 397

Benyattou Benabderrahmane
National Higher School of Mathematics,
Scientific and Technology Hub of Sidi Abdellah,
P.O. Box 75, Algiers 16093, Algeria
e-mail: benyattou.benabderrahmane@univ-msila.dz

Salah Drabla
Department of Mathematics, Faculty of Sciences,
University Farhat Abbas of Setif1, Setif 19000, Algeria
e-mail: drabla s@univ-setif.dz




	1. Introduction
	2. Preliminaries
	3. Decay of solutions
	. References
	Blank Page

