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Better approximations for quasi-convex functions

Huriye Kadakal

Abstract. In this paper, by using Hölder-İşcan, Hölder integral inequality and
an general identity for differentiable functions we can get new estimates on gen-
eralization of Hadamard, Ostrowski and Simpson type integral inequalities for
functions whose derivatives in absolute value at certain power are quasi-convex
functions. It is proved that the result obtained Hölder-İşcan integral inequality
is better than the result obtained Hölder inequality.
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1. Introduction

A function f : I ⊆ R→ R is said to be convex if the inequality

f (tx+ (1− t)y) ≤ tf (x) + (1− t)f (y)

valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then f is said to be
concave on interval I 6= ∅.

Integral inequalities have played an important role in the development of
all branches of Mathematics and the other sciences. The inequalities discovered
by Hermite and Hadamard for convex functions are very important in the lit-
erature. The classical Hermite-Hadamard integral inequality provides estimates of
the mean value of a continuous convex function f : [a, b] → R. Firstly, let’s re-
call the Hermite-Hadamard integral inequality. In addition, readers can refer to the
[8, 9, 10, 11, 14, 16, 12, 13, 17, 18, 19] articles and the references therein for more
detailed information on both convexity and the different classes of convexity.

Received 17 February 2022; Accepted 03 April 2023.
© Studia UBB MATHEMATICA. Published by Babeş-Bolyai University
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Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers
and a, b ∈ I with a < b. The following inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)

holds. This double inequality is known in the literature as Hermite-Hadamard integral
inequality for convex functions [1, 4]. Note that some of the classical inequalities for
means can be derived from (1.1) for appropriate particular selections of the mapping
f . Both inequalities hold in the reversed direction if the function f is concave.

Let f : I ⊆ R→ R be a mapping differentiable in I◦, the interior of I, and let
a, b ∈ I◦ with a < b. If |f ′(x)| ≤M, x ∈ [a, b] , then we the following inequality holds∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

b− a

[
(x− a)

2
+ (b− x)

2

2

]
for all x ∈ [a, b] . This result is known in the literature as the Ostrowski inequality [3].

The following inequality is well known in the literature as Simpson’s inequality
.

Let f : [a, b]→ R be a four times continuously differentiable mapping on (a, b)
and

∥∥f (4)∥∥∞ = sup
x∈(a,b)

∣∣f (4)(x)
∣∣ <∞. Then the following inequality holds:

∣∣∣∣∣13
[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ 1

2880

∥∥∥f (4)∥∥∥
∞

(b− a)
4
.

In recent years many authors have studied error estimations for Simpson’s in-
equality; for refinements, counterparts, generalizations and new Simpson’s type in-
equalities, see [20, 21] and therein.

Definition 1.1 ([2]). A function f : [a, b]→ R is said quasi-convex on [a, b] if

f (tx+ (1− t)y) ≤ max {f(x), f(y)}

for any x, y ∈ [a, b] and t ∈ [0, 1] .

Lemma 1.2 ([5]). Let the function f : I ⊆ R→ R be a differentiable mapping on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b and θ, λ ∈ [0, 1]. Then the following
equality holds:

(1− θ) (λf(a) + (1− λ) f(b)) + θf((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

= (b− a)

[
−λ2

∫ 1

0

(t− θ) f ′ (ta+ (1− t) [(1− λ) a+ λb]) dt

+ (1− λ)
2
∫ 1

0

(t− θ) f ′ (tb+ (1− t) [(1− λ) a+ λb]) dt

]
.

In [6], İşcan gave the following theorems for quasi-convex functions.
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Theorem 1.3. Let f : I ⊂ R → R be a differentiable mapping on I such that f ′ ∈
L [a, b], where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b],
q > 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

(
θp+1 + (1− θ)p+1

p+ 1

) 1
p [
λ2
(
sup

{
|f ′(a)|q , |f ′(C)|q

}) 1
q

+(1− λ)2
(
sup

{
|f ′(b)|q , |f ′(C)|q

}) 1
q

]
(1.2)

where C = (1− λ)a+ λb and 1
p + 1

q = 1.

Theorem 1.4. Let f : I ⊂ R → R be a differentiable mapping on I such that f ′ ∈
L [a, b], where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b],
q ≥ 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

(
θ2 − θ +

1

2

)[
λ2
(
sup

{
|f ′(a)|q , |f ′(C)|q

}) 1
q

+(1− λ)2
(
sup

{
|f ′(b)|q , |f ′(C)|q

}) 1
q

]
(1.3)

where C = (1− λ)a+ λb.

A refinement of Hölder integral inequality better approach than Hölder integral
inequality can be given as follows:

Theorem 1.5 (Hölder-İşcan Integral Inequality [7]). Let p > 1 and 1
p + 1

q = 1. If f and

g are real functions defined on interval [a, b] and if |f |p, |g|q are integrable functions
on [a, b] then

∫ b

a

|f(x)g(x)| dx ≤ 1

b− a


(∫ b

a

(b− x) |f(x)|p dx

) 1
p
(∫ b

a

(b− x) |g(x)|q dx

) 1
q

+

(∫ b

a

(x− a) |f(x)|p dx

) 1
p
(∫ b

a

(x− a) |g(x)|q dx

) 1
q


An refinement of power-mean integral inequality as a result of the Hölder-İşcan

integral inequality can be given as follows:

Theorem 1.6 (Improved power-mean integral inequality [15]). Let q ≥ 1. If f and g
are real functions defined on interval [a, b] and if |f |, |g|q are integrable functions on
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[a, b] then ∫ b

a

|f(x)g(x)| dx

≤ 1

b− a


(∫ b

a

(b− x) |f(x)| dx

)1− 1
q
(∫ b

a

(b− x) |f(x)| |g(x)|q dx

) 1
q

+

(∫ b

a

(x− a) |f(x)| dx

)1− 1
q
(∫ b

a

(x− a) |f(x)| |g(x)|q dx

) 1
q


Our aim is to obtain the general integral inequalities giving the Hermite-

Hadamard, Ostrowsky and Simpson type inequalities for the quasi-convex function in
the special case using the Hölder, Hölder-İşcan integral inequalities and above lemma.

Throught this paper, we will use the following notation for shortness

M1 =
(
max

{
|f ′(Aλ)|q , |f ′(a)|q

})1/q
= max {|f ′(Aλ)| , |f ′(a)|} (1.4)

M2 =
(
max

{
|f ′(Aλ)|q , |f ′(b)|q

})1/q
= max {|f ′(Aλ)| , |f ′(b)|} , (1.5)

where Aλ = (1− λ) a+ λb.

2. Main results

Using Lemma 1.2 we shall give another result for quasi-convex functions as
follows.

Theorem 2.1. Let f : I ⊆ [1,∞)→ R be a differentiable mapping on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b and θ, λ ∈ [0, 1]. If |f ′|q is quasi-convex
function on the interval [a, b], q > 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2
2

1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]
, (2.1)

where 1
p + 1

q = 1.

Proof. Suppose that Aλ = (1− λ) a + λb. From Lemma 1.2, Hölder-İşcan integral
inequality and the quasi-convexity of the function |f ′|q, we have∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf(Aλ)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2
∫ 1

0

|t− θ| |f ′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2
∫ 1

0

|t− θ| |f ′ (tb+ (1− t)Aλ)| dt
]
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≤ (b− a)λ2

{(∫ 1

0

(1− t) |t− θ|p dt
) 1

p
(∫ 1

0

(1− t) |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

t |t− θ|p dt
) 1

p
(∫ 1

0

t |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

}

+ (b− a) (1− λ)
2

{(∫ 1

0

(1− t) |t− θ|p dt
) 1

p

×
(∫ 1

0

(1− t) |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

t |t− θ|p dt
) 1

p
(∫ 1

0

t |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

}

≤ (b− a)λ2

{[
M1

(
1

2

) 1
q

N
1
p

1 (θ) +M1

(
1

2

) 1
q

N
1
p

2 (θ)

]

+ (1− λ)
2

[
M2

(
1

2

) 1
q

N
1
p

1 (θ) +M2

(
1

2

) 1
q

N
1
p

2 (θ)

]}

=
b− a

2
21−

1
q

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ) +N
1
p

2 (θ)

]
=

b− a
2

2
1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ) +N
1
p

2 (θ)

]
.

By simple computation

N1 (θ, p) : =

∫ 1

0

(1− t) |t− θ|p dt (2.2)

= (1− θ) θ
p+1 + (1− θ)p+1

p+ 1
+
θp+2 − (1− θ)p+2

p+ 2

N2 (θ, p) : =

∫ 1

0

t |t− θ|p dt (2.3)

= θ
θp+1 + (1− θ)p+1

p+ 1
+

(1− θ)p+2 − θp+2

p+ 2
.

Thus, we obtain the inequality (2.1). This completes the proof. �

Remark 2.2. The inequality (2.1) gives better results than the inequality (1.2). Let
us show that

b− a
2

2
1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]

≤ (b− a)

(
θp+1 + (1− θ)p+1

p+ 1

) 1
p
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×
[
λ2
(
sup

{
|f ′(a)|q , |f ′(C)|q

}) 1
q + (1− λ)2

(
sup

{
|f ′(b)|q , |f ′(C)|q

})] 1
q

.

Using the equalities (2.2), (2.3) and the concavity of the function h : [0,∞) → R,
h(x) = xλ, 0 < λ ≤ 1, by sample calculation we obtain

b− a
2

2
1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]
≤ (b− a)2

1
p

[
λ2M1 + (1− λ)

2
M2

] [N1(θ, p) +N2(θ, p)

2

] 1
p

= (b− a)
[
λ2M1 + (1− λ)

2
M2

](θp+1 + (1− θ)p+1

p+ 1

) 1
p

,

which is the required.

Corollary 2.3. Under the assumptions of Theorem 2.1 with θ = 1, then we have the
following generalized midpoint type inequality∣∣∣∣∣f((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2
2

1
p

[
λ2M1 + (1− λ)

2
M2

]( 1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
. (2.4)

where 1
p + 1

q = 1.

Corollary 2.4. Under the assumptions of Theorem 2.1 with θ = 0, then we have the
following generalized trapezoid type inequality∣∣∣∣∣λf(a) + (1− λ) f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2
2

1
p

[
λ2M1 + (1− λ)

2
M2

]( 1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
,

where 1
p + 1

q = 1.

Corollary 2.5. Under the assumptions of Theorem 2.1 with θ = 1, if |f ′(x)| ≤ M,
x ∈ [a, b] , then we have the following Ostrowski type inequality∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(u)du

∣∣∣∣∣
≤M

(
1

2

)1− 1
p

[
(x− a)

2
+ (b− x)

2

b− a

](
1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
(2.5)

for each x ∈ [a, b] .
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Proof. For each x ∈ [a, b], there exist λx ∈ [0, 1] such that x = (1− λx) a + λxb.
Hence we have λx = x−a

b−a and 1 − λx = b−x
b−a . Therefore, for each x ∈ [a, b] , from the

inequality (2.1) we obtain the inequality (2.5). �

Corollary 2.6. Under the assumptions of Theorem 2.1 with λ = 1
2 and θ = 2

3 , then we
have the following Simpson type inequality∣∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

4
2

1
pA (M1,M2)

[
N

1
p

1

(
2

3
, p

)
+N

1
p

2

(
2

3
, p

)]
,

where A is the arithmetic mean.

Corollary 2.7. Under the assumptions of Theorem 2.1 with λ = 1
2 and θ = 1, then we

have the following midpoint type inequality∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

2
1
pA (M1,M2)

(
1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
,

where A is the arithmetic mean.

Corollary 2.8. Under the assumptions of Theorem 2.1 with λ = 1
2 and θ = 0, then we

have the following trapezoid type inequality∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

2
1
pA (M1,M2)

(
1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
,

where A is the arithmetic mean.

Theorem 2.9. Let f : I ⊂ R → R be a differentiable mapping on I such that f ′ ∈
L [a, b], where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b],
q ≥ 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2M1 + (1− λ)

2
M2

]
[N1 (θ) +N2 (θ)] (2.6)

where C = (1− λ)a+ λb.
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Proof. Suppose that Aλ = (1− λ) a + λb. From Lemma 1.2, improved power-mean
integral inequality and the quasi-convexity of the function |f ′|q, we have∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf(Aλ)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2
∫ 1

0

|t− θ| |f ′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2
∫ 1

0

|t− θ| |f ′ (tb+ (1− t)Aλ)| dt
]

≤ (b− a)λ2

{(∫ 1

0

(1− t) |t− θ| dt
)1− 1

q

×
(∫ 1

0

(1− t) |t− θ| |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

t |t− θ| dt
)1− 1

q
(∫ 1

0

t |t− θ| |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

}

+(b− a) (1− λ)
2

{(∫ 1

0

(1− t) |t− θ| dt
)1− 1

q

×
(∫ 1

0

(1− t) |t− θ| |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

t |t− θ| dt
)1− 1

q
(∫ 1

0

t |t− θ| |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

}
≤ (b− a)λ2M1 [N1 (θ) +N2 (θ)] + (b− a) (1− λ)

2
M2 [N1 (θ) +N2 (θ)]

= (b− a)
[
λ2M1 + (1− λ)

2
M2

]
[N1 (θ) +N2 (θ)]

where

N1 (θ) : =

∫ 1

0

(1− t) |t− θ| dt = (1− θ) θ
2 + (1− θ)2

2
+
θ3 − (1− θ)3

3

N2 (θ) : =

∫ 1

0

t |t− θ| dt = θ
θ2 + (1− θ)2

2
+

(1− θ)3 − θ3

3
.

�

Remark 2.10. The inequality (2.6) coincides with the the inequality (1.3).

Using Lemma 1.2 we shall give another result for quasi convex functions as
follows using the Hölder and Hölder-İşcan integral inequality. After, we will compare
the results obtained with Hölder and Hölder-İşcan inequalities.

Theorem 2.11. Let f : I ⊆ [1,∞)→ R be a differentiable mapping on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b and θ, λ ∈ [0, 1]. If |f ′|q is quasi convex
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function on [a, b], q > 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2M1 + (1− λ)

2
M2

](θq+1 + (1− θ)q+1

q + 1

) 1
q

(2.7)

where 1
p + 1

q = 1.

Proof. Using Lemma 1.2, Hölder integral inequality and quasi convexity of the function
|f ′|q, we have ∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf(Aλ)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)λ2

[∫ 1

0

|t− θ| |f ′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2
∫ 1

0

|t− θ| |f ′ (tb+ (1− t)Aλ)| dt
]

≤ (b− a)λ2
(∫ 1

0

|t− θ|q |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

+ (b− a) (1− λ)
2

(∫ 1

0

|t− θ|q |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

≤ (b− a)
[
λ2M1 + (1− λ)

2
M2

](∫ 1

0

|t− θ|q dt
) 1

q

= (b− a)
[
λ2M1 + (1− λ)

2
M2

](θq+1 + (1− θ)q+1

q + 1

) 1
q

,

where ∫ 1

0

|t− θ|q dt =
θq+1 + (1− θ)q+1

q + 1
. �

Theorem 2.12. Let f : I ⊆ [1,∞)→ R be a differentiable mapping on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b and θ, λ ∈ [0, 1]. If |f ′|q is quasi convex
function on [a, b], q > 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

) [
C

1
q (θ, q) +D

1
q (θ, q)

]
(2.8)

where 1
p + 1

q = 1.
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Proof. From Lemma 1.2 and by Hölder-İşcan integral inequality, we have∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf(Aλ)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ (2.9)

≤ (b− a)λ2
[∫ 1

0

|t− θ| |f ′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2
∫ 1

0

|t− θ| |f ′ (tb+ (1− t)Aλ)| dt
]

≤ (b− a)λ2

{(∫ 1

0

(1− t)dt
) 1

p
(∫ 1

0

(1− t) |t− θ|q |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

tdt

) 1
p
(∫ 1

0

t |t− θ|q |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

}

+(b− a) (1− λ)
2

{(∫ 1

0

(1− t)dt
) 1

p

×
(∫ 1

0

(1− t) |t− θ|q |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

tdt

) 1
p
(∫ 1

0

t |t− θ|q |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

}

≤ (b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

) [
C

1
q (θ, q) +D

1
q (θ, q)

]
.

Since |f ′|q is quasi convex function on interval [a, b], the following inequalities holds.∫ 1

0

|f ′ (ta+ (1− t)Aλ)|q dt ≤ max
{
|f ′ (a)|q , |f ′ (Aλ)|q

}
= M1 (2.10)∫ 1

0

|f ′ (tb+ (1− t)Aλ)|q dt ≤ max
{
|f ′ (b)|q , |f ′ (Aλ)|q

}
= M2 (2.11)

Here, by simple computation we obtain∫ 1

0

(1− t)dt =

∫ 1

0

tdt =
1

2
,

C (θ, q) =

∫ 1

0

(1− t) |t− θ|q dt

= (1− θ)

[
θq+1 + (1− θ)q+1

q + 1

]
+

[
θq+2 − (1− θ)q+2

q + 2

]
(2.12)
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D (θ, q) =

∫ 1

0

t |t− θ|q dt

= θ

[
θq+1 + (1− θ)q+1

q + 1

]
−

[
θq+2 − (1− θ)q+2

q + 2

]
. (2.13)

Thus, using (2.10)-(2.13) in (2.9), we obtain the inequality (2.8). This completes the
proof. �

Remark 2.13. The inequality (2.8) is better than the inequality (2.7). For this, we
need to show that

(b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

) [
C

1
q (θ, q) +D

1
q (θ, q)

]
≤ (b− a)

[
λ2M1 + (1− λ)

2
M2

](θq+1 + (1− θ)q+1

q + 1

) 1
q

.

Using the inequalities (2.12), (2.13) and concavity of ψ : [0,∞) → R, ψ(x) = xs, 0 <
s ≤ 1, we have

(b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

) [
C

1
q (θ, q) +D

1
q (θ, q)

]
≤ (b− a)2

1
q

(
λ2M1 + (1− λ)

2
M2

)(C (θ, q) +D (θ, q)

2

) 1
q

= (b− a)2
1
q

(
λ2M1 + (1− λ)

2
M2

)(1

2

θq+1 + (1− θ)q+1

q + 1

) 1
q

= (b− a)
(
λ2M1 + (1− λ)

2
M2

)(θq+1 + (1− θ)q+1

q + 1

) 1
q

which is the required.

Corollary 2.14. Under the assumptions of Theorem 2.12 with θ = 1, then we have the
following generalized midpoint type inequality∣∣∣∣∣f((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ (2.14)

≤ (b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

)( 1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]
.

where Aλ = (1− λ) a+ λb and 1
p + 1

q = 1.
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Corollary 2.15. Under the assumptions of Theorem 2.12 with θ = 0, then we have the
following generalized trapezoid type inequality∣∣∣∣∣λf(a) + (1− λ) f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

)( 1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]
,

where 1
p + 1

q = 1.

Corollary 2.16. Under the assumptions of Theorem 2.12 with θ = 1, if |f ′(x)| ≤ M,
x ∈ [a, b] , then we have the following Ostrowski type inequality∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(u)du

∣∣∣∣∣ ≤ (b− a)M

(
1

2

) 1
p
(

1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]

for each x ∈ [a, b] .

Proof. For each x ∈ [a, b], there exist λx ∈ [0, 1] such that x = (1− λx) a + λxb.
Hence we have λx = x−a

b−a and 1 − λx = b−x
b−a . Therefore, for each x ∈ [a, b] , from the

inequality (2.8) we obtain the desired inequality. �

Corollary 2.17. Under the assumptions of Theorem 2.12 with λ = 1
2 and θ = 2

3 , then
we have the following Simpson type inequality∣∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2

(
1

2

) 1
p

A (M1,M2)

[
C

1
q

(
2

3
, q

)
+D

1
q

(
2

3
, q

)]
where A is the arithmetic mean.

Corollary 2.18. Under the assumptions of Theorem 2.12 with λ = 1
2 and θ = 1, then

we have the following midpoint type inequality∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ b− a

2

(
1

2

) 1
p

A (M1,M2)

(
1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]
,

where A is the arithmetic mean.
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Corollary 2.19. Under the assumptions of Theorem 2.12 with λ = 1
2 and θ = 0, then

we have the following trapezoid type inequality∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2

(
1

2

) 1
p

A (M1,M2)

(
1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]
,

where A is the arithmetic mean.

3. Some applications for special means

Let us recall the following special means of arbitrary real numbers a, b with a 6= b
and α ∈ [0, 1] :

1. The weighted arithmetic mean

Aα(a, b) := αa+ (1− α)b, a, b ∈ R

2. The unweighted arithmetic mean

A(a, b) :=
a+ b

2
, a, b ∈ R

3. The weighted harmonic mean

Hα(a, b) :=

(
α

a
+

1− α
b

)−1
, a, b ∈ R\ {0}

4. The unweighted harmonic mean

H(a, b) :=
2ab

a+ b
, a, b ∈ R\ {0}

5. The Logarithmic mean

L(a, b) :=
b− a

ln b− ln a
, a, b > 0, a 6= b

6. The n-logarithmic mean

Ln(a, b) :=

(
bn − an

(n+ 1)(b− a)

) 1
n

, n ∈ N, a, b ∈ R, a 6= b

Proposition 3.1. Let a, b ∈ R with a < b, and n ∈ N, n ≥ 2. Then, for θ, λ ∈ [0, 1] and
q > 1, we have the following inequality:

|(1− θ)Aλ (an, bn) + θAnλ (a, b)− Lnn(a, b)|

≤ b− a
2

2
1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]
,

where M1 = max
{
|a|n−1 , |Aλ(a, b)|n−1

}
, M2 = max

{
|Aλ(a, b)|n−1 , |b|n−1

}
.

Proof. The assertion follows from the Theorem 2.1, for f(x) = xn, x ∈ R. �
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Proposition 3.2. Let a, b ∈ R with 0 < a < b, and θ, λ ∈ [0, 1] . Then, for q > 1, we
have the following inequality:∣∣(1− θ)H−1λ (a, b) + θA−1λ (a, b)− L−1(a, b)

∣∣
≤ b− a

2
2

1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]
,

where M1 = max
{
a−2, A−2λ (a, b)

}
, M2 = max

{
A−2λ (a, b), b−2

}
.

Proof. The assertion follows from the Theorem 2.1, for f(x) = 1
x , x ∈ (0,∞) . �
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[8] İşcan, İ., Kadakal, H., Kadakal, M., Some new integral inequalities for n-times differen-
tiable quasi-convex functions, Sigma, 35(3)(2017), 363-368.

[9] Kadakal, H., Multiplicatively P-functions and some new inequalities, New Trends in
Mathematical Sciences, 6(4)(2018), 111-118.

[10] Kadakal, H., Hermite-Hadamard type inequalities for trigonometrically convex functions,
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